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ABSTRACT PAGE 

Studying hadrons containing heavy quarks in lattice QCD is challenging mainly due to finite lattice 
spacing effects. To control the discretization errors, mQa is required to be much less than 1, where 
mQ is the quark mass and a is the lattice spacing. For currently accessible lattice spacings, the 
charm quark mass doesn't satisfy this requirement. One approach to simulate heavy quarks on the 
lattice is non-relativestic QCD, which treats heavy quark as a static source and expand the lattice 
quark action in powers of rn~a. Unfortunately, the charm quark is not heavy enough to justify this 
expansion. An other is Heavy Quark Effective Theory (HQET) matched on QCD. Non-relativestic 
QCD and HQET are mainly used for bottom quark. Relativistic heavy-quark action, which incor
porates both small mass and large mass formulations, is better suited to study the charm quark 
sector. The discretization errors can be reduced systematically following Symanzik improvement. 

In this work, we use the relativistic heavy quark action to study the charmed hadron spectrum 
and interactions in full lattice QCD. For the light quarks we use domain-wall fermions in the valence 
sector and improved Kogut-Susskind sea quarks. The parameters in the heavy quark action are 
tuned to reduce lattice artifacts and match the charm quark mass and the action is tested by calcu
lating the low-lying charmonium spectrum. 

We compute the masses of the spin-1 /2 singly and doubly charmed baryons. For the singly 
charmed baryons, our results are in good agreement with experiment within our systematics. For 
the doubly charmed baryon 2ee• we find the isospin-averaged mass to be M=.cc = 3665 ± 17 ± 
14 !~8 MeV; the three given uncertainties are st.atistical, systematic and an estimate of lattice dis
cretization errors, respectively. In addition, we predict the mass splitting of the (isospin-averaged) 
spin-1/2 nee with the 2ee to be Mncc -M=.cc = 98±9±22±13 MeV (in this mass splitting, the leading 
discretization errors are also suppressed by SU(3) symmetry). Combining this splitting with our de
termination of M=.cc leads to our prediction of the spin-1/2 nee mass, Mo.cc = 3763±19±26 !~g MeV. 

We calculate the scattering lengths of the charmed mesons with the light pseudoscalar mesons. 
The calculation is performed for four different light quark masses and extrapolated to the physical 
point using chiral perturbation formulas to next-to-next-to-leading order. The low energy constants 
are determined and used to make predictions. We find relatively strong attractive interaction in DK 
channels, which is closely related to the structure of DsJ (2317) state. The scattering of charmonium 
with light hadrons is also studied. Particularly, we find very weak attractive interaction between JjiJ! 
and nucleon, in this channel the dominate interaction is attractive gluonic van der Walls and it could 
lead to molecular-like bound states. 
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CHAPTER 1 

Introduction 

1.1 Overview of particle physics 

1.1.1 Fundamental particles 

One of the main goals of physics is to identify the fundamental building blocks of 

the universe and the mechanisms that describe their interactions. In the early 20th 

century atoms were considered as the smallest and indivisible constituents of matter. 

The Rutherford experiment of large angle scattering of alpha particles off a gold foil 

suggested that atoms have substructure: a positively-charged nucleus surrounded by 

a cloud of negative electrons. Later it was discovered that the nucleus consists of 

positively-charged protons and neutral neutrons. From the 1950s a large number 

of particles were found in experiments. People began to realize that they are not 

fundamental but consist of some smaller elements. Around 1968, an experiment at 

SLAC, in which electrons were scattered off protons, gave the first clear hint that 

smaller point-like particles existed inside the proton. The electrons were scattered 

with large transfers of momentum more frequently than expected, suggesting that the 

proton contained discrete scattering centres within. 
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quarks leptons 

1st generation 
u d e Ve 

(up) (down) (electron) ( e neutrino) 

2nd generation 
c s 1-l v/1 

(charm) (strange) (muon) (!1 neutrino) 

3rd generation 
t b T Vr 

(top) (bottom) (tau) ( T neutrino) 

electric charge 2/3 -1/3 -1 0 
spin 1/2 1/2 1/2 1/2 

Table 1.1: The fundamental particles and their properties. 

In 1964, Gell-Mann and Zweig proposed that the proton and the other elementary 

particles known at that time are in fact built from more basic entities named "quarks". 

Today, protons and neutrons are classified as members of a family named baryons 

which consist of three valence quarks. Another type of particles like pions consists of 

a quark and an antiquark, which are called mesons. Baryons and mesons are generally 

called hadrons. 

Together with the leptons, the quarks are considered the fundamental particles 

of nature. The quarks and leptons as well as their properties are listed in Table 1.1. 

The six types of quarks, called six flavors, are split into three generations, with the 

first generation being the lightest, and the third the heaviest. So are the leptons. 

1.1.2 Quark model 

Color charge 

The quarks have an additional degree of freedom called color. Each flavor of 

quark comes in three colors, which will be labeled as i = 1, 2, 3, or red, green and 

blue, mimicking the three fundamental colors. These three color states form a basis 

in a 3-dimensional complex vector space. A general color state of a quark is then 

a vector in this space, which can be rotated by 3 x 3 unitary matrices. All such 

2 



transformations form the Lie group of SU(3). The 3-dimensional color space forms a 

fundamental representation of SU(3) group, usually denoted as 3. 

The quarks have anti-particles, called antiquarks. The antiquarks have the same 

spin and mass as the quarks, but with opposite electric charges. The color states of 

an antiquark form a representation space of SU(3) where the vectors are transformed 

according to the complex conjugate SU(3) matrix. We denote this representation as 

3. 

In the quark model [11, 12, 13] all hadrons are colorless or white, that is to say the 

color wave functions of hadrons are SU(3) singlets. According to the multiplication 

rules of SU(3) group, we have 

1 EB 8, 

1 EB 8 EB 8' EB 10, 

(1.1) 

(1.2) 

where 1 is a color singlet. Thus a color singlet can be formed either by a quark-

antiquark pair or by three quarks. The hadrons made of quark-antiquark pair are 

called mesons while the hadrons made of three quarks are called baryons. The color 

wave function of a meson is ~ L~=l ql ?A, where i is the color indices, q and fj are quark 

and anti-quark fields respectively, the subscripts indicate the flavors. For baryons, 

SU(3) flavor symmetries 

The hadrons that consist of the three flavors of quark( u, d, s) can be nicely clas

sified in the SU(3) group. The three flavors form a basis of the fundamental repre-

3 



sentation of SU(3) group: 

1 

U= 0 

0 

0 

d= 1 

0 

0 

s= 0 

1 

A general state '1/J, which is a complex 3-vector, transforms as 

'1/J'=U'l/J, 

(1.3) 

(1.4) 

where U is a 3 unitarity matrix. U can be composed from the eight generators(ta) of 

SU(3) group: 

U = exp( -iaata), a= 1, 2, · · · , 8, (1.5) 

where aa are coefficients. Canonically the generators are chosen as ta = ~A.a, where 

Aa are the Gell-Mann matrices 

0 1 0 0 -z 0 1 0 0 

..\.1 1 0 0 ,\2 = z 0 0 ,\3 = 0 -1 0 

0 0 0 0 0 0 0 0 0 

0 0 1 0 0 -z 0 0 0 

..\.4 0 0 0 ..\.2 = 0 0 0 ..\.3 = 0 0 0 

1 0 0 z 0 0 0 1 0 

0 0 0 1 0 0 

..\.7 
1 

(1.6) 0 0 -z A.s=- 0 1 0 v'3 
0 z 0 0 0 -2 

The ..\.1 , ..\.2 and ..\.3 are expanded from Pauli matrices by simply adding zero ele-

4 



ments on the third row and column. They form a SU(2) subgroup, associated with a 

quantum number called isospin. Define the operators 

(1. 7) 

The u, d, s are the eigenstates of / 3 : 

(1.8) 

u and d are related by I±: 

(1.9) 

Similarly the .\6,7 exhibit an SU(2) subgroup called U-spin and the .\4,5 are related to 

a subgroup V -spin. Define the operators 

(1.10) 

We have 

(1.11) 

The F8 is diagonal, it commutes with F3 . Define the hypercharge operator Y = 

~F8 . The u, d and s are the eigenstates of Y with eigenvalues 1/3, 1/3 and -2/3 

respectively. Figure 1.1 show the plot of the fundamental representation in h - Y 

space. 

The anti-quarks form a conjugate representation of SU(3), denoted as 3. The 

/ 3 and Y quantum numbers of the antiquark are opposite as those of quarks. In 

Table 1.2, we summarize the quantum numbers of quarks and antiquarks. Here B 

is baryon number. A quark has baryon number 1/3 while an antiquark has baryon 

5 



y 

s 

Figure 1.1: Weight diagram of the fundamental representation 3. The arrows shows how 
u, d, s are related by the U -spin, V -spin and isospin. 

I Quark I I y B s 
u 1/2 1/2 1/3 1/3 0 
d 1/2 -1/2 1/3 1/3 0 
s 0 0 -2/3 1/3 1 
u 1/2 -1/2 -1/3 -1/3 0 
d 1/2 1/2 -1/3 -1/3 0 
s 0 0 2/3 -1/3 -1 

Table 1.2: Quantum numbers of quarks and antiquarks. 

number -1/3. Sis strangeness. Only the s quark has non-zero strangeness. 

Mesons 

Mesons are constructed by combining a quark with an antiquark. Three flavors 

of quarks( u, d, s) combined with three antiquarks( u, d, s) yields nine combinations. 

In the framework of SU(3), the multiplication of the fundamental representation 3 

and its conjugate representation 3 decomposes into a singlet and a octet, as shown 

in Eq. 1.1. 

There are six combinations of a quark with a different flavor of anti-quark: 

ud, du, us, sil, ds, sd. All of them have definite quantum numbers of I and h. While 

the combinations of a quark with its own antiquark( uu, dd, ss) don't have a definite 

isospin value. For example, uu has I 3 = 0 but can either a I = 0 or a I = 1 state. 
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Quark content I y o-
ud 1 1 0 7r+ p+ 

1 -
.Ji(uu- dd) 1 0 0 7ro Po 

du 1 -1 0 7r 
- p -

Octet us 1/2 1/2 1 K+ K*+ 
ds 1/2 -1/2 1 Ko K*o 
ds 1/2 1/2 -1 j(O K*o 
us 1/2 -1/2 -1 K- K*-

-J5(uu + dd- 2ss) 0 0 0 rJ cos ()p + TJ1 sin ()p ¢ cos ev + w sin ev 

Singlet ll3(uu+dd+uu) I 0 I 0 I 0 I rJCos()p-rJ'sin()p cpcosev-wsin()v 

Table 1.3: Flavor content of the SU(3) mesons. 

Quantum mechanically, the states uu, dd and ss are linear superpositions of the I = 0 

and I= 1 states. However, the pure I states can be got from the linear combinations 

of these states. 

It is quite straightforward to write down the SU(3) singlet: )3(uu + dd + ss), 

which is an isoscalar. Since the isospin of s and s is zero, the isovector contains no 

ss: ~ ( uu - dd). The third possible combination of uu, dd and ss is orthogonal to 

these two states: ~(uu + dd- 2ss). This state is an isoscalar of the SU(3) octet. 

Table 1.3 summarizes the flavor functions of the SU(3) mesons and their quantum 

numbers, as well as the corresponding physical particles. As shown in the last two 

rows of the table, the physical isoscalars(rJ, rJ1
, ¢, w) are the mixtures of the two SU(3) 

isoscalars. The mixing angles ()p and ev have to be determined experimentally. 

Baryons 

The baryons are constructed from 3 quarks, antibaryons from 3 antiquarks. This 

prescription automatically satisfies the rules for assignment of baryon number. For 

now we ignore the heavy flavors, each of the quarks can be any of the three flavors: 

u, d, s. There are 10 combinations of three quarks if we ignore the order in which 

the quarks are selected. They are uuu, uud, udd, ddd, uus, uds, dds, uss, dss, sss. We 
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can always define a symmetric state whatever the three quark content may be. For 

example, if the quark content is q1q2q3, the state ~(q1q2q3+q1q3q2+q2q1q3+q2q3q1 + 

q3q1q2 + q3q2ql) is invariant under the interchange of the quark labels. Hence there 

are 10 such symmetric states. If at least two quarks are different, we can write a 

mixed symmetric states, there are 8 of them( uds comes in two ways since there are 

two choices for the "different quarks"). If all three quarks are different we can form 

an antisymmetric state under the interchange of any pair of quarks. There are one 

such state. These symmetry properties can be easily seen in the multiplication rules 

of the SU(3) group: 

3 ® 3 ® 3 = l(A) EB 8(M, S) EB 8(M, A) EB lO(S) (1.12) 

Here (A) means antisymmetry. ( M, S) and ( M, A) means mixed symmetry, one is 

symmetric and the other is antisymmetric under the permutation of the first two 

labels(H2 ) but having no symmetry under P23 or P 13 . (S) means symmetry. 

In Table 1.4 we list the flavor wave functions of the 10 symmetric states and the 

corresponding physical particles. The flavor wave functions of the mixed symmetric 

states are listed in Table 1.5. Note that L:0 and A0 both have quark content uds, in 

L:0 the ud quarks have isospin 1 while in A0 they have isospin 0. 

The antisymmetric state is 

1 
w(A) = yl6(uds + dsu +sud- usd- dus- sdu). (1.13) 

In the ground state multiplet, this state is forbidden by Fermi statistics. 

The complete wave function of a baryon, which contains color, space, spin and 

flavor part, is antisymmetric under the interchange of any two quarks due to the 

requirement of Fermi statistics. The color wave function is antisymmetric as we have 
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I Particles I w(S) 
~++ uuu 
~+ !J3(uud + udu + duu) 
~0 "l3(udd +dud+ ddu) 
~- ddd 
~*+ !J3(uus + usu + suu) 
~*0 J5(uds + usd +sud+ sdu + dsu + dus) 
I:*- ~(dds + dsd + sdd) 
-*0 !J3(uss +sus+ ssu) 
=* 7s ( dss + sds + ssd) 
o- sss 

Table 1.4: Flavor wave functions of SU(3) decuplet baryons. 

I Particles I \lf(M,S) w(M,A) 
p J5[(ud + du)u- 2uud] ~(ud- du)u 
N - ~[(ud + du)d- 2ddu) J2(ud- du)d 
~+ J5[(us + su)u- 2uus] 32(us- su)u 

~0 2~[(ds + sd)u +(us+ su)d 
~[(ds- sd)u +(us- su)d] 

-2(ud + du)s] 
I:- ~[(ds + sd)d- 2dds) J2(ds- sd)d 

Ao ~[(ds + sd)u- (us+ su)d] 2~[(sd- ds)u +(us- su)d 
-2(du- ud)s] 

=0 -76[(us + su)s- 2ssu] -!J2(ds- sd)s ~ 

~-

-~[(ds + sd)s- 2ssd] ~(us- su)s 

Table 1.5: Flavor wave functions of SU(3) octet baryons. 
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sz = ~ sz = ~ sz = -~ sz = -~ 
<P(S), S = ~ iii ~(iil + il i + Hi) ~(ill+ li1 +Hi) 111 

<P(M, S), S = ~ -76[(il + 1 i) i -2 ii 1] - J5[(il + 1 i) 1 -2 11 i] 
<P(M, A), S = ~ J2(il - 1 i) i -~(il-1i) 1 

Table 1.6: Spin wave functions of the states formed by 3 spin ~ objects. 

stated above. The space wave function is symmetric for the ground state. Thus the 

combination of the spin and flavor part should be symmetric. 

Combing 3 spin-~ particles results in 8 independent states. Four of them have 

total spin ~ and are symmetric under permutations of any two quarks. Another four 

states have total spin ~' they have mixed symmetry. A spin ~ object forms a basis of 

the fundamental representation of SU(2) group, thus combing three such objects can 

be symbolized as 

2 ® 2 ® 2 = 4(8) EB 2(M, S) EB 2(M, A) (1.14) 

We display the spin wave functions in Table 1.6. 

For the decuplet, the spin and flavor wave function is w(S)<P(S), it is clear that 

this wave function is symmetric under quark interchanges. For the octet, one have to 

combine the ( M, S) and ( M, A) wave functions properly to make a symmetric wave 

function. One possible combination is ~ (w(M, S)<P(M, S) + w(M, A)<I>(M, A)). It 

is easy to check that this combination is symmetric under the permutation of any 

pair of quarks. 

SU(4) Multiplets 

Baryons made of u, d, s and c quarks belong to SU ( 4) multiplets. Since the mass 

of the c quark is much larger than the masses of the u, d, s quark, the SU(4) flavor 

symmetry is badly broken. But studying the quark content of the baryons in the 

framework of SU(4) group is the clearest way to see what charmed baryons should 

exist. The u, d, s and c quark form a basis of the fundamental representation of the 
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SU(4) group. Similar to the SU(3) case, the baryons are categorized into different 

multiplets according to 

4 ® 4 ® 4 = 20(S) EB 20(M, S) EB 20(M, A) EB 4(A). (1.15) 

It is quite straightforward to construct the symmetric flavor wave functions. The 

flavor wave functions of the baryons containing at least one charm quark in 20(S) 

multiplet are listed in Table 1. 7. As we have stated, the combination of flavor and 

spin wave function has to be symmetric for the ground states. So the 20( S) multiplet 

has total spin ~· The flavor-spin wave function is w(S)<I>(S), where w(S) is the flavor 

wave functions in Table 1. 7 and <I> ( S) is the spin wave function in Table 1.6. These 

states and the states in SU(3) decuplet all have the same JP value~+. 

Table 1.8 presents the flavor wave functions of the charmed baryons in 4-plet. 

Since there isn't an antisymmetric spin wave function, we can't form a symmetric 

flavor-spin wave function for the ground states. The lowest states appear at the first 

exited states with JP = ~-. 

The flavor wave functions of the 20(M, S) and 20(M, A) multiplets can be con

structed from the corresponding SU(3) multiplets. The structure of the Ae and I:e 

should be much like the A and I:. The Ae differs from the A only by the replacement 

of the s quark with a c quark. Same with the I:e and I:. The Ae and Be belong 

to the same SU(3) subgroup 3, so the wave function of Be can be obtained from 

the wave function of Ae by replacing a light quark with a s quark. the I:e, B~ and 

De belong to a SU(3) subgroup 6, it is easy to get the wave function of B~ and De 

from the wave function of I:e. Table 1.9 summarizes the flavor wave functions of 

the 20(M, S) and 20(M, A) multiplets. To get a symmetric flavor-spin wave func

tion, one has to combine the flavor wave function and the spin wave function as 
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I Particles I w(S) 
o++ 

CCC CCC 

O*+ cc ]3(scc +esc+ ccs) 
~*+ . ~(dec+ cdc+ ccd) ~cc 

=*++ ]3( ucc +cue+ ccu) ~cc 

0*0 
c ]3(ssc + scs + css) 

'==*0 ~(dsc +des+ sdc +sed+ cds + csd) ~c 

=*+ ~(usc+ ucs +sue+ scu + cus + csu) ~c 

~*0 
c ~(ddc + dcd + cdd) 

~*+ c 76(udc + ucd +cud+ cdu +due+ dcu) 
~*++ 

c ~(uuc + ucu + cuu) 

Table 1. 7: The flavor wave functions of the baryons containing at lease on charm quark 
in SU( 4) 20-plet which is symmetric under the interchange of quark labels. 

~(w(M,S)<P(M,S) + w(M,A)<P(M,A)). These state has JP = ~+. 

Fig. 1.2 shows the SU(4) multiplets of baryons. (a) is the 20-plet with mixed 

flavor symmetry. The lowest level is the SU(3) octet. The middle level is the singly

charmed baryons. It splits into two SU(3) multiplets, a 3 and a 6. The 3 multiplet, 

which includes At, S~ and st, is antisymmetric under the interchange of light quarks. 

The 6 multiplet, which includes~~' ~t, ~t+, 3~0 , s~+ and 0~, is symmetric under the 

interchange of the two light quarks. The prime is used to distinguish the Sc in the 6 

from the ones in the 3. (b) is the 20-plet with a SU(3) decuplet on the lowest level. 

(c) is the 4-plet. 

The ]P = ~ +, ~ and ~- singly charmed baryons have been well established in 

experiments. There is also evidence of the existence of a doubly charmed baryon 

Sec· In this work we will calculate the masses of ]P = ~ singly and doubly charmed 

baryons in lattice QCD. 
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Figure 1.2: SU(4) multiplets of baryons made of u, d, s and c quarks. (a) is the 20-plet 
with mixed symmetry. (b) is the symmetric 20-plet. (c) is the 4-plet. 

Particles w(A) 
=0 J6' ( dsc + sed + cds - des - sdc - csd) ~c 

=+ fr;( usc + seu + cus - ues - sue - esu) ~c 

A+ 
c ~(udc + deu +cud- ued- due- edu) 

"6 

Table 1.8: The flavor wave functions of the charmed baryons in 4-plet. 
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I Particles I \li(M, S) \li(M, A) 

o:c -j(;[(es + se)e- 2ees] ~(se- es)e 
-=+ - J5[(ed + de)e- 2eed] ~(de- ed)e ~cc 

-=++ - J5[(eu + ue)e- 2eeu] J2(ue- eu)e ~cc 

oo 
c ~[(es + se)s- 2sse] 32(se-es)s 

-=0 ~[(se + es)d- (de+ ed)s] 2~[(es- se)d +(de- ed)s 
~c -2(sd- ds)e]) 

-=+ ~[(se + es)u- (ue + cu)s] 2~[(es- se)u + (ue- cu)s 
~c -2(su- us)e]) 

'=tO 2~[(de + ed)s + (se + es)d 
~[(de- ed)s + (se- es)d] ~c -2(sd + ds )e] 

'=''+ 2~[(ue + eu)s + (se + es)u 
~[(ue- eu)s + (se- es)u] ~c -2(su + us)e] 

I:o 
c ~[(de+ ed)d- 2dde] J2(de- ed)d 

I;+ 2~[(de + ed)u + (ue + eu)d 
~[(de- ed)u + (ue- eu)d] c -2(ud + du)e] 

I;++ 
c ~[(ue + eu)u- 2uue] ~(ue- eu)u 

A+ ~[(de+ ed)u- (ue + eu)d] 2~[(ed- de)u + (ue- eu)d 
c -2(du- ud)e] 

Table 1.9: The flavor wave functions of the baryons containing at lease on charm quark in 
SU(4) 20-plet which has mixed symmetry under the interchange of quark labels. 
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1.1.3 Physics beyond quark model 

Quark model provides a convenient framework for classifying hadrons. Most of 

the experimentally observed hadron states fit into this scheme quite neatly. However, 

the quark model is only a phenomenological model. It is not derived from the un-

derlying theory of the strong interactions - Quantum Chromodynamics. Hence the 

quark model spectrum is not necessarily the same as the physical spectrum of QCD. 

One type of "non-conventional" hadrons are mesons with "exotic" JPC quantum 

numbers. In the quark model, mesons are qq' bound states. If the orbital angular 

momentum of the qq' is L, then the parity P = (-1)L+l. The angular momentum 

J is given by the relation IL- Sl < J < IL + Sl, where S is the spin of the meson 

which can be 0 or 1. The C-parity is ( -1)L+S. Thus the JPC value of a meson can be 

o++ o-+ 1 ++ 1-- 1 +- · · · but can never be o-- o+- 1-+ 2+- 3-+ · · · Any state 
' ' ' ' ' ' ' ' ' ' ' . 

with these "exotic" quantum numbers is beyond quark model, but is not excluded in 

QCD. 

Another type of "non-conventional" hadrons have ordinary quantum numbers but 

do not fit the quark model easily. For example, below 2GeV, seven JPC = o++ scalar 

mesons have been observed in experiments: f 0 (600), f 0 (980), f 0 (1370), f 0 (1500), 

f 0 (1710), f 0 (1810). Within this mass range the quark model can only accommodate 

four scalars at most. Thus the quark content of some of these states can not be qq'. 

In the past several years there have been observed some charmonium-like states, 

such a·s X(3872) [14, 15, 16, 17], Y(3940) [18], Y(4140) [19], Y(4260) [20] etc., which 

have unexpected and puzzling nature. The structure of them remains ambiguous. 

Lattice calculations of the charmed meson scattering and the extraction of the phase 

shifts may help resolve the underlying structure of these states. 
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1.2 Standard model 

There are three types of forces in nature: gravity, the electroweak force and the 

strong force. The electroweak and strong forces can be described in terms of unitary 

groups. Physicists write this combination of gauge groups as SU(3)xSU(2)xU(1). 

This model is called the Standard Model. 

The Standard Model consists of two types of elementary particle: bosons (force 

carriers) and fermions (particles that make up matter). In the quantum gauge theory 

described by the group SU(N), there are N 2 
- 1 gauge bosons.The group SU(3) is 

the gauge group of the theory of the strong force known as Quantum Chromody

namics( QCD). The massless gauge boson of this theory is known as the gluon. The 

group SU(3) has eight generators, and this means that there are eight types of gluons 

predicted by the theory. 

