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ABSTRACT PAGE 

With the ubiquity of electronic devices, finding ways to improve quality or fabrication 
methods of components is an important area of study. This dissertation looks at two sets 
of materials that may be used to address this need. The first is a series of disordered per
ovskites of the form NdLxLhx Ti03 . These materials are notable for the way the lithium 

3 

becomes spontaneously patterned during synthesis into square planar regions, the dimen-
sions of which are only dependent upon the initial concentration of lithium. Through the 
use of point-charge calculations, the paramagnetic and first-order quadrupole interaction 
tensors for each of the 28 unique lithium sites of the x = 0.083 concentration were calcu
lated and used to accurately simulate the experimental spectra. From this, it was observed 
that the 28 crystallographically distinct sites present in that particular concentration could 
be grouped into three sets based on the principal values of the paramagnetic interaction 
tensors. Qualitative analysis of spectra from the other concentrations suggests that this 
grouping holds for other concentrations, with only the relative number of sites in each 
group changing. Additionally, jump dynamics were incorporated into the simulations 
of one of the sites in order to explain the broadening that occurs at lower temperatures. 

The second study included in this dissertation is focused on lithium in a pair of high

dielectric microwave ceramics, Ca(Lh13Nb2;3)03 and (Ca2;3La1; 3 )(Li1; 3Nb2;3)03. Ex
perimental results are reported for the temperature-dependence of both the spin-lattice 
relaxation rate and the isotropic chemical shift for each material. For both samples, the 
isotropic shift was linear with temperature, with the isotropic shift of Ca(Li1; 3 Nb:;v3 )01 
having a stronger temperature dependence (3.53 Hz· K-1 compared to 2.65 Hz· K-1 ). The 
spin-lattice relaxation rates of both samples follow an Arrhenius relationship with tem
perature, with Ca(Li1; 3 Nb2; 3 )03 having an activation energy of 5.08 kJ · (mol· K)-1 

and (Ca2; 3La1; 3 )(Li1; 3 Nb2; 3 )03 having an activation energy of 2.21 kJ · (rnol· K)-1 • 

In addition to the lithium study, there were also spectra acquired that observed the nio
bium nucleus in each material, which has a noticeably more complex spectrum. For the 
(Ca2; 3La1; 3 )(Lh;3 Nb2; 3 )03 sample, a double-quantum satellite-transition magic angle 
spinning pulse sequence was used to determine the isotropic chemical shift as well as the 
quadrupole product of each of the five resolved sites. 
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NMR STUDY OF PARAMAGNETIC NANG-CHECKERBOARD SUPERLATTICES 



CHAPTERl 

Introduction 

Determining the small-scale structure of materials is often a crucial step in under

standing their properties. When effects such as electronic properties (conductivity, dielec

tric constant, etc.) or physical properties (strength, malleability, etc.) can be correlated 

with composition and structure, it becomes possible to design better materials to obtain 

the desired results. Many methods are available for studying these structures: electron 

microscopy, X-ray or neutron diffraction, and mass spectroscopy, to name a few. 

Nuclear Magnetic Resonance (NMR) spectroscopy is yet another technique available 

for studying the strticture and properties of materials. With its high degree of sensitivity to 

the local structure surrounding the nuclei, it complements other techniques by providing 

information on the local structure, as well as the dynamics, of the material. The resulting 

NMR spectra can provide direct information about the interactions of the nuclei being ob

served, such as the number of unique sites or the values of interaction tensor components 

(such as the quadrupole coupling constant). 

When the interactions affecting the observed nuclei are well understood, further in

formation can be obtained by attempting the simulate the experimental spectra. Least

squares fitting routines can result in highly accurate simulations that can provide precise 

2 
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values for not only the interaction tensor components but also information on the dy-

namics of the system, such as nuclei jumping between possible displacements, or even 

jumping from site to site in the case of conductive materials. 

This dissertation will discuss a pair of studies that focus on materials of particular 

importance to the production and performance of electronic devices. Both sets of exper-

iments observe the lithium nuclei present in disordered perovskites, but with very dif-

ferent neighboring atoms. The first set of materials, with the structure NdLxLhx Ti03, 
3 

contains strongly paramagnetic neodymium, which produces the largest effects on the 

lithium atoms in the material. These materials are notable for the way in which the lithium 

spontaneously orders into square planar regions, forming a checkerboard-like bulk struc-

ture, whose nano-scale dimensions are directly related to the bulk lithium concentration 

[1, 2]. It is this ordering that makes the materials potentially useful in the electronic 

nano-fabrication process. Being able to finely adjust the nano-scale structure of the rna-

terial allows it to be used as a template material for applications such as creating very 

small-scale electronic circuits. 

