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ABSTRACT 
 
The salient feature of the familiar structural transition accompanying the 

thermally-driven metal-insulator transition in bulk vanadium dioxide (VO2) is a 
pairing of all the vanadium ions in the monoclinic M1 insulating phase. Whether this 
pairing (unit cell doubling) alone is sufficient to open the energy gap has been the 
central question of a classic debate which has continued for almost sixty years. 
Interestingly, there are two less familiar insulating states, monoclinic M2 and  triclinic, 
which are accessible via strain or chemical doping.  These phases are noteworthy in 
that they exhibit distinctly different V-V pairing.  With infrared and optical photon 
spectroscopy, we investigate how the changes in crystal structure affect the electronic 
structure. We find that the energy gap and optical inter-band transitions are insensitive 
to changes in the vanadium-vanadium pairing. This result is confirmed by DFT+U 
and HSE calculations.  Hence, our work conclusively establishes that intra-atomic 
Coulomb repulsion between electrons provides the dominant contribution to the energy 
gap in all insulating phases of VO2. 

VO2 is a candidate material for novel technologies, including ultrafast data storage, 
memristors, photonic switches, smart windows, and transistors which move beyond the 
limitations of silicon.  The attractiveness of correlated materials for technological 
application is due to their novel properties that can be tuned by external factors such 
as strain, chemical doping, and applied fields.  For advances in fundamental physics 
and  applications, it is imperative that these properties be measured over a wide range 
of regimes.  Towards this end, we study a single domain VO2 crystal with polarized 
light to characterize the anisotropy of the optical properties.  In addition, we study 
the effects of compressive strain in a VO2 thin film in which we observe remarkable 
changes in electronic structure and transition temperature.  Furthermore, we find 
evidence that electronic correlations are active in the metallic rutile phase as well. 

VO2 films exhibit phase coexistence in the vicinity of the metal-insulator transition. 
Using scanning near-field infrared microscopy, we have studied the patterns of phase 
coexistence in the same area on repeated heating and cooling cycles. We find that the 
pattern formation is reproducible each time.  This is an unexpected result from the 
viewpoint of classical nucleation theory that anticipates some degree of randomness. 
The completely deterministic nature of  nucleation and growth of domains in a VO2 
film with imperfections is a fundamental finding. This result also holds promise for 
producing reliable nanoscale VO2 devices
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SHINING LIGHT ON THE INSULATING PHASES 

OF VANADIUM DIOXIDE
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Although the ions and electrons that serve as the building blocks for all 

condensed matter systems are extremely well understood, the properties that 

emerge when many of these particles interact strongly are anything but.  After 

quantum mechanics had taken form, Dirac observed[1]: 

“The underlying physical laws necessary for the 

mathematical theory of a large part of physics and the 

whole of chemistry are thus completely known, and the 

difficulty is only that the exact application of these laws 

leads to equations much too complicated to be soluble.” 

While Dirac was quite correct in principle, we find that, in direct conflict with the 

reductionist hypothesis, that the emergent properties of a complex, collective 

system cannot be extrapolated from the component parts in a straight-forward 

manner[2].  The problem lies not with reductionism itself, but with the corollary 

proposition of constructionism; the individual electrons and ions that constitute 

Chapter 1  

Motivation and introduction 
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fundamental building blocks of these systems are not necessarily the appropriate 

objects for gaining insight into emergent physics. 

 Condensed matter physics has been remarkably successful in applying the 

principles of quantum mechanics with various approximation schemes to 

explain “simple” systems such as silicon and gold, where particles do not interact 

strongly with each other.  Nevertheless, for a nontrivial strongly interacting 

system, these approximations break down, and an exact – or often even a 

qualitatively correct - quantum mechanical calculation from first principles is 

not merely inconvenient for a human to solve by hand, but can exceed what 

can be simulated in a finite time. 

Handling the complexity of these systems is not simply a matter of applying  

quantum mechanics.  New insights beyond quantum mechanics  may be 

necessary.  Through this lens, condensed matter physics should be viewed not 

merely as applied quantum mechanics, but as a new field which focuses on 

comprehending this complexity.  Investigating this complexity requires a joint 

experimental and theoretical effort.  Experiment provides critical insights and 

constraints necessary to guide theory in formulating new paradigms for 

accurately modeling correlated systems. 
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The difficulties of complexity and scale would perhaps be purely academic 

concerns were it not for the novel emergent properties of these systems, which 

include high temperature superconductivity, colossal magnetoresistance, 

multiferroicity, and metal-insulator transitions.  The potential for applications lies 

not just in these novel properties themselves, but in that strong interactions lead 

to extreme sensitivity of these properties to external factors such as strain, 

temperature, chemical doping, and applied fields.  An understanding sufficient to 

predict the conditions necessary for desired properties to emerge – in essence, the 

ability to design these systems – is, without hyperbole, the holy grail of materials 

science.  Additional complications arise when the translation symmetry of the 

crystal lattice is broken by the defects, chemical impurities, and microstructure 

inherent in real materials.  These factors can lead to novel and unexpected effects, 

such as phase coexistence and pattern formation on the nanoscale.  Such 

phenomena offer further potential for applications.  Thus, developing a useful 

framework for understanding and controlling strongly interacting systems is of 

interest to applied science as well as fundamental physics. 

Our best hope to tackle this problem lies in abstraction; that is, to approach 

the problem in a way that is decidedly non-reductionist. This sort of abstraction 

has been quite successful historically in the sciences.  For example, Mendel did not 
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need the details of the carbon, nitrogen, phosphorus, oxygen, and hydrogen 

atoms that make up DNA to father the field of genetics.  Instead, it was more 

insightful – more powerful – to think in terms of the genes themselves. Instead 

of focusing on the individual electrons and ions that make up condensed matter 

systems, it’s often more useful to think about objects like the lattice, phonons, 

bands, energy gaps, spin and charge density waves, et cetera.  These 

collective/emergent phenomena, which exist as a consequence of the many 

particles of the solid, are generally the relevant degrees of freedom in these 

materials. 

As a consequence of the strong interactions between the fundamental 

particles, these degrees of freedom also interact strongly.  Correlated materials 

are so sensitive to factors such as chemical purity and strain that it is imperative 

to track all of the relevant degrees of freedom to gain a clear experimental 

picture.  Failure to do so can lead to unsubstantiated assumptions about the 

untracked degrees of freedom and thus undue importance might be assigned to 

the degrees of freedom that are being actively observed.  With broadband 

photon spectroscopy, we are able to cover almost 4 decades of energy to track 

many of the relevant degrees of freedom in condensed matter systems. While 

specialized techniques may sometimes be necessary to provide additional detail 
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or confirmation, photon spectroscopy serves as the ideal primary technique for 

experimental studies of these systems. 

Broadband photon spectroscopy is perhaps the natural technique for humans 

to gain understanding of our world.  In some sense, it is a simple generalization of 

human color vision outside the visible spectrum (λ=0.4 to 0.7 µm), into the very 

far infrared (≈100 µm) and the ultraviolet (≈0.2 µm).  Traditionally in spectroscopy, 

either the inverse wavelength (� =1/λ) expressed in inverse centimeters (cm-1) or 

the phonon energy (hc�) is used instead of the wavelength.  The raw experimental 

data is acquired as a transmission spectrum (T(�)), a reflectance spectrum R(�) or 

as spectroscopic ellipsometric coefficients (�(�)and Δ (�)).  This data is analyzed 

using Kramers-Kronig consistent oscillators to extract the optical constants, which 

can either be expressed as the complex dielectric function (�̂(�)), the complex 

conductivity (�̂(�)) or the complex index of refraction (�̂(�)).  These quantities 

contain the same information about the response of the material to light.  In some 

situations, one of these techniques may not be appropriate, for example 

transmission in regions of the spectrum where the sample is opaque. Nevertheless, 

in the event that both the real and imaginary optical constants can be determined 

in some region of the spectrum - for example, if R(�) is measured at low frequencies 

and �(�) and ∆(�) are measured at higher frequencies - the optical constants can 
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typically be extracted with an uncertainty on the order of 1% over the entire  

spectral range. 

While correlated systems are incredibly diverse, a quite general 

characteristic of these materials is a partially filled valence d or f orbitals.  The 

electrons in these orbitals experience, for example, stronger Coulomb repulsion 

because of their higher degree of spatial confinement.  Many of these systems 

have large unit cells, complicated stoichiometry, and require chemical doping 

to induce the novel properties we’re interested in.  Following the example of 

Mendel, we choose a relatively simple yet representative system, as the more 

complicated systems, while interesting, could obfuscate the understanding we 

seek.  Vanadium dioxide (VO2) will serve as our drosophila – a comparatively 

simple system to observe and draw conclusions which could be quite broadly 

applicable.  Vanadium dioxide’s relatively simple unit cell, simple 

stoichiometric formula, and the fact that it experiences a metal-insulator 

transition near room temperature makes it an ideal candidate for study.  

Moreover, there is only one correlated d-electron per vanadium atom to 

consider.  Nevertheless, even in this “simple” correlated system, the physics is 

incredibly rich.  A deep look into the properties and history of research on VO2 

gives one an appreciation for the depth of the correlated electron problem, the 
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potential of these systems to drive disruptive technology, and the challenges these 

systems pose to researchers (See Chapter 2). 

In VO2, the vanadium ions are in the 4+ valence state.  The single unpaired 3d 

3d electron implies an unfilled valence band.  Thus one might naively expect the 

material to be a metal at all temperatures.  However, the insulating behavior arises 

when the bulk material is cooled below 340K.  The thermally-driven metal-insulator 

transition (MIT) is accompanied by a structural transition between the insulating 

monoclinic M1 and metallic rutile phases (See Fig. 1.1).  The insulating behavior 

arises as a result of the splitting of the valence (�1	) band and the upshift of the 


	� bands such that an energy gap of ≈0.6 eV occurs between the valence a1g band 

and the 
	� band.  Since the 1950s, the specific mechanism that leads to insulating 

behavior has been the subject of a glorious debate which has involved several 

prolific researchers, including Sir Neville Mott himself.  While the details will be 

discussed more thoroughly in Chapter 2, VO2 researchers generally have fallen into 

two factions.  The first, proponents of the Peierls mechanism, argue that the 

insulating behavior arises as a consequence of the change in lattice structure.  In 

the Peierls picture, unit cell doubling leads to splitting of the bands at the Brillouin 

zone boundary, which now corresponds to the Fermi energy in the doubled unit 

cell.  The second camp argues for the Mott-Hubbard mechanism: that the splitting 
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results from strong intra-atomic coulomb repulsion in the �1	 band.  In the 

picture, the structural transition alone cannot lead to the insulating phase, and 

electronic correlations dominate the opening of the gap.  Ultimately the primary 

question in VO2 research is to uncover the connection between the lattice 

 

Figure 1.1 — Lattice structure schematics and conductivity spectra for the rutile metal (green) and 
insulating M1 (black) phases in bulk VO2.  Notable spectral features are annotated (red). 
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structure and the electronic properties.  Infrared spectroscopy is ideally suited for 

this purpose because it can track both the electronic orbitals, through the inter-

band transitions, and the lattice structure, through the infrared active phonons 

(See Fig. 1.1).  

This thesis is organized as follows: we start with a review of the material and 

description of the current state of the field in Chapter 2.  In Chapter 3, the 

anisotropic infrared response of a single domain VO2 crystal is determined.  In 

Chapter 4, a study of two additional insulating lattice structures, monoclinic M2 

and triclinic (T), settles the longstanding debate over the cause of insulating 

behavior in favor of electronic correlations.  In Chapter 5, shifts in the electronic 

structure are observed in a compressively strained VO2 film.  In Chapter 6, we 

report that the patterns of phase coexistence that occur in the vicinity of Tc are 

reproducible each time the VO2 film is cycled through the metal-insulator 

transition. 
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 PROLOGUE 

That VO2 undergoes a metal-insulator transition (MIT) at 340K was 

discovered by Morin in 1959[3].  The emergence of insulating behavior was 

surprising, as the material was expected to have a partly filled band, and thus, 

according to “Wilson’s Rule” should be metallic at all temperatures[4].  Shortly 

thereafter, various mechanisms were proposed outlining how Wilson’s rule 

might be violated, most notably via electronic correlations[5] or lattice 

distortion[6].  Complications arise as the VO2 system has features reminiscent 

of both mechanisms.  For reasons that will be made clear later, decoupling the 

two effects has proven to be highly nontrivial.  As a result, the insulating phases 

of VO2 have gone unclassified – and ultimately unexplained – for more than 

half a century. 

Chapter 2  

Overview of VO2 
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In this chapter, my aim is to present a self-contained and coherent account of 

research on the VO2 problem.  Given the long history of the field and the iterative 

nature of research, a purely historical approach may not be the best approach.  

Instead, I contend that the history of the physics of VO2 is best understood with 

the benefit of hindsight.  I abandon any pretense of a chronological treatment in 

the interest of clarity and impact.  The chapter is thus organized as follows:   

In Section 2.2, the settled experimental facts regarding the lattice structure of 

the VO2 phases, including the monoclinic M2 and T insulating phases, which can 

be accessed by strain or chemical doping, are presented.  The lattice structures of 

the M2 and T phases suggests a powerful framework – the idea that the vanadium 

atoms form quasi-1 dimensional (1D) chains along the cr axis - that reveals a deep 

connection between all four lattice structures. 

In Section 2.3, the classic works of J.B. Goodenough in 1971 and Zylbersztejn 

and Mott in 1975 are summarized.  These serve as the canonical works of the 

Peierls and Mott-Hubbard sides of the debate, respectively.  These summaries serve 

to build a rigorously defined vocabulary to discuss later works. 

In Section 2.4, now that the necessary foundation has been laid, we establish 

the experimental facts about the VO2 system.  Experimental facts are discussed 

within the framework established in Section 2.2 and Section 2.3 where appropriate. 
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Here, I purposefully focus on the uncontentious and well characterized 

properties of the material.    

A number of more modern VO2 studies - despite the high quality of the 

experimental and computational work - have reached very strong and often 

contradictory conclusions.  These studies are summarized and discussed in 

Section 2.5. 

 LATTICE STRUCTURE 

Ultimately, a solution to the VO2 problem describes the connection between 

the lattice structure and the electronic properties.  While the bulk material only 

exhibits the rutile and M1 lattice structures, two additional lattice structures - 

monoclinic M2 and triclinic (T) - are accessible by chemical doping[7], tensile 

strain along cR[8], and compressive strain along (110)R[9] (See Fig. 2.1).   While 

some might argue that the M2 and T phases are somehow superfluous, we 

emphasize that any complete explanation of VO2 necessarily includes all four 

phases.  Moreover, as will become clear presently, the four lattice structures are 

deeply related.   

The lattice structures of the four phases were well characterized in the x-

ray diffraction (XRD) works of Longo, Kirkengard, Ghedira, McWhan, Marezio, 
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and others[10–16]. The approximate relations between the rutile phase and these 

these three phases are shown in table 2.1. 

It is noteworthy that the monoclinic phases do not share a 2-fold rotation axis 

(bm).  In the M1 phase, the 2-fold axis (bM1) is oriented along aR, while bM2 is 

oriented along cR.  Due to the γ and α angles in the triclinic structure being very 

 
Figure 2.1 — (a) Phase diagram of ����	
��� as a function of chromium doping[7].  (b) and (c) Strain-
temperature phase diagram of pure VO2 for strain (b) along cR [8] and (c) along [110]R [9].  
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close to 90 degrees, the structure was mistakenly indexed early on as monoclinic 

(M3) of point group C2/m.  Nuclear magnetic resonance (NMR) experiments 

that all vanadium atoms are dimerized in the T structure, confirming 

in Pouget’s notation [7], is the correct point group.     

The lower symmetry M1, M2 and T phases can be viewed as distortions of 

the higher symmetry rutile structure. The rutile VO2 structure is shown 

schematically in Fig. 2.2.  Qualitatively, the vanadium positions in the rutile 

structure are in a body centered tetragonal arrangement.  Each vanadium atom 

is surrounded by an oxygen octahedron.  In contrast to the somewhat more 

 
Figure 2.2 —  Rutile lattice structure.  Vanadium atoms shown in red, oxygen atoms in blue. 
 

M1 cR↔aM1 aR↔bM1 aR-cR↔cM1 

M2 2cR↔bM2 aR↔-cM2 aR↔aM2 

T 2cR↔ bT aR↔ cT aR↔ aT 

Table 2.1 — Approximate lattice relations in the VO2 crystallographic system in terms of the Rutile 
structure. 
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familiar perovskite structure, the oxygen atoms are not located on each face of the 

unit cell.  Instead, two equatorial oxygens lie on each aR-plane surface of the unit 

cell, while the apical oxygens are contained inside the cell.  It’s interesting to note 

that the octahedra which surround the central vanadium atom are rotated relative 

to the octahedra around the vanadium atoms at the corners of the unit cell by 90 

degrees about cR.  

While it is not obvious from the symmetries of the unit cells, there is a deep 

connection between the four VO2 lattice structures that is apparent when one views 

the displacements of the vanadium atoms from the rutile positions (See Fig 2.3).  

Vanadium atoms belong to one of two distinct vanadium “chains”, which are 

oriented along the cR axis.  The chains in the rutile and M1 phases are equivalent, 

except for the aforementioned relative rotation of the oxygen octahedra on each 

chain.  In the M1 phase, all vanadium atoms dimerize and tilt to an equivalent 

degree.  In contrast, the vanadium chains in the M2 and T phases are not 

equivalent. In the M2 phase, one chain exhibits an equally spaced zigzag type 

distortion, while the vanadium atoms of the other chain dimerize, but do not tilt.  

The triclinic phase is intermediate between the two monoclinic phases, with the 

two chains having unequal degrees of dimerization and tilting. Interestingly, it can 

now be seen that the degree of dimerization and the tilt of the dimers are not 
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independent effects. To illustrate, consider the M2 structure.  As the positively 

charged vanadium atoms repel one another, pairing on one chain encourages 

on the neighboring chain, and vice versa. 

It should be emphasized that while this quasi-1D idea of vanadium chains 

is quite simple, it should not be dismissed as overly simplistic. In the tradition 

of William of Occam – only the necessary complexity of the lattice structures 

is maintained.  As a result, the deep connection between the four lattice 

structures becomes clear.  Thus, with the four lattice structures placed within 

a clear and comprehensive framework, we are now in a position to consider 

what effect these different lattice structures might have on the electronic 

structures. 

 
Figure 2.3 — Schematic positions of the vanadium atoms in the VO2 lattice structures as viewed along 
[100]R. Arrows indicate displacements of the vanadium atoms from their Rutile positions.  Lines indicate 
shortest distance between vanadium atoms on the same chain. 
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 DEBATE OVER THE CAUSE OF THE INSULATING BEHAVIOR 

Ever since the discovery of the MIT in VO2 by Morin in 1959, researchers have 

struggled to account for the unexpected insulating M1 phase[3].  As alluded to 

previously, two distinct theoretical descriptions of the insulating behavior emerged 

early on, establishing the foundation on which the subsequent debate in the field 

has been built.  The first work, published in 1971 by J.B. Goodenough[17], 

described the effect of the structural phase transition on the electronic band 

structure.  In this “Peierls” picture - so named because the dimerization of the 

vanadium atoms is similar to an effect which always occurs in any half-filled one 

dimensional chain and leads to the opening of an energy gap – Goodenough argues 

that the structural transition alone induces the insulating M1 phase band structure.  

In contrast, Zylbersztejn and Mott[18] argued that the while the non-interacting 

band theory considerations described by Goodenough certainly occur in the VO2 

system, alone they are insufficient to open the experimentally measured energy 

gap.  Instead, they argue that electronic correlations are the dominant factor.  

Although the bulk of VO2 research has focused on the M1 phase, both 

Goodenough[19] and Mott[18,20] addressed the M2 and triclinic phases in the 

context of their respective pictures. 
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As should be clear from the above discussion, the essence of the VO2 problem 

is to understand the connection between the lattice structure and the electronic 

properties.  The most conspicuous structural element of all of the VO2 phases 

is the oxygen octahedra surrounding the vanadium atoms.  As this is a common 

structural element in the transition metal oxides, its effect is discussed below.  

