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A B ST R A C T

The goal of image restoration is to remove degradations that are introduced 
dining image acquisition and display. Although image restoration is a  diffi
cult task that requires considerable computation, in many applications the 
processing must be performed significantly faster than is possible with tra
ditional algorithms implemented on conventional serial architectures. As 
demonstrated in this dissertation, digital image restoration can be efficiently 
implemented by convolving an image with a small kernel. Small-kernel con
volution is a  local operation that requires relatively little processing and 
can be easily implemented in parallel. A small-kernel technique must com
promise effectiveness for efficiency, but if the kernel values are well-chosen, 
small-kernel restoration can be very effective.

This dissertation develops a small-kernel image restoration algorithm that 
minimizes expected mean-square restoration error. The derivation of the 
mean-square-optimal small kernel parallels th a t of the Wiener filter, but 
accounts for explicit spatial constraints on the kernel. This development is 
thorough and rigorous, but conceptually straightforward: the mean-square- 
optimal kernel is conditioned only on a comprehensive end-to-end model 
of the imaging process and spatial constraints on the kernel. The end-to- 
end digital imaging system model accounts for the scene, acquisition blur, 
sampling, noise, and display reconstruction. The determination of kernel 
values is directly conditioned on the specific size and shape of the kernel. 
Experiments presented in this dissertation demonstrate th a t small-kernel 
image restoration requires significantly less computation than a  state-of-the- 
art implementation of the Wiener filter yet the optimal small-kernel yields 
comparable restored images.

The mean-square-optimal small-kernel algorithm and most other image 
restoration algorithms require a characterization of the image acquisition de
vice (i.e., an estimate of the device’s point spread function or optical transfer 
function). This dissertation describes an original method for accurately de
termining this characterization. The method extends the traditional knife- 
edge technique to explicitly deal with fundamental sampled system consid
erations of aliasing and sample/scene phase. Results for both simulated and 
real imaging systems demonstrate the accuracy of the method.
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Chapter 1 

Introduction

One of the first applications of digital image processing was the restoration of 
images from NASA space flights in the 1960’s. Scientists a t the Jet Propul
sion Laboratory (JPL) realized that computer processing could significantly 
improve the clarity and apparent resolution of television images from the 
Ranger lunar missions. The success of this work[l] and the high-visibility 
of the space program provided a  dramatic impetus to digital image process
ing research. Since those early results, digital image processing equipment 
and techniques have improved tremendously[2,3,4,5,6,7]. Today, applications 
include biomedicine, remote sensing, astronomy, computer-aided manufac
turing, facsimile (fax) reproduction, desk-top publishing, entertainment, ad
vertising, surveillance, and night vision. Emerging technologies in digital 
photography, digital television, and telerobotics will further expand the field 
of digital image processing.

Image restoration is a central problem in many imaging applications. De
vices for acquiring and displaying images inevitably introduce degradations 
and produce imperfect pictures. Figure 1.1A shows a high-resolution picture 
of several one-dollar bills. Figure 1.1B illustrates the picture that an imag
ing system with lower spatial resolution might produce. The goal of image 
restoration is to process degraded images (such as Figure 1.1B) in order to 
produce pictures with greater fidelity (like Figure 1.1A). In a  digital imaging 
system, the image is digitized (converted to digital data) during acquisition. 
Digital image restoration and any other digital processing is performed on 
this data. The display device then reconstructs a picture from the processed 
data.

Digital image restoration is a difficult task, one that challenges the most 
advanced computer systems. The problem is complex, typical images contain 
a great deal of data, and many applications require real-time processing. A 
number of well-known digital image restoration techniques can effectively

2
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A. Dollar Bills B. Unrestored Picture

m

C. W iener Restoration D. Small-Kernel Restoration

Figure 1.1: Restoration Example

improve the fidelity of an image. However, m ost of these techniques (e.g., the 
inverse filter[l,8], the W iener filter[9,10,ll,12], the constrained-least-squares 
filter[13,14,15], and two filters designed to control the composite function of 
the acquisition device and restoration process[16,17]) are global operations— 
each value of the restored image is a  function of all of the values of the 
input image. Global operations require a great deal of processing. Though 
the development of the fast Fourier transform algorithm has m ade these 
techniques practical in some applications, many other applications require a 
more efficient approach.

The image restoration algorithm described in this dissertation is a local 
operation—each value of the restored image is a  function of only a  few neigh
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boring pixel values in the input image. Restora tion is efficiently implemented 
by convolving the image with a small kernel. (The convolution operation is 
a weighted sum of the input pixels. The small kernel delimits the neighbor
hood and defines the weights associated with each neighboring pixel’s value.) 
Small-kernel convolution requires significantly fewer calculations than global 
operations and can be more easily implemented in parallel. This approach 
also facilitates adaptive processing.

Small-kernel restoration must compromise effectiveness for efficiency, but 
this dissertation demonstrates that if the kernel values are well-chosen then 
small kernels can be nearly as effective as global operations. Three significant 
design issues bear directly on the effectiveness of a small-kernel restoration 
algorithm: the underlying model of the imaging process, the imposition of 
spatial constraints on the kernel, and the operative measure of restoration 
quality.

M odeling  th e  Im ag in g  P ro cess . An image restoration algorithm is 
designed to  correct imperfections th a t are introduced during the imaging 
process. The underlying model of the imaging process should capture the 
significant components of the actual process. If the model is incomplete, the 
algorithm may be ineffective. For example, traditional formulations of the 
W iener filter for image restoration are based on a  model that includes the 
scene, acquisition blur, and noise[2,3,4,5,6,7], This model fails to account for 
the significance of sampling and display reconstruction in digital systems. 
A recent re-formulation of the Wiener filter that is based on an end-to-end 
model that accounts for sampling and display is more effective[ll,12]. The 
small-kernel algorithm developed in this dissertation is conditioned on this 
comprehensive, end-to-end model of a  digital imaging system. The model 
accounts for the character of the scene, acquisition blur, sampling, noise, and 
display reconstruction.

Im p o sin g  S p a tia l C o n s tra in ts . There are several approaches to de
signing small restoration kernels. A popular approach is to generate a 
large kernel using a  global technique and then window a small kernel from 
it[18]. Unfortunately, the windowing operation can introduce undesirable 
side-effects. If spatial constraints are imposed ad hoc, after the kernel val
ues are determined, the constraints are an uncontrolled variable. The ker
nel values should be conditioned on the constraints. Another approach is 
to modify the global technique in order to reduce the impact of subsequent 
windowing[l9,20,21], but this two-step approach does not directly coordinate 
the determination of the kernel values and the windowing operation. A third 
approach is to design the kernel based on the shape of the composite function 
of the acquisition device and restoration process[22,23,24,25]. This approach 
integrates explicit constraints on the kernel into the design, but does not
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account for the character of the scene (i.e., the model is incomplete). There
fore, these algorithms are somewhat difficult to tune for specific applications 
and do not adapt to changing scenes. Also, because these algorithms employ 
several constraints th a t relate only indirectly to  the character of the restored 
image, they are conceptually complicated (i.e., restoration quality is difficult 
to  control). Because the nature of visual quality is illusive[26], restoration is 
somewhat of an art and conceptual simplicity is im portant. In the algorithm 
developed in this dissertation, the small kernel is designed subject to explicit 
spatial constraints. The specific size and shape of the kernel is an a priori 
constraint.

M easu rin g  R e s to ra tio n  Q uality . Because some aspects of the imag
ing process cannot be specified precisely (e.g., noise), it is impossible to per
fectly restore images. Therefore a restoration technique must estim ate the 
ideal image. In most applications, judging the relative quality of alternative 
estimates is a  subjective process. W ithout human intervention, digital im
age restoration techniques must rely on mathematical measures of restoration 
quality that correlate with (but are not identical to) subjective judgements. 
For example, subject to the image model, the Wiener filter minimizes the 
expected mean-square restoration error (MSRE). Using MSRE allows the 
straightforward derivation of an optimal filter. The small-kernel algorithm 
developed in this dissertation is mean-square optimal subject to the image 
model and the spatial constraints on the kernel.

The derivation of the mean-square-optimal small kernel parallels tha t of 
the Wiener filter. This development is thorough and rigorous, but concep
tually straightforward—the optimal kernel is conditioned only on the model, 
the spatial constraints, and the MSRE criterion. The values of the con
strained convolution kernel that minimize the expected MSRE are deter
mined using a frequency analysis of the end-to-end imaging system. Mini
mizing mean-square error with respect to the kernel elements yields a system 
of linear equations in the kernel values. The optimal kernel is the solution 
of this system of equations.

The experiments presented in this dissertation demonstrate th a t small- 
kernel image restoration requires significantly less computation than a state- 
of-the-art implementation of the Wiener filter yet the optimal small-kernel 
yields comparable results. For example, the image displayed in Figure 1.1C 
was restored with the Wiener filter. The image displayed in Figure 1.1D 
was restored with the optimal 3 x 3  kernel. Both of the restored images 
are clearly superior to the unrestored image in Figure 1.1B. The small kernel 
convolution required only 22% as much serial processing as the Wiener filter, 
yet the resulting image is nearly as good. Moreover, small kernel convolution 
can be more easily implemented in parallel than the global Wiener filter.
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The organization of the dissertation follows a  standard approach to soft
ware development: define the problem, specify the solution, develop and 
implement an algorithm, and test the implementation. There are also two 
appendices.

C hapter 2 : M athem atical Prelim inaries
This chapter introduces terminology and mathematical notation. It 
also provides a brief review of some fundamental mathema tics includ
ing image operations, Fourier analysis, image statistics, and stochastic 
processes. In contrast to the presentation found in many texts on dig
ital image processing, the discrete data structures of digital images 
are emphasized. This material can be skimmed by those familiar with 
these topics.

C hapter 3: T he Im aging Process
Chapter 3 examines the nature of the image restoration problem— 
the degradations introduced by the imaging process. To some degree, 
these degradations vary from application to application and from sys
tem to system. Fortunately, these degradations can be modeled fairly 
accurately and simply. The end-to-end model of the imaging system 
described in this chapter is more complete than that used by many 
researchers.

C hapter 4: Traditional R estoration  Techniques
Chapter 4 reviews several traditional techniques for image restoration. 
Different techniques use different models of the imaging process and 
criteria for image restoration. All of the techniques described in this 
chapter are global techniques. The most im portant of these techniques 
is the Wiener filter.

C hapter 5: Sm all-K ernel R estoration
This chapter is a critical review of techniques for reducing the compu
tation associated with traditional restoration methods. These methods 
constrain the size of the region in the input image used to determine 
each output value. The key issue is how the kernel constraints are 
imposed in the design process.

C hapter 6: O ptim al Sm all-K ernel R estoration
Chapter 6 details an original derivation of mean-square-optimal, small 
restoration kernels. Although the small kernel is applied directly to 
the image (in the spatial domain), the optimal values are derived using 
a Fourier frequency-domain analysis. The development accounts for 
the effects of sampling and display reconstruction—im portant compo
nents of digital imaging systems th a t are often ignored. The derivation
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parallels th a t of the Wiener filter, but explicitly accounts for spatial 
constraints on the kernel.

C hapter 7: A rtificial Scenes and Sim ulated Im aging
This chapter describes a software environment for generating artificial 
scenes and simulating the imaging process. Artificial scenes model the 
im portant characteristics of real scenes, but are exactly known, highly 
controlled, and easily communicated. Simulated imaging eliminates the 
confounding effects of inexact estimates of the characteristics of real ac
quisition and display devices, provides a flexible imaging environment, 
and accommodates replication of the imaging process. Artificial scenes 
and simulated imaging allow greater exactness, control, and portabil
ity for image processing research. These rigorous procedures provide 
quantitative benchmarks for image processing research.

C hapter 8: R esu lts
Results for one-dimensional simulations, two-dimensional simulations, 
and real images are presented. These results indicate th a t optimal 
small kernels can achieve much of the success of the Wiener filter, but 
with significantly less computation. The results of the experiments also 
suggest th a t optimal small-kernel restoration may be more robust than 
the Wiener filter. This possibility merits further research.

C hapter 9: C onclusions
The concluding chapter focuses on the practiced aspects of image resto
ration. A rigorous development and effective technique are important, 
but so are efficiency and simplicity. Optimal small-kernel restoration 
meets all of these demands. Unresolved questions and topics for future 
research are discussed.

A ppendix  A: U seful Functions
This appendix describes several useful functions that are used exten
sively in image processing. This material is intended for those not 
already familiar with image processing.

A ppendix B: C haracterizing D igital Im age A cquisition D evices
Nearly every restoration technique requires an accurate characteriza
tion of the acquisition device. Appendix B describes an original tech
nique for accurately characterizing the system functions of digital im
age acquisition devices. Previous methods were developed for analog 
systems and presume oversampling. Because digital acquisition devices 
are designed to undersample[27], these techniques do not give accurate 
estimates for digital systems. The technique described in this appendix
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is specifically designed for digital systems and accurately estimates the 
system transfer function beyond the sampling passband.
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Chapter 2 

M athem atical Prelim inaries

This chapter briefly introduces the mathematics that are used in later chap
ters. The presentation focuses on discrete data structures. A number of im
age processing textbooks provide more comprehensive reviews[l,2,3,4], how
ever virtually all of the popular texts, even those about digital image pro
cessing, introduce most important concepts in a  traditional calculus-style as 
mathematical operations on continuous functions. If processing is performed 
on a digital computer, the more natural approach is to introduce concepts 
using discrete mathematics and treat continuous functions as the continuum 
limit.

Readers who are already familiar with fundamental digital image pro
cessing concepts such as pointwise operations, linear shift-invariant (LSI) 
systems, spatial frequency analysis, the discrete Fourier transform, image 
statistics, and two-dimensional stochastic processes can skim this chapter 
with attention mostly to notational conventions. The field of image process
ing does not have universally accepted notation for its basic operations; this 
chapter introduces the notation used in the dissertation.

2.1 D igital Images

Digital images are discrete data structures. The individual elements of a 
digital image are called pixels (picture elements). (They are also called pels, 
samples, or just points.) The domain of a digital image is a set of locations 
(usually in two-dimensions). In most systems, the pixel locations are defined 
by the uniform rectangular pattern illustrated in Figure 2.1. Following the 
row-major raster-scan of a video monitor (left to right, and top to bottom), 
the a:-axis is vertical and increases from top to bottom. The t/-axis is hor
izontal and increases from left to right. The vertical unit distance (A x )  is

12
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x-axis

M  — 1

y-axis N  — 1 
 •  • ------• —

Figure 2.1: Digital Image

the distance between pixel rows and the horizontal unit distance (Ay) is the 
distance between pixel columns. In the notation of this dissertation, the 
integer M  is the number of pixel rows and the integer N  is the number of 
columns. Values of M  and N  between 64 and 4096 are typical. Often, M  
and N  are powers-of-two; however, this is not required. The rows are located 
along the x-axis a t integers from 0 to M  — 1. The columns are located along 
the y-axis a t integers from 0 to N  — 1. A pixel is uniquely identified by a 
row and column ordered pair—[m, n] names the pixel in row m  and column 
n. T he square brackets distinguish the discrete ordered pairs used to specify 
pixels from the continuum of (x, y) pairs used to specify arbitrary locations 
in the image plane.

Associated with each pixel is one or more values (usually measures of 
light intensity or brightness). Pixel values are stored in a two-dimensional 
array. The value of a pixel is identified by the array name and the row and 
column indices—p  [m, n] specifies the pixel value of image p a t row m  and 
column n. The da ta  type used for pixel values varies. In many applications, 
each pixel has a single value, but in other applications, each pixel may have 
several values (e.g., a color image with values for red, green, and blue com
ponents) and the data type must be structured accordingly. Typically, the 
value associated with a pixel is a measure of irradiant light (light falling on 
a  surface), called a  brightness value. Brightness values are necessarily real, 
finite, and non-negative. Single-valued, achromatic images, such as are dis
played on a gray-scale display monitor, are considered in this dissertation. 
The scale of achromatic brightness values is called a gray scale. T he values 
on a  gray scale are called gray levels. Unsigned, eight-bit integers are com
monly used to implement a digital gray scale with integer values 0-255. If
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a scale with more values is needed, integers with more bits are used. High- 
precision, floating-point numbers are required to approximate a continuous 
scale of brightness values or when extensive arithmetic is performed on the 
image. The convention used here bounds the gray scale to the L  integers in 
the interval 0 to L  — 1. A small L  can be accommodated by a short integer; 
a  large L  requires a data type that can represent more values.

2.2 Im aging System s

An imaging system  processes an input image to generate an output image. A 
hand-held video camera with a small display is an example of a  self-contained, 
end-to-end, imaging system. The input is the light entering the lens. The 
video camera processes this input and generates an image on the display. 
This camera system is composed of many imaging components—the lens, 
photo-sensor, electronic circuits, and display. Digital systems process digital 
input and produce digital output. Most imaging systems are characterized by 
parameters that can be adjusted (e.g., the focus of a  camera or the brightness 
and contrast controls of a  display device). The imaging system model is 
illustrated in Figure 2.2.

Imaging systems can be described (modeled) by mathematical operations. 
The imaging system of Figure 2.2 is expressed mathematically as

O j{p}  =  r  (2.1)

where the imaging system characterized by /  operates on the input image 
p to produce the output image r. I t  is sometimes convenient to use an 
equivalent binary operator notation:

p O f  = r. (2.2)

This notation is sensible when, as is often the case, the characterization of 
the system /  has the same mathematical structure as the images.

Input
Image

System
Description

1
Imaging
System

Output
Image

Figure 2,2: Parametric Imaging System
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2.3 Pointw ise Operations

Pointwise operators act on each element of an image independently. For
example, the pointwise sum of an input image p  and a  random noise process
e is

r  =  p + e. (2.3)

The value of each pixel in the resulting image is the sum of the values of the 
corresponding pixels in the input image and noise:

r  [m, n] =  p  [m, n] +  e [m, n] (2.4)

for all [m,n]. The other pointwise arithmetic operations (pointwise subtrac
tion, multiplication, and division) are similarly defined.

Scalar arithmetic is a special case of pointwise arithmetic where one or 
both of the image operands has constant value. For example, a system might 
create its output image r  by boosting the value of all pixels of the input image 
p  by a  constant a:

r  =  p +  a (2.5)

where

r  [m, n] =  p  [m, n] +  a (2.6)

for all [m, n]. Similarly a system th a t caused multiplicative gain would be

r = ap (2.7)

where

r  [m, n] =  ap [m, n ] . (2.8)

Common functions such as exponentiation (p“), logarithm (logp), and 
absolute value ([p|) are also applied in a pointwise manner. For example, 
multiplicative noise in an image might be more easily removed as additive 
noise (of a different statistical character) by processing the logarithm of the 
image:

log(r) =  log(pe)
=  log(p) +  log(e) (2.9)

where

log(r [m, n]) =  lo g (p [m ,n ])+  log(e[m ,n]). (2.10)
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In the digital signal processing literature, where time is the independent 
variable, systems that operate pointwise on the input are called memoryless. 
The input is processed sequentially—the current value of the output depends 
only on the current value of the input and none of the previously encoun
tered values needs to be retained. Many imaging systems are memoryless, 
processing images pixel-by-pixel in raster order.

2.4 Linear, Shift-Invariant System s

Linearity consists of two aspects: additivity and scaling. Additivity means 
the operation £ /  is distributive with respect to pointwise addition:

{Pi +  P2 } =  £ /  {pi} +  {P2 } • (2-11)

Scaling (or homogeneity) means the operation is commutative with respect 
to scalar multiplication (multiplication by a constant):

C} {ap) =  a C j{p } (2.12)

where a is a scalar constant. These two aspects of linearity can be expressed 
in a single equation:

Cj {0 1 P1 +  a2p2} = a-iCj {pi} +  a2C f {p2} (2.13)

and extended by induction to any finite combination of images:

£ /{ X 3 q.P.J =  I Zaic s{p i)-  (2.14)

Spatial shift is the operation of geometric translation. Mathematically, 
shift is defined as

r = ‘Sa.fctp) (2.15)

where the vertical shift is a pixels and the horizontal shift is b pixels:

r[m ,n ] =  p[m  —a, n —6] (2.16)

for all [m, n]. The pixel values of the shifted output image (0 < m  < M
and 0 <  n < N )  are determined by pixels outside the boundary of the
input image. Therefore, some convention is required for assigning values 
to these pixels. One convention is to assume all pixels outside the borders 
of the input image have zero value. Another convention is to  periodically
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extend the input image—that is, tessellate or tile the infinite image plane 
with replicate images. An infinite image is doubly periodic with periods M  
and N  if and only if for all pixels [m,n],

p [m,n] =  p[m  mod M ,n  mod TV] (2.17)

where mod is the usual modulus operator.1 The fundamental periods are 
the smallest M  and N  for which Equation 2.17 is true. Infinite images that 
are not periodic are aperiodic. In this dissertation, all infinite images are 
assumed to be periodic unless otherwise stated.

If a  system is shift-invariant, then it is commutative with respect to 
spatial shift:

o  {<$.,*{?}} =  4 *  {©{»>}}■ (2.18)

A system that does not have this property is shift-variant.

The operation of a linear system is superposition. Theorem 2.1 gives the 
mathematical form of the superposition operation.

T heorem  2.1 (Superposition  Princip le) Each output value o f  a digital, 
linear system  can be expressed as the sum o f weighted values o f  the input.

T hat is, for every digital, linear imaging system r  =  C j {p}, there exists a 
unique four-dimensional array /  that weights the elements of the input p  to 
produce the values of the output r  in the following way:

r [m,n] =  £ £ p [ r o ' , n ' ]  /  [m,n; m ',n '] (2-19)
JUJV m' n'

where the summations are taken over the image region (m 1 from 0 to M  — 1 
and n' from 0 to N  — 1 or, if the image is periodic, any full period).

Proof: The proof entails a procedure called impulse decomposition. The 
digital impulse is a  periodic function th a t has a  value equal to the image size 
at the origin:

. ( M N  if [m mod M , n mod Ar] =  [0,0]
* K n  =  { n ! . (2.20)( 0 otherwise.

1The modulus operator is implemented in some computer languages as the division re
mainder. This is not the same operation for negative numbers. For example, —1 mod N  is 
N  — I, but the division remainder is —1.
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The input image is decomposed into a linear combination of scaled, shifted 
impulses:

P  ~  T777 XT a m ,n ^ m ,n  (2.21)2VJIV m n

where the scalar constants are the input image values:

am, n  = p [m ,n ] (2.22)

and the component images are shifted digital impulses:

&m,n — $ m ,n  {<5} • (2.23)

Because the system is linear, the output of the weighted sum is equal to 
the weighted sum of the system responses to the component impulses (as in 
Equation 2.14):

r  =  £ /{p }

= M N  ^  ̂  a m ' , n '£ f  {6tn',n'} • (2.24)
Tn* n*

Defining the four-dimensional array /  as the system response a t pixel [m, n] 
to an input impulse at [m', n'\ gives the desired form:

r Im >n) =  (2-25)
1U1V m> n>

□
The response /  of the system to an input impulse is its point spread 

function  (PSF). The four-dimensional structure of the array /  in the super
position operation for linear systems accommodates a system whose PSF 
varies according to a shift of the input impulse (i.e., a shift-variant PSF).

If the system is linear and shift-invariant, the structure of the array /  
that characterizes the system PSF is inherently two-dimensional (because 
the output image is the same except for shift regardless of the position of 
the input impulse). The operation of a linear, shift-invariant (LSI) system 
is convolution. Theorem 2.2 gives the mathematical form of the convolution 
operation.

T heorem  2.2 (C onvolution Sum ) Each output value o f a digital linear, 
shift-invariant system  can be expressed as the sum o f weighted values o f the 
input where the weights are shift-invariant.
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T hat is, for every digital LSI imaging system r  =  £ /{ p } ,  there exists a 
unique two-dimensional array /  th a t weights the elements of the input p  to 
produce the values of the output r  in the following way:

r[m ,n]  =  Z  [™'>n '] /  “  m '>n “  ■ (2-26)
m ' n r

P ro o f: The proof of the convolution sum for LSI systems follows the 
proof of the superposition principle of linear systems through Equation 2.24. 
At th a t point, the shift-invariance of the system is used to simplify further:

r = M N  ^  ^  {Sm\v.<}in* n r 

m ' n*

Defining the two-dimensional array /  as the shift-invariant system response 
to  an input impulse gives the desired form:

r K " ]  =  (2.28)
mf n'

□
Because of the important role of LSI systems in image processing, this 

theorem and the method of its proof merit elaboration. As mentioned in 
the proof of Theorem 2.1, the decomposition of an image into a  collection of 
scaled, shifted impulses is called impulse decomposition. The response of an 
LSI system to a  single impulse, or point input, is its point spread function 
(PSF) which is shift-invariant. The output of a LSI system is the sum of 
its responses to the component impulses of the input image. The PSF of 
a  LSI system is a complete characterization of the system. This method of 
defining the operation of an LSI system by characterizing its PSF  is called 
spatial analysis. An alternative approach, frequency analysis, is presented in 
Section 2.7.

Convolution (as defined by Equation 2.26) can be written as a binary 
operation:

r  =  p * f .  (2.29)

(The V  denotes convolution, not multiplication.) Even though the PSF /  
is used to characterize the system, it has the same mathematical structure 
as the image p. (The PSF is the image formed by the system for an impulse
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input.) Convolution is a  linear operation and is therefore distributive with 
respect to addition:

(Pi +  P2) * f  =  Pi * f  +  P2 * / .  (2.30)

It is also commutative:

p * f  =  f * P  (2.31)

and associative:

( p * / i ) * /2  =  P * ( h * h ) -  (2.32)

The impulse is the identity with respect to convolution:

p =  p  * S. (2.33)

The convolution of an image with itself is its autoconvoluiion.

Convolution is sometimes called aerial multiplication. To illustrate con
volution and to revisit the problem of assigning values outside the image 
borders during the shift operation, consider the one-dimensional, 8-element 
array

p =  [ l 2 4 0 3 3 3 l ]  (2.34)

and the LSI system impulse response or PSP / ,  where /  [—1] = 2 , /  [0] =  4, 
and /  [1] =  2.

First, assume th a t the pixel values outside the input image borders are 
zero:

0 0 1 2 4 0 3 3 3 1 0  0
* 2 4 2

2 4 8 0 6 6 6 2  
4 8 16 0 12 12 12 4

2 4 8 0 6 6 6 2
0 2 8 18 20 14 18 24 20 10 2 0.

Normalizing by the dimension N  =  8 yields the output 

r  =  [ 0.25 1.00 2.25 2.50 1.75 2.25 3.00 2.50 1.25 0.25 ] (2.35)

from the zero-padded input

p =  [ 0 1 2 4 0 3 3 3 1 0 ] .  (2-36)
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Note that the output has more non-zero elements than the input. It is 
problematic to have an image change size as it passes through a system (e.g., 
for the design of hardware to be used in a reconfigurable cascade or pipeline 
system). Of course, one can drop the elements on the ends to maintain a 
constant size, but this destroys some of the properties of the operation (e.g., 
associativity).

In contrast, convolution with the assumption of periodicity, called circular 
convolution, yields a  slightly different result:

••• 1 2 4 0 3 3 3 1  •••
* 2 4 2

2 2 4 8 0 6 6 6  
4 8 16 0 12 12 12 4
4 8 0 6 6 6 2 2  

••• 10 18 20 14 18 24 20 12 •••.

Normalizing by the dimension N  =  8 yields the output

r  =  [ • • • 1.25 2.25 2.50 1.75 2.25 3,00 2.50 1.50 • • • ] (2.37)

from the periodic input

p  «  [ ■ • • 1 2 4 0 3 3 3 1 • • • ] .  (2.38)
This result is periodic with the same period as the input image. Note that 
the  middle six elements of the results in Equations 2.35 and 2.37 are the 
same; the differences a t the ends are called border effects. Images are usually 
quite large and, provided the PSF is small, border effects are usually limited 
to a  small band around the border. In that sense, border effects are usually 
insignificant. Unless stated otherwise, periodicity and circular convolution 
are used in subsequent chapters. The discrete Fourier transform (described 
in Section 2.8) requires periodicity. Its utility provides a decisive incentive 
for assuming periodically extended images.

Deterministic cross-correlation is related to convolution. The determin
istic cross-correlation of two images is their convolution but with one of 
the images index-reversed and conjugated. (Conjugation is indicated by the 
asterisk exponent and described in Section 2.6. Real-valued functions are 
unchanged by conjugation.) Deterministic cross-correlation is written as

r  =  p i+ p i (2,39)
where

r[m ,n ] =  ~ ™ ,n> ~ m ] .  (2.40)
m* ti*

In general, deterministic cross-correlation is not commutative. Deterministic 
autocorrelation is the deterministic cross-correlation of an image with itself.
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2.5 M atrix Representation o f Linear System s

The one-dimensional, linear system r  =  Cj {p} where

r N  =  (2.41)
n*

can be equivalently expressed as a m atrix equation:

r  =  F p  (2.42)

where r  is the N  x 1 output column vector, p  is the N  X 1 input column 
vector, and F  is the N  x  N  square coefficient matrix.

If the system is both linear and shift-invariant, the N  x  N  coefficient 
m atrix F  is a Toeplitz matrix—th a t is, the entries are constant along the 
diagonals:

F [n !,n 2] =  / [ n i - n 2]. (2-43)

T he Toeplitz m atrix formed from the impulse is the identity matrix:

I[n i,n 2] =  6[nj — n 2]> (2.44)

If periodicity is assumed, then the coefficient m atrix is a circulani m atrix— 
th a t is, each successive row is the same as the previous row circularly-shifted 
one element:

F [« i,n 2] =  / [ ( n i  -  n 2) mod IV], (2.45)

A circulant m atrix is a Toeplitz matrix, but not necessarily conversely.

The matrix representation of two-dimensional systems requires arrays 
of higher dimensionality— M  x  N  for the input and output images and 
M  x  N  x  M  X N  for the coefficient matrices. It is possible, however, 
to express the two-dimensional images as one-dimensional vectors and the 
four-dimensional arrays as two-dimensional matrices using stacking (or lex- 
iographic ordering)[5]. For a two-dimensional, linear operator where

r[m,?7] =  (2-46)
m ' n'

the input and output matrices can be stacked in raster-scan order (row- 
major, that is across the columns of the Oth row, then the columns of the 
1st row, etc.) to form block matrices. The M  X N  matrices are reduced to 
M N  x  1 block matrices of the form

Po 
Pi

P =  V  (2.47)

. Pvu-i .
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where each block p; is a  column vector containing row i of the image:

P. =

p M ]  
p[h  i]

. p  [£, AT — l] .