The microwave ceramics discussed in Chapter 5 have a more uniform distribution of 

atoms, and are more interesting for their electronic properties. The two materials stud-

ied here, Ca(Lh;3 Nb2; 3 )0:3 and (Ca2; 3La1; 3)(Lh;3 Nb2; 3 )0:3, are a subset of a series of 

materials produced by Peter Davies of the University of Pennsylvania (3-5]. These mi-

crowave ceramics have high dielectric constants and are low-loss. This makes them most 

useful in applications such as frequency filters and oscillators. In this case, NMR can be 

useful in determining how well the materials respond to temperature changes. 

Immediately following this introduction, Chapter 2 will cover the NMR theory nee-

essary to understand the interactions that are relevant to the work described in later chap-

ters. This begins with a basic overview of what NMR experiments are actually seeing, 

describing the Zeeman interaction that is present in all NMR experiments. The tech-

nique of magic angle spinning (MAS) will also be detailed, explaining both why it works 
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and what advantages it provides, as well as explaining the presence of spinning side

bands. The last section of Chapter 2 will cover each of the interactions that play a role 

in the projects covered in later chapters. This includes the chemical shielding interaction, 

quadrupole coupling, and the paramagnetic interaction. The physical mechanisms that 

produce these interactions, as well as the mathematics of how they actually manifest in 

the NMR spectrum, will be discussed. 

Chapter 3 will focus on the experimental setup common to both projects and used by 

most solid state NMR experiments in general. This begins with an overview of the mag-

net and spectrometer system, detailing what components were used and briefly describing 

how they operate. After this is an overview of how the NMR signal generated by a sample 

is processed by the receiver circuit in order to obtain the final signal that is recorded by the 

computer workstation. Following this are detailed descriptions of the specific pulse se-

quences used, namely the Zero-Go, Hahn-Echo, and T1z Saturation-Recovery sequences. 

Each of these has specific uses, as well as inherent advantages and disadvantages which 

will be discussed in detail. 

The first of the two major projects will be discussed in Chapter 4. This study focuses 

on lithium in a series of materials with the structure NdLxLhx Ti03 . As previously men-
3 

tioned, these materials have a perovskite crystal structure, but what makes them so inter-

esting is that the lithium spontaneously isolates itself into nanometer-dimension square 

regions in the material during synthesis. The project itself studied both the temperature-

and lithium concentration-dependence of the NMR MAS spectra. A total of four differ-

ent samples were studied, each with a different concentration of lithium, defined by x in 

the stoichiometry. Additionally, the spectra of the x=0.083 sample were interpreted by 

comparing them to simulations that were calculated through the use of a point-charge ap-

proximation that determined the paramagnetic and quadrupolar interaction tensors based 

on crystal data obtained by previous studies [1, 2]. 

The second project, detailed in Chapter 5, is the study of the two high-dielectric 
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experiments focused on the lithium nucleus, examining the temperature dependence of 

the T lz relaxation rate as well as the isotropic chemical shift. In addition, several exper-

iments were performed observing the niobium nucleus, which features noticeably more 

complicated spectra. For the ( Ca2; 3 La1; 3 ) (Li1; 3Nb2; 3 )03 material, a double-quantum 

satellite-transition magic angle spinning (S'IMAS) experiment was used in order to ex-

tract the values of the isotropic chemical shift and the quadrupole product for each of the 

sites. 

At the end of the main body of the dissertation are several appendices. Appendix A 

discusses the point-charge approximation used to calculate the quadrupole interaction 

in Chapter 4. This discussion focuses on the accuracy of the calculations by looking 

at a much simpler pair of materials, two different forms of lithium niobate (LiNb03). 

The quadrupole tensor components are calculated using a point-charge approximation as 

well as several density functional theory (DFT) methods. The results are then compared 

against one another in order to determine the usefulness of the point-charge model. 

The second appendix details the process of using lead nitrate [Pb(N03 )2] in or-

der to calibrate the sample temperature used for the other experiments. Lead nitrate is 

known to have a very strong and very consistent temperature-dependent isotropic chem-

ical shift [6, 7]. This allows it to be used to calibrate the true sample temperature when 

placed under identical conditions. This calibration is crucial to the temperature-dependent 

studies performed in Chapters 4 and 5 since the process of magic angle spinning can result 

in frictional heating of the sample, up to 30 K above the target temperature. 

Appendix C contains the values for the interaction tensors resulting from point

charge calculations of 7Li in the NdLxLi3x Ti03 materials under different conditions. 
3 

The first set of tables shows the full interaction tensors for each of the 28 lithium sites as 

they are located in the proposed Cr)'stal structure of the x = 0.083 sample. The remain-

ing tables list the principal values of the quadrupole tensor of each site when shifted by 
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various displacements. 

Appendix D includes some of the Matlab™ code that was written for the purpose 

of simulating the lithium spectra of the Nda_xLi3x Ti03 samples discussed in Chapter 4. 
3 

This includes the calculation of the paramagnetic and quadrupolar interaction tensors 

based on known atom positions, as well as the actual simulation of the NMR line shape 

using these tensors. The simulation itself was developed as a module for the EXPRESS 

software developed by Professors Robert Void and Gina Hoatson [8], in order to take 

advantage of already existing front-end and processing routines. 