The SU(2)xU(1) is the gauge groups of the electroweak theory which unifies the 

electromagnetic force and weak force. The gauge bosons in the electroweak theory 

are the massless photon and the massive w± and Z 0 . The gauge bosons acquire 

their mass by interacting with a scalar field called the Higgs field when spontaneous 

symmetry breaking happens. This is so the called "Higgs mechanism". The resulting 

theory has massive gauge bosons but still retains the nice properties of a fully gauge 

invariant theory where the gauge bosons would normally be massless. The explicit 

remaining gauge symmetry is the U ( 1) of electromagnetism. 

The Standard Model is confirmed by experiments very well as of today, except 

that the Higgs boson has not been observed. However, it is widely recognized that 

this model is not complete, it fails to integrate the gravity. In this work we mainly 

use quantum chromodynamics to extract the physical observables. 
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1.3 Quantum Chromodynamics 

Quantum chromodynamics(QCD) is considered as the underlying theory of the 

strong interaction. QCD is a non-abelian gauge theory with gauge group SU(3), in 

which the quark fields in the fundamental representation are coupled to the gauge 

fields in the adjoint representation. In this section, we will give a brief review of QCD. 

1.3.1 QCD Lagrangian 

The Lagrangian of QCD is given by 

(1.16) 

where repeated indices are summed over. The lp, are the Dirac 1-matrices. The '¢1 

are quark fields with flavor f and mass m 1. The covariant derivative is 

( 1.17) 
a 

where g is the gauge coupling constant, A~ are the gluon fields, a runs from 1 to 8 

corresponding 8 kinds of gluons, ta is the generators of the SU(3) group. 

The gauge field tensor is defined by 

( 1.18) 

The quark field 'lj;(x) transform according to 

'1/J(x) -+ '1/J'(x) = U(x)'lj;(x), (1.19) 
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where U(x) is a 3 x 3 unitary matrix, which can be represented as 

(1.20) 

The transformation law for AJ.L is 

(1.21) 

Therefore 

Dp,1/J(x) --+ [oJ.L- igU(x)AJ.Lut(x) + U(x)(oJ.Lut(x))]U(x)'lj;(x) 

oJ.L(U(x)'lj;(x))- igU(x)Ap,1/J(x) + U(x)OJ.L'Ij;(x)- oJ.L(U(x)'lj;(x)) 

U(x)(o- igAJ.L)'Ij;(x) = U(x)DJ.L'Ij;(x). (1.22) 

In the second line we used oJ.L'Ij;(x) = (oJ.LUt(x))U(x)'lj;(x) + ut(x)oJ.L(U(x)'lj;(x)). 

From the above equation it is easy to see that the covariant derivative transforms 

as DJ.L--+ U(x)Df-LUt(x) and the commutator transforms as [Df-L, Dv] --+ U(x)[Df-l, Dv]Ut(x). 

Therefore the gauge field tensor transforms according to 

(1.23) 

Using Eq. 1.22 and Eq. 1.23 one can immediately show that the Lagrangian L(x) 

is gauge invariant. 

1.3.2 Asymptotic freedom 

The dominant qualitative feature of QCD seen in perturbative theory is asymp-

totic freedom. The coupling constant decreases as the momentum scale k increases. 
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This means that the perturbation theory can be applied when the processes only 

involve high momentum or short distance. 

To one loop order the beta function for Nc colors and N1 flavors is 

(1.24) 

The coupling constant is 

2 
2(k)- g 

g - __i!:__( 11 N 2 N )l (k2/A2 )' 1 + (47!-}2 3 c- 3 f og 
(1.25) 

where A is the cut off energy of the theory. 

For a theory with Nc = 3 and Nf = 6, Eq. 1.25 clearly implies the asymptotic 

freedom. On the other hand, it also implies that the coupling constant increases 

at lower momentum or longer distance. The value of A expresses a scale where the 

interaction becomes strong and the perturbation theory fails. 

1.4 Organization of this dissertation 

The basic knowledge about lattice QCD is reviewed in Chapter 2. We describe 

how the quark fields and gauge fields are formulated on lattice and how to calculate 

observables numerically using Monte-Carlo method. The statistical data analysis 

methods are also introduced. We describe how to analyze the statistical error and 

how to fit the quantities of interest from the simulated data. 

In chapter 3, we introduce the heavy quark effective theory and chiral pertur-

bation theory. The masses of charmed baryons are given in the framework of heavy 

quark effective theory. Chiral perturbation theory for heavy hadrons is described, 

which allows us to extrapolate the quantities calculated at unphysical light quark 

masses to the physical point. 
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Chapter 4 describes the ensembles we use in this work. The actions for heavy 

quark and light quark are discussed. We also describe how to extract the spectrum 

and scattering lengths from the correlation functions. 

Chapter 5 presents the details of the calculations of the charmed baryon masses 

with careful analysis of systematics. 

In Chapter 6, we calculate the scattering lengths of the scattering processed which 

involve charmed mesons and charmonium. 

We conclude by summarizing the main results of this work and discussing the 

future outlook of heavy hadron physics. 
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CHAPTER 2 

Lattice QCD and Numerical Methods 

The strong interaction has a feature of confinement which is inherently non-perturbative. 

Lattice QCD(LQCD) is the only known way to study the strong interaction at low 

energy scale quantitatively. In this chapter I present the basic knowledge of lattice 

field theory. I review how to represent the gauge fields and fermions on the lattice. 

For the details of lattice QCD theory1 see any of the text books [211 221 23] and the 

references therein. The Monte-Carlo simulation method as well as the methods to 

analyze statistical data are also presented in this chapter. 

2.1 Euclidean space-time 

In this work we will work in Euclidean space-time instead of Minkowski space-

time. The positions and momenta in Euclidean space-time are related to those in 

Minkowski space-time as: 

(E) . (M) k(E) = -k(M) 
X4 = zxo 1 2 2 1 

(E) · (M) 
P4 = zxo 1 P

(E) = -p(M) 
2 2 1 i = 11213, (2.1) 
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where the superscripts (E) and (M) denotes the Euclidean space-time and Minkowski 

space-time respectively. 

With this definition, the metric becomes t5J.L,v = diag(1, 1, 1, 1). The covariant 

and contravariant components of a Euclidean vector are identical: x~E) = x~-'(E). The 

scalar product is 

(2.2) 

The Euclidean time is purely imaginary. The path integral representation of the 

partition function becomes explicitly convergent which makes numerical calculation 

and theoretical analysis much easier. The transformation from a real time to imag-

inary time is called Wick rotation. The legitimacy of Wick rotation is beyond the 

scope of this thesis. The key point is that the Hamiltonian of the system has no 

pole on the first sheet, therefore the +iE prescription enables the Wick rotation to 

imaginary time axis. See reference [24, 25] for more information. 

Since in the rest of this thesis only Euclidean quantities will be involved we will 

omit the superscript (E) . 

. 
2. 2 Lattice discretization 

The conventional regularization schemes are based on the perturbative expansion, 

when a divergence is met in a particular diagram, a counter term is introduced to 

eliminate this divergence. For the QCD theory at low-energy region, we need a 

non-perturbative regulator. The lattice is such a tool which directly removes all 

wavelengths less than the lattice spacing. 

The lattice method was introduced by Kenneth Wilson in 1974 [26]. The idea is 

to replace the continuum space by a 4D finite lattice: 

nJ.L = 0, 1, 2, · · · , N- 1 for i = 1, 2, 3, 4. (2.3) 
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where a is the lattice spacing which has the physical dimension of length. We assume 

the lattice is periodic, that is to identify ni with ni + N. The size of the lattice is N 4
. 

The finite lattice spacing provides a cutoff removing the ultraviolet infinities. 

The Fourier transforms on lattice are periodic in momentum space with periodicity 

is 27r I a. Therefore all momenta can be restricted in the range ( -1r I a, +1r I a) and the 

momentum cutoff is 1r I a. 

2.3 Fermion fields on lattice 

2.3.1 Discretization of free fermions 

In lattice QCD the fermions are placed at the lattice sites. We denote the fermion 

fields by 1/J( n), where n is a integer-valued 4-vector labeling the lattice position. For 

convenience we omit the lattice spacing a. The actual physical position of the fermions 

1s x =an. 

In the continuum the action for a free fermion is given by 

(2.4) 

To formulate this action on the lattice we need to discretize the integral over space

time and the derivative. The integral is replaced by a sum over the discretized space

time A. The derivative is discretized by the symmetric expression 

(2.5) 

where f1 indicates the unit vector at f.-L direction. 
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1/J(n) 

n 

1/J(n+fi) 

n+fi 

Figure 2.1: The link variables U11 (n) 

Therefore, the lattice action of the free fermion reads 

SJ[?/J, 1/J] = a4 L 1/J(n) (t ry
11 

1/;(n + fl) ~ 1/;(n- fl) + m?j;(n)) (2.6) 
nEA J.L=l 

2.3.2 Fermion action with external gauge fields 

As in continuum QCD, gauge fields have to be introduced to keep the fermion 

action invariant under the local gauge transformations. On lattice we introduce a 

gauge field U11 (n) with a direction f-1· The gauge fields U11 (n) live on the links of the 

lattice as shown in Fig. 2.1. The hermitian conjugate of U11 (n) is the link variable in 

negative 1-1 direction 

(2.7) 

Define he gauge transformation of the link variables by 

(2.8) 

In the above equation O(n) is an element of SU(3) group. The gluon fields U11(n) is 

also an element of SU(3) group. This is different with the continuum theory where 

gluon fields are elements of Lie algebra. 
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The fermion fields transform according to 

~(n)- ~'(n) = O(n)~(n), if;(n)- if'(n) = if;(n)O(n)t. (2.9) 

Consider the term if;(n)~(n+fl) in Eq. 2.6, it is not invariant under SU(3) gauge 

transformation. However, if we insert a gluon field, the modified term if;(n)Uf.L(n)~(n+ 

fl) is gauge invariant: 

if;(n)Uf.L(n)~(n + jl) - if;'(n)U~(n)~'(n + jl) 

if;(n)O(n)tn(n)Uf-L(n)O(n + jl)tn(n + fl)~(n + jl) 

(2.10) 

We can now generalize the free fermion action 2.6 to the so-called naive fermion 

action for fermions in an external gauge field U: 

St[~, if;, U] = a4 L if;(n) (t Uf.L(n)~(n + jl) ;aU_f.L(n)~(n- jl) + m~(n)). (2.11) 

nEA f.L=l 

2.3.3 Fermion doubling problem 

The propagator of a lattice fermion has 16 poles. That is to say, the naive 

discretization gives rise to 15 unwanted poles, the so-called doublers. For simplicity, 

we use free fermion theory to exemplify this problem. 

Rewrite the free fermion action ( 2.6) as 

St[~, if;]= L i}(m)Dmn~(n), (2.12) 
m,nEA 

25 



where D is the Dirac operator which is defined by 

4 

L 
6 A-6 A 

D _ m,n-p, m,n+p, + ~ 
mn- /p, 2 mum,n· (2.13) 

p,=l 

Here we have set the lattice spacing a to 1. 

To calculate the fermion propagator we introduce the external source J(n) and 

J(n). The action is generalized to 

St[1/J, if;, J, J] = L i/;(m)Dmn1/J(n)- L (J(m)1/;(m) + i/;(m)J(m)). (2.14) 
m,nEA mEA 

The partition function now depends on the sources 

Z(J) = J D1j; Di/;exp{ -( L i/;(m)Dmn1/J(n)- L (J(m)1j;(m) + i/;(m)J(m))) }· 
m,nEA mEA 

(2.15) 

This quantity is a generating function for the Green's functions, the fermion propa-

gator is given by the differentiation with respect to the sources 

(1/;(m)i/;(n)) 

(2.16) 

Complete the square and shifting the integration variables in (2.15) gives 

Z(J) = detDexp{- L J(m)D~~J(n)}, (2.17) 
m,nEA 

where we have used the integration formula for Grassmann number 

J Dij;D1j;e- Lrn,nEA {;(m)Drnn'I/J(n) = det D (2.18) 
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From Eq. 2.16 and Eq. 2.17 we get the fermion propagator to be 

('!j;(m){;(n)) = D-:n~. (2.19) 

D can be inverted with a Fourier transform. For details of the Fourier transform 

on the lattice see reference [27]. Here we give the result: 

(2.20) 

The pole of the propagator in momentum space for massless fermions represents real 

particle states of the system. Due to the periodic nature of the sine function, this 

propagator has poles not only at p = (0, 0, 0, 0) but also at the corner of the Brillouin 

zone, namely at p = (1r, 0, 0, 0) etc. In fact, in four dimensional space-time, there are 

16 poles. Therefore the naive discretization of the continuum fermion action, which 

describe one species of fermions in the continuum, leads to 16 species of fermions on 

the lattice and they all survive the continuum limit. These extra degrees of freedom 

are called doublers. 

2.3.4 Wilson fermions 

In order to remove the doublers, Wilson suggest to add a second derivative term 

-~a~ta~t in the action. The second derivative on the lattice is approximated by 

f"(x) = f(x +a)+ f(~- a)- 2f(x). 
a 

(2.21) 
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The Wilson fermion action reads 

L ~(n)(t TJL 1/;(n + fl); 1/;(n- fl) + m1j;(n) 
nEA JL=l _ t 1/;(n + fl) + 1/;(~- fl)- 21/;(n)) (2.22) 

JL=l 

The propagator of is 

(2.23) 

Comparing with the naive fermion propagator, there is an extra term '2::::/L(l-cospJL). 

Considering the dimension, we put back the lattice spacing a, this term becomes 

a- 1 '2::::/L(l- cospJL). The value of this term is 0 at p = (0,0,0,0). While at other 

poles p = ('rr, 0, 0, 0), (0, 1r, 0, 0), ... , this term goes to infinity when a---+ 0. That is to 

say, the doublers receive extra mass values which goes to infinity in continuum limit. 

Therefore the physical state and the doublers decouple in the continuum limit. 

2.3.5 Chiral fermions 

The doubling problem poses a serious challenge for lattice fermions. In fact, this 

problem is intimately related to the chirality of fermions and the doubling problem 

is just a manifestation of the impossibility to define a fermion field theory of a single 

chirality non-perturbatively. 

Nielsen and Ninomiya have proved a no-go theorem [28]. It states that it is 

impossible to construct a lattice fermion action S1 = 'l:::x ~xDxy1/Jy which satisfies the 

following conditions: 

(a) D(p) is an analytic periodic function of the momenta pJL with period 2rr /a. 

(b) For momenta far below the cutoff 1rja, we have D(p) = irJLPJL up to terms of order 
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(c) D (p) is invertible at all non-zero momenta (mod 27f /a). 

(d) D anti-commutes with 1 5 : Dr5 + r 5 D = 0. 

Property (a) is necessary if we want D to be a local operator, (b) ensures that the 

correct continuum limit is obtained, (c) guarantees that there are no doublers and 

(d) is the requirement of chiral symmetry. 

To avoid this theorem, Ginsparg and Wilson suggested a relation 

(2.24) 

to replace the relation in property (d). At the continuum limit the right hand side 

of this equation goes to zero and the fermion propagator anti-commutes with 15 . 

Therefore the chiral symmetry is partly preserved. 

Overlap fermions [29, 30] and domain wall fermions [31, 32, 33, 34] are two kinds of 

widely used fermions in lattice simulation which satisfy the Ginsparg-Wilson relation 

and the condition (a), (b), (c). In this work we use domain wall fermion for the light 

quarks in valence sector. Here we present some details of the domain wall fermion. 

The domain wall formalism introduces a fifth dimension, labeled as s, of extent 

Ls and a mass parameter M 5 . The physical quark fields live on the 4-dimensional 

boundaries of the fifth coordinate. The left and right chiral components are separated 

on the corresponding boundaries, resulting in an action with chiral symmetry at finite 

lattice spacing as Ls -t oo. 
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mf 

Figure 2.2: Domain wall fermions. 

The domain wall fermion action is 

Dx,s;x',s' 

D~,xt 

bs,s'D~,x' + bx,xtD-);,8 ,, 

1 4 

2 L[(l- TfL)Ux,fLbx+{l,x' + (1 + ftL)U~,,fLbx-p,x'] + (Jv/5- 4)bx,x' 
fL=l 

1 
2[(1- /5)bs+l,s 1 + (1 + /5)bs-l,s'- 2bs,s1]-

ffiJ 
2[(1- /5)bs,L8 -lbO,s' + (1 + /5)bs,obLs-l,s1 ] (2.25) 

Figure 2.2 illustrates the domain wall fermions. The two walls are coupled with 

a mass term m 1qq, where m 1 controls the bare quark mass. For finite Ls chiral 

symmetry is broken, leading to an additive renormalization of the mass, called residual 

mass mres· The residual mass vanishes as Ls --+ oo. 
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2.4 Gauge fields on lattice 

2.4.1 The Wilson gauge action 

The gauge action is required to be gauge invariant. Before we construct the 

gauge action let's first discuss the transportation properties of the ordered product 

of a sequence of link variables along a path £. Define 

(2.26) 

where x 0 , x 1, · • • Xn are consecutive lattice sites along the path £, Ux;,xi+ 1 denotes the 

gauge field lives on the link connecting the sites Xi and xi+l· 

Using Eq. 2.8, we get the transformation of Uc: 

(2.27) 

A natural way of constructing a gauge invariant term is to let the path £ to be 

a closed loop and then take the trace. When£ is closed, x0 = Xn, thus 

(2.28) 

The simplest closed path on the lattice is the so-called plaquette. The plaquette 

variable UP is a product of the four gauge links along a plaquette p as shown in 

Fig. 2.3. 

UP UJ.L(n)Uv(n + [l)U-J.L(n + [l + v)U-v(n + v), 

UJ.L(n)Uv(n + [l)Uf-l(n + v)Uv(n)t. 
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n+jl 

Figure 2.3: The plaquette Up is composed by the four link variables. The arrows show 
the direction of the link variables. 

In the second step we have used Eq. 2. 7. 

The Wilson gauge action is a sum over all plaquettes 

(2.30) 

The sum over all plaquette p is meant to include every plaquette only with one 

orientation. The factor 2
2 is set to match the continuum action in the limit a ----+ 0. 

g 

The partition function of the pure gauge system is 

Z = j IT DUJL(x)e-Sg[Ul, 
X,JL 

(2.31) 

where DUJL is the invariant Haar measure for the gauge group. 

2.4.2 The wilson loop 

We have seen that the trace of the products of gauge fields along a closed path 

on a lattice is a gauge invariant quantity. A particular useful construction is called a 
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Wilson loop, which is defined as: 

T-1 R-1 T R 

W(R, T) = Tr(II U4(x+l4) II Ui(x+T4+ki) II U1(x+(T-l)4+Ri) II ul(x+(R-k)i). 
l=O k=O l=l k=l 

(2.32) 

The loop is a rectangle of dimensions T by R, T in temporal direction and R in spatial 

direction. For large T 

W(R, T) ex exp(-V(R)T), (2.33) 

where V(R) is the quark-antiquark potential. To see this, imagine that a quark-

antiquark pair is created at some time with fixed distance R apart. The potential 

energy of the system is then V(R). After some time separation T, the quark-antiquark 

pair is annihilated. The probability amplitude for this process is then proportional 

to exp( -V(R)T). On the other hand, this amplitude is precisely the average of the 

Wilson loop operator. 

2.5 Monte Carlo Method 

The expectation value of an observable is given by 

(2.34) 

where Z is the partition function 

(2.35) 

On the lattice the path integral is nothing but a multi-dimensional integral, one could 

imagine that we just compute this integral numerically using computers. However, 

this multi-dimensional integral cannot be evaluated directly on a computer because 
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it takes too much time. 

Note that those configurations which have large values of action contribute little 

to the path integral, they are suppressed exponentially. What really contributes the 

most to the path integral are those configurations which are near the minimum of 

the action. One only tries to sample the part of the configuration space that makes 

the most important contributions to the path integral. This is the idea of important 

sampling. 

One way to implement the idea of importance sampling is to use Monte Carlo 

methods. Note that the expectation value of an observable can be viewed as an 

average with a probability distribution exp( -S). Once the probability distribution is 

correctly generated, one can just take samples from this probability distribution and 

average over these samples. 

The desired probability distribution can be obtained by a Markov process. A 

Markov process is characterized by a transition probability T( {¢'}I { ¢}) which means 

the probability to get { ¢'} if starting from { ¢}, where { ¢} denotes a configuration 

which specifies the value of the field on all lattice points. The probability obeys 

0:::; T({¢'}1{¢}):::; 1, LT({¢'}1{¢}) = 1. (2.36) 
{¢'} 

The inequality simply delimits the range of the probability. The sum states that the 

total probability to jump from some configuration { ¢} to any target configuration 

{ ¢'} is equal to 1. 

One more important restriction on T( {¢'}I { ¢}) is 

LT({¢'}1{¢})P({¢}) = LT({¢}1{¢'})P({¢'}), (2.37) 
{¢} {¢} 
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where P( { ¢}) is the probability that the system is in the configuration { ¢}. The 

left hand side is the total probability to hoping into a configuration { ¢'}) from all 

starting configurations { ¢}. The right hand side the total probability to hopping out 

of { ¢'} ). This condition expresses the requirement of a system to be in equilibrium. 

Note that the sum of the right hand side of Eq. 2.39 can be calculated explicitly 

using Eq. 2.36. We have 

LT({¢'}1{¢})P({¢}) = P({¢'}), 
{¢} 

(2.38) 

showing that the equilibrium distribution P( { ¢}) is a fixed point of the Markov 

process. Once the equilibrium distribution is obtained, the system stays there upon 

applying T. 

A sufficient condition for a solution of the balance equation 2.39 is 

T( { ¢'}1{ ¢} )P( { ¢}) = T( { ¢}1{ ¢'} )P( { ¢'} ). (2.39) 

This equation is called detailed balance condition. 

There are two algorithms in common use: the Metropolis algorithm and the heat 

bath algorithm. Both algorithms satisfy the detailed balance condition. 

The Metropolis algorithm consists the following steps: 

1. Choose a candidate configuration { ¢'} according to a priori selection probability 

To ( { ¢'} I { ¢}). 

2. Accept the candidate configuration { ¢'} as the configuration with the accep-

tance probability 

T ({¢'}1{¢}) = min(l To({¢}1{¢'})exp(-S[{¢'}])). 
A ' T0 ( { ¢'} I { ¢}) exp (-S [ { ¢}]) 

(2.40) 
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3. Repeat these steps from the beginning. 

It is straightforward to show that the total transition probability T =ToT A satisfy 

the detailed balance condition: 

T ( { ¢'} I { ¢}) exp (-S [ { ¢}]) 

T. ({¢'}1{¢})min(l To({¢}1{¢'})exp(-S[{¢'}])) xp(-S[{¢}]) 
0 

'To({¢'}1{¢})exp(-S[{¢}]) e 

min (To ( { ¢'} I { ¢}) exp (- S [ { ¢}]), To ( { ¢} I { ¢'}) exp (- S [ { ¢'}])) 

T. ({¢}1{¢'})min(l To({¢'}1{¢})exp(-S[{¢}])) exp(-S[{¢'}]) 
0 

'To( { ¢}1{ ¢'}) exp( -S[{ ¢'}]) 

T( {¢}I{¢'}) exp( -S[{ ¢'} ]). (2.41) 

We need to address how we choose a trial configuration { ¢'} in the Metropolis 

algorithm. Let's take the pure gauge theory as an example. Choose a link variable 

at site n and direction f-1, the trial configuration can be obtained by replace UJ.L( n) by 

U~ ( n) and keep the other link variables fixed. A convenient way to get U~ ( n) is 

(2.42) 

where X is a randomly chosen element of the gauge group close to the unit element. In 

practical simulation the priori selection probability is usually taken to be symmetry, 

i. e. T0 ({¢'}1{¢}) = T0 ({¢}1{¢'}). To achieve a symmetric To, X and x-1 have to 

be chosen with equal probability. The acceptance rate can be adjusted by tuning the 

spread of X around unity. A high acceptance rate may be desirable but usually means 

small change and slow motion in configuration space. Smaller acceptance is costly 

because many candidates are generated but not accepted. A reasonable acceptance 

rate has to be chosen to suit practical purpose. 

Another parameter on which the Metropolis algorithm has an essential depen-
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dence is the number of trial changes attempt on a given link before going on to the 

next. In most statistical problems this is taken to be one. However, for the gauge 

theory the interaction is rather complicated and requires considerable computation 

time. It is beneficial to repeat the updating at one link while the multiplication 

of the neighboring link variables appearing in the action need not be repeated. As 

the number of trials goes to infinity, the Metropolis algorithm approaches the heat 

bath algorithm. When we keep repeating the procedure on one link, this link will 

ultimately be brought into thermal equilibrium with its temporarily fixed neighbors. 

This is what the heat bath does in one step. The heat bath algorithms approaches the 

equilibrium more efficiently than the Metropolis algorithm. But the implementation 

of it depends on the details of the gauge group and the action, which often causes 

challenges to the simulation. 

2. 6 Simulation of fermions 

Simulating fermions is more difficult than simulating pure gauge theory because 

the computer can not manipulate Grassman numbers directly. Fermions have to be 

integrated out first, yielding the the determinant of the fermion matrix. The fermion 

matrix is a huge non-local matrix with space-time, color and spin indices, which makes 

the calculation of its determinant computationally costly. In practice, simulation of 

fermions is performed by introducing the so-called pseudo-fermions which can be 

represented by normal numbers on computer. 

