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ABSTRACT 

Movement is one of the most important functions of our nervous system. Recent 
research has shown that cognitive and perceptual functions ranging from our 
perception of others’ emotions to the planning of goal-directed behaviors 
depends critically on brain areas once thought to be primarily motor in nature. 
Given the important role our motor system plays in understanding and interacting 
with the world around us, it is surprising that the majority of cognitive 
neuroscience research using electroencephalogram (EEG) has focused primarily 
on perception and cognition irrespective of its relationship(s) to the execution of 
movement. One possible explanation for this is that EEG and event-related 
potential (ERP) studies typically rely on simplistic motor responses and ERP 
averaging techniques that do not afford an analysis of these dynamic 
relationships. Combining a novel method for tracking dynamic cursor movement 
and single-trial EEG analysis, the current study addressed this limitation in the 
field via assessment of younger and older adults’ goal-directed movements 
during a task-set switching procedure. Our results demonstrate that ERPs 
conventionally interpreted with respect to cognition and perception are in fact 
related to the kinematics of motor responses. 
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 1 

Investigating the Relationship between Event-Related 

 Potentials and Response Kinematics  

 The evolutionary development of a nervous system is a prerogative 

exclusive to actively moving creatures   lin s, 2001). Support for this claim is 

evidenced by the early life of the sea squirt ( ennett         lin s, 2001; 

Glenberg, Jaworksi, Rischal, & Levin, 2007). The sea squirt begins life as an 

actively moving tadpole-like creature with a rudimentary nervous system. After 

finding a habitable rock or piece of coral, the sea squirt binds itself to the site, 

never to move again. Shortly after attaching itself, the sea squirt begins to digest 

its own nervous system, seemingly unneeded without the impetus for action. 

Examples like this have led some theorists to believe that the primary purpose of 

a central nervous system is to facilitate interaction with our environment  

(Glenberg et al., 2007; Wolpert, Doya, & Kawato, 2003). However, effective 

responses to environmental demands require the brain to optimally integrate 

perceptual and motor processes.  

 Although a great deal of cognitive neuroscience research has been 

directed at examining the perceptual, cognitive, and motor functions of the brain, 

far fewer, have been directed at the relationships between these 

perceptual/cognitive functions and the behaviors (i.e., actions) they are purported 

to support. This is especially true of research using electroencephalogram (EEG), 

the vast majority of which characterizes perceptual and cognitive processes 

irrespective of their relationship(s) to motor output. To the extent that the 

principle function of our brain is to support our capacity to flexibly and efficiently 
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respond to a dynamic environment, it is critical that cognitive neuroscience 

research address these important questions about the translation between 

perception and responses. The primary aim of the present research was to 

determine how single-trial EEG dynamics are related to timing and/or properties 

of behavioral responses. 

Perception, Cognition, and Action  

 Traditional cognitive theories of the relationship between perceptual 

processes and motor response typically frame response selection and/or motor 

control as distinct processes that are engaged subsequent to perception (Creem-

Regehr & Kunz, 2010). From this perspective, the path from perception to action 

can be described as a serial process wherein perceptual processes use sensory 

information to build internal representations of objects in the external world 

(Cisek, 2007; Marr, 2010). These representations are then passed to other 

cognitive systems where they are integrated with current goals and past 

experiences in order to plan and select a subsequent motor response (Johnson-

Laird, 1988; Newell & Simon, 1972).  

In contrast with the traditional, serial view of the translation from 

perception to action, some investigations using both neuroimaging and 

neurophysiology techniques suggest that perception and response do not always 

adhere to discrete, modular processing stages (Cisek & Kalaska, 2010; Gallese, 

Craighero, Fadiga, & Fogassi, 1999). Moreover, several recent lines of evidence 

have demonstrated that brain regions once thought to be exclusively involved in 
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motor functions support and interact with perceptual and cognitive processes 

(Bernard & Mittal, 2014; Cabeza & Nyberg, 2000; Doya, 2000).  

For example, over the past few decades many researchers have begun 

theorizing about the non-motor functions of the cerebellum and basal ganglia 

(Alexander, DeLong, & Strick, 1986; Bernard & Mittal, 2014; Leiner, Leiner, & 

Dow, 1989). Traditionally, it was believed that the functional significance of these 

two cortical regions was restricted to the control and coordination of movement 

(Middleton, 2000). However, a large number of functional-imaging and case 

studies have found cerebellum and basal ganglia activation to be independently 

involved in a myriad of non-motor, cognitive and perceptual processes 

(Ackermann, Mathiak, & Ivry, 2004; Cabeza & Nyberg, 2000; Daum, Beth, & 

Snitz, 2001; Doya, 2000; Gao et al., 1996).  

Furthermore, studies using single-cell recordings of neuronal activity in 

monkeys have revealed several findings that do not support a serial ordering 

interpretation of perception, cognition, and response (Alexander & Crutcher, 

1990; Crammond & Kalaska, 2000). For instance, when monkeys were required 

to use abstract rules to make same/different responses by holding or releasing a 

lever, both premotor cortex (PMC) and prefrontal cortex (PFC) were co-activated 

during encoding of the rule and response (Wallis & Miller, 2003). Critically, 

although the rules were represented in both regions, they were encoded earlier 

and more strongly in the PMC.   

Though it has become increasingly evident that a strictly independent 

conceptualization of motor and perceptual processes is difficult to reconcile, 
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investigations of their interaction have been relatively restricted to hemodynamic 

neuroimaging and non-human primate neurophysiology techniques. Little, if any, 

cognitive neuroscience research using EEG has examined the dynamic 

interaction between perception and motor processes. One possible explanation 

for this is that EEG and event-related potential (ERP) studies typically rely on 

simplistic, non-ecologically valid motor responses (e.g., button presses) that do 

not afford dynamic assessments of online movements. However, even these 

simplistic responses occur within the time-course of EEG and ERP waveforms 

that are typically interpreted as perceptual or cognitive in nature. For instance, 

investigations utilizing Go/No-go and flanker tasks typically report average 

response time(s) that overlap with N2 and P3 component waveforms (Donkers & 

van Boxtel, 2004; Roberts, Rau, Lutzenberger, & Birbaumer, 1994; Tillman & 

Wiens, 2011). Thus, these ERP waveforms likely contain neural information 

generated by both perceptual and motor processes. Furthermore, even 

response-related ERP components (e.g., the lateralized readiness potential 

(LRP)) that are commonly interpreted as reflecting motor preparation have been 

demonstrated to overlap with non-motor, perceptual processing (Eimer, 1998).  

