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ABSTRACT 
 

With billions of users, Online Social Networks(OSNs) are amongst the largest 
scale communication applications on the Internet. OSNs enable users to easily 
access news from local and worldwide, as well as share information publicly 
and interact with friends. On the negative side, OSNs are also abused by 
spammers to distribute ads or malicious information, such as scams, fraud, 
and even manipulate public political opinions. Having achieved significant 
commercial success with large amount of user information, OSNs do treat the 
security and privacy of their users seriously and provide several mechanisms 
to reinforce their account security and information privacy. However, the 
efficacy of those measures is either not thoroughly validated or in need to be 
improved. In sight of cyber criminals and potential privacy threats on OSNs, 
we focus on the evaluations and improvements of OSN user privacy 
configurations, account security protection mechanisms, and trending topic 
security in this dissertation.   
 
We first examine the effectiveness of OSN privacy settings on protecting user 
privacy. Given each privacy configuration, we propose a corresponding 
scheme to reveal the target user's basic profile and connection information 
starting from some leaked connections on the user's homepage. Based on the 
dataset we collected on Facebook, we calculate the privacy exposure in each 
privacy setting type and measure the accuracy of our privacy inference 
schemes with different amount of public information. The evaluation results 
show that (1) a user's private basic profile can be inferred with high accuracy 
and (2) connections can be revealed in a significant portion based on even a 
small number of directly leaked connections. 
 
Secondly, we propose a behavioral-profile-based method to detect OSN user 
account compromisation in a timely manner. Specifically, we propose eight 
behavioral features to portray a user's social behavior. A user's statistical 
distributions of those feature values comprise its behavioral profile. Based on 
the sample data we collected from Facebook, we observe that each user's 
activities are highly likely to conform to its behavioral profile while two different 
user's profile tend to diverge from each other, which can be employed for 
compromisation detection. The evaluation result shows that the more complete 
and accurate a user's behavioral profile can be built the more accurately 
compromisation can be detected. 
 
Finally, we investigate the manipulation of OSN trending topics. Based on the 
dataset we collected from Twitter, we manifest the manipulation of trending 
and a suspect spamming infrastructure. We then measure how accurately the 
five factors (popularity, coverage, transmission, potential coverage, and 
reputation) can predict trending using an SVM classifier. We further study the 
interaction patterns between authenticated accounts and malicious accounts in 
trending. At last we demonstrate the threats of compromised accounts and 
sybil accounts to trending through simulation and discuss countermeasures 
against trending manipulation. 
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Chapter1

Introduction

With over one billion users, Online Social Networks (OSNs) are amongst the largest

scale communication applications on the Internet. As of the second quarter of 2016,

the number of monthly active users on Facebook reached more than 1.6 billion [8].

Launched later than Facebook, Twitter has more than 200 million monthly active

users [20]. OSNs have changed multiple aspects of our daily lives by providing a

great variety of social communication services. OSNs enable users to easily access

local and world-wide news, as well as share information publicly and interact with

friends. Furthermore, celebrities leverage OSNs to attract attentions and gain more

popularity; company and organizations set up pages on OSNs for advertising and

marketing. On the negative side, OSNs have also been abused by spammers to dis-

tribute ads or malicious information [16], such as scams, fraud, and even manipulating

public political opinions [93].

One of the top concerns of OSN users is their privacy and security [17]. In ex-

change for the convenience of the social communication services, users entrust OSNs

with their personal information. The massive amount of users and their personal

information, in turn, help OSNs to generate profit through marketing services, such

as targeted advertisements [11]. Having achieved significant commercial success [18]
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with this mode, OSNs do take the security of user private information into serious

consideration. The major OSNs provide their users with extensive privacy configu-

rations, which allow fine-grained control of private information visibility to specific

friends and strangers. In addition, most OSNs employ two factor authentication [13],

IP geo-location monitoring [3], and account recovery processes [15] to boost user ac-

count security. Moreover, to help user to consume information more conveniently,

OSNs publish the most hot topics in real time. However, the efficacy and security of

these measures are either not thoroughly studied or in need to be improved.

In sight of cyber criminals and potential privacy threats on OSNs, serious research

efforts have been paid on related topics. A large portion of OSN security research in

recent years has focused on spammer accounts and spam analysis . Spam detection

methods used for emails are introduced to OSNs [54]; and then new methods lever-

aging OSN features, such as user connections, are also proposed later [47, 52, 108].

Because spams are usually post automatically from bot accounts, botnet detection

also helps to detect spammers [102, 111]. Sybil detection is also well studied to discern

large groups of fake OSN accounts [37, 43, 98]. Different approaches [82, 103, 110]

have been proposed to evaluate account reputation or vouch for accounts; and defend

large scale crawling on OSNs [56, 74]. Moreover, [40, 64, 72, 81, 112] have revealed

user security and privacy breaches on OSN by collecting and inferring user informa-

tion while [31, 46] have redesigned OSN system structure to reinforce users’ privacy.

This dissertation focuses on the evaluations and improvements of OSN user pri-

vacy configurations, account security protection mechanisms and trending topic secu-

rity. More specifically, for the user privacy configuration, we identify an information

leakage vulnerability in major OSNs, which is mainly caused by incomprehensive

privacy policy coverage. We conduct an extensive measurement study on Facebook,

and present the quantity and quality of private information an attacker could re-
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veal due to this vulnerability. For account security protection, we target at account

compromisation, which is an emerging prevalent and significant problem due to the

difficulties in accurate detection and effective mitigation. We devise a novel account

activity anomaly detection mechanism based on passive observation of users’ social

behaviors. By conducting measurement studies on more than 50 human users of

their Facebook usages, we show that users’ social behaviors on OSNs are diverse and

distinct, and thus can be leveraged to efficiently identify account compromisation.

For trending topic security, we investigate the manipulation of trends in Twitter, a

popular OSN. As Twitter become one of the major ways for information consuming,

many OSNs list the most hot topics to users in real time. Given the millions of tweets

we collected in Twitter, we evidence the manipulation of trending topics by malicious

accounts. To explore how they achieve that, we study which factor impact trending

the most. We further demonstrate the threat of malicious manipulation of Twitter

trending by using simulation based on the spamming infrastructure we observed.

1.1 Breaches in Privacy Settings

Major OSNs, including Facebook and Google+, strive to protect their users’ privacy

by extensive privacy configurations. However, how secure a user’s private information

is with these protection mechanisms has not been thoroughly investigated. With

the privacy settings, a user is given the impression that it has total control over

the visibility of each piece of its private information. Unfortunately, as revealed in

Chapter 2, many of the privacy settings on OSNs are ineffective, and the protection

users enabled on their private information can be easily bypassed.

Although the granularity varies on different OSNs, a user’s personal information is

usually categorized into several different classes, such as identity (e.g., name, birthday,
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and photos), community (e.g., location, and organization affiliation), relationship

(e.g., friend list and follower/following connections), etc. Users could independently

configure the publicity levels (e.g., visibility to general public, to groups of users,

and even to specific users) of each class of information. However, the seemingly

extensive set of privacy settings often gives users false sense of security, because

the configurations are enforced by incomprehensive, and sometimes even conflicting

privacy policies. For example, if a user chooses not to show its friend list to strangers

but allows everyone to view the photo albums, its friends are being “leaked” by the

comments on the photos.

Existing research on privacy settings focuses on the diverge between users’ privacy

expectation and their privacy settings [68, 70]. However, the previous studies assume

that privacy settings would provide proper protection to the corresponding informa-

tion, and have not considered the intrinsic vulnerabilities of incomprehensive privacy

policies. While many previous research efforts on privacy setting breaches strive to

infer user information [40, 64, 72, 112], none of them take into account the effects of

privacy settings over information availability. And additionally, these studies suffer

from the limitations of overly powerful attackers (e.g., assuming the availability of

thousands of users as the training dataset [112]), small scopes (e.g., only on specific

kinds of information such as music interests [40] and group membership [64]), and

coarse granularity (e.g., infer information of user groups, instead of individual users).

We investigate the ineffectiveness of the OSN privacy configurations from an at-

tacker’s point of view. Using a large-scale measurement study on Facebook, we quan-

tify the prevalence of unintentional private information leakages among users. Then,

considering ourselves as attackers who have no connection to victim users, we design

sophisticated inference algorithms that adapt to the victims’ privacy configurations

and public information availability, and exploit the privacy policy loop-holes to infer
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unpublished personal information of the victims. Our evaluation shows that, without

the needs of a large training dataset, our attack schemes can uncover a remarkable

amount of user private information with high accuracy. This indicates that the infor-

mation leakage vulnerability on today’s OSN can lead to significant privacy breaches.

1.2 Compromised Account Detection

With the increasing popularity of OSNs, account compromisation has emerged as a

significant threat to OSN users. Recent news have reported that Twitter accounts

were hacked on a large scale [1], and in addition, both Thomson Reuters’ Twitter

account and Facebook CEO’s account were hijacked [22, 24]. These incidents evident

that today’s OSNs lack adequate protections to their users’ accounts.

Compared to sybil accounts and dedicated dummy accounts for conducting mali-

cious activities, compromised accounts are more favored by cyber criminals. On one

hand, the pre-existing social connections between the victim users and their friends

could be exploited to distribute malicious information (such as spams) more effec-

tively. On the other hand, the well established trust relationship between the service

providers and account owners makes the detection of compromised accounts quite

challenging. Previous research on offline spam analysis shows that most spam emails

are distributed via compromised accounts [48, 52].

One method OSN employ to prevent account abuse is the two factor authentica-

tion, which requires more steps than normal login process and affects user experience.

Other mechanisms adopted to discern abnormal account behavior are based on geo-

location and browser information [3, 5], which could be evaded by hackers. Thus,

more effective solutions are needed to detect compromised accounts. Based on in-

dividual user’s online social behaviors, we proposes to detect compromised accounts
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by building a behavioral profile for the authentic user of an account. The rationale

behind our design is that the disparity to the user profile indicates compromisation.

Compromised account detection has to be differentiated from spammer account

detection, though most existing research has not yet done so. While dedicated spam-

mers can be banned directly upon detection, compromised accounts cannot be simply

banned due to the fact that those accounts are actually common users’ and banning

those accounts affects user experience. Most existing research on spam account detec-

tion does not discriminate compromised accounts [47, 48, 52, 105]. One previous work

that is specifically dedicated to compromised account detection is based on message

posting features and message content clustering [44]. Considering a large number

of real-time messages, the method in [44] employing message clustering introduces

significant overhead. Therefore, we seek an alternative solution that avoid examining

the message content to discern compromised accounts.

Without analyzing user profile or message content, we attempt to discern behav-

ioral anomaly of compromised accounts based on their original users’ social activity

patterns. The user behaviors can be observed via clickstreams in a lightweight man-

ner. OSNs provide various social services, including browsing friends’ updates, up-

loading photos, and publishing messages, etc. A user’s usage pattern in those services

depends on its interests and social habits. Hence, the behavioral patterns using those

services vary among different users. Meanwhile, the patterns are hard to obtain and

arduous to feign.

Based on previous intuition and reasoning, we propose to profile user behavioral

pattern as a reference to detect compromised account. After collecting several sam-

ple users’ clickstreams to Facebook, we study their social behaviors. Based on our

observation of their interaction with different OSN services, we propose several new

behavioral features to portray user behavior patterns. Our preliminary measure-

6



ment results on the features validate their effectiveness to quantify user difference.

For each behavioral feature, a metric is derived as the statistical distribution of the

feature value range, observed from a user’s clickstreams. Combining respective behav-

ioral metrics, a user’s behavioral profile is built and represents the user’s behavioral

patterns. In our evaluation, a user’s behavioral profile is employed to differentiate

clickstreams of the user from all other users’, and cross-validation experiments are

conducted. The evaluation results show that social behavioral profile can effectively

differentiate individual OSN users with accuracy up to 97%.

1.3 Trending Topic Manipulation

With the ever-increasing popularity of OSNs, they are not only convenient platforms

for communication but also important resource to retrieve news and information [4].

Some events originated from OSNs have become phenomenal [21]. To help users to get

news easier, OSNs usually rank the hot topics and update the list in real time. Those

trending topics are usually listed in users’ homepage for available retrieval. Given this

handy feature, users can easily get access to the most populous trends and join them.

Journalists can also take advantage of this feature, and Twitter, Google, Instagram

even become important resources for them to develop stories, track breaking news

and investigate public opinions. For example, in an election campaign Twitter trends

were tracked to learn candidates’ popularity and predict the election outcome [58].

Though trend lists in OSNs facilitate information propagation, they can easily

become subject to abuse. Trend ranking algorithms differ among various OSNs, but

they are closely related to the trending topic popularity. For instance, Google Hot

Trends ranks the latest topics that experienced large surge of search on its site, and

the ranking of a topic can be enhanced by manipulating bots to search for the topic on
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Google repeatedly. In Twitter, a topic can be promoted in trending by manipulating

sybil accounts to mention it in tweets. An article [23] in Wall Street Journal reveals

that there are underground markets to promote topics to trending. Moreover, [58]

discloses that Twitter have been manipulated in an election campaign.

As there are increasing emphasis on OSN trends, lots of related research have

been conducted. To detect trending topic in a timely manner from large amount of

information, different trends detection algorithms [25, 38, 59, 69] have been proposed.

In addition, Becker et al. [34] use a clustering method to distinguish real-world events

from trends. To classify various trends, [55, 63, 76] have proposed different methods

for trending topic taxonomy. Furthermore, [32, 39, 84, 99] have proposed several

means to measure the influence of trending topics and related users. However, there

is little research dedicated to trending topic manipulation.

We aim to investigate the abuse of trending topics in Twitter. We attempt to know

whether malicious users can manipulate Twitter trends and how can they achieve

it. Being exposed to the hottest trends, users are entitled to gain insight into the

authentic popularity of the topics. Meanwhile, exploring the manipulation of Twitter

trends helps to understand the promotion of a topic from the perspective of a third

party. Based on millions of tweets we collected from Twitter, we first evidence the

manipulation of Twitter trends by employing an influence model. Then we disclose

a suspect spamming infrastructure after the analysis of accounts in the spike of a

trend. Given five factors that may affect trending, we study the extent to which a

factor can affect trending using an SVM classifier. Moreover, we demonstrate the

threat of malicious manipulation of Twitter trending through simulation and discuss

the corresponding countermeasures.
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1.4 Organization

The remainder of this dissertation is structured as follows. In Chapter 2, we present

our proposed algorithms to unveil user privacy and evaluate the efficacy of privacy

settings. In Chapter 3, we present our novel social-behavior-based method for compro-

mised account detection. In Chapter 4, we investigate the manipulation of trending

topics in Twitter. Finally, we conclude this dissertation in Chapter 5.
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Chapter2

Unveiling Intrinsic Breaches of Privacy

Settings

Users of online social networks (OSNs) share personal information with their peers.

To manage the access to one’s personal information, each user is enabled to configure

its privacy settings. However, even though users are able to customize the privacy of

their homepages, their private information could still be compromised by an attacker

by exploiting their own and their friends’ public profiles. In this chapter, we inves-

tigate the unintentional privacy disclosure of an OSN user even with the protection

of privacy setting. We collect more than 300,000 Facebook users’ public information

and assess their measurable privacy settings. Given only a user’s public information,

we propose strategies to uncover the user’s private basic profile or connection infor-

mation, respectively, and then quantify the possible privacy leakage by applying the

proposed schemes to the real user data. We observe that although the majority of

users configure their basic profiles or friend lists as private, their basic profiles can

be inferred with high accuracy, and a significant portion of their friends can also be

uncovered via their public information.
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Figure 2.1: User Information from An Attacker’s View

2.1 Motivation

Online social network (OSN) websites have attracted a large number of users in the

past few years. Facebook, the most popular OSN, was launched in 2004; by March

2013, the monthly active users exceeded 700 million [7]. Each user account typically

includes the user’s basic profile, such as gender, education, and friend list, and other

personal data, such as photos and messages. Clearly not every user is willing to

share all its information with peer users, either friends or strangers [71]. Accordingly,

many social network sites allow a user to take control over its information visibility

by configuring privacy settings. Thus, users are able to set their information visibility

to different types, and the setting granularity varies from site to site. For instance,

except for profile image and name, a Facebook user is capable of configuring its friend

list, each piece of profile information, wall post and photo accessibility to strangers

and specific friends.

However, some of an OSN user’s private information that is protected by its

privacy setting can be easily compromised. In other words, a privacy setting is not

effective as what it claims to be. This is due to the intrinsic vulnerabilities inside the

privacy setting policy. For instance, as shown in Figure 2.1, user A and user B are

mutual friends; each configures its privacy independently such that their information
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visibility are as the figure shows. An attacker, who does not set up connections with

user A or user B, has no access to user A’s friend list, but can access some of its

photos or posts; thus some of user A’s friends, who responded to A’s posts or left

photo comments, are leaked. When the attacker also visits user B, who has a public

friend list, the attacker can confirm the connection between A and B. Exploiting

this kind of vulnerability, we wonder whether A’s friends or B’s basic information

could be uncovered even with the protection of their personalized privacy settings.

More generally, we attempt to measure, from an average attacker’s perspective, with

limited resources, how much of a user’s privacy could possibly be compromised based

on its plainly leaked information.

From the stance of a stranger to a target user, this chapter strives to evaluate the

user’s privacy setting breaches on a large scale and attempts to answer the following

questions:

• Can one’s privacy setting be undermined by developing more sophisticated and

practical schemes, which can infer more private profile information based on

what has been directly published from the person’s homepage?

• How accurate can users’ privacy be inferred? While users can configure their

privacy settings to different types, can the amount of inferred privacy be quan-

tified given each privacy setting type?