It is helpful to first define a coordinate system where the z axis is oriented along 

the direction between the apical oxygens.  This causes the lobes of the mz=0 d 

orbital to point towards the apical oxygens.  The rotation of the coordinate 

system about the z axis should be chosen to point the lobes of one of the mz=2 

towards the equitorial oxygens, for example 
̂ ∥ �� (See Fig. 2.4).  Thus, all six 

 
Figure 2.4 — Angular part of the vanadium (red) d orbitals within an oxygen (blue) octahedron.  Modified 
from Ref. [78].   
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lobes of these two orbitals – ��2−�22  and ��� for our example – point toward the six 

oxygens of the octahedron.  These orbitals, collectively henceforth referred to as 


	�, hybridize strongly with the O2p orbitals, such that these states are raised in 

energy due to the negative charge (≈2-) on the oxygen atoms.  The remaining three 

3d orbitals, collectively referred to as �2	, are shifted to lower energies.  The 
�� 

orbitals are further split as the orbital which lies along the rutile cR axis ����� is 

shifted to lower energy relative to the other two ���
�� orbitals by the by the 

tetragonal symmetry of the Rutile phase.  This scenario is shown schematically in 

Figure 2.5.  This is the situation in the rutile structure. As there are empty states 

above the Fermi energy for the one vanadium 3-d electron, the material is expected 

to be metallic in the band picture, in agreement with the existence of the rutile 

metal. 

In the foundational work of the Peierls picture of VO2, Goodenough 

qualitatively describes the effect of the structural transition to the M1 phase within 

the context of band theory[17].  As we’ve discussed previously, Goodenough 
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identified the two salient 

features of the structural 

transition, the 

dimerization of the 

vanadium atoms along the 

cR axis, and the anti-

ferroelectric like tilt of 

those dimers.  The effect of 

the dimerization, and equivalently the unit cell doubling along cR, is to split the 

other mz=2d orbital, ��2−�2 in our coordinate system, into bonding and anti-

bonding components.  These orbitals are referred to as �1	 and �1	∗ , respectively.  

The tilting of the dimers results in a raising of the other two �2	 orbitals, now 

the 
	� band, above the Fermi energy.  Goodenough notes that, qualitatively, 

these two effects are sufficient to open the energy gap (See Fig. 2.5).  Strictly 

speaking, a Peierls transition refers to the dimerization - and subsequent gap 

opening - of a half filled chain.  However, in VO2 the Peierls mechanism is 

generally used to refer to both effects.  Note that the common thread of the 

two effects is that they are responses of the single particle (non-interacting) 

electronic band structure to the structural transition.  Zylbersztejn and Mott 

 
Figure 2.5 — Schematic of band splitting in VO2.  Δ and Δ|| are 
shorthand referring to the energy gap and the splitting between 
the bonding and anti-bonding ��� bands, respectively. 
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agree that both effects described by Goodenough, the splitting of the �1	 band, and 

the upshift of the 
	� band, are necessary to open the energy gap.  It is worth 

emphasizing that this band scheme is supported by optical, x-ray absorption, and 

photoemission spectroscopic experiments[21–25].  However, the debate is whether 

or not the dramatic changes in the electronic structure across the MIT can be 

explained primarily by a structural transition. Zylbersztejn and Mott argued that 

no quantitative description is possible without taking into account the intra-atomic 

Coulomb repulsion, the Hubbard U parameter[18].   

 THE EXPERIMENTAL RECORD 

Ultimately it falls to experiment to determine the physical reality of the system.  

While the literature still lacks a conclusive experimental result to settle the debate, 

there has been a great deal of experimental work done on the VO2 system over the 

67 years since the discovery of the MIT[3].  The experimental situation thus far, is 

as follows: 

A. Thermodynamics 

The first order transition between the M1 and rutile phases has a latent heat of 

1020 cal/mol, which corresponds to an entropy change (∆S) of approximately 1.6kB 

per formula unit[26].  Early on, it was estimated that the electronic entropy of the 
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rutile metal accounts for approximately 1/3 of the entropy change[6,18].  In line 

with this early estimate, neutron and inelastic x-ray scattering reveals that 70 

percent of the entropy change is due to the soft phonon modes of the rutile 

[27].  That the thermodynamics are partly lattice driven illuminates why the 

transition temperature is sensitive to oxygen isotope substitution[28].   

Interestingly, in pure, unstrained VO2 the four phases have been shown to 

be degenerate at Tc [8].   The latent heats between the various phases induced 

by chromium doping is shown in Table 2.2, reproduced from Ref. [7].  There is 

a negligible latent heat between the M1 and T phase, resulting in a second order 

phase transition[7].  This is consistent with the suggestion that the T phase is 

transitional between M1 and M2; the T phase is really a continuum of VO2 

lattice structures with unequal vanadium pairing on all chains.  In contrast, the 

T to M2 phase transition is first  order - except when induced with very large 

Table 2.2.  Latent heats per formula unit of various structural phase transitions in V1-xCrxO2[7].   

x Transition Latent heat 

(meV/F.U.) 

0 M1 � R 44.67 

0.003 M1 �T unmeasurable 

 T �M2 7.11 

 M2 � R 34.7 

0.03 T�M2 1.17 

 M2 � R 33.4 
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Cr concentrations (≥3%) – with a latent heat of 7.11 meV/F.U.[7].  That there is 

an entropy difference between the M2 and the T/M1 insulating phases was shown 

to correspond to the magnetic entropy of the (undimerized) antiferromagnetic 

chains in the M2 phase[7] (See Section 2.4D). 

B. Lattice dynamics 

It was identified early on that the R � M2 structural transition is consistent 

with a soft acoustic mode at the R-point of the rutile phase[29].  This mode is 

doubly degenerate, and an equal superposition of both modes corresponds to the 

M1 phase structure.  The doubled unit cell of the M1 phase, relative to the R phase, 

changes the symmetry of these modes to Ag (Raman active), and fold them to the 

zone center (Γ)[30].  The soft R-point acoustic modes were also seen by Gervais 

and Kress in shell model calculations [31]. There is extensive experimental data 

supporting the notion that quite generally, the phonon modes associated with the 

structural transition soften (νi � 0): 

• X-ray diffuse scattering experiments have confirmed that there is 

indeed a soft mode at the rutile phase R-point[32].  This is further 

confirmed by Neutron diffraction and inelastic x-ray scattering.   
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• Raman spectroscopy reveals softening of the Ag modes associated 

with the structural transition from the lower symmetry 

structures[33,34]. 

Of course, that this would be the case was known form the outset; the structural 

transition must necessarily proceed through an instability in the lattice. 

Interestingly, there is extensive experimental evidence that the rutile phase 

lattice dynamics are quite different from those of the insulating phases.  For 

example: 

• In their x-ray diffraction study, McWhan et al. observed large 

thermal displacements in the rutile phase [11]. 

• Neutron diffraction and inelastic x-ray scattering shows that the 

rutile acoustic R-point mode in energy space is unusually broad.  

Such broadening corresponds to an unusually short phonon 

lifetime[27].   

• Rutile phase infrared [35,36] and Raman [37] phonon spectra show 

optical phonon modes much broader than their insulating phase 

counterparts.   
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These results indicate that the ions in the rutile phase interact through highly 

anharmonic potentials.  Equivalently, their phonons have very short lifetimes 

compared to the insulating phases.  The broad phonon features of the rutile phase 

are a signature of the high lattice entropy discussed previously. 

As pointed out by Mott, the dramatic change in the phonon lifetimes between 

the different electronic states suggests strong electron-phonon coupling[18].  Mott 

contends that the factors that lead to high lattice entropy - soft modes and short 

lifetimes - ultimately result from the electrostatic screening provided by the 

conduction electrons in the rutile metal.  Such screening results in anharmonic 

interactions between the ions, and accounts for both effects.  This electrostatic 

screening is significantly reduced in the insulating phase, which explains why the 

phonon features are much less broad. 

C. DC transport 

Quite generally, transport and optical techniques indicate that the rutile 

conductivity is higher along cR than aR.  While dc electrical transport 

measurements indicate that the conductivity can be an order of magnitude or more 

larger along cR that aR in the rutile metal[38,39], optical spectroscopy  indicates 

that the conductivity ratio is of order unity [24,35,36].  It is thus reasonable to 

conclude that the fairly small anisotropy observed in the optical experiments is the 
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intrinsic anisotropy, while the transport measurements reveal extrinsic effects, 

such as film microstructure, micro-cracks, or phase coexistence.  In support of 

this argument,  transport measurements on free-standing VO2 nanorods, which 

are extremely clean samples, give a conductivity along cR in the rutile phase of 

approximately 2000 Ω-1cm-1, in good agreement with the infrared optics 

data[40].  The conductivity anisotropy, although small, may be taken as 

evidence that multiple bands (��� and ���
∗ ) cross the Fermi energy, in 

agreement with the schematic band structures suggested by Goodenough and 

Mott[26].  

Across the metal-insulator transition to the M1 phase, the dc conductivity 

can change by as much as five orders of magnitude, depending on the sample.  

The magnitude of this change has been shown to be highly dependent on 

optimal stoichiometry[3,38,41]. The three insulating phases have very similar 

dc resistivities, with the M1 and T phase resistivities being quite similar, and 

the M2 phase resistivity being approximately a factor of two higher[14].  The 

notion that the three insulating phases are quite similar is highlighted by the 

fact that the activation energy of the conductivity, 0.4 eV in M2 and T phase 

VO2 induced by 0.4% Cr doping, is quite similar to the 0.45 eV activation 

energy for the M1 phase of pure VO2 [18,42]. 
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D. Magnetism 

The magnetic properties and electronic structure of VO2 is best thought about 

about in the vanadium chains framework discussed previously.  Pouget et al., in 

in Ref. [7], recognized that both the band (Peierls) and correlated (Mott) pictures 

pictures of VO2 are merely limiting cases of the Hubbard model on the chains.  The 

vanadium chains in VO2 are analogous to the more familiar problem of a chain of 

hydrogen atoms.  On the dimerized chains, the two d electrons of each dimer form 

a bonded spin singlet.  This is responsible for the very small paramagnetic 

susceptibility seen in the M1 and T phase[7].  As expected, these ground state 

singlets result in a Van Vleck paramagnetism that is largely temperature 

independent.  It’s interesting to note that the intra-dimer exchange constant (Jintra) 

is quite large, a lower bound for the M1 phase is estimated to be  Jintra ≥1,000 K[7].   

In the M2 phase, where half of the dimers are broken to form equally spaced chains, 

a negative Knight shift (K= - 0.13%) is observed via NMR on these chains, which 

is indicative of localized electrons.  These localized moments have an 

antiferromagnetic coupling with an exchange constant 2J between 40-60 meV 

[18,43,44].  This corresponds to J≈230 K to 350 K.  Thus, the fairly small region of 

the phase diagram near 340 K occupied by the M2 phase is probably above the 

Néel temperature, and the local magnetic moments on the undimerized chains may 
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not be ordered.  Pouget et al. estimate the magnetic entropy of this situation 

to be 5.6 meV/F.U., which is quite comparable to the entire latent heat between 

the T/M1 phases and the M2  (7.11meV/F.U.) [7].  Upon the transition to the 

rutile phase, as all dimers are broken, the (still) paramagnetic susceptibility 

increases by almost a factor of 10[26].  Berglund and Guggenheim interpreted 

this as evidence of the rutile phase having two bands: a wide band which would 

account for the transport properties (
	�) and a narrow band with a very high 

effective mass (�1	) which would make the major contribution to the magnetic 

susceptibility. 

E. Electronic structure 

Various experimental probes of the electronic  structure have confirmed the 

band structure of both bulk phases of pure VO2 (R and M1) to be qualitatively 

 
Figure 2.6 — Energy level diagram of the VO2 bulk phases 
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similar to what was suggested by both Goodenough and Mott.  While there is some 

quantitative disagreement – which is most likely attributable to differences in 

sample preparation and other systematic effects – infrared and optical photon 

spectroscopy, photoemission, and x-ray absorption spectroscopy all indicate the 

band structure shown in Fig. 2.6 for the rutile and M1 phases.  In the rutile phase, 

both the a1g and 
	� bands overlap the Fermi energy.  The oxygen 2p orbitals lie ≈ 

1.5 eV below the a1g band. The crystal-field splitting between the t2g orbitals (a1g 

and 
	�) and the 
	� orbitals is approximately 3 eV. 

 In the monoclinic M1 phase, we see the two qualitative effects described by 

Goodenough to open the energy gap, ∆, which is a quite rigid spectral feature of 

0.6 eV.  The a1g bands are split by approximately 2.5eV, forming a narrow (≈ 1eV) 

bonding (�1	) and anti-bonding (�1	∗ ) band.  We refer to this splitting as ∆ll, as it 

is the splitting of the d orbitals aligned parallel to the cR axis.  The upshift of the 


	� band across the transition to the M1 phase is approximately half an electron 

volt [21,23,24].  The O2p bands lie around 1.5 eV below the bonding a1g band. 
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 THE CURRENT STATE OF VO2 RESEARCH 

A. Theoretical work 

i. Density functional theory 

Ultimately, the qualitative similarity in the electronic structure predicted 

the Peierls and Mott-Hubbard pictures presents a real challenge. In 1994, 

structure calculations were performed by Wentzcovich et al. using the local 

approximation (LDA) of density functional theory[45].  This mean-field 

calculation represents the single-particle band theory (Peierls) prediction.  It 

does not include intra-atomic Coulomb correlations.  The result was a semi-

metallic M1 phase, where the a1g and 
	� bands overlap by 0.04 eV[45].  

Objectively, as the direct band calculation does not predict an insulator, let 

alone the experimental gap of 0.6 eV, this result is decidedly not in support of 

the Peierls picture.  However, the authors attributed the lack of a band gap to 

a tendency of LDA to underestimate the band gap.  Thus, the calculational 

result was ambiguous, but the authors’ interpretation was in support of the 

Peierls mechanism, as the LDA calculation showed the same qualitative effects 

predicted by Goodenough.  Of course, that these qualitative effects would be 

seen in a band theory calculation was never actually at issue, as both pictures 

agree that they will occur to some degree.  The debate has always been over 
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the relative contribution of band (Peierls) and electronic correlation (Mott-

Hubbard) effects in the real system.  It could be argued that LDA calculations 

suggest that the Peierls mechanism alone is not sufficient to open the experimental 

experimental energy gap. 

ii. Hybrid functionals 

Further calculations also faced quantitative discrepancies compared to 

experiment.  In 2011, V. Eyert performed calculations on both the M1 and M2 

phases using hybrid functionals[46].  Hybrid functionals mix non-correlated DFT 

with exact Hartree-Fock exchange.  Eyerts results correctly predict insulating 

behavior, but dramatically overestimated the band gap, by a factor of 2.  It can be 

shown that while Hybrid functionals are formulated somewhat differently, they do 

include intra-atomic correlations in a Mott-Hubbard-like manner [47].  However, 

the title of Eyert’s work, “VO2: A novel view from band theory”, seemingly implies 

a non-correlated picture.  While Eyert’s results do capture the insulating behavior, 

there were other issues:  his calculations found that the M1 ground state is higher 

in energy than the rutile phase, and the predicted magnetic properties disagree 

with experiment. 
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iii. Dynamical mean field theory 

Several Dynamical Mean Field Theory (DMFT) studies have been 

Early on, it was recognized that the cluster extension, which is used to consider 

the vanadium dimer as an “impurity”, was necessary to form bonded singlets 

the dimers to yield the experimental magnetic properties[48].  DMFT studies 

have been performed by two different research groups.  Biermann and coworkers 

describe the M1 phase modeled by cluster DMFT as a “correlation-assisted 

Peierls insulator”[48–51].  To clarify this seemingly contradictory jargon, they 

argue that while the correlations are necessary to open the energy gap, the M1 

insulator is Peierls-like in the sense that the bands do not have very short 

lifetimes, a hallmark of Mott-Hubbard insulators.  In contrast, Kotliar and 

coworkers emphasize the importance of electronic correlations[52–54].  In an 

striking inversion of phrase, they describe the M1 phase as a “Peierls assisted 

orbital selective Mott transition”[53].  In their more recent work, which also 

includes the M2 phase, they go further, to describe the rutile to M1 phase 

transition as a “Mott transition in the presence of strong intersite exchange”[54], 

where the function of the strong intersite exchange is to encourage bonding on 
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the vanadium dimers.  Interestingly, the calculated electronic structures of the M1 

and M2 phases are quite similar[54]. 

B. Experimental challenges 

Researchers have struggled to decouple the effect of the lattice distortion from 

that of Coulomb correlations.  Although the experimental and theoretical work has 

generally been of the highest quality, the interpretation of the results can be quite 

challenging.  Often, the field in general has been somewhat overzealous in 

interpreting results, leading to contradictory and misleading conclusions.  

Ultimately, a definitive experimental work is necessary to distinguish between the 

two mechanisms, and permit a coherent re-interpretation of the existing literature. 

To illustrate the difficulty, we return to the Hubbard model on the vanadium 

chains discussed previously.  The ground state in both the Mott-Hubbard and 

Peierls limits is characterized by a bonded spin singlet on the vanadium dimers.  

There is no clear physical distinction between the two situations in the M1 phase, 

where all of the vanadium atoms dimerize equivalently.  Pouget et al. identified 

this difficulty early on [7].  Their insight led them to study the M2 and T phases, 

in addition to the more well studied bulk phases, and permitted the most significant 

experimental work with regards to the VO2 debate.  Their NMR results revealed 

the presence of local magnetic moments of about one Bohr magneton on the 
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equispaced chains in the M2 phase.  The presence of these local moments, which 

is confirmed by electron paramagnetic resonance [55], is a clear hallmark of a 

Mott-Hubbard insulator.  They argued that the since the transport properties 

of the insulating phases are quite similar, and the transition between the M1 

and T phases is continuous, that all insulating phases lie near the Mott-

Hubbard limit.  However, they left the conclusive experiment to future work: 

“However, the resistivity is probably extrinsic in 

origin and not a reliable guide to the behavior of the 

intrinsic energy gap. In this regard it would be of 

interest to measure the optical gap in the M2 phase 

and compare it to the value in the M1 phase.”   
 

In Chapter 4, we present the first such measurement in confirmation of 

Pouget’s argument.  The conclusion is supported by hybrid functional (HSE) 

calculations with parameters more appropriate for 3-d oxides[56] than those 

used in previous hybrid functional calculations on VO2[46].  The argument does 

not rest on any particular model, as it is also supported by the Hubbard model 

on the vanadium chains discussed in Pouget’s work, as well as the most recent 

DMFT study discussed previously [54]. 

Strangely, Pouget’s insight into the importance of studying the M2 and T 

phases was largely ignored by subsequent experimental works, which focused 

primarily on the M1 and rutile phases of bulk VO2.  It is instructive to review 
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selected recent experimental studies from the literature.  While these works often 

make very bold and sometimes contradictory claims, they are ultimately 

inconclusive. 

Photoelectron and x-ray absorption spectroscopy 

The primary observation of photoelectron spectroscopy is that the 3-

dimensional character of the rutile metal is transformed to a quasi-one dimensional 

character in the M1 phase[21,25].  This is essentially a confirmation of the 

qualitative electronic structure agreed upon by both Zylbersztejn and Mott, and 

Goodenough[17,18].  The authors of these works attribute the change from three 

dimensional to quasi one dimensional character as being driven by electronic 

correlations, but then point out that the now one dimensional vanadium chains 

contain half-filled orbitals, and are thus susceptible to a Peierls like transition.  

These experiments, being unable to decouple the magnitude of the two effects, 

resorted to describing the transition mechanism as “collaborative”.  While this 

interpretation is quite attractive, particularly given the difficulty of decoupling the 

two effects, there is no reason to assume that the Peierls and Mott-Hubbard 

mechanisms both make significant contributions to opening of the energy gap.  