In order to gain a better understanding of the temporal and functional 

relationship between traditional EEG and ERP measures of cognitive function 

and behavioral responses, it is necessary to use a dynamic measure of motor 

execution that is amenable to measurement of response characteristics that can 

be related to the recorded EEG data. Kinematic analysis of movement profiles is 

one promising approach to address this problem. 
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Kinematics 

Kinematics (i.e., the motion of objects as a function of time and the 

derivatives of displacement (e.g., velocity, acceleration, fluency) afford numerous 

advantages when studying behavioral responses compared to traditional 

paradigms used in EEG and ERP studies. Whereas typical EEG tasks are 

restricted to motor planning and execution inferences from discrete response 

times, kinematics permit a quantitative measurement of the continuous 

parameters of the response. In addition, there are several lines of empirical 

evidence demonstrating the utility of kinematics in the study of perception-

response interactions, as well as abundant behavioral data establishing their 

suitability for distinguishing between various levels of motor functioning (Knoblich 

& Flach, 2001; Parsons, 1994; Pozzo, Papaxanthis, Petit, Schweighofer, & 

Stucchi, 2006; Schroter et al., 2003; Paolo Viviani & Stucchi, 1992; Viviani & 

Stucchi, 1989). Taken together, kinematics provide a promising solution to the 

aforementioned limitations of traditional EEG tasks. However, their effective 

application to the study of perceptual-motor integration requires the development 

of new approaches to EEG analysis. 

In studies of cognition and perception, EEG data is typically analyzed 

using the event-related potential (ERP) method. ERPs are electrical potentials 

generated by the brain in response to some internal or external event (e.g., 

stimuli, responses, etc.; Luck, 2012). Because ERPs are typically smaller in 

amplitude than the co-occurring EEG, some sort of averaging is required to 
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isolate the event-related waveform. The problem with the traditional ERP method 

is that by averaging over trials, much of the dynamic event-related signal is lost. 

Trial-level EEG Analysis 

 The predominant approach to EEG analysis has focused on reducing the 

complexity of EEG data by averaging data segments time-locked to a set of 

experimental events assumed to evoke consistently similar neural responses 

(Makeig & Onton, 2009). Theoretically, three types of oscillatory activity 

contribute to the event-related EEG signal time-locked to a set of experimental 

events (Dickter & Kieffaber, 2014): (1) phase and time-locked evoked oscillatory 

activity (EOA) generated by an experimental event, (2) spontaneous oscillatory 

activity not generated by an experimental event, and (3) induced oscillatory 

activity (IOA) that is correlated with an experimental event, but not phase-locked 

to the event. Averaging across data segments removes EEG signals unrelated to 

time-locked events via phase cancellation. By reducing oscillatory activity to a 

single statistical parameter (e.g., a mean), we lose the dynamic, induced 

oscillatory information contained in the original data (Makeig, Debener, Onton, & 

Delorme, 2004). Critically, because the planning and execution of motor 

responses varies in time from trial to trial, the conventional averaging process 

also precludes the ability to investigate the neural correlates of response 

processes, which is a significant hurdle to the study of perception-motor 

integration. One alternative approach is to analyze the data at the single-trial 

level. By looking at event-related EEG at the trial-level, we can determine how 
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both evoked and induced activity is related to the kinematic properties of a 

movement.   

Kinematics, EEG, and Aging 

It has been posited that age-related neural slowing results in an overall 

decline in the cognitive and motor functioning of older adults (Birren, 1974; 

Ketcham, Seidler, Van Gemmert, & Stelmach, 2002; Salthouse, 1985). This is 

evidenced by a large body of experimental research demonstrating that older 

adults are slower on a wide variety of cognitive and motor tasks (Birren & Fisher, 

1995; Seidler et al., 2010). Research on age-related kinematic differences 

between healthy younger and older adults supports these findings. For instance, 

compared to younger adults, older adults are slower in initiating and executing 

motor responses, have lower peak velocities and accelerations, are more 

dysfluent, and spend a greater proportion of movement time in terminal guidance 

(Contreras-Vidal, Teulings, & Stelmach, 1998; Ketcham, Seidler, Van Gemmert, 

& Stelmach, 2002; Tucha et al., 2006). This is important because these motor 

deficits might be reflected in EEG measures. Several lines of evidence from EEG 

research suggest this may be the case. For instance, while EEG indices of older 

adults sensory and perceptual processing appear to be intact, it has been 

demonstrated that task-related behavioral slowing might be the result of 

dysfunctional motor and cognitive processing rather than a peripheral nervous 

system impairment (Falkenstein, Yordanova, & Kolev, 2006; Yordanova, 2004). 

However, over-reliance on traditional EEG  and ERP analyses and serial 

processing interpretations of motor response have made it difficult to determine 
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how cognitive and motor processing actually contribute to behavioral slowing. By 

using trial-level EEG analysis and behavioral kinematics, it might be possible to 

elucidate these relationships. 

The Present Study 

  Motivated by the aforementioned methodological limitations described in 

the preceding paragraphs, the aim of the present study was to investigate a 

procedure for disassociating perceptual, cognitive, and motor processing using 

single-trial EEG analyses. To achieve this, we used a novel method designed to 

simultaneously assess dynamic cursor movements and EEG during a cued task-

set switching procedure. By using online cursor movements, rather than discrete 

button presses, we can extract the kinematic measures associated with 

behavioral responses. Combining these kinematic variables with trial-level 

analyses, we will determine how the relationships between cognitive and 

perceptual processing and the parameters of motor responses may be altered 

during normal cognitive aging.  

Method 

Participants 

  Nineteen college-aged adults (15 females; M = 21.21, SD = 4.98) and 18 

healthy older adults (11 females; M = 74.47, SD = 6.71) were assessed in the 

present study. Younger adults were recruited from a university research pool at 

the College of William & Mary and received course credit for their participation. 

Older adults were community-dwelling citizens and received monetary 

compensation. The study was conducted with the understanding and consent of 
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each participant in accordance with the guidelines set forth by the Institutional 

Review Board.  

 Participants were screened for eligibility using the  Mini Mental State 

Exam (MMSE) (Folstein, Folstein, & McHugh, 1975) and a health-history 

questionnaire to exclude those with cognitive impairment or any history of 

neurological or movement disorders. A MMSE score of 27 was set as the 

minimum inclusion cutoff for participation in the study  O’Bryant et al.  2008). The 

average MMSE score for older adults was 29.65 (SD = .67) and 29.38 (SD = .97) 

for younger adults. Both older (M = 16.56, SD = 3.29) and younger (M = 14.16, 

SD = .96) adults reported many years of education. No participants self-reported 

a neurological or psychiatric disorder. All participants had normal or corrected-to-

normal vision with normal color vision and indicated a right hand preference on 

the Edinburgh Handedness Inventory (Oldfield, 1971). 

Materials and Procedures 

   Eligible participants were fitted with an electrode cap and then completed 

a cued task-set switching procedure. The task was presented on a computer 

monitor in an electronically shielded booth using E-Prime (Psychology Software 

Tools, Inc., Pittsburg, PA). A schematic of the task is presented in Figure 1. 

