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ABSTRACT

For a  plasma in the collisionless regime, test-particle modelling can lend some 

insight into the macroscopic behavior of the plasma, e.g conductivity and heating. 

A common example for which this technique is used is a  system with electric and 

magnetic fields given by B =  6 y k  -f x y  +  7 Z and E  =  ez, where 6, 7 , and e 

are constant parameters. This model can be used to model plasma behavior near 

neutral lines, ( 7  =  0), as well as current sheets ( 7  — 0, 8 — 0). The integrability 

properties of the particle motion in such fields might affect the plasma’s macroscopic 

behavior, and we have asked the question “For what values of 8, 7 , and e is the 

system integrable?” To answer this question, we have employed Painleve singularity 

analysis, which is an examination of the singularity properties of a test particle’s 

equations of motion in the complex time plane. This analysis has identified two field 

geometries for which the system’s particle dynamics are integrable in terms of the 

second Painleve transcendent: the circular O-line case and the case of the neutral 

sheet configuration. These geometries yield particle dynamics that are integrable in 

the Liouville sense (i.e. there exist the proper number of integrals in involution) in 

an extended phase space which includes the time as a canonical coordinate, and this 

property is also true for nonzero 7 . The singularity property tests also identified a 

large, dense set of X-line and O-line field geometries that yield dynamics that may 

possess the weak Painleve property. In the case of the X-line geometries, this result 

shows little relevance to to the physical nature of the system, but the existence of



a dense set of elliptical O-line geometries with this property may be related to the 

fact that for e positive, one can construct asymptotic solutions in the limit t  —*• oo.

xvii



Painleve Singularity Analysis 

Applied to Charged Particle M otion  

During Reconnection



CH A PTER  ONE

RECONNECTION AND MAGNETIC NULLS

§ l . la  W hat Is Reconnection?

The first mention of the phenomenon of magnetic reconnection can be traced to 

Giovanelli’s work on solar flares [1-3]. Magnetic reconnection is a plasma process 

that has seen intense interest over the past thirty-five years [4]. In our solar system, 

reconnection is considered to be an important mechanism for plasma heating in the 

solar corona [5,6], the Earth’s and other planetary magnetospheres [7-9], as well 

as the study of plasma behavior in comet tails [10]. Outside of our solar system, 

reconnection may be of importance in the study of accretion disks, as well as current 

sheets that occur in interstellar and intergalactic space [11]. In the field of magnetic 

confinement fusion devices, such as tokamaks and stellarators, reconnection can lead 

to instabilities and loss of confinement [12].

A basic understanding of the process of reconnection can be gained by consid

ering a plasma which obeys the generalized version of Ohm’s law[13]:

E  +  - v x B  =  -  j. (1.1.1a)
c  or

1 /JR

V x E  =  ~ 3 T
1 9E 4tt . .

V x B  =  ” 9F +  T 3’ (1-1-1c)

where E  is the electric field in the plasma’s rest frame, v  is the plasma flow velocity 

field, B is the magnetic field, j  is the current, cr is the scalar electrical conductivity



of the plasma, and c is the speed of light. The complete picture of plasma 

processes must also include force and energy balance equations, as well as mass and 

charge conservation laws, but for our purposes, ( l.l.la -c ) are all we need for the 

present discussion.

Taking the curl of (1.1.2), and applying both Faraday’s and Ampere’s laws 

(l.l.lb ,c ) , and neglecting the displacement current term present in (1 .1 .1c), yields 

an expression for the temporal evolution of B:

|  =  V x v x B  +  — . (1.1.2)
at a

The term V X  v X B is related to the convection of the magnetic field with the 

plasma flow, while the term involving the Laplacian of B  describes the diffusion of 

magnetic field lines through the plasma. In the limit of ideal plasma conductivity- 

i.e. (7 - 4  oo— the dominant field evolution process is convection, meaning that the 

plasma and field lines are “frozen” together. This bonding between the magnetic 

field and plasma is a basic component of ideal magnetohydrodynamics (MHD), 

where a fluid element is associated with a single magnetic field line during the 

system’s evolution.

When the second term on the RHS of (1.1.2) is dominant over the convection 

term, the plasma has a finite conductivity, and ideal MHD breaks down. This can 

lead to changes in the magnetic field topology, which can in turn produce strong 

electric fields capable of driving currents and heating the plasma.

From the point of view of magnetic field topology, reconnection will occur 

wherever sudden changes in the magnetic field geometry take place [8]. In particular,



points, curves, or surfaces at which the magnetic field strength is zero will lead to 

reconnection [14]. These regions are called magnetic nulls [15], and are of great 

importance in the study of reconnection in astrophysical plasmas. A simple example 

of a magnetic and electric field combination that will yield a  null is

B =  ^-(Syx. +  xy)  E  =  E 0z, (1.1.3)

where Bo, 8 and L  are constant parameters.

(a) (b) (c)

F ig u re  1 .1 .1 . X-Line Magnetic Fields for Various 8 : 

a) 8 =  b) 8 = 1, c) 8 = 4.

For 8 >  0, the magnetic field lines are hyperbolic, and the 2 -axis is a  neutral 

line, called an X-type null line. The asymptotes for these hyperbolae, indicated by 

the dotted lines in Figure 1 .1 .1 , are called field line separairices. For 8 <  0, the 

field lines are closed and elliptical (Figure 1,1.2), with zero magnetic field along 

the 2-axis a neutral line, which is called an O-type neutral line. For the O-line 

geometry, the z -axis is the field line separatrix. Finally, for the case <5 =  0 (or



8 —» ±oo), the magnetic field lines become straight lines, and the plane x =  0  (or 

y =  0) is a  neutral sheet, as shown in Figure 1.1.3. For the neutral sheet, the field 

line separatrix is the neutral plane itself.

(a)

F ig u re  1.1. 

a)

z

(b) (c)

2. O-Line Magnetic Fields for Various 8 

5 =  - ± , b ) £  =  - l ,  c) 8 = —4.

F igu re  1.1.3. The Neutral Sheet (8 =  0).



6

The connection between these field structures and reconnection can be seen by 

examining the plasma flow near the nulls. If we take Eo, B o, and L  to be positive 

quantities, the wholesale motion of the plasma can be viewed in terms of the E  x B 

drift, which will be derived in the next section. In Figure 1.1.4 the plasma flow field 

lines are represented by bold lines, and depict the trajectories of the E  x B drift 

for 6 = 1 ,  which is the vector field

VE = sv T ^ ( -x* + W)-

Note that for X-type configurations, the plasma flows in towards the null in regions

I and III, and away from the null in regions II and IV. For the O-type null, the

plasma flow is much more simple, with the plasma is focused in towards the null,

which is also the case for the neutral sheet.

i i

h i

IV

F igure  1.1.4. Plasma Flow Field for an X-Line Field.

The aforementioned situation leads to two more specific definitions of recon-



nection. Dungey [16] defines reconnection as a phenomenon which occurs if an 

electric field exists along an X-type null line, Vasyliunas [17] views reconnection as 

a process which occurs when a plasma flow crosses a magnetic field line separatrix.

Magnetic nulls are not the only types of field structures that will allow recon

nection to take place. In fact, in most applications relevant to magnetic confinement 

fusion, magnetic nulls are not the source of reconnection, but rather a  sudden change 

in magnetic field topology. In the case of tearing modes [12], fields given by (1.1.3) 

have an additional shear magnetic field component along the z-axis, and reconnec

tion can still occur. In plasma fusion devices, reconnection will occur when the 

poloidal components of the field exhibit nulls, but the toroidal component of the 

magnetic field, will be nonzero.

§ l .lb  Test-Particle M odelling o f Reconnection

The study of plasmas in the low-collisionality regime lends itself well to test- 

particle modelling [18]. A large ensemble of particles representing the plasma are 

modelled using single-particle equations of motion, and macroscopic quantities such 

as currents and temperature are obtained via appropriate averages over the ensem

ble. This approach has been used to calculate the self-consistent electric field and 

finite conductivity of plasma in an X-line configuration [19,20], as well as plasma 

heating [21].

The test-particle approach simplifies the task of modelling the plasma greatly, 

but the approach raises another set of questions:

Ql: What is the generic behavior of the single-particle equations of motion?



These equations may or may not be integrable. In the case of the X-line case of 

(1.1.3), the particle dynamics appear to be chaotic [20,22]. For O-lines and neutral 

slabs, we will find that the motion is quite regular, and in some cases, it is integrable 

in the Hamiltonian sense (i.e. there exist an appropriate number of integrals that 

are in involution). It is this question that is the central focus of this dissertation.

Q2 : What effect does the answer of Ql have on the macroscopic quantities 

associated with the plasma?

We might find for instance that the transport properties (e.g. electrical con

ductivity a) of the plasma depend on the integrability properties of our test-particle 

system. These issues are outside of the scope of our present work, but we feel that 

they are worthy of investigation. In particular, we would like to apply the results 

of the work contained in this dissertation to the study of neutral sheets [23] and 

O-type neutral lines [24], which are also believed to play important roles in the 

magnetosphere.

The macroscopic behavior of a plasma can be studied in terms of a distribution 

function / ( q ,  p,f). In the noncollisional limit, the plasma’s distribution function 

will satisfy the kinetic equation [13]

Here, q are spatial coordinates, p  are their canonical conjugate momenta, and t 

is the time variable. The test particle trajectories are the characteristics for the 

kinetic equation, which implies that if we know the integrals associated with the 

test-particle motion, we will be able to construct exact solutions to (1.1.4). This fact



gives impetus to the investigation of the integrability properties of the test-particle 

equations of motion for a plasma. There are methods which fall under the title of 

singularity analysis, which can be applied to a system of differential equations to 

determine its propensity for exact solutions. The subject of singularity analysis will 

be developed in the next chapter, and applied to a test-particle model associated 

with reconnection in Chapter Three.

For now, we shall spend the next section reviewing some of the basic concepts 

of plasma physics which are applicable to the present work. This review is included 

for the sake of completeness, and readers who are familiar with the basics of particle 

orbit theory and the use of adiabatic invariants can skip this section, and move on 

to § 1.3, where a test-particle model for reconnection is derived.

§1 .2 a  B asics o f P a rtic le  O rb it T h eo ry  in  P lasm as

The motion of charged particles in magnetic and electric fields is a  basic problem 

in plasma physics. The particle’s equations of motion in Newtonian form are given 

by

m ^  =  ?E +  | v x B ,  (1.2.1)

where r  is the particle’s position, v its velocity, and m and q are the particle’s mass 

and charge, respectively. The electric field E  and magnetic field B  are generally 

functions of both the particle’s position r  and the time t. Within the scope of this 

dissertation, however, we shall take E  to be uniform, and B will be a function of 

the coordinate vector r. It is important to note that we are taking the fields E  

and B in (1.1.1) as given, and will not be attempting to solve for the self-consistent
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magnetic and electric fields.

The most elementary case of (1.2.1) arises when E  is uniform and B =  0, which 

leads to acceleration of the charged particle along the electric field line on which

its initial position lies. If E  =  0 and B is uniform, the motion is simple, but more

interesting. Let B =  Boy, which gives us equations of motion for a test particle of 

mass m  and charge q of the form

m  d i ? =  T Vz (1-2'2a)

cPv
=  0  (1 -2 -26)

(1 .2 .2c)

The second equation in this system tells us that the particle’s velocity along the 

magnetic field, vy is a  constant. The remaining equations form a coupled system 

that can be simplified to obtain equations for vx and vz:

d2vx
dt2 

d?v3

+ floVx =  0 (1.2.3a)

+  =  0, (1.2.3&)

where the quantity flo is called the particle’s gyro frequency, and is defined as

=  (1.2.3c)me

The above system can be solved readily to obtain

vx(t) = vx  cos(Q0t +  7) (1.2.4a)

ur (f) =  v± sin(flo2 +  7)1 (1.2.4a)
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where 7  is a  constant phase, and the quantity i*x is the is the magnitude of the com

ponents of the velocity in the x-z plane, which is called the perpendicular velocity. 

The position of the particle is thus given by

x(t ) = x0 + Pg  sin(fi0< +  7) (1.2.5a)

y(t) = yo+ vyt (1.2.5&)

z(t) = Zo -  p g  COS(fi0< +  7)) (1.2.5c)

where the particle’s initial position is given by (xo,yo,zo), and the quantity pg is

called the particle’s gyroradius, or Larmor radius, and is defined by

P, =  (1-2-5 i )

The particle’s trajectory is thus a simple helix, whose axis is the magnetic field line 

running through the point (zo, 2/o, 20), with radius pg. The point (xq, z0), is called 

the particle’s guiding center. As we shall see, the system (1.2.1) can be studied 

from the point of view of tracking the particle’s guiding center motion if the length 

scale L  over which the magnetic field changes noticeably is greater than the Larmor 

radius pg:

Pg «  L = (1.2.6)

Though the equations of motion (1.2.1) may appear simple, in practice, they 

form a coupled, nonlinear system of ordinary differential equations (ODE’s), that 

will produce particle motion that is complicated, and even chaotic [19,24]. It is 

for this reason that, whenever possible, the study of particle motion in magnetic
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and electric fields is studied in terms of drift motion, as mentioned above. If the 

condition (1 .2 .6 ) is satisfied, the individual drift motions can be used to replace 

the the system’s full equations of motion with a set of equations called the drift, or 

guiding center equations of motion. W hat follows is a  description of the basic drift 

motions that will be encountered in the course of this dissertation.

§1.2b Drift M otions

The presence of both magnetic and electric fields will lead to a drift motion 

that is called the E  x B drift, whose associated velocity is denoted by v e . A simple 

example of this motion can be seen by considering charged-particle motion in a

uniform magnetic field, such as the system (1 .2 .2a-c), but with the addition of a

uniform electric field given by E =  Eqz. The test-particle equations of motion are 

then

(1.2.7a)

3 ? - 0  <1 A » )

d?z qB q qEo .
m dt2 ~  ~ T Vx +  T *  (1.2.7c)

Again, we find that vy is a constant, and (1 .2 .7a,c) can be decoupled to obtain

O 2
-f- SIq̂ vx H—  „ E qB o = 0  (1 .2 .8a)

cB o

+  £l(f*Vz =  0 . (1 .2 .8 &)

„  2 . SV 
l F  +  n ” Vi  + 7b S

d?v,
dt2

Solving for vx and vt  yields

vx(t) = v± cos(£l0t + 7 ) -  (1.2.9a)
Bo
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u*(<) =  sin(Qo< +  7)1 (1.2.9a)

where the second terra in (1.2.9a) is a drift motion along the ~x direction, and is 

called the E x B  drift. The resulting motion for this example is a simple gyromotion 

in the x-z  plane, with the particle’s guiding center moving with constant velocity 

V g  =  ( u j s ,  vVo, 0). In general, this drift velocity is written as

v E =  - ^ E  x  B. ( 1.2.10)

It is interesting to note that this drift velocity is independent of the charge of 

the test particle.

Two types of drift motion will arise if we allow the magnetic field to be in- 

homogeneous; i.e. B =  B (r, y, z). One type of drift motion is a  consequence of 

the fact that the gradient of the field strength is nonzero-the V B drift, while the 

other appears if the field lines are curved, and is called the curvature drift. As we 

shall see, both of these drifts differ from the E X B drift in that they depend on the 

charge of the test particle.

The VJ5 drift can be understood by considering the following simple example. 

Let E  =  0 and B =  B(x)y.  Following the steps used to derive (1.2.8a,b) we find

+ S i2(a:)t>1 +  =  0 (1.2.11a)

^  +  J i V K  +  =  0 . (1.2.116)

Given the assumption that B  is varying slowly over the length scale associated with
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the particle’s motion, we may expand Q(x) as a Taylor series about the particle’s 

guiding center located at (X, Y, Z):
j n

+  ®(P9*)
X

=  SI(X) + ( x -  x ) Q ' ( X )  +  0{pg2).

Using this expansion converts (1.2.11a,b) into

d?vx

Sl(x) =  fi(X ) +  (* -  X ) ^

dt2 

d2v

+  n 2(X)vx =  - Q ' ( X ) v xvz -  2n(X)Sl ' (X)(x  -  X ) v x + 0 { Pa2) (1.2.12a) 

+  n 2(X)vz =  n ' ( X ) v x2 -  2fi(X)f2'(X)(x -  X ) v K + 0 ( Pa2). (1.2.126)
dt2

The terms on the right hand sides of (1.2.12a,b) are small compared to the terms 

on the left hand sides, and can be approximated by using the guiding center values 

for these quantities. Using (1.2.4a,b) and (1.2.5a) to eliminate the these terms, 

and applying basic trigonometric identities leads to  a  pair of inhomogeneous, linear 

second order ODE’s:

^  +  Sl2{X)vx = - |n '( X ) u j . 2 sin[2 {Q(X)t +  7 )] (1.2.13a)

^  +  Q2(X )v z =  ± £ l \X )v ± 2 (3 cos[2(fi(X)t +  7 )] -  l )  (1.2.136)

The above equations can be solved by using standard techniques, which leads to 

the solutions

vx(t) -  cos(f2(X)t +  7 ) +  ^2ff l(X)  +  7)1 (1.2.14a)

vx(t) =  v± sin(Q(X> -f 7 ) -  (cos[2(fi(X)t +  7 )] + l ) . (1.2.14a)

The motion illustrated by (1.2.14a,b) consists locally of the standard guiding center 

oscillations of frequency fl(X ), along with an additional oscillation of frequency
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2 Q(X), and the 2-component of the velocity also has a zero-frequency term which

is of particular interest. Averaging (1.2.14a,b) over one local gyroperiod (i.e. over

a  period of time equal to 2ir/(l(X)), we find that the average velocity is

< vx > =  0

<  Vy  > =  V||

ft'(A >.L 2<  V .  > =
2fi2(X) ‘

The z component of the above equation is called the grad B drift. Recalling the 

definition of the gyrofrequency from (1.2.3c), we may write the above expression in 

a more general form

v v b  =  cW±
(B x V)B 

q B 3
(1.2.15)

where W± = m v±2/ 2 , the kinetic energy of the test particle due to motion perpen

dicular to B.

The drift effects on a particle due to magnetic field line curvature may be 

derived in a similar fashion, and the general form of the drift velocity associated 

with field line curvature, the curvature drift has a general expression given by

v c  =  2cW\
B x (B • V)B 

?B4
(1.2.16)

where W\\ =  mt>||2/2 , the kinetic energy of the test particle due to motion parallel 

to the magnetic field.
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Given the aforementioned types of drift motion, it is possible to express the 

guiding center velocity v<f as

v j  =  v E +  v v b  + v c ,

The drift motion can be derived from a Hamiltonian given by [25]

H i  =  3 L  _j_ nB  +

where uj| is the component of the velocity parallel to the magnetic field and // is 

a quantity called the particle’s m a g n e tic  m o m e n t.  The magnetic moment is the 

action integral associated with the particle’s gyromotion about the field line, and is 

discussed in greater detail in the next section.

§1.2c A diabatic Invariants

As we saw in the previous section, it is possible to simplify the study of particle 

orbits in electric and magnetic fields if these fields are uniform, or vary signifigantly 

on length scales that are much larger than the test particle’s gyroradius. The ability 

to perform this simplification in some regions of the phase space is linked to the 

existence of near-constants that are called a d ia b a tic  in v a r ia n ts  [26,27]. These sere 

quantities that will remain nearly constant during the system’s evolution, as long 

as the magnetic field varies slowly. The two invariants that the system (1.2.1a-c) 

posesses are the m a g n e tic  m o m e n t in v a r ia n t fi, and the p a ra lle l in v a r ia n t  Jy, Using 

the constancy of these quantities, it is possible to simplify the system’s motion by 

averaging out the fast oscillations in the system, and study only its drift motion.

The most common application of adiabatic invariants in plasma physics is the 

use of the conservation of the magnetic moment P to average out the rapid gyration
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of a particle about a field line in favor of its drift motion along and perpendicular to 

the magnetic field. This picture of plasma behavior is called guiding center theory. 

Another common use of an adiabatic invariant to simplify the study of plasma 

phenomena is the use of the parallel invariant J|| to study the mirroring of charged 

particles trapped in a magnetic field, which is the case in the E arth’s radiation belts 

[28,29], as well as in some fusion devices, such as tokamaks and mirror machines 

[30]. The existence of the parallel invariant as a  good adiabatic invariant allows the 

elimination of the bounce motion of a  particle between its mirror points in favor of 

the slower relative motion of the mirror points themselves.

The M agnetic M om ent p

The calculation of drift motions found in §1 .2 b  hinged upon the assumption that 

the spatio-temporal variation of the system’s magnetic field was slow, which leads 

to the conservation of a quantity called the magnetic moment (/,, which is, as men

tioned previously, the action associated with a  charged particle’s gyromotion about 

a magnetic field line:

P = <j) p±dq±,

where px and q± are the momentum and coordinate perpendicular to the magnetic 

field. This quantity can be written more directly as [13]:

(1.2.17)fi = vx
2F ’
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where yj_ is the component of the velocity that is perpendicular to the magnetic 

field.

The quantity p, as defined in (1.2.17), is a  good adiabatic invariant if the 

magnetic field has slow spatio-temporal variations compared to a test particle’s gy- 

romotion; i.e. B  varies on a  time scale much longer than a  test particle’s gyroperiod, 

and the local length scale over which the magnetic field varies is large compared to 

the particle’s gyroradius. Since we are considering only time-independent magnetic 

fields in this dissertation, only the second criterion mentioned above is relevant. An 

estimate of the length scale L  over which the magnetic field changes significantly 

can be obtained by taking the ratio of the magnitude of the gradient of B  to B:

L  S  J L j .  (1.2.18)

Clearly, L is a  function of the system’s coordinates.

The ratio of pg to L  will determine how well the magnetic moment is con

served, and hence, how well guiding-center theory applies to  the system. Since 

both the scale length L  and the particle’s gyroradius pg are functions of the co

ordinates and momenta, we shall call the ratio pgf L  the magnetization function 

T'f®, J/, z tPxiPy^Pz)‘‘

When T ( x , y ,p x ipg,pz) «  1, the particle will be magnetized, and p will be a 

good invariant. When Y ( x ,y ,p x,pyipz) ~  1 , the adiabatic invariance of p  will 

begin to  break, and the particle will become demagnetized, and the guiding-center
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approximation will not be valid. Note that the concept of the gyroradius, as defined 

in §1 .2 a will only have precise meaning if the particle is strongly magnetized; i.e. 

T  «  1 .

An interesting consequence of the adiabatic invariance of fi is the phenomenon 

of mirroring. In order to see this, we introduce the concept of the pitch angle 9, 

which relates the relative sizes of the perpendicular and parallel components of a 

particle’s velocity v  with respect to the magnetic field (Figure 1.2.1):

0 =  a rc ta n (—  ). (1 .2 .2 0 )

V .II

F ig u re  1.2.1. The Pitch Angle 9.

In the absence of an electric field, the existence of mirroring is easy to see by

considering a  charged particle at some position so on a field line with pitch angle

9. If the magnetic magnetic field strength at this point is i?o, then the magnetic 

moment for this particle is

v2 sin2 9 . .fi — —— —  — constant. (1 .2 .2 1 )2Bq
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Now suppose we have the situation illustrated in Figure 1.2.2, where we have the 

magnetic field strength increasing as the particle moves away from so, reaching a 

maximum at the points sjtf, and sm3 , at which the field strength takes on the value 

B m -

B = B

1 2

Figure  1 .2 .2 . Mirror Points and Magnetic Field Strength.

Since the magnetic moment is a constant, we have must have an increase in 

u_l. The fact that the particle’s energy is a constant means that this increase in i>j_ 

must be accompanied by a corresponding decrease in U||, and there is the possibility, 

if B m  is sufficiently large, that eventually, all of the particle’s kinetic energy will 

be in its perpendicular motion, and we will have U|j =  0 , leading to the reflection 

of the particle at or before the points s mi and smj. At these mirror points, the
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particle’s perpendicular velocity is uj_ =  v, leading us to rewrite the expression for 

the particle’s pitch angle at so as

sin2 8 — —  = (1 .2 .2 2 )
v B m  V '

From (1 .2 .2 2 ), we see that if we start at the point so with | sin 9\ >  ^ B q/ B m > the 

particle will be reflected, or trapped, whereas particles with |sin<?| < -*/B q/ B m  will 

not be reflected, and are called passing particles.

The Parallel Invariant J\\

For the trapped particles, the periodic motion between the mirror points is related 

to another conserved quantity that the system posesses, which is called the parallel 

invariant J\y.

(1.2.23)

where p\\ and q\\ are the components of the momentum and coordinate that are along 

the magnetic field, and the integration is performed over one period in this motion. 

Typically, the period of the oscillation of the parallel motion will be somewhat 

longer than the particle’s gyroperiod, which means that field strength variations 

that occur on the same time scale as the particle’s bounce frequency or the same 

length scale as the distance between the mirror points will break this invariant. 

Since the particle’s gyromotion takes place on much shorter spatio-temporal scales, 

the parallel invariant is less robust than the magnetic moment.
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Now that we have some understanding about the basic principles of charged 

particle motion in electric and magnetic fields, we can turn our attention to the 

description of magnetic and electric fields associated with reconnection, and the 

test particle dynamics they generate.

§1.3a T h e  M agnetic  F ield  N e a r  a  N ull

As we saw in § l.la , the topic of reconnection is closely related to the existence of 

magnetic null spaces, such as null points, neutral lines, or neutral sheets. All three 

types of the aforementioned field structures can be described in terms of a simple 

local model of the magnetic field. Consider a  magnetic null that includes the origin 

of a Cartesian coordinate system (x,y,z). Near the null, we can write the magnetic 

induction field B as a Taylor series in the coordinate vector r:

B (r) =  B 0 +  V B r +  VV B : r r  +  - •• (1.3.1)

Since we are interested in nulls, we will let Bo =  0, and given that we wish to focus 

on magnetic field structure near the null itself, we may truncate this expression at 

first order in r , which yields an expression that can be written in matrix form:

I L \ \  Ll2 L \3
B =  L r =  I Zr2i L22 L 23

\  L 31 L32 L 33

With no loss of generality, we can, through the appropriate change of variables, 

express B  in such a fashion that one of the eigenvectors of L is parallel to the z-axis. 

This allows us to write L in this new basis as a  new matrix M:

/ M u  Af12 0  \  ( x \
B =  M r =  M21 M 22 0  M y  . (1.3.2)

\  M 31 M32 M 33 J  \ z  /
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The elements of the matrix M must satisfy the condition that the magnetic field is 

solenoidal, specifically

V • B =  0,

or

Tr(M)  =  0 . (1.3.3)

A complete study of the relationship between the eigenvalues of M and their re

sulting field line topologies can be found in the work of Fukao [32].

§1.3b T est-P artic le  M otion  N ear a  M agnetic  N ull

Now we turn our attention to the issue of charged particle motion in a  magnetic field 

as defined by (1.3.2) Consider a particle with mass m  and charge q placed in the 

magnetic field defined by (1.3.2). In addition to this magnetic field we assume an 

electrostatic field E(x,y, z) =  — V<$(.t, y, z), where $  is the electrostatic potential. 

The equations of motion in Newtonian form are:

(Pr q.  _  _
m —  = - r x B  +  gE, at* c

+ ^  (1 .3 .4a)
dt2 me m

§  =  -? - zB x +  ^  (1.3.46)dt£ me m

- * * . )  +  £ .  (1.3.4c)at£ me m

This set of equations describes the test particle’s motion in this field configuration,

and can be integrated to produce particle trajectories. If, however, we wish to
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understand more about the system’s dynamical properties, such as its phase space

structure and its constants of the motion, we are best served by examining the

system in a Hamiltonian formulation. The first step in this process is to construct 

the test-particle Hamiltonian H ( x ,y , z , p z ,py,px).

H ( x ,y , z ,p x,py,p z) = ^ ( p  -  A )2 - q $ { x , y , z ) ,  (1.3.5a)

Where 4?(ar, y, z) and A  are the electrostatic and magnetic vector potentials, respec

tively:

E  =  — V $ ( x t y, z) (1.3.56)

B =  V x A . (1.3.5c)

The system’s motion is then governed by Hamilton’s equations:

dH n „ .
=  a *  (1-3-6a)

fjtr
Pi =  (1.3.66)

Before we can construct the Hamiltonian and write down Hamilton’s equations, we 

must construct the magnetic vector potential A  appropriate to the field given by 

(1.3.2). One way to accomplish this is to write each of the components of A  as a 

quadratic polynomial in the Cartesian coordinates x, y, and z:

A.{ =  — FijkXjXk, (1.3.7)

where T is a third-rank symmetric tensor; Tijk = Tjkj- Note that we are summing 

over repeated indices, and will adopt this as convention unless we specify otherwise.



Since B =  V X A, it is possible to solve for the elements of T in terms of the elements 

of B:

X dB{ — “ €ij/c . (1.3.8)

Since these relations must hold for all (x,y, z), (1.3.8) leads to nine equations in

volving the elements of I*:

Mil =  T 3 1 2  — r 2 l3  M j 2  =  T 3 2 2  “  P 2 2 3  Miz ~  r 323  — T 2 33

M21 =  T i i 3  — T 3 H  M 22 =  T i2 3  — T 3 1 2  A f2 3  =  1*133 *“  1*313

m3i =r2n - r U2 m 32 =  r2i2 — ri22 M33 = r2i3 — ri23
(1.3.9)

Note that in this formulation of A, the condition that B be solenoidal is satisfied 

identically, as expected:

V ■ B =  M u  d* M 22 d* M 33
(1.3.10)

=  ( r 3i2 — r 2i 3) +  ( r M3 — 1*312) +  (1*213 — 1*123) — 0.

In addition to the nine equations described above in (1.3.9), we impose the 

gauge restriction that A  and the electric potential $(x ,y ,  z) satisfy the Lorentz 

condition:

0 $
V .A  +  ^ 0 ,

which, for an electrostatic system, implies

V • A  =  0. (1.3.11)

In terms of the tensor Tijk, we have
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Since this equation must apply for all (x,y, z), this leads to three conditions on the 

elements of T:
T ill +  P212 +  T313 =  0

I 'm  +  r 222 +  r  323 =  0

r i i s  +  r  223 +  P333 =  0

(1.3.13)

The tensor Ty* has 33 =  27 elements, nine of which can be determined by 

the fact that Fyjt is symmetric in its second and third indices. Equations (1.3.9) 

and (1.3.13) comprise a set of twelve equations which must be satisfied for all 

(x,y , z). This means that six of the remaining elements of Ty* are undetermined, 

and must be provided in order to determine Ty* completely. These six constants 

are related to gauge freedom, since we can always perform a gauge transformation 

A  —> A ; =  A +  VA, where the gauge function A(x, y t z) is

A (x ,y , z )  =  G ix3 + G2y 3 + G^z3 + G4x 2y + G 5x2z + G 6y2x + G 7y2z+ G sz2x + G 9z'2y ,

where the parameters {G i,. . . ,  Gg} are constants. The condition V • A ' =  0 will 

determine three of these constants, and the remaining six are arbitrary.

Given the vector potential A  and the electrostatic potential 4?(a:, y, z), it is a 

simple task to construct the system’s Hamiltonian H ( x ,y , z ,p x ,py,ps):

H ( x ,y , z ,p x,p y,p z) =  ^  X X  Pi ~  2^ i j k x j x k j  + q $ {x ,y , z ) .
i= 1 '  '

(1.3.14)

The equations of motion in Hamiltonian form are thus

®* =  — (Pi “  -%-TijkXjX}:) (1.3.15o)
771 ZC



Pi -  me &  ~  YcVii kXi Xk) f a : r i ikXi Xk Qx . ' (1.3.156)

where in the second equation, the index i  is fixed (no summation is performed over 

this index).

§1.4 A Sim ple M odel For N eutral Lines and N eutral Sheets

A simple model that produces the reconnection process described in § 1.1 is the 

field combination

B =  ^ - ( S y x  +  xy)  (1.4.1a)

E  =  E qz, (1.4.16)

where Bo, Eo, S, and L  are constant parameters. A vector potential associated with 

(1.4.1a) is

A  =  h6y* -  «*)S
* (1.4.2a)

=  $(x ,y)z,

i.e.

T322 — S, T3H =  —1 ,

and the rest of the Tyjt are zero. The function ’f'fx, y )  is called the f lu x  fu n c tio n .  

An electrostatic potential that generates (1.4.1b) is given by

$ ( x , y , z )  =  —  E q z .  (1.4.26)

The Hamiltonian for a charged test particle moving in the fields given by (1.4.la ,b)
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The Hamiltonian equations of motion are thus

A _  p* 
m

(1.4.4a)

a
sn (1.4.46)

p z  fio , 2 t  2 \ 
m  2L  ~ (1.4.4c)

p x = L  x p z  +  2 L 2 x ( 6 y £ x *) (1.4.4d)

• «T7lilo tc 2 2 \ Py = o L VPz 6  2L2  y { o y  x £) (1.4.4e)

p z =  qE0, (1-4.4/)

where the quantity S7o is defined as

qBo
me

The above set of equations can be simplified by transforming the system to dimen- 

sionless variables:

x' =  Lx  px = mLUoPx

t  _  —
fio V ~  Ly py — mLQopy

q = V ^ & C l 0q T. .  (L 4*5)z — Lz  p~ = mLlloPz

a  =  m lW 6  B  =  y | SJoB  E  =

This transformation leads to the dimensionless system whose magnetic and electric 

fields are given by
B =  Syx  +  xy

(1.4.6)
E  =  62,

where e =  E q is a dimensionless constant.
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The test particle Hamiltonian in our set of dimensionless variables is

2n

* - 3
P x 2 + Py2 +  P̂~* -  ^(Sy2 -  x2 ĵ J -  K Z , (1-4.7)

where k =  eg. The Hamiltonian equations of motion are thus

dx
-j= =  Px (1.4.8a)

=  Py (1.4.86)

^  =  Pz +  ^ (S2 -  6y2), (1.4.8c)

^  =  -ip"* +  ^x (6y2 -  x2) (1.4.8d)
at -J

^  =  J’JP: -  S^P(S»2 -  S2) (1.4.8e)

^  C1-4-8/ )

From this point forward, we shall drop the tildes from our variables, and use only

the dimensionless variables defined in (1.4.6) for the rest of this discussion.

It is worthwhile to discuss briefly some of the basic quantities associated with

the test particle model given by (1.4.6-8). The magnitude of B is simply B  =

■\fS2y2 +  x2, and the unit vectors parallel and perpendicular to B are
- B 8y „ x  „

~B = ~BX ~B

®J.i =  “ X +  jp y  (1.4.9)

e j_2 =  z.
These unit vectors, along with a sample field line are illustrated in Figure 1.4.1.

Note that this set of unit vectors {b, ej., ej_3} form a right-handed frame, and in

particular,

bxe_L l=e_L3, e_L1 xe_L2 = b ,  ej.2x b  =  e±1. (1.4.10)
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Ab

F igu re  1.4.1. Unit Vectors b, e j.,, and e_L2.