In 2016, an x-ray absorption spectroscopy study by Grey et al. argued that 

electronic correlations soften prior to the MIT and structural transition.  This result 
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would be strongly in support of the Peierls picture, if the insulating phase of 

VO2, with the same band gap, can exist despite the absence of intra-atomic 

coulomb repulsion.  They argue that a particular spectral feature is indicative 

of electronic correlations based on the theoretical work of Biermann et al. from 

2005[48].  It follows from this assignment of the upper Hubbard band that the 

�1	 to �1	∗  splitting is reduced by electronic correlations is in conflict with the 

later works of Biermann et al., as well as those of Kotliar et al.[49,53,54,57].  As 

their conclusion hinges on this somewhat suspect assignment, their results are 

ultimately ambiguous. 

i. Neutron diffraction and inelastic x-ray scattering 

Neutron diffraction and inelastic x-ray scattering have attributed the 

mechanism of the opening of the energy gap to the Peierls mechanism[27].  

These experiments observe the soft phonon modes corresponding to the 

structural transition and the broad rutile phase phonons discussed previously.  

They find, as was deduced early-on[18,26], that the thermodynamics of the 

phase transition is dominated by the high lattice entropy of the Rutile phase. 

Thus, their experimental work further characterizes the lattice dynamics, and 

confirms the previously established facts regarding the lattice dynamics of VO2. 
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Given the strong electron-phonon coupling in VO2, the fact that the 

thermodynamics are dominated by the lattice is not conclusive experimental 

evidence in favor of the Peierls mechanism.  This point was argued by Zylbersztejn 

and Mott[18].  Moreover, it can be argued that the change in transition temperature 

as a function of oxygen isotope (O18) substitution suggests that the MIT is driven 

primarily by changes in the electronic structure[28].  It is worth noting that such 

an isotope effect is also observed in V2O3, which is unambiguously classified as a 

Mott-Hubbard insulator[28]. 

Their argument in favor of the Peierls mechanism depends on supporting 

molecular dynamics calculations of the phonons, which are quite successful in 

reproducing the measured lattice dynamics.  Their argument ultimately fails due 

to a mischaracterization of the HSE06 model as uncorrelated, when this is not the 

case.  To summarize:  They find that the lattice instability occurs using both the 

HSE06 and PBE+U (U=3.4 eV) methods.  They assert that the HSE06 calculations 

do not include electronic correlation effects, and thus argue that correlation effects 

are not necessary to induce the structural transition.  Moreover, they note that 

HSE06 actually overestimates the energy gap at 1.1 eV, in comparison to the 

experimental value of ≈0.6 eV.  However, it can be shown that HSE06 is in fact a 

Hubbard-like model [58].  Therefore, their claim that HSE06 does not include 
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correlation effects is incorrect.  Moreover, in conflict with their conclusion, their 

results with a truly uncorrelated model (PBE (U=0)) does not show a lattice 

instability corresponding to the structural transition and opens only a very 

(<0.1 eV) energy gap[27].  Thus, their results actually strongly support the 

that the energy gap and the structural transition occurs as a result of electronic 

correlations. 

ii. Time-resolved experiments 

To decouple the two mechanisms, ultrafast pump-probe measurements have 

attempted to leverage the separation in timescales between the lattice and the 

electronic degrees of freedom.  One such work, performed early on by 

Cavalleri[30], used near near-infrared and optical pumps – above the band gap 

of VO2 – to induce a metal-insulator transition.  Using photons of the same 

energy to probe the phase transition, they observed that they could not drive 

the transition faster than approximately 100 fs.  This timescale corresponds to 

½ the oscillation period of the phonons involved in the structural transition.  

This led them to conclude that the structural transition is the essential 

component in the MIT, in favor of the Peierls mechanism.   

However, in a more recent work using a similar pump (� ≈800 nm), an 

ultrafast electron diffraction probe reveals that the transition proceeds through 
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a metastable metallic state with the M1 lattice structure[59].  This result was taken 

as strong evidence of the Mott-Hubbard nature of the insulating state, as the M1 

lattice structure was insufficient to open the energy gap.  The picture from ultrafast 

experiments is thus unclear, in part due to the fact that the metastable and 

transient phases induced by ultrafast excitations inherently convolute the issue.  It 

is not apparent how the properties of these transient phases relate to the 

equilibrium phases, and therefore it is unclear how much insight they provide 

regarding the equilibrium phases. 

iii. Monoclinic metals 

A number of studies have observed monoclinic phases with metallic electronic 

properties[59–61]. The existence of such a phase is a strong indication that the 

Peierls mechanism alone is not sufficient to open the energy gap.  Nevertheless, as 

these phases are observed in extreme circumstances such as nano-scale sized 

domains[61], ultrafast optics experiments[59] or under high hydrostatic 

pressure[62,63], the full characterization of these phases is challenging.  Certainly, 

the electronic properties of these phases seems to be quite different from the bulk 

rutile metal [62].  Moreover, it is unclear that the dimerization (unit cell doubling) 

is the only thing that is changed in these materials.  It is quite possible that intra-

atomic correlations (Hubbard U) are modified across the phase transition.  Thus, 
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it is at present not possible to rule out the Peierls mechanism from having a 

significant effect on the electronic structure.   

C. State of the debate 

The present state of the debate is as follows:  While there is significant 

evidence that electronic correlations play some role - based both on the 

experimental work, in particular the observation of monoclinic metals, and the 

calculational result that LDA, a Peierls (band) like model, fails to open an 

energy gap – the contribution of the Peierls distortion remains unclear.  Thus, 

the relative contributions of electronic correlations and lattice structure to the 

MIT need further investigation. 
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 INTRODUCTION 

The anisotropy of the monoclinic M1 and rutile lattice structures of VO2, along 

with the inherent anisotropy of the electronic p and d orbitals, may be expected to 

lead to anisotropy in the electronic and phonon properties.  The directional 

dependence of these properties could play a major role in the MIT.  Evidence for 

the relevance of anisotropy is provided by photoemission and x-ray absorption 

experiments that have documented the changes in occupation of the a1g and 
	� 

orbitals across the phase transition[21].  Accurate measurements of the anisotropy 

of the lattice dynamics and the infrared electronic properties in the monoclinic M1 

Chapter 3  

Anisotropic infrared response of VO2

microcrystals 
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and the rutile phases are therefore important in the investigation of the cause(s) 

of the MIT. 

Previous infrared spectroscopy experiments on polycrystalline thin films or 

crystals have been limited in their ability to investigate the anisotropy of VO2 

due to the nature of their samples[23,24,35,64].  For example, as large VO2 

single crystals go through the structural transition, they exhibit twinning 

because the symmetry of the rutile (tetragonal) structure is broken in the 

monoclinic M1 structure.  The rutile cR axis always becomes the monoclinic am 

axis, but only one of the rutile aR axes can transform to the monoclinic bM1 axis 

leading to two possible orientations of the bM1 axis differing by a 90 degree 

rotation about the cR axis[65]. Domains approximately 40 micrometers in size 

result, the difference between the two types of domains being the orientation of 

the bM1 axis[35].  A macroscopic infrared measurement averages over these 

domains[35].  Therefore, twinning is a problem for measuring the anisotropy of 

charge dynamics of VO2.  Moreover, multi-domain crystals also tend to crack 

or break as they go through the MIT[35].  As the cracks may introduce new 

reflection planes, extracting the optical properties from such a crystal is fraught 

with difficulties.  Polycrystalline thin films typically have grains with different 

orientations.  Therefore, in both types of samples, assignment of phonon 
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symmetries and parameters is difficult.  Thus either a single domain crystal or an 

epitaxial, untwinned film is required to make meaningful, specific measurements of 

the anisotropy of the electronic properties and phonon parameters. 

Recently it has become possible to grow untwinned single domain VO2 

microcrystals on oxidized silicon substrates by the vapor transport method[40,65].  

Single domain crystals are less likely to crack as they go through the MIT.  At 

room temperature, the am axis of the monoclinic M1 phase of the microcrystal is 

parallel to the plane of the substrate[66].  Previously, infrared spectroscopy has 

been performed on VO2 microcrystals in the spectral range between 1000 cm-1 and 

7000 cm-1.  However, these experiments did not consider the anisotropic nature of 

the VO2 microcrystal and could not measure the infrared active phonons[67].  

Broadband infrared microspectroscopy with polarized light allows us to measure a 

single domain sample to obtain the true anisotropy of the optical constants.  In 

this work, we report the center frequencies, oscillator strengths, and broadenings 

of 14 of the 15 infrared (IR) active phonons in monoclinic M1 VO2 and all 4 infrared 

active phonons in rutile VO2, and assign them their proper group theory labels.  

We compare our results to previous work done on twinned bulk crystals in Ref. 

[35] and to zone-center frequencies calculated with first principles theory.  We also 
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report the directional dependence of the low frequency optical conductivity of 

metallic rutile VO2 between 200 and 6000 cm-1. 

The chapter is organized as follows: in the next section we present the salient 

aspects of the experimental methods and data analysis followed by an account 

of the theoretical methods. Next, we discuss the experimental and theoretical 

results for the monoclinic phase and then the rutile phase. We conclude by 

reviewing our main results. Finally, we present technical details about our 

experiment and data analysis for the experts in Appendix A. 

 METHODS 

A. Experimental methods 

The single domain microcrystals used in this experiment were grown by 

vapor transport on oxidized silicon substrate[40].  Most of these crystals grow 

in long, thin rods that are not particularly suitable for infrared 

microspectroscopy because their narrow dimension tends to be smaller than the 

diffraction-limit.  However, there are a few large microcrystals with low aspect 

ratios among the ensemble, and we chose one of the largest crystals for our 

experiment (See Fig. 3.1a).  The thickness of the VO2 microcrystal was directly 

measured by an atomic force microscope.  Layer thicknesses used in the 
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modeling are shown in Fig. 

3.1b.  As the substrate is 

transparent in the infrared 

spectral range, it is possible to 

make transmission 

measurements for obtaining the 

frequency-dependent complex 

dielectric function of VO2 

microcrystals. 

Preliminary 

characterization of the VO2 

microcrystals with infrared 

microscopy at frequencies greater than 800 cm-1 was carried out at the Advanced 

Light Source at Lawrence Berkeley National Laboratory.  To extend our spectral 

range into the phonon region, we later performed broadband infrared micro-

spectroscopy between 200 cm-1 and 6000 cm-1 on the VO2 microcrystal at the U12IR 

beam line at National Synchrotron Light Source.  A Fourier Transform Infrared 

(FTIR) Spectrometer was used to measure the broadband infrared transmission of 

the VO2 microcrystal and substrate normalized to the transmission of the substrate 

 
Figure 3.1 — (a) Optical image of the VO2 microcrystal 
studied.  The double-ended arrow indicates the size of the 
crystal.  (b)  Schematic cross sectional view of the microcrystal 
and oxidized silicon substrate.  The thicknesses of the various 
layers are given in parentheses.  (c) Diagram of the 
polarizations used with respect to the crystallographic axes in 
(i) the monoclinic M1 phase and (ii) the rutile phase.    
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between 200 cm-1 and 6000 cm-1. A 15X 0.58 NA Schwarzschild microscope 

objective focused the FTIR beam onto the microcrystal[68].  A wire-grid on 

5 substrate polarizer was used to orient the electric field of the incident light 

perpendicular and parallel to the am axis of the M1 phase (see Fig. 3.1c).  The 

orientation of the am axis in the VO2 microcrystal was determined by rotating 

the polarizer until the Au phonon around 600cm-1 was absent in the 

spectrum[35].  Then, the polarizer was oriented perpendicular to the am axis.  

As the resulting spectrum for �⃑┴am contains none of the Bu phonons seen in 

the �⃑//am spectrum, it can be concluded that the crystal is oriented such that 

both the am and bm axes are in the plane of the crystal, i.e. �⃑┴am is in fact 

�⃑//bm.  In the rutile phase, the incident light was polarized parallel to the ar 

and cr axes (see Fig. 3.1c). Normalized, broadband transmission spectra were 

taken at 295 K for the monoclinic M1 phase, and at 400 K for the rutile phase.  

The absolute transmission of the substrate was also measured at both these 

temperatures (See Appendix A). 

Kramers-Kronig consistent oscillators were used to model the normalized 

transmission spectra and extract ε1 and ε2, the real and imaginary parts of the 

complex dielectric function.  Phonon features in the normalized transmission 

spectra were modeled with Lorentz oscillators of the following form:  
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Where �i is the center frequency (inverse wavelength) of the ith phonon, si is 

the oscillator strength parameter, and γi is the broadening parameter.  The 

electronic response of the rutile metal was modeled with Lorentz, Tauc-Lorentz 

and Drude functions. 

B. Theoretical methods 

First-principles density functional theory (DFT)[69] calculations were 

performed by the Krakauer group at William & Mary using the “Quantum 

Espresso”[70] computational package, with the DFT+U[71] extension, in order to 

describe strong V d-d orbital correlations.  The PBE[72] version of the generalized 

gradient approximation (GGA) was used for all calculations and only non-magnetic 

ground states were considered throughout this work. The rotationally invariant[73] 

form of the GGA+U approach is used to apply the Hubbard U correction. For all 

systems, we investigated a range of U corrections ranging from 0 � 7 eV.  A 

Hubbard U value of 5 eV was found to give good agreement for both structures, as 

discussed further below. Lattice parameters for rutile[11] and monoclinic M1[15] 

structures were fixed at values obtained from x-ray diffraction measurements. All 

internal atomic coordinates were relaxed until the calculated forces were less than 



48 

 

 

 

1 mRy/Bohr (≈0.03 eV/Å). Ultrasoft pseudopotentials[74] were obtained from 

the Quantum Espresso website for vanadium and oxygen[75]. Tests showed that 

a wave function planewave cutoff of Ecut = 50 Ry and a charge density cutoff 

of 300 Ry was sufficient to yield converged total energies and forces.  Brillouin 

zone integrations were performed using 6x6x8 and a 4x4x4 Monkhorst-Pack[76] 

k-point meshes for the rutile and monoclinic structures, respectively; a small 

Fermi-Dirac type temperature broadening of 0.05 eV was also used in the 

metallic rutile phase. Zone center phonons were calculated using the method of 

small displacements and analyzed using the “Phonopy”[77] program, and Born 

effective charge tensors Z* and ε∞ were used to include non-analytic 

contributions to the dynamical matrix. 

 RESULTS AND DISCUSSION 

A. Monoclinic M1 phase 

There are 12 atoms in the unit cell of monoclinic M1 VO2 of space group 

P21/c[78].  Group theory then demands that there will be 36 phonon modes, of 

which 3 are acoustic, 18 are Raman active, and 15 are IR active.  The 

longitudinal or transverse character of a particular IR active mode depends 
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upon the direction of the 

phonon wave-vector q.  When q 

is along the bm axis, the 8 Au IR 

modes have purely longitudinal 

character, while the 7 Bu IR 

modes have purely transverse 

character[79].  That is to say 

that the net dipole moments are 

along bm for the Au modes and 

perpendicular to bm for the Bu 

modes.  Along other wave vectors the phonons will have mixed 

transverse/longitudinal character due to the low symmetry of the M1 phase.  In 

the present experiment, the wave vector is perpendicular to the am-bm plane so all 

15 IR modes are expected to be seen: 8 Au modes when the light is polarized along 

bm and the 7 Bu modes when the light is polarized along am (perpendicular to bm).   

Experimentally, we see 7 distinct phonon features when the electric field  (�⃑)  
of the incident light is parallel to am (Bu), and 7 distinct features when �⃗ is parallel 

to bm (Au) (See Fig. 3.2). The eighth Au feature, which has been seen by Barker et 

Figure 3.2 — The experimentally derived imaginary part of 
the complex dielectric function for monoclinic (M1) VO2 at 

T=295K for (a) ����//bm (Au) and (b) ����//am (Bu) in the phonon 
spectral region. 



50 

 

 

 

al.[35] at 189 cm-1 in a bulk, twinned crystal, is outside of our spectral range.  

8 Au modes are thus accounted for. Table 3.1 tabulates the measured phonon 

parameters. The Au peak near ≈ 600 cm-1 in Fig. 3.2 is asymmetric, which 

required two Lorentz oscillators, ω = 607 and 637 cm-1, to fit, as shown in Table 

3.1.  We speculate that the apparent asymmetry observed near ≈ 600 cm-1 could 

be due to two-phonon processes arising from phonons near ≈ 300 cm-1.  

In general, our Au center frequencies are in good agreement with Ref. [35] 

(See Fig. 3.3). Whereas Ref. [35] only identifies one mode at 505 cm-1, our 

increased spectral resolution of 2 cm-1, as opposed to the ≈7.5 cm-1 resolution of 

Ref. [35], allows us to resolve two distinct features at 500 cm-1 and 521 cm-1, so 

that we see 7 IR active Au modes within our measured spectral range.  The 

Table 3.1 — Lorentz oscillator fit parameters for monoclinic (M1) VO2 zone-center infrared active 
phonons 

 Au modes  Bu modes 

Mode no. νi (cm-1) si γi  νi si γi 

(1) (189) (0.54) (0.012)  277 4.01 0.062 

2 281 4.53 0.074  324 3.49 0.038 

3 310 6.69 0.055  351 1.67 0.041 

4 336 0.49 0.023  367 1.88 0.044 

5 500 0.77 0.060  392 0.99 0.038 

6 521 1.34 0.047  519 1.08 0.110 

7 607 3.42 0.040  709 0.25 0.071 

 637 0.67 0.100  - - - 

8 720 0.15 0.056  - - - 

Notes: Au mode 1 is from Ref. [35] as it falls just outside our spectral range.  Au mode 7 is asymmetric and 
requires two oscillators for a proper fit.  
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broadenings of the Au modes are 

within 10% of those measured 

by Ref. [35] for comparable 

modes.  It should be noted that 

the Au parameters in Ref. [35], 

measured as E┴aM1, were 

extracted from a spectrum with 

all 15 IR active phonons due to the twinning of the bulk crystal.  Our Bu (�⃑//aM1) 

mode center frequencies largely agree with Ref. [35].  However, we resolve two 

distinct modes at 351 cm-1 and 367 cm-1 whereas Ref. [35] reports a single mode at 

355 cm-1.  With the inclusion of this mode, all 7 Bu modes are accounted for in our 

data.  Ref. [35] also reports very weak modes at 227.5 cm-1 and 478 cm-1, which do 

not appear in our data.  For comparable modes, the broadenings for the Bu modes 

agree reasonably well with those of Ref. [35], with the exception of Bu mode 6, 

which is nearly twice as broad in the present work.  It should be noted that this 

discrepancy is due in part to the “extra” mode used in Ref. [35] at 478 cm-1.  

Moreover, the larger broadening of Bu mode 6 could be due to contribution from 

two phonon processes associated with Bu mode 1.  Even though the aM1 axis is in 

the same direction for all the domains in Ref. [35]’s twinned crystal, the phonon 

 
Figure 3.3 — Comparison of VO2 monoclinic (M1) center 
frequencies of Au and Bu phonon modes from our experiment 
(black squares) and Ref. [35] (red circles). 
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parameters, particularly the oscillator strengths, will depend on the orientation 

of the wave vector of the incident light relative to the bM1 and cM1 axes.  Thus, 

the oscillator strengths between our measurements on an untwinned crystal and 

those of Ref. [35] cannot be directly compared.   

The phonon center frequencies at the gamma point have been calculated 

using GGA+U calculations.  A Hubbard U = 5 eV yields good agreement with 

our experimental frequencies as seen in Table 3.2. Furthermore, this value yields 

a band gap of ≈ 1.0 eV which is in line with the experimentally determined 

band gap of ≈ 0.6 eV[21,23,64,80,81].  In general, there will be a frequency shift 

in the IR modes due to LO/TO-type splitting. These require knowledge of the 

high-frequency (above the phonon region) dielectric constant ε∞ as well as the 

Born effective charge tensors Z*.  Due to technical complications in calculating 

ε∞ and Z* with GGA+U, we used the experimentally determined value ε∞ ≈12 

from the present work; two sets of Z* tensors were used, the first from 

monoclinic ZrO2 from Ref. [79] and, for comparison, the second using nominal 

diagonal values Zαβ*(V)=+5eδαβ and Zαβ*(O)=-2.5eδαβ [Zαβ*(O) were simply 

fixed using the acoustic sum rule]. For the sample geometry, photon wave 

vectors are perpendicular to the am-bm plane (the Γ to Y direction in the 

Brillouin zone), so only the Bu frequencies depend on ε∞ and Z*[79]. 
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As seen in Table 3.2, the agreement between experiment and theory is slightly 

slightly better for the Bu modes than for the Au modes.  The computed mean 

absolute deviation (MAD) for the Au modes is 45 cm-1 while for the Bu modes it is 

39 cm-1 or 35 cm-1 depending on the choice of Born tensors: values in parenthesis 

are for the nominal Z* discussed above.  The agreement between our measured and 

computed frequencies (and the band gap) can be improved by decreasing the 

Hubbard U correction to 3 - 4 eV.   However, this greatly increases the discrepancy 

for the rutile phase.  