Analyses of the behavioral and ERP correlates of cue and stimulus processing 

with respect to conflict processing and task-set switching are detailed elsewhere 

(Kieffaber, Kruschke, Cho, Walker, & Hetrick, 2012). On each task trial, 

participants were instructed to make cued judgments concerning target stimuli 

according to three potential cues (the word SIZE, SHAPE, or COLOR). Target 
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stimuli consisted of figure-pairs that varied in size (small/large), shape 

(square/circle) within a trial, and color (red/blue) across trials. On shape and size 

cued trials, participants were instructed to determine if the corresponding target 

stimuli figure-pair was “Same” or “ ifferent” on the cued dimension. On color-

cued trials, participants were instructed to determine if the corresponding target 

stimuli were “Red” or “Blue”. Cues were displayed for 800ms followed by a 

700ms cue-target interval before the figure-pair target stimuli appeared. Target 

figure-pairs remained until a response was recorded. Responses were made by 

moving a mouse cursor from a home position at the bottom center of the screen 

to one of two response positions at the left and right of the target figure-pair. The 

response positions were indicated by black squares with white Different/Red 

labels (left) and Same/Blue (right) (see Figure 1). Responses were recorded as 

soon as the mouse cursor entered any part of the response position (no click 

required). Response labels did not vary across trials. Accuracy feedback was 

immediately given after a response was recorded and remained until the mouse 

cursor was returned to the bottom center “Home” position. Returning to the home 

position initiated a 1500ms inter-trial interval. Task-set cue rules changed 

randomly between trials with switch (cue switch) and repeat (cue same) trials 

equiprobable. Size, shape, and color cues were evenly distributed across blocks. 

Participants completed three blocks with 120 trials each with self-administered 

breaks between blocks.  
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Behavioral Measures 

 Participant responses were measured by continuously sampling the x-y 

coordinates of the mouse cursor at 200 Hz (i. e., every 5 ms). Two measures 

were recorded on a trial-by-trial basis. Movement initiation was defined from 

velocity profiles using the optimal algorithm of Teasdale, Bard, Fleury, Young, 

and Proteau (1993). The algorithm located the sample (S1) where the velocity 

time series first exceeded 10% of the peak velocity (PV; e.g., the point of 

maximum velocity of the movement) of the time series. It then worked backwards 

from this point until it found the first sample (S2) in the velocity time series less 

than or equal to PV/10-PV/100. The standard deviation of the time series 

between sample S1 and sample S2 was then calculated. The movement initiation 

sample was the first sample less than or equal to S2-SD (Ketcham et al., 2002). 

The second measure, movement duration, was defined as the elapsed time 

between movement initiation and movement completion. A movement was 

considered completed when the mouse cursor entered any part of the boundary 

of one of the marked response positions.  

Kinematic Measures 

Kinematic variables corresponding to variations in the first derivative (i.e., 

velocity), second derivative (i.e., acceleration), and third derivative (i.e., jerk) of 

the mouse cursor as a function of time were organized into four categories 

corresponding to the (1) speed, (2) guidance, (3) decision time, and (4) fluency 

underlying the cursor displacement on each trial. Maximum and mean absolute 

velocity and acceleration were measured to assess the peak and overall speed 



 

 12 

of cursor movements, respectively. Total movement duration and the 

acceleration- deceleration asymmetry ratio were used to measure guidance. The 

asymmetry ratio differentiates the proportion of the total movement duration 

spent in the deceleration phase (e.g., terminal guidance) from the acceleration 

phase. Prolonged periods of terminal guidance are indicated by acceleration 

ratios less than 0.5, and represent the period of time to peak velocity divided by 

the total movement duration (Bellgrove, Phillips, Bradshaw, & Gallucci, 1998; 

Nagasaki, 1989). Decision time was defined as the time from target onset to the 

time of movement onset (e.g., movement start time). The number of inversions of 

velocity (NIV) and average normalized jerk (ANJ) were measured to determine 

the fluency of the cursor movements. Automatic, fluid movements are 

characterized by smaller numbers of inversions of velocity (Tucha et al., 2006). 

Supernumerary velocity and acceleration fluctuations correspond to additional 

increases and decreases in speed caused by lack of control (Danna, Paz-

Villagrán, & Velay, 2013). Because jerk, the change of acceleration, differs 

greatly with the length and duration of a movement, jerk was normalized and 

averaged to correct for variations in movement size and time according to 

Teulings, Contreras-Vidal, Stelmach, & Adler, 1997. Normalized jerk is minimal in 

smooth movements and is used to compare acceleration control between 

movements of different sizes and lengths (Contreras-Vidal et al., 1998). Smaller 

ANJ scores indicate smoother movements.  

Sampled x-y coordinates were filtered with a second-order, dual-pass 

Butterworth filter using a 10 Hz low-pass cutoff (Ketcham et al., 2002; Phillips & 
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Triggs, 2001). Cursor displacement data were then differentiated thrice using a 

three-point central finite difference algorithm to compute velocity, acceleration, 

and jerk.               

EEG Recordings and Data Analysis 

 Electrophysiology data were recorded continuously at 2000 samples per 

second using a high-impedance DBPA-1 Sensorium bio-amplifier (Sensorium 

Inc., Charlotte, VT) with an analog high-pass filter of 0.01 Hz and a low-pass filter 

of 500 Hz (four-pole Bessel).  Recordings were made using fabric caps with 74 

Ag-AgCl sintered electrodes (Electrode Arrays, El Paso, TX) while participants 

were seated in an electronically shielded booth. EEG recordings were made 

using a forehead ground electrode and an average common reference at the tip 

of the nose. Horizontal and vertical eye movements were recorded from 

perioccular electrodes positioned at the lateral canthi and from electrodes 

positioned on the superior and inferior orbits (centered with the pupil), 

respectively. All impedances were adjusted to within 0-20 kΩ at the start of the 

recording session. 

 EEG data were analyzed off-line using EEGLAB (Delorme & Makeig, 

2004). Raw data were visually inspected to remove channels with extreme 

artifacts and identify bad data segments. The continuous EEG data were 

corrected for ocular artifacts using independent components analysis (ICA; Jung 

et al., 2000) and smoothed with a band-pass, zero phase-shift Butterworth filter 

between .2 and 30Hz. The data were then segmented using ERPLAB (Lopez-
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Calderon & Luck, 2014) and individual segments containing voltages exceeding 

300 μV were removed.  

 Data segments were defined with respect to either target onset (-200 – 

1000 ms) or movement initiation (-1000 – 2000 ms). Data segments time-locked 

to target onset were baseline corrected between -200 and 0 ms. Data segments 

time-locked to movement initiation were baseline corrected using the mean of the 

full interval between -1000 and 2000ms.   

