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ABSTRACT

We live in a world where mobile devices are already ubiquitous. It is estimated
that in the United States approximately two thirds of adults own a smartphone,
and that for many, these devices are their primary method of accessing the
Internet [99]. World wide, it is estimated that in May of 2014 there were 6.9
billion mobile cellular subscriptions, almost as much as the world population. Of
these 6.9 billion, approximately 1 billion are smart devices, which are
concentrated in the developed world. In the developing world, users are moving
from feature phones to smart devices as a result of lower prices and marketing
efforts [30]. Because smart mobile devices are ubiquitous, users trust them with
an unprecedented amount of information. This makes security and privacy
primary concerns. Threats such as mobile malware are already substantial, with
over 2500 different types identified in 2010 alone [65]. It is likely that, as the
smart device market continues to grow, so to will concerns about privacy,
security, and malicious software. This is especially true, because these mobile
devices are relatively new. Our research focuses on increasing the security and
privacy of user data on smart mobile devices. We propose three applications in
this domain: (1) a service that provides private, mobile location sharing; (2) a
secure, intuitive proximity networking solution; and (3) a potential attack vector in
mobile devices, which utilizes novel covert channels. We also propose a first
step defense mechanism against these covert channels.
Our first project is the design and implementation of a service, which provides
users with private and secure location sharing. This is useful for a variety of
applications such as online dating, taxi cab services, and social networking. Our
ultrasound modem, enables users to share relatively small pieces of information
with those that are near by, also known as proximity based networking. It has
several advantages over other, existing mechanisms for proximity based
networking. Our third work exposes a novel attack vector utilizing physical
media covert channels on smart devices, in conjunction with privilege escalation
and confused deputy attacks. We show this attack preemptively and also
propose a defense mechnanism to protect user data.
As a contribution to the field, we present these three systems, which together
enrich the smart mobile experience, while providing mobile security and keeping
privacy in mind. Our third approach specifically, presents a unique attack, which
has not been seen ``in the wild'', in an effort to keep ahead of malicious efforts.
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Chapter 1

Introduction

Smart mobile devices have exploded in popularity since the introduction of the iPhone

in 2007. We have now come to expect that smart mobile devices are commonplace in

the modern world, and they are quickly growing in the developing world [30]. Users can

choose from a variety of devices, including phones, watches, tablets, bracelets, and other

wearable form factors running several different operating systems including Google's An-

droid, Apple's iOS, and Microsoft's Windows 10 Mobile. Key to the success of mobile

computing is the proliferation of the application (app) market paradigm, which provides

developers and end-users a curated market place for software to run on their mobile de-

vices. However, because the growth of these devices has been so fast, security and

privacy have taken a back seat to convenience, innovation, and ease of use. Developers

have created a wide variety of innovative applications, and because mobile devices are

so practical and useful, users entrust a bounty of sensitive information to them, which is

in jeopardy of being harvested by evildoers. Users trust their mobile devices explicitly

and implicitly with many different types of sensitive information including passwords with

password managers, their financial history through mobile banking, contact information

for their friends and family, their location, web surfing habits, sensitive email, and sms

messages just to name a few. Much research recently has shown that even more, im-

plicit information can be extrapolated from these explicit sources [129, 17, 41, 53, 95, 108].
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Indeed, it seems that smart devices are so useful and ubiquitous, there is hardly any sen-

sitive information they aren't trusted with!

In this dissertation we present a three layer approach for mobile systems, which im-

proves the security and privacy of sensitive user data in the modern mobile landscape at

the physical layer, the application layer, and the operating system layer. Because mobile

computing is at the center of several important crossroads, including social networking,

privacy, energy efficiency, and ubiquity, these projects span a wide-range of research

topics. Our three projects are: private and secure location sharing, an ultrasonic modem

for proximity networking, and a preemptive demonstration of a novel attack vector utilizing

physical media covert channels on mobile smart devices. In these projects we attempt

to provide solutions to many important research challenges, and improve the overall to-

pography of mobile computing. We feel that we provide a technical ``voice'' to end-users,

whose wants, needs, and concerns are often not well addressed in this area due to their

lack of technical understanding.

1.1 Problems

In order to improve security and privacy in any domain, we must have an adequate def-

inition for both. We define security as the technical mechanisms used to protect data.

For example, encryption is used as a security mechanism to guarantee that only those

with the appropriate keys (information) can access the protected data. Because encryp-

tion relies on some computationally intractable problem, we can safely assume that it is

impossible for any attacker, with reasonable resources, to break the system and access

the data. Security mechanisms can be complex, like encryption, which offers a variety of

different tools. But they can also be very simple, such as physically isolating the system

from any network access, or using physical locks to protect the hardware holding sensi-

tive data. Designing systems that use several security mechanisms in conjunction with

one another is non-trivial, and presents itself as a primary research challenge throughout

3



this dissertation.

For security mechanisms to be useful, a sane policy must be crafted. In other words,

there must be a set of rules to enforce, using security mechanisms. For example, a

user may not want a social networking site provider to know their social security number.

Conversely, the government needs to share social security numbers with their assignees,

but not with other, potentially malicious, parties . Policies can be set by users, developers,

service providers, or governments. However, each of these parties is likely to choose a

policy that suits them best, without considering the needs of the others. We have seen this

recently with the revelation of the United States government NSA spying programs [29, 44]

and the San-Bernardino FBI--Apple encryption dispute [52]. Similarly to security, privacy

policies are useless if they cannot be enforced. The two rely on each other fundamentally.

Furthermore, designing policies on behalf of several parties with opposing perspectives

is often intricately complex as different users' wants may conflict.

If a system provides satisfactory policies, and adequate enforcement, we say the sys-

tem is private and secure. It is possible for a system to be only secure. This would mean

that the fundamental technical mechanisms that protect the data are sound and cannot be

broken by an attacker. However, as mentioned before, having a secure system that does

not enforce sane policies is not useful, and likely is not meaningful. Indeed, many sys-

tems today may be considered secure, but not private. The canonical example is social

networking, in which user data is highly secure from third party attackers, except that it is

sold to advertisers. This policy may be considered satisfactory by the social networking

site provider and the advertisers, but not by the end users. The notion of a system that is

private, but not secure is meaningless. Privacy is built on top of security.

It is our hope that we can improve the state of security and privacy in the modern

mobile landscape for end-users specifically, but in a way that is satisfactory by all in-

volved. Unfortunately, systems that are considered private and secure by all are not

easy to design or build. Each party has needs, and the systems must remain convenient

and practical especially for end-users. It is unreasonable to expect users to hand craft
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elaborate policies, or to have deep technical understanding of the system. Systems that

are secure and private, but even marginally less convenient will likely never be adopted.

To summarize; our research improves the security and privacy of the mobile computing

landscape at the physical layer, the operating system layer, and the application layer. We

build systems that meet these four goals:

• Privacy - A sane set of rules, a policy, should be set forth that describes who has

access to what data and in what context (i.e., time, place, relationship) in order to

protect sensitive data from malicious parties. Policies may be government laws,

rules enforced by the system itself, or may result organically (data that is not stored

on a computer or publicly posted is inherently private).

• Security - Proper technical mechanisms should be used to enforce these policies.

Popular mechanisms include encryption, information verification (such as check-

sums), and physical locks or barriers. Privacy is built on top of security.

• Convenience - Systems that may be secure and private will usually be passed by

for systems that are convenient for end-users. It is unreasonable to expect users to

craft elaborate policies, or to police the system manually. It is not unreasonable for

users to expect a secure and private version of any existing service, with little or no

sacrifices in convenience.

• Mobility - Our research focuses on mobile platforms. Mobile devices are already

ubiquitous, with smart mobile devices continuing to gain ground, and they carry a

plethora of sensitive information. It is clear that mobile is present and likely the

future of personal computing for years to come.

In the current environment, end users maintain the vast majority of sensitive and valuable

information. Additionally, they are not resilient against attacks, which can harm them

personally. Governments and corporations on the other hand, are organizations that, by

design, limit the liability of those personally involved. While we expect that all parties
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will act somewhat selfishly, putting their own best interests forward, our system focuses

on providing systems that aid end-users most, which are currently at a disadvantage

because they have little influence on the design of the systems they use, and lack technical

knowledge to make properly informed decisions.

A good example of this disadvantage is the permission system used in the Android

operating system. Users can install third party applications and, at install time, the user

is presented with a list of special permissions the application requires to run. These per-

missions allow the application to access sensitive information sources such as the user's

contact list, or hardware sensors. The user can choose to accept these permission re-

quests, and use the application, or not. The user has little influence on the design of the

system, and the granularity of their decision is far to coarse. Furthermore, it has become

apparent that users seldom read or understand these permission system prompts.

1.2 Contributions

In this proposal we make three primary contributions, each of which makes several tech-

nical and research contributions in their own right. We present (1) a service for location

sharing with location based access control to improve the application layer, (2) an ultra-

sound modem on common smart mobile devices for proximity networking at the physical

layer, and (3) we preemptively expose a potential attack based on physical media covert

channels. We also provide a defense mechanism at the operating system level. In the

remainder of this section we elaborate on each of these three contributions.

Private Location Sharing - Ubiquitous mobile devices, along with extremely popular

social media applications have spurred a recent surge in location based services, which

leverage the precise locale of the user. Some examples of these applications include

proximity based dating, cab hailing services, finding directions, and neighbor discovery

based social networking. We focus on providing a specific, location based back-end ser-

vice, while maintaining rigorous privacy and security. Specifically, we propose two dif-
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ferent protocols for private proximity testing, which allow two users to determine if they

are physically near one another, without revealing their actual, precise location to each

other or any third party. Our protocols have two important features that are key to our

contribution. Namely, they are purely distributed, only relying on third parties for blind

message passing. We also are the only work, to the best of our knowledge, to allow

the user fine grained control over what they consider to be ``physically near''. In private

proximity detection, one user, Alice, wishes to learn if she is near a second user (Bob).

Bob enforces a distance requirement Pb; Alice must be within Pb meters of him to be con-

sidered near him. Bob can alter his policy, Pb, arbitrarily between 10m and 160km, and

he can specify different polices for different users or at different times of the day. In im-

plementing our system we overcome several challenges including circumventing network

address translation (NAT) to perform name resolution, fast and private proximity detec-

tion, and practicality concerns such as query rate. We implement both protocols in two

different location based applications to demonstrate their usability. Both of our protocols

are able to determine proximity in under 50 seconds for policies less than 160 kilometers

with ten meter granularity. We believe that private and secure variations of mobile and

social networking services are important for the future of mobile computing and can be

supported by our private proximity detection protocols.

Ultrasound based Proximity Networking - Our second work proposes the use of ul-

trasound as a physical medium for proximity based networking on mobile devices. Prox-

imity based networking is growing in popularity with mobile devices. It is obvious and

intuitive to users that they should be able to share small pieces of information between

their mobile devices when they are co-located. Examples include sharing URL links with

an office mate, mobile payments at retail establishments, and sharing encryption keys to

bootstrap private communication on a second channel. Proximity based networking also

provides some primitive security, in that users must be physically co-located to exchange

information. While there are several existing technologies for proximity based network-

ing, including near field communication (NFC), bluetooth (BT), and WiFi Direct, none of
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them offer the same security and convenience as ultrasound. For example, ultrasound

has an easy to configure range limitation, based on the device's existing volume con-

trols. Additionally, it does not require any special hardware, because all mobile devices

already carry speakers and microphones that support ultrasound. Our system faces sev-

eral challenges including encoding and decoding information in a way that does create

audible artifacts such as beating, and very precise synchronization to accurately recover

phase information. By implementing this system, we provide a valuable and convenient

mechanism for proximity based networking between virtually all mobile smart devices.

Physical Media Covert Channels - In an effort to protect the sensitive information

that is stored on users' devices, we present a preemptive demonstration of a novel attack

vector. Our attack utilizes a new type of covert channel based on physical media. For

example, using the vibration motor as a sender and the accelerometer as a receiver. The

attack runs as follows; an attacker first learns some sensitive information about a victim

by running some code on that victim's smart device. Traditionally it is much more difficult

to move this information off of the device, than it is to access it in the first place. The

attacker encodes this sensitive information in vibration motor timings, and then recovers

the data using the accelerometer, running in another application, to detect and decode

the vibrations. The attacker can then send the information out over the Internet. This

attack is dangerous because the second application can gain access to any information

that is available to the first application, regardless of it's own permission allocations. We

propose several novel covert channels, which are plentiful on smart devices due to their

wide range of sensors and physical world hardware devices. By utilizing these covert

channels, our attack circumvents the state of the art taint-tracking defense schemes to

enable privilege escalation attacks and information leakage. We also improve the mobile

operating system by proposing a defense mechanism against this attack. It is our hope

that by proposing these new covert channels, and giving a first step defense, that more

robust and secure defense mechanisms can be designed.
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Chapter 2

Related Work

2.1 Location Privacy

Several papers propose methods for making location information private that can be ap-

plied to any location based service [87, 66, 13, 31]. These papers obfuscate location and

temporal information, usually based on the k-anonymous measure. Although all of these

systems intend for location based services to still function effectively, they all gradually

erode service quality. As the user's location becomes more and more vague, location

based services become less and less useful. For example, if a user's location data has

been obfuscated to the granularity of 400m, a cab hailing service becomes useless. There

is even literature that offers a framework for choosing the best location privacy system for

the task at hand, [97, 96]. However, even after choosing the best system for preserving

privacy, the location based service may not function correctly or adequately. The idea of

a one-size-fits-all solution to location privacy is, at the least, controversial, as the idea of

obfuscation has been shown to have security drawbacks [104, 51].

Obfuscation, even k-anonymous obfuscation, does not provide adequate privacy when

applied to location information, because attackers can still perform trajectory attacks. Fur-

thermore, k-anonymity does not protect users when they are in a densely populated area.

While it is true the attacker cannot distinguish the user from the many other users near
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her, the attacker is actually given higher accuracy results, because many users are more

likely to be near one another, and the location information needs to only be slightly obfus-

cated to be indistinguishable from other users. The result is that the attacker can learn

your location with only a few meters of inaccuracy.

In order to achieve location privacy while still maintaining the proper operation of lo-

cation based services, we must take each service on a case by case basis. Privacy and

security must be built into the design. This is the goal of [113], [78], and [8]. Each of these

papers attempt to design one specific location-based service in a privacy preserving way.

Mobishare, [113], allows users to share their (authenticated) location values with one an-

other, without allowing any third parties to link user (OSN profile) with location. However,

it requires significant changes to the infrastructure including cellular towers. Our protocol

avoids any changes to the network infrastructure.

There are several papers that focus on a service similar to ours [125, 109, 54, 98, 68,

79, 82, 46]. All of these papers offer the theory behind private proximity testing. Our first

private proximity detection protocol closely relies on Nergiz's et. al., work [69] but makes

a critical improvement, which allows our protocol to run in a much lower time. The main

contribution of our work is a pragmatic, configurable, and performant implementation of

the theory involved in these works. We provide a thorough evaluation, including end-to-

end measurements to ascertain the system speed. The technical challenges here are

the numerous engineering problems and security concerns. Additionally, we show an

extension of our system that allows users to be alerted as soon as their friends are nearby

efficiently. We also provide a second private proximity detection protocol, similar to [83],

that is based on oblivious transfer, using bloom filter data structures.

Other approaches for private proximity detection are also being explored such as the

use of ambient sensor data (such as radio dynamics [120], or background audio [106]) to

act as a shared, location dependent secret. The drawback of these systems is that users

cannot define what they consider to be ``nearby'' with fine granularity, as they can in our

system using Pb. Other encryption systems, such as order preserving encryption, may
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also be used to build a system similar to the one described in this work [77, 5, 35]. We

leave this avenue open as possible future work.

2.2 Proximity and Audio Networking

Our second contribution is an ultrasound modem for proximity networking. Audio com-

munication has been proposed in the past, but these legacy systems are almost always

either audible [26, 59, 60] or designed for use underwater [6, 102, 103, 118]. Although,

one work, [59] does have a section on ultrasound transmission, they work with laptop

hardware, and achieve only 8bps. There has also been a recent proliferation in attempts

to replace NFC by commercial projects [23, 24, 80, 90, 100]. Unfortunately, none of these

projects published technical details, so we cannot compare them to our system with much

granularity. However, two of them advertise concrete bit rates; Zoosh by Narette adver-

tises 300bps [80], and SSCConnect advertises 2.2kbps [90], both of which are much

slower than our system.

Audio is an attractive choice as a networking medium in water, [6, 102, 103, 118],

because its propagation is much better than traditional RF energy. These underwater

audio modems are fundamentally different from our scheme because they don't have

the additional constraints of remaining inaudible for humans, or the limited sample rates

available on typical smart mobile devices . The hardware for under water transmission is

usually custom built.

Some systems which try to use other media for proximity based networking have been

been propose in recent literature [94]. A system called ``Cobra'' was proposed by Hao

et al., [34], which makes use of devices' LCD screens and cameras to transmit data at

roughly 100kbps. Their system produces 2D, five color bar-codes, which are displayed

on the screen of the sender and decoded by the camera of the receiver. Another sys-

tem called ``Pulse'' [42] uses the magnetometer for one-way communication, achieving

roughly 44 bits per second. What we propose in our work may have similar application
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design challenges, but is fundamentally different in that we make use of high frequency

sound as our transmission medium.

In addition to [59], there are three relevant academic works in which ultrasonic audio in

air is used. Hanspach and Goetz [33] re-purpose two existing audio modems by changing

the carrier frequency to 18.6kHz. They incorporate these modems in malware designed

to bridge traditional ``air-gap'' systems. They can achieve at best 20bps at a range of

19.7 meters using two Lenovo brand laptops. Matsuoka et. al. [62] apply a similar OFDM

based modulation scheme to our own, but are only able to achieve approximately 1kbps.

And, a previous Ubicomp paper, AirLink [12], uses ultrasound for data transmission and

also measures Doppler shift to identify the intended receiver. In contrast to these works,

our system is specific to common smart mobile devices, and it easily outperforms all in

speed, achieving greater than 4kbps on a variety of smartphones and scenarios.

In the recent past, work in audio based networking was focused on making the au-

dio tones audible but melodic and more pleasant for the user [59, 60]. However, even

melodic tones are not desirable in all situations. They are also subject to background

noise, which is typically more prevalent for audio in the audible spectrum. Previous work,

``Dhwani'' [88], emits some noise in all of their modulation implementations (OFDMBASK,

QPSK, and 8-PSK) because they operate on 1kHz of spectrum centered on 6.5kHz, and

because they do not make any effort to work around the noises emitted as a result of mod-

ulation. Their system achieves data rates of 2.4kbps with 80% packet success, 1.6kbps

with 95% packet success, and 800bps with 100% packet success using 8-PSK, QPSK,

and BPSK respectively. Because our system uses ultrasonic audio, it is completely silent

and faces a substantially greater technical challenge in modulating without making any

human audible sounds.

There has also been some recent literature on protocols that enable secure, authen-

ticated proximity networking. EnCore [4], Smokescreen [14], BlueID [38], and SDDR

(secure device discovery and recognition) [50] are all protocols for neighbor discovery,

which rely on existing network mediums; Bluetooth, WiFi (ad-hoc / Direct), or NFC. Our
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contribution is to provide a new networking medium that these works can be layered on

top of. It may even be possible to create new protocols designed to leverage the unique

characteristics of the underlying medium. For example, using a long range medium to find

candidates and their distances [124, 127], and then using our ultrasound modem with the

proper sending power to transmit encryption keys only to the nearest n candidates.

2.3 Information Leakage on Smart Devices

In our final work, we improve mobile operating systems by exposing information leakage

through physical media covert channel attacks, and then designing and implementing a

defense scheme to protect sensitive user data against them. Covert channels have a rich

academic history [55, 63]. Butler Lampson first described ``the confinement problem''

[47], in which one entity (the client) must trust another (the server) with some data to

perform some calculation. Ideally, the server would be confined, and unable to transmit

or store the data. Mr. Lampson, however, was unable to envision all the possible ways

that the service may transmit this data. To put our work in the context of the confinement

problem, our work adds new channels by which a confined server can transmit data to

itself, or to another process.

Covert channels on smartphones have been studied previously [11, 92], but to the best

of the author's knowledge, we are the first to propose covert channels that use physical

media, rather than internal / virtual media such as processor workload, cache manipula-

tion, system wide settings, or file sizes.

There are several works [61, 92, 108, 111] that attempt to steal some data from the

user, utilizing a variety of different internal / virtual covert channels to perform privilege

escalation, and circumvent taint-tracking analysis, similar to our work. Our contribution is

unique in that it is the first to use physical media covert channels. These channels are

particularly dangerous, because they are much more difficult to identify as malicious.

Our defense scheme is an extension of the state of the art defense schemes, aimed at
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tracking sensitive information as it flows across a physical media covert channel. Works

on defense mechanisms for the attacks similar to what we propose in Chapter 5 can be

broken into three categories. In the first, researchers propose that we replace sensitive

data with ``mock'' data when feeding it to untrusted applications [7, 37]. These systems

do protect user information, but they erode the quality of benign applications and are

intrusive to users, who must make either a few broad decisions or many small decisions

to protect their data. This goes against our goal of ensuring the user does not have to

make elaborate or complex policy choices to protect their data.

The second category of defense is taint tracking analysis, [9, 22, 28, 45]. In these

systems, sensitive information APIs are marked as ``sources.'' Variables that store this

information (e.g., microphone data, user contacts) are marked as ``tainted.'' The tainted

data are followed through the execution of the program, tainting other data that they effect

explicitly (direct assignment). If tainted information reaches a sensitive sink (e.g., Internet

Socket, IPC, etc.), the flow is stopped and/or the user is notified.

Machine learning is proposed in [89] to identify sources and sinks during run-time.