Given the set of unit vectors (l,2.4a-c), and recalling that the components of 

the velocity are given by (1.4.4a-c), we can write vj_ as

v± = [ ~ x p x x  + S y p y  y] + P* + ~ 6y2} (1.4.11)

In light of the above information, the magnetic moment p defined in (1.2.2) is

2
p  = (1.4.12)~  x2px2 + 82y2pv2 +  B 2 ( p z +  ^{x 2 -  Sy2) ĵ

The quantity p, as defined in (1.4.12), is a good adiabatic invariant if the 

magnetic field varies slowly in time and length scale over which the magnetic field 

varies is large compared to the particle’s gyroradius. The gradient of B  is

V B  -  +  $2yy)-

Therefore the length scale L  over which B  changes significantly is
B

L = \VB\

=  B 3 (s2 +  6y ) " * .
(1.4.13)
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In our dimensionless units defined above, particle’s gyroradius pg is simply

v_L
Ps B  •

Recalling the value of uj_ given in (1.4.11), we find the particle’s gyroradius to be

Pa B 2 x lP x 2 + 82y2py2 + £ 2 ^>* +  ^ (s 2 - 6 y 2)^ J . (1.4.14)

The ratio of pg to L  will determine how well the magnetic moment is conserved, 

and hence, how well guiding-center theory applies to the system. Recalling the 

definition of the magnetization function T (x ,y ,p r ,pj,,p2) from (1.2.19), we find 

that T is a  complicated function of the coordinates and momenta. Recall that 

when T  «  1, the particle will be magnetized, and p will be a good invariant. 

When Y ~  1, the adiabatic invariance of p will begin to break, and the test particle 

will become demagnetized. Figure 1.4.2 illustrates surfaces of constant Y for various 

field configurations. The shaded regions are the unmagnetized regions; i.e. regions 

where Y > 1 .
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(a) ( b ) (c)

(d) (e) (f)

F igu re  1.4.2 Unmagnetized Regions for Various S'.

(a) 6  =  1, (b) S  =  1, (c) 5  =  4, (d) S =  - i ,  (e) 5  =  - 1, ( f )  S =  -4 .

In the case of open field line configurations (i.e. 6 > 0), the unmagnetized 

region can act as a scattering center. Recalling Figure 1.1.4, we see that if the 

uniform electric field e > 0 (e <  0 ), charged particles start in a region where ’3/ < 0 

(\& >  0), and will be carried in towards the unmagnetized region by the E x B drift:

vE =
ec

(—a;x +  S y y ) . (1.4.15)
S2y 2 +  x 2

Upon entering the unmagnetized region, the test particle will experience strong 

acceleration by the electric field, resulting in a sharp increase in its kinetic energy.
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The particle will exit the unmagnetized region and drift away, carried by the E  x B 

drift into a region where the flux function has changed sign from its original value.

The aforementioned motion shows an acute sensitivity to initial conditions, 

which was demonstrated by Moses, Finn, and Ling [21], This sesitivity can be seen 

by starting an ensemble of test particles on a magnetic field line with \P(x yy ) =  \&o> 

and evolving the individual particles forward until each of them encounters the 

outgoing flux surface 'Pfa:, y) = —’Po, and then measuring 1 ) the kinetic energy of 

the test particle, or 2 ) the travel time from the initial flux surface to the outgoing 

flux surface, i.e. the time delay. A plot of exit kinetic energy versus initial position 

along the initial flux surface (or impact parameter) is shown in Figure 1.4.3a. Note 

the fine structure in this graph, which persists when the plot is magnified in Figure 

1.4.3b. This sensitivity to initial conditions is called irregular or chaotic scattering 

[33,34], which is a common occurence in X-type null line configurations [2 1 ].

0.0030

0,0010

0.0050 .000
^ 8=0

0.010

F ig u re  1.4.3a Final Kinetic Energy vs. Impact Parameter (6 =  1).
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0.0030

^  0.0020

0.0010

0 .0000  1----
- 0.0010 0.00100.0000

^ 8=0

F igure  1.4.3b Detail of Figure 1.4.3a.

An estimate of the time scale on which a test particle passes from its initial flux 

surface ^(®o,t/o) =  'Jo to an outgoing flux surface = —'Jo can be obtained

by examining the implicit time dependence of the flux function 'Jfar, y):

( f  L b =  5 ( S B J Sy2 -  x 2 )  =  *■"» -

Recalling the value of ve from (1.4.15), we find

and thus the time scale on which the particle drifts into the vicinity of the null is 

T0 =  'Jo/e. The values of the time delay are thus on the order of 2To-

In the case of closed field lines, the E  x B drift can act as a strong focusing 

agent, and in chapters Four and Five, we will be investigating the sensitivity to 

intial conditions of particle dynamics in these configurations.



In summary, we wish to examine the effect of magnetic reconnection on plasma 

in the low-collisionality limit using particle models. The macroscopic behavior of the 

plasma in this limit may be linked to the integrability properties of the test particle 

equations of motion associated with the particle model. Analytical methods for 

examining such models exist; in particular, we will be applying singularity analysis 

to examine the integrability properties of (1.4.4a-f). These analytical tools will help 

us identify parameter regimes (i.e. sets of 6 and e), and hence, field structures, for 

which (1.4.4a-f) may be integrable. These analytical tools will be developed in the 

next chapter, and will be applied to particle motion during reconnection in Chapter 

Three.



C H A P T E R  T W O  

INTEGRABILITY AND SINGULARITY ANALYSIS

§2 .1  D y n am ica l S ystem s an d  In teg ra b ility

The term integrability has many subtly different meanings in the field of dy

namical systems, and it is equally true that the term dynamical system also has 

many different interpretations. W hat follows is a short description of the multifold 

meanings of these terms, and their relationship to the problem at hand.

There are many types of dynamical systems; a few examples of which are listed 

below:

T Y P E  E X A M P L E

System of O.D.E.’s Hamilton’s Equations

Partial Differential Equation Nonlinear Schrodinger Equation

Integral Equation Propagation of waves through an

inhomogeneous medium 

Finite Difference Equation Quadratic Map

For our purposes, we will only consider dynamical systems that are represented 

by a system of first-order O.D.E.’s with independent variable t, and dependent 

variables {ari, X2, . . . ,  xat} of the form
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If the functions F,- are all independent of t, then the system (2.1.1) is called 

autonomous. In the case of higher-order ODE’s, it is always possible to reduce 

them to a system of first-order ODE’s. If the system (2.1.1) is not autonomous, 

it is possible to convert the system to an autonomous system by treating t as a 

dependent variable, and defining a new independent variable s; a process that is 

simply that of extending the phase space of (2.1.1) [35].

In particular, we are interested in Hamiltonian systems in phase space with 

N  degrees of freedom that have a  Hamiltonian H , coordinates {<71, 92» • • •»?at}, 

momenta {pi,P2i • • ■ iPiv} canonical time t :

H  =  jy(gi,ff2 ,.. .»ffjv,Pi,P2, . . . ,Pjv)  (2 .1 .2a)

«■' = ff <-2-1-2b)

Pi -  - g ^ .  (2.1.2c)

If the Hamiltonian given in (2.1.2a) is independent of t, then the system (2.1.2a-c) 

is autonomous.

For autonomous Hamiltonian systems, the term integrability is related to - but 

not equivalent to-the issue of solvability of the differential equations themselves. 

Solvability is the ability to write down the solutions to the systems of O.D.E.’s in

closed form, that is, in terms of elementary or special functions. A simple, but

interesting example of a Hamiltonian system of this type is the pendulum:

H(q,p) = J  + cos (5 ) (2.1.3a)

| - P  (2-1» )
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^y- =  sin(g) (2.1.3c)
at

The system (2.1.3b-c) is equivalent to the second order ODE

d?q . , v ■ ^  = s m ( q ) .

This equation is solvable in terms of Jacobi elliptic functions [36].

The term integrability, in the context of Hamiltonian mechanics [37] is a prop

erty posessed by certain special types of Hamiltonian systems. Consider a  system 

with N  degrees of freedom with coordinates and momenta given by q  =  ( 5 1 . . . ,  qs)  

and p  =  (pi . , .  , p n ) .  For such a system, integrability is the existence of a set of 

N  — 1 integrals of the motion { / i , / 2, • -. ,7 n - i} , which, along with the Hamiltonian 

H,  are in involution:

{ * , ! > }  =  0 ,  =  v ; , j e { i , 2 , . . . , j v - i } ,

(2.1.4)

where {A ,B }  is the Poisson bracket:

l A B \ - d A d B  d A 9 B  (2151
^ ‘ - W . d p i  dP i aqt' (2-1-5)

with an implied summation over the repeated index i. These JV — 1 integrals, or

actions are global constants of the motion, and along with H , allow us to construct

a  set of N  angles Bi using the Hamilton-Jacobi procedure [37], thus providing a 

solution to the system in the action-angle representation. For a  given Hamiltonian 

system (2 .1 .2 a-c), the chances of actually finding the appropriate canonical transfor

mation to these action-angle variables from the original variables is normally quite 

slim, and in most cases does not exist.



39

Autonomous Hamiltonian systems that possess a complete set of integrals that 

are in involution are said to possess the property of Liouville integrability. Liouville 

integrability is the definition of integrability most commonly used by physicists, and 

is the most restrictive definition of the term [38].

Another desirable property of systems that are Liouville integrable is the sim

plicity of their orbits in the action-angle representation. For such a system with 

N  degrees of freedom, whose motion is bounded, the trajectories associated with a 

given value of H  lie on a torus of genus N  in the 2iV-dimensional phase space.

The next least restrictive definitions involve the notion of algebraic integrability. 

This concept has been put forward by Yoshida [39,40,41] and Adler and Van Moer- 

becke [42]. A system is algebraically integrable if it is possible to construct N  — 1 

constants of the motion that are rational functions of the phase space coordinates. 

Note that there is no restriction that the constants of the motion are in involution. 

A diagnostic for this particular type of integrability lies in the system’s Kowalevski 

exponents (which are defined in § 2.4); if the system’s Kowalevski exponents are all 

rational, then the system under consideration is algebraically integrable.

A further refinement of algebraic integrability is the concept of complete al

gebraic integrability, as defined by Adler and van Moerbecke. An system with N  

degrees of freedom possesses complete algebraic integrability if it possesses N  — 1 

rational invariants that are in involution, and the solutions to the system can be 

expressed in terms of Abelian integrals [42]. This extra restriction allows for the 

construction of a rigorous connection between the results of singularity analysis
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and the topological structure of the system’s phase space trajectories. In particu

lar, it can be shown that systems that possess complete algebraic integrability have 

trajectories that lie on a  complex torus of genus 2N  [42,43].

These previously discussed concepts of integrability are global in that they 

address a generic property of the system for the whole complex time domain. There 

are still less restrictive types of integrability, which include 1 ) systems that allow 

the construction of analytic integrals for only limited domains in the complex t- 

plane, 2 ) systems such as a particle in a potential decreasing sufficiently fast that 

the particle is asymptotically free [44], and 3) systems that are integrable subject 

to certain constraints, such as a  zero-energy constraint [45].

A less restrictive definition of integrability is complex analytic integrability. 

This definition of integrability is the one most commonly used by workers in the field 

of singularity analysis, is the property of a system that allows for the construction of 

the solutions to the equations of motion in terms of Laurent series. A diagnostic for 

this type of integrability is a test for the Painleve property, which will be discussed 

in §2.3. This type of integrability contains no guarantees of the existence of a 

complete set of invariants in involution, nor does it tell us anything directly about 

the topological structure of the system’s phase space trajectories.
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§2.2 S ingu larity  A nalysis

The traditional approach to the integrability of systems of ODE’s is to search 

for solutions to the equations in terms of elementary or known special functions, 

with the point of view that the system evolves in the real time domain. Another 

approach to this problem is to allow the time variable t to be complex, and then 

examine the local behavior of the differential equations and their solutions in the 

complex time plane, the idea being that if we can obtain a solution locally, it may 

be possible to construct a more global solution via analytic continuation applied to 

the local solution. This attack on the problem was originated by Cauchy [46], and 

was pushed further by Painleve and his co-workers [47,48] The implementation of 

this approach demands the knowledge of the locations and types of singularities in 

the i-plane that the system possesses.

Classification o f  singularities

In terms of the location of the singularity, two general classes of singularities 

appear in the complex f-plane for systems of ODE’s: fixed and movable. Fixed 

singularities are a consequence of the mathematical structure of the equations in 

question, while movable singularities have their positions determined by the initial 

conditions.

A simple example of a system that exibits a fixed singularity in the complex 

time domain is [38]
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This equation can be solved simply to obtain

x(t) — A ( t - t *)x,

where A is a constant. The singular point for this system is located at t =  <*, and 

the particular type of singular point that the function x(t) possesses depends on 

the value of A. If A is a positive integer, the function a:(i) is holomorphic, and the 

point t  = is a zero of r(f). If A is a  negative integer, t =  i* is a  pole of x(t). If 

A is a  rational number, then t = t* is an algebraic branch point of the system, and 

if A is irrational, or has a nonzero imaginary part, then t = i* is a transcendental 

branch point.

Systems of linear ODE’s can only possess fixed singularities [38,43,49]. When 

we examine nonlinear systems, however, it is possible to encounter movable sin

gularities. Movable singularities are singularities whose position depends on the 

system’s initial conditions. An example of a  nonlinear system that has a movable 

singularity is the equation [38]

dx . i _ t
7 t = Xx *•

where A is a constant. The solution to this equation is

x(t) =  (t -  f0)A.

In this case, the location of the singularity tfo is not provided by the form of the 

differential equation, but rather by the initial condition; i.e. io =  C—̂ o)1̂ -  The 

actual type of singularity at t — to again depends on the value of A, yielding an
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analytic point for A a positive integer, a  movable pole for A a negative integer, a 

movable algebraic branch point for A rational, or a movable transcendental branch 

point for other values of A not mentioned above.

Other types of singularities not mentioned above include essential singularities 

and logarithmic singularities. An essential singularity is best understood with ref

erence to the Laurent series expansion of a function of a complex variable. Consider 

an function f(t) that is analytic in some punctured neighborhood with radius e and 

center t  =  with this point not in the domain of /(<). In this neighborhood, /  

can be written as
n = o o

f ( t )  =  ^ 2  d n ( t - t o ) n , ( 2 . 2 . 1 )
n = —oo

with the understanding that for some n < 0, an ^  0. If there exists some value of n, 

n = N , N  < 0 for which an = 0 for all values of n < N ,  then f  has a removable pole 

of multiplicity N .  If no such special value of n exists, /  has an essential singularity 

at t  =  fo* An example of an ODE that has an essential singularity is the equation

dx _  x 
dt (t — to)2 '

In this case the solution to this equation,

x(t) =  Ce'-'o

has an essential singularity at t  = to.

In addition to the aforementioned isolated, singularities, singularities may occur 

on curves in the complex plane, or even more complicated sets, such as the fractal 

illustrated in Figure 2.2.1.
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S in g u la rity  A nalysis and  th e  P ain leve  P ro p e r ty

Given the knowledge of the locations and types of singularities a  system of ODE’s 

possesses, it is natural to wonder whether or not this information can help determine 

the integrability properties of the system under consideration. Painleve put forward 

the following conjecture:

P a in leve  C on jec tu re : If a  system of ODE’s (2.1.1) has only poles as its movable 

singularities, the system may be more readily integrated than systems of ODE’s 

that possess movable branch points or movable logarithmic singularities.

Systems that have this simple type of singularity structure are said to possess 

the Painleve property. Further support for this conjecture can be found in the fact 

that many chaotic and nonintegrable solutions exhibit singularity structures that 

are complicated, either domains that are multi-sheeted, or infinitely-sheeted in the 

case of logarithmic singularities, or dense fractal sets of singularities in the complex 

plane, called natural boundaries [50]. These natural boundaries are particularly 

troublesome in that they act as barriers that often prevent the analytic continuation 

of local solutions. For example, consider the Henon- Heiles system

H  =  \ (P  i 2 +  P22) +  5i2?2 +  |g 2 3

Analytic continuation from a solution (q(t), p(f)} leads to the discovery of a com

plicated singularity structure, as shown in Figure 2.1.1 [50], The shape of the fractal 

barriers depicted in this figure are sensitive to the value of the parameter e as well 

as the intitial conditions.
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6 =  - 1.0 e  =  — 8.0

F ig u re  2 .1 .1 . Natural Boundaries for the Henon-Heilles System (From [50]). 

Painleve’s initial approach to the study of the singularity structure of ODE’s 

began with a study of first order differential equations of the form

$  = /(M).

where /  is a  rational function of x , and analytic in t. His goal was to find all of the 

differential equations of this form that had only movable poles as their singulari

ties. The only first-order ODE that possesses the Painleve property is the Ricatti 

equation [38,49]

^ = f o ( t ) + M t ) x  + M t ) x 2, (2.2.2)

where the functions /,• are all analytic functions of t. In fact, this equation can be
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linearized by making the change of variable

ii

and substituting this expression into (2.2.2), we get a linear second order ODE

which is a linear, second order ODE, and thus possesses the Painleve property, since 

linear ODE’s can admit only fixed singularities.

Further work by Painleve [48] focused on the nature of second-order ODE’s of 

the form

~ = F ( t , x , x ) ,  (2.2.3)

where F  is a  function that is analytic in t, algebraic in x, and rational in x. Through 

an exhaustive analysis of these systems, Painleve et al discovered fifty basic types 

of ODE’s of the form (2.2.3) that had all of their branch points and essential singu

larities fixed, having only poles as their movable singularities. Of these fifty classes, 

forty-four had solutions in terms of elementary functions, or could be integrated via 

quadratures or linearization, while the remaining six were irreducible, and could be 

solved only by the introduction of six new transcendental functions that are called 

the Painleve Transcendents [49].

Various attempts have been made at classifying the singularity structure of 

higher-order ODE’s [51-56], but such endeavors have met with less success, and 

currently there exists no complete scheme for classifying third-or-higher-order sys

tems of ODE’s that possess the Painleve property [43]. Studies focusing on these
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systems have also shown that they often exhibit dense singularity structures such 

as the natural boundaries discussed previously [38,57],

The significance of the Painleve property lies in that it appears to be a  sufficient, 

but not necessary, condition for a system of ODE’s to be analytically integrable 

[38,49], A rigorous proof of this assertion does not exist. Currently, however, there 

exists no counterexample to this conjecture [38], Again, it is necessary to note that 

if a  given system does not possess the Painleve property, it may still be integrable, 

as we will see in the next section. This is of particular importance with respect to 

systems that possess movable branch points, but, through a change of dependent 

variable, can be transformed into systems possessing the Painleve property. Such 

systems are often found to possess what is called the “weak-Painleve” property, 

which will be discussed further in the next section.

Singularity A nalysis “Success Stories”

In the application of singularity analysis on a system of ODE’s of the form

(2 .2 .1 ) we often find tha t the constant parameters associated with the system can 

often determine whether or not a  system will possesses the Painleve property. This 

sensitivity to the values of the parameters associated with the model has presented 

itself in a number of interesting examples.

1 ) Kowalevskaya’s study of the top [58], which is the first known application 

of singularity analysis to a physical problem, lead to the discovery of a previously 

unknown integrable case for this system.

2 ) A study of the Henon-Heiles system yielded a set of previously unknown
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integrable cases that are linked to specific values of constant parameters associated 

with the model [59].

3) The discovery of an integrable case of the three-dimensional Lotka-Volterra 

system [60],

4) The discovery of parameter regimes that yield integrable cases for the Lorenz 

system [61]. Example 1 ) was found by evaluating the system’s Kowalevski expo

nents, and is the approach that has evolved into Yoshida singularity analysis, while 

Examples 2 ) - 4) were found through the application of an algorithmic technique 

that was originally used to study the integrability properties of partial differential 

equations. This technique is called the Ablowitz-Ramani-Segur (ARS) algorithm, 

and is described in detail in the next section.

§2.3 The Ablowitz-Ram ani-Segur (ARS) A lgorithm

Consider a system of N  differential equations

*

— = F j(w l t W 2,...,W ff),i -  1 ,2 , . . . ,  JV. (2.3.1)

The parameters pi are the orders of the individual equations in the system; for 

example, a  physical system’s equations of motion, might have N  =  3 and p,- =  

2 , i =  1,2,3 (Newtonian form), or N  =  6 , and pt- =  1 ,i  =  1 , . . . ,6  (Hamiltonian 

form).

Determining whether or not the system of nonlinear ordinary differential equa

tions (2.3.1) posesses solutions that are expressable in terms of Laurent series about 

its movable nonessential singularities is a nontrivial task. The direct approach is to
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assume tha t each of the functions we seek iwt- has a Laurent series expansion about 

a  given point to of the form

OO
w{(t) =  ati(t -  i o ^ ^ C i n i t  -  t 0)n, (2.3.2)

n=0

where the coefficients Cin are constants. Substitution of (2.3.2) into (2.3.1) provides 

us with the means to determine all of the C,n except for the N  arbitrary constants 

that are sitting somewhere in the Laurent series. This process is highly laborious, 

and, in terms of its success rate, is a poor investment of our time.

Fortunately, however, there exists an algorithmic approach tha t eliminates 

many unsuitable candidate systems with much less effort: the Ablowitz - Ramani 

- Segur (ARS) Algorithm [38,49,62,63]. This algorithm was originally developed to 

determine whether or not a  nonlinear PDE admits either algebraic or logarithmic 

branch points. The algorithm is a three-step process in which an equation or sys

tem  of equations is examined near a hypothetical singularity in the complex time 

plane in terms of I) its leading-order behaviors, II) the powers in the series (2.3.2) 

at which arbitrary constants will arise, and III) the existence of nondominant loga

rithmic singularities. The steps I) - III) can be viewed as progressively finer selves, 

with the amount of effort expended to carry out each step increasing dramatically. 

Still, nibbling at a  problem employing the ARS algorithm is far better than biting 

off more than we can chew dealing with (2.3.2) from the outset.

W hat follows is a step-by-step description of the algorithm.

Step I: Leading-Order-Beliaviors

Consider an arbitrary movable singular point to of (2.3.1). In this step of the
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algorithm, we wish to determine the leading-order behavior of (2.3.2). That is, we 

will determine the exponents and based on their values, decide on whether or not 

to continue on to step II. Define t  —  t  — t o, and approximate each of the solutions 

to (2.3.1) W i ( t )  by

~  (2.3.3)

subject to the assumption that at least one of the /?,• has i2e(/?,) < 0. We now 

substitute (2.3.3) into (2.3.1), and order the terms in the resulting equations in 

powers of r ,  searching for all sets of /?,- such that two or more terms in each of the 

equations (2.3.1) balance at leading order in r , with all other terms being higher- 

order in t .  Each choice of a set of suitable values of the /3; leads to a set of relations 

that define a corresponding set of a,-. Such a  set of coefficients and exponents 

{ a i , . . .  ,/? i,. . .  ,/3n } is called a leading-order-behavior for the system (2.3.1). For 

a given system of differential equations, there may be a large number of possible 

leading order behaviors, and each one must be examined.

The values of the exponents /?,- allow us to draw some preliminary conclusions 

about the system (2.3.1), using the following rules:

1) If all of the /?,• are integers, then we continue on to step II of the algorithm.

2) If one or more of the exponents Pi are rational, and the rest are integers, 

then we still continue on to step II in hope that (2.3.1) may posess the weak Painleve 

property, that is, the movable branch points are non-logarithmic and the solutions 

to (2.3.1) have as their domains finite-sheeted Riemann surfaces.

3) If any of the /?; are irrational or complex, the algorithm terminates at this
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step, and the system does not posess the Painleve property.

Great care must be taken in the implementation of step I to insure that all 

possible balances involving the /?,• have been explored, as the omission of one possible 

leading-order behavior can lead to an erroneous result.

If we find a leading order behavior that passes step I of the test, we now 

know the leading order behavior of a candidate Laurent series expansion for each 

of the functions W{, and we also know one of the system’s integration constants, i.e. 

the location of the singularity to- The next step of the algorithm will allow us to 

determine at which orders in the Laurent series we will expect the other integration 

constants to appear. These orders, r are called the resonances of the system, and 

the determination of them comprises the next step of the algorithm.

Step II: R esonances

We must perform this step for each of the leading-order-behaviors for (2.3.1) 

found in step I. For each of the leading-order-behaviors, we retain only the leading 

terms from the system (2.3.1) and substitute for to,- the expansion

Wi  =  a,-rA ( l  +  7«rr), (2.3.4)

where r  is presumed positive. If r < 0, the leading order behavior for the system 

would have io,- >— r /J,'+ r, which violates the hypothesis for step I of the algorithm. 

As we shall see, the case r  =  — 1 is a ubiquitous exception to this rule, and this is 

related to the fact that to is a movable singularity.

Substituting (2.3.4) into the leading terms of (2.3.1), and retaining only terms
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that are linear in the 7 * yields a  linear system

Q(r)*7 =  0, (2.3.5)

where Q(r) is an N  x N  matrix of coefficients, whose elements are polynomials in 

r, and the vector 7  is defined as 7  =  {7 1 , • •. , 7 ;v}T*

W hat we wish to find are the values of r such that one or more of the 7 ; are 

arbitrary. This will occur when the matrix Q(r) is singular, that is when

dei(Q(r)) =  0. (2.3.6)

The above equation is a  polynomial equation in r, with the order of the polynomial 

being given by
N

i = l

where pi is the order of the i th differential equation in the set (2.3.1).

Solving for the roots of (2.3.6) gives us the values of the resonances r. When

we can solve for the values of all of the resonances, we can draw some conclusions

based on the values of the resonances from the following set of rules:

R u le  1: If we have IV — 1 non-negative resonances in addition to a single 

resonance at r =  — 1 (see Rule 2) , we have passed the resonance test and may 

proceed to step III.

R u le  2 : We will always have r  =  —1 as a resonance. This is related to the 

fact that the to is a movable singularity. We can see this by returning to the ansatz 

(2.3.3), replacing the variable r  with r  +  d r, and expanding the leading-order- 

behaviors in powers of d r, and noting that the leading term in the expansion occurs 

a t <9((dT)^i-1 .
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R u le  3: For each occurance of the root r — 0, one of the a; is arbitrary.

R u le  4: Any resonance that has i?e(r) < 0 leads to the termination of the 

algorithm, as it violates the assumption that the results of step I comprise the 

leading-order behavior of (2.3.1). The only permissible exception to this rule, of 

course, is the single occurance of the resonance r = — 1, as outlined in Rule 2.

R u le  5: Any resonance with i?e(r) > 0, with r not an integer is indicative of 

a movable branch point, the algorithm usually terminates at this step. If r is real 

and rational, there may exist a  simple coordinate transformation that can remove 

the branch point. Even if such a change of variable is not evident, Rule 6 may offer 

some help.

R u le  6 : If some of the are rational with the same denominator then positive 

rational resonances r with the same denominator as /?,• indicate that the system is 

a candidate for posessing the weak Painleve property.

The conclusion is this: if a singular expansion given by (2.3.2) posesses N  — 1 

nonnegative, integer resonances, or positive rational resonances in agreement with 

Rule 5, the expansion may be generic, and the system passes Step II of the algo

rithm. The next logical step is to test for the existence of nondominant logarithmic 

singularities, which is Step III of the algorithm.

S tep  I I I :  C onstan ts o f  In teg ra tio n

Now that we know the orders in the expansions at which arbitrary constants— 

the integration constants—arise, we must now test to see if they do indeed appear 

as expected, and test for the occurrance of nondominant logarithmic singularities.
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To perform this test, we begin by writing the desired solutions to (2.3.1) as

fm  ftg

wi(t) -  our*  +  ] T  CimT*+mt (2.3.7)
m=l

where rmox is the largest resonance found in step II. Substituting this expansion 

into the leading terms from (2.3.1), and balancing terms order-by-order in r ,  we 

get a  set of equations similar to (2.3.5), but with nonzero terms appearing on the 

right-hand side:

S(m )Cm =  R m(t0 ;C j),j =  l , . . . , m -  1 , (2.3.8)

where m takes on the values m  =  1 , . . . ,  rmax and the vector R  is defined as R  =  

(J? i,. . .  ,R n )t . In order for us to find our desired constants of integration, the 

above relation (2.3.8) is subject to the following criteria:

1) For 1 <  m  < r i ,  (2.3.8) determines determines C m completely.

2) For m =  r i , we expect n * components of the vector C i to be arbitrary, 

where rt\ is the multiplicity of the resonance. In order for this to happen, equation 

(2.3.8) must satisfy the following set of compatibility conditions:

det(Stk> (n)) =  0, k =  1 , . . . ,  IV, (2.3.9)

where the matrix S ^ f r i )  is constructed by taking the matrix S (ri) and replacing 

its k t]l column by the vector R m(to; Cri). This condition is reminiscent of Kramer’s 

Rule for solving systems of linear equations by determinants, where a linear system 

such as (2.3.8) will have at least one arbitrary solution if the matrix S(m) has a 

null space. The conditions (2.3.9) are the same as insisting that the matrix S (ri)
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has a null space, and that the dimension of this null space will be the same as the 

multiplicity of r i .

3) If the above condition 2 ) is satisfied, then, for ri < m < r2 , the equation

(2.3.6) determine the components of C m completely.

4) We continue applying the procedure outlined in l)-3 ), at each resonance up 

to the largest one rmax, bearing in mind that at any resonance that is a multiple 

root of (2.3.6) must be associated with a number of arbitrary constants equal to 

the root’s multiplicity.

If the system in question satisfies the criteria defined above, we are finished, and 

if the collective leading-order behavior found in Step I contains only integer powers 

of r  then the system possesses the Fainleve property. If the system’s leading- 

order- behaviors found in step I contain rational powers of r ,  we are forced to alter 

the expansion (2.3.7) to account for this state of affairs. Say the exponents in the 

rational leading order behaviors to the system (2.3.1) (i.e. the /?,■ in equation (2.3.2)) 

have a common denominator N , we can make the change of variable r  —► £ =  .

This transformation will alter the values of the resonances determined in step II 

by multiplying all of them by a factor of N , and the rules 1) - 6 ) stated in step 

II still apply, with the exception that the only negative resonance that the system 

possesses is at r =  — N ,  rather than r =  —1 , and the resonances are all scaled 

by a factor of N .  Should the modified system possess N  — 1 nonnegative integer 

resonances then we can apply the test outlined in step III, with the ansatz (2.3.5)



rewritten as
N rmaa?

M O  =  M N0‘ + (2-3*10)
m= 1

Should this modified system satisfy the criteria outlined above, then the original 

system possesses the weak Painleve property. Clearly, the amount of labor involved 

in verifying the singularity properties of such systems grows much faster than lin

early in N. As we shall see in §3.2, it is easy to find examples where the application 

of step III of the algorithm becomes impracticable. In spite of this unpleasant situ

ation, we can find comfort in the fact that if a system passes through the first two 

steps of the algorithm, it is often true that this partial fulfillment of the Painleve 

property may be linked to partial integrability [38].

We may find, however, that for one or more of our resonances r, that the 

criteria 1) - 4) may break down. In this event, the system does not possess either 

form of the Painleve property. This implies that the system may have nondominant 

logarithmic singularities. As a consequence of this, one or more of the expansions

(2.3.7) may have to be rewritten to include logarithmic terms, e.g.:

r—1
Wi(t) =  aiT* + £  Cimr m +  {Cir +  Dir ln (r))rf t+f +  . . . ,

m=l

with higher-order terms in ln(r) possibly entering the expansion. Adding these 

logarithmic terms introduces new terms involving Da- into the relationships (2.3.8) 

and (2.3.9), allowing us to determine these new constants, by demanding that co

efficients of the appropriate powers of r  vanish, while the Cir remain free.

Figure (2.3.1) contains a flowchart summarizing the ARS Algorithm.
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§2.4 Tests for Nonintegrability

The preceding sections of this chapter focused on the concept of integrability 

and tests for a  certain type of integrability; i.e. complex analytic integrablilty. The 

results are encouraging in that many previously unknown integrable systems have 

been discovered via the application of singularity analysis and the ARS algorithm, 

but leave something to be desired in the lack of a rigorous connection between in

tegrability and the Painleve property. There is, of course, another approach that 

can help shed light on this problem. We could also search for a connection between 

certain types of singularity structures and nonintegrability. The main work in this 

area is the work of Yoshida [39-41] and Ziglin [64-66], who have showed that for a 

limited class of Hamiltonian systems, there is a method for testing for the nonin

tegrability as well as integrability of the system. Such methods are a  test for the 

property of algebraic integrability, as outlined in § 2 .1 .

Yoshida’s M ethod and Kowalevski Exponents

Consider an autonomous system of N  ODE’s of the form

#7 *

-£■ = Fi( =  1, — , JV (2.4.1)

Suppose further that this system is invariant in form under the similarity transfor

mation t —* o'-1 < and x, —* a9ixi for i = 1 , . . . ,  N , cr a  constant, and the exponents 

gi  are rational numbers that are called the weights of the variables At this 

point a definition concerning functions of scaled variables is in order. A function
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^ ( x i , . . .  , X N , t )  is said to be w eighted hom ogeneous w ith  w eight M  if

<j>(<j9 lx i , . . . , a 9N x n ,<j -1 t) =  c M (f>(xi, . .. , x w , t ) .  (2.4.2)

If the functions F{ are all weighted homogenous with weights Mi, it is possible 

to  find particular solutions to (2.4.1)

x$a)(0  =  C i t - « , 9i = M i -  1, (2.4.3a)

and the constants Ci are determined by

iri(C'i>...,C'iv) =  - g iC i ,  i  =  l , . . . , N .  (2.4.3&)

There may exist many sets of solutions of the form (2.4.3a,b), and we will assume 

that there is at least one nontrivial solution of this form; i.e. that for some value 

of z, g iC i 7̂  0. These solutions (2.4.3a,b) are called the scaling so lu tio n s  for the 

system, and are analogous to the leading order behaviors obtained in step I of the 

ARS algorithm.

Given the set of particular solutions (2.4.3a-b) to equation (2.4.1), we can apply 

a variational technique to search for solutions that are “near” our scaling solutions 

by perturbing the scaling solutions via the introduction of a new set of variables hi, 

and writing our dependent variables x; as

x;(t) =  a;j^(<) +  hi(t),i =  1 , . . .  ,1V. (2.4.4)

We can also expand the right-hand-side of (2.4.1) about the scaling solution, to first 

order in the /z,-:

N ajp
=   +  h h  (2.4.5)

j ^ x dxi  x=xw
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where the vectors x  and x ^  are defined by

x  =  (x i , . .. , xjv) and x ^  =  ( x ^ , . . . ,  x ^ ) .

Since the functions F, are all homogeneous with weights Mi =  </,• +  1, and recalling

(2.4.2), it is possible to remove the time dependence from the arguments to the 

functions F, and rewrite (2.4.5) as

N

F t (*** 11 • ., x N) =  Fi(x[a\ . . . ,  arj^) +
j = i  3 x = C

t 9i - 9 i - 3hj, (2.4.6)

where the vector C is defined by C =  ( C i , . . . ,  CV).