Table 3.2 — Comparison of experimental and theoretical phonon frequencies for monoclinic (M1) VO2. The 
Mean Absolute Difference (MAD) between the theory and experiment is given for both phonon symmetries. 
For the Bu theory values the non-analytic correction includes ZrO2 Born effective charges, whereas the 
frequencies in parentheses used nominal charges for V and O. 

Mode 
no. 

Au mode center frequencies (cm-1)  Bu mode center frequencies (cm-1) 

Experiment Theory Difference  Experiment Theory Difference 

1 (189) 149 40  277 218 (227) 59 (50) 

2 281 246 35  324 292 (292) 32 (32) 

3 310 275 35  351 370 (370) -19 (-19) 

4 336 355 -19  367 403 (402) -36 (-35) 

5 500 417 83  392 466 (434) -74 (-42) 

6 521 466 55  519 544 (551) -25 (-32) 

7 607 512 95  709 738 (754) -29 (-45) 

8 720 720 0  - - - 

   MAD 
45cm-1 

 
  

MAD 
39 (36) cm-1 

Notes: Au mode 1 is from Ref. [35]  To compare with theory, 607cm-1 is used as the center frequency for Au 
mode 7, as it is the center frequency of the stronger of the two oscillators used to model Au mode 7 (See 
Table 1). Bu theoretical values are for Z* taken from ZrO2 in Ref. [79]. while values in parenthesis are for 
nominal Z* values (see text). 
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B. Rutile phase 

The rutile structure is a simple tetragonal unit cell containing 6 atoms with 

space group P42/mnm[11,16].  Group theory predicts that there will be 18 rutile 

VO2 phonons: 3 acoustic, 3 silent, 5 Raman active and 7 infrared active modes.  

Of the 7 infrared active phonons, 3 are doubly degenerate.  Thus, we expect to 

see 1 A2u mode when �⃑//cR, and 3 Eu modes when �⃑//aR.  Experimentally, all 

four rutile infrared active phonons of VO2 are seen for the first time.  The 

measured phonon parameters and the low frequency optical conductivity are 

shown in Table 3.3 and Fig. 3.4 respectively.  The rutile VO2 phonons are 

roughly three times as broad as those of the monoclinic M1 phase and insulating 

rutile TiO2[82]. This broadening implies a decrease in phonon lifetime possibly 

due to electron-phonon coupling. 

Phase coexistence in the form of a stripe pattern with alternating insulating 

and metallic regions in the microcrystals was observed through an optical 

microscope in the MIT regime.  Similar stripe patterns have previously been 

observed in VO2 nano-rods.  These stripes have been shown to be phase domains 

Table 3.3 — Lorentz oscillator fit parameters for rutile VO2 zone- center infrared active phonons  

  A2u mode  Eu modes  

Mode no.  νi (cm-1) si γi  νi si γi  

1  284 8.33 0.141  277 4.12 0.148  

2  - - -  460 4.65 0.152  

3  - - -  588 1.88 0.103  
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that form due to stress in the microcrystals caused by mismatch of thermal 

expansion between the oxidized silicon substrate and the VO2 microcrystal[40,83].  

As the microcrystals are grown at 1273 K, the mismatch between the coefficients 

of thermal expansion results in a ≈ 0.7% in-plane isotropic tensile strain on the 

rutile structure near the phase transition temperature.  The M1 structure then 

expands by ≈1.1% along the aM1 axis during the phase transition from rutile to 

monoclinic, whereas there is little change along the bM1 axis.  Thus, the monoclinic 

phase is under a ≈ 0.4% compressive strain along the aM1 axis, and ≈ 0.7% tensile 

strain along the bM1 axis[40,83,84].  This leads to a monoclinic M1 unit cell volume 

that is only slightly larger than that of bulk VO2.  In this way, it is possible that 

the effects of strain on the monoclinic M1 phase are minimized, as our center 

frequencies are in good agreement with those obtained by Ref. [35] on bulk VO2.  

Strain effects could play a larger role in the rutile phase properties. 

 The overall shape of the electronic conductivity between 2000 cm-1 and 

6000 cm-1 for the rutile metal (Fig. 3.4) is consistent with previous reports[23,24,64].  

The overall higher conductivity along the rutile cr axis compared to the ar axis is 

consistent with Ref. [24].  Optical conductivity below 2000 cm-1 along the ar and cr 

axes of the rutile phase has not been previously reported in the literature.   Our 

data, which extends down to 200 cm-1, suggests that the higher conductivity along 
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the cR axis compared to the ar axis 

persists down to these frequencies.  

This is consistent with dc resistivity 

measurements made on single crystal 

VO2[85].  However, the degree of 

anisotropy was much greater than 

that seen in our experiment, as the dc 

conductivity parallel and 

perpendicular to cr was reported to be 

2500 Ω-1cm-1 and 333 Ω-1cm-1 

respectively[85].  An even greater 

degree of anisotropy is seen in highly 

strained VO2 thin films on TiO2 

substrates, where the dc conductivity 

is measured to be 41.5 times greater 

along cR than along aR.  These films 

are under a 1.92% tensile strain along 

cR and a 0.93% compressive strain along aR48.  Thus, the anisotropy of the 

conductivity at low frequencies is very sensitive to strain.  Below 1000 cm-1, there 

 
Figure 3.4 — (a) The aR and cR axis infrared 
conductivity ((σ1) of rutile VO2 at T=400K.  The plots 
are consistent with the cR axis dc conductivity 
constraint explained in Appendix 1.  The known dc 
conductivity along cR is shown by the red circle in 
(a)[40].  Lifting this constraint produces the error bars 
shown in Fig. 4 (b) and (c).  These error bars arise 
from systematic uncertainties explained in Appendix 
A; the systematic uncertainties affect the conductivity 
(σ1) of both axes in a similar manner.   
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is uncertainty in our conductivity data due to the incident spot being larger than 

the sample. The uncertainty, discussed in greater detail in the Appendix A, is large 

enough to preclude definitive statements about the frequency dependence of the 

electronic response at low frequencies.  The possibility of localization of the 

conduction electrons, as evidenced by a peak in the conductivity (σ1), around 1500 

cm-1 in both polarizations is within the experimental uncertainty.  A similar peak 

in σ1 has been seen previously in nano-scale metallic “puddles” of VO2 near the 

phase transition[86,87].  However, such a feature has not been seen in previous 

macroscopic experiments on polycrystalline thin films of VO2 [23,64]. 

The agreement between experiment and theory for the phonon frequencies of 

the rutile structure is on par with the M1 results (See Table 3.4).  The MAD for 

the rutile modes is 41 cm-1.  Interestingly, the 3 Eu modes are still in good 

agreement for U = 3 eV (their errors are 17, 59, and 61 cm-1), however, the A2u 

mode is unstable (large negative ν2) until U is increased to about 5 eV. In rutile 

TiO2, this mode is  associated with an incipient ferroelectric phase; under negative 

pressure, calculations show that it softens, resulting in a ferroelectric phase 

transitions[88].  For values of U smaller than about 5 eV in rutile VO2, the same 

ferroelectric-like instability incorrectly appears at the experimental volume.  Note 
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that in VO2 it is not a true ferroelectric state, since the system remains metallic 

when the crystal is allowed to distort according to this mode. 

As mentioned, microcrystals in the rutile phase are under ≈ 0.7 % tensile 

strain along the aR axis. To examine strain effects, we recomputed the phonon 

frequencies in the presence of -1% strain along the cR axis, relaxing the in-plane 

axes. Differences between calculated and measured phonon frequencies changed 

by less than ≈ 9 cm-1, except for the second highest Eu mode which increased 

by 22 cm-1. Strain effects of this magnitude are thus not likely to be responsible 

for the differences between theory and experiment.  

 CONCLUSIONS 

Polarized infrared micro-spectroscopy of untwinned single domain VO2 

crystals was performed.  Single domain samples allow for the measurement of 

the true anisotropy of the phonons and the electronic response.  The four zone-

center infrared active phonons of metallic rutile VO2 have been measured and 

Table 3.4 — Comparison of experimental and theoretical phonon frequencies for rutile VO2.  The mean absolute 
difference (MAD) between theory and experiment is given for all rutile phonons.   

 A2u mode center frequency (cm-1)  Eu mode center frequencies (cm-1) 

Mode no. Experiment Theory Difference  Experiment Theory Difference 

1 284 269 15  277 215 62 

2 - - -  460 398 62 

3 - - -  588 563 25 
              MAD 41cm-1   
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identified for the first time.  The electronic part of the infrared conductivity of 

metallic rutile VO2 is weakly anisotropic and is measured to be higher along the cr 

the cr axis as compared to the ar axis.  The oscillator parameters of 14 of the 15 

15 zone center infrared active phonon modes of the monoclinic M1 phase of 

untwinned VO2 have been measured for the first time.  In addition, we have 

resolved an Au mode near 500 cm-1 and observe a distinct Bu mode at 367 cm-1 not 

seen in previous measurements reported in Ref. [35].  From our measurements 

together with the lowest frequency Au mode seen in Ref. [35], all 15 monoclinic M1 

infrared active phonons are now accounted for.  Using first-principles GGA+U 

calculations we have computed the zone-center phonon frequencies for monoclinic 

and rutile VO2.  Our calculated results agree well with our measured frequencies. 
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 INTRODUCTION 

There have been many experimental and theoretical studies of the thermally 

driven metal-insulator transition (MIT) between the insulating monoclinic (M1) 

and the metallic rutile (R) phases of vanadium dioxide (VO2). Some fraction of 

these studies attribute the insulating M1 state to the vanadium-vanadium 

Peierls type pairing (see Fig. 4.1) that leads to unit cell doubling. Others argue 

that the insulating behavior in the M1 phase is primarily a result of Mott-

Hubbard correlations. These studies are reviewed in Refs.[89–91], A significant 

proportion of the literature on the nature of insulating VO2, particularly in 

recent years[21,25,27,51,53,59,92–99], has struggled to decouple the 

Chapter 4  

Insulating phases of VO2 are Mott-

Hubbard type 
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contributions of the Mott-Hubbard and Peierls mechanisms because of an emphasis 

on the M1 phase.  Interestingly, it has long been recognized that measuring the 

electronic properties of two additional insulating VO2 phases, the monoclinic M2 

and triclinic T, could potentially settle the debate about the origin of the energy 

gap, but the measurements have been difficult to achieve. 

One of our purposes in this chapter is to refocus attention to the importance of 

measuring the electronic properties of the monoclinic M2 and triclinic (T) phases 

to decouple the effects of the Peierls and Mott-Hubbard mechanisms.  This can be 

seen from the argument put forward by Pouget et al. [7], which can be summarized 

as follows:  One starts from a model of an isolated vanadium dimer in VO2, with 

one electron per site, analogous to the familiar case of the hydrogen molecule.  Both 

the Peierls and Mott-Hubbard pictures correspond to limiting cases of the Hubbard 

model for a chain of such dimers, depending on whether the intra-dimer hopping 

parameter (t) or the intra-atomic Coulomb repulsion (U), respectively, is the 

dominant energy scale in the system.  Interestingly, in both cases, the qualitative 

description of the electronic structure is the same: an insulator with a bonded spin 

singlet on the dimer, where the band gap results from splitting of the bonding and 

anti-bonding a1g bands (the lower and upper Hubbard bands in the Mott picture).  

As pointed out by the authors of Ref. [7], the only clear distinction between the 
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two cases is how the energy gap responds to changes in the hopping parameter 

resulting from changes in lattice structure.  For the chain of dimers, the bands 

broaden relative to the isolated dimer, decreasing the gap based on the inter-

hopping (t′).  In the Peierls limit (U << t, t′ ), insulating behavior vanishes as 

approaches t, the case of undimerized chains.  In contrast, the gap is primarily 

set by U in the Mott-Hubbard limit (U >> t, t′ ), and thus insensitive to 

changes in the degree of dimerization.  In the M1 phase, where all of the chains 

are dimerized and equivalent, it is impossible to decouple the effect of 

dimerization from intra-atomic Coulomb correlations.  This is not the case for 

the M2 and T phases.    

In this chapter, we present broadband optical spectroscopy data on the M2 

and T phases of VO2. We have performed infrared micro-spectroscopy and 

spectroscopic micro-ellipsometry on internally strained VO2 crystals that 

undergo a first order phase transition with increasing temperature from the T 

phase to the M2 phase.  The energy gap and electronic structure are essentially 

unchanged across this structural phase transition. Moreover, the optical energy 

gap of  0.6 ( ± 0.1 ) eV in the M2 and T phases is nearly the same as that 

measured by numerous previous measurements on the M1 phase 

[21,23,64,86,100,101]; the gap is insensitive to the different vanadium pairing 
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arrangements in the M1, M2 and 

T phases.  It follows that the 

gap in the insulating phases of 

VO2 has a common physical 

origin in intra-atomic Coulomb 

correlations. This conclusion is 

supported by calculations also 

presented in this work. These 

calculations go beyond the 

Hubbard model for a chain of vanadium dimers and take into account the multi-

band nature of the electronic structure.  

In the M1 phase, all of the vanadium ions dimerize and tilt in equivalent chains 

along the rutile cR axis (see Fig. 4.1).  In contrast, the M2 phase contains two 

distinct types of vanadium chains: one type consists of vanadium ions that pair 

but do not tilt, while the other consists of vanadium ions that tilt but do not pair. 

The vanadium ions in the latter chain are equidistant, each carrying a localized 

electron with a spin-1/2 magnetic moment and antiferromagnetic exchange 

coupling between nearest neighbors[7].  The T phase has two types of inequivalent 

vanadium chains (or sub-lattices) in which the vanadium ions are paired and tilted 

 
Figure 4.1 — A plan view of vanadium ion positions for the 
metallic rutile and insulating M2, T, and M1 phases of VO2.  
In all phases, the vanadium ions at the center of each rutile 
unit cell (shown by the gridlines) are offset from the others by 
æ unit cell (denoted by “1/2” in the rutile panel).  The 
vanadium ions in the insulating phases undergo small 
displacements from the rutile positions (open green circles in 
the panels of the insulating phases). The rutile lattice vectors 
cR and aR are shown in the lower left corner of the diagram. 
Vanadium chains in the insulating phases are oriented along 
the cR direction. 
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to different degrees (see Fig. 4.1.) [7,10]. The T phase can be thought of as an 

intermediate phase between the M2 and M1 phases, where the chains become 

equivalent in M1.  While the M1 insulating phase is generally found in bulk 

the M2 and T phases can be accessed via chemical doping or strain  [7,9,14,102–

106]. 

Nuclear Magnetic Resonance (NMR) and Electron Paramagnetic Resonance 

(EPR) have determined the presence of localized d-electrons with about one 

Bohr magneton magnetic moment on the unpaired vanadium chains of the M2 

phase[7,9,104]. While this localization is a clear hallmark of a Mott-Hubbard 

insulator, the situation in the dimerized chains is less clear.  The NMR and 

EPR measurements reveal that the electrons on the dimerized chains are 

covalently bonded.  Therefore, as alluded to above, it is ambiguous whether the 

dimerized chains should be thought of as Peierls insulators, or Mott-Hubbard 

insulators with the valence electrons forming covalently bonded singlets which 

are localized on the dimers. It has been argued that the M1 and T insulating 

phases of VO2, which differ only slightly in free energy from the M2 phase, 

cannot have a grossly different energy gap and should thus also be classified as 

Mott-Hubbard insulators[7,107]. Although strong, this argument needs 

experimental verification – presented here– via direct measurement of the M2 
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and T phase energy gaps, which can then be compared to each other and to the 

literature values of the M1 phase energy gap. 

 EXPERIMENTAL METHODS 

Pure VO2 crystals were grown with a self-flux method and thoroughly 

characterized with transport and X-ray diffraction measurements[105]. X-ray 

diffraction together with resistance measurements have determined that upon 

heating, the crystal first goes through an insulator-to-insulator transition and a 

structural transition between the T phase and the M2 phase [105]. The temperature 

dependent resistance data 

displayed in the inset of Fig. 4.2 

clearly shows two 

discontinuities along with 

hysteresis, indicative of first 

order phase transitions. The 

resistance increases by about a 

factor of two upon the 

structural transition from the T 

phase to the M2 phase, 

 
Figure 4.2 — Raman spectra of a typical VO2 crystal studied 
in our work.  Spectra are shown for the T, M2 and R phases.  
The dc resistance of the crystal is plotted as a function of 
temperature in the inset.  
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consistent with previous measurements in the literature[14]. Upon further 

heating, the crystal undergoes an insulator to metal transition and a structural 

change from the M2 phase to the metallic R phase.  Unpolarized Raman micro-

spectroscopy on the T, M2, and R phases, presented in Fig. 4.2, verifies the 

structural assignment from x-ray diffraction when compared to unpolarized 

Raman spectra in the literature[103,108]. Our crystals are in the shape of rods 

with approximately square cross-sections between 50 µm and 100 µm wide, and 

with lengths between 1 mm and 3 mm. The rutile cR axis, which points along 

the vanadium chains in the insulating phases, is oriented along the long axis of 

the crystals. Through an optical microscope, we observe that the crystal 

increases in length by ≈ 0.6% upon transitioning from the T phase to the M2 

phase, and decreases in length by ≈ 1.7 % across the MIT from M2 to R.  These 

changes in length are consistent with the changes in the lattice parameters along 

the vanadium chains measured with x-ray diffraction in previous works [13,109].  

The surface of the crystal is identified by X-ray diffraction as the (110) plane 

in the rutile basis which transforms to two coexisting, twinned surfaces 

(201) and (2̅01) in the monoclinic M2 phase[109]. Further twinning occurs as 

the 2-fold rotational symmetry of the M2 phase is lost upon transitioning to the 

T phase.  The result is that for each M2 twin, there are two possible T phase 
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twins, which differ from each other by a 180◦ rotation along the cR (bM2) 

direction[12]. 

The small size of the VO2 crystals calls for specialized infrared and optical 

micro-spectroscopy techniques to obtain reliable data with good signal-to-noise 

ratio. Infrared reflectance micro-spectroscopy between 150 and 6000 cm-1 was 

performed at beamline U12IR at the National Synchrotron Light Source, 

Brookhaven National Laboratory[68].  Infrared polarizers were employed to obtain 

reflectance spectra parallel and perpendicular to the long axis of the crystals, i.e. 

the rutile cR direction. Absolute values of the infrared reflectance spectra in the T 

and M2 insulating phases were obtained by normalizing them to the nearly 

featureless spectra of the rutile metal. 

Generalized spectroscopic micro-ellipsometry between 0.6 and 5.5 eV (≈4800 

and ~44000 cm-1) was performed at William and Mary using an in-house focusing 

set-up coupled to a Woollam Variable Angle Spectroscopic Ellipsometer (W-

VASE).  Spectroscopic ellipsometry has the notable advantage over reflectance 

spectroscopy alone in that it preserves information related to the phase shift upon 

reflection, enabling the accurate determination of both the real and imaginary parts 

of the optical constants of the material.  Data for three angles of incidence was 

obtained on the crystals oriented with their long axis parallel and perpendicular to 
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the plane of incidence. The ellipsometry focusing setup introduces an angular 

spread in the incident beam of about ±1◦ which the data analysis takes into 

account. The same crystals and heating arrangement were used for both the 

reflectance and ellipsometry experiments. All data sets were analyzed together 

the W-VASE software with Kramers-Kronig consistent oscillators to obtain the 

broadband, frequency dependent complex conductivity parallel and 

perpendicular to the vanadium chains in the T and M2 phases.  

