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ABSTRACT 
 

Artificial Photosynthesis (AP) provides a promising method for the conversion of 
solar energy to chemical fuel in the form of H2 and O2. Development of 
heterogeneous systems in which H2 evolution catalysts are immobilized on metal 
oxide semiconductors is imperative for the large-scale implementation of AP 
systems. This research focuses on the immobilization of an active H2 evolution 
catalyst on large band gap semiconductors for the development and optimization 
of a highly active photocatalytic H2 generation system. 
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Chapter 1. Introduction 

Global Energy Demand 

 Increasing global population and per-capita energy consumption have 

caused the global consumption of energy to increase significantly since the 

Industrial Revolution.1 This trend is highly unlikely to plateau or even slow in the 

coming decades. As a result of the projected population and economic growth 

over the next 25 years, total world energy consumption is projected to rise by 

28% between 2015 and 2040, from 575 quadrillion Btu to 736 quadrillion Btu 

(Figure 1.1).2 Much of this projected growth in consumption can be attributed to 

developing nations that are not part of the Organization for Economic 

Cooperation and Development (OECD), including China and India. This is 

because of the strong relationship between economic growth and energy 

consumption. In developing and emerging nations, such as those outside of the 

OECD, economic growth tends to be much more rapid than in developed 

nations.2 In order to meet the demands of rising global energy consumption, the 

consumption of all fuel types outside of coal are projected to increase over the 

next 25 years. Although these projections forecast the fastest rate of growth for 

renewable sources, followed by nuclear power, fossil fuels are still expected to 

account for 77% of global energy consumption in 2040.2 The continued global 

dependence on fossil fuels to meet growing global energy demands is 

problematic for many reasons. 
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Figure 1.1. Historical and projected world energy consumption (in quadrillion 
Btu) by source.2 

 

 One of the primary issues with the continued reliance on fossil fuels as the 

predominant global energy source is the non-renewable nature of these fuels. In 

determining how far into the future global fossil fuel supplies can be sustained, it 

is important to make a distinction between resources and reserves. Resources, 

which make up the majority of global fossil fuels, are impossible or expensive to 

extract given current technology, or may not be fully characterized. Reserves are 

those supplies that are anticipated to be produced for a reasonable cost using 

current technology.3 This distinction is significant because the future availability 

of fossil fuel reserves is highly uncertain, despite the relatively large volume of 

known reserves. As of 2013, the International Energy Agency projected that 

conventional oil reserves were sufficient to meet demand for the next 40 to 45 

years at the current rate of consumption.3 The more recently completed BP 

Energy Outlook was in fairly strong agreement with these projections, stating that 

as of 2016 global proved oil reserves were sufficient for approximately 50 years 
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of production at current global levels.4 Current natural gas reserves are also 

projected to meet demand for approximately 50 years at the current global rate of 

production.4,5 Although these projections are fairly consistent across multiple 

organizations, the period in which oil reserves meet demand will likely be 

extended by improving technology converting more resources to reserves over 

the next few decades. Even with improving technology allowing for the 

conversion of resources to reserves, it is imperative that renewable energy 

sources continue to account for a greater share of the global energy consumed.  

 

Environmental Costs of Fossil Fuels and the Need for Renewable Energy  

 The widespread use of fossil fuels is also problematic due to the 

deleterious impacts that burning these fuels have on the environment. The 

combustion of fossil fuels releases carbon dioxide and other pollutants, such as 

sulfur dioxide and nitrogen oxides, into the atmosphere. Carbon dioxide 

emissions are particularly concerning from the outlook of climate change as a 

strong link has been established between CO2 emissions and global warming.6 

Carbon dioxide is a greenhouse gas and, along with water vapor, is one of the 

two most abundant greenhouse gases in Earth’s atmosphere.7 These gases, 

along with other gases and clouds, absorb thermal radiation emitted by the Earth 

and reradiate back to the Earth’s surface, raising the Earth’s temperature. From 

the early industrial era through 2005, the amount of carbon dioxide in the 

atmosphere had increased by approximately 35%.7 Since then, atmospheric CO2 

has continued to increase significantly, from 379 ppm in 2005 to 402.9 ± 0.1 ppm 
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in 2016.7,8 In addition, the largest annual increase in global atmospheric CO2 

recorded in the 58 years of measurement occurred between 2015 and 2016.8 

The elevated levels of atmospheric CO2 in the past few decades are particularly 

alarming as atmospheric CO2 did not deviate from the range of  280 ± 20 ppm 

over the 10,000 years preceding the industrial revolution.7 In addition to the rise 

in atmospheric CO2, direct atmospheric measurements that have been taken 

since 1970 have also shown an increase in the abundance of methane and N2O, 

two other known greenhouse gases.7 

 Corresponding to the rise in global atmospheric CO2 and other 

greenhouse gases has been a rise in global surface temperature, illustrated by 

Figure 1.2. Furthering this trend, 2016 was the third consecutive year in which 

the record for warmest global surface temperature was set, with global land and 

sea temperature reaching more than 1 °C higher than average preindustrial 

temperatures.8 In addition, 15 of the 16 warmest years on record occurred from 

2000-2016, as measured by global surface temperature.8  
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Figure 1.2. Annual global surface temperature as compared to the annual 
average from 1981-2010.9 
 
 

 To combat the impending shortage of fossil fuels and the detrimental 

impacts the burning of these fuels are having on the environment, renewable 

energy sources must be relied on to a greater degree. As of 2016 renewable 

sources accounted for 7.5% of global power generation.4 Although this share of 

global power generation has grown rapidly in recent years, significant progress 

must still be made. The most promising source of renewable energy is solar 

energy. The sun provides 100,000 TW of solar energy to the Earth per year; this 

means that enough solar energy reaches the planet in one hour to meet human 

energy consumption for an entire year.6 In order to increase the viability of solar 

energy as a widespread fuel source, limitations in the collection, storage, and 

utilization of solar energy must be overcome. Much progress has been made in 

utilizing solar cells to capture solar radiation and convert that energy to electricity, 

however these systems are not capable of storing solar energy in a form that can 
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be later utilized. In order for solar energy to be utilized on a much wider scale it is 

necessary for technologies to emerge that allow for the conversion of solar 

energy to fuels that can be implemented into current infrastructure. 

 

Natural and Artificial Photosynthesis 

 One possible method to better utilize solar energy is to store the collected 

energy in chemical bonds. One example of this is the process of photosynthesis, 

in which solar energy and carbon dioxide are converted into chemical energy that 

sustains life on Earth. Photosynthesis can be divided into two related 

photosystems: Photosystem I (PSI) and Photosystem II (PSII) (Figure 1.3). 

During photosynthesis, the excited state of PSI is generated by sunlight, initiating 

an electron transfer process. The transferred electrons eventually reduce NADP+ 

to NADPH, thus oxidizing PSI.10 NADPH then serves as both the proton and 

electron source for the transformation of carbon dioxide into carbohydrates 

during the Calvin Cycle. PSI is regenerated when electrons are transferred from 

the excited state of PSII to the oxidized PSI. The oxidation of water to oxygen is 

then catalyzed by the oxidized form of PSII.10  
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Figure 1.3. Simplified z-scheme of the light-induced reactions of photosynthesis.6 

 

Inspired by natural photosynthesis, the goal of Artificial Photosynthesis 

(AP) systems is to convert solar energy to chemical energy through the splitting 

of water into molecular hydrogen and oxygen. AP systems accomplish water 

splitting through two redox half reactions, the reduction of aqueous protons to H2 

and the oxidation of water to O2 (Figure 1.4). The products of these redox 

reactions, H2 and O2, are both chemical fuels that can be stored and provide 

energy in a renewable and environmentally-friendly manner. Rather than 

producing CO2, as is the case with burning fossil fuels, the combustion of 

hydrogen produces only water. Because of this, AP systems may also have 

applications in the developing world where potable water is scarce. Hydrogen 

may also be fixed as a liquid fuel through hydrogenation of small molecules such 

as carbon dioxide, making it easier to store and transport.11 In addition, H2 may 

be used directly to power fuel cells.11 As a result, utilizing hydrogen as a fuel 

source decreases the reliance on fossil fuels while also combatting the issues of 

increasing atmospheric CO2 and global temperature. 
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Figure 1.4. Redox half reactions of water splitting. 
 

 

In a complete AP system the two redox half reactions would be combined, 

however these reactions are often studied individually to aid in the optimization of 

each process. The reductive half reaction of AP has typically been seen as the 

easier component to accomplish, as only two electrons are required compared to 

the four electron oxidative half reaction. However, in order for the reduction of 

protons to continue catalytically when separated from the oxidative half reaction, 

a source of electrons must be included in the system to balance the redox 

reaction.12 This is typically accomplished by adding a sacrificial electron donor to 

the system. 

 

Development of Homogeneous AP Systems 

In order to initiate the redox half reactions of water splitting a catalyst must 

be incorporated into the AP system. In regards to the reductive half of an AP 

system, these catalysts promote the reduction of protons to H2. Many 

homogeneous AP systems have been reported that incorporate a molecular 

proton reduction catalyst, a photosensitizer to increase visible light absorption, 

and a sacrificial electron donor. Unfortunately, many of these systems 
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incorporate catalysts or photosensitizers that contain noble metals such as 

platinum or ruthenium that are rare and therefore expensive. The high cost of 

these materials severely limits the likelihood of scaling the AP system for 

industrial-scale water splitting. Ideally, AP systems will incorporate catalysts that 

contain Earth-abundant transition metals (Fe, Co, Ni) and relatively inexpensive 

organic photosensitizers that allow for cost-effective implementation on a large 

scale. 