CHAPTER2 

Nuclear Magnetic Resonance 

Spectroscopy 

This chapter will give an overview of nuclear magnetic resonance (NMR) spec

troscopy: what is observed and the physical origin of the phenomenon. The discussion 

includes the relevant interactions that determine how NMR-active nuclei respond to ex

ternal conditions during experiments- specifically, the chemical shielding, paramagnetic, 

and quadrupolar interactions. In addition, the technique of magic angle spinning will also 

be described, explaining how it leads to spectra in which major sources of inhomoge

neous line broadening are greatly reduced and why it is essential to perform MAS in solid 

materials. 

2.1 The Zeeman Interaction 

Nuclear magnetic resonance is the process of manipulating the spins of the nuclei 

in a sample and observing the resulting evolution of the system as the spins precess and 

relax back to their thermal equilibrium state. First, the sample (with nuclear spin I) is 

7 
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placed in a strong static magnetic field, B0 . This static field causes the magnetization in 

the sample, defined as 

jJ, = "jfil, (2.1) 

to align along the direction of the B0 field in proportion to the nucleus' gyromagnetic ratio 

("f), resulting in the Hamiltonian, 

(2.2) 

The direction of the static field is used to define the z-axis in the lab frame of ref-

erence. In the presence of the magnetic field, previously degenerate spin-states are now 

separated in energy and level according to their component quantum numbers (m) relative 

to B0 according to 

Zero 
Field 

Zeeman 
Interaction 

I st Order 
Quadrupole 

mi -
--512--- [ I 1 vo vo+Li, 

l/h-312 

fv+Li 

~ _J... -1/2------_l" ' 
-~_l+l/2 l Vo+Li, 

""~ l ---. ·~+3/2 _l vo+Li, 

'\. > fv o _j_ v o+Li, 
'\.-+512--

(2.3) 

FIG. 2.1: Energy level diagram of a spin-5i2 nucleus in a magnetic field with a first-order 
quadrupole interaction included in addition to the basic Zeeman interaction. ~' represents the 
different shifts for each energy level. Not drawn to scale. 

The total number of available energy levels is equal to (2! + 1). With the energy 
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levels separated in this manner, the total number of quantum mechanically allowed tran-

sitions, b.m = ±1, is 2!. The splitting of energy levels due to the magnetic field is 

referred to as the Zeeman interaction, and is usually the largest contribution of the energy 

level shifts that results in the transition frequencies observed during an NMR experiment. 

In general, it is several orders of magnitude stronger than any local interactions in the 

vicinity of the nucleus. In a 17.6 T field for instance, the transition frequency due to the 

static field is on the order of hundreds of MHz (750 MHz for protons), while dipolar, 

paramagnetic, and quadrupolar interactions are on the order of tens to hundreds of kHz. 

While the spins aligned parallel with the static field will have the lowest energy, 

the total populations of energy levels [p(Ei)J follow a normal Boltzmann distribution, as 

shown by [9] 

e-E,jkT 

p(Ei) = ~ e-EJjkT' 

j 

(2.4) 

where k is the Boltzman constant. There are two ways to think about this distribution. 

One is as a number of individual spins, with each in one of the available spin states. This 

is essentially a classical interpretation and is easy to visualize. Another view is to take a 

quantum mechanical approach, considering each individual spin to exist in a linear com-

bination of Zeeman states, such that at thermal equilibrium the ensemble average expec-

tation value of the any observable property matches the result predicted by an appropriate 

Boltzman average. 

The frequency of the transition between energy levels is dependent upon the static 

field and is given as 

1Bo 
Vo = --. 

27r 
(2.5) 

This frequency is referred to as the Larmor frequency, and in the absence of any other 
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fields or interactions, the transitions between any two adjacent energy levels will have 

exactly the same frequencies. It is only through perturbations (other interactions) that the 

different transitions become distinguishable in the NMR spectra. 

These perturbations are a result of interactions with other nuclei and electrons. Some 

of these interactions (e.g. chemical shielding, paramagnetic, and quadrupole effects) will 

be discussed in detail in subsequent sections of this chapter. Figure 2.1 shows how the 

energy levels can be shifted due to these types of perturbations. With these perturba

tions taken into account, the different energy level transitions will be shifted by differing 

amounts, leading to the transition frequencies between adjacent energy levels no longer 

being equal. These differences in transition frequency allow for various NMR experi

ments to manipulate the energy level distribution of the system depending on what in

teraction is being studied. A series of radio frequency (rf) pulses, applied transverse to 

B0 , at the resonance frequency can be used to manipulate the spins. This is the basis of 

all NMR experiments. Pulse sequences can be designed to enhance the populations of 

particular energy levels in order to increase the observed signal to noise, or to eliminate 

those transitions from appearing in order to better isolate some portion of the spectrum 

[1 0, ll]. The nature of several relevant pulse sequences, as well as how the NMR signal 

is actually recorded, will be detailed in the experimental methods chapter. 

