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ABSTRACT

When animals are exposed to mixtures of environmental pollutants, it is generally 
assumed that the toxic effects of the individual components are additive. However, 
examples of synergistic and antagonistic effects have been described. To study the 
mechanisms of interaction between a metal and a poiycyclic aromatic hydrocarbon, 
mummichog (Fundulus heteroclitus) were injected with combinations of cadmium (Cd) 
and benzo[a]pyrene (BP). Measured effect parameters were: mortality, BP-metabolite 
production in isolated hepatocytes and microsomes, hepatic induction of CYP1A (the BP 
metabolizing enzyme) and metallothionein (the Cd binding protein), and biliary excretion 
of BP-metabolites.

The mortality data demonstrated that both synergistic and antagonistic effects can 
occur. A Cd dose o f 0.32 mg/kg significantly reduced the expected mortality caused by 
BP. In contrast, a BP dose of 10 mg/kg significantly increased the toxicity o f Cd above the 
expected mortality.

To study the mechanisms of these interactive effects, liver cells (hepatocytes) were 
isolated from fish that were previously injected with combinations of Cd and BP. These 
cells were exposed to radiolabeled BP to study the rate of BP metabolism, and the 
formation of BP-metabolites. Cadmium exposure had an overall inhibiting effect on the 
metabolism of BP. No effects of Cd were observed on the formation of individual 
metabolites.

To distinguish between direct interference of Cd with CYP1A at the active site 
versus indirect interference by inhibiting CYP1A induction, microsomal preparations were 
evaluated for enzyme activity and enzyme concentration. While there was no direct effect 
of Cd on enzyme catalytic activity, there was an effect on CYP1A production.

The demonstrated inhibition o f BP metabolism by Cd would suggest a reduced 
excretion of BP-metabolites. However, analysis of bile and water samples after fish were 
injected with radiolabeled BP demonstrated an enhanced biliary excretion of conjugated 
BP-metabolites under influence of Cd.

Cadmium exposure caused a significant induction of hepatic metallothionein in the 
fish. When BP was dosed together with Cd, the induction of MT was inhibited. The 
hypothesis that reactive BP metabolites would compete with Cd for binding sites on MT 
could not be confirmed. There was no measurable binding of BP to MT.

xii
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Chapter 1. Introduction and General Methods

Estuarine and coastal environments are exposed to a variety o f anthropogenic 

pollutants, including nutrients (such as phosphate and nitrate), heavy metals and various 

organic compounds. As concentrations o f these pollutants increase, they are expected to 

have adverse effects on the natural ecosystems. A well-known case is the nearby Elizabeth 

River, a small tributary to the Chesapeake Bay, VA, which is heavily contaminated from 

industrial activities in the area. Wood treatment plants, ship yards and naval activities to 

name but three have contributed to the environmental degradation o f the river (Huggett et 

al., 1992).

To protect or restore these aquatic communities, environmental managers use 

different tools. One of them is the application o f environmental quality criteria, which are 

compound specific concentration levels at which some adverse effect is likely to occur 

(Long et al., 1998). The scientific data for the quality criteria are dose, or concentration- 

dependent effect studies for individual compounds. To account for the combined effects of 

more than one chemical, the general, pragmatic approach is to assume additivity o f  the 

toxic effects generated by each individual compound in a mixture (Van der Gaag, 1992).

However, it is known from a variety of studies that toxic compounds in mixtures 

may profoundly influence the toxicity o f one another (Marking, 1977; Walker & Johnston, 

1989; Broderius, 1991, Haas, 1992). These interactions between compounds in living 

organisms may enhance the toxicity o f individual compounds (synergism), or reduce the 

toxicity (antagonism). Through study o f these interactions, one can gain a better 

understanding o f the underlying mechanisms of interaction. Results o f mechanistic studies 

will ultimately provide a basis for improvement of environmental quality criteria.

Interactive effects for environmental pollutants have been described for 

combinations o f metals (de Nicola, 1992; Naddy et al., 1995), cadmium, PCB and oil 

(Rhodes et al, 1985), copper and phenanthrene (Moore et al., 1984) and cadmium and 

benzo[a]pyrene (Fair, 1986; Lemaire-Gony et al., 1992, 1995). The goal o f this study was 

to investigate the mechanisms of interaction between cadmium (Cd), one o f the heavy

2
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metals, and benzo[a]pyrene (BP), a polycyclic aromatic hydrocarbon (PAH), in an 

estuarine fish species (Fundulus heteroclitus) that is susceptible to exposure to mixtures of 

these toxicants in polluted field situations, as in particular, the Elizabeth River.

Benzo[a]pyrene and cadmium were chosen for this study for several reasons:

1) Both compounds are common contaminants in the aquatic environment (Manahan, 

1994), and especially in the Elizabeth River.

2) Both are present in relatively high concentrations at sites where cancer epizootics in fish 

have been reported (Malins et al., 1987; Vogelbein et al., 1990).

3) Though BP as a parent compound is not acutely toxic, some of its metabolites are 

cytotoxic (Zhu et al., 1995) or carcinogenic in fish (Hawkins et al., 1988). The metabolism 

o f BP is relatively well studied and consequently standards for HPLC-analysis o f its 

metabolites are readily available (Varanasi et al., 1989).

4) The uptake, distribution and toxicity o f cadmium are well documented (McLeese et al., 

1987)

5) BP and Cd are considered to pose a potential hazard to  human health (Casaret et al.,

1991).

Mummichog (Fundulus heteroclitus) was used for this study because of its ease of 

collection and maintenance, and because it has been used in a variety o f  toxicological 

studies (Vogelbein et al., 1990; Fulton & Scott, 1991; Weis & Weis, 1995). The 

mummichog is found on the Atlantic coast from Labrador to Florida. It is a euryhaline, 

schooling species, most abundant in shallow estuarine habitats, like salt marshes, tidal 

creeks, and barrier beach ponds. The mummichog is extremely resistant to low oxygen 

levels, sudden salinity changes, and can withstand very foul, polluted or muddy water 

(Foster, 1967; Hardy, 1978). For instance, populations o f mummichog persist in the 

Elizabeth River, despite the heavy contamination. This makes the species an interesting 

and suitable subject for the study of physiological responses to environmental 

contaminants (Van Veld et al., 1991; Van Veld & W estbrook, 1995).

The species shows a clear seasonal migration pattern: in November when water

3
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temperatures drop below 10°C the fish migrate to deeper, more saline waters. In spring 

(March-April), when water temperatures reach 15°C, they migrate back into the 

shallower, low salinity areas. The fish spawn in these areas during spring and summer 

(April until August). M ark-recapture investigations have shown that local populations 

have narrow summer home ranges (Foster, 1967; Lotrich, 1975; Fritz et al., 1975; Hardy,

1978). This non-migratory life style makes the species suitable for investigating the effects 

o f long term, site specific environmental influences, like the effect of contaminated 

sediments on physiological processes in the fish. The diet o f  mummichog consists mainly 

o f small crustaceans and polychaetes, supplemented in summer and fall with plant material, 

crabs and insects (Kneib & Stiven, 1978).

4
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Polycyclic Aromatic Hydrocarbons and Benzo[a]pyrene

Polycyclic aromatic hydrocarbons (PAH) are compounds with two or more 

benzene rings in different configurations. The lower molecular weight PAH (less than 4 

benzene rings) are relatively water soluble (0.1 - 20 ppm), whereas the higher molecular 

weight PAH (4 to 6 benzene rings) are hydrophobic (solubility < 0.01 ppm) and generally 

associate with particulate matter in the aqueous environment (Neff & Anderson, 1981). 

PAH are formed during incomplete combustion processes o f organic material. Although 

natural sources of PAH exist, most environmental problems are caused by anthropogenic 

sources (Manahan, 1994).

PAH are easily absorbed by living organisms and can cause an acutely toxic effect. 

The toxicity increases with increasing molecular weight. High molecular weight PAH (> 

225) are generally not acutely toxic. However, because o f  their lipophilicity these 

compounds may dissolve in the lipid bilayer o f cellular membranes, and thus interfere with 

membrane-related functions o f the cell. Physiological processes are present in most 

organisms that transform the hydrophobic, difficult-to-excrete parent compound into more 

hydrophilic, easier to excrete metabolites (Varanasi et al., 1989).

Biotransformation of BP

Benzo[a]pyrene is an example of a high molecular weight (252) PAH, consisting of 

an arrangement o f five benzene rings. BP may enter aquatic organisms through the gills 

from the aqueous phase, or through the gastrointestinal tract from ingested polluted food 

or sediment (Lee et al., 1972). Three different metabolic pathways have been described for 

the primary oxidation o f hydrophobic PAH into water soluble compounds that then can be 

excreted by the cell/organism (Varanasi et al., 1989). Although these pathways are 

thought to serve primarily for detoxification o f xenobiotics or metabolic waste material, 

some intermediate compounds in the PAH biotransformation have been demonstrated to 

be carcinogenic, mutagenic or cytotoxic (Gelboin & Tso, 1978). Analysis of bile, urine 

and faeces show PAH metabolites that are polar derivatives consisting of oxidized and
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conjugated parent compound (Neff & Anderson, 1981). Several studies have found that 

the liver is the most active organ in metabolizing BP (cited in Varanasi et al., 1989), 

though significant BP metabolism has also been demonstrated in other organs: the 

intestine (Van Veld et al., 1990), spleen (Ladicz et al., 1992), gills, kidney and heart 

(Varansi et al., 1989). The occurrence of the early stages o f cancer and the actual tum ors 

in fish livers have been related to exposure o f  sediments polluted with PAH (Malins et al., 

1987; Vogelbein et al., 1990). It has also been demonstrated that some BP metabolites 

have an immunocompromising effect (Ladies et al., 1992).

The three known pathways for BP metabolism are 1) oxidation by cytochrome 

P450 monooxygenase, 2) oxidation by prostaglandin synthetase, and 3) nonenzymatic 

cooxidation during lipid peroxidation. These are called the Phase I biotransformation 

steps. The primary metabolites that are formed during Phase I can be conjugated to other 

molecules by Phase II conjugating enzymes to facilitate their excretion (see below).

/)  Cytochrome-P450 mediated transformation

Oxidation o f BP by cytochrome-P450-monooxygenase (CYP1 A) is the most 

studied pathway of BP biotransformation and is considered the most important mechanism 

in vertebrates. The P450 system is localized on the endoplasmic smooth reticulum inside 

the cell. P450 activity is measured by fractionating the cells, followed by isolation o f  the 

fragmented endoplasmic reticulum parts, called microsomes. Microsomes are then 

incubated with a suitable substrate (e.g. 7-ethoxyresorufin, BP) and metabolite formation 

is measured (Varanasi et al., 1989; Schwartzenbach et al., 1993).

The term P450 monooxygenase refers to a large group of related enzymes, all 

involved in the breakdown of endogenous and exogenous compounds. Each enzyme has a 

specific substrate, or a defined group o f substrates. The CYP1A enzyme catalyzes the 

epoxidation o f PAH and other aromatic compounds (Stegeman & Hahn, 1994). The active 

site on the cytochrome P450 monooxygenase enzyme consists of an iron porphyrin (a 

heme group). This heme group is embedded in a protein environment, which is a nonpolar 

region. This causes nonpolar compounds like BP to be preferentially bound to the active
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site o f the enzyme as a result o f their hydrophobicity. After formation o f the 

substrate:enzyme complex the Fe III in the heme group is reduced to Fe II by NAD(P)H 

cytochrome P450 reductase. Then oxygen (Oz) is bound by the heme group and 

protonated through the addition of another H+ by again NAD(P)H cytochrome P450 

reductase. Then, through an unknown step, the highly reactive electrophilic oxygen that 

was formed, quickly binds to the BP and a BP-epoxide is formed. This BP-epoxide, which 

has a less hydrophobic nature than the parent compound, is easily released from the 

nonpolar active site on the enzyme. Since the active site on the P450 enzyme is not very 

specific; BP can attach in different configurations to the active site and therefore the oxide 

can bind at several places on the parent molecule to form B P -1,2, -2,3, -4,5, -7,8, -9,10, 

or -1 1,12-epoxide. O f these the -4,5, -7,8, and -9,10 epoxides are the most dominant 

found in fish (Varanasi et al., 1989).

The BP-epoxides are relatively unstable and will rapidly transform through one o f 

the following 4 major reactions (Varanasi et al., 1989):

1) Spontaneous rearrangement to form phenols (1-, 3-, 7-, or 9-hydroxy-BP)

2) Hydration to form diols (dihydroxydihydro compounds: BP-4,5-diol, BP-7,8-diol, BP- 

9,10-diol), catalyzed by epoxide hydrolase (EH)

3) Conjugation by Phase II enzymes. In fish, the predominant reaction is the conjugation 

o f metabolites with glutathione (GSH), mediated by glutathione-S-transferase (GST). The 

conjugates are water soluble and are considered detoxication products that are easily 

excreted through the bile. The BP-phenols also can be conjugated to either glucuronic acid 

by UDP-glucuronyl-transferase, or to sulfate by sulfotransferase. These conjugate groups 

are water soluble as well and are considered detoxification products just as the glutathione 

conjugates.

4) Covalent binding to cellular macromolecules, e.g. proteins, DNA.

The primary BP metabolites, and especially the diols, can be oxidized a second 

time by CYP1 A. This results in the formation o f diol-epoxides. The metabolite BP-7,8- 

dio 1-9,10-epoxide (BPDE) is generally seen as the most potent carcinogen. It is highly
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reactive and easily binds to cellular macromolecules like proteins, and DNA (Gelboin & 

Tso, 1978). The formation of DNA adducts on the prom otor sites o f oncogenes may 

induce cellular transformation and unrestricted cell proliferation. This will cause neoplastic 

lesions and may ultimately evolve into actual tumors. Benzo(a)pyrene-diol-epoxides can 

be further oxidized to form multiple hydroxylated derivatives like triols and tetrols.

A separate group of metabolites, the BP-quinones, can also be formed during the 

biotransformation o f BP. BP can be oxidized by cytochrome-P450 to 6-hydroxy-BP. This

6-OH-BP can then be oxidized to form three different quinone metabolites (B P -1,6-, 3,6-, 

and 6,12-quinone) (Gelboin, 1980). BP-quinones can be reduced by quinone reductase to 

an excretable, water soluble conjugate with glucuronic acid or glutathione (Lind et al, 

1978; Morgenstern et al., 1981). BP-quinones have been shown to be highly toxic to 

cultured mammalian cells (Lorentzen et al., 1979; Kawabata and White, 1989). Zhu et al. 

(1995) exposed primary cultured bone marrow stromal cells from mice to BP, B P-7,8- 

diol, and 4 o f the BP-quinones to investigate the acute toxicity of these compounds. BP 

and BP-7,8-diol were not toxic to cultured stromal cells. BP-l,6-quinone was the most 

toxic o f the 4 quinones tested; at 20 /uM, it caused 30% cell death in 24 h, and up to 90% 

in 72 h. Mitochondrial function (cellular energy supply) was seriously affected by B P -1,6- 

quinone, as was shown by the rapid decrease in ATP concentration and structural changes 

in the mitochondria as seen by electron microscopy. The other BP-quinones also affected 

ATP levels, though to a lesser extend.

2) Prostaglandin synthetase

Prostaglandin synthetase in known as a potential BP metabolizing enzyme 

(M arnett et al., 1977; Sivarajah et al., 1978; Kawabata & White, 1989; Smith & Brian,

1991). Arachidonic acid is the normal substrate for prostaglandin synthetase to form 

prostaglandin, an important hormone. Other compounds with a similar structure, like BP, 

can slip into this pathway and be co-oxidized. This was tested by Kawabata and White 

(1989) by incubating splenic microsomes of untreated mice with BP and arachidonic acid, 

without NADPH to stop any P450 activity (NADPH is an obligate cofactor for P450
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activity). Only BP-quinones were formed, in a dose related manner. Phenolic and 

dihydrodiol metabolites o f BP were not detected. The major quinone metabolite formed 

was 6,12-dione, which, in a separate dosing experiment, was shown to have a direct 

cytotoxic effect. Prostaglandin synthetase not only mediates the formation o f quinones, 

but also causes BP-7,8-dihydrodiol to be further metabolized to  BP-7,8-dihydrodio 1-9,10- 

epoxide (M arnett et al., 1977; Sivarajah et al.,1979).

3) Lipid peroxidation

A third route has been demonstrated for the co-oxidation of BP-7,8-diol to BP- 

diol-epoxides in the ascorbate- or NADPH-dependent lipid peroxidation pathways in rat 

liver microsomes (Dix & Marnett, 1983; Colin et al., 1991). Briefly; under favorable 

conditions unsaturated fatty acid hydroperoxides can be formed by autooxidation. 

M icrosomes can then be triggered to decompose these lipid peroxides by adding metal ion 

complexes (Fe3+-ADP or Fe2+-EDTA) and ascorbate or reduced NADPH. When BP-7,8- 

diol was added to the reaction mixture, it was transformed to BP-diol-epoxides, both in 

the ascorbate- and NADPH-dependent lipid peroxidation pathway. In addition, Dix & 

M arnett (1983) were able to separate the contribution of the competing P450-dependent 

and peroxide-metal-dependent pathways in the formation of BP-diol-epoxides by 

analyzing the stereo chemistry of the metabolites. With no added metal complexes, no 

enantiomers from the NADPH-dependent lipid peroxidation pathway were formed, only 

P450 generated epoxides. Addition of iron complexes dramatically increased the amount 

o f  lipid peroxidation and the formation of BP-tetrols. The ratio of anti/syn enantiomers of 

the BP-diol-epoxides matched the predicted ratio for co-oxidation in lipid peroxidation. 

These data provide evidence that BP-7,8-diol is epoxidized during NADPH- and 

ascorbate-dependent lipid peroxidation in rat liver microsomes.
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Toxic effects of cadmium

Cadmium is one o f the non-essential heavy metals. Because o f  its close similarity 

to Zn, which is an essential metal for most organisms, it easily interferes with the Zn 

homeostasis. Toxic effects have been reported as bone disease, kidney damage, liver 

toxicity and genotoxicity. Though the symptoms of Cd intoxication are well known, the 

mechanisms by which Cd exerts toxic action remain unknown (Shopis, 1994, Stohs & 

Bagghi, 1995). Cd has also been implicated in the formation of DNA-adducts (Frenkel,

1992). In mammals most Cd is stored in the liver during chronic exposure. The liver has a 

high capacity to synthesize a metal binding protein, named metallothionein (MT), which 

can trap Cd efficiently, rendering the Cd non-toxic to the liver. M ost o f the MT-bound Cd 

is stored in the liver, and only slowly leaks into the bile, or back into the blood stream 

(Klaassen & Liu, 1997).

Metallothioneins

Metallothioneins (MT) are metal binding proteins that are involved in regulation of 

essential metals such as Zn and Cu, and in detoxification of nonessential metals such as Cd 

and Hg. M T was first described in the late 50’s from horse kidneys, and have since then 

been described from other animals, plants, fungi, protists and prokaryotes (Roesijadi,

1992). Only in 1974, metallothioneins were described from marine fish. The structural 

characterization o f MTs has been subject to great difficulties, which has led to the 

description o f considerable differences between species. Reexamination has cleared up 

some o f the reported differences. MTs have the following characteristics: they are low 

molecular weight (6000 -10,000 D) proteins that are high in metal and cysteine content, 

have no aromatic acids or histidine, have a unique amino acid sequence and have metal- 

thiolate clusters. Metal-specific MT proteins have been reported for different metals. The 

specifics of the metal binding process have yet to be reported (Roesijadi, 1992).

Since MT plays a  central role in the regulation o f essential metals, there is always a 

pool o f MT available in liver cells. When Cd enters a cell it can be bound by this pool of
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MT. Because o f its close similarity to Zn, and higher affinity for the MT, it is thought that 

Cd replaces Zn on the Zn-MT complex. Abnormal metal exposure leads to enhanced MT 

production. Increased metal exposure activates a receptor, this metal-receptor complex 

binds to a MT gene, mRNA is formed which finally results in increased M T synthesis.

MTs are predominantly located in the cytosol. Exposure to a low metal dose has been 

shown to give future protection against higher doses. Zn in existing Zn-M T can be 

replaced by Cd when Cd becomes available (Roesijadi, 1992).

Cadmium and nephrotoxicity

After formation o f a Cd-MT complex, this complex may be slowly released from 

the liver into the bloodstream and distributed throughout the body. Most o f  the Cd-MT is 

taken up by the kidney. Thus the Cd-M T complex plays a crucial role in the transport o f 

Cd to  the kidney. Because Cd-MT has a low molecular weight it is easily reabsorbed in the 

proximal tubuli of the kidney. Chronic exposure to ionic Cd leads to a slow accumulation 

o f Cd in the renal cells and a delay in the onset of toxic effects. Injection o f  the Cd-MT 

complex leads to a rapid and selective accumulation of Cd in the kidney, and to a 

nephrotoxic effect at a much lower dose than when inorganic Cd is administered (Liu et al, 

1994; Dorian et al, 1995).

Through lysosomal enzymes the Cd-MT complex is rapidly degraded, and Cd 

becomes available in the tubular cells. The kidney is able to synthesize MT, but it is 

thought that this capability is limited so that at a certain level the Cd becomes available as 

free ions. What causes the actual nephrotoxic effects of Cd is yet unknown. Two 

hypotheses are currently considered for the occurrence of nephrotoxic effects:

A) reabsorption of the Cd-MT complex in the proximal tubule causes the observed 

membrane damage,

B) release of the unbound Cd in the cells causes the nephrotoxic effect (Liu et al, 1994; 

Dorian et al, 1995).

Dorian et al. (1995) studied the effect of Cd-MT and CdCl2 injections on renal 

function in mice to address these questions. Injection of Cd-MT resulted in increased
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excretion o f glucose and protein, while even 10 times higher doses of CdCl2 caused no 

effect. Accumulation o f Cd-MT was almost exclusively in the kidney, while inorganic Cd 

accumulated predominantly in the liver. CdCl2 was distributed throughout the kidney 

tissue, while Cd-M T was exclusively found in the cortex and outer medulla, indicating a 

differentiated bioavailability for both forms.

Within the different segments of the proximal tubule, Cd-MT was found 

predominantly in two distinct segments. Cd from CdCl2 was distributed evenly over all the 

segments. Within the individual cells o f the proximal tubulus, the Cd-MT was found 

mostly in the apical region, indicating an active endocytosis process. Cd from CdCl2 was 

distributed more evenly throughout the cell, indicating passive diffusion. Still, it is not 

clear why Cd-M T is more toxic than Cd from CdCl2, as it is obviously not a function o f 

the ionic Cd concentration in the cells. Histopathological effects of chronic exposure to 

low Cd doses in mammals lead to enlarged, pitted and pale kidneys. Tissue damage is 

reflected in tubular cell necrosis, interstitial fibrosis, and tubular atrophy.

Accumulation and toxicity of Cd in fish

In fish, substantial accumulation o f Cd has only been found in liver and kidney: 10- 

300 mg/kg tissue (McLeese et al, 1987). Though Cd is generally seen as a highly 

hazardous compound, acute LC50s show a range from  13 to 60 mg/L for juvenile and adult 

marine fish. These concentrations are never measured in field situations, not even on the 

worst polluted sites. Enzyme activities are also only affected at very high concentrations. 

At more environmentally realistic concentrations (0.05 - 0.5 mg/L) it was shown that Cd 

has a marked effect on the ion balance in blood plasma of flounder. Na and Cl levels did 

not change, indicating that osmoregulation was unaffected (McLeese et al, 1987). 

However, phosphate and Mg levels were elevated, and K and Ca levels were decreased. In 

mammals this would indicate that renal regulation o f blood ion composition was impaired 

by Cd. For fish, it may be a sign of the impairment o f mechanisms responsible for Ca 

influx. The same blood ion imbalance was observed in Cd exposed rainbow trout. Both 

flounder and trout showed hypersensitivity, erratic swimming and tetanic contractions
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(McLeese et al, 1987). Given the role o f Ca in regulating neuromuscular function, it is 

assumed that the observed hypocalcemia was contributing to the hyperexcitability.

A histopathological study of Cd effects on kidney tissue in fish was done by Forlin 

et al. (1986). They found tissue damage in Cd exposed rainbow trout, comparable to 

mammalian renal damage. Cd exposure resulted in the following changes in the proximal 

tubules: intracellular granules, inclusion bodies, dilated lumen, deformed mitochondria, 

apical vacuoles, and intensified lysosomal activity. The phenomena are interpreted as early 

stages of cell necrosis. The authors argue that this may support the hypothesis that the 

observed hypocalcemia in Cd exposed fish results from reduced tubular reabsorption o f Ca 

due to kidney damage.