(2.48)

The M  X N  x M  x N  coefficient matrix is reduced to  a  M N  x M N  block 
m atrix of the form

F  =

where each block is

Fo,o F 0li
Fi.o F ifl

* »
■ ■* «

F m - i , o  F a/ - i,i

F o,a/ - i

F i ,a/ - i
•
*

F A f - i , M - l  .

(2.49)

Fi,y =
o]

f[h 0 ,j ,l]
1]

. (2.50)

Stacking is merely a representational convention and is of no practical sig
nificance.

2.6 Complex A rithm etic

Image transforms that employ complex numbers often simplify the mathe
matical analysis of real systems. A complex number has two components that 
can be expressed as an ordered pair of real numbers z — (x, y). The x  value 
is the real part of the complex number; the y value is called the imaginary 
part. The ordered pair can be interpreted as the Cartesian coordinates of a 
point in a complex plane with real abscissa and imaginary ordinate.

The sum of two complex numbers is defined as

*1 +  22 =  (x i,y i)  + ( x 2,y2)
=  (x i +  x2, yi +  y2). (2.51)

The complex product is

zxz2 -  (x i,y !)(x2,y2)
=  {x \x2 -  ViV2 , Vix2 + x 2y2). (2.52)
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Complex addition and multiplication are commutative and associative. Com
plex multiplication is distributive with respect to  complex addition. The 
identity element for complex addition is zero, written 0 or (0,0). The iden
tity  element for complex multiplication is the real number one, written 1 
or (1,0). The square of the unit imaginary number, i = (0,1), is the real 
number —1 or (—1,0):

£2 =  (0 ,1)(0,1)
=  ( -1 ,0 ) .  (2.53)

As an alternative to the ordered pair notation, complex numbers are 
conventionally written as a  sum:

* — (*r,Zt)
= (*„0) + (0,l)(*i,0)
~  zT + iz t. (2.54)

The conjugate of a  complex number has the same real part and the negative
of the imaginary part:

z  =  Zf- ZZ{» (2.55)

The absolute value of a complex number is the square-root of the product of
the number and its conjugate:

\Z | =  y  zz*

=  \Jz2r + zf. (2.56)

The additive inverse of a complex number z  =  zT +  izi is

—z ~  ~ z T -  izi (2.57)

and the multiplicative inverse (or reciprocal) is

2 -1 =  Z - \ z f 2 
zT — izi

*' -  ( « 8 )Z 2  +  z ?  Z ?  +  z j

The multiplicative inverse of zero is undefined.

Another representation for complex numbers is the polar or magniiude- 
phase form:

z = zpcosz^ + izps'mz.p. (2.59)



CHAPTER 2. MATHEMATICAL PRELIMINARIES 25

I m a g i n a ry

Real

Figure 2.3: Complex Numbers

As Figure 2.3 illustrates, the magnitude-phase notation employs polar coor
dinates to locate points in the complex plane. The magnitude is the absolute 
value:

zp -  |* | . (2.60)

The •phase can be determined from the real and imaginary parts by the 
equation

z^ =  arctan (z ^  0) (2.61)

and the quadrant of the point.

Euler’s formula:

exp (iff) = cos ff +  i sin ff (2.62)

justifies writing the magnitude-phase representation as a  complex exponen
tial:

z =  z^exp^z^). (2.63)

Complex exponentials provide a valuable notation for simplifying the m ath
ematics of spatial frequency analysis (Section 2.7).

2.7 Spatial Frequency Analysis

If the output of a  discrete linear system is a  scaled version of the input, the 
input is an eigenvector of the system and the scalar factor is the correspond
ing eigenvalue of the system. That is, if there exists a real or complex scalar 
a such tha t

£ {p }  = ap, (2.64)
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then the image p  is an eigenvector and a is the corresponding eigenvalue.

Spatial analysis, described in Section 2.4, is accomplished by decomposing 
an M  x N  image into M N  impulse components and evaluating the system’s 
response to each impulse (as in Theorems 2.1 and 2.2). Spatial frequency 
analysis proceeds in a similar fashion, by decomposing an image into M N  
components th a t are eigenvectors of the system and evaluating the system’s 
response to each eigenvector. The eigenvectors of linear, shift-invariant sys
tems are given in the following theorem.

T h e o re m  2 .3  The eigenvectors o f linear, shift-invariant systems are the 
complex exponentials exp (i2 7 r(^  + f t) ) -

Each complex exponential consists of a  real cosine wave and an imaginary 
sine wave (Equation 2.62):

« p ( i 2 * W + W )  =  «*> f a ® +  # ) ) + « '» in (2 » r®  +  ?W ). (2-65)

The values of p  and v  determine the spatial frequency of the cosine and sine 
waves—the waves have p periods per M  pixels vertically and u periods per N  
pixels horizontally. For a M  x  N  system, there are M N  unique eigenvectors 
and M N  corresponding complex eigenvalues. (The set for 0 <  p < M  and 
0 <  v < N  is complete; the modulus maps the eigenvectors for any other 
integer frequencies to this set.)

P ro o f: The proof demonstrates th a t given an arbitrary complex expo
nential as input, the output of an LSI system is the complex exponential 
scaled by the eigenvalue. Let the input be a complex exponential where

"*,*[«*»«] =  exp (*'2tt( ^  + ^ ) )  (2.66)

for all [m,n]. The LSI system response is

r  =  (2.67)

Then for any pixel [m, n],

r K n) = ® E E / K « l ^ ( i 2 H !!v !:i+ !lT £1))
m ' n '

=  exp ( i& r ®  + j f ) ) j ^ E E / K , n ' j e x p  (-<2* (< £  + # ) )
Tn* n*

=  exp (?’2 j t ( ^  + ^ ) )  /  [/i, v] (2.6S)
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where

} \ p M  =  +  (2-69)T7i* n*

So, the output is a scaled version of the input:

r =  (2-70)

where the eigenvalue /  [p, u] defined in Equation 2.69 depends on the spatial 
frequency [p, p) of the input eigenvector 
□

A complex exponential passes through a  LSI system unchanged ex
cept that the modulation of the waves (the height from the peak of the wave 
to its trough) is scaled by the magnitude of the eigenvalue f p [p, v] and the 
waves are shifted by the phase of the eigenvalue [p, v]. The eigenvalue 
magnitude as a  function of frequency is the modulation transfer function 
(MTF) of the system. The transfer function or optical transfer function  
(O TF) specifies both the magnitude and phase of the eigenvalues.

An abbreviated notation for the complex exponentials is useful:

WN =  « p ( ^ ) .  (2.71)

The spatial frequency v  and the spatial position n are then specified in the 
exponent:

W ff  =  exp(*27rft). (2.72)

The complex exponentials are separable—the two-dimensional function can 
be written as the product of separate functions in each of the dimensions:

exp (z2tt( ^  +  $ ) )  =  exp (z‘2 i r ^ )  exp (?2?r^)

=  (2.73)

The decomposition of an image into complex exponentials is less obvious 
than impulse decomposition (described in Section 2.4), but just as the set of 
shifted impulses are the basis of spatial analysis so the complex exponentials 
are the basis of spatial frequency analysis. The first step in illustrating spatial 
frequency decomposition is to show that the M N  complex exponentials are 
orthogonal—that the inner product (or scalar product) of any two different 
complex exponentials is zero. The use of complex exponentials as the basis 
for decomposition follows directly from this result.
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T h e o rem  2.4 (O rth o g o n a lity  P rin c ip le )  The set o f M N  unique com
plex exponentials is orthogonal.

P ro o f: The inner product of two arbitrary complex exponentials is

(Note that the pointwise product of two complex exponentials is a  complex 
exponential whose frequency is the sum of the frequencies of the factors.) 
Each separable factor is a  geometric series. The sum of a geometric series

Sn  =  £ r n (2.75)
n=0

is
r iv  if r  =  i  

SN =  { (2.76)
I T = 7

For this series,

r  =  W
J  1 if (v — v') mod N  =  0
|  exp ( i 2 7 o t h e r w i s e  (“- ^ )

and

r "  =

=  e x p f a i Z g l Z )

= 1. (2.78)

Therefore,

=  ( *  if (^ — *.') mod N  =  0
n ( 0  otherwise

and in two-dimensions,

£  £  (w s r w g r )

M N  if [(p — p1) mod M , (u — v r) mod iV] =  [0,0] 
otherwise.
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The spatial frequency decomposition of an image can now be demonstrated:

= E E  ( ; <2-81)
M V  m > n l  )

and so

p(m ,n] =  Y . ' Z p M W m 'W n  (2.82)
II V

where each frequency component is given by

(2.83)
m n

Equation 2.82 is often referred to as the synthesis equation—the image is 
the synthesis of the frequency components. The image specified in Equa
tion 2.82 is periodic. Equation 2.83 is the analysis equation—the frequency 
components are distilled from the image. The array p  [^, u] defined by Equa
tion 2.83 is called the discrete Fourier spectrum of the image. The Fourier 
spectrum of a  periodic image is discrete and the Fourier spectrum of a  dis
crete image is periodic. The analysis equation is also used to compute the 
OTF from the PSF. (Equation 2.83 is identical to Equation 2.69.) The syn
thesis equation is also used to compute the PSF from the OTF. As was noted 
in Section 2.4, images and PSFs have the same mathematical structure—the 
difference between them is semantic. Image spectra and OTFs also have the 
same mathematical structure.

It is instructive to look at an example of frequency decomposition. Con
sider the one-dimensional, periodic, discrete sawtooth pictured on the left in 
Figure 2.4 (JV =  64). The imaginary part of the periodic Fourier spectrum 
is pictured on the right of Figure 2.4. (The real part is zero.) As is typical 
with most images, the magnitude of the Fourier spectrum is greater at lower 
frequencies. This reflects the fact that pixels are highly correlated with near
by pixels and less correlated with distant pixels. Figure 2.5 shows how the 
scaled sine waves sum to the sawtooth. Only the first few frequencies are 
shown. The first column illustrates the sine wave scaled by its spectral mag
nitude. The second column is the accumulated sum. Here also, note tha t the 
magnitude of the sine wave components is greater a t low frequencies than 
high and that with just a few terms, the shape of the sawtooth is evident.

A LSI system is completely characterized by its responses to the com
plex exponentials (i.e., the transfer function as in Equation 2.69). The input
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Figure 2.4: Periodic Sawtooth and Its Periodic Spectrum

image is decomposed into a linear combination of scaled complex exponen
tials (i.e., the Fourier spectrum as in Equation 2.83). The output of a  linear 
system is the sum of its responses to the image components. In this case, 
the components are eigenvectors, so the output image components can be 
computed by pointwise multiplication.

T h e o re m  2.5 (C o nvo lu tion  T h e o rem ) The Fourier spectrum o f the out
pu t o f  a linear, shift-invariant system  is the pointwise product o f the Fourier 
spectrum o f the input and the system  transfer function.

P ro o f: Given a LSI system r = p *  f ,  where p  is the input image, /  is the 
system PSF, and r is the output image, the Fourier spectrum of the output 
image f  is the product of the input image spectrum p  and the system transfer 
function / :

f  =  p f .  

The output image can be rewritten as

(2.84)

m >  n ' \  #J n  /

x E E / I M
V t
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Figure 2.5: Sawtooth Spatial-Frequency Decomposition



CHAPTER 2. MATHEMATICAL PRELIMINARIES 32

The Fourier spectrum of the output image is

“  a7 w E E ' - K " 1 ^ m ” k ,k ‘'"
J 1 J J V  m  n

=  iiTw Z  £  E  "'] /  ̂  "'I ”  n y »JVJ ̂  m  n ft' v >

=  £ £ ? [ / * > ' ) / > > ' ]  i jT K f E E  w i- '-* '-w jjr '-> ‘I// J>JJV m n

=  P [ p ^ ] f[ f i ,u ] .  (2.86)

The operation of a LSI system on the spatial frequency components of 
an image is pointwise multiplication. Spatial analysis leads to  a  definition of 
the system in terms of convolution (Equation 2.26). Pointwise multiplication 
is a more familiar operation than convolution and it may require less com
putation. Convolution of a  M  x  N  image with a M  x N  PSF is O (M 2N 2). 
Pointwise multiplication is O (M N ). Typically, images are acquired in pixel 
form (i.e., as spatial components rather than spectral frequency components) 
and output images typically are expected in the same form, so there is usu
ally some overhead in computing the image spectrum and synthesizing the 
output image from its spectrum. The relative computational costs of spatial 
convolution and frequency multiplication are examined in detail in Chap
te r 5.

Spatial frequency analysis is also called Fourier analysis. The calculation 
of the discrete Fourier spectrum of an image (Equation 2.83) is called the 
discrete Fourier transform. The calculation of the image from the Fourier 
spectrum (Equation 2.82) is the inverse transform. The relationship between 
images and their Fourier spectra is examined more fully in the next section.

2.8 D iscrete Fourier Transform

The discrete Fourier transform (DFT) is

P -  F { p }  (2.87)

where

p M  =  j ^ £ £ p K " ] ' n 7 ’”i V ' n- (2.8s)
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Theorem P P

Linearity api +  bp2 ap\ +  bp2

Convolution P1*P2 P1P2

Autocorrelation Pi *Pi \Pi I2
Shift p[m — a ,n  — b] p M W t f W f t

Parseval’s
m n Ip \p M  I2ft V

Separable Pi[m)p2 [n) P1 M P 2 H

Table 2.1: Fourier Transform Theorems 

The inverse discrete Fourier transform is

P = ^ ' { P }  (2.89)

where

p[m , n] =  (2.90)
(I V

The functions p  and p  are a transform pair—p  in the spatial domain and 
p  in the spatial-frequency domain. If the spatial function is an image, the 
frequency function is the Fourier spectrum. If the spatial function is a  PSF, 
the frequency function is the OTF. By convention, the horizontal and vertical
unit spatial distances are the sampling intervals. (See Figure 2.1.) This
simplifies spatial equations by malcing spatial indices correspond to  spatial 
location (i.e., the location indexed by [m, n] is (m, n)). The frequency indices 
p, and v  are relative to the image size—[//, u] indicates p periods per M  pixels 
vertically and u periods per N  pixels horizontally—so the frequency indices 
[p> v] correspond to  the spatial frequency (p /M , v /N ).

Table 2.1 lists several theorems for the discrete Fourier transform. The 
Fourier transform is linear. The convolution theorem is proven in Section 2.7. 
The transform of the autocorrelation function is called the power spectrum. 
Parseval’s theorem equates the mean-square in the spatial domain and the 
sum-of-the-squares in the frequency domain. The transform of a  separable 
function is the separable product of the separate transforms.

The symmetry of a  function and the symmetry of its transform are re
lated. A function can be separated into an even part (symmetric about the
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origin) and an odd part (antisymmetric):

p[m ,n] =  pe [m, n] +  p0 [m, n] (2.91)

where

pe [m,n] =  pe [—m, —n]

=  |(p[«»»nl +  p [-»W |-n]) (2*92)
p0 [m, n] =  ~p0 [ -m , - n ]

=  (2.93)

If the function is complex, both its. real and imaginary parts can be separated 
into even and odd parts. These distinct components of a function result 
in distinct components of the transform. Table 2.2 gives the relationships 
between the even and odd components of a function and its transform. The 
Fourier transform is linear, so the combination of any or all of the functional 
components yields the corresponding combination of transform components. 
For example, the transform of a real function (i.e., consisting of even real and 
odd real parts) is Hermitian—having an even real part and an odd imaginary
part.

________P_________________ P_______
Real & Even Real & Even
Real & Odd Imaginary & Odd
Imaginary & Even Imaginary & Even
Imaginary fe Odd Real & Odd______

Table 2.2: Fourier TVansform Relationships

2.9 Continuous Fourier Transform

Depending on one’s point of view, the D FT is a special case of the Fourier 
transform or the Fourier transform is the limiting case of the DFT. The dis
crete Fourier transforms, defined in Equations 2.88 and 2.90, can be written

,  (Af/2)—1 (JV /2)-l

pk>l = i s  E E (2.94)
JUJV m = - M / 2  n = - N / 2

= E  E  P M W u W j ?  (2.95)
(J=—A//2 i>=—N/2
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p P
Impulse 1
1 Impulse
Pulse Sine
Sine Pulse
Comb Comb
Bell Bell

Table 2.3: Fourier Transform Pairs

where the frequency component indexed as p  [/x, v] is actually the frequency 
component p (p ./M ,u /N ). In the D FT equations, both the image and the 
transform are discrete and periodic.

A discrete function has a periodic transform and a periodic function has 
a discrete transform. A continuous, periodic image has unlimited resolution 
and therefore there is no limit on the component frequencies:

=  m l - M i 2 i Z * p { x ' v ) w *r w ; ''''l i x d v  (2,9S)
OO 0 0

p(*,») = E E PMWEWff (2-97)
/ J = —o o  OO

Here, the discrete transform p is called the complex Fourier series of the 
periodic image p. Similarly, a discrete, aperiodic image (called a time series 
in the signal processing literature) has a continuous, periodic transform:

0 0  OO

£(«>») =  X  X  p[m >n ) ^ - umW ~ w  (2.98)
m s —o o  n = — c o  

/1/2 fl/2
p [m, n] -  j  j  p ( u ,v ) W wnW m dudv  (2.99)

If the image is continuous and aperiodic, the transform is also continuous 
and aperiodic. This yields the forward and inverse Fourier transforms:

p (u ,v )  =  f°° p ( x t y ) W - u*W -*v dxdy  (2.100)
J — OO ■/—OO

p{x , y)  = r  r P (ut v ) W W d u d »  (2.101)
. /  —  CO J —  CO

Several useful functions are illustrated in Appendix A. Table 2.3 lists the 
transform pairs of these functions. The bell and comb functions are their own
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transforms. The sine and pulse functions are a transform pair. The impulse 
(identity under convolution) and 1 (identity under pointwise multiplication) 
are a transform pair.

2.10 Inverse Problem s

T he problem considered in Sections 2.4 and 2.7 is to determine the output 
image r  of the system

r =  Of {p) (2.102)

from the input image p and knowledge of the system. The inverse problem 
is to  determine the input image p  from the output image r  and knowledge 
of the system.

Stable or well-conditioned systems can be accurately inverted on a digital 
computer. If small inaccuracies due to  digital calculations or other sources 
of noise can result in large errors in the inversion, then the system is ill- 
conditioned or unstable. Singular systems have no (unique) inverse. Resto
ration is an inverse operation, so ill-conditioned and singular systems must 
be considered in restoration filter design. In fact, in real imaging systems, 
noise is virtually never insignificant.

The system of Equation 2.102 is invertible if and only if there exists an 
operator O ' such th a t for any image p,

0 '{ r}  =  0 ' { 0 { p } }
=  p. (2.103)

A linear system r  =  F p  is invertible if and only if its coefficient m atrix F  can
be inverted—i.e., there is a matrix F -1 such th a t F F “* =  F -1F  =  I. A LSI
system is invertible if and only if the PSF has a  convolutional inverse—that 
is, for a system with PSF / ,  there exists / '  such that

/ * / '  = S. (2.104)

Fourier analysis simplifies consideration of the invertibility of LSI systems.

T h e o re m  2.6 (In v e rtib ility )  A linear, shift-invariant system has an in
verse i f  and only i f  the system transfer function has no zero values.

P ro o f: By the Convolution Theorem (Theorem 2.5), the output spectrum 
r is the product of the image spectrum p  and the system OTF / :

*  «■* /» 

=  Pf- (2.105)
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If the inverse / '  exists, then at each frequency [/i, v],

p[fi ,  v] =  (2.106)

This equation must be true for all images, even those with no zeros in the 
spectrum. Therefore,

1 =  (2.107)

So the OTF has no zeros—/  [//, v] ^  0. The converse is also true; if the OTF
has no zeros the LSI system has a LSI inverse whose transfer function / '  is
defined at each frequency as

f ' M  =  T T — y  (2-108)
/  [/*, v)

A condition number is a measure of the conditioning of a system. The 
common definition of the condition number of a m atrix is the ratio of the 
magnitude of the eigenvalue with the largest magnitude (the spectral ra
dius) to the magnitude of the eigenvalue with the smallest magnitude.2 The 
condition number of a  LSI system is calculated from its MTF:

max
k} =

mm f  [Mi V]
) (2.109)

If the ratio is 1, the system is perfectly-conditioned. This condition exists 
if and only if the values of the M TF are all equal. Ill-conditioned systems 
have a  large ratio. A singular system will have at least one zero eigenvalue, 
in which case the ratio  is undefined.

2.11 Image Statistics

A typical digital image contains a large number of elements; for example, 
a 1024 x 1024 image has more than one million pixels. Our visual system 
can receive this volume of information readily (e.g., as it is displayed on a

2This is the definition of the condition number of a nonsingular, normal matrix with 
respect to the spectral norm. The spectral norm is:

| | |F || |2 =  m ax^vT: A is an eigenvalue of F 'F ^  .

Other matrix norms can also be used to define the condition number[6].
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high-resolution monitor) and make sense of it. However, for many image 
processing operations, there is so much data in an image th a t it must be 
reduced to a  more compact form appropriate for the operation. Consider 
the simple image processing operation of manually adjusting the brightness 
control on a television. When you ask another viewer if the brightness should 
be changed, you don’t  want to hear, “Pixel [0 , 0 ] has brightness level 32, pixel 
[0 , 1 ] has brightness level 35, . . . . ” You expect the image data  to be reduced 
to one of three characterizations: the image is too bright, it is too dark, or 
it looks fine. Descriptive statistics characterize a relevant aspect of an image 
in a useful form. This section defines the most common descriptive image 
statistics for gray-scale images (i.e., each pixel has one of finitely many real, 
non-negative values).

The arithmetic mean or average brightness value of a digital image is the 
sum of the pixel values divided by the number of pixels:

P =  t j ^ E E p K ” ]- (2-110)JUJV m n

The image mean is a  global measure of image brightness. The brightness 
control on a television set effectively raises or lowers p.

Image variance is defined as

m n
=  I j T j v E E l P K n l M i f  ■ (2.111)m n

The square root of the variance is the standard deviation a. The standard 
deviation is a measure of image contrast; the contrast control on a  television 
set increases or decreases the standard deviation. Following Park[7 ], image 
contrast is defined as the standard deviation.

The energy of a pixel is the square of its brightness, |p[m, n]|2. The total 
energy of a digital image is the sum of the pixel energies. The mean-square 
energy is the to tal energy divided by the number of pixels:

71 =  T T j r f E E l P K ” ]!2- (2 .1 1 2 )m n
The mean-square energy reflects both the average and contrast of an image:

71 =  ^  +  |p|2- (2.113)

The root-mean-square (RMS) energy 7  is the square root of the mean-square 
energy.
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The image gray-level distribution or histogram is the relative frequency 
function of pixel values:

= J ^ ^ n n t { [ m , n ] : p [ m 1n] = l).  (2.114)

The gray-level distribution is conventionally normalized by the number of 
pixels so that the sum of the histogram values over all gray levels is 1:

1 =  E f t -M -  (2.115)
1=0

The cumulative gray-level distribution or cumulative histogram is
1

<?„[!] =  count {[m, n ] : p [m, n] <  I)

=  E S r M -  (2-116)
/'=o

If the number of gray levels L  is small (e.g., 256), the gray-level distribution 
and the cumulative gray-level distribution of an image are useful characteri
zations of an image. The image mean, contrast, and RMS energy can all be 
calculated from the histogram. For example, the mean is

P =  E W f l -  (2.117)
/=o

It is sometimes convenient to work with functions th a t are normalized or 
standardized to have zero mean (p = 0) and unit RMS energy ( j p =  1 ). An 
image can be normalized by subtacting out the image mean and dividing by 
contrast:

. , p [m, n] — p ,
P [m, n) +- ■ J— -  (2.118)

<7p

for all [m,n].

Statistics can also be used to relate two images—for example, character
izing their difference or similarity. The inner product of two images p  and g
normalized by the image size is

=  T 7 j v £ £ p [ m ' n l9* lm »n l- (2.119)J U J V  m  n

The covariance of two images is

< ,  =  tL - P T -  (2.120)
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The covariance of an image with itself is its variance. The correlation coef
ficient is

ftw =  £ - •  (2-121)(TpCTq

For normalized images, the correlation coefficient is the inner product divided 
by the image area. In cases where the relative brightness and the relative 
contrast are not pertinent, the inner product divided by the image area may 
be used as the (unnormalized) correlation.

A second-order gray-level distribution gives the relative frequency of the 
co-occurrence of brightness values in two images. For example, 
is the relative frequency of pixels with fj value in image p  and I2 value in 
image q. Second-order gray-level distribution functions are usually too large 
to be practical—a gray-scale with only 256 gray levels may require a 65,536- 
element second-order distribution table.

2.12 Im age Ensembles

In many situations, it is desirable to consider an ensemble (set, group, or 
family) of images rather than a  single image. A stochastic image has a 
discrete random variable rather than a value associated with each pixel. An 
image formed with a value for each of the random variables is a sample of 
the stochastic process or member of the ensemble.

For a given pixel [m, n], the cumulative distribution function (CDF) of 
the associated discrete random variable is

cdfp [/;m ,n] =  P r{p[m ,n] <  /} . (2.122)

The associated probability density function (PDF) of the discrete random
variable is

pdfp [/;m ,n] =  P r{ p  [m,n] =  1} . (2.123)

For a  given pixel [m, n], the ensemble mean or expected value is

L-i
E { p [ m ,n ]} =  I pdfp[/;?n,n] . (2.124)

l=o

and the expected energy is

£ { |p [m ,n ] |2} =  I2 pdfp [/;m ,n ]. (2.125)
1=0
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Second-order ensemble statistics relate random variables associated with 
two pixels in either the same image or in two different images. The auto
correlation function is the expected product (with conjugation of complex 
functions) of the two random variables for two pixels in the same image:

# j> [m i,n i;m 2,n 2] =  E { p [ m ^ n 1}p '[m 2,n 2]} > (2.126)

(The autocorrelation function is typically defined without reference to nor- 
mali2 ation[8 ].) The autocorrelation function of real images is symmetric 
(even). Cross-correlation is the expected product of pixels in different images:

J2pi9[m1,n i;m 2,n 2] =  E {p[m i,n i]q*  [m2,n 2]} . (2.127)

Autocovariance is the covariance function of the random variables for two 
pixels in the same image:

Cp [m1,n i;m 2 ,n 2] =  E { p [ m u ni]p* [m2,n 2]}
- E  {p [mj ,rii]}E  {p* [m2, n2]}. (2.128)

Cross-covariance is the covariance function of the random variables for two 
pixels in different images:

CPt9[m1,n i;m 2,n 2] =  E  {p{mi,ni}q* [m2jrc2]}
- E  {p [mu  rzx]} E  {q* [m2, n2]} . (2.129)

A stochastic image is stationary if its statistics are invariant with respect 
to spatial shift. A stochastic image is stationary with respect to the mean if 
the expected value is constant across the image:

E { p [ m ,n ]} =  T) p. (2.130)

A stochastic image is stationary with respect to autocorrelation if the ex
pected product is a  function of distance between points regardless of spatial 
position:

J7p [m i,n i;m 2,n 2] =  — m2,n i -  n2] . (2.131)

A process that is stationary with respect to  mean and autocorrelation is 
wide-sense stationary (or weakly stationary), A stochastic image th a t is 
stationary with respect to all statistics (including those of higher order) is 
strictly stationary (or strongly stationary), A stochastic image is strictly 
stationary if and only if the cumulative distribution functions of all pixels 
are identical:

cdfp [/; m i , ni] =  cdfp [l\ m2, n2] (2.132)
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for all gray-levels I and all pixels [m j,ni] and [m2 ,n 2].

Frequently, the statistics of a stochastic image are unknown and must 
be estimated. One approach is to obtain several images from the ensemble 
and use the statistics of the sample set of images to infer the statistics of 
the ensemble. Another approach is to hypothesize ergodicity. A stochastic 
image is ergodic if the ensemble averages are equal to the appropriate spatial 
averages of the images. This definition is usually made with reference to 
infinite functions. If a stochastic process is mean-ergodic then the spatial 
average of an image from the ensemble is equal to  the expected value of a  
pixel. Define a local average of an image:

^  W /2  W /2

Piv[m ,n] =  ^ 53  5 3  p[m  — m', n — n']. (2.133)
+  L )  m '——iV/2 n '= - W / 2

If the stochastic image is mean-ergodic, then

£{p[m ,n ]}  =  l im p ^  [m ,n]. (2.134)W—+oo

A wide-sense stationary stochastic image is mean-ergodic if points a t large 
distances from one another are uncorrelated. If a  process is stationary, and 
correlation ergodic, the autocorrelation (Equations 2.126 and 2.131) is equal 
to the deterministic autocorrelation (Equation 2.40):

R p = p * p  (2.135)

where:

i?p [m,n] =  7 7 ^ 5 3  53 ~ m t n' -  m ]. (2.136)
J U J V  m '  n '

In Chapter 7, an ensemble is defined such that the autocorrelation function 
(or equivalently the power-spectrum) is the only restriction. This process is 
strictly stationary and correlation-ergodic.
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Chapter 3 

The Im aging Process

3.1 Images o f Physical Scenes

This chapter examines the kinds of imperfections that restoration techniques 
are designed to correct. At the most general level, the imaging process 
consists of acquiring a digital image of a  physical scene and displaying the 
digital image on a  display device (as is illustrated in Figure 3.1). In this 
dissertation, the CCD-array camera and the video display monitor are the 
archetypes for these processes, but the model generalizes a  wide range of 
processes. In an ideal imaging system, the displayed image would be a  perfect 
two-dimensional projection of the three-dimensional scene, but real imaging 
systems are imperfect. The mathematical model developed in this chapter 
captures the significant characteristics of conventional imaging systems.

Displayed
Image

Figure 3.1: Imaging Process

3.2 Image Acquisition

A digital image acquisition system creates a digital image from a scene. The 
scene is infinite and continuous in three dimensions and each point has an as
sociated radiance (emitted light) with a  continuum of possible non-negative 
radiance values. A digital image is two-dimensional and has a finite number 
of pixels, each of which has an associated brightness value from a discrete

Scene■ Image Digital Image
Acquisition Image Display
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Figure 3.2: Image Acquisition

scale. Digital image acquisition can be divided into three steps: image for
mation, spatial sampling, and brightness quantization. The camera forms a  
finite, continuous, two-dimensional image on its focal plane (or image plane). 
Spatial sampling is the sensing of the irradiance (incident light) on the focal 
plane a t discrete points. Brightness quantization is the measurement of the 
irradiance on a  discrete scale. This division of the image acquisition process 
is illustrated in Figure 3.2.