Their system, ``SuSi'', relies on supervised learning, which means a list of known (manu-

ally tagged as malicious or benign) Android APIs are used to train a classifier. The system

classifies based on features such as method name (i.e., ``get...'', ``put...''), and method

call return type. These taint-tracking systems cannot be naively adapted for use to defend

against our covert channels, because we cannot treat every invocation of a sensor API

with sensitive information, to be malicious. An application may use a device benignly at

one time, and maliciously at another time. For example, an incoming SMS will almost

certainly activate the speaker or vibration motor or both benignly to notify the user.

The third defense mechanism category is alternate permission systems, [25, 56, 93,

112, 119]. These systems are not a good solution to the attack proposed in our work,

because any user interaction with sensitive sources is interrupted with some GUI prompt.

Because so many covert channels can be built, and sensitive information is commonly

accessed on these devices, these prompts would arise far too frequently. Many systems
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propose more fine-grained permissions, [10, 75, 121]. These systems rely on the user

to construct policies, which will stop malicious use cases, but allow benign ones. This,

again, goes against our design philosophy of convenience for the end-user.

Our defense scheme is similar to the recent work ``ASM'' [36]. Both systems hook into

key system events, and then allow application developers or security researchers to define

specific actions that can be taken on these events. We are not able to leverage this work

directly in our implementation because the current ASM implementation does not include

the devices we focus on in our work such as the sensors, speaker and microphone, or the

vibration motor. Our contribution, which ASM encourages, is the specifics of the treatment

once these events occur.
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Chapter 3

Location Sharing with Trust and

Proximity Based Access Control

Users commonly need a mechanism to determine if they are near one another to support

many of today's popular mobile applications. In this chapter two protocols are presented,

which provide this functionality in a private and secure way. We aim to show that private

variants of these applications are possible, thereby improving the security and privacy for

users at the application level.

3.1 Background

Smart mobile devices are now ubiquitous in the developed world. It has been estimated

recently that there are 2.6 billion such devices worldwide, and that the market is becoming

saturated in the U.S. and Europe [58]. Modern smart mobile devices are able to assess

their own location via a variety of techniques including built-in GPS radios, WiFi based

location mapping, and cellular tower triangulation. Because of this, more and more lo-

cation based services and applications are being offered to, and used by, consumers.

Service providers can offer useful location based services such as cab hailing, direc-

tions, nearby friend alerts, fair rendezvous points between friends [8], and simple location
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sharing. Some popular OSNs, such as yik-yak [3] and tinder [2] are centered on the con-

cept of enforcing distance based access control. However, location information is highly

sensitive, and it must be protected and safe-guarded from potentially malicious parties.

Providing these services in such a way that protects user location data, while at the same

time remaining practical from a usability point of view is the core contribution of this work.

Specifically, we aim to provide private proximity detection (PPD, sometimes called pri-

vate proximity testing: PPT) in a pragmatic and highly usable way. In private proximity

detection two users wish to determine if they are near one another, without revealing their

actual locations to each other or to any third party.

Location information privacy is nuanced and location information is highly valuable

to attackers for two reasons. First, using this information, adversaries can perform a

variety of dangerous attacks, which range from mild inconveniences, such as dropping

by for lunch unexpectedly, to targeted advertisements, and a variety of muchmore serious

attacks. An adversary can use location information to more easily steal a user's identity,

determine the answer to common security questions, and even stalk the user. The very

nature of location information introduces the threat of physical harm. It can even be used

by governments to enforce strict, totalitarian-style laws. Secondly, it can easily be used to

derive other information about a person. For example, it is trivial, given a location trace,

to determine the home address of a target victim (the address they are at most frequently

between 12:00am and 7:00am), or their place of work (similarly) [1]. Inferring information

from a location trace can also reveal other, sensitive information when more sophisticated

analysis is employed [15], [85].

Currently, it is common for many location based service providers to require the user

to upload their location information directly to the service provider. This information is then

used to perform some computation, which is vital to their service, and offer some benefit

back to the user(s). This means, however, that service providers have unfettered access

to their users' location data. Unfortunately, services providers are weakly motivated to

protect this information from the world at large, as has been demonstrated in part by the
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NSA privacy revelations [29] and the widespread use of targeted advertising.

Clearly, providing location based services, such as those mentioned previously, in a

private and practical way is profoundly important. However, doing so is not trivial. By

providing a mechanism for private proximity detection, we enable these services to use

our service, and provide the same functionality, without requiring users to expose their

location information to anyone including other users, the service provider, and any third

parties such as advertisers, Internet service providers, or malicious attackers.

Unfortunately, providing private proximity detection for location based, mobile appli-

cations and services is not trivial. The most naive approach to providing location based

services in a secure and private way is simply encrypting user location data before trans-

mitting it to the service provider. Unfortunately, this does little to protect the user, since

the service provider is not necessarily trusted. Additionally, users have very high expec-

tations about the running time and configuration of services and applications they use in

general. These standards are especially difficult to meet for developers on smart mobile

devices, which typically have limited computational resources such as CPU and RAM.

Furthermore, users will have naturally different definitions of ``nearby'' in proximity detec-

tion, which depend on a variety of factors including the exact purpose of the application,

the privacy desires of the user, and the other party with whom their proximity is being

tested. These factors complicate the task of providing private proximity detection. Pro-

viding PPD in a naive way, results in a system that is too rigid, not robustly private, and

most importantly, is not able to run fast enough on consumer grade smart mobile devices.

Compared with previous work, we are the first, to the author's knowledge to investigate

this problem in a specific application scenario. While there is work on private set inter-

section, and proximity detection in general, we investigate the research issues that arise

was attempting to provide these services to users in a pragmatic way. Specifically, we

overcome limited CPU and memory resources, we provide reasonable message passing

and reference finding systems, and we allow for a configurable system, which allows the

users to specify, online, what they consider to be ``close'' or ``nearby.''
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Our system, nearpri, aims to offer location proximity detection in a convenient, privacy

preserving, and secure way. Specifically, we build a system which allows a user, (Alice),

query another user in her social network, (Bob), to see if they are near one another. Our

system, without exposing location information to either party, or the OSN provider, allows

Bob to test if Alice is within a certain distance of him (private proximity detection). We

refer to this distance as Bob's policy Pb. If Alice and Bob are not within Pb meters of one

another, both parties learn only this fact. If they are within Pb, then Bob learns this, and he

can optionally share this information with Alice or the service provider. Our system allows

for every user to maintain their own policy. By requiring that users are near Bob, we

provide a secure variant of what is the core of many popular mobile services today. We

protect Bob's location information from his friends (or malicious peer users), the service

provider(s), and any other, possibly malicious, third parties. Alice, although participating

in the private proximity detection protocol, does not reveal her precise location. Only Bob

learns anything about her, and he only learns whether or not she is less than Pb meters

from him.

In this work we provide two distinct private set intersection protocols, each used to

support proximity detection. Our protocols are flexible, in that each user is able to maintain

their own policy. Users can change their policies online, and can even assign different

policies for different queriers, or at different times. Our protocols are also fast in the

face of limited computational resources, common to smart mobile devices. We make the

following key contributions:

• We present the design of two private proximity detection protocols, which allow one

party to determine, privately and securely, if a second party is within a certain pre-

determined, user-configurable distance. Our first protocol is based on homomorphic

encryption, and the second is based on oblivious transfer.

• We give two application examples, each making use of private proximity detection,
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to show the viability of enhancing the security and privacy of user locations in loca-

tion based applications such as yik-yak [3], and tinder [2]. Our applications demon-

strate the practicality of our implementations and are described in Section 3.5.

• We present a novel and elegant method of discretizing GPS coordinates for use

in our system. We utilize a binary tree data structure, with a novel construction

method, which allows us to support policy granularity as small as 10m.

• We build and evaluate a working implementation of both protocols. We put in great

effort to make our systems practical and usable. Our evaluation shows that our

protocols are fast, do not require modification of any infrastructure, and do not leak

information to any third parties.

3.2 Problem Description

Private proximity systems allow one user, Alice, to query another user, Bob. For our

specific implementation, it must be determined if Alice is within a certain range of Bob,

called Bob's policy, Pb. Every user in the system defines their own policy, which may be

changed at any time, but must remain static while the protocol is running. Determining if

Alice is within Pb, without revealing the location of either user to the other, is our definition

of private proximity detection. Below we define the problem in greater detail.

At all times, every user has a current location; a 2-tuple of that user's geodetic GPS

coordinates < lat, lon >. Where lat ∈ R in the range [−90, 90], and lon ∈ R in the range

[−180, 180]. Each user also maintains their policy, Pb, which is a factor of ten meters

in the range [30m, 20000km], (20000km ≈ 1
2 the Earth's circumference). The goal is to

determine if Alice's location is in the circle centered at Bob's location, with radius Pb.
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To facilitate this, we divide the earth into a grid based on the longitude, latitude coor-

dinate systems as shown in Fig. 3.1. Specifically, we descritize the grid with a granularity

of 10m. Bob's location and policy define a spherical ``cap'' (circular area on a sphere),

which is then approximated using grid squares. Because the squares only approximate

the spherical cap, they introduce some error. Thankfully, this error is negligible and grows

smaller as the policy grows larger. This is because a larger policy requires more squares

to represent, and like pixels on a computer screen, the squares approximate the circular

shape better.
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Figure 3.1: Geodetic grid and spherical cap. A small error is introduced due to the difference
between the theoretical circle, centered at Bob, and the squares used as an approximation.

3.2.1 Assumptions

We assume that Alice and Bob are curious but not malicious. They will follow the pro-

tocol correctly, but once the protocol has ended they can perform any computation they

want on the information (encrypted or otherwise) acquired. In related work this is usu-

ally referred to as ``semi-malicious'' or ``honest but curious.'' We do assume that users

cannot forge their GPS coordinates, which obviates the possibility of many attacks such

as [122]. While it is possible for users to forge their location using applications or the An-

droid developer tools, it is detectable. Either the user has modified the developer option

``Allow Mock Locations'', or the user has root access on the device [18], which is techni-

cally challenging for typical consumers, and very difficult to be made undetectable even

for experts. Although we did not implement these checks in our application, adding them
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would be trivial.

3.3 System Design

In this work we present the design and implementation of two proximity detection proto-

cols. Both designs are fully distributed, as depicted in Fig. 3.2. All computation is done

on the users' mobile devices. However, the clients do connect to a third party, centralized

server for message passing. (Facebook Chat in the first system and a custom message

passing server in the second). By doing this, we do not have to do name/address res-

olution of clients directly, we easily circumvent NAT and firewalls, which block incoming

connections, and for the case of Facebook, messages are stored when users are not

online, allowing users to be temporarily ``unavailable.'' Despite the fact that our system

sends messages over the Internet, and/or directly through the Facebook, user location

information is never leaked.

Internet

Facebook

Figure 3.2: Physical Setup. Phones communicate by sending messages, over the Internet, in the
Facebook chat API to one another.

3.3.1 Homomorphic Cryptography

Homomorphic encryption takes a foundational role first PPD protocol. We use Paillier

encryption, in which the following equations hold true.

D[(E(m1) ∗ E(m2))%n2] = (m1 +m2)%n (3.1)

D[(E(m1)
m2)%n2] = (m1 ∗m2)%n (3.2)
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D[(E(m2)
m1)%n2] = (m1 ∗m2)%n (3.3)

Here E() denotes Paillier encryption, D[] is Paillier decryption, n is the product of two

large primes, p and q, and mi is the plain text message encoded as an integer. The

implications of equations (3.1), (3.2), and (3.3) are very useful. Computation can be done

with encrypted values that translates to operations in the plain text domain. This allows

parties to do blind computation on encrypted values. For more information on Paillier

encryption, including key generation, please refer to [114].

3.3.2 Main Idea

In order to better understand the first protocol, we first introduce a simple example. Alice

wants to determine if she is within Pb of Bob. Bob is willing to participate in the test, but

only if it is guaranteed that he will not reveal his location. In order to achieve this, we

begin with two sets of location values α and β, which correspond to latitude and longitude

respectively.

As a user moves North or South across the surface of the Earth, we can think of

their location in terms of latitude values. However, we have discretized these values into

10m wide ``regions'' or ``bands'' which we number uniquely. These numbers comprise

the set β. Similarly, when moving West or East the user moves across discrete longitude

bands, which are uniquely numbered to form the set α. This is easily visualized in Fig. 3.3.

Because the latitude line selected has an impact on the distance between longitude lines

(more at the equator, less near the poles), the number of elements in this set (discrete

locations) varies. However for both α and β, every location represents at most 10m of

area. By overlaying these two, we arrive at the grid show in Fig. 3.1.

In order to determine if Alice is near Bob, Bob builds two subsets, one from α and the

other from β. Bob's subsets contain the location values (ID numbers) of all the locations

(bands / grid squares) in the range [Lb−Pb, Lb+Pb]whereLb is Bob's location (longitude or
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Figure 3.3: Latitude and Longitude bands. Note: in our implementation the bands are closer
together than as shown (10m distance at the most).

latitude). Alice builds two singleton sets, each containing the location value corresponding

to her latitude or longitude regions respectively.

If Alice's latitude and longitude singleton sets intersect with Bob's corresponding sets,

we know that Alice must be within Bob's policy, Pb. Determining if one of Alice's singleton

sets intersects with Bob's set is trivial if Alice and Bob can share their values with one

another. However, our goal is to hide their locations. In order to do this, Bob generates

two sets of several, degree one, polynomials. One set of polynomials are rooted at his

longitude set values, and the other; his latitude set values. Specifically, each polynomial

is rooted at one values in the range [Lb−Pb, Lb+Pb]. This can be seen in Eq. (3.4) where

each Ci is equal to a corresponding band / region ID number.

(X − C1), (X − C2), ... (X − Cn) (3.4)

Bob sends the encryption of the negated coefficients (E(−Ci) ∀i ∈ [1, n]) from these

polynomials to Alice. Referring to Eq. (3.1) we can see that Alice can evaluate the polyno-

mials at her singleton set element's value, La, even though she only has the coefficients

in cipher-text by using homomorphic encryption.

D[(E(La) ∗ E(−Ci))%n2] = (La − Ci)%n (3.5)
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Therefore, Alice computes E(La) ∗ E(−Ci)%n2, and sends back the resulting value

to be decrypted by Bob. If the decrypted result is 0, Bob knows that Alice's value La = Ci

indicating that Alice's set intersects with Bob and that Alice is near Bob. This process is

repeated once for longitude and then again for latitude.

3.3.3 An Improvement

If Bob uses every node in the range [Lb − Pb, Lb + Pb], the protocol will not scale well as

Bob's policy increases, because Bob will generate potentially thousands of polynomials.

This is demonstrated in our evaluation in Section 3.8. To solve this problem, we use a

binary tree to reduce the size of Bob's set, which is inspired by authors A.E. Nergiz et.

al., [69]. For the following we perform everything identically twice, once for longitude and

again for latitude. We begin by taking the set of longitude (latitude) location values, β (α),

and use these as the leaf nodes in a binary tree.

The leaves are uniquely numbered, from N, using the ID numbers of the set elements

(the band/region numbers). The values used for the tree nodes above the leaf level are

chosen carefully so that every node in the entire tree is numbered uniquely. For a given,

non-leaf node, value = leftChild + 4003017. If the node does not have a left child, then

value = rightChild+(4003017−2h−1) where h is the current height in the tree. 4,003,017

is used because that is the largest longitude leaf node value. 4,003,003 is used in the

latitude tree. This guarantees that any node at level h will be greater than any node at

level h − 1 and that all nodes will be uniquely numbered. When building the parent of a

particular node, we must know the orientation of the branch connecting these two nodes.

Due to the careful choice of the node values above the leaf level, the correct branch

directions are encoded in the binary representation of the leaf nodes' values (0 is used

to represent a rightward branch, and 1 represents a leftward branch). This allows us to

build only a segment of the tree, efficiently, from the leaf level up.
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10860534

68575176857515

2854497 28545002854498 2854501

2854499

A B

6857513

10860530

14863547

Lon: 76.71126

Figure 3.4: Example tree segment (longitude only). The tree was generated by Bob at 37.2710,
76.71126, and Pb = 10 meters. Bob's wall set = {2854497, 6857515, 6857517}. Alice's path set
= {2854499, 6857515, 10860530, 14863547, ...}. Node 6857515 can be generated from the left
child or the right child. 6857515 = 2854498+4003017 = 2854499+(4003017−21−1). The leaf node
at longitude 76.71126 generates 2854499 ≈ 76.71126+180

0.0000899321 .

3.3.4 Utilizing The Binary Tree

Alice and Bob each construct two binary trees in this way, one for their longitude and

another for their latitude values. Bob uses a subset of nodes from this tree to use as roots

for constructing his polynomials. We refer to Bob's subset as the wall set. The span of a

node is the set of leaf nodes which can be reached as children of that node, (i.e., can be

reached by following depth first search from that node). Bob's wall set is the set of nodes,

highest in the tree, with spans that collectively cover all of, and only, the elements in Bob's

range, [Lb−Pb, Lb+Pb]. Bob uses the values from the wall set to build his polynomials. It

might seem obvious that the root node alone would be an adequate (singleton) wall set.

However, the root node often spans a larger range of leaves than Pb allows. In Fig. 3.4,

Bob's wall set = {2854497, 6857515, 6857517}.

We refer to Alice's subset as the path set. The path set is simply the set of nodes

connecting her location, (leaf node) to the root node. In Fig. 3.4 Alice is located at node

2854498 so her path set = {2854498, 6857515, 10860530, 14863547, ...}. Alice's path

set actually extends further than is depicted in Fig. 3.4 but these nodes are omitted for

brevity.

The intuition behind these two sets is that Bob's set forms a wall, (the dashed line in

Fig. 3.4). Alice's path set will necessarily break through this wall if Alice is within Pb of
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Bob. In Fig. 3.4 Alice's and Bob's sets intersect at node 6857515. The value at which the

two sets intersect is an element of Bob's wall set and therefore, a root of one of Bob's

polynomials.

3.3.5 Putting It All Together

Prior to the protocol running, Alice constructs her latitude and longitude trees and derives

her path set node values for each. Then, when she wants to query Bob, she sends a

simple message initiating the protocol. Bob constructs his trees and corresponding wall

sets. Then, Bob encrypts the negated coefficients of the polynomials (rooted at his wall

set values) and sends the encrypted coefficients, along the public key he used, back

to Alice. Alice, uses the encrypted coefficients to re-create the polynomials, and uses

homomorphic encryption, along with Bob's public key, to encrypt her path-set values, and

evaluate the polynomials using them. Bob also includes information about the height in

the tree of each coefficient. The height information is useful to Alice because without it,

she does not know which of her values to use as input to the various polynomials and

the method proposed in [69], is too slow. In the worst case, she must evaluate every

polynomial at every one of her location values, approximately O(n2) work. Using the

height information, she can reduce the search space, because she now knows which

of her values correspond to which polynomials. So, she uses the height information to

evaluate each polynomial only once, using her path set node at the corresponding height.

Alice sends the polynomial evaluations, (encrypted), back to Bob, who can decrypt them.

Bob decrypts these values and, if any value decrypts to zero, Bob knows that his wall

set and Alice's path set intersect at this point, and that she is within his policy. This is

repeated once for longitude and again for latitude.

When the policy testing is completed, Bob sends a message back to Alice indicated

that they have passed the proximity test. Optionally, a third party service can also be

notified, in order to provide some functionality such as hailing a cab for both users.
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3.4 Alternate Approach

In our evaluation in Section 3.8 we show that our system is able to process queries in the

order of tens of seconds. This is because of the expensive multiplication and exponenti-

ation of large cipher text values as well as the limited transmission rate of the Facebook

message passing system. Due to the limitations of this approach, we also present a sec-

ond PPD protocol designed to achieve the same goal. This second protocol is a key

contribution different from our previous work [71].. In this section, we detail the second

private proximity detection protocol, which utilizes bloom filter data structures and oblivi-

ous transfer to process queries more quickly in order to be more practical for end users.

First, we provide some background on these two tools.

3.4.1 Bloom Filter and Oblivious Transfer Background

1 2 3 4 5 6 7 8 9 10 1411 12 13 15 16 17 18 19 20

1 10 0 1 10 0 0 0 0 0 0 0 0 0

{2, 6, 9, 11}

1 1 1 1

path set: 

BFa

Figure 3.5: Example bloom filter. The map set of element 6 = {5, 7}.

A bloom filter (BF) is a relatively simple data structure, which is used to identify the

elements of a set. BFs are very efficient for inserting elements, and verifying if an element

is a member of the set, but there are also a few drawbacks. A BF is represented by an

array of m bit values, all of which are initialized to zero. In order to insert an element,

that element is hashed by k different hash methods. The output of each hash method

(modulus m) points to an index in the array, which is then changed from 0 to 1 (values

that are already 1 remain unchanged). The collection of all the index values for a particular

element we call the ``map set'' of that element. In order to test if an element is a member of

the set, that element is fed into the k hash functions to get the map set, similar to insertion.
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However, instead of flipping these k locations to 1, the current values are inspected. If

all of these values are 1 already, then the element is known to be in the set. An example

bloom filter is illustrated in Fig. 3.5 with k = 2 hashmethods,m = 20 bits, and the elements

of the set {2, 6, 9, 11} have been inserted.

Because there are onlym bits, and the index values used are modulus thism, there is

a relatively high chance of collision. In other words, the map sets of two different elements

may have a non-zero intersection, and a single map set may have duplicate elements.

Because of this, BFs are a probabilistic data structure in that they sometimes return false

positives when checking if an element is a member of the set. Secondly, BFs do not store

the data of the elements inserted, they only store the information about whether or not an

element has been inserted.