Write the path integral as 

(2.43) 
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where D[U] is the fermion matrix. Integrate out the fermion fields, we get 

Z = J DU det D[U]e-Sg[U], (2.44) 

where we have used the integration formula for Grassmann number in Eq. 2.18. In

troducing the pseudo-fermions ¢, the path integral becomes 

(2.45) 

For dynamical simulations, one has to calculate the inverse of the fermion matrix 

at each updating step. It is this calculation makes the simulation of fermions much 

slower than the simulation without fermions. 

Quenched approximation ignores the fermion contribution in the sea sector, i.e. 

set D[U] = 1 in the process of generating configurations. This approximation sig

nificantly reduce the computational cost, however, it produces noticeable systematic 

errors. Nowadays, with powerful super computers, full LQCD is commonly used. 

2.7 Data analysis 

Monte Carlo simulations require the statistical analysis of the measured observ

ables. It is important to understand the statistical error of the results of the numerical 

simulations. The average value which one quotes for an observable only makes sense 

when the corresponding statistical error is presented. In this section we introduce the 

methods of analyzing the statistical data. 
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2. 7.1 Statistical analysis for uncorrelated data 

Suppose we have calculated the values (x1 , x2 , · · ·, Xn) of an observable x for an 

ensemble of N configurations in equilibrium. The variance are defined as 

(2.46) 

where (x) denotes the expectation value, which is usually estimated as the mean of 

the measured values: x = -fJ 2:::::1 xi. The variance is estimated as 

a-2 = 1 (x x-)2 
X N-1 i- . (2.47) 

The a~ indicates the statistical error of x. However, x itself is a random variable 

because it may have different values for different ensembles. The variance of x is 

a~ 
X 

(2.48) 

For uncorrelated xi, the last term in the last line of the above equation vanishes. 

Then we have 

(2.49) 

The final result based on the N measurements is presented as 

x ±a with a= 
1 N 

N(N- 1) ~(xi- x)2. (2.50) 
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2. 7.2 Statistical analysis in the presence of autocorrelation 

Since the configurations are generated successively, it is generally not true that the 

configurations are statistically independent of each other. To quantify the correlation 

for a measured quantity x we introduce the autocorrelation function: 

(2.51) 

where T is the computer time. 

For the correlated variables xi the last term in the second line of Eq. 2.48 doesn't 

vanish. Let's recalculate the variance of mean: 

a~ 
X 

N 

- ( 2 1""' 2 ((x- x))) = N 2 6 ((xixj)- (x)) 
i,j=l 

(2.52) 

Comparing with the variance of mean in the uncorrelated case there is an additional 

factor L~-N(1- ~)Cx(ltl), for simplicity we denote this factor as Tint· It means 

that out of N values there are N /Tint independent data. In other words, in order to 

get independent measurements one should skip N /Tint updating sweeps between two 

measurements. 

The problem of applying this formula is that Cx(ltl) is hard to measure. In 

practice it is usually better to handle the autocorrelation by "blocking" the data. 

The idea is that we average n successive measurements and take the block averages 

Bi as the new set of data. If the blocks are big enough we can expect that the Bi are 
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independent. Then we can use the formula of variance for uncorrelated data. 

2. 7.3 Data blocking methods 

There are two widely used data blocking methods: Jackknife and bootstrap. 

Given a set of N data (xi, x 2 , • • ·, xN), assume that we are interested in some 

observable y which is estimated from that set. 

Jackknife constructs a subset by removing the ith value of the original set, leaving 

N- 1 values to form the subset. We can estimate the value of the observable Yi for 

this subset. Do the same thing for every i(running from 1 toN), we get a set of values 

for y: (y1, Y2, · · ·, YN ). The variance is given by 

N 
2 N-1""' A2 

rJiJ = N L..)Yi- y) (2.53) 
i=l 

where f) is the value of the observable obtained from the original set. 

The jackknife method is also capable of giving an estimate of sampling bias. We 

may have a situation in which an estimate tends to come out on the high side (or low 

side) of its true value if a data sample is too small. When this happens, removing a 

measurement would enhance the bias. The bias can be measured by comparing the 

mean of the jackknife values Yi, denoted as fj, with the result of fitting the original 

data set. If there is a difference, we can correct for the bias using 

f) = f) - ( N - 1) (y - f)) (2.54) 

The final result can be quoted either y ± rJiJ or iJ ± rJiJ. 

Bootstrap recreates other samples by choosing randomly N data out of the orig

inal set. Suppose we have done this K times and thus have K sets of N data values. 

For each set we can estimate the value of the observable, resulting a set of K values: 
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(y1 , y2 , · · ·, YK ). Then one estimate the expectation of y and the variance as 

K 

2 1" -2 
afJ = K L)Yi- y). 

i=l 

(2.55) 

Jackknife and bootstrap methods can be applied to determine the statistical error 

for derived quantities without considering the complicate error propagation. 

2. 7.4 Data fitting 

In practical simulation, the observables we are interested are usually not the 

simple average of the simulated data but the quantities from a fit. For example, to 

obtain the hadron masses, we need to calculate the two point correlation functions 

and then fit the correlation functions to exponentials. Here we take it as an example 

to explain the data fitting methods. The correlation functions are expected to obey 

some theory: 

(2.56) 

Here A are a set of parameters (.Xa, Ab, · · · ). In our example, they are the amplitude 

and the mass. Our task is to estimate these parameters and find the statistical error 

on these estimates. 

Suppose we have N independent measurements of the correlation function, denote 

the nth measurement at distance ti as Yin· The average of all measurements at distance 

(2.57) 

Yi may be correlated. Define the covariance matrix 

(2.58) 
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The square root of the diagonal elements Cii are the variance of f)i. The off diagonal 

elements cij ( i i- j) indicate the correlation of Yi and yj. 

If we repeat the simulation many times, we would get a distribution of the y. 

The distribution probability is 

(2.59) 

By writing down this, we take two assumptions. One is that the theory is correct, 

which means f(ti, .\) give the right value of y. The other one is to assume Yi are 

Gaussian distributed. 

Now we need to find the parameters in f(ti, .\) to give the best fit to Yi· The 

most commonly used method is to find the parameters that maximize the distribution 

probability, or minimize the exponent. Twice the exponent is called x2
: 

(2.60) 

In general x2 is an indicator of the agreement between the observed and expected 

values. 

To minimize x2
, we need to solve the equations: 

8x2 

---=0 
8-Aa,b,-·· 

(2.61) 

where a, b, · · · are used to index the parameters. Denote the solutions of these equa

tions as 5.. Now we need to answer how would the 5. fluctuate when we repeat the 

simulations. Notice that the "best fit" defines a mapping from the measurements Yi 

to the parameters 5., therefore we can obtain the distribution probability for the 5. 

from the distribution probability of the Yi· 
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Define a matrix L::l.ab: 

(2.62) 

where :\ denotes the expectation of A. Expand A around A : 

(2.63) 

Ignoring the second and higher order of this expansion and then substitute it into 

Eq. 2.62, we can simplify L::l.ab after some straightforward calculation steps: 

(2.64) 

where Hab is called Hessian matrix given by 

(2.65) 

L::l.ab describes the covariance of the :\a, just like Cij describes the covariance of 

Yi· The distribution probability of A is 

(2.66) 

The variance of some parameter Aa is just the square root of L::l.aa· We can quote 

the final result as :\a ± JK;:. 
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CHAPTER 3 

EfFective Field Theory 

The goal of modern physics is to find a simple and unified theory to describe all 

observed phenomena in terms of some fundamental dynamics among the basic con

stituents of the nature. However, even if such a theory is found at some point, a 

quantitative analysis at the most elementary level is of little use for providing a com

prehensive understanding of physics at all scales. 

Usually, a physics problem involves widely separated energy scales. We may only 

be interested in the physics at a certain scale while the details of the physics above this 

scale are not needed. An effective field theory is an approximate theory to describe 

low-energy physics, where low is defined with respect to some energy scale A. Only the 

relevant degrees of freedom, i.e. those states with energy less than A, are presented 

explicitly in the effective theory, while those states far above A are integrated out. 

In this way we construct the Lagrangian containing a string of interactions among 

the light states which can be arranged as an expansion in powers of energy/ A. The 

information of the heavier degrees of freedom is then encoded in the coefficients of the 

low-energy Lagrangian. All the operators in the Lagrangian are required to satisfy 

all the symmetries of the underlying theory. 
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If the underlying theory is known, the coefficients of the low-energy Lagrangian 

can be determined by matching the effective theory to the underlying theory by 

requiring the physics to be the same at an energy scale in both theories. If the 

underlying theory is unknown or is not computable at the energy scales of interest, 

as we encounter in QCD, the coefficients can be obtained by fitting expressions of 

physical observables computed with the effective theory either to experimental data 

or to Lattice QCD simulations. Once these coefficients are determined, we are able 

to make predictions about other physical quantities. 

In this chapter we introduce Heavy Quark Effective Theory [35] and Chiral Per

turbation theory (xPT) [36, 37, 38]. 

3.1 Heavy quark effective theory 

The heavy quark effective theory (HQET) is constructed to provide a simplified 

description of the processes where a heavy quark interacts with light degrees of free

dom. Clearly, the heavy quark mass is the high energy scale and AQcD is the scale 

of interest. The content of this section is mainly based on the reference [39, 40]. 

3.1.1 Derivation of the effective lagrangian 

Consider a very heavy quark bound inside a hadron, it moves with the velocity 

almost equal to the hadron's velocity v and is almost on-shell. We can write its 

momentum as 

(3.1) 

where mQ is the heavy quark mass, the residual momentum k determines the amount 

by which the quark is off-shell due to its interactions. k is of order AQcD while mQ 

is much larger than AQCD· 
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In the limit mQ -----+ oo, the usual quark propagator becomes 

. mQp+~+mQ z -----"-'------::----=--

2mQV · k + k2 + iE 

.1 + p 1 
-----+ z------

2 V · k + iE 
(3.2) 

The factor 1;:r is an energy projector, denote as P+. Define P_ = 
1;r. P+ and P_ 

satisfy the relations : 

(3.3) 

Introduce the new fields by applying the projectors P± on the heavy quark field 

Q(x): 

hv(x) = exp(imQv · x)P+Q(x), Hv(x) = exp(imQV · x)P_Q(x), (3.4) 

so that 

Q(x) = exp( -imQV · x)(hv(x) + Hv(x)). (3.5) 

The new fields satisfy phv = hv, f;Hv = -Hv. In the hadron rest frame, v = 

(1, 0), P± = (1 ± lo)/2, thus hv(x) and Hv(x) correspond to the upper and lower 

components of Q(x) respectively. The field hv(x) annihilates a heavy quark with 

velocity v, while Hv(x) creates a heavy antiquark with the same velocity. At the 

energy scale AQcD we are interested, heavy antiquark can hardly be created. We will 

show later that Hv(x) is suppressed by a factor of 1/MQ. Thus, in the limit mQ-----+ oo, 

only hv(x) remains, the heavy quark Lagrangian Lk~v(x) = Q(x)(il/)- mQ)Q(x) 

becomes 

(h) - . 
LQcv(x) = hv(x)z(v · D)hv(x) (3.6) 
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The propagator of this Lagrangian is 

.1 + p 1 
z-----

2 v. k +if (3.7) 

The factor 1;r arises because P+hv = hv. The Lagrangian in Eq. 3.6 exactly reproduce 

the quark propagator in the limit mQ ---+ oo, which is obtained in Eq. 3.2. 

The interaction vertex in the full theory is -ig{J.Lta, while in effective theory the 

vertex is -igvi-'ta. The vertex is sandwiched between quark propagators. Each quark 

propagator is proportional to (1 + p)/2, so the vertex -ig{J.Lta can be replaced by 

-igvi-'ta because 

(3.8) 

Therefore, the effective Lagrangian in Eq. 3.6 reproduces all the Green's functions in 

the full theory to leading order in 1/ mQ. 

In order to analyze 1/mQ corrections, we have to consider the small component 

Hv. With the definition of Eq. 3.5, the heavy quark Lagrangian L~C2JD becomes 

L(Q) 
QCD 

(hv + flv)[il/J- mQ(1- p)](hv + Hv) 

hvi(v · D)hv- flv(iv · D + 2mQ)Hv + hvil/JHv + flvil/Jhv, (3.9) 

where we have used the relations phv = hv, I/! v = - Hv. It is convenient to project 

four vectors into components parallel and perpendicular to the velocity v. The per-

pendicular component of the Dirac operator is 

(3.10) 
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The il/J in Eq. 3.9 can be replace by il/J j_ since hv'¢Hv = Hphv = 0. 

In Eq. 3.9, hv describes a massless degree of freedom, Hv corresponds the flue-

tuations with mass 2mQ, the last two terms describe quark-antiquark creation and 

annihilation. 

At tree level, Hv can be integrated out by solving the equation of motion ( il/J -

mQ)Q = 0, which in term of the hv and Hv takes the form 

(3.11) 

by applying P± on both sides, this equation can be projected into two pieces: 

(3.12) 

From the second equation we get 

(3.13) 

which explicitly shows that Hv ,......, 0(1/mQ). Substitute it back into Eq. 3.9, one gets 

(3.14) 

3.1.2 1/ mQ expansion 

Because of the phase factor in Eq. 3.5, the x-dependence of the effective heavy 

quark field is weak. Derivatives acting on he produce powers of the residual momen-

tum k, which is much smaller than mQ. Therefore, the HQET Lagrangian Eq. 3.9 

can be expanded in powers of D / mQ. 
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Expand the factor . D+i . in Eq. 3.9. we have 
w· mQ-U · 

(3.15) 

Using the identity 

m m _ D2 g F'.w 
1j/ l_ 1j/ l_ - l_ - 2 (}' J.l.V 1 (3.16) 

where FJ.l.v is the gauge tensor defined in Eq. 1.18, aJ.l.v = i[rJ.l., lv]/2. Eq. 3.15 becomes 

(3.17) 

It is more clear to write the Lagrangian as power of corrections: 

(3.18) 

where L0 = hv(iv · D)hv is the leading term, and 

(3.19) 

is the first order correction, and so on. 

In the hadron rest frame, D1_ = (0, D). It is clear that the first term in L1 

is nothing but the heavy quark kinetic energy 'ffQ/2mQ. It breaks the heavy quark 

flavor symmetry because of the explicit dependence on mQ, but it doesn't break heavy 

quark spin symmetry. The second term in L 1 is the chromo-magnetic momentum 

interaction, it breaks both heavy quark spin and flavor symmetry. 
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3.1.3 Hadron masses 

The hadron masses in the effective theory is mH - mQ since the heavy quark 

mass mQ has been subtracted from all energies in the field redefinition in Eq. 3.5. At 

order mQ, all heavy hadrons containing a single heavy quark have degenerated mass 

mQ. At order of unity, the hadron masses get the contribution 

(3.20) 

where Ho is the Hamiltonian obtained from the leading term L0 in the effective 

Lagrangian, as well as the the terms involving light quarks and gluons. ..\. has the 

same value for all particles in a spin-flavor multiplet due to the heavy quark spin

flavor symmetry at the leading order. In the SU(3) limit, ..\. does not depend on the 

light quark flavor. We will denote the value by .\ for the mesons B, B*, D and D*, 

At order 1/mQ, there is an additional contribution to the hadron masses given 

by the 1/ mQ correction term L1 in the effective Lagrangian. Define two parameters 

(.\ 1 and .\2 ) from the two terms in L 1 : 

-(H(QlllivDiiH(Ql) = 2.\1, 

(H(Q)IhvgaJLvFJLvhviH(Q)) = 16(sQ · Sz).\2. (3.21) 

Here .\1 is independent of mQ. .\2 depends on mQ through a renormalization 

factor, here we ignore the dependence since the loop corrections are small. From 

the definition, it is clear that .\1,2 rv ~ rv A~cD· In the hadron rest frame, the 

term hvgaJLvFJLvhv reduces to hvgS · Bhv, where§ is the heavy quark spin and B is 
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the chromomagnetic field. The matrix element of iJ is proportional to the spin of 

light degrees of freedom. Thus the matrix element of the chromomagnetic operator 

is defined to be proportional to SQ • s 1. 

Now we can derive the mass of a hadron 

(3.22) 

The parameters A and .\1,2 are different for the hadrons in different spin-flavor mul-

tiplets. 

For the B meson, sQ = s1 = 1/2, J = 0, sQsz = (J2- s~- sf)/2 = -3/4, thus 

the mass of B meson is 

(3.23) 

where mb is the mass of b-quark. Similarly, the mass of B* can be obtained 

(3.24) 

The mass of D and D* have the same form as B and B* respectively except that 

mb should be replaced by me· From Eq. 3.23 and Eq. 3.24, we can see that the 

spin average mass of Band B*, e. g., (3mB*+ mB)/4 dose not depend on .\2 . The 

chromo-magnetic interaction is responsible for the hyperfine splittings mE*- mE and 

For the baryons Ab, Ae, 2b and Be, SQ = 1/2, Sz = 0, J = 1/2, so SQSz = 0, the 

masses are 

(3.25) 
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For the baryons I;b, I;c, 1/2, S[ 1, J 1/2, so 

SQSl = -1, the masses are 

(3.26) 

1, J 3/2, so 

sQsl = 1/2, the masses are 

(3.27) 

The parameters .\1 and .\2 are nonperturbative parameters of QCD and have 

not been computed from first principles. One can obtain their values by fitting the 

hadron masses and use them to compute other quantities which can be expressed 

by these parameters, such as the form factors and decay rates. The mass formulas 

from HQET also show how the hadron masses depend on the heavy quark mass. In 

lattice calculation, they are useful tools for analyzing the systematic errors due to 

discretization effects. 

3.2 Chiral perturbation theory 

Chiral perturbation theory is the low-energy realization of QCD in the light quark 

sector. In Lattice QCD simulations the light quark propagators are not calculated at 

the physical light quark mass because it is computationally costly to simulate light 

quarks. The observables are calculated for several different quark masses which are 

higher than the physical quark mass and then extrapolated to the physical point. 
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Therefore, the light quark mass dependence of the observables has to be investigated 

systematically. 

3.2.1 Chiral symmetry in QCD 

Consider the quark content of the QCD Lagrangian, keeping only the three light 

flavors u, d and s: 
3 

LQcD = L iJ.i(ii/J- mi)Qi· (3.28) 

Define the right-handed quark and left-handed quark by applying the projectors 

PR = (1 + r5)/2 and PL = (1- r5 )/2 on the quark field: 

1 + /5 
QR = 2 q, 

1-/5 
QL = 2 q. 

The kinetic term can be written in terms of QL and qR: 

(3.29) 

(3.30) 

This term is invariant under SU(3)L x SU(3)R transformation, where the left-handed 

quark and right handed quark transform as SU(3) group independently. This sym-

metry is called "chiral symmetry". 

Chiral symmetry is not an exact symmetry of QCD since the quark mass terms 

explicitly break this symmetry. In terms of QL and QR, the quark mass terms may be 

written as 

L miijiqi = L(iJ.LiA1ijQRj + iJ.RiMijqLj) 
ij 
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where 

M= (3.32) 

The mass terms couple left- and right-handed quarks, the SU(3)L x SU(3)R symmetry 

is broken down to the vector subgroup. However, this explicit breaking can be treated 

perturbatively considering that the u, d, s quark masses are small comparing to AQCD· 

In the zero quark mass limit, or chiral limit, the QCD Lagrangian exhibits an 

exact chiral symmetry. However, this chiral symmetry is not seen in the hadron 

spectrum. The degenerate multiplets with opposite parity do not exist. The observed 

parity partner of the nucleon is significantly heavier than the nucleon. Moreover, the 

octet of pseudoscalar mesons happens to be much lighter than all the other hadronic 

states. This phenomena lead us to postulate that the vacuum of QCD spontaneously 

breaks the chiral symmetry of the QCD Lagrangian to the vector subgroup. The 

hypothesis is that the quark condensate in the QCD vacuum is nonzero: 

(3.33) 

Here A has dimension of mass. Under a chiral transformation 

(3.34) 

where R and L are SU(3) matrices. If L = R, i.e. an SU(3)v transformation, 

(LRt)ij = bij which means that the condensate leaves the SU(3)v unbroken. But 

it does break the SU(3)L x SU(3)R symmetry because I;ij represents a different 

vacuum from Eq. 3.33 for L =f- R. According to Goldstone's theorem, this spontaneous 

symmetry breaking creates eight pseudoscalar massless bosons, one for each of the 
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eight broken generators. The quark mass matrix, which explicitly breaks SU(3)L x 

SU ( 3) R symmetry, gives rise to the small masses of these boson, which we can identify 

with the lightest hadronic states ( n+, n-, n°, K+, K-, K 0 , K0 and 7J). We will 

parameterize these states by replacing 

2i¢(x) 
I: ----+ I: ( x) = exp ( f ) , 

8 

with cp(x) = L tac/Ja(x), (3.35) 
a=l 

where we use the normalization f ~ 132MeV, ta are the generators of SU(3) group, 

c/Ja represent the eight pseudoscalar mesons. Write down ¢ explicitly as 

1!"0 ..!L. 
V2+v'6 n+ K+ 

¢= 7r 
1!"0 ..!L. 

-V2+v'6 Ko (3.36) 

K- f(O 2TJ 
-v'6 

3.2.2 Effective chiral Lagrangian 

From Eq. 3.34, we can see that the field I: transforms under the chiral group as 

(3.37) 

The chiral Lagrangian must exhibit the same approximate symmetry as QCD, 

which means that it must be invariant under the transformation in Eq. 3.37 in chiral 

limit. 

The lowest dimension operator which preserve chiral symmetry is 

(3.38) 

The factor ~
2 

is to generate the standard form of the kinetic term ~8!'¢a8{!¢a· 
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To include the effect of quark masses, the mass matrix M have to be included. 

From Eq: 3.31 we can see that if M transform as 

M---+ LMRt, (3.39) 

the QCD Lagrangian has chiral symmetry. This property must be preserved in the 

effective Lagrangian. So the lowest order effective Lagrangian with mass term is 

(3.40) 

where B0 is a low energy coefficient. 

Expand £ 2 to the second order in ¢, we get 

1 1 
aPn+apn- + 2(apn°) 2 + BpK+aP K- + (8PK0

)
2 + 2(ap7]) 2 

1 
-Bo(mu + md)7r+7r- - 2Bo(mu + md)7r

0
7r

0
- Bo(mu + ms)K+ K-

o- 0 1 2 
-Bo(md + ms)K K - 6Bo(mu + md + 4ms)77 

1 0 
- ..j3Bo(mu- md)n Tf. (3.41) 

We take isospin-symmetric limit mu = md = m, the term with n° -77 mixing vanishes. 

The masses of these pseudoscalar mesons to the lowest order of light quark masses 

are 

m1- = Bo(m + ms), (3.42) 

The masses in Eq. 3.42 satisfy the Gell-Mann-Okuba relation 

(3.43) 
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Eq. 3.42 shows that m;,K,TJ -:::::: M, for on-shell mesons p2 
rv m;,K,TJ' it follows that 

one insertion of the quark mass matrix M is equivalent to two derivatives in the power 

counting of the effective Lagrangian. Generally the effective Lagrangian is written as 

(3.44) 

The index 2, 4, 6, · · · indicate the power of p of each order of Lagrangian. Two deriva

tives or one quark mass matrix are inserted to get a higher order Lagrangian. 

When we consider the one loop correction from L2 , we have to include the tree 

level contribution from L 4 since they are in the same order. Similarly, the two loop 

correction from L2 has the same order as the one loop correction from L 4 and the 

tree level contribution from £ 6 , and so on. 

The most general Lagrangian L 4 which consist with the symmetries is 

L4 l 1 (Tr(8~'L)8~L-)) 2 + l 2Tr(8~L-tavL-)Tr(8~L-tavL-) 

+l3Tr( 8~L,t a~L-Bv'L-t avL-) 

+2B0l4Tr(8~L,t a~L-)Tr(ML-t + L,Mt) 

+2B0 l5Tr((8~L-ta~L-)(ML,t + L,Mt)) 

+4B6Z6 (Tr(ML,t + L-Mt)? + 4B6Z7 (Tr(ML-t- L,Mt)) 2 

+4B6Z8Tr(ML,t ML,t + L,MtL,Mt). 

3.2.3 Heavy baryon chiral perturbation theory (HBxPT) 

(3.45) 

When we consider the baryons in chiral perturbation theory, the power counting 

problem arises. The baryon mass is not small comparing to the chiral symmetry 

breaking scale Ax. Thus we can not power count loop diagrams or the higher dim en-
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sional operators with arbitrary powers of M /Ax as we did for the light pseudoscalar 

mesons. 

This problem can be solved by applying the formalism developed for HQET [41, 

42]. In Eq. 3.5, by the redefinition using a velocity dependent phase, the heavy quark 

field is decomposed into two parts: the large part hv and the small part Hv which is 

suppressed by 1/mQ. Here we do the same thing for the baryon fields. Define 

(3.46) 

where mB is the mass of the baryon Band vis the four-velocity of B. The momentum 

of the baryon is 

(3.4 7) 

where kJ.L is the off-shell momentum of the baryon which is supposed to be small. 