3.2.1 Image Formation

The lens of a  camera focuses light from the scene through an aperture to form 
an image. Gaskillfl] presents a detailed analysis of this process. If the lens 
is relatively free of aberrations and the object and image fields are not too 
large, the image formation process can be regarded as a system with three 
components: geometric projection, an image formation point spread function 
(PSF), and brightness scaling. Figure 3.3 illustrates this decomposition of the 
image formation process. In the context of image restoration, the significant 
image formation component is the PSF.

G eo m etric  P ro je c tio n  The perspective projection of a three-dimensional 
scene into two dimensions is illustrated in Figure 3.4. Perspective projection 
is the geometric mapping produced by an idealized pinhole camera and is

Continuous
Image

Formation
PSF

Geometric
Projection

Brightness
Scaling

Image Formation

Figure 3.3: Image Formation
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Figure 3-4: Perspective Projection

an approximate model of the geometric mapping that occurs in our eyes, 
in cameras, and in most other image acquisition devices. In practice, real 
image formation devices introduce some geometric distortion, particularly 
in the periphery of an image. Generally, wide-angle lenses introduce more 
geometric distortion and telephoto lenses cause less geometric distortion.

Typically, if the object field is small relative to the distance from the 
camera, geometric distortion is negligible. (Hom[2] and Ballard and Brown[3] 
discuss imaging geometry in more detail.) W hen geometric distortion is 
significant, it is usually considered separately from other restoration prob
lem s^,5,6 ,7]. Therefore, geometric distortion is not incorporated into the 
imaging process model developed in this chapter. Instead, scenes are defined 
in two-dimensions as the ideal perspective projection onto the image plane.

F o rm a tio n  P o in t  S p read  F u n c tio n  The diffraction of a camera can 
be characterized by its PSF or equivalently by its optical transfer function 
(OTF). The PSF describes how light received from a  point source in the 
scene is spread over a small region about the corresponding point in the im
age. (Degradations other than camera diffraction can be characterized in the 
same way. Two examples are uniform motion and atmospheric blur.) The 
scene is a continuum of point sources and the image is the linear superpo
sition of the point-source responses. The PSF is typically a small, radially- 
symmetric spot that is generally-decreasing from the center out. The OTF 
is the Fourier transform of the PSF. Many of the degradations introduced by 
imaging systems are more easily pictured and understood in one dimension. 
Figure 3.5 illustrates a one-dimensional example PSF and OTF pair.
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Figure 3.5: Example Point Spread Function and Optical Transfer Function

In a  real system, the PSF will vary slightly with respect to position (i.e., 
it is shift-variant), particularly in the periphery, far from the focal axis. The 
PSF will also vary according to  the object distance in the scene. If the object 
field is small, these variations are typically negligible and the diffraction of 
the camera is accurately modeled as a LSI operator. The modulation transfer 
function (MTF) of a wide range of image acquisition devices is accurately 
modeled as [8 ]

where a  is the spatial frequency a t which the M TF is exp(—1) (approximately 
0.37) and /? determines the shape of the MTF. If /? — 2, this is the two-

pictured in Figure 3.5 has a  — 0.5 and /? =  2 .

The PSF of the image formation process causes blurring of the scene, 
particularly of fine details. Both the scene and the PSF are continuous 
functions. The convolution of the scene s and formation PSF hi is

(3.1)

dimensional bell (described in Appendix A). The one-dimensional system

s' =  s * hi (3.2)

where

(3.3)

Figure 3.6 illustrates the blurring of a  one-dimensional example scene caused 
by convolution with the PSF illustrated in Figure 3.5.

Equivalently, multiplication by the image formation OTF hi attenuates 
(diminishes) the high frequencies in the scene spectrum s:

s' =  shi (3.4)
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Figure 3.6: Spatial Blurring

where

s '(u ,v )  = s ( u , v ) h i ( u , v ) , (3.5)

Figure 3.7 illustrates the attenuation of the spectrum of the  scene in Fig
ure 3.6 caused by multiplication by the OTF in  Figure 3.5. (The graph 
is of the magnitude of the complex-valued spectrum. The spectrum of a 
real-valued scene is Hermitian, so its magnitude is symmetric. Therefore, 
only half the spectral magnitude function is shown.) Traditionally, removing 
image blur (or high-frequency attenuation) has been the m ajor objective of 
image restoration.

1 0 °  r10° r

0.0 1.0 2.0

0 1 0 “ 6

1 10 ~ 8 
< 0.0

Spatial Frequency v
1.0 2.0 

Spotial Frequency v

Figure 3.7: Frequency Attenuation
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B rig h tn ess  S caling  The brightness of an image is the measure of irradi
ance on the focal plane. The brightness of the ideal image is proportional 
to the radiance of the corresponding point in the scene. In a real system, 
there is some loss of brightness due to absorption and reflectance in the lens 
elements. Brightness scaling may also occur during brightness quantization. 
If the brightness scaling is linear (i.e., multiplication by a  scalar constant), 
only the constant of proportionality (with the scene radiance) is changed. 
Non-linear scaling is more troublesome, but can be addressed independently 
of techniques th a t deal with other degradations. In many applications, the 
user of the restoration technique may wish to retain separate control over 
the brightness scale of the displayed image. In order to concentrate on more 
central problems and simplify the mathematics, brightness scaling is not ex
plicitly included in the imaging system model th a t is used in this dissertation. 
If desired, brightness scaling can be incorporated into the definition of the 
acquisition PSF.

3.2.2 Spatial Sampling

Many types of devices are used to sense the irradiance of the image formed by 
the camera. Vidicon-tube cameras record incident light using an electrically- 
charged grid. O ther systems employ photosensitive cells (e.g., charged- 
coupled devices or CCDs) that store charges in charge-potential wells for 
subsequent readout. Photosensitive cells are used in flying-spot scanners 
(one cell and a moving aperture), line scanners (a one-dimensional array of 
cells), and array sensors (a two-dimensional array of cells).

An ideal sample of the continuous image s' a t (x, y) is determined by 
integrating the irradiance over an infinitesimal area about the point. M athe
matically, this is accomplished by multiplying the image by a  shifted impulse 
(or dirac delta function) 6. (The impulse is a  generalized function that is 
nonzero over an infinitesimal area and has unit volume. It is described in 
Appendix A.)

Ideally, the sampled or discrete image p1 is the product of the continuous 
image formed on the focal plane s' and a  lattice of impulses. A rectangular 
grid is used almost exclusively as the sampling lattice. This corresponds to a 
sampling function called a  two-dimensional comb HI (or shah or bed-of-nails, 
described in Appendix A). Sampling on this lattice yields

p' =  sHL (3.6)

where

p ' ( x , y )  =  s ' ( x , y )  n ( x , y )
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(s1 (x , y) if x and y  are integers 
0 otherwise (^.7)

or equivalently

p'[m , n] =  s ' ( m ,n ) (3.8)

for all pixels [m,n]. In a real system, there is undoubtedly some local ge
ometric deviation from a true two-dimensional comb function. However, 
minor pixel spacing variations can usually be ignored. When they exist, 
more serious geometric distortions must be addressed as a  separate problem.

The sampled values in real systems are not taken by integrating over an 
infinitesimal area, but are instead a  function of the incident light in a small 
region or neighborhood around the sample point. The integration function is 
the sensor response function or sensor PSF h?.

p’ = (a '* f t2)IE (3.9)

where

p '( x ,y )  = f  f  s ' ( x \ y ' )  h2(x  -  x ',y  — y') dx'dy'TS.{x,y) (3.10)
J —CO J * - 0 0

or equivalently

/ o o  r o o

f  s ' ( x , y ) h 2 (m — x ,n  — y) dxdy  (3-H)
■00 J—00

Figure 3.8 illustrates the two components of this process—integrating over a 
region and sampling the result.

Talmi and Simpson[9] and Hopwood[10] suggested an idealized model for 
how photon flux is collected about the sample points of line-scan devices. 
Figure 3.9 illustrates the sensor PSF for this idealized model. I t is presented 
to illustrate how a system might integrate light over a  small region about 
each sample point. This one-dimensional model can be extended to two- 
dimensions for sensor arrays by assuming separability.

Continuous
Image

Discrete
Image

Sensor
PSF

Sampling
Lattice

Spatial Sampling

Figure 3.8: Spatial Sampling
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Figure 3.9: Idealized Model of Sensor Point Spread Function

Good detectors are linear over a wide range of irradiance. CCD detectors 
are especially linear. Nonetheless, even CCD detectors exhibit some non- 
linearity. For example, when the well of a CCD is saturated, charge flows 
into neighboring wells. Beal, et al.[ll], found some charge leakage from 
wells filled to less than one-third capacity and significant leakage a t 60% 
capacity. The sensor PSF of a good detector array is nearly the same for all 
array elements (i.e., the sensor PSF is shift-invariant). Nonetheless, there 
will be minor variations and perhaps even some elements with very different 
characteristics (e.g., a dead cell).

Sampling an image introduces an artifact called aliasing. Aliasing occurs 
when the sampling density is insufficient to capture the details in the image. 
Figure 3.10A illustrates a waveform tha t is sufficiently sampled. Figure 3.10B 
illustrates a  waveform that is insufficiently sampled. The samples of the 
waveform in Figure 3.10B are indistinguishable from the samples of the lower- 
frequency waveform in Figure 3.10A.

Aliasing is more easily analyzed in the frequency domain. Sampling— 
spatial multiplication of the image by an array of impulses—is equivalent 
to frequency convolution of the scene spectrum s ' and the transform of the 
sampling lattice IE:

p' = s '*  IE (3.12)

where

p1 (u ,v) = f  f  s ' (u ',u ')IE (u  — u',t> — v1) du'dv1. (3.13)
J —oo J —oo

The comb function is its own transform. Therefore the convolution can be 
rewritten as a sum:

p'{u ,v) 12 12 (u ~ u - v>) • 
u '——oo f '= —oo

(3.14)
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Figure 3.10: Spatial Aliasing

The spectrum  p' is periodic with unit periods. (The periods are one because 
the unit spatial intervals were defined as the sampling intervals.)

A one-dimensional example is illustrated in Figure 3.11. (This example 
is not the frequency domain counterpart of Figure 3.10.) In Figure 3.11A, 
the image spectrum is zero beyond the Nyquist limit (i.e., at frequencies 
greater than half the sampling frequency—|u| >  0.5). In this case, when the 
frequency convolution replicates the spectrum (as in Equation 3.14), there 
is no overlap and no aliasing. In Figure 3.11B, the scene spectrum extends 
beyond the Nyquist limit. When the spectrum is convolved with the comb, 
the replicated sidebands ()i |̂ >  0.5) fold back (i.e., are aliased) into the 
baseband (fî J <  0.5).

A prefilter (before sampling) can be used to reduce spectral components 
above the Nyquist limit in order to minimize aliasing. The ideal low-pass 
transfer function is the unit pulse described in Appendix A ( l where \v\ <  0.5 
and 0 where \u\ > 0.5). Unfortunately, the corresponding spatial function, 
the sine (also defined in Appendix A), has infinite extent, negative values 
and is not physically realizable. Moreover, a  sharp cutoff in the spectrum of 
the prefilter causes ringing about sharp edges in the displayed image ( Gibb ’s 
phenomenon) , an unacceptable artifact. Also, optical lenses cannot realize 
sharp cutoffs. Therefore, the prefilter transfer function must roll off gradu
ally. The tradeoff in the design of the roll-off is between aliasing (where the
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Figure 3.11: Frequency Folding

filter passes frequencies beyond the Nyquist limit) and blurring (where the 
filter attenuates frequencies within the Nyquist limit). Systems are usually 
designed so th a t there is some aliasing and some blurring[l2]. In most sys
tems, the OTF of the acquisition device serves as the prefilter and should be 
a good match to the sampling array. Restoration techniques must address 
both blurring and aliasing, though the importance of aliasing for restoration 
only recently has been considered fully[13].

A real sampled image p' is necessarily finite. The samples beyond the im
age border are unknown. As stated in Chapter 2, the assumption employed 
in this dissertation is that the finite image is one period of an infinite, peri
odic image. This assumption is not realistic (nor is any alternative), but it 
facilitates spectral analysis and the artifacts generally are limited to a small 
band near the image border.

3.2.3 Brightness Q uantization and Noise

As the irradiance of the image is sampled, it must be quantized (converted 
to a  finite, discrete scale with an analog-to-digital or A /D  converter). A 
gray-scale employing eight-bit integers, allowing values 0 to 255, is a  popular
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choice. Quantization introduces errors. If the magnitude of the sample 
value exceeds some finite maximum, it must be ihreskolded to the top of the 
scale. This problem can be eliminated in subsequent images by adjusting the 
camera shutter or aperture or changing the scale. Rounding or truncating 
the measures to discrete values also introduces errors. These errors can be 
viewed as a random, additive noise process. The probability density function 
(pdf) for rounding noise is uniform in the range —0.5 to 0.5. The pdf for 
brightness truncation noise is uniform over the range 0.0 to  1.0.

Other sources of noise can plague real imaging systems. The randomness 
of the scene’s photon flux means th a t successive images of a scene will differ 
(albeit slightly). More importantly, the circuits of the sensor (e.g., the A /D  
converters) add noise. This noise is often modeled as white noise. Noise is 
white if its values are spatially uncorrelated. T hat is, e is white noise if and 
only if for every two distinct points [m i,na] ^  [m2, rc2] the expected product 
is the product of the expected values:

E { e lm 1,n J]e lm 2)n 2]} -  E { e [ m 1,n i ] } E { e lw 2 ,n 2]} =  0. (3.15)

Strictly white noise is not only spatially uncorrelated, but also independent. 
Unless otherwise stated, it will be assumed that white noise is wide-sense 
stationary and zero-mean, which means that the noise autocorrelation is a 
scaled impulse and the power spectrum is constant for all frequencies (except 
a t the frequency origin).

Image restoration algorithms are usually based on the assumption of ad
ditive, white noise, but imaging systems can introduce other types of noise. 
For example, noise can have a fixed pattern or it may be signal dependent; 
it can be additive, multiplicative, or effect the image in more complicated 
ways. In this dissertation, sensor noise is modeled as an additive, signal- 
independent, stationary process.

3.2.4 Simplified Acquisition M odel

The restoration algorithm developed in.this dissertation is based on a  sim
plified acquisition model that contains only the most important components 
of the image acquisition process. The simplified model is illustrated in Fig
ure 3.12. It is assumed that there is no significant geometric distortion in the 
image formed by the camera. Therefore, the input to this simplified model is 
a two-dimensional brightness function 5 that is the ideal image—the perfect 
projection of a three-dimensional scene. Further, the scene is presumed to 
be doubly periodic with periods M  and N .

The first source of degradation in the model is the acquisition PSF—the 
result of cascading the formation PSF (hi in Equation 3.2) and the sensor
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Figure 3.12: Simplified Imaging Acquisition Model

PSF (fa  in Equation 3.9). Because convolution is associative, the output 
of the successive convolutions of the scene s, the image formation PSF fa, 
and the sensor PSF fa, s * hi * fa, can be written as the convolution of the 
scene with a single PSF, s * h where h = fa *  fa. The simplified model does 
not include brightness scaling explicitly, but the model of the acquisition 
PSF h can be specified to scale the image brightness linearly. The simplified 
model also assumes the sampling grid is a perfect two-dimensional comb 
function, avoiding the problems of geometric distortion or error and the 
issue of geometric transformations. Quantization error and circuit noise are 
combined as a single error term e. Following many others, noise is assumed 
to be additive, stationary, and signal-independent. Such noise is found in 
most systems and allows relatively straightforward analyses.

To summarize, the mathematical model of the acquisition process shown 
in 3.12 is

p = (s*h)TH + e (3.16)

where

/ o o  t o o

I  s ( x , y ) h ( m  — x ,n  -  y) dx dy + e[m,n].  (3.17)
•oo J—OO

It may seem to those unfamiliar with image restoration research th a t a great 
deal of the imaging process has been ignored in this simplified model. Unfor
tunately, some simplification is unavoidable. Some of the degradations that 
have been ignored are significant in particular applications, but the most im
portant characteristics of typical imaging acquisition systems are contained 
in this model. Historically, image restoration research has been conducted 
using an even simpler model that contains only a LSI acquisition function 
and additive noise. I t is a common practice to assume that the scene is 
sufficiently sampled and to omit sampling from the acquisition model. How
ever, most digital imaging systems are designed to undersample and therefore 
sampling is an im portant consideration that should not be ignored.
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3.3 Display

The effect of the display device is often neglected in image processing re
search- (For example, display is not an index term in two popular image 
processing textbooks[6,7].) However, the display device directly affects the 
viewer’s perception of the quality of the restoration. A video display monitor 
reconstructs a continuous image from a digital image by producing a spot 
on the screen for each pixel value. The display device is accurately modeled 
as a  LSI system. The reconstructed image r is the convolution of the digital 
image p  and the display PSF d:

r =  p * d  (3.18)

where
OO OO

r ( x ,y )  — p[m>n]d(x — m ,y  — n) dxdy.  (3.19)
T 7 l = —'O O  n ™ — OO

The sine function is the ideal reconstruction function for a  sufficiently 
sampled system. Any sufficiently sampled image can be exactly recon
structed from its samples by convolution with the sine function. (This is 
the famous sampling theorem.) Unfortunately, the sine function cannot be 
realized by physical displays. Moreover, because acquisition devices are de
signed to admit some aliasing (insufficient sampling) to limit blurring, it is 
unrealistic to assume sufficient sampling.

Realizable CRT display transfer functions must roll off smoothly. There 
is a tradeoff in display system design. On one hand, if the display transfer 
function rolls off within the Nyquist limit, then spectral components of the 
image are attenuated[l4]. The result is a blurred image as illustrated in 
one dimension in Figure 3.13; the sharp step is blurred by the display. On 
the other hand if the display transfer function extends beyond the Nyquist

0.8
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0.0 11
128 160 4

Spatial Position x

Figure 3.13: Display Blur and Ripple
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limit, then the displayed image will contain components of the periodic side
bands. The resulting effects are called post-aliasing, sample-frequency ripple, 
or anisotropy[lb]. The ripple pattern is evident on the top of the plateau in 
Figure 3.13. A primary consideration of display system design is to th a t a 
region of uniform brightness appear uniform[16,17].

Schade found that the display spot of a video monitor is accurately mod
eled as the sum of two Gaussians[18]—one for the nucleus of the spot and 
one for a flare about the nucleus due to  “the finite thickness of the phosphor 
and optical reflections of the faceplate surfaces.” [18, p. 271] The common 
practice of using a single Gaussian (e.g., Castleman[4]) is less accurate.

The reconstruction PSF is a  display’s most significant characteristic, but 
display devices also introduce noise. Display noise occurs in the form of 
variations in both intensity and spot position. Both types of noise, when 
random, will produce a  salt and pepper pattern that is more evident in flat 
fields. Both types can also produce spurious fixed patterns th a t are also 
more evident in flat fields. Display noise is usually insignificant and is not 
included in the model. The display model is pictured in Figure 3.14.

Digital
Image

P

Simplified Image Display Model

Display

Displayed 
Image

Figure 3.14: Simplified Imaging Display Model
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C hapter 4 

Traditional R estoration  
Techniques

4.1 Problem s, Solutions, and Algorithm s

This chapter describes several traditional image restoration techniques. Be
cause the available knowledge of the scene and the degradations is invariably 
incomplete, image restoration is an estimation problem. PYom the digital 
image and what is known about the scene and the imaging system, a  resto
ration technique m ust estimate the ideal image. The restored image should 
correspond closely to the ideal image, but it must be computed efficiently.

Practical methods are conditioned on a model of the scene and the imag
ing process. The model characterizes the knowledge (or assumptions) that 
can be used to solve the problem. Different techniques may be conditioned on 
different models; it is important to consider the accuracy of a model for each 
particular problem. The common models are reasonable for most systems, 
but they are motivated by practical considerations as well—the models must 
not make the problem intractable. To be successful, a method must capture 
the essential aspects of the problem in a  simple model. If the technique is 
to be practical, the model must ignore some of the unpleasant complexities 
ever-present in real problems.

Practical techniques must yield an acceptable estimate. With incomplete 
knowledge, no method can always determine the correct solution. In many 
applications, a human observer is the best judge of the relative quality of 
possible solutions. Unfortunately, the criteria used by the human visual 
system are not well understood and even if human perception were fully 
modeled, it might be too complicated to be computed in a  reasonable time 
with current technology. A practical criterion must be simple to calculate.

60



CHAPTER 4. TRADITIONAL RESTORATION TECHNIQUES 61

The most popular image restoration techniques use a single LSI operator. 
The LSI restoration operator is conditioned on assumptions about the imag
ing process and on judgements about which estim ate is best. These assump
tions and judgements are influenced by practical considerations. Non-linear 
methods and shift-variant (adaptive) methods are usually more complicated 
and computationally expensive. However, because even LSI operations on 
images require many calculations, computational complexity is often a criti
cal concern. All of the techniques described in this chapter use a  global, LSI 
operator. Chapters 5 and 6 describe techniques th a t reduce computation by 
using a  local, LSI operator.

Traditional restoration techniques are successful because they define the 
model of the problem and the nature of the solution so th a t an effective 
and efficient algorithm exists. The models capture the im portant aspects of 
the restoration problem without being too complex, the measures of quality 
for the possible solutions correlate well with human perception, and the 
algorithm is tractable.

4.2 Inverse Filter

The first digital image restoration techniques focused on the problem of image 
blur (or high-frequency attenuation). One of the simplest techniques, the 
inverse filter, is based on the assumption tha t the imaging process is a  non
singular, noise-free, LSI operation:

p — s * h  (4.1)

where s is the ideal image of the scene, h is the system PSF, and p  is the 
degraded image. The ideal image of the scene s is unknown; the goal of 
restoration is to  recover it from the digital image p  using knowledge of the 
PSF  h . Assuming the model of Equation 4.1, the ideal image can be recovered 
by applying the inverse of the system PSF:

r =  p* f  
=  s * h *  f  
— s * 6
= s (4.2)

where r  is the restored image, and /  is the PSF of the inverse filter (h * f  =  6).

The inverse filter assumes knowledge of the system PSF h. The system 
PSF can be estimated from the system response to test targets. Appendix B
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describes an original technique for estimating the system functions of dig
ital acquisition devices. Previous techniques for characterizing acquisition 
devices were designed for analog systems (e.g. film cameras) and rely on 
oversampling the analog output. Because digital systems are designed to un
dersample, these techniques do not accurately characterize digital systems. 
The technique described in Appendix B is specifically designed for digital 
systems and can accurately estimate the transfer function, even beyond the 
Nyquist frequency. The question of the existence of the inverse of the PSF 
is considered later in this section.

The inverse filter can be also applied in the frequency domain:
A A  Ar = p f  

=  s h f
=  S. (4.3)

Note that the system transfer function h may be complex, so the inverse 
filter transfer function is defined as:

/  = h"1
=  j r j f  (4.4)

I I

Before the filter /  can be applied in the frequency domain, the image must 
be transformed. After the filter is applied, the resulting product must be 
inverse transformed. Except for rounding error differences, spatial domain 
processing and frequency-domain processing yield identical results.

The simple model of Equation 4.1 fails to account for several potentially 
important sources of degradation: sampling, system noise, and display re
construction, Two early papers [1,2] that introduced inverse filtering to the 
digital image processing literature in 1966 addressed system noise, but failed 
to account for sampling and display. To this day, in the spirit of these early 
papers, traditional restoration techniques either ignore sampling and display 
or impose unrealistic assumptions to  avoid the associated problems. Only 
recently have sampling and display been addressed directly[3,4]. In order
to trace the historical development of traditional techniques, the inclusion
of sampling and display in the system model is postponed until Section 4.6. 
Until then, restoration is posed as a  problem without sampling or display 
reconstruction—the input scene, system functions, and system output are 
digital images with the same resolution as the degraded image.

Noise is a  serious problem for the inverse filter. Restoration is an ill- 
conditioned problem—small errors in the image can result in large errors in
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the restored image. In Equation 4.2, the restored image is identical to  the 
ideal image of the scene. This equality is consistent with the model of the 
imaging system in Equation 4.1, but this model is unrealistic—some noise is 
invariably present. A more accurate model of the imaging process includes 
an additive noise term e:

p  =  s  * h +  e. (4.5)

Using this model, the inverse filter restoration contains an error term:

r  =  p *  f  
= ( s * h  + e)* f
=  s +  e * / .  (4.6)

The frequency domain equations provide clearer insight into the nature of 
the ill-conditioning:

f  =  p /
=  (sh  +  e) /

=  3 + e f .  (4.7)

T hat is, the restored image spectrum f  differs from the scene spectrum  s by 
the error term  e / .  Each component of the restored image spectrum is

f[p , v] = 3 [//, u] +  !  - j (4.8)
h [/i, u]

If a system transfer function value h [//, u] is very small, then even a small 
amount of image noise at this frequency can result in a large error. In the 
worst case, h[fi, u] is zero. Then the system is singular (i.e., cannot be 
inverted) and the image cannot be fully restored even if there is no noise.

In pioneering work a t the NASA Jet Propulsion Laboratory, N athan [l] 
recognized that the inverse filter was susceptible to  noise. To address this 
problem, he placed an empirical upper-limit of 5 on the magnitude of the 
inverse filter transfer function to yield the restoration filter

f M  = / if 1%,oil >0.2
I 5 otherwise.

N athan’s modification of the inverse filter was based on the images to which 
the filter was applied (images transmitted by the Ranger and Mariner space
craft). Subsequent techniques have attem pted to incorporate more knowl
edge of the scene and noise into the system model to guide modification of 
the inverse filter.
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4.3 W iener Filter

The Wiener filter takes its name from an analogous one-dimensional result 
first established by Norbert Wiener [5] in the 1940’s. The Wiener filter 
minimizes the expected mean-square error between the scene and the restored 
imager

32 = TiTKF 2  X) I5 nI “ r Im> n]|2 • (4-10)JU W  m  n

The Wiener filter is also called the least-squares filter and the minimum 
mean-square-error filter. The method is premised on the model of Equa
tion 4.5.

Most derivations of the filter treat the scene and noise as stochastic pro
cesses and assume that the noise and the the scene are independent, that 
both processes are stationary, and th a t their power spectra are known. The 
power spectra of the scene and noise are seldom known, but approximations 
are usually adequate. The Wiener filter is conditioned on the desirability 
of minimizing expected mean-square restoration error (MSRE). The MSRE 
measure does not correspond exactly to  human perception of image quality, 
but it is generally satisfactory and it is easily computed. The popularity of 
the Wiener filter attests to its utility.

Helstrom [6] suggested Wiener’s approach for restoring digital images. 
(See also Slepian [7].) The filter is typically defined in the Fourier frequency 
domain as

/  =  (4.H )fc|
where is the scene power spectrum and 4?c is the noise power spectrum. 
At frequencies where the scene power spectrum is zero (<$, [/i, u] =  0), the 
transfer function of the filter should be zero. A t other frequencies, the filter 
is

=  (4 1 2 )

At frequencies where the noise power spectrum is zero (4>e [//, v] =  0), the 
Wiener filter is identical to the inverse filter. As the ratio  of the energy of the 
noise to that of the scene increases, the value of the Wiener filter transfer 
function is attenuated. Nathan[l] attenuated the transfer function of the 
inverse filter using an arbitrary threshold that was not necessarily related
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to the scene or noise. The Wiener filter uses the ratio of the noise energy 
to  the scene energy to attenuate the restoration filter. The mathematical 
development of the Wiener filter is presented in Chapter 6.

The expected mean-square error of the Wiener filter restoration is

s ir  = E E ...  . (4.13)
h [fi, v]|2 [/x, v] +  $ e [/*, v\

If noise is negligible, 5 ^  approaches zero. If noise dominates the signal, 
is bounded by the energy of the signal. In comparison, the expected mean- 
square error of the inverse filter (using the assumptions about the signal and 
noise used to derive the Wiener filter) is

s?  =  E E i^ tM -  (0.14)
v I//, */]|3

The expected mean-square error of the inverse filter restoration is an un
bounded function of the noise. At each frequency, the expected square-error 
of the inverse filter restoration is a t least as large as that of of the Wiener 
filter restoration.

4.4 Constrained-Least-Squares Filters

Constrained-least-squares restoration minimizes a measure of the restored 
image subject to  a mean-square-error constraint. The constraint expresses 
the expectation that the restored image is consistent with the knowledge of 
the system and noise—that given the expected level of noise the restored im
age could have accounted for the degraded image. In the frequency domain, 
this constraint is

=  ]£ ]C $ e  [/*»*']• (4-15)
f t  V f t  V

Many possible solutions may be consistent with this constraint. From among 
the possible solutions, the image selected is the one that minimizes

52 =  £ £  Ic[^ ,y ]r[//,i/]|2 (4.16)
/i V

where c is an empirical characteristic function.

The constrained restoration filter is
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where the non-negative scalar a  is adjusted to satisfy the constraint in Equa
tion 4.15. The value of a  must be determined numerically.

Phillips [8] suggested that the smoothest of solutions consistent with 
Equation 4.15 be selected, so he used the discrete second derivative for c. 
His technique was refined by Twomey [9] and applied to image restoration 
by Hunt [10],

Using for c in Equation 4.17 yields the parametric Wiener filter:

which includes the traditional Wiener filter as the special case a  ~  1. In 
practice, the adjustable parameter a  has proven to  be useful because real 
systems are difficult to  model and characterize precisely.