Apart from kidney histopathology, Forlin et al. (1986) also studied the 

morphological effects of Cd exposure on hepatocytes. They observed hypertrophied Golgi 

complexes, a deformed endoplasmic reticulum, affected mitochondria, glycogen depletion, 

inclusion bodies, and increased fibrosis. These phenomena are indicative for accelerated 

glycolysis, resulting in glycogen depletion, which was also observed in other studies with 

Cd exposed fish (Larsson & Haux, 1982).
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Interactions between Cd and BP

As is shown in the previous sections a substantial amount o f information is 

available on the toxicity o f BP and Cd. In contrast, relatively little is known about 

interactive effects of the compounds. The study of the interaction o f  Cd on BP metabolism 

started in the medical field, because P450 enzymes were initially described as “drug 

metabolizing enzymes”. This triggered a series o f investigations into potential inhibitors of 

these drug metabolizing enzymes in rats and mice.

Mammals

The first studies dealing with interactions of cadmium and BP relate to the effects 

o f Cd on drug metabolizing enzymes in mice and rats (Unger & Clausen, 1973; Ando,

1979). Ichikawa & Yamano (1967) were the first to demonstrate that Cd caused a  shift in 

the spectrophotometric absorbance maximum of cytochrome P450 from 450 nm to  420 

nm in rat liver microsomes. Ando (1982) mentions the same change o f P450 to P420 at a 

dose of 2.4 mg Cd/kg in rats.

Schnell et al. (1979) report a threshold dose o f 0.84 mg/kg i.p. injected Cd in rats 

for exhibiting significant decreases in hepatic microsomal metabolism of P450 substrates. 

The inhibiting effect they found lasted for up to 28 days. It was concluded that Cd reduced 

the total P450 amount, because the NADPH-cytochrome-C-reductase activity was not 

affected. Interestingly they found that when the Cd was dosed chronically through the 

drinking water there was no inhibitory effect. Also, pretreatment (orally and i.p.) with sub­

threshold level doses of Cd did not cause inhibition. They concluded that induced 

metallothioneins are the underlying basis for the tolerance.

One cause for the reduction o f  the total amount o f P450 after Cd exposure may be 

the induction o f heme oxygenase activity, resulting in a decrease in heme available for 

insertion into the P450 apoenzyme to form the active holoenzyme, as seen in rats (Maines 

& Kappas, 1977; Means et al., 1979).

Another hypothesis for the inhibition of P450 is that Cd binds directly to
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nucleophilic sites on the P450, thus inhibiting the enzyme activity (Jefcoate & Gaylor, 

1969). It has been suggested that this nucleophilic site would be a sulfhydryl group on 

cysteine in the P450 enzyme, though Means et al. (1979) argue that it is unlikely that in 

vivo there is direct binding o f Cd to the P450. They agree that in studies where Cd is 

added to isolated microsomes, there is a direct, Cd dose-related, inhibition o f the P450. 

But when Cd is dosed in vivo to rats, its maximum concentration in the liver is already 

achieved after one hour, whereas impairment of the P450 activity takes at least 9 h. It was 

also found that the concentration needed to inhibit P450 on isolated rat microsomes was 

100 times larger than the Cd concentration in microsomes that showed inhibition after in 

vivo administration. Taken together, these observations imply an indirect effect o f Cd on 

P450 when mammals are exposed in vivo.

Fish

Fair (1986) described BP-Cd interaction experiments with Black Sea Bass 

(Centropristis striata). Fish were injected i.p. for two days with 0.075, 0.75, or 7.5 mg/kg 

BP alone or with 1.4 mg/kg Cd. In addition there were two treatments with a low (0.42 

mg/kg) and high (2.5 mg/kg) Cd pretreatment 3-4 days before the BP dose. Livers were 

sampled on day 3 for analysis of BP hydroxylase and GST activity. Cd had an inhibitory 

effect on BP hydroxylase activity at 0.75 mg/kg, but not at the higher or lower doses. At 

the lower BP doses, co-administration of Cd also had an inhibiting effect on GST activity, 

while at the highest BP dose, this effect was not demonstrable. Pretreatment o f the fish 

with Cd did not change the hydroxylase and GST activities for the highest Cd 

pretreatment dose. For the lower Cd dose, the hydroxylase activity was significantly 

reduced in the combined BP-Cd follow-up dosage, while GST activity was significantly 

increased in this treatment. The observations were explained by assuming that when BP 

and Cd are administered together the Cd inhibits the hydroxylase activity, but stimulates 

the GST activity. When the fish were pretreated with Cd, the Cd binding metallothioneins 

were induced. Subsequent combined dosage o f BP and Cd resulted in sequestering the Cd 

by MT, which did not result is a difference in the BP transforming and conjugating enzyme
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activities when compared to the BP alone treatment.

In a subsequent study, Fair & Fortner (1987) dosed Black Sea Bass with 0.2 /ug/g 

BP and/or 10 p g/g Cd on a daily basis for 10 days through the food. Tissue accumulation 

o f BP and “BP hydroxylase” activity were not affected by the presence o f Cd. On the 

other hand there was significantly more Cd accumulation in the combined treatment than 

in the Cd alone treatment. That Cd, unexpectedly, did not inhibit accumulation and 

hydroxylase activity is attributed by the authors to the low Cd dose.

George & Young (1986) studied the time related interactive effects o f 3- 

methylcholanthrene (3MC, an artificial P450 inducer) and Cd in plaice (Pleuronectes 

platessa). The compounds were administered by i.p. injections o f 10 mg/kg 3MC and/or 1 

mg/kg Cd. In the 3MC alone treatment, EROD activity doubled in 24 h, and reached a 

maximum of 15x control value, 10 days after the injections. EROD activity dropped back 

to double the control value 14 days post-injection. Cd abolished EROD activity 

immediately, to 10% of control at day 2 in combined 3MC-Cd. MT induction was delayed 

from 4 days in the Cd alone treatment to 10 days in combined treatment. This suggests 

that not only has Cd an inhibitory effect on P450, but vice versa, an activated P450 system 

has an inhibiting effect on MT induction.

Cadmium dose-dependency for P450 inhibition was demonstrated by George 

(1989). He showed that EROD activity in flounder was reduced in a dose-dependent 

manner upon Cd injection (0.01 - 1 mg/kg). Immunoblot analysis showed dose-dependent 

reduction o f total P450 content. In contrast to the study of Fair (1986) there was no effect 

at all on GST activity at any Cd dose.

Forlin et al. (1986) exposed rainbow trout to cadmium using i.p. injections (0.5 

mg/kg o f  CdCl2-2.5 HzO) and aqueous exposure at 10 and 100//g Cd/1 for 4 weeks. After 

four days, liver and kidney o f the injected fish showed reduced P450 activity on ECOD, 

EROD and EMND, three substrates that cover a broad range of monooxygenase activities 

representing different P450 isozymes (resp. CYP2B, CYP1A and CYP3B). There was a 

trend, though not statistically significant, towards lower total amount o f P450 in the Cd 

treated fish, compared to the control. When Cd was added in micromolar amounts to the
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in vitro enzyme incubations, it strongly inhibited both Phase I and Phase II reactions. The 

Phase I activity was 100 times more sensitive than the Phase II. The authors suggest that 

Cd binds directly to nucleophilic sites on the P450, possibly sulphydryl (SH) groups, thus 

inhibiting the enzyme activity. After 4 weeks o f aqueous exposure the total amount o f 

P450 was significantly increased in liver microsomes, but ECOD activity was unchanged 

(though slightly increased in the kidney). UDPGT activity was decreased, while GST 

activity was increased.

Lemaire-Gony & Lemaire (1992) studied Cd and BP interactive effects in 

European eel (Anguilla anguilla). Fish were held in seawater with 5//g Cd/1 for 25 days. 

Half the fish received a  BP i.p. injection of 20 mg/kg after the Cd exposure, and were 

sampled 24 hours later. Hepatic tissue structure showed complete disorganization and 

nuclear degeneration o f the hepatocytes in all Cd exposed fish. Total P450 content was 

not increased in the Cd alone and BP alone treatments, but doubled in the combined 

treatment. EROD activity was not increased in the Cd alone treatments, but more than 10 

fold increased in the BP treatment, and almost 20 fold increased in the combined 

exposure. GST activity was not influenced by Cd alone, but slightly decreased in the 

combined treatment.

Lemaire-Gony et al. (1995) did a comparable study with European sea bass 

(Dicentrarchus labrax). Fish were exposed to Cd through seawater (40 /zg Cd/1) for 15 

days, and were then injected i.p. with BP (20 mg/kg). After 14 h the following assays were 

performed: macrophage phagocytosis assay, respiratory burst assay, gill Na/K-ATPase 

assay and EROD assay. The immunotoxicity assays showed a synergistic effect in the 

combined treatment, the Na/K-ATPase assay showed no effect in any of the treatments, 

and EROD activity was significantly increased in all treatments, but most in the combined 

treatment.
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Synthesis, conclusions and preliminary hypotheses.

From the studies described above it is clear that Cd can interfere with the 

biotransformation o f BP. Various endpoints have been measured by different researchers 

to show the inhibition of the metabolic pathway. The extent o f the interaction is dependent 

on a variety o f parameters: species, dose, exposure time, pre-exposure history, and mode 

of exposure (i.p., dietary, aqueous). Though most of these parameters were different in the 

cited studies, a few conclusions emerge that would support the following model for the 

interactive effects: In most studies Cd was administered at the same time as BP in a single 

dose. At low Cd doses, all the Cd is bound by the available pool of M T and other Cd 

binding agents. When the metal binding capacity of the cell/organism is exceeded, the Cd 

starts to have a negative effect on BP metabolism. This effect may be a direct effect, 

involving a direct intervention with the catalytic activity of CYP1 A. A direct effect can be 

caused by binding to the active site, disruption o f the heme group on the active site, or 

binding on other places on the enzyme, disturbing the tertiary structure of the enzyme and 

thus influencing the affinity for the substrate.

Cadmium may also cause indirect effects on BP metabolism, in the form o f a 

disturbance of the induction or production o f new enzyme. This would involve an effect 

on one or more of the steps in the CYP1A induction cycle: affinity o f the Ah receptor, 

DNA-mRNA transcription, P450 protein synthesis, and the basic cellular energy supply, as 

located in the mitochondria. Inhibition of BP biotransformation occurs predominantly on 

the phase I enzymes; the phase II conjugating enzymes do not seem to be affected. 

However, even though the conjugating enzyme activity may not be affected, there will be 

competition for glutathione by the BP metabolites and Cd. Glutathione is a general anti- 

oxidizing compound, that also has affinity for Cd (Viarengo, 1989). Depletion of 

glutathione may lead to toxic effects from either Cd, or the reactive BP metabolites.

It appears that the induction o f MT may take several days, while induction o f P450 

can be measured on a time scale o f hours (George & Young, 1986). This would explain 

why Cd effects are more moderate in combined Cd-BP treatments than in single Cd
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treatments: as long as MT is not fully induced, induced P450 may act as a temporary (or 

permanent) Cd scavenger. Exposure o f fish to Cd, by either injection or aqueous 

exposure, will induce MT production, which will subsequently bind and immobilize Cd. 

Pre-exposed animals or cells show no, or reduced inhibiting effects of Cd on BP 

metabolism. Interestingly, the results o f Lemaire-Gony et al. (1992, 1995) show that 

prolonged exposure to Cd results in synergistic effects on BP metabolism. This would 

mean that the acute effect of Cd exposure is inhibition, but the chronic effect is stimulation 

o f BP metabolism. A possibility could be that the Cd-MT complex, which is formed in 

chronic exposure, stimulates the AH receptor and induces P450 production. Another 

aspect of the combined dosage of Cd and BP may be that the highly reactive BP 

metabolites that are released from the microsomes into the cytosol may bind to the 

induced MT, thus rendering this MT incapable o f binding Cd.
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Goal and objectives

The overall goal of this study was to determine the influence of Cd on BP 

metabolism, and the influence o f BP exposure on Cd toxicity in mummichog. The study 

was subdivided in three parts:

1) Interactive effects o f Cd and BP on acute lethal toxicity. To study sublethal cellular and 

molecular effects, appropriate dose levels had to be established for both compounds. 

Investigating dose combinations up to lethal levels also gave the opportunity to study 

interactive effects with mortality as an endpoint.

2) Interactive effects o f Cd on BP metabolism. The influence o f Cd on BP metabolism was 

studied on three levels o f organization: in the entire organism, in isolated liver cells 

(hepatocytes) and in microsomes. The hierarchical approach gave the opportunity to 

separate different processes in the total biotransformation pathway of BP. The influence of 

Cd on CYP1A concentrations and activity was measured in liver microsomes (the cell 

fraction containing the CYP1A enzyme). Measurement o f BP metabolism in isolated 

hepatocytes was performed to collect information on the relative importance o f non-P450 

metabolic pathways. In the entire fish the influence of Cd on the total rate o f excretion and 

the metabolite spectrum was studied by analyzing bile samples. For all levels o f 

organization the influence o f time after a single dosage was part of the investigation.

3) The role o f metallothioneins. The induction of M T was measured in Cd exposed fish, 

together with the influence o f simultaneous BP dosage on MT induction. In addition the 

potential binding of BP metabolites to M T, which may inhibit detoxification o f Cd, was 

studied.
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General Methods & Materials.

Some aspects of the experiments described in the following chapters were kept 

constant across all experiments. These aspects are described here and are not repeated 

elsewhere.

Fish and exposure system

For all experiments mummichog were selected in the size range of 65 to 85 mm (4 

- 8 g wet weight). Fish at this size are in their second growing season (Kneib & Stiven, 

1978). To avoid potential interference o f processes involved with female oocyte 

production on BP metabolism, only males were used for the experiments in which BP 

metabolism was measured. The animals were collected from the bridge connecting 

Carmine’s Island (York River, VA.) with the main land. Sediments collected from this site 

have been analyzed for PAHs, and were shown not to have elevated contaminant levels 

(unpublished results). Prior to the experiments, the fish were acclimated to the laboratory 

environment for at least two weeks. During this period they were treated against 

exoparasites with a 1 h. fresh water dip upon arrival in the laboratory, followed by a 1 h. 

diluted formaldehyde treatment (200 mg/1), which was repeated one week later if 

necessary. Speare & MacNair (1996) have demonstrated that twice weekly exposure of 

juvenile rainbow trout to 200 mg/1 formalin in a static bath did not affect growth rate, 

appetite, feed conversion or body condition index. This exposure is recommended as 

disease prophylaxis.

On day 0 o f the experiment the fish were injected intraperitoneally, just postero- 

ventrally of the pectoral fin. The fish were anaesthetized in 200 mg/1 tricaine 

methanesulfonate (MS-222) before injection. Standard length, total length and wet weight 

were recorded for each fish. The injection site was cleaned with 70% ethanol just before 

injection. Injections consisted of 2 x 25/^1 containing a selected dose of Cd and/or BP or 

the solvent (as controls). Cd was dissolved in a saline solution (teleost Ringer’s), BP was 

dissolved in corn oil. For the experiments in which metabolism in entire fish was studied,
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animals were injected with 3H-BP. Radiolabeled metabolites were analyzed in bile samples. 

Both “cold” and “hot” BP were purified before use, either by cleanup over solid phase 

extraction columns, or by HPLC.

Animals were generally kept in 200 1 tanks, one tank per treatment, under flow 

through conditions (> 0.5 1/min). One experiment was done in a closed, recirculation 

system because fish were injected with radiolabeled BP, and the excreted metabolites 

could not be recovered before disposal o f the effluent. W ater temperature was maintained 

at 20 (±2)°C. Water quality parameters (temperature, salinity, dissolved oxygen and pH) 

and flow rate were measured on a daily basis. The fish were fed daily with TetraMarin at a 

rate of 4 % o f  the body dry weight (Fisher, 1985).

Experimental set-up

The experiments in which hepatocytes and/or microsomes were harvested from 

injected fish, typically consisted of the following treatments: saline+oil injected control 

fish, BP alone, Cd alone, BP plus Cd, Cd 4 days before BP. Results from one of the first 

experiments showed that there was no difference in P450 amount and activity between 

saline control, oil control and saline+oil control. For that reason only a saline+oil control 

was used for the following experiments. Fish were generally sampled over a time period of 

14 days. For microsomal studies samples were taken on days 2, 3, 4 and 7 post-injection, 

and for other experiments samples were taken 3, 7 and 14 days post-injection. Efforts 

were made to sample 4 or 5 replicate fish per treatment per sample day, but for some 

experiments, unexpected mortality reduced the number o f  fish available, forcing reduction 

o f sample size to 3, or only 2 in one case. The methods used for measuring BP metabolism 

by isolated hepatocytes and microsomes are described in the respective chapters.

Extraction and analysis of BP metabolites and MT

Non-polar (non-conjugated) metabolites were extracted from cell cultures and 

microsomal incubations with ethyl acetate. BHT (0.01 M) was added to the organic 

solvent as an anti-oxidant to prevent auto-oxidation o f the BP metabolites. The aqueous
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fraction was kept for analysis o f polar (conjugated) metabolites. The organic fraction was 

blown to dryness and reconstituted in methanol for HPLC analysis (Kawabata & White, 

1989). Bile samples were not extracted, but analyzed directly after dissolution in methanol 

(James et al., 1991). Non-conjugated BP metabolites were analyzed by reversed phase 

HPLC with a UV detector, set at 254 nm, and a flow cell radio detector. Total conjugated 

metabolites were quantified by scintillation counter. Metallothioneins were analyzed by gel 

filtration HPLC after heat denaturation o f hepatic cytosol (Jin et al, 1993).

Statistical analysis

The mortality experiments described in Chapter 2 required a special approach to 

analyze for statistically significant differences between treatments, which is described 

there. All other experiments consisted o f a set of treatments (e.g. control, BP, Cd, 

BP+Cd), sampled at intervals over a certain time period. Endpoints consisted of BP 

breakdown, BP metabolite production, and MT production. Significant differences for the 

endpoints were analyzed between treatments on a certain day. The time factor was used as 

a blocking factor. Differences between treatments on a given day were analyzed with 

ANOVA, followed by a multiple comparisons test (Tukey’s HSD). Homogeneity of 

variance was tested with Bartlett’s test, and when necessary log transformation was 

applied before using ANOVA (Zar, 1984).

Practical limitations did not allow sampling from a fully randomized, fully 

independent time series for the experiments. Therefore treatments were kept in separated 

tanks, but the time series was sampled from the same tank each time. This may trigger the 

question whether there was true independence between different sampling times within a 

treatment. However, the actual treatment (the injected dose) was given before the fish 

were put into the tanks, which means that the individual fish is the statistical unit for 

consideration in these experiments, not the population of fish in each tank. 

Pseudoreplication was therefore not an issue in these experiments (Hurlbert, 1984).
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Chapter 2. Interactive Effects of Cd and BP on Acute 

Mortality1

Introduction

As a model to  study the mechanisms underlying toxicant interactions, a metal 

(cadmium) and a polycyclic aromatic hydrocarbon (benzo[a]pyrene) pair was selected to 

challenge a common estuarine fish species (Fundulus heteroclitus). Benzo[a]pyrene (BP) 

and cadmium (Cd) are two potentially harmful pollutants that often co-occur in 

contaminated aquatic environments. Both compounds are known to induce physiological 

changes in fishes and other organisms (Varanasi et al., 1989; Roesijadi, 1992). BP induces 

the production of a metabolizing enzyme (CYP1A), Cd exposure enhances the production 

o f metal-immobilizing proteins (glutathione, metallothioneins). Though the reactions of 

organisms to exposure to the individual compounds has been well studied, effects o f 

exposure to a combination of BP and Cd is less well-known. Interactive effects have been 

demonstrated in fish at cellular and sub-cellular levels, showing effects of Cd on BP 

metabolism (Fair, 1986; Lemaire-Gony et al., 1995; Bruschweiler et al., 1996; Sandvik et 

al., 1997). Effects o f co-administration on mortality have not been reported.

The overall goal o f this study was to investigate the mechanisms of interactive 

effects o f Cd and BP at cellular and sub-cellular levels over a time frame of several weeks. 

To study these effects, fish would have to be dosed with amounts low enough to keep 

them alive over this period, and high enough to see any effects. Because no information 

was available on the acute lethal levels of Cd and BP after i.p. injection, these effect doses 

had to be established. Challenging the fish with different dose combinations would also

In press in a condensed version as: Van den Hurk, P., Faisal, M., Roberts Jr., M.H. 
(1998). Interaction o f  cadmium and benzo[a]pyrene in mummichog (Fundulus 
heteroclitus)-. effects on acute mortality. Mar. Environ. Res.
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give the opportunity to select combinations that would result in clear interactive effects.

The objectives for the experiments described in this chapter were first to establish 

dose-effect relationships, with mortality as endpoint, for individual doses o f B P  and Cd in 

mummichog (Fundulus heteroclitus). Secondly, to investigate at which doses interactive 

mortality effects of co-exposure o f BP and Cd would occur in the sublethal- lethal dose 

range. The results o f the mortality experiments would be used to select those dose 

combinations that showed interactive effects for subsequent studies investigating 

interactive effects of Cd on hepatocytic and microsomal BP metabolism.
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Material and Methods

Experimental design

Four experiments were performed for this study, following a sequence of range 

finding and definitive tests (Parrish, 1985). The first two range finding tests were done to 

find the concentration range in which the 14-day LD50 for Cd and BP alone would lie. The 

third experiment was a range finding test for interactive effects when Cd and BP were 

dosed together in different combinations, and the fourth, final experiment was designed to 

determine definitively the actual dose combinations at which interactive effects can be 

seen.

Test animals

One year old mummichog were collected with baited traps from Carmine’s Island, 

York River, VA. The fish were selected in the size range of 65-85 mm, these fish had an 

average weight of 6.2 ±1.3 g. The fish were acclimated to the laboratory environment and 

treated for ectoparasites two weeks before the start o f the experiment, as described 

previously.

Experimental set up

The fish were injected intraperitoneally (i.p.) after being anaesthetized in 200 mg/1 

MS-222. In the first two experiments the test compounds were dosed in 50 /d aliquots.

For the combined Cd and BP treatments in the last two experiments the compounds were 

dosed in two separate injections of 25/d each per fish. Cd was dissolved in teleost 

Ringer’s saline solution, BP was dissolved in corn oil. Ten fish were exposed per 

treatment for all experiments. Fish were kept in 45 1 seawater tanks, one tank per 

treatment, under flow through conditions (0.5 1/min). The fish were fed daily with dried 

fish food at a rate o f 4 % of body dry weight. Water quality parameters and mortality were 

monitored on a daily basis for 14 days.
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Data handling and statistics

LDS0 values with 95% Confidence Intervals (C.I.) were calculated for Cd and BP 

using the trimmed Spearman Karber method, which is judged as a better method than the 

traditional logit and probit methods (Hamilton et al., 1977). Based on the LDS0 values, 

doses o f the last experiment were expressed in Toxic Units (=dose/LD50) for each 

compound. This generates a unitless variable for a toxicant that expresses the contribution 

o f the dose to the observed effect. For each combination treatment, contributing Toxic 

Units for both compounds were added to obtain Combined Toxic Units (Marking, 1977). 

If linear additivity would exists for both compounds, then the mortality would be 50% 

when the Combined Toxic Units would equal one. Combined Toxic Units lower than one 

would result in lower than 50% mortality, Combined Toxic Units higher than one would 

produce more than 50% mortality. The relation between Combined Toxic Units and 

mortality was modeled by probit analysis, which is basically a transformation followed by a 

nonlinear regression. Probit analysis was used for this data set because the calculating 

routine in SAS also generates a 95% confidence interval around the regression sigmoid. 

Treatments that fell outside this 95% confidence interval were considered significantly 

different from the linear additivity model, and represent synergistic or antagonistic effects.
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Results

Mortality

The mortality data for the LD50 range finding experiment for Cd show that Cd 

doses o f 240 and 2400 mg/kg were lethal instantaneously: the injected fish did not even 

survive the anaesthesia (Table 2 -1 ). At 24 mg/kg a 100% mortality was achieved within 

24 h post-injection. For BP it took 6 days to  obtain 50% mortality in the highest dose o f 

177 mg/kg (Table 2-2). The 14 day LD50 for Cd was calculated to be 0.23 mg/kg (95%

C.I.: 0.14 - 0.37) and for BP 14.58 mg/kg (95% C.I. 8.52 - 24.95).