Due to its relatively low cost and role in the active sites of some 

hydrogenases, nickel is of great interest for the development of AP systems. As a 

result, many Ni-based molecular catalysts have been reported for photocatalytic 

hydrogen generation. In 2012, Eisenberg and coworkers reported the synthesis 

of a pyridine thiolate nickel complex that mimics the [Fe-Ni]-hydrogenase active 

site.13 The reported system incorporated noble-metal-free organic dyes 

fluorescein and Eosin Y as photosensitizers and triethylamine as the sacrificial 

electron donor. When combined with fluorescein and the sacrificial donor in 1:1 

ethanol:water mixtures, the catalyst was found to be highly active for hydrogen 

generation, reaching 5500 TON after 40 hours of irradiation.13 At the time of 

publishing, this system was more active than any previously reported noble-

metal-free homogeneous system.13  Holland et al. have also reported a system 

for photocatalytic hydrogen generation incorporating a nickel(II) phosphine 

complex as the proton reduction catalyst.14 This system initially utilized Eosin Y 

as the photosensitizer and ascorbic acid as the sacrificial donor species in 1:1 

mixtures of acetonitrile:water. However, it was found that the Eosin Y 
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decomposed rather quickly within the system. As a result, [Ru(bpy)3]Cl2 and 

ascorbic acid had to be added to the catalyst mixture during photolysis in order 

for the system to reach its maximum activity of 2700 TON over 150 hours.14 

Although it was reported that the catalyst did not degrade over the course of 

photolysis, the need to incorporate the ruthenium photosensitizer to optimize the 

activity of the system limits the likelihood of utilizing this system on a large scale.  

There have also been numerous cobalt catalysts reported for 

photocatalytic hydrogen generation in homogeneous AP systems. In 2009 

Eisenberg et al. reported a series of cobaloxime complexes that were found to be 

active for photocatalytic H2 evolution in aqueous mixtures of acetonitrile utilizing 

triethanolamine as the sacrificial donor species.15 The most active catalyst of the 

cobaloxime complexes was found to reach approximately 2150 TON after only 

10 hours of irradiation.15 However, this system utilized a platinum terpyridyl 

acetylide chromophore and the reaction mixture was a ratio of 24:1 

acetonitrile:water.15 Both of these aspects would significantly increase the cost of 

a larger scale AP system, limiting the utility of the catalyst. Eisenberg and 

coworkers have since been successful in improving this system through the 

incorporation of ligands functionalized with electron withdrawing groups. The 

most active cobalt-dithiolene complex generated up to 9000 TON when paired 

with the photosensitizer Ru(bpy)3
2+ and sacrificial donor ascorbic acid.16 In 

addition to demonstrating increased catalytic activity, the improved system 

incorporated a less expensive photosensitizer and the reaction mixture was 1:1 

acetonitrile:water, addressing two of the largest deficiencies of the cobaloxime 
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system.16  Bernhard and coworkers have also reported a cobalt complex, 

[Co(bpy)3]Cl2, that is active for photocatalytic H2 generation from aqueous 

mixtures.17 This system incorporated triethanolamine as the sacrificial donor 

species and a series of heteroleptic iridium complexes as the photosensitizer.17 

As is the case with ruthenium chromophores, utilizing iridium complexes as 

photosensitizers leads to a significant increase in cost for the AP system. 

Although this system generated over 9000 TON with respect to the iridium 

photosensitizers, the cobalt catalyst decomposed quickly resulting in less than 

100 TON with respect to catalyst.17 

Although there have been many reported Ni and Co catalysts for hydrogen 

generation in homogeneous AP systems, there has been little research reported 

on iron catalysts. Because Fe is the most Earth-abundant transition metal, the 

potential cost of Fe-based catalysts is relatively low, provided ligands can be 

synthesized from inexpensive precursors. Our research group has recently 

reported a family of iron polypyridyl catalysts that show high activity for 

photocatalytic hydrogen evolution from aqueous mixtures (Figure 1.5).18  

 

Figure 1.5. Iron polypyridyl complexes for photocatalytic hydrogen generation 
from aqueous mixtures.18 
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In this system, the iron polypyridyl catalyst was combined with fluorescein 

and triethylamine in 1:1 ethanol:water mixtures. In utilizing fluorescein as the 

photosensitizer, rather than a ruthenium or iridium chromophore, the cost of the 

system is lowered as it is a true noble-metal-free system. The most active 

photocatalyst was found to be the parent catalyst, [FeCl2(L)]  (1), reaching 2100 

TON after 24 hours of irradiation.18 It was also reported that these catalysts were 

capable of generating hydrogen from aqueous mixtures containing local lake 

water.18 This result, along with the use of inexpensive catalyst and 

photosensitizer components, provides promise for the large-scale application of 

the AP system. 

 

Metal Oxide Semiconductors in Heterogeneous AP Systems 

 Although highly active homogeneous systems for photocatalytic hydrogen 

generation have been reported, these systems are limited by the effects of 

diffusion. In order to overcome this limitation, heterogeneous systems must be 

developed. One method that has been examined for heterogeneous AP systems 

is the incorporation of metal oxide semiconductors. These materials are of great 

interest because of their low cost, wide availability, and charge separation 

properties.6 In addition, inorganic semiconductors are typically photochemically 

stable, providing increased durability to the system.6 Metal oxide semiconductors 

contain a conduction band and a valence band separated by a void energy 

region with no energy levels.19 When a photon of energy greater than or equal to 

the band gap energy of the semiconductor is absorbed, an electron-hole pair is 
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generated. The electron, which is promoted to the conduction band, can then 

migrate to the semiconductor surface, while the hole, located in the valence 

band, can act as an oxidant by accepting an electron.19,20 Charge transfer of the 

excited electron can also occur to a species adsorbed onto the semiconductor 

surface.19   

 In order for metal oxide semiconductors to be incorporated into AP 

systems they must provide the oxidizing and/or reducing potentials necessary to 

split water.6 This means that the potential of the conduction band must be less 

than the potential of the H+/H2 couple for protons to be reduced by the generated 

electron. Regarding the oxidative side of AP, the potential of the valence band 

must be greater than the potential of the O2/H2O couple in order for water 

oxidation to occur.19,20,21 If both of these criteria are not met, such as with narrow 

band gap semiconductors, then the semiconductor must be combined with 

another semiconductor in a full AP system (Figure 1.6).19 As a result, large band 

gap metal oxide semiconductors (band gap >3 eV) such as titanium dioxide 

(TiO2) and strontium titanate (SrTiO3) have been most often considered for AP 

systems. The most significant issue with the incorporation of large band gap 

metal oxide semiconductors is that they typically only absorb UV light, due to the 

high band gap energy (the amount of energy needed to promote an electron from 

the valence to conduction band).6 This is a significant issue in the development 

of AP systems as light in the UV region constitutes less than 10% of the overall 

sunlight that reaches Earth.19  
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Figure 1.6. Electronic band structure of inorganic semiconductor materials as 
related to the redox potentials of water splitting.22 

 

 

 

 One method that has been investigated to address the absorption of 

visible light by large band gap metal oxide semiconductors is to incorporate 

surface photosensitization.19 Through photosensitization, the wavelength range 

of light absorbed by the AP system can be significantly enhanced. Often this is 

accomplished by the incorporation of a chromophore on the surface of the metal 

oxide semiconductor. Chromophores are molecules that efficiently absorb visible 

light to generate an excited state. The excited state of the chromophore can then 

donate an electron to the conduction band of the semiconductor through charge 

transfer, provided the reduction potential of the excited state of the chromophore 

is greater than that of the conduction band of the semiconductor.18 If charge 

recombination within the semiconductor is sufficiently slow, the electron can then 

be transferred from the conduction band to a species adsorbed on the 
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semiconductor surface. In many photocatalytic hydrogen generation systems 

ruthenium or iridium chromophores have been utilized for photosensitization. 

Unfortunately, the incorporation of noble metals leads to the high cost of these 

chromophores limiting the large-scale viability of these systems. Ideally an AP 

system will incorporate organic chromophores that are inexpensive and 

environmentally benign while also increasing the absorption of visible light within 

the system.  

 Although AP systems containing metal oxide semiconductors have been 

widely studied, the efficiency of the system is heavily impacted by the rate of 

charge recombination within the semiconductor and on the surface.6 Fast charge 

recombination within the semiconductor results in decreased efficiency of solar 

energy conversion within the system. One method for increasing the energy 

conversion efficiency of the system is to add a catalyst to the metal oxide 

semiconductor. The catalyst can take the form of metals, dopants within the 

semiconductor, the addition of different semiconductors, or electrocatalysts 

linked to the semiconductor surface.6,19 By incorporating a catalyst, the rate of 

reactions taking place at the semiconductor surface is accelerated, promoting 

charge transfer before charge recombination within the semiconductor can occur. 

For the reductive side of AP, this is accomplished by the catalyst accepting free 

electrons from the conduction band of the semiconductor and driving the 

reduction of protons on the semiconductor surface.6       
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Development of Heterogeneous AP Systems 

 Recently, multiple systems for heterogeneous photocatalytic hydrogen 

generation incorporating molecular catalysts immobilized on semiconductor 

surfaces have been reported. In 2011, Reisner and coworkers successfully 

developed a system for photocatalytic H2 evolution from aqueous solution that 

incorporated a molecular cobalt complex immobilized on TiO2.23 In order to 

immobilize the catalyst on the semiconductor surface, the group functionalized a 

cobaloxime compound with a phosphonate anchoring group. The group then 

added ruthenium(II) (2,2’-bipyridine)2(2,2’-bipyridine-4,4’-diylbis(phosphonic acid) 

bromide, [RuP]Br2, to the catalyst-modified TiO2 to act as a photosensitizer, again 

utilizing a phosphonic acid anchoring group to immobilize the molecule on the 

semiconductor.23 The modified TiO2 nanoparticles were stirred in aqueous 

solution in the presence of a sacrificial donor (triethanolamine) and irradiated with 

visible light resulting in photocatalytic H2 generation. However, the stability of this 

system was not high, as the rate of H2 evolution began to decrease after only two 

hours of irradiation.23 Hydrogen generation from the system ceased completely 

after eight hours of irradiation resulting in a TON of only 53.23 

 Fan and coworkers have also successfully synthesized molecular cobalt 

catalysts for photocatalytic hydrogen evolution.24 The most active catalyst was 

investigated in both homogeneous and heterogeneous systems that included 

Eosin Y as a photosensitizer and triethylamine as a sacrificial electron donor. 

Fan et al. found that hydrogen generation was significantly greater in the 

heterogeneous system, which utilized a carboxylic acid anchoring group to 
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immobilize the catalyst on TiO2 nanoparticles.24 At optimal conditions the 

heterogeneous system was found to reach 90 TON after six hours of irradiation.24 

This system is particularly noteworthy because the incorporation of Eosin Y as 

the photosensitizer, rather than a noble metal-based chromophore, significantly 

lowers the cost of the system.24 

  As is the case with homogeneous AP systems, few heterogeneous 

systems incorporating molecular iron complexes have been reported for 

photocatalytic hydrogen generation. The work presented in this thesis aims to 

demonstrate the immobilization of an iron polypyridyl catalyst on the surface of 

large band gap metal oxide semiconductors through a phosphonic acid 

anchoring group. The goals of this research were to demonstrate that the bond 

between the catalyst and semiconductor nanoparticles is durable and robust. 