4.5 M inim izing the Com posite Point Spread 
Function

Given a noiseless model of the imaging system p = s * h, the restored image 
r  is the convolution of the scene s, the system PSF /t, and restoration filter 
/ .  The restored image can be written as

r  =  p * /
=  s * h *  f
=  s * g  (4.19)

where g =  h * f  is the composite PSF. For the techniques described in this 
section, the system PSF h is a continuous function and the restoration PSF 
/  is discrete, so the composite PSF g is continuous. These techniques define 
the kernel /  so that the composite PSF g will have specified characteristics. 
The inverse filter is one such method—it is specified so th a t the composite 
PSF is the convolution identity function, that is g = 6 ,

Forcing the composite PSF to approximate the impulse function, as does 
the inverse filter, can excessively magnify noise. Smith [11] proposed mini
mizing the spread of the composite function, but subject to  a constraint on 
the energy of the noise in the restored image. The minimization function is 
the radius of gyration of the power density of the composite PSF g:

S  = S-ov f Z z ( x 2  + y2) Iff y)|2 d x d y f i
!</(*, y ) f  dxdy

(4.20)
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(Because S  > 0, minimizing S 2 gives the same result.) The radius of gyration 
of the power density is minimized if the composite PSF is the impulse; if 
g =  6 , then 5  =  0. The constraint on the energy of the restoration noise is

a 2
fOO

J — o o  J  — c
£  2Z f [ m M e (x  -  v  -  n )m n

dx dy.  (4.21)

There is a  tradeoff between spatial resolution and noise. If the composite 
PSF is narrow, the resolution of the restoration is high bu t the energy of 
the noise energy in the restored image is also high. If the composite PSF is 
wide, the noise energy is low but the resolution is also low. The value of a 2 
determines how much noise is tolerated and limits how much resolution is 
possible. An additional constraint sets the energy of the composite PSF to 
1:

f  [  \ g { x , y ) f  d xdy  =  1. (4.22)
J — CO J —OO

The restoration filter /  that minimizes Equation 4.20 while meeting the 
constraints of Equations 4.21 and 4.22 must be determined numerically.

Backus and Gilbert [12] create a  filter that depends on two components. 
The first component is based on minimizing the spread of the composite 
PSF:

Si =  /  /  (x2 + y2) \ g ( x , y ) \ 2 dxdy.  (4.23)
J —oo J —oo

They constrain the composite PSF and restoration PSF to have unit volume:

/ o o  r o o

/  g( x , y )  d xdy  =  1 (4.24)
• oo J—OO

£ ] C / ( m >n ) =  1- (4-25)
m n

The filter that corresponds to this single component is

f i [m, n]  =  m>> n'\ (4-26)
m ' n'

where

Ai  [mi, ;m 2)n 2]

/ d o  r o o

/ (x + y  ) h { x - m u y - n r) h { x - r r n , y - n 2) dxdy.  (4.27)
- o o  J — OO

The second component minimizes the noise in the restoration:

S 2 ~  f  f  5 2 ' 5 2 f [ m , n ] e ( x - m , y - n ) d x d y  (4.28)
J — OO J  —OQ —s
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subject to the constraint of Equation 4.25. The filter that corresponds to 
this second component is

f [ m , n ]  = (4.29)
m' n'

where A2 is the autocorrelation m atrix R e of the image noise.

Backus and Gilbert combine these two components. The tradeoff between 
minimizing the spread of the composite PSF and minimizing the energy of 
the noise is expressed as

A  =  A\  cos 9 -f Cj4.2 sin 9 (4.30)

where the c and $ are chosen to compromise between increasing resolution 
and suppressing noise. The resulting filter is

/  [m, n] = [m, n\ m', n'j (4.31)
m1 n1

where the filter is scaled to satisfy Equation 4.25.

Unlike the Wiener filter and the constrained-least-squares filter, filters 
th a t minimize the composite PSF are determined without regard to the 
character of the scene. This approach is appropriate when information about 
likely scenes is not available, but cannot take advantage of such knowledge
when it is available. Like the conventional formulation of the Wiener fil
ter for image processing, they also fail to account for sampling and display 
reconstruction.

4.6 End-to-End W iener Filter

The conventional Wiener filter fails to account for degradations in the imag
ing process due to sampling and display reconstruction. Sampling effects 
are present unless the spectrum of the continuous image is zero beyond the 
Nyquist frequency (i.e., the image is sufficiently sampled). Most imaging sys
tems are designed to insufficiently sample. Systems that sample sufficiently 
cause excessive blurring. Aliasing caused by insufficient sampling is a source 
of noise th a t should be addressed by restoration techniques. Display devices 
also degrade images. The sine function is the ideal interpolator, but only 
if the scene is sufficiently sampled. Even if the scene were sampled suffi
ciently, the sine function can not be physically realized by a display device. 
As described in Chapter 3, real display devices attenuate high frequencies 
and pass sideband components (post-aliasing). Because restorations are usu
ally intended for redisplay, the degradations introduced by the display device 
should be considered in the development of the restoration filter.
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Huck et al. [3] and Fales et al. [4] have recently extended the Wiener 
filter to  account for sampling and display using an end-to-end model of the 
imaging process. The imaging model described in Chapter 3 includes sam
pling and a LSI display. In addition to  the assumptions of the conventional 
formulation of the Wiener filter described in Section 4.3, the derivation of 
the end-to-end Wiener restoration filter assumes th a t the sidebands of the 
scene spectrum are uncorrelated. (This is detailed in the mathematical de
velopment of the end-to-end Wiener filter in Chapter 6.) The end-to-end 
filter is more complicated than the traditional discrete Wiener filter because 
additional parameters are required to account for the additional sources of 
degradation that are considered:

/ $ ah*dr * i
(4.32)

If the image is sufficiently sampled and the display function is the sine in
terpolator, then the end-to-end Wiener filter reduces to  the discrete Wiener 
filter.
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Chapter 5 

Sm all-K ernel R estoration

5.1 Small-Kernel Convolution

Many imaging systems must operate within stringent time constraints, in 
real time. Because of the large number of pixels in typical images and the 
computational complexity of restoration, real-time image restoration is a 
challenging goal. As illustrated in Figure 5.1, LSI restoration techniques can 
be applied equivalently in either the spatial domain (with convolution) or 
in the spatial-frequency domain (with pointwise multiplication). The tradi
tional techniques described in Chapter 4 are global operations—each element 
of the output is a function of every element of the input. Global operations 
are are practical only when implemented in the frequency domain, but the 
hardware required for high-speed frequency-domain processing is too bulky 
and prohibitively expensive for many applications. This chapter examines 
some algorithms th a t restore an image by convolving it with a small kernel. 
Convolving an image with a kernel that has only a few values is an efficient 
approach tha t facilitates parallel implementation and adaptive processing.

Many of the most common image restoration techniques (e.g., the inverse 
filter, the Wiener filter, the parametric Wiener filter, and the constrained 
least-squares filter) are traditionally derived and implemented in the fre
quency domain. The restoration PSF associated with these methods is as 
large as the image— M N  elements—so spatial convolution is O (M 2N 2). For 
typical image sizes (e.g., 512 x 512 or 1024 X 1024), spatial convolution with 
a  kernel as large as the image requires far too much computation and is im
practical. Fast transforms allow the equivalent computation to be performed 
in the frequency domain with significantly fewer calculations. Frequency do
main filtering requires only pointwise multiplication of the image spectrum 
p  and the filter transfer function /  and is therefore O ( MN) .  In most cases,

71
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Figure 5.1: Spatial Domain and Frequency Domain Processing

this requires a Fourier transform to compute the image spectrum and an 
inverse Fourier transform to compute the resulting restored image. Fast 
Fourier transforms are 0(M iV log(MiV')).

Though fast transform algorithms significantly reduce the computation 
required for global restoration, substantial processing is still required. For 
example, for a N  x N  image, the Hartley transform[l], a  very efficient trans
form for real-valued data, requires about (3 /2 ) N 2 log2 N  multiplications and 
(ll/4)-/V2log2 N  additions. For a  512 x 512 image, this is about 3.5 million 
multiplications and 6.5 million additions. On a Sun 3/260, a  mid-priced engi
neering workstation, performing a  forward and inverse feist two-dimensional 
Hartley transform on a  512 X 512 image and applying a filter by pointwise 
multiplication requires nearly four minutes. This is far too long for many 
applications.

Restoration can be computed more quickly in parallel—each pixel of the 
output can be computed independently of all other output pixels. Global 
operations are complicated to implement in parallel, but state-of-the-art, 
special-purpose hardware can perform real-time transforms on medium-sized 
images. In some applications, however, the bulk of this equipment or its cost 
is too large; in other applications, the images are too large.

The need for more efficient processing has motivated consideration of 
local algorithms—restoration implemented by convolution kernels that have 
only a few elements. If the kernel has very few elements, spatial processing 
requires fewer operations than frequency-domain processing. In restoration, 
as in most filtering operations, each output value is principally determined 
by the values in a relatively small region around the corresponding point in 
the input image. Therefore, local operations can be nearly as effective as 
global operations.

Spatial convolution is computationally practical only if the kernel is small. 
Spatial convolution of a M  x N  image with a Rf-element kernel is O ( K M N ) .
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Figure 5.2: Execution Times

Execution times for small kernel convolution and frequency domain process
ing of a  N  x  N  image are given in Figure 5.2. The computations were 
executed in double precision on a  Sun 3/260 with floating-point accelera
tor and 8MB of RAM. The frequency domain execution includes two dis
crete Hartley transforms[l] and a pointwise multiplication. It requires about 
N 2 ]g(N) x  10“4 seconds. Convolution requires about 2K N 2 x  10-5 sec
onds. For this system, the breakeven point for convolution versus frequency- 
domain processing is about K  =  5 lg(iV) elements.1 Small kernel restoration 
is efficient—inexpensive PC boards for real-time, 2D convolution with small 
kernels are widely available. Perhaps most importantly, local operations are 
easier to implement in parallel than global operations.

The challenge is to design small kernels that yield good results. This 
chapter reviews several techniques for designing small restoration kernels. 
One approach is to  use traditional techniques to  design a filter with a large 
PSF and then generate a small kernel from it. Some of these techniques are 
considered in Section 5.2. The methods of Section 5.3 derive the small kernels 
directly using measures of the composite PSF of acquisition and restoration. 
In Section 5.4, the minimum mean-square-error criteria of the Wiener filter 
is applied to the design of small restoration kernels.

*The 64 x 64 images were processed most efficiently, though the difference is small. This 
is apparently due to the presence of 64KB of cache memory. The 64 x 64 image is the only 
image that will fit completely in the cache memory.
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5.2 Small Kernels from Large Kernels

For typical imaging systems, the restoration PSF derived by any of the tra
ditional methods has a  peak a t the origin and ripples outward. The most 
significant values of the restoration PSF are located near the origin and the 
magnitude of the ripples decreases with greater distance from the origin. 
One method for generating a  small convolution kernel from a large PSF is 
to multiply the large PSF by a  window function  centered about the center 
of the PSF. The window function should leave the most significant values of 
the restoration PSF unchanged and replace the least significant values with 
zeros. The resulting kernel has fewer nonzero elements and can therefore be 
applied more efficiently.

A simple window function is the pulse (described in Appendix A). Apply
ing a  pulse window function is called spatial truncation. The two-dimensional 
pulse can be either radially symmetric or separable. The transfer function 
of the pulse is the sine function. (See Appendix A.) However, the sharp 
cutoff of the pulse introduces an undesirable ringing in its transfer function, 
so several alternative window functions have been suggested[2]. One alterna
tive, the Hanning window, is a raised-cosine function. The one-dimensional 
Hanning window is

w ( i )  =  < 2 (5.1)
I 0 otherwise

where K  is the half-width or radius of the window. The transfer function of 
the Hanning window is a waveform similar to the sine, but the central lobe 
is wider and the magnitude of the sidelobes is greatly reduced[2].

Arguello et al.[3] subjectively compared the performance of the pulse 
and Hanning functions for windowing restoration PSFs and concluded that, 
as would be expected, the Hanning •window worked better than the  pulse. 
They also concluded that for the images they considered, restorations using 
7 x 7  windowed kernels were subjectively not significantly different than 
restorations using full-size restoration kernels.

Windowing restoration PSFs is an ad hoc operation. The PSF is de
signed under the assumption tha t it will be used unmodified without regard 
to its cost or size. The windowing operation is based on processing limits 
without regard to the design of the PSF. There is no coordination between 
the restoration filter design and processing implementation. A more rigorous 
approach would account for processing limits in the design of the restoration 
kernel or for restoration results in the imposition of processing constraints.

Riemer and McGillem[4,5] modified the restoration method proposed by
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Smith[6] to reduce the effect of windowing. (Smith’s method is described in 
Chapter 4.) They added a constraint on the spread of the restoration PSF 
of the form

k =  f  f  c ( x , y ) \ f ( x , y ) \ 2 d x dy  (5.2)
J — o o  * /— OO

where the empirical penalty function c weights the energy of the restoration 
kernel and k is a  constant. The empirical penalty function is small near 
the origin and increases away from the origin to  restrict the spread of the 
restoration PSF. The motivation is to keep the effective size of the restoration 
PSF small so that the effect of truncation is minimal. This constraint is 
in addition to the constraints suggested by Smith on restoration noise and 
composite PSF energy in minimizing the radius of gyration of the composite 
PSF power density.

Riemer and McGillem[4,5] account for windowing in the derivation of the 
restoration filter by imposing a  penalty on the spread of the restoration PSF. 
Even so, the specific processing constraint (i.e., the actual window) is not 
explicit in the derivation of the restoration filter.

The least-squares method can be used to generate a small kernel to  ap
proximate a large PSF. Let h be the transfer function of a  previously defined 
restoration filter with a large PSF and h' be the transfer function of a  small 
kernel that approximates it. The least-squares approximation will minimize

52 =  (5.3)
f l  V

The individual elements of the small kernel h'  are determined by substituting 
for the transfer function of the small kernel in Equation 5.3 using the equality

h* = F { h ' }  (5.4)

and then differentiating S 2 with respect to the non-zero elements of h'. The 
result is a  set of linear equations whose solution minimizes S 2.

This procedure can be compactly represented using matrix notation:

S2 =  ||lV— h ||2
=  | |W h ' - h | | 2 (5.5)

where ||- || is the complex Euclidean norm, li is the m atrix containing the M N  
terms of the transfer function of the restoration filter to  be approximated, 
h ' is the m atrix containing the M ' N 1 terms of the small kernel (M* <  M
and N '  <  N) ,  and W  is the M N  x M ' N 1 discrete Fourier transform matrix
(h ; =  W h ;). Differentiation yields

| j £  =  2 W ( W h '- f l )  (5.6)
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where the V  exponent is the conjugate transpose. Setting this system of 
equations equal to zero and solving for the small kernel yields

h ' =  (W *W )-1 W *h
=  W # h  (5.7)

where W #  =  (W *W )-1 W “ is the generalized inverse of the transform ma
trix.

The least-squares approximation in Equation 5.7 provides little more con
trol over the imposition of spatial constraints on the kernel than does win
dowing. However, a weighted least-squares measure gives some control over 
the approximation and, indirectly, the restoration:

s 2 -  (5-8)
f t  V

where c is a penalty function. For example, Schutten and Vermeij[7] empir
ically set the penalty function to the inverse of the approximated transfer 
function ft-1 at frequencies where signal dominates noise (i.e., low frequen
cies) and to a minimal value where noise dominates signal (i.e., high frequen
cies). Schutten and Vermeij[7] attem pt to shape the windowed approxima
tion based on restoration quality. This approach designs a restoration filter 
and then designs an approximation to it; there is no direct coordination 
between the two steps.

5.3 M in im izing  th e  C om p osite  P o in t Spread  
Function

The techniques of Section 5.2 derived small kernels indirectly by first defining 
a restoration filter with a large PSF and then generating a  small kernel 
approximation. The methods of this section impose a  constraint on the size 
of the restoration kernel as a part of the problem statem ent so the derivation 
leads directly to a small restoration kernel. These techniques derive the small 
kernels by minimizing the composite PSF. The composite PSF g , introduced 
in Chapter 4, is the combined PSF of acquisition and restoration g = h * f .  In 
this approach, the character of the scene is not considered; a  direct method 
th a t accounts for the character of the scene is described in the next section.

F!rieden[8] suggested a direct approach for generating small restoration 
kernels tha t is based on minimizing the magnitude of the side lobes of the 
composite PSF g while constraining the width of the central lobe. Generally, 
the width of the central lobe of the composite PSF is inversely related to
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resolution—a PSF with a narrow central lobe has a wide frequency pass- 
band, while a  PSF with a  wide central lobe attenuates high frequencies. By 
fixing the width of the central lobe at xq, Frieden affects the resolution of 
the restoration. Frieden presents a one-dimensional model, so the constraint 
on central lobe width is

g ( x 0) =  0. (5.9)

Large side lobes will cause ringing adjacent to sharp edges. FYieden deter
mines the maximum side lobe:

 W ) -------------- ( 5

The value of S  is minimized using a  search procedure to  determine the kernel
values.

Stuller[9] applied the method of Smith[6] to the problem of determining 
a small restoration kernel. The radius of gyration of the power density of 
the composite PSF

=  f?LS?oo(*2 + y2) \9(x ,y ) \2 d*dy  , B11>
J? „ S ? „ \g (x ,y )\3 d xd y  ;

is minimized subject to  a constraint on the expected noise energy in the
restored image:

E { | / * e |2} =  <r! (5.12)

and a normalizing constraint:

/OO fOO

/  k (* ,y ) | dxdy  =  1. (5.13)
■00 »/—00

Posed as a discrete problem using matrices, the restoration kernel will mini
mize

S 2 =  (5.14)
f - R h f

where A  is the m atrix of weighted autocorrelation values of the acquisition 
PSF:

A [m i1n 1;m 2,n 3]

/ o o  ro o

/  ( x 2 +  y2)h {x -  m u y -  n \ ) h { x  -  m2, y -  n2) d xd y  (5.15)
■oo J  —OO
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and R h is the m atrix of autocorrelation values of the acquisition PSF. Intro
ducing Lagrange multipliers for the constraints of Equations 5.12 and 5.13 
yields

F  =  f A f - A 1( r R hf - l ) - A 2 ( r R ef - CT2) (5.16)

where R e is the m atrix of noise autocorrelation values. Minimization requires 
d F / d f  =  0:

A f — AjRfcf +  A2R ef  =  0. (5.17)

Note tha t this is an eigenvector-eigenvalue equation:

Aif =  R h-1 (A  +  A2R e) f . (5.18)

Solving Equation 5.17 for A  and substituting into Equation 5.14 yields

S2 = Ai -  A2a 2. (5.19)

The procedure for determining the restoration filter values is to  vary A2. For 
each A2, S 2 is minimized for the smallest eigenvalue Ai. The pair of values 
\ i  and A2 that minimizes S2 determines the values of the restoration kernel.

The techniques described in this section are based on minimizing the com
posite PSF. This approach does not require any knowledge of the scene, but 
neither can it make use of such knowledge when it is available. Nonetheless, 
these techniques have proven to  be relatively successful in several experi
ments. Stuller[9] concluded th a t for the one-dimensional case, only a  very 
small improvement in the composite PSF was obtained by using a restoration 
kernel exceeding five elements. Chu and McGillem[lO] confirmed this conclu
sion for images with Gaussian blur using a generalized weighting function for 
the power density of the composite PSF—that is, in place of Equation 5.11, 
they used

0 2  _  JZo SZo w  (g» y)  19 ( g ,  y ) l 2 dx dy
E » S 5 » \9 t* iV ) \2 d*dv ' ( • >

Saleh[ll] used the method of Backus and Gilbert[l2] to generate small ker
nels. Based on experiments with one-dimensional kernels of 9 elements and 
fewer, Saleh concluded that progressively increasing kernel size yielded di
minishing improvements. All of these results indicate that small kernels can 
be effective at restoring images.
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5.4 Small, Least-Squares Kernels

Lahart[13] used the minimum mean-square-error approach of the Wiener 
filter to  generate spatial kernels. He derived the kernel in the spatial domain 
by minimizing the expected mean-square difference between the scene s and 
the restored image r:

s 2 =  £ £ K m >n ] - r [m >n ]l2 (5-21)
m n

Minimization with respect to the kernel elements requires d S2/ d f  =  0 and 
is realized when

E { p * p } * f  =  E { s* p }  (5.22)

Assuming the scene and noise are stationary processes and the noise is signal- 
independent yields

E { p * p } =  h * R a * h -  + R e (5.23)
E {.s*p} =  R a* h _ (5.24)

where R a and R e are the autocorrelation matrices of the scene and noise and
h_ is the index reversed acquisition PSF (/i_ [m, ?i] =  h [—m, — n]).

Lahart limits the size of the restoration kernel by observing th a t E { p * p ]  
and E { s  +p)  are small if the distance between points is greater than 2Wf, +  
W s — 2 where W& and Wa are the widths of the acquisition PSF h and the 
scene autocorrelation R a respectively. Lahart therefore limits the radius (or 
half-width) of the restoration kernel to 2W h+W a—2 by truncating the arrays 
in Equation 5.22 before solving. Lahart does not impose a  constraint on the
kernel; the size of the kernel is dictated by the character of the scene and
the PSF.

While the width of the autocorrelation of the acquisition PSF is typically 
small, the width of the autocorrelation of the scene may be large. If the 
resulting restoration kernel is very large it is impractical. Lahart presents an 
example where the width of the acquisition PSF is 3 pixels and the width of 
the scene autocorrelation is 5 pixels. A scene with an autocorrelation width 
this small would have a  great deal of fine detail. Many scenes would have 
wider scene autocorrelation functions. Even so, the resulting restoration 
kernel is 17 pixels across. A 17 x 17 convolution kernel cannot be efficiently 
applied in the spatial domain.

The algorithm developed in the next chapter derives mean-square-optimal 
restoration kernels, but with three significant differences from Lahart’s work. 
First, the motivation for constraining the kernel is to limit processing. Lahart
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derived kernels to implement adaptive processing and allowed the problem 
to  dictate the size of the kernel. However, kernels as large as Lahart’s are 
impractical for spatial processing. Smaller restoration kernels, defined for 
efficient processing, can yield excellent results. Second, the problem is de
fined so as to account for sampling and display—im portant considerations 
th a t Lahart and others did not address. Third, the restoration kernel is 
derived using a  frequency-domain formulation. Frequency-domain analysis 
of sampling and reconstruction is straightforward. This approach is easily 
understood and in keeping with the traditional Wiener filter derivation.
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Chapter 6

O ptim al Sm all-K ernel 
R estoration

The Wiener filter is probably the best-known and most-widely-used image 
restoration technique. Given a  few assumptions and some knowledge of the 
system, the Wiener filter minimizes the expected mean-square restoration 
error (MSRE). While MSRE is by no means a perfect metric for restoration 
quality, it is a useful measure that lends itself to mathematical analysis and 
yields an implementable, optimal filter. As noted in Chapter 4, the Wiener 
filter can be criticized on several points, but no alternative technique has 
gained wider acceptance. In many applications, for example those requiring 
television-rate processing (30 images per second), the most serious drawback 
of the Wiener filter is its high computational cost. Although small spatial 
kernels, such as those described in Chapter 5, do not have as much capability 
or flexibility as the Wiener filter, they can be applied with much less com
putation. This chapter describes the design of small, Wiener-like restoration 
kernels that, subject to explicit spatial constraints, minimize MSRE.

Because the mathematics of this chapter is involved, Section 6.1 simpli
fies the problem by considering a one-dimensional, discrete system with no 
sampling or display. Section 6.2 addresses the one-dimensional, end-to-end 
restoration problem based on a more comprehensive model th a t includes 
sampling and display. Section 6.3 deals with two-dimensional restoration.

82
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6.1 One-Dim ensional D iscrete R estoration

6.1.1 Formulation

The one-dimensional, discrete image formation and spatial restoration pro
cess is illustrated in Figure 6.1. The discrete image is assumed to have been 
formed by the convolution of the PSF and scene and the addition of noise. 
The objective of restoration is to  produce a more accurate image of the scene 
by correcting for the effect of the PSF. Noise interferes with the ability of 
the restoration filter to accomplish this goal.

Mathematically, the process in Figure 6.1 can be described equivalently 
by equations in either the spatial or frequency domain. The digital image is

P N  =  T7X )5 K JM ™ - » ' ]  +  «[«] t6-1)
JV n'

and the spectrum of the image is

p [u] =  s [u] h [v] +  e [u] . (6.2)

The restored image is

r M  =  T j Y , p [ n ' ] f \ n ~ n '}
J V  n '

=  ^  X s [n"]h[n' -n"]  + e [ n ' j j / f n - n ' ]  (6.3)

and the spectrum of the restored image is

f[u\  =  (s [u] h [v] +  e [i/]) /  [u] . (6.4)

The spatial kernel /  (or the equivalent frequency-domain filter / )  is de
fined so that the restored image is as much like the scene s as possible. Both

Point  Spreod 
Fvnct ion{PSF)

h
S e n io rNoisee

/Fejforation
K ernel

digital
Scene

S *€>
D tg i to t  JL R e s to re d
Im a g e  1 "" ^rno9*

p s-y r

Figure 6.1: Discrete Image Formation and Spatial Restoration
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the Wiener filter and the mean-square-optimal small kernel use the MSRE S 2 
as the operative measure of restoration quality. ParsevaPs Equation equates 
MSRE and the energy of the error in the frequency domain:

S 1 =  i s { s F I > M - ’- [ n ] | ! }

=  (6-5)

where E  is the expectation operator.

The derivation assumes that the scene and noise processes are uncor
related and th a t the autocorrelation functions (or equivalently the power 
spectra) of the scene and noise processes are known. These assumptions are 
motivated by mathematical convenience and may not be realistic in some 
applications. However, even if the assumptions do not hold, the Wiener fil
te r and mean-square-optimal small-kernel restoration may still yield good 
results. Expressed as frequency domain equations, the assumptions are

JS{ |IM I2} =  # .M  (6.6)
E{s [v]em[v]} =  0 (6.7)
E { s m[v]e[v]} =  0 (6.8)

E{\e[u]\2} =  # .[„ ] .  (6.9)

The use of the expectation operator does not necessarily mean th a t both the 
scene and noise are random processes. For example, these conditions would 
be satisfied by a deterministic scene with known power-spectrum corrupted 
by zero-mean, white noise with known energy. In th a t case, the expectation 
operator would not be needed for the scene (in Equation 6.6). Nevertheless, 
for generality, the expectation operator is used throughout. (As described in 
Chapter 2 the power-spectra of the scene and noise are real and symmetric.)

Using Equations 6.6-6.9, the expression for the expected MSRE can be 
written in a form that is suitable for minimization:

= E r ("IK'S'M-’‘‘ M)J

=  e  ( l1 M l 2 -  ‘  M  r  M  -  r  M f  M  +  lf  M l 2)  j
=  E  ( e  {is M l 2}  -  e  {s M  r -  M )  -  e  { ?  M  f  M )

1/

+  £ { l # M I 2} ) -  <6 -1 0 )
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The four terms of this expression can be rewritten as

£ { | iM I2} = i ,H  (6.11)
=  £ { * M  ( « > ] * > ] +  * > ] ) / » }
=  b  {|S Ml2} fr M / -  H + E {I M «■ M) /■ M
=  s . M ^ M / ’ M (6 .1 2 )

E { r  [i/] f M} = ^  {a* M (5 [i/J A [*/] + c [|/]) /  [i/]}

=  b  {|I Ml2} h M / > ] + B { r  M i M} f  M
=  $,[v]h[v]f[v]  (6.13)

£{|f[i/]|2} = £?{(s[i/]A[*/] + c[i/])/[i/](S“[i/]A', [i/] + r
=  e  { || Ml2} \h m |! | /  M f + E {i M 8- M) * M | /  M f 

+ e  {I- M «M> i-  M | /  M f + e  {|s Ml2} | /  M f  
=  « ,  M M f | /  M f  + *■ M | /  M f
=  ( s . M ^ M f  +  * . M ) | / M f  • (6-ii)

Substituting these four expressions into Equation 6.10 yields

s 2 =  E ( * . M - « . M * ’ M / * M - » . M * M / M
+  ( $ 3  M  \h H |2 +  $ e [v]j | /  [v]|2)  . (6.15)

This expression for MSRE is a quadratic function of the filter values / [ u] 
and it is convenient to write the mean-square error as

5 2  =  S  (« M  M /"  M -  M / M  +  f l M l / M f )  (6.16)

where

a[v] = $ a [u] jA [v]|2 +  $ e [u] (6.17)

b[v] =  $ a [i/]A*[r/] (6.18)
c[u] = $ s [i/]. (6.19)

Except for the restoration filter / ,  all of the components of Equation 6.16
are assumed to be known: $ s is the scene power-spectrum, $ e is the noise 
power-spectrum, and h is the system transfer function.

The expression for MSRE in Equation 6.16 is in a. form th a t is suitable for 
minimization. Section 6.1.2 derives the discrete Wiener filter. Section 6.1.3 
places spatial constraints on the kernel before deriving the mean-square- 
optimal kernel values.
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6.1.2 D iscrete W iener F ilter

Though the expected MSRE, S 2 in Equation 6.16, is real, the values of the 
filter f  may be complex. Therefore, minimization of S 2 with respect to the 
filter values requires consideration of both phase and amplitude. (The same 
approach could be followed using the real and imaginary parts instead.) Let 
f p denote the magnitude of the filter and denote the phase:

f[u]  =  f P [v] exp {if,}, [i/]) . (6.20)

Substituting in the expression for MSRE (Equation 6,16) yields

5 2  =  H  (c M] “  b Ml fp M  exP (-*7* Ml)

~  ~b* W \ fp Ml exP (*'A  M l) +  « Ml fp M f )  * (6.21)

The optimal value at each frequency is determined independently. Consider 
the phase component first:

t j t t  =  ** M  fp M  e x P  ( - * ' A  M )  -  ibr M  fp M  e x P  (*A  M )d U  [v]

= ifp M  {b [y] exp { - iU  H )  -  S* [u] exp (i/* [*/]) )
=  0. (6.22)

Minimization with respect to phase requires that either f p [u] =  0 or

b [u] exp { - i f 4, [*/]) =  b" [v] exp (i*A  [m]) (6.23)

Equation 6.23 is used in this form in the mathematics below, but it can be 
simplified further to reveal that the phase of the optimal filter must be the 
negative of the phase of the system transfer function:

A M  =  - h \ v \  (6-24)

In words, the filter should undo any phase shift introduced by the system. 
Now consider the amplitude of the filter:

d S 2
=  -b[v]  exp ( - i f t  [1/]) -  b’ [v] exp (if* [»/]) +  2a [v] f p [v]

dfp  M
=  0. (6.25)

At any frequency u, where a [u] =  0, the Wiener filter is not defined. How
ever, it is possible to separate the question of mathematical existence from 
the filter’s practical application. The condition a [u] = 0 occurs only when
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the system is not expected to generate a  signal a t tha t frequency. If there 
is no energy at th a t frequency, however, there should be no restoration and 
therefore, in practice, the Wiener filter value at th a t frequency is defined as 
zero. Otherwise, minimization with respect to amplitude requires that

h V \  -  2 S H  ■ ( J

Together, the expressions for amplitude and phase define the Wiener filter:

fW )  = fp M  exP (»7* M )
_  (ft [v] exp (~ iU  [H) +  ft* [v] exp (if# [y])) exp ( i f 4  [;>])

2a \v\

_  2ft [v] exp (-?‘/^  M ) exp («A M )
2a [ u ]

b[v]
a[u]

[u] h* [v]
(6.27)

This completes the derivation of the traditional, discrete Wiener filter f .  
Given the model in Figure 6.1 and knowledge of the power-spectra of the 
scene and noise and the system transfer function, this is the filter th a t min
imizes expected mean-square restoration error.