The calculated LD50 s for Cd and BP were used to design the third experiment, in 

which fish were dosed with combinations o f  both compounds. The dose ranges for this 

experiment were supposed to bracket the calculated LD50 s. The results o f this experiment 

showed that the selected dose ranges were too low to produce 100% mortality in the 

highest dose combinations (Table 2-3), which is one o f the criteria for an acceptable dose- 

response test (Parrish, 1985).

For the final interaction experiment, higher doses were used for both compounds 

in an effort to meet the 100% mortality criterium for the highest doses. The results show 

that for this experiment the criterion was met (Table 2-4). The calculated 14 day LD50 

value for BP was 35.7 mg/kg (95% C.I.: 29.3 - 43.6), the 14 day LD50 value for Cd was 

6.5 mg/kg (95% C.I.: 4.4 - 9.5). The data from this experiment show that there are 

bimodal response trends for several dose ranges. For BP doses o f 18, 32 and 56 mg/kg the 

pattern shows that a concomitant dose o f  Cd causes a decrease in toxicity after the initial 

high mortality. Though less pronounced, the same pattern shows for Cd doses below 10 

mg/kg when combined with BP.
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Table 2-1. Cumulative mortality for cadmium over 14 day period. N=10 fish per

treatment, Cd concentration in mg/kg.

Day Blank Saline 0.24 2.4 24 240 2400

0 0 0 0 0 1 10 10

1 0 0 0 0 10 10 10

2 0 0 0 2 10 10 10

3 1 0 0 6 10 10 10

4 1 0 0 6 10 10 10

5 1 0 0 7 10 10 10

6 1 0 0 7 10 10 10

7 1 0 0 7 10 10 10

8 1 0 1 8 10 10 10

9 1 0 1 8 10 10 10

10 2 1 2 8 10 10 10

11 2 1 5 8 10 10 10

12 2 1 6 8 10 10 10

13 2 1 8 8 10 10 10

14 2 1 8 8 10 10 10
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Table 2-2. Cumulative mortality for benzo[a]pyrene over 14 day period. N=10 fish per

treatment, BP concentration in mg/kg.

Day Blank Oil 0.05 0.77 12.4 177

0 0 0 0 0 0 0

1 0 0 0 0 0 0

2 0 0 0 0 0 0

3 0 0 1 1 0 1

4 0 0 1 1 0 1

5 0 0 1 2 1 2

6 0 0 1 3 2 5

7 0 0 1 3 3 9

8 0 0 1 3 3 9

9 0 0 1 3 3 9

10 0 0 1 3 3 9

11 0 1 1 3 3 9

12 0 1 1 3 3 9

13 0 1 1 3 4 9

14 1 1 1 3 4 9
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T able  2-3. Mortality (%) of mummichog 14 days after i.p. injection o f Cd, BP or 
combinations o f  both (N = 10 per treatment, dose in mg/kg ).

Cd-* B P l 0 0.01 0.018 0.032 0.056 0.1

0 0 20 0 0 10 20

0.4 20 10 0 20 10 10

1.1 0 10 30 0 10 40

3.75 10 20 10 0 40 20

11.45 0 10 10 0 20 20

32.2 10 10 20 30 30 40

T able  2-4. Mortality (%) of mummichog 14 days after i.p. injection o f Cd, BP or 
combinations o f both (n = 10 per treatment, dose in mg/kg ). Light shade indicates lower 
mortality than expected, dark shade is higher mortality than expected.

Cd-*

B P l

0 0.1 0.32 1 3.2 10

0 0 0 0 0 10 80

5.6 0 0 10 0 30 H h
10 0 10 10 30 mmi
18 20 .V7 / K 3 100

32 10 70 max 100

56 100 80 60 60 90 100
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A scatterplot o f mortality as a function o f Combined Toxic Units suggests that the 

probit model might be used to analyze the data (Figure 2-1). Probit analysis was 

performed to describe the expected dose-response curve for linear additivity o f both 

compounds, together with its 95% C.I.. Data points outside this 95% C.I. were identified 

as having higher mortality than expected (synergistic effect), or lower mortality than 

expected (antagonistic effect). The dose combinations that had a lower o r a higher 

mortality than expected, turn out to be grouped together (Table 2-4). It appears that for 

higher BP doses a simultaneous low Cd dose had an antagonistic effect: co-administration 

o f Cd reduced the toxicity of BP below expected. On the other hand, at higher Cd doses a 

simultaneous dose o f BP caused a synergistic effect: the combination was more toxic than 

expected.

Behavioral and pathologic observations

Fish dosed with high concentrations o f BP showed clear signs of distress after 

several days. They became lethargic, refused food, and did not respond to  outside 

stimulation. Other pathologic signs were dark coloration, swelling of the peritoneal cavity, 

anal excretion o f white mucous-like “feces” , and internal hemorrhaging around the snout. 

Some fish recovered from these signs, but for most it was indicative for later mortality. 

For the Cd dosed fish no specific clinical signs were observed.
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Figure 2-1. Dose-response model for Combined Toxic Units versus percent Mortality, 

based on probit analysis. Dotted lines indicate 95% confidence interval.
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Discussion

BP toxicity

Acute toxicity data for BP have to be treated with caution. It is generally thought 

that toxicity is not caused by the parent compound itself, but by the metabolites which are 

formed during biotransformation (Gelboin & Tso, 1978). Toxicity of the parent compound 

will thus be dependent on the activity o f the metabolizing pathways. Acute BP toxicity 

might also be caused by phototoxicity under the influence of UV light (Arfsten et al,

1996). However, limited UV radiation in the laboratory environment makes it unlikely that 

phototoxicity contributed substantially to the observed mortality (Di Giulio, pers. com.).

The observed behavioral and morphological changes in the BP dosed fish may give 

an indication for the mode o f action of BP in mummichog. Drummond & Russom (1990) 

exposed juvenile fathead minnows to a large number of toxicants from a variety o f 

chemical classes, and described behavioral changes in the fish. The observed behavioral 

changes were classified into three stress syndromes: hypoactivity syndrome (Hypo-AS), 

hyperactivity syndrome (Hyper-AS), and physical deformity syndrome (Physical-DS). The 

Hypo-AS is indicative of exposure to narcosis, or narcosis-like producing chemicals that 

depress central and peripheral nervous system activity, as opposed to the Hyper-AS, 

which is induced by chemicals that disrupt metabolic activity or function. Physical-DS is 

indicative o f neurotoxic chemicals. For all syndromes there is mortality within 24-96 h.

The observations on mummichog match most with the Physical-DS (depressed 

locomotor activity, increase in rate and amplitude o f opercular movements, darker body 

coloration, hemorrhage), though the severe abdominal edema is typical of Hyper-AS.

These signs are remarkable because the physical characteristics of BP (relatively large, 

very lipophilic) would suggest a nonpolar narcosis-like mode of action. Schultz (1989) 

describes nonpolar narcosis as a physical change owing to the migration of the agent into 

the cellular membranes. Narcosis is therefore correlated with lipophilicity, and the relative 

effect depends primarily on the quantity of agent absorbed. Narcotics do not produce a 

chemical change in the membranes, and the phenomenon is rapidly and completely
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reversible. Tricaine methanesulfonate (MS-222) is one o f the model compounds for 

narcosis. Another argument against Physical-DS may be that BP exposure did not cause 

changes in neurotransmitter levels in channel catfish (Fingerman & Short, 1983). 

Combining the observations on BP injected mummichog with the information from the 

references cited above, it is unlikely that BP caused an acute narcosis effect at the doses 

used for this study. The behavioral effects are more likely caused by the metabolites that 

are formed during BP metabolism, and do not clearly match one o f the described stress 

syndromes.

Cd toxicity

The EPA-Aquire data set contains about 20 references with toxicity data for Cd in 

mummichog. However, all derived toxicity values were based on aqueous exposure, which 

hampers comparison with the LDS0 values derived from i.p. injections in this study. 

Intraperitoneal injection of Cd is an often used technique to study induction of metal 

binding proteins (metallothioneins) and other physiological responses to heavy metal 

exposures (Hamilton et al., 1987)

Toxicity and tissue distribution of Cd as a function o f exposure method have been 

described for sticklebacks and carp. Sticklebacks dosed i.p. with 5 mg/kg Cd retained 

about 60% o f the dose till 60 h post-injection. The primary sites of retention were the 

liver, gall bladder, kidney and gut. For aqueous exposure, most Cd was retained in the 

gills and gut (Woodworth & Pascoe, 1983). When Cd was injected i.p. in carp, the LDS0 

was 9.5 mg/kg (± 0.7), while oral dose LD50 was 650 mg/kg (±75) (Yarzhombek et al., 

1992). The results from these studies indicate that the method o f exposure is an important 

consideration for interpretation of toxicity data. For oral or aqueous exposure much 

higher doses are required to reach an effect level than i.p. injected cadmium. The gill and 

gut appear to  be buffers against Cd toxicity in other organs.

Interaction

The results presented here show that both synergistic and antagonistic effects can
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occur when BP and Cd are dosed together, depending on the dose range. At sublethal 

doses o f Cd, lower mortality was observed in BP+Cd dosed fish than would be expected 

from BP dosage alone. Assuming that the toxic effects of BP are caused by metabolites 

that are formed during biotransformation, and not by a direct narcotic effect as described 

above, the Cd effect would be an inhibition o f the biotransformation o f BP. This effect has 

been described before (Fair, 1986; Lemaire-Gony et al., 1995; Bruschweiler et al., 1996; 

Sandvik et al., 1997), and results o f new experiments investigating this phenomenon will 

be described in the following chapters.

At sublethal doses o f BP there was higher mortality in BP+Cd dosed fish than 

would be expected for fish treated only with Cd. M ost organisms have a certain capacity 

to bind metals through glutathione (GSH) (Singhal et al., 1987) or metallothionein (MT) 

(Roesjiadi, 1992). Binding of Cd to M T reduces the toxic effect o f Cd. A higher mortality 

than expected could be caused by an inhibition of the binding of Cd to GSH or MT. In the 

combined BP+Cd treatments, the BP metabolites that are formed may interfere with the 

availability o f Cd scavenging proteins, and thus increase the toxic effects o f Cd. 

Experiments to investigate a possible interaction o f BP metabolites with MT are described 

in Chapter 6.

The combination of both synergistic and antagonistic effects for certain dose 

combinations o f Cd and BP poses serious difficulties for modeling the effects. Broderius 

(1991) and Haas et al. (1996) describe joint toxicity models based on isobolic graphs. For 

each dose of one compound, an LD50 for the other compound is calculated, and vice versa. 

The LD50 values are then plotted and compared with the line for linear additivity. This 

method could not be used for the BP-Cd data set because of the bimodal character o f the 

effect curve at most of the dose levels. This would not allow the calculation of a reliable 

LDS0 for that specific dose level, and would thus make the use of the isobolic graphs 

inappropriate.
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Chapter 3. Effect of Cd on BP biotransformation in isolated 

hepatocytes.2

Introduction

The results described in the previous chapter demonstrated antagonistic effects of 

Cd on the toxicity of BP. Because BP itself is not considered to have a direct toxic effect, 

as discussed above, toxicity, resulting in mortality, is most likely caused by BP 

metabolites. Biotransformation of BP is found in a number of organs, but most actively in 

the liver.

The liver is one o f the most important organs for the clearance of xenobiotics from 

the animal body. Both Phase I and Phase II enzymes for the oxidation and conjugation of 

PAHs, such as benzo[a]pyrene, are found abundantly in the liver (Varanasi et al., 1989). 

To study the induction and catalytic activity o f these enzymes, they are usually isolated 

from homogenized liver tissue. Phase I enzymes are located on endoplasmatic reticulum 

(ER), and can be studied in the cell fraction that contains parts of this ER in the form of 

microsomes. Phase II enzymes are located on ER (UDP-glucuronidase) or in the cytosol 

(glutathione-S-transferase), and can be studied in the appropriate cell fractions. However, 

separating out the different cell fractions, and studying individual steps of PAH 

metabolism may give an impression of underlying mechanisms, but does not provide 

insight in how the complete process proceeds in vivo.

To study BP metabolism in vivo in whole fish can be a challenging endeavor. The 

use o f isolated fish hepatocytes allows one to study the complete metabolic system in a 

small, living entity. Some benefits of using in vitro studies for toxicological research are:

2

In press in a condensed version as: Van den Hurk, P., Roberts Jr., M.H., Faisal, M.
(1998). Interaction of cadmium and benzo[a]pyrene in mummichog (Fundulus 
heteroclitus): biotransformation in isolated hepatocytes. Mar. Environ. Res.
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1) Simple control of environmental conditions, 2) reduced variability between 

experiments, 3) possibilities for simultaneous or repeated sampling over time, 4) small 

amounts o f test materials are needed, which reduces the amount o f waste, 5) cheaper and 

quicker than whole animal studies (Baksi & Frazier, 1990). Because of these benefits of 

using cell cultures for testing environmental toxicants, cell culture techniques are 

advocated as environmental bioassay techniques (Marion & Denizeau, 1983; Baksi & 

Frazier, 1988). Immortal fish hepatoma cell lines have been established, and are used for 

toxicological research (Hahn et al., 1993; Bruschweiler et al., 1996), but may not fully 

represent the metabolic processes that occur in healthy liver cells. Primary cultures o f liver 

cells are most closely related to intact liver functions.

Several techniques have been developed for isolating and culturing hepatocytes. 

For most larger fish species the livers are perfused in situ with collagenase to digest the 

connective tissues (Moon et al., 1985; Braunbeck & Storch, 1992). For smaller fish, like 

mummichog, it is more appropriate to excise the entire liver, and digest it in trypsin after 

mincing the liver tissue into small pieces (Moerland & Sidell, 1981; Faisal et al., 1995).

The use of primary hepatocyte cultures not only allows one to study the effects of 

pretreatment o f the fish, but can also be used to expose liver cells to a variety o f 

conditions. Cells can be incubated with toxicants in the media (Kelly & M addock, 1985; 

Bruschweiler et al., 1996), and other variables can be studied, like temperature effects on 

biotransformation rates (Gill & Walsh, 1990).

Metabolism of BP can occur through several different pathways. Most dominant is 

the oxidation by P450 monooxygenases which is inducible upon exposure to PAHs and 

other aromatic compounds (Varanasi et al., 1989). However, other pathways have been 

reported, like cooxidation during lipid peroxidation (Colin et al., 1991) and oxidation by 

prostaglandin synthetase (Sivarajah et al., 1978). Each pathway results in a different 

spectrum of metabolites, compared to the P450 pathway. Cd has been reported to  have a 

direct inhibiting effect on P450 enzymes (Forlin et al., 1986). If there is inhibition o f the 

P450 pathway by Cd, but not o f the other pathways, this should become obvious from the 

comparison of the metabolite spectra produced by hepatocytes from fish that have been
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treated with or without Cd.

Exposure o f fish to BP induces the production o f P450, resulting in a faster 

metabolism of the toxicant. Coexposure to  Cd may have both direct and indirect effects. 

Direct effects would involve interference with the catalytic activity o f  the P450 enzyme. 

Indirect effects would be the inhibition o f the production of new enzyme, or accelerated 

breakdown of the enzyme. Direct effects can be studied by incubating induced hepatocytes 

in a media with Cd.

The objective for the experiments described in this chapter were to examine a 

series o f  questions:

• When fish are dosed with Cd and BP, do the hepatocytes from these fish show a an 

effect of Cd on the BP metabolizing capacity? Is this effect time dependent?

• Are there differences in the spectra o f metabolites formed by hepatocytes from fish 

that received different treatments?

• What are lethal media concentrations of Cd for hepatocytes?

• Is there an acute effect o f sublethal Cd concentrations on BP metabolizing capacity 

of hepatocytes?

• Are there differences over time in metabolites formed by hepatocytes from fish 

receiving different pretreatments?
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Material and Methods

Experimental design

Three types of experiments were designed. In the first type, hepatocytes from 

different fish treatments were incubated with 3H-BP to investigate the effect o f fish 

treatment on the ability o f hepatocytes to metabolize 3H-BP (experiment I). In the second 

type, hepatocytes from BP induced fish were incubated in media with 3H-BP and Cd to 

investigate if Cd has a direct effect on BP metabolism in Cd exposed cells (experiment V). 

To do this experiment with effective Cd doses, Cd dose-response curves were first 

generated (experiment II, III, IV). Experiment II was planned to establish a dose-response 

relationship for Cd after a 4 h incubation period. Unfortunately, a complete power outage 

forced postponement of sampling to  16 h. Therefore the experiment was repeated to get 

the actual 4 h exposure time (experiment III).

Exposure of hepatocytes to media with Cd may cause specific problems with 

regard to the complexation o f Cd (Marion & Denizeau, 1983). The RPMI media used for 

experiments II and III contains a suite o f amino acids and other vital compounds for 

optimal cell growth. These compounds may bind Cd, and make it unavailable. Therefore, 

Minimal Essential Media, have been suggested for short term exposures o f hepatocytes 

(Denizeau & Marion, 1990). In experiment IV Hanks balanced salt solution was used as a 

media, to study if this media would yield different results for Cd toxicity than the RPMI 

media.

In the third type o f experiments, production o f various BP-metabolites by 

hepatocytes over time was determined (experiment V I ) .

Experimental set up

One year old mummichog were collected from Carmine’s Island, York River, VA. 

Males only were used, 60 to 85 mm long, with a body weight o f 4.0 - 9.0 g. The animals 

were acclimated to the laboratory conditions over two weeks, and treated for 

ectoparasites by a one hour fresh water dip, and a 1 -h 200 ml/1 formalin treatment (Speare
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& MacNair, 1996). The fish were injected intraperitoneally (i.p.) after being anaesthetized 

in 200 mg/1 MS-222. The treatments consisted of: solvent control, Cd alone, BP alone, BP 

simultaneous with Cd, and Cd four days before BP. Cd and BP were dosed in separate 

injections o f  25//1. Cd was dissolved in teleost Ringer’s saline solution, BP was dissolved 

in com oil. Fish were kept in 200 1 seawater tanks, one tank per treatment, under flow 

through conditions (1.2 1/min). The fish were fed daily with dried fish food at a  rate o f 4 % 

o f the body dry weight.

For experiment I doses of 0.32 mg/kg Cd and 10 mg/kg BP were applied, and 4 

replicate fish were sampled on days 3, 7 and 14 post-injection, from each treatment. For 

experiment VI a BP dose of 26.5 mg/kg, and Cd doses of 0.32 and 3.2 mg/kg were used. 

Fish were sampled 6 days post-injection, with 2 replicates per treatment.

Cell cultures, incubation and metabolite analysis

For all experiments the following procedure was used for preparation of primary 

hepatocyte cultures, incubation with radiolabeled BP, and extraction and analysis of 

metabolites. Fish were anaesthetized in MS-222 (200 mg/1), and rinsed with 70 % ethanol. 

Livers were dissected aseptically, and washed in Hanks BBS. With a scissor the livers 

were minced in small pieces, and transferred into a beaker with 2 ml trypsin (0.25%). 

Trypsinization was performed with a magnet bar on a stir plate at the lowest speed for 20 

min. Digested tissue was filtered over sterile gauze, followed by addition of 8 ml RPMI 

with 10 % FCS to stop the digestion. The cell suspension was centrifuged immediately at 

1200 rpm for 5 min, followed by a second wash with RPMI. Red blood cells in the cell 

suspension, which may have BP metabolizing activity, were then lysed by hypertonic 

shock with ammonium sulfate in Tris buffer. (An initial attempt to separate cells by density 

gradient centrifugation with Histopaque resulted in unacceptable large loss o f hepatocytes 

in some samples, obviously due to density differences between hepatocyte batches.) Final 

cell suspension was brought to 0.25 x 10 6 cells/ml in salinity adjusted RPMI media. Cell 

viability was measured by trypan blue exclusion, and was generally more than 95%.

To measure BP metabolism by hepatocytes, one ml o f each cell suspension was
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exposed to 5/zCi 3H-BP, and incubated in 24 well plates on a rotary shaker at 27° C in a 

5% COz atmosphere. Exposed cells were lysed after 4 h incubation by adding an equal 

volume o f  deionized water to each well. BP metabolism was stopped by adding 1 ml ice 

cold acetone. Non-conjugated metabolites were extracted in ethyl acetate with 0.01 M 

BHT as an anti-oxidant. The organic fraction was blown to dryness and reconstituted in 

methanol for HPLC analysis. The aqueous fraction was subsampled, and total radioactivity 

was established on a scintillation counter as a measure for the total conjugated metabolite 

fraction. BP metabolites and residual parent compound in the organic fraction were 

analyzed on a HPLC configuration with two Waters 510 pumps, a Waters 717plus 

autosampler, W aters 486 absorbance detector, and a Radiomatic Flo-one\Beta, type A- 

100 radio detector with a 500 fx\ flow cell. The column used was a reversed-phase 4.6 x 

25 mm Partisil 10 ODS-2 kept at room temperature. Compounds were separated using a 

linear water-methanol gradient at a flow rate of 0.8 ml/min, starting with 40% water, 

changing to 92% methanol over 15 min, changing to 100% methanol over the next 15 

min, followed by 30 min of 100% methanol to remove any parent compound.

Statistics

D ata sets were analyzed for statistically significant differences between treatments 

on a given day as described in Chapter 1.
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Results

Effect o f Cd dosed in fish on BP metabolism o f hepatocytes

Isolated hepatocytes from mummichog demonstrated a clear capacity to 

metabolize BP (Table 3-1). In the 4 h exposure period, 70 to 93 % of the radiolabeled BP 

dose was transformed to non-conjugated and conjugated metabolites. The conjugation o f 

primary metabolites was rapid, with only 2 - 7 % o f the total recovered BP present as non­

conjugated metabolites (Figure 3-1). On day 3, BP metabolism was significantly increased 

in the hepatocytes from BP-treated fish (Figure 3-2). The induced metabolizing activity o f 

the BP-treated fish remained high on day 7, but started dropping on day 14. When fish 

were dosed simultaneously with Cd and BP, induction of BP metabolism was significantly 

inhibited on day 3. However, after day 3, the metabolizing activity of the hepatocytes 

increased significantly on day 14 to a level comparable to that o f BP alone on day 3. This 

suggests that Cd initially had an inhibiting effect on BP metabolism, but after 3 days this 

inhibiting effect was diminished. When fish were dosed with Cd 4 days before BP, the 

induction on day 3 induction was apparent, though significantly reduced. On days 7 and 

14 post-injection an effect of Cd was not detectable. In the Cd alone treatment the resident 

BP-metabolizing activity of the hepatocytes was not affected.

Chromatographic analysis o f the non-conjugated metabolites showed that 

BP-9,10-diol, BP-4,5-diol, BP-7,8-diol, and 3-hydroxy-BP were the predominant 

metabolites (Figure 3-3). For these metabolites, a lower amount was present in almost all 

of the BP treatments, with or without Cd, than the solvent control and the Cd only 

treatment (Table 3-1). This indicates that conjugation in hepatocytes from BP dosed fish is 

faster than in the control treatments. Also, at the Cd levels used for this experiment, no 

change in the spectrum of primary BP metabolites was observed as a result o f Cd 

coadministration.
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Table 3-1. Unmetabolized parent compound and metabolites in hepatocyte cultures after 4 h incubation with 5//Ci 3H-BP. 
Mean of 4 independent samples, expressed in pmol/106 cells, ± standard deviation.