As we have shown in Sec. 3.1, in the limit mQ ---+ oo, the Dirac Lagrangian 

B(if/J- mB)B ---+ Bvif/JBv. Derivatives acting on Bv(x) produce factors of k, rather 

than p, so that the higher derivative terms in effective Lagrangian are suppressed by 

powers of k/ Ax which is small. Thus the heavy baryon Lagrangian has a consistent 

derivative expansion. 

The baryon chiral perturbation Lagrangian is written in terms of the octet baryon 

fields 
~~ + Av 
V2 V2 

I;+ v Pv 

B = I;- - ~~ + !h_ nv (3.48) v v V2 V6 
I;- I;O 2Av 

v v -V6 

and the Goldstone boson fields ¢defined in Eq. 3.36. 

One can define spin operators S~ that act on the baryon fields Bv, with the 
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properties 

V · Sv = 0, 

[s,\ Su] _ · -\aa/3 5 
v' v - ZE Va vf3· 

(3.49) 

(3.50) 

With this definition, all Lorentz tensors made from spinors can be written in terms 

of v and S: 

B- JWB 2 llvaf3 B- S B v(J v = E Va v v/3 v, 

Introduce a new matrix~ = :E112 , which transform under an SU(3)L x SU(3)R 

as 

(3.53) 

where U is a unitary matrix depending on L, Rand¢. From~ we can construct a 

vector field Vll and axial vector field All: 

~(~tall~+ ~a'"~t), 
!_(~tall~- ~all~t). 
2 

The vector field acts like an gauge field under a chiral transformation 
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while the axial field transforms as an SU(3) octet 

The most general Lagrangian at lowest order is [43] 

Lv Tr(Bviv · DBv) + 2D Tr(BvS~{ A~-', Bv}) + 2FTr(BvS~[A~-', Bv]) 

+bv Tr(Bv{M+, Bv}) + bp Tr(Bv[Nh, Bv]) 

+aTr(M('L- + 'L-t))Tr(BvBv) 

coefficient, not to be confused with the derivative operator D. 

(3.57) 

(3.58) 

The decuplet baryons which have spin ~ can also be included in the effective 

chiral theory. The decuplet can be described by a Rarita-Schwinger field [44] (T~-')abc, 

satisfying the constraint 1~-'TJ-L = 0. r:bc transforms under chiral group as 

with the normalization 

T A*++ 
111 = L...l. ' T 1 A*+ 

112 = J3L...l. ' 

T 1 "'*0 
123 = yi6LJ ' 

T 1 ~*o 
133 = J3.:::. ' 
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_1 223 = J3L- ' 

(3.59) 
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Define the velocity dependent field for T the same way as we define Bv: 

(3.61) 

The lowest order containing the decuplet baryons is 

(3.62) 

The covariant derivative acting on the T field as 

(3.63) 

Notice that there is a mass term ~mTf:TvJ.L in the decuplet Lagrangian, where ~m 

is the mass splitting between the decuplet and the octet baryons. This term is in-

traduced by the definition of Tv in Eq. 3.61, where we use mB instead of my in the 

phase factor. Derivative acting on Tv removes the mass mB instead of my, thus a 

explicit mass term proportional my- mB remains in the Lagrangian. This definition 

avoids introducing factors of eillmv·x into the Lagrangian in terms which contain both 

decuplet and octet fields. 

3.2.4 xPT for baryons containing a heavy quark 

Now let's move on to the chiral perturbation theory for the baryons containing a 

heavy quark (cor b). In the limit mQ-+ oo, the heavy quark spin decouples from the 

light degrees of freedom. Thus we can classify them by the spin of their light degree 

of freedom, which can be s1 = 0 or 1. 

For the baryons with s1 = 0, they have spin ~ because there is only one way to 

62 



combine the spin of the heavy quark with the spin of the light degrees of freedom. 

They can be described by an antisymmetric tensor 

0 A+ ::;+ 
c ~c 

yij = -A+ 0 ::;0 (3.64) 
c ~c 

::;+ ::;0 0 ~c ~c 

here we specify the baryons to be charmed baryons since one of the goal of this work 

is to study the charmed baryon spectrum. Notice that in Eq. 3.64 we have suppressed 

the velocity labels on all charmed baryons. For example, by At we actually mean 

Atv = eimAv·x 1~P At. From now on, we will suppress the velocity labels on all heavy 

hadrons in this chapter. 

For the baryons with s1 = 1, the total spin the baryons can be J = ~ or ~. In 

the limit mQ ---+ oo, these two multiplets are degenerate and can be described by one 

filed S'! 
~] 

(3.65) 

where 
I:++ 1 I:+ __!._ ::;1+ 

c y0c y0~c 

Bi1 = 1 I:+ I:o __!._ ::;10 
y0c c y0~c 

(3.66) 

__!._";:;I+ _1 ::;10 no 
y0~c y0~c c 

is the J = ~ baryons and B;ij is the J = ~ baryons. B;ij has similar form as Bij. 

The field Sf; satisfies the constraints vJ.LS~ = 0 and pS~ = S~. It transforms 

under SU(3)L x SU(3)R as 

(3.67) 

where U is defined in Eq. 3.53. 
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I \ 

I \ 

(a) (b) 

Figure 3.1: Tree level and one-loop diagrams which contribute to the masses of the 
charmed baryons with sz = 0. The single, double, dashed lines correspond 
to sz = 0 baryons, sz = 1 baryons and mesons respectively. 

The lowest order Lagrangian takes the form 

L -iSJ-Lv · DS + f:1SJ-LS + iTv · DT J-L J-L 

+>11 SJ-L M+SJ-L + A.2 SJ-L SJ-LTr M+ + A.3T M+T + A.4TTTr M+ 

+i9zEJ-Lvpa(SJ-Lvv APSa) + 93(TAJ-LSJ-L + h.c.). (3.68) 

Fig. 3.1 and Fig. 3.2 show the diagrams which contribute the masses of s1 = 0 

charmed baryons and s1 = 1 charmed baryons to one loop. The single, double, dashed 

lines correspond to s1 = 0 baryons, s1 = 1 baryons and mesons respectively. Fig. 3.1 

(a) is the tree level contribution to the masses of s1 = 0 charmed baryons which 

comes from the terms with coefficients )..3 and )..4 in the Lagrangian in Eq. 3.68. 3.2 

(a) comes from the terms with coefficients ).. 1 and .X.2 . 3.1 (b) and 3.2 (c) both arise 

from the axial coupling ofT field and S field, i.e. the term with coefficient 93 . 3.2 (b) 

arises from the term with coefficient 92 • Notice that there is no axial coupling ofT 

field and T field, this term is ruled out by parity. Here we are not going to calculate 

these diagrams. For the detailed calculations, please see reference [45]. We will use 

the results therein to perform the chiral extrapolation of the charmed baryons masses 

simulated on lattice. 
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I I 

(a) (b) (c) 

Figure 3.2: Tree level and one-loop diagrams which contribute to the masses of the 
charmed baryons with sz = 1. The single, double, dashed lines correspond 
to sz = 0 baryons, sz = 1 baryons and mesons respectively. 

3.2.5 x PT for Heavy mesons 

The chiral perturbation theory for heavy mesons is quite similar with the HBxPT. 

For the meson with a heavy quark, the spin of the light degree of freedom is s1 = 1/2. 

There are two ways to combine with the heavy quark. The total spin of the meson 

can be J = 0, denote as P, or J = 1, denote as P*. In mQ ---t oo, P and P* are 

degenerate due to the heavy quark spin symmetry. The two fields can be combined 

into a single field 

H.-p* J.L ·p.,..,5 
z - iJ.L "( + z z y ' (3.69) 

where the velocity labels of the fields have been suppressed. H transforms as an 

antitriplet matter field under the chiral group 

H . ---t H. umj 
2 J z. (3.70) 

For charmed mesons 

(3.71) 

The chiral Lagrangian of H field is constructed by considering the chiral sym-

metry. The term with zero derivative is the mass term which is removed by the 
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redefinition of the fields. The terms with one derivative are 

(3.72) 

The covariant derivative acting on H as 

(3.73) 

Expanding V and A in terms of M gives the interactions between the fields 

P, P* and the Goldstone bosons. The explicit calculation of the T-matrices of the 

interacting processes is out of the scope of this work. We refer the interested readers 

to the references [46, 47]. 
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CHAPTER 4 

Lattice Setup and Computational Techniques 

In this work we study the charmed hadron spectrum and interactions. The method 

of extracting the mass of the hadrons from lattice simulation is introduced in sec

tion 4.2. Although we are not going to study exited states in this work, it is worth 

to mention the variational method which is used to extract multiple energy levels 

from a correlation matrix. To extract the hadronic interactions from lattice QCD, 

one need to utilize Luscher's finite volume technic, which is presented in section 4.3. 

The condition to form a bound state by weakly attractive interaction is discussed. 

First of all, we present the lattice we use in the calculations. 

4.1 Lattice Setup 

4.1.1 Light-Quark Action 

In this work we employ the "coarse" (a c:::: 0.125 fm) gauge configurations gen

erated by the MILC Collaboration [48] using the one-loop tadpole-improved gauge 

action [49], where both 0( a 2
) and O(g2a 2

) errors are removed. For the fermions in the 

vacuum, the asqtad-improved Kogut-Susskind action [50, 51, 52, 53, 54, 55] is used. 

This is the Naik action [56] (O(a2
) improved Kogut-Susskind action) with smeared 
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links for the one-link terms so that couplings to gluons with any of their momentum 

components equal to 1r /a are set to zero. 

For the valence light quarks (up, down and strange) we use the five-dimensional 

Shamir [33, 34] domain-wall fermion propagators [31] calculated by the NPLQCD 

Collaboration [57]. The domain-wall fermion action introduces a fifth dimension of 

extent L 5 and a mass parameter M 5 ; in our case the values L 5 = 16 and M5 = 1. 7 

were chosen. The physical quark fields, q(x, t), reside on the 4-dimensional boundaries 

of the fifth coordinate. The left and right chiral components are separated on the 

corresponding boundaries, resulting in an action with chiral symmetry at finite lattice 

spacing as L 5 -----+ oo. We use hypercubic-smeared gauge links [58, 59, 60, 61] to 

minimize the residual chiral symmetry breaking, and the bare quark-mass parameter 

(am )~wf is introduced as a direct coupling of the boundary chiral components. 

The calculation we have performed, because the valence and sea quark actions 

are different, is inherently partially quenched and therefore violates unitarity. Un

like conventional partially quenched calculations, to restore unitarity, one must take 

the continuum limit in addition to tuning the valence and sea quark masses to be 

degenerate. This process is aided with the use of mixed-action chiral perturbation the

ory [62, 63, 64, 65, 66, 67]. Given the situation, there is an ambiguity in the choice of 

the valence light-quark masses. One appealing choice is to tune the masses such that 

the valence pion mass is degenerate with one of the staggered pion masses. In the con

tinuum limit, the N1 = 2 staggered action has an SU(8)L®SU(8)R®U(l)v chiral sym

metry due to the four-fold taste degeneracy of each flavor, and each pion has 15 degen

erate partners. At finite lattice spacing this symmetry is broken and the taste multi

plets are no longer degenerate, but have splittings that are O(o:;a2
) [50, 51, 52, 55, 68]. 

The propagators used in this work were tuned to give valence pions that match the 

Goldstone Kogut-Susskind pion. This is the only pion that becomes massless in the 
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Ensemble f3 am1 ams amdwf 
l 

amdwf 
s Ncfgs Nprops 

m007 6.76 0.007 0.050 0.0081 0.081 461 2766 
m010 6.76 0.010 0.050 0.0138 0.081 636 3816 
m020 6.79 0.020 0.050 0.0313 0.081 480 1920 
m030 6.81 0.030 0.050 0.0478 0.081 563 1689 

Table 4.1: The parameters of the configurations and domain-wall propagators used in this 
work. The subscript l denotes light quark, and s denotes the strange quark. 
The superscript "dwf" denotes domain-wall fermion. 

chiral limit at finite lattice spacing. As a result of this choice, the valence pions are 

as light as possible, while being tuned to one of the staggered pion masses, providing 

better convergence in the xPT needed to extrapolate the lattice results to the phys-

ical quark-mass point. This set of parameters, listed in Table 4.1, was first used by 

LHPC [69, 70] and recently to compute the spectroscopy hadrons composed of up, 

down and strange quarks [1]. 

4.1.2 Heavy-Quark Action 

For the charm quark we use the Fermilab action [71], which controls discretiza

tion errors of O((amQt). Following the Symanzik improvement [72], an effective 

continuum action is constructed using operators that are invariant under discrete 

rotations, parity-reversal and charge-conjugation transformations, representing the 

long-distance limit of our lattice theory, including leading finite-a errors. Using only 

the Dirac operator and the gluon field tensor (and distinguishing between the time 

and space components of each), we enumerate seven operators with dimension up to 

five. By applying the isospectral transformations [73], the redundant operators are 

identified and their coefficients are set to appropriate convenient values. The lattice 

action then takes the form 

S = So + S B + S E , (4.1) 
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with 

So~~ Q(x) [ mo + (roVo- ~6o) + v ~ ( ')';V;- ~6,)] Q(x), (4.2) 

SB = -~cB L Q(x) (2::: <TijFij) Q(x), (4.3) 
X ~<J 

SE ~ -~CE ~ Q(x) ( ~ <70iFOi) Q(x), (4.4) 

where a is the lattice spacing, \70 and Vi are first-order lattice derivatives in the 

time and space directions, 6 0 and 6i are second-order lattice derivatives, and F11v is 

the gauge field strength tensor. The spectrum of heavy-quark bound states can be 

determined accurately through IP1a and (amQ)n for arbitrary exponent n by using a 

lattice action containing m0 , v, c8 and cE, which are functions of amQ. 

The coefficients c8 and cE are different due to the broken space-time interchange 

symmetry, which can be computed in perturbation theory by requiring elimination of 

the heavy-quark discretization errors at a given order in the strong coupling constant 

0:8 • We use the tree-level tadpole-improved results obtained by using field transfor-

mation (as in Ref. [73]): 

(4.5) 

where u0 is the tadpole factor 

(4.6) 

and UP is the product of gauge links around the fundamental lattice plaquette p. The 

remaining two parameters m0 and v are determined nonperturbatively. The bare 
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c2 

Ensemble T/c Jj'I! D Ds 
m007 0.991(4) 0.985(5) 1.021 (15) 1.018(9) 
m010 0.989(3) 0.958(3) 1.016(10) 0.992(6) 
m020 0.997( 4) 0.993(5) 1.019(20) 1.004(14) 
m030 0.963(5) 0.947(6) 1.029(12) 1.015(10) 

Table 4.2: Speed of light for charmed mesons. 

charm-quark mass m 0 is tuned so that the experimentally observed spin average of 

the J /'I! and T/c masses 

(4.7) 

is reproduced; see Sec. 5.3.2 for further details. The value of v must be tuned to 

restore the dispersion relation E~ = m~ + c2p2 such that c2 = 1. Since the values 

of v and m 0 are coupled, one needs to iterate the tuning process in order to achieve 

a consistent pair of values. To do this, we calculate the single-particle energy of TJc, 

Jj'iJ!, Ds and D at the six lowest momenta (with unit of a- 1
): 

2{(0,0,0), 2{(1,0,0), 

2{(1, 1, 0), 2{(1, 1, 1), 2{(2, 0, 0), 2{(2, 1, 0). For each ensemble, the energy levels are 

calculated at two charm-quark masses (denoted m 1 = 0.2034 and m 2 = 0.2100) and 

extrapolated to the physical charm-quark mass (as described below). The values of 

c2 are obtained by fitting the extrapolated energy levels to the dispersion relation. 

We tune v using the dispersion relation of Tic· As one can see from Table 4.2, the 

dispersion relations for either the charmonium J /'I! or the charm-light mesons (D and 

Ds) are generally consistent with c2 = 1 to within 1-2%. 

71 



4.2 Extracting Baryon Masses from Correlation Func-

tions 

4.2.1 Spectral representation of correlation functions 

The two point correlation function is defined by 

(O(t)O(O)) = ~ J D¢0(t)O(O)e-s[¢l. (4.8) 

where Z = J D¢e-S[¢l, ¢ represents all field variables in the system. We already 

know how to calculate the path integral on the right-hand side of this equation using 

Monte Carlo simulations on lattice. In this section we will show how this quantity is 

related to the hadron spectrum. To do this we need to connect the path integral to 

the Hamiltonian approach. 

For simplicity, we consider a real scalar field theory with Lagrangian density L 

given by 

(4.9) 

The Hamiltonian operator can be obtained by the Legendre transform: 

(4.10) 

where ir is the canonical momentum operator. Here we use a hat to denote operators, 

to be distinguished with the ordinary numbers. Using the discretization method 

introduced in Chapter 2, 

x---+ an, ni = 0, 1, · · · , N- 1 for i = 1, 2, 3, (4.11) 
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we obtain a lattice version of the Hamiltonian operator 

The operators 7r(n) and J;(n) obey the canonical equal time commutation rela-

tions: 

Introduce a set of eigenstates of the field operator: 

¢(n)l¢) = ¢(n)l¢). (4.14) 

The states 1¢) are orthogonal and complete: 

(¢'1¢) = 15(¢'- ¢) II i5(¢'(n)- ¢(n)), 

l
+oo 

D¢1¢) (¢1 = 1 with 'D = II d¢(n). 
-oo nEA3 

(4.15) 

Now we are ready to prove that the trace of the time evolution operator e-Tii 

( 4.16) 

is equivalent to the path integral Z = J D¢c8 [¢J. 
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Rewrite the Hamiltonian operator as 

H Ho + U, ( 4.17) 

Ho a3 L ~7T2 (n), 
nEA3 

H0 is the free part and U is the interaction part. 

For small time intervals E, the evolution operator 

(4.19) 

where WE = exp( -EU /2) exp( -H0E) exp( -EU /2). The matrix elements of WE is ex-

plicitly known: 

where U[¢] is the eigenvalue of the operator U. 

In Eq. 4.20 we have used the matrix element for the free Hamiltonian H0 : 

( 4.21) 

This expression can be obtained easily by inserting a complete set of eigenstates of 

7r. 

We can build a finite time interval T from infinitesimal steps E (see e.g. [74] for 
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a proof) 

Therefore 

e-TH = lim WNr 
Nr->oo E 

with 
T 

E= Nr. (4.22) 

I 1J¢o(<PoiW£Nri<Po) 

I 1J¢o1J¢1 · · ·1J¢Nr-1 (¢oiW£1¢Nr-1)(¢Nr-liW£1¢Nr-2) · · · (¢11Wci<Po) 

CN
3
Nr I V<Po .. ·V<PNr-le-S[cf>l. (4.23) 

where C = J a3 /27rE. With periodic boundary condition, S[¢] reads 

(4.24) 

This expression is equivalent to the discretized Euclidean action of the Klein-Gordan 

field. 

Here we only gave a simple proof for scalar field, for a rigorous treatment of 

fermions and bosons, see reference [75]. The situation is similar when the operators 

are included in the path integral. 
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The two point correlation function becomes 

(O(t)O(O)) ~ J D¢O(t)O(O)e-s[<1>l 

Tr( e-(T-t)H oe-tH 6) 
Tr(e-TH) 

l:n (nie-(T-t)H oe-tH Oln) 
l:m (mle-THim) 

l:n e-TEn (nietH oe-tH Oln) 
L.:m e-TErn 

~ (OietH oe-tH OIO) 
00 

L (OIOe-tH ik) (kiOIO) 
k=O 

CXl 

L I (kiOIO) 12e-tEk. 
k=l 

(4.25) 

One can fit the correlation function to exponentials to get the energies. The contri-

bution from the excited states decreases quickly as t increases. Thus at large t 

(4.26) 

The ground state energy E 1 can be obtained by fitting the correlation function to a 

single exponential. In this work we use this method to fit the charmed hadron masses. 

The data fitting method has been introduced in Sec. 2. 7.4. 

4.2.2 Effective mass 

The effective mass is defined by 

( 4.27) 

76 



where at is the lattice spacing at time direction, C(t) is the correlation function: 

C(t) = (O(t)O(O)). 

The effective mass can be expanded as 

(4.28) 

here we have set the lattice spacing to 1. When t is sufficiently large, meJJ(t) ap-

proaches a plateau of E 1 . Effective mass plots can be used as a visualization tool to 

choose appropriate fitting range. 

4.2.3 Extracting excited states 

In order to extract the excited states, one can try to fit the correlation function 

to multiple exponentials. In practice, this method is usually ineffective due to the 

rapid decay of signal and the uncertainties of the statistical data. 

Luscher and Wolff suggested a method, called variational method, to extracting 

multiple excited states [76]. In this approach one construct a set of interpolating 

operators { 0 1 , 0 2 , · · ·, On} for a state we are interested and calculate the correlation 

matrix 

Follow the same procedure in 4.25, one can get 

00 

cij(t) = L vf*vje-tEa' 
a=l 

(4.29) 

(4.30) 

( 4.31) 

We will assume that the spectrum has no degeneracy E 1 < E2 < · · · < En and that 

77 



then-component vectors vf (a= 1, 2, · · · n) are linearly independent. 

We present an important lemma which provides a basis for the calculation of the 

energy spectrum given the correlation matrix: 

Lemma 4.2.1. For every t 2:: 0, let Aa(t) be the eigenvalues of the correlation matrix 

C(t) ordered such that .>.. 1 2:: .A2 2:: · · · 2:: An, Then, for all a= 1, 2, · · · we have 

(4.32) 

where Ca > 0, and D..Ea is the distance of Ea from the other energy values. 

For the proof of this lemma, see reference [76]. 

The application of this lemma starts from the generalized eigenvalue problem 

( 4.33) 

where t 0 is fixed. If the operators Oi we choose are linearly independent, C(O) will 

be non-singular. Thus there are n independent solutions of Eq. 4.33 and the corre

sponding eigenvalues .Aa(t, t 0 ) satisfy Eq. 4.32. However, the amplitude Ca and the 

coefficients of the subleading exponentials are different. More precisely, one expects 

that Ca ~ etoEa and the coefficients of 0( e-ttlEa) terms are suppressed. 

In practice, it may happen that the energy levels are close-by and thus the terms 

rv e-ttlEa are not small. A recent study on the generalized eigenvalue problem [77] 

has shown that the corrections from the energy gaps for Aa is actually rv e-t(En+l-Ea), 

with the condition t 0 < t < 2to. 

In the right hand side of Eq. 4.30, those terms with large value of Ea die out 
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quickly. Thus we can expect that the truncated sum 

n 

Co.(t) = ~ va*vae-tEa 
~J L ~ J 

a=l 

(4.34) 

approximate the correlation matrix C(t) very well. It is easy to show that the eigen-

values of the generalized eigenvalue problem 

(4.35) 

are exactly given by 

Ao(t t ) = e-(t-to)Ea 
a ' 0 ' 

a= 1, 2, 3, · · · , n. (4.36) 

The generalized eigenvalue problem can be turn into a regular eigenvalue problem 

(4.37) 

. To sum up, the energies Ea can be extracted from the eigenvalues Aa(t, t0 ) of 

Ea = ln( Aa(t, to) ) . 
Aa(t + 1, to) 

(4.38) 

4.3 Extracting Scattering Length Using Luscher's Fi-

nite Volume Technique 

Extracting hadronic interactions from Lattice QCD calculations is not straightfor

ward due to the Maiani-Testa theorem [78], which states that the S-matrix can not be 

extracted from infinite-volume Euclidean-space Green functions except at kinematic 
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thresholds. However, this problem can be evaded by computing the correlation func-

tions at finite volume. Luscher has shown that one can obtain the elastic scattering 

amplitude from the energy of two particles in finite volume [79, 80]. We use Luscher's 

finite volume technique to calculate the scattering lengths. 

The scattering phase shift is related to the energy shift 1:1E which is the deviation 

of the total energy of two interacting hadrons from the rest mass of the two hadrons. 

The energy shift 1:1E can be related to the center-of-mass momentum p by 

( 4.39) 

where mh1 and mh2 are the masses of the two hadrons h 1 and h2 respectively. 

If the interaction range is small compared to the box size L, the s-wave phase 

shift b(p) can be written as [79, 80] 

2Zoo(1, q) 1 2 L1r112 =peat 60 (p) = ~ + O(p ), (4.40) 

where q = pL/(27r) takes a non-integer value due to the interaction, a denotes the 

s-wave scattering length, the function Z 00 (1, q) is an analytic continuation of the 

generalized zeta-function which is defined by 

( 4.41) 
n 

The sign convention for the scattering length is the same with which Luscher used in 

[79, 80]. 

In the limit L » lal, one can expand Eq. 4.40 about zero momentum and get the 

energy shift of the lowest scattering state [79, 80) 
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2nao ( ao (ao)2) 6 
f1Eo =- f.LL3 1 + c1 L + c2 L + O(L ) ( 4.42) 

where c1 = -2.837297, c2 = 6.375183, f.L denotes the reduced mass of the two hadrons 

f.L = mh1mh2/(mh1 + mh2). 

For the second lowest states, one can expand the phase-shift formula Eq. 4.40 

around q2 = 1 and obtain the solution 

4n
2 

6tan8o ( 1 1 2) -6 
/:1E1 = f.LL - f.LL 2 1 + c1 tan 80 + c2 tan 80 + O(L ), ( 4.43) 

where c~ = -0.061367, c; = -0.354256. 