Substituting these expressions for the (2.4.4) and (2.4.6) into (2.4.1), we get

Ndhj dF, 
dt r —* dxj

3 = 1  J x = C
(2.4.7)

Suppose that the solutions ft,-(f) of (2.4.7) take the form

hi(t) = r)itp 3i, (2.4.8)

where p is a fixed number, and the 7/,- are constants. Substituting (2.4.8) into (2.4.7) 

yields an eigenvalue (p ) - eigenvector (77 =  (771, . . .  , V n ) T ) problem:

CP~ 9 i ) m  =  K 'M3i
i=i

(2.4.9)

where the terms Kjj  are the elements of the Kowalevski matrix K , and are defined

as

dFiI<- =
KtJ dx j + $ij9i-> (2.4.10)

x = C
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where Sii is the Kronecker delta symbol. The eigenvalues to (2.4.9), p are solutions 

to the characteristic equation

det(K  — pT) — 0. (2.4.11)

If we can find solutions to (2.4.11), that is, if K  can be diagonalized, we call the

eigenvalue spectrum {/>i,. . .  ,pn }  the system’s Kowalevski exponents, and the vari

ational solutions X i ( t )  to (2.4.1) can be written as

Xj(t) =  Cit~9i +  r}{tp~9i -1------- . (2.4.12)

Again, we see a  striking similarity between the Kowalevski exponents that

are calculated in (2.4.11) and appear in the higher-order terms in (2.4.12), and the 

resonances, that are calcualted in (2.3.6), and appear as the higher order term in the 

ansatz (2.3.4). Despite these analogies, it is important to note that the resonance 

spectrum for a system and its Kowalevski exponents are not the same thing. For 

homogeneous systems, the resonances and Kowalevski exponents will be the same, 

provided that the constants C, in (2.4.3a,b) are all nonzero. In the event that some 

of the Ci are zero, the two concepts are still the same, up to some additive terms 

[38,39].

The relationship between a system’s Kowalevski exponents and the issue of 

integrability is illustrated by a theorem due to Yoshida [40].

T H E O R E M  2.4.1: Consider a homogeneous system of the type (2.4.1). A 

necessary condition for the existence of algebraic integrals of the motion for this 

system is that all of the Kowalevski exponents calculated in (2.4.11) be rational



62

numbers. If any of the Kowalevski exponents associated with the system is irra

tional, or has a  nonzero imaginary part, then (2.4.1) will not possess a  complete set 

of algebraic integrals.

This is indeed a powerful result, if only applicable to a very restricted class 

of Hamiltonian systems. Ziglin [61] has made progress in extending the method 

by studying the integrability properties of the variational equations (2.4.7), and 

other work has been performed to relate these techniques to the issue of analytic 

integrability [41].

§2.5 D irect M ethods for th e  C onstruction o f  Integrals

As we have seen earlier, integrability of an autonomous Hamiltonian system 

with N  degrees of freedom given in (2.4,2a-c) is related to the existence of N  — 1 

functionally independent integrals { / i , . . . ,  I n ~ i } that Eire in involution with each 

other and the system’s Hamiltonian. Previous methods outlined in §2.2 — 2.4 have 

focused on the singularity properties of the system’s solutions (the coordinates and 

momenta), or equivalently, of the integrals of the motion. Such methods are useful 

in determining whether or not a  system is integrable, and can give clues to the Lau

rent series expansions of the system’s solutions in the complex i-plane. Physicists, 

however, tend to be interested in the functional form of a system’s integrals in terms 

of the system’s coordinates and momenta; i.e. they seek expressions of the form

I f  — > • • • > Q N i P l , • • • , P N )> (2.5.1)
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One way to find these integrals, if they exist, is to make the assumption that the 

integrals have a certain type of functional dependence on the system’s coordinates 

and momenta, and then insist that these ansatze for the integrals are in involution. 

The form of the integrals can take the form of polynomials, rational functions, et 

cetera, and will contain a large number of parameters that can be manipulated in 

order to satisfy the involution conditions given by (2.1.4).

The applicability of this method is limited by the fact that the integrals for a 

given system may not be of the form chosen, or, even if they are simply polynomials 

in the coordinates and momenta, they may be very high order polynomials, requiring 

considerable effort to implement the method. Still, some sucess stories exist, and 

a  comprehensive review of these methods and examples where they have succeeded 

has been published by Hiertarinta [45] and Abraham-Shrauner [67].

Direct methods of the types outlined in reference [45] should be employed only 

if there is strong evidence that the system is indeed integrable. Sufficient evidence 

would constitute numerical studies of the system that indicate regular behavior, or 

positive results from Painleve or Yoshida singularity analysis tests.



C H A PT E R  TH R EE

s in g u l a r it y  a n a l y s is  a p p l ie d  t o  

t e s t -p a r t i c l e  e q u a t io n s  o f  m o t io n

§3.1 A  Sim ple M odel and its Sym m etries

A simple and commonly used model for particle motion near the neutral line in the 

E arth’s magnetotail [20-22], which was discussed earlier in § 1.4, is a  uniform electric 

field parallel to the z-axis, accompanied by a  magnetic field whose components lie 

in the x-y plane:

E  =  ez, (3.1.1a)

B =  6y x  +  x y , (3.1.16)

where 6 and e are constant parameters. Recall that for S > 0, the magnetic field 

has an X-type neutral line along the z-axis, while 5 < 0 produces an O-type neutral

line along the z-axis. For 6  =  0, the magnetic field produced has a  neutral sheet in

the x-z plane, and talcing the limit 6  —> oo leads to a null plane in the y-z plane.

Note that the magnetic field possesses a discrete x  — y symmetry. This sym

m etry will play a  significant role when we examine the leading order behaviors of 

the system’s equations of motion in § 3.2. One way to understand this symmetry is 

to consider the structure of the field lines more closely. For all values of 6 , the field 

lines lie on the contours of a  flux function ^ ( x y y):

$(*>2/) =  (̂<5y2 -  x 2 ).

64
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In the case of elliptical and circular field lines, \&(a;,y) is always negative, and a 

particular field line may be identified with some value ^ ( r ,  y) — —$o* This allows 

us to express the field line as an ellipse:

x 2 | y2 ,
+  =

For |6 | >  1 , the closed field line has as its major axis the ar-axis, and its eccentricity 

e is given by

I  w - 1

If we take |6 | <  1 , the closed field line has as its major axis the y-axis, and now its 

eccentricity e is given by

e = y / lZ \S \ .

Now suppose that we have |6 '| <  1 =  1/J6|, with |6 | > 1 . Substituting for 6 ', we 

find that the e becomes

e =  y/ 1 -  |6 '| =  ^ 1  -  — =

and thus the transformation 6 —> 6 " 1 leads to a set of closed field lines with the 

same eccentricity. Note that both sets of field lines have the same orientation (i.e. 

same sense of rotation about the origin), as depicted in Figure 1.1.1.

For positive values of 6 , the field lines form two sets of hyperbolae, whose 

asymptotes are the lines y — ± x /^/6  (Figure 3.1.1). The angles that these asymp

totes form with the x and y axes are 9y and 62 , respectively, and are given by

&i(S) =  arctan(6 - ^) 02(6) = arctan(6 ^).
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Note now that the transformation 6 —> 1 /6  simply exchanges these angles and also 

preserves the directions of the field lines.

F igure  3,1.1. Angles 0\ and 62 for an X-Line Field with 6 = \  . 

Recalling the results of § 1.4, a viable vector potential A for B is

A =  ^ ( 62y2 -  x2)z =  tf(x,y)z. (3.1.2)

The Hamiltonian for a test particle can then be written as

rr / n Px 2 +  Py2 , (Pz ~  V ( x ,  v ) ) 2H (x ,y ,z ,p x ,py,pz) = ----- ^ -------------------------—  -  KZ,

(3.1.3)

where k is the electric field strength. The Hamiltonian equations of motion for the 

test particle are:
RTT

(3.1.4a)
. dH
X =  -x— =  px

dpi
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•  9H
y = a Z - = P v  (3.1.46)

v Py
BH 1

* ~ f y T = P z ~  y) =Pz + 2 ^  ”  6y2^  (3.1.4c)

dH  , T, . ,0 $  z(6y2 - s 2)
Px =  — =  ($(*, v) -  =  ~®P* +  —— g  (3.1.4rf)

a ff  . , 0 ® f 6y(6y2 - z 2)
Py =  — Q^ = (*  (*, y) -  Pz)-fy -  S y p z  K—~2------   (3.1.4e)

a ir
Pz  =  =  «• (3-1.4/)

In view of the inherent symmetries of the magnetic field for this model, it is 

likely that these symmetries are related to the symmetries of H  and the Hamiltonian 

equations of motion (3.1.4a-f). For 6  ^  0, it is possible to rescale the coordinates, 

and replace 6 with 1/ 6 , and the roles of the x and y motions will be exchanged. 

Given this symmetry, we will consider only values of the parameter 6  that belong 

to the interval

- 1  < 6 <  1 .

As mentioned earlier, the case 6 =  0 (6  —f oo) leads to a magnetic field configuration 

that is a slab, with the plane x =  0 (y =  0) as a neutral sheet. The singularity anal

ysis of this case is presented in Appendix Two and the properties of its trajectories 

are discussed in Chapter Five.

Note that the equation for p~ can readily be solved to get

Pz  =  * t  +  p z o,

where pZo is a constant. Eliminating pz from the remaining equations (3.1.4a-e) we 

get

x — px (3.1.5a)
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y = p y (3.1.56)

z  -  ( n t  + p Zo) +  i ( x 2 -  6y2),

(3.1.5c)

Px  =  ~ x ( K t + p Z0) +  X( Sy  2  X \

(3.1.5 d)

* - * ( * + » . ) -

(3.1.5e)

The above reduction of the set (3.1.4a-f) to the set (3.1.5a-e) may appear 

to be of little importance, but is actually crucial to getting accurate results from 

the Painleve analysis. This m atter will be taken up again when we calculate the 

resonances in § 3.2.

Given the system of equations (3.1.5a-e), it is only logical to wonder whether 

or not they are nonintegrable for arbitrary values of 6 and k, or if there exist special 

field configurations (that is, particular values of S and «) for which the dynamics 

are integrable. In the next section, we will explore this issue by applying Painleve 

singularity analysis to this system.
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§3.2 Painleve Property Test o f (3.1.5a-e)

Given the equations of motion, we can now examine their singularity properties by

applying the ARS algorithm to the system.

Step 1: Leading-Order Behaviors

Consider a  singularity in the complex time plane located at some point to- In 

the neighborhood of the singularity, we can approximate the leading order behaviors 

of the coordinates and momenta by

where r  =  (t — to), and the quantities (or*,^, a s,aPs,aPv) and (fix ,Py> P z$Pa$pa) 

are constants. Inserting these expressions into Hamilton’s equations, we get

x  =  a x r ^ x , y  =  ocyT^ , z  =  a z r ^ ‘

P x  -  a Px T 0 * * , P y  =  OiPv ,

(3.2.1a)

(3.2.16)

(3.2.1c)

(3.2.1d)

(3.2.1e)
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The first two equations imply that /3Pr =  j3x — 1 , fiPv =  /3y — 1 , a Px =  a xj3x,

and a Pv =  otyf3y. Using this information, we can simplify (3.2.1b-d) to get the

system

oizPztP*'1 =  pSo +  kt +  ^ax2r2/i* -  ^Say2r2̂ » (3.2.2a)

~  I ) ’"- 2  =  - ( « r  +  Pzo) +  ^S a y2T2& -  ^ ocx2t 2Px (3.2.26)

Py(@v ~  i )7-” 2 =  S(KT +  P z q )  +  ^Sax2r2̂ x -  ^62ay2T20» (3.2.2c)

It is now necessary to test every possible leading order behavior for the set of 

equations (3.2.2a-c). Upon examining (3.2.2a-c), it becomes clear that this is no 

small job. Counting the number of possible leading order balances for the system 

itself is something of a monstre travail. To this end, we must consider the set 

(3.2.2a-c) one at a time. This is an arduous task, and the details of the actual 

calculation are presented in Appendix One. What follows is a listing of the classes 

of acceptable leading order behaviors that we found.

C lass I:

Py =  PvatyT* 

with

Py2 — /?» +  26 =  0 , / ? „ > - ! .



71

Class II;

Z  =  - - T
- 2

with

Class III:

- l

z  — 2 t ~
- 2

Px — Py ~  ~ a y T

C lass IV:

x =  JzVSayT13 y =  a yr &
z  ~  ol. t P*

px = ±P\/8ayTfi 1 py =  PayTfi 1 

with 0 < —1, fit >2/3 +  1 , and both aty and a - are arbitrary.

C lass V;

x =  ±yjSo! y2 — 2pz0 V — a y
z = a~T^z

px =  0 Py =  ^

with /? * > ! , and both a y and ots are arbitrary.
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C lass VI:

x = ±y/6ayr y = OCyT

z  =
px — ±\ZSay p y  = a y

with ps > 3, and both <xy and a z axe arbitrary.

Now we examine in detail each of the above classes.

C lass I: For this leading order behavior, the exponent py is determined by:

0y2 - j 3 y + 26 = 0, (3.2.3)

with solutions given by

f t  _  (3.2.4)

Since we require that Py be real, we must have 6 <  1/8. The requirement that 

0y > —1 is equivalent to requiring that —1 < 8 < 1 / 8 , allowing both branches of 

(3.2.4) yield viable values of 0y. For values of 8 < — 1 , the branch of (3.2.4) is 

still valid, and produces balances with Py > 2 .

As we mentioned in §2.3, all of the powers of the leading-order behaviors in 

a given class must be either integers (rationals) in order for the system to possess 

the Painleve (weak Painleve) property. These conditions will allow certain discrete 

values of 8. There exist four possibilities, based on the value of Py.

Ia) Py is an integer, and py >  —1 :

Let py = J , an integer. We know that given a value of J, (3.2.3) allows us to

write 8 as a function of J,

8 =  6(J)  =  , J >  2. (3.2.5)
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This implies that there is an infinite set of integer leading-order behaviors for

Py corresponding to 8 given above. Below are some examples of the values of S(J):

<5(0) =  0, 8(1) =  0, <5(2) =  - 1 ,

<5(3) =  - 3  <5(4) =  - 6  <5(5) =  -1 0

<5 (6 ) =  -1 5  6 (7) =  -2 1  <5 (8 ) =  -2 8

For J  =  0,1, the resulting magnetic field is a neutral sheet field, with a neutral

sheet in the plane x = 0. The resulting magnetic field geometry associated with the

other values of 8 correspond to elliptical O-line fields that are elongated along the

rc-axis.

Ib) A, is rational, and — 1 < 0 y <  0 .

Let Py =  —M /N ,  with M and N natural numbers, M  < N .  In this situation,

there is also an infinite set of discrete values of 8, given by

M
6 =  6 ( M , N )  =  - ^ ( M  +  N )  (3.2.6)

A sampling of this set of 8(M ,N)  for 1 <  M  < 8  and M  < N  <  9 is given in 

Table 3.1. Notice that once again we have values of 8 that produce O-line magnetic 

fields, but the elliptical field lines are now elongated along the y-axis. Note also 

that the spectrum of values of 8 for a fixed value of N  lie in the range

( N  -  1)(2W -  1) s  ( N  + 1)
2JV2 “  -  2JV2 ’

thus as N  gets large and M  —> iV, the field lines approach a circular geometry.
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Table 3.1. Allowed Values of 6 for Rational j3y g (—1,0).

I M  N -+ 2 3 4 5 6 7 8 9

1 3
8

2
9

5
32

3
25

7
72

4
49

9
128

5
81

2 5 3 7 2 9 5 11
9 8 25 9 49 32 81

3 21 12 3 15 33 2
32 25 8 49 128 9

4 18 5 22 3 26
25 9 49 8 81

5 55 30 65 35
72 49 128 81

6 39 21 5
49 32 9

7 105
128

56
81

8
68
81

i<0 A, is rational, and 0 <  (jy < 1 .

Let =  M /N ,  with M and N natural numbers, M  < N .  Again it is possible 

to express 8 as a  function of M and N:

Table 3.2 Lists a small sampling of these values of 8. Here we find that we have 

positive values of 8, which are associated with X-line magnetic field configurations, 

such as those shown in Figure 3.1.1a.



75

Table 3.2. Allowed Values of 6 for Rational Py € (0,1).

i  M  N -+ 2 3 4 5 6 7 8 9 10

*1 i l 3 2 5 3 7 4 9
I 8 9 32 25 72 49 128 81 200

2 1
9

1
8

3
25

1
9

5
49

3
32

7
81

2
25

O 3 3 1 6 15 1 21
O 32 25 8 49 128 9 200

A 2 X 6 1 10 3
ft 25 9 49 8 81 25

5 5 5 15 10 1
72 49 128 81 8

£ 3 3 1 3
D 49 32 9 25

7 7 7 21
128 81 200

8 4
81

2
25

9 9
200

Id ) py is rational, and py > 1.

Let py =  N /M ,  with M and N natural numbers, M  < N .  Using (3.2.3) to 

define the values of 8 that yield this behavior, we find

6 = 6 ( M , N ) = N ^ m 2 N ) - (3-2.8)

Table 3.3 lists the values of 8 obtained from this relation. Once again, we have 

values of 8 that produce O-line magnetic fields.
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Table 3.3, Allowed Values of 6 for Rational (3y > 1.

I M  N  -> 2 3 4 5 6 7 8 9

1 - 1 - 3 - 6 - 1 0 -15 - 2 1 -2 8 -36

2 3
8 - 1 15

8 - 3 35
8 - 6 63

8

3 2
9

5
9 - 1 14

9
20
9 - 3

4 5 3 21 - 1 45*X 32 8 32 32

5 3 7 12 18
25 25 25 25

6 7 2 3
72 9 8

7 4
49

9
49

8 9
128

Note that for M  =  1, these values of 6 are the same set as that given previously 

in Case Ai). Another interesting property of the ^-spectrum for this case can be 

seen by considering fixed iV, and varying M . For fixed N  and small M , say M  =  1 , 

the elliptical field lines are either circular (N  =  2 ), or elongated along the y-axis 

(JV >  2). The value of M  for which the field lines switch their orientation is M*, 

given by

M  f  § ,  if i f  even;
M '  \ [ f ]  +  l ,  i f  odd,

where the notation [x] indicates the greatest integer function of x.

Class I I :  Solving equations (3.2.3a-c) for the coefficients a*, a v, and a z give

us oty =  ±2 i/6, otz = 2, and a x is arbitrary. The exponent is determined by:

Px2 — fix +  "y — 0 , (3.2,9)
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with solutions given by
1 ±

fix   -------\ --------• (3.2.10)

The condition that fix be real requires either 8 > 8 . The requirement that fix > — 1 

manifests itself as follows: for the ” branch of (3.2.10), we will get satisfactory 

values of fix if 8 < — 1 or 8 > 8 , while the branch of (3.2.10) gives us acceptable 

values of fix for 8 < 0 or 8 > 8 .

Again, we find that we can obtain satisfactory leading order behaviors for a 

discrete set of values of 8. There exist four classes of possibilities, based on the 

value of fix- The set of allowed values of fix is identical to the set of allowed values 

of fiy found for class I, and the corresponding values of 8 are simply the recprocals 

of the allowed values of 8 calculated for class I.

I la )  fix is an integer, and fix > —1 :

Let fix — J , an integer. We know that given a value of J, (3.2.3) allows us to 

write 8 as a function of J,

S =  S(J) =

This implies that there is an infinite set of integer leading-order behaviors for fiy

corresponding to 8 given above. Below are some examples of the values of 8(J).

Note that 8( J)  is undefined for 8 = 0,1, which is associated with a neutral sheet

field along the x-axis.

*(2) =  - l ,  «(3) =  - | ,  =

* 0 0 — L  4 ( 6) =  - i  « (7 )— i

* (8) — 1  *( 9) =  - ±  « (1 0 )— L
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These values of 8(J) are simply the reciprocals of those found for Case la), and the 

resulting magnetic field geometry associated with these values of 8 correspond to 

elliptical O-line fields, but now the elongation is along the y-axis. 

l ib )  fix is rational, and — 1 < fix < 0 .

Let fix =  —M /N ,  with M and N natural numbers, M  < N. In this situation, 

there is also an infinite set of discrete values of 8, given by

2 N 2
8 =  8(M, N ) =  7-tt

v '  M (N  + M)

. This leads to a set of 8 < —1 that form O-type neutral line fields. The values of 

8(M , N)  for this case is simply the reciprocal of the value of 8(M, N )  obtained from 

Table 3.1.

l ie )  f ix  is rational, and 0 < fix  < 1 .

Let fix =  M /N ,  with M and N natural numbers, M  < N .  Again it is possible 

to express 8 as a function of M and N:

6 = ^ M ' N ) - M ^ w y

Now we have positive values of 8, which are associated with X-line magnetic field 

configurations with values of 8(M, N)  that are the reciprocals of the corresponding 

entries in Table 3.2.

l id )  fix is rational, and fix > 1 .

Let f ix  — N /M ,  with M and N natural numbers, M  < N .  Again, we can use 

our equation for fix to define the values of 8 that yield this behavior, and we find

2 M 2
s = « M' N^ M M = N y
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The resulting magnetic field configurations for this case are again O-type neutral 

line fields, with 8(M , N )  now given by the reciprocals of the corresponding entries 

in Table 3.3. Again, for fixed JV, we can define M* such that for fixed N ,  all 

M  <  M*(JV), we will have 6 < — 1 , and for M  > we will have — 1 <  6 < 0.

Class III: This class is associated with the circularly symmetric O-type field 

configuration, and passes the first step of the Painleve analysis.

Class IV: This class of leading order behavior exists for all values of 6, and 

will be examined in more detail in step two of the algorithm.

Class V: One interesting aspect of this case is the situation in which a x = 

a y =  0. This forces the condition pZQ = 0, and we get fiz =  2. This is simply the 

case of a particle starting at rest on the neutral line, and being accelerated down 

the neutral line by the electric field, simplifying the system’s motion to

/ \ K i 
Z(T) ~  2 r  +

where zq is a constant.

Class VI: This class also applies to all values of 8, and will be examined further 

in step Two.

Step 2: Resonances

Now we turn our attention to the question of at which order the integration 

constants will appear as we try to construct the coefficients of the Laurent series 

(2 .2 .1). To this end, we must solve for the resonances associated with the leading 

order behaviors for Classes I-VI. Recalling step II of the ARS algorithm, we expand
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our coordinates and momenta found in (3.2.2a-e) as: 

x =  oixt ^x( 1 +  7xTr)
P r  =  a pmT fi>‘ ( l  + 7 p x T r )  

y  =  a y T ^ { l  +  7 y T r ) ,

P y  =  CiPv 'rfips i.1 +  7 P v r r )
Z =  0 !e T ^ ( l  +  7 * T r )

where r is presumed positive (with the exception of the ubiquitous resonance at 

r =  —1) and the 7 *s are constants. Substituting these expressions into (3.2.2a-e), 

and recalling the expressions for a Px , a P]l, Ppx 1 and Ppv obtained from (3.2.1a-b) ,

and retaining only terms up to those that are linear in the 7 ’s, we get

a ,  (Px +  r) 7X r - 1+^ +r -  a ,  j3x lpx T~ ^ + r =  0 (3.2.11a)

(Py +  r) 7y r “ 1+* + r -  a y Py 7p„ T~1+^ +r =  0 (3.2.116)

n 2 -2  /3r 2 C -2
- P z 0 -  « r  -  \ T + a z (3: t ~ 1+0* -  a*2 7 ,  r 3'- + ”+

a y2 $7yT2 v̂+r +  <xz (Pz +  r) 7S r “1+0*+r =  0 (3.2.11c)

-  ( t t x  Px t~2+P*) + ax p 2 T~2+/3x +  otx pZo rPx + a-~-~----------haxK

a  2C px+2pv
V- 0--------- + oix Px (P x + r  -  1) 7Px r fix+r 2 + a x 7X p Zo T^x+r+

a 3 /v ® *y 7*̂  *y fy 2 £ py 2 fiy “f*r_l+A ,+r , ooc* 7xT a x <Xy O i x  ta x Kl x r + -  - -------------

a x a y 2 8 7y r^x+2 ^ +r =  0 (3.2.11d)
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~(<XyPyT 2+^ )  + oiy/3y2T 2+f}» -  a y S p Zo + Qy

a g _ a y g j - ---------------+  ^  ^  +  r  _  ! )  r f t , + r - 2  +  a j f  P jo r ^y+ r _

a y 6 n 7y r 1+^ +r -  a x2 a y 6 lx  r 2^ + r -  «**

Q /y ^ *v -j*3/?y4-r
J » 6 ^»T-----------0 . (3.2.11*)

For a given leading order behavior, we will find that the leading order terms 

that do not contain the 7 ; cancel each other, as we expect, leaving only terms that 

are linear in the 7 ,■ This can be done regardless of the particular leading order 

behavior for only (3.2.11a) and (3.2.11b)

(r +  Px)lx -  Px 7p* =  0 (3.2.12a)

(r +  Pyhv -  Py =  °* (3.2.126)

while the other equations must be examined on a case-by-case basis for each class 

of leading order behavior.

As was discussed in § 2.3, this system may be written as a linear system

Q • 7  =  0, (3.2.13)

with the vector 7  defined as 7  =  (7 xj7 y,7 u 7pB>7 pv):r- The resonances will be the 

r roots of

det(Q(r)) =  0, (3.2.14)



which is considered a polynomial equation in r . Given Equations (3.2.12a-b), 

(3.2.11c-e), and (3.2.13), we can now proceed to construct Q for each class, and 

then evaluate the resonances using (3.2.14).

C lass I: Recall that for this leading order behavior, we have a x =  2, a g =  —2, 

and ocy is arbitrary, while px =  —1 , pz == —1 , and Py is given by (3.2.4). The matrix 

Q(r) associated with this system is

Q (r) =

/ ( r - 1) 0 0 1 0  \
0 <*y(Py +  r ) 0 0 - ( otyPy)
4 0 - 2  +  2r 0 0

—12 i 0 0  2 i(2  -  r) 0
V 4 ayS 2a y6 0 0  a ypy (—1 + Py + r) J

(3.2.15)

Taking the determinant of (3.2.15), we find that the resonances satisfy

det(Q) =  8av2Py(r -  4)(r -  l ) ( r  +  l)(/3y2 -  py + 2d -  r + 2Pyr +  r 2) =  0, (3.2.16)

Recalling (3.2.3), we can rewrite (3.2.16) to find that the resonances are the r roots 

of

(r -  4)(r -  l) ( r  +  l) r ( r  +  2py -  1) =  0, (3.2.17)

meaning that the system’s resonances for this case are r = —1,0,1 — 2Py} 1,4. Since 

ocy is arbitrary, we expected the resonance at r  =  0 , and the resonance at r  =  1 —2py 

is in agreement with this system being a candidate for possessing the weak Painleve 

property. Note here that since we wish that all of our resonances be either integers 

or positive rationals with the same denominator as Py , we must have only values of 

Py that fall in the range
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This leads to a further restriction on the admissible values of S that lead to accept

able resonances. Case lb) comes through this test unscathed, while we can keep 

only the values of 8 for case Ic) that are associated with values of /3y <  Table 

3.4 is a summary of this narrowed class of field geometries.

Table 3.4. Allowed Values of 8 for Rational E (0, §).

!  M  N  —*• 3 4 5 6 7 8 9 1 0 1 1

i l 3 2 5 3 7 4 9 51 9 32 25 72 49 128 81 200 121

o 3 1 5 3 7 2 9£i 25 9 49 32 81 25 121
6 15 1 21 12O 49 128 9 200 121

A 10 3 14
81 25 121

5 15
121

Class I I : Given the discrete symmetry discussed in §3.1, and the earlier argu

ments concerning the properties of this class in relation to class I, it is no surprise 

that we find that the system’s resonances for this class are r  =  —1,0,1 — 2/?x, 1,4. 

Since a x is arbitrary, the resonance at r =  0  again is to be expected, and the 

resonance at r  =  1 — 2j3x is in agreement with this system being a candidate for 

possessing the weak Painleve property. Note here that since we wish that all of 

our resonances be either nonnegative integers or positive rationals with the same 

denominator as 0y) so once again we find that we must have only values of (3X that 

fall in the range

— 1 <  fix. <  —.

Clearly, all of the configurations connected to Class lib) survive the resonance 

test. The above restriction on (3y immediately eliminates Classes Ha) and lid) from
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further consideration, and also eliminates the allowed values from Class Ic) that are 

associated with py > The surviving values of the field parameter S for Class Ic) 

are the inverses of the entries in Table 3.4.

Class III: The matrix Q(r) associated with this class is

Q  =

The determinant of Q(r) is thus

det(Q(r)) =  —2ay2K(r — 4)(r — 3)(?—  1)^(1 +  r) =  0. (3.2.18)

/ Qi (r -  1) 0 0 Oix 0 \
0 a„(r -  1) 0 0 a v

- a * 2 (r -  1) 0 0
" (2  t t t ) t t i <Xy2Otx 0 <XxOty2 ( 2 - r ) 0

V - a yK a v(a v2 -  2) 0 0 a y(r -  2) /

Here we have integer resonances, indicating that this class of leading order behavior, 

which has integer leading order exponents may possess the Painleve property. The 

disposition of this class regarding the Painleve property will be determined in Step 

Three of the algorithm.

Class IV: Substituting this leading order behavior into (3.2.11a-e) we find the 

matrix Q is

Q(r) =

/P x  + r 0 0 ~ P x 0 \
0 Px +  r 0 0 - P x
1 -1 0 0 0

-1 1 0 0 0
V i - 1 0 0 0 /

(3.2.19)

The determinant of this matrix is clearly zero, and thus we are unable to obtain any 

information about the system’s resonances. Therefore the algorithm terminates at 

this stage for this class.

Class V: Recalling the results of step I for this class, the matrix Q from
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equation (3.2.22) associated with this class is

Q  =

f r 0 0 0
0 r 0 0 0

OCx2 -S a y 2 0 0 0
- Oix2 6ay2 0 0 0
a *2 - S a y2 0 0 0  )

(3.2.20)

The determinant of this matrix is also identically zero, indicating that we can not 

obtain the suitable number of resonances required for the system to pass through 

this step of the algorithm for this class. For class E, the algorithm terminates here, 

and the system does not possess either variety of the Painleve property.

C lass V I: For this class of leading order behavior, the matrix Q(r) becomes

Q(r) =

/ r  +  1 0  0 - 1  0  \
0 r  +  1 0 0 - 1

a x 2 Say2 0 0 0
r  0 0  0 0

V 0  r  0  0 0 /

(3.2.21)

Yet again, the determinant of Q (r) is identically zero, and the ARS algorithm 

terminates at this stage for this class, which possesses neither type of the Painleve 

property.

S tep  3: C o n stan ts  o f In teg ra tio n

We now turn to the final step of the ARS algorithm: the construction of the 

constants of integration. Recall that this process is accomplished through further 

modification of the ansatze used to determine the system’s leading order behaviors. 

The strategy is to construct the coefficients of the Laurent series representations of 

the coordinates and momenta from the leading orders /?* up to the orders associated 

with the largest positive resonance (r„,ox); fi i  +  r m a x . Equation (2.3.7) is the recipe 

for this construction, and applying it to our dynamical system (3 .2 .1a-e), we find
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that we must now expand our phase space coordinates as

x =  a xT0* + ClmT ^ +m, (3.2.22a)
m= 1

r̂nan
y = a yTh  +  Cf2n ,r ^ +m, (3.2.226)

171=1

^mac
z = atgT13* + ̂ 2  Czmr 0x+rn, (3.2.22c)

m=l

px =  pxa xr^s~l +  J 2  C4m r ^ +m" \  (3.2.22d)
m=l

Py = P y ^ y T ^ - 1 +  f 3 C5m r ^ +m“ 1, (3.2.22e).
m=l

The next step in this process is the substitution of (3.2.22a-e) for a class of leading 

order behavior into the system (3.2.1a-e), and then solving for the coefficients C,-m, 

working our way up order-by-order in the expansion for the equation. W hat follows 

are the results for our three surviving classes of leading order behaviors.

C lasses I  a n d  II: The aforementioned strategy will work for for classes of 

leading order behavior that have integer resonances, such as class III, but will not 

work for situations in which one or more of the resonances are rational; i.e. classes I 

and II. For these classes, we must modify the expansions (3.2.22a-e) as described in 

§ 2.3, and then carry out this process. If one or more of the resonances is rational, it 

is necessary to determine the lowest common denominator of the resonances. Call 

this denominator M .  Now, we must modify the expressions (3.2.22a-e) to include 

the resonances in the orders of the expansion:

x  =  axrP* +  ^ 2  C imTp*+™, e tcetera. (3.2.23)
m=l
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Clearly, even for small M  this process is tedious, and as M  gets larger, the process 

of constructing the constants becomes too laborious for pen and paper. A simple 

example will illustrate this dilemma.

Consider the case of Class I with (iy = The value of 6 associated with 

this leading order behavior is 6 — | ,  and the resonances for this configuration are

r =  —1,0, | ,  1,4. This means that some or all of the expansions (3.2.22a-e) must

be modified to accomodate this condition. The most general approach is to rewrite 

(3.2.22a-e) as
12

x — ± 2 ir~ 1 +  (3.2.24a)
m=l
12

y  =  o t y T S +  (3.2.246)
m=l

12

2 =  2 1 - -1 +  Y ,  (3.2.24c)
m=l

12

Px = =f2 ir~ 2 +  Y  (3.2.24d)
m=l 

1 12X 2  ̂ _ tn*~2 . .
Py ~  3 a vT 5 +  Y CsmT 3 * (3.2.24e)

m=l

The analysis of this simple example is lengthy, and it is not possible to find the 

arbitrary constants at the resonant orders in the expansion, indicating that this 

leading order behavior does not possess the weak Painleve property.

In general, the analysis of these classes of leading order behaviors is quite

complicated, and there exists no general way of guaranteeing that a  particular 

leading order behavior in classes I or II will possess the weak Painleve property.
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C lass I I I :  This class lends itself well to the process of constructing the con

stants of integration. The system’s resonances for this case are r = —1,0,1,3,4. 

The proper expansions to employ in this situation are

4

x  =  a t r - 1  +  (3.2.25a)
m=l

4

y  =  a y r ~ l  +  Y f  @2m T m ~ l  (3.2.25b)
m=l
4

* =  2 r _1 +  Y  C,3m7-m_1 (3.2.25c)
m=l

4

Pz = - a * T ~2 +  Y C4mTm~2 (3.2.25 d)
m= 1 

4

Py — ~ a yT~2 +  rnrm~2, (3.2.25e)
m=l

where a x =  ±-^/ay2 +  4.

Substituting these expressions into (3.2.1a-e), and enjoying the aid of the sym

bolic manipulator Mathemaiica, we find that for m = 1 , we have

C41 =  0 , Csi =  0 ,

~~i A +  a y2 Cn ~  a y C21 =  0  

—(6  +  oiy2) C\\ +  i oty \Ja~\- cty2 C21 — C41 =  0

i ocy yjA +  oiy2 Cu  +  (tty2 — 2 ) C21 — C51 =  0 . 

Solving for the unknown constants Cu,  C21, and C31, we find

C n = 0 , C21 =  0 , C31 is arbitrary.
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Note that m  =  1 is a resonant order in the expansion, and, as expected, we have 

found an arbitrary constant associated with this order.

Moving on to m  =  2 , and substituting for the constants Cil, we find

C42 =  C\2, C52 — C22,

—i y A  +  a y2 C12 — a y C22 +  C22 — Pz0 = 0 

—(6 +  Qfy2 )  C 1 2  +  i oiy ^Ja -\- a y2 C22 +  i  \J a  +  oiy2 p ro  =  0  

i a y ^ A  + a y2 C 12 +  {ay2 -  2) C22 +  oiy pZo = 0 .