• Is the amount of inferrable privacy mainly determined by the user’s privacy set-

ting? If so, can the number of affected users with a certain setting be estimated

on a large scale?

Although previous research [68, 70] has investigated the gap between OSN users’

privacy expectation and their actual privacy settings, the vulnerabilities in privacy

12



settings themselves are not studied. Yet there are rare existing research that specifi-

cally examines whether a privacy setting can keep the privacy of user information as

it is configured. While several efforts [40, 64, 112] have demonstrated the possibility

to infer OSN users’ one attribute value from another, or to infer the connections,

they are based on (1) a large amount of training data [112] or (2) the assumption of

the availability of specific kinds of information, such as group membership [64, 112]

and music interests [40], which in reality may be set as private by users. The effects

of users’ privacy settings upon their profiles are not taken into account, let alone

to measure the privacy setting breach. A large number of users, who share certain

attribute values with the target users, are required as the training data to conduct

the information inference. Thus, those strategies can only be taken by attackers with

rich resources.

In this chapter, we investigate whether certain privacy settings can effectively

protect a user’s private information as the user configured. We dwell on measuring

and quantifying the unintentional leakage of a target user’s basic profile information

and friend list, which are the pivot of its social profile. For each target user with a

certain privacy configuration, we propose the profile and connection inference schemes

based on the user’s publicly available information. In addition, instead of relying on

a large amount of training data, our approach only needs a small number of users

in the target user’s neighborhood. The proposed schemes can be conducted by any

average users without many resources. We crawl and collect about 300,000 Facebook

users’ publicly available information as our dataset. The status-quo of those users’

privacy settings is measured. Then, we quantify the amount of inferrable private

information by using our proposed schemes, and observe that a remarkable amount

of privacy could be uncovered, indicating that privacy settings do not effectively

guarantee users’ information privacy.
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2.2 Related Work

There are two major research directions on the privacy and security issues in OSNs:

(1) to reveal the privacy threats in OSNs by conducting surveys [68, 70] and proposing

attack models [101], information inference algorithms [33, 40, 45, 60, 64, 72, 109], de-

anonymization algorithms [30, 77], and re-identification algorithms [108]; and (2) to

reinforce users’ privacy by redesigning the OSN system structure [31, 46, 73, 87]

and conducting anonymization [80, 91]. This chapter investigates the privacy setting

breaches, which belongs to (1). We describe the related work as follows.

The disparity between users’ actual privacy settings and their privacy expectation

in Facebook has been studied by Madejski et al. [70] and Liu et al. [68]. They obtained

users’ expectations by conducting surveys and retrieved their factual privacy settings;

and then detected the inconsistency between the two. Both found that there was a

significant variance between users’ privacy expectations and their privacy settings.

But this is due to users’ inability to configure their privacy settings according to their

will, and they assumed that the privacy setting could effectively protect the data

that it is configured to protect. In contrast, this chapter intends to challenge this

assumption and unveils the privacy setting vulnerability in itself. In addition, we

measure the privacy setting status-quo on a much larger scale.

Regarding information inference, there are profile mining [33, 40, 72, 112] and link

mining [60, 64, 65, 89, 109] approaches, both of which this chapter explores. Zheleva

et al. [112] presented several classification models using links and group memberships

to infer the target users’ profiles. But in many OSNs such as Facebook, the group

membership is covert by default. Moreover, it assumes that a specific percentage of

attribute values are publicly available to perform the inference, and a user set that

consists of thousands of users as training data is needed for classification.
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Chaabane et al. [40] extracted semantic correlations among users’ music interests,

and computed each user’s probability vector belonging to certain semantic topics.

Users with similar vectors shared the same attribute value. However, this method is

limited to users who have published music interests, and is not applicable to more

general users who have not done so. A large dataset is also needed for classification.

Mislove et al. [72] assumed that users sharing the same attribute values were

inclined to form dense communities. The traditional community detection algorithm

is modified to take user’s attribute values into consideration. The algorithm is applied

to a school student dataset to infer their majors schools, and etc., but when it is

applied to a larger user set from a broader geographical area, the accuracy is much

lower than that using the student dataset.

Compared to these related work, this chapter designs inference schemes from

the stance of an individual user instead of a global view, thus it avoids the need

of large amount of training data and only demands the information of the target

user’s reachable neighbors. More importantly, we take the actual availability of user

information into account, instead of assuming specific attribute values to be in hand.

Another important privacy threat is the compromise of a user’s connections, i.e.,

the friend list. Leroy et al. [64] uncovered the social graph given the user’s group

membership information. However, it is not easy to obtain these group-related data

in most OSNs, in which group information is private. Staddon et al. [89] inferred

a user’s friend list based on the situation that most OSNs provide the shared friend

function once a connection has been set up to the target user. However, the dilemma

is if the attacker connects to the target user, likely the target user’s friend list is

already accessible to the attacker. Bonneau et al. [36] also aimed at uncovering a

target user’s friend list in Facebook by exploiting the public listing feature, but the

feature has been disabled and is not available anymore.
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2.3 The Facebook Dataset

Facebook was chosen as our research target because it is the world’s most populous

OSN providing many flexible features and diverse user resources. More importantly,

its privacy setting policy is similar to the policies that most existing OSNs adopt, but

in finer granularity. In Facebook, one can set each of its information item individually

to be visible to every user (a.k.a. “Public”), or visible only to specific or all friends.

While collecting the dataset, the collector acts as a user who neither belongs to

any specific group nor sets up connections with any of the sample users. The retrieved

data are all set as “Public,” i.e., accessible to every normal user. Hence, the inference

experiments can be reproduced by any other users. Moreover, since we only collected

public information, none of Facebook’s security policies were broken. For privacy

concern, user names and IDs are anonymized.

The dataset is organized into a database, consisting of about 300,000 Facebook

users. The crawling originated from 50 graduate students at the same institution

and was conducted in a breadth-first manner. Out of the total users, about 120,000

users were crawled at the beginning phase, and all their main profile subpages were

collected. The rest about 180,000 users were crawled thereafter, and all but their

photo subpages were collected as photo pages are not used for evaluation. Out of the

300,000 users, there are 909 users all of whose friends’ profiles are also in the dataset;

for the rest of users, only some of their friends are in the dataset.

To quantify the information leakage, we emphasize the unintentional revelation

of a user’s targetProfile, including an attribute set: {location, institution} and the

friend list. The attribute set is called the basic attribute set, and its element is basic

attribute. While targetProfile is the pivot of a user’s social profile, other information

items from wall like status, messages, to photos are not included in it because they
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are improvised and hard to infer. We define the percentage of users that have certain

information public as “public ratio.”

Based on our dataset, the public ratios of users’ four main subpages are: 83.8%

for profile page, 62.2% for friends page, 55.1% for wall page, and 45.6% for photo

page. For a profile page, it is considered to be public if at least one value in the basic

attribute set is visible. A photo or wall page is considered to be public if at least one

album or post is visible; A friend list is considered public when it is visible.

As many as 37.8% of users conceal their friend lists from strangers. Compared

to about 28% for the dataset in Gundecha’s work [53], more users in our dataset are

aware of connection privacy. Although about 83.8% of users publish one or more

basic attribute values, a majority of them provide incomplete basic profiles. Based

on the dataset, only 9.9% of users publish complete basic attribute values.

Those statistics demonstrate that a significant number of users customize their

targetProfiles as private or partially private. The inference of their targetProfiles

reflects the effectiveness of their privacy settings. Next, we present the schemes to

infer each of the two targetProfile items in detail.

2.4 Exploiting Privacy Setting Vulnerability

Targeting a user’s targetProfile, we design different inference schemes for each pos-

sible privacy setting type on the four subpages, including profile, friends, wall, and

photo. For easy presentation, the notations we used are listed as follows:

U : user set.

PS(u) : u ∈ U , user u’s privacy setting on four subpages: profile, friends, wall, photo

in sequence; denoted as a 4-tuple, and entry value 1 means all basic attributes
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are visible in the profile page, visible friend page, some visible posts on the wall

or photos, respectively, while 0 represents the opposite.

BA(u) : u ∈ U , user u’s basic attribute values.

FL(u) : u ∈ U , all users in u’s friend list, denoted as a user set.

targetProfile(u) : u ∈ U , user u’s targetProfile, that is {BA(u), FL(u)}.

G = (V, E) : the social graph formed by users in user set V , and E consists of

the undirectional connections among users in V ; ∀u, v ∈ V , if v ∈ FL(u)

and u ∈ FL(v), (u, v) ∈ E. Most frequently it is used to denote a user’s

neighborhood graph.

GC(k) : 1 ≤ k ≤ n, a set of members of a community structure detected in a user’s

neighborhood, and n communities detected in total.

The scenarios under which the targetProfile has to be inferred include when PS =

(0, 1, x, x), PS = (1, 0, x, x) and PS = (0, 0, x, x), where x can be either 1 or 0.

According to the inference objective and public information, we categorize users into

four sets from U1 to U4 by their PS values. U1 and U2 consist of users whose BA

values can be inferred while U3 consists of users whose FL can be inferred from their

public information, and U4 consists of those whose BA or FL are hard to be directly

inferred from their public information.

Table 2.1 shows the possible PS values in each user set and the ratio of users in

it. About 8.2% of users display complete targetProfiles to strangers, thus they are

not the inference objects. The union of U1, U2 and U3 consists of 69.4% of users,

those users’ targetProfiles are not complete with more or less additional information

accessible. In the following subsections, we first illustrate BA inference followed by
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Table 2.1: User Sets and Ratio

User Set U1 U2 U3 U4

PS

0100 0001 0001 1001 0000 11xx
0101 0010 0010 1010 1000
0110 0011 0011 1011
0111

Ratio 54.0% 14.3% 15.4% 22.4% 8.2%

FL; in particular, we infer BA for users in U1 and U2, then we infer FL for users in

U3, followed by the hardest case for users in U4.

2.4.1 Basic Attributes from Friends

The users in U1 display incomplete or no BA but their friend lists are visible, and

their BAs should be inferred. Table 2.1 shows that 54% of users belong to U1,

indicating that a large group of users’ privacy are threatened if their BAs can be

properly compromised. This scenario is formulated as:

U1 = {v|v ∈ U and PS(v) = (0, 1, x, x)};

Inference objective: BA(v), v ∈ U1;

Public information: FL(v), v ∈ U1.

Intuitively, a user’s geographical location, occupation, and interests affect the for-

mation of its social circle. Some connections are set up with colleagues or classmates,

while others are from interest communities. Thus, its friends could be classified into

different groups, each of which is distinguished by an attribute value shared by the

group members and the user. Some of its friends may belong to multiple groups. For

example, one author’s Facebook friends can be classified into three main groups: one

from college, one from graduate school, and one from the current city. Some friends

from the graduate school are also in the current city, while no one from college is in
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the current city. The three groups are distinguished by attribute values at the city

or institution level. The friends could be classified into smaller groups by using finer

granularity attributes like class and department. The friends in the same group have

a higher chance to connect to each other than those from different groups. In other

words, community structure exists in the user’s friend circle: the connections inside

a community are denser than the connections among communities [50].

Therefore, for v ∈ U1, this feature can be exploited to infer BA(v), i.e., to study

the connections among v’s neighbors and detect communities. We first obtain the

social graph in v’s neighborhood, G = (V,E) and V = FL(v), by traversing v’s

friends and retrieving their profile pages and friend lists, although some of them are

private. Then, we conduct the community detection in the graph. After that, we

identify the most widely shared basic attribute value within each community as the

community feature, and assemble those features together to form BA(v). During

the neighborhood traversal, neither users who have private profiles nor those who

have private friend lists are eliminated during the process. This is because their

information could be leaked from their shared friends with v, who have looser privacy

configurations. The steps to infer BA(v) are detailed below as Scheme 1:

1. Traverse each user u ∈ FL(v) and retrieve BA(u) and FL(u); form v’s neigh-

borhood graph G = (V,E), V = FL(v), based on FL(u) for each u ∈ FL(v).

2. Detect the communities in v’s neighborhood graph, G = (V,E), V = FL(v), us-

ing Girvan-Newman algorithm [50]; and the resulting communities are denoted

as GC(1), GC(2), · · · , GC(n).

3. For each community GC(k), 1 ≤ k ≤ n, find the community feature A(k) and

its frequency such that A(k) ∈ BA(u) for u ∈ GC(k) and A(k) is the most

widely shared basic attribute value among the community members.
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4. Merge A(k) and sum up their frequencies for 1 ≤ k ≤ n; then sort the merged

A(k)s by institution and location separately in decreasing frequency order. The

top-ranked values from the two sorted lists are taken as BA(v).

The Girvan-Newman algorithm is chosen as our community detection algorithm

because it does not hold bias against small-sized graphs. Since the detection algorithm

is conducted on the v’s neighborhood graph, which is on comparatively small scale,

the algorithms that hold bias to sparsely connected or small graphs are excluded from

our consideration. On the other hand, the Girvan-Newman algorithm proceeds by

removing the edges with the highest edge-betweenness [50] value iteratively, and the

procedure is suitable to conduct on small-sized graphs.

As for the number of top values to take in step 4, it can be decided by the

target user’s number of friends and the frequency of sorted values. More friends

indicate more experience, and more values should be taken. Meanwhile, the values

whose frequency is comparable with that of the top one value could also be taken.

Intuitively, the higher the frequency, the higher the probability the value is accurate.

2.4.2 Basic Attributes from Wall and Photos

The users in U2 display incomplete or no BA and conceal their friend lists from

strangers, but some of their wall posts or photos are visible. We need to infer their

BAs. Out of the dataset, 14.3% of the users belong to U2. It is formulated as:

U2 = {v |v ∈ U and PS(v) = (0, 0, x1, x2), x1, x2 = 0, 1 and x1 + x2 > 0};

Inference objective : BA(v), v ∈ U2;

Public information : v’s public wall posts or photos.
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Figure 2.2: Number of Leaked Friends

Although the target user v’s friend list is private, a direct leakage of v’s connections

is in v’s photos or wall posts where its friends leave comments or get tagged. Different

numbers of connections are leaked for different users, depending on their activities

and privacy settings on the wall and photo subpages. We randomly choose 330 users

in the dataset seeds’ neighborhood that belong to U2, and crawl their public photos

and part of wall posts. The cumulative number of users having less than or equal to a

certain number of leaked friends is depicted in Figure 2.2. While about 90 users have

no friends leaked, over half of the users have more than five friends leaked and the

maximum number of leaked friends is 295. If all the public wall posts are crawled,

the number of leaked friends would increase.

Whereas v has some leaked friends, they may compose a small portion of v’s total

friends. Namely, the leaked friends can be too spare to form detectable communities

in v’s neighborhood. Therefore, Scheme 1 is not applicable to users in U2. We seek to

uncover BA(v) in v’s leaked friends’ neighborhood, instead of v’s neighborhood. First

we traverse the directly leaked friends to retrieve their public friend lists and verify

their connections to v. For those verified friends, their own friends can be traversed

to obtain their neighborhood graphs and then detect communities in their neighbor-
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hoods. As illustrated before, the community feature is supposed to be the most widely

shared by community members. Here v is classified to a certain community in each

of the verified friends’ neighborhood, and it should have a high probability to share

the community feature. Accordingly, the steps to reveal BA(v) are detailed below as

Scheme 2:

1. Look through v’s wall and photos to retrieve leaked friends.

2. Traverse each leaked friend to retrieve its friend lists if public and verify its

connection with v.

3. For each verified friend u, traverse its friends and detect communities in u’s

neighborhood using the Girvan-Newman algorithm, resulting in GC(1), GC(2),

· · · , GC(n); if v ∈ GC(k), find the corresponding community feature A(k) and

its frequency.

4. Merge and sort A(k)s, found in v’s leaked friends’ neighborhoods, in decreasing

frequency order and identify BA(v) in the top values.

Intuitively, the more friends leaked, the more community features can be found to in-

crease the inference accuracy. Figure 2.2 demonstrates the possibilities of conducting

the scheme. However, some users may display their photo and wall subpages but no

comments are there; hence no friends are leaked. These cases are treated the same as

these users in U4.

Besides, Scheme 2 could also be improved by assigning weights to the leaked

friends, under the observation that those friends who comment or leave messages to

user v might be closer to v than other friends. Higher priority could be given to the

community feature found in those closer friends.
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2.4.3 Friends from Wall and Photos

Those users who conceal friend lists but display some wall posts or photos are cat-

egorized into U3. We need to infer their FLs. As Table 2.1 shows, 15.4% of users

belong to U3. The scenario is formulated as:

U3 = {v |v ∈ U and PS(v) = (x, 0, x1, x2), x, x1, x2 = 0, 1 and x1 + x2 > 0};

Inference objective : FL(v), v ∈ U3;

Public information : v’s public wall posts or photos.

We aim to uncover v’s full friend list while there are some directly leaked friends

from v’s wall or photo subpages. Therefore, the inference task can be interpreted as

traversing near v’s neighborhood graph starting from the leaked friends and ascer-

taining whether those reachable users are v’s friends. A few important issues must

be considered to make the traversal practical. First, considering that the number of

reachable users increases exponentially with the traversal depth, we should limit the

depth so that the traversal is doable. Second, the v’s neighborhood graph may be

disconnected; thus, if there are components with no starting friends inside, it is ardu-

ous to measure the distance between disconnected components in hops by traversing

beyond v’s neighborhood. We use the word component to refer to a connected sub-

graph within v’s neighborhood. Third, for traversed users having private friend lists,

it is difficult to distinguish whether they are v’s friends.