Oblivious Transfer (OT) protocols allow a sender to transmit part of its data to a sec-

ond, ``receiver'' party, in a manner that protects both of them. To understand OT concep-

tually, imagine the sender party has two pieces of information A and B. The sender is

willing to reveal A or B, but not both (exclusive OR). OT allows the receiver to read A or

B but not both, and the sender does not learn which value the receiver has read! This is

commonly known as ``one-out-of two'' OT. The receiver must commit to a bit value, which

determines which value they will read (e.g., 0 for A and 1 for B). In this work, we imple-

ment an OT protocol similar to that described in Naor's and Pinkas' seminal paper [67].

As described in this work, OT requires a group Gg of order q, which is a sub group of

Z∗
p where g is a generator, p is prime and q is coprime to p. To provide p, q, and g, we

use a DSA key pair. In our implementation, the sender builds an n X 2 matrix essentially

comprised of n ``one-out-of-two'' oblivious transfers. Because each row is an instance of

``one-out-of-two'' OT, the receiver will specify a ``selection bit'' for each row, to determine

which of the two values to access. We refer to all of these selection bits collectively, as the

``selection vector'' or ``sel.'' Although the sender will send the entire matrix (encrypted),

OT guarantees that the receiver will only be able to recover one of the two values in each

row of the matrix. If the selection bit for that row is ``1'', the receiver can recover the value
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in the first column, and if it's ``0'', the second column. As stated before, the sender will

not know which values the receiver actually recovers. For more detailed information on

the nature of OT, please refer to [67].

3.4.2 BF and OT design

Our second approach is much faster for two reasons. First, because it does not rely on

expensive homomorphic computation (specifically, multiplication as seen in Eq. 3.5 and

exponentiation as seen in Eqs. 3.2 and 3.3 on large cipher-text values) the computation is

faster. And, second, because we use a traditional TCP / IP server, with a custom server

middle-man implementation, we are not limited by Facebook's messaging throughput.

However, the setup is very similar. Alice generates her path set and Bob generates his

wall set based on a longitude and latitude binary tree as described in Section 3.3.3. At

this point, the goal is for Alice and Bob to privately determine if these two sets intersect.

We now diverge from the original protocol. All of the following is repeated twice. First for

latitude values, and then again for longitude values.

Alice and Bob each generate a total of three BFs, all of which use the same k hash

functions, and have the same lengthm. Alice generates one BF,BFa, in which she inserts

all the elements of her path set. Bob generates two BFs, BFb0, and BFb1. In BFb1, Bob

inserts all the elements from his wall set. Then, Bob generates a new temporary set

consisting of all the possible path set nodes that Alice may have, assuming Alice is near

Bob, i.e., within Bob's policy. We call this set the super path set. In Fig. 3.4, the super

path set would consist of all the nodes shown, because Alice may be at any of the leaf

nodes shown in the figure. These elements are inserted into BFb0. The key insight here

is that, at this point, assuming Alice is near Bob, he can use BFb1 to find indices in BFa

that must be set to 1 and similarly BFb0 to find indices in BFa that must be zero.

An illustration of the bloom filters (k = 2 andm = 20), along with a simplified example

tree segment, is given in Fig. 3.6. Here Alice is at node 2, so her path set = {2, 6, 9, 11},
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which are each inserted into BFa. Bob is located at node 3 ,and his policy only includes

nodes {2, 3, 4} therefore his wall set is {2, 7}, which are inserted into BFb1. In order to

intersect with Bob, Alice must have either node 2 or 7 in her path set. Therefore, the

mappings of either 2 or 7 must be 1 in both BFb1 and BFa. To find the elements for

BFb0, Bob finds all the nodes in all possible path sets. In other words, Alice may be

at node 4, with path set {4, 7, 10, 11} or she may be at 3, with path set {3, 7, 10, 11} or,

she may be at 2 (in fact she is at 2) with path set {2, 6, 9, 11}. The union of these sets

{2, 3, 4, 6, 7, 9, 10, 11} is used to fill BFb0. Alice may be at node 1, but in this case Bob

would not consider her nearby, so this case is not included (similarly with 5). Because

Bob has added any possible location of Alice, assuming she is nearby, any bit in BFb0

that has not been flipped to 1, should similarly not have been flipped inBFa, and therefore

Bob can use BFb0 to indicate places in BFa that should be 0.

1 2 3 4 5 6 7 8 9 10 1411 12 13 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10 1411 12 13 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10 1411 12 13 15 16 17 18 19 20

1 10 1 10 0 0 0 0 0

1 10 0 1 10 0 0 0 0 0 0 0 0 01 10 0 0 0 0 0 0 0 0 0 0 0 0 0

wall set: {2, 6, 9, 11}

1

{2, 3, 4, 6, 7, 9, 10, 11}

1 1 1 1 1 1 1

1 1

01

1 1 1

1 2 3 4 5

6 7 8

9 10

11

BA

{2, 7}

0 0

path set: 

super path set:

BFb1

BFb0

BFa

Figure 3.6: Example BFs and tree segment. Because the element 2 is present in BFb1 and BFa,
then the 1's in BFb1, from the map set of 2, correspond to the same locations in BFa. Additionally
for any 0 location in BFb0, the same location is 0 in BFa.

3.4.3 Protocol

From this point on, Bob must present several challenges to Alice about the contents of

BFa. However, in so doing, he must a) not reveal any information about his own location,

and b) assure Alice that he is not learning her location unless they are near one another.
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In order to do this, oblivious transfer (OT) is used. An illustration of the protocol is given in

Fig. 3.7. Throughout this section, we give the high level steps from Fig. 3.7 in form: ..X .

First, Alice establishes a connection with the middle-man server and sends an ``a''

query indicating to the server that Alice wants to connect with Bob specified by ip_addr
..1 . The server then establishes a forward such that any data sent from Alice will be

redirected to Bob and vice-versa, any data from Bob will be redirected to Alice.

Then Alice creates a DSA public key and sends the components, p, q, and g to Bob.

Bob creates a subset of bloom filter index values we call the ``selection table'' and a

selection vector, illustrated in Table 3.1, which he sends back to Alice ..2 . We use BF y
bx

to denote the index of the yth ``1'' (``0'') in BFb1 (BFb0). Bob chooses 4 ∗ k ∗ l spots in

total where l is the size of Bob's wall set, and k is the number of hash functions used in

the various BFs. k ∗ l of these indices will be index locations in BFb1 that contain a 1 and

another k ∗ l are locations in BFb0 that contain a 0. Then, another 2 ∗ k ∗ l are random or

``fake'' indices. All 4 ∗k ∗ l values are randomly shuffled into the selection table (right side

of Table 3.1), with the corresponding selection vector (sel). It is important to note that the

selection vector determines the location of the real value in the table. The selection table

is then sent to Alice, excluding the selection vector. In the example in Table 3.1 BF 1
b1 = 2,

and BF 2
b1 = 4 because the 1st element in BFb1, 2, maps to indices 2 and 4 according to

the BFs given in Fig. 3.6.

1 0 sel

2
∗
k
∗
l



BF 1
b1 fake 1

BF 2
b1 fake 1

fake BF 3
b1 0

fake BF 4
b1 0

BF 1
b0 fake 1

fake BF 2
b0 0

fake BF 3
b0 0

BF 4
b0 fake 1

shuffle−−−−−→

1 0 sel
fake BF 3

b0 0
BF 2

b1 fake 1
BF 1

b0 fake 1
fake BF 4

b1 0
BF 1

b1 fake 1
fake BF 2

b0 0
BF 4

b0 fake 1
fake BF 3

b1 0

Table 3.1: Example selection table of index values. On the left, the table is constructed in two
columns of 2 ∗ k ∗ l values. The selection vector is given in the third column. The table is then
shuffled (on the right) and sent to Alice, excluding the selection vector.

At this point, Alice uses the received selection table of index values to lookup bit values

in BFa and places the corresponding values from BFa in a ``bit value table''. For the
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example in Fig. 3.6 and Table 3.1, Alice's bit value table is given in Table 3.2.

1 0 sel
fake BF 3

b0 = 9 0
BF 2

b1 = 4 fake 1
BF 1

b0 = 1 fake 1
fake BF 4

b1 = 14 0
BF 1

b1 = 2 fake 1
fake BF 2

b0 = 6 0
BF 4

b0 = 18 fake 1
fake BF 3

b1 = 12 0

−→

1 0
1 or 0 0
1 1 or 0
0 1 or 0

1 or 0 0
1 1 or 0

1 or 0 0
0 1 or 0

1 or 0 0

Table 3.2: Alice's bit value table (right side) derived by looking up the bit values of BFa given the
indices in the selection table (left side) provided by Bob. Example: BF 3

b1 is the first hash location
of element 7 in BFb1, which is 12. Index 12 in BFa = 0.

Alice generates a random value CiϵZq for each row of the matrix and sends these

values to Bob. Bob then chooses a random 1 ≤ u ≤ q and creates two public keys

PKσ = gu and PK1−σ = Ci/PKσ for every row of the matrix. Here σ = selection bit at

row i. For each row, PK0 is sent to Alice, which she can use to compute the missing

PK1 = C/PK0
..3 . She chooses two random numbers r0 and r1 and, using the table of

bit values, encrypts the left column as E1 and the right column as E0.

E1 = gr1,H(PKr1
1 )⊕ val (3.6)

E0 = gr0,H(PKr0
0 )⊕ val (3.7)

Here, H() is a hash function and val is the value from the corresponding spot in the

table of bit values. The values are sent to Bob, and he can then compute H((grσ)k) =

H(PKrσ
σ ) and uses it to decrypt Eσ

..4 . Here σ is the bit from the selection vector for the

corresponding row being decrypted. The selection vector (known only by Bob) determines

which parts of the encrypted table Bob can recover. That is, for each row, if the selection

vector bit is 1, Bob can only decrypt the left column value, and if it is 0, he can decrypt

only the right column value. Because Alice does not know the selection vector, she cannot

deduce which values are fake and which are real. Bob then ensures that for one of the

values in his wall set, all of the corresponding bit values (the entire map set) are ``1'',

indicating an intersection and alerting Bob that Alice is near him.
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Figure 3.7: OT Protocol. First Alice sends a message to the third party server to establish a
forward to Bob. Then, the OT protocol, as described in [67] is carried out using an DSA key.

This is repeated once for latitude and then again for longitude values and if Bob finds

that there is an intersection in both cases, then he knows that Alice is nearby. He can

now safely transmit his precise location to Alice (encrypted).

3.5 Applications

We propose two applications, which we use in our evaluation in Section 3.8. In the first

application, (App1), Alice wants to learn Bob's location. However, Bob will only reveal

his precise location to Alice if he can verify that Alice is within a certain distance of him.

Private proximity detection is first used, using one of the protocols described previously,

and, if Bob can verify the distance between Alice and himself is less than Pb, then he

encrypts his location with Alice's pre-published public key, and sends the ciphertext to

Alice for decryption. Location based access control of Bob's location makes sense in this

application because Bob is relatively safe from targeted attacks, as the attacker effectively

must guess a location near Bob, in order to learn Bob's location. The application is similar
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to other popular applications such as Tinder [2], which displays users to one another if

they are in roughly the same area. However, it is private where Tinder is not.

Our second application (App2) is friend co-location notifications. Alice maintains a list

of friends, in her social network, for which she would like to receive a notification when they

become near her. In this application, one instance of private proximity detection is run

repeatedly for each of her friends, in parallel. When one of the protocol instances reveals

that the friend is near Alice, a notification is raised and Alice can contact that person

directly to meet up. It is important to note that the nearby threshold is set individually by

Alice's friends (various Bobs), which allows them to maintain respective levels of varying

privacy. The feasibility and practicality of our protocols in supporting these applications

is explored in our evaluation.

3.6 System Design Challenges

Pre-computing EncryptionKeysOur system relies heavily on encryption for both private

proximity detection protocols and applications. In order to speed up our system, our client

software automatically pre-computes encryption keys, storing them in memory for use

later. As soon as the application is started, keys are generated in a low priority background

thread and stored in memory. The key generation thread sleeps between generating keys

and the sleep time grows exponentially with the number of keys already in storage so that

the system does not generate a surplus of keys, wasting memory.

Avoiding Unnecessary Array Copy Java provides many convenience methods and

tools, which ease development, but can cause significant performance issues. In our im-

plementation, we initially used an ArrayList<TreeLeaf> to store the leaf-nodes (a custom

class) when creating the binary tree. We first generate the leaf node corresponding to

the user's location, then we generate a number of leaf nodes to the left and to the right

of the user's location node. Because the nodes on the left are inserted into the ArrayList

using ArrayList.insert(0, newNode); the ArrayList implementation performs an array copy
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on every insertion. We then updated our implementation to avoid situations like this, by

using primitive TreeLeaf[] data structures and iterating through the array in order.

3.6.1 Messages

In any distributed system, it is assumed that nodes can send messages between one

another. In our intended use case, the nodes are smartphones, which typically a) change

IP address frequently and b) are commonly behind firewalls, network address translation

(NAT) and other port blocking network infrastructure. Therefore, it is very challenging for

two arbitrary devices to establish a TCP connection with one another. In this chapter we

propose two solutions to this problem.

Facebook Messenger In our first solution, we allow the clients to connect through the

Facebook Chat API, depicted in Fig. 3.2. By doing this, users can do name/address reso-

lution using the real names of their friends in the Facebook social network. The Facebook

Chat protocol is built on top of the Extensible Messaging and Presence Protocol (XMPP),

which features, among many other things, guaranteed delivery of messages. Users start

the application, set a username and password, and are able to log in to Facebook Chat

using our application directly. Once the user is logged in, they can be make queries

and be queried by others who have installed the application. Unfortunately, Facebook

enforces a 1000 character limit on messages on their XMPP Chat protocol, which we dis-

covered empirically. In order to circumvent this limit, we are forced to split messages into

1,000 character packets, which we encode using a base-32 encoding scheme for better

efficiency.

When packets arrive, if the user is currently logged into Facebook chat using our ap-

plication, the application will parse the packet. To distinguish our packets from normal

usage, we prepend our messages with a special symbol: ``@@''. When Bob sends mes-

sages to Alice, for the first private proximity detection protocol, they are in the form:

< @@T : sess : E(C1), h1, ..., E(Cn), hn, pk > (3.8)
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Here, @@T is the packet type T preceded by our implementation's special character,

and sess is the session number. Each E(Ci) is the i-th encrypted coefficient, and each hi

is the corresponding height. pk is Bob's public key, which Alice uses to encrypt her path

set values to perform the homomorphic computation of the polynomials. The type number

T allows the receiver to determine what stage of the protocol this packet is intended for.

For example, a type 2 packet contains the encrypted coefficients from Bob's longitude

polynomials. Nine different parcket types are used to handle the different stages of the

protocol, which are omitted for brevity.

Third Party Server Messenger Alternatively, we implemented a simple third party

server used for message passing only. Because the server does not move, it can be

given a static, public facing IP address and ports can be open specifically for our intended

application. Then, both clients connect to the third party server, which simply forwards

messages between the two clients. In order to establish a connection, two clients first

must open a TCP connection with the server. Then, the server provides a simple protocol

for selecting another user (Bob) to initiate a query with. Once one user (Alice) selects

another (Bob) the message forwarding begins. Our messenger server, used in our eval-

uation, is implemented as a python script, running on a departmental machine.

Bloom Filter Configuration In our implementation of the second protocol, the bloom

filters used are probabilistic, and some parameters must be chosen including how many

bits are used in each bloom filter, and how many hashes are used to insert an element.

We found empirically that using m = 262144 bits (32 KB) and k = 2 hashes results in a

false positive rate (FPR) of 1.6 ∗ 10−8 for BFa, 2.8 ∗ 10−9 for BFb1, and 5.6 ∗ 10−6 for BFb0

on a typical 300m query. BFb0 has the worst FPR, because it is holding the, much larger,

super path set.
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3.7 Security Analysis

The goal of our system is to provide a private and secure PPD service. This section

analyzes the security of the system from the different perspectives of the parties involved.

Our protocols have one minor limitation, because the proximity detection is handled

in two rounds. When the first round has finished, Bob can determine whether or not Alice

is within Pb in longitude only. At this point, information has been leaked to Bob, who

should only learn location information about Alice if she is near him in both longitude

and latitude. He can fool Alice by continuing the protocol regardless of the result so she

cannot infer anything about Bob's location. Fortunately, the information exposed to Bob

is limited. He knows that Alice is within Pb of Bob in longitude only. As a result, he can

guess she is in a 2 ∗ Pb wide vertical band, centered on him, of latitude values all the

way around the Earth. This disclosure is relatively mild. There are still millions of latitude

values to guess. Due to the weak disclosure of this issue, we felt it unnecessary to modify

the system. We have implemented a trivial amount of protection in that the client software

does not reveal any information to the user until the protocol has finished. Only at this

point can it be confirmed that Alice is within Pb in both longitude and latitude.

We can solve this problem completely if we represent all the permutations of all pos-

sible < lat, lon > pairs in a single tree. This is substantially different then the current

system, which creates two trees, because determining which leaf nodes are within Bob's

policy becomes much more complex. Due to the complexity, the significant difference

from our current system, and the relative insignificance of the information leaked, we did

not attempt this approach.

Messenger Service Messages are passed in-band (i.e., over the social networking

service or third party server). We assume that the social network provider can see and

read all messages. However, information is not leaked to the provider, because our

system maintains that the sensitive contents of all messages are encrypted, and new

key pairs are generated for each query. The social network provider (or any message
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provider) may attempt to perform IP geolocation. However, IP geolocation is coarse

grained, and easily circumvented using IP address obfuscation techniques such as TOR

or a VPN. While the messenger service is able to launch a man-in-the-middle attack,

we can prevent this using some standard authentication mechanism, which is out of the

scope of this work.

In the worst case, the messenger service can sabotage the protocol by scrambling

messages or refusing to send messages. However, determining which messages are

related to the protocol, and which are simply users conversing, comes down to identifying

which messages are cipher-text and which are plain-text. This is non-trivial on a large

scale and yields little reward. Therefore, it is not practical for the social network provider

to do this. The third party messenger server may have a variety of different owners.

In fact, the user themselves may choose to maintain one. Because of this, we cannot

speculate on what the owner may consider ``practical'' but, at the same time, users can

simply choose to use a different server if they find one that is unreliable or they feel it

cannot be trusted. If a message passing service attempts to tamper with messages, by

modifying or inserting data, this can be detected using simple checksums such as parity

bits. Because the transmissions are encrypted, the service will not be able to modify the

message in a meaningful way and modify the checksum appropriately.

Alice In the first protocol, Alice receives, from Bob, the coefficients for a polynomial

rooted at Bob's wall set values. However, they are encrypted and, therefore, incoherent to

Alice. If these coefficients were in plain text Alice could easily determine the roots. Alice

may cache the encrypted coefficients sent to her in queries (from Bob). She might then

recognize the encrypted coefficients sent to her in future queries. This would only occur if

Bob was at the same location, with the same policy, and using the same key. Fortunately,

in our system we generate a new key for every query. By doing this we significantly de-

crease the likelihood of one user recognizing another re-using the encrypted coefficients

from a previous query. Bob also reveals height information about each coefficient to Alice.

Alice may be able to deduce Bob's policy from this height information, (larger heights indi-
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cate a larger policy), but this disclosure is minimal and does not indicate to Alice anything

about Bob's location.

In the second protocol, Alice only receives the selection table, and a collection of public

keys (PKi's). The selection table partially reveals to Alice which nodes may be present in

Bob's wall set, partially revealing his location. She can brute force the solution by inserting

every possible tree node value into the bloom filter and matching the resulting locations.

However, because Bob inserts an equal number of arbitrary locations in the table, and

because some of the locations correspond to 0 locations (from BFb0) Alice cannot know

which selection values correspond to his wall set nodes and Bob's actual location is still

well hidden. Among the 4 ∗ k ∗ l table values, only k ∗ l of them correspond to his wall set

values. Additionally, Bob can choose to increase the security by simply including more

fake location values in the selection table.

Bob In the first protocol, Bob receives from Alice her evaluations of the polynomial

and he has the polynomial (which he generated). Because this function is simple and

well-behaved he can determine the input necessary to generate the given output. This

allows Bob to determine Alice's location. In order to stop this attack we implement a

random number r which Alice uses after she has generated her wi values. ∀wi we modify

wi = (wi)
r%n2. If wi = 0 it remains 0. However, other values are hidden from Bob who

does not know the value of r.

In the second protocol, Bob receives from Alice a series of random numbers (Ci)'s and

the selection table with her 0 or 1 values. The Ci's reveal nothing, and the selection table

reveals the values at the requested locations in BFa. Because all the bloom filters are

the same size and use the same hashes, Bob can brute-force Alice's location by inserting

every possible tree node into the filter. Bob knows what value Alice has at each of the

locations queried, so he must brute force node input until he finds which nodes set the

state of the bloom filter correctly. Fortunately, the size of the selection table is much

smaller than the size of the bloom filters, and there are many possible input series that

would result in the same selection table query result, thereby hiding Alice's location.
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Recent work by authors Olteanu et. al. suggests the idea of co-located users leaking

information about the same user to an adversary [74]. This relies on several assumptions

a) the victim must process queries from two or more users; b) these users must be ``near''

the victim ,and c) these users must be willing to share information about the victim with

the adversary. Due to these strong assumptions, this type of attack is not practical for an

adversary.

3.8 Performance Evaluation

In order to evaluate the performance of this system, we ran several experiments which

are detailed in the following subsections. The first subsection details the speed of homo-

morphic encryption on smartphones. In the second subsection, we examine the savings

from utilizing a binary tree. In the third subsection, we analyze the running time of our

system using both protocols, in order to determine the practicality for end users.

For all of these experiments, we used one or both of two Android OS based smart-

phones connected to the Internet using WiFi. WiFi is always used in our experiments

because of the excessive cost of mobile phone 3g or 4g data plans. The first phone p1 is

an LG-C800 with a 1GHz processor and 512MB of RAM running Android 2.3. The second

phone p2 is a Samsung Nexus S with a 1GHz Cortex-A8 processor and 512MB of RAM.