Details of the analysis of the ellipsometry and reflectance data are given in 

Appendix B.  

 RESULTS AND DISCUSSION 

We present the first report on polarization dependent optical conductivity 

data on the infrared-active phonons of M2 and T phases in Fig. 4.3. For the M2 

phase (space group C2/m), group theory predicts 6 Au phonon modes for light 

polarized parallel to the 3M2 axis oriented along the vanadium chains, and 9 Bu 

phonon modes for light polarized perpendicular to the 3M2 axis. We observe 5 

Au and all 9 Bu phonon modes in the experimental spectra. It is possible that 

the sixth Au phonon mode has a weak dipole moment and therefore is not seen 

in experiment. The discontinuous structural phase transition to the T phase is 
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captured by the significant increase in the number of phonon features in the T 

spectra in both polarizations. This is explained by the lower symmetry of the 

triclinic structure (space group �1�, C1 ̅ in Pouget’s notation[7]). In Fig. 4.3, we 

include the M1 spectra from our previous work for comparison[36]. The M1 phonon 

spectra resemble the T phonon spectra and lead to the conclusion that the T phase 

is merely a slight structural distortion of the M1 phase. Indeed this is consistent 

with past observation of the continuous crossover from the M1 to the T phase 

 
Figure 4.3 — Polarization dependent optical conductivity (σ1) showing the infrared active phonon 
spectra of the M2 phase (panels (a) and (b)), and the T phase (panels (c) and (d)).  The center 
frequencies of the phonon features are denoted by circles labeled νcenter. The previously reported M1 
phase infrared active phonon spectra[36] (Chapter 3) are compared to the triclinic phase spectra in 
(c) and (d).  
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without latent heat[7].  This is in contrast to the first order phase transition 

between the M2 and T phases.  

We now turn to the inter-band transitions in the optical conductivity that 

a measure of the electronic structure. From Fig. 4.4, one can immediately see 

the optical conductivity, and thus the electronic structure, of the M2 and T 

is nearly the same.  This finding is remarkable given that there are obvious 

differences in the structural and magnetic properties between the two phases, 

as discussed above.  Interestingly, numerous measurements on single crystals 

 
Figure 4.4 — Experimental optical conductivity σ1 of the M2 and triclinic T phases parallel to the vanadium 
(V) chains (a) and perpendicular to the vanadium (V) chains (b).  Phonon features, which occur below 0.11 
eV, are not shown. For comparison, accurate optical conductivity of the M1 phase is extracted from the 
reflectance spectrum reported in [24] by using the complex conductivity of the T phase measured in this 
work as a constraint above 4 eV (see text).  The inset in panel (b) shows an effective energy level diagram 
along with optical interband transitions that appear in the conductivity spectra. First-principles DFT optical 
conductivities calculated via the HSE functional are presented in (c) and (d).  The calculated “raw” 
conductivities are broadened by 0.3 eV.  The calculated conductivity for EllcR contains a very sharp Δll  
feature (see inset of panel (c)).  To account for lifetime effects not handled in the static HSE treatment, the 
Δll feature, which is assigned to transitions between the lower and upper Hubbard bands in the Mott picture, 
is further broadened to a FWHM of 1.5 eV in the main panel of (c), which better models the experiment. 
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and thin films of the M1 phase give almost the same magnitude of the energy gap 

as we measure in the M2 and T phases [21,23,64,86,100,101]. The optical energy 

gap is the spectral region with vanishing conductivity. Above the gap, the optical 

interband transition labeled ∆, is quite rigid across this wide range of VO2 samples.   

For a direct comparison to the M1 phase, in Figure 4.4 we show optical 

conductivity extracted from the reflectance spectrum of Verleur et al. on single 

crystals [24]. The complex conductivity is not uniquely determined by the 

reflectance intensity spectrum without knowledge of the reflectance phase.  In 

addition to the optical conductivity reported in Ref.[24], we present an alternative 

determination of the optical conductivity using the T phase complex conductivity 

measured here to approximate the value of the M1 reflectance phase shift in the 

high energy region of the spectrum. Using this constraint leads to an M1 

conductivity spectrum with a lower uncertainty than that reported in the original 

work, where the reflectance phase shift was not measured.   The M1 optical gap is 

nearly the same as that in the M2 and T phases, and similar optical interband 

features are present in all three phases.  

A schematic of the effective electronic structure of the vanadium d-bands for 

the three insulating VO2 phases is shown in the inset of Fig. 4.4 (b).  There are 

two features of particular note, labeled ∆ and ∆||.  The interband transition ∆ 
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across the energy gap is centered about 1.2 eV for all three phases and has little 

polarization dependence. Similarly, ∆|| occurs around 2.5 eV in all phases for 

polarized along the vanadium chains, and is thus ascribed to transitions 

the bonding and anti-bonding a1g bands. These can be thought of as the lower 

upper Hubbard bands in the Mott picture. The features labeled ∆ occur at 3 

eV or higher energies and are primarily optical interband transitions between 

O2p states and the empty vanadium d-states. We emphasize that the robustness 

of the insulating phase band structure, despite the change in lattice structure, 

is a remarkable result that is not anticipated by conventional band theory.  

 THEORY 

To investigate this behavior further, the Krakauer group at William and 

Mary performed ab initio hybrid DFT calculations on the three insulating 

phases with the Heyd-Scuseria-Ernzerhof (HSE) functional[110,111].  

Calculated optical conductivities were determined from the imaginary part of 

the optical dielectric tensor, using the Vienna Ab initio Simulation Package 

(VASP)[112–115] with HSE (screened) exact-exchange fraction α=0.05 and 

screening parameter µ=0.2. The optical conductivity calculations are for 

vertical-only transitions (initial and final states are at the same k-point). The 
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theoretical conductivities were broadened by 0.3 eV, except as indicated, to account 

for quasiparticle lifetime effects not included in HSE. With suitably chosen α, the 

HSE functional can, in many instances, provide a good description of electronic 

properties ranging from band to Mott-Hubbard insulators as shown in previous 

work [56,116]. The percentage α of exact-change in hybrid DFT can be semi-

quantitatively related to the value of the Hubbard U parameter in DFT+U, with 

larger values of α (and U) yielding larger optical gaps [47,56,116].  Hybrid DFT 

and DFT+U both provide a mean-field treatment of on-site 3d correlation on the 

V atoms. Previous M1 and M2 HSE calculations[27,46,117] yielded too large band 

gaps compared to experiment.  This can be attributed to using an α which is too 

large for 3d oxides[56], such as the default HSE06 value of α=0.25[111].  The results 

of our hybrid DFT calculations are presented in Fig. 4.4 (c) and (d).  In agreement 

with the experiment, we find that the energy values of the inter-band transitions, 

particularly ∆ across the optical gap, are quite similar for all three phases. DFT+U 

calculations (U=5.7 eV and J=0.8 eV, using LDAUTYPE=1 in VASP, not shown) 

yield qualitatively similar results. This insensitivity to the change in lattice 

structure in all three insulating phases is incompatible with the Peierls picture. It 

is interesting to note that the ∆|| feature in the raw HSE result is much sharper 

than in experiment (see Fig. 4.4).  This is indicative of short lifetimes for carriers 
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excited between the bonding and anti-bonding a1g bands in the real system that 

is not captured in the static HSE theory.  Such lifetime broadening is 

characteristic of significant electron-electron interactions in these orbitals of 

Mott-Hubbard character.  This is additional evidence that the splitting of the 

a1g bands, and consequently the energy gap, arises from Coulomb correlations. 

The most recent iteration of DMFT electronic structure calculations finds 

energy gaps for the M1 and M2 phases that are consistent with our experimental 

results [54]. 

 CONCLUSIONS 

To conclude, the nature of the VO2 insulating phases is now clear.  The 

optical spectroscopy data presented in this work clearly demonstrates that the 

electronic structure of the VO2 insulating phases is robust to changes in lattice 

structure and vanadium-vanadium pairing. In particular, the energy gap is 

insensitive to the dimerization of the equally spaced vanadium ions with 

localized electrons in the M2 chains. This result is incompatible with a Peierls 

gap and is strong evidence that the gap arises due to Mott-Hubbard type 

Coulomb correlations.   The negative Knight shift is indicative of localized 

electrons on the equally spaced vanadium ions in the M2 chains. Its absence in 
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the dimerized chains of all three phases[7] elucidates the key subtlety of the 

insulating VO2 states: in contrast to a more conventional Mott insulator, where 

valence electrons are localized on individual ions, the dimerized vanadium chains 

chains contain bonded spin singlets which are localized on the vanadium dimers.  

This fact has made it difficult to conclusively distinguish between the Peierls and 

Mott-Hubbard pictures in the exhaustively studied M1 phase.  Study of the M2 and 

T phases, with their non-equal V chains, is essential to decouple the effects of 

dimerization and electronic correlations. Seen in a broader context, our work paves 

a path for disentangling the contributions of the electronic and structural degrees 

of freedom to phase transitions in other correlated electron systems.   
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 INTRODUCTION 

Strongly interacting degrees of freedom in condensed matter systems often 

lead to novel emergent properties such as metal-insulator transitions, colossal 

magnetoresistance, and high phase transition temperature (Tc) 

superconductivity.[89,91,118,119]  Because they arise from multiple strongly 

interacting degrees of freedom, these emergent properties are highly sensitive to 

external factors such as temperature, strain, chemical doping, and applied fields.  

The true potential of strongly correlated systems lies in this sensitivity to 

external parameters.  With sufficient understanding, the properties of these 

materials could be engineered to match specific applications.  The technological 

Chapter 5  

Modification of electronic structure in 

compressively strained VO2 films  
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impact of harnessing these novel properties for applications cannot be overstated.   

Additional experimental data are needed to further inform our understanding 

of these materials.  Unfortunately, the same sensitivity to external parameters that 

makes these materials so promising for future applications also makes experimental 

characterization difficult.  The emergent properties can vary widely among different 

samples of the same material, as different growth techniques and conditions result 

in variations in strain, stoichiometry, and microstructure.  Thus, for experimental 

measurements of these systems to provide meaningful insight, the external 

parameters, the intrinsic interacting degrees of freedom, and the resulting 

properties must all be well characterized.   Hence, measurements on samples subject 

to external perturbations, for example pressure and strain[8,62,108,109,120,121], 

can provide additional insight into the underlying physics of these systems.   

Vanadium dioxide (VO2) is perhaps the canonical strongly correlated transition 

metal oxide; its relatively simple unit cell and stoichiometric composition make it 

an ideal material to study strong correlations.  Bulk VO2 undergoes a metal-

insulator transition (MIT) at Tc=340K between an insulating phase below the Tc 

and a metallic phase above the Tc.  The MIT is accompanied by a structural 

transition between the insulating monoclinic M1 lattice and the conducting rutile 

(tetragonal) lattice (See Fig. 5.1(a)).  As the vanadium atoms are in the 4+ valence 
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state, there is expected to be one electron in the vanadium d-orbitals.  The 

crystal field of the oxygen octahedron splits the vanadium d-orbitals into two 

higher energy 
	� orbitals, which contain lobes pointing towards the oxygen 

atoms, and the remaining three lower energy t2g orbitals.  The t2g orbitals are 

additionally split into two 
	� and one �1	 orbital.  The �1	 band has lobes 

pointing along the rutile cr (monoclinic M1 aM) axis and is slightly lower in 

energy than the 
	� band.   

Early on, a simple scheme was proposed by Goodenough to explain the role 

of the structural transition in the MIT in terms of the vanadium d-orbitals.[17]  

The structural change from rutile to monoclinic M1 has two salient features: a 

dimerization of the vanadium atoms along the rutile cR (aM1) direction, and an 

antiferroelectric type tilting of these vanadium dimers relative to the 

surrounding oxygen structure.  Insulating behavior was proposed to arise as 

follows.  The dimerization would lead to a splitting of the �1	 orbitals into 

bonding (�1	) and antibonding (�1	∗ ) bands, while the antiferroelectric tilting of 

the vanadium pairs would lead to an upshift of the 
	� orbitals away from the 

Fermi energy to produce a gap between the filled bonding �1	 band and the 

empty 
	� band[17].  This effective band-structure scheme is qualitatively 

supported by experimental data on bulk crystals and thin films[23,24,64].  
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However, a precise quantitative understanding of how this scheme is realized—in 

particular the roles of electronic correlations and the structural instability in the 

MIT—had been a matter of debate for decades[9,18,107,122].  Our work in chapter 

4 demonstrates that the energy gap in the insulating phases is due to electronic 

correlations.  Nevertheless, a complete understanding of this correlated system as 

a function of external parameters is necessary to predict and control the emergent 

properties. 

Broadband infrared (IR) and optical spectroscopy is a powerful technique for 

investigating the MIT in VO2 because it provides insight into both the lattice and 

electronic structure, via the IR active phonons and optical interband transitions, 

respectively. Previous IR and optical spectroscopy experiments have been 

performed on bulk VO2 and thin films.[23,24,35,36,64]  However, VO2 films grown 

on different substrates and by different techniques can have significantly different 

strain states and microstructure.  Because of the extreme sensitivity to external 

parameters in strongly correlated systems mentioned previously, accurate 

characterization of the strain and microstructure of various films, and the resultant 

emergent properties, can provide additional insight into the physics of these 

materials.       
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In this work we report the IR and optical properties of a VO2 film grown on 

a quartz substrate.  The chapter is organized as follows.  We start with a 

thorough description of our preliminary characterization of the sample and then 

describe the IR and optical spectroscopy experiments.  Next, we report our 

results on the IR active phonons in the M1 phase.  We then report and discuss 

the strain induced changes of the electronic inter-band transitions in both M1 

and rutile phases.  We conclude with a brief summary of important results and 

their implications.  Technical details of the experiment and data analysis are 

presented in Appendix C. 

 EXPERIMENTAL METHODS 

A. Sample characterization 

The VO2 film used in this experiment is a 70nm thick VO2 film on a 0.5 mm 

thick (001) quartz substrate. The film was synthesized using the Reactive 

Biased Target Ion Beam Deposition (RBTIBD) method.[123]  The growth 

conditions for optimal stoichiometry are the same as those reported 

elsewhere.[123,124]  An atomic force microscope image of the sample, shown in 

Fig. 5.1(b), indicates that the VO2 film consists of many individual grains with 

an in-plane size of about 100 nm.  X-ray diffraction shows that the individual 
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VO2 grains are oriented such that the (011) plane of the monoclinic M1 phase is in 

is in the plane of the substrate (See Fig. 5.1(c) and Appendix C). This becomes the 

the (110) plane in the rutile structure.  However, there is no preferred orientation 

orientation of the grains with respect to rotations about the out of plane direction.  

direction.  

The first-order phase transition in this film exhibits the classic hysteresis usually 

observed in VO2.  The temperature dependent transmission through the VO2 film-

substrate system at 0.5 eV provides a clear picture of the hysteresis loop for the 

 

Figure 5.1 — (a) Lattice structure of the M1 and Rutile phases of VO2.  (b) AFM image at room 
temperature showing the surface roughness and multi-grain structure of the (011)M1 VO2 film on quartz 
substrate.  (c) X-ray diffraction peak resulting from the (011)M1 lattice planes.  The Gaussian fit and 
resulting full width at half maximum is shown.  The peak positions for the bulk (011) M1 and analogous 
(110) rutile diffraction spots are shown as vertical lines.  (d) Transmission through the sample at a photon 
energy of 0.5 eV, demonstrating the temperature dependence of the transition during heating and cooling 
runs.  Note the Tc onset of 325K is significantly lower than that of bulk crystals (340K). 



82 

 

 

 

MIT in this particular film (See Fig. 5.1(d)). The photon energy of 0.5 eV is 

just below that of the energy gap in insulating VO2 resulting in minimal 

absorption and high transmission intensity. The transmission drops with the 

occurrence of metallicity in the vicinity of the MIT due to the increased 

reflectance and absorption of the metallic phase.  The Tc of the film is depressed 

from the bulk Tc of 340 K to 325 K.   The 15 K width of the hysteresis loop in 

this film is somewhat broader than what is seen in VO2 crystals.[106] Such 

broadening of the hysteresis and the phase transition is typical of polycrystalline 

VO2 thin films because of variation in grain size and strain inhomogeneity.  This 

inhomogeneity is consistent with the width of the x-ray diffraction peak shown 

in Fig. 5.1(c). 

B. Spectroscopic methods 

Spectroscopic measurements were performed to study the optical properties 

of the VO2 film on quartz between 7.5 meV and 6.0 eV.  This broad spectral 

range is necessary to characterize both the electronic and lattice degrees of 

freedom.  Specifically, temperature dependent spectroscopic ellipsometry was 

performed in the spectral range between 0.6 eV and 6.0 eV at temperatures of 

300 K and 360 K. The VO2 is in the M1 insulating phase at 300 K and in the 

rutile metallic phase at 360 K. Due to its self-referencing nature, spectroscopic 
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ellipsometry enables very precise measurement of the complex dielectric function 

of the sample.  To extend our spectral range into the far-IR, near-normal incidence 

reflectance between 7.5 meV and 1 eV was obtained at 300 K and 360 K.  In 

addition to the VO2 film on quartz, the same temperature dependent spectroscopic 

measurements were performed on the (001) quartz substrate. In order to obtain 

the optical constants of the VO2 film, the ellipsometry and reflectance data for the 

substrate and the VO2 film-substrate system was fit with Kramers-Kronig 

consistent Drude, Lorentzian, Tauc-Lorentzian, and Gaussian oscillators.  We 

report the optical constants of the VO2 film at 300 K and 360 K in the insulating 

and metallic phases respectively.  Spectra and fits, in addition to technical details 

about the modeling procedure, are included in the Appendix C.  

 RESULTS AND DISCUSSION 

A. Sample strain 

In a polycrystalline thin film that is not lattice matched to the substrate, such 

as the one studied in this chapter, the resultant strain state of the film is 

particularly dependent on the growth technique.  Stresses occur between 

neighboring grains, and have been shown to affect the Tc of VO2.[125]  Such strain 

is sensitive to the grain size and film microstructure and both these properties are 
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influenced by the growth conditions.  There are additional factors present in 

sputtered films[126].  Of particular note is a process referred to as “shot 

in which compressive strain arises as a result of the sample being bombarded 

energetic particles during growth.  Compressive in-plane strain in sputtered 

films is often attributed to this effect[127,128]. Thermal strain from the 

mismatch of the coefficient of thermal expansion between the film and substrate 

may also be present.   

The out of plane strain can be calculated by comparing the measured x-ray 

diffraction data shown in Fig. 5.1(c) with the literature.  X-ray diffraction shows 

that the (011)M1 plane spacing is 3.23 Å in the present sample.  From the 

literature, the (011)
M1

 plane spacing ranges from 3.1978 Å and 3.2067 Å for 

bulk VO2.[129],[15]  Averaging the literature values implies a tensile strain in 

the out of plane direction of 0.89%.  This type of tensile strain would result 

from compressive strains in the plane of the substrate.  The transition 

temperature for the MIT is expected be most sensitive to strain along the aM 

(cR) direction.[52] Depression of the Tc to 325K, as is the case in  our film, has 

been seen in VO2 nanorods with a compressive strain of 1.5% along aM1.[109]  

Similar strong dependence of the Tc as a function of strain has been seen in 

VO2 films on TiO2[130].  In both cases, compressive strain along aM1 results in 
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depression of the transition temperature. Thus it is reasonable to conclude that the 

VO2 film we studied has a compressive strain of about 1.5% along aM1.   

The aM axis contracts by about 1% across the phase transition into the rutile 

phase.  This would tend to relax compressive strains along cR (aM1) in the metallic 

phase.  Some partial relaxation of the in-plane strain is evidenced by the shift of 

the x-ray diffraction peak towards the bulk rutile value shown in the Appendix C.  