Taking these practical issues into account, we refrain the traversal from going

beyond v’s neighborhood graph. The traversal can be conducted in a breadth-first

manner, starting from the leaked friends as roots. It proceeds only on those users

whose friend lists include v, and stops on users whose friend lists exclude v. Those

traversed users with private friend lists could be gathered together for further verifi-
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cation. Overall, the inference scheme consists of two steps and are detailed below as

Scheme 3:

1. Traverse the v’s neighborhood graph starting from the leaked friends as Algo-

rithm 2.1 specified.

2. Determine the connectivity between v and traversed users who have private

friend lists.

Algorithm 2.1 uses the following notations:

R(v) : the set of users that are yet to be traversed in the coming iteration;

R : the set of users that are to be traversed in the current iteration;

T (v) : the set of users that have been traversed;

C(v) : the set of users that have been traversed but have their friend lists private.

Initially, R(v) consists of the leaked friends from photos and walls, while T (v),

C(v), and FL(v) are empty. Each iteration represents the traversal of users a certain

depth away from roots. The algorithm terminates when no users traversed in the

previous round are friends of v, that is R(v) is empty. Furthermore, the algorithm

could be adjusted to terminate in advance by confining the traversal depth. The depth

can be recorded by counting the number of iterations, and the traversal terminates

when the depth limit has been reached.

When the traversal algorithm terminates normally, all v’s friends who have public

friend lists and are in the same components with the leaked friends should be included

in the derived set FL(v). But users who are in different components from the leaked

friends cannot be reached. This limitation is due to the feasibility concerns of Scheme

3. However, as the evaluation result in Section 2.5.2 indicates, on average the largest
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Algorithm 2.1 Constrained Breadth-first Traversal

Input: R(v) = leaked friends
Output: FL(v), C(v)

while |R(v)| > 0 do

R = R(v);
R(v) = {};
for u ∈ R do

Retrieve FL(u);
T (v) = T (v) + {u};
if FL(u) is private then

C(v) = C(v) + {u};
else

if v ∈ FL(u) then
FL(v) = FL(v) + {u};
for w ∈ FL(u) do
if w ∈ T (v) then
pass;

else

R(v) = R(v) + {w};
end if

end for

end if

end if

end for

end while

component in a user’s neighborhood consists of over 75% of its friends. In other words,

a leaked friend is likely to be included in the largest component; thus the majority of

v’s friends are reachable from the leaked friends. Besides, as the component size and

edge density vary in v’s neighborhood, the traversal complexity differs.

Complexity of Algorithm 2.1. The complexity of Algorithm 2.1 is analyzed

in terms of the number of users whose information have to be retrieved. Assume that

all users’ numbers of friends are at the same magnitude, denoted as f . Algorithm 2.1

constrains the traversal to be within two hops away from the target user v; and thus

all v’s friends and its friends’ friends are traversed in the worst case. We first take
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the v’s f friends into count; and then we count its friends’ friends as follows. In the

algorithm, each user can only be traversed once. Thus, counting v’s friends’ friends

should exclude v’s friends. Let G = (V,E), V = FL(v) denote v’s neighborhood

graph; and then for each u ∈ V , f − degree(u) of its friends would be counted, which

excludes v’s friends. Thus,
∑

u∈V f − degree(u) more users should be counted, that

is, f 2−
∑

u∈V degree(u), in which
∑

u∈V degree(u) = 2|E| according to graph theory.

In total, the algorithm is in O(f +f 2−2|E|). Therefore, the more densely v’s friends

connect to each other, the fewer users have to be traversed. The complexity varies

between Θ(f 2) and Θ(f). The best case is when v’s friends compose a complete graph,

i.e. |E| = f(f−1)
2

, then the complexity is O(f). When the algorithm terminates by

limiting the traversal depth, the complexity would be lower.

As for the second step of Scheme 3, i.e., distinguishing the connectivity between

v and traversed users who have private friend lists, the traditional link prediction

algorithms such as common friends or Katz [65] can be employed.

2.4.4 No Leaked Friends

The users holding the strictest privacy settings are categorized into U4. These users

set friends, wall and photo subpages as private and display some or no profile infor-

mation. The users in this category constitute about 22.4% of the dataset. We need

to infer both their FLs and BAs. While the inference schemes presented before start

from some friend connections, the users in U4 display none of their friends.

Other means have to be sought to identify possible friends. One source to seek is

the special friends or family member sections. Otherwise, the search people function

could be exploited by using a user’s location or institution, if provided, as keywords.

Then, the search results can be traversed one by one to check whether the target
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user is included in their friend lists. As long as one of the target user’s friends with

public friend lists can be found, previous schemes can also be conducted to reveal its

targetProfile. Otherwise, their privacy can not be inferred by our schemes.

In the next section, we apply these schemes to the dataset presented in Section

2.3 to quantify the privacy that can be compromised in each case.

2.5 Evaluation

The BA inference schemes are conducted on users who display their BA values,

and the FL inference schemes are conducted on users who display their FL values;

otherwise, the ground truth is not available for verification.

For the targetProfile inference, evaluation bias may be induced in the results

when a user’s public profile is incomplete or fallacious. Considering the real name

policy of Facebook [6], the problem of profile authenticity will not be as significant as

incompleteness, which results in false positives. Especially for the location attribute

values, only hometown and current city are available in the ground truth, while

schemes 1 and 2 can also infer other cities where a user has ever stayed, such as those

associated with the institutions where the user has ever been. Hence, the actual

location inference accuracy should be higher than what the results illustrate.

2.5.1 Inferring Basic Attribute Values

Scheme 1 is evaluated first, which can be applied to the users with public friend lists.

Out of the dataset,there are 909 users all of whose friends are in the dataset; thus,

scheme 1 is applied to those users, referred to as evaluated users. Those who display

nothing in their profiles are excluded due to the lack of ground truth for verification.

Besides, users with more than 1,000 friends are excluded from the evaluation results.
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Figure 2.3: Number of Correctly Inferred Attribute Values

They consist of 5.17% of the total evaluated users, but less than three, if not zero,

users fall into each user sample bin in this range; sparsity of user sample isn’t likely

to result in representative evaluation result.

We use the “igraph” [12] library to detect communities in each evaluated user’s

neighborhood with the Girvan-Newman algorithm [50]. In each community, the most

frequently shared basic attribute value, the community feature, can be either a lo-

cation or an institution value. We identify both the most-shared institution and

location values when the community size is above average, and the one with lower

frequency is called the additional feature of the community. Then we merge and sort

those community features and additional features separately in decreasing frequency

order by location and institution, respectively. The top ranked values are taken as

the user’s inferred basic attribute values.

We evaluate the basic attribute inference schemes from the following three aspects.

(1) How many basic attribute values could be inferred? The number of public at-

tribute values in evaluated users’ homepages which are taken as ground truth, varies

from user to user; thus, the number of correctly inferred basic attribute values for each

user should be measured. (2) How accurate are inferred values? The number of top
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Figure 2.4: Inference Accuracy

values from sorted community features, taken as inferred basic attribute values, can

be adjusted; hence the accuracy of each value in the top rank should be be measured.

(3) Whether the number of correctly inferred basic attribute values and the inference

accuracy are affected by the number of the evaluated user’s friends. Since the basic

attribute values are inferred from the target user’s friends’ information, we want to

know whether the number of friends affects the inference accuracy or number. Fig-

ures 2.3 to 2.6 give answers to those questions one by one. In all these figures except

for Figure 2.6, the x-axis value is the number of users’ friends and the y-axis value is

the average value of users whose number of friends fall into the 20 user sample bin.

Figure 2.3 depicts the number of correctly inferred basic attribute values compared

to the number of basic attribute values in ground truth. The figure shows that more

attribute values could be inferred for users with more than 100 friends compared to

those with less friends. It verifies the previous claim that the more friends a users

has, the more attribute values could be derived; but the differences among users who

have more than 120 friends are not significant. On average, more than two attribute

values could be correctly inferred. Attribute values that are not reflected in a user’s

community features cannot be inferred; one possible reason is that the user is not

30



�� ��� ��� ��� ��� ��� ��� ��� 	�� 
��

�

��

��

��

��

��

��

��

	�


�

���

  ��� � ������������

  ��� 	 ������������

  
���
� �� ���
���

 
 

��
��
��
�
��
�
�
�
��
�
��
�


�
�
��
�

Figure 2.5: Top Institutions Accuracy

active in certain OSN communities, or its residence in a certain institution or city is

too short to form a community.

The accuracy of the top values taken as inferred basic attribute values are shown

in Figures 2.4 and 2.5. The accurate ratio is defined as the ratio between the number

of verified inferred attribute values and the number of inferred values. In Figure 2.4

top 1 institution and location are taken as inferred values while in Figure 2.5 top 2

and top 3 institutions are taken as inferred values.

Figure 2.4 shows that the inference accurate ratio for institution is about 90%

on average, and overall, the more friends the target user has, the higher the average

accurate ratio is. Meanwhile the accurate ratio of location is not as good due to

the false positives incurred by the incomplete ground truth of location values. As

we mentioned at the beginning of this section, only hometown and current city are

included in the ground truth for location while we infer all the places that the user

has ever been. In addition, the accurate ratio of the top 1 location value for users

with more than 500 friends fluctuates more strongly. One reason is that usually the

larger the number of friends, the more experience a user has or the more locations a

user has ever been, and in turn the less chance for the hometown or current city to be
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Figure 2.6: Community Feature Sharing

derived as the top 1 inferred location value. Another reason is that users with more

than 500 friends are sparse at some point compared to users with fewer friends; thus

the accurate ratio cannot be averaged and tends to go extremes due to the sparse user

sample. This also explains the higher variance for those users in Figures 2.3 and 2.5.

Though the missing of ground truth for location leads to false positives, each

institution is usually associated with a location; as long as institutions are correctly

inferred, corresponding locations could be derived. Hence, we further evaluate the

accurate ratio of inferred institution information in Figure 2.5. Figure 2.5 depicts the

accurate ratio of top 2 and top 3 ranked institution values. It shows the accuracy of

top 2 institution values is over 80%, which on average is higher than that of top 3

institution values. It verifies our claim that higher-ranked community features hold

higher probability to be shared by the target user. Besides, the accurate ratio is not

largely affected by the number of users’ friends.

For users belonging to U2, we first measure the community feature sharing ratio to

evaluate their basic attribute values inference accuracy, since their basic attributes are

derived from the community feature in their leaked friends’ neighborhood. Figure 2.6
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depicts the community feature sharing ratio, and x-axis value is the community size.

More than 8,500 communities are detected in the evaluated users’ neighborhood. On

average, the sharing ratio is higher when the community feature is an institution

value compared to when it is a location value. This difference can also be explained

by the ground truth incompleteness of location information. Though the community

features are not 100% shared by all members, they will not be directly taken as the

inferred basic attribute values and the wrong community features will be eliminated

in the later steps of Scheme 2.

We further evaluate the inference accuracy of Scheme 2 on some of the dataset’s

seed users which belong to U2. Because seed users are from the same institution and

location, their information ground truth scraped from users’ homepages are comple-

mented by that fact. We detect those seed users’ community memberships in their

friends’ neighborhood, and take the top ranked community features as their inferred

attribute values. As a result, the inference accuracy of top 1 ranked feature is 100%.

In summary, for users who conceal their basic attribute values but have their

friend list public or some friends leaked from other profile sections, those value could

be uncovered with high accuracy by exploiting their friends’ information.

2.5.2 Inferring Friend List

For a user v in U3, v’s retrievable friends, according to Scheme 3, are confined to

those who are in the same components with the leaked friends. As defined in Sec-

tion 2.4.3, a component is a connected subgraph within v’s neighborhood. We first

measure the components in users’ neighborhoods. Out of the evaluated users, most

of their neighborhood graphs are disconnected, on average 20 components exist and

the number of components increases with the number of friends. While there are
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Figure 2.7: Friends in the Largest Component

a noticeable number of components, most of them are small. Figure 2.7 illustrates

the ratio of a user’s friends that are in the largest component, over 85% of friends

on average are included in the largest component. The more friends a user has, the

larger portion of friends are in the largest component. As the leaked friends are likely

to be in the largest component, a majority of friends could be reached from them.

In Figure 2.8, the ratio of traversed friends in the evaluated users’ neighborhoods

is illustrated, and the traversal starts from different number of roots in one hop away.

Each curve represents a different number of roots, which are randomly chosen from

target user’s friends. For users with fewer than 100 friends, a majority of friends could

be traversed in one hop from five roots, while for users with more friends, about 10%,

25%, and 35% of friends could be traversed in one hop away from two, five, and ten

roots, respectively. Over all, the more friends a user has, the more of its friends can

be reached via traversal given the same number of roots and hops.

Figure 2.9 indicates the ratio of friends traversed in two hops away. About 70% of

friends could be traversed from 5 roots, and 80% of friends could be traversed from 10

roots. The curve for two roots fluctuates more violently because the choice of roots

affects the traversal path and a high-degree node results in more retrieved friends.
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Figure 2.8: Traversed Friends Ratio in 1 Hop
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Figure 2.9: Traversed Friends Ratio in 2 Hops

When starting from 5 or 10 roots, the high-degree nodes stand a higher chance to be

traversed as roots or within two hops. Still, on average about half of a user’s friends

could be retrieved from two randomly chosen roots in two hops. Interestingly, the

ratio is not clearly affected by users’ number of friends. It means that no matter

how many friends a user has, most of its friends are closely connected while some are

estranged from others.

To sum up, for users who conceal their friend lists but display other profile sections

from which some of their friends could be leaked, our algorithm is able to recover over

half of their friends. in two hops. The complexity of the traversal algorithm ensures
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Figure 2.10: Private-Friends Inference Ratio

the traversal can be conducted in limited resource.

After that, we measure the second step of scheme 3, i.e., to distinguish the connec-

tions between user v and the traversed users who have private friend lists. Those users

are those who connected to v’s friends and have private friend lists. The number of

common friends is taken as the metric to infer the connections. Those private-friend-

listed users are sorted by their numbers of friends shared with v, which is leaked

from v’s public-friend-listed friends. The top quarter of users are taken as v’s hidden

friends. Figure 2.10 illustrates the inference accuracy, and it also illustrates the total

revealable friends ratio, which consists of both the public-listed friends and those

hidden friends. Compared to the results of [65] which also used common neighbors

as the metric to infer co-authorship, our accuracy is slightly higher. In total, for

users belonging to U3, more than 70% of their friends could be correctly revealed on

average by Scheme 3.

Users in U4 hide all connections, which is hardest to infer their targetProfile.

However, if some of their friends are known beforehand or can be found by using the

search people function mentioned in Section 2.4.4, their targetProfile can be inferred

and evaluated similar as stated above.
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2.6 Discussion

While our approach explores a user’s information visibility from the perspective of a

stranger, it cannot know the privacy customization to the user’s friends. However,

the privacy setting for strangers can only be stricter than that for friends. In other

words, friends must be able to access more information than strangers. Thus, if some

private information could be correctly inferred by a stranger, the inference can also

be reproduced by friends.

If a user does not post certain profile item on Facebook such as education, we

cannot know whether the invisibility is due to privacy setting or vacancy. However,

if the inferred information could be verified based on the ground truth retrieved from

other sources, we still view such a case as privacy leakage.

In order to build the ground truth, our experimental data only samples users

who display their full profiles to strangers. However, we speculate that other users

with more strict privacy settings are also inclined to be more prudent in setting up

connections. And since their friend circles are created in a more moderated manner,

community feature detection and neighborhood graph traversal should perform no

worse. Therefore, our evaluation presents a plausible privacy breach of average users.

The profile inference schemes proposed in this chapter are not limited to Face-

book. They could also be applied to other OSNs that enable privacy configuration

and allow users to post a variety of data other than profile and connection. Those

OSNs include MySpace, Google+, and Renren, in which users could also upload pho-

tos, leave messages or comments, and customize the visibility of different types of

information. When the accessibility of a user’s profile or connections is constrained,

the information revelation could be initiated from public connections in the friend

list or posts from friends by using our schemes 1, 2 or 3.
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2.7 Summary

In this chapter, we investigated the unintentional privacy disclosure of OSN users even

with the protection of privacy settings. We first examined users’ privacy settings on

different information sections of a large dataset collected from Facebook. Then, for

each possible privacy configuration, we proposed corresponding schemes to reveal ba-

sic profile and connection information starting from leaked public connections on the

target user’s OSN homepage. Finally, using our dataset, we quantified the achievable

privacy exposure in each case, and measured the accuracy of our privacy inference

schemes given a different amount of public information. The evaluation results indi-

cate that a user’s private basic profile could be inferred with high accuracy, while a

user’s covert connections could be uncovered in a significant portion based on even a

small number of directly leaked connections.

Our privacy inference schemes can be conducted by attackers without much re-

sources; and those schemes are applicable to users adopting specific privacy settings.

The dataset statistics show that a majority of users are among that group. Therefore,

the privacy of those users could be undermined facilely and the actual information

privacy level of them may fail to meet what their privacy configuration specifies. We

discussed that our privacy inference schemes could be applied to other OSNs that

provide similar features as Facebook.
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Chapter3

Profiling Social Behaviors for Compromised

Account Detection

Account compromisation is a serious threat to users of Online Social Networks (OSNs).

While relentless spammers exploit the established trust relationships between account

owners and their friends to efficiently spread malicious spam, timely detection of com-

promised accounts are quite challenging due to the well established trust relationship

between the service providers, account owners, and their friends. In this chapter, we

study the social behaviors of OSN users, i.e. their usage of OSN services, and the

application of which in detecting compromised accounts. In particular, we propose

a set of social behavioral features that can effectively characterize the user social ac-

tivities on OSNs. We validate the efficacy of these behavioral features by collecting

and analyzing real user clickstreams to an OSN website. Based on our measurement

study, we devise individual user’s social behavioral profile by combining its respec-

tive behavioral feature metrics. A social behavioral profile accurately reflects a user’s

OSN activity patterns. While an authentic owner conforms to its account’s social

behavioral profile involuntarily, it is hard and costly for impostors to feign. We eval-

uate the capability of the social behavioral profiles in distinguishing different OSN
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users, and our experimental results show the social behavioral profiles can accurately

differentiate individual OSN users and detect compromised accounts.