This would allow for the catalyst-sensitized nanoparticles, along with a 

photosensitizer and sacrificial electron donor, to be incorporated into a 

heterogeneous AP system for H2 generation from aqueous solutions. After 

establishing the immobilization of the catalyst on the semiconductor surface, this 

research sought to optimize the AP system for photocatalytic hydrogen 

generation. 
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Chapter 2. Immobilization of [FeCl2(L-PO3H2)] on Semiconductors 

Introduction 

Immobilization of the iron polypyridyl catalyst on the surface of metal oxide 

semiconductors was desirable for multiple reasons. A primary benefit of 

immobilization of the catalyst is that moving from a homogeneous system, where 

catalyst is dissolved in solution, to a heterogeneous system allows us to 

overcome the issue of diffusion within the reaction mixture. Immobilization of the 

proton reduction catalyst on semiconductor nanoparticles also allows us the 

opportunity to recycle and reuse the catalyst-sensitized nanoparticles. The 

durability and stability of the catalyst-sensitized nanoparticles, which can be 

attributed to the photostability of inorganic semiconductor materials such as 

SrTiO3 and TiO2, makes recycling the catalyst significantly more plausible than in 

the homogeneous system. Through the binding of the Fe catalyst to the surface 

of the semiconductor materials we are able to take advantage of increased 

stability while maintaining the proton reduction activity of the previously reported 

Fe catalysts. 

In order for our AP system to be successful and durable, the bond linking 

the Fe catalyst to the metal oxide semiconductor must be stable under various 

conditions. Although many organic functional groups have been investigated as 

anchoring groups on metal oxide semiconductors such as SrTiO3 and TiO2, the 

most commonly utilized anchoring groups are silanes, carboxylates, and 

phosphonic acids.1 Silanes are not seen as good candidates for anchoring 

groups in AP systems as it has been shown that organosilyated metal oxides are 
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susceptible to hydrolysis.1 Previous research in our lab has investigated 

carboxylates as a possible anchoring group to immobilize the Fe catalyst on 

TiO2, but it was found that the bond to TiO2 was not water stable. This is 

supported by additional research that has found that the bonding of carboxylates 

to metal oxide surfaces is relatively weak.1 Because of these issues, phosphonic 

acids provide the most promise as anchoring groups in AP systems. One benefit 

of using phosphonic acids as anchoring groups on metal oxide semiconductors 

such as TiO2 is the strength of P-O-Ti bonds. Additionally, it has been shown that 

the surface of TiO2 can be modified by phosphonic acids in both water and 

organic solvents.1 This is extremely important in our case as large-scale AP 

systems will need to be deployed in water for cost-effective H2 generation. 

 In theory, phosphonic acid functional groups can bind to metal oxide 

semiconductor surfaces in mono-, bi-, and tridentate fashions (Figure 2.1). 

Recent research has focused on the binding modes of phosphonic acid 

derivatives on TiO2 anatase surfaces.1 This research showed multiple binding 

modes of the phosphonic acid derivatives on both TiO2 anatase (101) and (001). 

The binding of phosphonic acid derivatives to the surface of TiO2 anatase (101) 

was found to occur in both monodentate and bidentate fashions, with the singly 

deprotonated bidentate mode being slightly more stable.1 In contrast, the 

phosphonic acid derivatives were found to bind to TiO2 anatase (001) in a 

bidentate and tridentate fashion with the doubly deprotonated bidentate binding 

mode showing slightly greater stability.1  
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Figure 2.1. Binding modes of phosphonic acids on metal oxide semiconductor 
surfaces. 
 

 

 Recently, our group has successfully synthesized a phosphonic acid-

functionalized polypyridyl ligand, L-PO3H2 (Figure 2.2). This ligand mirrors the 

ligands incorporated into the previously reported hydrogen generation 

catalysts.3,4,5 

 

 

Figure 2.2. Phosphonic acid functionalized polypyridyl ligand, (L-PO3H2). 
 

 

One drawback to the strong binding that occurs between phosphonic 

acids and metal centers is that we are unable to isolate the fully assembled 
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phosphonic acid derivative of the Fe polypyridyl catalyst, [FeCl2(L-PO3H2)]. When 

L-PO3H2 is exposed to iron, the phosphonic acid group chelates to the open site 

of the iron center, forming an insoluble polymeric material rather than the active 

polypyridyl catalyst. To circumvent this issue, the phosphonic acid group of the 

ligand must be protected prior to complexation with iron. This was accomplished 

by binding the ligand to the surface of the semiconductor nanoparticles prior to 

introducing Fe (Figure 2.3). The phosphonic acid group of the ligand 

preferentially binds to the metal oxide semiconductor, promoting binding of the 

polypyridyl ligand to Fe in the manner observed in the previously reported Fe 

catalysts. 

 

 
Figure 2.3. Phosphonic acid functionalized iron polypyridyl catalyst, [FeCl2(L-
PO3H2)], immobilized on TiO2 nanoparticle 
 

 

 The research reported in this chapter describes the immobilization of the 

iron polypyridyl catalyst on different metal oxide semiconductor surfaces through 

a phosphonic acid functional group. [FeCl2(L-PO3H2)] was assembled on the 

surface of semiconductor nanoparticles through both a thin film and centrifuge 
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procedure. The binding of both (L-PO3H2) and [FeCl2(L-PO3H2)] was investigated 

using diffuse reflectance UV-Vis spectroscopy and powder ATR-FTIR 

spectroscopy. Diffuse Reflectance UV-Vis was also used to examine the 

durability of the bond between [FeCl2(L-PO3H2)] and the semiconductor 

nanoparticles when exposed to the conditions of our photochemical system. The 

aggregation of the organic chromophore fluorescein on the surface of 

semiconductor nanoparticles was investigated through diffuse reflectance UV-Vis 

and powder ATR-FTIR as well. 
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Experimental Procedure 

 

Materials and Methods 

SrTiO3 nanopowder (diameter = 25 nm) was obtained from Alfa Aesar. P25 TiO2 

powder was obtained from Acros Organics. Zirconia (diameter = 20 nm) was 

purchased from Sigma Aldrich. Triethylamine (99%) and triethanolamine (97%) 

were used as received and obtained from Acros Organics. Fluorescein and Eosin 

Y were also used as received and obtained from Acros Organics. All other 

reagents were purchased from Fisher Scientific and used without further 

purification. 

 

Instrumentation 

1H and 13C NMR spectra were obtained using an Agilent 400MR DD2 

spectrometer operating in the pulse Fourier transform mode. Chemical shifts are 

reported in ppm with the residual solvent as an internal reference. Mass 

spectrometry was carried out using positive electrospray ionization on a Bruker 

12 Tesla APEX-Qe FTICR-MS with an Apollo II ion source. All UV-Vis analysis 

was performed using an Agilent Cary 60 Spectrophotometer. IR analysis was 

performed using a Shimadzu IRTracer-100 FTIR with a MIRacle 10 Single 

Reflection ATR Accessory. 
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Preparation of Semiconductor Thin Films    

Metal oxide semiconductor thin films were prepared through the addition of 

semiconductor nanoparticles and deionized water to a sample vial in a ratio of 

4.0 g : 7.0 mL. This mixture was capped and sealed with Parafilm, then stirred for 

at least four hours to form a slurry. The slurry was then transferred to one side of 

glass microscope slides using a Pasteur pipette. A thin film of the semiconductor 

slurry was spread over the microscope slides using the doctor-blading technique 

with a clean razor blade to give a thin, even layer.6 The resulting films were then 

cured in a muffle furnace at 150 °C for two hours. 

 

Immobilization of [FeCl2(L-PO3H2)] on Semiconductor Thin Films 

Immobilization of [FeCl2(L-PO3H2)] on metal oxide semiconductor thin films was a 

two-step process. First, a metal oxide semiconductor thin film was soaked in 8 x 

10-7 moles of L-PO3H2, with excess methanol to completely submerge the thin 

film, in a petri dish wrapped in aluminum foil for 30 minutes. A watch glass was 

used to cover the petri dish and aluminum foil covers were used to prevent light 

contamination. After soaking, the L-PO3H2-sensitized semiconductor thin film was 

removed from the petri dish and rinsed with methanol, water, and 

dichloromethane. The petri dish was emptied and rinsed with water and 

methanol. The thin film was then returned to the petri dish and soaked in 8 x 10-7 

moles of iron(III) chloride, with excess methanol to completely submerge the thin 

film, for 30 minutes. A watch glass was again used to cover the petri dish and 

aluminum foil covers were added to prevent light contamination. After soaking in 
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FeCl3, the metal oxide semiconductor thin film had a fairly strong purple color, 

indicating that the catalyst had been complexed on the surface of the thin film. 

The thin film was removed from the petri dish and rinsed with methanol, water, 

and dichloromethane. The [FeCl2(L-PO3H2)]-sensitized thin film was then allowed 

to dry in the dark prior to use.  

 

Immobilization of [FeCl2(L-PO3H2)] on Semiconductors via Centrifuge 

Immobilization of the [FeCl2(L-PO3H2)] on metal oxide semiconductor 

nanoparticles via the centrifuge method was also a two-step process. A 

measured amount of metal oxide semiconductor nanoparticles with excess L-

PO3H2 in solution (1.0 x 10-7 moles ligand in methanol per 5 mg semiconductor 

nanoparticles) was added to a sample vial. Excess methanol was added to the 

sample vial to bring the total volume to 5.0 mL. The sample vial was capped and 

sealed with Parafilm and the mixture was stirred for one hour. After stirring, the 

mixture was divided into microcentrifuge tubes and centrifuged at 13,400 rpm for 

15 minutes. The supernatant was removed, followed by the addition of fresh 

methanol to the microcentrifuge tubes to rinse the L-PO3H2 -sensitized 

nanoparticles. The mixtures were stirred and sonicated prior to being centrifuged 

again at 13,400 rpm for three minutes. The previously described wash process 

involving the three-minute centrifugation of the mixtures was completed a total of 

four times. Following the final centrifugation of the mixtures, the supernatant was 

removed and the L-PO3H2 -sensitized nanoparticles were transferred to a clean 

sample vial. Excess iron(III) chloride solution (1.0 x 10-7 moles FeCl3 in methanol 
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per 5 mg semiconductor nanoparticles) was added to a sample vial along with 

excess methanol to bring the total volume to 5.0 mL. The sample vial was 

capped and sealed with Parafilm and the mixture was stirred for one hour. While 

stirring, it was observed that the mixture underwent a color change from white to 

pale purple indicating complexation of the catalyst on the semiconductor 

nanoparticles’ surface. After stirring, the mixture was divided into clean 

microcentrifuge tubes and subjected to the identical centrifugation and washing 

procedure as previously outlined with the L-PO3H2-sensitized nanoparticles. 