2.2 Free Precession and Relaxation 

2~2~1 Free Precession 

A simple classical picture of the evolution of a single spin as a result of a single 

transverse rf pulse in a strong static field is shown in Figure 2.2. The spin is initially 

aligned with the B0 field, defined here as the z-axis. An rf pulse, with a frequency close 

to the Larmor frequency of the nucleus, is applied along the -x-axis. 
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The rf pulse causes the spin to precess away from the z-axis and towards the y-axis. 

In the case of a 90° pulse commonly used in NMR, the pulse is turned off once the spin is 

aligned along the y-axis. In the absence of rf pulses, the only field acting on the nucleus 

is the static field, B0 . The spin then precesses in the x-y plane and also relaxes to align 

itself back along the z-axis. This is the basis for the simplest of NMR experiments. The 

precession of the spin as it is relaxing is what produces a voltage in an induction coil, 

which is the recorded free induction decay signal. 

z z 

X )( 

(a) Initial spin state (b) Immediately after a (c) Partially relaxed 
goo pulse along the -x-
axis 

FIG. 2.2: The evolution of a single nuclear spin during the course of goo single-pulse NMR 
experiment. The 90° pulse rotates the magnetization to the .1:-y plane. It then precesses around 
the z-axis as it relaxes back to equilibrium. 

The rate at which the spin precesses around the z-axis is equal to 2n times the Larmor 

frequency, and is referred to here as w0 , defined as 

wo =-rEo= 2nvo. (2.6) 

The Larmor frequency is different for different nuclei, and is further affected as a result of 

perturbations that result from the local structure around the nucleus as mentioned earlier. 

Some of these effects will be discussed in detail in Section 2.4. 
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2.2.2 Spin-Lattice and Spin-Spin Relaxation 

As already mentioned, in the absence of an rf pulse, the spins will relax to realign 

with the static field, with the energy level populations settling into a Boltzmann distribu-

tion at thermal equilibrium (Equation 2.4). This relaxation process can be broken down 

into two components, longitudinal and transverse; both of which are affected by various 

interactions in the sample. The transverse relaxation is governed by spin-spin exchanges, 

and the longitudinal relaxation by spin-lattice exchanges. Therefore, studying the var-

ious relaxation processes of the nuclei can provide a substantial amount of information 

about the dynamics of the system. It is also necessary to have some understanding of both 

components of the relaxation in order to successfully optimize NMR experiments on the 

sample. 

Longitudinal magnetization, in a process termed "spin-lattice relaxation", evolves 

exponentially towards equilibrium, 

M(T) = l'vf(oo) + (M(O)- M(oo))e-T/T1
z. (2.7) 

This equation is the result of solving the z-component of the Bloch equations [12], 

dMz = Mo - 111z (M H) 
dt Tl +I X Zl 

(2.8) 

that describe how the various components of the net magnetization evolve wHh time. T1z 

is the time constant used to describe the rate at which the spins return to equilibrium. The 

relaxation is a result of the individual spins exchanging energy with the lattice, which is 

assumed to remain at thermal equilibrium at all times. The actual mechanism through 

which the nuclei exchange energy with the lattice depends on the material. For instance 

in metals, the nuclei relax by coupling to the spin magnetic moments of the conduction 

electrons [13], while in organic crystalline materials and other insulators, dipolar coupling 
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is often a dominant source of relaxation [12]. 

It is useful to have some knowledge of the T lz value of a sample when performing 

an NMR experiment. Since it is usually desirable to have the system at equilibrium at 

the start of each acquisition, T lz determines how frequently scans can occur without loss 

of sensitivity. Most commonly, a recycle delay of three to five times the relaxation time 

is used between scans. This is longer than the ""1.5T lz recycle delay recommended [ 14] 

for the maximum signal-to-noise ratio for a given experimental time but avoids saturation 

and line shape distortion due to site- or orientation-dependant T lz· 

Depending on the sample, the value of T 1z can vary significantly and is affected 

by factors such as sample temperature or magnetic field strength. For the purpose of 

this thesis, short T lz values would be on the order of milliseconds, while some materials 

have T lz values that are minutes long. For samples with excessively long T lz values, 

some types of NMR experiments may be impractical simply due to the amount of time it 

would take to obtain a reasonable signal-to-noise ratio. An approximate value ofT lz is 

usually determined as part of optimizing any NMR experiment. An estimated value can 

be determined by varying the recycle delay and choosing a time that shows no difference 

in the spectmm compared with longer times. 