3.1 Motivation

Compromised accounts in Online Social Networks (OSNs) are more favorable than

sybil accounts to spammers and other malicious OSN attackers. Malicious parties

exploit the well-established connections and trust relationships between the legitimate

account owners and their friends, and efficiently distribute spam ads, phishing links,

or malware, while avoiding blocking by the service providers. Offline analysis of tweets

and Facebook posts [48, 52] reveal that most spam are distributed via compromised

accounts, instead of dedicated spam accounts. Recent account hacking incidents [1, 2]

in large scale in popular OSNs further evident this trend.

Unlike dedicated spam or sybil accounts, which are created solely to serve mali-

cious purposes, compromised accounts are originally possessed by benign users, and

later hijacked by cyber criminals. While dedicated malicious accounts can be simply

banned upon detection, compromised accounts cannot be handled likewise due to the

negative impact to normal user experiences (e.g., those accounts may still be actively

used by their legitimate owners). Major OSNs today employ IP geolocation logging

to battle against account compromisation [3, 9]. However, this approach is known to

suffer from low detection granularity and high false positive rate.

Previous research on spamming account detection [47, 48, 52, 105] mostly cannot

distinguish compromised accounts from sybil accounts, with only one recent study by

Egele et al. [44] features compromised accounts detection. Existing approaches involve

account profile analysis [94, 105] and message content analysis [44, 47, 52, 92] (e.g.,

embedded URL analysis [52, 92] and message clustering [44, 47]). However, account

40



profile analysis is hardly applicable for detecting compromised accounts, because their

profiles are the original common users’ information which is likely to remain intact by

spammers. URL blacklisting has the challenge of timely maintenance and update, and

message clustering introduces significant overhead when subjected to a large number

of real-time messages.

Instead of analyzing user profile contents or message contents, we seek to uncover

the behavioral anomaly of compromised accounts by using their legitimate owners’

history social activity patterns, which can be observed in a lightweight manner. To

better serve users’ various social communication needs, OSNs provide a great variety

of online features for their users to engage in, such as building connections, sending

messages, uploading photos, browsing friends’ latest updates, etc. However, how a

user involves in each activity is completely driven by personal interests and social

habits. As a result, the interaction patterns with a number of OSN activities tend to

be divergent across a large set of users. While a user tends to conform to its social

patterns, a hacker of the user account who knows little about the user’s behavior

habit is likely to diverge from the patterns.

Therefore, as long as an authentic user’s social patterns are recorded, checking the

compliance of the account’s upcoming behaviors with the authentic patterns can de-

tect account compromisation. Even though a user’s credential is hacked, a malicious

party cannot easily obtain the user’s social behavior patterns without the control of

the physical machines or the clickstreams. Moreover, considering that for a spam-

mer, who carries very different social interests from those of regular users (e.g., mass

spam distribution vs. entertaining with friends), it is very costly to mimic different

individual user’s social interaction patterns, as it will significantly reduce spamming

efficiency.

In sight of the above intuition and reasoning, we first conduct a study on online
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user social behaviors by collecting and analyzing user clickstreams [35, 86, 97] of a

well known OSN website. Based on our observation of user interaction with different

OSN services, we propose several new behavioral features that can effectively quantify

user differences in online social activities. For each behavioral feature, we deduce a

behavioral metric by obtaining a statistical distribution of the value ranges, observed

from each user’s clickstreams. Moreover, we combine the respective behavioral metrics

of each user into a social behavioral profile, which represents a user’s social behavior

patterns.

To validate the effectiveness of social behavioral profile in detecting account ac-

tivity anomaly, we apply the social behavioral profile of each user to differentiate

clickstreams of its respective user from all other users. We conduct multiple cross-

validation experiments, each with varying amount of input data for building social

behavioral profiles. Our evaluation results show that social behavioral profile can ef-

fectively differentiate individual OSN users with accuracy up to 98.6%, and the more

active a user, the more accurate the detection.

3.2 Related Work

Schneider et al. [86] and Benevenuto et al. [35] measured OSN users’ behaviors based

on network traffic collected from ISP. Both work analyzed the popularity of OSN ser-

vices, session length distributions, and user click sequences among OSN services, and

they discover that browsing accounts for a majority of users’ activities. Benevenuto

et al. [35] further explored user interactions with friends and other users multiple

hops away. While their work primarily emphasize the overall user OSN service usage,

and aim to uncover general knowledge on how OSNs are used, this chapter studies

users’ social behavior characteristics for a very different purpose. We investigate the
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characterization of individual user’s social behaviors and targets differentiating ac-

count usage anomaly. More over, we propose several new user behavioral features

and perform measurement study at a fine granularity.

While most previous research on malicious account detection cannot differentiate

compromised accounts from spam accounts, Egele et al. [44] specifically studied the

detection of compromised accounts. By recording a user’s message posting features,

such as timing, topics and correlation with friends, they detected irregular posting

behaviors; on the other hand, all messages in a certain duration are clustered based on

the content and the clusters in which most messages are posted by irregular behaviors

are classified as from compromised accounts. While they also leverage certain user

behavior feature to discern abnormality, we use a different and more complete set

of metrics to characterize users’ general online social behaviors, instead of solely

focusing on message posting behavior. Additionally, our technique do not rely on

deep inspection and classification of message contents, therefore it is scalable for

large social networks.

Wang et al. [97] proposed sybil accounts detection via analyzing clickstreams.

They differentiated sybil and common users’ clicks, in terms of interarrival time and

click sequence, and found that considering both factors leads to better detection re-

sults. Since sybils are specialized fake identities owned by attackers, their clickstream

patterns significantly differ from normal users. However, for compromised accounts,

their clickstreams can be a mix from normal users and spammers, As a result, meth-

ods in [97] cannot handle compromised accounts well. This chapter aims to uncover

users’ social behavior patterns and habits from the clickstreams, with which we can

perform more accurate and delicate detection on behavioral deviation.

Regarding spammer detection, [90] and [61] set up honeypot accounts to harvest

spam and identify common features among spammers, such as URL ratio in their
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messages and friends choice; using those features, both employ classification algo-

rithms to detect spammers. Yang et al. [105] introduced new features of spammers

involving with their connection characteristics to achieve better accuracy. Thomas et

al. [94] analyzed the features of fraudulent accounts bought from the underground

market and developed a classifier using the features to retrospectively detect fraudu-

lent accounts. Instead of focusing on malicious accounts, Xie et al. [103] proposed to

vouch normal users based on the connectivities and interactions among them.

As for spam detection, Gao et al. [47] proposed a real-time spam detection system,

which consists of a cluster recognition system to cluster messages and a spam classifier

using six spam message features. Thomas et al. [92] thrived to detect spam by

identifying malicious URLs in the message content. In [48, 52], the authors conducted

offline analysis to characterize social spam in Facebook and Twitter, respectively.

They found that a significant portion of spam are from compromised accounts instead

of spam accounts. Meanwhile, Yang et al. [104] investigated connectivities among

identified spammers. Other malicious account detections exploit the differences on

profile or connectivity information between normal and malicious accounts [37, 88, 96].

Users’ social behavior analysis has also been applied for other purposes. Wilson

et al. [100] analyzed user interactions with friends from the trace in Facebook profiles

to improve performance for sybil detection while reducing its complexity. In [29, 85],

the authors correlated users’ personalities with their OSN service usages.

3.3 User Social Behaviors Study

In this section we first propose several social behavior features on OSNs, and describe

in detail how they can reflect user social interaction differences. Then, we present

a measurement study of user behavior diversity on our proposed features by analyz-
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ing real user clickstreams of a well known OSN, the Facebook, with respect to our

proposed features.

3.3.1 Social Behavior Features

We categorize user social behaviors on an OSN into two classes, extroversive behaviors

and introversive behaviors. Extroversive behaviors, such as uploading photos and

sending messages, result in visible imprints to one or more peer users; introversive

behaviors, such as browsing other users’ profiles and searching in message inbox,

however, do not produce observable effects to other users. While most previous

research only focus on the extroversive behaviors, such as public posting [44], we study

both classes of behaviors for a more complete understanding and characterization of

user social behaviors.

3.3.1.1 Extroversive Behavior Features

Extroversive Behaviors directly reflect how a user interacts with its friends online, and

thus they are important for characterizing a user’s social behaviors. We decompose

extroversive behaviors into the following four major aspects.

◦ First Activity:

The first extroversive activity a user engages in after logging in an OSN session

can be habitual. Some users often start from commenting on friends’ new updates;

while some others are more inclined to update their own status first. The first

activity feature aims to capture a user’s habitual action at the beginning of each

OSN session.

◦ Activity Preference:

How often a user engages in each type of extroversive activities relates to their per-

45



sonalities [29]. Some users like to post photos, while some others spend more time

responding to friends’ posts; some mostly chat with friends via private messages,

while some others always communicate by posting on each other’s public message

boards. Typical OSNs provide a great variety of social activities to satisfy their

users’ communication needs, for example, commenting, updating status, posting

notes, sending messages, sharing posts, inviting others to an event, etc. As a re-

sult, this feature can provide a detailed portrayal of a user’s social communication

preferences.

◦ Activity Sequence:

The relative order a user completes multiple extroversive activities. While users

have their preferences on different social activities, they may also have habitual

patterns when switch from one activity to another. For instance, after commenting

on friends’ updates, some users often update their own status, while some other

users prefer to send messages to or chat with friends instead. Therefore, the ac-

tion sequence feature reflects a different social behavioral pattern from the activity

preference.

◦ Action Latency:

The speed of actions when a user engages in certain extroversive activities reflects

the user’s social interaction style. Many activities on OSNs require multiple steps to

complete. For example, posting photos involves loading the upload page, selecting

one or more photos, uploading, editing (e.g., clipping, decorating, tagging, etc.),

previewing and confirmation. The time a user takes to complete each action of a

given activity is heavily influenced by the user’s social characteristics (e.g., serious

vs. casual) and familiarity with the respective activity; but it doesn’t directly

reflect how fast a user acts due to different content complexity. The action latency

feature is proposed to provide more fine-grained and accurate metric.
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3.3.1.2 Introversive Behavior Features

Although invisible to peer users, introversive behaviors make up the majority of a

user’s OSN activity; as studied in previous work [35, 86], the dominant (i,e. over

90%) user behavior on an OSN is browsing. Through introversive activities users

gather and consume social information, which helps them to form ideas and opinions,

and eventually, establish social connections and initiate future social communications.

Hence, introversive behavior patterns make up an essential part of a user’s online

social behavioral characteristics. We propose the following four features to portray a

user’s introversive behavior.

◦ Browsing Preference:

The frequence a user visits various OSN page types depicts its social information

preferences. Typical OSNs classify social information into different page types.

For instance, profile pages contain personal information of the account owners,

i.e., names, photos, interests etc.; the homepage compose of the account owner’s

friends’ latest updates while a group page consists posts or photos shared by group

members. Users’ preferences on various types of social information naturally differ

by their own interests, and the browsing preference feature intends to reflect this

difference by observing users’ subjective behaviors.

◦ Visit Duration:

The time a user spends on visiting each webpage depicts another aspect of its social

information consumption. Intuitively, users tend to spend less time on information

that are “good-to-know”, while allocate more time on consuming information that

are “important”, and their judgments are made based on their own personal inter-

ests. For example, some users prefer to stay on their own homepage reading friends’

comments and updates, while some others tend to spend more time reading others’
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profile pages. The visit duration feature aims at capturing the social information

consumption patterns for different users.

◦ Request Latency:

During a single visit to a webpage, a user may request multiple pieces of informa-

tion. For example, browsing through a photo album requires loading each photo in-

side the album; reading comments from friends may also require “flipping” through

many “pages” because only a limited amount of entries can be displayed at a time.

Similar to the action latency feature for extroversive activities, the request latency

feature provides fine-grained characterization of users’ social information consump-

tion patterns.

◦ Browsing Sequence:

The order a user switches between different webpages reflects a user’s navigation

patterns amongst different types of social information. OSNs usually provide easy

navigation for users to move around various pages; a user on a friend profile page

can directly navigate to another’s profile page, or go back to the homepage and

then go to another friend’s profile page. How each user navigates during browsing

can be habitual, and this feature intends to capture this characteristics.

3.3.2 Facebook Measurement Study

We conduct a measurement study of Facebook users to understand their online social

behaviors. In order to observe both extroversive and introversive behaviors from the

participating users, we collect information from the network perspective—we develop

a browser extension to record user activities on Facebook in the form of clickstreams.

In the following, we first present our data collection design and techniques, and an

overview of the data set. Then, we detail the measurement results of user behavioral
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(b) Single Session Length Distribution

Figure 3.1: Facebook Data Set Overview Statistics

features.

3.3.2.1 Dataset Overview

We have recruited a total of 50 Facebook users for our measurement study—22 are

graduate students at universities and the rest are recruited via Amazon Mechanical

Turk or Odesk, both of which are popular online crowdsourcing marketplaces. For

each user, we collect approximately three weeks of their Facebook activities. To

ensure that the recruited users are actually normal Facebook users, we use their first
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week as “trial” periods, during which we conduct manual review on the collected

activity data.

The clickstreams in our dataset are organized in units of “sessions”. We denote

the start of a session when a user starts to visit Facebook in any window or tab of

a browser; the end of a session is denoted when the user closes all windows or tabs

that visit Facebook, or navigates away from Facebook in all windows or tabs of the

browser. Clickstreams from concurrently opened tabs/windows are grouped into a

single session, but are recorded individually (i.e., events from one window/tab are

not merged with those from another window/tab). In total, we have collected 2678

sessions.

We further process each clickstream before starting detailed measurements. By

analyzing the request timestamp and URLs we detect and remove clickstreams in the

“idle” periods—significantly long time intervals in which no user activity is observed.

For example, users may go away from their computer while leaving their browser

running. With idle periods removed, we plot the “effective” cumulative clickstream

lengths for each participating users in Figure 3.1(a). We observe in this figure that

the clickstream lengths follow exponential distribution. During a three week period,

the least active user only accumulates half an hour of activities, while the most active

user spends more than 80 hours on Facebook. We also plot the CDF of single session

lengths across all users in Figure 3.1(b). It is evident that the distribution of single

session length is heavy-tailed. While over 66% of sessions are within 300 seconds,

more than 11% of sessions are over 2000 seconds long.

3.3.2.2 Feature Measurements

We first conduct a systematic study of services and webpages on Facebook. Based

on request URL, we categorize 29 different types of extroversive activities that can
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Figure 3.2: Combined Distributions of Extroversive Features

be used to interact with peer users; we also classify 9 types of Facebook webpages

containing different kinds of social information, which users can browse privately (i.e.

the introversive activities). With the mapping between the clickstream information

and the user behaviors, we analyze each user’s clickstreams to extract their respective

behavior patterns. We present the combined measurement results of each behavior

feature for all users to show their value space, and finally we use an example to

illustrate user behavior diversities.

Figure 3.2(a) shows the distribution of first activity in users’ OSN sessions. From

this figure, we can observe that there are four most favorite activities, “like”, “send

message”, “use app”, and “comment”, which account for about 80% of all 29 activ-
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ities. The rest 25 types of activities are much less frequently engaged in by users,

and account for about 20% of all activities. While the “send message”, “use app”,

and “comment” activities have comparable proportions, the “like” activity has an

obviously higher preference than the other three. The extraordinarily tall error bars

indicate that users have significant diversities over all types of activities.

Figure 3.2(b) shows the distribution of extroversive activities users involve in,

i.e., the activity preference. The primary features of this figure are similar to those

of Figure 3.2(a): the same four activities dominate the distribution, and the user

diversities on all activities are also very significant. However, there are some minor

but observable differences. First, the relative orders of the four most favorite activities

are different from Figure 3.2(a); in addition, the relative proportions of the four

activities are more comparable. Second, the “add photo” and “share” emerge as

“significant” activities (having a > 2% share of the total), while the “Like a page”

and “post status” activities become “insignificant”. These differences indicate that

user behaviors do vary significantly across different behavioral contexts.

We discern the user action latency by first grouping clickstreams belonging to

individual user activities, and then measuring the interarrival time of consecutive

HTTP requests within each group of clickstreams. The distribution of action latencies

is presented in Figure 3.2(c), from which we can observe that users generally interacts

with services at a fast pace. over 90% of actions have less than 7 second delay in-

between. Action latencies in the 0 to 9 second range are diverse between individual

users, resulting in tall error bars.

The user browsing preferences distribution is shown in Figure 3.3(a). We can see

that visits to the “homepage” and “profile” account for 86% of all user browsing

actions. Similar to Figure 3.2(a) and 3.2(b), large user diversities manifest on all
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(c) Request Latency

Figure 3.3: Combined Distributions of Introversive Features

types of webpages1.

Figure 3.3(b) presents the distribution of webpage visit duration. With a heavy-

tailed distribution, over 90% of visits last less than 600 seconds. Users tend to have

highly divergent behaviors for visit durations in the 0 to 3 minute range. We study the

request latency using the same technique for measuring action latency, and observe

similar results. Shown in Figure 3.3(c), with 90% of inter-request delays less than

10 seconds, the latencies for request sending during webpage browsing are generally

slightly larger than that for engaging in extroversive activities. User divergence is

most obvious in the 0 to 9 second range.