Following the final centrifugation of the mixtures, the supernatant was removed 

and the [FeCl2(L-PO3H2)]-sensitized nanoparticles were allowed to dry overnight 

in the dark. 
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Results and Discussion 

Immobilization of L-PO3H2 and [FeCl2(L-PO3H2)] on Semiconductors 

In order to confirm that L-PO3H2 and [FeCl2(L-PO3H2)] were successfully 

immobilized on the metal oxide semiconductor nanoparticles, diffuse reflectance 

UV-Vis spectrophotometry was used. SrTiO3 and TiO2 thin films were prepared 

on glass microscope slides and then sensitized with L-PO3H2. Fe(III) chloride 

was then introduced to the L-PO3H2-sensitized thin films to form the fully 

assembled [FeCl2(L-PO3H2)] on the surface of the semiconductor nanoparticles. 

Diffuse reflectance spectra were recorded of the bare semiconductor thin films, 

L-PO3H2-sensitized semiconductor thin films, and [FeCl2(L-PO3H2)]-sensitized 

thin films (Figure 2.4).  

 

Figure 2.4. Left: Diffuse Reflectance UV-Vis spectra of thin film of bare SrTiO3 
(black), L-PO3H2-SrTiO3 (red), and [FeCl2(L-PO3H2)]-SrTiO3 (blue). 
Right: Diffuse Reflectance UV-Vis spectra of thin film of bare TiO2 (black), L-
PO3H2-TiO2 (red), and [FeCl2(L-PO3H2)]-TiO2 (blue). 
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 Analysis of the diffuse reflectance UV-Vis spectra indicated that the L-

PO3H2-sensitized semiconductor thin films have a slightly greater absorbance 

across the visible spectrum than the bare metal oxide semiconductor 

nanoparticles. Assembly of the catalyst on the surface of the semiconductor 

nanoparticles was indicated by a significant increase in absorbance across much 

of the visible spectrum. This change was also observed visually, as the color of 

the semiconductor thin films changed from white to purple upon assembly of 

[FeCl2(L-PO3H2)] on the semiconductor surface. Immobilization of L-PO3H2 and 

[FeCl2(L-PO3H2)] on the surface of SrTiO3 and TiO2 nanoparticles was also 

confirmed through powder ATR-FTIR. Analysis of the spectra of ligand and 

catalyst-sensitized nanoparticles indicated characteristic phosphonic acid 

stretching at approximately 2550 cm-1 (see Appendix A). Diffuse reflectance 

spectra were also collected for bare ZrO2 thin films, L-PO3H2-ZrO2, and [FeCl2(L-

PO3H2)]-ZrO2 for comparison to the spectra of SrTiO3 and TiO2 (see Appendix A). 

Zirconia is of interest as a control material because it is also a large-band gap 

metal oxide semiconductor. However, the reduction potential of the conduction 

band of ZrO2 is too negative to accept electrons from the excited state of many 

rhodamine dyes such as fluorescein and Eosin Y.8 This prevents injection of 

electrons from the photosensitizer into the semiconductor, thus preventing 

charge transfer.9   

The maximum absorbance of the diffuse reflectance spectrum of [FeCl2(L-

PO3H2)]-SrTiO3 nanoparticles was determined to be at 475 nm. Interestingly, the 

maximum absorbance of [FeCl2(L-PO3H2)]-TiO2 nanoparticles was determined to 
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be at a lower energy, 515 nm. This indicated that there was likely a difference in 

the environment at the surface of the different metal oxide semiconductor 

nanoparticles. We theorized that the pH at the surface of the semiconductor 

nanoparticles may be slightly different, causing the observed change in the 

spectra. 

In order to better understand the difference in the diffuse reflectance UV-

Vis spectra of [FeCl2(L-PO3H2)]-SrTiO3 and [FeCl2(L-PO3H2)]-TiO2, we 

investigated the effect that changes in pH may have on the UV-Vis spectrum of 

the parent catalyst, [FeCl2(L)]. In this study, we analyzed the parent complex, 

[FeCl2(L)], in 1:1 mixtures of ethanol:water via UV-Vis spectrophotometry (Figure 

2.5). The pH of the solvent mixtures was adjusted with 1 M HCl and 1 M NaOH 

prior to analysis.  

 

Figure 2.5. UV-Vis spectra of 6 x 10-5 M [FeCl2(L)] in 1:1 ethanol:water adjusted 
to pH 4 (black), pH 5 (red), pH 6 (dark blue), pH 7 (light green), pH 8 (purple), pH 
9 (brown), pH 10 (light blue), pH 11 (dark green), and pH 12 (gray). 
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 In comparing the UV-Vis spectra of [FeCl2(L)] in solution at different pH 

values, a shift in the wavelength of maximum absorbance was observed as the 

pH of the solution changed. At lower pH (4-8), the wavelength of maximum 

absorbance was observed to be approximately 515 nm. At significantly basic pH 

(10-12), the wavelength of maximum absorbance of [FeCl2(L)] was observed to 

be approximately 445 nm. The observed shift in the wavelength of maximum 

absorbance mirrors the difference in the maximum absorbance of the diffuse 

reflectance spectra of [FeCl2(L-PO3H2)]-TiO2 and [FeCl2(L-PO3H2)]-SrTiO3. The 

similarities between the UV-Vis spectra of [FeCl2(L)] and the diffuse reflectance 

spectra of [FeCl2(L-PO3H2)]-sensitized nanoparticles indicates that there is a 

difference in pH at the surface of the two metal oxide semiconductors. Based on 

these results, the pH at the surface of SrTiO3 nanoparticles is likely in the range 

of 9-10, while the pH at the surface of TiO2 nanoparticles is more acidic, likely in 

the range of 5-8. Further studies utilizing diffuse reflectance UV-Vis 

spectrophotometry determined that the shift in maximum absorbance can be 

prompted by soaking [FeCl2(L-PO3H2)]-sensitized semiconductor thin films in 

solutions at different pH values. Altering the pH of the environment at the 

semiconductor surface also indicated that the observed absorbance shift was 

reversible (see Appendix A). 

 After establishing that [FeCl2(L-PO3H2)] was successfully immobilized on 

the metal oxide semiconductor nanoparticles, it was important to confirm that the 

binding of [FeCl2(L-PO3H2)] to the surface of the nanoparticles was stable when 

exposed to our photochemistry conditions, which require the presence of a 
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sacrificial electron donor in aqueous mixtures. To investigate this, [FeCl2(L-

PO3H2)] was immobilized on a SrTiO3 thin film in the manner previously 

described and analyzed by diffuse reflectance UV-Vis spectrophotometry. The 

thin film was then soaked in a 1:1 ethanol:water mixture containing 5% v/v 

triethylamine, mimicking our photochemistry conditions. The diffuse reflectance 

spectrum of the [FeCl2(L-PO3H2)]-SrTiO3 thin film was then collected for 

comparison to the previously collected [FeCl2(L-PO3H2)]-SrTiO3 spectrum (Figure 

2.6). 

 

 

Figure 2.6. Diffuse Reflectance UV-Vis spectra of thin film of bare SrTiO3 (black), 
[FeCl2(L-PO3H2)]-SrTiO3 (red), and [FeCl2(L-PO3H2)]-SrTiO3 after soaking in 1:1 
ethanol:water with 5% v/v triethylamine (blue). 
 
 
 
 In comparing the spectra of the [FeCl2(L-PO3H2)]-sensitized SrTiO3 thin 

films before and after exposure to photochemistry conditions, a clear shift in the 
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wavelength of maximum absorbance is observed. This shift follows the 

previously observed trend relating the shift in maximum absorbance to shorter 

wavelength to an increase in pH at the semiconductor surface. The increased pH 

of the semiconductor surface can be attributed to the presence of the sacrificial 

electron donor triethylamine, which has a pKa of 10.75. The shift in absorbance 

may also explain the observed decrease in absorbance of [FeCl2(L-PO3H2)]-

SrTiO3 from approximately 460-680 nm, after the thin film was exposed to 

photochemistry conditions. Another possible explanation for this decrease in 

absorbance is loss of catalyst from the semiconductor surface. This could occur 

when the [FeCl2(L-PO3H2)]-SrTiO3 thin film is submerged in the photochemistry 

mixture or when the thin film is rinsed with solvent after it is removed from the 

mixture. Despite the observed decrease in absorbance, it is clear that the 

immobilization of [FeCl2(L-PO3H2)] on the semiconductor surface is sufficiently 

stable when exposed to aqueous photochemistry conditions. 

 

Sensitizing Metal Oxide Semiconductors with Fluorescein 

 As mentioned previously, incorporating a chromophore into AP systems 

allows for more efficient absorption of visible light by the system. Because of this, 

it was important to determine if inexpensive organic chromophores could be 

incorporated onto the surface of the metal oxide semiconductor nanoparticles. To 

investigate this, a SrTiO3 thin film and a TiO2 thin film prepared in the typical 

manner were soaked separately in 4.0 mM solutions of fluorescein in ethanol in 

the dark. Fluorescein was chosen as the chromophore because the oxidative 
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energy level of the excited state is more negative than the conduction band of 

SrTiO3 and TiO2, allowing for electron transfer from the excited state of the 

chromophore to the conduction band of the semiconductor.7 After soaking, the 

thin films were analyzed by diffuse reflectance UV-Vis spectrophotometry (Figure 

2.7).  

 
Figure 2.7. Left: Diffuse Reflectance UV-Vis spectra of thin film of bare SrTiO3 
(black) and fluorescein sensitized SrTiO3 thin film (red). 
Right: Diffuse Reflectance UV-Vis spectra of thin film of bare TiO2 (black) and 
fluorescein sensitized TiO2 thin film (red). 
 