Our Paillier cryptography implementation was borrowed from the University of Maryland

Baltimore County [110].

3.8.1 Homomorphic Encryption

In the first experiments we wanted to determine if the weak ARM processors on typical

Android cell phones are powerful enough to perform Paillier cryptographic operations in

a timely fashion. A small Android application was written and used, which generates a

Paillier key, encrypts a user selected value, and decrypts the value. We ran this pro-

gram five times, with a random value as input, and summarized the results in Table 3.3.
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We chose 1024 bit encryption because it is a good balance between security and speed.

To get a better estimate of the protocol's running time, we examine lower-level, crypto-

graphic functions, shown in Table 3.4. Here one key is generated and the random value

is encrypted and decrypted once.

Key Size Run 1 Run 2 Run 3 Run 4 Run 5 Avg.
256 123 75 82 74 82 115.3
512 208 139 374 134 177 257.3
1024 1536 1366 1042 933 1158 1176.5
2048 6773 8105 9453 8007 3710 6349.3
4096 91785 44144 31311 26047 81108 46415.2

Table 3.3: Time in milliseconds of generating a Paillier public, private key pair, encrypting a value
with the public key, and decrypting that value with the private key.

Run Key Gen Encryption Decryption Total
1 769 80 147 1006
2 1601 81 147 1830
3 624 80 146 852
4 756 80 151 989
5 1891 80 146 2118

Avg. 1128.2 80.2 147.4

Table 3.4: Time in milliseconds of generating a Paillier public, private key pair, encrypting a value
with the public key, and decrypting that value with the private key on an ARM 1GHz processor

During our protocol, there are only a few dozen encryptions / decryptions performed,

each one costing approximately 100ms and there are only two key generations, each

costing approximately one second. This shows that 1024 bit encryption is a good balance

of speed and security.

3.8.2 Binary Tree Efficiency

In the second experiment, we wanted to determine the savings we achieved by using a

binary tree data structure in order to encode the discretized location values. We ran the

protocol six times, on p2, while varying Pb. If the tree structure affords us a large saving,

the protocol will transmit less information and there will be fewer cryptographic operations.

In Table 3.5, we can see that, as the policy increases, the number of leaves increase. This

is expected, leaves = ((policy/10)∗2)+1. Bob's wall set grows at approximately O(log(n))

because of the nature of binary trees.
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Policy 30 100 300 3000 30000 160000
Leaves 7 21 61 601 6001 32001
Wall Size 3 6 6 10 12 12

Message Length 1638 2867 2867 4505 5324 5324
Packets 2 3 3 5 6 6

Table 3.5: Analysis of wall size as a function of Bob's policy. Also included,is the approximate
message length that can be expected for the given policy.

Paillier encryption generates cipher-text that is twice the bit length of the key [86]. We

use 1024 bit encryption so we expect cipher-text will be 2048 bits long. Messages are

trans-coded, for transmission, in a base 32 numbering system. As discussed in Section

3.11, messages are then broken up into 1000 character packets. Therefore, it is reason-

able to see only a few packets generated from thousands of characters.

3.8.3 System Running Time

To get an idea of what users will experience when using our system, we implemented

and ran App1 (described in Section 3.5) running on protocol as an Android application.

We performed ten queries, for each of eight polices and measured the wall clock running

time of the query. The devices used were p1, Bob, and p2, Alice. In this experiment Alice

and Bob are at the same location (37.2701, -76.7119), which was selected randomly.

The results of these experiments are summarized in Fig. 3.8. We see a small anomaly;

when Bob's policy is 30000 meters the variance of the runtime is smaller. This is due to

the variant nature of the running time. In some runs the device will have less or more

contention for resources such as network, CPU, and memory. We left these resources

uncontrolled to emulate a more realistic use case.

We can see that the protocol runs in a reasonable time. Even a very large policy of

160km only takes [30 − 35] seconds to complete. More reasonable queries take tens of

seconds and very small policies require under 15 seconds. Because the user is alerted

via an Android notification when a query has completed and query progress is indicated

to the user while waiting, this is a reasonable waiting time [70].

To compare with our alternate, Bloomfilter and OT protocol, we performed the same
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Figure 3.8: Box plot of the total running time of the system. Our system takes on the order of tens
of seconds to run depending on the policy.

experiment, and give the results in Fig. 3.9, we see that the alternate system has smaller

variance in query time, and is much faster for queries less than 160km. Comparing the

mean query time of each system, shown in Fig. 3.10, we see that the alternate system

is much faster, except for the largest policy 160km, where the alternate system takes

about 50s to finish a query. This is due to the expensive construction of the super path

set. Because the super path set contains almost every node in the tree segment, it grows

quickly as the policy grows. In light of this, we tested the system on some more modern

hardware; a Nexus 4 with 2GB of RAM, a 1.5GHz processor, and a Nexus 7 with 2GB

of RAM, a 1.5GHz quad-core processor, both running Android 5.0. In this experiment

we are able to complete a query, with a policy of 160km, in only thirty-four seconds on

average.
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Figure 3.9: Box plot of the total running time of the alternate system.
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Figure 3.10: Comparison of the query time between the original and alternate systems.

3.8.3.1 Message Transmission Speed

Our evaluation thus far has shown that our second PPD protocol performs better than

our first system. In this and the next section we aim to find the bottleneck(s) of our first

PPD protocol. We begin by examining the data transmission speed of our Facebook chat

message passing system used in the first system. We used one phone, p1, to send a

random string of characters, to a second phone, p2. p2 immediately responds back with

the same characters. p1 records the time it takes to send and receive the entire message,

(round trip time). p1 also records the time between receiving the first and last packet from

p2. This shows the overhead incurred by the packet size limitation. We performed the

experiment five times for each message length and plotted the results in Fig. 3.11.

Unsurprisingly, messages of 500 or 1000 characters take a short time to transmit;

median of 1.6 seconds and 1.8 seconds respectively. As the message length grows

larger, the round trip time and packet receiving time increases. In the bottom of Fig.

3.11, we can see plateaus in each pair of sizes (e.g., 2.5k and 3k, 3.5k and 4k, etc).

This is due to the 1000 character limit. A 3000 character message and a 2500 character

message are both broken up into 3 packets. When the message sizes are very large,

> 5000 characters, the volatility increases greatly. We can attribute this to the fact that the

Facebook message system is not designed to send such high volumes of data. Humans

typically converse at a few dozen characters per second.
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Figure 3.11: Top: Round trip time, inms, of sending a randommessage. Bottom: packet receiving
time, in ms, between receiving the first and last packet. For each size, a random message was
generated and sent five times (round trip).

3.8.3.2 Message Size

To evaluate how much data is sent during a typical query using protocol one, we ran

sets of ten queries varying Bob's policy, similar to our experiment in Section 3.8.3, on p1

and p2. During each query we recorded the total bytes transmitted and received by Bob,

(p2). It is safe to assume that the traffic on Alice is accurately reflected at Bob, because

Bob and Alice are the only two parties communicating. The results of this experiment are

summarized in Fig 3.12.
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Figure 3.12: Transmission size of a query as measured by Bob.
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Because the Android API only provides a measure of total bytes transmitted or re-

ceived, our results include some small background data transmissions from other miscel-

laneous applications and services (e.g., email sync, automatic application updates). Also,

the size of the cipher text transmitted varies slightly. Different keys will generate different

cipher text values, requiring more or less characters to represent, given the same input.

To capture these variations, the standard deviation of each set of ten queries is presented

in Table 3.6. Our system takes only tens of kilobytes to perform a query, even for very

large policies. The standard deviation, which is a small fraction of the bytes transmitted,

demonstrates that our protocol is stable in data transmission size.

Policy Rx Standard Deviation Tx Standard Deviation
30 2441.8 54.4
100 1257.7 79.4
300 1283.7 113.9
1000 1338.2 223.6
3000 1776.4 133.8
10000 3186.4 122.7
30000 1877.0 458.9
160000 2905.2 404.8

Table 3.6: Standard deviation of the transmission size.

Combining all the results from Section 3.8, we conclude that the largest bottleneck

in our system is message transmission, which takes up the vast majority of the query

time. As evidenced by the message size, and the experiments in Sections 3.8.3.1 and

3.8.3.2, this is because the FacebookChat protocol is slow, not because our system sends

large amounts of data. Although all of our experiments utilize the mobile phones' WiFi

connections, our system is practical for mobile 3g or 4g data plans. Message transmission

speed is limited by the speed of Facebook Chat, only roughly 8k-bits per second. We can

easily increase this speed by using Facebook Chat to initiate a query, allowing Alice and

Bob to exchange references. We then offload all message sending to a third party server.

Here the bottleneck for data transmission would be 3g speeds, which are at least 384k-bits

per second [117].
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3.8.4 Scalability Analysis

Our system is concerned with one user querying the location of another. However, users

maywant to learn their friends' location as soon as they are nearby (withinPb) as described

in App2 in Section 3.5. We face many challenges when trying to scale our system up for

many users in use cases like these. Each query takes approximately 40 seconds and 80

KBytes in the worst case using our first protocol, which means Alice can send queries at a

maximum rate of 90/hr. and 7.03MB/hr. In the most naive approach, where Alice queries

one user at a time repeatedly, it will take over three hours in the worst case for her to be

alerted when a friend is nearby if she has 300 Facebook friends.

To scale our system we can make several key improvements. Firstly, we note that

Alice can query many of her friends in parallel. That is, she can send messages using

Facebook chat to query all of her friends simultaneously. In this way, Alice doesn't wait

for each query to finish before starting the next one. If she does this, several other fac-

tors become the bottleneck. Alice will need to to generate one key for each friend, and a

second key if the query is successful to send the location coordinates. To save time, we

can pre-compute many keys and store them locally. Keys are only 1024 bits long, so a

table of 10,000 pre-computed keys will only take up approximately 1MB of local storage

and access to them will be instant. In our protocol, in the worst case, Bob will have a

policy of 160km, which means he will generate a wall set of twelve nodes, or 5k char-

acters. Bob will send this to Alice. Using our third party server for communication, and

opening many connections, Alice can accept all of this data in parallel from each of her

Facebook friends. However, her 3g bandwidth will limit the transfer to roughly 384kbit/s,

the minimum speed set forth by the ITU [117]. So sending these encrypted coefficients

will take 31 seconds with 300 friends. Once Alice has received these coefficients, she re-

constructs and evaluates the polynomials which require multiplications of all the values.

The time to perform these multiplications is negligible for the BigInteger java library with

relatively small values. Once the values are calculated, they're sent back to Bob who
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decrypts to see if any of the results are zero. This incurs another 31 seconds of transfer

time by opening multiple connections. Because each Bob is doing the decryption inde-

pendently, it's effectively in parallel and only adds roughly one second to the running time.

The data transfers, multiplications, and decryptions are all done twice. Once for latitude

and again for longitude. Therefore, it will take between two and three minutes to complete

the protocol for 300 friends.

Once this is completed, Bob knows if Alice was nearby and he can use her public

key (sent to him in the final transmission) to transmit his actual location values. In the

worst case, all of Alice's friends are nearby, and Alice must receive another set of 300

messages. Fortunately, the final location messages are small, only taking up about 1k

characters. So this transfer only takes about one second. By showing that protocol one

is able to achieve this result, there is little need to show that protocol two, which is more

efficient per query will perform equal if not better. Therefore, it is safe to assume that both

protocols will be able to serve this application in a practical or ``fast-enough'' time.

3.9 Conclusion

In this chapter we extend our previous work [71], which provides private proximity de-

tection through private set intersection. Our previous work establishes this using Paillier

homomorphic encryption. Our implementation of this system is done on the Android plat-

form and uses the Facebook online social network for blind message passing. We also

present a second private proximity detection protocol. The new protocol uses oblivious

transfer, bloom filters, and a third party message passing server to greatly improve on the

query speed. It is our hope that these two protocols can be used to build popular social

location based services in order for ordinary users to enjoy the convenience of proximity

detection and location services without worrying about the implications of strangers, or

online service providers, gaining access to their location data. Our systems can be de-

ployed as a layer in another location based service. The source code of both protocol
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implementations is freely accessible online for users to install or make improvements on

[72].
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Chapter 4

Ultrasound Proximity Networking

on Mobile Devices

Our second contribution is a system that provides proximity networking based on ultra-

sound in smart devices. By improving security and privacy of communication at the phys-

ical layer, we allow users to share information, such as URLS, encryption keys, or mobile

payment information on commodity devices.

4.1 Background

With smart mobile devices now so common, users are beginning to demand a simple,

secure way of exchanging sensitive information with those around them. A key applica-

tion example is sharing a phone number. While one user may be willing to tell another

her number, they may not want random third parties and eavesdroppers to overhear it.

To support this, and a wide variety of other applications such as exchanging email ad-

dresses, sharing pictures and links, exchanging credit card numbers for mobile payment

systems, authenticating access to a physical space, and controlling Internet of Things

(IoT) devices, we propose the use of ultrasound on commodity, ubiquitous smart mobile

devices (similar to [12]) for data transmission. We aim to provide this functionality, also
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known as proximity based networking, to users in a way that is fast, easy, and does not

require special hardware beyond users' phones.

Currently, proximity based networking is achieved through the use of Near Field Com-

munication (NFC) radios [19], Bluetooth (BT), or WiFi (ad-hoc mode / WiFi direct). One

major drawback of NFC is that it requires special radio hardware in users' devices and

adoption of this hardware has been steady, but slow [91]. It is also known to have some

security problems [32, 128]. WiFi direct and Bluetooth both are more common on smart

devices, but they are relatively long range, which makes eavesdropping and man in the

middle attacks easier. Bluetooth implements a manual pairing protocol at a low level,

which cannot be easily avoided and WiFi direct necessitates special hardware (to host

the connection), and the users must not be associated with any access point (AP). Ad-

ditionally, the WiFi spectrum, 2.4GHz, is becoming increasingly crowded. However, the

key drawback of these existing technologies is that they are omni-directional and there-

fore require some sort of pairing or private key exchange. Our proposed ultrasonic audio

modem has inherently narrow propagation, due to the nature of high frequency sound,

which allows for intuitive aiming of the transmission to the intended receiver. It does not

require any pairing protocols, or prior key-exchange / key-management making it ideal for

effortless sensitive information exchange.

Utilizing an ultrasound modem, on smart mobile devices, lends itself naturally to this

problem for several reasons. First, the necessary hardware (speaker and microphone)

and sample rate (44.1kHz) are already ubiquitous on commodity smart mobile devices

meaning that our solution does not require any change to the industry, and supports the

bring your own device paradigm. Second, ultrasound has a fundamental and intuitive se-

curity edge, in that it is directional, cannot pass through walls, and it has a limited, easily

configurable transmission range of a few centimeters allowing users to aim their trans-

mission at the intended receiver. No encryption key management is necessary. Third,

ultrasound is inaudible by definition and therefore, non-disruptive to users.

In implementing our ultrasound modem we face several challenges. First, we must
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modulate sound waves in a way that supports fast data transfer, yet minimizes audible

noise. This turns out to be a significant challenge because simple carrier wavemodulation

manifests as audible sound. Our second challenge is that typical devices have relatively

poor frequency response in the ultrasonic spectrum due to the low cost and compact

speakers and microphones they use. This means that we cannot reliably recover the

amplitude of specific frequencies with fine granularity. Third, we find that recovering the

phase is quite difficult, because we operate near the Nyquist frequency. Our system is the

only academic work, to the authors' knowledge, to rely exclusively on ultrasonic tones for

high speed communication between smart devices, with the goal of remaining inaudible.

It achieves the highest throughput of any existing approach.

The current state of the art in this domain is a system titled ``Dhwani'' [88], which

attempts to transmit data using sound as a wireless communication medium as well. The

authors use quadrature phase-shift keying (QPSK) on a 6kHz carrier achieving 2.4kbps

in the best case. Our system operates in the ultrasonic spectrum (to avoid disrupting

the user), which introduces several challenges. QPSK results in a very high error rate in

this spectrum, due to the limited sample rate on commodity devices. Our system instead

incorporates amplitude and binary phase shift keying, combined, using a novel analytic

phase recovery technique to achieve a higher throughput. We also go to great lengths

to ensure that our modem does not create disruptive or irritating noises that arise from

modulation.

The design of our modem has several key components. We design schemes to de-

code both amplitude and phase changes. We make many key design choices to reduce

transmission errors, and we experiment with a wide variety of modulation techniques to

remain as inaudible as possible. An extensive evaluation is presented that demonstrates

the speed, audibility, and energy use of our modem. Although our number one goal is

private exchange of sensitive information, it is our hope that our system can be used by a

wide array of ubiquitous computing applications in the future, such as sharing a link with

several members at a meeting, neighbor discovery, home automation, and gaming. Be-

53



cause our system assumes users have common (already ubiquitous) devices, it is very

valuable in many ubiquitous computing applications where assumptions about special

hardware cannot be made. Our contributions can be summarized as the following:

• We propose the use of ultrasound as a means of data transmission for proximity

networking on commodity mobile devices. We are the first to closely examine the

different modulation / demodulation schemes for high data rate communication while

remaining inaudible.

• We design and implement several novel and non-trivial techniques to overcome a

variety of challenges working in the ultrasound spectrum including utilizing orthogo-

nal frequency devision multiplexing (OFDM), volume fading for inaudibility, adaptive

amplitude recovery in the face of poor frequency response, analytic phase recovery

to overcome sub-sample syncopation, and dynamic sender power to control multi-

path and increase security.

• We present an extensive evaluation of our system based on our prototype imple-

mentation working in the inaudible spectrum [18kHz, 21.5kHz]. We show our sys-

tem is low energy, low noise, fast, and practical in several applications. Our best

effective transmission rate is 6.1kbps, with 0.2% bit error rate (BER), before error

correction.

We propose several techniques to overcome the challenges we face in implementing

this system, which are highlighted throughout this chapter. We use phase spreading and

volume fading to reduce audible noise. To overcome non-uniform frequency response

we propose dynamic amplitude recovery and in response to the poor phase resolution

from the limited sample rate, we propose analytic phase recovery and phase calibration.

Finally, we show that multi-path can be reduced and security can be enhanced by using

dynamic sender volume.
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4.2 Challenges

In this section we detail four technical challenges in implementing our system on common

smart mobile devices, each of which we overcome with a specific technical contribution.

First, transmitting data while remaining inaudible. Second, we face poor frequency re-

sponse in the ultrasonic spectrum. Third, phase recovery is difficult due to limited sample

rates. Finally, multi-path effects (i.e., echo) are a challenge, because ultrasound is highly

reflective.

Inaudibility Designing a system that achieves high throughput, and low audibility is a

challenge. The common method of data transfer is to produce a sine wave with frequency

f and phase θ. The sine wave's frequency, amplitude, and phase are all changed over

time to encode information (modulation). This sine wave is sampled, digitally as S =

s1, s2, ..., si using Eq. 4.1, where the time t is derived from the sample rate Fs and index

i, (t = i
Fs
).

si = sin(2 ∗ π ∗ f ∗ t+ θ) (4.1)

The fundamental modulation schemes, in which amplitude, frequency, or phase are mod-

ulated separately, are referred to as binary amplitude shift keying (BASK), binary fre-

quency shift keying (BFSK), and binary phase shift keying (BPSK) (illustrated in Fig. 4.1).

We quickly discovered that these modulation schemes produce audible noise, even if the

carrier sine wave is above the audible frequency threshold (e.g., higher than 20kHz), due

to the modulation pattern. This can be most easily visualized in the case of BASK. In

Fig. 4.2 we plot a BASK signal which encodes a repeating bit pattern. The periodic ampli-

tude changes generate an audible ``artifact'' wave, shown in bold, equal to the envelope of

the signal. If the bit pattern is regular, as is the case in our example, the artifact wave will

be a specific frequency. When the bit pattern is random, which is the case for our intended

application, the artifact wave is similar to white noise with many random frequencies.

Audible artifacts are also caused by any instantaneous changes in the waveform (near

sample number 41 in the plots of Fig. 4.1). The speaker's diaphragm physically moves
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Figure 4.1: Example sine wave modulated in amplitude (left), frequency (middle), and phase
(right).

0 50 100 150 200 250
−5

0

5

Sample Index (@44.1khz)

Imaginary Wave From Amplitude Modulation

Figure 4.2: Imaginary wave (black) generated from ASK

synchronously with the path of the sine wave (in one dimension), so discontinuity causes

the speaker to produce on audible ``click'' noise. To overcome this challenge, instead

of encoding bits in the time domain, we focus instead on encoding information in the

frequency domain, using orthogonal frequency division multiplexing (OFDM), which has

much less frequent discontinuity. We also utilize two unique techniques to further reduce

noise called phase spreading and volume fading.

Poor Frequency Response The frequency response of cell phone speakers and mi-

crophones is highly volatile. The physical size of cell phones limits their speaker and mi-

crophone quality and as a result, audio signals are heavily distorted. This is compounded

by the complex interaction between frequencies when the speaker is reproducing many

simultaneously. To demonstrate this problem, we generated frequencies, 50Hz apart in

the range [18kHz - 22kHz] and [5kHz - 8kHz], one at a time on an Android smartphone
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(model Nexus S) with a power level of 14
16 . We recorded the sound using a second An-

droid smartphone (model LG-800) and we plotted the recording, in the frequency domain,

in Fig. 4.3. These experiments show that the smartphones we tested are much better at

producing tones on the lower end of the spectrum (in line with [88]).
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Figure 4.3: Frequency response of typical cell phones.