Parent Nonconjug.
total

Conjugated
total

9,10-diol 7,8-diol 4,5-diol 9-OH

Day 0 24.46 ±7.88 9.82 ±1.69 113.28 ±13.86 4.30 ±5.50 0.05 ±0.11 0.16 ±0.19 1.44 ±1.52

Day 3 sal & oil
Cd
BP
BP & Cd 
Cd bef. BP

27.64 ±3.97 
27.08 ±8.92 
11.04 ±5.09 
27.02 ±7.83 
22.21 ±5.74

7.06 ±1.86 
7.35 ±2.78 
2.90 ±0.57 
3.55 ±0.56 
4.46 ±1.00

110.30 ±5.28 
104.51 ±17.33 
145.32 ±10.08
118.30 ±11.69 
119.01 ±11.60

2.59 ±3.89 
2.29 ±2.91 
0.20 ±0.33 
0.26 ±0.43 
0.66 ±1.17

0.09 ±0.23 
0.07 ±0.22 
0.00 ±0.00 
0.00 ±0.00 
0.08 ±0.14

0.12 ±0.16 
0.08 ±0.10 
0.05 ±0.09 
0.04 ±0.07 
0.04 ±0.08

0.98 ±1.29 
1.09 ±1.42 
0.39 ±0.50 
0.51 ±0.74 
0.45 ±0.55

Day 7 sal & oil
Cd
BP
BP & Cd 
Cd bef. BP

27.18 ±6.65 
33.76 ±16.42 
11.35 ±5.51 
15.31 ±4.80 
15.98 ±5.16

5.88 ±0.83 
5.01 ±1.99 
5.04 ±1.87 
4.59 ±0.72 
3.91 ±1.09

105.68 ±12.86 
128.31 ±16.12 
113.43 ±26.61 
141.21 ±20.68 
118.17 ±22.15

1.47 ±2.00 
1.40 ±2.14 
0.98 ±1.55 
0.55 ±0.93 
0.50 ±0.69

0.14 ±0.18 
0.13 ±0.17 
0.11 ±0.16 
0.13 ±0.20 
0.10 ±0.13

0.08 ±0.13 
0.05 ±0.10 
0.04 ±0.08 
0.06 ±0.10 
0.06 ±0.10

0.67 ±1.11 
0.97 ±1.33 
0.99 ±1.46 
0.55 ±0.78 
0.40 ±0.49

Day 14 sal & oil 
Cd 
BP
BP & Cd 
Cd bef. BP

39.07 ±13.22 
34.42 ±21.39 
19.77 ±12.82 
13.19 ±6.63 
30.98 ±5.18

8.56±2.84
4.56±0.71
3.29±0.89
6.20±0.73
5.52±0.48

78.52 ±14.75 
100.00 ±22.82
112.06 ±25.07 
132.76 ±5.01
104.06 ±9.50

4.05 ±6.39 
0.91 ±1.02 
0.38 ±0.65 
0.16 ±0.27 
0.77 ±0.93

0.06 ±0.09 
0.04 ±0.05 
0.03 ±0.05 
0.10 ±0.13 
0.08 ±0.13

0.11 ±0.17 
0.14 ±0.20 
0.11 ±0.19 
0.16 ±0.24 
0.13 ±0.18

1.19 ±1.70 
0.71 ±1.04 
0.46 ±0.71 
1.07 ±1.48 
0.57 ±0.75
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Figure 3-1.Mass balance for 3H-BP metabolism by hepatocytes, isolated from fish 3 days 

after different injections.
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Figure 3-2. BP metabolism by isolated hepatocytes from fish with different treatment 

history, expressed as percentage o f total recovered radiolabel on days post-injection. Each 

data point represents average o f 4 fish.
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Cd dose-mortalitv relationship for hepatocvtes

The calculated LC,0 values for Cd were significantly different for all three 

treatments: 22.3 fxM  ( 95% C.I.: 17.2-29.1) for 16 h RPM I, 72.0 ixM (50.5-102.7) for 4  h 

RPMI, and 126.4 fxM (61.5 - 259.7) for 4 h Hank’s. As could be expected, the longer 

incubation time lowered the effect concentration for the RPM I media. The effect 

concentration in Hanks balanced salt solution is significantly higher, for unknown reasons. 

The dose-response curve for the Hanks treatment shows a higher mortality in the low 

concentration range, and a lower mortality in the higher concentrations, when compared 

to the RPMI treatments (Figure 3-4). A possible explanation is that exposure in a salt 

solution affects the viability of the cells, and thus disturbs the dose-response curve for a 

toxicant. Based on these results Hanks was excluded as a suitable exposure media. For the 

RPMI treatments significant effects occurred at 14 /xM and higher. Therefore 4 and 14 

/xM were chosen as sublethal exposure concentrations for experiment V.

Effect o f Cd in media on hepatocvtes

Incubation o f  hepatocytes in media with sublethal concentrations of Cd does not 

seem to influence the BP metabolizing capacity of those hepatocytes under the conditions 

used in this experiment (Table 3-2). There were no significant differences in the amount of 

BP metabolized between Cd exposed hepatocytes and the control, and there were no 

differences in the amount of major metabolites formed during the exposure. These results 

indicate that there is no acute inhibiting effect of Cd on BP metabolizing enzymes.
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Figure 3-3. Chromatogram of radiolabeled BP-metabolites produced by isolated 

hepatocytes. Identified peaks were: peak A: tetrols; peak B: B P-9,10-diol, peak C: BP- 

4,5-diol; peak D: BP-7,8-diol; peak E: 9-hydroxy-BP; peak F: 3-hydroxy-BP; peak G: 

unmetabolized BP.
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Figure 3-4.Cd dose-response relations for isolated hepatocytes in 3 different media 

treatments. Each data point represents average o f 3 replicates, except 2 replicates for 

RPMI 16 h data points.
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Table 3-2. Amount of 3H-BP parent compound and metabolites in Cd spiked RPMI media after 
incubation with hepatocytes from untreated fish. Mean values (n=4) with standard 
deviation. Conditions: 0.25* 106 cells per replicate, 4 h. incubation time with 5 fj.Ci 3H-BP.

Treatment BP left over 9,10-diol 4,5-diol 7,8-diol 9-OH 3-OH

control 0.402 (0.127) 0.061 (0.042) 0.004 (0.003) 0.006 (0.003) 0.025 (0.005) 0.083 (0.122)

4 /zM Cd 0.415 (0.085) 0.062 (0.041) 0.009 (0.006) 0.006 (0.002) 0.026 (0.006) 0.025 (0.002)

14 //M Cd 0.378 (0.102) 0.060 (0.040) 0.006 (0.005) 0.004 (0.001) 0.025 (0.004) 0.023 (0.002)
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M etabolite production over time

The results of experiment VI showed that there was a rapid metabolism o f parent 

compound in hepatocytes from fish that were treated with BP and Cd, six days after the 

dosage (Figure 3-5). At the first time interval the BP metabolism was significantly faster in 

both combined BP +Cd fish treatments than in the control and BP alone treatment. 

Hepatocytes from fish treated with BP and a high Cd dose (3.2 mg/kg) metabolized 

almost 90% o f the radiolabeled BP in the first 45 min. After this first time interval the 

differences were not significant anymore. The results from this experiment confirm those 

o f  the first experiment in that injection of fish with BP causes a rapid induction o f BP 

metabolism over the first few days, followed by a return to background levels. Under the 

conditions used in this experiment there was no significant difference between the BP 

treatment and the control after 6 days. Combined Cd+BP treatment of the fish delays the 

induction o f BP metabolism in the first few days, and induction peaks after about a week, 

as shown in this experiment.

Production and conjugation of the predominant primary metabolites show a 

comparable trend. There is a rapid production of primary metabolites in the first 45 min 

(Figures 3-6, 3-7, 3-8). The metabolism o f 3H-BP in the BP+CdHigh treatment is so rapid 

that the production of 9,10-diol is significantly higher than in the other treatments. After 

the rapid production of metabolites in the first 45 min. there was a gradual decline o f  the 

primary metabolites. This decline is attributed to conjugation, causing the metabolites to 

disappear from the ethyl acetate extractable fraction into the aqueous fraction.

Conjugation o f 7,8-diol appears to be the fastest in general; after 3 h. there is almost 

nothing left, while for 9,10-diol and 3-hydroxy-BP there were still measurable amounts 

available. The 3-hydroxy-BP metabolite is the most persistent, and in the control 

treatment the amount even exceeds significantly over the other treatments after 12 h.
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Figure 3-5. Amount o f BP in primary hepatocyte cultures from fish with different 

treatment history. Hepatocytes were isolated 6 days post injection, and were incubated 

with 5 fj.Ci 3H-BP for 24 h. Each data point represents average o f 2 independent cell 

incubations, sampled at increasing intervals during the incubation. D ata are presented as 

percent metabolized parent compound.
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Figure 3-6. Amount o f BP-9,10-diol over time in hepatocyte cultures from fish with 

different treatment history. Hepatocytes were isolated 6 days post injection, and were 

incubated with 5 //Ci 3H-BP for 24 h. Each datapoint represents average of 2 independent 

cell incubations, sampled at increasing intervals during the incubation.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



nC
i/m

l

100

80 -

60 —

40 —

20  -

63 241.5 120.75
hours

Contr. - - -B P  BP+CdL BP+CdH

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 3-7. Amount of BP-7,8-diol over time in hepatocyte cultures from fish with 

different treatment history. Hepatocytes were isolated 6 days post injection, and were 

incubated with 5 >uCi 3H-BP for 24 h. Each data point represents average of 2 independent 

cell incubations, sampled at increasing intervals during the incubation.
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Figure 3-8. Amount o f 3-hydroxy-BP over time in hepatocyte cultures from fish with 

different treatment history. Hepatocytes were isolated 6 days post injection, and were 

incubated with 5 /uCi 3H-BP for 24 h. Each data point represents average of 2 independent 

cell incubations, sampled at increasing intervals during the incubation.
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Discussion

Effect on BP breakdown

The results o f the experiments presented here show that Cd delays the induction o f 

BP metabolism in mummichog livers. This confirms previous studies which demonstrated 

that Cd affects the induction and activity o f the CYP1A enzyme system (Fair, 1986; Forlin 

et al, 1986; George & Young, 1986). The observation that Cd does not have an effect on 

BP metabolism in non-induced fish is an indication that, upon i.p. injection, Cd more likely 

interferes with CYP1A induction than with the actual enzymatic activity.

At the dose levels used here, Cd exposure does not seem to have an effect on the 

spectrum of BP metabolites being produced during biotransformation. A shift in 

metabolite spectrum would have been expected if other metabolic pathways for BP 

transformation increased in importance when CYP1A is inhibited by Cd (Sivarajah, 1978; 

Colin et al., 1991). However, base level BP metabolism by P450 in uninduced control fish 

was probably high enough to mask these other pathways. And because the Cd alone 

treatment did not affect the base level of BP metabolism, no change in metabolite 

spectrum was predicted or observed. In the combined BP+Cd treatments an initial 

inhibition o f BP metabolism was observed, but this also did not result in a change of 

metabolite spectrum. These results indicate that Cd does not affect the activity of resident 

P450, but does affect the production o f new P450.

Long term Cd exposure

In the experiments described here, fish were only dosed with a single Cd injection. 

This design was chosen to assure a consistent dosage per animal, which might be more 

difficult to achieve when fish are dosed through the water column. In three different 

studies, effects o f Cd on P-450 enzymes are reported after exposure to aqueous Cd.

Forlin, et al. (1986) exposed rainbow trout to 100 ixg Cd/1 for 4 weeks. This treatment did 

increase the liver P-450 content, but not the ECOD activity, which might be explained by 

direct inhibition o f the enzyme: it takes more enzyme to oxidize the same amount of
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substrate if the enzyme is partially inactivated. Lemaire-Gony & Lemaire, (1992, 1995) 

also exposed fish (eel and sea bass) to aqueous Cd (5 and 40 ixg Cd/1) for several weeks, 

before dosage o f BP. The cadmium pretreatment caused a higher induction o f EROD 

activity than the BP alone treatment. These studies show that, contrary to the results 

obtained in single dose studies, long term exposure to Cd has a stimulating effect on the 

P-450 system. This would mean that several regulating mechanisms are involved in the 

effect o f Cd on P-450 induction and activity.

Cd toxicity to hepatocvtes

Various researchers have investigated the toxicity of Cd to fish cell cultures, and 

the results show a remarkable variation for the toxicity o f  Cd. Babich et al. (1986) 

compared effects o f Cd on bluegill fry cells (BF-2) to effects on rainbow trout gonadal 

cells (RTG-2). Effect concentrations for Cd were 0.08 and 0.18 mM respectively (50% 

reduction in the uptake of neutral red). Cd toxicity for an immortal cell line, originating 

from a hepatic carcinoma in topminnow (PLHC-1) was 0.096 mM (Ryan & Hightower, 

1994) and 0.14 mM (Bruschweiler et al., 1996). The effect concentrations for Cd reported 

here (0.02 - 0.07 mM) are below the values in the studies mentioned above, i.e. the 

primary cell cultures used in this study were more sensitive to Cd. This may result from 

differences in cell types. Denizeau & Marion (1989) compared primary cultures o f  trout 

hepatocytes with RTG-2 cells for Cd sensitivity, and found that the primary culture of 

trout hepatocytes was more sensitive to Cd than the RTG-2 cell line.

In experiments described here, incubation of hepatocytes in a media with sublethal 

Cd concentrations for 4 h did not affect the B P metabolizing capacity o f the cells. These 

observations differ from results by Bruschweiler et al. (1996), who demonstrated for 

PLH C -1 cells that exposure of the cell cultures to a variety of heavy metals significantly 

reduced the amount of CYP1A protein, and consequently on EROD activity, with Cd as 

the strongest inhibitor. However, these results were obtained after an incubation period 

for the cells of 3 days in a Cd media. Combining the results o f both studies indicates that 

there is no acute effect on the activity of resident P450, but Cd exposure does inhibit the
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production of new P450.

Metabolite spectra

The metabolite spectra obtained from the hepatocyte incubations in this study are 

comparable to those obtained by others (Nishimoto et al., 1992; Gill & Walsh, 1992). The

9.10-diol is the dominant primary metabolite, followed by 7,8-diol, and 3-, or 9-hydroxy- 

BP. The study of Nishimoto (1992) revealed that glucuronides form the major Phase II 

BP metabolites in English sole hepatocytes, while very little sulfate and glutathione 

conjugates were formed. Treatment of these glucuronides with p-glucuronidase showed 

that 7,8-diol, and 1-, and 3-hydroxy-BP were the major conjugated metabolites. Obviously

9.10-diol does not conjugate very well, which would explain the relatively high abundance 

o f this compound in the ethyl acetate-extractable fraction.

Interpretation of primary BP metabolite spectra is a difficult endeavor. Some 

metabolites are formed faster than others, and conjugation rates also differ for each 

metabolite, as was shown in the experiments presented here. This means that sampling an 

incubated cell culture at a certain moment gives a snap shot of the balance between 

production and conjugation of primary metabolites for that moment only. If  a culture from 

a different parent is slower, or faster in metabolizing BP, that may result in a different 

metabolite spectrum for that same specific moment. Considerable individual variation in 

hepatocyte cultures has been observed in other fish studies (Moon et al., 1985) and in 

human hepatocyte cultures (Moore & Gould, 1984). For these human hepatocyte cultures, 

as for the mummichog hepatocytes, 9,10-diol, 7,8-diol and 9-hydroxy-BP were the 

predominant metabolites. However, the ratios among these metabolites varied widely 

among the six donors investigated, while they were highly reproducible within cultures 

from the same donor. The observed variability could not be correlated to cell viability, or 

overall levels of BP metabolism, and is therefore considered true individual variability.
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Chapter 4. Effects of Cd on Microsomal Biotransformation 

of BP

Introduction

The mortality experiments presented above show that Cd can have an inhibiting 

effect on the toxicity of BP. In isolated hepatocytes from fish that had been treated with 

Cd and BP, a reduced metabolism o f BP was observed in the first days after dosage, 

compared to hepatocytes from fish that received BP only. Reduced mortality and 

biotransformation of BP under influence o f Cd suggest that Cd has a negative effect on 

the BP-metabolizing enzyme CYP1 A.

The first step in the biotransformation of benzo[a]pyrene (BP) is oxidation by 

CYP1A, one of the cytochrome P-450 monooxygenases, located on the endoplasmic 

reticulum (ER) of a variety of cells, like hepatocytes (Bruschweiler et al., 1996), intestinal 

cells (Van Veld et al., 1988), and immunocompetent cells (Ladies et al., 1992). When ER 

is isolated from homogenized tissue it is broken up in small parts called microsomes, from 

where the term microsomal biotransformation originates. A detailed description o f the 

metabolic pathway for hydroxylation and conjugation of BP was presented in Chapter 1.

Exposure to a number o f environmental toxicants (PAHs, PCBs) has been shown 

to induce the production of P-450 enzymes in fish (Stegeman et al., 1992). This induction 

is therefore widely used as a biomarker for exposure to these inducing compounds. 

Induction of CYP1A is generally measured by the EROD assay. In this assay the catalytic 

activity o f microsomal CYP1A is measured, expressed as the rate o f dealkylation o f the 

CYP1A specific substrate 7-ethoxyresorufin (Klotz, 1984).

Effects of Cd exposure on BP metabolism have been documented for laboratory 

studies with mammals (Schnell et al., 1979; Means et al., 1979) and fish (Fair, 1986; 

George & Young, 1986; Lemaire-Gony & Lemaire, 1992, 1995). N ot only laboratory 

studies, but also two field studies suggest actual interaction o f heavy metals and CYP1A

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



in fish. Addison & Edwards (1988) found an effect of copper exposure on EROD activity 

in flounder from polluted sites in Norway. And Romeo et al. (1994) measured a high 

metal content combined with a low EROD activity in two Mediterranean fish species from 

waste water disposal locations.

A number of explanations has been proposed for the inhibitive effect o f C d on BP 

metabolism (Unger & Clausen, 1973; Means et al., 1979; George & Young, 1986; Forlin 

et al., 1986). Cd may have a direct or an indirect effect on the catalytic activity o f  the 

CYP1A enzyme. A direct effect would be caused by binding o f Cd to thiol groups near the 

active site of CYP1A, causing competitive inhibition for BP. Alternatively, Cd could 

interfere with the binding characteristics o f the heme group on the active site of the 

enzyme, thus destroying the integrity o f the enzyme. Indirect effects could consist o f the 

inhibition o f CYP1A production, or interference with the CYP1A reducing enzyme: 

NADPH cytochrome P-450 reductase. Also, accelerated breakdown o f  CYP1A by heme 

oxygenase, which is induced by Cd exposure, has been suggested (Kutty et al., 1988).

The purpose o f the experiments presented in this chapter was to investigate the 

effects of Cd on BP metabolism at microsomal level, in liver microsomes from fish that 

had been dosed with a combination o f BP and Cd. The following questions were 

addressed:

• Does Cd affect the activity o f microsomal CYP1A in preexposed fish, as measured

by EROD activity and by BP metabolism?

• Does Cd affect the total amount o f CYP1A?

• Does Cd affect the metabolite spectrum?

• Does Cd have a direct inhibiting effect on CYP1 A, or does Cd have an indirect

effect by affecting enzyme production?
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Materials and methods

Experimental design

Six experiments were conducted using microsomes from preexposed fish. 

Experiments I and II were designed to  measure EROD activity and CYP1A amount in 

microsomal protein from preexposed fish. Experiment III was a pilot experiment to 

determine a useful incubation time for a low amount of microsomal protein w ith 3H-BP. 

Experiments IV, V and VI were used to measure the breakdown of •'H-BP by microsomes 

from preexposed fish, and to analyze the spectrum of primary metabolites formed.

Experimental set-up

Fish were injected and maintained in flow-through tanks as described before. For 

all experiment the following treatments were used: saline/oil control, BP alone, Cd alone, 

BP together with Cd, and Cd four days before BP. For experiment I the BP dose was 18 

mg/kg, and the Cd dose was 0.32 mg/kg, and fish were sampled on days 3 and 7. For 

experiments II and VI the BP dose was increased to  26.5 mg/kg to obtain a m ore 

pronounced CYP1A induction in the first 2 days post-exposure, and 3 Cd doses were 

used: 0.32, 1 and 3.2 mg/kg to study the effect of different Cd doses. Samples were taken 

on day 2 and 4 to obtain a better picture o f the effects in the first few days post injection.

For experiments III, IV and V 10 mg/kg BP and 0.32 mg/kg Cd were used. A 

lower BP dose than in the previous experiment was used to avoid mortality tow ards the 

end o f the two week exposure period. Livers were harvested on day 3, 7 and 14, frozen 

immediately in liquid nitrogen, and stored at -80° C until further use.

Microsome preparation and protein assay

Microsomes were prepared by homogenizing the thawed livers in 2-4 ml stabilizing 

buffer (100 mM potassium phosphate buffer at pH 7.4, containing 20% glycerol, 1 mM 

dithiothreitol, ImM EDTA, and 0.1 mM PM SF as anti-proteolitic agent) with a Brinkman 

Polytron homogenizer at the lowest possible speed, until no cell clumps were seen
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anymore. The homogenate was centrifuged two times in a Sorval RC28S ultracentrifuge 

at 12,000 g for 10 min to remove the cell debris, followed by a 100,000 g spin for 60 min 

to deposit the microsomal fraction. The centrifuge was cooled to 3°C, and between spins 

the samples were always kept on ice. The pellet was resuspended in 200 //I stabilization 

buffer and immediately frozen in liquid nitrogen. Protein content o f the microsomal 

suspension was measured using the Bradford protein assay with BSA as protein standard. 

Duplicate samples o f 5 iA suspension were dissolved in 95 //I deionized water, and 5 ml of 

Bradford dye reagent was added. After incubation for 10 min, absorbance was measured 

at 595 nm in a Gilford spectrophotometer, and recalculated to average protein 

concentration.

Microsomal BP metabolism

M ost published methods for measuring BP metabolism by microsomes use at least 

1 mg of microsomal protein (Nishimoto & Varanasi, 1985; Sikka et al., 1990; James et al., 

1991). The fish used for the experiments described here were too small to yield 1 mg of 

microsomal protein per liver. Therefore an optimization experiment (experiment III) was 

performed to investigate if 0.5 mg protein would suffice, and the incubation time required 

for this amount of protein. Microsomal protein of 2 BP treated fish, and 3 control fish 

were pooled in two treatment batches. From each batch 5 samples of 0.5 mg protein were 

incubated in 0.5 ml buffer with 1 /zCi 3H-BP. Buffer consisted of 50 mM phosphate buffer 

at pH 7.4, 4 mM MgCl2, 25 mM nicotinamide, 0.8 mM NADPH, and 1.0 mM NADH. 3H- 

BP was purified by HPLC using the procedure as described below for analysis of BP 

metabolites.

The samples were incubated in 15 ml glass disposable centrifuge tubes with teflon 

coated screw caps on a rotary shaker at 600 rpm in an incubator at 27 °C. Every 10 min 

the reaction in one sample of each batch was stopped by placing the sample on ice and 

adding 0.5 ml ice cold acetone. The reaction mixture was extracted twice with 2 ml ethyl 

acetate, containing 0.01 M BHT to prevent oxidation o f metabolites. The organic fraction 

was collected with Pasteur pipets in 20 ml glass scintillation vials, and blown to dryness
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with a gentle stream o f purified N2 gas, in a water bath at 40 °C. The extracted compounds 

were redissolved in 150 (A methanol, and transferred to 200 jA glass inserts for HPLC 

autosampler vials.

Samples were analyzed on a HPLC configuration with two Waters 510 pumps, a 

Waters 717plus autosampler, W aters 486 absorbance detector, and a Radiomatic Flo- 

one\Beta, type A -100 radio detector with a 500 fx\ flow cell. The column was a reversed- 

phase 4.6 x 25 mm Partisil 10 ODS-2, kept at room temperature. A water-methanol non­

linear gradient was used, starting with 55% methanol, at a flow rate o f 0.8 ml/min. In a 

steep convex gradient the methanol content was increased to 100% in 15 min, and kept at 

100% for 20 min, followed by a return to and re-equilibration at 55% in 10 min.

Based on the results o f  the pilot experiment an incubation period o f 50 min. was 

chosen (Figure 4-1). After 50 min. not all parent compound was broken down, allowing 

variation in the results for different treatments, but enough was broken down to show 

anticipated inhibition of simultaneous Cd exposure.
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Figure 4-1. Amount of BP and BP metabolites in microsome incubations over time. 

Microsomes (0.5 mg/ml) from BP injected fish (26.5 mg/kg), isolated 2 days post 

injection, incubated with 1 fiC\ 3H-BP/ml reaction mixture. Each bar represents one 

sample.
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EROD assay and CYP1A amount

EROD activity was measured spectrophotometrically according to Klotz et al. 

(1984). Samples o f 100 fj.g microsomal protein/ml buffer (0.1 M Tris-HCI, 0.1 M  NaCl, 

pH 7.9) were incubated with (3-NADPH (0.4 mM) and 7-ethoxyresorufin (2 /uM). 