 Data reduction was accomplished using group-wise ICA to re-describe the 

multi-channel EEG data in terms of a small number of components. Separate 

ICA decompositions were applied to the target onset and movement initiation 

data. Because of the potential for redundancy in the data following target onset 

and prior to response initiation, subsets of the segmented data were used for the 

ICAs. For those segments time-locked to target onset, only data between 200 ms 

prior to target onset and 100 ms prior to movement initiation were submitted to 

the ICA decomposition. For those segments time-locked to the movement 

initiation, only data between 100ms prior to movement initiation and 200ms 

following the completion of the movement were submitted to the ICA 

decomposition. Each of the two sets of spatial filters resulting from the ICA 

decompositions were then applied to the original data segments. 

 In order to reduce computational demands and in the interest of 

parsimony, the 65-channel data were reduced to 15 principal dimensions using 

PCA prior to the ICA analysis. Of the resulting 15 independent components, only 
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those required to account for more than 90% of variance in the data were 

selected for further analysis. 

Relationships between EEG amplitude and kinematic variables were 

evaluated using “ERP images”. An ERP image is a representation of ERP 

amplitude (color) over time (X-axis) and trials (Y-axis).  When the trials are sorted 

along the Y-axis with respect to some measured behavior (e.g., velocity, 

response latency), patterns in the ERP image can reveal characteristics of the 

relationship(s) between EEG amplitude and that behavior (Makeig et al., 2004). 

In the present research, ERP images with 200-trial smoothing were generated for 

each of the ICA components, for the complete sample and separately for young 

and older adults and sorted in ascending order with respect to the timing of 

movement initiation and mean velocity of the response.  

For each of the ICA components and analyzed kinematic variables a 

univariate 2 (Age) X 2 (Quantile) ANVOA was used to evaluate mean differences 

at each time point in the smoothed, single-trial data. A correction for the False 

Discovery Rate (Bejamini & Yekutieli, 2001) was used to address the inflated risk 

of Type I error. In addition  “significant” results were defined as those associated 

with an effect size (eta-squared) greater than or equal to . 4  indicating a “large” 

effect. The results of these analyses are presented along with the ERP image 

analyses, however, because they are similar to those of a conventional ERP 

analysis they will not be discussed further. 

Recall that the foremost concern with conventional averaging approaches 

to ERP analysis (including the univariate analyses just described)  is that they 
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are incapable of characterizing EEG activity that is evoked by external (e.g., 

target onset) or internal (e.g., movement onset) events that are not phase-locked 

across trials. Furthermore, there remains considerable debate in the literature 

about how to quantify temporally dynamic EEG activity in single trials (Makeig et 

al., 2004). For present purposes, features (i.e., peaks and troughs) of the single 

trial (smoothed) EEG data were characterized using a peak-centered moving 

window. First, a window (e.g., 100ms to 200ms) was defined for each feature 

 e.g.  P   N   etc.) identified in the ERP images. Next  a “spread”  e.g.  20ms) 

was defined in accordance with each feature. Finally, the maximum/minimum 

amplitude was identified within the window. The latency of the feature on each 

trial was measured as the latency of the maximum/minimum amplitude and the 

amplitude of the feature on each trial was measured as the mean amplitude over 

the “spread” of the feature surrounding the peak/trough. Each of the peak/trough 

amplitude and latency measures for each of the identified EEG features was then 

analyzed to determine if it reflected three types of potential neural processes: (1) 

sensory and perceptual, (2) perceptual and cognitive, or (3) cognitive and motor.  

Concerning features associated with target-locked events, a feature was 

considered to reflect a sensory and perceptual process if it was unrelated to the 

kinematic sorting variables. Next, a feature was considered to indicate a 

perceptual and cognitive process if the amplitude, but not latency, of the feature 

was related to the kinematic sorting variable. Lastly, a feature was considered to 

reflect a cognitive and motor process if the latency, plus or minus the amplitude, 

was related to the kinematic sorting variable. 
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In regards to features associated with movement onset time-locked events, 

features occurring prior to the movement initiation were considered to reflect 

sensory and perceptual processes if correlated in latency with the Target onset, 

but not with the kinematic sorting variable. Features that were present following 

movement initiation were interpreted using the same criteria as the target-locked 

features.  

Results 

Behavioral Data 

 The experimental design permits comparisons between three levels of 

task switching (e.g., repeat, attention switch, and response switch) and four 

levels of task conflict (e.g., no conflict, attentional conflict, response conflict, and 

all conflict). Switch (3) by conflict (4) by age (2) mixed model ANOVAs were 

employed to determine if accuracy rates and reaction times (RT) were affected 

by age, task-switching, or conflict.  

The following behavioral results are largely consistent with prior literature 

on task-set switching and conflict processing (see Kieffaber et al., 2012), and are 

provided here only in the interest of transparency. Because the primary aim of 

the present research is to evaluate relationships between EEG and kinematics, 

the results regarding switching, conflict, and age will not be discussed further.   

Accuracy.  The analysis of accuracy indicated only a main effect of 

conflict, F(3, 105) = 21.94, p < .001. Post-hoc paired-samples t-tests with 

Bonferroni correction (alpha= .008) for multiple comparisons revealed an 

expected trend in accuracy rates across types of conflict. Results revealed no 
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accuracy rate differences between “no conflict”  M = 99%; SD = .02) and 

“attentional conflict”  M = .98%; SD = .04) trial types, t(36)= 1.93, p > .05, but did 

indicate greater accuracy on “no conflict” trials when compared to “response 

conflict” trials  M = 95%; SD = .05), t(36)= 4.93, p < .008  and “all conflict” trials 

(M = 93%; SD = .07), t(36)= 5.59, p < .008. There were higher accuracy rates on 

“attentional conflict” trials compared to “response conflict” trials  t(36)= 3.53, p 

< .008  and “all conflict” trials  t(36)= 5.34, p < .008. Finally, accuracy rates were 

lower on “all conflict” trials compared to “response conflict” trials  t(36)= 3.09, p 

< .008. This pattern demonstrates that, as expected, accuracy rates decrease as 

conflict demands increase. Overall accuracy was not affected by age F(1, 35) = 

2.82, p > .05, and was high for both young (M = 96%; SD = .05) and old (M = 

93%; SD = .06) adults.  

Reaction times. The analysis of reaction times indicated several 

statistically significant main effects and interactions. A main effect of task-

switching revealed significant RT switch costs, F(2, 70) = 16.54, p < .001. Post-

hoc paired-samples t-tests with Bonferroni correction (alpha= .016) for multiple 

comparisons indicated that RTs were shorter on “repeat” trials  M = 1352.96; SD 

= 368.44) than “attention switch” trials  M = 1392.4; SD = 378.38), t(36)= -2.55, p 

< .0 6  and that RTs were shorter on “attention switch” trials than “response trials” 

(M = 1352.96; SD = 368.44), t(36)= -2.72, p < .016. These findings indicate that, 

as expected, greater task-switching demands result in increases in RT costs. 