Transverse magnetization, in a process referred to as "spin-spin relaxation", decays 

exponentially to zero following an initial excitation. This can be described by the x- and 

y- components of the Bloch equations given by, 

dMi / ) lvfi . . .. dt = --nM x H i- T
2

, '~ = x, y. (2.9) 

In this case, T 2 is the exponential time constant describing the transverse relaxation rate, 

R2 = T2-
1

. One cause for T 2 relaxation in solids is the dipole-dipole interaction between 

neighboring nuclei resulting in a distribution of spin precession rates, the dephasing of 

which is the cause of the spin-spin relaxation. Each nucleus experiences a local field 
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generated by neighboring nuclei, and this local field can either shield or deshield the 

static field in the vicinity of the nucleus. Because of this, even if all nuclei begin in phase, 

over time they would get out of sync, leading to a decrease in the net magnitude of the 

transverse magnetization and eventually resulting in the transverse component of the net 

magnetization being reduced to zero. During an experiment, the value of T 2 governs 

how long the resulting signal will last after each pulse sequence. In liquids, the random 

isotropic motion causes T lz and T 2 to be equal, however in solids, it is most often the case 

that T 2 is orders of magnitude shorter than T lz [9], on the order of tens of microseconds. 

2.2.3 The Density Matrix 

A convenient way to represent the evolution of a system in an NMR experiment is 

through the use of spin density matrix theory. The density matrix p, which has the form 

of 

Pn P12 Pl3 

P = P12* P22 P23 (2.10) 

P13 * P23 * P33 

represents the energy level populations and transitions with the diagonal elements rep

resenting the population of each energy level, while the off-diagonal elements indicate 

coherent superpositions of energy levels. The matrix itself is Hermitian, with the size of 

the matrix determined by the spin of the nucleus. The 3x3 matrix shown in Equation 2.10 

represents the three-level system of a spin-1 nucleus. The way that the density matrix 

evolves with time depends on the Hamiltonian and is determined by the Liouville-Von 

Nuewman relation, 

p = i[p, H]. (2.11) 
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Solving this differential equation allows the time-domain signal, which is the ensemble 

average expectation value of transverse magnetic moment (either I- or J+), to be calcu

lated through the use of 

s(t) = \1-) = trace(p(t)[Ix- iiy]). (2.12) 

Depending on the complexity of the Hamiltonian of the system, it may be possible 

to solve Equation 2.11 analytically in closed form, but in most cases numerical solutions 

are required. When solving the differential equations directly isn't practical, there are 

various approximations that can be used that make it possible to solve even many-site 

systems with complicated Hamiltonians, such as Floquet Theory [15]. Regardless of the 

method used, once the time-domain spectrum has been calculated, a Fourier transform 

puts it into the familiar frequency-domain, where it can then be easily compared with ex

perimental results. Further details of the calculation of NMR line shapes will be discussed 

in Chapter 4. 

2.3 Magic Angle Spinning 

Magic Angle Spinning (MAS) is a technique commonly used in solid state NMR ex

periments to help simplify complicated spectra and make interpretation and analysis eas

ier. It is mostly used to remove, or at least reduce, the effects of chemical shift anisotropy 

as well as heteronuclear dipolar coupling. It also has the added benefit of narrowing lines 

from quadrupolar nuclei [16]. 

In a liquid sample, the orientation-dependence of the interaction tensors usually av

erage to zero, removing any effects of chemical shift anisotropy or dipolar coupling. This 

is due to the rapid isotropic tumbling of the molecules. The rate of motion is much faster 

than the magnitude of the effects due to chemical shift anisotropy and dipole-dipole cou-
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(b) 5 kHz 207Pb MAS spectrum of PbN03 

FIG. 2.3: Using MAS to simplify the results of solid-state NMR. The broad powder-pattern of 
a static 207Pb spectrum of PbN03 is reduced to a series of narrow peaks through the process of 
magic angle spinning. 
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In powdered solid samples, the molecules or ions in the lattice are fixed, which 

determines the direction of the interaction tensors. This leads to an angular distribution 

of directions that results in a broad powder NMR spectrum. For example, the results of a 

207Pb spectrum of lead nitrate [Pb(N03) 2] without MAS is shown in Figure 2.3(a). 

This is a typical chemical shift anisotropy (CSA) powder pattern spectrum, with the 

total signal intensity distributed over a 1 0 kHz range. This example has a single unique 

site for the lead nuclei, making it relatively easy to analyze. It is possible to obtain the 

principal values of the chemical shielding tensor without too much difficulty. In the ca&e 

of materials with multiple sites, the resulting overlapping powder patterns can be very 

difficult to interpret, with no obvious or unique way to deconvolute the spectrum. 