The scattering length can be obtained by solving either Eq. 4.42 or the full 

expression Eq. 4.40. In our work, we adopt an alternative form of Eq. 4.40 [81] 

with 

1 ( pL 2) pcot80(p)=-S (-) , 
nL 2n 

( 4.44) 

( 4.45) 

The sum is over all three-vectors of interger j such that Ul < Aj and the limit Aj -----+ oo 

is implicit. 

Fig. 4.1 shows the plot of 8-function S(7J). This function has poles for 7J ~ 0 and 

does not have poles for 7J s; 0. 

For weakly attractive interaction, the scattering length a0 > 0, the lowest energy 

level of the elastic scattering state appears below threshold. An important question 

to ask is how can we distinguish a near-threshold bound state with a scattering state. 

In scattering theory, poles of the 8-matrix correspond to bound states [82]. The ap-

pearance of the 8-wave bound states are accompanied by an abrupt sign change of the 
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Figure 4.1: S-function plot. 

S-wave scattering length. Now the question is: can we use this formation condition 

of the bound states in Luscher's finite volume method? It is quite straightforward 

and reasonable to guess that this condition should be modified by finite volume cor

rections. This question is studied theoretically and numerically in reference [83]. 

It is found that the finite volume corrections to the bound state pole condition is 

exponentially suppressed by the spatial extent L. It is also confirmed by numerical 

simulations that the appearance of the S-wave bound state is accompanied by an 

abrupt sign change of the S-wave scattering length even in finite volume [83]. 

The solution of Eq. 4.40 for bound state have been explicitly derived [81]: 

"? ( 12 1 _ L ) 
b:.E_1 =- 2J.L 1 + 1L 1- 21(pcot 8

0
)'e 'Y +... ' ( 4.46) 

• 2 

where (pcot80 )' = d~2 pcot8lp2=--y2· The £-independent term-;~' corresponds to the 

binding energy in the infinite volume limit. The volume dependence e--yL is consistent 

with the claim that the bound state pole condition is exponentially suppressed by the 
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spatial extent L. Notice that the energy of the scattering state in Eq. 4.42 is expanded 

in powers of 1/ L. We can expect to distinguish a bound state from a scattering state 

by calculating the energy in multiple volumes and checking the volume dependence 

law. 

Numerically, the total energy of two interacting hadrons (h1 and h2 ) is obtained 

from the four-point correlation function: 

( 4.4 7) 

where ohlh2 is the interpolating operator of the two particle state. 

To extract the energy shift 6E, we define a ratio Rh1 -h2 (t): 

(4.48) 

where Gh1 (t,O) and Gh2 (t,O) are two-point functions. 6E is obtained by fitting 

Rh1 -h2 (t) to a single exponential in a region where the effective mass exhibits a 

plateau. The center-of-mass momentum p can be solved from Eq. 4.39 given ~E. 

Assuming O(p2
) effects are negligible, the scattering length is given by 

(4.49) 

where the function S is defined in Eq. 4.45 and can be calculated numerically. 
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CHAPTER 5 

Charmed Baryon Spectrum 

5.1 Introduction 

Experimental and theoretical studies of charmed and bottom hadrons have been 

the focus of vigorous research over the last several years [84, 85, 86, 87]. In par

ticular, singly and doubly heavy baryon spectroscopy has received significant atten

tion, mainly due to the recent experimental discoveries of both new charmed (BE

LEX) [88, 89] and bottom baryons by DO [87] and CDF [90]. In addition to these 

discoveries, there are still many states of heavy and doubly heavy baryons remain

ing to be discovered. The new Beijing Spectrometer (BES-III), a detector at the 

recently upgraded Beijing Electron Positron Collider (BEPCII), has great potential 

for accumulating large numbers of events to help us understand more about charmed 

hadrons. The antiProton ANnihilation at DArmstadt (PANDA) experiment, a GSI 

future project, and the LHCb are also expected to provide new results to help ex

perimentally map out the heavy-baryon sector. For these reasons, lattice quantum 

chromodynamic ( QCD) calculations of the spectrum of heavy baryons are now very 

timely and will play a significant role in providing theoretical first-principles input to 
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the experimental program. 

Lattice QCD is now a mature field capable of providing accurate results that 

can be directly compared to experiment, with calculations in the light-quark sector 

being well established. Although the study of heavy quarks requires careful treatment 

of discretization errors, significant advances have been made in this sector as well. 

Lattice heavy quarks have O((mQ a)n) errors, where mQ is the mass of the heavy 

quark and a is the lattice spacing. Lattice spacings for typical, currently accessible 

dynamical ensembles are still too coarse (a-1 ~ 2 GeV) to make such systematic 

errors small. To assert better control over the discretization errors for heavy quarks 

on the lattice, several heavy-quark approaches have proven useful. For example, non-

relativistic QCD (NRQCD) [91], which is an expansion of the lattice quark action in 

powers of - 1-, is commonly applied to bottom quarks. However, the charm-quark 
amq 

mass is not heavy enough to justify the use of NRQCD. Relativistic heavy-quark 

actions [71, 92, 93, 94] systematically remove O((mQa)n) terms and are better suited 

to charm-quark calculations. Recent updates on the state of heavy-quark physics on 

the lattice can be found in several reviews [95, 96, 97, 98, 99, 100] and references 

therein. 

Up to now, there have been a few lattice charmed-baryon calculations using the 

quenched approximation. In some cases an O(a)-improved light-quark action is used 

on isotropic or anisotropic lattices with a single lattice spacing: Bowler et al. [101] 

used a tree-level clover action for both light and heavy quarks to calculate the singly 

charmed baryons spectrum of spin 1/2 and 3/2. Later, Flynn et al. [102] updated 

this project with nonperturbative clover action and extended the calculation to dou-

bly charmed baryons. Chiu et al. [103] used a chiral fermion action for the charm 

quarks and calculated both the positive and negative parity spectrum for singly and 

doubly charmed baryons. Such calculations using light-quark actions to simulate 
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heavy quarks introduce large systematic errors proportional to ( amQ )2 , which must 

be carefully addressed. One calculation has used a higher-order improved fermion 

action: Lewis et al. [104] performed a calculation on both doubly and singly charmed 

baryons using D234-type fermion action (which would leave a leading error of O(a3 )) 

for both light and heavy quarks but on a coarse anisotropic ensemble (with anisotropy 

~ = 2). Finally, heavy-quark effective theory was applied to charm calculation: 

Mathur et al. [105] continued to use anisotropic lattices, adding two more lattice 

spacings, but changed the heavy-quark action to NRQCD, which reduces the lattice

spacing discretization effects. For all of these calculations, the quenched approxima

tion remains a significant source of systematic error that is difficult to estimate. 

Given the progress on the experimental side, it is time to revisit these charmed 

baryon calculations using dynamical gauge ensembles and improve the calculations 

with the current available computational resources. Although more dynamical en

sembles are available these days, not many charmed baryon calculations have been 

published so far, only a few proceedings [106, 3, 107]. 

In this work, we extend our previous calculation [107] to higher statistics and com

pute the ground-state spectrum of the spin-1/2 singly and doubly charmed baryons. 

We use the Fermilab action [71] for the charm quarks and domain-wall fermions 

for the light valence quarks on gauge configurations with 2+ 1-flavor Kogut-Susskind 

fermions and a range of quark masses resulting in pion masses as light as 290 MeV. We 

nonperturbatively tune the fermion anisotropy and two input bare masses for charm 

quarks, setting the remaining parameters to tree-level tadpole improved coefficients. 

Our results are extrapolated to the physical light-quark masses using both heavy

hadron chiral perturbation theory (HHxPT) as well as HHxPT-inspired polynomial 

extrapolations. 
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5.2 Charmed Hadron Spectrum: Numerical Results 

The interpolating operators we use for the J = 1/2 singly and doubly charmed 

baryons are 

~c· 

:Ec : 

=' . ~c· 

Slcc : 

Eijk ( q~T Cr5Q{)q~' 

~Eijk [ ( q~r c,5Q{)q: + ( q!r c,5Q{)q~] , 

Eijk ( q!T Cr5Q{)q:' 

(5.1) 

where qu,d are the up and down quark fields, qs is strange quark field and Qc is charm 

quark field. 

Using these interpolating fields, we construct the two-point functions 

X 

where Oh is an interpolating operator of the hadron h. The correlation functions 

are calculated with gauge-invariant Gaussian-smeared sources and point sinks. The 

smearing parameters were optimized so that excited-state contamination to the cor-

relators is minimized. The domain-wall valence propagators were computed with 

Dirichlet boundary conditions in the time direction, reducing the original lattices to 

half their temporal size. Similar to baryons, the signal for the charmed correlation 

functions quickly drops, and thus we do not expect the temporal reduction to reduce 
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the number of useful time points for our analysis. The sources were located away 

from the Dirichlet boundary to minimize contamination from the boundary effects. 

In order to enhance our statistical precision, several valence propagators are taken 

from each configuration with varying source location. The resulting correlation func

tions are then source averaged on each configuration to produce one correlator per 

configuration for each interpolating operator. The masses of the hadrons are obtained 

by fitting the correlation functions to a single exponential 

(5.2) 

in a region where the effective mass is observed to exhibit a plateau. The fitting range 

is varied by one or two time slices on either end to estimate the systematics from the 

choice of fitting window. In Tables 5.1 and 5.2, we list the value associated with the 

listed fitting window. The first uncertainty is statistical and the second uncertainty 

comes from the varied fitting windows. For most fits, the resulting x2 per degree of 

freedom is about one. In Figure 5.1 we display representative effective mass plots and 

their fitted masses for both good and poor fits. The results from charmonium are 

shown in Table 5.2. 

5.3 Heavy- and Light-Quark Mass Extrapolation 

In order to make contact with experiment, we must extrapolate our results to infi

nite volume, continuum limit and to the physical value of the light- and heavy-quark 

masses. Optimally, the extrapolations can be performed in terms of dimensionless 

ratios of observable quantities, so as to minimize contamination from a particular 

scale-setting method. In this work, we have chosen to scale our masses by the calcu

lated value of the pion decay constant on each ensemble, forming the dimensionless 
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Hadron mo m007 m010 m020 m030 
nee 

.=cc 

nc 
";:;I 
~c 

=-c 

~c 

Ac 

m1 2.3578(18)(8)[8-18] 2.3620(14)(9)[10-18] 2.3456(33) (17)[12-18] 2.3333(23)(6)[11-18] 
m2 2.3663(18)(8)[8-18] 2.3705(14)(9)[10-18] 2.3542(33) (16)[12-18] 2.3419(23)(7)[11-18] 
m1 2.3018(27)(0)[7-13] 2.3120(23)(23)[9-17) 2.3087(33) (3)[8-18) 2.3056(28) (33)[11-18) 
m2 2.3104(27)(0)[7-13] 2.3205(23)(23)[9-17) 2.3173(33) (3)[8-18) 2.3142(28)(33)[11-18] 
m1 1. 7216(24)(1) [9-15] 1. 7240(24)(5)[12-18] 1. 7101 (52) (77)[12-16) 1. 7160(39)(13)[12-18] 
m2 1. 7261 (24)(1 )[9-15) 1. 7285(24)(5)[12-18] 1. 7146(52) (76) [12-16] 1. 7205(39)(13)[12-18] 
m1 1.6754(26)(32)[6-18] 1.6799(29)( 43) [9-16] 1.6875(52) (57) [9-16] 1.6881( 43)(2)[11-18] 
m2 1.6799(26)(32)[6-18] 1.6844(29)( 43) [9-16] 1.6920(52)(58) [9-16] 1.6927( 43)(2)[11-18] 
m1 1.6076(82) (86)[12-18] 1.6078( 48) (54) [12-18] 1.6167( 40)(9) [8-18] 1.6120( 41 )( 4 7)[12-17] 
m2 1.6121(82) (87) [12-18] 1.6123( 48) (55) [12-18] 1.6211( 40)(9)[8-18] 1.6163( 41 )( 48) [12-17] 
m1 1.6157(50) (38) [7-17] 1.6252(55(0)) [9-15] 1.6446(56)(0)[8-16] 1.6661 ( 43)(70) [10-18] 
m2 1.6203(50) (38) [7-17] 1.6298(55)(0) [9-15] 1.6491(56)(0)[8-16] 1.6706( 43)(69) [10-18] 
m1 1.497 4(71 )( 47) [6-13] 1.523(16)(3) [12-18] 1.5571(55)(22) [8-18] 1.572(5)(18) [12-17] 
m2 1.5018(71 )( 48) [6-13] 1.527(16)(3) [12-18] 1.5615(55) (22) [8-18] 1.577(5)(18) [12-17] 

Table 5.1: Charmed baryon masses in lattice units with 2 values of mo (indicated as m1 = 

0.2034 and m2 = 0.2100) in Eq. (4.2). The first uncertainty is statistical and 
the second is systematic from the different choice of fitting ranges (presented 

in square brackets). The m007, mOlO, m020, m030 indicate the four ensembles 
listed in Table 4.1. 

Hadron mo m007 m010 m020 m030 

T/c m1 1.8783( 4)(0)[14-19] 1.8804(3) (0)[12-19] 1.8687( 4)(1 )[12-19] 1.8598(3)(2)[8-15] 
m2 1.8866( 4)(1 )[14-19] 1.8887(3)(1) [12-19] 1.8771( 4)(1 )[12-19] 1.8683(5)(0)[8-15] 

Jj\II m1 1.9390(7)(0)[14-18] 1.9421 ( 4)(0)[10-19] 1.9296(6)(1) [12-19] 1.9198( 6)(2)[11-19] 
m2 1.9470(7)(0)[14-18] 1.9501 ( 4) (1 )[10-19] 1.9376(6)(1) [12-19] 1.9278(6)(3)[11-19] 

X co m1 2.1660(54) (21) [9-16] 2.1803(33) (6) [6-17] 2.1652(55) (50) [6-18] 2.1626(54) (2) [6-18] 
m2 2.17 41(54) (20)[9-16] 2.1883(35) (6) [6-17] 2.1733(55)( 49) [6-18] 2.1705(54) (2)[6-18] 

Xc1 m1 2.2092( 69) (24) [9-18] 2.2234(52) (35)[9-16] 2.2123( 40)(8)[4-17] 2.2004( 44)(25)[4-17] 
m2 2.2171 ( 69) (24)[9-18] 2.2312(52) (35)[9-16] 2.2199( 40)(9)[4-17] 2.2081( 44)(25) [4-17] 

he m1 2.2224( 64) (86) [6-18] 2.2386(32) (24) [4-18] 2.2205( 45)(21) [4-17] 2.2151(63) (26) [5-18] 
m2 2.2301( 65) (85) [6-18] 2.2463(32) (25) [4-18] 2.2282( 46) (19) [4-17] 2.2226(63) (25) [5-18] 

Table 5.2: Charmonium masses in lattice units with m1 = 0.2034 and m2 = 0.2100. 

ratios Mh/ frr, where Mh is the mass of a given hadron. We take the values of f1r (and 

m'lr) from Ref. [1]; they are collected in Table 5.3. As can be seen, aJ1r varies by~ 15% 

over the range of pion masses used in this work, adding additional chiral curvature. 

However, the light-quark mass dependence of f1r is well understood [37, 108], and so 

this variation can be accounted for. 

Ultimately, one would like to use heavy-hadron chiral perturbation theory (HHxPT) [109, 

110, 111, 112, 113, 114, 115] to perform both the charm-quark mass extrapolation and 

the chiral extrapolation of the charmed hadron masses, allowing a lattice determina-
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Figure 5.1: Sample effective-mass plots and corresponding fits to the correlation functions. 
The smaller error bands are statistical and the larger error bands are statistical 
and systematic (determined by varying fit range) added in quadrature. 

ensemble: 
(3 6.76 6.76 6.79 6.81 

amz 0.007 0.010 0.020 0.030 
amn 0.1842 0.2238 0.3113 0.3752 
afn 0.0929 0.0963 0.1026 0.1076 

mn/ fn 1.983 2.325 3.035 3.489 

Table 5.3: Values of mn and fn calculated in Ref. [1]. For all ensembles the staggered 
strange-quark mass is am8 = 0.050 while the domain-wall strange-quark mass 
is am~wf = 0.081. 
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tion of not just the spectrum but also the low-energy constants entering the effective 

field theory. There are several reasons we cannot perform a thorough extrapolation in 

this manner. First, we only have results at four independent values of the light-quark 

mass, and at only one value of the strange mass. Second, in this work, we only have 

results for the J = 1/2 baryons, and a proper chiral extrapolation requires also the 

spectrum of J = 3/2 charmed baryons; the states are related by the heavy-quark 

symmetry, and therefore the mass splittings are small (similarly, the extrapolation 

of the heavy meson masses requires the J = 1 states as well as J = 0). Third, our 

calculation is mixed-action, thus requiring either a continuum extrapolation or the 

use of mixed-action xPT [62, 63, 64, 65, 66, 67]. The mixed-action effective field 

theory can be trivially constructed from the partially quenched theories for heavy 

hadrons [116, 45, 117] by following the prescription in Ref. [66]. However, this work 

only utilizes one lattice spacing, and so one can not perform the full mixed-action 

analysis. With these caveats in mind, we proceed with our analysis. 

5.3.1 Scale setting with J1r 

The light-quark mass expansion of a heavy-hadron mass is given by1 

c~2 ) 2Bm1 
Mh=Mo+---+··· 

4n fo 
(5.3) 

At this order, we are free to make the replacements fo-----+ J1r and 2Bmz -----+ m;, with 

corrections appearing at 0 ( m!). The dots represent terms of higher order in the chiral 

expansion, with the first non-analytic (in the quark mass) corrections appearing as 

corrections which scale as rv m!. As stated above, we are scaling our masses with J1r 
1 Here we are presenting an SU(2) extrapolation formula with the operator normalization of 

Ref. [118] such that the coefficient c~) is dimensionless. 
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range m007-m010 m007-m020 m007-m030 
0.0307(27) 0.0293(6) 0.0302(4) 

Table 5.4: Values of l 4 needed for chiral extrapolations of Mh/ f1r· The different values of 
l 4 are determined through the different choices of fitting range, also listed. 

to form dimensionless ratios for extrapolation, 

(5.4) 

When performing an extrapolation in this manner, it is important to realize we cannot 

approximate M 0 / J1r as a constant, since the chiral corrections to J1r are O(m;) and 

thus are the same order as the term with coefficient c~2). Rather, the chiral expansion 

of J1r is given by [37] (with the normalization fo rv 130 MeV) 

(5.5) 

In this expressiOn, we have made use of perturbation theory to replace all terms 

appearing at next-to-leading order with their (lattice) physical values. Similarly, we 

have rescaled the renormalization scale f-l ---> fL f 7r to express the chiral corrections 

as purely a function of m1r/ f1r· Again, the corrections to this rescaling first appear 

at next-to-next-to-leading order. In order to perform our chiral extrapolations using 

Eq. (5.4), we must determine l4 , which captures the chiral corrections of frr· The 

mixed-action formula for J1r is known [62], but again, only useful if one has data 

for at least two lattice spacings. Since we currently only have results at one lattice 

spacing, we perform a continuum chiral extrapolation analysis of the aJ1r in Table 5.3. 

The results are collected in Table 5.4. 
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Figure 5.2: The (blue) filled circles represent the lattice data and the (red) star is the 
physical point, converted to lattice units using a- 1 = 1588 MeV with a 2% 
error bar added for the scale setting. The error bands are the 68% confidence 
intervals in the resulting chiral extrapolation from the lightest two points (a) 
and a fit to all four lattice points (b). 

The resulting extrapolations are plotted in Figure 5.2. In this figure, the (blue) 

filled circles are the lattice data, and the error bands represent the 68% confidence 

intervals. The (red) star denotes the physical value converted to lattice units using 

a- 1 = 1588 MeV [119]. We assign an additional 2% error to this point to estimate 

the uncertainty in the scale setting method. In Figure 5.2(a) we display the fit to the 

lightest two points and in (b) the fit to all four points. Note that the extrapolation 

describes the values of J1r very well. Additionally, one sees that using f1r or r 1 to 

set the scale results in agreement in the extrapolated values, as first observed in 

Ref. [120]. 2 

5.3.2 Charm-Quark Mass Extrapolation 

To tune the charm-quark mass we use the spin-averaged J jW-TJc mass. We use 

the lattice spacing determined by MILC (a- 1 = 1588 MeV [119]) on the m007 ensem-

ble to estimate the two charm-quark masses used for our charm quark propagator 

2The scale of r 1 is determined through the static-quark potential by solving for ri F(ri) = 1; the 
values of ri/a can be found in Ref. [121). 
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Figure 5.3: Spin-averaged mass of Tic and J /'If on the different ensembles. The blue points 
and purple points indicate the masses at m1 and m2 respectively. The red line 
indicates the experimental value. The left panel displays the results from the 
lattice spacing a-1 = 1588 MeV used on all ensembles. This method was used 
to tune the charm-quark mass on the m007 ensemble. The right panel displays 
the masses scaled by f n: on the lattice and extrapolated to Jf:hys, as discussed 
in the text. 

calculations.3 These same two charm quark masses, m 1 and m 2 , were used on all 

ensembles. On the MILC ensembles, the value of f3 was slightly varied for the dif-

ferent light-quark masses. Therefore, the corresponding value of the critical mass 

changes from ensemble to ensemble, leading to a slightly different charm-quark mass 

tuning. This can be clearly seen in the left panel of Fig. 5.3, where we display the 

spin-averaged J /W-TJc mass as a function of the light-quark mass, determined with 

the a-1 = 1588 MeV scale setting. Ensembles m007 and m010 share the same value 

of f3 and therefore the difference in these points (the left-most two sets of masses) is 

due entirely to light-quark contributions, whereas the m020 and m030 ensembles each 

have a different value of /3, so that the variation of the spin-averaged mass is due both 

to light-quark effects as well as a shifted value of the critical mass. 

3 At the time this work was almost completed we became aware of an updated value for the lattice 
spacing determined by MILC [121]. As a result the tuned charm quark mass is reduced, consequently 
the charmed hadron masses in lattice units will be reduced. However, the reduced lattice spacing 
will compensate this effect by an increase of the masses in physical units. The overall effect of mass 
shifting in the final baryon masses is estimated to be less than 1%, well within our systematics. 
Further, in our final analysis, the MILC scale setting is only used as a check on our systematics. 
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In the right panel of Fig. 5.3, we display our preferred method of determining 

the charm-quark mass using J1r to set the scale. On each ensemble, we take the spin

averaged Jj'I!-TJc mass and divide by the corresponding value of f~att calculated on 

that ensemble. We then use the value of 14 determined in Sec. 5.3.1 to scale these 

values to determine the ratio with r;:hys' 

Mrtc + 3MJ;w 

4JJ:hys 
1 + 8j(m:tt/ ~~att) MT/c + 3MJj\IJ 

1 + 8 f ( m~hys I Ji?hys) 4f~att 
(5.6) 

It is these scaled values that are plotted in the right panel of Fig. 5.3 and which we 

use to extrapolate our spectrum calculation to the physical charm-quark mass point, 

which we take to be 

with 

Mphys + 3Mphys 
T/c Jj\I! = 23.47 

4JJ:hys ' 
mphys 
~h = 1.056. JJ: ys 

(5.7) 

(5.8) 

Here, m~hys is taken to be the isospin-averaged pion mass, while JJ?hys is taken to be 

the charged-pion decay constant [2]. On each ensemble, we linearly extrapolate the 

spin-averaged J jW-TJc mass (scaled by JJ?hys) to the experimental value to determine 

the parameter m0 = m~hys (the masses of all hadrons are then extrapolated linearly 

to this charm-quark mass on each ensemble). The uncertainties of the extrapolated 

hadron masses are evaluated using the jackknife method. As a check of systematics, 

we perform the same procedure using the lattice spacing a- 1 = 1588 MeV to perform 

the linear charm-quark mass extrapolation. Using this second approach, the resulting 

charmed baryon spectrum is consistent with that of our preferred charm-quark mass-

tuning method. 

To test the viability of our choice of mixed-action and to gauge the discretization 
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Figure 5.4: The masses of Xeo, Xc1 and he as functions of m1r/ f1r· The blue points are 
our numerical values. The pink shaded regions show the standard deviation 
allowed regions of quadratic fit. The blue shaded regions show the standard 
deviation allowed regions of quartic fit. The red points are experimental values. 

errors, we compute both the J /W-TJe hyperfine mass splitting as well as the low-lying 

charmonium spectrum of the Xeo, Xc1 and he. The interpolating fields used for these 

charmonium states are4 

X~1 = CJe /i/5Qe, 

3 3 

h~ = L L EijkQe/j/kQe, 
j=l k=j 

(5.9) 

(5.10) 

(5.11) 

To extrapolate these charmonium masses to the physical light-quark mass values, we 

use Eq. (5.4) both in quadratic (in m7r) as well quartic form, i.e. 

(5.12) 

The results of the extrapolation are displayed in Fig. 5.4, and tabulated in Tab. 5.5. 

In the table, the first uncertainty is statistical and the second is an extrapolation 

systematic from the two extrapolation functions used. 