Solving this set for the unknown constants Cj2, C22, and C32, we find

C12 = ^Pz o oiy2 + 4 ,

  OtyPzg / f    Pzg
^22    g , 032   g 1

thus determining the constants fully, as we would expect, since m  =  2 is not a 

resonant order in the expansion.

Continuing further, we substitute the values for the constants C n  and (7,2 , and 

at m  — 3, the equations of motion yield the set of equations

C43 = 2 C13, C53 = 2 C23 =  0,

—i yjA +  ay2 Ci3  — ay C23 +  2  C 3 3  — k = 0

- ( 6  +  oiy2) C13 + i oiy \Ja +  oiy2 C23 +  C43 +  i \jA  + a y2n =  0

i a y yjA +  a y2 C43 +  (oiy2 — 2 ) C23 +  C53 +  a y k = 0 .
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Solving the above equations for the unknown constants C13, C23, and (733, we get 

C 2 3  — ------------( *  \ J a  - f -  d y 2 C i z  +  k )  C 3 3  =  0 ,
Oly V

and Ci3 is arbitrary, in agreement with the fact that m  — 3 is a resonant order in 

the expansion.

Finally, we come to the largest positive resonant order, m  =  4. Using the 

values of all of the constants determined previously, we find that the coefficients 

C,-4 satisfy the equations

C,4 4 = 3 C ,i4 ,  (754 =  3(724,

—i y 4̂ +  a y 2 C\4 — oiy <724 +  3 C34 +  =  0,

— (6 +  Oly2 ) C U +  i Oly y^A+ Oly2 (724 +  2 C44 =  0,

i oiy +  oiy2 C u  “  2 C24 +  oiy2 C24 +  2 (7s4 =  0.

Solving the above set of equations for C14, (724, and <734, we find

y/A + oiy2i
L,j4 _  ------------------------------̂ 24)

Q V

c “  =  - 5 4 a ,C M +  ^

and the coefficient (724 is arbitrary, consistent with the fact that m  — 4 is a resonance 

in our expansion. Therefore we have satisfied the third step of the ARS algorithm, 

and Class III constitutes a leading order behavior (and field geometry) for which the 

system (3 .1.5a-e) is integrablein the complex analytic sense of the word, as described 

in § 2.1. This case is of particular interest, due to the fact that the magnetic field,



and thus the test-particle Hamiltonian is cylindrically symmetric. This means that 

we know immediately that if we perform a canonical transformation on (3.1.4a-f) 

to take it to its representation in cylindrical coordinates, both the axial component 

of the momentum p$ and the Hamiltonian (3.1.3) will be conserved quantities in 

involution. The results of this chapter tell us that the system is integrable in the 

complex analytic sense, which provides no guarantee of the existence of the third 

integral of the motion that we require to declare Class III to be integrable in the 

Liouville sense. This leads us to the natural question: Does the third integral to 

(3.1.4a-f) exist, and i f  it does, what is it? This question will be addressed in greater 

detail in Chapter Five.

§3.3 Yoshida Analysis o f (3.1.4a-f)

Upon examination of the neutral-line field model (3.1.4a-f), we find an autonomous 

Hamiltonian system with three degrees of freedom. Although it is possible to elim

inate pz in favor of a time dependent constant, which was crucial to the successful 

Painleve analysis of the model, we now will forgo such a simplification in order 

to test for the possibility that the system is algebraically integrable using Yoshida 

singularity analysis.

Recall the simple test-particle model for the reconnection field configuration 

discussed in § 3.1:



92

dP* _  „„ . XW  -  *2) /O O
I T  -  ~ xp* + -------2 ------- (3-3-ld)

(3.3.1e)

^  =  k. (3.3.1/)

In order to carry out the Yoshida Analysis, we must know whether or not the test- 

particle equations of motion (3.1.4a-f) comprise a  homogeneous system. In order to 

test this proposition, we apply the similarity transformation that was outlined in § 

2.4:

t' = x' = cr9lx, px =  cr9APxi etcetera.

This transformation will affect the quantity dx/d t  as follows:

dx dx' _  Jl+1  dx
dt dt1 a dt ’

Applying the above similarity transformation to (3.1.4a-f), we get

(j.gi+1^ .  _  a94px (3 .3 .2 a)
dt

o92+1^  = <x9'p y (3.3.26)

a9 3 + 1 =  crgepz + -̂(cr29lx2 — 6a2g2y2), (3.3.2c)
dt 2

*xp, + (3.3.2d)

=  S o ^ y p ,  -  (3.3.2e)
CLT £

o ga+1^  =  K. (3.3.2,f )



93

Enforcing the homogeneity condition (i.e. that both sides of an equation are col

lectively scaled by the same power of the parameter a) on equations (3.3.2a-b) and 

(3.3.2f) leads us to the following conclusions:

94 = 9i +  ,05 =  02 +  1> 9e =  - ! •  (3.3,3)

Substituting for these exponents in (3.2.2c-e) gives us

=Cr-Ip '  +  \ ^ 2' x2 ~  (3.3.4a)

=  (3  3 M )
CZ£ £

^ ^  = s^ y p r _ ^ v ( ^ l l (3.3.4c)
at 2

When we enforce the homogeneity condition on (3.3.4a-c), we find the set of condi

tions that must be satisfied:

<?3 +  1 =  — 1 =  2 <7i =  2g2 (3.3.5a)

9i +  2 =  g2 -  1 *= 3tfi =  2g2 +  gi (3.3.56)

g2 +  2 =  gi — 1 =  3<72 =  2gi +  <72* (3.3.5c)

Solving (3.3.5a) for <?3 , </i, and g2> gives us g2 = —2, gi — g2 = — | .  These results are 

in clear contradiction with (3.3.5b,c), and thus the system (3.1.4a-f) is not invariant 

in form under the similarity transformation described above. This result tells us 

that Yoshida singularity analysis is not applicable to the system (3.1.4a-f).
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§3.4 Summary

In our applications of singularity analysis to the neutral-line field model (3.1.5a- 

e), we have found two systems that are analytically integrable, as well as a host 

of other magnetic field configurations that may be partially integrable. The two 

analytically integrable systems are the cylindrically symmetric O-type neutral line 

(5 =  —1 ), and neutral sheet (8 = 0, 8 -* oo) configuration. The proof that the test- 

particle equations of motion for the neutral sheet configuration possess the Painleve 

property is given in Appendix Two. Below is a  listing of classes of configurations 

that lead to systems possessing the Painleve property, as well as those that possibly 

possess the weak Painleve property are presented below:

X-line Cases;

where M  and N  are natural numbers, and M  <  N/2.

O-line Cases:

where M  and N  are natural numbers, and M  < N.

Since these values of 8 are generated by polynomial functions of rational num

bers (i.e. the exponents in the leading order behaviors), and the rational numbers
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are a dense set, the 5-spectra given in (3.4.1) and (3.4.2) are also dense sets. In 

the case of the X-line 5-spectrum, the values are dense in the interval (0,1/8), while 

the 5’s associated with the O-line fields are dense in the interval (-1,0). Invoking 

the discrete symmetry of (3.1.1a-f) discussed in § 3.1, it is possible to extend these 

results to values of 5 G (—oo, —1) and 5 G (8 , oo). A summary of these results on 

the 5-parameter line is presented in Figure 3.4.1.

(5=8)

i

5=- l

(5=1/8)

F ig u re  3.4.1. 5-Distribution of the Painleve and Weak Painleve Cases.

Given these results, it is only natural that we proceed to examine the orbits 

associated with the above system, and compare these special cases with configu

rations that do not pass the Painleve property test. This topic will be explored 

in the next chapter for the cases that may possess the Painleve property, while a 

discussion of the cases that do satisfy the Painleve conjecture will be examined in 

Chapter Five.



C H A P T E R  F O U R  

TRAJECTORIES, ASYMPTOTIC 

BEHAVIOR AND INVARIANTS 

PART I: THE WEAK PAINLEVE CANDIDATES

§4.1a A genda for T esting  th e  S ingu larity  A nalysis R esu lts

The Painleve singularity analysis carried out in §3.2 identified two systems that were 

analytically integrable-the circular O-line magnetic field geometry and the neutral 

sheet geometry-as well as two dense sets of geometries that passed through the first 

two steps of the ARS algorithm as weak Painleve systems. The implementation of 

the third step of the ARS algorithm for the infinite sets of field geometries proved to 

be impractical, and thus we turn our attention to the task of testing by numerical 

means the results of the singularity analysis of the system

x = p x

V =  Py 

z = P z  + ^ ( x 2 -  6y2),

Px =  - x p z  +

Py =  h P z  ~

x(6y2 — x 2) 
2

Sy(Sy2 -  x2)

with a Hamiltonian H  given by

H {x ,y ,z ,p x ,py,pt ) -  P*2 + Py2 1
2 +  2 P z - ^ ( $ y 2 - x 2) — KZ.

(4.1.1a) 

(4.1.16) 

(4.1.1c) 

(4.1.Id) 

(4.1.le) 

(4.1.1/)

(4.1.2)

96
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This testing will be done via numerical experiments-that is, constructing the 

system’s trajectories numerically for various values of the parameter 5, using initial 

conditions and field strengths that are similar, and then studying the resultant 

trajectories to answer the following questions:

Question I: Do the X-type neutral line and elliptical O-type neutral line geome

tries that satisfy (3.4.1) and (3.4.2) have trajectories that are more regular, or at 

least qualitatively different from trajectories associated with neighboring geometries 

that do not satisfy these conditions?

Question II: What are the properties o f the dynamical systems associated with 

held geometries that yielded equations of motion possessing the Painleve property? 

Do these systems possess closed-form solutions? Do they possess integrals in invo

lution, thus making them integrable in the standard Hamiltonian sense?

The answers to Question I are presented in §4.2 and §4.3, where we discuss the 

properties of the motion of test particles in elliptical O-point and X-point magnetic 

fields. Chapter Five addresses the issues raised in Question II; §5.2 is an examination 

of the dynamics associated with the neutral sheet geometry, and §5.3 answers this 

question for the cylindrically symmetric field geometry.



§4.1b P la n  o f th e  N u m erica l E x p erim en ts
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As we saw in §1.4, the process of charged particle acceleration during reconnec

tion for X-type neutral line fields can be viewed in terms of a  scattering problem in 

which charged particles scatter off of the tinmagnetized region, where the test parti

cle’s magnetic moment ft is no longer an adiabatic invariant. In the case of elliptical 

O-type neutral line magnetic fields, the interesting behavior is related to the strong 

focussing of particles towards the neutral line and their subsequent acceleration.

We wish to examine the trajectories associated with the system (4.1.1a-f) under 

conditions tha t lead to reconnection-the X-line cases-or to strong focusing of the 

test particle towards the neutral line-the O-line cases. For both of these situations, 

we wish to have e > 0, which will produce E  X  B drifts of the types shown in 

Figure 1.1.4. For the X-line systems, this means that we will start our test particles 

in regions I or III in Figure 1.1.4, and the particles will drift in towards the neutral 

region, become demagnetized, scatter off of the unmagnetized region, and then drift 

away from the neutral line in either of the regions labelled II or IV.

The initial conditions for such numerical experiments are set by placing a test 

particle’s guiding center at some coordinate sotc on a  magnetic field line, which is 

a contour of constant flux function ^(a:,?/) =  (6y2 — x2)/2. Identify this field line 

by the value ^  We also will start our test particle in a region in which the

magnetic moment fi is a good adiabatic invariant. We will also fix the particle’s 

Hamiltonian (4.1.2) at a constant value H. Once we have determined the quantities 

H 7 *o > sofle, and fi, we can calculate the actual position of the particle in terms of its
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coordinates (®, y, z ) as functions of the quantities \&o and sosc. This process involves 

wrapping our set of initial conditions around the field line in a helical fashion, with 

the radius of the helix being the test particle’s gyroradius pg, and the angle variable 

about the field line being the gyrophase angle <j>t as shown in Figure 4.1.1.

test-particle
location
(x,y,z)

guiding center 
(X ,Y ,Z )

F ig u re  4.1.1. Initializing the Test Particle.

The momenta can be calculated through the knowledge of H  and p, which 

allow us to construct the parallel and perpendicular velocities

t>x =  \/2  p B  (4.1.3a)

V|| =  ± y / 2 (H  -  ( X B), (4.1.36)

where B  is the local magnetic field strength.

Given the value of v±, it is possible to compute the particle’s gyroradius pg by 

(1.2.5d)

Pa = " S T ~ (4-1-4)B {x , y, z) ’
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since we have f2(x, y, z ) =  B(x, y, z) in our dimensionless variables. Now we choose 

the particle’s gyrophase <j>, which completely specifies the initial conditions for our 

test particle. Let X , Y,  and Z  be the coordinates of the particle’s guiding center

X = X ( s o ec, V 0), F  =  y K c,*o), Z  = ZQ, (4.1.5)

where Z q is a  constant; for our numerical experiments, we shall take Z q =  0, unless 

stated otherwise. The particle’s actual position (®, y, z) is given by

x -  X (s0flC,^ o )  -  ^ - p gcos<f>- Z , Bf ^ x Pgs\n4> (4.1.6a)

V = y ( ^ gc^ o )  +  ^pgCos<£ -  Z0^ ~ p gsm<f> (4.1.66)

z = Z 0 + Pgsin (4.1.6c)
ID

where Bxi By, and B z are the x, y, and z components of the magnetic field, re

spectively, B  is the total magnetic field strength, and Bp is the magnitude of the 

magnetic field in the x-y plane, which is also called the poloidal field strength. The 

next step is to determine the x, y, and z  components of the test particle’s initial 

velocity. Again, we can construct these quantities from the parameters p, H , the

sign of U||, and the particle’s gyrophase <f>. This leads to

Bx B ZB X . , By
Vx =  - « ||- 5 ----------~ - u ± s i n 0  -  —-UXCOS0 (4.1.7a)

l D p  ID J j p  JDp

vy =  ~ v\\~b L ~  ' yv±s'n $ +  Y v±cos<l> C4-1-76)

v - =  vy ^  +  uxsin (j> ^  (4.1.7c)

Finally, it is easy to obtain the particle’s canonical momenta (pE)Ps/>Pz) from 

its velocities by adding the respective components of the magnetic vector potential 

A:

Px = vx + A x ( X ,Y yZ),  Py = V y + A y ( X ,Y ,Z ) ,  pz = v z + A . ( X ,Y ,Z ) .
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It should be noted that the test particle was initialized assuming that the elec

tric and magnetic field strengths were those evaluated at the particle’s guiding center 

(X ,Y ,Z ) .  Once the particle’s actual initial position is calculated using (4.1.6a-c), 

(4.1.7a-c) and (4.1,8), it will have slightly different values for these quantities than 

those originally supplied. These perturbed values will, in turn, affect the value of 

the Hamiltonian. The net change in E, B , p and H  will all be Q(pg), and as long as 

the test particle is initially magnetized, these differences between the guiding-center 

and actual-location initial conditions will be small. For this reason, all references 

to initial conditions in this chapter will refer to guiding-center initial conditions, 

unless otherwise specified.

§4.1c Simulations o f Ensem bles o f Test Particles

The construction of single-particle trajectories, though illustrative, will be found 

inadequate for determining whether or not the system is chaotic in the sense that it 

displays a sensitivity to initial conditions. In order to examine this issue, we must 

integrate a large ensemble of test particles that have neighboring initial conditions 

and then calculate the kinetic energy of the particles in the ensemble after they 

have satisfied some suitable exit condition, which will be discussed shortly.

The integration schemes we employ are second-order momentum-implicit sym- 

plectic integration algorithms, which are derived and discussed in detail in Appendix 

Four. The advantage of using a  symplectic scheme lies in the fact that the inte

gration scheme is generated from the system’s Hamiltonian, and thus will possess 

the same symmetries as H. It is generally considered that symplectic integration
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schemes will preserve the topology of the phase space much better than standard 

numerical schemes, and symplectic schemes will often preserve the system’s integrals 

to machine precision, a consequence of the algorithm having the same symmetries 

as the Hamiltonian. For the numerical experiments discussed in this Chapter, we 

us a timestep At =  0.01, and the relative error in the Hamiltonian, tjj  is of the 

order 10-4 after 150000 timesteps,

The type of diagnostic tool and exit condition may be one of two varieties:

E x p erim en t N o. 1: For X-type neutral lines, we can use the fact that 

the reconnection event is analagous to scattering, and test the system for chaotic 

scattering. This type of numerical experiment entails evolving the members of the 

ensemble until the individual particles cross an outgoing flux surface. This is the 

approach used by Moses, Finn, and Ling [21], and involves starting the particles in 

the vicinity of a magnetic field line identified by ’Ffr, y) = 0, and then integrating

the test particle equations of motion until each particle passes through an outgoing 

flux surface, which is identified by =  —\Po. Once the test particle has

passed through this flux surface, the E x B drift will carry the test particle away 

from the unmagnetized region, and hence away from the region in which the particle 

experiences sudden acceleration along the neutral line. Upon crossing this “finish 

line,” we can employ one of two diagnostics to determine whether or not the system 

exhibits sensitivity to initial conditions:

D iagnostic  A: Measure the test particle’s kinetic energy as it crosses the 

outgoing flux surface. If the system is displaying sensitivity to initial conditions in
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the form of chaotic scattering, then we should see this in a plot of test particle kinetic 

energy versus guiding-center position on the initial flux surface. This sensitivity 

should be visible on all length scales chosen along the initial conditions surface, 

such as the example presented in Figure 1.4.3, which is a  plot of the final kinetic 

energy for test particles versus their initial guiding-center value of y.

D iagnostic  B: Measure the amount of time td a test particle takes to reach 

the outgoing flux surface. This quantity is called the time delay, and will exhibit 

the same sort of structure as the kinetic energy curve used in Diagnostic A.

E x p erim en t No. 2: For geometries that involve focusing of the test particles 

into the neutral line, such as the circular and elliptical field line geometries, or into 

a neutral plane, which is the case for the slab geometry, the flux function ^ (x , y) is 

negative everywhere in the x-y plane, and the exit condition used in Experiment No. 

1 is not applicable. An alternative exit condition is integrating all of the particles 

for some long period of time T, where T  > 4'o/e, and then measure the kinetic 

energy of each particle in the ensemble at t =  T, plotting this quantity versus the 

particle’s guiding-center position on the initial flux surface.

The initialization of an ensemble of test particles is accomplished using the 

same scheme as that outlined above. We wrap our initial conditions around a field 

line, changing the gyrophase <f> as we step through the coordinate sgCo so that two 

neighboring test particles have coordinates given by

,  ( n + 1 )  ( n )  , ^
■’ SCq — ° g c 0 -p  a s

0<«+l) = <̂n) + Xds^
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where A is a constant, and determines how tightly the initial conditions are wound 

around the field line.

§4.2 P roperties o f Trajectories in X-Line Configurations

The results of the Painleve analysis done in §3.2 suggest that the dynamics asso

ciated with certain types of X-line fields may be partially integrable, or at least 

perhaps qualitatively different from that of their neighboring geometries. In par

ticular, recall from (3.4.1) that the set of values of the magnetic field geometry 

parameter 8 that yielded systems that passed through the first two stages of the 

ARS algorithm as ’’weak Painleve” cases were given by the following rule

W )  =  M | ^ £ ) ,  (4.2.x)

where M  and N  are natural numbers, and M  < N/2.  This gave us a dense set of 

values of 8 on the interval (0,1/8). We also found, that we had an equivalent set 

of values of 8 on the interval (8, oo), which were given by the inverses of the values 

stated in (4.2.1). The leading order behavior exponents for the coordinates(x, y, z) 

in such systems were given by

where M  and N  were natural numbers with 0 < M  < ~ ,  placing the values 

of fly on the interval (0, | ) .  Due to the increasing level of complexity involved in 

implementing the third step of the Painleve analysis for such systems, we found it to 

be impractical to test for the weak Painleve property systems associated with values
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of N  > 4, and thus are forced to  rely on numerical means to determine whether or 

not there is anything special about the dynamics stemming from systems that have 

8 given by (4.2.1), as opposed to  neighboring systems related to nearby values of 8 

tha t do not satisfy (4.2.1)

A logical place to begin this analysis is to examine trajectories related to values 

near 8 = 1/8. If the Painleve analysis is indicating a change in behavior for the 

system, this value of 8 is an effective separatrix in parameter space for the system, 

and we should see some qualatative difference in the system’s trajectories as we 

vary 8 in this neighborhood. To this end, we shall examine trajectories for three 

values of 8 in the neighborhood of 8 = 1/8), while fixing the electric field strength 

at the value of k  to be 3.13 x 10-4 . The test particle was initialized by placing 

its guiding center on a flux surface of fixed value \Ero =  —0.24, and was given an 

initial magnetic moment of fi =  5.0 X  10"3. The particle’s initial momenta were 

set by calculating the perpendicular and parallel momenta as outlined in §4.1. We 

then employed our code XOSsim (whose listing can be found in Appendix Five) 

to evolve the particle, using a second order symplectic integration scheme such as 

the one outlined in §A4.3, and integrated equations (3.1.1a-f) for a period of time 

sufficient for the particle to scatter off of the unmagnetized region, and proceed 

away from the neutral line, which is of order 2\&o/e, as shown in § 1.4.

Test I  8 =  Recall from (3.2.7) that this value of 8 is linked to a leading 

order behavior exponent in y of 0y =  1/2, which was found to lead to a  failure of 

the resonance test for the ARS algorithm, implying that the system (4.1.1a-f) does
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not possess the weak Painleve property. Setting 8 =  1/8, and fixing the values of /i, 

k , and \Po at the values stated above, we integrated the system numerically. Figure 

4.2.1 shows an x-y trajectory for this case, and an x-z trajectory is shown in Figure

4.2.2. In these figures, the test particle starts at x m 0.6, y «  0.8, and z » 0 ,

4.0

2.0

0.0

- 10.0
- 1.0 0.0 3.0X

Figure  4.2.1. x-y Trajectory (£ =  |) ,

0.0

- 0 .0

-1.0) ■   1   1   * 1 1
-1.0 0.0 1.0 2.0 3.0X

Figure  4.2.2. x-z Trajectory (5 =  |) .
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The phase space trajectories for the x and y motion have a similar structure, 

so we will concentrate on the ar-motion, which is shown in Figure 4.2.3. The dark 

section at the right of this plot is simply the oscillation in a; as the particle drifts in 

towards the unmagnetized region. As the particle enters the unmagnetized region, 

its motion becomes eratic, and then settles into a widened oscillation in x, as the 

test particle drifts away from the neutral line along the — y direction.

The phase space motion for z  is fairly simple, and is illustrated in Figure 4.2,4.

Note the sudden jumps in z, which can be seen in both Figure 4.2.4 and Figure

4.2.2. These sudden increases in z occur when the particle becomes demagnetized

and is accelerated by the electric field in the positive z-dircction.

0.10 

0.08 

0.06 

0.04- 

0.02 

«=£ 0.00 
- 0.02 

-0.04 

-0.06 

-0.08 

- 0.10
-1.0 0.0 1.0 2.0 3.0

X

F igu re  4.2.3. s-Phase Space Trajectory Trajectory (6 =  | ) .
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0,30 

0.20 

r iT  o . i o  

0.00 

- 0.10 

- 0.20

F ig u re  4.2.4. 2-Phase Space Trajectory Trajectory (<5 =  |) .

The test particle began its journey in a domain in the phase space for which 

the particle is magnetized. As the particle is carried in towards the unmagnetized 

region by the E x B  drift, it becomes unmagnetized, and this behavior can be seen 

by inspection of Figures 4.2.5a, which shows the time behavior of the magnetic 

moment fi. In the region between t =  0 and t «  250, the particle is magnetized and 

spirals about a field line, and the magnetic moment is conserved fairly well. In the 

neighborhood of t «  250, the test particle momentarily becomes demagnetized, and 

switches to oscillating about a different field line, and the value of ft oscillates about 

a different fixed value. At t «  800, the test particle becomes unmagnctizcd, and the 

invariance of fi breaks down until the particle becomes remagnetized at. t fa 900.

-0.8 0 .0
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0 .0 0 8

0.006

0.002

0.0000.0 1000.0 i s o o . ot
F ig u re  4.2 .5 . The Magnetic Moment fi vs. Time (6 =  1/8).

The field configuration given by 6  =  1/8, K  =  3.13x 10-4 yields the sensitivity to 

initial conditions seen in a system exhibiting chaotic scattering. Figure 4.2.6a shows 

the exit kinetic energy spectrum for an ensemble of 1000 particles, all initialized 

with the values of if ,  fi and stated above, but with =  —0.48 . Figure 4.2.6b 

shows the exit kinetic energy spectrum for an ensemble of 1000 particles whose 

initial conditions lie on a small subset of the flux line used to generate Figure 

4.2.6a. Further magnifications in this fashion show that the system is exhibiting a 

clear sensitivity to initial conditions.
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0.0020

O.OOIO

0.0000
-0.5 -0.3 -0.1 0.1 0.3 0.5

« eo

F ig u re  4*2.6a* Exit Kinetic Energy vs. Initial Position. (6 =  1/8).

0.0040

0.0030

0.0020

0.0010 -0.010 0.0 OS 0.00  s0.000 0.010

BeO

F ig u re  4.2.6b. Detail of Figure 4.2.Ga.

T est I I  S = This value of 5 satisfies (4,2.1), and is only less than our 

previous value of 6. The leading order behavior associated with the y-motion for
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this case is /? =  3/8, which allows the system to pass through step II of the ARS 

test, but the denominator for /3y is sufficiently large that it is well outside of the 

range of values of /? for which we could carry out step III of the ARS algorithm for 

the system. Do we see any qualitative difference between the trajectories associated 

with this configuration and those for test I? If this particular value of 8 is special, 

we should see some difference in the trajectories for the system. Once again, we 

present results for a fixed electric field strength k = 3.13 x 10-4 , and we hold ft 

fixed at 5 x 10~4, and the initial flux surface corresponds to =  —0.48. Numerical 

integration of the system shows little difference in the system’s phase space behavior, 

and no qualitative difference appears in the outgoing kinetic energy spectrum for a 

distribution of particles initialized about a single field line, as can be seen in Figure 

4.2.7
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0.0000
-0.5 -0.3 -0.1 0.1 0.3 0.5

F ig u re  4.2.7. Exit Kinetic Energy vs. Initial Position. (6 =  15/128).

T est I I I  8 = This value of 8 does not satisfy (4,2.1), and yet is only
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■j|g larger than our border value of 6 =  1/8. Recalling (3.2.7), wo find that the 

leading-order behavior exponent for the y-motion is =  (4 ±  i )/8, meaning that 

the system for this value of 8 will possess a  transcendental branch point. The 

trajectories associated with this field configuration are also similar in structure to 

those associated with 8 =  1/8. The results of the numerical experiment conducted 

in the same fashion as it was in the previous two tests shows the same type of 

exit kinetic energy spectrum, complete with sensitivity to initial conditions (Figure 

4.2!8).
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-0.010 -0.005 0.000 0.005 0.010

^ s co
F ig u re  4.2 .8 . Exit Kinetic Energy vs. Initial Position. (5 =  17/128).

Given the evidence presented in Figures 4.2.G-8, it seems that variations of 

the parameter 8 about 8 =  1/8, shows no abrupt change in the character of the 

dynamics of the system. All of the above cases display a strong sensitivity to initial 

conditions. This is no serious indictment, however, of the Painlcve conjecture,

S| u
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since we were comparing systems that might or might not possibly possess the weak 

Painleve property, which is itself a weak indicator of possible integrability. In the 

region of the parameter space near 8 — 1/8, the condition (4.2.1) is not identifying 

any special dynamical systems.

The other interesting region of the 5-parameter space for X-lines to investigate 

is the limit that 8 —> 0. In this limit, we will find that as we decrease the value 

of 5, the motion of a charged particle becomes more regular as 8 is decreased. 

This behavior is generic, and is true for all values of 8 in this limit, regardless of 

whether or not 8 satisfies (4.2.1). Given this insensitivity to the condition outlined 

in (4.2.1), we will examine trajectories for one value of 8 that docs satisfy (4.2.1), 

while performing chaotic scattering tests on values of 8 in this region that do satisfy

(4.2.1), as well as those that do not satisfy (4.2.1).

We begin with 8 =  4.95 x 10“3. This value of 8 is associated with a value 

of =  1/100. The trajectory plots presented in Figures 4.2.17-23 were generated 

from a set of initial conditions of fi =  5.0 X 10-4 , =  0-24, H  =  10-3 . The electric

field strength was k =  3.13 x 10“4. The motion, while complicated, is certainly less 

violent than the particle motion presented earlier in this section.
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F igure  4.2.9. x-y Trajectory (6 =  4.95 x 10 3).
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F igure  4.2.10. x-z  Trajectory (£ =  4.95 X 10 3).
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Figure  4.2.12. 2-Phase Space Trajectory Trajectory (S =  4.95 x 10~3).
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F ig u re  4.2.13. y-Phase Space Trajectory Trajectory (5 =  4.95 X  10 3).
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F igu re  4.2.14. The Magnetic Moment fi vs. i (5 =  4.95 x 10 ,1).

The chaotic scattering test results for 8 — 4.95 X  10“ 3 can be found in Figures 

4.2.15a,b. Note that the structure of this graph is much less complicated than 

Figures 4.2.6-8, indicating a  decreased sensitivity to initial conditions.
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F ig u re  4.2.15a. Exit Kinetic Energy vs. ygCg (6 =  4.95 x 10 3).

F igu re  4.2.15b. Detail of Figure 4.2.15a.

Now let us choose a neighboring value of 6 that does not satisfy (4.2.1) 6 =  

5.0 x 10-3 . Setting the initial flux Wo, /*, and H  to the values used above, and 

performing the same numerical experiment , we arrive at Figure 4.2.16. Again,
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we see very little sensitivity to initial conditions, and little qualitative difference 

between this graph and Figures 4.2.15a,b.

0.00180

0.00160

-0.005 0.0050.000 0.010

Figure  4.2.16. Exit Kinetic Energy vs. ygCo (6 =  5.0 x 10 3).

Now we shall reduce 6 even further to the value 8 = 4.995 X IQ-4 . Recalling 

(3.2.7), this value of 8 corresponds to — 1/1000. Again, we adopt the initial 

conditions ’Fo =  — 0.24, H  — 10“3, and /t =  5 x 10-4 . We also set « =  3.13 x 10~4, 

and evolve the system forward over the reconnection time scale 24'o/e. The resultant 

trajectories are yet more regular than the previous set shown in Figures 4.2.9-14. In 

particular, the phase space portrait of the 7/-motion indicates that py starts out as 

a quantity executing small oscillations about a slowly changing value, a condition 

which decays rapidly when the particle becomes demagnetized. The particle then 

becomes remagnetized, and py begins to oscillate about a different, slowly changing 

value.
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F igure  4.2.17. y-Phase Space Trajectory Trajectory (8 =  4.995 x 10-4 ).

If we examine this configuration using the same chaotic scattering test used to 

generate Figures 4.2.15-16, we find tha t once again do not have extreme sensitivity 

to initial conditions.

Note that this increasingly regular behavior is simply a consequence of the fact 

that as 8 —* 0, the field geometry is approaching that of the slab configuration, 

which was shown in Appendix Two to possess the Painleve property.

As mentioned in § 1.4, particles that pass through the vicinity of the null will 

experience sudden acceleration. This process can be seen clearly by examining the 

kinetic energy as a function of time. Figure 4.2.18 illustra tes this effect for a member 

of the ensemble used to generate Figure 4.2.8 (5 =  17/128), while Figure 4.2.19 is 

the kinetic energy time sequence for a  test particle with 8 =  4.95 x 10“ 3. The 

downward trends in the kinetic energy that occur in these graphs are the result of
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the V B  drift and the curvature drift. Recalling (1.2.15) and (1.2.1G), we have

v v b  ~  ~  ®2 ) *

and

S { H - hB ) / c 2  6 ( H - ft B ) T . ,v °  ---- — l ( Sy2 -  x )z = -----— A—

When $  < 0 and 0 < 6 < 1, both of the above drift motions will carry the 

test particle into regions of higher electric potential, thus lowering the test particle’s 

kinetic energy.
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F ig u re  4.2.18. Test Particle Kinetic Energy vs. Time (5 =
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F ig u re  4.2.19. Test Particle Kinetic Energy vs. Time (8 =  4.95 x 10-3 ).

§4.3 Properties o f  Trajectories in Elliptical O-Line Configurations

The results of the Painleve analysis in §3.2 indicated a  dense set of values of 8 on 

the intervals (—1,0) and (—oo,—1) whose dynamics passed the first two steps of 

the ARS algorithm for the weak Painleve property, implying that these systems 

might possibly be partially integrable. Kim and Cary [68] have studied tcst-particle 

motion in O-line magnetic fields with no electric field, which lead to the discovery 

of a numerical action integral for the motion in these fields. A similar integral 

exists for the motion in these fields when an electric field is introduced, and we 

shall demonstrate this shortly.

The set of values of 8 that are of interest on the interval (—1,0) were stated in

(3.4.2), and are given by

(4.3.1)
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where M  and N  are natural numbers, and M  < N.

Recall the system’s equations of motion (4.1.1). Depending on the sign of e, 

we have two different asymptotic regimes in which we can find solutions to the 

system’s equations of motion, and we can also calculate constants of the motion for 

the system.

R egim e I: For e < 0, a charged test particle will execute an E  X B drift that 

is directed outwards from the origin, which, after a sufficiently long period of time, 

will take the particle into a region in which both n and J|| are good invariants. 

These invariants, along with the system’s constant Hamiltonian /f , are sufficient to 

describe the particle’s motion completely.

R egim e II: e > 0. In this limit, the E  X B drift will push charged particles 

inwards towards the neutral line, and if the system is allowed to evolve for a suffi

ciently long time, we can neglect the higher-order terms in the (4.1.1c-e), and can 

linearize the system, leading us to

x - p x (4.3.2 a)

y = Py (4.3.26)

Z s= ( K t  + p*0) (4.3.2c)

Px = -*(«< +  Pr0), (4.3.2ef)

Py = 6y(K t+P*0)- (4.3.2e)

In this linearized system, the motion in z  is simply a free-fall in the electric

field

z(t) =  z 0 +  pZQt +  i Kt2, (4.3.3)
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where z0 is a constant.

The equations governing the x  and y  motion can be condensed into a pair of 

decoupled second-order ODE’s

<Px
dt2 +  (nt + p z„)x =  0

ffilI
- j p  +  |5|(«< +  p Zo)y =  0.

Introducing a translated time variable r  =  t  + pz0/ Ki we niay rewrite the above 

equations to get

+  k t x  =  0 (4.3.4a)

+  \6\Kry =  0. (4.3.46)

This is quite useful indeed, since (4.3.4a,b) are just Airy equations. The solu

tions for to (4.3.4a) are the Airy functions Ai(—k t ) and Bi(—k t ), and the general

solution for x  in this regime is

a:(r) =  CiAi(—k t )  +  C2Bi(—k t ) ,

while the motion in y  is described by

y (r )  =  D i  A i(-|6 |/cr) +  Z>2Bi(—|5 |kt).