The model in Figure 6.1 depicts restoration using spatial convolution. For 
spatial restoration, the Wiener filter /  must be transformed to the spatial 
domain using the inverse Fourier transform. However, the resulting spatial 
kernel f  is as large as the image p, so the computational cost of the convolu
tion is prohibitive. Therefore, the Wiener filter is almost always applied in 
the frequency domain by taking the transform of the digital image p, multi
plying by the Wiener filter / ,  and then taking the inverse transform of the 
product pf .  This procedure is depicted in Figure 6.2.

6.1.3 D iscrete Spatially-Constrained Kernel

The computational cost of convolution is proportional to the number of 
nonzero elements in the kernel. Because of this, spatial kernels are not prac
tical unless they have only a few nonzero elements. If the spatial kernel 
is restricted to a few non-zero values, spatial convolution requires signifi
cantly less computation than frequency-domain restoration. The algorithm
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Figure 6.2: Discrete Image Formation and Frequency Restoration

presented in this section constrains the kernel to a  few specific locations. 
The (unconstrained) Wiener filter is mean-square-optimal, so the spatially- 
constrained kernel cannot do better. However, it may perform nearly as well. 
In practice, the most significant elements of restoration kernels are located 
near the kernel center and elements far from the center are small. Therefore, 
it is reasonable to expect that a  small spatial kernel with a few well-chosen 
values near the kernel center can be nearly as effective as the Wiener filter.

In  the derivation of the previous section, the Wiener filter is defined in 
the frequency domain by the equations

“M/M =  &M v =  0 , — 1 (6.28)

where

aM = *.M|*Mf + *.M (6.29)
b\u] =  $ a [v]hm[v]. (6.30)

The spatial domain equivalent of this frequency domain product is the con
volution equation

a* f  = b (6.31)

where

« N  =
V

»M  =  E iM W jv " .
V

This convolution can be equivalently expressed as a linear system of N  equa
tions in N  variables (the spatial kernel values) as

(6.32)

(6.33)

A f =  b (6.34)
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where the N  X N  coefficient matrix A  is

A  [nj, n 2] =  j j d  [n, -  n2] , (6.35)

the N  x 1 result m atrix b  is defined as in Equation 6.33, and f  is the N  x 1 
m atrix of kernel values to be determined. (This system of equations is con
ditioned on periodic images and circular convolution.)

In Equation 6.34, there are as many equations as image pixels. However, if 
the size of the kernel is constrained, the system of independent equations can 
only be as large as the number of nonzero elements in the kernel. The optimal 
spatially-constrained kernel is specified by the system of linear equations 
whose solution will minimize MSRE subject to the constraints.

The spatial constraints on the kernel are expressed as a nonempty set of 
spatial locations, C  C {0.. .JV — l}, for which the kernel can be nonzero. 
The elements not in the constraint set must be zero:

f [n]  =  0 if (n mod N ) £  C.  (6.36)

If all of the elements in the kernel are allowed to be nonzero (i.e., C  =  
{ 0 . . .  N  — 1}), then the optimal kernel is the inverse transform of the  Wiener 
filter (i.e., the solution of Equation 6.34). (This observation is proven in 
Section 6.1.4.)

The expression for expected MSRE in Equation 6.16 is defined in terms 
of frequency components:

s 2 = + (6.37)

Before this expression can be minimized with respect to the kernel elements 
in the constraint set, it must be expressed in terms of those values. The 
transfer function of the kernel is

/  M  =  (6.3S)
nfzC

Substituting this expression into Equation 6.37, yields the expected MSRE 
in terms of the (unrestricted) kernel values:

S 2 =  E  ^  M  -  i  M  ^  E  / *  M  wgA  

- 8’ M ( i  E / M KV') +«M 4 E / M ’V'
V '  n ' e c  j  ■*' n 'G c
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= E w - s l r  M  E IM  W  - i  E f  [«') E  i M
v n'ec " JV „/gcr V

+  j f j  E  E  /■ M  /  K )  E  4  M
J n 'g C  n"G C i'

=  -  4  X2 / * M W
^ iv  n 'g C

- I  E i  M6’ M ■+ 4  E E r  M f  [""1«[n' - n"]. (6.39)
JV n'ec n'eCn"eC

For real systems (i.e., the scene s, system h t and noise e are real-valued), 
the optimal kernel /  and matrices a and b are real-valued. (A proof of this is 
given in Section 6.1.4.) In the interest of generality, however, Equation 6.39 
allows for complex values. Let / r and /,■ be the real and imaginary parts of 
the kernel:

S 2 =  E ^ M - ^ E r M i M - ^ E / M » ' M
V Jy n'ec ly n'ec

+  - ik  £  H  f m M  f  \n"\a K  -  n '1
1 n'eCn"eC

=  E £ M - ^ E ( / r  M  -  if i  M )  b [n]
*> JV n 'g C

- j s E U t ["'] +  ih  M )  v  W
JV n'ec

+  4 t E  E ( / r M - i / i M ) ( / r [ » 1 + i / i l » ' M » ' - " T  (8.40)
JV n 'g C  n "€ C

The array a is Hermitian:

a [n1 -  n"} =  £  ($« M  M f  +  N )  W # n'~nU)

=  a* [n" — ??/], (6.41)

a property tha t is used below in determining the optimal spatial filter.

Minimization with respect to a kernel element /  [n] proceeds by differenti
ating S 2 with respect to  the real and imaginary components. Differentiating 
with respect to the imaginary component of a kernel element yields
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+  -jja S  /f [«'] [n -  »*'] + TH fr  [»'] a [n' -  n)
JV n '€ C  JV n '€ C

+  4 E  / f [ n ' ] a K - n ]
JV n'ec

^  ^  ^ _  w  T*c fr  ^ a ~

+ 1̂ 2 E  /iM « [n  -  n'] + jSj E  /r fa 'K  [n “  ”1
JV n'ec JV n'ec

+ 4 E  /,[n V ["-«']
* 2 n'ec

= — e  ^
JV ^  n'ec

=  0. (6.42)

Similarly, differentiating with respect to the real component of a kernel ele
ment yields

+  p E  f i l n ' \ a [ « - » ' )  +  ^  E  / r M a f n ' - n ]
JV n'ec JV n'ec

- p E  /,• [n'j a [n1 -  n]
JV n'ec

=  - ^ W - ^ ' W + j J j  1 3  }r[n‘] a [ n - n ‘]

+  p E / i  M  o [" -  "1 +  £  / -  M  “• [" -  "']

i

N*

M 2  I'* J “  I ' t J T 7V2
n'ec JV n'ec

- i ? E  /f[n'] a" [«-«']
n'ec

^  N \ ' * c
=  0. (6.43)

The real and imaginary constraints are combined in the equation

Tf E /  Ma  ln “  n'l =  b M n £ C. (6.44)
JV n'ec

This is an equation with a number of unknowns equal to the number of 
unconstrained kernel elements. There are |C| equations in \C\ unknowns
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(the \C\ kernel values). This system of equations can be written as the 
m atrix equation

A c f c  =  b e  (6.45)

where A c  is the \C\ X \C\ coefficient matrix, fc  is the \C\ x 1 vector of kernel 
values, and b e  is the [Cl X 1 result vector.

T he matrices of Equation 6.45 are submatrices of the matrices of Equa
tion 6.34 for the Wiener filter. The vector fc  has values for the subset of 
kernel elements C  tha t are not restricted to have zero value. The vector b e  
contains only the elements of b  that are named in the constraint set C. Sim
ilarly, A c  is a principal submatrix[l] of the coefficient m atrix A —consisting 
only of the rows and columns of A  named in the constraint set C.

Equation 6.45 is the key result of this section. Its solution is the mean- 
square-optimal kernel that conforms to  the spatial constraints. The follow
ing algorithm summarizes the process of calculating the optimal spatially- 
constrained kernel.

A lg o rith m  6.1 Mean-Square-Optimal, Spatially-Constrained, Kernel for 
One-Dimensional, Discrete Restoration

In p u t:
N —Image dimension.
<3>a [A7]—Power spectrum of the scene.
$ c [A7]—Power spectrum of the noise. 
h [IV]—Optical transfer function of the system.
|C |—Number of kernel elements.
C—Constraint set (an ordered set of the locations of the kernel elements). 

O u t p u t :
/  [Ar]—Mean-square-optimal spatially-constrained kernel.

D ec la ra tio n s :
a [IV]—Wiener filter denominator. 
b [IV]—Wiener filter numerator.
a [A7]—Spatial transform of Wiener filter denominator. 
b [A7]—Spatial transform of Wiener filter numerator.
A c  [|C |, |C |]—Coefficient matrix. 
f c  [[Cl]—Input matrix. 
be [\C\]—O utput matrix. 
v —Frequency index. 
n i,r i2—Spatial indices.
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fourier.transform J()—Inverse Fourier transform subroutine. 
linearjsolverQ—Subroutine for solving a system of linear equations.

Execution:

begin
for v *— 0 to N  — 1 

begin
a [u] § ,  [v] [ft M f  +  [v]
% [V] *- [v] ft* [u]

end
a *— fourier_transform-1(d) 
b +— fourier_transform”l (ft) 
foreach n\ s.t. n i S C  

begin
bp [ord(ni in C )] <— ft[nj] 
foreach n2 s.t. n2 e C

A c  [ord (ni in C ) , ord (n2 in C)] *— jja  [ni — n 2]
end

f c  *— linear _solver(.4c, be) 
for ni <— 0 to N  — 1 

if nj 6 C
f  [»i] f c  [ord (711 in C)\ 

else
f [ n i ] 4 - 0

end

6.1.4 Theorem s

Several im portant observations can be made. First, if none of the values 
of the kernel are restricted (i.e., the kernel can contain all of the spatial 
elements), the optimal kernel is the inverse Fourier transform of the Wiener 
filter. Second, if the Wiener filter exists, then for any spatial constraints there 
is a unique optimal constrained kernel. Third, if the system is real-valued, 
the optimal kernel is real-valued. These three observations are expressed in 
the following theorems.

T heorem  6.1 If none o f the kernel values are restricted, then the optimal, 
spatially-constrained kernel is the inverse Fourier transform o f the Wiener 
filter.
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Proof: If C  =  { 0 ...  N  — 1}, all of the rows and columns of A  are retained 
in the submatrix A c , so A  =  A c- Likewise, all of the rows of b are retained 
and b =  be- Therefore, both vectors f  and fc  are defined by the same set 
of equations.
□

When the m atrix A c  is invertible, Algorithm 6.1 will generate the opti
mal kernel. If the matrix A c  is not invertible, the algorithm will fail. When 
is A c  invertible? In general, this question cannot be answered a priori, but 
for the im portant (and typical) case that the Wiener filter is defined at all 
frequencies, there is an optimal kernel for any spatial constraints. If the 
Wiener filter is not defined at some frequencies, then for a particular spatial 
constraint the optimal kernel may or may not be defined.

Theorem  6.2 I f  the Wiener filter is defined a t all frequencies (i.e., for all u, 
a[u] 0 ), then for any spatial constraint set C there exists a unique optimal 
kernel.

Proof: The eigenvalues of the circulant matrix A are the values of its trans
form a, which are non-negative reals (Equation 6.17). Therefore, A  is posi
tive semi-definite. If the Wiener filter exists a t all frequencies then none of 
the eigenvalues are zero and A is positive definite. Matrix A  is positive def
inite if and only if x ‘A x  >  0 for all nonzero vectors x. Let x be any nonzero 
vector whose elements that are not in the constraint set are zero. Let Xc 
be the submatrix of x containing only the elements in the constraint set. 
(The m atrix A c  is the principal submatrix of the matrix A whose rows and 
columns are named in C.) Then x c 'A c X c  =  x*Ax >  0. Because x c  ^  0 is 
arbitrary, A c  is positive definite and hence invertible. (This is an application 
of the theorem th a t any principal submatrix of a positive definite m atrix is 
positive definite[l].) Under these conditions, the optimal, constrained kernel 
exists and is defined as

fc  =  A c 1 b c -

□
Note that the presence of noise at all frequencies (i.e., 4>e [u] > 0 for all 

v) is sufficient for the Wiener filter to be defined at all frequencies and hence 
is a sufficient condition for the existence of a unique optimal filter for any 
spatial constraint.

Inversion is an ill-conditioned problem. The condition number of a matrix 
bounds the relative error in the inverse in terms of the relative error in the 
data. The smaller the condition number, the less ill-conditioned the problem.

(6.46)
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It is appropriate to consider how the condition number of the coefficient 
m atrix A c  compares to the condition number of matrix A — that is, how 
does constraining the size of the kernel affect the conditioning of the defining 
equations?

C o ro lla ry  6.1 The coefficient m atrix o f the system  o f  equations deffning the 
constrained kernel is at least as well-conditioned as the coefficient m atrix o f 
the system o f equations deffning the Wiener fflter.

P ro o f: The condition number (relative to the spectral norm) of the Wiener 
filter coefficient m atrix is the ratio of the largest eigenvalue to the smallest 
eigenvalue:

_  max (A(A))
A "  min(A(A)) (6'47)

where A is an eigenvalue. The coefficient matrix A c  is a principal submatrix 
of the positive-definite, Hermitian matrix A. Therefore, from the inclu
sion principle (or interlacing eigenvalues)[l], the largest eigenvalue of A c  is 
bounded above by the largest eigenvalue of A:

max (A(Ac)) <  max (A (A )). (6.48)

and the smallest eigenvalue of A c  is bounded below by the smallest eigen
value of A:

min (A(Ac)) >  min (A(A)). (6.49)

The m atrix A c  is normal, so its condition number is also the ratio of its 
largest to smallest eigenvalue:

< • «
Therefore,

_  max (A(Ac))
KA°  min (A(Ac)) 

max (A(A))
~ min (A(A))
=  «a  (6.51)

□
Though the derivation of the optimal kernel allows for complex-valued 

systems, imaging systems are real-valued. For real-valued systems, the fol
lowing theorem can be established.
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T h e o re m  6.3 For real systems, i f  a unique optimal kernel exists, then it is 
real.

P ro o f: Recall the definitions of a and b:

» N  =  (6 '53)
V

If the scene, PSF, and noise are real, their power spectra are real and sym
metric. The pointwise product or sum of real, symmetric arrays is real and 
symmetric, so the product of the power spectra of the scene and PSF plus 
the power spectrum of the noise is real and symmetric. The inverse Fourier 
transform of a real and symmetric array is real and symmetric, so a is real 
and symmetric. If a is real, A is also real. Any submatrix of a  real array is 
real, so A c  is real. If A c  is real, so is its inverse A q1 (if it exists).

If the scene is real, its power spectrum is symmetric and real, If the 
PSF is real, its transform is Hermitian (i.e., a  symmetric real part and an 
anti-symmetric imaginary part). The conjugate of a Hermitian is Hermitian, 
so the conjugate of the transform of the PSF is Hermitian. The pointwise 
product of a symmetric function and a Hermitian function is Hermitian, so 
the product of the power spectrum of the scene and the conjugate of the 
transform of the PSF is Hermitian. The inverse transform of a Hermitian is 
real, so b is real. Therefore, b and b e  are also real.

The optimal kernel constrained by the constraint set C  is defined by the 
linear system of equations A c /  =  be- If a unique solution exists, A c  can 
be inverted and fc  =  A ^ b c -  If A q1 and b e  are real, then fc  is real.
□

6.2 End-to-End Restoration

6.2.1 Formulation

Sampling and display are important components of the end-to-end imaging 
process. The discrete imaging model used in the previous section simplifies 
the derivation of the restoration kernel by disregarding sampling and display. 
A more accurate, end-to-end model of the imaging process is pictured in 
Figure 6.3. The formulation of the Wiener filter based on this model is 
detailed in Huck et al.[2] and Fales et al.[3].
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Figure 6.3: End-to-End Imaging Model and Spatial Restoration

The digital image is

p[n] =  f  s (x1) h (n — x') dx'  +  e [n]. (6.54)
J—OO

As in the previous section, periodicity of the scene is assumed. This assump
tion is dictated by computational considerations—periodicity of the scene 
allows the derivation to be restricted to discrete frequencies. The discrete 
spectrum s of the periodic scene $ is the given by the Fourier coefficients

s[u] = s { x ) W ^ x dx. v =  0 , ± l , i 2 , . . .  (6.55)
1 \ J - 00

(Recall that the frequency index [v] corresponds to the spatial frequency 
(v fN) . )  The transfer function h of the system is the continuous Fourier 
transform of the PSF h :

h (v) =  f  h ( x ) W ~ vxdx. — oo < v < oo (6.56)
•/ —OO

The acquisition transfer function h is not discrete, but its value is only of 
interest at the component frequencies of the periodic scene. For these discrete 
frequency components, h [u] = h {y/N).

The frequency-domain equation corresponding to Equation 6.54 is then 

P[v\ =  S3 ^ lu ~  ^ lu ~  kN]  +  e [v]. (6.57)
fc=—oo

The arrays p  and e are the (periodic) discrete Fourier transforms of the arrays 
p  and e respectively. In Equation 6.57, sampling is manifested as the folding 
of the sideband frequencies into the baseband.

After restoration, the continuous, displayed image is
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The spectrum f  of the displayed image r  is discrete and aperiodic:

r[v] =  p[u)f[u]d[u] v  =  0 ,± 1 ,± 2 , . . .  (6.59)

where the restoration filter transfer function /  is the DFT of the kernel /  
and the display transfer function d  is the continuous Fourier transform of 
the display PSF:

d(v) — f  d ( x ) W ~ vx dx. — oo <  v <  oo (6.60)
J — OO

The display transfer function d is not discrete. However, just as for the 
acquisition transfer function, only its values at discrete frequencies are used 
to display the periodic result (d[v) =  d(v /N) ) .

As in the previous section, the expression for MSRE must be rewritten 
in terms of the unknown filter values f .  The expected MSRE is

S2 =

=  E  I S M - f M l 2 }  (6 .6 1 )
l i / = “ CO J

In addition to the assumptions in Section 6.1 (Equations 6.6-6.9), the ele
ments of the scene spectrum that will be aliased to a single frequency (the
sidebands) in the sampled image are assumed to be uncorrelated:

JS { IM r [„ +  *»]} =  { J - M  (6.62)

E{S[u]em[ u]} =  0 (6.63)
E{s*\v]e[u]}  =  0 (6.64)

£ { |e M f }  =  * .M -  (6-65)

After a  great deal of algebra, it can be shown tha t again 

N — l

S 2 = E  [I  M  -  s M  / ■  M  -  »■ M  /  M  +  6  M 1 /  M l  j  ( e.ee)
l>=0 '  '

where now

a[u] = I f )  +

x( E \ ^ -
\fc = -o o

kN] 2 I (6.67)
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b[v) =  f ;  [ i / -  kN]  (6.6S)
fc=—OO

OO
c M  =  £  $ „ [ v - k N ] .  (6.69)

k=—oo

These equations are consistent with those of Fales et al.[3]. The expression 
for the MSRE for end-to-end restoration in Equation 6.66 is identical to the 
expression for MSRE for discrete restoration in Equation 6.16, except that 
the definitions of a, 6, and c are different.

6.2.2 End-to-End W iener F ilter

The derivation of the Wiener filter in Section 6.1.2 is not conditioned on the
A

definitions of a, 6, c, so the derivation for the end-to-end Wiener restoration 
filter is identical. The result is again

/ > ]  =  («.*»

where a[u] and 6[i/] are defined in Equations 6.67 and 6.68.

If there is no aliasing expected (i.e., $ a[v]h[u] =  0 for \v\ > N / 2 ) and 
the display is “ideal” (i.e., d is the unit pulse), then the optimal, end-to-
end filter is identical to the traditional formulation of the Wiener image
restoration filter. Of course, in practice this is seldom if ever the case.

6.2.3 End-to-End, Spatially-Constrained Kernel

As in Section 6.1.3, the optimal kernel is calculated by solving the system of 
equations

A cfic — b e  (6’71)

where A c  and b e  are constructed from the arrays a and b which are the 
inverse discrete Fourier transforms of 6 and b defined in Equations 6.67 and 
6 .68.

Only a few changes in Algorithm 6.1 are needed to accommodate the 
end-to-end model. The scene spectrum s defined in Equation 6.55 may have 
an arbitrarily large number of frequency components. In practice, the series 
must be finite, but the effect of any frequency truncation beyond two to 
four times the Nyquist limit is typically minimal. Most scenes have little
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energy a t high frequencies and the magnitude of the transfer function far 
beyond the Nyquist limit is effectively zero. Let N a be an integer-multiple 
of N  (N a =  SjyN for some integer S n )  such th a t the scene spectrum has no 
components at or beyond (±.N„/2 ). T hat is:

s [v] -  0 if \v\ > N a/ 2  (6.72)

It is convenient to store the N a coefficients of the scene spectrum in the same 
data structure as a  DFT, storing the negative components (—A/,/2 <  v < 
0) in the top half of a A7„-element array. The corresponding values of the 
acquisition and display transfer functions can also be stored in this manner. 
Then, the calculation in the following algorithm of a and b folds the sideband 
components into a  A7-element array as defined in Equations 6.67 and 6.68.

A lg o rith m  6.2 Mean-Square-Optimal, Spatially-Constrained, Kernel for 
One-Dimensional, End-to-End Restoration

In p u t:
N a—Scene spectrum dimension.
N —Image dimension.

[A/s]—Power spectrum of the scene.
$ e [Ar]—Power spectrum of the noise. 
h [Ara]—Acquisition transfer function. 
d [A/,]—Display transfer function.
\C \—Number of kernel elements.
C—Constraint set (an ordered set of the locations of the kernel elements). 

O u tp u t:
f  [A7]—Mean-square-optimal spatially-constrained kernel.

D ec la ra tio n s:
a [Ar]—Wiener filter denominator.
6 [A7]—Wiener filter numerator. 
fQ, 4 , td—Temporary variables.
a [A/]—Spatial transform of Wiener filter denominator. 
b [AT]—Spatial transform of Wiener filter numerator.
A c  [|C|, |C |]—Coefficient matrix. 
f c  [|C|]—Input matrix. 
be [\C\]—Output matrix, 
z/i, z/2—Frequency indices, 
n j , n 2—Spatial indices.
fourier_transform-1()—Inverse Fourier transform subroutine, 
linear_solver()—Subroutine for solving a system of linear equations.

E x e cu tio n :
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begin
for V\ 4— 0  to N  — 1 

begin

*6 4 - 0  
td 0

for u2 4— J'i to  N s  — 1 step N  
begin

ta *— ta + [u2] jA [l/2]|
<6 <- h  +  [^2] fr* [^2] dr [u2]
td td + |d [ 2̂]

end
a [  1/1] 4-  (ta +  $ e
b [v\\ 4— ^6 

end
a «— fourier.transform - 1  (a)
6  <— fourier_transform- 1(6) 
foreach ni s.t. ni G C 

begin
5c [ord(«i in C )] 4— 6 [raj] 
foreach n 2 s.t. n 2 £ C

A c  [ord (ni in C ) ,  ord (n 2 in C )] +- j$a [rij — n2]
end

f c  4— linearjsolver(.Ac j&c)
for n i 4— 0 to N  — 1 

if «i € C
/ [» i ]  f c  [ord (rtj in C)] 

else
/ [n i ]  4 - 0

end

6,3 Two-Dim ensional R estoration

6.3.1 Two-Dimensional W iener F ilter

The derivations of the two-dimensional discrete and end-to-end Wiener filters 
parallel those of Sections 6.1 and 6.2 and so are not presented. The two-
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dimensional Wiener filter is

=  W \ (6 -73)
where for discrete restoration

a[t*,v] =  [/i, v] |/t [//, v ) \ 2 +  $ e [ft, v] (6.74)

b[n,u] -  [/̂ , v\h* [^ ,v\ (6.75)

and for end-to-end restoration

=  (  £  E  $ a[ n - k i M , i / - k 2N ] \ h [ { j , - k i M , v - k 2N}\2
\ h i  = —c o  A'2= — o o

+  ( E  E  (6.76)
/  \Jti=-oo^=-oo /

o o  o o

h \ » A  =  E  E
A ' i = — o o  A ' j = — o o

(6.77)

6.3.2 Two-Dimensional, Spatially-C onstrained K ernel

The two-dimensional Wiener filter is defined for each frequency [/i, u] by the 
equation

2 k ,/] / k i /] =  (6.78)

The spatial-domain equivalent is the convolution

The constraint set C is the set of locations in the two-dimensional kernel that 
are not restricted to have zero value. The constraints on the kernel reduces 
this system of equations to |C| equations in jCj variables:

XTK7 X / f  [m/> a tm -  " ?/>n ~  n1 =  & \m ->n ] (m » ”•] G C. (6.S0)
M I S !  [m ',n ']6C

For discrete restoration, the values of a and b are defined from Equa tions 6.74 
and 6.75. For end-to-end restoration, the values of a and b are defined from 
Equations 6.76 and 6.77. Because discrete restoration is a special case of 
end-to-end restoration, only the algorithm for the two-dimensional, end-to- 
end, mean-square-optimal, spatially-constrained restoration kernel is given. 
The M 3 x N s arrays for the scene spectrum and the acquisition and display 
transfer functions are defined in the manner described in Section 6.2.3.
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A lg o rith m  6.3 Mean-Square-Optimal, Spatially-Constrained, Kernel for 
Two-Dimensional, End-to-End Restoration

Input:
M s,N a—Scene spectrum dimensions.
M , N —Image dimensions.

[Ma, JVa]—Power spectrum of the scene.
$ e [M, Ar]—Power spectrum of the noise. 
h [Mi, iVa]—Acquisition transfer function. 
d[Ma, N a\—Display transfer function.
|C |—Number of kernel elements.
C—Constraint set (an ordered set of the locations of the kernel elements). 

O u tp u t:
/  [M, Ar]—Mean-square-optimal spatially-constrained kernel.

D ec la ra tio n s: a[M ,Ar]—Wiener filter denominator. 
b [M, Ar]—Wiener filter numerator. 
t a ih jU—Temporary variables.
a \M, N \—Spatial transform of Wiener filter denominator. 
b [M, Ar]—Spatial transform of Wiener filter numerator.
A c  [\C\, |C |]—Coefficient matrix. 
f c  [\C\]—Input matrix. 
be [\C\]—Output matrix.

P2 i t'l, v2—Frequency indices, 
m ], m2 ,77], 7i2—Spatial indices.
twodJburier_transform_1()—Inverse two-dimensional Fourier transform. 
linearjsolver()—Subroutine for solving a  system of linear equations.

E xecu tio n :

begin
for pi <— 0 to M  — 1 
for v\ «— 0 to N  — 1 

begin 
ta *— 0

h i -  o
t j  i— 0
for P2 *— Pi to M s — 1 step M  
for v2 +— ui to N s  — 1 step N  

begin
ta <- h  +  [p2, u2] |/i [p2, i/2]|
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I * -|2d  [//2, v<j\\
end

a b i ,  ^1]«- (ta +  $ e b i ,  V\ ]) td 
Hv-uv\\ *- h

end
a <— twodJburier_transform-1(d) 
b *— t\vod_fourier_transform-1 (b) 
foreach [m ^ni] s.t. [m ^nj] 6 C  

begin
be [ord([m j,ni] in C )]«— 
foreach [m2,n 2] s.t. [m2,rc2] € C

A c  [ord ([m i,ni] in C ) , ord ([m2, n2] in C)]
*" MNa tm l "  m2’ ni ”  UA

end
/ c  «— linear jso lv e r^ c , be) 
for m i «— 0 to M  — 1 
for « i +— 0 to N  — 1 

if [mi,77i] G C
/[m ijU j] <- f c  [ord([ml l n 1] in C)] 

else
/[m i ,n i]  <- 0

end

6 .4  A s id e s

6.4.1 Sym m etry

Imaging system functions often exhibit symmetry. When symmetry is pres
ent, the size of the linear system of equations that defines the optimal restora
tion kernel can be reduced. Consider the one-dimensional, discrete equations:

A f = b (6.81)

where

A[n,,nj) = (*. M |&Mf + *. M) W#"-”1 (6.82)

b[n] = (6-83)

The power spectra of the scene and noise are symmetric. If the transfer 
function h is symmetric, then both a and b are symmetric and half the
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equations are redundant. In two-dimensions, radial symmetry can reduce 
the number of equations by nearly a  factor of 8.

As a  practical m atter, these savings in solving the system of equations 
th a t defines the optimal kernel are not very significant. F irst, only small 
kernels are practical, so the system of equations is always small. For example, 
a  49-element kernel is about as large as is practical. In this case, there are 
a t most 49 linear equations in 49 variables. Second, the restoration kernel is 
usually pre-computed, before the image is actually restored. Therefore, the 
cost of computing the kernel values is typically not important.

6.4.2 Generalized Inverse

The Moore-Penrose generalized inverse is another method for generating a 
small kernel. This technique is described in Chapter 5. The generalized 
inverse bears some similarity to the technique developed in this chapter. Both 
are mean-square optimal. However, the generalized inverse minimizes the 
mean-square difference between the small kernel and the inverse transform 
of the (unconstrained) Wiener filter. The technique described in this chapter 
minimizes the expected mean-square restoration error. The purpose of the 
kernel is to restore images, so restoration error is a  more pertinent criterion.
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C hapter 7 

A rtificial Scenes and Sim ulated  
Im aging

7.1 Experim ental M ethodology

Proper experimental methods are as im portant to digital image processing 
research as to other scientific pursuits. All scientific reports of experimen
ta l work should include a precise statement of the experiment, a  complete 
presentation of any non-standard algorithms, a clear description of the con
trolled environment, and a full discussion of results th a t addresses issues such 
as measures of success and generality of use. Two recent surveys of computer 
vision and image processing research conclude th a t many published papers do 
not adhere to  this standard[l,2]. This failure leaves questions about the valid
ity and reliability of results and makes replicating experiments and building 
on previous results difficult.