A more stringent test of discretization errors is the calculation of the hyperfine 

4 0ne can also use improved interpolating operators to extract charmonium states in lattice cal
culations, especially for the excited states Xco, Xcl and he; see, for example, Ref. [122]. 
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Extrapolated Values 
Experimental Values 

Mxco (MeV) 
3465(20)(13) 
3415 

Mxc1 (MeV) 
3525(20)(6) 
3511 

3553(25)(14) 
3526 

Table 5.5: Low-lying charmonium spectrum of Xco, Xc1 and he. The experimental values 
are taken from the Particle Data Group [2]. 

splitting. The hyperfine splitting is obtained by fitting the ratio of the two-point 

correlation functions of J /'I! and 77c 

(5.13) 

to a single exponential 

(5.14) 

where ~m is the mass splitting between the J /'I! and 77c· The splittings are first ex-

trapolated to the physical charm-quark mass for each ensemble and then extrapolated 

to the physical light-quark mass. As with the charmonium spectrum, we perform a 

light-quark mass extrapolation using both a quadratic and quartic form of Eq. (5.4). 

In Fig. 5.5 we display this extrapolation, finding MJ;w- M11c = 93(1)(7) MeV. The 

first uncertainty is statistical while the second is a systematic from the chiral extrap-

alation. 

It is well known that the lattice computations of the charmonium hyperfine split

ting (experimentally measured to be 117 MeV) are sensitive to the lattice spacing. 

Qualitatively, one can understand this by performing a Symanzik expansion of the 

heavy quark action, revealing dimension five operators arising from discretization ef-

fects, which are otherwise identical to the heavy quark effective theory (HQET) [123, 
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Figure 5.5: Extrapolation of the hyperfine splitting. The blue points are the lattice data. 
The red point is the experimental value. The blue band is the quadratic fit 
with Eq. 5.4, while the pink band is the quartic fit with Eq. 5.4. 

35, 124] operator responsible for the hyperfine splitting5 

-(+) 0'. B (+) 
LHQET ~ -gh -- h 

c 2mc c 

.C, tt ~ -g 'h/+) 0'. B h(+) +a c(am ) h(+) O" • B h(+) 
a c 

2 
c Cc cl 

me 
(5.15) 

where h~+) is the heavy quark field. In the heavy quark action we are using, the 

coefficients of the operators Ss (4.3) and SE (4.4) have been given their tree-level, 

tadpole improved values in order to mitigate the effects of this unwanted discretiza-

tion effect. It is known the operator Ss (4.3) has a significant effect on the hyperfine 

splitting [71, 93, 94]. A nonperturbative tuning of the coefficient cs can improve the 

hyperfine splitting in a fixed-lattice spacing calculation; see Ref. ['125], in particular 

Fig. 3. However, the qualitative aspects of this effect remain even after tuning the 

coefficients. Previous quenched calculations of the hyperfine splitting have generally 

been low, being about 80 MeV, and showed a strong lattice-spacing dependence. Fur

ther, a recent direct calculation of the disconnected diagrams has ruled out these (or 

5 A proper treatment of heavy quark discretization effects is more involved and can be found in 
Ref. [71]. 
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their lack thereof) being the cause of the discrepancy [126]. Our results are consistent 

with those of the Fermilab/MILC Collaboration, which utilized a similar heavy quark 

action, the same dynamical ensembles and staggered light quarks [127]. The Fermi

lab /MILC Collaboration also performed calculations on different lattice spacings, 

finding similar lattice-spacing dependence to Ref. [127]. Therefore, the discrepancy 

of our calculated hyperfine splitting with the experimental value is expected. 

5.3.3 Light-Quark Mass Extrapolation 

Heavy-Hadron xPT Extrapolation 

To perform the light-quark mass extrapolation, we begin with a continuum HHxPT 

extrapolation of the baryon masses. The mass formula for these baryons containing 

a heavy quark was first determined in Ref. [114] and later extended to partially 

quenched theories in Ref. [45]. For doubly heavy baryons, the xPT was formulated in 

Ref. [115] and later extended to partially quenched theories in Ref. [117]. In this work, 

we perform SU(2) chiral extrapolations of the baryon masses, inspired by Ref. [118].6 

To perform the extrapolations, we treat the J = 1/2 and J = 3/2 baryons as de

generate, which is valid at this order in HQET/HHxPT. 7 The baryons are grouped 

into their respective SU(2) multiplets allowing for a simultaneous two-flavor chiral 

extrapolation of all masses in related multiplets. This allows us, with only four gauge 

ensembles, to determine all the relevant LECs for a given pair of multiplets in a global 

fit. The first pair of multiplets contains the Ac and ~c baryons. Their SU(2) chiral 

6 For further discussion on SU(2) chiral extrapolations of hadron states with strange valence 
quarks, see Refs. [128, 129, 130]. 

7It would be more desirable to use the lattice-calculated masses of the J = 3/2 baryons, but we 
do not have them for this work, and so we use this approximation for now. 
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extrapolation functions are given at next-to-leading order (NLO) by 

Mo 1 c'A(p) m; 6gj :F(mJr, ~~A, p) 
-------

fo1+6f(m7r/!7r) 47r r; (47r)2 ~~ 
(5.16) 

Mo + ~~l 1 c~(p) m; 
----

fo 1 + bf(mJr/ !Jr) 47r r; 
2 gj :F(mJr, -~~A, p) 4 g~ :F(mJr, 0, p) 

- 3 (47r) 2 ~~ + 3 (47r) 2 ~~ ' 
(5.17) 

where ~~A is the mass difference of ~c and Ac in chiral limit, ~~A is the mass 

difference of ~c and Ac calculated on lattice. The chiral functions are 

with 

:F(m, 0, p) = 1rm
3

, (5.19) 

and 

(5.20) 

To stabilize the fits, we first fit M~c - MAc to a quadratic in m1r/ J1r, and feed this 

into a fit of the masses, yielding the results in Table 5.6 and extrapolations displayed 

in Figure 5.6. One observes that the continuum HHxPT fits describe the lattice 

data very well. However, only the leading term, M 0 is well determined,8 while the 

rest of the LECs, most notably the axial couplings, 9~~1r and 9~A1r are consistent 

with zero. This phenomenon is not unique to the charmed baryons. In Ref. [1], 

8To determine Mol JJ:hys we take our results for Mol fo and scale them by [1 +Jf(m~hys I JJ:hys)]- 1. 
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Fit Range ~ /Jphys 
~A 7r g~ g~ dof Q 

m007-m030 1.46(10) 17.9(2) -0.8(5) 0.2(1.2) 0.8(1.0) -0.1(1) 0.32 

Table 5.6: Fit to Ac and ~c masses with NLO continuum formulae. 
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Figure 5.6: NLO HHxPT extrapolation of MAc and M~c (a) as well as M~c- MAc (b). 

chiral extrapolations on the nucleon mass in which the nucleon axial coupling, g1rNN 

(commonly denoted as 9A in baryon xPT) was left as a free parameter, returned values 

which were inconsistent with experiment and phenomenology. In fact, given the lattice 

results for the nucleon mass as a function of m7r, it was found that the nucleon mass 

scales linearly in m7r. Such behavior signals a delicate cancelation between different 

orders, a trend which is found in all 2 + 1 dynamical lattice computations of the 

nucleon mass [131]. Therefore, our findings for the axial couplings of the charmed 

baryons are not surprising in this light. To improve the situation, a simultaneous fit 

of the axial charges themselves, along with the masses will most likely be necessary. 

We perform a similar analysis for the J = 1/2 Be-:=:~ isospin doublets, the results 

of which are collected in Table 5.7 and displayed in Figure 5.7. The extrapolation 

formulae forM=.~ and M3 c are similar to those for M~c and MAc· They can be deduced 
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Fit Range ~""'""/Jphys 
-- 7[ g~ g~ 

m007-m030 0.85(6) 19.4(2) 0.6(6) 1.3(1.2) 5.9(3.9) -1.0(6) 0.04 3 1.00 
Table 5. 7: Fit to Be and 3~ masses with NLO continuum formulae. 
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Figure 5. 7: NLO HHxPT extrapolation of M3c and M3~ (a) as well as M3~- M3c (b). 

by comparing Eqs. (5.16) and (5.17) to Ref. [45],9 

Mo 1 c3(J.L) m; 3 g~ F(mn, ~3'3, J.L) 
--------

fo 1+8f(mnlfn) 47r r; 2(47r) 2 ~~ 
(5.21) 

Mo + ~~k 1 c3, (J.L) m; 
----

fo 1+8f(mnlfn) 47r r; 
1 g~ F(mn, -~3'3, J.L) 1 g~ F(mn, 0, J.L) 

-2(47r)2 ~~ +2(47r) 2 ~~ ' 
(5.22) 

where ~~~k is the mass difference of 3~ and 3e in chiral limit, ~3,3 is the mass 

difference of 3~ and Be calculated on lattice. 

The masses of the remaining J = 1/2 charmed baryons, M3cc' Moe and Mocc' 

can be treated independently. The extrapolation formula for M3 cc is similar to that of 

M2'-c. There is an axial coupling 93cc3ccn as well as 93~c3ccn where the second coupling 

is the axial transition coupling of the J = 3/2 to the J = 1/2-7r state. The heavy 

9In SU(3) HHxPT, the axial couplings for the :=:c-:=:~ system are the same as those for the Ac-I.;c 
system, g2 = gL.E1r = g3'S'1r and g 3 = gr;A-rr = gs'S-rr· However, in the SU(2) theories, they differ by 
SU(3) breaking corrections. 
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Fit Range 
m007-m030 28.1(2) 1.4(1.0) -1.7(1.0) 3.0 1 0.08 

Table 5.8: Fit to J = 1/2 Bee mass with the NLO continuum heavy-hadron formula. 

Figure 5.8: NLO HHxPT extrapolation of M3cc· 

quark symmetry also requires these couplings to be the same in the heavy quark 

limit. At this order, we can treat the J = 3/2 :=:~e as degenerate with the :=:ceo The 

results are collected in Table 5.8 and displayed in Figure 5.8, with the extrapolation 

formula [117] 

M0 1 

fo 1 + t5 f ( m7r / f 1r) 
Cscc (J-L) m; 92 F( m7r, 0, J-L) 

----
47r r; ( 47r )2 ~~ 

(5.23) 

where we have set ~3•3 = 0 in this analysis, valid at this order in the heavy-quark 

expansion. One feature which is more pronounced in this fit is 92 < 0. Taken at 

face value, this would suggest the Lagrangian was non-Hermitian, and the theory not 

sensible. Therefore, even though these fits reproduce the lattice data well and predict 

a mass within a few percent of the physical value, they must be taken with caution. 

Most likely, as with the nucleon mass [131], there is a delicate cancelation of terms at 

different orders, and therefore one does not have confidence in these determinations 

of the LECs. 
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n Fit Range Mo/ JJ:hys co uir) 
(4) 

o:o f) g) x2 dof Q 
ne m007-m030 20.4(6) -3.0(4.6) 46(61) -164(227) 0.00 0 
nee m007-m030 27.7(4) -7.3(3.0) 109( 40) -392(149) 0.00 0 

Table 5.9: Fit to J = 1/2 Oe and Oee masses with NLO continuum heavy-hadron formulae. 

Similar to the s = -3 n, the J = 1/2 ne and nee do not have mass corrections 

which scale as m!. This is because these baryons do not contain any valence up or 

down quarks, and therefore, the leading SU(2) axial coupling vanishes [132, 118]. The 

SU(2) chiral extrapolation formula for these baryon masses is then expected to be as 

convergent as that for pions. The mass extrapolation formula for the ne and nee are 

both given by 

At this order, the two-loop corrections from fir should be included as corrections to 

a~) and ;3gl. Further, there is a ln2 (mir) correction with fixed coefficient. However, 

since we only have four mass points, we cannot judge the quality of the fit anyway, 

so we ignore these corrections. The results are collected in Table 5.9 and displayed 

in Figure 5.9. Performing a fit with o:o = 0 and ;Jo = 0 returns consistent mass 

predictions with smaller uncertainties. We take the zero-degree-of-freedom fit as our 

central result as it provides a more conservative uncertainty. 

Polynomial Extrapolation 

Given the issues of performing the heavy-hadron chiral extrapolations as dis-

cussed above, we also perform polynomial extrapolations in m;. We use the difference 

between the polynomial extrapolations and the heavy-hadron chiral extrapolations as 

an additional estimate of systematic extrapolation uncertainty. We use up to three 
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Figure 5.9: NLO HHxPT extrapolation of Mnc (a) and Mncc (b). 

different polynomial fit functions for each of the charmed hadron masses: 

(5.25) 

(5.26) 

(5.27) 

In Figure 5.10, we display the results of these fits as well the heavy-hadron xPT fits 

as ratios with respect to the experimental masses. The experimental values for the 

baryon masses are taken from the Particle Data Group [2]. As it can be seen, there 

is very little variation in the results of the extrapolated masses. In all cases, the 

different extrapolations are consistent within one sigma. 

In Table 5.10, we provide the extrapolated baryon masses, taking the central value 

from the HHxPT extrapolations. The first uncertainty is statistical and the second 

uncertainty is a comprehensive systematic uncertainty. This systematic uncertainty is 

derived by comparing the polynomial light quark mass extrapolations to the HHxPT 

extrapolation. Further, it includes the uncertainty associated with the choice of fitting 

window for the correlators as well. Except for the Oc, the extrapolated masses are 
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Figure 5.10: Ratio of extrapolated masses to experimentally measured masses. The first 
point represents the HHxPT fit, the second point is a fit with Eq. (5.25), the 
third with Eq. (5.26) and the fourth with Eq. (5.27). 

State MAc Msc M~c M-:=t Moe Mscc 
(J = 1/2) [MeV] [MeV] [MeV] [M;VJ [MeV] [MeV] 

Mocc 
[MeV] 

Prediction 2342(22)(11) 2527(17) (13) 2527(20)(08) 2638(17) (10) 2687( 46)(16) 3665(17) (14) 3680(31)(38) 
Exp. Mass 2286 2468 2454 2576 2698 3519 

Table 5.10: Direct light/heavy quark mass extrapolation of the J = 1/2 charmed baryon 
spectrum. 

systematically high, indicative of a discretization error. 

5.3.4 Discretization Errors and Mass Splittings 

In this work, we have performed calculations at only a single value of the lattice 

spacing, with a rv 0.125 fm, prohibiting us from performing a continuum extrapola-

tion. However, we can take advantage of various symmetries and power counting to 

make a reasonable estimate of the discretization errors present in our calculation. 10 

In these heavy-light systems, the discretization errors arise both from the light and 

heavy quark actions. The corrections from both generically scale as 0( a2 ) for each 

of the charmed baryon masses. If we consider SU(3) symmetry, then the leading dis

cretization errors for all baryons in a given SU(3) multiplet must be the same, with 

corrections scaling as O(a2 (ms- mu)). Further, if one considers the combined large-

Nc, SU(3) and heavy-quark symmetries [133], then all the singly charmed baryon 

10With a single lattice spacing, we can not disentangle both the discretization errors and the 
tuning of the charm quark mass. The effects we discuss here as discretization errors are really a 
combination of the two. 
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masses we calculate in this work share a common discretization correction to their 

masses, with sub-leading corrections scaling as O(a2/Nc) as well as· the SU(3) break-

ing corrections. Therefore, all the singly charmed baryon masses we compute in this 

work, { Ac, Sc, ~c, :=:~, Oc} share a common discretization correction, which happens 

to be the dominant discretization error. The same analysis holds for the doubly 

charmed baryons as well, {Sec, Occ} with a common error, albeit different from the 

singly charmed correction. 11 It is therefore advantageous to consider extrapolations of 

baryon mass splittings, as these mass splittings exactly cancel the leading discretiza-

tion errors. 

Before proceeding with the analysis of the mass splittings', we first use power 

counting arguments to estimate the discretization errors. The leading discretization 

corrections from the light and heavy quark actions can be estimated as [95] 

(5.28) 

where pis a typical momentum scale, of the order of AQcv, the characteristic hadronic 

scale. To be conservative, we can take AQcD = 700 MeV which leads to the estimates 

bq = 68 MeV, 

t5Q = 19 MeV. (5.29) 

When considering mass splittings amongst a given SU(3) multiplet, these leading 

11With the full J = 3/2 and J = 1/2 heavy baryon mass spectrum, one could perform an analysis 
of the large-Nc baryon mass relations [134, 135] as has recently been performed for the light quark 
octet and decuplet baryons [136]. 
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errors become further suppressed by ms- mu effects, 

(5.30) 

Mass splittings between the two singly charmed SU(3) multiplets, 6.M6
,
3, would 

receive similar discretization corrections, with the extra suppression of 1/Nc. Com-

bining these estimates in quadrature, 12 we estimate the discretization errors for the 

baryon masses, and various mass splittings (using Ax = 2V21r f1r and the physical 

kaon and pion masses) 

bMhc = 71 MeV, 

bMhcc = 78 MeV, 

66.Mhc = 12 MeV, 

bf:).Mhcc = 13 MeV, 

66.M~~3 = 24 MeV, 

66.M~~: = 26 MeV. (5.31) 

Given our limited number of light-quark mass values, we are not able to perform 

the (mixed-action) HHxPT analysis of the mass splittings. We therefore perform our 

fits using the polynomial fit functions, Eqs. (5.25)-(5.27), with M0 replaced by 6.~~h1 . 

We perform the extrapolations of the mass splittings, Msc- MAc, { Ms~, MoJ- M~c, 

M~c -MAc and Mncc - Mscc· In Figure 5.11 we display the extrapolation of these 

mass splittings using Eq. (5.27) and in Figure 5.12 we show the ratio of these fits to 

12For the doubly charmed baryon masses, we double the estimated heavy quark discretization 
error. As mentioned above, this uncertainty also includes any miss-tuning of the charm quark mass, 
and thus a double charmed baryon will be miss-tuned twice as much. 
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Figure 5.11: Polynomial extrapolations of of J = 1/2 mass splittings amongst heavy
quark-SU(3) multiplets with Eq. (5.27). 
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Figure 5.12: Ratio of extrapolated mass splittings to experiment [2]. The first point is a 
fit with Eq. (5.25), the second with Eq. (5.26) and the third with Eq. (5.27). 

the experimental values. Our final predicted splittings are determined by using the 

quartic fit function as the central value with the differences from the quadratic and 

cubic fits to estimate light quark mass extrapolation errors (in addition to those from 

the quartic fit). 

As discussed earlier in this section, the dominant discretization error in the mass 

calculations is common to all baryons, given the various symmetries. Therefore, this 

correction will shift all the baryon masses in one direction. We can determine the sign 

of this correction in the following manner. First, we can determine the singly charmed 

baryon spectrum by taking our extrapolated mass splittings, column (a) of Table 5.11, 

in the predicted masses, Table 5.11 (b). We then compare these to our direct mass 
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extrapolations M~!rect, given in Table 5.10. The first method is free of the leading 

discretization errors while the second is not. We can then construct the quantity, 

8M = _1_ ~ (Mdirect _ Msplit) 
C N L he he 1 

he he 

(5.32) 

which is a measure of these discretization errors. The sum runs over all four singly 

charmed baryons he for which we have both methods to determine the masses ( Nhe = 

4). The first thing to note is that every element contributing to the sum is a positive 

quantity, suggesting the discretization errors increase the baryon masses. It is also 

interesting to note that in our calculation, 8Mc(a2 ) = 59 MeV, comparable to our 

estimated leading discretization effects, Eq. (5.31). We can then refine our estimate 

of the leading discretization errors to be 

(5.33) 

where we have also assumed that the doubly charmed discretization errors do not 

change sign relative to the singly charmed baryon corrections. Our final numbers, 

collected in Table 5.11, include these discretization error estimates in the quoted 

uncertainties. 

5.4 Discussion and Conclusions 

The central results of this work are the predicted mass splittings, displayed in the 

left panel of Table 5.11. The first uncertainty is statistical and the second uncertainty 

is a comprehensive systematic as discussed in the text. The third uncertainty is an 

estimate of discretization errors, which must scale as O(a2 (ms- mu)) for members of 
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State Latt. Pred. Exp. State Mass Split. Direct Mass Exp. Mass 
[MeV] [MeV] [MeV] [MeV] [MeV] 

MAc 2342 ± 22 ± 11 :::¥1 2286 
M=.c -f'vhc 164 ± 14 ± 23 ± 12 182 M=.c 2450 ± 14 ± 23 ± 12 2527 ± 17 ± 13~~1 2468 
Mr,c -MAc 190 ± 27 ± 18 ± 27 168 Mr,c 2476 ± 27 ± 18 ± 27 2527 ± 20 ± 8 :::¥1 2454 
M::.~- Mr,c 113 ± 18 ± 8 ± 12 122 M=' 2567 ± 18 ± 8 ± 12 2638 ± 17 ± 10 ~~1 2576 

-c 

Mflc- Mr,c 195 ± 21 ± 7 ± 12 244 Mile 2649 ± 21 ± 7 ± 12 2687 ± 46 ± 16 ~~1 2698 

M=.cc 3665 ± 17 ± 14 :::78 3519 
l\{flcc - M=.cc 98 ± 9 ± 22 ± 13 ~ J!v1flcc 3763 ± 19 ± 26 +13 3680 ± 31 ± 38 ~~8 ~ 

~79 

(a) (b) (c) 
Table 5.11: Resulting charmed spectrum, extrapolated in the light-quark mass to the phys

ical m~hys j J!:hys point. In (a) we display the mass splittings of the baryons 
related by SU(3) and large Nc symmetry. As discussed in detail in the text, 
the first uncertainty is statistical, the second is systematic and the third is our 
estimate of discretization errors. These are the central results of this work. 
In (b), we display our resulting baryon spectrum determined using the exper
imental values of M~~P and M~~P, combined with our splittings in (a). For 
the Occ, we use our extrapolated value of MBcc given the present uncertainty 
in the experimental value. In (c), we present the results of our direct mass 
extrapolations, including our estimated discretization errors. The results from 
the two methods are consistent at the one-sigma level. 

the same SU(3) multiplet or O(a2 /Nc) + O(a2 (m8 - mu)) otherwise, as dictated by 

the approximate symmetries. These results have been extrapolated to the physical 

charm quark mass and the physical light quark mass defined respectively by 

Mphys + 3Mphys 
T}c Jj\f! = 23.47 

4JJ:hys ' 
mphys 

~h = 1.056. JJ: ys 

To perform these extrapolations, we first formed the dimensionless ratios ( Mh~tt -

Mh~tt) / J!att, taking into account the known light-quark mass dependence of frr· The 

mass splittings in MeV are then determined with frr = 130.7 MeV. These physical 

values are all taken from the PDG [2]. In Fig. 5.13, we compare some of our mass 

splitting results with those of Gottlieb and Na [106, 3], the only other dynamical 

calculation of the charmed baryon spectrum. They used the same MILC gauge en-
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Figure 5.13: Comparison among charmed baryon mass splittings of dynamical lattice 
calculations. The results of Na et al. are taken from Ref. [3]. 

sembles, as well as the fine a rv 0.09 fm lattices. For the light quark propagators, they 

used staggered fermions, and for the heavy quark, an interpretation of the Fermilab 

action was used, defining the charm mass with the kinetic mass instead of the rest 

mass. Their work is still somewhat preliminary and does not yet provide a systematic 

uncertainty. However, our results are consistent with theirs, especially those on the 

same ensembles with a rv 0.125 fm. 

We additionally use these mass splittings, combined with the experimental value 

of M~:P and M~:P to determine the J = 1/2 baryon masses. Aside from the :=:cc state, 13 

the masses determined in this way are consistent with our direct mass extrapolation 

results, Table 5.11 (c), after including our estimated discretization errors. We used 

power counting arguments [139, 95] to estimate the size of these corrections and 

we compared our two methods of determining the baryon masses to determine the 

expected sign of the leading discretization corrections. In Fig. 5.14, we display our 

resulting mass calculations using the results from both the mass splitting method (Liu 

13Because the Sec has not been verified by multiple experimental groups [88, 89, 137, 138, 2], we 
chose to use our extrapolated value of l'vl=.cc, combined with our extrapolated value of Mocc - M=.cc 
to make a prediction for the Occ mass. 

112 



4000,-----------------------------------~ 

3500 

> 
~ 3000 

2500 

ili Liu et al. 1 
ili Liu et al. 2 
l Na et al.(a-0.12fm) 

i Fl)nn eta! 

j . .1 

~ Chiu et al. 

Figure 5.14: A summary of charmed baryon masses in MeV calculated using LQCD. 
We show both of our methods for obtaining the spectrum, the direct mass 
extrapolation (Liu et al. 1) and also using the extrapolated mass splittings, 
combined with M~:P and M~:P (Liu et al. 2). These results are taken from 
Table 5.11. The other results, displayed for comparison, are taken from 
Table 5.12. 

et al. 2) as well as the direct extrapolation of the masses (Liu et al. 1). Additionally, 

we compare these with results from previous calculations, found in the Refs. of 

Table 5.12 (for those calculations with more than one lattice spacing, we show only 

the results from the ensemble with lattice spacing closest to the one used in this 

work). 

Finally, we compare the doubly charmed baryons with the predictions of theo-

Group Nr SH ai 1 (GeV) L (fm) 
Bowler et al. [101] 0 tree clover [140] 2.9 1.63 
Lewis et al. [104] 0 D234 [141] 1.8, 2.2, 2.6 1.97 

Mathur et al. [105] 0 NRQCD [140] 1.8, 2.2 2.64,2.1 
Flynn et al. [102] 0 NP clover 2.6 1.82 
Chiu et al.[103] 0 ODWF [142] 2.23 1.77 
Na et al.[106, 3] 2+1 Fermilab [71] 2.2, 1.6, 1.3 2.5 

This work 2+1 Fermilab 1.6 2.5 
Table 5.12: Summary of existing charmed baryon published calculations from lattice QCD. 