Recovering Phase Accurately Recovering the phase accurately is difficult for three

reasons. First we will be operating above 18khz, but the sample rate of our devices

is limited to only 44.1kHz. Because our frequencies are very near the Nyquist frequency

(22kHz), there are only a few samples in each period. Therefore, when reading the phase

of a signal, an error of one or two samples, or even sub-sample differences, results in a

wildly different phase. An illustration of this phenomenon can be seen in Fig. 4.4. We

overcome this problem using a hail signal, to approximate the starting point, and a novel

technique called analytic phase recovery, which can recover the phase with sub-sample

accuracy.
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Figure 4.4: Due to the high frequency wave, and limited sample rate, the phase difference be-
tween adjacent samples is very large. For example, the phase difference between samples three
and four is nearly 2π.
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We also notice that the phase is typically corrupted during transmission. Similar to

the non-uniform frequency response, even if the sender encodes several sub-carriers

with the same phase, the receiver will decode many different phases. This is partially

an artifact of the Fourier transform we use to decode the signal, because the transmitted

signals are usually not symmetric. We refer to this as ``phase drifting.'' We overcome this

challenge by utilizing a technique called phase calibration, which we detail in the Analytic

Phase Recovery section. This problem is exacerbated when many different sub-carriers

are present with different amplitudes and phases. The sub-carrier frequencies interfere

with one another in the air, corrupting the signal. We explore many modulation schemes

to find the one with the best throughput in the face of this challenge.

Multi-path The final challenge we face is that of multi-path. Because we are operating

at high frequency, the sounds our modem emits are highly directional, due to the small

speaker size on our devices, and reflect easily off of surfaces. We solve this problem by

carefully controlling the sender volume so that it is strong enough to reach the receiver,

but weak enough that multi-path is too quiet to have a significant effect.

4.3 System Design

Our system exists as a modulator and demodulator. One or both of these may be running

on some hardware (For example; a base station kiosk, a mobile phone, or a building wide

centralized system). A device may be a sender or a receiver or both. But, the receiver

must have a microphone and the sender must have a speaker. A high level view of our

system can be seen in Fig. 5.2.

At the receiver side, sound comes in through the device's microphone and is first

parsed by the hail listener, which finds the approximate starting point of the data signal

among background noise. The raw data is then broken into chunks of size n and passed

to the amplitude (ampD) and phase (phaseD) demodulators, which recover the bits using

the Fourier transform (FFT) module. The resulting binary data is then interpreted at the
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Figure 4.5: Conceptual view of our ultrasound modem

application level. In the case of sending data, the user inputs some data to be sent, which

is broken into chunks of 65 amplitude and 65 phase bits, which are passed to the OFDM

modulator. The OFDMmodulator generates an ultrasonic audio signal, by modulating the

amplitude and phase of each sub-carrier appropriately. Then, the system adds a linear

chirp hail signal to the beginning and transmits the audio using the device's speaker.

Operating Spectrum We chose spectrum 18khz - 22kHz, because it is inaudible to

humans, and below the Nyquist frequency for most smartphones. Also, previous work

has shown that background noise in this spectrum is relatively low [43, 88].

4.3.1 Quiet Transmission using OFDM

Due to the constraints outlined previously, we cannot modulate a carrier wave directly.

Instead we work in the frequency domain. We generate data segments, each of which

is the sum of many sub-carrier frequencies. We compute each sample in a segment

according to Eq. 5.1.

si =
22kHz∑

f=18kHz

sin(2 ∗ π ∗ i ∗ f

Fs
+ θ) (4.2)

Using the Fourier Transform (FFT), we are able to determine the frequencies present in a

given set of samples S = {s1, s2, ..., si} and we can recover each frequency's amplitude

and phase, which encode the data. This is commonly referred to as orthogonal frequency

division multiplexing (OFDM). In order to recover the amplitude and phase of frequencies
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with a granularity of 50Hz we need n = 882 sample segments (20ms at 44.1kHz sample

rate with no guard interval) as input to the FFT. It is important to note that a perfect power

of two is not necessary thanks to the interpolation done by the MATLAB® implementation

of the FFT we used. This gives us 70 sub-carriers to encode data. Our sub-carrier con-

struction is shown in in Fig. 4.6, which begins at 18.05kHz because 18kHz is a calibration

frequency. We then combine the sub-carriers (on the right side of Fig. 4.6) using Eq. 5.1.

In an attempt to improve throughput, we tested some modems which use 750 sample
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Figure 4.6: OFDM modulation scheme used. Each pair of bits determines the amplitude and
phase of the sine wave for the corresponding sub-carrier.

segments, which are shown in Table 4.4 in our evaluation. We choose not to implement

any clear cycle codes (cycle prefix) or similar techniques, because of the time they take,

which would reduce our throughput.

Calibration Frequencies Our modem uses frequencies 18kHz, 19kHz, 20kHz and

21kHz as calibration frequencies, which carry constant amplitude (100%) and phase (π).

We use these frequencies to account for the non-uniform frequency response and phase

drifting challenges we mentioned previously. This leaves 66 sub-carriers to encode data,

of which we use 65, achieving a theoretical bit rate of 6.5kbps.

Phase Spreading Fortunately, by utilizing OFDM, there is much less audible noise

created. However, there are still some audible artifacts, because at the transition from

one data segment to another, there is a small discontinuity. This occurs between every

data segment (roughly 50 times per second), and produces an audible click, of varying

amplitude, depending on the degree of discontinuity. This discontinuity is largest when
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many sub-carriers have a high amplitude and equal phase. In this situation, they expe-

rience additive interference in the first few samples, resulting in a large peak in the time

domain. This can be seen on the left side of Fig. 4.7. We can avoid this problem by

changing the phase of each sub-carrier frequency so that they do not combine at the be-

ginning of the segment strongly. We propose a novel technique called phase spreading

in which we add three to each phase iteratively, as shown in Fig. 4.6. By doing this, we

guarantee that the frequencies interfere destructively in the first few samples, as can be

seen on the right side of Fig. 4.7. This reduces the audible noise, and the demodulator

can easily compensate for this change, since it is known.
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Figure 4.7: Left: Signal Before. Right: After phase spreading.

Volume Fading Envelope To further smooth the discontinuity between segments,

the modulator applies an envelope according to a simple equation: s′i =
√

1
a ∗ si. We call

this technique volume fading. Here a determines how many samples to fade. Choosing

a larger a value decreases the noise created, but alters the signal, increasing the error

rate when recovering the bits. We found a = 5 to be a satisfactory trade-off.

Hail Signal Our hail signal is generated by the hail generator module for the receiver

to a) realize data is going to be transmitted in the near future, and b) find the approximate

starting point of the data-modulated signal. To find the starting point with as few samples

as possible, to maximize throughput, we design our hail signal as a 300 point, linear chirp,

sine wave from 18kHz to 19kHz. It fades in and out in amplitude to minimize audible noise

and can be located with high accuracy due to the frequency change. Empirically, our hail

signal is able to achieve single sample accuracy. While more erratic hail signals may

be used to achieve better accuracy, ours is almost completely inaudible. We also tried
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a simple 18kHz static frequency hail signal, which had much worse accuracy (about 20

samples).

4.4 OFDM De-Modulation

The demodulator is responsible, at the receiver, for finding data-modulated signals in the

random background noise and decoding them. In Fig. 4.8 we can see an entire packet

transmission (top), and the first data segment (middle). Using the FFT module, the am-

plitude and phase of the sub-carrier frequencies in the segment are recovered (third and

fourth plot in Fig. 4.8).
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Figure 4.8: Transmission (top) shows the entire raw data transmission. Segment (middle) shows
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Hail Listener The hail listener module, in the demodulator, continually listens to the

raw audio signal waiting for the volume to become greater than a pre-defined threshold.

When this is occurs, the hail listener runs a 300 sample, sliding window dot product (cross

correlation) between the received microphone data and the known hail signal. The cross

correlation between these two signals will be highest when they are synchronized. We

use this maximum as the starting point for the first data segment. The starting point of

the subsequent data segments are found using the known segment size n = 882 as an

offset. To recover the phase, we need better accuracy, which we detail in our analytic

phase recovery section.

4.4.1 Adaptive Amplitude Recovery: ampD

The amplitude demodulator takes a segment, in the frequency domain, as input. As men-

tioned earlier, and is clear in Fig. 4.8, the amplitude of each sub-carrier is non-uniform and

therefore difficult to decode. To overcome this challenge, we design a technique called

adaptive amplitude recovery which attempts to follow the trend of amplitudes. It first cre-

ates two queues, up-queue and down-queue, which contain the values of the previous α

``up'' amplitudes and ``down'' amplitudes respectively. The first frequency, 18kHz, is a

calibration sub-carrier statically held at 100% amplitude. We use this reading to bootstrap

our demodulator, placing the value in up-queue and placing a zero in the down-queue.

From this point on, each frequency is read and placed in the up-queue if the reading is

greater than thresh, which is defined below. Values less than thresh are placed in the

down-queue.

thresh = [(up-avg− down-avg) ∗ γ] + down-avg (4.3)

Here *-avg is the average of the corresponding queue. γ is a parameter (between zero

and one) that determines where, between the up − avg and down − avg, the threshold

should be placed. The intuition here is that the threshold is placed somewhere between

the averages, which will follow the general trend of the varying amplitudes. At the end,
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frequencies in the up-queue correspond to ``1'' bits and frequencies in the down-queue

correspond to ``0'' bits. The threshold can be seen in Fig. 4.8 as the dashed line in the

amplitude plot. As the sub-carriers are processed, the queues are emptied to guarantee

they always contain only the most recent α readings.

Sometimes the ``up'' amplitudes are abnormally high, as a result the threshold is pulled

up very high and none of the subsequent ``up'' bits are recovered correctly. To fight this

phenomenon, we implement a third parameter, β. When an amplitude is recognized as

``up'', it is only placed in the up-queue if it is < β ∗ avg(up-queue). The system always

records a ``1'' bit, but β helps naturally remove outliers from shifting the up-avg signifi-

cantly.

In our system, through manual investigation, we choose α = 2, β = 10, and γ = 0.35,

because they give satisfactory results on the variety of devices we tested with. Choosing

and exchanging these values automatically is left for future work.

4.4.2 Analytic Phase Recovery: phaseD

For phase modulation, we have attempted to implement two, three, and four level mod-

ulation. In order to decode phase, we split the available phase reading area into the

respective number of sections. Four level modulation is illustrated in Fig. 4.9. In this sce-

nario, each level represents two bits. If the phase of the corresponding sub-carrier falls

anywhere in the level, we can decode the corresponding bits.

Recovering the phase is straight-forward, we simply read the angle of each sub-carrier

frequency from the Fourier transform of the segment. However, to decode the phase ac-

curately, wemust find the starting point with sub-sample accuracy. This is due to the prob-

lems outlined previously in the challenges section. The problem is exacerbated, because

the speaker of the sender and the microphone of the receiver are likely not synchronized,

resulting in sub-sample differences. To tackle this challenge, we use our novel analytic

phase recovery technique. Themodulator sets the phase of 18k and 19k to be the same,
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because they are calibration sub-carriers. The phaseDmodule first finds the phase of 18k

(θ18)and 19k (θ19) from the data segment directly. It then calculates the phase at 1000

sub-sample points before and after the starting point guess from the hail signal listener.

At each point, we use the sine wave formula, Eq. 4.1 to find the phase. The sub-carrier

frequency f is known, so we substitute in the relative time t and solve for θ. Each time

∆ = abs(θ18 − θ19) is calculated. We have found the starting point when the difference

between the two phase readings, ∆, is minimized. The phase of the sub-carrier frequen-

cies can then be calculated the same way; substituting the appropriate frequency and the

starting point t which is now known (the t that produced the smallest ∆).

In contrast, Dhwani [88] is able to decode phase modulations without finding the pre-

cise starting point, because they're working at a much lower carrier frequency (i.e., 6kHz

- 7kHz). At these frequencies, there are three times as many samples per period so the

phase reading difference from adjacent samples is small and sub-sample differences are

negligible.

Phase Calibration As we move across the sub-carriers reading phase values, we

note that the phase values tend to drift due to noise, the non-symmetric input to the FFT

module, and distortion of the transmitted signal. To account for this drift, we propose a

technique called phase calibration. We set the calibration sub-carrier phase values to

constants in the modulator. To decode the phase we find diff = θc − θf , where θc is
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the phase of the nearest calibration sub-carrier and θf is the phase of the desired sub-

carrier. Based on this difference, we can decode the phase. Phase readings are always

between 0 and 2π, but we may sometimes calculate a negative value of diff . To solve

this problem, if diff is less than zero, we add 2π. This process is illustrated in Fig. 4.9

for QPSK, which has four possible levels each 1
2π wide, corresponding to two bits each.

Unfortunately, we found empirically that using four phase levels produced too much error

and instead utilize only two in our final modem. This is due to the limited sample rate on

our devices.

4.4.3 Error Correction Coding

We can expect some errors when transmitting. We use hamming error correction coding

(ECC) to correct single bit errors and detect multiple bit errors in each block [115]. Ham-

ming codes allow for blocks of n = 2r − 1 bits, which contain a message of k = 2r − r− 1

bits, and r detection bits. Choosing r intelligently depends on the error rate, which we

investigate in our evaluation.

4.4.4 Alternative Modulation Techniques

When designing our system we put great effort into finding a modulation scheme that had

low error rate, high speed, and made minimal audible noise. We put in a lot of engineer-

ing work in order to extract as many bits as possible per second. Below we present the

theoretical bit rates of some alternative modulation schemes using the best possible cir-

cumstances; 80 sub-carrier frequencies with 58 segments per second ( 750 sample seg-

ments @ 44.1kHz sample rate). In our evaluation, we show the actual BER (Table 4.3)

and effective throughput (Table 4.4).
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4.4.4.1 Binary Shift Keying (BSK)

Our first approach was binary phase shift keying BPSK, and binary amplitude shift keying

BASK, (separately). Both of these systems are theoretically capable of 58 segments ∗ 80

bits = 4.6kbps.

4.4.4.2 Ternary Phase Shift Keying (3PSK)

This scheme uses three levels of phase modulation rather than two. Because we can

encode on average 1.5 bits in the phase of each sub-carrier, this scheme achieves a

theoretical throughput of 6.9kbps.

4.4.4.3 Quadrature Shift Keying (QSK)

QSK, which uses four modulation levels, had very high error rate for phase modulation,

and showed an even higher error rate for amplitude modulation. QSK has a potential

throughput of 9.2kbps.

4.4.4.4 BASK + BPSK

We treat BSK, 3PSK and QSK as primitives and try to combine them. Our first approach

was to perform BASK and then, on the frequencies present, perform BPSK (phase cannot

be encoded on a frequency with zero amplitude). Roughly half of the amplitude frequen-

cies will encode a one bit, which means that the same frequencies can encode a phase.

On average we can expect to achieve 1
2 ∗ 80 + 80 bits per segment, 6.9kbps. However

this system is highly volatile. If the amplitude bits are incorrectly decoded, the system

will attempt to decode the phase on the incorrect number of frequencies. This results

in a mismatch between the decoded and correct bit stream that propagates throughout

the data segment. We can solve this problem by inserting placeholder phase bits on the

sub-carriers whose amplitude is zero.
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4.4.4.5 BASK+BPSK-A

In this scheme we use a low, non-zero, amplitude level to encode ``0'' bits, so that we

can encode phase on every sub-carrier. The theoretical bit rate is 9.2kbps. This scheme

is very similar to our final design, except that it sends 58 segments per second, and

attempts to use all 80 sub-carrier frequencies. We show in our evaluation that this results

in an unacceptable error rate.

4.5 Implementation and Evaluation

We evaluate our system in five aspects. First, we measure the bit error rate (BER) and

perform ECC analysis. Second, we evaluate how sender power, and orientation can be

used to enhance security. Third, we do an energy evaluation. Fourth, we show how

our system performs in some typical ubiquitous computing application scenarios, such

as authentication access to a lab. Finally, we evaluate the audibility of our system. We

implemented a prototype of our modem on several android devices summarized in Ta-

ble 4.1.

In order to run the Fourier transform fast enough, we borrowed a native C++ imple-

mentation, [48] and utilized the JNI on Android. Using this native code we are able to run

a Fourier transform of 1024 samples in roughly 1ms. To expedite the evaluation, we of-

ten used a desktop computer running a small collection of python scripts, and MATLAB®

R2013a to de-modulate the packets, measure the BER, and perform ECC analysis. We

were careful to ensure that this has no impact on the results of our experiments.

Name Make/Model RAM Proc. Android Ver.
p1 LG/C800 512MB 1GHz 4
p2 Samsung/Nexus S 512MB 1GHz 4
p3 Motorola/MB525 512MB 800MHz 2.3
p4 Samsung/Galaxy Nexus 1GB 1.2GHz 4
p5 LG/Nexus 4 2GB 1.5GHz 4.4.4

Table 4.1: Devices used for evaluation. We included the Motorola MB525 which is circa 2010 to
investigate how older and lower quality phones perform.
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4.5.1 Transmission Error

To get a basic idea of the error rate of our system, we performed ten transmissions of

≥ 1000 random bits at various distances, locations, and orientations. These results are

summarized in Table 4.2. (In this table, inline refers to holding the phones upright one

in front of the other and oriented refers to pointing the speaker of the sender directly at

the microphone of the receiver.) We can see that the error rate is generally acceptable,

Sender Receiver Orientation Location Distance Trials Power Min Err. Mean Err. Max Err.
p1 p2 inline inside 15cm 10 x 1kbits 14/16 0.40% 5.64% 9.40%
p1 p2 oriented inside 10cm 10 x 1kbits 14/16 0.0% 0.33% 0.80%
p1 p2 inline inside 10cm 5 x 100kbits 11/16 2.06% 2.29% 2.96%
p1 p2 side by side* inside 15cm 11 x 1kbits 14/16 9.40% 22.64% 32.50%
p1 p2 side by side inside 15cm 5 x 1kbits 14/16 3.20% 17.26% 28.95%
p1 p2 inline outside 15cm 5 x 1kbits 14/16 0.30% 1.96% 3.50%
p1 p2 oriented outside 15cm 6 x 1kbits 14/16 0.20% 2.22% 5.30%
p1 p2 side by side outside 15cm 5 x 1kbits 14/16 0.50% 2.40% 6.80%

Table 4.2: Error Rate Evaluation. The high error in rows four and five can be attributed to multi-
path effects. The * indicates this experiment was performed with the devices held above a desk,
increasing multi-path effects even further.

in many cases below 3%. The long experiments (when 100k bits are transmitted in each

trial) we see much lower variance with an error rate near 2%. In the fourth and fifth

experiments, when the phones are held side by side inside, we see very high error rate.

This is caused first by the poor orientation of the devices. Because the high frequency

and relatively small speaker size, the sound is very directional, which means when the

devices are not aimed appropriately, the sender will receive a signal that is corrupted by

multi-path. This is supported by rows one and two. In the fourth experiment, a desk is

present, which increases the multi-path effect.

4.5.1.1 Alternative Modem Schemes

Weperformedmore random transmission experiments using our alternativemodem schemes

to find the error rate of each. The results, show in Table 4.3, helped guide our decisions

when designing our modem scheme. We find that only binary shift keying has accept-

able error rates. To evaluate how well our system transmits data over different distances,

69



Name / No. Amp Phase Amp BER Phase BER
BASK 0 ∨ 100 i*3 0.3% x

BASK (const) 0 ∨ 100 0 22% x
BPSK 100 0 ∨π x 0.8%
3-PSK 100 0 ∨2π

3 ∨ 4π
3 x 7.4%

QPSK 100 0 ∨π
2 ∨ π ∨ 3π

2 x 20%
BASK+BPSK 0 ∨ 100 (i*3) + (0 ∨ 1) 2.8% x

Table 4.3: Comparison of the various modulation approaches. Sending power: 12/16, distance:
15cm

we transmitted 1000 random bits, ten times, from p1 to p2 at three different locations,

five different distances, and using two different orientations. We used our BASK modem

and a data segment size n = 750, to get a baseline of what errors rates to expect in dif-

ferent scenarios. For each set of ten transmissions at a particular distance/location, we

recorded the BER and box-plotted the results in Fig. 4.10. These results show that when

the devices are nearby and oriented correctly the error rate is very good and eavesdrop-

pers more than a few meters away, which the user is not oriented towards, have very

high error rate. The results in Table 4.2 and Fig. 4.10 together account for 852,000 bits

transmitted.
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Figure 4.10: Ten transmissions of a 1000 bit, random message at three different locations, two
different orientations. ``Sadler'' is public building on our campus.

4.5.1.2 Transmission Power

By increasing or decreasing the transmission power at the sender side, we can control

the error rate of the transmission. This is useful to reduce the effects of multipath, and
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to guarantee that eavesdroppers cannot hear the transmission. To evaluate the effect

of sender power, we transmitted 10k random bits five times for each of the 16 possible

power levels. In Fig. 4.11 we plot the min, mean, and max error rate for each set. From

this figure we see that at very small volume levels (1 - 4), the transmission error is very

high with high variance. This is because the signal to noise ratio is very low. At higher

sending powers (6-10), the error rate is very low. In the best case, level nine, the mean

error rate is 1.27%. Then, as the sending power increases (11-16) the error rate rises

again. This can be attributed to two factors. First, as the volume increases, the effects

of multi-path increase and second, producing very high frequencies at very high volumes

places a lot of kinetic energy in the physical speaker. Because the speaker does not have

perfect dampening, there is some residual noise after the signal has ended, caused by

the speaker returning to its resting, neutral position. These experiments show that be

selecting the correct sending power, we can reduce the effects of multi-path, increase the

security, and improve the error rate for the intended receiver.
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Figure 4.11: Transmission error rate, depending on the sender's volume. Distance: 15cm.