This chapter describes a software simulation environment for controlled 
image processing research. The simulation is based on the end-to-end imag
ing model developed in Chapter 3. This model is appropriate for a  variety of 
problems that involve image acquisition and display (e.g., image restoration, 
enhancement, and compression/decompression). By using a model-based 
simulation, research can be conducted with greater precision, flexibility, and 
portability than is possible using real systems[3,4]. Of course, the validity of 
the research depends on the completeness of the model, the accuracy of the 
simulation, and the correctness of the implementation. It is always im portant 
to confirm simulation results by comparison with actual data.

Section 7.2 describes methods for generating artificial scenes. Section 7.3 
details techniques for simulating the components of the digital image pro
cessing model developed in Chapter 3— image formation, sampling, noise,
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and image display. Simulated restoration results are presented in Chapter 8.

7.2 Artificial Scenes

Computer-generated artificial scenes offer greater accuracy, precision, flexi
bility, and portability than physical scenes. Research using physical scenes 
entails an inevitable degree of uncertainty and imprecision. The character
istics of physical scenes cannot be known directly; they must be measured 
indirectly using devices that may themselves be components of the research 
environment. Computer-generated artificial scenes are completely and pre
cisely known. Though it is not difficult to use a variety of physical scenes, it 
is very difficult to specify an ensemble with specific statistics. Ensembles of 
artificial scenes can be created using relatively simple techniques th a t give 
full control over im portant statistics. Many physical scenes are not portable. 
Artificial scenes can be easily communicated from one computer to another 
and exactly reproduced.

Artificial scenes should accurately model the im portant characteristics 
of physical scenes. Physical scenes fill the spatial continuum, but artificial 
scenes must be represented with a discrete da ta  structure. Physical scenes 
may have details finer than can be resolved by digital imaging systems. This 
fact has im portant implications for image acquisition—sampling is not in
vertible because high-frequencies alias at lower frequencies obscuring the 
actual components at those frequencies. This is seen as a loss of subpixel 
detail. Also, sampling is shift-variant—subpixel shifts of the scene relative 
to the sampling grid (sample/scene phase shift) produce varying images[5,6]. 
If artificial scenes are to  accurately simulate physical scenes, they must have 
the capacity to  contain subpixel details (frequency components beyond the 
Nyquist frequency).

Both types of two-dimensional artificial scenes described in this section 
have the capacity for high-frequency components. The first type, called 
Fourier scenes, are two-dimensional Fourier series. Techniques for generating 
Fourier scenes provide control over important mathematical and statistical 
properties of the scene, but no direct control over spatial structure. The 
second type of artificial scenes, digital scenes, are digital images with super
resolution—resolution higher than the sampling resolution. Techniques for 
generating digital scenes provide control over the spatial structure of the 
scene, but no direct control over im portant mathematical and statistical 
properties.
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7.2.1 Fourier Scenes

Fourier scenes are two-dimensional Fourier series. A scene specified by a 
Fourier series is periodic, is defined a t at every point (not just at the sample 
points), and can contain arbitrarily high spatial-frequencies. A Fourier scene 
is stored as a two-dimensional, complex-valued array S. The continuous scene 
is then defined by the array values as

* ( * , » )  =  E  E  (7 - i )
(izz—oo uzz— OO

For real-valued scenes, the complex Fourier series is Hermitian (£[p,v] =  
s* [ - // ,  -i/]).

A Fourier scene can have details finer than any sampling grid (i.e., it 
can contain frequency components above the Nyquist limits, \fi\ > M /2  or 
jvj >  N j 2). As a practical m atter, the size of the computer imposes a bound 
on the Fourier series; however, this limitation is seldom a problem, because 
the significance of the terms of the Fourier series generally decreases as fre
quency increases and typical imaging systems virtually eliminate frequency 
components th a t are well beyond the Nyquist limit. Therefore, truncating 
the infinite series in Equation 7.1 results in negligible error. Defining a bound 
for a  Fourier series involves a tradeoff between accuracy on one hand and 
computation and storage costs on the other. A series with frequencies two to 
four times the Nyquist limit in each dimension is usually sufficient for accu
rate simulation—the contribution of higher frequencies in most real systems 
is negligible.

Equation 7.1 is the Cartesian form for the Fourier series. It can be written 
equivalently in magnitude-phase notation as

o o  o o

s{x,V)  =  X  X  [/*»*']008 (27r(W + $ ) - S* [/*.*']) • (7.2)
( / = — o o

Again assuming real-valued scenes and Hermitian Fourier series, the magni
tude s p is an even function and the phase s$ is odd.

Specifying the magnitudes of the terms of the Fourier scene of Equa
tion 7.2 affords direct control over important statistics of the scene. Random
izing the phase components genera tes an ensemble of scenes. Two im portant 
ensemble statistics are the mean

rjs (x,y)  = E { s ( x , y ) }  (7.3)

and the autocorrelation

(7.4)
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The Fourier transform of the autocorrelation is the power spectrum 
Fourier scenes are real and periodic, so the power spectra are real, sym
metric, and discrete.

As defined in Chapter 2 , a  stochastic scene is wide-sense (or weakly or 
second-order) stationary if the mean and autocorrelation are independent of 
position—that is, the mean is constant:

£ { s (x ,y )}  =  77, (7.5)

and the autocorrelation is a  function of the distance between points:

£{■* (2 1 , 2/1) 5 (0:2^ 2)} =  #* (* i -  2 2 , 2/1 -  V*)- (7.6)

The stochastic scene is strict-sense stationary if all statistics are spatially 
invariant[7].

The following algorithm for producing scenes provides direct control over 
the mean and autocorrelation and generates a stationary, stochastic Fourier 
scene.

A lg o rith m  7.1 Generating Fourier Scenes

1. Set bound on the frequencies of the Fourier series. It is convenient 
to truncate the series at frequencies that are integer multiples of the 
sampling frequency (twice the Nyquist limit). That is, bound the series 
at ± M , / 2  cycles per M  pixels vertically and ±lV, / 2  cycles per N  pixels 
horizontally where

M . =  S mM  (7.7)
N a = Sn N  (7.S)

and Sjif and 5jv are integers, typically 2 or 4.

2 . Set the amplitude of the zero-frequency term  of the Fourier series to 
the expected value 77, that is desired:

5% [0,0] «- 77,. (7.9)

3. Set the amplitude of the other spatial frequencies of the Fourier series
to the square-root of the power spectrum th a t is desired:

5P[/i,^] <- y /$a [n,v}. (7.10)

(The power spectrum is real-valued and symmetric.)
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4. Set the phase of each spatial frequency term to an independent ran
dom variable with a  uniform probability density between — tt and jr. 
(For real-valued images, the phase must be antisymmetric, so only 
about half of the phase values are freely set.) In practice, the two- 
dimensional phase array s$ is created using a pseudo-random number 
generator. Randomizing the phase is motivated in part by the obser
vation that the phase of physical scenes typically looks random. More 
fundamentally, as proven later, this process for generating scenes is 
wide-sense stationary.

5. The values of the scene itself, s, are given by the Fourier series as in 
Equation 7.2.

This algorithm resembles a common analog procedure used by electrical 
engineers to generate physical signals by passing the output of a white-noise 
generator (a signal with constant spectral magnitude sp) through a filter 
with a  transfer function equal to the desired spectral magnitude[8, pp. 250- 
2]. The choice of a  uniformly distributed random phase is an obvious one 
(e.g., Gonsalves[9]), but the statistical implications of this choice should be 
analyzed.

L em m a 7.1 The expected value o f a stochastic scene produced by Algo
rithm  7.1 is independent o f  position.

P ro o f: From the linearity of the expectation operator:

E { * ( x ,y)} =  -® |H «p[M ,H cos(27r(^+^) -  s^[/i,v])|

=  X T ^ I//»I/]-E {co s(2’r ( ^  +  7 ^ ) - ’S«if^i/])} (7*11)
w

Except at the zero-frequency, the distribution of the phase s# is uniform, so:

(T.12)r 1 if [/*,*'] =  [0,0]
( 0 otherwise

Therefore:

E { s ( x , ij) }  =  Sp [0.0]
=  V, (7.13)

for any spatial location (x, y).
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L em m a 7.2 The autocorrelation o f a stochastic scene produced by Algo
rithm  7.1 is independent o f position.

P ro o f: From the linearity of the expectation operator:

— E  |  ^ Y 2  sp [pi,Vi] cos ( 2 j t +  ^ )  — St [/*i, r'l])^

x (  X) 3 P [m* cos ( 2 7 r ( ^  +  Offi) -  s# (p2, Va])) }
\M2,M2  /  J

~  X  X  Sp fall S P fal, *a] E  {cos (27 r ( ^  + 2JJ8-) -  S* [//!, *1])
Ml,VI M2,V1

x  cos (2n(lijp- + — §4, [^2, ^2])} (7.14)

The phase values are independent, so:

E  {cos (2tr(«Jf>- + Sty-) -  a# [a/!, t^]) cos (2ir(*j|f* + Sffi-) -  §t fa2, ^2])}

=  E  {cos (2?r(i!jjp--(- Zffi) — St fai, ^1])}

x E  {cos ( 2 t t ( ^  +  W  -  s t  faa, u2])}
=  0 where [pu  v j  ^  [/x2, 1/2] and [/i3, v{\ ^  [ - p 2, - v2] (7.15)

The remaining terms of the sum yield:

£ { s ( : r i ,y i ) s  (£2 , 1/2)}
=  2 £  ( I ,  [ft I/])* £  {cos (2t ( ^  +  -  J* [ft „])

M,V

x cos ( 2 t t ( ^  + ^ )  -  3* [At, I/])} -  sp [0,0] (7.16) 

Because 2 cos (a) cos (/?) =  cos (a  +  /?) -f cos (a- — /?):

£? {cos ( 2 t t ( ^  + i' f t ) -3+ [p, u]) cos ( 2 t r ( ^  + i$£) -  3* [^, z^])}

=  i s  {cos + £ !l#E l) -  21* [ f t !/[)}

+ lc o s (2 7 r (2 !^ 2 > + ! lV 2 l ) )

=  ic o s  (2ir(M 5£2l + [/..s.] ^  [0,0] (7.17)

Therefore:

{ 3  (mi, j/i) ^ (m2, t/2)}

=  + (7.18)
M,v
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This expression depends only on the distance between (£1, 2/1) and (x2, y2) 
and is therefore independent of spatial position (shift-invariant).
□

As an example, Algorithm 7.1 can be used to generate white noise (to 
an arbitrary spatial frequency). A noise process is white if the values in the 
scene are not correlated with each other. T hat is

E { s ( x 1 , y 1 ) s ( x 2 , y2)} =  E { s ( £ i ,y i ) } E { s (x 2,y2)} (7.19)

where ( i i ,y i )  ^  (£2 , 2/2)- Zero-mean white noise is generated with Algo
rithm  7.1 by setting the amplitude a t all non-zero frequencies to the square 
root of the expected of the spatial noise process normalized by the number 
of terms in the Fourier series M 3N 3:

[ 0 if [//, u] =  [0,0]
So In, v\ =  < ,-----------------------  (7.20)

[ \ ]R3 (0,0) J{MaN a) otherwise.

In practice, the series cannot be infinite, but if the highest frequency of 
interest in the scene is known (e.g., the sampling frequency is specified), the 
Fourier series can be made large enough to insure summation over a  full 
period for all implied scene elements. Under these conditions, the process is 
white (from the orthogonality of the cosine):

£M £i,y i)s(x2,y2)} = 12 cos + -{̂ V7-1))
( i ,V

_  |  i2a (0,0) if (an, 2/1) =  (£ 2 *2/2 )
(7.21)

0 otherwise.

The proofs of Lemmas 7.1 and 7.2 illustrate the control of Algorithm 7.1 
over the expected value and autocorrelation of the scene. Together, these 
lemmas establish that stochastic scenes defined by Algorithm 7.1 are wide- 
sense stationary, but a stronger theorem holds—stochastic scenes defined by 
Algorithm 7.1 are strict-sense stationary.

T h e o re m  7.1 Stochastic scenes produced by Algorithm 7.1 are strictly sta
tionary.

P ro o f: Consider a  scene Si defined by Algorithm 7.1:

s i ( x , y )  =  S25p[ /i , i /]c o s (0 i[ // ,t '] - iM /* ,1']) (7-22)

where

M M  =  f - 33)
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The same process with a  spatial shift is

S2 ( z , y )  =  (/*>v]c o s v \ - h  \ ^ v ] )  (7.24)
U ,v

where

B i f r M  =  2lr ( e ! ^ l + ! ^ a ) .  (7.25)

The spatial shift changes only the phase term $.

The statistics of the scenes Si and <s2 are determined by their probability
density functions or PDFs. The function 9 plays no part in the probability
density. Regardless of 6 , the PDF of the spatial contribution of each term of 
the Fourier series

Zw  =  (7-26)

is[7, p. 100]

1 if N  <  sP [ft, v]
y 0 otherwise.

The phase values of the Fourier series are independent and functions of in
dependent random variables are independent[7, p. 132], so the spatial con
tribution of each term of the Fourier series is independent. Therefore, if 
[ftijt'i] #  [^2 > ^2]) Zp!,1/, and Z , ,3tU3 are independent. The PD F of a sum of 
independent random variables is the convolution of their densities[7, p. 134], 
so the PDF for a point in the scene is equal to the convolution of functions of 
the form of Equation 7.27. Therefore, spatial shift does not affect the PDF 
and the stochastic scene is strictly stationary.
□

C o ro lla ry  7.1 The probability density function o f a stochastic scene gen
erated by Algorithm 7.1 is

Pdf, 0 0  =  K p d f Zftl/(z)  (7.28)

where K  indicates a convolution series (or cascade) and pdf^ „ (z ) is defined 
in Equation 7.27.

Unlike most physical scenes, Fourier scenes are portable. Fourier scenes 
are easily specified and communicated. In the worst case, it may be nec
essary to specify all of the elements of the two-dimensional arrays of the
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Fourier scenes, but this is often unnecessary. Frequently, the power spec
trum  has a standard functional form (e.g., a Gaussian) that can be specified 
by only a  few parameters. Following Algorithm 7.1 and using a shared, stan
dard random-number generator[10], the phase array can be specified by the 
seed for the random-number generator. Widespread use of Fourier scenes 
would facilitate image processing and computer vision research by providing 
a virtually unlimited common body of scenes for evaluating algorithms.

7.2.2 Digital Scenes

Dictating the spatial structure of Fourier scenes is difficult. Most image 
processing applications, however, focus on spatial structure. For example, a 
radiologist is concerned with recognizing tumors, not with image ensemble 
statistics. Fourier scenes are useful, but conclusions for specific applications 
will undoubtedly be more subjective. Digital scenes are digital images used 
to simulate scenes. Because they are defined in the spatial domain, they 
provide direct control over spatial structure. If a  digital scene is specified to 
super-resolution—resolution higher than the subsequent sampling lattice—it 
has the capacity for details finer than the sampling lattice and can be used 
to simulate aliasing and sample-scene phase shift.

A relatively small collection of digital images with recognizable spatial 
structure have long been used as artificial scenes[ll]. Many researchers use 
a digital scene with the same resolution as the digital image. For example, 
in their text on image restoration, Andrews and Hunt[l2, p. 128] blurred 
a 500 x 500 digital scene and added noise to produce a 500 x 500 digital 
image. The blurred and noisy image was then restored. If the artificial scene 
has the same resolution as the image, there are no sampling effects. This 
approach ignores aliasing and sample/scene phase—important problems for 
image restoration[l3].

If the digital scene has finer resolution than the digital image produced 
from it, the simulation can model the im portant effects of sampling. Just 
as a Fourier scene on a digital computer has a cutoff frequency, the ratio 
of digital scene elements (scenels) to digital picture elements (pixels) must 
be finite. The best scenehpixel ratio depends on the desired level of detail 
in the scene relative to the sampling grid—the finer the detail, the greater 
the ratio must be. There is a tradeoff between accuracy on one hand and 
computational and storage costs on the other. A digital scene that has twice 
the resolution of the sampling lattice is sufficient to exhibit aliasing a t all 
frequencies of the digital image. Typically, spatial frequencies beyond four 
times the resolution of the sampling lattice are effectively lost (cutoff by 
prefiltering) before sampling.
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Digital images of any kind can be used as digital scenes. Because they 
are to  be resampled, digital scenes must be fairly large. Large digital im
ages can be obtained from many sources. Landsat images are very large 
and commonly available. Large charged-coupled device (CCD) photosensor 
arrays are now available. Digital scenes can be generated artificially on a 
computer. Modestino and Freis[l4] suggest a  stochastic process to generate 
images with spatial edge structure. Similar spatial processes could be devised 
for other spatial structures. Image generation tools such as the movie, byu 
software developed a t Brigham Young University offer flexibility and control 
over three-dimensional digital scene generation.

7.2.3 Relationship Between Fourier Scenes and Digital 
Scenes

Fourier scenes and digital scenes complement one another. Fourier scenes are 
specified in the frequency domain and provide control over im portant scene 
statistics. Digital scenes are specified in the spatial domain and provide 
control over spatial structure. Both are able to model the subpixel details 
(or high-frequency components) of physical scenes and exhibit aliasing and 
sample/scene phase shift during sampling. Fourier scenes are defined over 
the spatial continuum, but digital scenes are defined only a t the discrete 
points (scenels) of a spatial array. It is possible to  specify a  method for 
converting from one representation to the other consisting of an interpolator 
to convert digital scenes to Fourier scenes and a sampling lattice to convert 
Fourier scenes to digital scenes.

Digital scenes are defined only at the scenels. Interpolating between 
these points results in a continuous scene. The Fourier series of the resulting 
continuous scene can be calculated from the discrete Fourier transform of 
the digital scene and the transfer function of the interpolator. Of particu
lar interest is the relationship between the DFT of a  digital scene and the 
Fourier series of the continuous scene formed from it using the “ideal” sine 
interpolator. The spectrum of a  digital scene is periodic. The spectrum of 
the sine function is a perfect low-pass filter—a two-dimensional pulse about 
the origin that is the size of the period of the digital scene spectrum. (See 
Appendix A.) The product of the scene spectrum and this two-dimensional 
pulse is the digital scene DFT—the complex Fourier series of the interpolated 
scene is the array of values of the DFT of the digital scene.

The inverse process generates a digital scene from a Fourier scene. Spa
tially sampling a Fourier scene with superresolution yields a digital scene. 
Spatial sampling is equivalent to spectral convolution. The two-dimensional 
shah function is its own Fourier transform and spectral convolution with the
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shah function yields a  periodic spectrum. If the frequency of the conver
sion lattice is twice the highest frequency of the Fourier scene (i.e., provides 
the necessary superresolution), the spectrum of the result is the periodic ex
tension of the Fourier series. Therefore, superresolution sampling and ideal 
interpolation are invertible methods for converting between Fourier and dig
ital scenes.

All of this may sound more complicated than it is: in practice, the con
version is nothing more than computing a DFT. For example, suppose the 
image period is M  =  N  = 256 and consider a  1024 x 1024 element Fourier 
series s with frequencies |//| <  2M  and \v\ < 2N . The inverse D FT of 
the Fourier scene yields a digital scene with 1024 x 1024 elements covering 
the image space with four-fold superresolution (i.e., values every one-fourth 
pixel in each dimension). The forward D FT of the digital scene is the Fourier 
scene.

The complex-valued Fourier series and the DFT are inefficient data  struc
tures for real-valued scenes—half of the values are redundant. Similarly, fast 
Fourier transforms for complex data perform about twice the number of com
putations required for real-valued data. The traditional Fourier transform is 
used in the text of this dissertation because more readers are familiar with 
it. However, in actual computations the Hartley transform was employed. 
The Hartley transform is an equivalent transform for efficiently computing 
and representing the spectra of real-valued scenes[15].

7.3 Simulated Imaging

This section describes techniques for simulating the imaging process. Soft
ware imaging simulation is an exact, flexible, and portable environment for 
image processing research. The characteristics of real, physical devices can 
be measured or estimated, but such characterizations are inexact. Moreover, 
the characteristics of a real device may differ from image to image (changing 
over time). A simulated imaging system is exactly known and fully con
trollable. A real imaging system provides only a limited environment for 
testing image processing techniques. Software simulation of imaging systems 
provides a flexible image acquisition and display testbed that can be easily 
modified and adapted. There are no “standard” physical imaging devices, 
but shared, simulated devices can be installed in any imaging software envi
ronment.

The model of Chapter 3 is useful for many, but not all, applications. For 
example, in some applications, display is not be required. In other applica
tions, additional components may be necessary (e.g., variable illumination



CHAPTER  7. ARTIFICIAL SCENES AND SIMULATED IMAGING 118

or viewing geometry). It is difficult to define a single environment flexible 
enough for all applications, but model-based simulation can be adapted for 
specific applications.

Simulated imaging can be computed equivalently in either the spatial 
domain or the frequency domain. Figure 7,1 illustrates the alternate paths. 
Though the result in either case is the same, the computational costs can 
be quite different. Often, frequency domain computation is more efficient 
even if the scene is specified in the spatial domain (as a  digital scene) and 
the result is presented in the spatial domain (as a  displayed image). The 
tradeoffs in the choice of domain are considered in the following examination 
of imaging simulation.

7.3.1 Image Formation

The model shown in Figure 7.1 begins with image formation. As discussed 
in C hapter 3, many imaging devices are accurately modeled as linear, shift- 
invariant systems. A LSI system is fully characterized by its point spread 
function (PSF) or its optical transfer function (OTF). In software simulation, 
these functions can be exactly specified and easily varied. A wide variety of 
electro-optical imaging systems can be modeled by OTFs of the form:

h(u ,v )  = exp {\/u 2 +  (7.29)

where a  is the spatial frequency a t which h(u ,v)  =  e-1 «  0.37 and /3 is a  
shape parameter typically ranging from 1 to  sightly more than 2[16]. All of 
the simulated results presented in Chapter 8 were produced using this OTF 
model.

Image formation can be computed in the spatial domain as the convolu
tion of the scene and PSF or in the frequency domain as the product of the 
scene spectrum  and OTF. The scenels of a digital scene with superresolution 
ratios Sji/ and Sjy are spaced 1 / Sm  units vertically and 1/S/v units horizon
tally. There are M„ x  N„ scenels where M s =  S ^ M  and N„ = S ^ N .  The 
spatial convolution s ' =  s * h is

, 7 m  n \  _  1 f m  — m'  n — n ' \  f m '  n ' \
S \ s ^ ' s ^ )  -  { s Z ’ s ^ J

where h is the PSF and s is a  digital scene. Though s and s ' are arrays, 
the parenthetical notation of continuous images is retained in this equation 
to emphasize that the arrays simulate continuous images. The Fourier scene
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array is also M a X N a with frequencies to ± 5 ^ /2  and ± 5 ^ /2  times the 
sampling rates (M  and N ).  In the frequency domain, the product £' =  sh is

s'[(i,u] =  s [n, u] h (//, u) (7.31)

where k  is the OTF and s is complex Fourier scene.

The computational complexity of Equation 7.30 is 0 ( M aN a)— O (M aN a) 
for each of M aN a points. In practice, the result of the convolution need only 
be calculated a t the M  x  N  points that are subsequently sampled, reduc
ing the computation to 0 ( M aN aM N ) .  If the acquisition device can be ac
curately modeled by a  small PSF kernel, with Mj, x Nh non-zero terms, 
then the spatial computation is further reduced to  O (M ^N ^M N ).  The 
computation of Equation 7.31 is O (M aN a). If a digital scene s is to be 
processed in the  frequency domain, the fast Fourier transform to calculate 
the spectrum s is O (MaN a log2 (M aN a)). The inverse transform is also s is 
0 ( M aN a\og2 (M aN a)).

The execution times for convolution and frequency domain processing 
on a  Sun3/260 are presented in Chapter 5. The size of the PSF is the 
most variable of the values. The complexity of frequency multiplication and 
the Fourier transform are independent of the PSF size. T he cost of spatial 
convolution is directly proportional to the number of elements in the PSF. 
If the PSF is very small, spatial convolution is more efficient than frequency 
domain processing. For large PSFs, frequency computation is significantly 
more efficient than spatial convolution. Also, convolution is relatively more 
efficient for large digital scenes. In the simulations of Chapter 8, the PSFs 
are the same size as the images, so frequency domain processing is used.

7.3.2 Sampling

The sampling lattice of almost every digital imaging system is a rectangular 
array of uniformly-spaced points. This sampling lattice can be simulated 
in software and applied to an artificial scene. Sampling can be computed 
as the spatial product of the continuous image and the sampling function 
or as the convolution of the image spectrum and the transform of the sam
pling function. Considered independently of other steps, sampling is more 
efficiently computed in the spatial domain, but in sequence with the other 
steps, frequency computation is often more efficient.

Sampling the acquired image s ' of Equation 7.30 with the comb (or shah) 
sampling function 1H is given by spatial multiplication p' — s'lH where

p ' [???., n] =  s '(m , n ) . (7.32)
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(Because the digital scene has superresolution, the scenel s '(m ,n )  is stored 
in the array location s'fmSjif, nS^].) The resulting image is M  x Ar, so 
the sampling operation is 0 ( M N ) .  If spatial sampling is implemented as 
frequency convolution, the result is

Sjif-l Sn- 1

p'fa.*'] =  £  £  (7.33)
p *=0  t ' '= 0

The frequency computation is O (M sN a).

Though the complexity of the spatial computation is less than the fre
quency computation, both expressions are dominated by the cost of simu
lating image formation. As explained in Section 7.3.1, image formation is 
usually more efficiently simulated in the frequency domain. In that case, 
spatial sampling would require an inverse transform, more than offsetting 
any savings in the sampling computation. Even if the inverse transform 
must subsequently be executed, the folding of frequencies in Equation 7.33 
reduces the cost from Q (M aN a log2 (M aN a)) to O ( M N  log2 (M N )).

In  physical images, the amount of aliasing or aliased noise is difficult to 
calculate. Doing so requires a priori knowledge of the scene spectrum beyond 
the Nyquist limit or a  measure of it using a  higher resolution system. In 
contrast, the aliased components of the simulated image are exactly known. 
For example, the energy of the aliased components is

£  =  12  53  I*'!/*.*']!* (7-34)

Sample-scene shift is simulated as
, ( m  — a n  — b \  ,

' b c - ' - s r )  ( 7 - 3 5 )

where the row-shift is o/ S m  and the column-shift is b fS^.  In this equation, 
there are effectively S m  x Sn  possible different subpixel-unit shifts of the 
sampling lattice relative to the scene. In the frequency domain, sample/scene 
shift is simulated as

«'((*.■') H'ffW'rf. (7.36)
The spatial domain computation is straightforward only if the shifts are
multiples of the subpixel superresolution units; fractional shifts require in
terpolation. Arbitrary shifts are easily computed in the frequency domain.

7.3.3 Noise

In the simulations in this dissertation, additive, signal-independent, white 
noise is assumed because it is a  good model of many real sources of noise
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and the assumption simplifies many image processing problems. This is a 
common assumption. White-noise can be generated in the frequency domain 
as described in Section 7.2.1 (p. 113) or equivalently as a random  spatial 
process with normal distribution[l7]. Then the noise is added to  the image 
as p = p' +  e where

p[m ,n] =  p '[m ,n] +  e[m ,n] (7.37)

or to the image spectrum as p  =  p' +  e where

p[fi,v] ~  p‘ f/z, v] +  e \p ,v) .  (7.38)

7.3.4 Display

Real display devices are difficult to precisely characterize and characteriza
tion errors can confound research results. Results for different displays or 
even the same display device with different settings may be quite different. 
Controlled adjustments to test a variety of display parameters are difficult. 
Simulated display devices are accurate, precise, flexible, and portable. A 
simulated display image can be exactly compared to the desired result (e.g., 
the digital scene). Algorithms can be easily tested for a variety of simulated 
display devices. Software simulations of display devices are portable.

Displayed images are spatially continuous and as such cannot be directly 
represented on a digital computer. Continuous displays can be simulated 
using the same structures used to simulate continuous scenes: Fourier series 
and super-resolution digital images. Display devices are accurately modeled 
as LSI systems. A super-resolution display simulation is calculated by spatial 
convolution r = d *  p defined by

where d is the super-resolution array (Dm  and D ^  are the display superres
olution ratios) that models the PSF of the display device. Using the  same 
superresolution ratio for the display device as for the scene (so that the array 
sizes are identical— Md = M a and Nd — N ,)  simplifies comparisons between 
the scene and the result, but the display device should be accurately mod
eled. The displayed image can also be calculated in the frequency domain as 
r = dp given by

r \p ,v \  =  p v] d (p ,v )  (7.40)

where d is the two-dimensional complex Fourier series modeling the transfer 
function of the display.
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The same comments about computational complexity that were made in 
Section 7.3.1 are appropriate here. A small display PSF and a large image 
favors convolution; otherwise, frequency-domain processing is more efficient. 
In the simulations of Chapter 8, frequency domain processing was used to 
provide for a  display PSF as large as the image.
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C hapter 8 

E xperim ental R esu lts

8.1 One-Dim ensional Sim ulation R esults

This section presents experimental restoration results for one-dimensional ar
tificial scenes degraded by simulated imaging devices (as described in Chap
ter 7). The experiment design included three variables: the smoothness of 
the scene, the width of the acquisition transfer function, and the noise level. 
Three levels for each variable were considered, producing a total of 27 ex
perimental restoration problems. For each of the 27 experiments, 32 specific 
images were generated. Each of the images was restored with kernels con
strained to a number of sizes. The mean-square restoration error (MSRE) of 
the constrained restorations was compared to the mean-square error of the 
unrestored display and the MSRE of the end-to-end Wiener restoration. The 
results demonstrate that small kernels can substantially restore an image in 
a variety of situations.

One-dimensional Fourier scenes were generated as described in Chapter 7 
by specifying the spectral magnitude and randomizing the phase. The spec
tral magnitude sp was set to

i ,  M = ( K  exp (■'CM /o,*)ft) if'0 < M < 2 N  (S.1)( 0 otherwise
with N  =  256. The scene magnitude is zero a t the origin (sp [0] =  0), so 
the resulting ensemble of scenes is zero-mean. The constant K  was defined 
so th a t the scenes had unit RMS energy (y3 =  1). Three distinct ensembles 
with different degrees of smoothness were considered. In all three a ,  =  JV/16; 
onl}r /?4 was varied:

• W ith /?a =  1.50 (and I\' =  0.05S1392), the scenes are relatively smooth 
with little high-frequency energy.