 

 
 Sensitization of the metal oxide semiconductor thin films with fluorescein 

resulted in significantly increased absorbance in the visible light wavelength 

range, particularly between 400 and 525 nm. The wavelength of maximum 

absorbance for the fluorescein-sensitized SrTiO3 nanoparticles and fluorescein-

sensitized TiO2 nanoparticles was determined to be 500 nm. Powder ATR-FTIR 

was also utilized to confirm the surface sensitization of SrTiO3 and TiO2 with 
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fluorescein (see Appendix A). It is likely that the sensitization of the 

semiconductor surfaces was the result of aggregation of fluorescein on the 

nanoparticles, rather than covalent bonding between the carboxylic acid group of 

the chromophore and semiconductor. As previously mentioned, the bonds 

between carboxylic acid groups and metal oxide semiconductors are relatively 

weak, while aggregation of multiple structurally similar chromophores on TiO2 

has been reported.1,9,10 The collected diffuse reflectance spectra indicated that 

sensitizing the metal oxide semiconductor nanoparticles with fluorescein greatly 

increased visible light absorption, thus increasing the efficiency of solar energy 

conversion within the prospective AP system. 

 After confirming the immobilization of [FeCl2(L-PO3H2)] and aggregation of 

fluorescein on the surface of semiconductor nanoparticles separately, it was of 

interest to examine the nanoparticles when the catalyst and chromophore are 

both present. To investigate this, a [FeCl2(L-PO3H2)]-SrTiO3 thin film prepared in 

the typical manner was soaked in a 1:1 mixture of ethanol:water containing 5% 

v/v triethylamine and 0.4 mM fluorescein. The thin film was analyzed by diffuse 

reflectance UV-Vis spectrophotometry both before and after soaking in the 

mixture (Figure 2.8). 

 



37 
 

 

Figure 2.8. Diffuse Reflectance UV-Vis spectra of thin film of bare SrTiO3 (black), 
[FeCl2(L-PO3H2)]-SrTiO3 (red), and [FeCl2(L-PO3H2)]-SrTiO3 after soaking in 1:1 
ethanol:water with 5% v/v triethylamine and 0.4 mM fluorescein. 

 
 

   

 Exposure of the [FeCl2(L-PO3H2)]-SrTiO3 thin film to our photochemistry 

conditions with fluorescein present resulted in a significant increase in the 

absorbance from approximately 425-525 nm. This increase in absorbance can be 

attributed to the aggregation of fluorescein on the semiconductor surface. 

Importantly, this indicates that the aggregation of fluorescein on the surface of 

SrTiO3 is not impacted by the presence of the immobilized catalyst. In addition, 

the results of this study further indicated that both the sensitization of the 

chromophore and catalyst on the semiconductor nanoparticles is stable when 

exposed to photochemistry conditions.  

 



38 
 

Conclusion 

 The research reported in this chapter demonstrates the robust and 

durable binding of an iron polypyridyl catalyst, [FeCl2(L-PO3H2)], on large band 

gap metal oxide semiconductor nanoparticles. The bond between the phosphonic 

acid anchoring group and the semiconductor surface has been shown to be 

stable in conditions under which photochemistry studies would be conducted. In 

addition, this research established that there is a difference in pH at the surface 

of SrTiO3 and TiO2 that is reflected in the UV-Vis spectra of the [FeCl2(L-PO3H2)]-

sensitized nanoparticles. At lower pH, the wavelength of maximum absorbance 

of the immobilized catalyst was found to be at lower energy than the maximum 

absorbance at significantly basic pH. This research also established that 

sensitizing SrTiO3 and TiO2 nanoparticles with the organic chromophore 

fluorescein significantly increases the absorbance of the semiconductor material 

in the visible spectrum, particularly from 400-525 nm. These results suggest that 

the immobilization of [FeCl2(L-PO3H2)] on SrTiO3 and TiO2 nanoparticles has 

significant promise for incorporation into a heterogeneous AP system for 

photocatalytic hydrogen generation. 
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Appendix A 

 

 
Figure A.1. 1H NMR spectrum of L-PO3H2 with integrations in blue. 
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Figure A.2. 13C NMR spectrum of L-PO3H2.  
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Figure A.3. High-resolution mass spectrum of L-PO3H2 in 1:1 THF:MeOH w/ 
NaCl. The expected molecular ions were observed with a difference of less 
than 1 ppm. Exact mass of C26H25N4O5PNa+ = 505.163533 m/z Exact mass 
observed = 505.163539 m/z 
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Figure A.4. Diffuse Reflectance UV-Vis spectra of thin film of bare ZrO2 (black), 
L-PO3H2-ZrO2 (red), and [FeCl2(L-PO3H2)]-ZrO2 (blue). 
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Figure A.5. Diffuse Reflectance UV-Vis spectra of thin film of bare SrTiO3 (black) 
and SrTiO3 thin film sensitized with FeCl3 (red). 
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Figure A.6. Diffuse Reflectance UV-Vis spectra of thin film of bare TiO2 (black) 
and TiO2 thin film sensitized with FeCl3 (red). 
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Figure A.7. Powder ATR-FTIR spectra of L-PO3H2-SrTiO3 (black) and [FeCl2(L-
PO3H2)]-SrTiO3 (red). 
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Figure A.8. Powder ATR-FTIR spectra of L-PO3H2-TiO2 (black) and [FeCl2(L-
PO3H2)]-TiO2 (red). 
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Figure A.9. Powder ATR-FTIR spectra of SrTiO3 (black) and SrTiO3 sensitized 
with fluorescein (red). 
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Figure A.10. Powder ATR-FTIR spectra of TiO2 (black) and TiO2 sensitized with 
fluorescein (red). 
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Chapter 3. Optimization of Photocatalytic Hydrogen Generation System 

Introduction 

 Heterogeneous systems for photocatalytic hydrogen generation are of 

great interest as these systems overcome many of the limitations of 

homogeneous systems. One such limitation is diffusion, which is addressed in 

heterogeneous systems through the immobilization of the active catalyst on a 

solid support, such as a metal oxide semiconductor. Recovery of the catalyst 

within homogeneous systems is also very difficult, limiting the ability for the 

catalyst to be recycled. Immobilization of the catalyst on metal oxide 

semiconductors can lead to an increase in the stability of the catalyst and make it 

significantly easier to recycle the catalyst for continued use.  

 In one comparison of homogeneous and heterogeneous systems, Fan 

and coworkers found that immobilization of their molecular cobalt catalyst on 

TiO2 nanoparticles led to a significant increase in hydrogen generation by the 

system.1 This system, which incorporated the organic chromophore Eosin Y and 

triethylamine as the sacrificial donor, reached 90 TON after 6 hours of irradiation 

under optimal conditions.1 Reisner and coworkers have also successfully 

immobilized a molecular cobalt complex on TiO2 nanoparticles that is active for 

proton reduction.2 Phosphonic acid groups were used to anchor both the 

cobaloxime complex and a ruthenium chromophore to the surface of the 

semiconductor. This system achieved only 53 TON after 8 hours of irradiation, in 

the presence of triethanolamine, due to the activity of the system decreasing 

after only two hours of irradiation.2 
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 We have previously reported a family of iron polypyridyl catalysts that are 

active for homogeneous photocatalytic hydrogen evolution from aqueous solvent 

when paired with a chromophore and sacrificial electron donor.3 Although these 

catalysts were found to be highly active compared to other homogeneous 

systems, reaching TON of 2100, it was of interest to determine if a related 

catalyst would show greater activity and stability in a heterogeneous system.3 In 

the previous chapter it was shown that [FeCl2(L-PO3H2)] was successfully 

immobilized on nanoparticles of multiple large band gap metal oxide 

semiconductors through a phosphonic acid anchoring group. Incorporating these 

nanoparticles into an AP system with a photosensitizer, such as fluorescein, and 

a sacrificial electron donor, such as triethylamine, would allow for photocatalytic 

hydrogen generation from aqueous solutions (Figure 3.1).  

 
Figure 3.1. Scheme of proposed AP system for photocatalytic hydrogen 
generation from [FeCl2(L-PO3H2)]-TiO2 nanoparticles when paired with the 
photosensitizer fluorescein and sacrificial electron donor triethylamine.4 
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The work reported in this chapter illustrates the activity of the 

heterogeneous photocatalytic hydrogen generation system that incorporates 

[FeCl2(L-PO3H2)]-sensitized semiconductor nanoparticles. Multiple aspects of the 

system were investigated to optimize the photocatalytic activity of the system. In 

addition, the durability of the [FeCl2(L-PO3H2)]-sensitized nanoparticles was 

investigated to determine if the nanoparticles can be recycled over multiple 

experiments. 
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Experimental Procedure 

 

Instrumentation 

All UV-Vis analysis was performed using an Agilent Cary 60 Spectrophotometer. 

All GC analysis was performed using a Bruker Scion 436 gas chromatograph 

with argon carrier gas and a molecular sieve column. 

 

Surface Coverage Determination  

UV-Vis spectrophotometry was used to determine the coverage of ligand on the 

surface of the metal oxide semiconductor nanoparticles as outlined in previously 

reported procedures.5 A 2.5 x 10-5 M solution of L-PO3H2 in methanol was 

prepared and analyzed via UV-Vis spectrophotometry. 4.0 mL of the L-PO3H2 

solution was then added to a sample vial with 5.0 mg of semiconductor. The 

sample vial was capped and the mixture was stirred for one hour. After stirring, 

the mixture was divided into microcentrifuge tubes and centrifuged at 13,400 rpm 

for 15 minutes. After centrifugation, the supernatant was collected and analyzed 

via UV-Vis spectrophotometry. The absorbance of the supernatant was 

compared to the absorbance of the original L-PO3H2 solution at 295 nm. The 

difference in absorbance at 295 nm between the L-PO3H2 stock solution and 

collected supernatant was used to calculate the number of moles of L-PO3H2 

immobilized on the surface of the semiconductor nanoparticles. A sample 

calculation is shown below: 
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𝑚𝑜𝑙 LP𝑂3𝐻2 = [1 − (
𝑠𝑢𝑝𝑒𝑟𝑛𝑎𝑡𝑎𝑛𝑡 𝑎𝑏𝑠.