Formation o f resorufin was measured at 572 nm over a 4 min. timespan. Microsomal 

CYP1A content was measured by immunoblot analysis, as described by Van Veld & 

W estbrook (1995). Microsomal proteins were separated on 12% polyacrylamide gels, and 

transferred to 20 //m nitrocellulose paper. Monoclonal antibody (Mab 1-12-3) was used as 

the primary antibody. The secondary antibody was alkaline phosphatase-conjugated goat 

anti-mouse IgG. Staining was performed using p-nitro blue tetrazolium chloride (NBT) 

and 5-bromo-4-chloro-3-indoyl phosphate (BCIP). Hepatic microsomal CYP1A from spot 

(Leiostomus xanthurus), previously calibrated against purified CYP1A, was used as a 

standard. The amount of stain was quantified with a Shimadzu CS-930 thin-layer 

chromato scanner.

Statistics

Data sets were analyzed statistically as described previously (Chapter 1).
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Results

EROD. and CYP1A measurements

The effects o f Cd on the amount of CYP1A and on the CYP1A activity, as 

measured by the EROD assay, were investigated in two experiments. In the first 

experiment fish were sampled on days 3 and 7 post-injection. The results showed that 

there was no statistically significant difference between the Cd only treatment and the 

controls (Table 4-1). BP injection caused a tenfold increase in EROD activity (Figure 4- 

2) and a two orders of magnitude increase in the total CYP1A amount on day 3 (Figure 

4-3).

This high induction rate was greatly reduced on day 7, though still significantly 

higher than the controls. When Cd was dosed together with BP, the amount and activity 

o f the enzyme were not different from the BP alone treatment on day 3, but on day 7 the 

combined BP+Cd treatment had a significantly higher CYP1A activity than in the BP 

alone treatment. From this experiment it was concluded that CYP1A induction occurred 

rapidly in the first few days after injection, and trailed off towards day 7. Simultaneous Cd 

dosage delayed the return to base level amounts of C Y P1 A.

Because the induction o f CYP1A appeared to occur in the first few days after 

injection, a  second experiment was conducted with higher Cd doses, and sampling on day 

2 post-injection. The results o f this experiment showed that the amount of CYP1A was 

about half of the amount of day 3 in the first experiment, but the EROD activity was 

comparable (Table 4-2). There were no significant differences between the BP alone 

treatment and the treatments with increasing Cd amounts, both in EROD activity, and in 

the total amount o f CYP 1 A. The effect of Cd on CYP1A induction became obvious only 

after the first 3 days post-injection, as seen in the first experiment.
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Table 4-1. EROD and CYP1A measurements on day 3 and 7. N=3, but each sample composite of 4 livers. Standard deviation 
in brackets. EROD in pmol/min/mg protein, CYP1A in nmol/mg protein. A= significantly higher than controls on same day, 
B= significantly higher than BP alone treatment on same day.

EROD CYP1A

Day 0 Day 3 Day 7 Day 0 Day 3 Day 7

Blank 284 (65) 0.008 (0.003)

Saline 394(142) 411(145)

Corn oil 374 (62) 358(100)

Sal.+oil 351 (35) 374 (48) 0.017 (0.001) 0.014(0.001)

Cd 347 (33) 276 (73) 0.015 (0.002) 0.015 (0.004)

BP 3630 (481 )A 1013 (206)A 0.926 (0.243)a 0.155 (0.075)A

BP+CdL 3230 (465)A 2383 (210)A,B 0.903 (0.173)A 0.418 (0.235)A

81



Figure 4-2. EROD activity (pmol/min/mg protein) o f  liver microsomes from fish with 

different treatments, sampled on 2 different days post injection. Each bar represents the 

average o f 3 replicates, error bars are one standard deviation.
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Figure 4-3. CYP1A content (nmol/mg protein) of liver microsomes from fish with 

different treatments, sampled on 2 different days post injection. Each bar represents the 

average of 3 replicates, error bars are one standard deviation.
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T able 4-2. EROD and CYP1A after 2 days of exposure. N=5, composite of 2 fish, 
standard deviation in brackets. EROD in pmol/min/mg protein, CYP1A in nmol/mg 
protein. A= significantly higher than control, no significant differences between 
treatments.

Treatment EROD CYP1A

Saline + oil 557 ( 158) 0.007 (0.001)

BP 3604 (1754)A 0.488 (0.269)a

BP+Cd Low 4428 (1410)A 0.525 (0.190)A

BP+Cd Medium 3687 ( 898)A 0.501 (0 .132)A

BP+Cd High 3195 ( 839)a 0.406 (0.195)A
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BP metabolism

In experiment IV microsomes from all treatments were incubated for 50 min. The 

breakdown of BP and the production of the major metabolites over time was measured. 

The treatments with BP (with or without Cd) showed significant doubling o f the metabolic 

activity, compared to the control on day 3 (Figure 4-4). For none of the sampling days 

was a  significant effect o f Cd dosage on the activity observed. Also, there was no 

significant difference between the control and the Cd only treatment. The expectation was 

that the combined BP+Cd treatment would have shown an effect, as it did in the EROD 

assay described above. Two factors were thought to be o f influence: the incubation time, 

and the Cd dose.

The incubation time was initially set at 50 min. But this might have been too long. 

If Cd had caused a lower amount of CYP1A in the microsomes as compared to the BP 

alone treatment, this effect may have been masked in the BP metabolism experiment. Even 

a low amount o f enzyme can metabolize all the substrate if it is incubated long enough. 

Therefore, in experiment V, using a subset of the microsomes from the previous 

experiment, an incubation time of 25 min was used. The results show that indeed a lower 

amount of 3H-BP has been metabolized by the microsomes from the BP treated fish 

(Figure 4-5).

The microsomes from the combined BP+Cd treated fish generated a lower amount 

o f metabolized 3H-BP on both day 7 and 14, though the difference with the BP only 

treatment was not statistically significant. Therefore a further experiment was performed 

with higher Cd doses.

The results o f experiment VI with higher Cd doses, revealed no significant 

differences between the BP alone treatment and the BP plus low or medium Cd dose, both 

on day 2 and day 4 (Figure 4-6). The highest Cd dose (3.2 mg/kg) appears to cause a 

decrease o f BP metabolism, both on day 2 and day 4. On day 4 this was significant at 

p< 0 .10 level.
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Figure 4-4. Amount o f  BP metabolized by microsomes from fish with different 

treatments, sampled on 3 different days post injection. Exposure o f 0.5 mg microsomal 

protein to 1 //Ci 3H-BP in 0.5 ml media for 50 min. Each bar represents the average o f 3 

replicates, error bars are one standard deviation.
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Figure 4-5. Amount of BP metabolized by microsomes from fish with different 

treatments, sampled on 3 different days post injection. Exposure o f 0.5 mg microsomal 

protein to 1 //Ci 3H-BP in 0.5 ml media for 25 min. Each bar represents the average of 3 

replicates, error bars are one standard deviation.
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Metabolite production

A typical chromatogram for the ethyl acetate-extractable BP metabolites produced 

by microsomes shows three dominant peaks: BP-9,10-diol, BP-7,8-diol and 3-hydroxy-BP 

(Figure 4-7). Minor peaks were identified as tetrols, 4,5-diol and 9-hydroxy metabolites. 

No effects o f Cd on the spectrum of metabolites could be identified from the 

chromatograms. As was demonstrated above there was a rapid biotransformation o f the 

parent compound in the reaction mixture (Figure 4-1). But there was also a decline in the 

total recovery of ethyl acetate-extractable BP metabolites. This removal of the primary 

metabolites is most likely attributable to conjugating activity of UDP-glucuronyl 

transferases, which are also located on the microsomes (Burchell & Coughtrie, 1989).

Enzyme concentration-activitv relation

The EROD activity is normally presented as catalytic activity per mg microsomal 

protein. In Figures 4-8 and 4-9 the EROD activity is presented as a function of the actual 

amount of CYP1A enzyme, for all treatments of two different experiments. If exposure of 

fish to  a combination of Cd and BP would lead to a direct inhibition of the enzymatic 

activity of CYP 1A by Cd, the data points for these combined treatments would drop 

significantly below the regression line. As can be seen from both figures the data points 

representing treatments with Cd do not show a lower EROD activity than the treatm ents 

without Cd. This would imply that Cd, when dosed i.p., does not have a direct inhibitive 

effect on the catalytic activity o f  CYP 1 A.
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Figure 4-6. Amount o f BP metabolized by microsomes from fish with different 

treatments, sampled on 3 different days post injection. Exposure of 0.5 mg microsomal 

protein to 1 >uCi •’H-BP in 0.5 ml media for 25 min. Each bar represents the average of 5 

replicates, error bars are one standard deviation.
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Figure 4-7. Chromatogram by radiodetector from microsomal incubation with 3H-BP. 

Microsomes from BP injected fish (18 mg/kg), sampled 3 days post-injection. Incubation 

o f 0.5 mg microsomal protein with 1 fu.Ci 3H-BP in 0.5 ml media for 25 min. M etabolites 

extracted with ethyl acetate. Identified peaks are: peak A: tetrols, peak B: 9,10-diol-BP; 

peak C: 4,5-diol-BP; peak D: 7,8-diol-BP; peak E: 9-OH-BP; peak F: 3-OH-BP; peak G: 

unmetabolized BP.
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Figure 4-8. EROD activity (pmol/min/mg protein) o f liver microsomes from fish with 

different treatments, sampled on different days, plotted as function o f total CYP1A 

concentration for each sample (nmol/mg protein).
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Figure 4-9. EROD activity (pmol/min/mg protein) of liver microsomes from fish with 

different treatments, sampled on different days, plotted as function o f  total CYP1A 

concentration for each sample (nmol/mg protein).
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Discussion

Direct effects

In one o f the first papers reporting a negative effect, of i.p. injected Cd on P450 

activity in mice, Unger & Clausen (1973) assumed that there is direct binding o f  Cd to 

cysteine thiol groups o f the P450 enzyme. The same effect was reported for rats by Means 

et al. (1979), who documented that when microsomes are directly incubated with Cd, 

there is a direct dose-dependent inhibiting effect o f  Cd on P450 activity. It was also 

demonstrated that Cd caused a concentration dependent, increasing conversion o f P450 

into P420, accompanied by a loss of catalytic activity. The assumption that dosed Cd 

directly interferes with the active site on the P-450 enzyme, and thus affects the catalytic 

activity, has been tested by several researchers. The technique used by them was to 

incubate isolated microsomes in a media with heavy metals and a substrate. Forlin, et al. 

(1986), incubated microsomes with 5 //M Cd and found a 50 % reduction of P-450 

activity. Bruschweiler et al (1996) show that especially Cd and Cu are very effective 

inhibitors, much better than Co, Ni, and Pb, which is confirmed for Cu by Stien et al. 

(1997). Viarengo et al. (1997) used the method to show the protective effect o f 

glutathione on direct inhibition o f EROD activity by copper and mercury in microsomal 

incubations.

The above mentioned studies, in which isolated microsomes were directly 

incubated with heavy metals, have caused considerable confusion. There is no doubt that 

heavy metals have a direct inhibiting effect on the CYP1A activity, when exposed in this 

way. However, it remains questionable how relevant this information is. The results 

presented in this chapter, combined with results o f others, show that there is not an acute 

effect of Cd on P450 when dosed directly to complete, living cells or whole organisms. It 

appears that there is a buffering system in live structures that prevents acute effects. The 

effect of Cd on CYP1A in living structures occurs after a considerable time period (days), 

and is generally seen as an effect on enzyme production, not on enzyme activity.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Indirect effects

Schnell et al. (1979) link a reduced P450 activity in rats as a result from Cd 

exposure to a reduced amount of P450 enzyme, and not to a direct inhibition o f enzymatic 

activity. They demonstrated that the catalytic activity, as expressed per amount o f enzyme, 

did not change, while the total amount o f enzyme did. The decline of P450 amount is 

thought to be a result of heme oxygenase activity, induced by Cd. This concept o f an 

indirect effect has been followed by more researchers, and matches the results described in 

this chapter. Means et al., (1979) report a reduction of activity (80%) and total content o f 

P450 (40%), 3 days after a 2 mg/kg Cd dose in rats. It was also demonstrated that Cd 

caused a concentration dependent, increasing conversion of P450 into P420, accompanied 

by a loss o f catalytic activity. P420 is seen as the breakdown product ofP 450 .

In a number o f studies with fish, the reduction of EROD activity, combined with a 

loss o f P450/CYP1A enzyme as a result of Cd exposure has been reported. George & 

Young (1986) studied the time related interactive effects of 3-methylcholanthrene, a 

artificial CYP1A inducer (10 mg/kg) and Cd (I mg/kg) in plaice (Pleuronectes platessa). 

EROD activity doubled in 24 h, with a maximum (15 x con tro l) at 10 days, and dropped 

to double the control value at day 14 in 3MC alone. Comparable observations were made 

by Sved et al. (1992): a rapid induction o f hepatic EROD activity over the first two days 

when spot (Leiostomus xanthurus) were exposed to creosote contaminated sediment, 

followed by a decline to base level on day 7.

In the above described experiments by George & Young (1986), Cd abolished 

EROD activity immediately, to 10% o f control at day 2 in combined 3MC-Cd. Forlin, et 

al. (1986) found that liver microsomes of rainbow trout 4 days after a double dose o f 0.5 

mg Cd/kg had a significantly lower ECOD activity, though the total P-450 amount was 

not lowered in this study. A direct dose-response relation for Cd - EROD activity was 

presented by George (1989): increasing Cd dose (0.01 - 1 mg/kg) in flounder resulted in 

decreasing EROD activity (to 20% o f control), 6 days after Cd injection. Decrease is 

thought to be a result of less enzyme rather than direct inhibition by Cd because 

immunoassays showed not only a reduced P450 amount, but also a reduced amount of
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M T in the same samples.

Ariyoshi et al. (1990) report a  significant decline of P-450 and ECOD activity in 

red carp at 3 days post-injection o f 3.0 and 4.5 mg Cd/ kg, which are unusual high 

concentrations. Stien et al.(1997) injected fish with BP (20 mg/kg) showed a 20 fold 

induction of EROD activity after only 15 h., while coadministration o f  Cu (0.5 mg/kg) 

reduced this induction to ca. 5 times. Analysis of total CYP1A amount by immunoassays 

suggested again a loss o f enzyme, not a direct inhibition of enzyme. Sandvik et al. (1997) 

report for flounder that EROD induction after BP dosage (2.5 mg/kg) was significantly 

reduced when fish were preexposed to Cd (1 mg/kg) 15 days before the BP dose. The 

total CYP1A amount was not affected. When the Cd was dosed 2 days after the BP, there 

were no effects on EROD activity.

A complicating factor in analyzing the total P450/CYP1A enzyme content is the 

method of detection. Spectrophotometric measurement o f P450 is not specific for the BP 

metabolizing isozyme CYP1A, but measures all P450 isozymes. Reduction o f the P450 

amount, and increase of the breakdown product P420, indicates a general effect on the 

enzymes, either the removal o f the heme group (causes the shift from P450 to P420???), 

o r a general lower protein synthesis. Measurement of specific CYP1A by immunoassays is 

more specific for the actual induction of the BP metabolizing enzyme. However, the 

immunoassay also measures the apoenzyme, without the heme group. This means that 

there may occur discrepancies between EROD activity and CYP1A content (Forlin et al., 

1986; Sandvik et al., 1997)

From all reported studies it becomes clear that time, dose and temperature are 

important variables that can influence the measured results. Induction o f CYP1A is 

normally rapid, within the first day, and for some studies there is also a rapid effect of Cd 

(George & Young, 1986), while for most others a period of days is reported for the effect 

o f  Cd to become obvious. This may be explained by the amount o f Cd dosed, and the 

binding capacity for Cd within the organism. It has been suggested that organisms can 

handle a certain amount of Cd, but when a threshold value is exceeded, acute effects will 

occur. For Cd the window between this threshold value and acute mortality may be
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relatively small (George & Young, 1986). Temperature differences may also play an 

important role in comparing effects; studies were conducted at temperatures as low as 

9°C  (Sandvik et al., 1997) to 28° (Fair, 1989). The effect o f temperature on BP 

metabolism in fish has been described before (Kennedy et al., 1989; Gill & Walsh, 1990).

In the experiments described in this chapter, fish were only dosed with a single Cd 

injection. This method was chosen to assure a consistent dosage per animal, which might 

be more difficult to achieve when fish are dosed through the water column. In three 

different studies effects of Cd on P-450 enzymes are reported for after exposure to 

aqueous Cd. Forlin, et al. (1986) exposed rainbow trout to 100 /ug Cd/1 for 4 weeks. This 

treatment led to increased liver P-450 content, but not ECOD activity, which might be 

explained by direct inhibition o f the enzyme: it takes more enzyme to oxidize the same 

amount o f substrate if the enzyme is partially defected. Lemaire-Gony & Lemaire, (1992, 

1995) also exposed fish (eel and sea bass) for several weeks to Cd (5 and 40 //g Cd/1), 

before dosage o f  BP. The cadmium pretreatment caused an higher induction of EROD 

activity than the BP alone treatment. These studies show that, contrary to the results 

obtained in single dose studies, long term exposure to Cd has a stimulating effect on the P- 

450 system. This means that the modulating effect of Cd on P-450 induction and activity 

has a multitude o f regulatory aspects.

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



References

Addison, R.F., Edwards, A.J. (1988). Hepatic microsomal mono-oxygenase activity in 
flounder Platichthys flesus  from polluted sites in Langesundfjord and from mesocosms 
experimentally dosed with diesel oil and copper. Mar. Ecol. Prog. Ser. 46: 51-54

Ariyoshi, T., Shiiba, S., Hasegawa, H., Arizono, K. (1990). Effects o f the environmental 
pollutants on heme oxygenase and cytochrome P-450 content in fish. Bull. Environ. 
Contam. Toxicol. 44: 189-196

Beyer, J., Sandvik, M., Skare, J.U., Egaas, E., Hylland, K., Waagbo, R., Goksoyr, A. 
(1997). Time- and dose-dependent biomarker responses in flounder (Platichthys flesus  L.) 
exposed to benzo[a]pyrene, 2,3,3’,4,4’,5-hexachlorobiphenyl (PCB-156) and cadmium. 
Biomarkers 2: 35-44

Bradford, M.M. (1976). A rapid and sensitive method for quantitation o f microgram 
quantities o f protein utilizing the principal of protein-dye binding. Anal. Biochem. 72: 248- 
254

Broderius, S.J. (1991). Modeling the joint toxicity of xenobiotics to aquatic organisms: 
basic concepts and approaches. In: Mayes, M.A., Barron, M.G. (Eds.) Aquatic Toxicology 
and Risk Assessment: Fourteenth Vol., ASTM STP 1124, American Society for Testing 
and Materials, Philadelphia, PA. Pp. 107-127.

Bruschweiler, B.J., Wurgler, F.E., Fent, K. (1996). Inhibitory effects o f heavy metals on 
cytochrome P4501A induction in permanent fish hepatoma cells. Arch. Environ. Contam. 
Toxicol. 31: 475-482

Burchell, B., Coughtrie, M.W.H. (1989). UDP-glucuronosyltransferases. Pharmac. Ther. 
43:261-289

Fair, P. H. (1986). Interaction of benzo(a)pyrene and cadmium on GSH-S-transferase and 
benzo(a)pyrene hydroxylase in the black sea bass Centropristis striata. Arch. Environ. 
Contam. Toxicol. 15: 257-263

Fair, P.H. & Fortner, A.R. (1987). Effect of ingested benzo[a]pyrene and cadmium on 
tissue accumulation, hydroxylase activity, and intestinal morphology of the black sea bass, 
Centriopristis striata. Environ. Res. 42: 185-195

Forlin, L., Haux, C., Karlsson-Norrgren, L., Runn, P., Larsson, A. (1986). 
Biotransformation enzyme activities and histopathology in rainbow trout, Salmo 
gairdneri, treated with cadmium. Aquat.Toxicol. 8: 51-64

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



George, S. G., Young, P. (1986). The time course of effects of cadmium and 3- 
methylcholanthrene on activities o f enzymes of xenobiotic metabolism and metallothionein 
levels in the plaice, Pleuronectes platessa. Comp. Biochem. Physiol. 83c: 37-44

George, S. G. (1989). Cadmium effects on plaice liver xenobiotic and metal detoxication 
systems: dose-response. Aquat.Toxicol. 15: 303-310

Gill, K.A., Walsh, P.J., (1990). Effects o f temperature on metabolism o f benzo[a]pyrene 
by toadfish (Opsanus beta) hepatocytes. Can. J. Fish. Aquat. Sci. 47: 831-837

James, M.O., Schell, J.D., Boyle, S.M., Altman, A.H., Cromer, E.A. (1991). Southern 
flounder hepatic and intestinal metabolism and DNA binding of benzo[a]pyrene (BaP) 
metabolites following dietary administration o f low doses of BaP, BaP-7,8-dihydrodiol or 
a BaP metabolite mixture. Chem.-Biol. Interactions 79: 305-321

Kennedy, C.J., Gill, K.A., Walsh, P.J., (1989). Thermal modulation o f benzo[a]pyrene 
metabolism by the gulf toadfish, Opsanus beta. Aquat. Toxicol. 15: 331-344

Klotz, A.V., Stegeman, J.J., Walsh, C. (1984). An alternative 7-ethoxyresorufin O- 
deethylase assay: A continuous spectrophotometric measurement o f cytochrome P-450 
monooxygenase activity. Anal. Biochem. 140: 138-145

Kutty, R.K., Daniel, R.F., Ryan, D.E., Levin, W., Maines, M.D. (1988). Rat liver 
cytochromes P450b, P420b and P420c are degraded to biliverdin by heme oxygenase. 
Arch. Biochem. Biophys. 260: 638-644

Ladies, G.S., Kawabata, T.T., Munson, A.E., White Jr., K.L. (1992). Metabolism of 
benzo(a)pyrene by murine splenic cell types. Toxicol. Appl. Pharmacol. 116: 248-257

Lemaire-Gony, S., Lemaire, P. (1992). Interactive effects of cadmium and benzo(a)pyrene 
on cellular structure and biotransformation enzymes of the liver of the European eel 
Anguilla anguilla. Aquat.Toxicol. 22: 145-160

Lemaire-Gony, S., Lemaire, P., Pulsford, A. L. (1995). Effects of cadmium and 
benzo(a)pyrene on the immune system, gill ATPase and EROD activity o f European sea 
bass Dicentrarchus labrax. Aquat.Toxicol. 31: 297-313

Maines, M. D., Kappas, A. (1977). Metals as regulators of heme metabolism. Science 
198: 1215-1221

Means, J.R., Carlson, G.P., Schnell, R.G., (1979). Studies on the mechanism o f cadmium- 
induced inhibition o f the hepatic microsomal monooxygenase o f the male rat. Toxicol. 
Appl. Pharmacol. 48:293-304

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Nishimoto, M., Varanasi, U. (1985). Benzo[a]pyrene metabolism and DNA adduct 
formation mediated by English sole liver enzymes. Biochem. Pharmacol. 34: 263-268

Romeo, M., Mathieu, M., Gnassia-Barelli, M., Romana, A., Lafaurie, M. (1994). Heavy 
metals content and biotransformation enzymes in two fish species from the N.W . 
Mediterranean. Mar. Ecol. Prog. Ser. 107: 15-22

Sandvik, M., Beyer, J., Goksoyr, A., Hylland, K., Egaas, E., Skaare, J.U. (1997). 
Interaction of benzo[a]pyrene, 2,3,3’,4,4’,5-hexachlorobiphenyI (PCB-156) and cadmium 
on biomarker responses in flounder (Platichthys flesus  L.). Biomarkers 2:153-160

Schnell, R. C., Means, J. R., Roberts, S. A., Pence, D. H. (1979). Studies on cadmium- 
induced inhibition of hepatic microsomal drug biotransformation in the rat. Environ. 
Health Perspect. 28: 273-279

Sikka, H.C., Rutkowski, J.P., Kandaswami, C. (1990). Comparative metabolism of 
benzo[a]pyrene by liver microsomes from brown bullhead and carp. Aquat. Toxicol. 16: 
101-112

Speare, D.J. & MacNair, N. (1996). Effects of intermittent exposure to therapeutic levels 
o f formalin on growth characteristics and body condition of juvenile rainbow trout. J. 
Aquat. Anim. Health 8:58-63

Stegeman, J.J., Brouwer, M., Di Giulio, R.T., Forlin, L., Fowler, B.A., Sanders, B.M., 
Van Veld, P.A. (1992). Molecular responses to environmental contamination: enzyme and 
protein systems as indicators o f chemical exposure and effect. In: Huggett, R .J., Kimerle, 
R.A., Mehrle, P.M., Bergman, H.L. (Eds). Biomarkers. Biochemical, Physiological, and  
Histological Markers o f Anthropogenic stress. Lewis Publishers, Boca Raton, pp. 235- 
336

Sved, D.W., Van Veld, P.A., Roberts, M .H., Jr. (1992). Hepatic EROD activity in spot, 
Leiostomus xanthurus, exposed to creosote-contaminated sediments. Mar. Environ. Res. 
34: 189-193

Unger, M., Clausen, J. (1973). Liver cytochrome P-450 activity after intraperitoneal 
administration of cadmium salts in the mouse. Environ. Physiol. Biochem. 3: 236-242

Van Veld, P.A., Stegeman, J.J., Woodin, B.R., Patton, J.S., Lee, R.F. (1988). Induction 
o f monooxygenase activity in the intestine o f spot (Leiostomus xanthurus), a marine 
teleost, by dietary polycyclic aromatic hydrocarbons. Drug Metab. Dispos. 16: 659-665

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Van Veld, P. A., Westbrook, D.J., Woodin, B.R., Hale, R.C., Smith, C.L., Huggett, R.J., 
Stegeman, J J .  (1990). Induced cytochrome P-450 in intestine and liver o f  spot 
(Leiostomus xanthurus) from a polycyclic aromatic hydrocarbon contaminated 
environment. Aquat. Toxicol. 17:119-132

Van Veld, P.A., Westbrook, D.J. (1995). Evidence for depression o f cytochrome P4501A 
in a population of chemically resistant mummichog (Fundulus heteroclitus). Environ. Sci. 
3, 4: 221-234

Viarengo, A., Betella, E., Fabbri, R., Burlando, B., Lafaurie, M. (1997). Heavy metal 
inhibition of EROD activity in liver microsomes from the bass Dicentrarchus labrax 
exposed to organic xenobiotics: role o f  GSH in the reduction o f heavy metal effects. Mar. 
Environ. Res. 44: 1-11

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 5. Excretion of BP Metabolites through Bile, and 

Interactive Effects of Simultaneous Cd Dosage.