There was also a statistically significant main effect of conflict, F(3, 105) = 

13.62, p < .001. Post-hoc paired-samples t-tests with Bonferroni correction 
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 alpha= .008) for multiple comparisons revealed that RTs were shorter on “no 

conflict” trials  M = 1329.51; SD = 373.2 ) than “response conflict” trials  M = 

1417.78; SD = 382.91), t(36)= -5.5, p < .008  and “all conflict” trials  M = 1446.7; 

SD = 392.77), t(36)= -5.96, p < .008. Furthermore, RTs were shorter on 

“attentional conflict” trials  M = 1378.35; SD = 40 .08) than “all conflict” trials  

t(36)= -3.57, p < .008. No other pairwise comparisons were statistically significant. 

These results indicate that as conflict demands increase, so do RT costs. 

A switch by conflict interaction was also statistically significant, F(36, 210) 

= 3.08, p < .05. Three switch (repeat, attention switch, and response switch) by 

conflict (no conflict, attentional conflict, response conflict, and all conflict) 

repeated measures ANOVAs were employed to analyze the simple main effects. 

The first analysis revealed there were significant RT costs associated with the 

different types of conflict on “repeat” trials  F(3, 108) = 35.79, p < .001. Post-hoc 

paired-samples t-tests with Bonferroni correction (alpha= .008) for multiple 

comparisons indicated increased RTs costs consistent with expected differences 

between conflict processing demands. Results revealed shorter RTs on “no 

conflict” trials  M = 1261.76; SD = 354.27) than “attentional conflict” trials  M = 

1316.82; SD = 385.48), t(36)= -3.19, p < .008, followed by shorter RTs on 

“attentional conflict” trials than “response conflict” trials  M = 1381.67; SD = 

378.9), t(36)= -3.78, p < .008. Lastly, results indicated there were shorter RTs on 

“response conflict” trials than “all conflict” trials  M = 1451.58; SD = 382.33), 

t(36)= -3.01, p < .008. The second analysis indicated there were no significant 
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RT costs associated with the different types of conflict on “attention switch” trials  

F(3, 108) = 1.19, p > .05.  

The third analysis showed there were significantly significant RT costs 

associated with the different types of conflict on “response switch” trials  F(3, 

108) = 4.67, p > .05. Post-hoc paired-samples t-tests with Bonferroni correction 

 alpha= .008) for multiple comparisons indicated that RTs were shorter on “no 

conflict” trials  M = 1372.68; SD = 4 3.47) than on “response conflict” trials  M = 

1478.97; SD = 413.26), t(36)= -3.64, p < .008  and on “all conflict” trials  M = 

1485.98; SD = 438.11), t(36)= -3.03, p < .008. No other pairwise comparisons 

were statistically significant. 

Finally, there was a statistically significant age (e.g., old and young) by 

switch interaction, F(2, 70) = 4.31, p < .001. Three one-way ANOVAs with 

Bonferroni correction (alpha= .016) for multiple comparisons were used to 

examine differences between older and younger adults across the different levels 

of task-switching. Results indicated that RTs of older adults (M = 1606.12; SD = 

327.34) were longer than younger adults (M = 1113.12; SD = 2 3.4 ) on “repeat” 

trials, F(1, 35) = 29.78, p < .016. Findings also indicated that RTs of older adults 

(M = 1635.56; SD = 331.2) were longer than younger adults (M = 1162.04; SD = 

260) on “attentional switch” trials  F(1, 35) = 23.54, p < .016. Finally, results 

indicated that RTs of older adults (M = 1718.14; SD = 351.11) were longer than 

younger adults (M = 1164.61; SD = 253.2) on “response switch” trials  F(1, 35) = 

30.5, p < .016. No other main effects or interactions of the age by switch by 

conflict omnibus repeated mixed measures ANOVA were statistically significant. 
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Kinematic Data 

 One-way ANOVAs with Bonferroni correction (alpha= .005) for multiple 

comparisons were used to examine differences between older and younger 

adults on kinematic measures. Due to low frequency of incorrect responses for 

both younger (M = 7.79; SD = 7.73) and older adults (M = 7.22; SD = 7.86), F(1, 

35) = 0.49, p > .05, all reported analyses of kinematic variables are limited to 

data collected on correct trials.               

Speed. There was a significant effect for mean velocity, F(1, 35) = 23.39, 

p < .005, with older adults demonstrating slower overall responses (M = 3.31; SD 

= 1.07) than younger adults (M = 4.97 ms; SD = 1). Mean acceleration was also 

significant, F(1, 35) = 21, p < .005, indicating overall acceleration was greater for 

younger adults (M = 0.34; SD = 0.12) than older adults (M = 0.18; SD = 0.09). 

Older adults had significantly smaller peak velocities (M = 6.54; SD = 1.82) than 

younger adults (M = 9.49; SD = 2), F(1, 35) = 23.55, p < .005, as well as smaller 

peak accelerations (M = .46; SD = .18) than younger adults (M = .74; SD = .21), 

F(1, 35) = 19.66, p < .005.  

Guidance. A significant effect was demonstrated for the asymmetry ratio, 

F(1, 35) = 9.48 p < .005, indicating that older adults (M = 0.51; SD = 0.06)  

demonstrated more difficulty in the terminal guidance of their responses 

compared to younger adults (M = 0.56; SD = 0.05).    

Fluency. There was a significant effect for NIV, F(1, 35) = 15.1, p < .005, 

indicating that younger adults (M = 3.33; SD = .47) demonstrated more control 

and automatization of responses compared to older adults (M = 4.27; SD = 1.27). 
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ANJ was also significant, F(1, 37) = 14.72, revealing that older adults (M = 30.82; 

SD = 13.45 )  showed less smooth responses than younger adults (M = 18.76; 

SD = 4). 

Decision time. There was a significant effect for decision time, F(1, 35) = 

31.56, p < .005, demonstrating that older adults (M = 1168.02 ms; SD = 265.1 

ms)  took longer to initiate responses than younger adults (M = 752.3 ms; SD = 

194.2 ms). 

Electrophysiological Analysis     

 The separate ICA decompositions applied to the target onset and 

movement initiation data indicated that six and five components accounted for 

more than 90% of the variance, respectively. Topographical maps and grand 

averaged ERPs of these components are presented in Figure 2 and Figure 3. In 

the interest of parsimony, we limited component ERP image analyses to two 

measured kinematic variables, movement initiation time and mean velocity of 

response. Pearson product-moment correlations were employed to determine if 

the features (e.g., peaks and troughs) of the component ERP images were 

related to the kinematic variables. “Significant” correlations between the 

amplitude and latency of features and kinematic measures were defined as those 

with a value greater than or equal to .7 (i.e., >50% variance accounted for), 

indicating a “large” effect. Time windows used to characterize the component 

ERP image features were identified using the complete sample ERP image 

sorted by movement initiation time. Conventional ERP labeling was used to 

describe the peaks and troughs identified in the component ERP images.  
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Target Onset Data 

Data segments time-locked to target onset spanned a -200 to 1000 ms 

interval and were baseline corrected between -200 and 0 ms. The ICA 

decomposition of the data segments reflects a subset of data between 200 ms 

prior to target onset and 100 ms prior to movement initiation. 