One approach to dealing with the broad inhomogeneous distributions that arise in 

complex solid samples is to utilize MAS, which entails spinning the sample around a 

specific axis at a constant speed while the NMR experiment is performed. An overview 

of the setup for a magic angle spinning experiment is shown in Figure 2.4. The sample 

is contained in a rotor that is spun about an axis that is 54.7° from the direction of the 

static field. The actual mechanics of how an MAS experiment is performed will be more 



thoroughly discussed in Chapter 3.1. 

FIG. 2.4: Diagram of a Magic Angle Spinning experiment. During an MAS experiment, the 
sample is spun around the direction eR in order to reduce the effect of anisotropy. 
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Since the orientation-dependent part of most interactions can be shown to be pro-

portional to (3 cos2 e - 1) [13, 16], where e is the angle between the principal z-axis of 

the interaction tensor and the static field, it is possible to eliminate that portion of the 

interaction by getting the average value of (3 cos2 e- 1) to be zero. It can be shown [9] 

that the average value is determined as in 

(2.13) 

Where 8 is the principal z-axis of the shielding tensor With respect to the Static field, BR is 

the direction of the axis of rotation for the spinning rotor, and f3 is the angle between the 

largest principal component of the shielding tensor and the axis of rotation. By rotating 

the sample sufficiently fast around eR, the average value of (3 cos2 e - 1) goes to zero 

if angle BR is set precisely to the "magic angle" of 54.7°, where arccos BR = 1/ J3. 

"Sufficiently fast" is when the spin rate is comparable to the strength of the interaction (in 

kHz). A spin rate of three to four times the interaction strength will completely eliminate 
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the anisotropic component of the interaction, reducing the spectrum to a single line at the 

isotropic chemical shift. In addition, since the total signal intensity will remain constant, 

the apparent signal-to-noise will appear significantly better since the intensity is now 

concentrated in a single peak and not distributed across an entire powder pattern. Most 

of the experiments described in later chapters were performed at spinning speeds of 30 

kHz. The latest high-speed spinning probes available are capable of approximately twice 

that speed. With the strength of the interactions discussed in later chapters (on the order 

of several hundred kHz), this means that it is not always possible to completely eliminate 

the anisotropic component of the interactions. 

In the case of an MAS experiment where the spin rate is not fast enough to com

pletely eliminate the anisotropic component, spinning sidebands result. The spinning 

sidebands are sharp peaks that occur at multiples of the spinning speed, spaced symmetri

cally around the isotropic peak [17]. The actual widths of each of the peaks is dependent 

upon the T 2 relaxation of the nucleus being studied as well as the strength of the static 

field. If the spin rate is not so fast as to completely eliminate the anisotropy, the tops of the 

isotropic peak and spinning sidebands will trace out the powder pattern that would result 

from a static experiment, making the spinning sideband intensities useful in the analysis. 

Thus, the relative intensities can give information about the anisotropic interactions that 

are being partially eliminated. With the spectrum reduced to a series of peaks instead of 

broad distributions, it can be much easier to distinguish between overlapping sites. The 

spinning sidebands' contribution to the spectrum can be calculated by starting with the 

equation [9], 

w(f2; t) = -wobol7bo. (2.14) 

This equation shows the contribution to the observed frequency for a particular ori

entation n of the chemical shielding tensor, uR (which will be discussed in section 2.4.1), 
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where b0 represents the unit vector for the B0 axis as defined in the frame of the spinning 

rotor a.'ld can be written as 

(2.15) 

where WR is the spinning rate. Using this definition forb~ in the equation for the spectral 

frequency, and rearranging terms through the use of trigonometric identities [17], leads to 

w(n, t) -w0{a + ~(3cos2 
(}R- l)(a -a· ) 'lSO 2 ZZ 'l.SO (2.16) 

1 
+ sin2 BR[2(axx- ayy) cos(2wRt) + axy sin(2wRt)] 

+2 sin (}R COS (}R[axz cos(wRt) + O"yz sin(wRt)]}, 

where a,80 is referred to as the isotropic chemical shift of the interaction tensor and is 

defined as 

(2.17) 

The components of a ij can be rewritten in terms of the components of the tensor 

in the principal axis system (PAS) through the use of a rotation matrix R(a, {J, '"'(). The 

principal axis frame is defined as the frame in which the interaction tensor is diagonal. 

The rotation is performed as in the equation 

0 0 

0 0 R(a,/3,'"'(). (2.18) 

0 0 

Using this rotation matrix, with the magic angle eR = 54. 7o, leads to spectral frequency 

components 



w(a, {3, "j; t) 

where 

-wo{o-iso + [A1 cos(wRt + 'Y) + B1 sin(wRt + 'Y)] 

+[A2 cos(2wRt + 2"f) + B2 sin(2wRt + 2"f)]}, 

A = ~J2 sin {3 cos f3[cos2 a(o-PAS- O"PAS) + sin2 a(aPAS- O"PAS)] 
1 3 XX zz yy zz 