Introduction

In the previous chapters it was demonstrated that coadministration of Cd with BP 

had an inhibiting effect on the induction of CYP1 A, and therefore caused a delay in the 

biotransformation o f BP. The main route of excretion for BP metabolites is through the 

bile (Varanasi & Gmur, 1981), thus the question arose whether this inhibiting effect o f Cd 

on BP metabolism would also be mirrored in the excretion o f BP metabolites through the 

bile.

Biliary excretion

Many compounds are filtered from the blood plasma by the liver, and are 

subsequently removed from the liver in the bile. These compounds consist of natural 

breakdown products, like bile salts, cholesterol, biliverdin, steroids, and of xenobiotics, 

both organic compounds and heavy metals. Bile production is stimulated by a number o f 

factors, o f which bile acid accumulation in the liver is the most important. Some P450 

inducers, like phenobarbital, also enhance the bile flow, while others, like 3- 

methylcholanthrene, fail to stimulate the biliary clearance of xenobiotics and endogenous 

metabolites in mammals (Klaassen & Watkins, 1984).

Conjugation is an essential step for excretion o f waste products into the bile 

canaliculi. Conjugation increases the size and the polarity o f the compounds, which 

appears to facilitate excretion. The molecular weight o f a compound has to be over 800 

for biliary excretion. Some compounds are excreted into the bile as glutathione 

conjugates, but most, like the steroids, bilirubin and a suite o f xenobiotics, are conjugated 

to glucuronic acid. Only few compounds are excreted without conjugation. When 

conjugation is inhibited, either through removal o f glucuronic acid or GSH, or through
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inhibiting the activity o f p-glucuronidase or glutathione transferases, hepatic accumulation 

will occur (Klaassen & Watkins, 1984). However, when Cd is dosed to MT-induced 

animals, the Cd will be bound to MT and accumulate in the liver. A reduction o f 90% has 

been reported for the biliary excretion of Cd in MT-induced animals (Cherian, 1977).

Relatively few studies have described biliary excretion o f BP metabolites in fish. 

Rapid uptake, metabolism and excretion of BP through bile was reported for English sole 

exposed to sediment associated BP (Stein et al., 1984, 1987). For southern flounder, BP 

metabolites were present in bile predominantly as glucuronide conjugates (James et al., 

1991). The effects o f different temperature regimes on BP metabolism and excretion o f 

the metabolites through the bile has been described for gulf toadfish (Kennedy et al., 1989) 

and rainbow trout (Curtis et al., 1990). Temperature modulation affected the rate o f 

excretion, but not the rate o f metabolism, though higher temperatures appeared to cause a 

shift in the metabolite spectrum towards more carcinogenic intermediates.

The aromatic structure of PAHs and their metabolites makes them easily detectable 

by fluorescence detection. Since most PAH metabolites are excreted through the bile, 

fluorescence analysis o f bile samples has become an accepted biomarker tool to access 

whether fish from field situations have been exposed to PAHs (Krahn et al., 1984; 

Deshpande, 1989; Lin et al., 1996).

Objectives

The objectives for the experiments described in this chapter were:

1) To measure the biliary excretion o f BP metabolites over time.

2) To investigate potential effects of Cd on the excretion of BP metabolites
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Material and Methods

Experimental design

To study these aspects three experiments were performed. Radiolabeled BP was 

used as a tracer, allowing sensitive analysis for metabolites in bile, and in the surrounding 

water. The first experiment was designed as a pilot experiment to obtain an initial estimate 

of the rate o f biotransformation and excretion. The second experiment was initiated to 

generate definitive estimates. This experiment was carried out in a flow-through system, 

allowing continuous removal of excreted radiolabeled material. The last experiment was 

performed to  confirm the results of the second experiment, and to generate samples for 

metallothionein analysis (see Chapter 6). Unfortunately, the experimental set up for this 

last experiment had to be changed from a flow-through system to a static system because 

new regulations prohibit discharge of waste water containing any amount of radiolabeled 

compounds to the sewer system.

Experiment 1

For this pilot experiment, 10 fish (65-80 mm) were injected with BP, which was 

spiked with •’H-BP, to give each fish a dose o f 18 mg/kg BP and 5//Ci of the radiolabel. 

The fish were kept in a 10 gallon tank without water exchange. W ater samples o f 1 ml 

were analysed at least daily for radioactivity with a scintillation counter. All fish were 

sacrificed after 8 days, bile was collected and total radioactivity was measured by 

scintillation counter.

Experiment 2

Mummichog, 65-80 mm in length (average 76.4 ±4.4 mm, 6.2 ±1.1 g ), were used 

for this experiment. The fish were collected, acclimated and injected as described before. 

The treatments consisted of BP alone, BP together with Cd, and the same Cd dose 

administered 4 days before the BP dose. The BP doses consisted o f 10 mg/kg, the Cd 

doses consisted of 0.32 mg/kg. Sufficient 3H-BP was mixed in the stock solution o f
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unlabeled BP to obtain a dose o f 5 //Ci per fish. The fish were housed in 20 gallon tanks, 

one tank per treatment. The tanks received a continuous flow o f  filtered York River water 

at 0.5 1/min. W ater temperature was kept at 20°C. W ater samples were collected from the 

tanks on a daily basis until no radioactivity above background could be measured. Fish 

were fed daily with dried fish food flakes at a rate o f 4% of the dry body weight. Feed was 

supplied just after sampling, to ensure a sufficient bile accumulation in the gall bladder 

over the 24 hours before the next sampling moment. On days 1, 2, 4, 8, 16, 32, 64 and 

96, five fish were sampled from each treatment. The fish were anaesthesized in MS-222 

(200 mg/1), and the entire gall bladder was harvested, packed and frozen at -20°C for later 

analysis.

Experiment 3

For this experiment the following treatments were used: BP alone (18 mg/kg), BP 

with 1 mg/kg or 3.2 mg/kg Cd (further abbreviated to CdM and CdH), a control of 1 

mg/kg Cd, and a treatment in which 1 mg/kg Cd was dosed four days before BP. The 

injected BP was spiked with 3H-BP to give each fish an amount o f 5 //Ci. Fish were kept 

in 20 gallon tanks, with water recirculating through a double-chambered Whisper filter 

with activated carbon in a filter bag. Water temperature was 22 °C throughout the 

experiment. Radioctivity in the water was monitored daily by analyzing 3 replicate samples 

o f 1 ml in a scintillation counter.

Because the injected fish were kept in a closed system, the possibility existed that 

excreted radiolabeled material would be taken up again by the fish, and thus would 

complicate the interpretation of the results. To investigate if this effect would occur, 

uninjected control fish were kept in an enclosure in each treatment tank. Water circulation 

through the entire tank and the enclosure was maintained by the flow from the filter unit.

Bile was collected from the gall bladder of injected fish sampled on days 1, 2, 3, 4, 

5, 6, 7, 11, and 14. Due to unexpected mortality, not all treatments could be sampled on 

days 11 and 14. Gall bladders from the control fish in the enclosures were collected on 

days 2, 4, 6, 11 and 14. Five replicates were collected per treatment per day. Some bile
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samples were lost because the gall bladder was inadvertedly punctured during dissection, 

which reduced the number of replicates for some sampling days. The entire gall bladder 

was removed and stored in 1 ml microcentrifuge tubes at 4°C until further analysis.

Bile analysis

For analysis of BP metabolites in the bile samples, 100 /x\ methanol was added to 

each sample, followed by squeezing the bile out o f the gall bladder with a dissection 

needle, shaking the sample and centrifuging for 20 min at 14,000 rpm to pelletize the 

precipitated proteins and the gall bladder tissue (James et al., 1991). The supernatant was 

transferred to 200 jA HPLC autoinjector vials. Samples were analyzed on a  HPLC 

configuration with two Waters 510 pumps, a  Waters 717plus autosampler, W aters 486 

absorbance detector, and a Radiomatic Flo-one\Beta, type A -100 radio detector with a 

500 //1 flow cell. The column was a reversed-phase 4.6 x 25 mm Partisil 10 ODS-2 kept at 

room temperature. Compounds were separated using a convex water-methanol gradient at 

a  flow rate of 0.8 ml/min, starting with 60% water, changing to 100% methanol over 15 

min, followed by 15 min of 100% methanol to remove any parent compound.

Conjugate analysis

To investigate if glucuronidated metabolites were present in the bile samples, 

several subsamples were incubated with J3-glucuronidase to see if any of the peaks on the 

chromatograms would disappear. Fifty //I o f bile was dissolved in 50 iA 0.2M sodium 

acetate buffer (pH 5.0). This sample was split in two subsamples, of which one was spiked 

with 500 units of purified 0- glucuronidase (Type VIII from E. coli) in 10 fA  acetate 

buffer. Both samples were incubated at 37 °C  for 24 h, and then treated and analyzed as 

described above for normal bile samples.

Statistical analysis

D ata sets were analyzed for statistical differences as described in Chapter 1.
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Results

Interpretation o f chromatograms

In a typical bile chromatogram from fish injected with radiolabeled BP, 4 major 

peaks that are associated with radiolabeled compounds are found: a peak at the void 

volume (A), a peak at 8 min (B), a peak at 10.5 min (C), and a peak at 30 min (D, Figure 

5-1). Peak D corresponds with the parent compound (nonmetabolized 3H-BP), as 

compared to reference samples. Incubation o f  bile samples with P-glucuronidase made 

peak C disappear to a large extent, indicating that this peak consists of glucuronic acid- 

conjugated metabolites (Figures 5-2A and 5-2B). Peaks A and B possibly contain sulfate 

and glutathione conjugates (James et al., 1991). Regression analysis showed that there 

was a good linear correlation (r2 = 0.95) among the areas of the different peaks within one 

treatment. Further analysis of the data was therefore focused on the peak containing the 

glucuronidated metabolites.

To evaluate the effect of Cd dosage on the relative contribution of each (group o f ) 

metabolite(s) to the total radioactivity per sample, regression analysis was performed o f 

peak area against total area. Regression equations with 95% confidence intervals for the 

slope coefficient were calculated for each treatment. For the BP alone treatment there was 

a significantly lower amount of peak A components and a significantly higher contribution 

o f the glucuronides compared to the combined treatments. There were no significant 

differences between the treatments with Cd (Medium, High and Medium before). This 

indicates that Cd exposure causes less glucuronide conjugates to be excreted and more 

glutathione and/or sulfate conjugates.
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Figure 5-1. Chromatogram of bile sample from fish injected with Cd ( 1 mg/kg) 4 days 

before 3H-BP (18 mg/kg). Overlay o f radiodetector on UV detector. Peak A (UV 

detector) and peak B (radiodetector) were identified as BP-glucuronic acid conjugates, 

peak C is unmetabolized BP.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



oo

o

in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

M
in

u
te

s



Figure 5-2. Chromatograms o f 2 subsamples o f bile sample, treated without (A) and with 

(B) 500 units o f P-glucuronidase for 24 h at 37°C.
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Figure 5-3. Percentage o f  injected radiolabeled material that was excreted over time into 

the surrounding water by 10 fish in static 10 gallon system. Each fish was injected with BP 

(18 mg/kg) which was spiked with 3H-BP to give a dose of 5 //C i per fish.
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Table 5-1. Concentration o f BP-glucuronides in bile, flow-through experiment. In 
nCi/entire bile sample, standard deviation in brackets. N=3, except t :  n= l, t  n=2. 
A=significantly increased compared to base levels as on days 16 and 32.

Day B P B P+C d Low C d before BP

1 1.15 (0.97)A 1.00 (0.45)A 1.73 (0.24)A

2 2.01 (0.30)A 3.57 (1.21 )A

4 4.08 (2.08)A 5.12 (4.62)a 2.54 (1.18)A

8 0.99 (0.66)A 0.79 (0.48)A 2.79 (1.62)A

16 0.22 (0.06) 0.06 (0.03) 0.19(0.12)

32 0.05 f 0.58 (0.72)* 0.13 (0.09)
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Experiment 1

The results o f the pilot experiment showed that within 6 days almost 50%  o f the 

radiolabeled material was excreted (Figure 5-3). The amount excreted per day w as highest 

on the second day after injection, and declined to  zero after day 6. Analysis o f BP 

metabolites in the bile samples by HPLC showed only minor amounts o f radiolabel after 8 

days, indicating that almost all of the BP metabolites had been excreted.

Experiment 2

The amount o f radiolabeled glucuronide conjugates in the total bile sample as a 

function o f time after injection increased significantly over the first 5 days (Table 5-1, 

Figure 5-4) After day 6 post-injection a rapid decrease was observed. By day 16 almost all 

radiolabeled compounds had disappeared from the bile. This pattern was seen independent 

of the Cd dose. The results further indicate that the excretion o f BP metabolites is 

accelerated when the BP is dosed together with Cd. When Cd is dosed 4  days before BP, 

the excretion seemed to be slowed down, resulting in a longer excretion period. However, 

statistical analysis revealed that there were no significant differences between treatments 

on a given day. It needs to be noted that the data were highly variable, with a coefficient 

of variation up to 85% for some values, and some tested data sets did not show 

homogeneity o f variance. Logarithmic transformation of these data sets did result in 

improved homogeneity, but did not result in the detection of significant differences 

between treatments.

Analysis of the effluent from the tanks in which the dosed fish were held showed a 

low, but measurable increase above background in the first few days (Figure 5-5). 

However, there were no obvious differences among the tanks.

I l l
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Figure 5-4. Amount o f  radiolabeled glucuronide conjugates in bile samples from  fish with 

different treatments, on days post-injection. BP dose was 10 mg/kg, spiked with 3H-BP to 

give a  dose of 5 //Ci per fish. Cd dose was 0.32 mg/kg. Each data point represents 

average o f  3 replicates.
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Figure 5-5. Amount o f radioactivity over time in effluent (0.5 1/min) from tanks that 

contained fish injected with BP and Cd. BP (10 mg/kg), spiked with 3H-BP to give a dose 

o f 5 /uCi per fish. Cd dose was 0.32 mg/kg. Each datapoint is a single measure per day per 

tank.
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Experiment 3

The amount o f BP-glucuronides in bile o f fish that were kept in a closed system 

show a bimodal pattern; an increase over the first 3 days post-injection, a decrease 

towards day 5, followed by a steep increase again after day 5 (Figure 5-6). It is apparent 

that co-injection o f Cd with BP increased the excretion o f BP-glucuronides in the first 4 

days, compared to the BP alone treatment (Table 5-2). After the third day the BP- 

glucuronide content decreases in fish from the combined treatments to almost the same 

level as seen in fish from the BP alone treatment. Metabolite levels after day 5 increased 

sharply for all treatments, but this effect was most predominant for the BP alone 

treatment.

The levels o f BP-glucuronides in bile from control fish kept in the enclosures were 

much lower than in those o f the directly dosed fish. The maximum concentration was 

about 0.2 nCi/mg for indirectly exposed fish, whereas in the injected fish the lowest value 

was 0.8 nCi/mg (Table 5-3). Day 4 was the only time when there was a significant increase 

in one o f the treatments (CdM) over the BP alone treatment (Figure 5-7). These results 

indicate that even though relatively large amounts o f  metabolites were excreted by the 

injected fish, as demonstrated by analysis of the surrounding water, these excreted 

metabolites were only absorbed at a low level by the uninjected fish in the enclosures.

The analysis o f the recirculating water showed that radiolabeled metabolites were 

readily excreted in the first 4 to 5 days after injection (Figure 5-8). After the 5th day a 

steady state appears to have been achieved. On days 2, 3 and 4, fish exposed to BP+CdM 

seem to excrete more metabolites than fish injected with BP alone. This could not be 

statistically tested because o f the unreplicated set-up. In contrast, fish treated with BP and 

a high Cd dose seem to excrete less metabolites then fish in any of the other treatments. 

Fish exposed to Cd before BP appear to excreted less metabolites than fish dosed with BP 

alone.
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Table 5-2. Concentration of BP-glucuronides in bile, static experiment. In nCi/mg bile, ± 
standard deviation. N=4. A=significantly increased compared to BP alone on same day.

Day BP BP+Cd Med BP+Cd High Cd before BP

1 0.85 (0.17) 1.70 (0.88) 1.70 (0.26) 1.23 (0.18)

2 0.81 (0.10) 2.09(1.35) 2.12(0.59) 0.98 (0.32)

3 1.17 (0.20) 2.98(1.31) 3.39 (1.1 2)a 2.49 (0.84)

4 1.20 (0.39) 0.86 (0.31) 2.82 (0.47)a 2.58 (1.39)

5 0.83 (0.16) 1.33(1.48) 1.85 (0.40)a 0.79 (0.51)

6 0.92 (0.02) 4.49 (0.37)a 2.34 (0.97) 1.27 (0.83)

7 5.63 (2.57) 2.86(1.69) 3.18(1.20) 3.51 (1.32)

11 2.22 (0.62) 2.40 (0.34) 1.33 (0.48)

14 1.20 (0.48) 2.82 (0.18)

Table 5-3. Concentration of BP-glucuronides in bile o f control fish from enclosures. In 
nCi/mg bile, ±  standard deviation. N=3, except $: n= l, $ n=2. A=significantly increased 
compared to BP alone on same day.

Day BP BP+Cd Med. BP+Cd High Cd before BP

2 0.056 (0.019) 0.070 (0.002)$ 0.031 (0.008)$ 0.028 (0.005)

4 0.029 (0.013) 0.177 (0.060)A 0.080 (0.020) 0.105 (0.030)

6 0.044 (0.008) 0.144(0.062) 0.079 (0.057) 0.139 (0.091)

11 0.033 (0.022) 0.089 (0.055)$ 0.010 t 0.075 (0.080)$

14 0.073 (0.017) 0.072 (0.046) 0.005 $ 0.043 $
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Figure 5-6. Amount o f radiolabeled glucuronide conjugates in bile samples (nCi/mg bile) 

from fish with different treatments, on days post-injection. BP dose was 18 mg/kg, spiked 

with 3H-BP to give a dose o f 5 /jlCi per fish. Cd doses were 1 (CdM) and 3.2 (CdH) 

mg/kg. Data points represent average o f 4 replicates.
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Figure 5-7. Amount o f radiolabeled glucuronide conjugates in bile samples (nCi/mg bile) 

from uninjected fish that were held in enclosures in recirculation tanks with injected fish. 

BP dose of the injected fish was 18 mg/kg, spiked with 3H-BP to give a dose of 5 /zCi per 

fish. Cd doses were 1 (CdM) and 3.2 (CdH) mg/kg. D ata points represent average o f 4 

replicates.
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Figure 5-8. Amount o f radioactivity over time in recirculation tanks that contained fish 

injected with BP and Cd. BP (18 mg/kg), spiked with 3H-BP to give a dose o f 5 ixCi per 

fish. Cd doses were 1 (CdM) and 3.2 (CdH) mg/kg. Data points represent average o f 3 

replicates.
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Discussion

The chromatograms obtained from the bile samples reported here are very 

comparable to those reported by James et al. (1991) for southern flounder exposed to BP. 

For both species glucuronic acid conjugation appears to be an important route for biliary 

excretion. However, it is likely that GSH and sulfate conjugates are also involved. 

Glutathione-S-transferase activity has been reported to be 3-fold higher in mummichog 

from PAH contaminated field locations, indicating that GSH conjugation plays a 

distinctive role in hepatobiliary excretion o f PAH metabolites (Van Veld et al., 1991). In 

rainbow trout exposed to dimethylbenz[a]anthracene (DMBA), conjugation to  sulfate was 

significant over the first 12 h, but conjugation to glucuronic acid was much more 

important in the next 60 h (Schnitz et al., 1993).

The results of both experiment 1 and 2 suggest consistent trends for the influence 

o f Cd dosage on BP metabolite excretion. When BP is dosed together with a small or 

intermediate dose o f Cd, there is a faster excretion of the conjugated BP metabolites than 

in the B P  alone treatment in the first few days. Combined with a high Cd dose, the 

excretion is much lower than in the B P alone treatment. When an intermediate Cd dose is 

administered four days before BP, the excretion o f metabolites is reduced, but not as low 

as in fish that received the highest Cd dose.

Since conjugation of metabolites is essential for biliary excretion (Klaassen & 

Watkins, 1984), and because Cd affects the induction and availability o f GSH as an 

conjugating compound (Singhal et al., 1987), the following model may explain the 

observed results. A moderate Cd dose will only have a moderate effect on the production 

o f BP metabolites, but it will induce the production of conjugating compounds. This 

greater availability of conjugating compounds may then enhance the excretion o f BP 

metabolites. Analysis of the chromatograms suggested indeed a larger contribution of 

GSH-conjugated metabolites in the combined BP-Cd treatments than in the BP alone 

treated fish. When the moderate Cd dose is given four days before the BP, Cd may have 

depleted the building blocks for conjugating compounds, leading to a reduced rate of
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excretion o f conjugated metabolites, as was seen in the aqueous samples from experiment 

3. The high Cd dose may have reduced all biotransformation processes, and eventually 

caused mortality.

The above described processes seem to be consistent with most of the data. 

However, statistical analysis o f the results showed a large variability in the data. Obviously 

there are considerable individual differences within any one sampling group, which 

hampers interpretation of the results. Sampling an entire bile sample on a fixed moment in 

the day did not give a clear picture of treatment differences. Analysis of the water samples 

proved to be much more consistent, but is an indirect approach to measuring metabolite 

excretion. In an effort to reduce the variability observed in experiment 2, the fish were fed 

right after sampling in experiment 3, allowing a 24 h build up o f  bile in the gall bladder 

before sampling again. This obviously did not reduce the variance in metabolite 

concentrations, as wide range of bile volumes was observed within sample groups in 

experiment 3 (7 - 66 mg).

The use of a natural marker in bile was considered to independently measure the 

excretion rate o f bile. If this would have been feasible, the amount of BP metabolites could 

have been related to a known excretion rate. This might have reduced the variation caused 

by variable bile volumes. Analysis of the UV chromatograms revealed a few peaks that 

were not related to the BP metabolites and that might serve as internal markers for bile 

production. However, expression of the metabolite amounts as a fraction o f these markers 

did not reduce the variation in the results.