126
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•  W ith /?4 =  0.75 (and IC =  0.0704946), the scenes are somewhat jagged 
with a moderate amount of high-frequency energy.

• W ith f3a =  0.50 (and K  =  0.0658505), the scenes are more jagged with 
substantial high-frequency energy.

The power spectra and corresponding autocorrelation functions of these three 
ensembles are pictured in Figure 8.1 (N  =  256). Representative scenes from 
each of the three ensembles are shown in Figure 8.2.

The three simulated image acquisition transfer functions and the corre
sponding PSFs are pictured in Figure 8.3. The model of the device transfer 
functions was suggested by Johnson[l]:

h[u) =  e x p ( - ( H / a fc)A ) .  (8.2)

All three of the transfer functions in this section are Gaussian bell curves
(A =  2).

• W ith ah = 0.75, the transfer function roll-off is mostly above the 
Nyquist frequency. This function attenuates frequency components 
within the Nyquist limit only slightly and will therefore cause little 
blurring. However, the transfer function significantly passes compo
nents above the Nyquist limit and the system is therefore vulnerable 
to aliasing.

• W ith ah =  0.50, the transfer function rolls off at a lower frequency 
and therefore causes somewhat more blurring, but the system is less 
vulnerable to aliasing.

• W ith ah — 0.25, the transfer function is nearly zero beyond the Nyquist 
frequency, virtually eliminating aliasing, but causing substantial blur
ring.

Three levels of additive noise were used. Signal-to-noise ratio (SNR) is 
the ratio of root-mean-square (RMS) energy of the scene to RMS energy of 
the noise:
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In this simulation, the scenes are normalized to have unit RMS energy (7 , =  
1 ), so the SNR is equal to  the reciprocal of the RMS energy of the noise. 
The spectral magnitude ep of white noise is constant. Therefore, the spectral 
magnitude of the additive white noise for a given SNR is

ep [u] =  (sN R v/F ) - 1  ( * ^ 0 ) .  (8.4)

(Because ep [0 ] =  0 , the noise is zero-mean.)

•  For the low-noise images (high SNR), SNR=100.

•  For the moderate-noise images, SNR=25.

• For the high-noise images (low SNR), SNR=5.

Figure 8.4 illustrates representative sensor noise.

Real display devices are a  significant component of the end-to-end imag
ing process, but are not usually a source of much variability. Therefore, 
the simulated display function was not varied in these experiments—a single 
display model was used for all of the simulations. Schade[2] suggested a dis
play model consisting of the sum of two Gaussians—the nucleus, a  strongly- 
peaked central spot th a t contains most of the energy, and a broad flare spot 
around the nucleus. The composite display transfer function is

d[v] = Di exp (|i/|/<*i)2) +  D 2 exp (|i/| /q ^ )2) • (8.5)

The parameters for the functions are taken from Schade’s results: for the 
nucleus, D\ — 0.76 and ai = 0.4301484; for the flare, £>2 =  0.24 and a 2 =  
0.0323814. For practical reasons, the display transfer function is cutoff at 
twice the sampling rate ± 2 N  (the same length as the Fourier series used to 
generate the artificial scenes). The effect of the truncation is insignificant. 
The nucleus, flare, and composite display spot and their transfer functions 
are illustrated in Figure 8.5.

All of the components of the simulation have now been described. Fig
ure 8 . 6  illustrates the end-to-end imaging simulation for a representative 
scene from the medium frequency ensemble. The top graph is the scene 
(aa =  0.75). Directly below it is the image created by applying the acquisi
tion function with medium blur (a^ =  0.50) to the scene. The third graph 
is the sampled image. Next is the sampled scene plus moderate noise (SNR 
=  25). The bottom  graph of Figure 8 . 6  shows the unrestored displayed im
age. Acquisition blurring, aliasing due to sampling, additive sensor noise, 
and display degradation are all present in the output of the system. The net 
effect of all of these degradations is primarily a loss of high frequencies. The
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goal of restoration is to process the noisy digital image (the fourth graph) so 
th a t when it is displayed, the output (the bottom  graph) is a more accurate 
representation of the input (the top graph).

The optimal, spatially-constrained restoration kernels and the end-to- 
end Wiener filter (that accounts for sampling and display) were calculated 
from the power spectra of the scene and noise, and the image acquisition 
and display transfer functions. The spatial kernels were constrained to have 
zero value at all but an odd number of locations centered a t the origin—the 
smallest kernel, with three elements, was allowed non-zero values only where 
|n | <  1; the next smallest, with five elements, was allowed non-zero values 
only where |n | <  2; and so on. The largest constrained kernel has (N  — 1) 
elements; only the element at n = N /2  was constrained to 0. The next- 
largest optimal kernel (no elements constrained to 0) is the spatial kernel of 
the Wiener filter.

The optimal three-point and five-point kernels for the example of Fig
ure 8.6 and the corresponding transfer functions are shown in Figure 8.7. 
The Wiener filter transfer function and part of the corresponding spatial 
kernel are also illustrated. Only the first few elements of the Wiener kernel 
are shown; the magnitude of the Wiener kernel elements beyond 6 pixels 
from the origin is less than O.OljV. Clearly, the optimal small kernels are 
quite different than the kernels produced by truncating the Wiener PSF. As 
can be seen by comparing the transfer functions, the optimal three-point ker
nel does a fair job of approximating the Wiener filter at low frequencies but 
amplifies high-frequency components where SNR is lower much more than 
does the Wiener filter. The transfer function of the optimal five-point kernel 
more closely approximates the Wiener filter, but is still quite different.

Note that the magnitude of the small kernels’ transfer function a t the 
origin is greater than zero (about 1.09 for the three-point kernel and 1.08 for 
the five-point kernel). The artificial scene in this simulation is a zero-mean 
process. The acquisition function blurred the scene and decreased contrast. 
Increasing the contrast of the displayed image will decrease mean-square 
error. Pointwise multiplication by a constant greater than one increases 
the contrast of a  zero-mean process. Therefore, even a  one-point kernel 
can slightly restore a zero-mean image (i.e., reduce the mean-square error). 
Contrast stretching for an image th a t does not have a zero mean requires 
addition of a constant to all pixels, a non-linear operation. This issue is 
considered more fully in the next section where the two-dimensional scenes 
do not have zero mean.

Figure 8.8 shows the original scene, the unrestored output, the output 
with three-point restoration, the output with five-point restoration, and the 
output with Wiener restoration. Visual comparison is a subjective process,
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but it is clear that all of the restored images are more like the original 
scene than the unrestored image. It is more difficult to conclude from visual 
inspection which of the restorations is the best.

Figures 8.9, 8 .1 0 , and 8 .1 1  present numeric error measures as a function 
of kernel size. The relative MSRE is the ratio of the RMS difference between 
the displayed image and the scene to the RMS energy of the scene:

X  |s [u] -  r  M |2 

Relative RMS Error =  ^  ,— — -5------. (8 .6 )
^ X I 1 H I

Each of the 27 restoration experiments was performed 32 times—that is, 
each execution used a different scene from the ensemble and different random 
noise. The plots show the relative RMS error averaged over all 32 executions. 
The standard deviations of the relative RMS error were so small that plotting 
them on these graphs proved impractical. The plots are shown only for 
kernels with 65 elements or fewer (radius 32). In all cases, only negligible 
improvement occurred beyond 19 elements (radius 9). The solid lines show 
the relative RMS error for the Wiener restoration. (The kernel of the Wiener 
filter has 255 elements, a radius of 128.)

In many cases, the three-point and five-point kernels yielded results that 
are nearly as accurate as the Wiener filter. This is particularly true when
there is little noise (e.g., SNR=100—the leftmost column in Figures 8.9,
8 .1 0 , and 8 .1 1 ) and/or there is significant high-frequency energy in the scene 
(e.g., /?, =  0.50—Figure 8 .1 1 ). Small kernels are relatively less successful 
in low SNR situations (e.g., SNR=5—the rightmost column in Figures 8.9,
8.10, and 8 .1 1 ). In low SNR problems, the restoration kernel should suppress 
noise by local averaging, but small kernels are restricted in doing so by their 
size. Low-SNR images are difficult to restore—the inverse filter performs 
very badly and the Wiener filter has only limited success. Imaging system 
design changes can increase SNR, for example, with a slower shutter speed, 
pre-sample filtering, decreased spatial resolution, and increased brightness 
resolution.

In the experiment with a medium-frequency scene, moderate blur, and 
moderate noise (/3„ =  0.75, a-/, =  0.50, and SNR=25)—the middle graph of 
Figure 8 .1 0 —the average unrestored relative RMS error was 0.204613. The 
Wiener filter reduced this to 0.051149, a decrease of 75%. The three-point 
kernel resulted in a relative RMS error of 0.091685, a decrease of 55%. The 
three-point kernel (radius 1 ) achieved 73% of the improvement of the Wiener 
filter. The five-point kernel (radius 2 ) reduced the relative RMS error to 
0.083614, a decrease of 59%. This is 79% of the improvement of the Wiener
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filter. These small kernels achieve a large portion of the improvement of the 
Wiener filter with substantially less computation.

8.2 Two-Dim ensional Simulation R esults

This section presents two-dimensional simulation results. The two-dimen
sional simulation parallels the one-dimensional simulation described in Sec
tion 8.1. A single digital scene was used for all two-dimensional simulation 
experiments; the OTF width and the SNR were varied to produce nine ex- 
perimentals.

The digital scene is a 1024 x 1024, 12-bit image of several United States 
one-dollar bills. This “scene” is familiar and widely available; it has regions 
with great detail, regions of little detail, edges, and texture. The digital scene 
was acquired with a Photometries slow-scan, three-stage, thermoelectric- 
cooled CCD camera system with a  Texas Instruments V PlM  array sensor 
and standard 50mm lens. The target was placed 45cm from the camera, the 
camera was focused on the target, the /-stop was set to 8, and the exposure 
time was 0.1 seconds. The brightness values of the image range from 286 to 
16383 with a mean s of 2926 and contrast oa of 1167.

Before the digital scene was subsampled a t every fourth pixel, it was 
blurred by a simulated image acquisition device. The acquisition O TF was 
modeled as a two-dimensional Gaussian:

h [ji, i/] =  exp {yjp* +  u2 / a ^  j  (8.7)

with fih =  2 and ah set to 0.25, 0.50, and 0.75 in different experiments. 
(One-dimensional cross-sections of the simulated acquisition OTFs and cor
responding PSFs are shown in Figure 8.3.)

The blurred digital scene was subsampled at every fourth pixel to produce 
a 256 x 256 effectively noiseless digital image. The four-fold superresolution 
in the digital scene accommodates spectral frequencies to ±2.0, ample for 
simulating aliasing.

Three different levels of additive white noise were used. The noise pro
cesses were defined to yield SNRs of 5, 25, and 100 relative to a zero-mean 
scene with the same contrast (standard deviation) as the actual scene. (The 
contrast was used in place of energy to control for the non-zero mean of the 
scene.) The spectral magnitude is of the zero-mean noise is

ep [(i,v] =  (sN R n/A ?^)"1 ( [ M # [ 0 ,0 ] ) .  (S.S)
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Figure 8.12: Two-Dimensional Kernel Elements

The noise in Figure 8.4 scaled by the contrast of the scene (1167) is repre
sentative.

The display transfer function used in Section 8 .1  was generalized to two 
dimensions as

d\fi, v] =  Di  exp (y/fi2 + v2 / a x) ^  +  D2 exp {y/pp +  v2j <*2) (8-9)

with D x =  0.76, a i  =  0.4301484, D 2 =  0.24, and a 2 =  0.0323814. (Figure 8.5 
shows a cross-section of the OTF and PSF of the simulated display device.)

Ten different-sized restoration kernels were considered. The smallest was 
constrained to  5 elements, the center element and its four nearest neighbors. 
The next smallest 9 elements, 3 x 3 .  Figure 8 . 1 2  shows the order in which 
new elements are added to form larger kernels. Table 8 .1  gives the sizes of 
the constrained kernels used in the simulation.

The digital scene, the unrestored display, the restored images for the 9- 
point, 25-point, and 49-point kernels, and the end-to-end Wiener restoration 
for three of the nine experiments are shown in Figures 8.13, 8.14, and 8.15. 
Figure 8.13 shows the results for the experiment with low blur (07 , =  0.75) 
and high noise (SNR=5). Figure 8.14 shows the results for the experiment 
with moderate blur (a7, =  0.50) and moderate noise (SNR=25). Figure 8.15 
shows the results for the experiment with high blur (07, =  0.25) and low 
noise (SNR=100).

The restoration accuracy as measured by relative RMS error for each of 
the nine experiments is plotted in Figure 8.16. The relative RMS error is 
graphed as a function of the restoration kernel size. The solid horizontal line 
in each graph is the relative RMS error for Wiener restoration. The success of 
the small kernels follows the pattern of the one-dimensional simulation—the
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B. Unrestored, Display

D. 25-Point RestorationC. 9-Point Restoration

E. 49-Point Restoration F. Wiener Restoration

Figure 8.13: Restoration for Low Blur and High Noise
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B. Unrestored, DisplayA. Digital Scene

D. 25-Point RestorationC. 9-Point Restoration

E. 49-Point Restoration F. Wiener Restoration

Figure 8.14: Restoration for Moderate Blur and Moderate Noise
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A. Digital Scene B. Unrestored, Display

C. 9-Point Restoration D. 25-Point Restoration

E. 49-Point Restoration F. Wiener Restoration

Figure 8.15: Restoration for High Blur and Low Noise
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Number Kernel Size
1 5
2 9
3 13
4 21
5 25
6 29
7 37
8 45
9 49

10 57

Table 8.1: Two-Dimensional Kernel Sizes

small kernels are more successful in low-noise problems and less successful in 
higher-noise problems. The high level of relative RMS error in the low-noise, 
low-blur image indicates that the scene in these problems has significant high- 
frequency information and was therefore significantly degraded by aliasing 
and sampling-reconstruction blur[3] during processing.

For the image with moderate blur =  0.50) and moderate noise 
(SNR=25), the unrestored display had a relative RMS error of 0.466674, 
The Wiener filter reduced the relative RMS error to 0.340891, a decrease 
of 27%. The 9-point kernel reduced the relative RMS error to 0,358369, a 
decrease of 23%. This is 86% of the reduction achieved by the Wiener filter. 
The 25-point kernel reduced the relative RMS error to .354646, a  decrease 
of 24%. This is 89% of the reduction achieved by the Wiener filter. The 
49-point kernel reduced the RMS error to .346512, a  decrease of 26%. This 
is 96% of the reduction achieved by the Wiener filter. The small kernels can 
be applied more efficiently than the Wiener filter, yet are nearly as effective 
in reducing RMS error.

T he images in the two-dimensional simulation are not zero-mean. In this, 
they are like real images. It is possible however to  create a zero-mean image 
by subtracting the image mean from each pixel value. As was mentioned in 
the discussion of the one-dimensional simulation, RMS error in zero-mean 
images can be reduced somewhat by the simple operation of pointwise mul
tiplication. Small kernels can similarly increase contrast and reduce RMS 
error in zero-mean images. How much more can RMS error be reduced by 
such a linear stretch? The same two-dimensional simulation was run but the 
images were normalized by subtracting out the mean before being restored.
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The results indicate that this procedure can result in significant relative im
provements but little absolute improvement. For example, for the smallest 
kernel (5 elements) restoring the worst image (high blur, =  0.25, and 
high noise, SNR=5), the zero-mean restoration performed 38% better than 
the unnormalized restoration in reducing relative RMS error. However, this 
kernel is not very effective and the actual improvement in reducing relative 
RMS error is less than 1%. Overall, the relative gains were far less than 38%, 
averaging only 10% for all 5-point restorations and 5% for all restorations. 
The relative gain for 49-point kernels was only 2%. In no cases was the actual 
reduction in relative RMS error more than 1% and averaged less than 0.4% 
overall. The relative RMS error plots for normalized restoration are shown 
in Figure 8.17. Because the relative error is improved no more than  1% in 
any case, Figures 8.16 and 8.17 are virtually indistinguishable.

8.3 R estoration of D igital Images

This section shows restoration results for unretouched digital images. The 
target of United States one-dollar bills was photographed using the acquisi
tion system described in Section 8.2. For the images in this section, the bills 
were placed 180cm from the camera (four times the distance of the target 
in Section 8.2). The camera /-stop was set to 8 and the exposure time was
0.1 seconds. Three images were acquired: one with the focus a t 180cm (i.e., 
in focus), one with the focus a t 135cm (defocus), and one with the focus a t 
90cm (extreme defocus). As stated above, these images were 1024 x 1024 
with 12-bit pixels. From each of the three images, a 256 x 256 portion was 
clipped and restored.

Restoration of a  real image is more difficult than restoration of a  sim
ulated image. In a real image, the scene and noise power spectra and the 
acquisition and display transfer functions are not known. Estimating these 
functions is difficult and estimation errors can be a significant problem. A 
restoration based on the best estimates that can be made will usually benefit 
from ad hoc adjustments to correct for over-restoration (excessive high-pass 
accentuation or sharpening) or under-restoration (an image that is still too 
blurred). Huck, McCormick et al.[5,4] have illustrated the impact of over
restoration and under-restoration on the visual quality of the result.

The higher-resolution digital image of the target th a t was used as the 
digital scene in Section 8.2 provided the basis for estimating the scene power 
spectrum. This image, taken at 45cm, has four-fold superresolution rela
tive to the images taken a t 180cm, so the square of the spectral magnitude 
(spectral energy) of this single image provides an estimate of the scene power
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spectrum to twice the sampling resolution at 180cm. The spectral energy 
from a  single image is a noisy estimate, so it was smoothed and diminished 
by a  rough estimate of the noise energy.

The acquisition system OTF for each of the three images was charac
terized using the technique described in Appendix B, The one-dimensional 
estimates indicated tha t the system functions were nearly circularly symmet
ric. Therefore, the average of the horizontal and vertical estimates shown 
in Figure 8.18 were used to define a  radially-symmetric acquisition function 
estimates.

The noise energy was estimated using the contrast of images of flat fields 
(targets of a solid color). This analysis indicated th a t the actual noise in 
the image acquisition system was not completely signal independent—the 
contrast of images of a  bright field was about three times greater than that 
of images of a  dark field. The contrast of images of the bright field was 
about one-tenth the contrast of the dollar-bill images. The estim ate of the 
additive, white-noise energy used in deriving the restoration filters was based 
on the contrast of the bright-field images. Relative to  a zero-mean image, 
this would be a SNR of 10.

The photographs were taken with a  Matrix filmwriter. The model of the 
display device functions described in Sections 8.1 and 8.2 was used as the 
estimate of the display device function. The spots are placed farther apart 
than is required for flat-field response[6]. The spot spacing estimate was set 
to 10/7 of that used in the simulations.

The in-focus image and the 9-point, 25-point, and end-to-end Wiener 
restorations are shown in Figure 8.19. The end-to-end system is fairly well 
designed, so it is difficult to significantly improve the image. However, all 
three restored images are sharper than the unrestored image.

The defocused image (target at 180cm; focus a t 135cm) and the 9-point, 
25-point, and end-to-end Wiener restorations are shown in Figure 8.20. 
Viewed from a distance, the restored images are sharper than the unrestored 
image. However, when viewed closer, the image restored by the Wiener filter 
has obvious artifacts such as ringing around sharp edges. These artifacts are 
usually intolerable. The artifacts in the image restored with the 25-point 
kernel are less severe. The image restored with the 9-point kernel does not 
have significant artifacts and is sharper than the unrestored image.

The extremely defocused image (target at 180cm; focus a t 90cm) and 
the 9-point, 25-point, and Wiener restorations are shown in Figure 8.21. 
The artifacts in these restorations are even more pronounced than those in 
the previous example. In the image restored with the Wiener filter, the 
sharpened serial numbers and signatures almost blend in with the artifacts.
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A. Unretouched Image B. 9-Point Restoration

C. 25-Point Restoration D. W iener Restoration

Figure 8.19: Restoration of In-Focus Image
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A. Unretouched Image B. 9-Point Restoration

C. 25-Point Restoration D. Wiener Restoration

Figure 8.20: Restoration of Defocused Image
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A. Unretouched Image B. 9-Point Restoration

C. 25-Point Restoration D. Wiener Restoration

Figure 8.21: Restoration of Extremely Defocused Image

The significant artifacts in the restored images are probably caused by 
errors in the system estimates—the estimates of the scene and  noise power 
spectra and of the acquisition and display transfer functions. Fewer artifacts 
are present in the images restored with the small kernels. Possibly, the 
small kernels are more inherently robust than the W iener filter. W ith fewer 
degrees of freedom, small restoration kernels are less responsive to variations 
in system estimates, so errors in these estimates have a  smaller impact. This 
hypothesis is supported by the observation th a t the system of equations that 
defines the small kernels is better conditioned than the  system of equations 
th a t defines the W iener filter. Restoration of real images often has the feel 
of guessing until you get it right. In the world of real problems, robustness 
is a  significant concern. If small kernels are indeed more robust, it would 
be a  powerful incentive for using them. This is a  question th a t should be 
answered by more research.
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Chapter 9 

Conclusions

In 19S4, Hunt[l, p. 73] wrote: “If an image restoration problem can be 
solved, then about 75% of the time it can be treated with some of the sim
plest techniques, for example, inverse or Wiener filter.” Though “solved” is 
too strong a  word, the Wiener filter and other fairly simple restoration tech
niques are effective. The Wiener filter is often effective even if the the under
lying assumptions are incorrect (e.g., the noise is signal-dependent or, as in 
the conventional formulation, sufficient sampling is incorrectly assumed). In 
applications where processing speed is im portant, the most significant prob
lem with the inverse filter, Wiener filter, and other Fourier-transform-based 
techniques is computational cost. High-speed implementation of these global 
algorithms requires expensive, special-purpose hardware. Restoration imple
mented by convolution with small kernels requires significantly less computa
tion than frequency-domain processing. Moreover, small-kernel convolution 
is a local operation that can be implemented in parallel on relatively inex
pensive hardware.

The technique described in this dissertation allows explicit spatial con
straints on the restoration kernel to be matched to the processing imple
mentation. W ithin these constraints, the small kernels are designed to yield 
optimal fidelity (i.e., expected mean-square restoration error is minimized). 
Fidelity is not a perfect measure for restoration quality, but the popular
ity of the Wiener filter attests to its utility. The derivation of the small 
kernel follows the standard frequency-domain derivation of the Wiener fil
ter. The resulting linear system of equations defines the optimal spatial 
kernel. The development accounts for the significant components of digital 
imaging systems—the scene, acquisition blur, sampling, noise, and display 
reconstruction.

The optimal small kernels are effective. The simulated and unretouched 
restorations presented in Chapter 8 indicate that the technique is nearly

157
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as effective as the Wiener filter. Images with high SNR (little noise) were 
dramatically restored with very small kernels. Small kernels were relatively 
less successful in restoring images with low SNR (significant noise), but the 
Wiener filter does not do well with low SNR either. Small kernels seem 
more robust than large kernels and the Wiener filter—th a t is, errors in the 
estimates of the system characterizations affected the small kernel restoration 
less. This observation is buttressed by the fact that the defining system of 
equations of small kernels is better conditioned than those for larger kernels 
and the Wiener filter, but any conclusions should be supported by further 
research.

These encouraging results should spur research into related problems:

• The results of Chapter 8 suggest that small kernels are more robust. 
Robustness is a  significant advantage in real applications. This hy
pothesis should be thoroughly tested.

• Knowledge of the relationship between restoration kernel size and er
ror would be very helpful. Undoubtedly, this relation is a complicated 
function of all of the components of the imaging system, b u t a para
metric expression for predicting error would be useful in setting the 
kernel size.

• Cascaded convolution is a technique for efficient spatial processing. 
A cascade is a  series of convolutions. Certain types of large kernels 
can be decomposed into a series of small kernels and applied much 
more efficiently. Cascading small spatial kernels is an area of active 
resea rch[2,3,4,5,6,7,8,9,10,11].

• One might wish to  impose other constraints on the restoration. For 
example, the kernel values might be limited to integers so the imple
mentation can be restricted to  integer arithmetic. Constraints also can 
be placed on the restoration result (e.g., as in the constrained-least- 
squares filter). These restrictions and others have received widespread 
consideration, but should be integrated with constraints on restoration 
kernel size.

• Lahart[l2] noted that small kernels can be varied adaptively to deal 
with spatially variant PSF’s, noise, and autocorrelation. In  an ex
ample, he classed pixels as lying either in regions with high or low 
autocorrelation and applied one of two restoration kernels according to 
the pixels class. He noted th a t this binary division could be expanded 
to  a range of classes. Because the assumption of a stationary process 
is seldom realistic, space-variant methods merit investigation. Because
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adaptive processing requires more computation, efficient algorithms are 
particularly important.

• Fidelity measures are criticized for not matching our visual criteria. 
This being the case, how do restorations with small kernels compare 
subjectively to Wiener restorations? Hazra, Miller, and Park[13] have 
initiated studies to  relate fidelity of acquisition and display to subjec
tive standards. This work could be applied to image restoration. RMS 
optimal small kernel restorations should be compared to results for 
other methods, especially other techniques th a t may be used to limit 
processing (e.g., windowed kernels and iterative techniques).

• Small kernels can be used in problems other than image restoration. 
For example, computer vision requires high-speed image processing for 
edge detection, pattern matching, and texture analysis. Small ker
nel convolution could be applied to these and other problems. The 
approach can be applied directly to yield a mean-square optimal es
tim ate of a characteristic function of the scene (e.g., of a band-pass 
filtered scene for edge detection).

The optimal small restoration kernel is based on a  rigorous derivation, but 
restoration research should not stray far from practical solutions. The opti
mal small kernel restoration is a  practical technique—it is simple, yet efficient 
and effective.
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A ppendix A  

U seful Functions

This appendix defines several basic functions. They are described as infi
nite and continuous in one-dimension and, if appropriate, extended to two- 
dimensions. The one-dimensional functions are illustrated in Figure A.I. 
Most of the digital versions can be obtained by sampling—taking the func
tion values at uniformly spaced points. Most of the functions can be peri
odically extended. A more rigorous mathematical development of these and 
other functions is given by Bracewell[l].

The unit-pulse has unit-value over a unit-range centered at the origin and 
is zero outside th a t range:

f  1 |a?| <  |
n (* ) =  |  \  |«| =  |  (A .l)

( 0 |*| >  | .

The periodic extension of the pulse is called a pulse train. The discrete 
function consists of the sample points of the continuous function—n  [??] =  
D (n ). The two-dimensional unit-pulse is a separable function—it can be 
written as the product of a function of x  and a function of y:

n (s ,y )  =  n ( * ) n ( y ) .  (A.2)

The unit-pulse is used to calculate a local average, for nearest-neighbor in
terpolation, and for truncation windowing.

The unit-step is unit-valued at locations greater than zero and zero at 
locations less than zero:

H  (*) =  i
1 * >  0
\  * =  0 (A.3)
0 * <  0.
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Figure A.l: Some Useful Functions
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The step function cannot be periodically extended. The discrete step func
tion consists of the sample points of the continuous function—H  [?z] =  H  (n). 
The step function can be generalized to two-dimensions by specifying the an
gle 9 of the step edge:

( 1 y  > xarc tan#
1 i / =  ararctan# (A.4)

0 y < x arctan 9.

The step function is used to represent simple discontinuities.

The impulse'is an infinitely-strong pulse of infinitesimal extent. It is
zero-valued, except at the origin, but has a unit integral:

£ (n) =  0 (n ^  0) (A..5)

[  £ (n) dn — 1 (A.6)
*/—00

The impulse is also called the delta or Dirac delta function. Though a  delta 
function is not realizable, it can be defined using the limits of realizable 
functions, such as the unit-pulse:

S(x)  =  l i m w - ' n ^ ) .  (A .7 )

The impulse has an important relationship with the unit-step—the derivative 
of the step is the impulse:

-  T T 1 <A'8>

and the sequence of integrals of the impulse is the unit-step:

H ( x )  =  r  6 {x ')dx '. (A.9)
* / — OO

The digital impulse has the width of the unit-pulse and is scaled by the image 
size (or period):

6 [n] = JVn(n).  (A.10)

The two-dimensional impulse is the product of one-dimensional impulses:

6 (x, y)  =  6 ( x ) 6 (y).  (A .ll)

The impulse is used for sampling an image at a  particular point.
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The periodic extension of the impulse is the comb function. The comb 
function, sometimes called the shah function, is a train of impulses at unit 
intervals:

® (*) =  H2 ^ ( x - n ) .  (A.12)
OO

The comb function is periodic, with a fundamental period 1. The two- 
dimensional comb function is a  rectangular array of two-dimensional impulses 
(a bed-of-nails):

flU ^y) =  n (* )m (y ) .  (A.1 3 )

The comb function is used for uniform sampling.

The sine function, is a scaled sine wave:

. . sin(Trx) 
sinc(x) =  ---------- . (A.14)

7TX
The sine function and the unit pulse are a  Fourier transform pair. The
sine function is infinite and cannot be periodically extended. The discrete
function consists of the sample points of the continuous function—sine [n] =  
sine (n). The two-dimensional sine is the product of the one-dimensional 
functions:

s in c ( l, y) =  sin (t s) sin fry)
ttx ny

The sine function is the “ideal” interpolating function, meaning that if a 
continuous function is sampled sufficiently, the sine can be used to exactly 
reconstruct the original function.

The bell function (or Gaussian-spot function) is

exp (—x2) . (A.16)

This function is also called the normal curve because it is the distribution 
function of a  normal random variable. The bell is infinite and cannot be 
periodically extended. The discrete function consists of the sample points 
of the continuous function. The two-dimensional function is separable and 
radially symmetric:

exp ( - S 2) exp ( - y 2) — exp ( -  (x2 +  y2)) (A.17)

The bell function is often used to model imaging devices (e.g., the display 
spot of a monitor).