Component 1 and 2. ERP images for components 1 and 2 are presented 

in Figure 4 and Figure 5, respectively. The scalp topography for component 1 

was characterized by a central positivity. Two time windows were used to 

characterize the P1 (100 – 300 ms) and P2 (300 – 800 ms) features of the ERP 

images. No relationships between the amplitude or latency of the features and 

the kinematic measures were statistically significant.    

 Component 2 was characterized by a medial prefrontal negative scalp 

topography. Three time windows were used to characterize the P1 (100 – 200 

ms), N1 (250 – 600), and N2/P2 (600 – 1900 ms) features of the ERP images. 

Results for the ERP image features sorted by movement initiation time indicated 

several statistically significant relationships. Peak amplitude of the N1 feature 

was positively related to the timing of movement initiation for older adults, r 

(3325) = .71, p < .001, but negatively related to movement initiation for younger 

adults, r (3636) = -.31, p < .001. Peak amplitude of the N2 feature was also 

positively related to the timing of movement initiation for older adults, r (3325) 

= .82, p < .001, but inversely related to movement initiation for younger adults, r 

(3636) = -.61, p < .001. In addition, the latency of the N2 feature was positively 

related to the timing of movement initiation for both younger, r (3636) = .87, p 
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< .001, and older adults r (3325) = .73, p < .001. No relationships between the 

amplitude or latency of the features and the mean velocity of the response were 

statistically significant.            

 Component 3 and 4. ERP images for components 3 and 4 are presented 

in Figure 6 and Figure 7, respectively. Component 3 was characterized by a 

posterior negative scalp topography. Three time windows were used to 

characterize the P1 (0 – 100 ms), N1 (130 – 200), and N2/P2 (320 – 1900 ms) 

features of the ERP images. Results for the ERP image features sorted by 

movement initiation time indicated several statistically significant relationships. 

Peak amplitude of the N1 feature was positively related to the timing of 

movement initiation for both younger, r (3636) = .72, p < .001, and older adults r 

(3325) = .85, p < .001. Peak amplitude of the N2 feature was also positively 

related to the timing of movement initiation for both younger, r (3636) = .81, p 

< .001, and older adults r (3325) = .36, p < .001. In addition, peak amplitude of 

the P2 feature was also positively related to the timing of movement initiation for 

both younger, r (3636) = .75, p < .001, and older adults r (3325) = .58, p < .001. 

No relationships between the amplitude or latency of the features and the mean 

velocity of the response were statistically significant. 

 The scalp topography for component 4 was characterized by a parieto-

central positivity. Two time windows were used to characterize the P1 (50 – 120 

ms) and N1/P2 (320 – 1900 ms) features of the ERP images. Results for the 

ERP image features sorted by movement initiation time indicated several 

statistically significant relationships. Peak amplitude of the N1 feature was 
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positively related to the timing of movement initiation for both younger, r (3636) 

= .79, p < .001, and older adults r (3325) = .63, p < .001. In addition, the latency 

of the P2 feature was positively related to the timing of movement initiation for 

both younger, r (3636) = .86, p < .001, and older adults r (3325) = .62, p < .001. 

No relationships between the amplitude or latency of the features and the mean 

velocity of the response were statistically significant. 

Component 5 and 6. ERP images for components 5 and 6 are presented 

in Figure 8 and Figure 9, respectively. Component 5 was characterized by a 

parietally distributed negative scalp topography. Three time windows were used 

to characterize the P1 (70 – 130 ms), N1 (140 – 210), and P2 (300 – 1900 ms) 

features of the ERP images. Results for the ERP image features sorted by 

movement initiation time indicated that the peak amplitude of the P2 feature was 

positively related to the timing of movement initiation for both younger, r (3636) 

= .73, p < .001, and older adults r (3325) = .12, p < .001. No relationships 

between the amplitude or latency of the features and the mean velocity of the 

response were statistically significant. 

The scalp topography of component 6 was characterized by a lateralized 

parietal positivity and negativity. Two time windows were used to characterize the 

P1 (120 – 200 ms) and N1 (330 – 1900) features of the ERP images. No 

relationships between the amplitude or latency of the features and the kinematic 

measures were statistically significant.    

 

 



 

 26 

Movement Onset Data  

Data segments time-locked to movement initiation spanned a -1000 to 

2000 ms interval and were baseline corrected using the mean of the full interval 

between -1000 and 2000 ms. The ICA decomposition of the data segments 

reflects a subset of data between 100 ms prior to movement initiation and 200 

ms following the completion of the movement. In the interest of interpretability, 

ERP images sorted with respect to movement initiation time were plotted in 

reverse in order to reflect target onset latencies.   

Component 1 and 2. ERP images for components 1 and 2 are presented 

in Figure 10 and Figure 11, respectively. The scalp topography for component 1 

was characterized by a fronto-central positivity. One time window was used to 

characterize the N1 (-1000 – 0) baseline feature of the ERP images and two time 

windows were used to characterize the P1 (-200 – 300 ms) and P2 (400 – 1500 

ms) features localized around and after the time-locked movement initiation 

event. Results for the ERP image features sorted by target onset latency 

indicated several statistically significant relationships. Peak amplitude of the N1 

feature was positively related to the timing of the target onset for both younger, r 

(3636) = .77, p < .001, and older adults r (3325) = .21, p < .001. In addition, peak 

latency of the N1 feature was positively related to the timing of the target onset 

for both younger, r (3636) = .89, p < .001, and older adults r (3325) = .68, p 

< .001. Peak amplitude of the P2 feature was also positively related to the timing 

of the target onset for both younger, r (3636) = .73, p < .001, and older adults r 
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(3325) = .4, p < .001. No relationships between the amplitude or latency of the 

features and the mean velocity of response were statistically significant. 

The scalp topography of component 2 was characterized by a posterior 

negativity. One time window was used to characterize the P1 (-1000 – 0) 

baseline feature of the ERP images and two time windows were used to 

characterize the N1 (0 – 130 ms) and P2 (200 – 1300 ms) features localized 

around and after the time-locked movement initiation event. Results for the ERP 

image features sorted by target onset latency indicated the peak amplitude of the 

P1 feature was positively related to the timing of the target onset for both 

younger, r (3636) = .77, p < .001, and older adults r (3325) = .42, p < .001. No 

relationships between the amplitude or latency of the features and the mean 

velocity of response were statistically significant.   

Component 3, 4, and 5. ERP images for components 3, 4, and 5 are 

presented in Figure 12, Figure 13, and Figure 14, respectively. The scalp 

topography for component 3 was characterized by a medial prefrontal negativity. 

One time window was used to characterize the N1 (-1000 – 200) baseline feature 

of the ERP images and one time window was used to characterize the N1 (250 – 

1300 ms) feature after the time-locked movement initiation event. No 

relationships between the amplitude or latency of the features and the sorting 

variables were statistically significant. 