1We did not observe enough “notes” and “notification” page visits to derive meaningful statistics,
so their data are considered as unknown.
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Table 3.1: Feature Value Comparison

User A User B

Top First Activity Click “like” button “Like” a page

Top Activity Post photo “Like“ a page

Top Activity Trans. Msg. → Msg. “Like” page → “Like” page

Avg. Action Latency 4.36s/req. 2.31s/req.

Top Webpage Profile Homepage

Avg. Homepage 185.56s 175s
Duration Profile 134s 118s

Avg. Homepage 3.8s/req. 6.96s/req.
Latency Profile 4.13s/req. 4.75s/req.

Top Webpage Trans. Profile → Profile Homepage → Public page

We further study the action latency and request latency using the burstiness pa-

rameter [51]. The burstiness parameter has a value range of [−1, 1], with 1 denoting

complete randomness, and lower values signifying more regular behaviors. We find

that, for action latency, the average value of burstiness parameters is -0.12, and 82%

of the users’ burstiness parameters are negative, indicating that individual users tend

to have regular action patterns; for request latency, the average burstiness parame-

ter value is 0.035, which indicates slightly more randomness than action latency. In

addition, 74% of users have lower burstiness parameter values for profile browsing

than those for homepage browsing, indicating user browsing speed tends to be more

random on homepage than on profile.

The activity sequence and browsing sequence consist of the distributions of usage

for all pair-wise combinations of extroversive activities and webpages, respectively.

Due to the large number of activities and webpages, the possible value spaces for these

two features are very large. Normal user activities tend to explore only a small portion

of these feature value spaces. We observe that, on average, each user’s extroversive

activities only include 9.3 out of 841 (1.1%) possible activity combinations, and each

user’s webpage visits only include 7.3 out of 81 (9%) possible webpage combinations.
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Our measurement study shows that we can discern user online social behavior

characteristics by analyzing their clickstreams. The results confirm that given a

large number of social activities, individual OSN users tend to have diverse behavior

patterns. We illustrate the diversity with an example. We randomly pick two users

from our data set and present the most significant factors of each user’s behavioral

features, side-by-side, in Table 3.1. From this table, we can observe that nearly

every behavioral feature of these two users differs, implying that it is possible to tell

behaviors of two users apart by comparing those feature values.

3.4 Profiling Social Behaviors

In this section, we first detail the formation of a user social behavioral profile using

our proposed behavioral features. Based on our Facebook measurement study, we

quantify Facebook user behavior patterns into a set of eight fine-grained metrics

that correspond to the eight social behavioral features. The social behavior profile

of an individual user can thus be built by combining the respective social behavioral

metrics. Then, we describe the application of social behavior profiles in differentiating

users and detecting compromised accounts.

3.4.1 Facebook User Behavioral Profile

In order to quantify user social behavior patterns for a specific OSN, we must first

convert the social behavioral features into concrete metrics. We apply our knowledge

gained in the Facebook measurement study, and devise a quantification scheme for

each behavioral feature as the following.

◦ The first activity metric is defined as a 29-element vector, with each element cor-
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responds to an extroversive activity on Facebook. The value of each element is the

empirical probability a user engages in the associated activity as the first extrover-

sive activity in a browser session.

◦ The activity preference metric is also a 29-element vector, similar to the First

Activity metric. The value of each element is the empirical probability a user

engages in the associated activity throughout a browser session.

◦ The activity sequence metric is defined as a 29 × 29-element vector. If we concep-

tually arrange the vector as a 29-by-29 matrix, each cell of the matrix represents

a transition between two Facebook extroversive activities a1 → a2, whose indices

are reflected by the row or column number of the cell. The value of each cell is the

probability of a user to transit to activity a2 after activity a1.

◦ The action latency metric is defined as an 11-element vector, and it records the

empirical probability distribution of delays between consecutive HTTP requests

while a user performs extroversive activities. The initial duration is zero, the first

ten elements are one-second-wide bins, and element eleven is an infinite-width bin.

◦ The browsing preference metric is defined as a 9-element vector. Each element

corresponds to a type of webpage on the Facebook website. The value of each

element is the empirical probability a user visit the associated webpage throughout

a browser session.

◦ The visit duration metric is defined as a 3×15-element vector, and each group of 15

elements records the empirical probability distribution of the duration a user visits

homepages, profile pages or application page, respectively2. For each 15-element

vector, we define the initial duration as zero, the first ten elements as 30-second-

wide bins, the following four elements as 60-second-wide bins and the fifteenth

2We do not consider other 6 types of webpages because user visits on these pages only account
for less than 8.8% of all browsing activities.
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Table 3.2: A Behavioral Profile Sample

Feature Metric Vector Size

First
[0.0, 0.0, 0.0, 0.05, 0.0, 0.0, 0.79, ...] 29

Activity

Activity
[0.09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.46, ...] 29

Preferences

Activity [[0.01, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ...],
29×29

Sequence [0.0, ...], [0.0, ...], ...]

Action
[0.17, 0.33, 0.18, 0.14, 0.11, 0.01, ...] 11

Latency

Browsing
[0.34, 0.59, 0.0, 0.01, 0.0, 0.04, ...] 9

Preferences

Visit [[0.05, 0.03, 0.02, 0.04, 0.02, 0.03, ...],
3×15

Duration [0.06, 0.1, ...], [0.04, 0.03, ...]]

Request [[0.09, 0.06, 0.03, 0.02, 0.1, 0.04, ...],
3×11

Latency [0.01, 0.05, ...], [0.08, 0.08, ...]]

Browsing [[0.05, 0.21, 0.0, 0.0, 0.0, 0.05, ...],
9×9

Sequence [0.12, ...], [0.01, ...], ...]

element as an infinite-width bin.

◦ The request latency metric is a threefold 11-element vector, and each group of 11 el-

ements records the empirical probability distribution of delays between consecutive

HTTP requests during a user’s visits to homepages or profile pages or applica-

tion pages, respectively. Similar to the Action Speed metric, the initial duration is

zero, element one through ten are one-second-wide bins, and element eleven is an

infinite-time-width bin.

◦ The browsing sequence metric is defined as a 9 × 9-element vector. Similar to the

Activity Sequence metric, we conceptually arrange the vector as a 9-by-9 matrix,

and each cell of the matrix represents a transition between browsing two types of

Facebook webpages p1 → p2, whose indices are reflected by the row or column

number of the cell. The value of each cell is the probability of the user to switch

to type p2 after finish browsing page type p1.

57



With concrete behavioral metrics in hand, we build a Facebook user’s social be-

havioral profile by first combining their social behavior metrics into an 8-vector tuple,

then normalizing each vector so that the sum of all elements in a vector equals to one.

In particular, the visit duration and request latency vectors are multiplied by a factor

of 1/3; the activity sequence vectors and the browsing sequence vectors are multiplied

by 1/29 and 1/9 respectively, while all other metrics are unchanged. Table 3.2 shows

a sample of a Facebook user social behavioral profile.

3.4.2 Differentiating User Behaviors

The social behavioral profile depicts various aspects of a user’s online social behavior

patterns, and it enables us to quantitatively describe the differences in distinct user

social behaviors. In the following, we first describe how to compare social behavioral

profiles. Then, we discuss the application of social behavioral profile comparison to

distinguishing different user’s behaviors.

3.4.2.1 Comparing Behavior Profiles

Given two social behavioral profiles, P and Q, we quantify their difference in two

steps.

In the first step, we compare each of the eight vectors in P against the respective

vector inQ. Particularly, we measure the Euclidean distance to quantify the difference

between the two vectors. Given two vectors A = (a1, a2, ....an) and B = (b1, b2, ....bn),

the Euclidean distance between them is calculated by

E(A,B) =

√

√

√

√

n
∑

i=1

(ai − bi)2.
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Comparing all eight vectors yield an eight-element Euclidean distance vector (E1, E2, ..., E8).

Each element in this vector has a range of [0,
√
2], because the sum of each vector’s

elements is one.

In the seconds step, we take the Euclidean norm of the Euclidean distance vector,

D(P,Q) =

√

√

√

√

8
∑

j=1

(Ej)2.

The resulting value is the difference of the two behavioral profiles, and has a range of

[0, 4]—the more significant two profiles differ, the larger the value.

3.4.2.2 Applying Profile Comparison

To apply the profile comparison technique for differentiating user behaviors, we must

further introduce another concept, self variance, in addition to the profile difference.

With two or more distinct pieces of behavioral data (i.e., clickstreams) collected

from the same user, the social behavioral profiles built from each piece of behavioral

data are not identical. The reasons for the differences are twofold. First, human

behaviors are intrinsically non-deterministic, therefore a small amount of variation is

expected even for the same activity performed by the same user. Second, because the

social behavioral profile is built on top of statistical observations, errors always exist

for a finite amount of samples.

A user’s average behavior variance is presented. Given a collection of social be-

havioral profiles {P1, P2, ..., Pn} for a user U , we define the self variance of U as the

mean differences between each pair of profiles:

VU =

∑n

j=1

∑n

k=1,k 6=j D(Pj, Pk)

n(n− 1)
.
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The corresponding standard deviation of those differences is denoted as stdDev(VU).

Thus, with a probability of 97%, U ’s behavior variance falls into [0, VU+2∗stdDev(VU)].

3.4.2.3 Detecting Compromised Account

Together with the self variance, we can apply profile comparison to distinguish dif-

ferent users and detect compromised accounts. Given a user U ’s behavioral profile

PU , self variance VU , stdDev(VU), and an unknown social behavioral profile Q, we

can decide that the behavioral profile Q is not user U ’s if the difference D(PU , Q) is

larger than VU+n ∗ stdDev(VU), in which n is adjustable. A large n would result in

a large false negative rate, while a small n would lead to a large false positive rate.

After building a user’s behavior profile and variance during a training phase, we

can decide whether the user’s account is compromised. While the method illustrated

before can be employed to fulfill the task, we adjust the method by personalizing the

computation of difference to each user’s behavior profile.

During the training phase, we first examine the authentic user U ’s consistency on

each behavior feature. Given a set of U ’s clickstreams, the corresponding behavior

profiles can be built as Section 3.4.1 depicted. Then we calculate the average Eu-

clidean distance on each feature vector in U ’s behavior profiles. The eight features

are sorted according to the average distances in an ascending order; then each fea-

ture is assigned a weight that is inversely proportional to its rank. The weight on

each feature is denoted as w1, w2, ..., or w8. Then DU(PU , Q) =
√

∑8
j=1wj(Ej)2 is

employed to compute an unknown behavior profile’s difference to P (U).

Giving a weight on each feature is to portray a user’s degree of consistency on

different behavior features, which is also difficult to feign. User consistency on behav-

ior features differs from one to one. The personalized weight on each feature in the

training phase enlarges the distance in user differentiation. Heavy-weighted behavior
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features that a user behaves more consistently on play more important roles in detect-

ing impostors than light-weighted features. If an unknown behavior profile belongs

to U , it is likely that its distance on heavy-weighted features are smaller than that on

light-weighted features. For an impostor’s profile that does not hold this pattern, it

is highly likely that the distance to U on heavy-weighted features is also large, which

results in comparatively larger difference.

To sum up, the detection of account compromisation can be conducted as fol-

lows. During the training phase, given a collection of clickstreams from the ac-

count’s authentic user U , U ’s weights on the eight features w1, w2, ...w8 are calculated

first as previously stated; then U ’s self variance and the standard deviation of vari-

ance are calculated using the weighted difference formula DU , denoted as VU and

stdDev(Vu), respectively. U ’s behavior profile is built from the union of the click-

streams. For each incoming clickstream of the account, a behavior profile PI is built

from it; then the difference from PI to PU is calculated as DU(PU , PI). If DU(PU , PI)

≥ VU+n ∗ stdDev(VU), then it is classified as not from the authentic user, and thus,

it is likely that the account is compromised. To guarantee a very low false positive

rate (less than 3%), n is assigned to be 2.

As it is possible that a user’s behavior patterns change over time, the behavior

profile needs to be updated periodically to accurately portray its patterns. While

some online habits remain, a user’s behavior may evolve over time. To capture the

change, the training phase can be repeated using a user’s latest clickstream to update

a user’s behavior profile including feature weights.

In addition, when there are introduction of new services, new behavior features

may need to be extracted. At the same time, multiple existing behavior features

may also experience significant changes, which could be large enough to produce

false alarms. This increased false alarm rate cannot be limited by weighinh potential
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harmfulness. The training phase also need to be repeated in this scenario. New

training data collection is required, and it may take some time for the detector to

work accurately again.

3.4.2.4 Incomplete Behavior Profiles

Dependent upon user activeness in OSNs, the completeness of a user’s behavior profile

varies. The incomplete behavior profiles should be specially processed while calculat-

ing the difference, considering the lack of sample activities from which metric vectors

are built.

When some feature vectors are not available, they are not considered while cal-

culating the difference; in this scenario the final difference will be normalized. For

instance, if a user’s extroversive activity metric vectors are not available due to the

reason that it does not conduct extroversive activities, its difference to another be-

havior profile only counts into the distances on the four introversive activity vectors;

for normalization, the derived distance is multiplied by a factor of 4/
√
2× 4 to serve

as the final difference.

Furthermore, when there are rare sample activities to build a metric vector, it is

taken as N/A. For example, if there are only 5 extroversive activities in a clickstream,

the activity preference vector built from them can hardly be representative of the

user’s behavior pattern. Hence, a threshold of the minimum number of sample ac-

tivities should be assigned to guarantee the quality of metric vectors. Those vectors

built from a lower-than-threshold number of sample activities are taken as N/A.

The varied thresholds of sample activity are assigned to different feature vectors.

For browsing preference vector, it is possible that 15 page browsing activities are able

to derive a comparatively representative vector; but for browsing sequence metric,

15 browsing transitions can hardly demonstrate illustrative transition probabilities.
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Figure 3.4: Behavior Profile Difference & Variance

Hence, when a sample threshold is assigned, it is applicable to all features except

for browsing sequence and activity sequence, whose thresholds are two times of the

assigned threshold.

3.5 Evaluation

We first verify that behavioral profile can accurately portray a user’s behavior pat-

tern. Next, we validate the feasibility of employing behavioral profiles to distinguish

different users, which can be used to detect compromised accounts.

3.5.1 Difference vs. Variance

We demonstrate that compared to a user’s behavior variance, its behavioral profile

difference from others is more significant. That is, a user’s behavioral profile can

accurately characterize its behavior pattern. We compute each sample user’s behavior

variance and behavioral profile differences between its own and other users’. For each

sample user, we equally partition its clickstream into four complementary parts by

session, and four behavioral profiles are built accordingly; its weight on each feature
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is calculated and used for difference calculation. A 4-fold cross-validation is used to

calculate its average behavior variance and the average difference from the others’

behavioral profiles to its profile.

Figure 3.4 shows each user’s behavior variance and the average behavioral profile

difference to others’. Note that only those users who have sufficient social activities,

referred as “valid” users, are included in the figure. In particular, the behavioral

profile of each valid user must have more than or equal to 4 non-empty feature vectors,

in order to ensure that the behavioral profile is complete enough to represent the user’s

behavior patterns. And each feature should be derived from more than or equal to

10 social activities. For those users whose social profiles do not meet the requirement

above are excluded.

As the figure shows, all users’ self variance is obviously lower than its average

difference from other users. This coincides with our intuition that a user’s behavior

variance is usually within a certain range. And comparatively complete behavioral

profiles can portray users’ behavior patterns. More importantly, it is possible to take

advantage of the difference between behavioral profiles to discern a user.

3.5.2 Detection Accuracy

Here we further evaluate the accuracy of using social behavioral profiles to differenti-

ate online users. We conduct three sets of experiments by varying training data size,

feature quality, and profile completeness, respectively, to evaluate their impacts upon

the detection accuracy.

For each sample user U , VU and stdDev(U) are calculated from its clickstream,

and other users are taken as impostors. For each impostor, we calculate its behavioral

profile difference to U ’s using U ’s weights on each feature. If the difference is larger
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than VU + 2 ∗ stdDev(U), the decision is taken as correct; otherwise, it is taken as

a detection error. The average error rate is calculated in each scenario. Setting the

threshold to be VU + 2 ∗ stdDev(U) guarantees that U ’s behavioral profiles can be

discerned with the probability of more than 97%.

3.5.2.1 Input Size vs. Accuracy

Intuitively, the more training data are given to build a user’s behavioral profile, the

better the profile reflects the user’s behavior pattern; and hence, the profile difference

demonstrates the dissimilarity between user behaviors more accurately.

We build each user’s behavioral profile using the clickstream from 1/6, ..., and 1/2

of its total sessions, respectively, and use cross-validation to compute and compare

behavioral profile differences. Take the 1/6 of sessions as an example, each user’s

clickstream is partitioned into 6 parts while the first part includes the clickstream

from the 1st, 7th, 13th, ..., sessions; the second part includes the clickstream from

the 2nd, 8th, 14th, ..., sessions etc. Six behavioral profiles are built accordingly

and each profile is used for difference calculation. For user A, when we use the ith

part of its clickstream to build its behavioral profile, the behavioral profile difference

from another user B to user A is calculated six times, each of which considers A’s

behavioral profile and one of B’s behavioral profiles, which is built from one out of

its 6 clickstreams.

Cross-validation is used to make sure that each part of data are used for both

training and validation, and the result is not derived from biased data. Furthermore,

we only consider users whose behavioral profiles consist of more than or equal to 5

non-empty feature vectors, each of which should be built from more than or equal to

15 sample activities. The thresholds are set to guarantee the vector quality as well as

the completeness of the behavioral profiles. To give more straightforward impression
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(a) Impact of Training Data Size to Accuracy�
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(b) Valid Users under Varied Training Data Size

Figure 3.5: Impact of Training Data Size

over the size of clickstream we calculate its average active hours in each partition.