B = ~ "2 sin a cos a sin 8(aPAS- o-PAS) 1 3 y L, ' XX yy 

A = ~((cos2 8 cos2 a- sin2 a)(aPAS- aPAS) 
2 3 ' XX ZZ 

+ ( cos2 ,8 sin 2 a - cos2 a) ( a;YAS - a;;4s)) 

2 
B = -- sin a cos a cos {3 (o-P AS - aP AS) 2 3 XX yy . 
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(2.19) 

(2.20a) 

(2.20b) 

(2.21a) 

(2.21b) 

The O"iso term gives the center peak seen in the spectrum, while the WRt terms lead 

to features at multiples of the rotor frequency; the spinning sideband manifold. In the 

case where the spin rate is much greater than the anisotropy, the effects of these terms is 

negligible in the spectrum [17]. The sideband intensities for arbitrary spin rates can be 

expressed as infinite sums of Bessel functions [17] or evaluated numerically [9]. 

Due to the fact that the chemical shift anisotropy is directly proportional to the 

strength of the static field, as higher fields are used, faster spinning speeds are required 

in order to completely reduce the spectrum to its isotropic components. Also, it is worth 

noting that it is not necessarily the case that the most intense peak is the isotropic one. 

The only way to be completely sure which peak is the isotropic shift is to vary the spin-
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ning speed. All of the spinning sidebands will shift so as to occur at multiples of the new 

spinning speeds, while the isotropic peak will remain at a constant position. Identifying 

the center peak is very useful in differentiating between multiple sites [17]. 

The difference in NMR spectra that results from spinning under MAS conditions 

as opposed to a static experiment is shown in Figure 2.3. Both spectra are of the 207Pb 

nucleus in lead nitrate [Pb(N03) 2]. The wide powder pattern of the static spectrum is 

shown in Figure 2.3(a). By using magic angle spinning at a spin rate of 5 kHz, the 

spectrum is reduced to a relatively narrow central peak, located at the value of the isotropic 

chemical shift of the powder pattern, as well as a series of spinning sidebands, as shown 

in Figure 2.3(b ). 

If there are multiple unique sites of a particular nucleus, a static experiment will 

often result in overlapping powder patterns- one for each site. One advantage of using 

MAS is that it makes it significantly easier to interpret spectra, particularly for samples 

that have overlapping line shapes. Another, very important advantage is in the increase 

of the observed signal-to-noise ratio. Since the total amount of sample is not changed 

between a static or MAS experiment, the total integrated intensity of the spectrum will 

remain constant. However in the case of an MAS experiment, all of this intensity is now 