Another approach would have been to inject an inert standard into the fish together 

with the BP dose. Phenol red has often been used to measure the passage time of 

metabolites through the liver, both in mammals (Collado et al.,1988; Kakutani et al., 1992) 

and fish (Guarino, 1986; Plakas et al., 1992). The problem with coadministration o f  

phenol red and BP is that both compounds induce the P450 system, and phenol red might 

thus be metabolized and excreted faster when dosed together with BP than when dosed 

alone. Therefore, phenol red would not have been a reliable internal standard for the rate 

o f BP excretion through the bile, and was not used.
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An interesting phenomenon was observed in the static experiment: after an inititial 

increase in bile glucuronides, concentrations dropped around day 4, but rapidly increased 

again after day 5. This may be attributed to entero-hepatic cycling (Klaassen & Watkins, 

1981). Normally, conjugated metabolites, which are excreted through the bile into the 

intestine, will not be lipophilic enough to be reabsorbed from the intestine. However, 

intestinal bacteria can break down the conjugates (through p-glucuronidase and GST 

activity), and make the metabolites available for reabsorption. This process has been 

described for BP-metabolites in rats (Chipman et al., 1981). Since it was shown, using 

control fish in enclosures, that secondary uptake o f metabolites was trivial, the sudden 

increase in bile metabolites in BP injected fish is unlikely to be attributed to secondary 

uptake of excreted metabolites from the surrounding water. Therefore the hypothesis o f 

entero-hepatic cycling to explain the bimodal pattern of bile metabolites over time is a 

reasonable explanation.
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Chapter 6. Metallothionein Induction by Cd, and 

Interactive Effects of Simultaneous BP Dosage.

Introduction

Initial phases o f this research confirmed induction o f  BP metabolism in 

mummichog and demonstrated the interactive effects o f Cd on the induction of CYP1A, 

on the biotransformation o f BP and on the excretion o f BP metabolites. The mortality 

experiments suggested that at certain dose combinations, BP exposure may also have an 

effect on the toxicity o f Cd. The last part of this research project was focused on the 

mechanisms that may explain why BP has an synergistic effect on Cd toxicity.

It is known from a wide variety of invertebrate and vertebrate species that 

exposure to heavy metals, and especially cadmium, induces the production o f metal 

binding proteins (Roesijadi, 1992). Analysis of cytosolic fractions, prepared from the livers 

o f metal exposed animals, has revealed that there are 3 groups of metal binding proteins: a 

high molecular weight fraction (>20 kD), a low molecular weight fraction (5-15 kD) and a 

very low molecular weight fraction (<1 kD). The metal binding proteins in the low 

molecular weight fraction are generally called metallothioneins (MT). This fraction can be 

measurably increased after exposure to metals. Apart from metals, o f which Cd and Zn are 

the strongest inducers, MT can also be induced by oxyradical producing agents, like UV 

light, nitrosamines, hydrogen peroxide, and dexamethasone. It has been demonstrated that 

Cd exposure also induces the production of glutathione (GSH), heat shock proteins (HSP) 

with molecular weights of 70, 90 and 110 kD, and heme oxygenase (Beyersmann & 

Hechtenberg, 1997).

Some of the heavy metals, like Cu, Fe, and Zn, are essential for 

biological/enzymatic processes in the cell. However, the free ion form of these metals can 

be highly toxic inside the cell. Distribution o f iron inside the cell is mediated through an 

iron-binding protein, ferritin, and a receptor (transferrin) that can release Fe from the
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protein. For Cu and Zn, metallothioneins appear to be the detoxifying, binding protein, 

comparable to ferritin for Fe. However, it is still controversial whether the metals bound 

to MT are available for copper or zinc dependent processes (Brouwer, 1995).

Analysis o f the structure o f MTs from different species has revealed that they are 

very conservative in structure. There are generally 60 to 61 amino acids, of which 20 are 

cysteine. The position o f the cysteine residues within the protein is highly conserved. In 

most species at least two isoforms are present (MT I, MT II, etc), as analyzed by anion- 

exchange chromatography. Functional differences have not been described for these 

isoforms. Analysis o f the secondary structure of M T has shown that the protein consists of 

two domains, named the a-domain and the P-domain, both consisting of 30 amino acids. 

The a-domain can hold four metal ions, while the P-domain can bind three. The metals are 

exclusively associated with the cysteine residues through tetrahedral thiol-bonds. The 

cysteine-metal bonds are considered very stable, but metals can be released in a low pH 

environment. The stability of metal saturated M T is used during purification: heat 

denaturation at 60°C precipitates most proteins, but not MT. MT induction is temperature 

dependent, and generally slower in fish than in mammals. In rainbow trout, a sharp 

increase in MT mRNA was observed 6-12 h post injection, but dropped soon after that. 

MT protein levels stayed high, but were organ specific. The half life of MT in fish is 

around 30 days. MT levels show seasonal variation in female fish, related to egg 

production. Vitellogenesis requires an increased level o f Zn, which obviously triggers an 

increased M T level during egg production (Olson, 1993)

Human and rainbow trout metallothioneins show differences in copper binding 

capacity (12 and 10 g/mol respectively), but no differences in Cd binding capacity (7 

g/mol). Recombinant metallothionein proved that the differences originated in the a- 

domain of the protein. The “mermaid” form o f the recombinant metallothionein, with an a- 

domain (the C-terminal, or tail) originating from the fish genome, and the P-domain (the 

N-terminal, or head) originating from the human genome, had a lower Cu binding capacity 

(10 g/mol) than the “fishman” form, with an a-domain originating form the human 

genome, and the P-domain originating from the fish genome (12 g/mol) (Kille et al.,
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1992).

The specific effects o f Cd exposure in mammalian cells were reviewed by 

Beyersmann & Hechtenberg (1997). Cd exposure induces not only M T synthesis, but also 

increases cysteine uptake and glutathione synthesis, which makes the analysis of Cd 

uptake kinetics a complex task. Time is an important factor in the process: a single dose or 

a long-term, low dose exposure will lead to total MT binding of the Cd. After a single 

dose there is immediate accumulation of “free” Cd in the cytosol and the nucleus. After 24 

h, all Cd is bound to MT in cytosol. Cellular Cd toxicity is probably an indirect effect, 

caused by the generation of oxyradicals. No acute cytotoxic effect could be observed 

when antioxidants are available, and peroxide-resistant cells were also Cd resistant. 

Beyersmann & Hechtenberg (1997) also address the conflicting evidence o f Cd effects on 

DNA/RNA synthesis and protein metabolism. Free Cd can inhibit all o f these processes, 

but several studies have reported that when Cd is bound to cysteine residues, either in MT 

or GSH, it can still induce the synthesis o f more metal binding proteins. Stimulated 

DNA/RNA synthesis under Cd stress is explained as an effect of cell damage caused by 

Cd, which induces repair mechanisms.

MT induction in mummichog was first described by Pruell & Engelhardt (1980). 

They exposed mummichog to aqueous Cd (10 and 25 mg/1 for 96 h), and found elevated 

Cd binding protein levels at the higher dose. The molecular weight o f these proteins were 

estimated to be 7000 to 10,000. They also found evidence that preexposure to a low metal 

dose induces a very low molecular weight (<1000) Cd binding protein, which may be 

glutathione. An observed increase in cytosolic Cu is explained to be a result of 

competition between Cu and Cd for binding sites on the available MT. Cd is know to have 

a stronger affinity for MT than Cu, and will therefore replace Cu. Weis (1984) measured 

binding o f mercury (Hg) to MT in mummichog. Hg did not induce M T levels in embryos. 

He found considerable variation in MT levels in embryos, which proved predictive for the 

MT levels at later age.

In the mortality experiments described above (Chapter 2), it was demonstrated that 

a sublethal dose o f BP, together with sublethal amounts of Cd, significantly increased the
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mortality above the level that could be expected for linear additivity of Cd and BP. This 

observation implies that BP or its metabolites intervene with processes in the cells that 

would normally reduce the toxicity of Cd. Given that some intermediate BP metabolites 

can be highly reactive and bind to DNA and other cellular proteins, they may also bind to 

the cysteine residues on MT, thus competing for binding places with Cd. This would mean 

that there is direct competition between Cd and BP metabolites for binding sites on MT. 

Another possible mechanism is that BP metabolism interferes with MT synthesis, either 

through effects on the transcription/translation process, or by competition for protein 

residues. Primary BP metabolites are in part conjugated to glutathione (GSH). Cd 

exposure induces GSH production, but when GSH, and thus one of its building blocks, 

cysteine, is being scavenged by BP metabolism, there will be less cysteine available for MT 

synthesis.

The questions that were addressed in the experiments described in this chapter are:

• How do different Cd doses induce MT in mummichog over time?

• Does BP have an effect on MT induction when dosed together with Cd?

• Do BP metabolites bind to M T?

• If BP metabolites bind to MT, will the Cd binding capacity of MT be reduced?
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Material and methods

Experimental design

Three experiments were designed to study induction o f MT, and to investigate 

effects o f BP on MT induction and binding. The first experiment was a pilot experiment 

designed to measure the induction o f MT by Cd. Fish were injected with a low (0.32 

mg/kg) and a high (3.2 mg/kg) Cd dose, together with a control group treated with 

solvent only. The fish were kept in a flow through system. Four replicate fish were 

sampled from each treatment on days 4, 7 and 14. The livers were harvested, frozen in 

liquid nitrogen, and stored at -80 °C until further analysis.

In the second experiment the effect of combined Cd and BP exposure on M T 

induction was studied. Five treatment groups were incorporated: Cd alone (1 mg/kg), BP 

alone (18 mg/kg for all treatments), BP with a medium Cd dose (1 mg/kg), BP with a high 

Cd dose (3.2 mg/kg) and a medium Cd dose 4 days before BP. The BP solution was 

spiked with 3H-BP, so that each fish would receive a dose o f 5 /t/Ci. Radiolabeled BP was 

used to analyze if BP metabolites would bind to M T after in vivo exposure. Four replicate 

fish were sampled from each treatment on days 1, 2, 4, 7 and 11. The fish in this 

experiment had to be kept in a closed system, because excreted radioactive material had to 

be contained. To investigate if potential excretion and reabsorbtion of Cd would influence 

the results, uninjected control fish were kept in an enclosure inside the holding tank. These 

uninjected control fish were sampled on days 2, 4, 6 and 11. A third experiment was 

designed to study if BP metabolites, generated by isolated microsomes from radiolabeled 

BP, would bind to purified MT in vitro.

MT purification

Frozen livers were thawed, weighed and homogenized with a Polytron 

homogenizer in 2 ml lOmM Tris buffer (pH 8.5), containing 0.5 mM phenylmethyl 

sulfonyl fluoride (PMSF) as an antiproteolitic agent and 0.01% mercaptoethanol as a 

reducing agent. A cytosolic fraction containing dissolved MT was prepared by
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centrifugation at 100,000 x g for 60 min at 4°C. A subsample o f  1.5 ml supernatant was 

collected in a microcentrifuge tube, spiked with 0.24 mM Cd2+, and incubated for 10 min 

to saturate the MT with Cd, and thus avoid polymerization during the following 

denaturation step. The samples were heated in a heating block for 15 min at 60 °C to 

denature the non-metallothionein proteins, followed by cooling down in ice water and 

centrifugation for 20 min at 10,000 g to spin down the denatured proteins. The MT 

containing supernatant was collected in 1 ml autosampler vials and stored at 4°C  until 

analysis by HPLC.

MT analysis

Metallothionein was quantified by HPLC-gel filtration chromatography (Jin et al.,

1993). This method was chosen because it would allow simultaneous detection o f  M T and 

radiolabeled BP metabolites with UV and radiodetector. A Superdex 75 HR 10/30 gel 

filtration column was coupled to a HPLC configuration with two Waters 510 pumps, a 

Waters 717plus autosampler, Waters 486 absorbance detector, and a Radiomatic Flo- 

one\Beta, type A -100 radio detector with a 500 fx\ flow cell. The mobile phase consisted 

of 0.1 M sodium phosphate buffer (pH 7.4) with 0.2 M NaCl, at a flow rate o f 1 ml/min. 

MT was measured in 200 iA subsamples with the UV detector set at 250 nm. The 

retention time for MT under these conditions was 13.8-14.1 min. Molecular weight o f the 

assumed MT peak was established from a calibration curve using the following molecular 

weight markers: Aprotinin (Mol.Wt. 6500), Cytochrome C (12,400), Carbonic Anhydrase 

(29,000), and Albumin (66,000). Dextran Blue (2,000,000) was used to measure the void 

volume of the column (Figure 6-1).

A second calibration curve was produced to relate peak heights on the 

chromatograms to MT weight units. A seven step dilution series (100% to 1.56%) was 

made from a stock solution of 0.667 mg/ml purified rabbit MT. There was a linear 

regression between M T concentration and peak height, with a correlation coefficient of 

0.9998. Peak heights o f analyzed samples (10,000 - 160,000) fell well within the range o f  

the calibration curve, therefore no extrapolations needed to be made.
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During the initial phase o f method development, M T was measured in a  series of 

cytosolic fractions that were collected during microsome preparations (see Chapter 4). 

However, the chromatograms from these samples were not suitable for reliable MT 

quantitation; the M T peak was either very broad, or coeluting with another protein peak. 

The stabilization buffer used for microsome preparations was obviously not appropriate 

for MT extraction, possibly because the lack of a reducing agent like mercaptoethanol. In 

an oxidative environment MTs tend to polymerize, creating a broad peak (Roesijadi & 

Drum, 1982). Reducing agents can not be used during preparation o f microsomes, 

because o f potential negative effects on P450 activity.

Initially, MT content was expressed as n g per mg cytosolic protein. However, the 

gel filtration chromatograms showed that there was considerable variation in denatured 

protein content, resulting in a wide range of coefficients of variation. Expressing M T per 

wet liver weight proved to be a more consistent way, with lower coefficients o f  variation. 

W et liver weights of the fish from the selected experimental size range fell in a narrow 

weight range (0.15-0.30 mg, with only a few outliers in a sample o f 47, avg 0.23 g, sd =

0.08). Therefore the average wet liver weight o f these fish was used to normalize MT 

amounts in livers from fish for which the liver weight was not measured.
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Figure 6-1. Calibration curve to establish molecular weight o f compounds separated by 

HPLC-gel filtration column. Ve is the elution volume for each compound, VO is the void 

volume of the column, as measured with dextran blue. Regression equation is: mol 

weight/1000= -1.575*Ve/V0 + 6.61. R2 for regression was 0.989
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In vitro experiment

Microsomes were used from BP treated fish, two days after injection, with 

maximal CYP1A activity. One mg of microsomal protein in stabilization buffer was added 

to 1 ml of incubation buffer (see Chapter 4 for details). Aliquots o f 67 yug MT in Tris 

buffer with 0.01% mercaptoethanol were added, together with 5 yuCi 3H-BP in a small 

amount of methanol. The reaction mixture was incubated at 27°C , and was sampled at 3, 

6, 12, and 24 h after the start o f the reaction. Subsamples o f 225 /d  were taken for MT 

analysis, and 75 /d  samples were analyzed for BP metabolism. Metallothionein samples 

were prepared and analyzed as described above. The subsamples for BP analysis were 

mixed with 125 //I methanol, containing BHT as an anti-oxidant, followed by 

centrifugation (14,000 g for 20 min) to spin down precipitated proteins. The supernatant 

was transferred to 200 /d autosampler vials, and analyzed by reversed phase HPLC as 

described in Chapter 4. The pellet was resuspended in 2*200 /d  methanol, and was 

counted by liquid scintillation counter.

Statistics

Statistical analysis of the data was performed as described in Chapter 1.
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Results

M T induction at different Cd levels

A  typical HPLC-gel filtration chromatogram for analysis o f MT shows a  M T peak 

at 14 min (Peak B in Figure 6-2). Confirmation that peak B was indeed MT was obtained 

by comparing the retention time o f this peak with the MT standard used for creating the 

calibration curve described above. Also, the estimated molecular weight (12,000) o f the 

compound in peak B, as obtained from the calibration curve in Figure 6-1, falls within the 

reported range for MT. Finally, the retention time of peak B is comparable with the MT 

peak described by Jin et al. (1993), who used the same column under the same conditions 

as described here.

At the lowest Cd dose used (0.32 mg/kg), no induction of M T could be measured,

i.e. there were no significant differences at any time when compared to the control, (Table 

6-1, Figure 6-3). The highest Cd dose (3.2 mg/kg) resulted in 2.1 mg MT/g w et liver, a 4 

fold induction on day 7 post-injection. The induction persisted at this level until at least 

day 14. At the intermediate Cd dose o f  1 mg/kg, which was used in the second 

experiment, there was a slightly lower M T induction of 1.5 mg MT/g liver (Figure 6-4).

M T induction in combined exposure

The results of MT analyses in the uninjected control fish are shown in Table 6-2 

and Figure 6-5. MT levels were low in all treatments (< 1.2 mg/g) on all sampling days.

On day 2 there seems to be a slight induction o f M T in the Cd only treatment, and in the 

combined BP+Cd treatments there seems to be a delayed induction towards day 11. 

However, none o f the inductions proved to be significant in any of the treatments, on any 

o f  the sampling days. This means that it can be assumed that potential recirculation o f 

excreted Cd in a closed system did not have an enhancing effect on MT induction in the 

injected fish that were kept in this system.
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Figure 6-2. Gel filtration chromatogram of liver cytosol sample from fish treated with Cd 

(3.2 mg/kg) and BP (18 mg/kg), after heat denaturation, measured with UV detector (250 

nm). Peak A corresponds with metallothionein standard, other peaks were not identified.
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Figure 6-3. Amounts of hepatic MT (mg/g liver) in fish injected with a low (CdL) and 

high (CdH) dose of Cd (0.32 and 3.2 mg/kg), at different days post injection. D ata points 

represent average of 4 replicates.

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



MT 
(mg

/g)

3.5

3

2.5

2

1.5

1

0.5

0
60 4 8 10 12 142

days

■©- Ctrl ■ BP CdL CdH

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 6-4. Amounts o f  hepatic MT (mg/g liver) in fish injected with a medium (CdM) 

and high (CdH) dose of Cd (0.32 and 3.2 mg/kg) combined with BP (18 mg/kg), at 

different days post injection. Data points represent average of 4 replicates.
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T able 6-1. Metallothionein content in fish in flow-through experiment. Average values, 
with standard deviation, n=4, except for f: n=3. A=significantly different from other 
treatments on the same day, B=significantly different from blank.

Treatment Day 0 Day 4 Day 7 Day 14

Blank 0.91 (0.21)

Solvent contr. 0.34 (0.02) 0.70 (0.19) 1.00 (0.7 l)t

BP 0.49 (0.02)

Cd Low 0.67 (0.24) 0.71 (0.17) 0.70 (0.07)

Cd High 1.56 (0.16)A 2.06 (0.53)AB 2.11 (0 .17)AB

T able 6-2. Metallothionein levels (mg/g wet liver weight) in control fish from enclosures. 
Mean values, with standard deviation, n=3. No significant differences were detected.

Day Blank Cd Med. BP+Cd Med. BP+Cd High^

0 0.67 (0.21)

2 1.17(0.17) 0.77 (0.39) 0.57 (0.04)

4 0.88 (0.25) 0.80 (0.09) 0.89 (0.89)

6 0.77 (0.14) 0.64 (0.15) 0.87 (0.09)

11 0.68 (0.18) 1.10(0.10) 1.19(0.46)
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In the second experiment, in which the effects o f BP on MT induction were 

studied, the BP alone treatment was used as control group (Figure 6-4). Statistical analysis 

showed that there were no significant changes in the M T levels over time for the BP alone 

treatment when compared to the base line levels (day 0) before injection (Table 6-3). 

Therefore, the BP alone treatment was used as the control group. After day 1 post­

injection, all other treatments in this experiment had significantly higher MT levels than the 

BP alone treatment, on all days.

The treatment with the intermediate dose o f  1.0 mg/kg Cd alone was used in this 

experiment as a reference for comparison with combined dosages. For this Cd alone 

treatment the maximum MT level was reached by day 1. When BP was dosed together 

with Cd at intermediate and high level, a slower induction o f MT was observed; the 

maximum MT level was reached on day 2 for the highest Cd dose, and around day 4 for 

the intermediate Cd level. It appears that BP had an inhibiting effect on the MT induction 

in the first days after injection when compared to the treatment were only Cd was dosed.

For the combined BP+Cd High treatment, a rapid induction of liver MT was found 

after day 1; the maximum MT concentration of 3.0 mg/g was reached on day 2 post­

injection (Figure 6-4). This is consistently higher than in the first experiment, where the 

maximum MT concentration was 2.1 mg/kg in the high Cd alone dose. It appears that the 

simultaneously dosed BP increases and accelerates the MT induction after the first day.

The initial inhibition o f MT induction by BP is also seen at the intermediate Cd 

dose levels. On day 1 there is a significantly lower amount o f MT in the combined 

exposure than in the Cd alone treatment. Though not statistically significant (p<0.05) 

there was more MT in the combined treatment than in the Cd alone treatment on each 

sampling day. This is consistent with the results for the highest Cd dose when the Cd alone 

treatment is compared with the combined treatment, as described above. It appears that 

initially BP inhibits the induction o f MT, but after a few days the induction is actually 

enhanced.
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F igure  6-5. Amounts o f hepatic MT (mg/g liver) in uninjected fish that were held in 

enclosures in recirculation tanks with injected fish. Cd doses in the injected fish were 1 

(CdM) and 3.2 (CdH) mg/kg, BP dose of the injected fish was 18 mg/kg.. Data points 

represent average of 4 replicates.
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Table 6-3. Metallothionein content (mg/g wet liver weight) in static experiment. Mean values, with standard deviation. N=4, 
except for n=3, $: n=6. A=significantly higher than other treatments on the same day, B=significantly different from blank, 
C= significantly lower than other treatments on same day.

Day Blank BP C d Med. BP+CdM BP+CdH Cd bf. BP

0 0.83 (0.28)$

1 0.56 (0.10) 1.53 (0.33)a b 0.98 (0.21) 1.17 (0.24)A 0.98 (0.13)

2 0.40 (0.19)c 1.51 (0.14)B 1.09 (0.20) 2.96 (0.42)a,b 1.18(0.44)

4 0.55 (0.33)c 1.43 (0.22)b 1.66 (0.49) 3.11 (0.33)ab 1.80 (0.17)tB

7 0.76 (0.14) 1.54 (0.17)B 1.94 (1.07)B 2.95 (0.64)B 1.70 (0.45) t B

11 1.01 (0.49)c 1.68 (0.21)B 1.89 (0.38)B 1.94 (0.26)tB
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A special effect was observed when Cd was dosed 4 days before BP. Assuming 

(because it was not measured) that there was a rapid induction of MT in those 4 days, as 

in the Cd only treatment, surprisingly, MT levels are significantly lowered one day after 

the BP injection, and than rise to a maximum on day 4 (Figure 6-4).

Binding o f BP to MT 

-in vitro experiment

Potential binding of BP metabolites to M T was studied first in an in vitro system. 

Microsomes with a high CYP1A activity were isolated from BP treated fish. These 

microsomes were incubated with radiolabeled BP and standard rabbit MT. The reaction 

mixture was analyzed for MT by gel filtration HPLC with both a UV detector and a 

radiodetector. Chromatograms from the UV detector were overlain with those from the 

radio detector to identify if any radioactivity was associated with the MT peak (Figure 6- 

6). The UV detector shows several peaks, with the MT peak at 14 min. The radiodetector 

shows only one peak at 21 min.

Obviously there was no radioactivity associated with the MT peak. This was 

consistent for all chromatograms examined for this experiment. A subsample from the 

reaction mixture was also analyzed by reversed phase HPLC, to investigate the nature of 

the radioactive 21 min peak on the gel filtration chromatogram. The chromatograms o f 

this reversed phase analysis show that most radioactivity is associated with the void 

volume peak, which contains conjugated BP metabolites (Figure 6-7). Apart from the 

conjugated metabolites, detectable amounts of 7,8-diol, 9,10 diol and tetrols were present.
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F igure  6-6. Gel filtration chromatograms of reaction mixture with microsomes from 

induced fish, 3H-BP and purified rabbit MT, 24 h after start o f reaction. Overlay of 

radiodetector on UV detector (250 nm). Peak A (UV detector) coelutes with MT 

standard. Peak B (radiodetector) and Peak C (UV detector) were identified as BP 

metabolites, predominantly in conjugated form.
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Figure 6-7. Reversed phase radioactivity chromatogram o f ethyl acetate extracted 

reaction mixture containing microsomes from induced fish, 3H-BP and purified rabbit MT, 

24 h after start o f reaction. Peak A coelutes with tetrols, peak B is 9,10-diol-BP, peak C is 

7,8-diol-BP.
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-in vivo experiment

Binding o f radiolabeled BP metabolites to  MT was also analyzed in a subset of 

samples used to identify the effect of BP on MT induction, as described above. One 

sample from each treatment (BP alone, BP+CdM, BP+CdH, Cd before BP) for each 

sampling day (day2 ,4, 7 and 11) was measured simultaneously with a UV detector for 

MT content and a radiodetector for radiolabeled compounds. Separate analysis on a 

scintillation counter o f an equal amount of sample as injected into the HPLC (200 ^1), 

showed a radioactivity o f 365 - 7577 dpm. However, no quantifiable peaks showed up on 

any chromatogram generated by the radiodetector. Obviously the radioactivity in the 

cytosolic fraction was below the detection limit o f the radiodetector, because even if there 

was no binding of BP metabolites to MT, at least one peak for the conjugated metabolites 

should have been evident in some samples, as was observed in the in vitro experiment 

described above.