Figure 3.5(a) shows the dynamics of the error rate with the change of the click-

stream length, while Figure 3.5(b) shows the number of valid users with different data

partitions. Overall, the longer is the clickstream, the more accurate is the detection.

When the clickstream is up to 10.1 hours, the error rate can reach 7.8% while longer

clickstreams derive better result. When it is more than 13 hours, the error rate is as

small as 0.5%. Longer clickstream provides more empirical behavior data of a user,

which enables us to build more accurate and complete behavioral profiles, and hence

the distance on each behavioral feature can be measured more accurately. Thus,
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the detection is more accurate. On the other hand, with the finer partition of the

clickstream, the fewer activities in each partition, leading to the smaller number of

non-empty vectors and the smaller number of valid users.

3.5.2.2 Feature Quality vs. Accuracy

We adjust the threshold of the number of sample activities to explore whether the

feature vector quality affects the detection accuracy.

When building a user’s behavioral profile, the number of sample activities that

derive a feature vector determines whether the feature vector represents a user’s

behavior accurately. By assigning a threshold to the number of sample activities, we

can take control over the quality of feature vectors. We designate those vectors derived

from insufficient activities to be N/A. Intuitively, higher sample activity threshold

results in feature vectors with higher quality, which reduces the noise of behavior

variance introduced by rare sample activities. Thus, the difference between users can

be discerned more accurately.

The detection accuracy is evaluated when we assign the sample threshold to be 10,

15, 20, 25, and 30, respectively. We use the 1/4 partition of clickstreams to build user

behavioral profiles and those users with less than 4 feature vectors are excluded. Same

as before, 4-fold cross-validation is used to derive the average detection accuracy. The

error rate with different sample threshold is depicted in Figure 3.6(a). It verifies our

intuition that higher sample threshold generates feature vectors with higher quality,

which helps to differentiate behavioral profiles. The side-effect to set high sample

threshold is that with limited clickstream, fewer feature vectors can be built, resulting

in fewer valid users, as Figure 3.6(b) shows.
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(a) Impact of Feature Quality to Accuracy
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(b) Valid Users under Varied Feature Quality

Figure 3.6: Impact of Feature Quality

3.5.2.3 Profile Completeness vs. Accuracy

Due to the lack of certain activities, some behavioral feature vectors can be N/A.

For instance, when one never conducts extroversive activities in its clickstream, at

least four of its feature vectors are N/A, which makes its profile incomplete. By

adjusting the least number of non-empty features vectors, the completeness of selected

behavioral profiles can be guaranteed.

Here we adjust the threshold of the vector number to be 3, 4, 5, 6, 7, respectively,

to examine the impact of behavioral profile completeness upon the detection accuracy.
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(a) Impact of Profile Completeness to Accuracy
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(b) Valid Users under Varied Profile Completeness

Figure 3.7: Impact of Profile Completeness

Same as before, the behavioral profile is built from the clickstream in 1/4 of sessions

and the sample threshold is 15. A 4-fold cross-validation is conducted. The detection

error rate with the change of the threshold of vector number is shown in Figure 3.7(a),

while Figure 3.7(b) shows the number of valid users in each case. Evidently, more

complete behavioral profiles result in higher detection accuracy, which validates the

effectiveness of the behavioral features for user behavior characterization. With 7

feature vectors available, the detection accuracy reaches 100%.

Overall, active users can be distinguished more accurately by their behavioral

profiles compared to inactive users. The more types of activities a user conducts,
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the more complete its behavior profile can be. In addition, the more activities a

user conduct in OSN, the more sample activities can be obtained within a certain

duration, leading to more accurate behavioral profile.

3.6 Discussion

In this section, we first describe how social behavior profiling can be applied to detect

abnormal behavoirs of compromised accounts. Then we discuss adaptions of our

technique to special OSN accounts(such as multi-user shared accounts and public

social media accounts). We also discuss how to handle those accounts created by

normal users but rarely used. Finally, we discuss the applicability of our approach to

non-user-interactive channels and its limitation.

3.6.1 Detecting Compromised Behaviors

By building a behavioral profile along with the self variance for an account , we can

decide whether incoming clickstreams from the account is from the authentic user or

a different user. If an incoming clickstream is from the authentic user, to some extent

it should comply with the behavior pattern represented by the account’s behavior

profile.

When an account is compromised and its behavior is well-optimized to post spam,

the detection accuracy should be higher than that of differentiating another nor-

mal user. With a clear objective, to broadcast spams, spammers usually act goal-

orientedly [97]. Compromised accounts can be well-programmed to focus on posting

spams. Thus, their behaviors evidently deviate from common users’ behaviors that

are spontaneous and out of interests. As a result, the higher chance is that a click-

stream consists of aggressively posting activities largely diverging from the account’s
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behavior profile built from unprompted activities.

Compared to an account’s evident social characteristics, such as language and

interests, its social behavior is harder to feign. Even though spammers do not adopt

aggressive strategies to post spams and manipulate compromised accounts to browse

randomly or slow down the post speed to look normal, it is hard for them to obtain

the authentic user’s unconscious social behavior pattern, not to mention to feign.

Note that our method is not limited to detect compromised accounts that are

manipulated to spread spams in a specific way, such as post on the message board.

Since most existing spam detection methods are tied to detect spam messages [47],

[44], [90], if spam is embedded in other media, such as photos or shared files, those

schemes are not applicable for detection anymore. However, using social behavior

profiles to detect compromised accounts is independent from the forms of spams.

Moreover, our method can be adopted in combination with existing schemes to

battle against account hijacking. In comparison with existing detection approaches,

either URL or message content analysis based, our social behavior based method

discerns compromised accounts from very different perspectives. Our method can

serve as a complementary measure to existing detection solutions.

3.6.2 Handling Special Accounts

Some special accounts should opt out this compromisation detection scheme volun-

tarily in advance. Although an OSN account is normally owned by an individual user,

it happens that an account is shared by multiple users. In this case, the account’s

behavior variance can be much larger than that of an account managed by a single

user. On one hand, such a shared account could be wrongly classified as a compro-

mised account. (i.e., producing a false positive). On the other hand, if its behavior
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variance was employed as the standard to detect account compromisation, the false

negative rate would be larger than using that of a single-user account.

Some public page accounts should opt out too, such as the public pages registered

by business companies to promote their products. Their behaviors are also different

from those of normal users since they are also goal-oriented. It is possible that those

accounts are only manipulated to post ads or news. Thus, their behavior patterns

are more similar to spammers than normal users.

3.6.3 Rarely Used Accounts

There exist some normal inactive OSN accounts, i.e., those accounts are created by

normal users but are rarely used after the creation. Since these accounts are inactive

most of time, it is hard to obtain their complete social behavioral profiles. However,

on one hand, we can still build a profile for such an inactive account as long as its

owner logs in at least once. On the other hand, it would be more straightforward to

detect the compromisation of such an inactive account because we can simply employ

the existing solutions, such as checking its posting message behavior and message

content, for anomaly detection.

3.6.4 Applicability and Limitation

Our method can be easily adopted to most of existing popular OSNs besides Facebook

such as Google+, Twitter, and Instagram. The users of those sites are enabled to

conduct various extroversive and introversive behaviors. As long as the behaviors

are categorized, each user behavior profile can be built based on the eight behavior

features we proposed in Section 3.3.1. Therefore, our approach can be readily applied

for detecting compromised accounts in those OSN sites.
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Our method is applicable to accounts whose social behavior patterns can be pro-

filed, i.e., users who access OSN services through the Web. For normal users who

directly visit the OSN webpage, their behavioral profile can be easily built via click-

stream. On the other hand, it is hard to trace the behavior patterns of users who

access an OSN solely via APIs, thus, our method may not be applicable for those

rare cases.

However, if a compromised account uses APIs to post spams aggressively with zero

social activities, we can easily detect such a compromised account given its authentic

user accesses the account via the Web.

Additionally, our method assumes that cyber criminals cannot easily obtain target

users’ online social behavior patterns. However, if more arduous hackers compromise

the physical machines that users own, they are able to learn their social behavior

patterns and mimic the authentic users’ social behaviors to avoid our detection. How-

ever, this requires more resourceful and determined attackers and costs much more

resources and time, especially in large scale campaign.

3.7 Summary

In this chapter, we propose to build a social behavior profile for individual OSN users

to characterize their behavioral patterns. Our approach takes into account both ex-

troversive and introversive behaviors. Based on the characterized social behavioral

profiles, we are able to distinguish a users from others, which can be easily employed

for compromised account detection. Specifically, we introduce eight behavioral fea-

tures to portray a user’s social behaviors, which include both its extroversive posting

and introversive browsing activities. A user’s statistical distributions of those feature

values comprise its behavioral profile. While users’ behavior profiles diverge, individ-
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ual user’s activities are highly likely to conform to its behavioral profile. This fact

is thus employed to detect a compromised account, since impostors’ social behaviors

can hardly conform to the authentic user’s behavioral profile. Our evaluation on

sample Facebook users indicates that we can achieve high detection accuracy when

behavioral profiles are built in a complete and accurate fashion.
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Chapter4

The Security of Twitter Trending

Twitter trends, a timely updated set of top terms in Twitter, have the ability to affect

the public agenda of the community and have attracted much attention. Unfortu-

nately, in the wrong hands, Twitter trends can also be abused to mislead people. In

this chapter, we attempt to answer the question of whether Twitter trends are secure

from the manipulation of malicious users. We collect more than 69 million tweets

from 5 million accounts. Using the collected tweets, we first conduct a data analysis

and discover evidence of Twitter trend manipulation. Then, we study at the topic

level and infer the key factors that can determine whether a topic starts trending due

to its popularity, coverage, transmission, potential coverage, or reputation. What we

find is that except for transmission, all of factors above are closely related to trend-

ing. Finally, we further investigate the trending manipulation from the perspective

of compromised and sybil accounts and discuss countermeasures.

4.1 Introduction

The Internet has subverted the autocratic way of disseminating content by traditional

media like newspaper. Online trends have especially differed from traditional media

75



as a method for information propagation. Google Hot Trends ranks the searches that

have recently experienced a sudden surge in popularity [49]. Meanwhile, these trends

may attract much more attention than before due to their appearance on Google Hot

Trends.

More recently, Online Social Networking (OSN) like Twitter has inaugurated a

new era of “We Media.” Twitter is a real-time microblogging service. Users broadcast

short messages no longer than 140 characters (called tweets) to their followers. Users

can also join global conversations on a variety of topics at will. The topics that

gain sudden popularity are surfaced by Twitter as a list of trends (also known as

trending topics) [78]. Twitter and Google trends have become an important tool for

journalists. Twitter in particular is used to develop stories, track breaking news, and

assess how public opinion is evolving in the breaking story. Taking election campaigns

as an example [83], journalists, campaigns, and pundits have tracked trends in Twitter

traffic to determine candidates’ popularity and predict likely election outcomes [58].

Previous research has studied trend taxonomy [62, 76, 113], trend detection [59],

and how to extract real events from Twitter trends [25, 34]. However, researchers have

paid little attention to Twitter trend manipulation. It is reported that manipulators

created Google trends by simply asking enough people to visit Google and search for

a specific keyword phrase [10]. Also, Just et al. [58] inspected Twitter manipulation

in an election campaign. As reported in The Wall Street Journal, robots have been

used to undermine the “trending topics” on Twitter [23]. Thus, the focus of this work

is on the issue of Twitter trend manipulation.

In this chapter, the primary questions we attempt to answer are whether the

malicious users can manipulate the Twitter trends and how they might be able to do

that? By answering these questions, we can also gain insights into how to enhance a

commercial promotion campaign by reasonably using Twitter trends. To investigate
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the likelihood of manipulating Twitter trends, we need to deeply understand how

Twitter trending works. Twitter states that trends are determined by an algorithm

and are always topics that are immediately popular. However, the detailed trending

algorithm of Twitter is unknown to the public, and we have no way to attempt

to find out what it is. Instead of working out the detailed trending algorithm, we

study Twitter trending at the topic level and infer the key factors that can determine

whether a topic trends from its popularity, coverage, transmission, potential coverage,

and reputation. After identifying those key factors that are associated with the trends,

we then investigate the manipulation and countermeasures from the perspective of

these key factors.

The major contributions of this work are as follows:

• We demonstrate the evidence of the existing manipulation of Twitter trends.

In particular, employing an influence model, we analyze the dynamics of an

endogenous hashtag and identify the manipulation from the endogenous spread.

Then, centering on a spike in the dynamics of a topic, we compare topic’s

influence before and after the spike and investigate the accounts in the spike.

We can see the existence of a suspect spamming infrastructure.

• We study Twitter trending at topic level, considering topics’ popularity, cov-

erage, transmission, potential coverage, and reputation. The corresponding

dynamics for each factor above are extracted, and then Support Vector Ma-

chine (SVM) classifier is used to check how accurately a factor could predict

the trending. We find that, except for transmission, each studied factor is as-

sociated with trending. We further illustrate the interaction pattern between

malicious accounts and authenticated accounts, with respect to the trending.

• We present the threat of malicious manipulation of Twitter trending, given
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compromised and sybil accounts in the suspect spamming infrastructure we

observed. Then we demonstrate how compromised and sybil accounts could

threaten Twitter trending by simulating the manipulation of dynamics as com-

promised and sybil accounts would do. Countermeasures are then discussed to

defend against the manipulation of Twitter trending.

In this chapter we validate our dataset firstly. Then we demonstrate the evidence

of manipulation of Twitter trends and the key factors that determine Twitter trending

are explored. At last we discuss the threat of manipulation of Twitter trends and

corresponding countermeasures.

4.2 Dataset

4.2.1 Data Collection

We collected our dataset via Twitter API through two different collection windows.

One lasted 40 days, from June 6, 2013, to July 15, 2013, and the other lasted 30

days, from August 26, 2013, to September 26, 2013. At the end, we obtained more

than 69 million tweets from 5 million accounts. Since we focus on the hashtags, we

only analyze the tweets with hashtags. More specifically, our dataset was collected

via Stream API. We also collected the public trends of Twitter via Rest API.

Sample Stream and Search Stream. We obtain a sample stream via Twitter’s

Streaming API. We define the 15 most frequent hashtags in the sample stream as

sample trends. Sample trends are retrieved from the sample stream every 30 minutes.

We create a search stream by opening up a new streaming channel via Streaming

API and searching sample trends. Therefore, the sample stream and search stream

are not inclusive of each other, since they are from two different streaming channels
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of the Streaming API.

Public Trends and Sample Trends. Twitter trends include trending hashtags

and trending keywords. Our focus is on the trending hashtags. Thus, the trends in

the rest of the chapter represent trending hashtags only. Public trends are published

by Twitter and available via the Twitter API. Sample trends are obtained by ranking

the frequency of hashtags over the sample stream. Note that, throughout this chapter,

trends represent public trends if not specified. The trends used to conduct trending

analysis are the intersection of sample trends and public trends.

Sample Dynamics and Search Dynamics. We define the dynamics of a

topic as the variation of the topic against time with respect to a specific frequency

feature, such as tweet number or account number. For a certain topic, we obtain

its dynamics through its sample stream and search stream independently. Sample

dynamics represent how the topic evolves in the sample stream, while search dynamics

reflect the evolution of the topic in the search stream.

4.2.2 Validation of Dataset

The major objective of this work is to study the key factors of Twitter trending

and inspect the possible manipulation of these factors. In this respect, we validate

the representativeness of our dataset in two ways. On one hand, sample trends are

supposed to reflect the public trends to a certain extent; on the other hand, the

syncretization of sample dynamics and search dynamics should be able to embody

the critical information for inferring the key factors of Twitter trending.
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Figure 4.1: Coverage and Mean Position of Sample Trends

4.2.2.1 Could sample trends reflect public trends?

Sample trends are the 15 most frequent hashtags of a sample stream. They are used

as query keywords to profile topic dynamics. Topic dynamics are then used to infer

the key factors of Twitter trending. If sample trends could not reflect public trends,

the collected topics’ dynamics would be meaningless for studying the key factors of

public trends.

We employ coverage and mean position to test whether sample trends reflect

public trends. Coverage is defined as the number of hashtags that are common in

both sample trends and public trends, and mean position represents the average rank

of the common hashtags in sample trends. Therefore, coverage can be expressed as

Coverage = {Sample trends} ∧ {Public trends}. (4.1)

Recall that we collect 15 sample trends and there are 5 hashtags in the public trends.

Therefore, coverage is equivalent to or less than 5, and mean position is between 1

and 15. Fig. 4.1(a) and Fig. 4.1(b) show the coverage and mean position of the

sample trends respectively. We observe that more than 90% of the sample trends
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Figure 4.2: Sample and Search Dynamics

have at least one common hashtag with public trends and almost 60% of them rank

the common hashtags as the top 5 trends. It suggests that the sample trends of our

dataset reflect the public trends.

4.2.2.2 Could observed dynamics reflect general dynamics?

Whether the sample dynamics and the search dynamics we collect could reflect the

general dynamics is critical to determine whether our observed dynamics could be

used to infer the key factors of Twitter trending. Here we define the general dynamics

of a topic as the dynamics that contain the whole collection of tweets related to the

topic. However, the general dynamics of Twitter are well beyond the reach of most

researchers. Thus we compare the sample dynamics and search dynamics instead

using the Jensen-Shannon divergence metric [66].