The Airy functions Ai(—k t ) and Bi( —k t ) have asymptotic representations given by

169]

Ai{" * r):“  - jm  K c -+

cos 4 ) S ( “ 1)naan+1̂  2n 1 (4.3.5a)
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and

b k - * t ) = 7 ^ ?  K c + i ) £ (- i r i 2 "c

+ s i n ( c + f ) E ( - i ) nW i C -2"-1
' '  n™fl

(4.3.56)

where (  =  |( /c r)3/2 and the coefficients an and bn are constants. Keeping only the 

leading order terms in (4.3.5a,b) leads us to an asymptotic expression for .x(r), and 

using the same analysis, we can construct an asymptotic expression for ! / ( t ) .

*(r) = y/lT-/KT
C\ s in ^ ( /c r )3/2 +  ^  +  C2 cos^ |(fc r)3/2 +  ^ (4.3.6a)

y (T) =  y = = ^ = [ ^ i sin( f ( l % r )3/2 +  +  -D2 c o s Q ( |% r ) 3/2 +  ^

(4.3.66),

where D\ and D2 are also constants.

The behavior predicted by (4.3.6a,b) is oscillatory motion whose frequency is 

proportional to t1/2 and amplitude which scales as r -1 /'1. The frequency of the 

z-motion can be seen by examining the argument of the trigonometric functions in 

(4.3.6a), which is

[(2 « y /2 r
T )  ^

7T

r + 4 ’

This allows us to define a frequency in jc, w*(r)

( 2 k \ s/* r
W*.(T) =  I y ) v r< (4.3.7a)



By a similar argument, we can define the frequency of the motion in y by
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{ 2 k \ 6 \ \ 3 / 2  r  
" v O O  =  I  “ 3  ) v r * (4.3.76)

This scaling of the frequency agrees well with the log-log plot of ^ ( r )  versus t, 

presented in Figure 4.3.1, which shows that in the interval between t  =  1000 and 

t = 1500, the slope of the graph is approximately 0.53. The scaling of the amplitude 

can be seen by inspection of (4.3.6a,b), and is confirmed by a plot of the amplitude 

of x versus t (Figure 4.3.2)

10'

10' 10' lO' i o : io -

F igu re  4.3.1. Frequency of the x -Oscillations (6 =  — | ) .
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F ig u re  4.3.2. Amplitude of the ^-Oscillations (5 =  —

The above analysis applies to all 8 6 (—1,0), as well as all 8 £ (—oo, —1), not 

just those values of 8 that satisfy (4.3.1). The fact that (4.3.1) describes a dense 

set of 8 on the interval (—oo, —1) may be related to the fact that it is possible to 

construct the asymptotic solutions (4.3.6a,b). A typical set of trajectories for the 

system in this limit are presented in Figures 4.3.3-7. The field configuration for 

these Figures is 8 = the electric field strength is set at k = 3.13 X 10~4, and the 

initial value of the magnetic moment is fi =  5.0 X 10-4 .
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F igu re  4.3.3. A Typical x-y  Trajectory (5 == —| )
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Figure  4.3.4. A Typical x-z  Trajectory (5 =  —|) .
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F ig u re  4.3.6. A Typical y-Phase Space Trajectory (5 =  — |) .
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F igu re  4.3.7. A Typical z-Phase Space Trajectory (£ =  — |) .

There is no stark difference between the properties of the trajectories associated 

with values of 6 that satisfy (4.3.1) and those that do not satisfy this relationship, 

with one exception: if 6 = —(K 2f L 2)l tz, where K  and L  are natural numbers, with 

K  < L, then the frequencies of the x  and y motion become comensurate, i.e.

^  =  y .  (4.3.8)tox L

In this case, the x-y trajectory resembles a  Lissajous figure, such as the one shown 

in Figure 4.3.8, and we have quasiperiodic motion in x  and y. The condition that 

a given value of S that yield quasiperiodic trajectories leads to values of 6 that do 

not satisfy (4.3.1).
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F ig u re  4 .3 .S. Quasiperiodic x-y  Trajectory (6 = —jg)

As we saw with the X-line field configurations, as £ —* 0, the dynamics of the 

system become more regular. This is also true of elliptical O-line field configurations, 

as can be seen in Figures 4.3.9-12, which are trajectory plots for 6 =  —4.95 X  lO""3, 

a  value of S that satisfies (4.3.1).
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F igu re  4.3.9. x-y  Trajectory (5 =  —4.95 x 10-3 )
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F igu re  4.3.10. x-z Trajectory (6 =  —4.95 x 10-3).
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F igure  4.3.11. rr-Phase Space Trajectory Trajectory (£ =  —4.95 X 10-3 )
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F ig u re  4.3.12. y-Phase Space Trajectory Trajectory (6 — —4.95 x 10 3).

The condition (4.3.1) does not signal any generic change in behavior for the 

system. Any small value of 6 (that is, —1 «  S < 0) will yield regular dynamics, 

and as 6 —* 0, the system’s behavior approaches that of the slab geometry, which, 

as we shall see in the next section, is integrable. Unlike the X-line cases in the 

previous section, note that we do not have a situation in which py approaches a 

constant value.

Given the ease with which we were able to construct asymptotic solutions to 

the equations of motion for the system for k > 0, it would seem likely that the 

system may possess some constants of the motion in this regime. As the particle 

drifts in towards the neutral line, we lose the adiabatic invariant //, as can be seen 

in Figure 4.3.13, and the parallel invariant defined in §1.2 by (1.2.23) also breaks 

down in this regime.
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F ig u re  4.3.13. Magnetic Moment fi vs. time (5 =  —|) .

We can, however, construct two new actions Jx and J y> which are defined as

t-to+T,.
Jx = 1 Pxd X (4.3.9a)

Jto
fio + Ty

II •e *5 1* (4.3.96)

where Tx and Ty are the periods of the x  and y motion, respectively. Figures 

4.3.14 and 4.3.15 show the values of these actions versus time, for the same set of 

parameters and initial conditions used to generate Figures 4.3.2-7.

i.Mll.lLlMU■i. i.-i-.r.i.,uij
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F ig u re  4.3.14. Action Integral in a;, J x, vs. Time (6 — —
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F ig u re  4.3.15. Action Integral in y, Jy, vs. Time (S — — |) .

For all of the elliptic O-line cases, the fact that the test particle is focused 

into the unmagnetized region leads to a dramatic increase in the particle’s kinetic
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energy. This behavior is generic for these closed magnetic field geometries. The 

system’s asymptotic solutions indicate that the test particle’s kinetic energy will 

grow as a quadratic in t once the system enters the asymptotic regime. This can be 

seen by examining the Hamiltonian (4.1.2) and noting that the particle’s position 

in z is given by (4.3.3). Examination of the linearized Hamiltonian yields a  simple 

estimate of the test particle’s kinetic energy

E k  = H  + Kz(t) =  H  +  K K
(4.3.10)

Figure 4.3.16 shows a typical test-particle’s kinetic energy plotted versus time, for 

8 — 1/8, k = 3.13 x 10“ 4, and fi =  5 x 10-3 , and Figure 4.3.17 is a log-log plot of 

a typical test particle’s kinetic energy for 8 =  1/16, with the same values of electric 

field and initial magnetic moment.
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F ig u re  4.3.16. Test-Paxticle Kinetic Energy vs. Time (5 =  — ̂ ).
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F ig u re  4.3.17, Log-log Plot of E k  v s . t  (6 = — ̂ ) .

Finally, we turn our attention to the issue of sensitivity to initial conditions. 

Using diagnostic B outlined in § 4.1, we have examined elliptical O-line fields for 

various values of 6. The numerical experiments were performed using an ensemble 

with 1000 particles, and setting H =  10-3 , / i  =  5 X 10-4 , =  —0.48, and

k — 3.13 x 10-4 . The ensemble was integrated forward from t = 0 to t  = 1000, and 

the test-particles’ kinetic energies were calculated at t = 1000. The system showed 

large-scale structure in its kinetic energy spectrum (i.e. a sine wave), but still had 

some sensitivity to initial conditions superimposed over this orderly picture (Figure 

4.3.18). These spikes are not numerical errors, since the typical final relative error 

in the Hamiltonian is on the order of 10-3 , much smaller than the displacements 

shown in Figure 4.3.18. Structure persists when we examine a small segment of the 

initial flux surface using an ensemble with the same population, as shown in Figure 

4.3.19.
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§4.4 Summary o f the Properties o f the Weak Painleve Candidates

We were unable to prove analytically whether or not the large classes of weak 

Painleve candidates discovered in § 3.2 actually possess the weak Painleve property. 

Numerical studies of single-particle trajectories and ensembles of particles have lead 

us to the following conclusions:

I: In the case of X-type neutral line configurations, the condition (4.2.1) did not 

identify any field configurations whose trajectories or sensitivities to ininial condi

tions were significantly different from neighboring field geometries (i.e. neighboring 

values of 5).

I I : The O-type neutral line cases specified by the condition (4.3.1) form a 

dense set on the intervals (—oo, —1) and (—1,0). As we saw in §4.3, for e > 0, 

we could construct asymptotic solutions to the system (4.1.1a-f) in terms of Airy 

functions. We were also able to identify the numerical actions integrals Jx and Jy 

in this regime. The aforementioned constructions were possible for all values of 6 on 

the intervals defined above, not just the values listed in (4.3.1). Furthermore, the 

weak Painleve candidates did not include the quasiperiodic cases defined in (4.3.8). 

Finally, the dynamical systems associated with 6 6 {(—oo, —1) U (—1,0)} showed 

no difference in their sensitivities to initial conditions with respect to the condition

(4.3.1).

Drawing from the above results, it seems that the partial fulfillment of the 

weak Painleve property criteria for the systems identified by (4.2.1) and (4.3.1) 

does not provide a dependable predictor of integrability. This should not be taken



as an indictment of the Painleve conjecture, since the systems examined here do 

not satisfy the hypothesis of the conjecture. In the next chapter, we shall examine 

two field configurations which produce dynamical systems that possess the Painleve 

property, and we shall get more satisfactory results.



C H A P T E R  F IV E

TRAJECTORIES, ASYMPTOTIC 

BEHAVIOR AND INVARIANTS 

PART II: CASES THAT POSESS THE PAINLEVE PROPERTY

§5.1 W hat the Painleve Property Implies

In Chapter Three, we found two cases for which the system (3.1.4a-e) possessed 

the Painleve property: the neutral sheet (<5 =  0 and S —» oo), and the circularly 

symmetric field line case (6 =  —1). Given the Painleve conjecture stated in § 2.2, 

we expect these systems to be integrable in the complex analytic sense, that is, 

we will be able to construct Laurent series representations for the coordinates and 

momenta:

ffi(i) =  f )  «.•<">(”
rt=—oo

Pi(t) =  f ;
7 1 =  —  OO

where the coefficients a,(n) and 6 ,^  are constants. In this chapter, we will find 

that the aforementioned field configurations are indeed special, and we will find 

that they are integrable in the Hamiltonian sense in an extended phase space that 

includes the time as one of its canonical variables.

140
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§5.2 The N eutral Sheet Configuration

The neutral sheet configuration can arise in two instances, depending on the value 

of 5: 8 = 0 and 5 —> oo. The former case yields a neutral sheet in the plane x =  0,

while the latter leads to a neutral sheet in the plane y — 0. The analysis for the

case 5 =  0 is more transparent, and from our discussion in §3.1, it is equivalent to 

the situation 5 —* oo. Thus, we shall only consider the case 5 =  0.

The Hamiltonian equations of motion (3.1.1a-f) for this system have been stud

ied for the case of a neutral sheet in the y-z plane in Appendix Two, and setting 

5 =  0 reduces them to

x =  px (5.2.1 a)

y =  Py (5.2.16)

+  (5.2.1c)

Px = - x p z -  y  (5.2.1ef)

py =  0 (5.2.1e)

Pz = k, (5.2.1/)

with a Hamiltonian H , given by

u f  \ Px“ Py^ * 1 / 2 ®
H { x , y , z , p x , p v , p z )  = ---------i—  +  - { P z  + - Z - )  ~ KZ.

(5.2.2)

The motion in y , described by (5.2. lb,e) is trivial, and y is given by

y ( t ) = p yt  +  y0, (5 .2.3)
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p x(i) =  *t  +  pzQ, (5.2.4)

where pZo is a constant. Substituting (5.2.3) and (5.2.4) into (5.2.1a,c,d) gives us 

the system

x = px (5.2.5 a)

x2
z  =  Kt +  pz0 +  y , (5.2.56)

a;3
Px = ~ x (K t+ p zo) -  — . (5.2.5c)

The set (5.2.4a-c) tell us that the root dynamics of the system lies in the coordinate 

x, and given x, we can use (5.2.2), (5.2.3), and the system’s Hamiltonian (4.1.2) to 

solve for z explicitly. Differentiating (5.2.5a) with respect to t and replacing px by 

the expression found in (5.2.5c), we get

- jp  + (Kt + pZQ)x + ~  = 0. (5.2.6)

Once again, this equation can be simplified by introducing a translated time variable

r:

T =  1 +  p «  ±  =
K 1 d t  d r

This transformation reduces (5.2.6) to

4- ktx -J- — =  0.



In Appendix Two, the above equation (5.2.7) was shown to possess the Painleve 

property, which means that it falls into one of the fifty classes of second order ODE’s 

studied by Painleve. In fact, (5.2.7) can be better understood by casting it in 

standard form [49]. This may be accomplished by applying the change of variables

r  =  (—«)-1/,3C x =  ±2 

which transforms (5.2.7) into the second Painleve. transcendent [49]:

0  =  CX +  2X3- (5.2.8)

The above equation (5.2.8) is integrable in the Liouville sense; i.e. it is possible 

to construct a Hamiltonian % and second integral 1  in an extended phase space that 

includes both x  and C as canonical coordinates [70]. A discussion of this procedure 

is found in § 5.4.

The solution to (5.2.7) in terms of the second Painleve transcendent, though 

rigorous, is difficult to interpret from a physical point of view. We can, however, gain 

physical insight into the system’s behavior by examining the asymptotic behavior 

of (5.2.7).

For e > 0, the particle trajectories associated with (5.2.5a-c) are forced into 

the plane x =  0 as t gets large. This is due to the action of the E  x B drift. For 

sufficiently large r ,  x will be small, and we can neglect the cubic term in (5.2.7), 

which leads to Airy’s equation:
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The solutions for to (4.2.8) are the Airy functions Ai(—kt) and Bi(—/cr), and the 

general solution for x  in this regime is

x (r) =  CiAifr) +  C^Bifr).

Recalling the arguments made in § 4.3 concerning the properties of Airy func

tions in the limit of increasing argument, we obtain an asymptotic expression for 

x(t)

The behavior predicted by (5.2.10) is oscillations with frequency proportional 

to <3/2 and amplitude which scales as which can be seen in Figures 5.2.1 and

5.2.2. Figure 5.2.2 is a plot of a typical particle trajectory, projected into the x~y 

plane. These results are in agreement with those of Speiser [71], who first published 

asymptotic results for charged particle motion near a neutral sheet.
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F ig u re  5.2.1. Frequency of the a:-Oscillations in the Neutral Sheet.

F ig u re  5.2.2. A Typical x-y Trajectory.

There are several invariants for particle motion in this regime, we already have 

two constants of the motion in H  and py, as mentioned earlier. We also have the 

time-dependent constant of the motion pZQ — pz — Kt. The fact that the E  x B drift



146

motion pushes the charged particle into the unmagnetized region tells us that (i 

will not be a good adiabatic invariant for the system. One quantity that is a good 

asymptotic constant of the motion that for the system is the action integral in x 

over one period of oscillation in x, which is defined by

J E *— v Px ̂
J

rt=tom\m'T (5.2.11)
=  /  px2dt.

Jt=t0

The motivation for the existence of this action can be obtained by viewing 

Figure 5.2.3, which is an ar-phase space trajectory plot. As the system evolves, the 

phase space trajectory approaches an elliptical orbit of constant area. The fact that 

this action is constant is demonstrated in Figure 5.2.4, which shows Jx versus t.

0.030

0,010

0.000

- 0.010

-0.040
- 0.2 0.2 0.6 0.8

Figure 5.2.3. A Typical r-Phase Space Trajectory (e > 0).
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F igu re  5.2.4. Action integral in x , Jx vs. Time (e >  0).

In the instance that e < 0, the E x B  drift is away from the neutral plane. In 

this regime, x  grows larger, which can be seen by inspection of Figure 5.2.5, which 

shows a typical x-y particle trajectory for this field configuration. This drift motion 

carries the test particle into a region in which guiding-center theory is valid; i.e. n  

is a good adiabatic invariant.

An x-phase space portrait for the slab field configuration for e < 0 is shown 

in Figure 5.2.6, and once again, we have a phase space orbit that tends towards an 

ellipse of constant area, implying that it is possible to define an action identical to 

(5.2.11) for the system in this regime. A plot of Jx for e <  0 is shown in Figure 5.2.7, 

and it is no surprise that Jx tends towards a constant value. Finally, the fact that 

the test particle is moving away from the neutral sheet implies that the magnetic 

moment ft will tend towards being a  conserved quantity, which is confirmed by



Figure 5.2.8.
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F ig u re  5*2*5. A Typical x-y Trajectory (e < 0).
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Figure  5.2.7. Action integral in x ? Jx vs. Time (e < 0).
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Figure  5.2.8. Magnetic Moment p vs. Time (e < 0).

The system (5.2.1a-f) has two integrals in involution, namely H  and py. We 

also have the time-dependent constant of the motion pr„, as well as the numerical 

invariant Jx. The fact that the a:-motion of the system obeys the second Painleve
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transcendent means that we will be able to construct the third integral of the motion, 

thus rendering (5.2.1a-f) integrable in the Liouville sense. The construction of the 

remaining constant of the motion is nontrivial, and will be described in §5.4.

§5.3 The Circular O-Line Geometry

The other promising geometry identified by the Painleve singularity analysis carried 

out in § 3.2 was the cylindrically symmetrical (6 = —1) case. This configuration was 

found to possess particle dynamics that possessed the Painleve property, meaning 

that the system of equations (3.1.4a-f) associated with this case should be analyti

cally integrable.

In order to see this system’s special properties more easily, it is necessary to 

transform to cylindrical coordinates. Since we wish to have a Hamiltonian system 

when we’ve accomplished this, we must use a  canonical transformation to do this, 

or, equivialently, switch over to the Lagrangian formulation, perform the change of 

coordinates, and then construct the new Hamiltonian H(p,<f>yz , p p,p,p,pz ). Recall 

the Hamiltonian system given by (3.1.3) and (3.1.4a-f), with 6 =  —1:

t r /  P * 2 + P u 2 , (p * +  U x2  + y 2) ) 2H ( x , y , z , p x ,py, p z) = ----- - ------ +  -i------ ^ -  k z ,

(5.3.1)

where e is the electric field strength. The Hamiltonian equations of motion for the 

test particle are:

x =  px (5.3.2a)

y = Py (5.3.26)
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i  =P« +  +S/2). (5.3.2c)

A - - f c  +  5 & ^ l  (5.3.2d)

A  -  -  W  -  (5.3.2c)

pz = k. (5.3.2/)

By using (5.3.2a-c), we can eliminate the momenta (px,Py,Pz) in favor of the ve

locities (x ,y ,z):

P x - i  P y ~ V  Pz  =  z  -  | ( x 2 +  y 2).

This allows us to write the Hamiltonian as

H ( x ,y , z , x ,y , z )  -  ^ (x2 + y 2 +  i 2) -  /cz.

The Lagrangian for the system is thus

L ( x ,y , z , x ,y , z )  =  xpx +  ypy +  zpz -  H ( x ,y , z ,x ,y ,  z)

— \ ( & 2 +  i/2 +  *2) -  \ ( v 2 +  y 2)*  +  K z

(5.3.3)

Now, we apply the simple transformation to cylindrical coordinates:

x =  p cos <f> x — p cos <f> — p$ sin <f>

y = p sin <f> y — p sin <j> +  p(f> cos <f>.

z  =  z  z  =  z

This allows us to rewrite the system’s Lagrangian as

H p , <t>,z , P> z ) =  ^ {p2 + P2 '$2 + z2 ~  P2z)  +  kz. (5.3.4)

Given the above Lagrangian, we can calculate the canonical m omentappi and pz:

dlj
Pp =  ~q T =  p, (5.3.5a)



Given these expressions for the momenta, we can. use them to eliminate p, and z 

from the Lagrangian (5.3,4), and thus we can construct the system’s Hamiltonian 

in cylindrical coordinates via

H(p,(f>,z,pP,P4„pz) = ppp +  <f>p̂ +  zpg -  Z (p ,^ ,z ,pp,p^ ,pz), 

which gives the result

H{p><l>,z,Pp,P4„Pz) = \ ( pp2 +  “ 5“ +P*2^  +  +  Y  “  Kz> (5.3.6)

Hamilton’s equations are thus

P = PP P<t>2 P3 (5.3.7a, b)

X - p*<P~ ~2 p2 P4> = 0 (5.3.7c, d)

i  = P‘ +  T Pz = K (5.3.7 e j )

Clearly, the system (5.3.7a-f) is much more transparent than (5.3.2a-f), and in 

particular, we have p^  as a constant of the motion, which is no great surprise, given 

the cylindrical symmetry of the magnetic and electric fields. As before, we still 

have the time-dependent constant of the motion pZo, and the Hamiltonian H  is, of
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course, also constant. These results agree with the notion of analytic integrability, 

but this set of constants are not a complete set of phase-space integrals, since pZo 

is a time-dependent quantity, and thus we have no guarantee that the system is 

Liouville integrable. In fact there exists a third integral, but its construction is 

nontrivial, and will be discussed in the next section.

The fact that p# is constant allows us to solve fully for the motion in 4 to get

<p(t) =  p^t + <f> o, (5.3.8)

where 4a is a constant. The system (5.3.7a-f) can be simplified further by noting

that pz is simply pz =  nt +  pZQ, and thus

P2z = K t+ p Zo + — , (5.3.9)

or, alternatively, we can us the fact that H  is constant to solve for z explicitly:

. (5.3.10)
*i,2 n2 fA2 L i I „ 2 , P /•„ I , PPp H 2~ "i" K t  "i" ^Pzoftt -f-pZo +  — (pZo +  nt) +  ——  2H

Prom (5.3.8) and (5.3.10), we see that the root dynamics of the system are in 

the p-motion, which is described by (5.3.7a,b). Using (5.3.7a) to substitute for pp 

in (5.3.7b), we get a second order ODE for the radial motion

As we have seen repeatedly during the past three sections, (5.3.11) can be 

simplified further by introducing a translated time variable r  =  t +  Pzq/ k. This 

transforms the above equation into
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drp p$

We will call equation (5.3.12) the radial equation. This equation possesses many 

interesting features, the first of which is the fact that (5.3.12) possesses the Painleve 

property, which is demonstrated in Appendix Three. Recalling the Painleve conjec

ture, we have strong reason to believe that (5.3.12) is analytically integrable. Since 

this is a  second order ODE which passes the Painleve property test, it must fit into 

Painleve’s classification scheme. Following Ince [49], the radial equation may be 

put into standard form via the transformation p =  -y/*, which puts (5.3.12) into the 

form

§ “ * ( § ) ’ +  7 * (5-3-13)

The second step in this process is the application of the scaling transformation

f  =  ceE and r  =  /3T,

where a  =  ± 2 ip ^ f \ /2 k and /3 =  (2k)” 1/3, and defining the constant 7  =  —a/32 puts 

the radial equation into standard form:

d2E 
dT 2 =  i ( i ) 2 + T + 4 7 3 " T E - i -  (5-3 J4 )

This new equation is one of the fifty integrable classes of second order ODE’s out

lined by Painleve. In fact it is standard form number XXXIV on page 340 of 

reference [43]. Note that if we set p$ — 0, we get the second Painleve transcendent



(5.2.9). For p# ^  0, (5.3.14) has solutions given by

3 <t > =  £
<*E2 +  -p22 +  i j*  
dT  ^  2 (5.3.15)

where the function ^ ( T )  is the second Painleve transcendent, which is the solution 

to equation (5.2.9). As we mentioned in the previous section, the second Painleve 

transcendent is an integrable Hamiltonian system, and thus we axe able to determine 

the third integral of the motion. The process of determining the integrals of the 

motion will be discussed in greater detail in § 5.4. It is interesting to note that an 

attem pt was made to determine the the missing integral for (5,3.12) using direct 

methods, but no invariant that is a polynomial in the phase space variables was 

found [72].

The radial equation (5.3.12) exhibits interesting asymptotic behavior in three

different asymptotic regimes: I  e > 0 ,r  —> oo, I I  e < 0 ,r  —* oo, and r  —» 0.

R eg im e I: If the parameter e is positive, the E  x  B drift is directed inward, thus

the system will tend to focus a charged particle in toward the neutral line, and as

t  gets large, p shrinks, so we may neglect the 0 (p 3) term in (5.3.12), and we get

an asymptotic form for the radial equation:

<Pp P<t>2 , _  n
dr2 p3 +KPT

If we make the assumption that

1 An
»  1, (5.3.17)

1 dp 
p dr

then this equation has solutions with leading order behavior of the form:

n( r \ — cos{u)t3^2 +  C)
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where A , B, C, and u> are constants. A typical numerical p phase-space trajactory 

for this case with k =  0.01 and p^ =  1.0 is shown in Figures 5.3.1. This plot suggests 

strongly that there is an invariant associated with the p-motion. Once again, it is 

possible to define an action Jp for the radial motion, using the same approach as 

we did in deriving Jx in the previous section:

=  j) Ppdp

~ L
t= to + T

pp2dt.
(5.2.17)

2.0

1.0

0.0

- 1.0

-2 .0 O.S 1.0 l . S

F igure  5,3.1. A Typical p-Phase Space Trajectory (e > 0).



F ig u re  5.3.2. Radial Action integral Jp vs. Time (e >  0).

R egim e II : Another possibility is that e is negative. This field configuration 

will have an E  x B drift that is directed away from the neutral line, leading to 

defocusing of the charged particles. As the system evolves, the value of p will 

increase, meaning that as long as the WKB condition (5.3.16) holds, we can ignore 

the p ~ 3 term in (5.3.12), leaving us with

3
<̂ P  +  k P t  +  4 - =  (5.3.18)d r2 ‘ r  ' 2 

The above equation has asymptotic solutions of the form:

A [ s n ( b ( T ) \ m )  -  D ]

PK } ~  V [sn(6(r)|m) -  £] ’

where A,m,D, and E are constants.

R egim e I I I :  This is the zero-electric-field regime, but is also the case when we 

have r  = 0, or, in terms of our previous time coordinate t ' , the case of t1 — ~Pz0/ K-
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Talcing this limit reduces (5.3.12) to

* s - £ - f  «■>*>

Once again, the asymptotic solution to the radial equation in this limit will be in 

terms of Jacobi elliptic functions.

§5.4 More A bout the Second Painleve Transcendent

As we have seen in § 5.2 and § 5.3, the second Painleve transcendent plays a central 

role in understanding the dynamics in the neutral sheet and circular O-line field 

configurations. The actual method for solving this equation is quite complicated, 

and is similar to the method of inverse scattering theory (1ST) [73-75]. Our goal in 

this section is not the actual construction of the solutions to (5.2.9) and (5.3.12), 

but rather to summarize the method by which the second Painleve transcendent 

may be solved, as well as the identification of the “missing integral” for the neutral 

sheet problem, and an explanation of how we may able to identify the third integral 

for the circular O-line configuration.

Recall that the second Painleve transcendent is

=  2 q3 + s q - v ,  (5.4.1)

where u is a constant parameter. This equation can be shown to be the compata-

bility condition for a pair of linear operators, which in the vernacular of 1ST, are

called the Lax pair, or scattering problem:

l _ ( V i \ = r ( V 1\ _ ( - * K 2 - K s  + 2q2) 4 C f f + f + 2 i r  \  ( V x \  
d ( \ V 2)  1^2 ,/ A  4 C ? + f  —2 ir 4 i(2 + i(s + 2q2) J \ V 2J

(5.4.2a)
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! G D - " G O - C ? { ) © •

where r = dqfds.  There exist solutions to this pair of equations as long the mixed 

partial derivatives of V  =  (Vi, Vz)^ are equal, that is

d2^  d2Vx L L
s c F s = m '  a-

This leads to the compatability condition for L and M, i.e. the operator equation

i r  _  d C  d M  (K A

where [£, J\A] is the ordinary matrix commutator. The above condition is equivalent 

to (5.4.1).

It is known from 1ST that the existence of a Lax pair (5.4.2) implies that the 

second Painleve transcendent (5.4.1) is integrable in the Liouville sense. The actual 

technique for solving a differential equation using 1ST involves solving the scattering 

problem (in which the solution q to the differential equation plays the role of the 

potential) for its eigenvalue spectrum, which are called the scattering data. The 

evolution of these scattering data is followed in spectral space. Finally, an inverse 

transformation is performed to solve for the potential [73].

In the case of the second Painleve transcendent, our scattering data arise in a 

slightly different fashion, and are related to the asymptotic behavior of the solutions 

to (5.4.2a). The two linearly independent WKB solutions *M^(CiS) and ^ ^ (C * 5) 

to the Lax pair (5.4.2a) have the following exponential behavior in the limit ( -» o o :

'4  iC3^^^(C,s) exp (5.4.4a)



^ (2)(C »«)~exp
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(5.4.46)

In the limit £ —> co, the solutions i p ^  and ipW -will display Stokes phenomenon; 

i.e. the general solution to the scattering problem will be dominated strongly by 

one of the individual solutions i p ^  or rp^ .  This will lead to the division of the 

complex plane into six sectors in this region, with the leading edge of each section 

defined by

S i  =  { <  : ICI > P, < arg«) < f } ,

where p is taken as given. The initial lines of the sectors are called the anti- 

Stokes lines, while the lines on which the asymptotic solutions given in (5.4.2a,b) 

maximally dominant or recessive are called the Stokes lines> with the Stokes line in 

the j th sector defined by the argument values

(2j  + 1)tt
atg(C ) =  ------

In sectors Si, S3, and S5, •tp^ is the dominant solution to (5.4.2), while 7p^ is 

dominant in sectors S2 , S4 , and So. The sectoring of the complex £- plane near 

£ =  00 is shown in Figure 5.4.1.
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F ig u re  5.4.1. Sectoring of the Complex £-Plane Near C =  oo.

The anti-Stokes lines delineate the borders between regions in which and 

exchange roles as the dominant/recessive asymptotic solutions to (5.4.2a). If 

we start with an asymptotic solution in one region, and wish to extend it analyt

ically into another region, we will find that this extension is not the same as an 

asymptotic solution that is computed locally in that region. One way to cast light 

onto the transformation properties of the asymptotic expansions is to introduce the 

fundamental matrix solution which has as its columns the local solutions 

and where the subscript j  indicates the sector with which the solution is
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associated.

=  { ^ j(1)»^i(2>} ~  { f t p i i ’T ) '  (5.4.5)

The relationship between two neighboring asymptotic expansions, say \&j and \Srj+i 

can be expressed as a matrix product

®i+ i =  Aj Vj ,  (5.4.6)

where the matrices A j  are called the Stokes multiplier matrices. The Stokes matrices 

are triangular,

Al =  ( a  l ) = A 4T  (5.4.7a)

^ 2 =  ( o  l ) " ^ 7 (5'4'76)

A 3 = ( c  l ) = A*T' (5A7C)

and their nontrivial entries a, &, and c are called the Stokes multipliers. These three 

quantities a, 6, and c, satisfy the relation [70]

a +  6 +  c +  abc = 2 i sin(i/7r), (5.4.8)

thus only two of them are independent. The transform data are independent of 

s, and it can be shown [70] that any two of the Stokes parameters {a, 6, c} can be 

used to generate all of the transform data. This implies that the second Painleve 

transcendent is a  Liouville integrable system in an extended phase space whose 

coordinates are q and s ,  and has a canonical time cr, i.e.

qi =  q q2 =  s (5.4.9a)



where

H  =  | ( p 2 +  sq2) -  vq, (5.4.9c)

is the Hamiltonian for Painleve II. The extended phase-space Hamiltonian 7i asso

ciated with (5.4.8) is

W =  ^ (p i2 +  qzqi2) ~  vqi + P2 (5.4.10)

The extended phase-space Hamiltonian H. is a  conserved quantity, and the actual 

evolution of the Painleve II system occurs on the submanifold Ti =  0. The Stokes 

data are related to this Hamiltonian, and one of the Stokes parameters, say a, 

along with "H are the two integrals for the Hamiltonian system (5.4.9-10), and in 

particular,

{ a ,H } =  0 ,

meaning that (5.4.9-10) is an integrable Hamiltonian system in the Liouville sense.

Recall that the growth or decay rate of q as £ —* dboo is governed by the expo

nential factor e±4,(* /3. In the neighborhood of £ =  oo, the £ part of the scattering 

problem has two linearly independent solutions with asymptotic expansions given 

by

* » ( ( , . ) - * » -  « - * - * .  (■1-  *<«■*'- J *  -  «; +  +  • • • )  (5.4.H*)

*M (C ..)  ~  ,  +  U q ,  / J  +  " +  2vq) +  . . . )  . (5.4.116)

The actual determination of the solution q(s) is accomplished by relating the

the Stokes data a and b to q via the inverse problem. Flaschka and Newell have
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solved the scattering problem by using a technique developed by Birkhoff [76] to 

recast the differential equations in(5.4.2) as singular integral equations that involve 

the Stokes parameters explicitly. In particular,

-f-—  /  -7— -  + 7- ^  ~ — t- (5.4.12a)
J c 4e f  ~  C 2?n J Ce4 £ -  C

and

c f  ip ^ e ~ s ab f  xp^e~s
+ —  /  — — +  —  /  — — (5.4.126)

2 « i c s l  £ - <  2 t t *  J e s s  £ “ <

The contours along which the integrations in (5.4.12a,b) are performed appear in 

Figure 5.4.2; e.g. Cac approaches £ =  oo along C4 , travels from C4 to Ce, counter

clockwise along the contours 74 and 75, and then exits from the singular region 

along Cq.

These equations are linear integral equations for rp ^  and ip(2h Recalling our 

asymptotic solutions i p ^  and i p ^  from (5.4.11a,b), it is possible to solve for the 

potential g(s):
q(s) =  2 i lim £ip^2Ke~e

<—00

— —2 i lim C ^ ^ 2 e**
C-*oo

Given this value of 5 (5), we may use the other components t p ^ \  and i p ^ 2 to 

determine qa, thus we can solve the initial value problem associated with the second 

Painleve transcendent in terms of the Stokes multipliers.

(5.4.13)
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F ig u re  5.4.2. Contours for the Inverse Problem.

The argument given above demonstrates that the second Painleve transcendent 

and members of the Painleve II family (which includes the radial equation (5.3.12)), 

is an integragble dynamical system in the Liouville sense. The independent Stokes 

parameters a and b are functions of the phase space coordinates, and are the inte

grals of the system. The exact dependence of these quantities on the phase space 

coordinates is not clear, and will be the subject of further study. We have already 

explored the asymptotic regime q(s) —» 0 as s —* oo, which lead us to asymptotic 

solutions to the transcendent in terms of Airy functions. This was done in §5.2. 

There are other well-known special cases in which asymptotic solutions to Painleve
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II have been derived, the most straightforward of these is the linear limit.