4.5.1.3 ECC Analysis

Weselected a typical transmission test from row two, row three, and row eight, of Table 4.2

and calculated the effective transmission rate given various values of r. The results are

shown in Fig. 4.12 and Table 4.4. We include a density metric d = throughput
spectrum , which is

to account for different amounts of spectrum used. Although it might appear that Dhwani
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achieves the best transmission rate (best density), it is important to note that our system

is operating in the spectrum from 18kHz to 22kHz. This spectrum is especially hard to

utilize because of the numerous problems outlined in the challenges section. Also, our

system is nearly inaudible unlike the Dhwani system [88]. SSCconnect [90] operates on

a similar spectrum to our own and, although it is commercial, offers a closer comparison

to our work. Their operating spectrum is 17kHz to 20kHz, which we avoided in fear that

17kHz sound may be heard by users with more sensitive hearing.
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Figure 4.12: Effective throughput after ECC analysis. The three datasets plotted represent a
random transmission from our previous experiments in Table 4.2 (rows two, three, and eight re-
spectively).

Technique Spectrum PSR Effective Speed d
Ultrasound (0.2% Err) 3.5kHz 100.0% 6.1kbps 1.75
Ultrasound (2.1% Err) 3.5kHz 84% 4.6kbps 1.32
Ultrasound (0.5% Err) 3.5kHz 93% 5.5kbps 1.57

Dhwani 8-PSK 1kHz 80% 2.4kbps 2.40
Dhawni QPSK 1kHz 95% 1.6kbps 1.60
Dhawni BPSK 1Khz 100% 800bps 0.8
SSConnect 3Khz unknown 2.2kbps 0.73

BASK 3.8k 92.5% 3.4kbps 0.89
BPSK 3.3k 95% 3.0kbps 0.91

BASK+BPSK 3.9k 87.9% 4.2kbps 1.08
BASK+BPSK-A (n = 750) 3.5k 71.2% 3.9kbps 1.11

Table 4.4: Packet Success Rate and Effective Transmission Speed. Power: 12/16 for the first
three rows, 14/16 for the final four. Distance: 15cm. ``Ultrasound'' is the modem as described in
Section 4.1

4.5.2 Security

An attacker may try to eavesdrop on the communication between two benign users. We

show that our ultrasoundmodem is not easily susceptible to these attacks for two reasons.
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First, it is relatively short distance. Second the transmitted signal is directional, giving the

user a powerful, unique, and intuitive way to indicate the intended receiver.

To verify this, we perform seven experiments to exhibit the users ability to inhibit the

successful transmission by aiming their device. We transmitted 50k random bits from p5

to p1, varying the sending power, and the sender's angle (pointing directly at the receiver's

microphone is 0◦). The results are given in Table 4.5. In the final experiment, the user

places their hand between the sender and receiver, which causes the BER to jump to

over 40%.

Sending Power Angle Bit Error Rate
14 / 16 0◦ 0.59%
14 / 16 45◦ 1.23%
14 / 16 90◦ 2.66%
6 / 16 0◦ 3.25%
6 / 16 45◦ 12.18%
6 / 16 90◦ 14.97%
6 / 16 90◦ 47.34%

Table 4.5: BER with varying angle and sending power. In the final row the user's hand was placed
between the sender and receiver.

4.5.3 Ubiquitous Computing Applications

In order to investigate how our system performs under typical usage scenarios, we de-

vised three additional experiments. In the first, two users each hold a device, shown in

Fig. 4.13(b), and use the system to send 10k bits, which is roughly equivalent to the size

of a small 50 x 50 pixel .jpg thumbnail / contact image with a phone number. We mea-

sure an average BER near 1.5% over five trials. For our second experiment, we set up

one device to act as a base station, shown in Fig. 4.13(a), to simulate scenarios such as

point of sale systems, personal authentication access to a lab, or Internet of things style

home automation. The base station in this case is always listening and uses a sliding

window root mean squared (RMS) algorithm to detect when a client is sending data. In

deployment, the base station is likely to have a direct power connection.

We used this system to transmit 1700 bits (similar to a credit card swipe [116]), re-
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peated forty times and achieved an average BER of 1.31%. In Fig. 4.14 we choose trans-

missions from each of these two experiments, which demonstrate average error rate, and

calculate the effective throughput. Similar to Fig. 4.12 we vary the number of ecc bits r

to find the optimum.

(a) Basestation (b) Two Users

Figure 4.13: Practicality Experiments Setup
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Figure 4.14: Effective throughput for typical transmissions using a base station and for two users
holding the devices. Power:12/16, Distance: 15cm. The best packet success rate (PSR) is 92.6%
and 90% respectively.

In our third experiment, we evaluate our modem using every combination of p1, p2, and

p3 as sender and receiver. For each combination, we send 1000 random bits five times.

We measure the BER and report the highest effective throughput after error correction

in Table 4.6. These experiments show that our system works well with different devices

carrying microphones and speakers from different manufacturers (Motorola, Samsung,

LG), which is common in a BYOD environment. Even our slowest effective rate, 2.9kbps,
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is higher than any competitors' speed. When using the oldest phone, p3, we note higher

BER rates. Surprisingly, the same device also achieves the best effective transmission

of 6.4kbps as the sender.

Tx / Rx BER. r PSR Effective Rate
p3 / p2 0.1% 9 100% 6.4kbps
p3 / p1 0.34% 6 98.7% 5.8kbps
p2 / p1 0.46% 6 95.2% 5.6kbps
p2 / p3 4.9% 4 85.2% 4.0kbps
p1 / p2 0.5% 6 90.7% 5.3kbps
p1 / p3 12.4% 3 77.0% 2.9kbps

Table 4.6: Comparison using several different devices as sender and receiver. BER is the average
of five trials. Power: 12/16. Distance: 15cm.

4.5.4 Energy Consumption

To evaluate the energy consumption of our system we implemented WiFi, Bluetooth (BT),

NFC, and our ultrasonic audio modem using a sender power of 14
16 . Using p2 as the sender

and p4 as the receiver, we utilized each interface and measured the total consumed en-

ergy, using a Monsoon power meter [40]. In Fig. 4.15 we present the energy consumed

on average per bit. It is important to note that the energy used by our system, roughly

32uAh / 1s, is actually small, causing roughly 56% increase over the idle rate of 57uAh /

1s.
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Figure 4.15: Consumed Energy per bit utilizing different physical media interfaces.

4.5.5 Audibility User Study

We used p1 and measured about -19dB of sound over the background noise of -50dB

according to a dB measurement application [101] in a quiet office room. However, this
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measurement is not very insightful, because it includes ultrasonic frequencies, which hu-

mans can't hear.

To evaluate how much sound from our modem is perceived by the user, we asked

eight participants (mean age: 27) to listen to our modem. The modem sending volume

was set at 60%. The user is asked to listen to the modem transmitting random data

five times, and rate how much noise they heard on a scale of 1 to 100 each time. The

experiment was implemented as an Android application using a scrollbar, with end labels

''silent'' at 1% and ''fire alarm'' at 100%. The results are plotted as a histogram in Fig 4.16.

The highest rating (21%) indicates that our modem is very difficult to hear. The modem is

best described as a emitting a ``soft buzzing'' sound. Some participants made comments

that they felt they couldn't hear anything at all, and thought perhaps the modem was

malfunctioning.
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Figure 4.16: Histogram of user audibility rating. Results are color coded by user.

It is possible that our modem is more audible to young children, or animals, or that

ultrasound might have adverse or unforeseen effects on users in general. Recent studies

have shown that younger people are more sensitive to ultrasound [21, 49]. However, we

leave this for future work, as these questions are largely out of the scope of this work.

Young children and animals are not the target users, and the breadth and magnitude of

investigating these issues rigorously is extremely large.
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4.6 Conclusion

In this chapter we propose the use of ultrasonic audio as a physical medium for prox-

imity networking. We overcome several challenges including poor frequency response,

and limited sample rate. Our evaluation shows that our system can achieve an effective

transmission rate of 6.1kbps with a PSR of 100% in the best case and 4.6kbps with 84%

PSR in the average case.
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Chapter 5

Physical Media Covert Channels

To provide better security and privacy at the operating system level, we present a novel

attack vector based on a technique we call physical media covert channels. These chan-

nels can be used to leak sensitive information from a users device. They are plentiful

on smart devices, because of the wide array of sensors they carry. Due to the fact that

they are not hindered by even state of the art, taint-analysis based defense schemes

proposed in recent research, it is necessary for the research community to create new

defenses against them. It is our hope that by exposing these new attack vectors, and

by providing a first step defense mechanism built into the operating system, we can spur

innovation in more robust and effective defense mechanisms before these attacks are

widely deployed by attackers.

5.1 Background

Since the introduction of the iPhone in 2007 mobile computing using smartphones and

tablets has exploded. There is currently a plethora of Windows, Android, and iOS devices

available to consumers containing a wide assortment of physical sensors. Consumers

have come to expect smart mobile devices as common place. They are now carried ev-

erywhere and relied on daily. This is proving to be a fundamental shift for computing in
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two ways. First, these devices carry an unprecedented amount of sensitive information

such as contact information, passwords, GPS location traces, financial information, and

personal attributes such as sexual orientation and health data. Secondly, smart mobile

devices are commonly equipped with a variety of physical interface hardware such as

accelerometers, cameras, vibration motors, speakers, and microphones. Users of smart

devices are expected to be conscious of a myriad of security best practices to protect this

data, such as using unique and strong passwords for their various services, enforcing

reasonable permission allocations to applications, and protecting highly sensitive infor-

mation with encryption (or keeping this information off the device). These sort of defense

schemes are largely lost on users, and can be difficult to implement for developers [20, 76].

In this work we preemptively propose a new form of malware, tailored specifically to mo-

bile computing, along with a first step defense mechanism in hopes to alert the community

of this potential threat and spur future research.

This work is interesting because we can exploit several properties of mobile com-

puting. Firstly, the abundance of sensitive information found on these devices is highly

valuable to attackers. Passwords are an obvious example, but attackers may also try to

learn users' addresses and financial information, which can be used to steal their identity.

Users' political views or sexual orientations, can be used by oppressive governments or

organizations. Their personal traits and interests can be used to answer common second

factor ``security questions'' such as their childhood home, or pet's name. Secondly, we

exploit the variety of physical world sensors to establish several unique covert channels,

which we refer to as ``physical media covert channels'' (PMCC). Because of the architec-

ture currently in place in mobile operating systems, we show that we can easily design

malware, using PMCCs, which appears benign fooling both non-expert humans and soft-

ware systems seeking to eliminate malicious software; this makes it a variant of trojan

horse malware.

Designing and implementing the PMCCs we use in our malware is difficult, because

we must achieve two goals at the same time. First, speed. Previous work has shown that
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as little as 100 bits per second is enough to pose a serious threat, we show that at least

one of our covert channels can achieve a few thousand bits per second. Secondly, stealth.

The stealth of the covert channels is very important so they are difficult to defend against.

They must go unnoticed by the user, and appear to be benign from the point of view

of the software. Additionally, defending against these channels is challenging, because

we must differentiate between benign and malicious sensor use without interrupting key

features or annoying the user with confirmation dialogs.

Our attacks overcome not only the current, widely deployed defense mechanisms, but

also the defense schemes posed in recent literature. Most recent work in this area can

be divided into three areas: taint-analysis, elaborate security policy mechanisms, and ap-

plication market curation. Taint-analysis can be used to identify sensitive information as

it flows through an application and notify the user or stop this sensitive information from

leaving the device and being leaked. Sensitive information sources are marked as such

(e.g., the user's contact list) and sinks are identified that will ultimately leak this informa-

tion (e.g., the Socket API). Security policies can be written by users, or automatically, that

disallow certain types of malicious behavior. Market curation techniques aim to identify

and remove malicious applications from the market before users even have a chance to

install it. Our attacks overcome all of these approaches because of our physical media

covert channels, which are novel and difficult to differentiate from benign behavior accu-

rately. Our defense scheme provides a framework, that can be extended in the future, to

identify and defend against variants of the malware we propose.

In this work we identify a new malware specifically designed for mobile devices. PM-

CCs used in the malware are constructed using the sensors found on smart devices. We

show that our malware can easily leak sensitive user information, such as bank state-

ments, or location traces despite any current defense mechanism. Building such a sys-

tem introduces several challenges including achieving a high bit rate, and low detectability

(stealth). We go on to propose a defense scheme against these attacks, which can be

implemented by the operating system provider, that aims to enable taint tracking over
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these channels. To summarize, in this project we make the following contributions:

• We propose a new class of covert channels for smart mobile devices that utilize real

world interfaces (e.g., the vibration motor and the accelerometer). We generalize

these as ``physical media covert channels'' and demonstrate that they can achieve

varying levels of stealth, and speed.

• We design, and implement five example PMCCs, which utilize ultra-sound, physical

vibration, light, and the user themselves. We spend extra effort on our ultrasound

channel to show that with some engineering effort we can achieve a very high trans-

mission rate.

• We use our PMCCs to design a new variant of Trojan Horse malware, which ap-

pears to be benign but actually leaks sensitive user information. We give a specific

example called ``Jog-Log.''

• We propose and implement a novel defense scheme that takes a framework ap-

proach. The defense aims to propagate taint information across these channels,

while still maintaining high usability of benign applications.

• We evaluate prototypes of each covert channel and the defense mechanism. We

show that our fastest channel, the ultrasound covert channel, achieves 3.71kbps,

and our gyroscope channel is very stealthy. Our defense scheme maintains high

usability for the user, while stopping all of the proposed attacks with low overhead.

5.2 Threat Model

We assume the attacker is remote. He or she does not have any physical access to

the user's device and cannot alter the operating system, or any other software, already

running on the user's device. The attacker's goal is to convince the user to run their

malicious code, which is used to obtain some information about the user. By ``attain'' we
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mean that the attacker's code accesses some sensitive information, and transmits it, over

the Internet, to an attacker controlled host machine.

In order to send information out over the Internet in the malicious application, without

requesting the Internet permission, the attacker can exploit a simple capability leak, which

is a form of a confused deputy attack [28] using the web browser. Android applications can

ask the browser to open URLs on their behalf without declaring the Internet permission.

The attacker can include someCGI parameters (e.g., attackerhost.com/collector?usersecret=val)

to transmit sensitive information to their own controlled host. Although there are protec-

tions against these attacks [9, 57], they are not widely deployed. Furthermore, the attacker

can always just declare the Internet permission and communicate with their host directly,

although this is less stealthy to the user.

Creating Applications The attacker is able to implement Android applications which

are, from the point of view of the victim, normal applications. The attacker does not have

to provide the source code to these apps, distributing only .apk files, which are essential

.zip archives of java byte code and application assets such as image files and text files

containing localized strings.

In order to convince the user to install these applications, the attacker can employ

a few well studied techniques. Specifically, to circumvent application market curation

techniques [124, 126], a malicious application developer can employ obfuscation such

as utilizing native code, java reflection, remote code downloading, identifying malware-

detection environments [81], or other more sophisticated techniques [84, 16, 111]. This

allows the application to appear in application markets, drastically increasing the number

of people that will run it.

To be more specific, the attacker aims to build a trojan, which by definition, appears to

be benign from the point of view of the user, but actually performs some malicious activity.

The attacker can even implement complete benign functionality to produce a convincing

trojan.

Timing The attacker can employ standard Android timing mechanisms such as the
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``ScheduledExecutorService'', in order to execute certain portions of their code at certain

times of day (to increase stealth), and to ensure that two different components (possibly in

two different applications) run at the same time to facilitate covert channel transmission.

Accessing Sensitive Information As mentioned previously, there are many pieces

of information that may be considered sensitive on a typical smart mobile device. This

information can be organized into three forms based on how it is accessed.

First, applications maintain sensitive information and may expose it for use by other

applications. For example, the contact manager application maintains contact information

for other people. Typically individual contacts can be ``shared'' via an interface between

the contact app and another app (e.g. the SMS app may be able to access an individ-

ual contact to send the phone number of that contact to a friend). Typically this type of

information is guarded with some permissions. For example, to read the phone records

of the user, the application must declare the ``READ_CALL_LOG'' permission, which is

displayed to the user at install time. For first party applications such as the phone call

app, a permission is always necessary, for third party applications it is less common.

Secondly, certain hardware devices can provide sensitive information immediately,

such as the GPS radio. These devices are guarded by permissions, but other sensors,

which are not traditionally thought of as sensitive, do not require permissions to access,

such as the accelerometer and gyroscope.

Third, sensitive information can be extrapolated from these sources. For example, by

polling the GPS sensor regularly the attacker can likely learn the user's home address and

work address by examining where they are late at night and during the day on work-days.

These sort of inference or extrapolation attacks are plentiful in recent research [56, 108].

Attacker Limitations The attacker cannot access the hardware devices, such as the

accelerometer and microphone, except by going through the provided Android APIs. This

is enforced already in commodity Android due to user permissions, and SELinux. This

means that the attacker must abide by the permission system that governs these APIs

[39]. We also assume the attacker does not have root level access on the user's device.
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Figure 5.1: Information flow using physical covert channels.

We do not focus on the case where the attacker tries to use some physical media

covert channel to communicate with another proximal device. Although it may be possible

to form some sort of ad-hoc network out of nearby attacker controlled devices, we consider

this scenario to be largely impractical and unlikely.

5.3 Trojan Horse Malware Design

In this section we present a general trojan horse malware, specifically designed for com-

modity smart mobile devices that utilizes PMCCs. Our malware aims to appear benign

to users and software systems, while actually leaking sensitive user information to an at-

tacker controlled host over the Internet. A high level view of the malware can be seen in

Fig. 5.1. The attack works in four phases. First the malware is installed by the user on

their personal device. Then it accesses some sensitive information, such as the user's

GPS location trace. Third, the malicious application component encodes the informa-

tion and sends it out over a physical device. In Fig. 5.1 the vibration motor is used as

an example. At the same time, a second attacker controlled application component is

used in the background to gather samples from the corresponding sensor. This second

application component decodes the signal from the sensor, obtaining the original data

(untainted). Finally, the receiver application component sends this information to some

attacker controlled host on the Internet.

By ``laundering'' the information over a PMCC, we circumvent the current, widely
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adopted permission systems on mobile devices, which try to isolate the data of each ap-

plication in respective sandboxes. Our channels allow applications to share information

without the OS or even current state-of-the-art defense schemes, (including those based

on taint-tracking [9, 22, 28, 45]), being alerted. Because none of the systems in recent

literature (to the best of our knowledge) account for transmission over physical media, our

covert channels pose a novel threat.

5.3.1 Example Trojan Application --- Jog-Log

An example trojan application might be a fitness app, which helps users track their run-

ning progress. The attacker's goal is to attain the user's home address. The application

implements a simple ``jogging journal'' which determines when, for how long, and where

a user jogs to help them track their progress. The application is closed source and is

submitted to a well known application market.

The user, interested in jogging, finds the app in the market and installs it. Because

they are weary of their information being leaked, they run the taint-droid system on their

device [22]. When they want to begin a run, he or she starts the application and the

GPS radio is used by the app to track the run. The application declares the permission

to access the GPS radio, but it does not request the Internet permission. The application

also requests access to the microphone to allow the user to add simple ``voice notes'' to

their journal entires (e.g., ``I was greeted with a beautiful sunrise this morning thanks to

my new jogging hobby!'').

Later, at night when the user is sleeping, the application uses the ScheduleExecu-

torService to wake up and use a PMCC to transmit the location information gathered

earlier during the most recent run. Specifically, the speaker is used to produce an ultra-

sonic signal. At the same time, the microphone is used to decode the signal in a second

component (part of the same application, running simultaneously in a second thread).

Because the information has been laundered over a PMCC, the original taint-tags asso-
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ciated with location have been lost. Then, the second component forms a URL with the

attacker's host as the domain, and the user's location as a CGI parameter and asks the

browser to open this page.

The attacker sets up a special web server to respond to these requests by recording

the CGI parameters in a file associated with the IP address of the user. Once the data is at

the attacker's host, the attacker can find the street address nearest the GPS coordinates

logged at the start and end of the user's runs, which is likely their home address.

5.3.2 Attack Variations

An attacker must control two application components, (e.g. a foreground activity and a

background service), one sender and one receiver, to implement a covert channel. These

components can be part of the same application, to circumvent taint-tracking analysis, or

two different applications, to circumvent taint-tracking and the current, widely deployed

permission system and information sand-boxing. If the attacker chooses to use two in-

dependent applications, they must convince the user to install both of them. To achieve

this, the attacker can craft these applications so they are related, with some combined

functionality and do in-app cross promotion. This is common practice with many devel-

opers in the Android ecosystem. The ``Go Launcher'' [107] and ``Yahoo Weather'' [123]

apps serve as just two prominent examples.

In our Jog-Log example, the attacker may instead choose to place the voice note

feature in a second, stand alone application and do in-app cross promotion. If the user

installs both apps, then the attacker can use the covert channel to move the location

information from Jog-Log into the voice recording app using a PMCC, and then use the

voice recording app to transmit the data to their host. In this case, the voice recording

app can declare the Internet permission, and still the user will not expect that there is any

way that their location information (in the Jog-Log app with no Internet permission) could

possibly be sent out over the Internet.
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If the developer chooses to implement two components in the same application, then

themalware can defeat current state-of-the-art defense techniques, but will be less stealthy

to users, because it must present all of the corresponding permissions together at install

time. Fortunately, it has been shown that the permission system is commonly abused by

users and developers [76], so this is not a significant challenge for the attacker.

If the attacker is a large enterprise that distributes smart mobile devices, they can in-

clude the malware via pre-installed applications. This approach is much simpler because

the attacker does not need to be concerned with market curation, or convincing users the

permissions required do not pose a threat. Pre-installed applications are also significantly

more difficult for users to remove, due to both technical and potential legal challenges.

However, few attackers have control of an enterprise or a similar level of influence over

which apps a user has installed.

5.4 Covert Channel Design

The foundation of our newly proposed malware, is our novel physical media covert chan-

nels. In this section we discuss our implementation of five such channels, to increase the

attack surface, making the defense more difficult, easing the task of creating seemingly

benign malware, and to show that the different channels have different strengths.