We collect data from both streaming API and search API and obtain sample

and search dynamics respectively. Both sample dynamics and search dynamics are

samples of general dynamics. Morstatter et al. [75] demonstrated that sample data

from streaming API could represent the overall data to some a extent. We compute

the distance in the probability distribution of sample and search dynamics using the
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Table 4.1: The Jensen-Shannon Divergence

Sample Search Intersection
Sample - 0.05 0.08
Search 0.05 - 0.07

Intersection 0.08 0.07 -

Jensen-Shannon divergence metric [66]. The JensenShannon divergence metric is used

to measure the similarity between two probability distributions. We randomly choose

a trending hashtag “oomf”. Fig. 4.2 shows sample and search dynamics, as well as

the intersection of two dynamics(red histogram shows the intersection). We compute

the Jensen-Shannon divergence for sample dynamics (Sa) and search dynamics (Se)

as follows:

JSD(Sa ‖ Se) =
1

2
[KL(Sa ‖ M) +KL(Se ‖ M)], (4.2)

where M = 1
2
(Sa + Se) and KL is the Kullback-Liebler divergence [42]. We also

calculate the Jensen-Shannon divergence for sample dynamics and intersection dy-

namics, as well as search dynamics and intersection dynamics. Table 4.1 shows the

results. We can see that none of them exceeds 0.1, especially only 0.05 for sample

dynamics and search dynamics. We can infer that there is insignificant divergence

between sample dynamics and search dynamics. Also, the fact that either sample or

search dynamics have no significant divergence with intersection dynamics can fur-

ther support endogenous relationship between sample and search dynamics. In other

words, the observed dynamics are very likely to be consistent with general dynamics.

4.3 Evidence of Manipulating Topic Dynamics

In this section, we present the evidence of Twitter trend manipulation through mod-

eling analysis and estimation of topics’ influence. Existing literature has identified
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two important factors for topics becoming trends: the endogeneity that captures the

propagation effect of the topic in the network and the exogeneity that represents the

driving force external to the network (e.g., the mass media) [26, 76].

First, we need to distinguish manipulation from exogenous factors. In general,

exogenous factors represent external and legitimate factors, especially the mass media.

However, manipulation is intended either as malice or as a means to an end. But it

is still impossible to quantify the difference between them. To avoid the impact of

exogenous factors, we choose the hashtags that only spread inside social networks,

like Twitter. Then, we employ an influence model to capture the spread due to the

effect of social networks and trace out the evidence of manipulation.

4.3.1 Selecting Hashtags in Twitter

A number of hashtags always flourish in Twitter. Some of them do not correspond

to external events (e.g., an earthquake). We call these endogenous hashtags memes

throughout this chapter. Most of the memes are combinations of words or acronyms,

which are used to express an emotion or raise a question. Since the memes are not

associated with any external events, the spread of the memes can be only due to

the effect of social networks and manipulation. The effect of social networks could

be captured by the influence model [106], while the manipulation of a meme can be

regarded as the effort to drive the meme to trend beyond the effect of the network.

To determine whether a hashtag is a meme, we manaully check if the hashtag has

been covered by any news media.

83



4.3.2 Endogenous Factors and Manipulation

We employ an influence model (Linear Influence Model, LIM [106]) to capture the

network effect on the spread of the memes. LIM is used to model the global influence

of a node (an account) on the rate of diffusion through a network, which can be

expressed as

V (t+ 1) =
∑

u∈A(t)

Iu(t− tu), (4.3)

where V (t + 1) represents the number of nodes that are influenced at time t + 1,

A(t) denotes the set of nodes that have already been influenced before time t, and

Iu(l) is the influence function of node u at lth time step after it is influenced at time

tu (tu < t). LIM has been evaluated that, for the memes mentioned above, most

of the observed dynamics could be attributed to the influence of nodes, especially

considering the imitation factor b(t):

V (t + 1) =
∑

u∈A(t)

Iu(t− tu) + b(t). (4.4)

The imitation means that nodes imitate one another because the topic is popular and

everyone talks about it. However, for the memes, the imitation happens only due to

the spread in the network. Therefore, we exclude imitation from the model and take

the manipulation ex(t) into account. The influence model we consider is

V (t+ 1) =
∑

u∈A(t)

Iu(t− tu) + ex(t). (4.5)

Extensive research has been done on the influence in Twitter [32, 39, 84, 99]. Re-

searchers not only inspected the effectiveness of different influence measures, such as

follower number, retweet number, and mention number, but also proposed algorithms
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Figure 4.3: Observed and Estimated Dynamics of “ThrowbackThursday”

to measure the influence.

In this section, our goal is to demonstrate the impact of manipulation on the

observed dynamics. Different from LIM, we do not consider the influence from the

pointview of a single account but from the perspective of the observed dynamics.

Therefore, we take the accounts that appear in the dynamics within one time slot

as a single node. Each time slot is 30 minutes. The accounts that appear in the

observed dynamics before time slot t, exert the influence on the accounts that appear

in the dynamics within time slot t. Consequently, we can get
∑

u∈A(t) Iu(t− tu) ≈
∑

s<t I(V (s)), where I(V (s)) denotes the influence of the accounts that appear in the

dynamics at time slot s on the accounts that appear in the dynamics at time slot t.

The influence of any single time slot would fade away as time passes. The influence

function could be further simplified as
∑

K≤i<0 I(V (t− i)) when only considering K

time slots before time slot t. By assuming that the influence is linear to the time lag,

we can further express
∑

K≤i<0 I(V (t− i)) as a linear model,
∑

K≤i<0 V (t− i) · li.

The parameter li can be estimated by least squares.

Fig. 4.3 shows the observed dynamics and the estimated dynamics from the in-

fluence model expressed in Eq. 4.5 for the meme “ThrowbackThursday.” Here, the
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Figure 4.4: Normalized Number of Follower and Retweet for “ThrowbackThursday”

dynamics is the evolution of tweet number. For the linear model we consider, coef-

ficient of determination R2 can indicate the proportion of variability in the observed

dynamics that may be attributed to the linear combination of explanatory variables.

R2 is calculated as 0.705 for the whole dynamics, but when we exclude the spike as

indicated in the figure, R2 is 0.995. It suggests that the influence in the network

should be capable of explaining most of the observed dynamics except some specific

spikes. In other words, there must exist other driving factors except the influence to

produce the spikes. For the memes we select, the driving factors except the influence

are far more likely to be manipulation than any other exogenous factors, such as news

and mass media.

We further estimate the influence of each time slot upon the dynamics of a topic.

The follower number of the accounts in a time slot represents the number of potential

accounts that will be exposed to the topic in the following time slots, which could

predict the influence of the time slot. We consider the follower number of the accounts

as pre-estimation of influence. The number of being retweeted for the tweets in a time
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slot measures to what extent the tweets in this time slot are adopted by the accounts

that are exposed to the topic in the following time slots, which hence can be used

to estimate the practical influence of the time slot. We regard the number of being

retweeted as post-estimation of influence. Fig.4.4 shows the normalized number of

followers and the normalized number of being retweeted for “ThrowbackThursday”

around the spike. We view the number of followers and the number of being retweeted

as prediction and estimation of influence, respectively. It is evident that (1) there

exists a large gap between the pre-estimation and post-estimation of influence before

the spike, and (2) after the spike, the post-estimation of influence falls and gets close to

the pre-estimation of influence. The most likely explanation is that the manipulation

before the spike leads to exceptional retweets and after the spike, the manipulation

ends.

4.3.3 Investigating the Accounts in the Spike

We can verify our conjecture by investigating the accounts in the highest spike as

shown in Fig.4.3. We collect their friends (i.e., the accounts that they follow) and

check whether their friends have shown up in the dynamics before, or in other words,

whether the accounts in the spike join the topic after their friends. For the 4,055

accounts in the spike, 63.8% of them join the topic after their friends. There are still

over 1,000 accounts that do not join the topic after their friends. We could not simply

make any conclusion based on the ratio of the accounts that join after their friends

because the dynamics is sampled.

Nevertheless, we can further check the accounts that have been suspended by

Twitter. It is intuitive to link manipulation to malicious accounts. By the time

of checking accounts (about 2 months after crawling sample and search stream), 118
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Figure 4.5: Waiting Time of Accounts in the Spike

accounts have been suspended by Twitter. We compare the temporal feature (waiting

time) of suspended accounts with that of the accounts not being suspended. Waiting

time means the interval from the time when an account’s friend joins the topic to the

time when the account itself joins. Fig.4.5 depicts the PDF of the waiting time of

suspended accounts and that of still-active accounts. It is evident that the waiting

times of both kinds of accounts are mostly within one day, which is similar to the

waiting times of other human activities following power-law distribution. However,

the waiting times of those two kinds of accounts have the same spikes around 100

hours, implying there exist other malicious accounts that have not yet been detected

by Twitter.

We further check the predecessors of the accounts in the spike, and identify the

accounts that have already been suspended by Twitter. We define descendants of

account A as those accounts that follow account A and publish at least one tweet of

a certain topic. We then study the descendant number of the malicious accounts and

the descendant number of their first generation and second generation, and so forth.

Level 0 denotes the malicious accounts themselves. Level 1 is the first generation of
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Figure 4.6: Average Descendant Number of Malicious Accounts

the malicious accounts. The rest can be deduced by analogy. Fig.4.6 demonstrates

the average descendant number of five different levels starting from level 0. It is

interesting that the average descendant number of the malicious accounts (level 0)

is almost the same as the average descendant number of all accounts (as the red

dashed line indicated). The first and second generations exhibit extraordinarily large

average descendant numbers. And the descendant number falls sharply when it comes

to levels 3 and 4. Since the first-generation descendants of the malicious accounts are

the followers of the malicious accounts, they tend to be malicious or compromised.

Specifically, malicious accounts use them to construct the spamming infrastructure.

This explains why their descendant number increases sharply.

Overall, we have three observations for the manipulation involved with the ac-

counts in the spike: (1) Variation of the topic’s influence suggests the manipulation

around the spike; (2) The waiting time distribution indicates the existence of still-

active malicious accounts; and (3) The descendant number indicates the existence of

the suspect spamming infrastructure.
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4.4 Inferring the Key Factors of Twitter Trending

After showing the suspected manipulation of Twitter trends, we proceed to infer the

key factors of Twitter trending. In this section, we first syncretize sample dynamics

and search dynamics to produce the syncretized dynamics. With the syncretized

dynamics, we then infer the key factors that matter to trending using the SVM

classification method.

4.4.1 Syncretizing Sample and Search Dynamics

Since sample dynamics and search dynamics are obtained from independent streams,

syncretizing sample dynamics and search dynamics could integrate the information

from both. Sample dynamics is continuous but is a smaller portion of general dynam-

ics, while search dynamics is discontinuous and consists of a larger portion of general

dynamics.

We employ a Kalman filter to generate the synthesized dynamics. The Kalman

filter provides a recursive means to produce the estimation of unknown variables using

a series of measurements observed over time, containing noise and other inaccuracies

[14]. Since both dynamics are sampled from general dynamics, we can estimate

incontinuous search dynamics from continuous sample dynamics and then treat the

estimated search dynamics as the input measurements of the Kalman filter. After

that, we generate a syncretized dynamics by integrating sample dynamics into search

dynamics. Fig.4.7 demonstrates an example of the Kalman filter for hashtag “oomf.”

We plot sample dynamics, estimated search dynamics, and the syncretized dynamics

after Kalman filtering. The syncretized dynamics retain the basic features of sample

and search dynamics but remove some of the noise of estimated search dynamics.
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Figure 4.7: Example of Kalman Filter

4.4.2 Analyzing Key Factors of Twitter Trending

The trending algorithm processes a stream of tweets and produces trends for users.

From the user’s perspective, the trending algorithm is supposed to dig out the most

popular and attractive topics from the stream. To meet this demand, the trending

algorithm may need to take into account some other factors besides topics’ popularity.

In this section, we explore the relevance of several factors with the trending. As

each factor is associated with a specific dynamics, we investigate how accurately the

dynamics of a factor could predict the trending.

4.4.2.1 Segment of Dynamics

Due to the data collection method, the dynamics we obtain are naturally slotted. For

a specific time point t, we assume that M time slots right before t is long enough to

determine whether a topic will trend, and we define this time period as one segment.

Therefore, for each time point of the dynamics, the segment right before it consists

of M time slots, as Fig.4.8 shows.

Each segment corresponds to a binary sign, which indicates whether the topic
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Figure 4.8: Example of One Segment

trends or not at the end of the segment. Let {Si, Ti} denote the ith pair of segment

and binary sign, where Si and Ti represent the ith segment and its binary sign,

respectively. Next, we input a series of segments and binary signs for the SVM

classifier.

4.4.2.2 SVM Classifier

We choose Support Vector Machines (SVMs) as our classifier to determine how ac-

curately a factor could perform the binary classification. SVMs have been widely

used to address many different classification problems, including handwritten digit

recognition [19], object recognition [79], text classification [57], and image retrieval

[95].

The basic purpose of SVMs in a binary classification problem, is to map the feature

vectors into a high-dimensional space and find the optimal hyperplane that represents

the largest separation, or margin, between two classes. We obtain d-dimensional

feature vectors by calculating the statistics of the segments (e.g., mean, standard

deviation) and get corresponding class labels from the binary signs mentioned above.

Our procedure of resolving the classification problem can be summarized as (1)

conducting scale on the data, (2) choosing the RBF kernel, and (3) using cross-
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Table 4.2: Topics Extracted from Datasets

Topics

ImSingleBecause
SingleBecause
tgif
20factsaboutme
wecantdateif
ifwedate
IHatePeopleThat
MentionSomeoneHandsome
mentionsomeonebeautiful
TalkAboutYourCrush
easilyattractedto

validation to find the best parameters C (penalty parameter) and γ (tunable param-

eter of RBF kernel) for the minimization problem and achieve the best classification

accuracy. In our proof-of-concept implementation, we employ the open-source SVM

package LIBSVM 3.17 [41].

4.4.2.3 Experiment Results

To examine the factors of the trending, we first extract a collection of topics from our

dataset. Table 4.2 lists the topics. The topics are all memes, as mentioned in Section

4.3. In addition, there are similar topics in the list, such as “ImSingleBecause” and

“SingleBecause.” However, we keep the similar topics apart because they all trend

at least once. Note that we only extract 11 topics for the SVM classification, since

the input unit for the SVM classifier is the segment in the dynamics of the topics.

Each topic has more than 1,000 segments. Therefore, we can obtain more than 10,000

samples in the training set for the SVM classifier.

For each topic, we trace the dynamics of each factor we will inspect later. All

dynamics are traced in the granularity of 30 minutes. The granularity of dynamics
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Figure 4.9: Trending Duration of Topics

is supposed to be larger than the trending duration of most topics, such that we

can regard each trending as a point in the dynamics. Fig.4.9 depicts the trending

duration of all trends in our dataset, including hashtag trends and non-hashtag trends.

The granularity of 30 minutes we choose is larger than the duration of most trends,

including both hashtag trends and non-hashtag trends. Also, we observe that hashtag

trends last longer than non-hashtag trends.

After tracing the dynamics, they are divided into segments of length M . By calcu-

lating the statistics (say, mean and standard deviation) and frequency, we map each

segment into a d-dimensional feature vector (d = 16). The corresponding indicator

label is obtained from the public trends data we collect, such that we have samples

composed of feature vectors and indicator labels. These samples compose the training

set. More specifically, the training set is made up of positive samples (with indicator

label being 1) and an equal number of negative samples (with indicator label being

-1).

To quantify the extent to which a factor is associated with trending, we measure
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the best classification accuracy that the factor can achieve by using a grid parame-

ter search, a tool in LIBSVM. The best classification accuracy by employing a grid

parameter search can reflect the maximal probability in which a factor is associated

with the trending. Specifically, we consider the factors of a topic that impact the

trending from its popularity, coverage, transmission, potential coverage, and reputa-

tion. These five factors are then operationalized with five behavioral and structural

variables (tweet number, account number, mention number, follower number, and

tweet history number, respectively). Corresponding dynamics are assigned to each

factor. We describe the factors and the corresponding dynamics as follows:

Popularity and Tweet Dynamics. The popularity of a topic represents the

topic’s vitality. We use the tweet number of a topic to capture the topic’s popularity.

The tweet dynamics of a topic record the variations of the number of tweets about

the topic. It is the most frequently used metric for measuring the evolution of events

and detecting trending topics. The number of tweets at a specific time makes the

popularity of a topic easily and directly perceived through the senses.

Coverage and Account Dynamics. Coverage of a topic means the participa-

tion rate of the topic. We can employ the account number of a topic to quantify its

coverage. Account dynamics reflect the variations of the number of accounts involved

in the topic. Compared with tweet dynamics, account dynamics exclude the impact

of those extremely active accounts in the trending. The number of accounts at a spe-

cific time may serve as a more reliable popularity gauge for a topic than the number

of tweets.

Transmission and Mention Dynamics. Transmission of a topic is the extent

to which users may retweet or reply to the topic. The mention number of a topic is

used to express the topic’s transmission. The mention dynamics of a topic record the

variations of the number of mentions appearing in the tweets about the topic. The
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mention we study includes both direct mention and retweet, since both of them use

“@username.” Either direct mention or retweet can represent the means to propagate

the topic. The propagation of a topic is very important for making the topic trend.

Potential Coverage and Follower Dynamics. The potential coverage of a

topic represents the potential participants due to propagation of the topic on the

basis of current participants. We use the follower number of a topic to capture the

potential coverage of the topic. The follower dynamics of a topic are the variations

of aggregate follower numbers of the accounts involved in the topic. The follower

number represents the number of those accounts that the topic reaches and may join

in the topic next. In general, followers play a more important role in the propagation

of a topic than mentions.

Reputation and Tweet History Dynamics. The reputation of a topic is a

kind of credibility that reflects whether the topic conforms to the main awareness of

Twitter. We select the tweet history number of a topic to quantify its reputation.