T h e  L inear L im it

Let v =  0 (which is precisely the case for the x-motion in the neutral sheet 

configuration), and furthermore, let the Stokes parameters a, b, and c all be small. 

In this case, we can linearize (5.4.12a) in terms of the Stokes data, and becomes

-  ( ! )  ■* B  ( ! )  L .  * H  ( ! )  L
From (5.4.13) we have

Q = ~ J  exP +  2i<=>5) ds + ~  J  exP +

Ai(5) -  ^B i(s).
(5.4.15)

Setting u =  0 , and linearizing the condition (5.4.8) yields the following restriction 

on the Stokes parameters:

a 4" b 4* c ~  0 .

If we require q(s) to be real, we get c =  —a*, b =  a* — a. Such constraints on 

spectral data are not unusual in the field of 1ST, and is simply the analogue of 

the reality constraint imposed when solving systems via 1ST [77]. Employing this 

constraint, we get

q(s) = Re(a)Ai(s) -f i Im(a)Bi(s). (5.4.16)

The above solution (5.4.16) is merely the leading-order solution in the linear 

limit. Higher-order corrections to (5.4.16) may be determined by constructing the 

von Neumann series for the transcendent, which is a procedure analogous to the 

Born approximation in quantum mechanics. This is beyond the scope of the current 

discussion, and will be the subject of future work.
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§5.5 E xact S o lu tions to  th e  K inetic  E q u atio n

Given the fact that we are able to find integrals to the test particle equations of 

motion for the neutral sheet and circular O-line configurations, it is likely that we 

will be able to find exact solutions to the collisionless kinetic equation

3 / .  9 / .  9 /
a t +  q 's 5  +  p 'a F  “  ( )

As we saw in the previous section, the x-motion for the neutral sheet configu

ration is integrable in terms of the second Painleve transcendent, and is integrable 

in the Hamiltonian sense in an extended phase space which includes the time t as 

one of its canonical coordinates. The radial motion for the circular O-line is also 

solvable in terms of the second Painleve transcendent, but its Hamiltonian structure 

is more complicated. Thus, we shall concentrate on how one may solve (5.5.1) for 

the neutral sheet configuration.

In the eight-dimensional extended phase space for the slab configuration, we 

have the canonical coordinates { x ,y ,z , t ,p x >py,p x, — H}, where H  is the Hamilto

nian defined in (5.2.2) and s is the canonical time in the extended phase space. The 

constants of the motion for this system are the extended phase space 7f, py, the ini

tial z-momentum pZo — pz — nt, and the Stokes data a. Since the slab configuration 

forms a Liouville integrable system in the extended phase space, a  special class of 

solutions to (5.5.1) T  are completely determined in that T  is an arbitrary function 

of the constants of the motion:

!F — !F(7i  ̂Py, p Zo, a). (5.5.2)



The solutions described by (5.5.2) are equilibrium solutions to the kinetic equation 

in the eight-dimensional extended phase space described above. The physical evo

lution of the system takes place on the six- dimensional submanifold of the extended 

phase-space corresponding to 'H =  0. It is possible to obtain solutions to the phys

ical kinetic equation (5.5.1) by projecting the equilibrium solutions !F{"H, py, pZQ, a) 

that lie in the extended eight-dimensional phase space down to the six-dimensional 

physical phase space via a procedure similar to tha t used in wave-kinetic theory 

[78,79]. This procedure will be carried out in future work, and is beyond the scope 

of the present discussion. The important thing to note is that this reduction pro

cedure will produce exact time-dependent solutions to (5.5.1).



A P P E N D IX  ONE  

DETE R M IN A T IO N  OF TH E LEAD IN G - 

O R D E R  BEH AVIO RS FO R (3.2.2a-c)

Consider the system of equations (3.2.2a-c), which contain all the information 

about the singularity structure of (3.1.4a-f)

=  pz<s + k t + -  ~Say2r 2̂  (A l.la )

f i x ( P x  -  i ) 1--2 =  ~ ( KT  +  P * o) +  -  \ < * x 2 T 2f3x ( A l . l b )

Py(Py ~  1)T ~ 2 =  ( KT +  P s o) +  ^ ohx 2t 2^  -  ^ S 2a y2r 2^  (A l.lc )

It is now necessary to  test every possible leading order behavior for the set of 

equations (A l.la-c). Upon examining (A l.la-c), it becomes clear that this is not a 

trivial task. Counting the number of possible leading order balances for the systems 

itself is something of a task. To this end, we must consider the set (A l.la-c) one at 

a time.

Let us begin our search with (A l.lb ). We will find that we will have a number 

of cases that are dependent on the value of pz0 and k, as well as the value of j3x- 

Beginning with the assumption th a t f3x is not zero or one, we must examine the 

following version of (A l.lb):

P x ( 0 x  ~  1 ) r ~ 2 =  ~ S a y 2 r 2^  -  ~ a x 2r 2^  (A1.2)

This equation has three terms, so the number of possible balances is the sum of the

169
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number of two-term balances plus the one three-term balance:

Number of possible balances =  =  4,

where the notation (^) is simply the binomial coefficient, which determines the 

number of possible combinations of n objects, taken m at a time:

f  n\  _

\ m j  m !(n — m)\'

(A1.2) has the following cases associated with it: 

Case B l:  f3x =  —1 and y >  —1. Then

Case B2: 0y — —1 and > —1. Then

— 1) =  - o y2. 

C ase B3: /?* = (3y and 0X <  —1. Then

. 0LX
“ * =

Case B4: 0X = /3y — —1. Then

14 -f- oc2“i = ± v — r
Now suppose that j3x =  0. Then (A1.2) becomes

~~Pzq ~  ~ a x2 +  “ <fay2T2/?* =  0. (A1.3)
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If the 0(1) term is nonzero, i.e. a x2 =£ —2pZQ, there is only one possible balance, 

namely

C ase B5: f3y =  0, px =  0 and ax2 •£. — 2pzo. Then a x and a y satisfy

, . /2 p ,0 +
“ » =  ± V — s— '

If the 0(1) term in (Al.2) is in fact zero, we must include the subdominant electric 

field term, and (Al.2) becomes

—kt -f ~Say2T2̂ v =  0. (A1.4)£t

Clearly, there exists only one dominant balance for this situation:

C ase B6: Py — and

Next, suppose that j3x =  1. This causes the LHS term in (A l.lb ) to vanish, 

leaving us with

- ( k t  +  p ZQ)  +  ^ S a v2r 2fi» -  ^ c c x 2t 2 =  0. (A1.5)

Yet again we must consider the values of various parameters as we search for the 

balances of this equation. If the initial ^-momentum, p z0 is nonzero, the leading 

order in the above equation is 0(1), and we have 

C ase B7: pz0 ^  0, 0y = 0, and

If the initial 2-momentum is zero, but the electric field is nonzero, then the 

leading order balance is at O (r):
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C ase B 8 : pzQ — 0, re ^  0, and (3y =  Then

Finally, there is the case that both the initial z-momentum and electric field 

are zero:

Case B9: p ZQ = 0, k  =  0, and fly =  1. Then

Finally, we must examine the possible balances present in (A l.lc). Again, we 

will find that we will have a number of cases that depend on specific values of p z0  

and k, as well as the value of 0y. We will begin with the assumption that is not 

zero or one. Then we must examine the following version of (A l.lc) for p z 0  /  0, 

which will have an 0 ( r ~ 2) present:

Py(Py ~  1)T ~ 2 =  \ b < X x T 2f*x -  ^ 8 2a 2r 20K  (A1.6)

Yet again, this equation will have three two-term balances and one three-term 

balance associated with it. These cases are the following:

Case C l:  (3X = —1 and > —1. Then

Py(Py ~  1) “  ri***2’

C ase C2: j3y =  —1 and j3x > —1. Then
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C ase C3: (3X ~  /3y and f3y <  —1. Then

C ase C4: flx = fly — —1. Then

_ /4  +  82Oiy2
“ * ± V — r -

Now suppose that f3y = 0, which will cause the 0 ( r -2 ) term to vanish. There

will be an 0 (1 ) term present in the balances, and as long as this term is nonzero,

i.e. ay2 ^  (A1.6) becomes

Pzo + 1 8a x2r 2I3* -  \ 6ioty2 ~  (A1-7)

This situation leads to only one possible balance:

C ase C5: f3y = 0, f3x =  0 and oty2 ^  Then a x and oty satisfy

a y =  ± - y / 8 a x2 + 2 ps0.

If the 0 (1 ) term in (Al.7) is in fact zero, we must include the subdominant 

electric field term, and (Al.7) becomes

k t  + ~r8ax2r 2̂ x — ^ 82oty2 =  0. (A1.8)
z z

Clearly, there exists only one dominant balance for this situation:

C ase C6: fix = and

a x2 — -----
2 k

T '
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Next, suppose that @y =  1. This also causes the LHS term in (A l.lb ) to vanish, 

but also introduces an 0 ( t 2 )  term, leaving us with

Pzo +  k t  + ^ S ol̂ t 1?* -  |<S2 a j , 2 T2 =  0. (A1.9)

Yet again we m ust consider the values of various parameters as we search for the 

balances of this equation. If the Initial ^-momentum, p ZQ is nonzero, the leading 

order in the above equation is 0(1), and we have 

C ase C7: pz0 ^  0, (3X =  0, and

2 _  2P* o
~  S '

If the initial ^-momentum is zero, but the electric field is nonzero, then the 

leading order balance is at 0 ( t ):

C ase C8: p ZQ =  0, k ^  0, and Then

2k2  _____
S '

a x =  -

Finally, there is the case that both the initial z-momentum and electric field

are zero:

C ase C9: p ZQ =  0, k = 0, and = 1. Then

a „ = d =  T .

Now that we have determined all of the possible leading-order-behaviors for the 

individual equations, we must determine which combinations of these possibilities 

will lead to a viable leading order behavior for the system as a whole. The testing
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of these candidate balances has to be done carefully and systematically. Note that 

we have a total of 35 X  9 X  9 =  2835 possible combinations of these balances for the 

system. In order to ensure a thorough examination, we shall record our progress 

in tabular form via the construction of Filters, i.e. a set of tables that evaluate 

the possible leading order behaviors of two of the above equations with respect to 

each other. This insures that we explore all of the possible leading-order behaviors 

associated with the system.

Table A l . l .  Filter Comparing (A l.la) and (A l.lb).

A l .lb )9 ( A i a ^ v
B1 B2 B3 B4 B5 B6 B7 B8 B9

C l MII ■ ■ ■ m M■
C2 ■ m ■ ■ ■ ■ M■
C3 ■ ■ ■ ■ l  l ■ m ■
C4 [ |■ H ■ ■ ■ M■
CS ■ ■ HI Pi ■ ■ II m
C6 Mn ■ MPi ■ Mpi
C7 ■ n ■ ■ ■ ■ ■ ■ M
C8 M ■ ■ ■ ■ ■ n II ■
C9 111■ ■ ■ ■ ■ i i m

The rows of Filter A l.l correspond to possible leading-order behaviors of equa
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tion (A l.lb ), and its columns are identified the possible dominant balances asso

ciated with (A l.lc). The shaded boxes in the filter indicate combinations of cases 

that contradict each other, while the white regions indicate an agreement between 

the exponents in the leading-order-behaviors for the two equations.

Clearly there are only six instances in which the equations (A l.lb ) and (A l.lc) 

have leading order behaviors that agree. These cases are:

C ase B C l:  f)x =  —1 and > —1, Then (A l.lb ) and (A l.lc) become

a x =  ±2 i (Al.lOa)

W v  ~ 1) +  26 = 0- (A1.106)

Using these conditions, (A l.la) becomes

a . f i . r " ’ - 1 =  +  k t +  ~^T~T ~ 2 ~

Since j3y > —1, we find that /?* =  —1 and a s =  2.

C ase BC2: /3y — —1 and fix > —1. Then (A l.lb ) and (A l.lc) become

a y =  ± y  (A l.lla )

M P * - 1) +  | = ° *  (A1.116)

Again, substitution of these parameters into (A l.la) yields a  simple relation

O t z f i s T p * " 1 =  p * , ,  +  K T  +  T 2 ^ *  -  ~ ~ T ~ 2 .

We know that (3X > —1, thus /?* =  —1 and a z =  —f .
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C ase BC3: fly — {3X < — 1. Then (A l.lb ) and (A l.lc) reduce to the same 

relation:

= ± ^ §  (41.12)

Upon examination of (A l.la), we get

O i z & z T ^ ' 1 ~  pzo + k t  +  (̂«x2 -  8 a y2) r 2^ x .

Yet again, the leading order is 0 { t 2̂ x), and we recover (A1.12) if (3Z > 2/3x +  1. If

fiz =  2/5x +  1, then we must conclude that a z =  0 or /?* =  0. Since 0Z is clearly

negative, we have a z = 0, which violates the hypothesis of the ARS algorithm. 

C ase BC4: J3y = fix =  —1. Then (A l.lb ) and (A l.lc) imply

8ay2 — a x2 =  4 (A l.l3a)

82a y2 -  8ax2 =  4, (A1.136)

which are in agreement if and only if 8 = —1. Substituting the results of this case 

into (A l.la), we get

QIzPztP*-1 =  pZQ +  kt — 2 r - 2 .

If fiz = —1 then a z = 2. If {3Z > —1, then (A l.la) becomes at leading order

0 =  ^ ( a x2 -  8ay2) =  2,

which is clearly a contradiction, and we do not get an acceptable leading order 

behavior for this case.
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C ase B C 5: /3y =  /?x =  0, oty ^  db V^Pl°  ̂ and a s ^  ±tV 2pSQ. Then (A l.lb ) 

and (A l.lc) imply

6ay2 — a x2 =  2pa0 (A1.14a)

- t f a ,2 +  a*2 =  - % 2-, (A1.146)
o

which are in agreement if and only if either 8 = 1 or p 20 =  0. If we set 8 =  1 in 

(A l.la), we get

atzp-T13*-1 = pZQ +  KT +  “ ( a * 2 -  aty2).

If f}z > 1, then a z is arbitrary. If (3Z =  1, however, then a z =  0, and the basic 

hypothesis of the ARS algorithm is violated.

Setting pzQ =  0 in (A l.la) yields

= k t +  ^(<*r2 — Say2).

The leading order balance in this relation is at 0(1). If /32 >  1, then a z is arbitrary.

If, on the other hand, fiz = 1, (A1.14a,b) now both imply a x2 — 8ay2 = 0, and

thus p z =  1 leads to the conclusion that a z =  0, which again contradicts the ARS 

algorithm’s hypothesis.

C ase B C 6: (3X = (3y =  1, p rQ =  0 and k =  0. In this situation, (A l.lb ) and 

(A l.lc) reduce to the same relation:

a ,  =  ± 2 % . (X I.15)

For this case, (A l.la) becomes

az$zT?I~x =  ^ («*2 ~
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If fiz >  3, then a z is arbitrary, and we get (Al.15) once again, yielding a viable 

leading order behavior. If, however, fiz =  3, then we are forced to conclude that 

ocg =  0, leading to a  contradiction with our hypothesis.

Upon examination of the Cases BC1-BC6 and their subcases, we find that 

there exist six classes of viable leading order behaviors for this system. They are 

the following:

C lass I: fix = — l , f i y > —l,/3r =  —1. Then a x — ± 2 i, oiy is arbitrary, fiy(fiy — 

1) +  28 =  0, and oiz = 2.

C lass II: fix > —l , f iy =  —1 ,fiz =  —1. Then a y — ± y ,  a x is arbitrary, 

fix(fix — 1) +  28 =  0, and a- = — f .

C lass III: fix = fiy =  —1 ,fiz =  —1. Then 8 = —1, a x =  -iiiy/A 4- oty2, a y is 

arbitrary , and a~ =  2.

C lass IV: fix = fiy <  —1 ,fiz = 2fix 4-1. Then atx =  ± V ^ a y, with both a y and 

otz arbitrary.

C lass V: fix =  fiy — 0,fiz > 1, with the conditions that p20 =  0 or 8 =  1. 

There is also the pair of constraints a y ^  and a x ^  ± i/2 p -0. Then fis > 1,

otx = ± \ /2 pzo 4- Oiy2, with both a y and a -  arbitrary.

C lass VI: fix =  fiy =  1 ,fiz > 3, with the conditions p ZQ = 0 and k  =  0. Then 

ctx = ±>/8ay and both aty and olz arbitrary.



A P P E N D IX  T W O  

T H E  SLAB (6 =  0) G E O M E T R Y

Here we consider the special case of 8 =  0 in equations (3.1.1a-b). As mentioned 

in §3.1, the magnetic field configuration produced is that of a neutral sheet, with B 

and E  given by

E  =  ez (A2.1a)

B =  *y, (A2.16)

where e is a constant. A vector potential for this field combination is

A  =  - y i ,  (A 2 .2)

and the scalar potential for the electric field is simply

(A2.3)

The system’s Hamiltonian is thus

!/i Px j Py j Px)  — KZ,

The system’s equations of motion in Hamiltonian form are

(A2.4)

x  — Px

V=Pv

180

(A2.5a)

(A2.56)
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z = p z +
X 2 
2 ’

(A2.5c)

X 3 

”  ~2
(A2.5d)

) (A2.5e)

(A2.5/)

Py =  0 

Pz =  K

Things are considerably more simple than the system (3.1.4a-f). Note that py 

is a  constant and that (A2.5b) can be integrated to give

y(t) =Pyt + yo, (A2.6)

where yQ is a  constant. We also can solve for pz explicitly, just as we did in §3.1:

pz{t) =  Kt +  ps0, (A2.7)

where pz0 is a constant. The only nontrivial parts of the system (A2.5a-f) that 

remain are the equations

x = px (A2.8a)

x2z  =  Kt +  pz0 +  — , (A2.8b)

x 3
Px — - x ( n t  + pZQ) -  — . (A2.8c)

The above system (A2.8a-c) does indeed possess the Painleve property. This

can be seen by applying the ARS algorithm to (A2.8a-c). The only viable leading

order behavior for this system is

x  — ± 2i r  p x =  ^ 2 i t  2, z  =  2 t  l .
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Using the technique outlined in § 2.3, we can calculate the resonances associated 

with the above leading order behavior, and find that they are —1,1 , and 4.

Finally, it is possible to recover the remaining constants of integration as re

quired by the algorithm. Using the ansatz (2.3.7), we write the phase space coor

dinates x, z, and px as
4

x =  ± 2 ir -1 +  (A2.9a)
m=l

4

* =  2r_1 +  Z 0 '2- 7'"1" 1’ (A2‘96)
m=l

4

Px = +  y ^ C 3mr m~2, (A2.9c)
m=l

Substituting the expansions (A2.9a-c) into (A2.8a-c), and solving for the coef

ficients Cim, we find:

C n =  C31 =  0 , C21 arbitrary,

/-f    /-r   ipzo f~i   Pz0
^ 1 2  ”  ^*32   g  J ^ 2 2    g  J

I K
C\ 3 — "2", ^23 — ' ~ K i C33 —  I K ,

C1A arbitrary, C34 =  3(7x4,

and Co. a = 2iCi4 ~ PZQ
18

21

Note that we have an arbitrary coefficient entering at each resonant order in 

the expansion, and thus we have shown that the neutral sheet magnetic field config

uration admits test-particle equations of motion that possess the Painleve property.
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Therefore, by the Painleve conjecture stated in § 2.2, the system of equations (A2.8a- 

c) are integrable in the complex analytic sense of the word. Furthermore, since we 

have a good constant of the motion py, and also a time-dependent constant of the 

motion pZo, it is very likely that the system (A2.1a-f) is also analytically integrable.

The fact that the system of equations (A2,8a-c) are analytically integrable is 

little surprise, when the motion in x is considered in greater detail.

We can also test the system (A2.5a-f) using Yoshida analysis, but to do this, we 

consider the reduced x-z system (A2.5a), (A2.5c,d), and (A2.5f). The first step is to 

determine whether or not this system is invariant under the scaling transformation

x' = a9lx z, = cr9lz t' = a
d _  d ’ (A2.10)

dt' ° d t

Under this transformation, (A2.5a), (A2.5c,d), and (A2.5f) become

Px> =  a9*Px Pz' =  o 9'p z

crffl+1x =  <j9apx (A2.11a)

a29' x 2rgt+1z = a9*pz +  , (A2.116)

Px ~  —(T9l+9*xpz ------ -—  (A2.11c)

a« +1p , = K. (A2.11d)

The condition that the reduced x-z  system is invariant under the scaling transfor

mation (A2.10) is thus the following set of conditions on the exponents $r;:

93 ~  <7i +  1 , 92  +  1 =  94  =  2^1,

<73 +  1 =  9i +  9a — 3^1, <74 =  —1.



These conditions can be simplified to give
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02 +  1 =  - 1  =  2gi, (.42.12a)

01 +  2 =  0i — 1 =  30i. (42.126)

Solving (A2.12a) yields 0i =  — |  and 02 =  —2. This result is clearly incompatible 

with (A2.12b), and thus the reduced dynamical system (A2.5a), (A2.5c,d), and 

(A2.5f) is not homogeneous, and thus Yoshida singularity analysis is not applicable 

in this situation.

As we have seen in § 5.4, the slab field configuration does indeed possess fairly 

simple dynamics, which is consistent with the results of Painleve singularity analysis.

Another intersting thing to note is that the addition of a uniform axial field

B z to the slab configuration will also yield Hamiltonian equations of motion that

possess the Painleve property.



A P P E N D IX  T H R E E

PROOF THAT THE RADIAL EQUATION 

(5.3.11) POSSESSES THE PAINLEVE PROPERTY

The radial equation (5.3.11) was derived in §5.3, and is

+  MS.1)

Our goal is to demonstrate that this differential equation possesses the Painleve 

property.

Recalling the ARS algorithm described in § 2.3, we begin by finding the viable 

leading-order behaviors for (A3.1). Suppose that (A3.1) possesses a singularity 

t = <* in the complex i-plane, and let p =  ar^ ,  where r  = t — t m. Substituting this 

expression into (A3.1), we get

/?(/? — 1 ) a r ^ ~ 2 =  p ^ 2a 3r ~ 3^  — k q t ^ +1 — p Zoa T & — - ^ - r 3^ . ( 4 3 .2 )

The process of finding the leading order behaviors for (A3.2) is quite simple 

compared to the task that we undertook in §3.2. For /3 ^  0 and /3 ^  1, the 0 ( r &) 

and G(t P+1) terms may be neglected, leaving us with

/?(/? — l ) a r ^ -2 =  p^2a 3r -3^ — ~ t 3̂ . (43.3)
£t

For (A3.3) there exist three possible balances

C ase  i: (3 — 2 — —3/9 < 3/3. Then /? =  | ,  and a 4 =  —4p^2.

C ase  ii: (3 — 2 =  3(3 < —3/3. Then =  —1, and a 4 =  —4p^2.

185



186

Case iii: j3 — 2 > 3/9 =  —3/9. Then /9 =  0, in contradiction to our original 

assumption.

Now, suppose (3 = 0. or /9 =  1. Then (A3.2) becomes

P^2a 3T-3^ — K£V7'̂ +1 — pZoa r^  — ~ r 3̂  =  0. (A3.4)
£t

C ase iv: If f3 =  0, then all of the terms except the electric field term (i.e. the 

K ar0+i term) in (A3.4) balance, and a  satisfies

a 8 +  2a4pZo — 2p$2 =  0.

This polynomial equation contains only even powers of a , and the substitution 

A  = o? allows us to write it as a cubic in 4 , which can be solved by radicals:

A3 +  242pZo — 2p<f =  0.

Case v: For (3 =  1, (A3.4) becomes

p^2a 3r ~ 3 -  Kar2 -  p Zoa r ~ ~ r 3 =  0,

and there exists no leading order balance for this case.

Having determined the viable leading order behaviors to (A3.1), we turn our 

attention to the system’s resonances. Recalling (2.3.3), we write our dependent 

variable as

p =  aT&( 1 +  7 rr), (43.5)

where r  is presumed positive or equal to -1, and the parameters a  and {3 were de

termined in the first step of the algorithm. Substitution of this extended expansion



will give us the means of solving for r; that is, the resonances of the system for each

particular leading order behavior.

C ase i: a 4 =  —4p^2 and /? =  |  Substitution of (A3.5) into (A3.1) for this case 

gives us, to leading order,

The resonances are the r  roots of the above polynomial equation, and are given by

For real p^, we will not have real roots unless p$ =  0, in which case r =  {1/4,0}. 

Clearly we can not obtain nonnegative integer resonances, nor will we have r =  — 1 

as a resonance. For this case, the algorithm terminates at this stage.

C ase ii: Here we have f) =  — 1 and a  =  ± 2 i. Substituting (A3.5) into (A3.1) 

for this leading order behavior gives us the equation

which reduces to a quadratic in r

r2 -  ^ 4- 3a2p^2 =  0.

Recalling the value of a  for this leading order behavior, we find a 2 =  ±2ip$, and 

thus our equation for r  becomes
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which reduces to a quadratic for r:

r2 -  3r -  4 =  0,

which has roots r =  — 1 and r =  4. Thus this leading order behavior yields accept

able resonances, and passes this level of the Painleve test.

C ase iv: This was the case of /? =  0, and a  was defined above in terms of 

a cubic in A  ~  a2. Using this set of parameters in (A3.5), and substituting into 

(A3.1) gives us at leading order

— 3 p ^ 2 -  a4pZo -  | a 6 =  0 ,

or, using the above expression for a , we get

<*4Pso ”  3p<f>2 =  0.

Clearly, this equation contains no information about the resonances, and the algo

rithm terminates at this stage.

Having determined all of the resonances for the system’s possible leading order 

behaviors, we take up the task of constructing the constants of integration for the 

one leading order behavior-Case ii-that has passed through both of the first two 

steps of the algorithm. This case has one nonnegative resonance at r  =  4, and at 

this order in the Laurent series expansion for p(<), we expect an arbitrary constant 

to appear. In order to see whether or not this will happen, we expand the solution 

to (A3.1), p(r) as a truncated series as defined by (2.3.7):

4

p(r) =  ±2 i r -1 +  ^  Cimr m, (A3.6)
m=l
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where the coefficients C,m axe constants that are determined by substitution of 

(A3.6 ) into (A3.1). Substituting (A3.6 ) into (A3.1), and balancing order by order 

in r  gives us a set of equations for the coefficients C,-m:

- 6  C n =  0

S i C n 2 — 6 Ci2 “  2 ip Zo — 0
q  3 (A3.7a — d)
——— h 6 i C\\ Ci 2 — 4C7j3 —2 i n  — C u  pZo =  0

 ^ — — +  3 iC i2 2 +  6 i Ci i  Ci3 — C n k — Ci2pZo — 0

The first of these equations implies that C n  = 0 , which reduces (A3.7b) in the set 

to

—6 C12 — 2  ipZo = 0 .

Solving for C12, we get C12 = — fp*0) which, when substituted into (A3.7c) yields

—4(713 — 2 in — 0.

Thus C?i3 =  — |/c , and substitution of this result into the (A3.7c) in the set reduces 

it to zero identically, leaving us with an arbitrary C14, which is precisely what we

would expect at this resonant order in the expansion. Note that we could have

seen this immediately by inspection of (A3.7d), since there is no term involving C14 

in this equation. Therefore, the radial equation (A3.1), or (5.3.11), possesses the 

Painleve property.



A P P E N D IX  FOUR  

SYM PLECTIC INTEG RATIO N

§A4.1 Introduction

In the study of the behavior of systems of ordinary differential equations, it is often 

advantageous, or simply necessary, to turn to numerical methods. In particular, 

the dynamical systems discussed in this thesis either 1) did not possess closed-form 

solutions, or 2) had exact solutions that are difficult to interpret physically.

There exist many techniques for integrating systems of O.D.E.’s, and when the 

system in question happens to be Hamiltonian, we have at our disposal a wealth 

of techniques that can be tailor-made to fit the problem. Given the thrust of our 

work so far, we would like to use a  method that does its best to respect the phase 

space structure of our system, that is, we wish our method to be symplectic. Thus 

we turn to the technique of symplectic integration.

Symplectic integration was first introduced by De Vogelaere [80], and extended 

to general Hamiltonians by Channell [81] and Ruth [82]. Further exploration of this 

technique has been made by Forest [83], and others[84,85]. Other symplectic meth

ods involve the use of Lie transforms [86], which are used extensively by accelerator 

physicists, or operator splitting [87].

The basic method is simple. Consider a  system in Hamiltonian form with 

coordinates qi , . . . ,  qpi and momenta pi, • ■. pjv, and the system’s Hamiltonian H is
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, qNiPi - ,  • • • P n )- The equations of motion in Hamiltonian form

axe:

ping that is generated using a near-identity canonical transformation. Express a

the Hamiltonian from which they spring. The trajectory manifold resulting from the 

mapping remains close to the system’s true trajectory manifold. Very often, sym

plectic mappings with fairly large timesteps will preserve a system’s integrals with 

startling precision, allowing greater speed and accuracy when compared to more 

standard numerical integration techniques [88]. As is often the case with a  “stan

dard” finite-difference scheme, such as the Runge-Kutta method, the quality-control 

portion of the integration routine is the testing of the integrity of the system’s con

stants of the motion; a process which often forces the routine to cut the timestep 

size and re-do the step. A symplectic scheme by contrast, is simply the iteration of 

a mapping that shares the symmetries of the system in question, and a  symplectic 

mapping that is order n in the timestep A t  will normally preserve the system’s

(A4.1.1a)

and

dH
(A4.1.16)

The Hamiltonian differential equations are then replaced by a symplectic map

time step from time t = to to t =  to +  A t  as a canonical transformation from a set of

coordinates and momenta (gi,pi) at time to to the new set (Qi, Pi) at t =  io d* At.

The chief advantage to symplectic techniques is that they are natural out

growths of the system’s Hamiltonian and tend to posess the same symmetries as



Hamiltonian to C?((At)rt+1) automatically. When a Hamiltonian system possesses 

a continuous symmetry (e.g. azimuthal symmetry), the integral of the motion as

sociated with this symmetry (e.g. angular momentum) will often be preserved to 

machine precision. We will return to this question of accuracy in the next section. 

§A4.2 C o n stru c tin g  Sym plectic  Schem es

Consider a canonical transformation of the third kind. In this case the gener

ating function is S  = Fo{Qj , . . .,< 3 n ,P i,. . .  ,Pn), an<l Pi and Qi are given by

qi =  ~ J p i  (A4.2.1a)

and

p -------------
dQi
rW

Pi = (A4.2.a6).

Now, expand S as a  Taylor series in A t :

s  =  Y , S „ ( p , Q ) & A .  (4 4 .2 .2)' • 77?,!mim=0

Note that So(Q,p) = — Q • p, the identity transformation. The next step is to 

derive the higher-order terms in the generating function. To this end, note that 

substituting (A4.2.2) into (A4.2.1b) allows us to write the new momentum Pi as

CO

m=l

We can write the total time derivative of the new momentum P{ as
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Recalling the expansion, for P,- and Hamilton’s equations, we can write (A4.2.3) as

V  (AQ"-‘ 0Sm ^ (At r  d'Sm ( ± \  __3_
£ ( m _ i ) !  dQt +  £ '  ml dQdQ,\dp) (Q’ }

(.44.2.5)

We wish to determine Q and P  such that they agree with the solutions of (A4.1.1) 

to some order in At.  Given the above expression for P,-, we can write the vector P  

as

‘ (A t)m dSm
p = p - £^  m! <9Q *

or

P  =  p  +  A P ,

where

^ - (A i)'"8Sm 
^  ml 3Q '
m = l

Expanding the arguments of the Hamiltonian in eqn (A4.2.5), we get

(A t) -  8 S m+1 __ A  (A t r  d 2s m  y S , ( A P S ) j 3 H  ^ ( A P - & ) 1 9 H  

t U  m !  i s  m '- S d d Q i ' f e  H  8 P  j l  d Q i '

(A4.2.6)

Expanding the powers of A P, and collecting terms order by order in A t  allows 

us to derive the first two orders of the generating function S.

and

Si  =  H(  p, Q), (A4.2.7a)

S2 =  -  ( ^ t f ( p ,  Q ))  • ( ^ f f ( p ,  Q ))  • (A4.2.76)
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A general, but complicated version of eqn (A4.2.6) can be derived by expanding 

the powers of AP using the binomial theorem and identifying like powers of At.  

This expression can be found in reference [88].

Returning to the question of how well a  symplectic algorithm will preserve the 

Hamiltonian for a given system, consider a simple Hamiltonian of the form

=  f +  V(«).

Applying (A4.2.7a,b) to construct a first-order symplectic scheme, we find the ex

plicit mapping

Q = q + pA t  + Q(At2)

P = p ~ ^ A t  + 0 ( A t 2).

This mapping is exactly symplectic; i.e. dQAdP = 0, but the system’s Hamiltonian 

is preserved only to first order in At:

B(P, Q) = J  + V{q) +  ,

and thus,

H{P,Q)  -  H(p,q) ~  0 { A t 2).

EXAM PLE: Consider a Hamiltonian of the form

H  =  ^(Px2 +  Py2 +  Pz2) +  y  +  cos(y) +  z. (A4.2.8)

Note here that the dynamics for this Hamiltonian are completely separable; the 

motion in a: is a  harmonic oscillator, the y-motion is a  pendulum, and the motion
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in z  is a free-fall. The system can be broken down into three separate systems with 

individual Hamiltonians given by;

„  _  P x2 +  x 2 Jtl x —
2 ’

Hy =  +  cos(y),

r r  _  P z 2n s -  —  + z.

Hamilton’s equations for this system axe

x = px, (A4.2.9a)

V =  Py >

z - p z ,

Px  =

Pj, =  sin(y),

Pz =  - I -

(A4.2.9&)

(A4.2.9c)

(A4.2.9d)

(A4.2.9e)

(A4.2.9/)

Applying equations (A4.2.7a,b), we can construct the generating function 5 , 

which is good to third order in the time step Ai:
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S ( X , Y , Z , p x , p y, pz) = - ( X p x + Y p y -f Z p z) +  A t  ̂

+  cos(F) -f -  i ^ S - { X p x -  py sin(y) +  pz)

The symplectic mapping generated by S  given above is:

P x 2 + p y2 + p x2

(A4.2.10)

x = X -  A tpx +  (,44.2.11a)
a

y — Y  — Atpy — sin(F), (,44.2.116)

z = Z - A t P z - ^ ~ ,  (>14.2.11c)£i

Px = p x -  A t x  +  (>44.2.l id )

P y  — Py  “  A isin(K) — Py cos(^)> (A4.2.11e)

Pz = p z -  A t .  (>14.2.11/)

Note that this mapping is implicit in the new coordinates ( X ,Y ,Z ) .  The x and z 

components of this mapping can be inverted by inspection:

X  =  (X4.2.12o)
1 2

and

Z  =  z + p zA t.  (>14.2.126)

The motion in y is another m atter altogether; equation (A4.2.11b) is transcenden

tal in Y y and must be inverted numerically using a root-finding method such as 

Newton's method. This is generally the case.



There is, however, another way of generating the mapping in a fashion that 

avoids the difficulties encountered above. Instead of using a canonical transforma

tion of the th ird  kind, suppose we try evolving the system via a  canonical transfor

mation of the second kind, where we step from coordinates (q, p) at time t  to a  new

set of coordinates (Q ,P )  at time t +  A t ,  with a  generating function F  =  i'Xq, P ).