Please refer to the above references and references within for more details. 
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retical models, as shown in Fig. 5.15. Although the SELEX Collaboration has re

ported the first observation of doubly charmed baryons, searches by the BaBar [137], 

Belle [138] and Focus [143] Collaborations have not confirmed their results. This 

makes it interesting to look back to the theory to see where the various predic

tions lie. We compare with a selection of other theoretical results, such as a recent 

quark-model calculation [4], relativistic three-quark model [5], the relativistic quark 

model [6], the heavy quark effective theory [7], potential model [8], sum rules of non

relativistic QCD [9] and the Feynman-Hellmann theorem [10]. We compute the mass 

of Sec to be 3665 ± 17 ± 14 ~~8 MeV, which is higher than what SELEX observed, 

although less than two sigma with our estimated discretization errors; most theoret

ical results suggest that the Sec that is about 100-200 MeV higher than the SELEX 

experimental value. To improve this situation, we need results at multiple lattice 

spacings to reduce this systematic uncertainty. The nee mass prediction made by this 

work is 3763 ± 19 ± 26 ~i~ MeV, and the overall theoretical expectation is for the nee 

to be 3650-3850 MeV. We hope that upcoming experiments will be able to resolve 

these mysteries of doubly charmed baryons. 

Our largest uncertainty presently arises from the lack of a continuum extrapola

tion. Therefore, in the future we plan to extend these calculations to a second lattice 

spacing. This will hopefully allow us to significantly reduce the size of our discretiza

tion errors. Additionally, we are extending our calculation to include the spin-3/2 

spectroscopy. 
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Figure 5.15: Comparison of theoretical predictions for doubly charmed baryons of spin 
1/2. "LQCD" is the lattice QCD calculation done in this work with solider
ror bars for the statistical error and dashed bars for the total error including 
the estimated systematic; "QM" is taken from a recent quark-model calcula
tion [4]; "RTQM" is the result of relativistic three-quark model [5]; "RQM" 
and "HQET" are from the relativistic quark model [6] and the heavy-quark ef
fective theory [7] respectively; "PM" is the result of a potential model [8]; note 
that there is no error estimation done in these calculations. "SR" and "FHT" 
are based on the sum rules of nonrelativistic QCD [9] and the Feynman
Hellmann theorem [10] respectively, where rough uncertainties are estimated. 
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CHAPTER 6 

Charmed Hadron Interaction 

6.1 Introduction 

Lattice QCD calculations of the properties of hadronic interactions such as elas

tic scattering phases shifts and scattering lengths have recently started to develop. 

Precision results have been obtained in the light meson sector for certain processes 

such as pion-pion, kaon-kaon and pion-kaon scattering and preliminary results for 

baryon-baryon scattering lengths have been presented. A review of these calculations 

can be found in [57]. In the heavy meson sector, only a few quenched calculations 

have been done [144, 145]. In this work we study scattering processes where one or 

both hadrons contain charm quarks in full lattice QCD. 

In 2003 BaBar Collaboration discovered a positive-parity scalar charm strange 

meson DsJ(2317) with a very narrow width. CLEO Collaboration confirmed this 

state later. The discovery of this state has inspired heated discussion in the past 

several years. The key point is to understand the low mass of this state. There 

are several interpretations of its structure, such as being, a D K molecule, the chiral 

partner of Ds, a conventional cs state, coupled-channel effects between the cs state 
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and DK continuum etc. See reference [146] for a detailed review. The study of DK 

interaction is very important in understand the structure of D 81 (2317). 

The study of the interaction of charmonium and nucleon is also very interesting. 

As it has been pointed out in the literature [147, 148, 149], such interaction has a 

direct relation to possible charmonium-nucleus bound states with binding energy of a 

few MeV. Unlike the traditional nuclear force that binds nucleons, in this case, there 

are no quark exchange diagrams, and only gluons are responsible for the binding. In 

other words, the charmonium nucleon force is purely a gluonic van der Waals force. 

6.2 Scattering of charmed mesons (D, Ds) with light 

pseudoscalar mesons ( 1r, K) 

In this section, we calculate the scattering lengths of the scattering processes of 

charmed mesons with light pseudoscalar mesons. We need to construct the corre-

lations functions which involve pion, kaon and charmed mesons. The operators to 

create these particles are 

+ -D (x, t) = -d(x, t)r5c(x, t), n-(x, t) = c(x, t)r5d(x, t), (6.1) 

D0 (x, t) = -u(x, t)r5c(x, t), D0 (x, t) = c(x, t)r5u(x, t), (6.2) 

n;(x, t) = -s(x, t)r5c(x, t), D-;(x, t) = c(x, t)r5s(x, t), (6.3) 

K+(x, t) = -s(x, t)r5u(x, t), K-(x, t) = u(x, t)r5s(x, t), (6.4) 

K 0 (x, t) = -s(x, t),5d(x, t), K 0 (x, t) = d(x, t)r5s(x, t), (6.5) 

7r+(x, t) = -d(x, t)r5u(x, t) 7r-(x, t) = u(x, t)r5d(x, t). (6.6) 
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The interpolating operators for two-particle states are constructed from these single 

particle operators. We calculate the following five chanels: 

o1:3/2(t) 

011(t) 

D+(t)n.+(t), Ovsrr(t) = D;(t)n+(t), 

D+(t)K0 (t), 011(t) = D+(t)K- (t) - D0 (t)KD(t), 

D;(t)K+(t), 

(6.7) 

(6.8) 

(6.9) 

where the subscripts n, K, K and D represent the isospin triplet and doublets 

D+(x, t) projecting on the zero momentum, i.e. 

D+(t) = £;/2 I: D+(x, t), (6.10) 
X 

The total energy of two interacting hadrons (h1 and h2 ) is obtained from the 

four-point correlation function: 

(6.11) 

To be explicit, the four point correlation function for the Dn(I = 3/2) channel is 

(6.12) 

The correlation functions for the other channels have similar form. 

To extract the energy shift L:.E, we define a ratio Rh1 h2 (t): 

(6.13) 
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where Ch1 (t) and Ch2 (t) are two-point functions. L:.E is obtained by fitting Rh1 -h2 (t) 

to a single exponential in a region where the effective energy shift exhibits a plateau. 

6.2.1 Numerical results 

For each channel, we calculate the ratio Rh1 h2 at two different charm quark masses 

and four different light valence quark masses. Fig. 6.1 shows the effective energy shifts 

of each channel with the lowest light quark mass and the input charm quark mass 

m 0 = 0.2034. The fitted energy shifts and the fitting ranges are indicated by the 

grey bars in these plots. The height of the grey bars show the statistical errors. The 

effective energy shift plots for other ensembles are similar. 

The energy shifts are extrapolated to the physical charm quark mass using the 

same method as we used for the charmed baryon spectrum, which is explained in 

section 5.3.2. The scattering lengths are then calculated for each ensemble using 

Luscher's finite volume method introduced in section 4.3. 

The scattering lengths have to be extrapolated to the physical light quark mass 

to make contact with experiment. The scattering lengths of heavy mesons and light 

pseudoscalar mesons have been studied using heavy meson chiral perturbation theory 

in references [46, 47]. The xPT formulas of the scattering lengths of the five channels 

we study to O(p3
) are [47] 
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Figure 6.1: Effective energy shifts plots of the scattering channels Ds- 1r, Ds - K, D
K(I = 0), D- K(I = 1), D- 1r(I = 3/2). All plots are for ensemble m007. 

The grey bars show the fitted energy shifts and the fitting ranges. The height 
of the grey bars show the statistical errors. 
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( 6.17) 

where A is the renormalization scale, the coefficients C0 , C1 , g2 and K, are to be deter-

mined from the fits. C0 , C1 and K, are dimensionful. To minimize the contamination 

from a particular scale-setting method, it is preferable to perform dimensionless ex-
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trapolations. To do this, we rewrite the scattering length formulas in dimensionless 

form: 
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( m7r) 1=3/2 81rm1r 1 + - a D1r 
mv 

(6.22) 

The coefficients C0 f 0 , CIJ0 , g2 and K,f5 are dimensionless. Here we have used the 

chiral expansion of f 1r 

(6.24) 

The O(m;) corrections can be ignored at the order we are considering. We choose 

the renormalization scale ,\ to be the physical value of f1r· The differences between 

the physical J1r and the values evaluated on each ensemble are higher order in chiral 

expansion and thus are ignored. 

There are four dimensionless coefficients C0 f 0 , CIJ0 , g2 and K,f5 to be determined. 

By fitting the five channels simultaneously, we have 20 data points totally. To ensure 

the convergence of the chiral expansion, it is desirable to fit the data at the light 

values of the quark masses. We have four different light quark masses in our data set, 

corresponding to the four ensembles (mOO?, m010, m020 and m030) with pion masses 

approximately 290MeV, 350MeV, 490MeV and 590MeV respectively. We perform 

three fits by choosing three different fitting ranges of light quark mass. In "Fit1 ", we 

fit the data from all four ensembles. In "Fit2", we fit the data from the lightest three 
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I Ensemble I m007 m010 m020 m030 

m7r 0.1842 0.2238 0.3113 0.3752 
mK 0.3682 0.3791 0.4058 0.4311 

m1J 0.4827 0.4846 0.4816 0.4805 
f1r 0.09273 0.09597 0.10179 0.10759 
fK 0.1079 0.1087 0.1103 0.1122 
mD 1.2081 1.2083 1.2226 1.2320 
mDs 1.2637 1.2635 1.2614 1.2599 

Table 6.1: The values of m7r, mK, m 17 , J1r, fK, mD and mDs in lattice units. 

Fitting Range Cofo Cdo g2 ~JJ x2 dof Q 
m007-m030 0.25(7) 0.73(7) 0.00(1) 0.034(2) 89.4 16 0.00 
m007-m020 0.26(7) 0.80(8) -0.00(3) 0.036(2) 40.5 11 0.00 
m007-m010 0.33(8) 0.78(8) -0.02(4) 0.035(2) 9.5 6 0.15 

Table 6.2: The results of fitting the scattering lengths to the xPT formulas. 

ensembles (m007, m010 and m020). In "Fit3", we fit the data from the lightest two 

ensembles (m007 and m010). The values of m1r, mK, m 17 , J1r and fK for each ensemble, 

which are needed for the fits, have been calculated in Ref. [1], mD and mDs are from 

our calculation in this work. The numbers are collected in Table 6.1. Table 6.2 shows 

the fitting results of the three fits. It is not surprising that the x2 reduces rapidly 

when we constrain the fit to the light ensembles. Note that the axial coupling g2 

turns out to be consistent with zero. We encountered the same phenomenon in the 

fitting of charmed baryon masses. The extrapolated scattering lengths are presented 

in Table 6.3. Since the x2 of "Fit1" and "Fit2" 'are too large to be considered as 

reliable fits, we choose to trust the results from "Fit3". 

In this work we didn't calculate the scattering lengths of the channels DK(I = 0), 

DK(I = 1), D1r(I = 1/2) and DsK due to the simulation difficulties. However, once 

we have determined the coefficients in the chiral perturbation theory, we can predict 

the scattering lengths of these channels. The xPT formulas for these channels are 
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Channels I a(fm) Fit1 I a(fm) Fit2 I a(fm) Fit3 I 
DK(I = 1) -0.227(7) -0.22(1) -0.22(1) 
DK(I = 0) 0.74(1) 0.76(1) 0.80(1) 

DsK -0.194(7) -0.182(8) -0.181(8) 
DK(I = 3/2) -0.106(3) -0.102(4) -0.103(4) 

D8 7r -0.0056(5) -0.0033(6) -0.0011(8) 

Table 6.3: The scattering lengths extrapolated to the physical light quark masses. "Fitl" 
fits all four ensembles. "Fit2" fits the lightest three ensembles. "Fit3" fits 
the lightest two ensembles. The uncertainty presented in the parentheses is 
statistical. 

[47]: 

V -mK -3 m 2 - m 2 arccos --
17 K m 

1) 

1 2 6m; } 2 m'k +-
6

g 7r(7m17 + ) + 1611,j0 ! 2 ! 2 , 
m 17 + mn K n 

(6.25) 

(6.26) 
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I Channels I D1r(J = 1/2) I DK(I = 0) I DK(I = 1) I D8 K I 
1 a(fm) 1 o.298(8) 1 1.3(1) 1 o.217(6) + o.176i 1 o.77(7) + o.268i 1 

Table 6.4: Scattering lengths of D1r(I = 1/2), DK(I = 0), DK(I = 1) and DsK predicted 
from chiral fits. Statistical errors are presented in the parentheses. 

( 
m1r ) I=l/2 81rm1r 1 + - a D1r 
mn 

2 2 3 3 3 
mK mK mK { m1r mTJ -12 + Cdof2 f + 2! 4 mK(1 -ln -

1 
-ln -

1 
) 

K K 1r 47r K 1r 1r 

J 2 2 (. 1 mK + Jm'k- m;) + m - m z1r - n __ ____.:._..:..:...._ _ ____:.;_ 
K 1r m1r 

J -mK 4 } - m 2 - m 2 arccos--+ -g21rm 
TJ K m 9 TJ 

TJ 
4 

2 mK 
+8/'i,fo f'kfi;' (6.27) 

(6.28) 

Substitute the values of CIJ0 , C0 f 0 , g2 and K,fJ obtained from "Fit3" into the Eq. 6.25 

- 6.28, we get the scattering lengths of DK(I = 0), DK(I = 1), D1r(I = 1/2) and 

D 8 K, which are presented in Table 6.4. 

6.2.2 Discussion 

The positive sign of ab=Ji, a}y~, a}y1, ansi? and a~=:112 indicates that the interac-

tions in these channels are all attractive. The attraction in the DK(I = 0) channel 

is quite strong. However, we are not able to tell whether it is strong enough to form 
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a bound state such as a DK molecular state. It is interesting that the DK(I = 1) 

also have relatively strong interaction since there is no quark pair annihilation in 

this channel. The possibility to form a four-quark resonance is not excluded. The 

DK(I = 1), D8 K, Dn(I = 3/2) and D8 n channels have repulsive interactions. The 

interaction of D8 n is very weak, which is expected. The Dsn and DK(I = 1) chan-

nels are mixed since they have the same quantum numbers. To perform more reliable 

analysis of these two channels, we need to construct the correlation matrix and use 

the variational method to extract the energies of the two channels. 

6.3 Scattering of charmonium with light hadrons 

In this section we calculate the scattering lengths of the scattering processes of 

charmonium (TJc and J j1.J!) with the light hadrons (p, N). The interpolating operators 

for these particles are: 

J j1.J!i(x, t) = c(x, t)Jic(x, t), TJc(x, t) = c(x, t)J5c(x, t), 

Pi(x, t) = d(x, t)Jiu(x, t), N(x, t) = Eabc[u~(x, t)Cr5db(x, t)]uc(x, t). (6.29) 

where Cis the charge conjugation matrix, C = 1412 . 

The four point correlation functions are given by 

c~c-P(t) (TJ1 ( t)pJ ( t)TJc(O)pj (0)) (6.30) 

cr)c-N (t) (TJ1(t)Nt(t)TJc(O)N(O)) (6.31) 

cJI'I!-p 
ij,kl ( J j1.J!! ( t)p} ( t) J j1.J! k (O)pz (0)) (6.32) 

c!I'I!-N 
~] 

( J j1.J! J ( t)Nt ( t)J j1.J! j (O)N(O)) (6.33) 

For s-wave TJc - p scattering, the total spin is 1, we simply take the average of the 
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diagonal correlation matrix i L.::~=l C~c-P(t). For the s-wave J'I!- p scattering, the 

spin can take three different values: s= 0, s=1, s=2. We need to disentangle each 

spin contribution from the four point correlation function. The four point correlation 

function can be expressed by 

(6.34) 

where P 0 , P 1 and P 2 are spin projector to s = 0, s = 1 and s = 2 respectively. They 

are given by 

p.Okl 
~J, 

p 1
kl ~J, 

p 2
kl lJ, (6.35) 

The disentangled correlation functions for different spin channels are 

3 

~ """" c!f'I!-p(t) 
3 L......t n,JJ ' 

i,j=l 

3 

~ """" c!I'J!-P(t) - CJ!\f!-P(t)) 6 L......t lJ,lJ lJ,Jl ' 
i,j=l 

3 

2_ """"(c!I'J!-P(t) + c 11'I!-p(t) - ~c!t<I!-p(t)). 
10 L......t lJ,lJ ~J,Jl 3 n,JJ 

i,j=l 

(6.36) 

For the s-wave Jj'I!- N scattering, the spin can be s = 1/2 and s = 3/2. The four-

point correlation function can be decomposed into spin-1/2 and spin-3/2 components 

c!fw-N(t) = 0 1;2 p.l/2 + 0 312 p3/2 
~J JIJ!-N lJ JjiJ!-N tJ (6.37) 
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Ensemble m007 m010 m020 m030 
tlBTJcN -0.004(5) -0.0012(9) -0.000(2) -0.0019(3) 

flBIJcP 0.0001(3) -0.0004(3) -0.0003(5) -0.0011(3) 
6. 1/2 

EJj\J!-N -0.001(2) -0.007(2) -0.0033(6) -0.0077(6) 
3/2 

tlE Jj'I!-N 0.001(2) -0.005(2) -0.0028(5) -0.0051(8) 

tlE~!w-p -0.0004(6) -0.002(1) -0.0007(2) -0.0014(3) 

llE};w-p -0.0005(6) -0.002(1) -0.0007(2) -0.0014(3) 

flEJ;w-p -0.0005(6) -0.002(1) -0.0007(2) -0.0014(3) 

Table 6.5: Fitted energy shifts of the scattering of Tfc- N, Tfc- p, J /if!- p and J jiJ!- N. All 
values are in lattice units. The statistical errors are indicated in the parentheses. 

The spin projection operators for spin-1/2 and spin-3/2 are given by 

(6.38) 

Then, the spin-projected correlation functions are 

1/2 ( ) CJj\J!-N t 

3/2 ( ) CJj\J!-N t 

3 3 

~ ~ C~j'I!-N(t) - ~ ~ · ·CJ/'I!-N(t) 
2 L tt 6 L It /1 P , 

i=1 i,j=1 

(6.39) 

As we did for the scattering of charmed mesons with light pseudoscalar mesons, 

the energy shifts tlE are obtained by fitting Rh 1h2 ( t), which is the ratio of the four 

point correlation functions to the multiplication of the two relative two-point corre-

lation functions, to a single exponential. The fitted values of tlE with input charm 

quark mass m0 = 0.2034 are presented in Table 6.5. The values of tlE with charm 

quark mass m0 = 0.2100 are very close to those with m0 = 0.2034. We extrapolate 

tlE linearly to the physical charm quark mass determined in Sec. 5.3.2. As typical 

examples, the effective energy shift plots for the ensemble m007 are shown in Fig. 6.2. 

As seen in Table 6.5, the energy shifts are quite small. They are generally nega-
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Figure 6.2: Effective energy shifts of the scattering of charmonium (rye and JjiJ!) with 
light hadrons (p and nucleon). All plots are for ensemble m007. The grey bars 
indicate the fitted energy shifts and the fitting ranges. The height of the grey 
bars show the statistical errors. 
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tive, which means that the interactions in these channels are attractive. However, the 

signals become very noisy at large t, which produce relatively large statistical error 

bars. In some channels, the energy shifts are consistent with zero within statistical 

error. 

For each ensemble, the scattering length is calculated from Eq. 4.49. The scat

tering lengths have to be extrapolated to the physical light quark mass. Since the 

scattering processes of charmonium with light hadron have not been studied in chiral 

perturbation theory, we perform simple polynomial extrapolation 

(6.40) 

where m is the mass of the light hadron, M is the mass of the charmonium. The 

factor 1 + : is inspired by the existing formulas for the scattering length of light

heavy scattering processes, e. g. Eq. 6.14 - Eq. 6.18. In the limit m7r ---+ 0, the 

scattering lengths should approach zero, so the lowest term in the expansion of a is 

,....., m1r· Considering that we only have four light quark masses, we keep the expansion 

to the second lowest order. Thus we have two coefficients c1 and c2 to be determined 

from the fits. The extrapolation is performed individually for each channel. The 

two coefficients are different for different channels. Fig. 6.3 shows the fits of all the 

channels. In these plots, the blue points are the data from lattice calculation. The 

shaded bands indicate the standard deviation allowed regions. The x2 per degree 

of freedom of the fits for all these channels range from 0.5 ,....., 1.5. In Fig. 6.3 we 

can see that the scattering lengths of all these channels approach zero at the lightest 

ensemble. The scattering lengths extrapolated to the physical point are all consistent 

with zero within statistical error except for the spin-3/2 J /'II- N channel, which has 

very tiny non-zero scattering length -0.002(1 )fm. 
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Some of the channels we study are mixed with other channels. The spin-1 J jl.J!- p 

channel may contain contamination of the isospin-1 D - D* channels. The spin-0 

Jjl.J!- p channel is mixed with the isospin-1 DD channel. The spin-2 Jjl.J!- p channel 

does not contain any contamination. For the J jl.J!- N system, the spin-3/2 channel 

is free of contamination, while the spin-1/2 channel is mixed with rJc - N channel. 

Therefore, strictly speaking, the spin-2 J jl.J!- p and spin-3 /2 J jl.J!-N channels are safe 

channels in extracting s-wave scattering lengths from Luscher's formula. However, for 

the J jl.J!- p system, we didn't find any difference among different spin channels. The 

mixed channel problem is expected to be treated more carefully in our future work 

by applying the variational method. 

In conclusion, we find very weak interaction between the charmonium and the 

light hadrons. It is likely that the interaction of J jl.J! with nucleon is attractive. 

Statistics need to be improved to obtain more accurate data. Studying the volume 

dependence of the interaction will be helpful to determine whether there is a J jl.J!

nucleon bound state. 
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Figure 6.3: The scattering lengths of charmonium with light hadron fitted to Eq. 6.40. 
The blue points are the values from lattice calculation. The blue bands indicate 
the standard deviation allowed regions of the fits. 
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CHAPTER 7 

Conclusions 

In this work we study the charmed hadron spectrum and interactions in full lattice 

QCD. Relativistic heavy quark action is used for charm quark. For the light quarks 

we use domain-wall fermions in the valence sector and improved Kogut-Susskind sea 

quarks. The ensembles are generated by MILC collaboration at four values of light

quark masses with the corresponding pion mass range from 290 MeV to 590 MeV. In 

the heavy quark action, the anisotropy is tuned nonperturbatively by calculating the 

dispersion relation of charmonium and charmed mesons; the bare charm quark mass 

is determined from the spin-averaged mass of Tic and J j'J!. The hyperfine splitting 

of J j\IJ and T/c as well as the masses of low-lying charmonium (Xco, Xc1 and he) are 

calculated to test the action. 

The details of the calculations of the charmed baryon spectrum are presented 

in chapter 5. The baryon masses are extrapolated to the physical light quark mass 

using SU(2) HBxPT formulas. The mass splittings between charmed baryons are 

calculated, providing an alternative way to estimate the charmed baryon masses using 

the experimental value of the mass of a reference state. We take the values determined 

from the mass splittings as our main results because the discretization errors are 
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partly canceled in the splittings. The discretization errors are estimated using various 

symmetries and power counting. Our results for singly charmed baryons are in good 

agreement with experiment within the systematics. For the doubly charmed baryons, 

the mass of Bee is determined to be MBcc = 3665 ± 17 ± 14 ~~8 MeV, which is higher 

than the experimental value 3519 MeV observed by SELEX collaboration. The mass 

of Oee has not been measured in experiment, we predict it to be 3763±19±26 ~~~MeV. 

The main source of uncertainty in our calculation arises from discretization errors. 

Calculating the charmed baryon spectrum for several different lattice spacings and 

extrapolating to the continuum limit is the priority of our future plans. We also 

plan to extend our calculation to include the spin-3/2 charmed baryons and bottom 

baryons. 

The charmed hadron interactions are studied in chapter 6. The scattering lengths 

are calculated using Luscher's finite volume method, which is described in section 4.3. 

The scattering of charmed mesons with light pseudoscalar mesons has been studied in 

chiral perturbation theory, we use the formulas to extrapolate the scattering lengths 

to the physical light quark mass. We calculate the scattering lengths of isospin-3/2 

D1r, D8 7r, DsK, isospin-0 DK and isospin-1 DK channels on lattice. The scattering 

lengths of the isospin-0 and 1 DK, DsK and isospin-1/2 D1r channels are predicted 

by the low-energy constants determined from the chiral fits. We find strong attractive 

interaction in the isospin-0 D K channel. This channel is closely related to the struc

ture of the Ds1 (2317) state. However, studying volume dependence of the interaction 

is needed to determine whether there is a bound state in this channel. 