Other images, such as sine and cosine waves, have im portant roles in 
image processing as well. These elementary images are basic tools of image 
processing.
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A ppendix B

Characterizing D igital Im age  
A cquisition D evices

B . l  In trod u ction

The mean-square-optimal small-kernel algorithm and most other image res
toration algorithms require a  characterization of the image acquisition de
vice. Despite the popularity of digital imaging devices (e.g., charged-coupled 
device (CCD) array cameras) the problem of accurately characterizing such 
systems has been largely neglected in the literature. This appendix describes 
a  simple method for accurately estimating the point spread function (PSF) 
and optical transfer function (OTF) of digital imaging devices. The method 
is based on the traditional knife-edge technique[l,2,3,4,5,6,7,8,9,10,ll,12,13], 
but explicitly deals with fundamental sampled system considerations: alias
ing, sample/scene phase shifts, and asymmetrical system functions.

Traditional knife-edge techniques rely on oversampling. For example, 
Tescher and Andrews[ll] use 20-fold oversampling to estimate the spread 
and transfer functions from knife-edge scans. This procedure works well if 
the edge scans are oversampled. The knife-edge technique was originally 
developed for analog systems whose continuous output could be easily over
sampled. For example, the photographic print from a film camera can be 
sampled to very high resolution with a  digitizing microdensitometer. [2]

Design considerations dictate that typical digital imaging devices insuf
ficiently sample.[14] If the transfer function response falls off a t frequencies 
below the Nyquist frequency (half the sampling rate), the images will be 
blurred. If instead the transfer function response extends to frequencies be
yond the Nyquist frequency, the images will be degraded by aliasing. A 
sharp cutoff of the transfer function at the Nyquist frequency causes ringing

167
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(Gibbs phenomenon). For a well-designed digital imaging system, the trans
fer function is made to roll-off smoothly about the Nyquist frequency in an 
attem pt to balance blurring, aliasing, and ringing. The resulting undersam
pled system cannot be accurately characterized by the traditional knife-edge 
technique.

In this appendix, the basic knife-edge technique is extended to address 
the problem of undersampling. Subpixel registration of sampled knife-edge 
scans increases the effective sampling rate, virtually eliminates aliasing, and 
permits estimation of the transfer function above the Nyquist frequency. 
Line averaging increases the SNR and effectively removes sample/scene phase 
effects.

The knife-edge technique yields an estimate of a  one-dimensional slice 
through the center of the two-dimensional OTF. Even though the sampling 
grid of a digital acquisition device is fixed, the extended knife-edge technique 
can be used to estimate a slice at virtually any angle through the OTF. 
Multiple slices are used to assess system symmetry or separability or to 
construct a two-dimensional estimate of the OTF.

B.2 The Traditional Knife-Edge Technique

The knife-edge technique is popular for two reasons. First, a  straight edge 
is much easier to accurately fabricate than an infinitesimal pulse, a sinesoid 
target, or a bar target (that must contain many edges a t fixed intervals). 
Only one knife edge is needed and, with care, radiance nonuniformity and 
edge irregularity can be made small. Second, in some situations (e.g., remote 
sensing), the PSF and OTF must be estimated without the use of a specially 
fabricated target. Because sharp edges occur naturally in many scenes, knife- 
edge techniques frequently can be used even if an image of a special target 
is not available.

B.2.1 Theoretical Basis

If it were not for noise and the effects of sampling, estimating the PSF and 
OTF from knife-edge scans would be straightforward. The system’s response 
to an edge is the edge spread function (ESF). The ESF for a scan line is the 
system’s response to a  step edge perpendicular to the scan. For example, the
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ESF along the z-axis is a function in x  of the PSF:1

/ o o  t o o

/  H (x')h (x  -  x ',y  -  y ^d x 'd y '
■OO J—OO

— I f  h (x ',y ')dx 'dy ' (B .l)
J—OO *'-'00

where H( x)  is the Heaviside unit-step function:

*<*> =  { i “ * < o .  (B -2>
The derivative of the ESF with respect to the scan line is the line spread 
function  (LSF). For the example along the x-axis,

r (r  _  d E *(x >y)L x(x ,y )  = - ~ d ~

= [  h (x ,y ')dy '. (B.3)
J—OO

In the Fourier frequency domain, the transform of the ESF is a function of 
a  slice of the OTF. Along the x-axis,

=  (  ( l f (“ ) -  n i )  *(” .») i f "  =  °  (B.4)
[ 0 otherwise.

The spectrum of the LSF is a slice of the OTF. To continue with the example 
along the z-axis,

L x(u ,v )  =  (i2nu )E x(u}v)

- (
h (u ,v ) if u =  0 ,B 5.
0 otherwise. '

This is the basis of the knife-edge method—the Fourier transform of the 
derivative of an edge scan is a slice of the OTF.

Useful techniques must address several practical concerns: the edge scans 
of these equations have infinite extent, are noise-free, and have infinite reso
lution, but edge scans from real digital systems are finite, noisy, and sampled. 
The limit on the size of real edge scans is not a  significant problem. Typi
cally, the PSF is much narrower than the size of the scan, so the impact of 
this limitation is negligible.[9] Noise is invariably present in the edge scans 
and can be a  source of significant error in the system function estimates. 
Methods for dealing with noise are described in the Section B.2.2. Sampling 
causes no problems if the cutoff of the system OTF is below the Nyquist 
limit, but digital imaging systems typically undersample. As shown in Sec
tion B.2.3, the traditional knife-edge technique gives a very poor estimate of 
the system functions in the face of undersampling.

C artesian coordinates, rather than radial coordinates, are used because the sampling 
grids are rectangular.
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B.2.2 Dealing w ith Noise

Noise in the edge scans is magnified in the OTF estimate. Noise obscures the 
ESF in actual scans of the edge. Differentiation of the noisy ESF to obtain 
the LSF amplifies high-frequency components where the SNR is typically 
lowest. PSF and OTF estimation is an inverse or restoration problem— 
the result of the system must be analyzed to determine a  component of the 
system. The inverse operation in the knife-edge procedure is differentiation. 
Differentiating the noisy ESF is identical to attem pting to restore the LSF by 
application of the inverse filter—the derivative is the inverse of the step-edge 
target:

= W  (B-6)

Differentiating, or inverse filtering, noisy data does not give satisfactory 
results[15]. Small changes in the edge scan (i.e., noise) can result in non
trivial changes in the estimate of the OTF. Taking the derivative of the 
scan with respect to x  corresponds to multiplication in the Fourier frequency 
domain by i27ru. (This function is graphed in Figure B.lA .) The largest 
amplification is a t the high frequencies where the SNR is typically lowest.

Reel
Im aginary
M ognitude

Real
Im ag inary
M agnitude

0.0 0.2 0.4 0.0 0.2 0.4 0.0 0.2 0.4
F req u en cy  F req u en cy  F requency

A. Exact Derivative B. [-1 l] Approximation C. [-1 0 1] Approximation

Figure B .l: Spatial Derivatives in the Fourier Frequency Domain

Many methods have been proposed to deal with noise, both in the lit
erature on PSF and OTF estimation and the literature on restoration in 
general. Jones [6] suggests a perfect bandpass filter with a cutoff equal to 
the system cutoff frequency. This does nothing to noise below the cutoff 
frequency and requires knowledge of the system cutoff frequency. (Also, this 
assumes oversampling.) Blackman[7] suggests a  combination of first smooth
ing the noisy OTF estimate by convolution with a frequency-variant filter
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(the width of the Gaussian increases with frequency) and then averaging 
O TF estimates from several scans. He provides no theoretical basis for the 
specifics of his approach to smoothing the noisy OTF estimate. Tescher 
and Andrews[ll] average several scans to  reduce noise before differentiating. 
They also admit to resorting to repeated use of the Hanning filter to smooth 
the scans. The Hanning filter attenuates high-frequencies with the aim of 
suppressing noise. Unfortunately, high-frequencies of the OTF estimate are 
also suppressed. Popular restoration filters such as the Wiener (optimal 
least-squares) filter[l6] and constrained least-squares filter[17,lS] suffer from 
the same dilemma—signal as well as noise is suppressed. Approximating the 
derivative by convolving the noisy ESF with the kernel [-1 1] or [-1 0 1] also 
suppresses high-frequency restoration. (Compare the high-frequency roll-off 
in the transforms of these kernels, pictured in Figures B .lB  and B .lC , with 
the transform of the exact derivative, pictured in Figure B.1A.) Smith[12] 
suggests a parametric least-squares fit to  a  truncated series of Hermite poly
nomials, but in doing so forces the OTF estimate to a fixed form with as few 
as 4 to 6 variables.

Of these methods, only averaging deals with noise without affecting the 
estimate of the PSF and OTF. The other methods either suppress the esti
mated OTF where noise is high or presume a parametric form for the result. 
Line averaging is implemented by generating many scans across the edge and 
calculating the average along lines parallel to the edge. Assuming that the 
edge is perpendicular to the a:-axis (a tem porary assumption) and th a t the 
additive noise is white (zero-mean and spatially uncorrelated), the noise in 
the average of many scans is negligible:

( J _ ^ J _ ^ H ( x ' ) l i ( x - x ,, y - y ,) d x ' d y , +  e ( x , y ) j

[  j  h ( x ,, y ,) d x ' d y ' + ~ f 2 e(:c^y)J—qqJ—oo iv

/Tit. f  f  h ( x \  y ' ) d x '  dxj'. (B.7)
J—oo J—OO

Under these assumptions, line averaging suppresses the noise without altering 
the signal.

B.2.3 Problem s w ith U ndersam pling

The traditional knife-edge procedure fails to account for sampling effects and 
does not accurately characterize undersampled sys terns even in the absence of 
noise. Consider a noise-free system with an imaging device with a Gaussian
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OTF:

h(uyv) = e ft (B.8)

The example system pictured in Figure B.2A has a value of 0.55 for pc. 
This is midway between a  system informationally optimized for high SNR 
(pc — 0.3) and a more typical imaging system (pc =  0.8).[19] The traditional 
knife-edge estimate of the system functions of this example are inaccurate. 
(See Figure B.2B). The OTF estimate is incorrect below the Nyquist fre
quency and is cut off a t the Nyquist frequency. The sharp cutoff in the OTF 
estimate appears as ringing in the PSF estimate. The loss of high frequencies 
in the OTF estimate is seen in the loss of sharpness in the PSF estimate. 
Sample/scene phase shift causes variability in the estimate. If the knife edge 
in the image is shifted left or right relative to the sample points, the system 
estimates change.

B .3 Sampled System s

In the approach described here, the knife-edge scans are aligned to sub-pixel 
accuracy to achieve super-resolution (resolution greater than the sampling 
rate). This technique alleviates the problems of undersampling. Figure B.2C 
illustrates the improved system estimates obtained by this method for the 
example system of Section B.2.3. The OTF estimate is not cutoff a t the 
Nyquist limit and there is very little blurring or ringing in the PSF estimate.

In order to achieve super-resolution, the knife edge is aligned slightly 
sloped relative to perpendicular (Figure B.3A). Tescher and Andrews[ll] 
characterized this unavoidable shift as unfortunate, but it is the key to  in
creasing the effective sampling rate and averaging sample/scene phase. Fig
ure B.3B shows a sequence of scans, with the sample points marked. The 
edge shifts slightly relative to  the samples from scan to scan. If the scans 
are first registered so that the edges align and then combined (as in Fig
ure B.3C), the result contains many more sample points along the edge scan 
than any single scan line.

Precisely registering noisy scans (so the edges align) is difficult. Fortu
nately, the edge points in the scans do not need to be located exactly. For 
example, taking the system in Figure B.2A, doubling the sampling rate is 
sufficient to nearly eliminate aliasing. If the edge point can be located within 
an interval that is one-half of the sampling interval, it is possible to double 
the effective sampling rate.

Several techniques have been suggested for locating edges to subpixel 
accuracy. [20,21,22,23] The approach used here is: 1) obtain an estimate for
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the edge in each successive scan and 2) fit a line through the edge estimates. 
(Implicit in this approach is the assumption th a t the knife edge is precisely 
linear. If the edge is not linear, the step of fitting a line should be omitted.)

1. For each scan, determine an estimate of the edge location by the following 
steps:

A . Obtain a first estimate of the sample interval containing the edge
as the interval with the largest first-difference. This first estimate 
no maximizes |p[n0 +  l] — p[^o]| where p is the current edge scan. 
If the edge is sharp and clear, this interval is unique. The method 
breaks down if the PSF is so broad or the noise so great th a t this 
interval is not unique.

B . Estimate the brightness values of the background and object by
averaging the samples on the respective sides of the initial edge 
estimate:

l  n o —fc

6 =  (b -9)

5 =  J L p W  ( b -i o )

where k is chosen larger than the effective radius of the PSF. Then 
estimate the brightness value a t the edge point as the value mid
way between the background brightness and the object brightness:

(B.11)

C . Update the value of no as the interval in which the scan response
crosses the brightness value z. That is where p[??o] < =  z < p\no +  
!]•

D . Calculate a subpixel estimate of the edge location as the point where
the cubic spline fit to the scan samples crosses z . The edge esti
mate is obtained by solving for x  in the cubic equation

z — p[n0 -  l ] ( - (x  +  l ) 3 +  5(a: + I ) 2 -  S(a: +  1) +  4)
+  P[«o]0r3 -  2®2 -f 1)
+ p[n0 + 1]((1 -  a:)3 -  2(1 -  a;)2 + 1)
+  p[n0 +  2](—(2 -  x ) 3 +  5(2 -  a;)2 -  8(2 -  a) +  4). (B.12)

2. Obtain an estimate of the knife-edge location as the linear, least-squares 
fit to the set of edge estimates in the individual scans[24].
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This technique for locating the edge has proved successful, bu t any other 
method that accurately locates step edges to subpixel resolution could be 
used in its place.

Next, the scans are registered according to the position of the edge in 
the scan. Then, the samples in the scans are located within subsample 
ranges. Figures B.4A and B.4B picture half-sample ranges in single scans 
relative to the edge. Each value in the average scan is calculated from sam-

— <s*~ -<o>- «a» <n><oxo><©>

<©><D><OxB>

A. Near Edge B. Straddling Edge C. Combined Scan

Figure B.4: Intervals for Registering Scan Lines

pie values th a t fall in the corresponding subsample interval. Figure B.4C 
illustrates how half-sample ranges double the number of sampling intervals 
in the original scans. The number of subsample ranges determines how much 
super-resolution is achieved.

It is convenient to define a new scale to match the increased resolution. In 
Figure B.4, the new sampling interval is half the previous sampling interval:

A t ^  (B.13)

The values on the new scale are twice the values on the old:

t =  2 x

and the relative frequencies are halved:

£ =  -   ̂ o' (B.15)

Note that the super-resolution ratio need not be 2. It could just as well be 
any integer, but for typical systems 2 is sufficient. It is also convenient to 
revert to  one-dimensional equations, postponing two-dimensional concerns 
until the next section.

The averaged edge scan, expressed in the new coordinates, is
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where a[n] is the edge shift in scan n and e[t; n] is the additive noise of sample 
t in scan n. The edge shift is limited to one sample interval ( |a(n)| <  A t / 2 ). 
(Refer to Figure B.4C.) If the distribution of the edge shift is uniform over 
this range, then averaging a large number of scans approximates convolution 
with a pulse. Again, averaged white noise goes to zero:

p[t] /*- » / ? /  H (t‘ — a)h(t — i')d trdaJ ~  J-oo

/ o o  r o o

j  PI (a)H (tt — a)h(t — t')dt'da. (B-17)
■OO J-oo

Subsequent computations (ideal reconstruction, the exact derivative, and 
compensation for the averaging pulse) are more efficient in the Fourier fre
quency domain. The transform equivalent of Equation B.17 is

m  =  / ”  s in c« ') ( ! « « ' ) -  2^ ; )  k ( M t  -  « ' « ' •  (B .is )

If the new sampling rate is sufficient to eliminate aliasing, then ideal recon
struction exactly recovers the function:

m  n ( £ )  =  s in c « )  -  J L )  &((). (B.19)

Just as for the traditional knife-edge approach, the spatial derivative is the 
inverse of the step edge:

P (0  n  (f)(*2jr£) =  sinc(f)/i(£)- (B.20)

The estimation procedure must account for the averaging of sample/scene 
phase as well:

K O n t t X t t r f l  .  f l ( a  (B 21)
sinc(£) v J

This estimate of the OTF extends beyond the Nyquist frequency of the
original sampling function.

In summary, to generate the average scan:

1. Generate many scan lines by imaging a knife-edge target th a t is ori
ented nearly perpendicular to  the scan lines. (A slant of at least one 
sample interval over the number of lines is required to produce a uni
form distribution of sample/scene phase shifts.)

2. Register the edge points in the scans with subpixel accuracy.
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3. Average the values from the scans that fall within subsample inter
vals. The size of the interval is chosen to provide the necessary super
resolution. For example, two-fold super-resolution requires subpixel 
intervals one-half the sampling interval. The result is a  scan with 
increased effective sampling rate, greater SNR, and no sample/scene 
phase variability.

As noted, a bar target is used, so these steps are performed for both edges 
of the bar. The result is an averaged bar scan rather than  an averaged edge 
scan.

Then, to estimate the OTF slice:

1. Discrete Fourier transform the average scan. (Because the following 
steps are performed only on the base period, truncation a t the Nyquist 
limit is unnecessary.)

2. Calculate the exact derivative of the scan, in the frequency domain, by 
multiplying the transform a t each frequency £ by i27r£.

3. Sharpen the derivative of the scan, in the frequency domain, by di
viding each frequency by sinc(£). (This accounts for the averaging of 
sample/scene phase.)

In practice, the computations of the derivative and sharpening can be com
bined. The result is an estimate of a slice of the OTF.

B .4 Two-Dim ensional Estim ates

The knife-edge method yields an estimate of a one-dimensional slice through 
the center of the two-dimensional OTF. The knife-edge approach can be 
used to derive a two-dimensional estimate by generating a series of rotated 
slice estimates and interpolating between them. Before proceeding with this 
involved process, it is sensible to  analyze the system for symmetry and sep
arability.

If the system functions are radially symmetric, then a single slice of the 
OTF is sufficient to characterize the system; the slice of the OTF is a function 
in one variable—the radial distance from the origin. The radially symmetric 
PSF is given by the Hankel transform of the OTF slice. The symmetry of the 
OTF can be gauged by comparing the slice estimates along-x and along-y. If 
the two estimates are the same, it suggests (but does not demonstrate) that 
the system functions are radially symmetric.



CHARACTERIZING ACQUISITION DEVICES 179

Research has suggested that the system functions of digital imaging sys
tems are not perfectly symmetric. For example, analog processing in the 
along-scan direction causes asymmetry in the system functions of digital 
scanners. [13] The array sensors of CCD camera systems also may cause 
asymmetry. [25] Large asymmetry in the system functions is undesirable, so 
the deviations in most systems are fairly small. If the along-x and along-y 
estimates are sufficiently similar, a  radially symmetric estimate may be good 
enough. If the deviations are significant, then the system can be analyzed 
for separability.

The rectangular structure of CCD array cameras suggests th a t they be 
analyzed for separability. (See Figure B.5.) If the OTF is separable, then the

3  f i m  15 / i m

9  n  m

9 /jm Oxide

P +  C honnel S to p

C harge  T ran sfe r D irection

Figure B.5: CCD Detector Array

two slices along the axes are sufficient to characterize the system. An OTF 
is separable if there exist functions in each of the variables whose product is 
the OTF:

h(u ,v) = hx(u)hy(v). (B.22)

In this case, the OTF can be determined from slices along each dimension:

_  ft(u,0)/i(0, v)
h(u ,v)

h( 0,0)
(B.23)

If the OTF is separable, then the PSF is separable.

For example, the model horizontal and vertical response functions (linear 
falloff between potential wells) pictured in Figure B.6 are adapted from Talmi
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and Simpson[26] and Hopwood[27]. (It is not suggested tha t this idealized 
model accurately portrays the responses of a CCD array, rather, its simplicity 
is well-suited for an example.) The separable product of these functions is

01>01

\

n m  1 5  f i  m  .5 i± m

H orizontal R esp o n se V erticol R esp o n se

Figure B.6: Idealized Horizontal and Vertical Spatial Responses

hd(x ,y )  =  n(—)n(6a;)n(2y)n(2y) (B.24)
o

A K ] l  AJ 41

hd(u,v) =  sinc(—-)sinc(—)sinc(-)sinc(—). (B.25)
6 6 2 2

The convolution of two separable functions is separable. Likewise, the prod
uct of two separable functions is separable. Therefore if, in addition to the 
detector array function, the functions of the other components of the device 
are separable (e.g., the OTF of the lens is Gaussian), then the system PSF 
and O TF are separable.

The separability of the system functions can be assessed empirically. Ob
tain three OTF-slice estimates from three knife-edge images—one along each 
of the two axes and one at 45°. The OTF slice at 45° is estimated from the 
edge scans such as those illustrated in Figure B.7. (It is im portant to note
that the sampling interval of this scan is not the same as either the hori
zontal or vertical scans. All of the estimates should be converted to a single 
scale.) The product of the slices of the OTF along the axes should accurately 
predict the diagonal estimate by Equation B.23 if the system is separable. 
If Equation B.23 holds for the diagonal, it is strongly suggestive, but not 
definitive, evidence th a t the system is separable.

If the system functions are neither symmetric nor separable, a two-di
mensional estimate can be derived by applying the extended knife-edge tech
nique along angles between the horizontal, diagonal, and vertical estimates 
already described. Just as in estimating the diagonal slice (illustrated in 
Figure B.7), the knife-edge is rotated to approximately perpendicular the
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Knif^ Edge

Figure B.7: Diagonal Knife-Edge Scans

desired estimate. Just as for the diagonal estimate, the slanted scans consist 
of the samples of many rows and columns.

B .5 Simulation R esults

Simulation provides an exacting testbed, with a  known system, scene, and 
noise process, for assessing the accuracy of this approach. The system model 
consists of two components: a model of the optics and a model of the CCD 
sensor array. The model for the optics was suggested by Johnson[28]:

h0(u ,v)  =  exp {̂ U ̂  V ^ (B.26)

where pc is the frequency at which the OTF is 1/e and n is the slope of the 
OTF line on a log — log plot. The idealized CCD model was introduced in 
the previous section. The equation for the idealized model is

fcd(u,u) =  sinc(Tyi u)sinc(GI ii)sinc('l;I/'j/u)sinc(Gt/u). (B.27)

where W x and W v are the dimensions of the potential wells and Gx and Gy
are the distances between wells. (An example is pictured in Figures B.5 and 
B.6.) The OTF model is the product of the functions for the optics and the 
sensor array:

/i(u,u) =  h0(it,v)hd(u,v). (B.2S)

7
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The results presented in this section were generated with the following pa
rameters: pc =  l / \ /2 ,  n =  2 (a Gaussian, a separable function), W x — 5/6, 
Gx =  1/6, W y =■ 1/2, and Gy — 1/2 (as in Figures B.5 and B.6).

Three 1024 x 1024 digital scenes were used: one with a vertical bar, one 
with a horizontal bar, and one with a  diagonal bar. In each scene, the bar was 
slightly sloped relative to the scan direction (a slope of 1 scene element per 
64 scans). Each of these targets provided two knife edges (one on each side of 
the bar). The effect of the system on the scene is simulated by multiplying 
the transform of the scene by the OTF. The inverse Fourier transform of 
this product is the spatial image. The images of the horizontal and vertical 
bars were resampled in the scan direction to produce 1024, 64-element edge 
scans. The image of the diagonal bar was sampled both horizontally and 
vertically to produce 127 edge scans of varying length. (See Figure B.7.) In 
all three images, border effects corrupted the top and bottom  scans, so only 
half the edge scans were retained (those in the center). White noise was then 
added to these edge scans, producing the type of data one expects from a 
real system.

The model system function along-a: is graphed in Figure B.8. Two sam
pled edge scans (the 0th and 256th) without noise are pictured in Fig
ure B.9A. The same scans with noise (Image SNR =  64) are pictured in 
Figure B.9B. From only two scans, the estimate of the system functions is 
unreliable. Averaging all 512 scans, with subpixel registration, yields the 
scan with reduced noise and doubled effective sampling frequency pictured 
in Figure B.9C. This scan gives an accurate measure of the system, pictured 
in Figure B.8B. (A zero-phase system is assumed, so only the real part of 
the OTF estimate is retained. This is equivalent to averaging the left and 
right halves of the PSF estimate.)

Figure B.10 summarizes the accuracy of the system measure along-a;. 
The ordinate of the graph is the mean-square-error (MSE) of the estimate 
relative to the energy of the OTF:

£ | f t ( u ) - h eit(u )|2 
Relative MSE =  -2--------■------ ------- . (B.29)

z Mu
The abscissa is the number of lines used in the line-averaging process. The 
different symbols indicate different levels of noise in the scans. The image 
signal-to-noise ratio (SNR) is the ratio of the step-edge height to the contrast 
(standard deviation) of the noise:
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where o is the function value of the object (i.e., the bar) and b is the function 
value of the background. The plot values are averages for multiple choices 
of scan lines. For averaging only two lines, the pairs 0 and 256, 1 and 257, 
. . . ,  255 and 511 were used. For four lines the combinations were 0, 128, 
256, and 384; . . . ;  127, 255, 383, and 511. The combinations for the other 
numbers of lines were generated in this fashion. The limiting effect of the 
ratio  of scene-elements to scan-elements is evident in that the estimates for 
the noise-free image do not improve beyond using 16 lines. (The ratio of 
scene-elements to scan-elements is 16:1.) In fact, noise-free refers only to the 
additive noise as there is inevitably error introduced in digitally simulating 
a continuous process.

The MSE plots behave much as theory would suggest. Generally, halv
ing image SNR (e.g., by quadrupling the energy or variance of the noise) 
quadruples the MSE of the estimate. Similarly, halving the number of lines 
averaged doubles the MSE of the estimate. Only at the bottom  of the graph, 
where the limits of the accuracy of the simulation are reached, do these rela
tionships break down. This graph can be used to gauge the accuracy of the 
estimate of a physical system or to indicate the number of lines required for 
desired accuracy. All that is required is an estimate of the noise to calculate 
the image SNR. Of course, the utility of these figures depends on how closely 
the real system is modeled by the simulation.

Figure B.5 illustrates the analysis of the system for symmetry and sep
arability. Figure B.5A depicts the OTF along-x and the knife-edge esti
mate. Figure B.5B shows the OTF along-y and the knife-edge estimate. 
Figure B.5C shows the OTF along-diagonal, the knife-edge estimate, and 
the product of OTF estimates along-x and along-y. (Each the OTF esti
mates are based on 64 edge scans with SNR of 256.) The OTF estimates 
along-x and along-y differ slightly indicating that the system is not perfectly 
symmetric. However, as would be desirable in a real system, the asymmetry 
is small. The product of the along-x and along-y estimates is similar to the 
diagonal knife-edge estimate, supporting the hypothesis that the system is 
separable. None of the estimates is very different from the others, indicating 
that the system function is both nearly symmetric and separable. I t is clear 
from these estimates that the Gaussian component of the simulated system 
(Equation B.28) is dominant.

B.6 Experim ental Results

The extended knife-edge procedure was used to estimate the OTF of a Pho
tometries 183S slow-scan, three-stage, thermoelectric-cooled CCD camera
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system with a Texas Instruments 4849 array sensor and a standard 50mm 
lens. A commercial test target with a dark square printed on white mylar 
was placed as close to the camera as could be focused (45cm). The /-stop 
was set to 9.5 and the exposure time was 0.1 seconds. The resulting images 
were corrected for dark-field and flat-field response as

-i _ P  K  n ) ~ d  K  ”] /« o, x
p [ m ,B ) --------- / K « l / /  (B '31)

where d [??/, n] is the dark-field response (the CCD output with the shutter 
closed), /  [m, n] is the flat-field response (the response to a target of uniform 
reflectance), and /  is the mean of the flat-field image. A 64 x 372 image 
containing a vertical bar was cut from the full 584 X 388 image. The image 
of the horizontal bar was cut to 372 X 64 and the image of the diagonal bar 
was cut to 128 x  128.

Figure B.12 illustrates the estimate of the OTF to  the sampling frequency. 
The response is typical for digital imaging systems balancing the tradeoff 
between blurring and aliasing—some attenuation of frequencies below the 
Nyquist frequency and some response above the Nyquist frequency that will 
result in aliasing. The magnitude of the OTF at the Nyquist limit is greater 
than 0.3. The estimate of the OTF begins to breakup near the sampling 
frequency where the OTF magnitude and the SNR are small. A traditional 
knife-edge estimate of the OTF of this system would be inaccurate below the 
Nyquist frequency and would not measure the components above it.
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Figure B.12: Estimates of CCD System OTF

The vertical, horizontal, and diagonal responses are not very much differ
ent from one another. This is evidence tha t the system functions are nearly
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circularly symmetric. The product of the vertical and horizontal transfer 
function estimates is a poor estimate of the diagonal response a t the appro
priate frequency. This indicates that the system function is not separable.

The OTF estimates were corroborated using an image of a  bar chart 
th a t conforms to NBS 1010A and ANSI/ISO # 2  standards taken under the 
conditions described above. The frequencies on the bar chart ranged from 
1 cycle/mm to 5.6 cycles/nun. The sampling frequency in the target plane 
was 6 samples/mm, so the square-wave frequencies relative to the sampling 
frequency ranged from .167 to .933. From the OTF estimate of Figure B.12B, 
the modulation or contrast (i.e., the standard deviation) in the images of the 
square-waves is predicted by the equation

g[v] = r27T k-0

h [u (2k + 1)]
2 k +  1 (B.32)

where g [v] is the estimated contrast for a square-wave of frequency u, a is 
a  scaling constant, and h [u] is the OTF. The normalized predicted contrast 
and observed contrast of the square-wave images are given in Figure B.6. The 
estimates accurately predict the observed square-wave contrast. The scatter 
of the observed contrast is due to noise and sample/scene phase shift. Only 
three bars were usable at all frequencies and with so few periods of the square 
wave, sample/scene phase is a source of significant variability.
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B .7  Conclusion

This technique provides accurate estimates of the transfer functions of digi
tal imaging systems. The estimate is extended beyond the Nyquist limit by 
supei*-resoIution achieved by subpixel registration of knife-edge scans. Line- 
averaging successfully eliminates sample/scene phase shift and increases SNR 
in the scans making the estimates less variable and more accura te. The tech
nique can be applied a t virtually any angle. Digital systems can be assessed 
for symmetry or separability. Two-dimensional estimates are generated by 
applying the technique to a scries of rotated edge scans.
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