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑙𝑖𝑔𝑎𝑛𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑎𝑏𝑠.
)] × (2.5 × 10−5𝑀)

× (4 × 10−3𝐿) 

𝑚𝑜𝑙 LP𝑂3𝐻2 = [1 − (
0.047917

0.324828
)] × (2.5 × 10−5𝑀) × (4 × 10−3𝐿) 

𝑚𝑜𝑙 LP𝑂3𝐻2 = 8.52 × 10−8 𝑚𝑜𝑙𝑒𝑠 𝑝𝑒𝑟 5 𝑚𝑔 𝑛𝑎𝑛𝑜𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 

  

It was assumed that all of the ligand immobilized on the semiconductor surface 

would complex with FeCl3 to form the catalyst. Because of this, it was assumed 

that the moles of [FeCl2(L-PO3H2)] on the semiconductor surface was equivalent 

to the calculated number of moles of L-PO3H2 immobilized on the semiconductor 

surface for a given mass of nanoparticles. 

 

GC Calibration 

Two 500 mL round bottom flasks were evacuated and then filled with CH4 and H2 

gas, one in each flask, and sealed with an airtight septum secured with copper 

wire. A sample was then prepared in a test tube containing a solution of 2.0 mL 

of CH3CN and 2.0 mL of DI water. The sample was sealed with a rubber septum, 

secured with copper wire, and degassed under Ar for approximately 15 minutes. 

A 10.0 mL Hamilton gastight syringe was then used to remove 1.0 mL of 

headspace gas from the test tube and 1.0 mL of CH4 was added as an internal 

standard. Varied amounts of H2 gas, ranging from 10 μL to 500 μL, were then 

added to the test tube. Gas samples of 100 μL each were injected into a GC to 
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determine the ratio of peak areas of H2 to CH4. The peak area ratios were then 

plotted versus the volume of H2. The slope of the linear trend of the data was 

used to calculate the volume of H2 generated from hydrogen evolution studies 

(Figure 3.2). 

 

 

Figure 3.2. Calibration curve of H2 to CH4 peak areas used for determination of 
hydrogen generation. The ratio of peak areas was plotted against the volume of 
H2 injected into the GC. 

 

 

Calculation of Turnover Number (TON) 

For the purposes of our photochemistry studies, turnover number (TON) may be 

defined as the number of moles of hydrogen generated per mole of catalyst 

present in the system. Utilizing the calibration curve shown previously, it is 

possible to determine the volume of hydrogen generated by our photochemical 

system within our reaction vessel from the ratio of the peak areas of H2 and CH4 

from our GC analysis. Our calibration curve shows that the volume of hydrogen 
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generated by the system has a linear relationship to the peak area ratio of the H2 

to CH4 with a slope of 201.16, as shown by the relationship3: 

µ𝐿 𝐻2 = 201.16 (
𝐴𝑟𝑒𝑎 𝐻2

𝐴𝑟𝑒𝑎 𝐶𝐻4
) 

A sample calculation is included below: 

µ𝐿 𝐻2 = 201.16 (
525021

35747.5
) = 2954 

2954 µ𝐿 𝐻2 ×
1 𝐿

1 × 106 µ𝐿
×

1 𝑚𝑜𝑙

22.4 𝐿
= 1.32 × 10−4 𝑚𝑜𝑙 𝐻2 

1.32 × 10−4 𝑚𝑜𝑙 𝐻2

1.68 × 10−8 𝑚𝑜𝑙 𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡
= 7850 𝑇𝑂𝑁 

 

Photochemistry Studies 

Samples for hydrogen evolution studies were prepared as 1:1 ethanol:water 

mixtures in 16 x 125 mm glass test tubes through the addition of a measured 

mass of semiconductor nanoparticles, chromophore in ethanol, and 5% by 

volume sacrificial electron donor in deionized water, in the order listed. The total 

volume of the mixture in each test tube was 4.0 mL. Prior to the addition of 

sacrificial donor solution, the test tubes were covered with aluminum foil to 

prevent light exposure. Sacrificial donor solution was then added to the mixtures 

followed by capping test tubes with septa. The test tubes were then sealed with 

copper wire prior to degassing the mixtures for 10 minutes with argon. After 

degassing, a Hamilton gas syringe was used to remove 1.0 mL of headspace 
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from each test tube and add 1.0 mL methane as an internal standard. The 

aluminum foil covers were then removed and test tubes were placed in a rotating 

apparatus where the mixtures were irradiated with green light-emitting diodes (λ 

= 520 nm, 0.12 W) while stirring for a predetermined amount of time. After 

irradiation, a Hamilton gas syringe was used to remove 0.10 mL of headspace 

gas from each test tube and injected into a gas chromatograph for analysis. 

 

Catalyst Stability Study 

Samples were prepared in an identical manner as previously described 

photochemistry studies. Each sample contained 5 mg of [FeCl2(L-PO3H2)]-

sensitized nanoparticles, 2.0 mM fluorescein in ethanol, and 5% v/v triethylamine 

in deionized water. Degassing, irradiation, and headspace gas analysis were 

performed in an identical fashion to previous photochemistry studies. Following 

GC analysis of the headspace gas after 31 hours of irradiation, the samples were 

removed from the LED set-up and the mixtures were transferred to centrifuge 

tubes. The mixtures were then centrifuged for 12 minutes at 5,000 rpm. Following 

centrifugation, the chromophore and sacrificial donor mixture was removed from 

each sample. The remaining nanoparticles were rinsed with ethanol, followed by 

the addition of fresh fluorescein solution. The nanoparticles and fluorescein 

solution were then transferred back to the original 16 x 125 mm glass test tubes, 

capped with new rubber septa, and sealed with copper wire. The test tubes were 

then covered with aluminum foil to prevent light exposure, followed by addition of 

fresh triethylamine in deionized water solution to the mixtures using a syringe. 
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Mixtures were then degassed for 10 minutes with argon. Following degassing, a 

Hamilton gas syringe was used to remove 1.0 mL of headspace gas from each 

test tube and add 1.0 mL methane as an internal standard. The aluminum foil 

covers were then removed and the test tubes were returned to the LED set-up for 

irradiation while stirring. GC analysis of the headspace gas of the samples was 

then performed after 3, 6, and 12 hours of irradiation by removing 0.10 mL of 

headspace gas with a Hamilton gas syringe and injecting into the gas 

chromatograph. 

 

Control Experiments 

No semiconductor: Identical amount of L-PO3H2 and FeCl3 as amount of 

catalyst calculated to be on 1 mg of [FeCl2(L-PO3H2)]-sensitized semiconductor 

nanoparticles added directly to mixtures. Photochemistry studies then performed 

with optimal chromophore and sacrificial donor conditions for hydrogen 

generation. 

No chromophore: [FeCl2(L-PO3H2)]-sensitized semiconductor nanoparticles 

were prepared via the centrifuge method previously described. 2.0 mL of ethanol 

was added to each mixture rather than chromophore in ethanol solution to 

maintain 1:1 ethanol:water ratio of mixture. All other conditions and procedures 

performed in identical manner to typical photochemistry experiments. 

No L-PO3H2: Semiconductor thin films prepared via the doctor blading technique 

previously described were placed in a petri dish wrapped in aluminum foil. 
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Excess FeCl3 (8.0 x 10-7 moles) in methanol was added to the petri dish with 

excess methanol to ensure the thin film was completely submerged. The petri 

dish was then covered with a watch glass and aluminum foil to prevent light 

exposure. After soaking for 30 minutes in FeCl3 solution, the thin film was 

removed from the petri dish and rinsed with methanol. The thin films were 

allowed to dry in the dark overnight. These nanoparticles were then used for 

photochemistry studies under optimal conditions for hydrogen generation. 

No Fe: L-PO3H2 was immobilized on semiconductor nanoparticles via the 

centrifuge method previously described. After final centrifugation of L-PO3H2-

sensitized nanoparticles in methanol, the supernatant was removed and the 

Eppendorf tubes containing the nanoparticles were left open in the dark to dry 

overnight. These nanoparticles were then used to perform photochemistry 

studies under optimal conditions for hydrogen generation. 
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Results and Discussion 

Photocatalytic hydrogen evolution 

In order to begin to optimize our photocatalytic system with [FeCl2(L-

PO3H2)]-functionalized nanoparticles, it was necessary to determine the 

components best suited for the photochemical system. The first component that 

was investigated was the sacrificial electron donor, which provides the electrons 

required to reduce the chromophore or catalyst.6 We chose to study triethylamine 

(TEA) and triethanolamine (TEOA) as these are two common sacrificial electron 

donors for photocatalytic proton hydrogen generation systems.1,2,3,6 To determine 

which sacrificial donor was better suited for our system, we conducted a study in 

which 5% sacrificial donor solution in deionized water was paired with 1.9 mM 

fluorescein in ethanol, to act as the photosensitizer, and 5 mg [FeCl2(L-PO3H2)]-

SrTiO3 nanoparticles. After 18 hours of irradiation, mixtures containing TEA as 

the sacrificial donor species generated 1900 µL of hydrogen gas, corresponding 

to a TON of 1000. Mixtures containing TEOA generated only 250 µL of hydrogen 

gas, equivalent to a TON of 130 (Table 3.1).  

 

Table 3.1. Hydrogen generation of mixtures of 5 mg [FeCl2(L-PO3H2)]-SrTiO3 
nanoparticles, 1.9 mM fluorescein, and 5% v/v sacrificial donor in 1:1 
ethanol:water after 18 hours of irradiation. 

Sacrificial Donor H2 Generated (µL) TON 

Triethylamine 1900 1000 

Triethanolamine 250 130 
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 Although TEA is often paired with fluorescein in photochemical systems, 

we also investigated the activity of our system when the chromophore Eosin Y 

was used as the photosensitizer.3,7,8 A photochemistry study was performed in 

which 1.9 mM of chromophore in ethanol was combined with 5% v/v 

triethylamine and 1 mg [FeCl2(L-PO3H2)]-SrTiO3 nanoparticles in 1:1 

ethanol:water mixtures and irradiated for 24 hours. Mixtures containing Eosin Y 

generated only 280 µL of hydrogen, equivalent to 750 TON (Table 3.2). The 

difference in activity of mixtures containing fluorescein and Eosin Y may be 

attributable to fluorescein having a more reducing excited state than Eosin Y.6 

This makes electron transfer to [FeCl2(L-PO3H2)]-SrTiO3 nanoparticles from the 

excited state of fluorescein more favorable. This indicated that pairing fluorescein 

and triethylamine, as the photosensitizer and sacrificial donor species, 

respectively, was the most efficient combination for hydrogen evolution.   