Mortality

During the second experiment, unexpected mortality occurred (Figure 6-8). These 

results cannot be compared directly to those obtained in the mortality experiments 

described in Chapter 2, because of differences in experimental set up (flow-through vs. 

static), and because fish were sampled and sacrificed at regular intervals in the last 

experiment. Nevertheless, the trends in mortality are comparable: no mortality in the Cd 

alone treatment (1 mg/kg), an intermediate mortality at the BP alone treatment (18 

mg/kg), high mortality in the BP+CdHigh (3.2 mg/kg) treatment, and most interestingly, 

in both treatments were BP was combined with intermediate Cd dose (1 mg/kg) mortality 

was lower than in the BP alone treatment. This is consistent with the earlier observation 

that intermediate Cd doses have an antagonistic effect on BP toxicity.
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Figure 6-8. Cumulative mortality over time post injection o f fish injected with a medium 

(CdM) and high (CdH) dose o f Cd (0.32 and 3.2 mg/kg), combined with BP (18 mg/kg). 

Each treatment consisted of 50 fish each at day 0. On days 1, 2, 4, 7 and 11 five live fish 

were sampled and sacrificed from each treatment for bile and liver analysis.
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Discussion

MT levels in other species

The measured levels of MT in this study range from a background level o f 0.8 

mg/g wet liver weight in control fish to 1.5 - 3 mg/g in Cd dosed fish. Romeo et al. (1997) 

reported comparable MT levels of 1.7 - 4.3 mg/g wet liver in sea bass, 24 h after injection 

with 0.5 mg/kg Cu. George & Young (1986) report 0.05 - 0.3 mg/g wet liver in plaice, 14 

days after a single dose of 1 mg/kg Cd. These values may be underestimated as a result of 

a different method for MT analysis, the l09Cd saturation method, according to Jin et al. 

(1993), who compared the saturation technique with the gel filtration chromatography 

method used in this study.

Molecular weight

Metallothioneins are low molecular weight (6,000-15,000 D) proteins. The 

following molecular weights have been reported for fish species: 10,000 for carp 

(Yamamoto et al, 1978), 11,000 ±500 for goldfish (Carpene et al.,1987), 15,000 for 

plaice (Overnell & Coombs, 1979), and for mummichog 7-10,000 (Pruell & Engelhardt, 

1980) and 14,000 (Weis, 1984),. The molecular weight of 12,000 as measured in this 

study falls well within this range. Variations in molecular weight are likely a result o f the 

analytical method used. Gel filtration chromatography tends to yield higher molecular 

weights than gel electrophoresis because o f the non-globular shape of the MT protein 

(Overnell & Coombs, 1979).

Induction over time

Maximum MT induction was observed at day 7 for the highest Cd dose, and this 

high level persisted until at least day 14. Olson (1993) reported a half life o f  30 days for 

MT in fish, indicating that breakdown or excretion of MT is slow. For the medium Cd 

dose, maximum MT was already achieved after 24 h. George & Young (1986) reported 

the first measurable induction of MT 6 days after injection o f  1 mg/kg in plaice. This
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difference in induction time may be species specific, or it can be a temperature effect. 

George & Young (1986) kept their fish at 10°C, while the experiments described here 

were performed at 18-22°C. Induction times for MT mRNA are highly temperature 

dependent, ranging from 192 h at 6°C to 3-6 h at 18-20°C as shown in rainbow trout 

(Olson, 1993). Carpene et al (1987) show for goldfish that 10 h after injection (4 mg/kg, 3 

times) Cd is bound to a macromolecular fraction, an M T fraction and a very low molecular 

weight, or free ion fraction. This last fraction disappears over time (20 days), while the 

MT fraction substantially increases. They also note a slow turn-over of the MT fraction (> 

30 days).

Dose response relations

The results from the experiments described here show that MT is significantly 

induced in mummichog at dose levels o f 1 and 3.2 mg/kg, but not at not 0.32 mg/kg. 

George et al. (1996) describe a linear dose-response induction for MT in turbot, for Cd 

doses below 0.2 mg/kg. Several authors have described that above a certain metal dose, 

there is no further increase of MT levels (cited in Olson, 1993). Apparently there is a 

“critical concentration”, above which the metals interfere directly with MT synthesis, or 

indirectly inhibit metabolic processes that are essential for MT production. George et al. 

(1986, 1996) demonstrated the “critical concentration” concept for plaice and turbot, 

Harrison & Lam (1986) describe it for Cu in bluegills, and Ueng et al (1996) observe the 

same effect in tilapia with no further increase of MT induction at Cd doses higher than 2 

mg/kg.

George (1989) argues that for plaice direct inhibition o f protein synthesis occurs at 

Cd doses of 0.5 mg/kg and higher. His calculations show that for plaice injected with up 

to 0.1 mg/kg Cd there was enough MT to bind all Cd to MT. At higher doses (0.5 and 1 

mg/kg Cd) there was not enough MT to bind all Cd. He demonstrated that there was 

enough cysteine and GSH to synthesize more MT, which obviously did not happen. He 

therefore concluded that at high doses, Cd inhibits protein synthesis, and specifically MT 

synthesis.
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Other interaction papers

From the results presented here it appears that BP dosage initially has a inhibitory 

effect on MT synthesis, but after 1- 4 days MT synthesis is enhanced. In a comparable 

study, sea bass (Dicentrarchus labrax) were injected intraperitoneally with 0.5 mg/kg 

copper and/or 20 mg/kg BP (Romeo et al., 1997). The Cu-only treatment did not 

significantly alter the hepatic MT content (1.7 mg/g), but the BP treatment significantly 

lowered the MT level (0.4 mg/g) while the combination o f Cu and BP significantly 

increased the MT amount (4.3 mg/g). That copper alone did not increase the MT level is 

speculated to  be caused by a too high Cu dose, which may have inhibited protein 

synthesis, as argued above. The lowering of MT synthesis by BP may be explained as a 

result o f competition for cysteine residues by glutathione synthesis, induced by BP 

metabolism. Glutathione is a cysteine containing tripeptide (glu-cys-gly). The authors did 

not have data to explain the significant increase in MT levels in the combined treatment, 

but hypothesize that increased production of oxyradicals may have enhance the MT 

induction. Reactive oxygen species have been reported as a by product of incomplete 

oxydation o f organic contaminants by P450 monooxygenases (Di Giulio et al., 1995). 

Brown et al. (1987) suggest three possible explanations for low liver metal concentrations 

in fish from heavily polluted sites: 1) reduction of MT synthesis due to competition for 

cysteine by induced GSH synthesis, which is used for detoxification o f organic 

metabolites. (This was supported by higher GSH levels in fish from contaminated sites); 2) 

reduced binding o f metals to MT because of oxidation of the thiol (-SH) groups on the 

MT by hydroxyl radicals, which can be formed during metabolism o f  organic 

contaminants; 3) reduced binding of metals to MT because of competition for metal 

binding sites by organic metabolites.

Even though the mechanism has been suggested by Klaassen & Cagen (1982), no 

binding o f BP metabolites to MT could be demonstrated in this study. This would mean 

that enhanced toxicity o f  Cd by coadministration of BP, as shown in the mortality 

experiments, is more likely a result of the inhibition of MT synthesis, than of interference 

of BP metabolites with the binding of Cd on MT.
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So far there is no indication that BP interferes with binding of Cd to  MT. The 

higher MT levels in combined treatments than in Cd alone treatments seem contradictory 

with an increased mortality in the combined treatments. The high levels of M T supposedly 

should protect against Cd toxicity, and not enhance toxicity. Still, the combination o f BP 

with sublethal doses o f Cd (both 1 and 3.2 mg/kg) causes dramatic mortality. One 

explanation may be that the crucial time period for the eventual effects is within the first 

hours to days after the injection. If the observed delayed MT induction in the first days, as 

a result o f BP metabolism, allows unbound Cd to cause irreversible cell damage, than even 

the high M T levels after several days may not be able to ward off the damage, which 

causes mortality. It is also possible that because of cell damage, MT production is induced 

to scavenge free radicals that have been produced (Klaassen & Liu, 1997).
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Chapter 7. General Discussion.

Overview of obtained results

This study was designed to investigate the interactive effects o f Cd and BP in 

mummichog. These effects were to be studied at different organizational levels in the 

organism: whole animal mortality, BP metabolism in isolated hepatocytes and liver 

microsomes, BP metabolite excretion through bile and M T levels in liver cytosol. It was 

expected that this multi-level approach would generate more insight in the underlying 

mechanisms for interaction o f BP and Cd, and help to elucidate how biochemical effects 

at subcellular level can be translated to the cellular and organismal level.

The results from the mortality studies showed that at some dose combinations a 

synergistic effect occurred, while at other dose combinations an antagonistic effect was 

observed (Chapter 2). These results guided the design of experiments to study questions 

on how Cd interferes with BP metabolism, and how BP exposure may have an effect on 

Cd toxicity.

The experiments investigating BP metabolism in isolated hepatocytes from 

preexposed fish demonstrated that Cd has an inhibiting, or delaying effect on the induction 

o f BP metabolism (Chapter 3). The first indications were found for an effect o f Cd on the 

production of BP metabolizing enzymes, and not on a direct inhibition o f native enzyme. 

When BP-induced hepatocytes were incubated with Cd there was no acute effect o f Cd on 

the capacity o f  the cells to metabolize BP. Analysis of the primary metabolites formed did 

not show a change under influence of Cd exposure. If Cd would have directly inhibited 

CYP1 A, other biotransformation pathways might be enhanced, resulting in a different 

metabolite spectrum.

Further evidence for an indirect effect of Cd on the BP-metabolizing CYP1A 

enzyme was provided in the experiments investigating the catalytic activity by liver
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microsomes from pretreated fish (Chapter 4). In livers from fish that were exposed to  a 

combination o f Cd and BP, the induction o f CYP1A was inhibited. This was confirmed by 

a lower EROD activity and lower BP metabolism in microsomes from fish treated with a 

combination o f Cd and BP, compared to BP alone treatment. Analysis o f  the catalytic 

activity per unit of enzyme revealed that the enzyme itself was not affected, which 

excludes a direct inhibiting effect o f Cd on CYP1 A.

Conjugated BP metabolites are predominantly excreted through the bile. 

Glucuronidation appears to be the predominant conjugation pathway for BP metabolites in 

mummichog (Chapter 5). Cadmium exposure accelerated the excretion o f BP metabolites, 

possibly by inducing the production o f  conjugating compounds.

Injection o f mummichog with Cd resulted in a measurable induction o f M T 

(Chapter 6). Coexposure to BP had an inhibiting effect on MT induction. The original 

hypothesis was that BP metabolites that are generated during biotransformation o f BP 

would bind to MT, and thus inhibit the binding of Cd to MT. No evidence could be found 

in in vitro or in vivo experiments to support this hypothesis. The synergistic effect o f BP 

on Cd toxicity may therefore be sought in an inhibition of MT synthesis by BP 

metabolites, slowing down the detoxification of Cd, and giving it more time to exert toxic 

effects. Inhibition of MT synthesis by BP could be a result of competition for cysteine, 

which is on of the building blocks for both MT and for BP conjugating compounds 

(glutathione).
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Mechanisms for interactive Cd-BP effects.

The following scenario is proposed to provide a consistent interpretation o f  the 

data presented herein, combined with data from the literature.

BP metabolism

Mummichog has a measurable amount of native CYP1A. When uninduced fish are 

exposed to BP, this base level amount of CYP1A will start metabolizing the administered 

BP. Meanwhile, BP that enters the liver cells will bind to the AH receptor, be transported 

to the nucleus, bind to the ARNT receptor, and thereby induce DNA transcription into 

mRNA production. This CYP1 A-mRNA will produce the CYP1A apo-enzyme in the cell 

plasma, which will in turn be transformed into the holo-enzyme after incorporation o f the 

heme group on the active site o f the enzyme (Stegeman & Hahn, 1994).

Indirect effect of Cd on BP metabolism

The experiments described here, supported by published results (George, 1989; 

Bruschweiler et al., 1996), show no direct inhibition of the CYP1A enzyme when Cd is 

dosed to live fish or to live, isolated hepatocytes. This observation seems to conflict with 

reports of direct inhibition of CYP1A by Cd (Means et al., 1979; Bruschweiler et al., 

1996). However, the experiments in which direct inhibition was observed were all done 

with isolated microsomes. Obviously, when microsomes are isolated from the protective 

mechanisms in the living cell, direct inhibition by Cd ions can occur.

In living cells, the effect o f  Cd on BP metabolism consists of an inhibition o f  the 

production o f new enzyme. This can be caused by a variety o f interactions. Cadmium 

could interfere with the binding o f  BP to the AH receptor, or the nuclear ARNT receptor. 

However, Bruschweiler et al. (1996) consider binding of Cd to the AH receptor as an 

unlikely scenario, because, despite the inhibiting effect o f of heavy metals, at least some 

CYP1A induction has been observed in the presence o f metals. The Cd effect is therefore 

most likely to occur in the process of protein synthesis. George (1989) suggested a
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general shut down of protein synthesis at high Cd doses (1 mg/kg in flounder), which is 

reflected in reduced mRNA amounts. Another often cited possibility is a shortage o f heme 

for incorporation into the CYP1A enzyme (Eaton et al., 1980; Ariyoshi et al., 1990).

Heme oxgenase

P450 enzymes belong to a group o f heme containing proteins. Other compounds 

belonging to this group are hemoglobin, catalase, and cytochromes b and c. The important 

role o f these proteins and enzymes make heme metabolism an important cellular process.

A heme group consists of a divalent metal ion in a porphyrin ring (Tenhunen et al., 

1969). Synthesis of heme is regulated by aminolevulinate (ALA) synthetase. Surplus heme 

is degraded by heme oxygenase (HO), which removes the ion from the porphyrin ring to 

create biliverdin, which may be further degraded to bilirubin and excreted as a glucuronide 

conjugate. The cycle of synthesis and degradation is self regulating: excess heme will 

inhibit ALA synthetase and induce HO. The active regulator is the metal ion in the heme 

group, and the process is not very metal specific. That is probably the reason why 

exposure to exogenous metals interferes with heme homeostasis, and thus induces HO 

activity (Maines & Kappas, 1977).

Heme oxygenase does not interfere directly with the heme group of intact P450. 

Instead, the P450 first needs to be denatured to P420, to allow HO to use the heme group 

as a substrate for oxidation (Kutty et al, 1988). This suggests that the mechanism for 

interaction o f HO on P450 is proactive: HO activity does not break down P450, but 

reduces the cellular pool of heme, hampering the incorporation of heme into the P450 

apoenzyme to form the holoenzyme.

Induction of HO by exposure to  Cd and other heavy metals has been well 

documented, and is normally accompagnied by a decrease o f P450, both in mammals 

(Maines & Kappas, 1977; Eaton et al., 1980) and in fish (Ariyoshi et al., 1990a). Schlenk 

et al. (1996) even report an inverse relationship between CYP1A and HO in largemouth 

bass taken from a pollution gradient in the field. The induction o f HO by Cd may also 

explain the inhibition (by breakdown) o f  catalase, another heme containing enzyme, as
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reported for mummichog by Jackim et al. (1970) and Pruell & Engelhardt (1980).

P450-reductase

While Cd may not have a direct effect on the catalytic activity o f P450, it may have 

a direct effect on NADPH-cytochrome P450 reductase. This reductase restores CYP1A to 

the reduced state after its catalytic action. A negative effect of thallium on NADPH 

cytochrome P450 reductase was documented by W oods & Fowler (1984) in rats. 

However, the potential for Cd to produce this effect was not found rats (Schnell et al, 

1979; Means et al., 1979), indicating that Cd does not have an effect on electron- 

transporting capacity o f NADPH-cytochrome P450 reductase.

Dose effects

From several studies it has become obvious that Cd dose is an important variable 

affecting the effects on both P450 and HO amounts and activities. It appears that there is a 

threshold level for Cd, below which no effects are observed, but above which there is only 

a small range o f tolerance before severe cytotoxic and lethal effects occur (George, 1989; 

Ariyoshi et al., 1990a). Two predominant mechanisms have been described to explain 

detoxification of Cd, limited by a threshold: binding to glutathione and binding to 

metallothionein.

Cd sequestering

When animals are exposed to Cd, processes are induced that immobilize Cd to 

prevent direct harm to the cell. The first line o f defense is the induction and scavenging of 

Cd by glutathione (GSH). Glutathione is recognized as an important compound in 

protection against harmful toxicants (Singhal et al., 1987; Viarengo et al., 1997). 

Glutathione is a tripeptide, with cysteine as one of the aminoacids. The SH group on the 

cysteine is an important scavenger for divalent metals and oxygen radicals, which can be 

formed by chemical reactions or radiation. Maines & Kappas (1977) mention that the 

effect of metals on heme metabolism can be eliminated when those metals are bound to
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SH groups in cystein o r  glutathione. Removal of SH groups by degrading GSH with 

diethyl maleate (DEM) greatly enhanced HO induction by metals. Singhal et al. (1987) 

decreased GSH levels in mice, which made the animals much more sensitive to Cd. When 

sensitized mice (with low GSH levels) were treated with the GSH precursor, the toxic 

effects were diminished. The authors argued that the acute binding o f Cd to GSH bridges 

the time period needed to induce MT production, and thus prevents early toxic effects. 

Protective effects o f GSH against Cd toxicity have also been described for human cell 

lines, using the same m ethod of artificially decreasing and increasing GSH levels (Keogh et 

al., 1994; Cookson & Pentreath, 1996).

In rats, concentrations o f GSH follow a biphasic pattern upon metal exposure: a 

strong decline in the first 6-16 hours after dosing was followed by an increase to normal 

levels after 48 h. (Maines & Kappas, 1977; Ossola & Tomaro, 1995). This supports the 

model that GSH immediately binds Cd, followed by an induction to produce new GSH.

Effects o f Cd on GSH levels have also been described for fish. In tilapia, GSH 

levels decreased within 24 h after exposure, stayed low for a week, and were at normal 

level again after 140 days (Allen, 1993, 1995). In striped mullet, GSH levels were 

increased after 4 weeks exposure to aqueous Cd, though all hepatic Cd was bound to MT 

and not to GSH (Wofford & Thomas, 1984). Viarengo et al. (1997) described a protective 

effect of GSH in microsomes from European sea bass. Microsomal EROD activity was 

greatly inhibited in media with Hg2+, but when GSH was added at normal intracellular 

concentrations, the inhibition was reversed.

Metallothionein

The second important metal binding component is metallothionein (MT). 

Metallothionein is rich in cysteine, which provides the SH groups for binding divalent 

metals. Metallothionein is an effective metal binder: 7 Cd ions can be bound on one 

molecule. Induction o f MT is a relatively slow process, which generally takes days rather 

than hours. The reason may be that Cd is initially bound to GSH as a first step in 

detoxification, which slows down the induction of MT.
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Supposedly, induction is caused by binding of free ions to a receptor, which 

triggers the transcription/translation sequence (Roesijadi, 1992). Also, GSH may be an 

important cysteine source for MT production. So, if the cellular GSH pool is depleted by 

scavenging free Cd, less GSH will be available for MT production.

George et al. (1996) described the initial effect o f nonspecific Cd-binding to 

intracellular ligands (GSH, proteins) as a toxic interaction. Detoxification of Cd then 

consisted of transfer of Cd to newly synthesized MT, which they called a “rescue 

phenomenon” . For turbot, it took 9 days to synthesize enough MT to sequester a dose o f 

0.075 mg/kg. For 0.5 mg/kg it would take 30 days, assuming a linear increase for M T 

synthesis.

M ost MT-sequestered Cd is stored in the liver. George et al. (1996) reported that 

90% of Cd is stored in liver tissue. Wofford & Thomas (1984) almost no Cd excretion in 

the first 8 h after striped mullet was injected with radiolabeled Cd. The small amount o f 

Cd that was excreted into the bile was bound to high molecular weight compounds, not to 

GSH.

Phase II conjugation

From the information above it becomes clear that glutathione plays an important 

role in the detoxification of Cd. It serves as a first line o f defense by sequestering free Cd 

ions, but it may also serve as a source o f cysteine for production of newly synthesized MT. 

This means that there is a demand for GSH when animals or cells are exposed to Cd. 

However, GSH is also one of three compounds that are involved in conjugating BP 

metabolites. This means that when organisms are exposed to a combination o f Cd and BP, 

there will be a large demand for GSH. It may be that because of the Cd stress, there is less 

GSH available for BP metabolite conjugation. This could be circumvented by conjugating 

BP metabolites to glucuronic acid, which seems to be the predominant route anyway 

according to the bile analyses presented here. Nevertheless, the activity o f glutathione-S- 

transferase in mummichog liver is conspicuous, and even induced in fish from PAH 

contaminated environments (Van Veld et al., 1991).
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It was shown in the mortality experiments that simultaneous exposure to Cd and 

BP not only could influence BP metabolism, and thus reduce the toxicity o f  BP 

metabolites, but also that BP exposure could enhance Cd toxicity. The hypothesis that 

reactive BP metabolites would bind to SH groups on MT could not be verified. Therefore 

another interaction must take place. An indication is given by a slower induction o f MT 

when BP is present. This could mean that competition for GSH by BP metabolite 

conjugation would slow down sequestering o f Cd. However, these results do not explain 

why excretion o f conjugated BP metabolites into the bile is enhanced by Cd exposure, as 

was shown in the experiments described in this study.

Continuous Cd exposure

In the experiments described here, fish were only dosed with a single Cd injection. 

This method was chosen to assure a consistent and known dose per animal, which might 

be more difficult to achieve when fish are dosed through the water column. In three 

different studies, effects of Cd on P450 enzymes are reported after continuous exposure to 

aqueous Cd. Forlin, et al. (1986) exposed rainbow trout to 100 //g Cd/1 for 4 weeks. This 

treatment did increased the liver P450 content, but not the ECOD activity, which might be 

explained by direct inhibition o f the enzyme (it takes more enzyme to oxidize the same 

amount of substrate if the enzyme is partially defected). Lemaire-Gony & Lemaire, (1992, 

1995) exposed fish (eel and sea bass) to Cd (5 and 40 n g Cd/1) for several weeks before 

dosing with BP. The cadmium pretreatment caused a greater induction o f EROD activity 

than the BP alone treatment. These studies show that, contrary to the results obtained in 

single dose studies, long term exposure to Cd has a stimulating effect on the P450 system. 

This suggests that the modulating effect o f Cd on P450 induction and activity has a 

multitude o f regulatory implications. Long term exposure to dietary Cd also increased 

hepatic MFO activity in rats (Wagstaff, 1973). Schnell et al. (1979) compared i.p. dosage 

with oral dosage o f Cd. Only 1-2% of orally dosed Cd is absorbed, which has major 

consequences for environmental interpretation of data on Cd-BP interactions. Aqueous 

exposure can be translated to body burden, and even to tissue concentrations (Forlin et al.,
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1989). But if the uptake o f  Cd from food or the aqueous environment is slow, and MT 

induction and Cd sequestering can keep up with the Cd influx, then values of 1 mg/kg in 

liver tissue obtained after aqueous exposure (Forlin et al., 1989) cannot compare in effects 

to a single i.p. dose of 1 mg/kg.

In conclusion, the mechanisms for effects of Cd on BP metabolism appear to be 

reasonably well understood, while the effects of BP exposure on Cd detoxification remain 

unclear. Several possible mechanisms for the interactive effects o f BP on Cd toxicity have 

been presented here. Further experimental research is encouraged to generate more insight 

into mechanisms by which BP inhibits detoxification of Cd.
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