We also calculate the scattering lengths of the charmonium (TJe and Jj'II) with 

light hadrons (p and N). Very weak attractive interactions are found in these chan

nels. Particularly, for the J /'II - N channel, in which the dominate interaction is 

attractive gluonic van der Walls and it could lead to molecular-like bound states, we 
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find the scattering length is tiny comparing to the predictions from some hadronic 

models. In the future, we plan to improve the statistics and extend the calculation 

to multiple volumes to obtain more definite information about this channel. 

136 



Bibliography 

[1] A. Walker-Loud et al. Light hadron spectroscopy using domain wall valence 

quarks on an Asqtad sea. Phys. Rev., D79:054502, 2009. 

[2] C. Amsler et al. Review of particle physics. Phys. Lett., B667:1, 2008. 

[3] Heechang Na and Steven Gottlieb. Heavy baryon mass spectrum from lattice 

QCD with 2+1 dynamical sea quark flavors. PaS, LATTICE2008:119, 2008. 

[4] W. Roberts and Muslema Pervin. Heavy baryons in a quark model. Int. J. 

Mod. Phys., A23:2817-2860, 2008. 

[5] A. P. Martynenko. Ground-state triply and doubly heavy baryons in a rela

tivistic three-quark model. Phys. Lett., B663:317-321, 2008. 

[6] D. Ebert, R. N. Faustov, V. 0. Galkin, and A. P. Martynenko. Mass spectra of 

doubly heavy baryons in the relativistic quark model. Phys. Rev., D66:014008, 

2002. 

[7] J. G. Korner, M. Kramer, and D. Pirjol. Heavy baryons. Prog. Part. Nucl. 

Phys., 33:787-868, 1994. 

[8] V. V. Kiselev, A. K. Likhoded, 0. N. Pakhomova, and V. A. Saleev. Mass 

spectra of doubly heavy Omega Q Q-prime baryons. Phys. Rev., D66:034030, 

2002. 

137 



[9] V. V. Kiselev and A. E. Kovalsky. Doubly heavy baryons Omega(Q Q-prime) 

versus Xi(Q Q-prime) in sum rules of NRQCD. Phys. Rev., D64:014002, 2001. 

[10] R. Roncaglia, D. B. Lichtenberg, and E. Predazzi. PREDICTING THE 

MASSES OF BARYONS CONTAINING ONE OR TWO HEAVY QUARKS. 

Phys. Rev., D52:1722-1725, 1995. 

[11] M Gelll-Mann. A Schematic Model of Baryons and Mesons. Phys. Lett., 8:214, 

1964. 

[12] M Gelll-Mann. Symmetries of Baryons and Mesons. Phys. Rev., 125:1067, 1962. 

[13] G Zweig. An SU(3) Model for Strong Interaction Symmetry and Its Breaking. 

Developments in the Quark Theory of Hadrons, Vol. 1, pages 22-101, 1964. 

[14] S. K Choi et al. Observation of a narrow charmonium- like state in exclusive 

B+---+ K+n+n- Jj'lj; decays. Phys. Rev. Lett., 91:262001, 2003. 

[15] B. Aubert et al. Evidence for X(3872) ---+ 1j;(2S)r in B±---+ X(3872)K± decays, 

and a study of B ---+ cc{K. Phys. Rev. Lett., 102:132001, 2009. 

[16] D. Acosta et al. Observation of the Narrow State X(3872)---+ Jj1j;n+n- in pp 

Collisions at vs = 1.96TeV. Phys. Rev. Lett., 93:072001, 2004. 

[17] B. Aubert et al. Study of the B- ---+ J /1/JK-n+n- Decay and Measurement of 

the B- ---+ X(3872)K- Branching Fraction. Phys. Rev., D71:071103, 2005. 

[18] S. K Choi et al. Observation of a near-threshold wJ /1/J mass enhancement in 

exclusiveB ---+ KwJ jpsi decays. Phys. Rev. Lett., 94:182002, 2005. 

[19] T. Aaltonen et al. Evidence for a Narrow Near-Threshold Structure in the Jj'lj;rp 

Mass Spectrum in B+ ---+ J /1/J? K+ Decays. Phys. Rev. Lett., 102:242002, 2009. 

138 



[20] B. Aubert et al. Observation of a Broad Structure in the 1r+1r- Jj'lj; Mass 

Spectrum around 4.26 GeV /c2
. Phys. Rev. Lett., 95:142002, 2005. 

[21] Michael Creutz. Quarks, Gluons and Lattices. Cambridge University Press, 

1983. 

[22] Istvan Montvay and Gernot Munster. Quantum Fields on a Lattice. Cambridge 

University Press, 1994. 

[23] Thomas DeGrand and Carleton DeTar. Lattice Methods for Quantum Chromo

dynamics. World Scientific Publishing, 2006. 

[24] K. Osterwalder and R. Schrader. Axioms for euclidean green's functions. Comm. 

Math. Phys., 31:83, 1973. 

[25] K. Osterwalder and R. Schrader. Axioms for euclidean green's functions ii. 

Comm. Math. Phys., 42:81, 1975. 

[26] K. G. Wilson. Confinement of quarks. Phys. Rev., D10:2445, 1974. 

[27] C. Gattringer and C. B. Lang. Quantum Chromodynamics on the Lattice: An 

Introductory Presentation. Springer, Berlin Heidelberg, 2010. 

[28] H. B. Nielsen and M. Ninomiya. A no-go theorem for regularizing chiral 

fermions. Phys. Lett., B105:219, 1981. 

[29] Herbert Neuberger. Exactly massless quarks on the lattice. Phys. Lett., 

B417:141, 1998. 

[30] Herbert Neuberger. More about exactly massless quarks on the lattice. Phys. 

Lett., B427:353, 1998. 

139 



[31] David B. Kaplan. A Method for simulating chiral fermions on the lattice. Phys. 

Lett., B288:342-347, 1992. 

[32] David B. Kaplan. Chiral fermions on the lattice. Nucl. Phys. Proc. Suppl., 

30:597, 1993. 

[33] Yigal Shamir. Chiral fermions from lattice boundaries. Nucl. Phys., B406:90-

106, 1993. 

[34] Vadim Furman and Yigal Shamir. Axial symmetries in lattice QCD with Kaplan 

fermions. Nucl. Phys., B439:54-78, 1995. 

[35] Howard Georgi. AN EFFECTIVE FIELD THEORY FOR HEAVY QUARKS 

AT LOW- ENERGIES. Phys. Lett., B240:447-450, 1990. 

[36] S. Weinberg. Phenomenologicallagrangians. Physica, A96:327, 1979. 

[37] J. Gasser and H. Leutwyler. Chiral Perturbation Theory to One Loop. Ann. 

Phys., 158:142, 1984. 

[38] J. Gasser and H. Leutwyler. Chiral Perturbation Theory: Expansions in the 

Mass of the Strange Quark. Nucl. Phys., B250:465, 1985. 

[39] Aneesh V. Manohar and Mark B. Wise. Heavy quark physics. Camb. Monogr. 

Part. Phys. Nucl. Phys. Cosmol., 10:1-191, 2000. 

[40] M. Neubert. Heavy Quark Symmetry. Phys. Rept., 245:259, 1994. 

[41] E. Jenkins and A. V. Manohar. Baryon chiral perturbation theory using a heavy 

fermion lagrangian. Phys. Lett., B255:258, 1991. 

[42] E. Jenkins and A. V. Manohar. Chiral corrections to the baryon axial currents. 

Phys. Lett., B259:353, 1991. 

140 



[43] E. Jenkins and A. V. Manohar. Baryon chiral perturbation theory. Talk pre

sented at the workshop on Effective Field Theories of the Standard Model, Dobo

goko, Hungary, Aug 1991. 

[44] W. Rarita and J. S. Schwinger. On a theory of particle with half integral spin. 

Phys. Rev., 60:61, 1941. 

[45] Brian C. Tiburzi. Baryon masses in partially quenched heavy hadron chiral 

perturbation theory. Phys. Rev., D71:034501, 2005. 

[46] Feng-Kun Guo, Christoph Hanhart, and Ulf-G Meier. Interactions between 

heavy mesons and goldstone bosons from chiral dynamics. Eur. Phys. J., 

A40: 171 ~ 179, 2009. 

[47] Yan-Rui Liu, Xiang Liu, and Shi-Lin Zhu. Light pseudoscalar meson and heavy 

meson scattering lengths. Phys. Rev. D, 79:094026, 2009. 

[48] Claude W. Bernard et al. The QCD spectrum with three quark flavors. Phys. 

Rev., D64:054506, 2001. 

[49] Mark G. Alford, W. Dimm, G. P. Lepage, G. Hockney, and P. B. Mackenzie. 

Lattice QCD on small computers. Phys. Lett., B361:87~94, 1995. 

[50] Kostas Orginos, Doug Toussaint, and R. L. Sugar. Variants of fattening and 

flavor symmetry restoration. Phys. Rev., D60:054503, 1999. 

[51] Kostas Orginos and Doug Toussaint. Testing improved actions for dynamical 

Kogut-Susskind quarks. Phys. Rev., D59:014501, 1999. 

[52] D. Toussaint and K. Orginos. Tests of improved Kogut-Susskind fermion ac

tions. Nucl. Phys. Proc. Suppl., 73:909~911, 1999. 

141 



[53] J. F. Lagae and D. K. Sinclair. Improved staggered quark actions with reduced 

flavour symmetry violations for lattice QCD. Phys. Rev., D59:014511, 1999. 

[54] G. Peter Lepage. Flavor-symmetry restoration and Symanzik improvement for 

staggered quarks. Phys. Rev., D59:074502, 1999. 

[55] K. Orginos, R. Sugar, and D. Toussaint. Improved flavor symmetry in Kogut

Susskind fermion actions. Nucl. Phys. Proc. Suppl., 83:878-880, 2000. 

[56] Satchidananda Naik. ON-SHELL IMPROVED LATTICE ACTION FOR QCD 

WITH SUSSKIND FERMIONS AND ASYMPTOTIC FREEDOM SCALE. 

Nucl. Phys., B316:238, 1989. 

[57] Silas R. Beane, Kostas Orginos, and Martin J. Savage. Hadronic Interactions 

from Lattice QCD. Int. J. Mod. Phys., E17:1157-1218, 2008. 

[58] Anna Hasenfratz and Francesco Knechtli. Flavor symmetry and the static po

tential with hypercubic blocking. Phys. Rev., D64:034504, 2001. 

[59] Thomas A. DeGrand, Anna Hasenfratz, and Tamas G. Kovacs. Improving the 

chiral properties of lattice fermions. Phys. Rev., D67:054501, 2003. 

[60] Thomas A. DeGrand. Kaon B Parameter in Quenched QCD. Phys. Rev., 

D69:014504, 2004. 

[61] Stephan Durr, Christian Hoelbling, and Urs Wenger. Staggered eigenvalue 

mimicry. Phys. Rev., D70:094502, 2004. 

[62] Oliver Bar, Claude Bernard, Gautam Rupak, and Noam Shoresh. Chiral per

turbation theory for staggered sea quarks and Ginsparg-Wilson valence quarks. 

Phys. Rev., D72:054502, 2005. 

142 



[63] Brian C. Tiburzi. Baryons with Ginsparg-Wilson quarks in a staggered sea. 

Phys. Rev., D72:094501, 2005. 

[64] Jiunn-Wei Chen, Donal O'Connell, and Andre Walker-Loud. Two meson sys

tems with Ginsparg-Wilson valence quarks. Phys. Rev., D75:054501, 2007. 

[65] Kostas Orginos and Andre Walker-Loud. Mixed meson masses with domain-wall 

valence and staggered sea fermions. Phys. Rev., D77:094505, 2008. 

[66] Jiunn-Wei Chen, Donal O'Connell, and Andre Walker-Loud. Universality of 

Mixed Action Extrapolation Formulae. JHEP, 04:090, 2009. 

[67] Jiunn-Wei Chen, Maarten Colterman, Donal O'Connell, and Andre Walker

Loud. Mixed Action Effective Field Theory: an Addendum. Phys. Rev., 

D79:117502, 2009. 

[68] Weon-Jong Lee and Stephen R. Sharpe. Partial Flavor Symmetry Restoration 

for Chiral Staggered Fermions. Phys. Rev., D60:114503, 1999. 

[69] Dru Bryant Renner et al. Hadronic physics with domain-wall valence and im

proved staggered sea quarks. Nucl. Phys. Proc. Suppl., 140:255~260, 2005. 

[70] Robert G. Edwards et al. Hadron structure with light dynamical quarks. PoS, 

LAT2005:056, 2006. 

[71] Aida X. El-Khadra, Andreas S. Kronfeld, and Paul B. Mackenzie. Massive 

Fermions in Lattice Gauge Theory. Phys. Rev., D55:3933~3957, 1997. 

[72] K. Symanzik. Continuum Limit and Improved Action in Lattice Theories. 1. 

Principles and phi**4 Theory. Nucl. Phys., B226:187, 1983. 

143 



[73] Ping Chen. Heavy quarks on anisotropic lattices: The charmonium spectrum. 

Phys. Rev., D64:034509, 2001. 

[74] G. Roepstorff. Path Integral Approach to Quantum Physics. Springer, Berlin 

Heidelberg, 1996. 

[75] L. Brown. Quantum Field Theory. Cambridge University Press, 1992. 

[76] M. Luscher and U. Wolff. How To Calculate The Elastic Scattering Matrix 

In Two-Dimensional Quantum Field Theories By Numerical Simulation. Nucl. 

Phys., B339:222, 1990. 

[77] B. Blossier et al. On the Generalized eigenvalue method for energies and matrix 

elements in lattice field theory. JHEP, 0904:094, 2009. 

[78] L. Maiani and M. Testa. Final state interactions from Euclidean correlation 

functions. Phys. Lett., B245:585, 1990. 

[79] M. Luscher. Volume dependence of the energy spectrum in massive quantum 

l>eld theories II: Scattering states. Commun. Math. Phys., 105:153, 1986. 

[80] M. Luscher. Two particle states on a torus and their relation to the scattering 

matrix. Nucl. Phys., B354:531, 1991. 

[81] S. R. Beane, P. F. Bedaque, and M. J. Savage. Two Nucleons on a Lattice. 

Phys. Lett., B585:106, 2004. 

[82] R. G. Newton. Scattering Theory of Waves and Particles. Springer, New York, 

1982. 

[83] S. Sasaki and T. Yamazaki. Signature of S-wave Bound State Formation in 

Finite Volume. Phys. Rev., D74:114507, 2006. 

144 



[84] E. Barberio et al. Averages of b-hadron and c-hadron Properties at the End 

of 2007. 2008. 

[85] M. B. Voloshin. Charmonium. Prog. Part. Nucl. Phys., 61:455-511, 2008. 

[86] T. Aaltonen et al. First observation of heavy baryons L:b and L:b. Phys. Rev. 

Lett., 99:202001, 2007. 

[87] V. M. Abazov et al. Direct observation of the strange b baryon Xi/;. Phys. Rev. 

Lett., 99:052001, 2007. 

[88] M. Mattson et al. First observation of the doubly charmed baryon Xi/cc+. 

Phys. Rev. Lett., 89:112001, 2002. 

[89] A. Ocherashvili et al. Confirmation of the double charm baryon Xi/cc(3520)+ 

via its decay to p D+ K-. Phys. Lett., B628:18-24, 2005. 

[90] T. Aaltonen et al. Observation and mass measurement of the baryon Xi/;. 

Phys. Rev. Lett., 99:052002, 2007. 

[91] G. Peter Lepage, Lorenzo Magnea, Charles Nakhleh, Ulrika Magnea, and Kent 

Hornbostel. Improved nonrelativistic QCD for heavy quark physics. Phys. Rev., 

D46:4052-4067, 1992. 

[92] Sinya Aoki, Yoshinobu Kuramashi, and Shin-ichi Tominaga. Relativistic heavy 

quarks on the lattice. Frog. Theor, Phys., 109:383-413, 2003. 

[93] Norman H. Christ, Min Li, and Huey-Wen Lin. Relativistic heavy quark effec

tive action. Phys. Rev., D76:074505, 2007. 

[94] Huey-Wen Lin and Norman Christ. Non-perturbatively determined relativistic 

heavy quark action. Phys. Rev., D76:074506, 2007. 

145 



[95] Andreas S. Kronfeld. Heavy quarks and lattice QCD. Nucl. Phys. Proc. Suppl., 

129:46-59, 2004. 

[96] Matthew Wingate. Status of lattice flavor physics. Nucl. Phys. Prac. Suppl., 

140:68-77, 2005. 

[97] Masataka Okamoto. Full determination of the CKM matrix using recent results 

from lattice QCD. PaS, LAT2005:013, 2006. 

[98] Tetsuya Onogi. Heavy flavor physics from lattice QCD. PaS, LAT2006:017, 

2006. 

[99] Michele Della Marte. Standard Model parameters and heavy quarks on the 

lattice. PaS, LAT2007:008, 2007. 

[100] Elvira Gamiz. Heavy flavour phenomenology from lattice QCD. 2008. 

[101] K. C. Bowler et al. Heavy Baryon Specroscopy from the Lattice. Phys. Rev., 

D54:3619-3633, 1996. 

[102] J. M. Flynn, F. Mescia, and Abdullah Shams Bin Tariq. Spectroscopy of doubly

charmed baryons in lattice QCD. JHEP, 07:066, 2003. 

[103] Ting-Wai Chiu and Tung-Han Hsieh. Baryon masses in lattice QCD with exact 

chiral symmetry. Nucl. Phys., A755:471-474, 2005. 

[104] Randy Lewis, Nilmani Mathur, and R. M. Woloshyn. Charmed baryons in 

lattice QCD. Phys. Rev., D64:094509, 2001. 

[105] Nilmani Mathur, Randy Lewis, and R. M. Woloshyn. Charmed and bottom 

baryons from lattice NRQCD. Phys. Rev., D66:014502, 2002. 

146 



[106] Heechang Na and Steven A. Gottlieb. Charm and bottom heavy baryon mass 

spectrum from lattice QCD with 2+1 flavors. PaS, LAT2007:124, 2007. 

[107] Liuming Liu, Huey-Wen Lin, and Kostas Orginos. Charmed Hadron Interac

tions. PaS, LATTICE2008:112, 2008. 

[108] Gilberta Colangelo, Stephan Durr, and Christoph Haefeli. Finite volume effects 

for meson masses and decay constants. Nucl. Phys., B721:136-174, 2005. 

[109] Mark B. Wise. Chiral perturbation theory for hadrons containing a heavy quark. 

Phys. Rev., D45:2188-2191, 1992. 

[110] Gustavo Burdman and John F. Donoghue. Union of chiral and heavy quark 

symmetries. Phys. Lett., B280:287-291, 1992. 

[111] Tung-Mow Yan et al. Heavy quark symmetry and chiral dynamics. Phys. Rev., 

D46:1148-1164, 1992. 

[112] Peter L. Cho. Chiral perturbation theory for hadrons containing a heavy quark: 

The Sequel. Phys. Lett., B285:145-152, 1992. 

[113] Peter L. Cho. Heavy hadron chiral perturbation theory. Nucl. Phys., B396:183-

204, 1993. 

[114] Martin J. Savage. Charmed baryon masses in chiral perturbation theory. Phys. 

Lett., B359: 189-193, 1995. 

[115] Jie Hu and Thomas Mehen. Chiral Lagrangian with heavy quark-diquark sym

metry. Phys. Rev., D73:054003, 2006. 

[116] Martin J. Savage. Heavy-meson observables at one-loop in partially quenched 

chiral perturbation theory. Phys. Rev., D65:034014, 2002. 

147 



[117] Thomas Mehen and Brian C. Tiburzi. Doubly heavy baryons and quark-diquark 

symmetry in quenched and partially quenched chiral perturbation theory. Phys. 

Rev., D74:054505, 2006. 

[118] Brian C. Tiburzi and Andre Walker-Loud. Hyperons in Two Flavor Chiral 

Perturbation Theory. Phys. Lett., B669:246-253, 2008. 

[119] C. Aubin et al. Light pseudoscalar decay constants, quark masses, and low 

energy constants from three-flavor lattice QCD. Phys. Rev., D70:114501, 2004. 

[120] Silas R. Beane, Paulo F. Bedaque, Kostas Orginos, and Martin J. Savage. I = 

2 pi pi scattering from fully-dynamical mixed-action lattice QCD. Phys. Rev., 

D73:054503, 2006. 

[121] A. Bazavov et al. Full nonperturbative QCD simulations with 2+1 flavors of 

improved staggered quarks. 2009. 

[122] Jozef J. Dudek, Robert G. Edwards, Nilmani Mathur, and David G. Richards. 

Charmonium excited state spectrum in lattice QCD. Phys. Rev., D77:034501, 

2008. 

[123] Benjamin Grinstein. THE STATIC QUARK EFFECTIVE THEORY. Nucl. 

Phys., B339:253-268, 1990. 

[124] Adam F. Falk, Howard Georgi, Benjamin Grinstein, and Mark B. Wise. HEAVY 

MESON FORM-FACTORS FROM QCD. Nucl. Phys., B343:1-13, 1990. 

[125] Huey-Wen Lin. Charmed spectroscopy from a nonperturbatively determined 

relativistic heavy quark action in full QCD. PaS, LAT:184, 2006. 

[126] L. Levkova and Carleton E. DeTar. Contributions of charm anihilation to the 

hyperfine splitting in charmonium. 2008. 

148 



[127] Steven Gottlieb et al. Onium masses with three flavors of dynamical quarks. 

PaS, LAT2005:203, 2006. 

[128] Fu-Jiun Jiang and Brian C. Tiburzi. Hyperon Axial Charges in Two-Flavor 

Chiral Perturbation Theory. 2009. 

[129] Maxim Mai, Peter C. Bruns, Bastian Kubis, and Ulf-G. Meissner. Aspects of 

meson-baryon scattering in three- and two- flavor chiral perturbation theory. 

2009. 

[130] B. C. Tiburzi. Two-Flavor Chiral Perturbation Theory for Hyperons. 2009. 

[131] Andre Walker-Loud. New lessons from the nucleon mass, lattice QCD and 

heavy baryon chiral perturbation theory. 2008. 

[132] Brian C. Tiburzi and Andre Walker-Loud. Decuplet baryon masses in partially 

quenched chiral perturbation theory. Nucl. Phys., A748:513-536, 2005. 

[133] Elizabeth Ellen Jenkins. Heavy Baryon Masses in the 1/mQ and 1/Nc Expan

sions. Phys. Rev., D54:4515-4531, 1996. 

[134] Roger F. Dashen, Elizabeth Ellen Jenkins, and Aneesh V. Manohar. The 1/N(c) 

expansion for baryons. Phys. Rev., D49:4713-4738, 1994. 

[135] Elizabeth Ellen Jenkins and Richard F. Lebed. Baryon mass splittings in the 

1/ Nc Expansion. Phys. Rev., D52:282-294, 1995. 

[136] Elizabeth Ellen Jenkins, Aneesh V. Manohar, John W. Negele, and Andre 

Walker-Loud. A Lattice Test of 1/ Nc Baryon Mass Relations. 2009. 

[137] B. Aubert et al. Search for doubly charmed baryons Xi/cc+ and Xi/cc++ in 

BABAR. Phys. Rev., D74:011103, 2006. 

149 



[138] R. Chistov et al. Observation of new states decaying into Lambda/c+ K- pi+ 

and Lambda/c+ KO(S) pi-. Phys. Rev. Lett., 97:162001, 2006. 

[139] Mehmet B. Oktay and Andreas S. Kronfeld. New lattice action for heavy quarks. 

Phys. Rev., D78:014504, 2008. 

[140] B. Sheikholeslami and R. Wahlert. Improved Continuum Limit Lattice Action 

for QCD with Wilson Fermions. Nucl. Phys., B259:572, 1985. 

[141] Mark G. Alford, T. Klassen, and P. Lepage. The D234 action for light quarks. 

Nucl. Phys. Proc. Suppl., 47:370-373, 1996. 

[142] Ting-Wai Chiu. Optimal domain-wall fermions. Phys. Rev. Lett., 90:071601, 

2003. 

[143] S. P. Ratti. New results on c-baryons and a search for cc-baryons in FOCUS. 

Nucl. Phys. Proc. Suppl., 115:33-36, 2003. 

[144] Kazuo Yokokawa, Shoichi Sasaki, Tetsuo Hatsuda, and Arata Hayashigaki. 

First Lattice Study of Low-energy Charmonium-hadron interaction. Phys. Rev., 

D7 4:034504, 2006. 

[145] G. Meng et al. Low-energy D*+ D~ Scattering and the Resonance-like Structure 

z+(4430). Phys. Rev., D80:034503, 2009. 

[146] Shi-Lin Zhu. New hadron states. Int. J. Mod. Phys., E17:283, 2008. 

[147] S. J. Brodsky, I. A. Schimidt, and G. F. de Teramond. Nuclear Bound Quarko

nium. Phys. Rev. Lett., 64:1011, 1990. 

[148] M. E. Luke, A. V. Manohar, and M. J. Savage. A QCD calculation of the 

interaction of quarkonium with nuclei. Phys. Lett., B288:355, 1992. 

150 



[ 149 l S. J. Brodsky and G. A. Miller. Is J /Psi-nucleon scattering dominated by the 

gluonic van der waals interaction? Phys. Lett., B412:125, 1997. 

151 


	Charmed Hadron Spectrum and Interactions
	Recommended Citation

	ProQuest Dissertations