Each channel utilizes different permissions. We summarize what Android permissions

are used in Table 5.1. For the remainder of this chapter, we will use the row numbers of

this table to refer to specific permissions. It is important to note that permissions (4) and

(5) are actually members of Android's ``uses-feature'' tag, not the ``uses-permissions''

tag, which are optionally used by the developer.

All of our channels are stealthy to software, because until now, none of them are

considered to be able to transmit and receive information. They have varying stealth in

regards to the user, which we detail in each channel subsection.

UltrasoundWe put extra effort into the development of our ultrasound covert channel
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Permission Hardware Description
1 MODIFY_AUDIO_SETTINGS Speaker Change volume
2 CAPTURE_AUDIO_OUTPUT Direct access to speaker buffer (e.g., record phone call)
3 RECORD_AUDIO Microphone Use microphone
4 android.hardware.sensor.accelerometer Accelerometer Use accelerometer
5 android.hardware.sensor.gyroscope Gyroscope Use gyroscope
6 VIBRATE Vibration Motor Use vibration motor
7 WAKE_LOCK Screen Prevent device from locking automatically
8 CAMERA Camera Take pictures
9 FLASHLIGHT Camera Flash Use lamp
10 READ_PHONE_STATE Phone Learn if phone is locked or a call is active
11 INTERNET Open network sockets

Table 5.1: Summary of various permissions used by our covert channels

to show that these physical media covert channels have potential for relatively high bit-

rates. This channel uses the speaker and microphone found on smart devices. The main

idea is we send very-high frequency, modulated sound waves (above 18kHz) in packets

from the device speaker to the microphone. Permissions (1) and (3) are used.

A high level view of the ultrasound covert channel can be seen in Fig. 5.2. Here

the attacker can control one malicious application (housing both the modulator and de-

modulator), or two applications, where the demodulator is separated out. The malicious

App 1

Modulator

App 2Data: 0101...

Hail OFDM Data

Android API

Speaker Microphone

Demodulator (FFT)

Hail Listener

Data: 0101...

Information
Leak

Figure 5.2: High level module view of the ultrasound covert channel.

sender generates packets in the ``Modulator'' module and sends sound data over the de-

vice's speaker. The receiver uses the microphone to record this sound. The signal is first

parsed by the hail listener, which finds the starting point using the cross correlation be-

tween the received signal and a pre-established ``hailing'' signal. Then, using the Fourier

Transform (FFT) module, the malicious receiver can recover the data.
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We choose to use 18khz - 22kHz, because this spectrum is inaudible to humans

(stealthy), below the Nyquist frequency for most smart devices, and has relatively low

background noise. In order to remain inaudible, but still achieve a high bit-rate, we choose

to work in the frequency domain. We generate data segments 882 samples long, each of

which is the sum of many modulated sub-carrier frequencies.

si =

22kHz∑
f=18kHz

sin(2 ∗ π ∗ i ∗ f

Fs
+ θ) : ∀i ∈ [1− 882] (5.1)

Each sub-carrier (of which there are 70, spaced 50Hz apart) encodes a binary phase

value and a binary amplitude (19% or 100%). We reserve four sub-carriers for calibration

(18k, 19k, 20k, 21k), which are used to reduce error when recovering bits. This affords

a maximum theoretical throughput of roughly 6.5kbps, which is high compared to tradi-

tional covert channels [27]. The receiver can use the FFT, to determine the amplitude and

phase of each sub-carrier frequency present in a given packet S = {s1, s2, ..., si}. This is

commonly referred to as orthogonal frequency division multiplexing (OFDM). When de-

signing our system we used the following parameters. Packets of length i = 882 samples

(20ms), Γ = 50Hz sub-carrier width, and sample rate Fs = 44.1kHz. We use 3.5kHz of

spectrum from 18kHz to 21.5kHz.

Speaker and Accelerometer The speaker on most smart devices can cause the en-

tire device to vibrate, if the tones are played with a loud enough volume. We use the

speaker as a sender, playing standard Dual-Tone Multi-Frequency (DTMF) tones, and

the accelerometer to measure the vibration of the phone, which will resonate with the

tones being played. We then perform binary amplitude shift keying to modulate the data.

DTMF codes are used because smart phones are designed to produce them well, and

they are less conspicuous in this context. Permissions (1) and (4) are used. Although

this channel is slower, and less stealthy than our ultrasound channel, we present it to

demonstrate that seemingly arbitrary sensors can be combined to form a channel.

Vibration and Accelerometer Our vibration channel uses the vibration motor (6),

normally used for silent notifications, as the sender, and the accelerometer (4) as the
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receiver. Again, binary amplitude shift keying is used for modulation. The stealth of this

channel can be increased, by transmitting immediately after benign vibration events. In

this way, the user may mistake the transmission for a long notification or may not notice

at all.

Flash and Camera In this channel the camera's flash (9) is used to send data and the

camera (8) is used to receive it. We simply turn the lamp on and off and run some simple

image processing on the captured image preview from the camera to transmit data. The

average brightness of the image should be much higher if the lamp is on, compared to

when it is off. This channel has several draw-backs. Firstly, the camera can only be used

by an application if a preview is shown in the foreground. Secondly, the camera light

is very obvious and suspicious to even non-savvy users. Thirdly, this channel relies on

some assumptions about physical orientation and environment. However, we show in our

evaluation that the channel works even when the device is placed camera-down on a flat

surface, which increases the practicality and stealthiness toward users.

User and Gyroscope The main idea of this covert channel is much different from the

others. Here, we tilt the phone, and measure this action using the gyroscope (5). Bits

are encoded in the angle of the device over time. To transmit the bits, we fool the user

into tilting the device in the correct sequence by implementing a simple ``endless running''

game. In the ``endless running'' genre, an avatar moves down a track collecting items

and avoiding obstacles. The user is tasked with tilting the device (or swiping) left and

right to move the character on and off several different tracks. Endless running games

typically feature randomly generated tracks, with the challenge being how long the user

can avoid the obstacles. We simply generate the track according to the bit stream to be

transmitted. This channel is highly stealthy in that the user is interacting directly with the

device, and will have no idea the channel is being used. In fact, the user is part of the

channel!

Wemake a novel generalization of this concept we call ``user-sensor'' covert channels,

which fool the user into taking specific actions (touching areas of the screen, pressing
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hardware buttons, etc.), which act as data transmission symbols. User-sensor channels

present many unique challenges such as handling inevitable user errors, and clever game

design, which are out of the scope of this work.

5.5 Defense

The physical media covert channels (PMCC) we've outlined thus far exhibit the precari-

ous nature of sensitive user data on modern smart mobile devices. Our goal in present-

ing them is to spur research in defending against these attacks, which pose an obvious

threat. To further our contribution in this work (above and beyond our previous publication

of PMCCs [73]) we present a defense framework, which protects against information leak-

age attacks done using PMCCs. A prudent defense must take into account many critical

design decisions such as maintaining high usability by avoiding nagging user prompts,

complex user-configured privacy policies, and coarse-grained or blanket rules. Applying

previous defense approaches, like TaintDroid[22] in a naive way will lead to poor usability

and therefore, poor user privacy. This is especially difficult for information leakage us-

ing PMCCs, because it is very difficult to differentiate, using static or dynamic analysis,

benign from malicious sensor use. Sensors are commonly used in a wide variety of be-

nign applications with similar device combinations, and frequency of use. For example,

any teleconferencing application will make use of the speaker and microphone simulta-

neously, for a sustained period of time, in a completely benign way that is very similar to

an implementation of the speaker + microphone covert channel.

In our previous work, we laid out a ``first-step'' defense scheme that had extensibility

limitations, and was substantially different from the defense scheme we present in this

dissertation. Firstly, our original defense scheme used data structures that were differ-

ent. The system recorded which Android component(s) (service, activity, etc), accessed

hardware devices (microphone, speaker, etc.). This required a special ``component'' data

structure, which stored the fully qualified package:component name, along with what de-
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vice was being access, and taint-tag information. The previous defense maintained a

dynamic list of these components as different hardware devices were used. As far as lim-

itations are concerned, our previous approach required a lot of effort to define new covert

channels between existing hardware devices, and to incorporate hardware besides those

implemented directly in our work (i.e., accelerometer, gyroscope, camera, flash, vibration

motor, speaker, microphone, and custom canvas elements / the screen). Therefore, in

designing our new defense system, we summarize our three goals as follows:

• Coverage We demonstrate several covert channels in this work to demonstrate

that seemingly arbitrary devices can be used to form a covert channel. Our defense

should stop each of these channels, as well as provide extensibility to detect and

treat future channels.

• User Experience Our system should make it easy for the user to define the covert

channels that they are concerned with.

• Overhead The system should be low performance overhead and be minimally dis-

ruptive so that it does not take away from the user experience.

Our proposed defense system architecture, illustrated in Fig. 5.3, works in two stages

(Fig. 5.3 (b)). The detection stage aims to maintain an always up to date record, during

run time, of which potential covert channel devices are being used, and the data flowing

in/out of them. When sensor data is read (e.g., the microphone), if there is an active

corresponding sender device (e.g., the speaker), we propagate the taint-tag from the data

on the sender side (speaker), to the data on the receiver side (mic), thereby extending the

existing taint tracking solutions. Then, in the treatment stage, we provide some additional

protections according to a user configuration file such as alerting the user, or limiting the

use of the sensors in some way.
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Guard Service
SystemSensorManager.java

AudioTrack.java

AudioRecord.java

VibratorService.java
vibratePattern()
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(a) Defense System Architecture. Various system API classes are altered to
hook into the ``GuardService'' Android system service. The GuardService de-
tects potential channels and applies the configured treatment.
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Figure 5.3: Architecture and Framework for our defense system. Applications that use sender de-
vices are recorded. When there is a new data event for some hardware, the taint-tag is propagated
by our service, before the samples are delivered to the appropriate application component(s).

5.5.1 Taint-Tag Propagation

Fortunately, any application that is trying to transmit data secretly, using a PMCC, must

use an API provided by the operating system to access the hardware device(s). In or-

der to detect the API use, we add a system service called the ``GuardService'' to the

operating system, and we modify the internal Android provided API of each device, to

hook into the GuardService. As illustrated in Fig. 5.3 (a), each physical device has a

corresponding .java file in the Android source code, which is modified to call the Guard-

Service provided functions propTaintFromSnd(), clearDeviceTaint(), clearDeviceTaintDe-

lay(), and getTaintForRec(). These methods allow the GuardService to monitor device

usage by any and all applications throughout the system, and to read/write the taint-tag of

data being sent to / received from any device. We also provide a mechanism for the user

to specify which covert channels they're concerned with monitoring. This information is

stored in the channel table, which is explained in greater detail in Section 5.5.2.

Sender Devices When any application sends data to a ``sender'' device (e.g., the

speaker or vibration motor), by calling the appropriate API function(s), there will be some
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data passed in that describes what the device should do. When this occurs, we use

propTaintFromSnd(), to read the taint-tag values from that input data, and store it in the

``taint-cache'' for the corresponding device. Because we extend the existing Taint-Droid

implementation, this taint information is a 32-bit bitmask and the taint cache is an array

of integers, one for each of the sender devices.

Receiver DevicesWhen a receiver device (e.g., the microphone or accelerometer) is

accessed, getTaintForRec() is called, which causes the GuardService to look up the taint-

tag for the corresponding sender(s), in the taint-cache, and propagate the taint-tag from

the cache, onto the receiver data, before it is delivered to the application. The specifics of

the API, and the semantics of the data, are unique to each device and vary in complexity.

We describe in detail our implementation for the commonplace physical world sensors

and actuators on Android devices in Section 5.5.1.2. This approach allows us to monitor

the use of devices, and propogate taint-tag information from the sender side of the covert

channel to the reciever side.

5.5.1.1 API Implementation Details

In the following we outline the semantics of our four API function calls. Each of which

takes an int dev input parameter, which specifies a device. Our service provides integer

constants for the eight, most common devices (TYPE_VIB = 0, TYPE_ACCEL = 1, ...).

propTaintFromSnd(dev, taint) is called when a sender device begins transmitting, or

outputting. The dev specifies which device is transmitting, and taint specifies the taint-

tag to be cached. The taint-tag is stored in the taint-cache, indexed by the device being

used as the sender (e.g., the top or 0-index spot for the vibration motor). An example

taint-cache, with random values, in shown on the left side of Table 5.2.

getTaintForRec(dev) is called when a receiver device is providing data (usually done in
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batches), to an application. The function uses the channel table, which stores a map-

ping of which covert channels should be monitored. This table is user configurable (see

Section 5.5.2), and defaults to include five of the covert channels outlined previously in

Section 5.4. As an example, if an application begins reading the accelerometer data,

the GuardService will taint that value with the taint-tags stored in the taint-cache for the

vibration motor and the speaker, because those pairs are known to form PMCCs, and

are therefore monitored by default. In short, getTaintForRec() triggers a very small one-

column search in the channel table, and looks up the taint-tag from the cache for the

corresponding sender devices. In this function, dev specifies the reciever device.

clearDeviceTaint(dev) is called to reset the taint-cache for dev to 0 when a sender de-

vice stops transmitting. For example, the vibration motor provides a cancel() function,

which immediately stops any vibration. When this function is called, we should also call

clearDeviceTaint() to reset the taint-tag value for the vibration motor to zero, as it is no

longer able to communicate any data. We describe how this function is used in more

detail for each device in section 5.5.1.2.

clearDeviceTaintDelay(dev, delay) is used to call clearDeviceTaint() after the specified

delay in milliseconds. Some devices are able to transmit data with little to no correlation

to the timing of API function calls, such as the speaker. The speaker API (AudioTrack)

allows the user to write data to the speaker buffer, and then begin playback by calling

play(). The play() function returns immediately, and the speaker produces the signal

previously written. The time it will take to produce the signal can be determined, based

on how much data was written to the buffer, and some parameters such as the sample

rate of the buffered data. After estimating the playback duration, clearDeviceTaintDelay()

can be used to clear the taint-tag after this time. This particular function implements a

thread, which waits for the given duration (delay) using the built in Thread.sleep() API.

After sleeping, the thread then calls clearDeviceTaint(). Because Thread.sleep() only
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guarantees that the calling thread will sleep for at least the given amount of time (lower

bound), the same is true of clearDeviceTaintDelay(). However, this error is tolerable,

because clearing the device taint-tag too late results in a false positive, which is overly

cautious instead of a false negative, which covert channels could game to transmit data

without taint-tag propagation.

When the malicious code uses a covert channel, the previous work breaks down. By

propagating the taint-tag information from the sender side data to the reciever data, using

the GuardService provided API, our system allows the taint information to traverse these

covert channels, as depicted in Fig. 5.3. And, by using taint-tracking analysis, we can

ignore benign instances when physical devices are being used, but there is no sensitive

information flow because the taint-tag of this data should be: 0.

5.5.1.2 Device Hook Implementation Details

We implement a prototype of our defense scheme on Android by downloading and modi-

fying the Android Open Source Project (AOSP) source code. For taint tracking, we extend

the existing Taint-Droid system [22].

By default, none of the Android device API classes will notify our GuardService when

devices are in use, which is necessary in order to propagate taint information over the

covert channel. We modify the API for each device to hook into our ``GuardService''

accordingly using the API methods outlined in the previous section. While we strive to

make our GuardeService API simple and easy to use, a trivial approach cannot be taken

to implement the hooks. Because the devices vary greatly, the source code for these

classes is complex, and there are many potential pitfalls. In the following we analyze the

API of each of the sender devices and detail how we implement the hook.

Vibration Motor for the vibration motor, Android provides a function vibrate(long mil-

lies), and a second function vibrate(long[] pattern, int repeat), which both return immedi-

ately. In the former, long millies describes how long the vibration motor should vibrate,
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which begins immediately (ignoring negligible overhead) when the function is called by

the application. In the latter, the application provides an array of longs, that ``are the

durations for which to turn on or off the vibrator in milliseconds'' [39] and an int repeat,

which specifies the index at which to repeat the pattern from (-1 to disable repeating).

When vibrate(long millies) is called, we read the taint-tag data from millies and store it

in the taint-cache by calling propTaintFromSnd(). At the same time, we call clearDevic-

eTaintDelay() to set a timer, which expires after millies milliseconds and then clears the

taint-tag value. This way, when the vibration motor has stopped vibrating, we no longer

propogate any taint-tag values. Similarly, when vibrate(long[] millies, int repeat) is called,

we concatenate the taint-tag values from long[] millies and int repeat and pass the re-

sulting value into propTaintFromSnd() to be stored in the taint-cache. When cancel() is

called, the taint-cache is cleared, so we do not have to set any timer in this case. Clearly,

even the simple vibration motor has a relatively complex API.

Flash For the camera and flash covert channel, we describe how to transmit data

using the flash, but there are actually several parameters that can be used to encode data

such as the image resolution, which are provided in a Camera.Parameters class. When

the camera is opened, the propTaintFromSnd() method is called, and we propagate the

taint-tag of the entire class instance to the taint-cache. getTaintForRec() is called when a

picture is taken, or preview frames are delivered, and clearDeviceTaint() is called when

the camera is closed.

Speaker For covert channels using the speaker, the developer can implement the

speaker API in one of two modes; a streaming mode and a static mode. In the static

mode, described previously, the developer first instantiates an AudioTrack class instance,

and writes any sound data using the .write() method, which writes an array to an internal

buffer. Later, the developer calls a .play()method, which instructs the hardware to actually

play the signal previously written. Alternatively, the developer can choose to implement

streaming mode, in which the developer calls the .play()method first, and then, after some

time, the .write() method, which will instantly generate the sound.
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Our system places propTaintFromSnd() and clearDeviceTaintDelay() appropriately

depending on the mode; i.e. with .play() in static mode and with .write() in streaming

mode. We can estimate the duration that the speaker will be making noise based on the

sample rate and the size of the array(s) passed to .write(). This duration can then be

passed to clearDeviceTaintDelay(). This microphone implementation is straightforward

and relatively similar to the speaker implementation, therefore, we have left it out of this

work for brevity.

User and Game For this channel, the sender appears to be the user, but actually,

the user responds to the information presented on the screen by the malicious game.

Because the attacker has implemented a game for this channel, it is safe to assume that

they will implement a canvas element to draw the game graphics. The Android canvas

element exposes an onDraw method to the developer, which is called rapidly to update

the current frame on the screen. We can propagate the taint-tags from the variables and

data used in onDraw that are used in helper functions such as drawRect() and drawArc().

As mentioned previously, to implement our defense scheme, we leverage an existing

run-time based, taint-analysis system called TaintDroid [22]. The key difference between

TaintDroid, and our work, is the inclusion of the physical media covert channels in the taint-

propagation logic. While TaintDroid focuses primarily on internal or ``virtual'' information

flow paths such as variable assignment, function calls, and inter-component communi-

cation, we focus on including external or ``physical media'' information flows. Namely,

physical media covert channels.

5.5.1.3 Extending GuardService

In our implementation, we include all of the most common physical world devices com-

monly found on smart mobile devices (i.e. speakers, microphones, vibration motors, ac-

celerometers, gyroscopes, and cameras). The variability in the API semantics from device

to device poses a challenge for our defense scheme. While we fully support all common-

98



place devices, and allow the user to easily specify which channels should be monitored,

it is difficult to add support for new or different devices when they are added to handsets,

and it becomes apparent that they may be used as part of a covert channel in the future;

such as temperature sensors or notification LEDs.

To address this limitation, we strive to design our defense scheme in such a way that

it is easy to extend to add support for new devices like these. Our GuardService provides

a simple API for hooking in new hardware devices that is focused on the simple design

concept of input, and output. Although manufacturers, privacy advocates, or even techni-

cally savvy end-users will have to modify the Android system source code to hook into our

GuardService, our simple API makes it easier. Therefore, when a device manufacturer

produces a hand-set with a new hardware device (such as a temperature sensor), it is

necessary to make only a few changes. A new constant (e.g., TYPE_TEMP = 5) should

be defined, and the GuardService API methods should be called in the API code that

controls when and how the device is accessed. Because it is already necessary to write

the API code (for the device to be used at all), only a few lines need to be added to hook

into the GuardService framework.

Specifically, for devices that output in some way, there should be an API call that al-

lows applications to send (output) data to them. This API call should include a call to

GuardService.propTaintFromSnd() passing in the taint-tag from the output data. Guard-

Service.clearDeviceTaint() should be called when the device has finished outputting. Sim-

ilarly, for devices that accept data (sensors), the API should callGuardService.getTaintForRec()

to retrieve the taint-tag information and apply it to the output data. The GuardService

maintains the taint-tag data from other devices, and coordinates user configurations about

which channels should be monitored.

Furthermore, we design our defense so that GuardService hooks are inserted at the

Android API layer (as opposed to a kernel module or the driver level). This means that

all instances of a particular type of device (e.g. microphones from different manufactur-

ers) will all be supported when a single, corresponding API file (e.g., AudoTrack.java) is
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modified just one time.

5.5.2 User Configuration

We provide an end-user facing graphical user interface, which allows the user to specify

which PMCCs should be monitored. PMCCs can be used under certain circumstances

only. Namely, the sender application must (1) have access to a source of sensitive in-

formation, and (2) have permission to use the hardware to transmit the information in a

PMCC. The attacker must also (3) have control of some secondary component / applica-

tion to receive the information, and (4) the receiving component must have permission to

use the reciever hardware device. Furthermore, the system must make use of the PMCC

without the user noticing. Therefore, users may feel confident that certain covert chan-

nels cannot be utilized, because the user would notice. They may act cautiously with the

applications they install, or they may believe that it is simply impossible for some device

pairs to communicate (e.g., the speaker and camera). Alternatively, new PMCCs may

be discovered in the future, which the user may wish to monitor. For these reasons, we

provide the user the ability to specify which covert channels they wish to monitor.