The new coordinates and old momenta are thus given by:

d F
Qi ~  Qp (A4.2.13a)

dF
Pi = 7T-. (A4.2.13&)

aqi

Once again, we can express F  as a power series in the timestep At.

F  =  £  F - (P ' 0 ) ^ 7 - -  (.44.2.14)
m =0'   m l

Note now that Fo(Q,p) =  —q • P , the identity transformation. As before, the object 

is to determine the higher-order contributions to the generating function F. This 

process is essentially the same as the one outlined above. Using (A4.2.13a,b), the 

new coordinates Q can be written as

^  _ , ^ ( A  t )m dFm
Q ' q*+  X /  m i q q .  ' (A4.2.15)

m=l '

Now we can write the total time derivative of the new coordinate Qi as
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Substituting the expansion (A4.2.15) for Qi into (A4.2.16), and using Hamilton’s 

equations to eliminate P , we get

f .  (At)™-' dFm y . .  ( a  t r  S ‘Fm f a )  a
£ ( m - l ) i a P i  £  ml SPdPi  V S q J  3Pi (Q ’ )' (j44-2-16)m=l v '  m=l v '

Given the above expression for Q i, we can write the vector Q as

Q = q + f ' ( ^ r £ £ ™
^  q  ^  ml BPm“ l

or

Q =  q +  AQ,

where

a o  = V ' i
m! dP^  2 ^  m l /5P ’

m=l

As before, we simply expand the arguments of H  in terms of AQ, which leads us 

to a result very similar to (A4.2.6):

y v  (At)m 3Fm+1 _  y ,  (A t)m d2Fm y , ( A Q - ^ y  QH ^ ( A Q . - ^ ) J  dH  
A-J, ml dPi ^  ml dPdPi jl  3 Q A  j \  qp  ■m=0 nt=l j=0 ■* j—0 J

(A4.2.17)

again, it is possible to derive a general expression for Fm for any order m, but for

our purposes, we shall be interested in onlythe first two orders of F:

F1 = H{ q,P ), (A4.2.18a)

and

f t  =  P ) )  • ( ^ ^ ( q ,  P ) )  • (2.2.186)
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Armed with this scheme, let’s return to our specimen system, whose Hamilto

nian is given by equation (A4.2.10). To second order in At, the generating function 

F  is

F(x, y, z, Px,Py, Pz) =  xPx +  yPv +  zPz+

* ( & ± i g ± p . \ * + a m ( 9 H M y

^ ~ { x P x -  Py sin(y) +  Pz). (A4.2.19)

y Now note that the second-order symplectic mapping that F  generates is implicit 

in the new momentum P, and is given by:

(At)2
Px = Px + A tx  -f —Px , (A4.2.20a)

(At)2
Py — Py — At sin(y)------ — Py cos(y), (A4.2.206)Zt

pz = Pz + At. (A4.2.20c)

X  =  x +  AfPx +  x , (A4.2.20d)
z

Y  = y + AtPy -  Py sin(y), (A4.2.20e)

Z =  2 +  A tPz +  ^ - ,  (A4.2.20/)

Note that unlike the mapping (A4.2.11) this mapping is easily inverted to be made 

explicit. Solving (A4.2.20a-c) for the new momenta, we get

P’  =  (A4.2.210)
1 +  2

(44.2.216)
1 +  cos(y)
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Pz =  p z — A t .  (A4.2.2lc)

Figures A4.2.1 - A4.2.3 illustrate how well this algorithm preserves the indi

vidual Hamiltonians Hx, Hy, and H g. The data for these graphs were generated 

using the symplectic scheme (A4.2.21a-c) and (A4.2.20d-f) with the initial condi

tions x  =  1 ,  y  =  7r/2, z  =  0.5, px = 1.0, py =  1.0, and pg =  1.0. The size of 

the time step was fixed at A t  = 10-2 .It is interesting to note that a  second-order 

numerical integration scheme would be expected to introduce relative errors in the 

Hamiltonian on the order of (A t)3. Our graphs, however, tell us quite a different 

story. In the case of Hx, the instantaneous relative error ehx oscillates between 

—2.5 x  10“ 9 and 2.5 x  10“ 9 , cancelling itself out on average. The map for the 

y-motion shows some growth in the relative error, which is unfortunate, but still, 

the relative error after 100000 steps is still small. The freefall motion in z shows 

some dissipative behavior, but only on the order of 10“7 after 100000 steps.

4 o - D 9  

3 o - 0 9  

2 « - 0 9  

l c - 0 9  

Oc+OO 

- l o - 0 9  

- 2 e - 0 9  

- 3 o - 0 9  

- 4 « - 0 9
0 * 0  2 0 0 . 0  4 0 0 . 0  6 0 0 , 0  8 0 0 . 0  1 0 0 0 . 0t

F ig u re  A 4.2.1. Relative Error in H x vs. Time.
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0.0 200.0 400.0 600.0 800.0 1000.0t

F igure  A 4.2.2. Relative Error in. Hy vs. Time.

0.0 200.0 800.0 1000.0t
F igu re  A 4.2.3. Relative Error in H z vs. Time.

Given what we’ve seen with this simple example, it would appear that for 

Hamiltonians of the type typically encountered (i.e. H  =  kinetic energy 4- po

tential energy), using canonical transformations of the second kind to generate the 

symplectic mapping would be a superior technique in that it is more easily inverted.
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The fact that most Hamiltonians for physical systems tend to contain terms that are 

either linear or quadratic in the momenta, but often contain terms that are cubic, 

quartic, quintic, or even rational in the coordinates tells us we will normally have 

better luck using canonical transformations of the second kind to create symplectic 

integration algorithms that are easily invertible, and hence fast,since we probably 

won’t need to call in a root-finding routine to invert the scheme. To understand 

why this is so, consider a Hamiltonian of the form

ff(q, p) = ~  + P ' V(q) +  U(q), (44.2.22)

where the functions V  and U are either polynomials in q or rational functions of 

q. If we construct a symplectic scheme of the type generated by (A4.2.7), the 

generating function S(Q,p) is

S(Q, P) = - Q  ■ P + A ( +  p • V(Q) +  V( Q)) -  

^  ([(P+V(Q)) ■ [VQ)]|p • V(Q)] +  V<j[f(Q)]).

(A4.2.23)

with the symplectic mapping scheme for the ith conjugate pair given by

=  Qi — A f  (pi +  V J)+

^ [ 9 i ( p  ■ V) +  (V • v)V)(P ■ AV) + [(P+V) • v)Vi + d,U)

(A4.2.24a)
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Pi = Pi -  A*(p-(dfV) + diUAV] + mv)-v]u+

^ [ ( p + V )  • V][p ■ V  + U) + (p+V ) • V (at/)].

(44.2.246)

If the functions V i and U  are polynomials, but more complicated than linear func

tions in the coordinate Q , the inversion of the symplectic mapping has the potential 

of being a difficult task; for each component of the mapping that is not explicit, we 

will have at least two branches of the inverted mapping, meaning that we will be 

faced with one of two things: 1) if the equations (A4.2.24) are solvable in radicals 

for Q, we could write out the roots explicitly, and test to see which one is associated 

with the timestep, or 2) if (A4.2.24) is a quintic or higher-order polynomial in Q, 

we are faced with inverting the mapping via a numerical root-finding routine. In 

either case, our numerical scheme will be slowed down.

Now consider the same system with a symplectic scheme generated by equation 

(A4.2.18). The generating function F  for the timestep is

F(q, P ) =  - q  ■ P  + At ( ^  +  P  ■ V(q) +  U(q)) -  

([(P+V (q)) • [Vq)][P ■ V(q)]+VqE/(q)]).

(44.2.25)
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The symplectic mapping is then

Q i  — q i — A  t ( P {  +  V i)+

^ £ [ f t ( P  . V) +  (V  ■ V)V5(P . ft V )+

[(P+V) • V)Fi +  d i U ]  (A4.2.266)

P i  =  P i  -  At(P-(ftV) +  d i U ) +

^ 2 [ ( P + V )  • V][P . ftV] + [(ft-V) • V](P . V+?7) +  (P + V ) • V(ftZ7)]. (A4.2.26)

From (A4.2.26) we see that we have a relation for P that is quadratic in P. , Thus, 

for a one-dimensional system, we can solve for P using the quadratic formula, and 

then check the two branches to see which one is the appropriate one for the mapping. 

Notice that the term in (A4.26) that is quadratic in P takes the form

P j P k d i d j V k -

Thus, if the i th component of the mapping if the components of V  satisfy the 

condition

d i d j V k =  0, (2.2.27)

If the condition (A4.2.27) applies for all of the components of V, then the map

ping (A4.2.26) is linear in P. The condition (A4.2.27) is highly restrictive, but if

it applies, then the implicit mapping is completely invertible by inspection. If this

condition applies for some component of V, then this portion of the map can be in

verted via the quadratic formula. No such guarantee exists for the scheme generated
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by (A4.2.7), thus leading us to conclude that for Hamiltonians with complicated po

tentials or electromagnetic terms, such as the Hamiltonians (1.4.7) and the reduced 

radial system derived in §5.3, a momentum-implicit scheme is a good choice for 

constructing a second-order symplectic integration algorithm,

§A4.3 Num erical Scheme for Equations (1.4.8a-f)

Now we will apply the momentum-implicit method generated by (A4.2.18) to de

rive a symplectic mapping for the system (1.4.8a-f). Recall from (1.4.7) that the

Hamiltonian is

H ( x ,y , z ,p x ,pytpz) =  Px +--£* +Ps +  | ( pxy - p yx)+

~ ( x 2 -  8y2) + ^ - ( x2 +  V2) +  § (x2 +  <ty2)2 “  (A4.3.1)

where a  is a constant that specifies the z-component of the magnetic field. For the

work done in this thesis, a  =  0.

Applying the momentum-implicit method, we get the symplectic map

Pz = Pz — n(At)  (A4.3.2a)

Px  =  Px +  ^  -  ocPy +  +  2Pzx +  x(x2 -  6y2)^ +

( P XPZ - k x  +  ? f (Z x 2 -  Sy2) +  6 ) y  -  8Pyx y -

6pxy2 + 3 a(l +  6)x2y _  a8(l  +  % 3 \  g 2„
2 4 4 /
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^  (  -  SP,P. +  + 2'; ) f , X  +  |n ( 3 < ! ,2 -  a2) -

(A4.3.2c)

X =  * +  (At) (px + y ) +  ~ -  ^ 2) )  (j44,3.2rf)

Y = y + (A t)(p, ~ y ) +  -  P‘ +  -  *2) )  (j44.3.2e)

Z =  * +  (Ai) (px +  | ( x 2 -  3j,2) )  +  ^  (  -  * +  Pxx -  SPsy +  .

(444.3.2/ )

This mapping is quite easily inverted; the only nonlinear terms in the mo

menta involve PXPS and PyPs- Note that since Pz can be obtained explicitly from 

(A4.3.2a), the equations (A4.3.2b) and (A4.3.2c) can also be solved trivially to ob

tain Px and Py. Thus the symplectic scheme can be made entirely explicit. To 

illustrate this, we write (A4.3.2a) and (A4.3.2b) as the matrix equation

C(P*,P*)r =  R,

or

( S :  a ; ) ® - ® -  < " ■ >

where the elements of C and f t  are given by

Cn = 1 +  ^  ( px +  i ( 3 z 2 -  <y2) ) ,
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Cll = -em  -
^  a o  _

Cm =  1 +  (  -  S P Z +  | ( 3*2 -  3y 2) ) ,

f t  =  P i  -  ( ~ 2 ~  +  +  X ^X1 ~  ^ ) )  _

(At)2 /  _ aPz(l  + 6)y , 3e*(l + 6)x2y a 6 ( l+ 5 ) t /3>\
—  ^ - “ +  2 +  4  4 )

(A t)2 / a ( l  -f S)Pzx  a ( l  -f S)x3 3a5(l +  6)xy2\
—  { ------- 2-------- + -------- 4------+ f K V ------------ 4---------)■

A minimal ammount of linear algebra allows us to complete the inversion of 

the mapping for Px and Py:

p * =  ^ d ’ t ^  ^ 4-3 '3“)

=  C u % c ) lR l  lA i -3-3V

Thus the symplectic stepping scheme is thus comprised of equations, (A4.3.2a), 

(A4.3.3a~b), and (A4.3.2d-f). This integration scheme is identical to the one used 

to  conduct the numerical studies on the fully three dimensional system (1.4.8a-f). 

Figure (A4.3.1) shows the performance of the routine in time for typical particle 

out of an ensemble of test-particles used in one of the simulations conducted for

this system. The step size was A t =  10-2 . After nearly 200000 steps, the relative

error in the Hamiltonian e// has climbed to a  pealc value of 1.7 X  10-4 .
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F ig u re  A 4.3 .1 . Relative Error in H  vs. Time.

§A4.4 Sym plectic  Schem e fo r th e  R educed  S y stem  (5.3.12)

Now we turn our attention to the task of the numerical integration the reduced 

equation derived in §5.3. Recall the radial equation (5.3.12):

+V*P+ Y  -  ^3 =  °> (A4.4.1)

where 77 is a constant. Once again we will employ a symplectic scheme. The first

task towards this end is to write (A4.4.1) in Hamiltonian form. Let’s rename p q

and define the canonical momentum p  by p =  q. This gives us the system

q =  p, (A4.4.2a)

P = ~ 3 ~ Y ~  t*9' (A4.4.26)

We can now define a nonautonomous Hamiltonian H by integrating (A4.4.2a) with 

respect to p  and (A4.4.2b) with respect to q:

# (« , P. *) =  ^  +  5  (\ t q 2 +  J  +  ^ )  (A4.4.3)
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The Hamiltonian system (A4.4.2a,b) and (A4.4.3) is nonautonomous; i.e. the 

Hamiltonian is explicitly time-dependent. In order to proceed with the construction 

of a symplectic integration scheme, we must extend the phase space of the system, 

and then apply the techniques outlined in §A4.2. This extension of the phase space 

is achieved via a canonical transformation of the second kind [29], with the “old” 

phase space coordinates being (q ,p , t ,H ), and the new set of phase space coordi

nates will be denoted (5 1 , q2 , P i j P 2 ) with the new extended phase space Hamiltonian 

K , and new canonical time £. Define the new phase space coordinates as:

91 =  9,

92

Pi = P, 

p2 ~  -H (q ,p , t ) .

The generating function for the extension is F,  given by

F  = piq + p2t.

The new Hamiltonian K is given by

d F
K (< lu  92, P i, P2 ) =  H  +

Thus

J^(9i,92,Pi,P2) =  —  + P 2 + ^  ^ 9 2 9 i2 + \  + ^ 2 ) -

(A4.4.4)
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Now that we have a system that is autonomous in we may take up the task of 

constructing the symplectic integrator. The generating function F  is given by

■ ^ (9 i> 9 2>Pi > P2 )  — P i 9 i  +  -P292 +  ~̂2̂ ' (^ l2 +  2 P 2 +  ~2 +  +  *79i2 9 2 ^  +

Using (A4.2.18) to process F,  we get the symplectic mapping

P i = P i +  AC ^ - 9 i -3 +  +  V91 92^ +

~ ~  + rjq 1 +  3Pl29—  + V p i 92^  (A4.4.6a)

P2^ P 2 + ^ M l  + ^ J ^  (A4.4.66)

Q1 =  <71 +  AC Pi +  ^  +  n 91 92)  (A4.4.6c)

Q2 =  92 4* AC (A4.4.6d)

The above mapping is linear in P\ and P2, and as such can be made explicit by 

noting that the (A4.4.6a) involves only linear terms in P i, and has no dependence 

on P2. This gives us

Pi =
P i  -  A C  ( - ? i  3 +  ^  +  rj 91 9 2 )  - 7 m i

1 +  ^79192 +  §9 i2 +

(A4.4.7)

Also, note that the expression (A4.4.6b) for P2 is also unnecessary, in that we have 

a  closed-form expression for P 2; it is simply the old one-dimensional phase space



Hamiltonian H  defined by (A4.4.3), but evaluated at the new values Q\ and Pi of 

the radial phase space variables.

The numerical performance of this integration scheme is quite stunning, indeed. 

Figure (A4.4.1) shows the extended phase space Hamiltonian K(q\ ,q2iP2>P2) versus 

time. Ideally, we expect the value of K  to be zero, but would be prepared to accept 

it being as large as (AC)3 =  10-6 . What we find, however, is that K  oscillates with 

an amplitude on the order of 10” 16.
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Go-16 
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-4c-lG 

-6c-16 
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Figure  A 4.4.1. Extended Phase Space Hamiltonian vs. Time.



A PPE N D IX  FIVE  

C O M PU TER  SIMULATION CODE XOSSIM .F

The following computer code was developed and run on Sun and IBM workstations, 

as well as CRAY II computers. Though the variable declaration statements are the 

data type real, the code was always compiled using the implicit double precision 

option, meaning that all of our real floating point arithmetic was done using the 

data type real*8.

212
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program  XOSsim XOSsim
$  $  sfs$ sje sjs :jc $  sf: $  afc s|e %  $  ♦ + ♦  4s H* % +  %  5# ♦  % +  +  4 1 ♦  %  #  +  +  ★  ̂  ♦  H5 ̂  +  +  4 s +  +  +  H6 ♦  ♦  ♦  ♦  ̂  ^  ♦  H6 ♦  ♦

i+c * * * * : + ; *  * * * * * * * * * * *  * * : + : : + : * * * * ; + : * * * : 4 e * *  * * * * * * * * *  * * * * * * * * * * * * * *  * * * * * * * *

* * This code calculates particle trajectories for reconnection
* * fields, including X— and O—type neutral lines, as well as
* * neutral plane fields.
* * The magnetic field is taken to be:
* * Bx =  delta * y, By =  x, Bz =  alpha =  constant.
* * The electric field is Ez =  epsilon
$ *** ** ***))<**** + ***** *** + + * ***** **** 10
4= S t : * *  i t : * *  * : ) « : ( :  4 : i f : * *  * * * * * : ( :  s i s * * * * *  S t : * * *  S t : * * * * : ! :  J i t * * : ) : * : ! : * * *

parameter (nmps =  50001) 
parameter(nbins =  100)

c
rea l kappa,length,mass

c
real x0(nmps),y0(nmps),z0(nmps),px0(nmps),py0(nmps),

&: pzO(nmps),t(nmps),dt(nmps),x(nmps),y(nmps),z(nmps),
& px(nmps),py(nmps),pz(nmps),h(nmps),herr(nmps),
& hamO(nmps),efin(nmps),amufin(nmps),tfin(nmps), 20
& esubl(nbins),hamfin(nmps),qguide(nmps),curre(nmps),
Sz eftfin(nmps)

c
integer ifin(nmps),nsurf(nmps),num(nbins) 

com m on /fields/ alfa,bO,delta,efield,kappa 
com m on /slab /  xunif,yunif,ymax,ifxu,ifyu,iflat 
com m on /in tpars/ dtmin,nitmax

c
c open input & output files...
c 30

open(95, file= , u p s ilo n .d >) 
open(97, file= , omegax.di ) 
open(98, file= , omegay.d’) 
open(99, file =  ' j y . d ')  
open(7, file=’m uout.d’ ) 
open(8, f i le s ’ham out.d’) 
open(9, file=’re c lo g .d ’) 

open(l4, f i le ^ x p x .d ’) 
open(15, file —’ypy .d ’) 
open(16, f i le ^ 'z p z .d ')  40

open(17, f i l e ^ e f i n .d ’) 
open(18, file= * tfin .d* ) 
open(19, file= ,IIlufiIl.d, ) 

open(20, f i l e ^ h i s t . d ’)



open(21, file— *enot .d ’) 
open(22, file=, j x .d >) 
open(30, file=,x y .d ')  

open(31, f i le ^ x z -d ')  
open(32, file=, yz.d*) 

open(33, f i le ^ x y z .d ’) 
open(34, file= * harofin. d *) 
open(47, file=>f t e f i n . d >) 

open(4, file=’XOSsim.d») 
open(13,file= * in o u t . d>) 
open(69,file= * i s u r f . d *) 
open(70,file= ’ i s u r f  2. d ’) 
open(71 ,file= * f  lu x s . d *) 
open(73,file= ’ g c s . d *) 
open(74,file= ’ s t u f f . d*) 

open(75,file= * rhoO. d >) 
open(76, file=:, rh o p .d , ) 
open(77, file= ’ rh o z . d ’) 
open(78, file— ’p h i .d ')  
open(79, file=, v p e rp .d >) 

open(80, file= , v p a r .d )) 
open(81, file^inunot .d ')  
open(91, file= * tunmag. d ’ ) 
open(96, f i le ^ k e .d ’)

R ead  in parameters...

read(4,2) alfa,bO,delta,efield 
read(4,5) ymax,ifxu,ifyu,iflat 
read(4,3) hO,amuO 
read(4,3) psiO,dpsi 

read(4,4) xmin,xmax 
read(4,*) znot 
read(4,4) phiofO,phscale 

if(delta .It. 0.) then 
if(ifyu .eq. 1) then

xmin =  — 0.5*sqrt(abs(2. * psiO)) 
xmax =  0.5*sqrt(abs(2. * psiO)) 

endif
if(ifxu .eq. 1) then

ymin =  —0.5*sqrt(abs(2. * psiO /  delta)) 
ymax =  0.5*sqrt(abs(2. * psiO /  delta)) 

endif 
endif
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if(delta .eq. 0.) then
if(ifxu .eq. 1) then 90

ymin =  xmin 
ymax =  xmax 
xunif =  sqrt(abs(2. * psiO)) 

endif
if(ifyu .eq. 1) then

yunif =  sqrt(abs(2. * psiO)) 
endif 

endif
if(delta .gt. 0.) then

if(ifxu .eq. 1) then 100
ymin =  xmin 
ymax =  xmax 

endif 
endif
psimin =  psiO — dpsi 
psimax =  psiO +  dpsi

read(4,6) iran,iexb,iprints,inoint,iact
2 format(4(el2.5,lx))
3 form at(2(ell.4,lx))
4 format(2(el7.10,lx)) no
5 format(e9.2,3(lx,il))
6 form at(5(il,lx))

read(4,2001) nparts,ntype 
write(9,2301) nparts,ntype 

read(4,2002) jmax,ntrial,nitmax,nord,icut,
& iprint,iprints,i3d,icsonly,itest,ihist

write(9,2302) jmax,ntrial,nitmax,nord,icut,
& iprint,iprints,i3d,icsonly,itest,ihist 

read(4,2007) t0,dt0,tmax 
read(4,2Q06) dtfudge,hfudge 120

read(4,2006) q,mass 
read(4,*) rmax 
read(4,*) tine 

write(9,2305) rmax,tine 
read(4,*) isptraj 
if(isptraj .eq. 1) then

re a d (4,*) xs0,ys0,zs0,pxs0,pys0,pzs0 
xs =  xsO 
ys =  ysO

zs =  zsO 130

pxs =  pxsO 
pys =  pysO



pzs =  pzsO
call hamilt(xs,ys,zs,pxs,pys,pzs,hsO) 

hs =  hsO 
ts =  tsO 

dts =  dtO 
herrs =  hsO * (dts ** (nord+1)) 

nspec =  1 
endif

ifail =  0 
ifintot =  0 
pi =  acos(—1.0) 
twopi =  2.0 * pi 
phscale =  phscale * twopi 
tiny =  l.Oe—14 

c =  2.99792458el0 
qe =  4.8032068e—10 
pmass =  1.6726231e—24 
emass — 9.1093897e—28 

lf(ntype .eq. 1) then
mass =  mass * pmass

q =  qe
endif
if(ntype .eq. 2) then 

mass =  mass * emass 
q ~  -q e  

endif
omegaO =  q * bO /  (mass * c) 
length =  100.
kappa — q * efield /  (mass * length * 

&omega0**2)
write(9,2310) bO,delta,alfa,efield,q,mass 

write(9,2312) length,omegaO,kappa 
write(9,2316) tmax,dtO,tolf,tolx 

write(9,2318) hO,amuO,psiO,znot,xmin,xmax, 
&phiofO ,phimax

call up the initialization routine INIT...

if(isptraj .ne. 1) then
call init(xmin,xmax,nparts,hO,amuO,psiO,znot,xO, 

&:yO,zO,pxO,pyO,pzO,hamO,qguide,ekbarO,phiofO,phscale, 
&iexb,iran,iprints,np)

check to see i f  integration of the trajectories is



desired...If only a set of particles about a flux 
surface is wanted, inoint is one...

iff[inoint .ne. 1) then

set size of minimum step, dsmin

dtmin =  dtfudge * dtO**(nord +  1)

do 100 n= l,np

herr(n) =  ((abs(dtO))**(nord+l)) * hamO(n) * hfudge

set up values of coordinates & momenta for use in 
the integration scheme...

x(n)= x0(n) 
y(n )=  y0(n) 

z(n)= z0(n) 
px(n)= pxO(n) 

py(n)= pyO(n) 
pz(n)= pzO(n) 

t(n) =  tO 
dt(n) — dtO 

h(n) =  hamO(n) 
ifin(n) — 0

100 continue

ifintot =  0

begin integration...

write(6,*) np 
do 1000 n= l,np

call the particle pusher for this particle...

ifail =  0 
psif =  psiO
call parpush(n,x(n),y(n),z(n),px(n),py(n),pz(n),t(n),dt(n),h(n), 

&:hamO(n),herr(n),efin(n),eftfin(n),tfin(n),amufin(n),ifail ,ifin(n), 
&icsonly,itest,icut, rmax, tmax, tine,jmax,curre(n),psiO,psimin,



&psimax,nsurf(n))

ifintot =  ifintot +  ifin(n)
if(ifail .ne. 0) write(6,2320) n,ifail

calculate the final hamiltonian

call hamilt(x(n),y(n),z(n),px(n),py(n),pz(n),hamfin(n)) 
1000 continue

determine max & min values of the final kinetic 
energy for the distribution,.,y

if((iprint .eq. 1) .or. (ihist .eq. 1)) then 
ektot — 0. 
ekmax =  0. 
ekmin =  I.elO 

nspec — 2

Write out final quantities, and determine the most 
energetic particle...

ekavf =  0. 
ekavft =  0. 
current =  0. 

do 1100 n= l,np
if(itest .eq. 5) write(47,2005) qguide(n),eftfin(n) 

wrlte(17,2005) qguide(n),efin(n) 
write(18,2005) qguide(n),tfin(n) 
write(19,2005) qguide(n),amufin(n) 

herr(n) =  (hamfin(n) — ham0(n)) /  ham0(n) 
write(34,2005) qguide(n),herr(n) 
ekavf =  ekavf +  efin(n) /  float(np) 
if(itest .eq. 5) then

ekavft =  ekavft +  eftfin(n) /  float(np) 
endif

current =  current +  curre(n) /  float(np)

if(efin(n) .gt. ekmax) then 
nspec =  n 
ekmax — efin(n) 

endif
if(efin(n) .It. ekmin) then
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emin =  efin(n) 
endif 

1100 continue
emax =  efin(nspec) 

emin =  efin(nmin) 
endif
if(ihist .eq. 1) then

erange =  emax — emin
deltae =  erange /  float(nbins) 

do  1150 l= l,nbins
esubl(l) =  efin(nmin) +  float(l) * delatae 

num(l) =  0 
1150 continue

do 1200 n = l,n p
lbino =  int((efin(n) — emin) /  deltae) +  1 
num(lbino) =  num(lbino) +  1 

1200 continue
do 1250 m =l,nbins 

write(20,2015) esubl(m),num(m)
1250 continue

endif
c This is where the single particle trajectory control jumps in...

endif
c

if((iprint .eq. 1) .or. (isptraj .eq. 1)) then 
tnext =  ts +  tine

c
c if  this is not a  s.p. trajectory, initialize xs, et cetera...
c

if(isptraj .eq. 0) then 
xs =  xO(nspec) 
ys =  yO(nspec) 

zs =  zO(nspec) 
pxs =  pxO(nspec) 
pys =  pyO(nspec) 
pzs =  pzO(nspec) 

ts =  tO 
dts =  dtO 
hsO =  hamO(nspec) 

hs =  hsO 
herrs =  herr(nspec) 
iystart =  0 
ixstart =  0 
nyper =  0

270

280

290

300
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e n d i f

n x p e r  =  0

t x p  =  0 .  310
t y p  =  0 .
x d s n  =  p x s  +  0.5 *  a l f a  *  y s  

y d s n  =  p y s  — 0.5 * a l f a  *  x s

c
c W rite  out first line of trajectory d a ta  file .
c

w rite( 14,2005) xs,pxs 
write(15,2005) ys,pys
w rite( 16,2005) zs,pzs 320

write(20,2005) ts,dts 
write(30,2005) xs,ys 
write(31,2Q05) xs,zs 
write(32,2005) ys,zs

c
c if(i3d .eq. 1) write(33,2008) xs,ys,zs
c

do 1300 j=l,jm ax  
if(idone .ne. 1) then 

call step(xs,ys,zs,pxs,pys,pzs,ts,dts,xsn,ysn, 330

&zsn,pxsn,pysn,pzsn,hs,hsO,hsn,herrs,nit,ntrial,
&icut,ifail)

c
if(ifail .eq. 1) write(9,2100) n,nit,dtj 
xds =  xdsn 
yds =  ydsn
xdsn =  pxsn +  0.5 * alfa * ysn 
ydsn =  pysn — 0.5 * alfa * xsn 
if(iact .ne. 0) then 

if(ixstart .eq. 1) then 340

dx =  xsn — xs 
pxavg =  0.5 * (pxs +  pxsn) 
actx =  actx +  pxavg * dx 
if(xds*xdsn .le. 0.) then 

nxper =  nxper +  1 
if(mod(nxper,2) .eq. 0) then 

write(22,2005) ts,actx 
taux =  ts — txp 
txp =  ts
if(taux .ne. 0.) then 350

omegax =  twopi /  taux 
else
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omegax =  0.0 
endif
write(97,2005) ts,omegax 
actx =  0. 

endif 
endif 

endif
if(iystart .eq. 1) then 360

dy =  ysn -  ys 
pyavg =  0.5 * (pys +  pysn) 
acty — acty +  pyavg * dy 
if(yds*ydsn .le. 0.) then 

nyper =  nyper +  1 
if(mod(nyper,2) .eq. 0) then 

write(99,2005) ts,acty 
tany =  ts — typ 
if(tauy .ne. 0.) then

omegay =  twopi /  tauy 370
else

omegay =  0.0 
endif 
typ =  ts
write(98,2005) ts,omegay 
acty =  0. 

endif 
endif 

endif
if(ixstart .eq. 0) then 380

if(xds*xdsn .le. 0.) then 
nxper =  0 
actx =  0. 
txp =  ts 
ixstart =  1 

endif 
endif
if(iystart .eq. 0) then

if(yds*ydsn .le. 0.) then
nyper =  0 390
actx =  0. 
typ — ts 
iystart =  1 

endif 
endif 
endif



evaulate the particle unmagnitization function  upsilon...

vx =  pxsn — ax(xsn,ysn,zsn) 
vy =  pysn — ay(xsn,ysn,zsn) 

vz =  pzsn — az(xsn,ysn,zsn) 
eknow =  vx*vx +  vy*vy +  vz*vz 

bx =  bex(xsn,ysn,zsn) 
by =  bwhy(xsn,ysn,zsn) 

bz =  bzee(xsn,ysn,zsn) 
bt =  sqrt(bx*bx +  by*by bz*bz) 

vpa =  (vx*bx 4- vy*by +  vz*bz) /  bt 
vper =  sqrt(2.*abs(ho — vpa*vpa)) 

gyrorho =  vper /  bt 
amus =  vper * gyrorho
gbob =  sqrt((delta**4)*ysn*ysn +  xsn*xsn) /  (bt*bt +  tiny) 

upsilon =  gyrorho * gbob 
write(95,2005) ts,upsilon

update trajectory d a ta

xs=  xsn 
ys=  ysn 

zs= zsn 
pxs= pxsn 

pys= pysn 
pzs= pzsn
herrs =  (hsn — hsO) /  hsO 

hs =  hsn

P ause  to print out trajectory number nspec ( if  desired).

if(ts .ge. tnext) then 
tnext =  ts +  tine 
write(7,2005) ts,amus 
write(96,2005) ts,eknow 
write(8,2O05) ts,herrs 
write(14,2005) xs,pxs 

write(15,2005) ys,pys 
write(16,2005) zs,pzs 
write(20,2005) ts,dts 
write(30,2005) xs,ys 

write(31,2005) xs,zs 
write(32,2005) ys,zs
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c if(i3d .eq. 1) then
c write(33,2008) xs,ys,zs
c endif

endif
if(ts .ge. troax) idone =  1 

endif
c

1300 continue
c

endif
c

write(9,2075) nparts,ifintot 
write(9,2200) nspec 
heatr =  ekavf /  ekbarO 
if(itest .eq. 5) then

heatftr =  ekavft /  ekbarO 
write(9,2265) ekavft,heatftr 

endif
write(9,2205) ekavf,heatr 
write(9,2206) tmax,current 
write(9,2207) ifxu,ifyu,iflat,xunif,yunif

c
c format statements
c
2000 format(6(el6.10,lx))
2001 format(i6,lx,il)
2002 format(i6,2(lx,i2),8(lx,il))
2003 format(3(f7.3,lx))
2005 format(2(el8.12,2x))
2006 format(2(e8.2,lx))
2007 forraat(3(e8.2,lx))
2008 format(3(el6.10,lx))
2010 format(6(e9.3,lx))
2015 format(el6.10,lx,i6)
2075 form atf’Out of a t o t a l  of ' ,i6,* p a r t i c le s ,  *,i6,

&* completed th e i r  runs * , / ’and ex ited  the s c a tte r in g  
& re g io n . ’ )

2100 format(10x,*Out of luck , cowboy—P a r t ic le  number * ,i6,
&: * s ta l le d  a f te r  * ,i4,' sho ts w ith d t = * ,el6 .10/and
& j = ',16)

2200 form at^ T ra jec to ry  da ta  corresponds to  p a r t i c le  # * ,i6)
2205 format( * Average F in a l K ine tic  Energy = *,612.6,/* Ratio 

& of f in a l  to  i n i t i a l  k in e t ic  energ ies = *,el2.6)
2206 format( * Average cu rren t a t tim e t  «= * ,el2.6, ’ i s  j  -  ’,

450

460

470

480
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& e l 2 . 6 )

2207 form at(’O rien ta tion  and I .S . type param eters : ’ , / ’ ifxu  =*
&il,10x,’ify u  = ’,il,10x,’i f l a t  = ’ , i l , / ’xun if = ’,614.8,lOx,
&’yunif = ’ ,el4,8)

2265 format(’Average Fixed Time F ina l K ine tic  Energy = ’ ,e l2 .6 ,/’Ratio 
& of fix ed  tim e f in a l  to  i n i t i a l  k in e tic  energ ies = ’ ,el2.6) 490

2301 form at(’Sim ulation of ’ ,i6,’ p a r t i c le s ,  ’ , / ’n type = ’,il)
2302 form at(’Max. no. of s tep s  : ’ ,i6 ,/’n t r i a l  = ’ ,i2,

&5x,’nitmax = ’,i2,5x,’nord = ’,il,5x,’ic u t = M l,/
& ’ip r in t  = ’ ,il,5x,’ ip r in ts  = ’,il,5x,’i3d = *,il,/
&’ icson ly  = ’,il,5x,’i t e s t  = ’ ,il,5x,’i h i s t  = ’ ,il)

2305 form at(’Radius of th e  NULL BALL -  ’ ,e l0 .4 ,/’Time 
ftin te rv a l between t r a je c to ry  p o in ts  = ’ ,el0.4)

2310 form at(’F ie ld  param eters B0 = ’ ,e9.3,5x,’d e lta  =
&e9.3,5x,’a lf a  = ’,e9.3,5x,’E0 = ’ ,e9.3,/,’q = ’,e9.3,
&’ e su ’ ,10x,’m = ’ ,e9.3,’ g ’) 500

2312 form at(’Scale leng th  = ’,e ll.5 ,’ cm’, / ’OmegaO = ’,
&ell.5,10x,’kappa = ’,ell.5)

2316 form at(’tmax = ’,e9.3,10x,’dt0 = ’ ,e9.3,/’t o l f  = ’,
&e9.3,10x,’to lx  = ’,e9.3)

2318 form at(’Flux su rface  param eters: ’ , / ’HO = ’ ,e9.3,10x,
&’Mu0 » ’,e9.3,/’Psi0 = ’,e9.3,10x,’zO = ’,e9.3,/
&’xmin =* ’,e9.3,10x,’xmax = ’ ,e9.3,/’phiofO = ’,el0.4,
&10x,’phscale  * ’ ,el0.4)

2320 form at(’P a r t ic le  number ’ ,i6, ’ crapped out w ith i f a i l  = ’ ,
& i l )  5 1 0

c
endif

c
end

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * He * * * * * * * * * ̂  * * * * * * * * * * * * * * * * *
***************************** PARPUSH ***************************************** 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

subroutine parpush(n,xo,yo,zo,pxo,pyo,pzo,to,dto,ho,ha0,hei{3t^rpUSh. 
&ekf,eftkf,tf,amuf, ifail, ifinish,icsonly,itest,icut, rmax, tmax, tine, 
&jmax,curr,psinot,psimin,psimax,nexit) 520

real kappa
comm on /fields/ alfa,bO,delta,efield,kappa 

com m on /slab / xunif,yunif,ymax,ifxu,ifyu,iflat
c
c This is the particle pusher. This routine pushes single particles
c for the chaotic scattering calculation. It uses one of three different
c types of tests to trap the particle, each of which is signaled by a
c particular value of the integer itest.



i f  itest =  1, push until a particular z—value is reached. 530

i f  itest =  2, push until a particular time tmax is reached.

i f  itest =  3, push the particle u ntil it scatters out to a 
distance rmax from the origin.

if  itest =  4, the initial surface is single—valued in x, psinot>0, 
and we require that the particle pass through the field line separatrix 
reaching an outgoing flux surface psi =  — psinot.