The scalp topography for component 4 was characterized by a parieto-

central negativity. One time window was used to characterize the P1/N1 (-1000 – 

0) baseline features of the ERP images and two time windows were used to 
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characterize the P2 (150 – 400 ms) and N2 (500 – 1100 ms) features after the 

time-locked movement initiation event. Results for the ERP image features 

sorted by target onset latency indicated several statistically significant 

relationships. Peak amplitude of the P1 feature was positively related to the 

timing of the target onset for both younger, r (3636) = .87, p < .001, and older 

adults r (3325) = .34, p < .001. In addition, peak latency of the N1 feature was 

positively related to the timing of the target onset for both younger, r (3636) = .87, 

p < .001, and older adults r (3325) = .34, p < .001. Results for the ERP image 

features sorted by mean velocity of response also indicated several statistically 

significant relationships. Peak amplitude of the P1 feature was positively related 

to the mean velocity of the response for both younger, r (3636) = .84, p < .001, 

and older adults r (3325) = .59, p < .001. The peak latency of the P2 feature was 

positively related to the mean velocity of response for both younger, r (3636) 

= .67, p < .001, and older adults r (3325) = .78, p < .001. Lastly, the peak 

amplitude of the N2 feature was positively related to the mean velocity of 

response for younger adults, r (3636) = .73, p < .001, but negatively related to 

the mean velocity of response for older adults, r (3325) = -.72, p < .001.  

The scalp topography of component 5 was characterized by a lateralized 

parietal positivity and negativity. One time window was used to characterize the 

P1 (-1000 – 0) baseline feature of the ERP images and one time window was 

used to characterize the N1 (0 – 1300 ms) feature after the time-locked 

movement initiation event. No relationships between the amplitude or latency of 

the features and the sorting variables were statistically significant.                 
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Discussion 

The primary aim of the present research was to investigate a procedure 

for disassociating perceptual, cognitive, and motor processing using single-trial 

EEG analyses. By extracting the kinematic properties of dynamic responses, we 

have demonstrated the usefulness of this procedure for achieving these goals. In 

addition, we have shown that perceptual and motor processes do not always 

adhere to discrete modular stages in EEG. Furthermore, we have provided 

evidence that these processes might be altered in normal cognitive aging. 

One particularly interesting outcome of the analysis was the stark 

similarity between the two ICA decompositions despite the fact that the analyses 

were trained on non-overlapping subsets of the target and movement-locked 

data segments, the results indicated highly correlated components with nearly 

identical topographical distributions (see Figure 15). In order to facilitate a 

parsimonious interpretation of the component ERP image findings, discussion of 

the ERP images time-locked to target onset and movement initiation will be 

grouped according to their topographies.  

Posterior Negativity 

 The scalp topography of component 3 (target onset) and component 2 

(movement onset) were both characterized by a posterior negativity maximal 

over the occipital cortex. Features of the target-locked component 3 ERP image 

sorted by movement initiation time revealed a P1 feature that was unrelated to 

the timing of movement initiation, suggesting it reflected a sensory or perceptual 

process. The amplitude of the N1 feature that followed the P1 was positively 
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related to the timing of response initiation for both younger and older adults, 

indicating it reflected a perceptual or cognitive process. We interpret these 

features as being analogous to the P1/N1 visual evoked components that reflect 

stimulus processing in an averaged ERP. This interpretation is supported by 

several studies demonstrating that N1 amplitude is an index of attentional 

discrimination and is characterized by a parietal negativity that peaks around 150 

ms (Mangun, 1995). Furthermore, N1 amplitude increases as task demands 

increase, resulting in longer reaction times  (Vogel & Luck, 2000). Thus, our 

finding that N1 amp is positively related to response initiation time is consistent 

with this interpretation.   

Concerning features of the movement-locked component 2 ERP image 

sorted by movement initiation, the baseline P1 amplitude that is positively related 

to the timing of stimulus onset most likely reflects the visual evoked P1/N1 

features seen in the stimulus-locked component ERP image. Given that no 

features of the target or movement-locked ERP images were related to the mean 

velocity of the response, we interpret these components as primarily reflecting 

sensory, perceptual, and cognitive processes that are unrelated to the kinematic 

qualities of the response. These components seemed to be involved in the visual 

processing and discrimination of the target stimulus. The relationship between 

the N1 component and faster movement initiation might reflect the quality of 

visual and discrimination processing rather than any sort of perceptual-motor 

integration or overlap.    
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Medial Prefrontal Negativity 

 The scalp topography of component 2 (target onset) and component 3 

(movement onset) were both characterized by a negativity maximal over medial 

prefrontal cortex. Features of the target-locked component 2 ERP image sorted 

by movement initiation time revealed a P1 feature that was unrelated to the 

timing of movement initiation, suggesting it reflected a purely sensory or 

perceptual process. The amplitude of the N1 and N2 features that followed the 

P1 were positively related to the timing of response initiation for older adults, but 

negatively related to movement initiation time in younger adults, indicating they 

reflected a perceptual or cognitive process. Furthermore, the latency of the N2 

feature was also positively related to the timing of response initiation, suggesting 

it was related to both cognitive and motor processes. We interpret these findings 

as reflecting executive control and motor planning.   

It is well established that the prefrontal cortex (PFC) plays an important 

role in “top-down” executive control of goal-directed behavior (for a review, see 

Ridderinkhof, van den Wildenberg, Segalowitz, & Carter, 2004). PFC control is 

required when simple, automatic stimulus-responses mappings are insufficient 

for organizing and responding to current goals or task demands (Miller & Cohen, 

2001; Potts, Martin, Burton, & Montague, 2006). It is theorized that the PFC 

exerts this control by maintaining internal representations of the rules and action 

plans needed to respond to task-relevant goals, and then providing a biasing 

signal that organizes and selects the most appropriate response from those 

internal representations (Potts et al., 2006). There is extensive evidence 
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demonstrating that processes controlled by the PFC, such as inhibition and 

motor planning, decline as we age (West, 1996). Although the current analyses 

do not afford a conclusive interpretation, we conjecture that the N1/N2 feature 

differences between older and younger adults may reflect slower or more 

dysfunctional cognitive control and response selection processes in older adults. 

Concerning features of the target-locked component 2 and movement-

locked component 3 ERP images sorted by movement initiation and mean 

velocity of response, no features were related to the kinematic measures. Thus, 

only the target-locked features sorted by movement initiation time seem to reflect 

any sort of cognitive and motor processes.          