However, as the out of plane strain in the metallic phase is still tensile, the in plane 

strain is still somewhat compressive.  Additional changes to the strain as the sample 

is heated across the MIT could be induced due to the mismatch of thermal 

expansion coefficients between the VO2 film and quartz substrate.  The coefficients 

of thermal expansion of aR VO2, cR VO2, and a-axis quartz are 4x10-6/K, 25x10-

6/K, and 16x10-6/K, respectively[11,131].  Thus, this is at most a 0.1% effect over 

the 60 K temperature range investigated in this work and has negligible impact on 

the strain state of the film.  

Here we discuss the stoichiometry of the VO2 films we have studied in this 

work. One effect of oxygen deficiency is to reduce Tc. However, oxygen deficiency 

also increases disorder in the film which significantly reduces the jump in the dc 

conductivity across the metal-insulator transition[124]. In the films studied in our 

work, the optical conductivity in the low frequency limit changes by four orders of 
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magnitude across the metal-insulator transition. This is consistent with 

stoichiometric VO2 with minimal oxygen deficiency, comparable to single 

Moreover, the fact that we clearly see VO2 optical phonon features in the 

is further evidence that the film is composed of crystallites with minimal 

due to oxygen deficiency. Hence the reduction in Tc in our films is due to 

compressive in-plane strain rather than oxygen deficiency.  

B. IR active phonons and lattice dynamics 

Due to the polycrystalline nature of the film, we measured the reflectance 

with unpolarized light.  Thus, features due to IR active phonons of both Au and 

Bu symmetries are expected to appear in the reflectance data in the insulating 

M1 phase.  However, the relative strengths of each phonon will depend on the 

orientation of the dipole moment relative to the plane of the sample: phonons 

with in-plane dipole moments will have a larger contribution to the effective 

optical constants.[35,36]  The dipole moments of the Au phonon modes, which 

lie parallel to bM, are at 45 degrees out of the plane of the substrate in this film 

geometry.  In contrast, the Bu modes have dipole moments in the aM-cM plane.  

Depending on the specific Bu mode in question, the dipole moments could be 

anywhere from 0 to 45 degrees out of plane.  Thus, all 15 IR active phonons 

should, in principle, contribute to the measured spectrum.   
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The measured imaginary 

part of the complex dielectric 

function in the phonon region 

of the VO2 film is shown in 

Fig. 5.2(a).  We are able to 

resolve 8 IR-active phonons in 

this work.  The IR active 

phonons in VO2 crystals have 

been previously characterized 

by optical spectroscopy [35,36]. It is not unusual that we resolve fewer than the 

expected 15 IR-active phonons, as some VO2 phonons overlap.  Moreover, the 

sample is a thin film, resulting in much weaker phonon features in comparison to 

those of the quartz substrate which dominate the measured spectrum in this region.  

More importantly, the clearly resolved VO2 phonon center frequencies differ from 

the bulk values by at most 1.3% (See Fig. 5.2(b)).  Raman spectroscopy performed 

on films grown by the same method also shows negligible shift in the phonon center 

frequencies compared to bulk VO2.[132]  Remarkably, the lattice dynamics are 

virtually unchanged relative to bulk VO2 in a film where the Tc is so significantly 

depressed.  

Figure 5.2 — (a) Measured imaginary part of the complex 
dielectric function (ε2) of the VO2 film in the phonon region.  (b) 
The measured center frequencies of the IR active phonons of the 
VO2 film are compared to previous data taken on bulk 
crystals[35].  Open circles denote phonon modes from Ref. [35] 
that are not obvious in the spectra measured in this work (See 
Text).  
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Previous experiments have seen that spectral features due to the rutile phase 

phonons are fairly weak and difficult to resolve from the metallic 

background.[35,36]  In this work, IR active phonon features in the rutile phase 

are not observed in the reflectance spectrum. Apart from the high conductivity 

of VO2 in the metallic phase, the absence of rutile phonon features in this work 

can be attributed to the thin film nature of the sample and strong phonon 

features of the quartz substrate. 

C. Inter-band transitions and electronic structure 

i. Assignment of spectral features 

In the absence of polarization dependent data due to the polycrystalline 

nature of the film, features in the optical conductivity cannot be unambiguously 

assigned to specific interband transitions. However, energy scales of the 

measured spectral features can still be discussed within the context of band 

theoretical results on VO2[48,78].  A schematic view of the band structure of 

VO2 is shown in Fig. 5.3 to support the following discussion.  Note that the 

lower (LHB) and upper (UHB) Hubbard bands, which, in the rutile phase, arise 

from electronic correlations not considered by conventional band theory, are 

shown explicitly in Fig. 5.3.    
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The measured optical 

conductivity for the rutile phase at 

360K is shown  in Fig. 5.4(a).  Some 

of the lower energy inter-band 

transitions in this compressively 

strained sample differ significantly 

from those measured previously on 

bulk VO2 and thin films.[23,24,35,64]   

The VO2 film on quartz exhibits a 

broad Drude-like metallic response 

“q” and an interband transition “s” 

which are consistent with previous 

works.  Feature “s” at 3.1 eV is attributed to transitions between the 627 orbitals 

and the vanadium 
	� bands.   However, in this strained VO2 film on quartz, we 

resolve additional features: a pseudo-gap type feature in the low frequency 

electronic response “p”, and well-defined features, “r” and “t”, at 2.2 and 5eV, 

respectively.  The pseudo-gap type feature, “p”, has been seen in a few previous 

works.[36,86]  Compressive strain along cr is expected to lower the energy of the 

�1	 band[17].  That compressive strain results in a lowering of the energy of the 

Figure 5.3 — Schematic showing energy levels of the 
relevant vanadium and oxygen bands in the metallic 
and insulating states of VO2. The Fermi level is 
denoted as EF.  The possible (partial) Hubbard 
splitting of the  �! band due to correlation effects in 
the rutile metal is shown explicitly. 
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�1	 band is supported by X-

ray emission spectroscopy 

experiments on strained VO2 

films grown on TiO2.[133]  

The slight lowering of the 

filled �1	 bands relative to 

the 
	� bands could account 

for the prominence of the 

pseudo-gap type feature “p” 

if this feature is due to 

optical transitions between 

those two bands.  This 

lowering in energy of the �1	 

band, due to compressive strain, would increase the occupation of the bottom 

half of the �1	 band.  Increased  occupation of the �1	 band could  lead to a 

reduction in screening and an increase in electronic correlation effects for 

electrons in the �1	 bands, similar to the explanation presented by Zylbersztejn 

and Mott for the insulating M1 phase.[18] 

Figure 5.4 - (a) Optical conductivity σ1 for the rutile (green) 
and M1 (black) phases as a function of photon energy. 
Phonons have been subtracted from the conductivity of the 
M1 phase and this procedure has negligible impact on the 
calculation of Neff.  Spectral features are denoted by lower 
and upper case letters for the rutile and M1 phases 
respectively.  The assignment of these spectral features to 
specific inter-band transitions is discussed in the text.  (b) The 
effective number of carriers per vanadium atom (See text). 
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Correlation effects in the rutile phase could lead to a degree of splitting of the 

�1	 band into lower and upper Hubbard bands.[134]  A “satellite” of the �1	 band, 

consistent with this type of lower Hubbard band, has been seen previously in 

photoemission experiments on bulk VO2.[21]  We interpret feature “r” as transitions 

from the filled parts of the �1	 bands (both the unsplit portion and the lower 

Hubbard band) to the unfilled upper Hubbard band.   Such splitting could also 

account for feature “t” if it is assigned to the transition between the O27  and upper 

Hubbard bands.  There is also likely some absorption near 5 eV due to transitions 

between the O27 and 
	� bands, as the O27 to 
	� transition is seen at 3 eV, and the 

crystal field splitting between 
	� and 
	� is expected to be on the order of 2 eV.[135]  

That a well resolved feature at 5 eV is not present in the M1 phase supports the 

assignment of feature “t” to a transition involving the upper Hubbard bands, as 

these bands might be expected to shift more significantly across the MIT.  In this 

scenario, the upper Hubbard band would need to lie at an energy very close to that 

of the 
	� bands.  This would imply a correlation induced Hubbard splitting of a 

comparable magnitude to the crystal field splitting, and is expected to be much 

larger than the splitting caused by a Peierl’s type lattice distortion. 

Increased correlations due to compressive strain, as discussed above, would 

result in more states being shifted into the satellites of the �1	 orbital, and could 
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account for why we are able to clearly resolve features “r” and “t” in this sample.  

It is also possible that correlation effects lead to significant splitting of the �1	 

bands even in the unstrained rutile phase.  Subtle evidence of a transition 

the Hubbard bands was seen previously in rutile VO2 on sapphire near 3 eV.[23]  

However, this feature could not be clearly resolved from the O27 to 
	� 

transition.  Thus, it’s also possible that this feature has in fact been shifted to 

a lower energy in our particular film.  

The measured optical conductivity for the M1 phase at 300 K is shown in 

Fig. 5.4(a).  Features “A” and “C” are consistent with previous works.[23,24,64]  

Feature “A” is attributed to transitions between the filled bonding �1	 and the 

empty 
	� bands, while feature “C” is attributed to transitions between the filled 

627 and empty 
	� bands.  The energy gap of ≈ 0.6 eV is similar to that seen 

in bulk VO2 crystals and other thin films[22–24].   

We observe an additional feature, “B”, which is different from previous 

works.  While a strong feature at low energy, around 0.9 eV, is seen in single 

crystals for light perpendicular to aM,[24] feature B in the present work is 

somewhat stronger and at a much higher energy, 1.9 eV.  A similar strong 

feature at 1.9 eV is not seen in previous work on thin films grown on sapphire 

and TiO2.[23,64] 
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Interestingly, the transition between �1	 and �1	∗  ,which has been seen in 

previous experiments on bulk crystals and thin films around 2.5 eV[23,24], is not 

not clearly present near this energy in the VO2 on quartz data. It is likely that this 

this transition has been down-shifted as a result of strain.  It is possible that feature 

“B” is in fact the �1	to �1	∗
 transition, having been shifted to lower energies in this 

particular film.  Such an interpretation is not unreasonable, given that the 

analogous feature in the rutile, feature “r”, occurs at a very similar energy to feature 

“B”.  However, recent dynamical mean field theory (DMFT) calculations show that 

the splitting between �1	 and �1	∗
 should increase with compressive strain along the 

aM axis.[52]  Such an increase in splitting would result in a shift of the �1	 to �1	∗
 

transition to higher energies, into the vicinity of feature C.  Indeed, there is fine 

structure in feature “C” that would be consistent with such an explanation.   

Note that the evidence for Hubbard bands in the rutile metal suggests that 

correlation effects are significant enough to govern the evolution of VO2 properties 

upon lowering temperature.  In Goodenough’s band theory picture, the anti-

ferroelectric displacement of the vanadium atoms in the M1 structure is necessary 

to raise the energy of the 
	� bands above the Fermi energy to produce an energy 

gap.[17]  It is interesting to note, however, that in both the present experiment and 

previous work,[23] the 627 to 
	� transition is not shifted appreciably, certainly 
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much less than the 0.6eV band gap of M1 VO2.  This could indicate that the 
	� 

band itself is not as strongly dependent on the change in lattice symmetry as 

expected.  Alternatively, the 627 bands may also shift significantly across the 

transition.  

ii. Spectral weight transfer 

As the “f-sum rule” is a fundamental statement of conservation of charge in 

a material, it should be conserved across the MIT.  The total spectral weight 

(9:;:<=) is conserved as follows.  Note that the following equations employ 

Gaussian (cgs) units. 

Atotal ≡ ∫ σ1(ν)
∞

0
dν = ne2

4cm0V 
    5.1         

 

Where σ1(ν) is the real part of the optical conductivity as a function of 

photon energy hcν, P is the number of electrons in a volume Q  of the material, 


 is the elementary charge, and R0 is the free electron mass.  By integrating to 

a finite frequency, one can consider the spectral weight (A) below a certain 

photon energy (hcνc) 
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9(νc) = ∫ σ1(ν)d
νc

0
ν  5. 2        

It is interesting to define �VWW   which, in the spirit of equations (1) and (2), 

gives us the effective number of carriers with optical mass equal to R0 that 

contribute to absorption below a certain photon energy, ℎ$X.  

Neff(νc) = 4cm0Ve2 ∫ σ1(ν)
νc

0
dν       5.3  

The optical conductivity and effective number of carriers is shown in Fig. 5.4(b) 

as a function of photon energy.  The volumes used for this calculation is ½ of the 

rutile[11] and ¼ of the M1[15] unit cell volumes from the literature.  This 

corresponds to the volume of a single formula unit, and thus a single vanadium 

atom.  While there are some slight shifts in spectral weight up to and exceeding 6 

eV, 95% of the spectral weight has been recovered by 4 eV.  That the f-sum rule 

is still not fully satisfied at such high energies clearly indicates a rearrangement of 

the electronic structure at even higher energies.  For example, feature “t”, clearly 

resolved in the rutile phase at 5 eV, is not present in the M1 phase.  Such 

rearrangement at higher energy scales supports the hypothesis that the MIT in 

VO2 is electronically driven. Previous optical spectroscopy measurements have also 

shown shifts in spectral weight across the MIT up to and exceeding 6 eV.[23,64]    



96 

 

 

 

The spectral weight of the conduction electrons (features “q” and “p”) in the 

rutile phase will be largely contained below 1.8eV in the broad-Drude-like 

While one might naively expect one conduction electron per vanadium atom, 

�VWW  at this energy is only 0.21. This indicates that either the effective electron 

mass (m*) of the conduction electrons is several times m0 and/or the spectral 

weight of the correlated vanadium 3d electrons has shifted to energies higher 

than 1.8 eV.   

 CONCLUSIONS 

The properties of strongly correlated condensed matter systems can change 

dramatically when subject to external perturbations such as strain. In the VO2 

film on quartz film investigated in this work, compressive strain along the aM1 

(cR) direction results in the Tc being shifted down to 325 K from the bulk Tc of 

340 K.  Broadband IR and optical spectroscopy was used to characterize both 

the electronic and lattice-structural degrees of freedom in this film to elucidate 

the cause of this significant change in Tc, and its implications regarding the 

nature of the MIT in VO2.   

Strain affects the inter-band transitions by altering the relative energies of 

the bands, as well as their orientation in real space.  Such changes can have 
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important implications in correlated system where the Coulomb repulsion between 

electrons, orbital overlaps, and screening play nontrivial roles.  While the energy 

gap in the M1 phase is quite similar in various single crystal[24] and thin film[22,23] 

samples, some of the inter-band transitions in this strained VO2 film differ 

significantly.  In particular, two new features are observed.  Features at 2.2 eV and 

5.2 eV are observed in the rutile phase which we attribute to transitions between 

the filled �1	 and 627 states and the upper Hubbard band.  It is possible that this 

feature is more prominent because the compressive strain along cr increases the 

occupation of the �1	 orbital, thereby reducing screening and enhancing correlation 

effects.  A new feature is seen around 1.9 eV in the monoclinic M1 phase; the values 

of ε2 and  �1 are significantly higher at this energy than in bulk crystals or other 

thin films.  A definitive assignment of the �1	 to �1	∗  optical interband transition is 

not possible at present although there are two possible scenarios: Either it has been 

shifted down to 1.9 eV  due to strain and appears as feature “B”, or it appears as 

fine structure in feature “C” near 3 eV. 

Interestingly, unlike the inter-band transitions, the IR active phonons in these 

strained films are very similar to their bulk counter-parts, indicating that the forces 

between the vanadium and oxygen ions remain largely unchanged despite the 

strained nature of this film.  Nevertheless, this strain is sufficient to cause 
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significant changes in the transition temperature and the optical inter-band 

transitions.  This would indicate that the Tc is more sensitive to changes in the 

orbital overlaps and occupation than it is to changes in the lattice dynamics.  

reinforces the conclusion made in chapter 4 that the MIT in VO2 is driven by 

changes in electronic correlations and orbital occupations rather than by lattice 

dynamics.  The change in lattice structure could then occur as a consequence 

of the variations in electronic structure and interactions.    

As the electronic and optical properties of VO2 are incredibly sensitive to 

strain, this system has potential for applications for which strain engineering 

could be used to tune these properties.  We have measured and documented 

the IR and optical properties of VO2 film on quartz substrate.  This is a 

necessary step towards fully realizing the potential of strain engineering this 

material.    
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 INTRODUCTION 

It is generally believed that in first-order phase transitions in solids, the 

formation of phase domains must be affected to some extent by random processes. 

The randomness would lead to unreliable performance in nanoscale devices that 

have the potential to exploit the transformation of physical properties in a phase 

transition.  Here we show that nanoscale randomness is completely suppressed in 

the thermally driven metal-insulator transition (MIT) in sputtered vanadium 

dioxide (VO2) films. The nucleation and growth of domain patterns of metallic and 

insulating phases occur in a strikingly reproducible way.  The completely 

deterministic nature of domain formation and growth in films with imperfections 

Chapter 6  

Repeatable nanoscale phase coexistence 

in VO2 films 
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is a fundamental finding. Moreover, it opens the door for realizing reliable 

nanoscale devices based on the MIT in VO2 and similar phase change materials. 

The metal-insulator transition (MIT) in vanadium dioxide (VO2)[89–91]  

has the potential to lead to a number of disruptive technologies, including ultra-

fast data storage, optical switches, and transistors which move beyond the 

limitations of silicon[136–138].  For applications, VO2 films are deposited on 

crystalline substrates to prevent cracks observed in bulk VO2 crystals across 

the thermally driven MIT.  Near the MIT, VO2 films exhibit nanoscale 

coexistence[61,86,87] between metallic and insulating phases, which opens up 

further potential applications such as memristors, tunable capacitors,[139–142] 

and optically engineered devices such as perfect absorbers[143]. The 

phenomenon of phase coexistence is quite broadly observed across strongly 

correlated condensed matter systems, occurring for example, in the high-Tc 

superconducting cuprates[144,145], the colossal magnetoresistive manganites 

[146–148], as well as the oxides of vanadium[61,86,149–151].  Highly ordered 

patterns[61,144,145,148,151] result in response to long range interactions.  

Generally speaking, the spatial periodicity of these patterns ranges from very 

small (nanometers or less)[144,145] for strong interactions, such as Coulomb 

interaction between domains, to hundreds of nanometers or more for somewhat 
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weaker  interactions [61,148,150,151] such as long-range elastic mismatch with a 

substrate.  The increasing periodicity as the interaction strength decreases is 

attributed to the free energy cost of forming the boundary between domains.  In 

In this situation, random processes, such as fluctuations between phases[151] or 

irreproducibility in the domain pattern upon thermal cycling[150] have been 

observed.  In contrast, amorphous patterns are also commonly observed when 

imperfections disrupt the long range interaction.[86,147] Generally speaking, there 

is sparse experimental data on the reproducibility of these patterns.     

Due to the stochastic nature of nucleation of a new phase during a first order 

phase transition, it was expected that this randomness constituted an inherent 

challenge to creating reproducible phase transition based devices on the scale of 

the domain size.   Until now, the expectation for these systems was that although 

some regions may preferentially transition due to inhomogeneity and defects, some 

degree of randomness was unavoidable[97,147,150].  The primary result of our work 

is that it is possible to realize completely reproducible metal-insulator phase domain 

patterns in a VO2 film. Insight gained through our work could be applied to VO2 

and across the entire range of similar correlated materials, whose novel phase 

transitions have tremendous potential for technological impact[152]. The primary 

finding in this work is obtained with the technique of scattering-type scanning near-
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field infrared microscopy (s-SNIM). This technique was utilized to image the 

patterns formed by coexisting metallic and insulating domains in the thermally 

driven MIT in a sputtered VO2 film. We achieved unprecedented spatial 

over a broad temperature range which allowed us to obtain s-SNIM images in 

same area of the film for repeated heating and cooling runs. 

 EXPERIMENTAL 

In this work, we study a 45 nm thick VO2 film grown by RF sputtering on (001) 

sapphire.  In such films, the monoclinic angle (≈ 123◦) of the M1 phase tends to 

align in plane along the 120◦ angles of the hexagonal sapphire lattice.  Thus, grains 

in this film will prefer one of six possible orientations, differing by an out of plane 

rotation, due to the rotational symmetry of the hexagonal sapphire substrate[153].  