 

Table 3.2. Hydrogen generation of mixtures of 1 mg [FeCl2(L-PO3H2)]-SrTiO3 
nanoparticles, 2.0 mM chromophore, and 5% v/v triethylamine in 1:1 
ethanol:water after 24 hours of irradiation. 

Chromophore H2 Generated (µL) TON 

Fluorescein 1800 4700 

Eosin Y 280 750 

 

 It was also of interest to determine if the preparation method of the 

[FeCl2(L-PO3H2)]-sensitized nanoparticles impacted the activity of the 

photochemical system. To accomplish this, we conducted a study in which the 

activity of [FeCl2(L-PO3H2)]-SrTiO3 nanoparticles prepared via the thin film 
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method was compared to the activity of [FeCl2(L-PO3H2)]-SrTiO3 nanoparticles 

prepared via the centrifuge method. For this study, 1.9 mM fluorescein and 5% 

v/v TEA were added to 5 mg [FeCl2(L-PO3H2)]-SrTiO3 nanoparticles prepared via 

the thin film or centrifuge method in 1:1 ethanol:water mixtures and irradiated for 

18 hours. Mixtures containing [FeCl2(L-PO3H2)]-SrTiO3 prepared via the thin film 

method generated 1900 µL of hydrogen gas, corresponding to a TON of 1000. 

The [FeCl2(L-PO3H2)]-SrTiO3 nanoparticles prepared via the centrifuge method 

were found to be slightly more active, achieving a TON of 1100, corresponding to 

the evolution of 2100 µL of hydrogen gas (Table 3.3). This increase in activity is 

most likely due to the fact that only one side of the semiconductor thin films is 

accessible for binding L-PO3H2. The centrifuge prepared semiconductor 

nanoparticles do not face this surface area limitation during the sensitization 

procedure.  

 

Table 3.3. Hydrogen generation of mixtures of 5 mg [FeCl2(L-PO3H2)]-SrTiO3 
nanoparticles, 1.9 mM fluorescein, and 5% v/v triethylamine in 1:1 ethanol:water 
after 18 hours of irradiation. 

Nanoparticle 
Preparation Method 

H2 Generated (µL) TON 

Thin Film 1900 1000 

Centrifuge 2100 1100 

 

 The next aspect of our system that was examined was the mass of 

[FeCl2(L-PO3H2)]-sensitized semiconductor nanoparticles added to the reaction 

mixtures. A study was designed in which mixtures of varied mass of [FeCl2(L-

PO3H2)]-SrTiO3 nanoparticles, 1.9 mM fluorescein, and 5% v/v triethylamine were 
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prepared in a final ratio of 1:1 ethanol:water. Samples were then irradiated for 24 

hours prior to analysis of the headspace gas to determine activity (Table 3.4).  

 

Table 3.4. Hydrogen generation of mixtures of [FeCl2(L-PO3H2)]-SrTiO3 
nanoparticles, 1.9 mM fluorescein, and 5% v/v triethylamine in 1:1 ethanol:water 
after 24 hours irradiation. 

Nanoparticle 
Description 

1 mg 2.5 mg 5 mg 

 
H2 

Generated 
(µL) 

TON 
H2 

Generated 
(µL) 

TON 
H2 

Generated 
(µL) 

TON 

[FeCl2(L-

PO3H2)]-SrTiO3 
1200 3100 1600 1600 2000 1100 

 

 Although it was observed that significant volumes of hydrogen gas were 

generated in all samples, the TON of each sample was of greater use for 

comparing activity in this particular study. This was due to the vast differences in 

the amount of catalyst added to each sample through the addition of different 

masses of nanoparticles. Although samples containing 5 mg [FeCl2(L-PO3H2)]-

SrTiO3 generated approximately 2000 µL of H2, these samples achieved only 

1100 TON. The relative activity of samples containing 1 mg FeP-SrTiO3 was 

significantly greater than samples containing 5 mg of nanoparticles, surpassing 

3100 TON. The relatively small increase in the volume of H2 generated in 

samples containing 5 mg [FeCl2(L-PO3H2)]-SrTiO3 may be attributed to faster 

degradation of the sacrificial electron donor or chromophore. It is also possible 

that the concentration of aqueous protons within the reaction mixture acts as a 

limiting reagent within the system, therefore slowing the rate of hydrogen 

generation. Studies were also performed in which less than 1 mg of [FeCl2(L-
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PO3H2)]-SrTiO3 was added to samples, however it proved difficult to reliably 

obtain this mass of nanoparticles and the photochemical system appeared to 

degrade much more quickly than in previous studies. 

 Mass optimization studies were also performed with FeCl2(L-PO3H2)]-TiO2 

nanoparticles. In this study, mixtures of a varied mass of [FeCl2(L-PO3H2)]-TiO2 

nanoparticles, 1.9 mM fluorescein, and 5% v/v triethylamine in 1:1 ethanol:water 

were prepared and irradiated for 24 hours. After 24 hours, the headspace gas of 

the samples was analyzed to measure hydrogen generation (Table 3.5). 

 

Table 3.5. Hydrogen generation of mixtures of [FeCl2(L-PO3H2)]-TiO2 
nanoparticles, 1.9 mM fluorescein, and 5% v/v triethylamine in 1:1 ethanol:water 
after 24 hours irradiation. 

Nanoparticle 
Description 

1 mg 5 mg 

 
H2 

Generated 
(µL) 

TON 
H2 

Generated 
(µL) 

TON 

[FeCl2(L-PO3H2)]-

TiO2 
2000 5300 2700 1400 

 

The trend observed relating the mass of [FeCl2(L-PO3H2)]-SrTiO3 

nanoparticles to TON was also observed with [FeCl2(L-PO3H2)]-TiO2 

nanoparticles. Although a greater volume of hydrogen was generated from 

mixtures containing 5 mg of [FeCl2(L-PO3H2)]-TiO2, mixtures containing 1 mg of 

[FeCl2(L-PO3H2)]-TiO2 showed greater activity, generating 5300 TON. Once 

again, samples containing 5 mg of nanoparticles generated a greater volume of 

H2, 2700 µL compared to 2000 µL for mixtures containing 1 mg of nanoparticles. 
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However, this difference in H2 generation is relatively small considering the 

significant difference in the amount of catalyst added to each mixture. 

 After determining the optimal mass of [FeCl2(L-PO3H2)]-SrTiO3 

nanoparticles for photocatalytic hydrogen generation, the optimal concentration 

of chromophore was investigated. In these studies, 1 mg [FeCl2(L-PO3H2)]-

SrTiO3 nanoparticles were added to a varied concentration of fluorescein and 5% 

v/v triethylamine in 1:1 ethanol:water mixtures. Analysis of the headspace gas of 

the mixtures was performed after 24 hours of irradiation. These studies showed a 

clear relationship between the concentration of fluorescein and the photocatalytic 

activity of our system (Figure 3.3).  

 

 

 

Figure 3.3. Hydrogen generation from mixtures containing 1 mg [FeCl2(L-
PO3H2)]-SrTiO3 as a function of fluorescein concentration. Results after 24 hours 
of irradiation when paired with 5% v/v triethylamine. 
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 The optimal concentration of fluorescein for photocatalytic hydrogen 

generation was determined to be 2.0 mM. The decrease in hydrogen generation 

observed at fluorescein concentrations less than 2.0 mM may be attributable to 

less aggregation of the chromophore on the semiconductor nanoparticle surface, 

thus decreasing the amount of visible light absorbed by the system. At 

fluorescein concentrations greater than 2.0 mM there may be issues with 

solubility of the chromophore in the 1:1 ethanol:water reaction mixtures. In 

addition, self-quenching of fluorescein may occur at increased photosensitizer 

concentration, thus causing the observed decrease in activity of the system.7,8 

 After establishing the proton reduction activity of the [FeCl2(L-PO3H2)]-

sensitized nanoparticles within our photochemical system, control experiments 

were performed to ensure that all components of the system were necessary for 

photocatalytic hydrogen generation (Table 3.6). Ensuring that the observed 

hydrogen generation was catalyzed by the immobilized molecular iron catalyst 

was of particular interest, as the photocatalytic activity of semiconductor 

materials has been shown to be enhanced through transition metal doping.9,10 
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Table 3.6. Hydrogen generation of mixtures of 1 mg nanoparticles, 2.0 mM 
fluorescein, and 5% v/v triethylamine in 1:1 ethanol:water after 24 hours of 
irradiation. 

Nanoparticle Description H2 Generated (µL) 

SrTiO3 81 

L-PO3H2-SrTiO3 360 

Fe-SrTiO3 90 

[FeCl2(L-PO3H2)]-SrTiO3 1900 

TiO2 37 

L-PO3H2-TiO2 150 

Fe-TiO2 230 

[FeCl2(L-PO3H2)]-TiO2 2300 

 

 The control studies demonstrated that all components of the 

photochemical system were necessary for significant hydrogen generation. 

Activity of the system was evaluated by comparing the volume of H2 generated in 

control studies to the volume of H2 generated under optimal conditions, as 

catalyst was not present in all control studies. The control studies with the 

highest activity generated approximately an order of magnitude less H2 than the 

[FeCl2(L-PO3H2)]-sensitized semiconductor nanoparticles in our optimal 

conditions. Control studies performed with bare SrTiO3 and TiO2 nanoparticles 

generated less than 100 µL of H2, further indicating that the immobilized 

molecular catalyst drives proton reduction within the photochemical system. 

Additional control studies that excluded either metal oxide semiconductor or 

chromophore showed no hydrogen generation by the photochemical system. 

These results indicate that all aspects of the photochemical system are 

necessary for significant hydrogen generation. The results of these control 
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experiments also demonstrate that hydrogen generation is being catalyzed by 

the [FeCl2(L-PO3H2)]-sensitized nanoparticles. 