For an account, its tweet history number means the aggregate number of tweets that

the account posts from its creation. The tweet history dynamics of a topic record

the variations of aggregate tweet number of the accounts involved in the topic. The

tweet history number of an account can reflect its reputation, which is earned by

remaining active for a long time. The more historical tweets an account posted, the

more audience it potentially has. Therefore, the account may be more likely to enable

the trending of a topic it joins, either as a source or as a propagator of the topic.

After specifying the dynamics of each factor, we train the SVM classifier using

the training set. Recall that the d-dimensional feature vector of each sample is ob-

tained by calculating the statistics and frequency of the segments for the dynamics.

Initially, we select 36 statistical and frequency features (i.e., d = 36). The feature set

can capture all of the statistical characteristics of the dynamics. We then employ the
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Figure 4.10: The Best Accuracy for Dynamics of Each Factor with M = 12

feature selection tool to extract the appropriate features for improving the classifi-

cation. Specifically, we get a feature set with 16 features. Fig.4.10 depicts the best

classification accuracy of each single factor. We observe that follower dynamics and

tweet history dynamics are most associated with trending. Tweet dynamics and ac-

count dynamics come after but are still closely related to trending. However, mention

dynamics can hardly predict trending with the best accuracy being as low as 68%.

Segment Size. We then investigate whether the best accuracy is sensitive to

segment size M . We calculate the best accuracy of each factor for M ∈ {4, 8, 12, 16}.

Fig.4.11 shows the variation of segment size (M ∈ {4, 8, 12, 16}). It is observed that

the best accuracy slightly increases when the segment size increases for each factor.

Nevertheless, the best accuracy approaches the maximum when the segment size is

large enough, especially for the factors that are more closely related to trending.

Suspended Accounts vs. Authenticated Accounts. Suspended accounts

and authenticated accounts exist in the account dynamics. We identify whether an
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Figure 4.11: Variation of Segment Size (M ∈ {4, 8, 12, 16})

account is authenticated or suspended by crawling the account’s information from

its webpage on Twitter. The webpage crawling is performed about six months after

collecting the dynamics, which should be enough time for malicious accounts to be

detected. It is reasonable to assume that suspended accounts are malicious accounts.

Malicious account dynamics could indicate the extent to which the trending is associ-

ated with malicious activity, while authenticated account dynamics reflect how closely

the trending is related to the mainstream1 of Twitter. The dynamics of a topic may

be affected by the mainstream, but in the meantime, they are interwoven with the

malicious activity. It is interesting to examine which of them (the mainstream and the

malicious activity) is closer to the trending of the topic. Before doing that, we first

explore the relationship between malicious accounts and authenticated accounts for

each topic. Fig.4.12 shows the Pearson correlation coefficient of malicious accounts

and authenticated accounts for the 11 topics in Table 4.2. The Pearson correlation

1By mentioning the mainstream, we mean the public awareness that comes into being on Twitter
due to the higher reputation of authenticated accounts.
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Figure 4.12: Correlation of Suspended and Authenticated Account Dynamics

coefficient (ρ) of malicious accounts (S) and authenticated accounts (A) is calculated

as

ρ = corr(S,A) =
cov(S,A)

σSσA

,

where cov means covariance, and σ is the standard deviation. We observe that all

topics we studied have a positive linear relationship between malicious accounts and

authenticated accounts. It may indicate the interweaving function of malicious ac-

counts and authenticated accounts in the trending. Therefore, it is necessary to figure

out which factor outweighs the others in terms of the trending.

We show the comparison of malicious and authenticated account dynamics in

terms of predicting the trending in Fig.4.13. It is observed that malicious account

dynamics are more closely associated with the trending than authenticated account

dynamics for five topics (“tgif,” “wecandateif,” “ifwedate,” “MentionSomeoneHand-

some,” and “mentionsomeonebeatiful”).

We further examine how malicious account dynamics become closely related to
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Figure 4.13: Best Accuracy of Suspended and Authenticated Account Dynamics

the trending, especially how malicious accounts interact with authenticated accounts.

We extract the peaks of malicious accounts and authenticated accounts across the col-

lection window for the five topics mentioned above. Each peak represents an intense

involvement of malicious accounts or authenticated accounts. Fig.4.14 shows the ma-

licious account peaks and authenticated account peaks for the topics tgif, wecandateif,

ifwedate, MentionSomeoneHandsome, and mentionsomeonebeatiful respectively from

top to bottom. From the top three topics (“tgif,” “wecandateif,” and “ifwedate”) in

Fig.4.14, we find that malicious account peaks tend to follow authenticated account

peaks. This observation is likely to reveal one strategy of malicious accounts: focusing

on those topics that have high trending potential right before they go trending. In

the meantime, we can see that malicious account peaks and authenticated account

peaks interweave to make the topics trend from the last two topics (“MentionSome-

oneHandsome” and “mentionsomeonebeautiful”) in Fig.4.14. A possible explanation

is that these authenticated accounts happen to synchronize with malicious accounts

to make the topics trend. In other words, the strategies of making the topics trend
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Figure 4.14: Malicious and Authenticated Account Peaks for the Topics

include the involvement of authenticated accounts and spamming tactics.

4.5 Discussion on Manipulation of Trends

Spammers in Twitter conduct malicious activities mainly through compromised and

sybil accounts. In this section, we first evidence the involvement of compromised and

sybil accounts in the manipulation of trends, and then we simulate the manipulation

of dynamics as compromised and sybil accounts would do. Finally, we discuss the

possible countermeasures against the manipulation of trends.

4.5.1 Compromised Accounts

Account compromise enables spammers to hijack followers and tweet history imme-

diately. Therefore, compromised accounts are very likely to be employed for manip-

ulating the trends.
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Figure 4.15: Avg Follower and Tweet History Number of Spammer and Descendants

We then examine the follower number and tweet history for the identified spam-

mers (level 0), as well as the first and second generations of their descendants (levels

1 and 2). Fig.4.15 depicts the average follower number and tweet history for the

spammers and their descendants. We observe that as the level increases, the average

follower number increases exponentially while the average tweet history decreases.

The mostly likely explanation is that there exist compromised accounts in the follow-

ers of the identified spammers. Spammers use the compromised accounts to increase

the follower number for a topic and thereby increase the topic’s credibility. Thus,

the possibility of the topic trending can be significantly increased. Meanwhile, the

compromised accounts do not need to be very active, but spammers could manipulate

the tweet history of a topic by performing frequent activities.

Therefore, compromised accounts pose a serious threat to the security of Twitter

trends in that they can be used to manipulate the follower dynamics and tweet history

dynamics.
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Figure 4.16: Entropy and Retweet Rate of the Accounts

4.5.2 Sybil Accounts

According to a recent report [23], an enormous number of sybil accounts on Twitter

are run by bot-masters. They are sold and bought through an underground market

[94]. To verify the existence of sybil accounts in the manipulation of Twitter trending,

we study the behavior profile of those accounts that appear in the spike, in which the

evidence of trending manipulation is found. There are of total 4,055 accounts (5,193

tweets) in the spike. Using the web crawling method, we extract a collection of tweets

posted by each account and the related information (e.g., follower number) for each

account. There are on average 180 tweets for one account, and the tweet histories last

334 days on average. We first explore the entropy of time intervals between posting

tweets for each account. The entropy of time intervals between posting tweets of an

account can indicate the regularity of the account’s posting behavior. In general, the

smaller entropy value an account has, the more likely it is a bot. Fig.4.16 shows the

entropy (ascending order) of the accounts.
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At the same time, sybil accounts are not likely to have their own opinion. There-

fore, they generally do not post original tweets but tend to retweet. We also calculate

the retweet rate of the accounts mentioned above and illustrate the result in Fig.4.16.

It is observed that entropy is inversely proportional to the overall retweet rate. There

exist some accounts that have considerably low entropy but a high retweet rate. In

other words, they regularly retweet the posts from others and rarely post original

tweets. Although we are not going to single out individual sybil accounts, the post-

ing behaviors of the accounts above is the same as (or very close to) those of sybil

accounts.

To further confirm our conjecture, we compare the ratio of friend to follower

number between the top 10% accounts (with lower entropy and higher retweet rate)

and all accounts in Fig.4.16. If account A follows account B, A is B ’s follower, and

B is A’s friend. The intuition is that sybil accounts have no personal opinion and

hence they generally cannot attract many followers. Fig. 4.17 illustrates the CDF

of the ratio of friend number to the follower number for the top 10% accounts and

that for all accounts. We can see that the top 10% accounts have a larger ratio of

friend number to the follower number than all accounts on average. It supports our

conjecture on the active involvement of sybil accounts in the manipulation of Twitter

trending.

4.5.3 The Manipulation of Dynamics

It is straightforward for the trending algorithm of Twitter to emphasize the dynamics

of a topic. We examine whether compromised and sybil accounts manipulate the

trends by manipulating the dynamics. As discussed above, compromised and sybil

accounts can significantly impact tweet dynamics, account dynamics, follower dynam-

104



�

��������	���
�
�	�
�������
�����������

Figure 4.17: Ratio of Friend Number to Follower Number

ics, and tweet history dynamics. To quantify the manipulation through the dynamics,

we conduct a simulation on the manipulation of dynamics. To do this, we locate the

peaks of the dynamics and sum the adjacent peaks into one peak. The intuition is

that each peak in the dynamics is likely to represent an effort of spammers to produce

a trend. Therefore, if multiple peaks of the dynamics could be summed into one, it

is more likely to produce a trend. We simulate the manipulation of the dynamics

by summing two and three adjacent peaks. Then the SVM classifier is employed to

predict how many times of trends the manipulated dynamics will produce than the

original dynamics. Fig.4.18 shows the results averaged over all the manipulated dy-

namics. Both manipulated dynamics well outperform the original dynamics in terms

of the possibility of producing trends. Consequently, it further indicates the threat

from compromised and sybil accounts for manipulating the trends.
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Figure 4.18: Ratio of Predicted Trends

4.5.4 Countermeasures Against Trending Manipulation

We briefly describe three different ways to defend against trending manipulation in

Twitter, and we will explore more effective defense in our future work.

Strengthening the Twitter Trending Algorithm The detailed Twitter trend-

ing algorithm remains unknown. Meanwhile, due to the limitations of the dataset,

we study only the simple factors of Twitter trending (i.e., tweet number). However,

using the evidence of manipulation we demonstrated before, we believe the algorithm

of Twitter trending can be strengthened by considering more complicated factors.

For example, network characteristics can be taken into consideration, such as cliques.

Cliques represent the dense clusters in graphs [25]. In general, complete cliques tend

to represent interesting topics. Although spammers could produce cliques, it will no

doubt increase their risk of being suspended.

Detecting the Real-time Anomalies of Twitter Trending Due to the out-

break nature of Twitter trends, we need to detect the anomalies of Twitter trending

in real-time. Regarding that trends are usually manipulated by compromised and
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fake accounts which are in hand of a few malicious users, we can detect the anomaly

of tweet source as an indicator of trend manipulation. Moreover, the monitoring of

topological hierarchy of the accounts in a topic help detect trend anomaly. As fig-

ure 4.6 shows, spamming infrastructure exists in the topological hierarchy of spam

accounts and this kind of anomaly indicates trend manipulation.

Detecting Manipulation Using Historical Manipulated Topics We can

classify different topics into two classes: manipulated and normal. There should

be some connections among manipulated topics due to similar manipulation strate-

gies. The connections among normal trending topics and the connections among

manipulated topics, can be exploited for the early detection of Twitter trends using

previously trending topics [78]. One feasible way to trace the connection between two

topics with respect to manipulation is to treat one topic as the training set and the

other as the testing set. In this regard, an SVM classifier can be employed to train

the classification model based on the training set and then perform the classification

task based on the testing set. The classification result reflects the connection between

the two topics. Thus, the connections among manipulated topics enable us to detect

manipulated topics one by one from the very beginning of identifying the first set

of manipulated topics. The challenges here include identifying the first set of ma-

nipulated topics and verifying the manipulated topics. The influence model that we

use to demonstrate the evidence of manipulation can be utilized to identify the first

set of manipulated topics. The development of an accurate and practical verification

method remains as our future work.

4.5.5 Limitation and Future Work

There are some limitations of our work and some remain as future work.
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Fist, we use a linear influence model to capture the network effect on the diffusion

of a topic in Twitter, which enable us to find the evidence of manipulation. The

model applies to linear scenarios and to develop a non-linear model remains one of

the future work.

Second, we randomly choose 11 topics and more than 10,000 related tweets to

infer the relevance of 5 key factors over Twitter trending. Although we try our best

to guarantee the randomness, those 11 sample topics may not be large enough to

represent the overall scenario in practice. Besides, we study 5 comparatively straight-

forward factors that may affect trending.In the future work, we plan to consider more

complicated factors and sample more topics to study the factors over trending.

Finally, we discuss the countermeasures against Twitter trends manipulation but

most of them remain in the discussion stage. We leave the implementation and

evaluation of those countermeasures as our future work. Specifically, we plan to

develop a manipulation detection mechanism by using an SVM classifier. We will

train the classifier using previously manipulated topics and classify future trends as

manipulated or not.

4.6 Related Works

To the best of our knowledge, this is the first effort to investigate whether Twitter

trends could be manipulated.

Research on trending topics in Twitter includes real-world event recognization

[34, 113], realtime trending topic detection [25, 38, 59, 69], the evolution of trending

topic characterization [27, 28], and the taxonomy of trending topics [55, 63, 76].

Becker et al. [34] analyzed the stream of Twitter messages and distinguished the

messages about real-world events from non-event messages based on a clustering
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method. Zubiaga et al. [113] categorized different triggers that leverage the trending

topics by using social features rather than content-based approaches.

In the detection of realtime trending topics, Agarwal et al. [25] identified the

emerging events before they became trending topics by modeling the detection prob-

lem as discovering dense clusters in highly dynamic graphs. Kasiviswanathan et al.

[59] presented a dictionary-learning-based framework for detecting emerging topics in

social media via the user-generated stream. Lu et al. [69] used an energy function to

model the life activity of news events on Twitter and proposed a news event detec-

tion method based on online energy function. Cataldi et al. [38] identified emerging

terms from user content by measuring user authority and proposing a keyword life

cycle model, and then detected the emerging topics by formalizing the keyword-based

topic graph.

To address the evolution and taxonomy of trending topics, Altshuler and Pan

[27] presented the lower bounds of the probability that emerging trends successfully

spread through the scale-free networks. Asur et al. [28] studied trending topics on

Twitter and theoretically analyzed the formation, persistence, and decay of trends.

Naaman et al. [76] characterized the trends in multiple dimensions and presented a

taxonomy of trends. They also proposed a collection of hypotheses on different kinds

of trends and evaluated them. Lehmann et al. [63] classified the popular hashtags

by the temporal dynamics of hashtags. Irani et al. [55] focused on the trend-stuffing

issue and developed a classifier to automatically identify the trend-stuffing in tweets.

Whether a topic begins trending is closely related to (1) the influence of users

who are involved with the topic and (2) the topic adoption for users who are exposed

to the topic. Cha et al. [39] performed a comparison of three different measures of

influence: indegree, retweet, and mention. Weng et al. [99] proposed a topic-sensitive

PageRank measure for user influence. Romero et al. [84] proposed an algorithm
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to measure the relative influence and passivity of each user from the viewpoint of a

whole network. Bakshy et al. [32] measured the influence from the diffusion tree. The

studies of topic adoption in Twitter mainly concentrate on hashtag adoption. Lin et

al. [67] classified the adoption of hashtags into two classes and proposed a framework

to capture the dynamics of hashtags based on their topicality, interactivity, diversity,

and prominence. Yang et al. [107] studied the effect of the dual role of a hashtag on

hashtag adoption.

4.7 Summary

With the datasets we collected via Twitter API, we first evidence the manipulation of

Twitter trending and observe a suspect spamming infrastructure. Then, we employ

the SVM classifier to explore how accurately five different factors at the topic level

(popularity, coverage, transmission, potential coverage, and reputation) could predict

the trending. We observe that, except for transmission, the other factors are all closely

related to Twitter trending. We further investigate the interacting patterns between

authenticated accounts and malicious accounts. Finally, we present the threat posed

by compromised and sybil accounts to Twitter trending and discuss the corresponding

countermeasures against trending manipulation.
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Chapter5

Conclusion

In this dissertation, we first examine the effectiveness of OSN privacy settings for pro-

tecting user privacy. Given each privacy configuration, we propose a corresponding

scheme to reveal the target user’s basic profile and connection information starting

from some leaked connections on its homepage. Based on the dataset we collect on

Facebook, we derive the privacy exposure in each privacy setting type and measure

the accuracy of our privacy inference schemes given different amount of public infor-

mation. The evaluation results show that a user’s basic private profile can be inferred

with high accuracy and connections can be revealed in a significant portion based on

even a small number of directly leaked connections.

We then propose a behavioral-profile-based method to detect OSN user account

compromisation in a timely manner. Specifically, we propose eight behavioral fea-

tures to portray a user’s social behavior. A user’s statistical distributions of those

feature values comprise its behavioral profile. Based on the sample data we collected

from Facebook, we find that each user’s activities highly conform to its behavioral

profile while different users’ profile tend to diverge from each other, which can be

employed for compromisation detection. The evaluation results show that the more

complete and accurate a user’s behavioral profile can be built, the more accurate
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compromisation detection can be achieved.

Finally, we investigate the manipulation of OSN trending topics. Based on the

dataset we collected from Twitter, we manifest the manipulation of trending and

a suspect spamming infrastructure. We then measure how accurately the five fac-

tors(popularity, coverage, transmission, potential coverage, and reputation) can pre-

dict trending using an SVM classifier. We further study the interaction patterns

between authenticated accounts and malicious accounts in trending. At the end, we

demonstrate the threat of compromised accounts and sybil accounts to trending using

simulation and discuss countermeasures against trending manipulation.
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