We arrange all known sender and receiver devices as the rows and columns of a table

respectively. This table is known as the Channel Table, mentioned previously and shown

in Fig. 5.3. An example channel table, with default values, is shown on the right side of

Table 5.2. The table cell at the coordinates indicated by the device constants (e.g. posi-

tion (2, 3) for the Falsh + Camera covert channel), stores a boolean value, which indicates

to the system that the user is concerned with this covert channel, and that the taint-tag

from the sender (Flash) data should be propagated to the reciever (Camera) data. The

GuardService also exposes three API function calls to support GUI client applications as

shown in Fig 5.3. The first, setPair(int snd, int rec), allows the user to set the correspond-

ing spot in the channel table as True. The second, clearPair(int snd, int rec), sets the

corresponding spot False. The third, queryTable() allows the client application to view
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the current status of the channel table.

In our implementation we provide a simple client Android application, which exposes

a user facing GUI. This application allows the user to view the current state of the table,

and it provides a simple interface, which is connected to setPair() and clearPair(). A

screenshot of our GUI can be see in Fig. 5.4. Default values for the table are provided

according to the channels we've described here (see Table 5.2). The application is able to

call setPair() and clearPair(), which are part of GuardService, running in another process,

because the GuardService exposes these methods for any client to call via the Android

interface definition language (AIDL). The GuardService also exposes queryTable(), which

allows applications to learn the contents of the table (which may have been changed by

other client applications or processes). In our implementation, this method is polled once

every two seconds as long as the application is in the foreground.

Figure 5.4: Screenshot of our user facing PMCC configuration application. The user can turn
monitoring on and off for specific channels using the controls on the top, and view the current
monitor status in the table below.
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Taint-Cache

0x0
0x100
0x0
0x800

Channel Table
Accelerometer Gyroscope Microphone Camera

Vibration Motor True False False False
Speaker True False True False
Flash False False False True
Screen False True False False

Table 5.2: GuardService Channel Table, which is used to indicate which covert channels the user
is concerned with. The values shown above are the default, which correspond to the channels
outlined in our work. The taint-cache (shown on the left) stores the current taint-tag value from
the data sent into the API call(s) for the corresponding Hardware.

5.5.3 Advanced Treatment Techniques

To improve our defense system, we also present several potential treatment methods

in the second stage to further enhance the security of the framework. As illustrated in

Fig. 5.3 (b), when a covert channel is detected, our system intervenes and reads a user

controlled configuration file to determine what additional action to take, if any. Providing

an array of different treatments options allows our framework to be very flexible and allows

us to include the best ideas from recent literature, as well as leave the system open for

improvement in the future, when new covert channels are discovered. Below we describe

each of these options in greater detail.

Alert The User The weakest choice of treatment is for the system to alert the user of a

possible information leak. This is the default action.

Choose OneOne device is turned off (the samples are dropped) for the duration the other

device is in use. Which device is allowed and which is prohibited is a tunable parameter.

Dynamically Switch Allow only one device to operate transiently based on a simple

threshold. For example, a video conferencing application may access the speaker and

microphone concurrently. However, in typical conversation it is uncommon that both par-

ties are actually speaking at the same time. Based on which signal is stronger (i.e. RMS

for audio signals), we allow only one to flow, as illustrated in Fig. 5.5. By switching dy-

namically between the two sensors, we guarantee the covert channel cannot be utilized,

because there is never a time when both sensors are active, but benign applications are

still usable.
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Figure 5.5: ``Dynamically Switch'' treatment method. The speaker and the microphone cannot
be accessed at the same time. The active device is chosen in each time window by calculating
which root mean squared (RMS) is larger. The other device is silenced.

Rate Limit For the flash and camera channel, the two devices must be used at the same

time in order to take pictures in low light conditions. Instead of prohibiting access to one

device, one possible solution is to limit the rate at which that device can be used.

Altering the Signal For all of these channels, we can increase the error rate the attacker

achieves by changing the signal. For example, filtering out ultrasonic audio, removing

samples to create random pauses, or inserting noise in the signal. However, we must be

careful not to effect benign behavior. Clever approaches may be possible, but unfortu-

nately, must be tailored specifically to the encoding scheme of the attacker, as well as the

signal processing of the benign application(s).

Reduce Permissions There are several ways we can defeat the channel by altering the

permissions of the application components involved. For example, each component can

be re-assigned the intersection of the permissions of both temporarily, which follows the

principle of least privilege.

5.5.4 Limitations -- Implicit Flow Taint Tracking

As we mentioned previously, we leverage the existing Taint-Droid work for dynamic taint

tracking analysis [22]. This system only tracks explicit flows, meaning direct assignments

from one variable to another as shown in Fig. 5.6. However, in this case, it is very likely the

attacker will use implicit flows to encode the sensitive information, as shown in Fig. 5.7.

To overcome this challenge, we propose a method inspired by previous work [64]. We

identify these implicit flows using static analysis and include implicit flow taint propagation
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s = api.getSensitiveInfo();
a = s;
a = s.getCharAt(3);
networkAPI.transmit(a);

Figure 5.6: Examples of explicit information flow.

signalSampleList = new List();
s = api.getSensitiveInfo();
for bit in s.toBinary(){
if(bit == 0){

signalSampleList.addSilence(500);
}
else{

signalSampleList.addNoise(500);
}

}
vibrationAPI.vibrate(signalSampleList);

Figure 5.7: Example of implicit information flow.

rules following a simple heuristic: If a branch depends on a tainted value, then we should

propagate the taint-tag to the variables assigned inside the branch. Our modifications

are done in three stages. First, at install time, the application is decompiled from the dex

files to Java code. Then, we use static analysis to automatically find implicit flow blocks.

We re-write the application code to propagate taint information into the variables in these

blocks. Then, in the final stage, we recompile the application, re-generate the .apk file,

and install it on the user’s device. To reduce false positives, we only apply our implicit

flow propagation if the output variable data depends on the entirety of the sensitive input

data.

This approach is not perfect, malware has a long history of resisting such techniques.

We leave more robust automatic application re-writing, implicit flow taint-tag propagation,

and code block analysis to future work.
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5.6 Evaluation

In our system we implement five covert channels, which utilize physical mediums (e.g.,

sound, vibration). We implement all five covert channels as single user-space applica-

tions. The two application scenario, with one sender and one receiver will not have any

effect on transmission speed, errors, or stealth, so we did not implement it. The ultra-

sound channel was evaluated on an LG-C800 smartphone. The speaker / accelerometer,

vibration / accelerometer, and light / camera channels were tested on a Samsung Nexus

S and the game / gyroscope channel was tested on a Google Nexus 4. The dynamic

switching defense evaluation was done on the Nexus S and LG-C800. The taint tracking

experiments were done with a Galaxy Nexus.

5.6.1 Covert Channels

To evaluate the ultrasound covert channel, we implemented an android application that

generates ultra-sound packets, as described previously. We transmitted 1000 bits in

twelve iterations and plotted the percentage of bits recovered incorrectly in Fig. 5.8. We
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Figure 5.8: Ultrasound Bit Error Rate. Phase and Amplitude correspond to bit errors from demod-
ulating these sub-carrier attributes respectively.

can see that the total error percentage and phase error percentage have high variance

(6.98, and 6.01 respectively). Trial number six shows that, occasionally, the channel can

achieve very low error rates. Amplitude error has lower variance (0.57) and shows a lower

mean (3.3%). Using both phase and amplitude, we can achieve a bit rate of 6.5kbps with
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relatively high mean error (14%), and by utilizing amplitude only, we can achieve a lower

rate of 3.25kbps that is more consistent.

We performed a short audibility user study to show that our ultrasound scheme is

stealthy. A random string of 1000 bits was encoded and transmitted three times in the

presence of ten individuals between the ages of twenty and thirty. The experiments were

held in two different meetings, with a volume of 6
16 . Participants were not notified be-

forehand of the experiment and were questioned shortly afterwards about having heard

anything. Unanimously, nobody was able to hear our system being used. Even after be-

ing told, and actively listening, untrained users have great difficulty hearing the ultrasound

signals emitted.

Speaker & Accelerometer We implemented the speaker and accelerometer covert

channel described previously and we used it to transmit 1024 random bits, ten times, at a

rate of 2bps to measure the bit error rate. Because we don't have robust synchronization,

our demodulator sometimes inserts extra (incorrect) bits or drops bits. We count the

total number of bits in error as the sum of the number of inserted, dropped, or incorrectly

decoded (flipped) bits. Each type is only counted as one error, even though missing a bit

will propagate errors through the rest of the bit stream. For this channel, the recovery is

very good; we had only four bit errors (0.039%). Six of the runs transmitted with no errors

at all.

Vibration Motor & Accelerometer To evaluate this channel we transmitted 1024

random bits ten times and recorded the bit errors, by type, in Fig. 5.9. This channel has a

low error rate and achieves 2bps throughput. Similar to the Speaker and Accelerometer

channel, we can see that there are only a few bits which were incorrectly decoded, the

rest of the errors are due to improper synchronization.

Camera & FlashWe transmitted 1024 bits using the channel ten times and measured

the bit error rate and transmission time. The experiments were done in a dark room

(similar to when the user may be sleeping), which can be seen in Fig 5.10. Over all ten

trials, there were no bit recovery errors and the transmission time was very consistent
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Figure 5.9: Vibration bit errors by type. Inserted: extra bit was decoded. Dropped: bit is missing.
Incorrect: bit was decoded incorrectly (flipped).

at 664 seconds (±2). The bit rate we achieve is 1.5bps. The limiting factor here is the

camera preview, which takes about one second and must be started and stopped each

time to change the flash's state. We also performed a simple test to confirm that the

(a) Camera Down, Flash (b) Camera Down, No Flash

Figure 5.10: Camera images captured with and without flash. Images gathered when the phone
was camera down, on a desk.

camera can be in different orientations and environments. We placed the phone flat on

the ground, in a poorly lit area under a desk, held upright in a dark room at night, and flat,

camera down on a desk. It's important to note that even when the device is placed flat,

face down on a smooth service, it's still possible to determine if the image taken had the

flash on or off, as can be seen in Fig. 5.10. This is because the camera has a small piece

of acrylic which covers both the flash and the camera lens. This piece of acrylic allows

light to flight laterally from the flash lamp directly into the camera lens. We transmitted

eight bits using this channel; each time and we were able to recover all eight bits with no

errors in every scenario. We can attribute this success to the physical design of camera

hardware on the phone (Samsung Nexus S). Because some light is able to travel from the

flash to the camera lens, even when the camera is facing down on a table the stealthyness
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of the channel is greatly improved, as the user will not notice the flash when blocked by

the desk.

User / GyroscopeWe implemented a very primitive game prototype in which the user

is instructed by a foreground application to rotate the phone in one of the three axes (6

different symbols). A background service measures the gyroscope at the same time to

decode the bits. The user is tasked with finishing each rotation task in as short a time as

possible. We played this ``game'' ten times and transmitted twenty symbols each time.

On average, the user is able to rotate the phone in 1.02 seconds, making for a bit rate of

roughly 2.5bps. There were no bit errors whatsoever.

Comparison In Table 5.3 we compare the average case error rate and speed of each

covert channel. In order to remove transmission errors entirely, we can use hamming

codes to correct single packet errors and retransmit packets containing more than one

error. We estimate the effective speed after hamming codes are applied in the ``Eff.

Speed'' column.

Channel Error Speed (w/errors) Eff. Speed
Speaker/Mic 14.4% 6.5kbps 3.71kbps

Spkr/Mic (Amp Only) 3.3% 3.25kbps 2.73kbps
Speaker/Accelerometer 0.04% 2bps 1.99bps
Vibration/Accelerometer 0.28% 2bps 1.94bps

Light/Camera 0% 1.5bps 1.5bps
User Game/Gyroscope 0% 2.5bps 2.5bps

Table 5.3: Comparing best case speed and average error rate of various covert channels before
error correction coding (Speed) and after (Eff. Speed).

5.6.2 Defense

For our defense system, effectiveness and usability are top concerns. Unfortunately,

performing a robust effectiveness evaluation is difficult, because there is no known or

cataloged malware in the wild that, to the best of our knowledge, takes advantage of

PMCC as described in this work. Therefore, we can only test the system on our own

contrived examples, in all of these cases, the system was able to identify active covert

channels, and propagate the taint-tag information. Our system currently breaks down in
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Channel Delivery Time Delivery Time
(system off) (system on)

Ultrasound 37.5ms 38.5ms
Speaker/Accel. 5ms 7.5ms
Vibration/Accel. 4.9ms 6.1ms
Light/Camera 8.36ms 10.1ms

Table 5.4: Overhead measurements for delivering samples from various hardware devices with
and without our system running.

situations involving implicit flows. Currently, we do not have a robust solution for taint-

tracking through implicit flows, but in the future, we plan to implement a better solution, at

which time an effectiveness evaluation will be more interesting.

To measure the usability, we record the time it takes for the system to deliver new

samples to the various devices (overhead), the effort of implementing the GuardService

hooks (lines of code), the time added by our application re-writing to support implicit flows,

and the usability of benign applications under our dynamic switching treatment technique.

5.6.2.1 Taint Propagation Overhead

We implemented our defense by leveraging the existing TaintDroid implementation [22].

Therefore, the memory overhead is identical to their work. The stack is basically doubled

in size, due to the extra space needed to store the taint values (except for arrays which

share one taint-tag for the entire structure). However, when new samples are delivered,

our system introduces some time overhead, because we must lookup and propagate

(bitwise OR) the taint value from the sender data to the receiver data. We implemented the

ultrasound, speaker + accelerometer, vibration + accelerometer, and the light + camera

channels. We measured the average time for the dispatchSensorEvent()method to finish

delivering the data with and without our system running over ten runs. The results are

presented in Table 5.4.
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5.6.2.2 Implementation Effort

When designing our GuardService we aim to make it easy for developers to implement

our hooks in the operating system device API files. To evaluate the effort required, we

analyze our own implementation of the hooks in five of the most common device API files

(i.e., the speaker, microphine, vibration motor, accelerometer & gyroscope, and the cam-

era & flash). For each file, we measure the total lines of code before our changes, and

the number of lines added to implement the hooks (the amount of lines deleted was negli-

gable). We present the results in Fig. 5.11. The percentages given are the percentage of

unchaged code for each file. In general we see that the hooks represent a relatively small

change to each file. In SystemSensorManager.java our code contributes almost 25% of

the total code. It's important to remember that this is actually the hooks for two devices

(the accelerometer and the gyroscope), and in raw values, we only added 103 lines of

code.

AudioTrack.java AudioRecord.java VibratorService.java SystemSensorManager.java Camera.jav
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Figure 5.11: LOC required to implement GuardService hooks. Percentages given are the per-
centage of unmodified code.

5.6.2.3 Implicit Flow Propagation

To measure the overhead introduced by our implicit flow taint propagation solution, we

manually re-wrote a representative if statement in an Android app using the d2j decom-

piler, and the Google provided application packaging tools. The body of the if statement

contains a for loop, similar to Fig. 5.7, a primitive variable assignment, an array element
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assignment, a function call, and a custom object construction. To ensure the taint values

are propagated within the implicit flow code bodies, we multiply the to-be-tainted variables

by a tainted variable with the value one. By doing this, we guarantee that the variable will

receive the taint-tag (through the direct assignment taint-droid rule), but also that the vari-

able data will not by modified (multiplying by one has no effect). In 25 trial runs of this if

statement, our re-written version, which propagates taint-tags into all of this data, intro-

duced only 1ms of overhead on average.

5.6.2.4 Dynamic Switching

To evaluate the effectiveness of this defense treatment, we implemented a very simple

speaker / microphone covert channel. The speaker makes some audible sound and the

microphone records this sound. Loud and quiet periods correspond to ``1'' and ``0'' bits

respectively, with symbols 0.5s wide. We sent the bit sequence 01010011 twice; once

using our defense and once without. We plotted the data the microphone measured in

Fig 5.12. We can see that when the defense is running (plotted in red), the symbols
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Figure 5.12: Samples gathered from the microphone while transmitting from the speaker. The
data with the defense scheme running is plotted in red.

are almost completely erased. The small tail at the end of each symbol is the result of

the slow propagation time of sound and hardware introduced latency. We consider this

problem to be negligible, because the tails are very brief, and conceal the transmission

of consecutive ``1s''.

We also used a VoIP app (Skype), to measure usability. We instrumented our system

on one phone and made a phone call to a second phone. Both users were able to hold a
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brief ten second conversation without any words being dropped or misunderstood.

5.7 Conclusion

In this chapter we present an attack on mobile smart devices that leverages physical

media covert channels to enable privilege escalation and ultimately leak sensitive user

information. We also present a novel defense technique that balances usability with the

security and privacy concerns raised by this attack.
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Chapter 6

Conclusions and Future Work

This dissertation contributes to the security and privacy of mobile devices from three dif-

ferent aspects. Firstly, in Chapter3 we present a solution at the application layer, which

allows users to determine privately if they are near one another. This is tremendously

useful because it can be used as a building block to create private variations of popu-

lar social networks, location based services, and applications available today. By using

our system, users no longer have to worry about their private location information being

leaked to third party advertisers, government organizations, or miscellaneous attackers

and stalkers. Our system is the first to provide private location proximity detection with a

configurable threshold for what is considered ``nearby.''

Secondly, at the physical layer, we provide a novel mechanism for proximity network-

ing with our ultrasound modem. Now that users are carrying their devices everywhere, a

natural and intuitive expectation is to share small pieces of information with one another

when together. We support this using ultrasound on commodity mobile devices, which

has several advantages. It is readily deployable on nearly all commercial smart devices,

because it does not require any special hardware. It is also directional, due to the nature

of ultrasound. This means that users can simply aim their transmissions at the intended

receiver without worrying about eavesdroppers in nearby rooms.

Thirdly, we propose and implement a defense mechanism, at the operating system
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layer, to defend against our novel physical media covert channels. Our defense mecha-

nism extends existing state-of-the-art research to protect users from information leakage.

Our system is able to stop all of the proposed covert channels we introduced, and can

even be easily extended and configured to include other covert channels and devices.

6.1 Lessons Learned

In doing this research, I have learned several broad and high level aspects about the com-

plex intersection of ubiquitous computing, mobile devices, security, privacy, and the state

of the industry. The first is that the research world in all of these subfields is dominated

by the Android operating system, as opposed to iOS, because it is open source. There-

fore, researchers can inspect it, critique it, and make improvements on it. The number of

top conference papers that would not be possible without a wide-spread, popular, open

source mobile operating system is staggering.

Secondly, research in security and privacy on mobile devices is interesting because

to achieve satisfactory results it is important to take into account the needs and wants

of several different parties. Each of these parties is complex and cannot be easily ex-

plained. End users strongly prefer functionality, convenience and price over nearly ev-

ery other feature including privacy and especially over security. Although something like

security or privacy are major selling points, users are generally poorly educated and a)

do not properly understand these features and b) usually choose price and functional-

ity over, for example, secure but costly or private but less functional. Corporations and

large enterprises need to recuperate from financial losses spent developing services and

applications and therefore will usually try to monetize via advertisements. Developers

are generally lazy, and will almost always choose the path of least resistance. Combin-

ing all of these self-interested actors into one ecosystem causes a variety of problems.

Fortunately, researchers are able to take a less bias approach and can find success in

providing solutions that strike a compromise between them. It is my hope that this disser-
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tation provides this in at least a small way.

6.2 Future Work

Covert Channel Improvements In Chapter 5, I discuss in detail the idea of physical

media covert channels and a substantial defense mechanism is proposed that aims to

be easy to use and even easy to extend to support other devices. As a possible avenue

for future work, I would like to explore the idea of providing an entirely different API for

sensors on a user's device.

Currently, unfettered, raw sensor data can be accessed with little or no permissions

by application developers. We propose an API, which would instead offer higher level

features and metrics derived directly from the raw sensor data. By providing higher level

``meta'' data, we support a variety of application use cases (in fact we make the job of

implementing many applications easier), while at the the same time making it significantly

more difficult to use these devices in a physical media covert channel. For example,

a developer may wish to build a pedometer application, which counts steps based on

accelerometer data. In our system, the developer calls our API functions, which return

various metrics, rather than the raw sensor data, such as a sliding window RMS value,

frequency analysis, and so on, from the accelerometer. The developer can then configure

the size and overlap of the window, in order to maximize the accuracy of their pedometer.

Because the developer is limited to only RMS output and a handful of other metrics

on the data, developing a malicious covert channel, which uses the accelerometer (as

described in Chapter 5) is much more difficult and can transmit fewer bits per second.

Secondly, this API alleviates some work for the developer, who no longer must implement

the window, the RMS calculation, fast Fourier transform, or the buffering of raw sample

hardware interrupts. Thirdly, this API leads naturally to an alternate permission system.

Instead of granting all or nothing access to the raw sensor stream, we grant access only

to each metric on the data, which we can present to the user as less dangerous.
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Internet of Things Mobile computing is currently thriving, but it is not the future of

my research. While it is likely that mobile phones will continue to remain dominant in the

computing lives of nearly everybody in the developed world, it is likely that new research

challenges will diminish. Looking forward, the Internet of Things (IoT) is starting to grow in

popularity at the intersection of mobile computing, ubiquitous computing, social network-

ing, sensing, and data science. The IoT is defined as a proposed development of the

Internet, in which everyday objects have network connectivity, allowing them to send and

receive data. Example applications include small simple conveniences such as turning

lights on in your home when you park your car in the garage, to elaborate and sophisti-

cated sensing and actuation systems such as buildings with humidity, temperature, and

vibration sensors used to aid in building maintenance and city planning.

Unfortunately, as innovation and exploration take the lead, security and privacy typ-

ically fall by the wayside. While the future of the Internet of Things is promising, the

current reality is that users demand that these devices are compatible with each other,

and easy to use, which means that extra security measures such as encryption, proper

network configuration, and passwords are usually ignored. The possible future for the IoT

is exciting and vast, which poses a promising picture for future research in this field [105].
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