Parietal Positivity/Negativity 

 The scalp topography of component 4 for target onset was characterized 

by a parietal positivity whereas component 4 for movement onset had a parietal 

negativity distribution. Features of the target-locked component 4 ERP image 

sorted by movement initiation time revealed a P1 feature that was unrelated to 

the timing of movement initiation, suggesting it reflected a purely sensory or 

perceptual process. The amplitude of the N1 feature that followed the P1 was 

positively related to the timing of response initiation for both younger and older 

adults, indicating it reflected a perceptual or cognitive process. The latency of the 

P2 post-movement initiation feature was positively related to the timing of 

movement initiation for both younger and older adults, suggesting this feature 

reflected both cognitive and motor processes. Features of the target-locked 
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component 4 ERP image were not related to the mean velocity of the subsequent 

movement. 

 The features of the component 4 ERP image sorted by mean velocity of 

response revealed several interesting findings related to sensory-motor 

integration/processing. For instance, the latency of the P1 feature that occurred 

after movement initiation was positively related to the mean velocity of the 

executed movement. On trials where older and younger adults moved quickly, 

this P1 feature occurred earlier suggesting it was related to both cognitive and 

motor processing. Interestingly, the amplitude of the N1 feature that followed the 

P1 was also positively related to the mean velocity, suggesting it was only related 

to cognitive and perceptual processing. Thus, these processes seem to be 

occurring in a continuous, or parallel manner rather than strictly serially. These 

findings may reflect processes of evidence accumulation and/or decisional 

certainty. 

 Given that the P1 feature occurred sooner and was followed by smaller N1 

amplitude when responses were faster overall, we interpret the latency of the P1 

as reflecting a degree of decisional certainty/evidence accumulation and the 

amplitude of the N1 as reflecting a degree of decisional uncertainty. Several lines 

of recent evidence support this interpretation (Cisek, 2007; Cisek & Kalaska, 

2010). For instance, it has been shown that the brain prepares a motor response 

while it is accumulating the evidence to make a decision and once that evidence 

reaches some threshold, the action is executed (Paul Cisek & Kalaska, 2010; 

Gold & Shadlen, 2007; Shadlen, Kiani, Hanks, & Churchland, 2008). 
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Limitations 

Due to the large number of components identified by the ICA 

decompositions, as well as the inclusion of an aging cohort, kinematic and EEG 

analyses were limited. Even so, we have demonstrated the usefulness of 

kinematics and single-trial analysis for investigating relationships between EEG 

measures and motor responses. In addition, statistical limitations (i.e., large 

degrees of freedom) made it difficult to determine if statistically significant 

correlation differences between older and younger adults were meaningfully 

different (e.g., large effect size). However, it seems reasonable to assume that 

several of our large correlation differences do indicate that the perceptual, 

cognitive, and motor processing of older adults, as reflected in the single-trial 

analyses, are altered in normal cognitive aging.  

Furthermore, high performance on the task-set switching procedure, 

coupled with the aforementioned data reduction problems, made it difficult to 

investigate how task switching and conflict processing contributed to perception-

motor relationships in the single-trial analyses. In the future, by further optimizing 

our analysis approach, we can investigate how high and low conflict processing 

was related to the single-trial EEG dynamics and properties of behavioral 

responses.  

Conclusions 

 In conclusion, the present findings suggest that properties of motor 

response are reflected in EEG and may be altered in normal cognitive aging. 

Furthermore, we have provided novel evidence demonstrating the usefulness of 
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trial-level EEG analysis for disassociating perceptual, cognitive, and motor 

processes. Future research should continue to investigate how perception and 

motor relationships are reflected in dynamic EEG by using advanced image 

analyses and kinematic methods. For instance, displacement data can be 

collected using digitizing tablets and a stylus pen (Caligiuri, Teulings, Dean, 

Niculescu III, & Lohr, 2010). One benefit to using digitizing tablets is that they 

afford measurement of force control and pen pressure, which could provide 

indices of gross motor control. The familiarity of a stylus pen might be especially 

useful when studying clinical populations when task difficulty is a concern. 

Furthermore, several digital imaging techniques might be particularly useful for 

characterizing dynamic EEG data. 

 Blob detection is a method for extracting pixel “blobs”  or subsections of a 

digital image that are similar and clustered together (see Shneier, 1983). This 

method could be a powerful way to extract, characterize, and analyze the 

dynamic trial-level EEG features. In addition, trial-level data could represented in 

3-dimensions and object-based image analysis could be used to characterize not 

only the spectral and temporal qualities of the image but also their shapes and 

relationships (see Blaschke, 2010). 

 In conclusion, given the important relationships between perceptual and 

motor processes demonstrated in the present research using dynamic measures 

of motor response and single-trial analysis, it is critical that cognitive 

neuroscience research using EEG begins to address these important questions 

about the translation between perception and responses. 
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Figure 1. Schematic of task-set switching trial (Kieffaber et al., 2012).   
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Figure 2. Target onset component topographies and grand averaged ERPs. 
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Figure 3. Movement onset component topographies and grand averaged ERPs. 
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Figure 4. ERP images and quantile ERPs for component 1 time-locked to target onset. The first 

ERP image in each row (reading from left to right) reflect the complete sample (trials for both 

young and old), and the second (young) and third (old) ERP images reflect the trials for younger 

and older adults separately. Orange bars underneath the complete set ERP images reflect the 

features of the image. Below the subsets of ERP images are quantile ERPs representing median 

splits of the sorting variable. The colored rows above the quantile ERPs of the younger adults 

reflect the 2 (Age) X 2 (Quantile) ANVOA mean amplitude differences. The top reflects the main 

effect of age, the middle row reflects the main effect of the sorting variable, and the third row 

reflects the age x sorting variable interaction. The colored rows above the quantile ERPs of the 

older adults are reflect the effect sizes of the mean amplitude differences (red being a large effect 

and blue being a smaller effect).  
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Figure 5. ERP images and quantile ERPs for component 2 time-locked to target onset. 
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Figure 6. ERP images and quantile ERPs for component 3 time-locked to target onset. 
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Figure 7. ERP images and quantile ERPs for component 4 time-locked to target onset. 
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Figure 8. ERP images and quantile ERPs for component 5 time-locked to target onset. 
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Figure 9. ERP images and quantile ERPs for component 6 time-locked to target onset. 
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Figure 10. ERP images and quantile ERPs for component 1 time-locked to movement 

onset. ERP images sorted by movement initiation reflect the timing of stimulus onset. 
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Figure 11. ERP images and quantile ERPs for component 2 time-locked to movement 

onset. ERP images sorted by movement initiation reflect the timing of stimulus onset. 
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Figure 12. ERP images and quantile ERPs for component 3 time-locked to movement 

onset. ERP images sorted by movement initiation reflect the timing of stimulus onset. 
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Figure 13. ERP images and quantile ERPs for component 4 time-locked to movement 

onset. ERP images sorted by movement initiation reflect the timing of stimulus onset. 
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Figure 14. ERP images and quantile ERPs for component 5 time-locked to movement 

onset. ERP images sorted by movement initiation reflect the timing of stimulus onset. 
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Figure 15. Correlations for ICA weights for both target and movement-locked 

components. 
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