540

if  itest =  5, the initiail surface is single—valued in y, psinot<0, 
and we require that the particle pass through the field line separatrix 
reaching an outgoing flux surface psi =  —psinot.

if  itest =  6, we are using the time diagnostic push the particles
until a time t=tm ax is reached. This diagnostic is applicable to the 
closed field line (i.e. elliptical and circular) cases. This is the 
same diagnostic as the case itest=2, except that this flag allows us to 
calculate a final value of < vz> , which is proportional to the current.

550

i f  itest =  7, we are considering the case of the slab (delta=0) 
configuration, and we push the particle u ntil it has drifted a 
distance ymax along the y —axis (note that for the slab, py =  constant).

ipsid =  0 
do 3000 j= l,jm ax

ARE WE DEAD? I f  ifail =1, the answer is yes.
I f  isconly=l, then we only want chaotic scattering 560
data, so the code will s to p  when all of the particles
have satisfied the appropriate exit condition.
Satisfaction of the appropriate exit condition for a 
particular particle is signified by setting the flag 
ifinish equal to 1.

if(((ifail .eq. 0) .or. (icsonly .ne. 1)) .and.
& (ifinish .ne. 1)) then

Take a step of size dt... 570

call step(xo,yo,zo,pxo,pyo,pzo,to,dto,xn,yn,zn,pxn,



&pyn,pzn, ho, haO,hnew,herro, nit, ntrial,icut, ifail)

if(ifail .eq. 1) write(9,3100) n,nit,dtj 
if(ifail .eq. 2) w rite(6,*) to,xo,xn,yo,yn

Now that we have the coordinates at the new point, check to see if  
any poincare surfaces of section have been crossed, and i f  so, w rite  
this information to the appropriate file... saa

for now, just reset coordinates & momenta to new values, an well 
as h & t:

xo =  xn 
yo =  yn 

zo =  zn 
pxo =  pxn 

pyo= pyn
pzo =  pzn 590

ho =  hnew

check to see whether the particle is magnetized or 
unmagnetized...

vx =  pxo — ax(xo,yo,zo) 
vy =  pyo -  ay(xo,yo,zo) 

vz =  pzo — az(xo,yo,zo) 
bx =  bex(xo,yo,zo) 

by =  bwhy(xo,yo,zo) eoo
bz =  bzee(xo,yo,zo) 

b t =  sqrt(bx*bx -1- by*by +  bz*bz) 
vpa =  (vx*bx +  vy*by +  vz*bz) /  bt 

vper =  sqrt(2.*abs(ho — vpa*vpa)) 
gyrorho =  vper /  bt 

gbob =  sqrt((delta**4)*yo*yo +  xo*xo) /  (bt*bt +  tiny) 
upsilon =  gyrorho * gbob 

if(iunmag .ne. 1) then 
if(upsilon ,ge. 1.) then

iunmag =  1 eio
tunmag =  to 
nunmag =  nunmag 4- 1 

endif 
else

if(upsilon .It. 1) then 
iunmag =  0



ttunmag =  to — tunmag 
endif 

endif

check to see i f  the particle satisfies "exit" condition 
on this step, and keep a running tally on how many particles 
have exited the scattering region by summing up values of ifinish.

if(itest .eq. 1) then
if(zo .ge. zmax) then 

ifinish =  1 
ifintot =  ifintot +  1 

call kefin(xo,yo,zo,pxo,pyo,pzo,ekf,amuf) 
if(efin .eq. 0.) write(6,3200) xo,yo,zo,pxo,

&pyo,pzo
tf =  to 

endif 
endif

if(itest .eq. 2) then
if(to .ge. tmax) then 

ifinish =  1
call kefin(xo,yo,zo,pxo,pyo,pzo,ekf,amuf) 

if(ekf .eq. 0.) write(6,3200) xo,yo,zo,pxo,pyo,pzo 
call hamilt(xo,yo,zo,pxo,pyo,pzo,hf) 
write(91,*) n,nunmag,ttunmag 

tf =  to
endif

endif

if(itest .eq. 3) then
r =  sqrt(xn*xn +  yn*yn +  zn*zn) 
if(r .ge. rmax) then 

ifinish =  1 
call kefin(xo,yo,zo,pxo,pyo,pzo,ekf,amuf) 
tf =  to 

endif 
endif
if(itest .eq. 4) then 

psinow =  0.5 * (delta * yn * yn — xn * xn) 
if(psinow .le. —psinot) then 

ifinish =  1 
call kefin(xo,yo,zo,pxo,pyo,pzo,ekf,amuf) 
tf =  to
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if(xo .It. 0.) nexit =  3 
if(xo .gt. 0.) nexit =  1 

endif 
endif
if(itest .eq. 5) then 

psinow =  0.5 * (delta * yn * yn — xn * xn)
if(psinow .ge. —psinot) then 

ifinish =  1 
call kefin(xo,yo,zo,pxo,pyo,pzo,ekf,amuf)
tf =  to 670
if(xo .It. 0.) nexit =  3 
if(xo .gt. 0.) nexit =  1 

endif 
endif
if(itest .eq. 6) then

psinow =  0.5 * (delta * yn * yn — xn * xn)
if((psinow .le. psimin) .and. (ifinish .ne. 1)) then

call kefinfxo^ojzo^xojpyojpzojek^amuf) 
tf — to
if(xo ,lt. 0.) nexit =  3 680

if(xo .gt. 0.) nexit =  1
endif
if(to .ge. tmax) then

call kefin(xo,yo,zo,pxo,pyo,pzo,eftkf,amuf) 
ifinish =  1 
curr =  vz 

endif 
endif
if(itest .eq. 7) then

if(abs(yo) .ge. ymax) then 690
call kefin(xo,yo,zo,pxo,pyo,pzo,ekf,amuf) 
tf =  to 
ifinish =  1 

endif 
endif

endif

continue
formatflOx/Out of luck , cowboy—P a r t ic le  number *^4, 7oo

* s ta l le d  a f t e r  ’^4,* sho ts w ith d t = ^elO .lO /and
j = ’ ,i5)
format(6(el6.10,lx))

return
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end

St:*******:*:**************:** STEP * Jit****** ****** *********!)<*’I'♦♦♦♦♦ifr****************
^  ̂  «ĵ  ̂  l̂ r h|̂  ^  ^  ^  a|a i|a ^  |̂g j|r  ^  aĵ  aĵ  1̂1 i|̂  jjg ̂ p |ĵ  a|i iĵ  ^  ̂  a|g a|̂  ^  ̂  ̂  jĵ  |ĵ  ^  ̂ |g l|̂  ^a ̂  ijg jĵ  %̂£ ̂ |a

C

c This is the stepper for the integration scheme. 710
c

su b rou tin e step(ql,q2,q3,pl,p2,p3,s,ds,qln,q2n,q3n,pln,p2n,p3n, S t e p  
& hnow,hnot,hnew,dhmax,nit,ntrial,icut,ifail) 

real kappa
com m on /fields/ alfa,bO,delta,efield,kappa 
com m on  /intpars/ dtmin,nitmax 

******************************************************************************* 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c I f  icut =  0: turn off the error control; topology, not
c numbers is the key... 720
c
c I f  icut =  1: test to see i f  the Hamiltonian is conserved within
c reasonable lim its...If the step is unsuccessful, cut the step
c size in half. I f  the step is successful, try doubling the stepsize
c on the n ex t run...
s | c  *  *  J i t  *  *  *  ^  *  *  *  *  $  $  *  *  %  *  *  %  %  *  *  *  *  *  *  *  *  *  *  *  *  *  *  £  *  *  afc  *  *  *  *  *  *  s f c  *  *  *  *  * *  *  *  *  *  *  +  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *

? |c  i j c  * fs  ^  ! j c  3^C ) f c  ) |£  ) |»  s j i  i j c  i | !  j j i  # |?  l | c  j f i  i j c  a{c ? j (  3^C d jc  i j i  3|C  a j (  i j s  i j .  *|C Sjc 5 |f i i j i  ^  i j c  ? jc  ijC  j J ?  i |»  ? jc  j j ?  J^C ^  ^  s j c  if*  3 | i  i | c  ? |s  ){ c  ?|C  a f»  * f i  +  ? |c  2f*  Sfc 5^C 2f i  « jc  3 f i  5^5

if(icut .eq. 0) then
call symmap(ql,q2,q3,pl,p2,p3,s,ds,qln,q2n,q3n,pln,p2n,

& p3n,ntrial,ifail) 730

call hamilt(qln,q2n,q3n,pln,p2n,p3n,hnew) 
endif
if(icut .eq. 1) then 

do 2500 i=l,nitm ax  
call symmap(ql,q2,q3,pl,p2,p3,s,ds,qln,q2n,q3n,pln,p2n,

Sz p3n,ntrial,ifail)
ca ll hamilt(qln,q2n,q3n,pln,p2n,p3n,hnew) 

if(abs((hnew — hnow) /  hnot) .gt. abs(dhmax)) then 
s =  s — ds
nit =  nit +  1 740

ds =  ds /  2. 
if((abs(dt).le.abs(dtmin)) .or. (i ,eq. nitmax)) then 

ifail =  1
endif 

else  
nit =  0 
ds =  2. * ds 
return
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endjf
2500 c o n t in u e  7so

e n d i f  

return 
end

* * * * * * * * * *** *** * * * * *** * * * * * * * * * * ** *** * ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
sic***************** HAMILT *****************************************************

subroutine hamilt(ql,q2,q3,pl,p2,p3,hamil) h a m i l t
real kappa
common /fields/ alfa,b0,delta,efield,kappa
hx =  0.5 * (pi — ax(ql,q2,q3))**2 760

hy =  0.5 * (p2 — ay(ql,q2,q3))**2 
hz =  0.5 * (p3 — az(ql,q2,q3))**2 
hamil =  hx +  hy +  hz +  potl(ql,q2,q3) 

return  
end

************4; ;̂*** :̂ :̂ POTL ******************************************************

real function potl(ql,q2,q3) p o t l
real kappa 770

common / f i e l d s /  a l f a ,b 0 ,d e l t a ,e f i e ld ,k a p p a
p o t l  =  —k a p p a  * q3
return
end

************************ SYMMAP **********************************************si 

c

c Here is the symplectic map...
C 780

subroutine symmap(ql,q2,q3,pl,p2,p3,s,ds,qln, S y m m a p
& q2n,q3n,pln,p2n,p3n,ntrial,ifail) 

real kappa
common /fields/ alfa,b0,delta,efield,kappa

c
c The following symplectic integration scheme takes us from the
c phase—space vector (ql,q2,q3,pl,p2,p3) at time s to the vector
c (qln,q2n,q3n,pln,p2n,p3n) at time s +  ds. This
c scheme is an explicit and second—order in ds.
c 790
c Definitions of useful combinations of variables that show
c up repeatedly in the mapping equations...
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c
ql2 =  ql * ql 
dq22 =  delta * q2 * q2 
dqlq2 =  delta * q l * q2 
ds2 =  ds*ds 
qlo2 =  0.5 * ql 
q2o2 =  0.5 * q2
alfa2 — alfa+alfa soo

c
c Take step dt forward in time...
c

s =  s 4- ds 
c First, step the momenta...

p3n =  p3 +  kappa*ds
c
c The stepping in px &; py is implicit, but linear. W rite it
c in matrix form AP =  R, and invert A to get the new momenta
c  P. First, write down the elements of A... bio
c

a l l  =  1. +  0.25*ds2*(2.*p3n 4- 3.*ql2 — dq22) 
a l2  =  — 0.5*ds*(alfa 4* ds*dqlq2) 
a21 =  al2  4- alfa
a22 =  1. — 0.25*delta*ds2*(2.*p3n +  ql2 — 3.*dq22) 
det =  all*a22 — al2*a21 

c Now the right—hand—side vector R...
terml — kappa*ds — 2.*p3n —ql2 4* dq22 
rl =  p i +  0.5*ds*ql*(—0.5*alfa2 +  terml) +

&alfa*q2*ds2*(—2.*p3n — 3.*ql2 +  dq22)*(l. +  delta)/8. 820

r2 =  p2 +  0.5*ds*q2*(—0.5*alfa2 — delta*terml) +
&alfa*ql*ds2*(l. 4- delta)*(—2.*p3n — ql2 4- 3.*dq22)/8.

c
c Now, invert A to get p in  & p2n...
c

p in  =  (a22*rl — al2*r2) /  det 
p2n =  (—a21*rl 4* all*r2) /  det 

c now, the coordinates...
* * * * * * * * * * * * * ♦ * * * * * * *+* * * * * * * * * * * * ♦ ♦+** * * * * * * * * * ♦ * * * * ***+* + ♦ * * * * **** * ♦ * 

qln  =  q l 4- ds*(pln 4- alfa*q2o2) 4- 0.5*ds2*qlo2*(2.*p3n 4- ql2 boo 
& dq22)

c
q2n =  ds*(p2n — alfa*qlo2) 4- q2 4- 0.5*delta * ds2 * q2o2*

& (—2.*p3n — ql2 4- dq22)

q3n =  0.5*ds2*(—kappa 4- pln*ql — delta*p2n*q2 +  alfa*ql*



Sc q2o2 +  alfa*dqlq2/2.) +  0.5*ds*(2.*p3n +  ql2 —
Sc dq22) +  q3

retu rn

232

end 840

******!((:(:* if:** **** + :(::(::(::(: KEFIN ***************************************************

C

c kefin computes the final kinetic energy of the particle...
c

subroutine kefin(ql,q2,q3,pi,p2,p3,energy,amuf) 
real kappa
com m on /fields/ alfa,b0,delta,efield,kappa 
xdot =  p i -|- 0.5 * alfa * q2 

ydot =  p2 — 0.5 * alfa * ql 
zdot =  p3 +  0.5 * (q l*ql — delta*q2 *q2) 

energy =  0.5 * (xdot**2 +  ydot**2 +  zdot**2) 
vtot2 =  2. * energy 
bt =  btot(ql,q2,q3) 

vpa =  xdot * (bex(ql,q2,q3) /  bt) -f ydot *
&(bwhy(ql,q2,q3) /  bt) -f zdot * (bzee(ql,q2,q3) /  bt) 

vper2 =  vtot2 — vpa * vpa 
amuf =  vper2 /  (2. * bt) 

return  
end

*************** INIT ************************************************
*******************^4; :̂4:4:4;4:*****4:4:4:4:*********4:*4;*********4;4:4:4;^**** :̂***

subroutine init(qmin,qmax,nparts,h0,amu0,psi0,znot,ql0,q20, i l l i t
&q30,pl0,p20,p30,hami0,qgc,ekavg0,phiof0,phisca,iexb,iran,
&iprints,np)

** INIT This code sets up an ensemble of nparts+1 870
** particles on an energy surface hO, all particles
** having the same initial magnetic moment amuO and all
** particles residing on the same flux surface psiO (i.e.
** on the same field line. The code drops a set of guiding
** centers on the initial psiO surface, and then winds
** them about this line by incrementing the gyrophase phi.
** The code computes the parallel and perpindicular velocities
** for the test particles, as well as their canonical momenta.
** It also checks to be sure that this process places the
** particles within an energy shell of thickness 2. * hittol. 880

kefin

850

860
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parameter(nmps =  50001)
real ql0(nmps),q20(nmps),q30(nmps),pl0(nmps),p20(nmps), 

&p30(nmps),vpar(nmps),xgc(nmps),ygc(nmps),vparp(nmps), 
&vper(nmps),v3(nmps),hami0(nmps),vpa2(nmps),vx(nmps),
&vy (nmps), vz(nmps) ,v4(nraps) ,energyO(nmps),qgc(nmps) 

real kappa
com m on /fields/ alfa,bO,delta,efield,kappa
com m on / s l a b /  x u n i f ,y u n i f ,y m a x , i f x u , i f y u , i f l a t  890

c
c define the constants pi & twopi 
c

pi =  acos(—1.) 
twopi =  2. * pi

c
c define error tolerence hittol...
c

hittol =  l .e —2 * hO 900

ekavgO =  0.
c
c Now, set all of the z—values...
c

d o  9 i=l,nparts 
q30(i) =  znot 

9 continue
c
c find center of the flux surface.
C 910

qcent =  (qmin +  qmax ) /  2. 
if((ifyu ,eq. 1) .and. (delta .ne. 0.))then 

xcent =  qcent 
if(delta .gt. 0.) then

ycent =  yxsurf(xcent,psi0) 
endif
if(delta .It. 0.) then

y c e n t  =  y o s u r f ( x c e n t ,p s i0 )  

e n d i f
endif 920
if((ifxu .eq. 1) .and. (delta .ne. 0.)) then 

ycent =  qcent 
if(delta .gt. 0.) then

xcent =  xxsurf(ycent,psi0)



endif
if(delta .It. 0.) then

xcent — xosurf(ycent,psiO) 
endif 

endif
if(delta .eq. 0.) then 

if(ifxu .eq. 1) then 
ycent =  qcent 
xcent =  xunif 

endif
if(ifyu .eq. 1) then 

xcent =  qcent 
ycent =  yunif 

endif 
endif

calculate the total magnetic field at the center of the 
distrubution

bpcent =  bpol(xcent,ycent,znot) 
bcent =  btot(xcent,ycent,znot)

calculate the parallel & perpindicular velocities 
at the center of the distribution.

vp2cent =  vpar2(h0,amu0, xcent, ycent, znot) 
if(vp2cent .It. 0.) then 

write(13,15) vp2cent
formatf* P a ra l le l  v e lo c ity  a t cen te r of d is t r ib u t io n  

& is  imaginary; vp2cent = ’,1610.4)
ifail =  1 

endif 
if(ifail .ne. 1) then 

vpcent =  sqrt(vp2cent)
vperpc =  vperp(amuO,xcent, ycent, znot)

vpcp is the component of the parallel velocity that lies 
in the x—y plane...

vpcp =  vpcent * bpcent /  bcent

initialize gyrophase phi to value phiO

phiO =  phiofO +  qlmin * phisca



dqO =  (qmax — qmin) /  float(nparts) 
dphiO =  phisca * dqO

Here is the loop that initializes the particles...

np =  0 
do 600 n = l,n p arts+ l

set guiding center position xgc(n),ygc(n). 
i f  ifyu =  1, a distribution that is single—valued 
y is desired...

if((delta .ne. 0.) .and. (ifyu .eq. 1)) then 
xgc(n) =  qmin +  float(n—1) * dqO 
qgc(n) =  xgc(n) 
if(xgc(n) .le. qmax) then 

if(delta .gt. 0.) then
ygc(n) =  yxsurf(xgc(n),psiO) 

endif
if(delta .It. 0.) then

ygc(n) — yosurf(xgc(n),psi0) 
endif 

endif 
endif

For ifxu =  1, we
set up a distribution that is single—valued in y...

if((delta .ne. 0.) .and. (ifxu .eq. 1)) then 
ygc(n) =  qmin +  float(n—1) * dqO 
qgc(n) -  ygc(n) 
if(ygc(n) .le. qmax) then 

if(delta .gt. 0.) then
xgc(n) =  xxsurf(ygc(n),psi0) 

endif
if(delta .It. 0.) then

xgc(n) =  xosurf(ygc(n),psi0) 
endif 

endif 
endif

Set up I.C.s i f  a slab configuration is desired...



if(delta .eq. 0.) then

I.C .’s along a l in e  xgc = c o n s ta n t .. .

i f ( i f x u  .eq . 1) then
ygc(n) = qmin + f lo a t ( n - i )  * dqO 
qgc(n) = ygc(n) 
xgc(n) = xu n if  

en d if

I . C . ’s along a line ygc =  constant...

if(ifyu .eq. 1) then
xgc(n) =  qmin -f float(n—1) * dqO 
qgc(n) =  Xgc(n) 
ygc(n) =  yunif 

endif 
endif

write(73,500) xgc(n),ygc(n) 
bp =  bpol(xgc(n),ygc(n),q30(n)) 

bt =  btot(xgc(n),ygc(n),q30(n))

calculate parallel and perpindicular components of v:

vper(n) =  vperp(amu0,xgc(n),ygc(n),q30(n)) 
vpa2(n) =  vpar2(h0,amu0,xgc(n),ygc(n),q30(n))

test to be sure that vpa2 >  0.
if  the condition is satisfied, this i.e. is viable, so
load it, calculating the total and poloidal components of
vpar & vper...

if(vpa2(n) .ge. 0.) then 
qlO(n) =  xgc(n) 

if(iran .ne. 0) then
vpar(n) =  ((—l.)**n) * sqrt(vpa2(n)) 

else
vpar(n) =  sqrt(vpa2(n)) 

endif
vparp(n) =  vpar(n) * bp /  bt

calculate increment in gyrophase, dphi... 
assume dphi <  twopi...
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phi =  phiO float(n—1) * dphiO 
if(phi .gt. twopi) phi =  phi — twopi

c
c calculate the gyroradius rho, as well as the
c projections of rho along z (rhoz) and in the poloidal
c plane (rhop).
c

rho =  vper(n) /  bt 
amunew =  vper(n) * rho /  2, 

rhop — rho * cos(phi) 
rhoz =  rho * sin(phi) 

if(iprints .eq. 1) then
write(75,500) xgc(n),rho 

c write(76,500) xgc(n),rhop
c write(77,500) xgc(n),rhoz
c write(78,500) xgc(n),phi
c write(79,500) xgc(n),vper(n)
c write(80,500) xgc(n),vpar(n)
c write(81,500) xgc(n),amunew

endif
c
c Calculate individual components of the magnetic field 
c

bx =  bex(xgc(n) ,ygc(n) ,q30(n)) 
by =  bwhy(xgc(n),ygc(n),q30(n)) 

bz =  bzee(xgc(n),ygc(n),q30(n))
c
c Now, calculate actual particle positions, given the
c gyrophase, and guiding—center coordinates...
c

qlO(n) =  xgc(n) +  rhop * (—by /  bp) —
& rhoz * (bz * bx /  bp * bt)

q20(n) =  ygc(n) +  rhop * (bx /  bp) —
& rhoz * (bz * by /  bp * bt)

q30(n) =  znot +  rhoz * (bp /  bt) 
v3(n) =  vper(n) * sin(phi) 

v4(n) =  vper(n) * cos(phi)

c
c include E x B drift, i f  desired...
c

if(iexb .ne. 0) then
vexbx =  —efield * by /  (bt * bt) 
vexby =  efield * by /  (bt * bt)

1060
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endif
c
c now compute the velocities 
c

if(xgc(n) .gt. 0.0) vpar(n) =  —vpar(n) 
vx(n) =  — (vpar(n) * bx /  bp) — (v3(n) * bz * bx /

& (bp * bt)) — (by /  bp) * v4(n) +  vexbx
c

vy(n) =  — (vpar(n) * by /  bp) — (v3(n) * bz * by /
& (bp * bt)) +  (v4(n) * bx /  bp) +  vexby

c
vz(n) =  (v3(n) * bp /  bt) -f- (vpax(n) * bz /  bt)

c
c Great! now we need to get the canonical momenta...
c

plO(n) =  vx(n) +  ax(xgc(n) ,ygc(n) ,znot) 
p20(n) =  vy(n) +  ay(xgc(n),ygc(n),znot) 

p30(n) =  vz(n) +  az(xgc(n),ygc(n),znot)
c
c Now, try checking to make sure the particle is still
c on or sufficiently near the same energy surface...
c

call kefin(ql0(n),q20(n),q30(n),pl0(n),p20(n), 
&p30(n),energy0(n),amunew)

call hamilt(ql0(n),q20(n),q30(n),pl0(n),p20(n), 
&p30(n),hami0(n))

rad =  sqrt(qlO(n)*qlO(n) +  q20(n)*q20(n)) 
btrad =  bt * rad /  2. 

if(btrad .gt. amunew) then 
np =  np +  1 

qlO(np) =  qlO(n) 
q20(np) =  q20(n) 

q30(np) — q30(n) 
plO(np) =  plO(n) 

p20(np) =  p20(n) 
p30(np) =  p30(n) 

xgc(np) =  xgc(n) 
ekavgO =  ekavgO +  energyO(n)

else
c write(13,668) n,xgc(n),hamiO(n)

endif
c
c write(69,500) ql0(np),q20(np)
c write(70,500) ql0(np),hami0(np)

1110
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write(71,501) ql0(np),q20(np),q30(np),pl0(np),p20(np),p30(np)
500 format(2(el6.10,lx))
501 format(6(el6.10,lx))

else
write(13,*) n,xgc(n),vpa2(n) 

endif uso
c
c an endif used to be here...
c
600 continue

write(13,662) np,nparts
c
c rescale ekavgO, now that we know np
c

if  (np .ne. 0) ekavgO =  ekavgO /  float(np) 

endif
1160

c
662 format(i4,lx,’p a r t ic le s  su c c e ss fu lly  placed out o f

&a t o t a l  of ’ ,i4,’ i n i t i a l  co n d itio n s.* )
668 format(*foul-up on p a r t ic le  # ’ ^ ^ x ^ x  = *,

& el2.6,2x,,ham0 = *,el2.6)
c
c clean up the arrays for the coordinates and momenta;
c wipe out all entries with index greater than np...
C 1170

do 700 n=np+l,nm ps 
ql0(n) =  0. 

q20(n) =  0. 
q30(n) =  0. 
pl0(n) =  0. 

p20(n) =  0.
P30(n) =  0. 

hamiO(n) =  0. 
xgc(n) =  0.

700 continue neo

c return
end

************** Magnetic Field Components... ******************************* 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

real function  bex(ql,q2,q3) bex
real kappa
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com m on /fields/ alfa,bO,delta,efield,kappa
bex =  delta * q2 1190
return
end

* * * ******$ * * * * * * % %*$ * * % * * % * $ * * * * * * * * * * *** * * * * * ** % * % $ * * * * % % * * * * ** * * * ***** * * * * * 
real function bwhy(ql,q2,q3) b w h y
common /fields/ alfa,bO,delta,efield,kappa 
bwhy =  ql 
return  
end

* * * * *  * !|t** He * * * * * * * * * * * * * * ****** * % * * * * * if: * * * * * * * * * * * $ *** * ** * ** * * if: * * ****** * ♦ *** *

real function bzee(ql,q2,q3) b z e e
real kappa 1201

com m on /fields/ alfa,bO,delta,efield,kappa
bzee =  alfa
return
end

********** Components of the Vector Potential... ***************************
^  ^  ̂  ^  ^  j|* s |(  ^  ^  ^  ^  j |a  ^  ̂  ̂  j | (  ̂  ^  1̂ . 3̂ C ^  ^  ^  ^  ^  1̂ .  ^  ^  i^ . 9̂ C

real function  ax(ql,q2,q3) a x
real kappa 1210

com m on /fields/ alfa,bO,delta,efield,kappa
ax =  —0.5 * alfa * q2
return
end

%  %  +  $  ifc  $  $  %  ;fc %  $  s|e  $  sfe $  afe afc sfc sfs #  sfc jJc s fe + $  *|e %  >f£ $  $ + $  afc %  sfc ♦  ♦ + ♦ + ♦  +  +  +  ♦  ♦  ♦  ^ ^  +  ♦ + ♦ +  +  ♦  # + %  %  ♦  %  +  +  % + ♦  ♦  % + *  +  +  %  ̂

real function ay(ql,q2,q3) a y
real kappa
com m on /fields/ alfa,bO,delta,efield,kappa 
ay =  0.5 * alfa * ql
return  1220
end

real function az(ql,q2,q3) a z
real kappa
com m on /fields/ alfa,bO,delta,efield,kappa 
az =  0.5 * (delta * q2 * q2 — q l * q l) 
return  
end

)|C b̂ C jjc  30C S|C j j j  d|C S|C j | i  ) |(  Sj( )|C ̂  %|b j j ;  ^  i^b ^  ^  ^  j|b ^  ^  b|b aj^ ij^  5f()|C 3|C 3|£ ) | (  3̂ C 3̂ C s | t  a|^ i^b aj^ ^ a  a|a ̂ |a a|^ j |a  a ĝ a |»  a |a  aj^ ^  a|a  a|^ a|a ^jg a^a aja  ̂ |g aja

****** Poloidal and Total Magnitudes for the Magnetic Field... *********30**
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real fu nction  bpol(ql,q2,q3) bpol
real kappa
com m on /fields/ alfa,bO,delta,efield,kappa
bpol =  sqrt(bex(ql,q2,q3)**2 -f bwhy(ql,q2,q3)**2)
return
end

* * * **% * % * * **** %*** * * * * * * * * * * * * * * * * * * * ** * * * * * * * * * * * * * * ♦ * * * * * * * * * * * * * * * * * * * * * * *
real fu nction  btot(ql,q2,q3) btot
real kappa 1240
com m on  /fields/ alfa,bO,delta,efield,kappa
btot =  sqrt(bpol(ql,q2,q3)**2 +  bzee(ql,q2,q3)**2)
return
end

■X*«1* J» i l i a * 4 iiX«i#X «i**!• X4 ^ ]L «X* <1j «lr»L «f*X-«X* X> >L «X 4/*1* -X* XXXXXXX XXX XXX X X xx xxX X  XXXXXXXX XXX XX«T**T* *  *  "T- ̂  T* T' T1 t ' ^  Jp ̂  t 1 T* *  *T" X V T* *T' x  'T* T* ^  ̂  ̂  ̂  ̂  X T *i* X T X ̂  ̂  ̂  ̂  ̂  »p x  *p rf «̂s *j» ip |J| ip ̂  ̂  "P ̂  «p» ip ̂  ̂  ̂  ^  *p« p* »p *P

****** Definition of the flux surface that is single—valued in y... *********
******. First, an X —Point... ***********************************************
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

real function xxsurf(q2,psi) X X SU ff
real kappa 1250

com m on /fields/ alfa,bO,delta,efield,kappa
arg =  2.0 * abs(psi) +  delta * q2 * q2
xxsurf =  sqrt(arg)
return
end

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

***** O—Point surface that is single—valued in y... ********************
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

real fu nction  xosurf(q2,psi) XOSUrf
real kappa 1260

com m on /fields/ alfa,bO,delta,efield,kappa
arg =  (2. * abs(psi) +  delta * q2 * q2)
xosurf =  sqrt(arg)
return
end

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

****** Definition of an X —line flux surface that is single—valued **********
****** in x... **********
X X X X aX X X X X X X X X X X X X X X X -̂L X X X X X X X X X X X X X ̂Ir- Xa X X X X X X X X X X X X X X X X X X X —I- x  X X X X X X X X X X X X X X X X X X X^  ^  T T' ^  *p 'P T* 'T' ̂  ̂  ̂  ̂  ̂  ̂  ip *p ̂  T* ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ip ip ̂  ̂  ̂  ̂  ̂  ̂  ^  ip ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ip ̂  ̂  ̂  +

real fu nction  yxsurf(ql,psi) yX S U rf
real kappa 1271

com m on /fields/ alfa,bO,delta,efield,kappa 
arg =  (2. * psi -f ql * q l) /  delta 
yxsurf =  sqrt(arg)
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return
end

sfcsfcsfcsfc sfc sjc S(? ^  s(* ^  ^(c 5|c !fc i |( i f !  s|c 9fC9jc«f« s jo f f  sfC)f( jf$3jC3|{ iftsjc  *  )|C3fC3f( *fC2f«9|c i|c  *  j |(  )(C J({ }|$ 5^)j{ 5 |t j f l  }(4 #(C Ĵ S j|4 i j t  5(^ ijtS ^S jt

****** 0 —Point surface that is single—valued in x... **********************

real function yosurf(ql,psi) yO SU rf
real kappa 1281
com m on /fields/ alfa,bO,delta,efield,kappa
arg =  (2. * psi — ql * q l) /  abs(delta)
yosurf =  sqrt(arg)
return
end

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

c Perpindicular velocity
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ********** 

real function vperp(amu,ql,q2,q3) V p 6 ip
vperp =  sqrt(2. * amu * btot(ql,q2,q3)) 1291
return  
end

*  >jc *|c s|c 3|C «|( 3̂ € 5j€ S|€ Sji i j t  )(€ 5|t !|? 5|c 3|C 5^! 3 ^  sjc 3|( «f( 3̂ * ijc 3 |t 3j« 4c 3|c *fc «j( )|C Sj( 3jc 3 |f 3|( 3|C * |t 3|» ijC 3 !̂ 3j! ?|C 3|C 3|6 50C ?|^ 3|( j|C -3̂C

c Square of the parallel velocity vpar2

real function vpar2(h,amu,ql,q2,q3) V pcir2
vpar2 =  2. * (h — amu * btot(ql,q2,q3))
return
end 1300
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