Sputtered films tend to have some additional compressive in-plane strain due to an 

effect known as “shot peening[126].”  Compressive strain along the aM1 (cR) axis 

stabilizes the rutile phase, resulting in a somewhat lower Tc.  These films are ideal 

for this work in that they have distinct topographic features, in the form of 

“valleys”, which can be used to ensure that images are consistently taken in the 

same area.  Thermal drift was minimized by placing the sample and measurement 

region at the center of a circular heating stage, which was designed in-house. A 
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silicon diode based thermometer and a resistive heating element were mounted on 

the stage and these components along with a Lakeshore model 335 temperature 

controller were employed for thermal management. A slow temperature ramp rate 

≈ 0.2K/minute was used to minimize overshooting (<0.1K) of the set-point 

temperature.  Minute differences in this overshoot can result in an image that 

appears somewhat more progressed in one run as opposed to another.  Once the 

set point temperature is obtained, it is held stable within 0.1 K for the full duration 

of the scan. 

In s-SNIM, infrared light is scattered from a metal coated tip of a tapping mode 

atomic force microscope (AFM)[154].  The scattered light contains information 

about the near-field interaction between the tip and the optical properties of the 

region of the sample immediately below the tip.  This procedure allows for the 

simultaneous collection of topographic and optical images of a given region of the 

film, with resolution on the order of the AFM tip radius, approximately 15 to 20 

nm.  The pseudo-heterodyne detection scheme and demodulation of the optical 

signals at the third harmonic are used to reduce various background 

contributions[154,155]. The s-SNIM technique is primarily sensitive to the local 

dielectric function at the incident infrared wavelength. However, the local 

topography can influence the signal, i.e. the signal is generally higher in a valley 
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than on a topographic peak.  This surface roughness (≈ 3 nm RMS) induced s-

SNIM contrast can be seen in the low temperature (purely insulating) images, and 

causes a variation of around 10%. The wavelength of 10.6 µm used in this work is 

within the band gap of insulating VO2, and above the infrared active phonon 

region.  The large change in optical constants across the MIT at this wavelength 

results in significant infrared contrast between metallic regions (high infrared 

signal) and insulating regions (low infrared signal), much greater than that caused 

by the topography.  That the s-SNIM images presented here are due to the MIT is 

clear because they are temperature dependent while the topography is temperature 

independent. 

 RESULTS AND DISCUSSION 

Representative s-SNIM images obtained in the same spatial region are 

presented in Fig. 6.1  Each row represents a separate heating or cooling run 

through the phase coexistence regime. The nucleation and growth of phase 

domain patterns are reproducible for the heating runs and the cooling runs 

respectively. However, somewhat different patterns are observed in the heating 

runs compared to the cooling runs.  As has been seen previously in 

polycrystalline VO2 films, the MIT is percolation-type in which phase domains 
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first nucleate and then grow in amorphous, fractal-like patterns[86,87,149].  The 

patterns are static and stable in time, provided the temperature is held constant.  

constant.  While the shapes of these phase domains are reminiscent of those 

observed in random percolation models of phase transitions, the fact that these 

domains nucleate and grow in the same way on separate runs through the MIT is 

evidence that deterministic effects alone dictate the domain patterns.  It follows 

that the domain patterns depend on factors such as grain boundaries, relative 

orientation of grains, impurities, defects, and dislocations, which are “quenched”, 

or frozen into the film at the time of growth.  While the variance introduced by 

Figure 6.1 — Near-field infrared amplitude images of the same region at different temperatures are displayed.  
Higher infrared amplitude corresponds to metallic regions, while lower signals correspond to insulating regions.  
The signals are normalized to the average signal of the completely insulating 329 K image (not shown).  Rows 
a and b show separate heating runs.  Rows c and d show separate cooling runs. 
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this “quenched disorder” can be treated as random in theoretical models[156], 

this does not imply that phase domain formation is necessarily a probabilistic 

(or random) physical process. 

The s-SNIM images were taken over a number of runs through the metal-

insulator transition. To investigate the reproducibility of the patterns produced 

by the phase domains, raster scans were taken in the same area on the film in 

repeated thermal runs.  We performed two heating runs in three different 

regions of the film for a total of six heating runs.  In none of the regions was 

any evidence of randomness observed.  Three cooling runs were performed at 

the location shown in Fig. 6.1 to compare the patterns to the heating runs in 

the same location and to verify the repeatability for cooling. The three cooling 

runs showed reproducible patterns of coexisting phases (two of the three cooling 

runs are shown in Fig. 6.1). In all of the above runs, the sample was first brought 

to a temperature completely outside of the phase coexistence regime where it 

was fully metallic (for cooling) or fully insulating (for heating).   

To obtain further insight into the domain pattern formation, we report a 

non-monotonic temperature cycle through the phase coexistence region in a 

common area of the film in Fig. 6.2.  Interestingly, although the same pattern 

reemerges at 341 K, the phase domain patterns on the two heating portions of 
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the cycle are quite different. Hence, it is not necessary to exit the coexistence regime 

regime to reset the memory of the system.    

We emphasize that nucleation occurs at precisely the same location in each uni-

directional, monotonic temperature excursion across the MIT (See Fig. 6.3 b,c,d, 

and e).  As the sample temperature crosses the equilibrium temperature, where the 

free energies of both phases are equal, it is thermodynamically preferred to form a 

domain (∆GDomain<0).  Kinetically, however, the always positive strain and 

interfacial free energy terms oppose the formation of domains below a critical size 

(r*).  Thus, any new domain must pass (tunnel) through the nucleation barrier 

(∆G*). This tunneling is an inherently stochastic process.  Nucleation occurs at 

each site in a given time interval with a probability (PN) proportional to  


−∆G^_��^∗ `ab⁄  (See Fig 6.3h)[157].  In contrast to homogeneous nucleation, which 

Figure 6.2 — Near-field infrared amplitude images are obtained during a non-monotonic temperature cycle 
through the phase coexistence regime. Arrows denote either heating (red) or cooling (blue).  The near-field 
infrared amplitude is normalized to that of the insulating phase in each image. The area scanned here is 
different from the one shown in Figure 6.1.  
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occurs in the homogeneous bulk, heterogeneous nucleation occurs at some 

inhomogeneity such as a defect or grain boundary.  In heterogeneous nucleation, 

the size, shape and free energy of forming the critical nucleus can be altered 

significantly thereby reducing the barrier to nucleation. Nevertheless, as long 

as a barrier to nucleation exists, the process is inherently stochastic.  In the 

 
Figure 6.3 — a, Macroscopic thermal hysteresis loop measured via infrared transmission through the film-
substrate system. b,c,d,e s-SNIM images demonstrating the nucleation sites on heating (b and c), and cooling 
(d and e) of the same area as shown in Fig. 6.1. f and g, Local hysteresis width (%&') and local phase equilibrium 
temperature (&'

 )!) respectively for the area shown in b,c,d,e. White (blue) circles in b,c,d,e,f,g  serve to guide 
the eye to some of the nucleation sites which occur on heating (cooling).  h, Schematic of the free energy 
landscape for a domain of characteristic linear dimension r for different types of nucleation sites. Note that here 
we make the distinction between heterogeneous nucleation and “barrierless nucleation”. Barrierless nucleation 
is a special case of heterogeneous nucleation where, unlike the more general case, the nucleation barrier is 
completely removed, and nucleation thus occurs deterministically. 
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analysis and discussion that follows, we explain that the highly reproducible 

patterns observed here are due to barrierless nucleation, and deduce qualitative 

features of the phase transition kinetics.  

Quenched disorder locally alters the free energy balance between the 

phases[158].  As a result, the local temperature where the free energy of both phases 

is equal (b
e^_��^) is shifted from the bulk value.  As neither phase is 

thermodynamically preferred at this temperature, some degree of superheating or 

undercooling is in general necessary to overcome the nucleation barrier. It is natural 

to consider an elementary (local) hysteresis loop, where each pixel has both a 

heating and cooling transition temperature.  Equivalently, each pixel has a 

hysteresis width (∆b�) and an average of the cooling and heating transition 

temperature (b��hi).  The latter is essentially a measure of b
e^_��^, if one assumes that 

the local degree of undercooling and overheating is the same (12 ∆b�).  In contrast, 

∆b� is related to the local nucleation barrier.  While one could consider a more 

complicated model, which includes interactions such as strain between 

domains[159], the re-emergence of the same 341K pattern from different histories 

(Fig. 6.2) indicates that the simpler model is sufficient.  

We note that nucleation occurs at sites where the local ∆Tc is suppressed (See 

Fig 6.3f), which confirms that the nucleation barrier is greatly reduced, if not 



110 

 

 

 

completely removed, at these sites. At such a site, the MIT can proceed along 

a barrierless path, and hence occurs completely deterministically (see Fig. 3h).  

As one might expect, on heating, nucleation occurs where the local equilibrium 

temperature (b��hi  ) is relatively low.  Conversely, on cooling, nucleation occurs 

where b��hi  is relatively high (See Fig. 6.3 b,c,d,e,f and g). Note that to 

determine the local transition temperatures used in Fig. 6.3, we employ a 

threshold of 1.45 for the normalized infrared amplitude, above which the pixel 

is considered to be metallic.  We define the local transition temperature as the 

temperature where the signal first crosses the threshold for both the heating 

and cooling directions.  The observed local characteristics (See Fig. 6.3 f and g) 

– and thus our conclusions – do not change appreciably for a broad range of 

reasonable thresholds.  Appropriate thresholds are those that exceed the 

topography induced contrast, but are still low enough to capture the subtle 

contrast near nucleation. 

Both ∆Tc and b��hi contribute to the shape of the thermal hysteresis loop 

observed in macroscopic measurements of the MIT.  Inhomogeneity in b��hi can 

prevent the propagation of the new phase, resulting in a broader transition ≈ 

15 K  in width as seen in the infrared transmission measurement (Fig. 3a). The 

variation observed on the microscopic scale is ≈ 9 K and is attributed to the 
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finite field of view of the s-SNIM images.  In contrast, macroscopic VO2 single 

crystals have very sharp transitions, and don’t exhibit phase coexistence unless 

subject to external strain[8,40,105,106,160]. In such crystals, the hysteresis width 

width is set by the smallest local ∆Tc.   

Interestingly, several authors have reported that there is a correlation between 

the size of VO2 single crystals and the width of the hysteresis.  It is found that the 

width of the hysteresis of the MIT can be increased greatly, to as much as 35 K 

for single domain VO2 nano-particles[161,162]. The hysteresis width is 

systematically lessened in nano-particles with increasing size and number of grain 

boundaries[162].  This trend holds for free-standing VO2 crystals, from the 

somewhat larger VO2 “nanorods”[163] - which have a hysteresis width of 

approximately 5 K - to millimeter scale free-standing VO2 crystals which have 

hysteresis widths of approximately 2 K[102].  A small single domain VO2 

nanoparticle is quite likely to not contain a barrierless nucleation site.  The huge 

hysteresis width observed in these crystallites is a clear indication that the 

nucleation barrier at other sites is so large that these stochastic nucleation processes 

occur rarely.  In contrast, nucleation is functionally deterministic in sputtered VO2 

films: nucleation occurs reliably - only at the barrierless sites - each time the 

temperature crosses bVj=;k<=.   
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Note that in contrast with the extremely large hysteresis observed in isolated 

nanocrystallites, films of very small VO2 particles (<<100 nm) can have very 

if not negligible hysteresis widths (See Fig. 6.4)[164].  Although this seems 

contradictory, these two situations are in some sense polar opposites.  While 

isolated nanocrystallites have minimal nucleation sites, films such particles have 

a an extreme density of grain boundaries and the associated dislocations, 

defects, complex geometry, etc. which are likely candidates for nucleation sites.  

Note that the s-SNIM images strongly suggest that grain boundaries do not 

necessarily stop the growth of phase domains.  It is thus not necessary for each 

grain in the nano-particle film to contain a nucleation site. 

The qualitative characteristics of macroscopic hysteresis loops (See Fig. 6.4) 

can be explained in terms of the availability of nucleation sites and the 

crystallinity/homogeneity of the sample.  The sharpness of the transition is 

determined by the crystallinity/homogeneity of the sample.  Domains can only 

form in regions where the temperature is above (below) the average *+
,-+., on 

heating (cooling).  In such a region, superheating (undercooling) occurs unless 

the region contains a nucleation cite.  Where the nucleation sites are sparse, 

such as nanocrystallites or a polycrystalline film such as the one studied here, 
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the hysteresis effect can be considerable.  In cases where nucleation sites are readily 

readily available, the hysteresis is much smaller.  

It is evident that the multi-grain structure of the sputtered VO2 film is essential 

to deterministic behavior, as some evidence of randomness has been seen previously 

in VO2 samples without grain boundaries. Dramatic spontaneous symmetry 

breaking has been attributed to the structural phase transition accompanying the 

MIT in a particularly clean VO2 film[150]. Furthermore, differences in the metal-

insulator domain pattern was reported on cooling VO2 nanorod crystals[97]. There 

is experimental evidence that grain boundaries play a role in nucleation[149,162] 

 
Figure 6.4 – Effects of crystallinity and availability of nucleation sites on the macroscopic hysteresis 
loop.   
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but we cannot rule out other factors, perhaps below the length scale of our 

measurement, that may be necessary to create a nucleation site.  One such 

which has been suggested previously via DFT+U calculations, is an oxygen 

at a grain boundary[162]. Quite possibly, a critical concentration of oxygen 

vacancies per unit volume is required for nucleation. 

 CONCLUSIONS 

To conclude, we have shown that the phase domain patterns which form 

during the thermally driven MIT in a VO2 film can behave in a completely 

deterministic way.  It is clear from the present result that quenched disorder 

can be used to reliably control the spatial distribution of phase domains.  

Interestingly, nanoscale inhomogeneity in the ultra-fast optically driven 

MIT[97,164] suggests that our conclusion can be generalized to the MIT driven 

by optical pulses and also by a dc electric field.  Our work provides the 

motivation for further meaningful exploration into reliable nanoscale VO2 

electronic and photonic devices.    
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At long last, we can state with confidence that the insulating phases of VO2 are 

Mott-Hubbard insulators.  One should acknowledge that while such bold claims 

have been made before, in a number of directions, they have ultimately not lead to 

broad consensus in the field.  Towards this end, it is worth reiterating that  the 

insulating phases are now quite well characterized and the physical reality is quite 

clear: 

1.)  Coulomb repulsion (the Hubbard U) in the a1g band is the dominant 

contributor to the quantitative  details of the band structure.  That the band 

structure effects (t and t’) are small is established here, as the M2 to T phase 

transition studied in Chapter 3 has negligible effect on the band structure.  

That the electronic structure observed here is remarkably similar to the 

previous work on the M1 phase[21–25], and that the transtition between the 

Chapter 7  

Conclusions and outlook 
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M1 and T phases is continuous, enables this conclusion to be extended to the 

three known insulating phases: M1, M2, and T. When the insulating behavior 

arises primarily from intra-atomic Coulomb repulsion, such an insulator is 

classified as Mott-Hubbard type. 

2.) The dimerized chains are somewhat unconventional Mott-Hubbard 

insulators in that the valence electrons form singlet pairs, revealed by 

NMR[7] and EPR[55,104], which are localized on the vanadium dimers as 

opposed to the more conventional situation where electrons are localized to 

individual atoms.   The localized electrons on the undimerized vanadium ions 

in the M2 phase represent a more conventional Mott-Hubbard scenario [7]. 

In truth, this picture was quite appealing following the work of Pouget et 

al. in 1974[7].  The inability of the single particle band theory (LDA) 

calculations in 1994 to open an energy gap made the necessity of electronic 

correlations abundantly clear[45].  However, there has been some ambiguity in 

the recent theoretical works.  Moreover, the interpretation of recent 

experimental results has been highly model-dependent and ultimately 

ambiguous.  The conclusive experimental verification in our work that the 

insulating phases are firmly in the Mott-Hubbard limit represents a significant 

milestone in the study of this material.  This insight removes the previous 
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ambiguity, and ultimately permits a re-interpretation of these and other results 

within a clear and consistent framework. 

There is a subtlety that bears particular clarification.  That the quantitative 

value of U in the �1	 band is strongly affected by the occupation of the 
	� band – 

through screening – is strongly suggested by the results presented in Chapter 5.  

This is in line with the photoemission experiments[21,25] and the qualitative 

theoretical description presented early on by Mott[18].  In the insulating phases – 

where the 
	� band is empty – the screening, and thus the value of U, should be 

insensitive to slight changes in lattice structures.  However, fine details in the 

lattice structure might be expected to have significant consequences when the �1	 

and 
	� bands both cross the Fermi energy, as in this situation their relative 

occupancies - and thus the effective U - can vary.  It is important to note that this 

sort of sensitivity to lattice structure is not a Peierls effect.  It is instead a more 

subtle effect that involves the interaction of the lattice with the electronic 

correlations.  Further work in this regime, either in the rutile phases or the 

monoclinic metal phase(s), is necessary to provide additional insight into this effect 

and the kinetics of the MIT. 

In terms of the larger correlated electron problem, VO2 has a critical role to 

play.  Ultimately, the goal from the computational side of the field is to develop 
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models with predictive power.  VO2 is an ideal proving ground for such models 

due to the relatively simple unit cell, multiple distinct phases, and high 

sensitivity to external parameters such as strain.  The role of experiment 

towards this goal going forward will be to fully characterize the material – 

including the novel phases - in order to fully test and constrain these models. 

More practically, such an extensive characterization is a necessary step towards 

harnessing VO2 for applications. 

Certainly, the most exciting potential applications of VO2 and other 

correlated materials are on the nanoscale.  The potential of these materials for 

application is dependent on their novel phase transitions.  That random domain 

formation on the nanoscale is not necessarily intrinsic to these phase transitions 

is something of an unexpected boon (See Chapter 6).  However, further work is 

necessary to discover the ultimate cause.  Insights gained through such work 

could potentially be leveraged in nanoscale devices across  correlated systems. 

In conclusion, the great debate should be considered put to rest.  However, 

the potential and depth of the VO2 system is in no way diminished with the 

conclusion of the great debate.  It remains a fertile ground for experimental and 

theoretical investigations into strong correlations in condensed matter systems.  

For one, the rutile metal itself is hardly the simple uncorrelated metal it was 
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thought to be at the outset.  Moreover, the nature of the more exotic phases such 

as the monoclinic metal is entirely unclear.  The insight gained through solving this 

classic problem will serve as an invaluable tool in addressing the outstanding 

questions in VO2 and other strongly correlated systems. 
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A.1 SPOTSIZE CORRECTION 

It is necessary to account for the fact that, at long wavelengths, the 

microscope spot size is larger than the crystal (See Fig. A.1).  It is natural to 

model this situation in the following way. 

blWW = m(X)bno2+qrs + (1 − m(X))bqrs 

Where F(ν) is the percentage of light first incident on the VO2 at a given 

frequency, bn o2+qrs is the absolute transmission through the VO2 and 

substrate, and TSub is the absolute transmission through the substrate.  tuvvtwxy is 

the data that was actually measured.  tuvvtwxy is equivalent to 
tz{2+wxytwxy  at higher 

frequencies, when all of the light is falling on the crystal  At low frequencies it 

Appendix A  

Modeling of experimental data for determining 

optical constants presented in Chapter 3 
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is necessary to use F(ν) to extract 
tz{2+wxytwxy  from  tuvvtwxy, as 

tz{2+wxytwxy  is the real data 

of interest.   

The size and shape of the sample and the spot are the same between the two 

phases.  Thus, F(ν) is the same for all phases and polarizations.  This assumes that 

the transmission is a simple geometric sum of the infrared light passing through 

the crystal and that passing through the area around it.  This ignores potential 

scattering and plasmonic effects due to the material’s polarizability and shape.  

The lack of any strong dispersive features in the transmission spectra supports the 

notion that scattering and plasmonic effects are not significant. 