 Another aspect of our photochemical system that we sought to optimize 

was the pH of the reaction mixture. To investigate the effect of pH on the 

photocatalytic activity of the system, we conducted photochemistry studies in 

which the pH of the sacrificial donor solution was varied. The pH of the sacrificial 

donor solution in all previous photochemistry studies was measured to be 12.5 

(triethylamine pKa = 10.75). Combining 5% v/v triethylamine solution at this pH 

with 2.0 mM fluorescein in ethanol and 1 mg of nanoparticles resulted in 5100 

TON and 6100 TON for samples containing [FeCl2(L-PO3H2)]-SrTiO3 and 

[FeCl2(L-PO3H2)]-TiO2, respectively, after 24 hours of irradiation. When the pH of 

the sacrificial donor solution was lowered using 1 M HCl, a significant decrease 

in the photocatalytic activity of the system for mixtures containing [FeCl2(L-

PO3H2)]-SrTiO3 or [FeCl2(L-PO3H2)]-TiO2 was observed (Table 3.7). A trend was 

observed indicating that lowering the pH of the sacrificial donor solution caused a 

decrease in the photocatalytic activity of the system. At pH 9 mixtures containing 

[FeCl2(L-PO3H2)]-SrTiO3 generated a negligible volume of hydrogen while 

mixtures containing [FeCl2(L-PO3H2)]-TiO2 generated no hydrogen at all, 

corresponding to 4 and 0 TON respectively. It is possible that the observed trend 

is caused by degradation of fluorescein as previous studies have shown that 

fluorescein decomposes much more rapidly at pH below 12.8 It has also been 

found that it is more difficult to oxidize TEA at low pH, making it a less effective 

electron donor within the photochemical system.11   
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Interestingly, it was also observed that the photocatalytic activity of the 

system decreased as the pH of the sacrificial donor solution was adjusted to pH 

greater than 12.5. At pH 13.5, mixtures containing [FeCl2(L-PO3H2)]-SrTiO3 

generated only 310 µL of hydrogen gas while mixtures containing [FeCl2(L-

PO3H2)]-TiO2 generated only 130 µL of hydrogen gas, corresponding to 800 and 

350 TON respectively. This decrease in activity can most likely be attributed to a 

decrease in the amount of hydrogen ions present in solution at extremely basic 

pH. These studies indicated that the optimal pH of the sacrificial donor solution 

for photocatalytic hydrogen generation was 12.5.  

  

Table 3.7. Hydrogen generation of mixtures of 1 mg [FeCl2(L-PO3H2)]-sensitized 
nanoparticles, 2.0 mM fluorescein, and 5% v/v triethylamine in 1:1 ethanol:water 
adjusted to listed pH after 24 hours of irradiation. 

Nanoparticle 
Description 

pH of Sacrificial 
Donor Solution 

H2 Generated 
(µL) 

TON 

[FeCl2(L-PO3H2)]-SrTiO3 9 1.4 4 

[FeCl2(L-PO3H2)]-SrTiO3 10 200 500 

[FeCl2(L-PO3H2)]-SrTiO3 11 550 1400 

[FeCl2(L-PO3H2)]-SrTiO3 12.5 1900 5100 

[FeCl2(L-PO3H2)]-SrTiO3 13 950 2500 

[FeCl2(L-PO3H2)]-SrTiO3 13.5 310 800 

[FeCl2(L-PO3H2)]-TiO2 9 0 0 

[FeCl2(L-PO3H2)]-TiO2 10 190 500 

[FeCl2(L-PO3H2)]-TiO2 11 1400 3500 

[FeCl2(L-PO3H2)]-TiO2 12.5 2300 6100 

[FeCl2(L-PO3H2)]-TiO2 13 220 600 

[FeCl2(L-PO3H2)]-TiO2 13.5 130 350 
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After determining the optimal conditions for H2 generation within our 

system, it was of interest to investigate the photocatalytic activity of the system 

over time. To accomplish this, a study was conducted in which mixtures were 

prepared under the previously described optimal conditions with either 1 mg 

[FeCl2(L-PO3H2)]-SrTiO3 or 1 mg [FeCl2(L-PO3H2)]-TiO2. GC analysis of the 

headspace gas of samples were taken after 1, 3, 6, 12, 18, 24, 28, and 31 hours 

of irradiation (Figure 3.4).  

 

 

 

Figure 3.4. Hydrogen generation expressed as TON from mixtures containing 1 
mg [FeCl2(L-PO3H2)]-SrTiO3 (red) and [FeCl2(L-PO3H2)]-TiO2 (black) with 2 mM 
fluorescein and 5% v/v triethylamine in 1:1 ethanol:water. 
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After 31 hours of irradiation, [FeCl2(L-PO3H2)]-TiO2 nanoparticles were 

found to be more active than [FeCl2(L-PO3H2)]-SrTiO3, nanoparticles, with 

mixtures generating 7800 TON and 7000 TON respectively. Interestingly, it was 

observed that H2 was initially generated at a faster rate by mixtures containing 

[FeCl2(L-PO3H2)]-SrTiO3. However, after approximately 6 hours of irradiation the 

rate of hydrogen generation from mixtures containing [FeCl2(L-PO3H2)]-SrTiO3 

began to decrease while mixtures containing [FeCl2(L-PO3H2)]-TiO2 

nanoparticles maintained a near-constant rate of hydrogen generation until 

approximately 24 hours of irradiation. This suggests that decomposition of the 

system occurs more rapidly in mixtures containing [FeCl2(L-PO3H2)]-SrTiO3.  

 As stated previously, one of the goals of immobilizing the Fe catalyst on 

metal oxide semiconductors is to increase the durability and stability of the 

photocatalytic system. One benefit of increased stability would be the ability to 

recycle [FeCl2(L-PO3H2)]-sensitized nanoparticles for continued use in aqueous 

solution. The ability to recycle [FeCl2(L-PO3H2)]-sensitized nanoparticles would 

also greatly reduce the cost of the prospective AP system. Based on the results 

of our study measuring photocatalytic activity of the [FeCl2(L-PO3H2)]-sensitized 

nanoparticles over time, it was not immediately apparent if the decrease in the 

rate of hydrogen generation after 12-18 hours of irradiation was the result of 

decomposition of the catalyst, chromophore, or sacrificial electron donor. To 

investigate this further and determine if the [FeCl2(L-PO3H2)]-sensitized 

semiconductor nanoparticles were recyclable, a hydrogen generation study was 

performed in which the chromophore and sacrificial donor solutions were 
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decanted following the cessation of hydrogen generation of our samples, 

followed by the addition of fresh chromophore and sacrificial donor solutions to 

the [FeCl2(L-PO3H2)]-sensitized nanoparticles. The mixtures were then degassed 

again with argon and irradiated with GC samples taken at 3, 6, and 12 hours 

after the addition of fresh chromophore and sacrificial donor solutions. For this 

study, 5 mg of catalyst-sensitized nanoparticles were used to diminish the effect 

of lost nanoparticles during the decanting process and to increase the stability of 

our photochemical system. Because of this, the activity of our system has been 

expressed as total volume of hydrogen generated in Figure 3.5. 
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Figure 3.5. Hydrogen generation from mixtures containing 5 mg [FeCl2(L-
PO3H2)]-SrTiO3 (red) and [FeCl2(L-PO3H2)]-TiO2 (black) with 2 mM fluorescein 
and 5% v/v triethylamine in 1:1 ethanol:water. After 31 hours of irradiation, the 
nanoparticles were collected and rinsed with ethanol and the solution was 
discarded. Fresh fluorescein and triethylamine solution was added to the 
nanoparticles and irradiation was resumed. 
 

 
In the first 18 hours of irradiation prior to decanting the mixtures, the 

activity of the catalyst-sensitized nanoparticles followed the trend observed in 

previous studies. From 18-32 hours of irradiation hydrogen generation essentially 

ceased for mixtures containing both [FeCl2(L-PO3H2)]-SrTiO3 and [FeCl2(L-

PO3H2)]-TiO2, suggesting degradation of our photochemical system. It was at this 

point that the mixtures were centrifuged and decanted, and the nanoparticles 

were rinsed with ethanol. Upon adding fresh chromophore and sacrificial donor 

solutions to the rinsed nanoparticles and returning the mixtures to the irradiation 
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set-up, we observed that hydrogen generation for both [FeCl2(L-PO3H2)]-SrTiO3 

and [FeCl2(L-PO3H2)]-TiO2 mixtures returned to the previously observed rate. 

This suggests that the cessation of hydrogen generation observed after 

approximately 18 hours of irradiation was the result of chromophore or sacrificial 

donor degradation rather than decomposition of the [FeCl2(L-PO3H2)]-sensitized 

semiconductor nanoparticles. 

 

Conclusion 

 The work reported in this chapter outlines the development and 

optimization of a highly active and stable heterogeneous AP system for hydrogen 

generation. Under optimal conditions, mixtures containing [FeCl2(L-PO3H2)]-

SrTiO3 surpass 7000 TON while mixtures containing [FeCl2(L-PO3H2)]-TiO2 

surpass 7800 TON after 31 hours of irradiation. Both of these systems are 

significantly more active than previously reported heterogeneous systems for 

photocatalytic hydrogen generation (<100 TON). These systems are also 

significantly more active than the homogeneous system with the iron polypyridyl 

catalysts previously reported by our group (2100) TON. In addition, the [FeCl2(L-

PO3H2)]-sensitized semiconductor nanoparticles show extremely high stability as 

they can be recycled and added to fresh chromophore and sacrificial donor 

solutions. The recycled nanoparticles resume hydrogen generation at the same 

rate as initially observed, indicating no decomposition of the catalyst. This system 

holds great promise for larger-scale AP as it incorporates an iron-based proton 

reduction catalyst, inexpensive metal oxide semiconductor materials, and organic 
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chromophores. This noble-metal-free system with high activity may provide a 

path towards the development of cost-effective AP systems for water splitting. 
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Appendix B 

 

 

Figure B.1. UV-Vis spectra of original solution of L-PO3H2 (red) and supernatant 
collected after stirring with SrTiO3 (black). Difference in absorbance at 295 nm 
used to determine moles of ligand immobilized on SrTiO3. 
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Figure B.2. UV-Vis spectra of original solution of L-PO3H2 (red) and supernatant 
collected after stirring with TiO2 (black). Difference in absorbance at 295 nm used 
to determine moles of ligand immobilized on TiO2. 
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Figure B3. Emission spectra of fluorescein on SrTiO3 (red) and fluorescein on 
TiO2 (black).  
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