Because of the complex shape of the measured crystal, and the presence of 

surrounding crystals of different 

thicknesses, F(ν) cannot be 

calculated precisely.  The error 

bars in Fig. 3.4 are due to this 

uncertainty.   The known rutile 

dc conductivity along cR, the 

known spot profile of the 

objective, and the size of the 

measured microcrystal, were used 

Figure A.1 — Intensity profile of a 0.58 NA Schwarzschild 
objective at two representative frequencies.  
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to constrain F(ν).  For a 0.58 NA Schwarzschild objective, the spot size starts 

to exceed 50 microns at 1000 cm-1 (See Fig. A.1) and becomes larger than the 

size of the crystal.  Thus, we used an F(ν) equal to 1 above 1000 cm-1.  In the 

low frequency limit, the transmission through a film depends only on the dc 

conductivity52.  The dc conductivity along cr for nano-rods is known to be 2000 

Ω-1cm-1 [40].  To make the measured data consistent with this constraint, F(ν) 

must be 0.77 at 200 cm-1.  The intermediate values of F(ν) were then 

interpolated with a parabolic curve connecting the two constraining points at 

200 cm-1 and 1000 cm-1, with the vertex of the parabola at (ν =1000 cm-1, 

F(ν)=1).   

If the dc conductivity constraint is lifted, F(ν) is still constrained in that it 

must return a positive transmission in rutile VO2.  This sets a lower limit on 

F(ν) at 200 cm-1; F(200 cm-1) must be greater than 0.68.  However, this would 

yield a very large σ1(ν) in the dc limit.  A more reasonable lower limit for F(200 

cm-1) of 0.72 was considered as it yields a dc conductivity along cr of 3000 Ω-

1cm-1, 50% larger than that measured by Ref. [40].  

Finite element analysis was used to check the reliability of the F(ν) values.  

The optical image of the sample was discretized, and F(ν) was calculated 

numerically using the following formula. 
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���== q7<kV
 

 

 
A.1 

Where }(X 
, �) is the intensity of the spot at a given position for a specific 

frequency.  While  the different thicknesses of the surrounding crystals make an 

exact calculation of F(ν) impossible, it is useful in that it can establish an upper 

limit on F(200 cm-1). We note that the surrounding crystals are much thicker than 

the crystal being measured and therefore contribute an insignificant amount to the 

measured transmission spectra.   

A spatial aperture was used during the experiment to “apodize” the canonical 

Schwarzchild intensity distributions shown in Fig. A.1, reducing the intensity in 

the higher order rings at the cost of increased width of the central maximum[68], 

thereby ensuring that the crystal being measured contributes overwhelmingly to 

the transmission spectra at the expense of the surrounding crystals.  Thus, in 

actuality, F(200 cm-1) will be greater than what would be implied by the intensity 

distributions in Fig. A.1.  Supposing that all of the light falls within the first order 

minima, finite element analysis yields an F(200 cm-1) of 0.97.  Likewise, assuming 

that all of the light falls within the second order minima yields an F(200 cm-1) of 

0.63.  While 0.97 is unreasonably high, and 0.63 is less than the physical limit of 

0.68 discussed above, averaging these values and adding an extra 5% provides a 
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reasonable upper limit on F(200 cm-1) of 0.85.  Figure A.2 shows the uncertainty 

in the optical constants due to the uncertainty in F(ν) using the above 

considerations to bound F(200 cm- 1) between 0.72 and 0.85.  

Figure A.2 — The uncertainty caused by the spread in F(ν) for monoclinic (M1) VO2 (a) and 
(b), and rutile VO2 (c) and (d).  Black curves show the optical constants consistent with the 
rutile cr axis dc conductivity constraint (black circle).  Red curves show the optical constants 
using the lower limit on F(200 cm-1).  Green curves show the optical constants using the 
upper limit on F(200 cm-1). 
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A.2 SPECTRA AND FITS 

The normalized transmission spectra were modeled using WVASE 32, 

spectroscopic analysis software from J.A. Woollam Co.  The microscope objective 

leads to a range of angles of incidence from 15 degrees to 35 degrees.  The angle 

of incidence was modeled as 25 degrees.  As the variance in the modeled 

transmission between angles of incidence between 15 and 35 degrees is less than 

1%, this approximation has a negligibly small effect on the modeling.  Spectra and 

fits are shown in Fig. A.3. 

The rutile transmission spectra in the phonon region warrant special comment.  

The phonon features in the rutile phase spectra are much weaker than those of the 

monoclinic M1 phase. However, there are four reproducible features above our noise 

level, one when �⃑//cR, and three when �⃑//aR.  Fig. A.3 (e) and (f) show the data, 

and the generated transmission with the phonon oscillators (grey) and without the 

phonon oscillators (red) present in the model.  It is clear that while the features 

are weak, the phonon oscillators are necessary to achieve an acceptable fit.  
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Figure A.3 — Representative spectra and fits for the substrate at (a) 295K and (b) 400K; monoclinic 
(M1) VO2 at 295K (c) and (d); and rutile VO2 at 400K (e), (f), (g) and (h).  Data are shown as 
dashed lines and fits are shown as solid lines.  The red lines in (e) and (f) show the modeled 
transmission without the phonon oscillators.  Data shown in (c), (d), (e), (f), (g) and (h) is consistent 
with F(ν) obtained from the rutile cr axis dc conductivity constraint (F(200 cm-1)=0.77).  
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Appendix B  

Analytical details for the spectroscopy 

data presented in Chapter 4 

B.1 GENERALIZED MICRO-ELLIPSOMETRY 

The broadband optical constants reported in this work are extracted from the 

experimentally measured spectra using WVASE 32, a spectroscopic data analysis 

software from J.A. Woollam Co.  The software generates experimental data from 

a “model” material with optical constants built up as a sum of Kramers-Kronig 

consistent oscillators.  The parameters of the oscillators are then adjusted 

iteratively to achieve the best agreement with the experimental data. 

Generalized (Jones matrix) spectroscopic ellipsometry was used in the near 

infrared, visible, and ultraviolet regions of the spectrum.  Ellipsometry is a 

particularly powerful experimental technique in that, due to its self-referencing 
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nature, it returns extremely reliable optical constants.  Moreover, it enables the 

unambiguous determination of both the real and imaginary parts of the 

function, unlike reflectance or transmission alone.  Due to the fact that the 

is Kramers-Kronig consistent, this benefit is extended into the entire spectrum, 

even regions, such as the far infrared in this work, where there is reflectance 

but no ellipsometry data available.  This benefit is related to causality and the 

property of unique analytic continuation of the complex dielectric function.  

Jones matrix ellipsometry is more general than the usual, isotropic form, in 

that it measures the cross conversion between p and s polarized light upon 

reflection from the sample.  Cross conversion occurs when the dielectric tensor 

of the sample has non-zero off diagonal elements.  Taking this cross conversion 

into account is necessary for anisotropic crystal structures, such as the 

insulating states of VO2; the dielectric tensor for an absorbing monoclinic 

crystal has one independent off diagonal element, as shown below; there is no 

choice of coordinate system that will diagonalize the tensor.  The dielectric 

tensor is complex symmetric, and the special “3” axis in the monoclinic is along 

the axis opposite the monoclinic angle.      

!�;);k%)%k = ⎝⎜
⎛!11 !12 0!12 !22 00 0 !33⎠⎟

⎞ 
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B.1 

The triclinic case is, in general, even less symmetric.  There are no zero elements 

guaranteed by symmetry.   

 

!t�%k=%)%k = (!11 !12 !13!12 !22 !23!13 !23 !33
) 

 

 

B.2 

The simple Ψ and ∆ parameters, which come from the diagonal elements of the 

Jones Matrix (Ψ���� �P� ∆����), are shown in Fig. B.1 for when the sample is oriented 

with the vanadium chains parallel and perpendicular to the plane of incidence.  

Interestingly, in these orientations, there is hardly any structure in the off diagonal 

elements (Ψ���� ,∆���� , Ψ���� �P� ∆����)  above the noise level.  These off diagonal Jones 

matrix elements come from off diagonal elements of the dielectric tensor.  That 

these off diagonal Jones matrix elements are small is characteristic of an optically 

uniaxially anisotropic crystal with an optical axis along the vanadium chains.  

Thus, we choose to model the data using a uniaxial model material for both the 

M2 and Triclinic phases. 
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!t ,�2 ≈ !r)%<�%<= = ⎝⎜
⎛!⊥ n  kℎ<%)� 0 00 !⊥ n  kℎ<%)� 00 0 !∥ n  kℎ<%)�⎠⎟
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B.3 

  
Note that this uniaxial model is in no way inconsistent with the expected 

tensors.  The experimental result, then, is simply that the off diagonal elements 

the dielectric tensor are too small to be measured in the present experiment, 

that !11 ≈ !22 for the M2 and T phases of VO2.  

There are a number of good reasons to expect the uniaxial approximation 

to be reasonable.  First, the insulating phases of VO2 twin about the vanadium 

 
Figure B.1 — Generalized micro-ellipsometry spectra and fits showing the diagonal Ψ and Δ elements of 
the Jones matrix.  Fitting is done using a uniaxial model in which the “V chains” (cR) direction is the 
extraordinary ray.   
 



131 

 

 

 

chains (cR) direction when they cool from the higher symmetry rutile phase.  This 

twinning would be expected to lead to some averaging of optical constants in the 

plane perpendicular to the cR direction, and explains why we see don’t see 

significant anisotropy in that plane(!11 ≈ !22).  Moreover, that !11 ≈ !22 is also 

consistent with our theoretical calculations, even for untwinned VO2.   

B.2 POLARIZED REFLECTANCE MICRO-SPECTROSCOPY 

For the far and mid infrared regions of the spectrum, confocal reflectance 

microscopy is used to extract optical spectra with light polarized both parallel and 

perpendicular to the vanadium chains.  Reflectance, as opposed to transmission, is 

necessary because the samples, even at thicknesses of around 60 µm, are opaque in 

the phonon region.  This method is quite successful in determining the center 

frequencies of the phonons, and, where appropriate, separating modes of different 

symmetries.   There is, however, some uncertainty in the absolute values for the 

following reasons.  In the far infrared, the diffraction limited spot size begins to 

exceed the size of the crystal.  Even for optical spectroscopic measurements on 

macroscopic samples, reflectance is quite sensitive to slight differences in alignment 

between the sample and reference.  Confocal reflectance microscopy is even more 

sensitive to the alignment due to the fact that the light must pass through a very 
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small aperture after reflection.  To address these issues, we normalize to the 

metallic rutile phase, in a procedure analogous to that used in reflectance 

spectroscopy, where gold is evaporated in-situ onto the sample for the purpose 

normalization.  Despite the procedure employed, there is, however, some 

systematic uncertainty in the reflectance spectra in the far infrared. 

 
Figure B.2 — Reflectance spectra and Lorentzian oscillator fits in the phonon (far infrared) region.  The 
error bars show systematic uncertainty due to the normalization procedure, alignment, and matching the 
two detector/polarizer spectral ranges used (see text).  The uncertainties affect primarily the Lorentzian 
oscillator strengths and broadenings.  However, this uncertainty in no way affects the structural assignment 
(see text).  
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The reflectance spectra and systematic error bars in the far infrared are shown 

in Fig. B.2.  Their extent is determined by the discrepancy in the data sets acquired 

from the two detectors and polarizer combinations used in this work.  The reported 

data is an equal weighting of the two data sets.   

In the mid infrared reflectance spectra are shown in Fig. B.3.  Most importantly, 

the mid-infrared reflectance agrees with the ellipsometry on the central point of 

the chapter, that there is negligible change between the M2 and T phases across 

the phase transition.  There is, however, some extra discrepancy between the model 

and the reflectance spectrum in this region.  The black error bars are determined 

as in Fig. B.2, whereas the red error bars are accentuated by a factor of four.  The 

larger red error bars are to account for the fact that the shorter wavelength mid 

infrared reflect ance spectra are more affected by optical alignment and non-

specular scattering.  It is not uncommon, even on macroscopic samples, to have 

some disagreement between ellipsometry and reflectance in this region, because the 

two techniques are affected differently by non-specular scattering.  In this region 

of the spectrum, it is appropriate to trust the ellipsometric data, due to its self-

referencing na ture.  It should be noted that this mid-infrared region, between the 

IR active phonons and the lowest lying inter-band transition, contains no spectral 

features.  The reflectance in this region is completely determined by the neighboring 
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phonon and  inter-band transition features at lower and higher energies, where 

the agreement between the raw spectroscopic data and the model is much better  

 
Figure B.3 — Reflectance micro-spectroscopy data and fits in the mid IR.  The error bars are 
representative of systematic uncertainty caused by the normalization procedure, alignment, and 
matching the two detector/polarizer ranges.  The black error bars are determined as in Fig. B.2, 
while the red error bars are accentuated by a factor of 4 (see text).  While there is some uncertainty 
on the absolute values in this region, reflectance data agrees with the ellipsometry in that there is no 
significant change in the electronic contribution to either spectrum across the M2 to T transition.        
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B.3 CONSTRAINING THE M1 REFLECTANCE SPECTRUM OF  

VERLEUR ET AL. [24].  

There is a very large range of complex dielectric functions that will reproduce 

reproduce the reflectance intensity spectrum measured in [24] (See Fig. B.4).  The 

The uncertainty is greatest near the high frequency edge of the spectrum, and is 

is due to the fact that phase information, i.e. the reflectance phase, is lost in an 

intensity spectrum.  This phase information is preserved in ellipsometry, which 

unambiguously determines both the real (�1) and imaginary (�2) parts of the 

complex conductivity.  It is not likely that the conductivity in the high energy 

region of the spectrum differs much between the M1 and T phases, based on our 

theoretical results and the continuous nature of the phase transition.  Certainly 

any changes should be expected to be considerably less than the uncertainty of Ref. 

[24].  Using the known complex conductivity of the T phase above 4 eV as a 

constraint, it is possible to fit the measured reflectance of the M1 phase without 

any sacrifice to the quality of the fit (See Fig. B.4 (b)).  With this constraint, the 

Kramers-Kronig consistent complex conductivity that we extract from the 

reflectance spectrum of Ref.[24] is essentially unique across the spectral range of 

the reflectance spectrum.  This “constrained” conductivity should be thought of as 

a more accurate result from the experiment performed in Ref. [24].  The minor 
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differences between the M1 and M2/T phases that remain after we apply this 

constraint (See main text) are likely due to systematic differences between the 

studies, and should thus not be attributed to intrinsic differences between the 

and M2/T phases.   
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Figure B.4 — The complex conductivities shown in (a) are a representative sample of those that are consistent 
with the reflectance spectrum measured in [24] on M1 VO2.  The measured reflectance for light polarized 
parallel (open circles) and perpendicular to Cr (closed circles) is shown in (b).  In each panel of (b), the 
reflectance generated by one of the representative conductivities shown in (a), denoted by colors, is also 
shown.  The complex conductivity of the T phase at 4.5eV (blue circles) is also shown in panel (a) for reference 
(see text).    
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C.1 EXPERIMENTAL AND ANALYTICAL DETAILS 

The measured spectra were modeled using WVASE 32, spectroscopic 

analysis software from J.A. Woollam Co. A model based on Kramers-Kronig 

consistent oscillators is created, and the software minimizes the error between 

the model-based spectrum and experimental spectrum.  The VO2 on quartz 

substrate system is modeled as three separate layers: the (001) quartz substrate 

with known optical constants, the VO2 film whose optical constants are to 

determined, and an effective medium layer to model the surface roughness of 

the VO2 film.  The optical constants of quartz were first obtained with model-

Appendix C  

Fits to the data for extracting optical 

constants discussed in Chapter 5 
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based fits to the experimental spectra acquired from a bare quartz substrate. The 

parameters related to the surface roughness were measured directly via an atomic 

force microscope (AFM).  The AFM measurement yielded a RMS surface roughness 

of 3.7 nm and a 46.7% void fraction. Specifically, the surface roughness is modeled 

by a 7.4 nm thick effective medium layer with a 46.7% void fraction.  The factor 

of two difference between the measured RMS roughness and the thickness of the 

effective medium layer is due to the nature of RMS averaging; i.e. the RMS value 

is ½ the peak to peak amplitude for a square waveform.  The thickness of the film 

was accurately measured by grazing angle x-ray reflectivity with an uncertainty of 

about one percent. The ellipsometric and reflectance spectra and fits for the VO2 

on quartz film in both the rutile and monoclinic M1 phase are shown in Figs. C.1, 

and C.2, respectively.  Special comment is warranted for the reflectance data in 

the far infrared for the metallic phase. The slight downturn at lower frequencies in 

the reflectance data is evidence of the low lying peak in conductivity shown in the 

inset in Fig. C.1 (a); Drude oscillators alone are insufficient to fit this feature well. 

The 300K reflectance data in the phonon region, shown in Fig. C.1 (d), contains 

significant contribution from both VO2 and quartz phonons.  Although the 

spectrum is dominated by quartz features, we clearly observe structure due to some 
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of the stronger VO2 phonons.   Moreover, the presence of the VO2 phonon 

in the raw data is clearly demonstrated when one notes the poor fit to the data 

reflectance generated from a model with quartz phonons but no VO2 phonons 

(Shown in Fig. C.1 (d) as a red line); the fit is significantly improved upon 

Figure C.1 — Optical spectra and modeled fits for the rutile phase of the VO2 film on quartz at 360K.  
Spectroscopic ellipsometry data is shown in panels (a) and (b).  The absolute reflectance spectrum is 
shown in panel (c) between 60 cm-1 and 8000 cm-1.  The absolute reflectance in the far infrared is shown 
in panel (d) from 60 cm-1 to 2000 cm-1.  The oscillations in the reflectance data at low frequencies are 
due to interference in the quartz substrate. 
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addition of VO2 phonons to the model. Hence the reported VO2 phonons are 

necessary to achieve an acceptable fit to the raw reflectance data.  

 

 

 
Figure C.2 — Optical spectra and fits for the monoclinic M1 phase of the VO2 film on quartz at 300K.  
Spectroscopic ellipsometry data is shown in panels (a) and (b).  The absolute reflectance spectrum is shown 
in panel (c) between 60 cm-1 and 8000 cm-1.  The reflectance in the phonon region is shown in panel (d).  
The red line in panel (d), generated using a model for the VO2 film on quartz with no VO2 phonon features 
to demonstrate the clear need for the VO2     phonons, in addition to the quartz phonons, to fit the measured 
spectra (See text).  The VO2 phonon at 189cm-1 is more clearly seen in transmission (not shown). The 
oscillations in the reflectance spectra are due to interference in the quartz substrate. 
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C.2 EVIDENCE OF STRUCTURAL TRANSITION 

Note that we can rule 

out the possibility that the 

metallic phase of VO2 

studied in this work is the 

exotic monoclinic metal 

seen by M.K. Liu et al., 

that occurs without a 

structural transition to the 

rutile lattice[61]. Strong 

infrared phonons are expected to be present in the monoclinic metal as seen by 

M.K. Liu et al.[61].We do not observe any obvious infrared phonon features in 

the metallic phase which is fully 

consistent with a rutile metal. 

Moreover, our x-ray diffraction 

experiments confirm an upward shift 

in the Bragg peak position and an 

increase in its intensity, the 

 
Figure C.3 - Shift in the Bragg peak across the phase 
transition.  The vertical lines show the Bragg peak 
locations from the literature for bulk VO2.  This shift is 
consistent with the situation described in the main text.  
As the strain relaxes somewhat as the film transitions 
into the rutile phase, the diffraction peak shifts upwards 
towards the bulk rutile value. 

 
Figure C.4 — An XRD out of plane θ � 2θ scan of the 
VO2 thin film and quartz substrate system. The M1 VO2 
(011) and (022) peaks are clearly seen. 
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observations being consistent with a structural transition to the rutile lattice (See 

Fig. C.3). 

In figure C.4, we show a broader 2θ x-ray diffraction scan in the insulating 

phase.  The twins of the M2  phase are expected to lead to a doublet in the vicinity 

of 2θ angle of 27.8⁰ [165].  The lack of any observed doublet in the (011) and (022) 

M1 VO2 peaks in figure C.4 rules out the possibility of an M2 insulating phase.  
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