concentrated into a handful of individual peaks, according to 

(SIN) MAS ~static 
~~~-- ~ --------
(sIN) static - n~sideband ' 

(2.22) 

where ~static represents the width of the static powder pattern, ~sideband is the width of a 

sideband, and n is the total number of sidebands. For example, for a CSA powder pattern 

width of 20 kHz and 5 kHz MAS (resulting in four sidebands in addition to the center 

band) with ~sideband ~100Hz, the signal-to-noise gain is 40. This is a typical result. 
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2.4 NMR Tensor Interactions 

As previously mentioned, the nuclei being observed in an NMR experiment are not 

isolated nuclei residing in the static field. They are surrounded by the electrons of the 

atom, as well as the nuclei and electrons of neighboring atoms or ions of the crystal. 

These other charges provide significant contributions to the NMR spectrum, in addition 

to the always-present Zeeman interaction resulting from the external field. These effects 

cause the local field felt by the observed nucleus to change, effectively altering its resonant 

frequency. 

Since the change in resonant frequency is highly dependent on the local str11cmre 

near the nucleus, different crystallographic sites will respond differently in an NMR ex

periment. This is the basis for determining structural information of a system from a solid 

state MAS NMR spectrum. These next few sections will describe several of the interac

tions that are relevant to the materials that are studied in Chapters 4 and 5, beginning with 

the chemical shielding interaction. 

2.4.1 The Chemical Shielding Interaction 

The strong static field causes the electrons to circulate around it; this causes an in

duced opposing field to manifest at the center of motion, the location of the nucleus. The 

effect of this opposing field is partial shielding of the static field at the nucleus, which 

is referred to as the diamagnetic component of the chemical shielding interaction. With 

the effective local field altered in this way, the resonant frequency of the nucleus is af

fected. This change in frequency, measured relative to some standard reference material, 

is referred to as the chemical shift tensor. 

Hcs = 1i · u · Bo (2.23) 
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The diamagnetic contribution of the chemical shielding goes as 1 j r3
, where r is the 

electron-nucleus distance (9]. This results in the largest contribution of chemical shielding 

coming from the core electrons. However, the valence electrons of neighboring atoms can 

still have a noticeable effect on the chemical shift. 

The external field also distorts the electron distribution, mixing excited state elec

trons into the ground state. This results in the nucleus being effectively deshielded [9]. 

In most cases (except for isolated atoms) the "paramagnetic" contribution (i.e., upfield, 

rather than downfield) is significantly larger than the diamagnetic part. It is hard to com

pute, because this requires highly accurate quantum calculations of excited states. 

The Cartesian chemical shielding contribution to the Hamiltonian is shown in Equa

tion 2.23. tF is the chemical shielding tensor, a second-rank tensor that defines the strength 

of the chemical shielding interaction for nuclear spin I in the B0 field. The chemical 

shielding tensor can be separated into two components: the symmetric (tF 8
) and anti

symmetric (tFa 5
) parts, 

(jp AS = (js + (jas, (2.24) 

where 

axx ~(axy + ayx) ~(axz + CYzx) 

fTS= ~(axy + ayx) ayy ~(ayz + CYzy) (2.25a) 

~(axz + CYzx) ~(ayz + CYzy) CYzz 

0 ~(axy- ayx) ~(axz- azx) 

(Tas = ~(axy- ayx) 0 ~( ayz - azy) (2.25b) 

~(axz- CYzx) ~(ayz- CYzy) 0 

The reason for separating the shielding tensor components is that it is only the sym

metric part that has any real influence on the NMR spectrum. The antisymmetric contribu-
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tions are of the order a-2 B0 "' 106 smaller than the symmetric contribution. In addition, it 

is possible to choose a frame in which the symmetric part of the chemical shielding tensor 

is diagonal; the principal axis system (PAS). The direction of this frame depends on the 

local electronic structure around the nucleus. In the PAS frame, the diagonal components 

of u are referred to as the principal values, CJxx• aYY• and O"zz• defined such that 

(2.26) 

These values can be alternately expressed as the isotropic value l7iso• the anisotropy 

[).cs, and the asymmetry 17 [18, 19], defined as 

1 (}- = -(a-PAS+ (}PAS+ (}PAS) 
•so 3 xx yy zz (2.27a) 

A PAS 
u = (}zz - O"iso (2.27b) 

7]= (2.27c) 

This is the IUPAC-approved (International Union of Pure and Applied Chemistry) 

convention for reporting tensor components which has been widely, but not universally 

[20], adopted by the NMR community. Expressing the principal values in this manner 

makes it easier to describe the NMR spectrum. The isotropic value moves the entire spec-

trum up or down field relative to a carrier frequency. The anisotropy describes the width 

of frequency region covered by the spectrum. The asymmetry (which can vary between 

zero and one) describes the shape of the powder pattern (and also relative intensities of 

sidebands, in the case of magic angle spinning experiments as described in Section 2.3). 

With the three principal components and the relative direction of the PAS frame, it is 

possible to accurately describe the resulting NMR spectrum due to the chemical shielding 

interaction. This can be easily combined with other interactions which may be present in 
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the system, such as the quadrupole or paramagnetic interactions. 

2.4.2 The Paramagnetic Interaction 

Aside from the Zeeman interaction, the paramagnetic interaction is the most sig-

nificant one for the complex oxides NdLxLi3x Ti03 that will be discussed in detail in 
3 

Chapter 4. Like the chemical shielding interaction, the paramagnetic interaction results 

from the effect of the external magnetic field on the electrons in the material. However, 

the resulting interaction is very different. When some of the electrons have unpaired spins 

in the ground electronic state, electron-nuclear dipolar coupling, modulated by very fast 

electron spin relaxation, has a profound effect on the resonance of nearby nuclei. This 

change in the local field of the nucleus is what is referred to as the paramagnetic inter-

action, not to be confused with the "paramagnetic" contribution to the ordinary chemical 

shift. In the case of the NdLxLbx Ti03 materials, it is the electrons of the strongly para-
3 

magnetic neodymium atoms that couple with the observed lithium nuclei to produce a 

large paramagnetic interaction. In many situations where significant unpaired electron 

density is transferred into core orbitals of nearby nuclei, electron-nuclear hyperfine cou

pling also occurs. This interactions is probably not important for the Nd+3 ions in this 

study, since the atomic F-orbitals on Nd+3 that contain unpaired electrons are strongly 

localized on the Nd+3 cations. 

While the nature of the interactions themselves are quite different, the mathematics 

describing the paramagnetic interaction are not too different from those used to describe 

the chemical shielding interaction. The Hamiltonian for dipolar coupling between a nu-

deus and single electron is given by, 

(2.28) 

where P,e is the average moment of the electron and P,N is the moment of the nucleus 
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with spin I [21]. Den represents the dipolar coupling tensor between the electrons of the 

neodymium and the lithium nucleus and is defined as 

(2.29) 

where r is the distance between the nucleus and electron, while ea, ef3, and e1 represent 

the x, y, z components of a unit vector between the two, giving the direction of the 

interaction tensor. It has been shown [22] that the thermally averaged magnetic moment 

for the neodymium's electrons can be expressed as 

(2.30) 

with the unpaired electron spin S, the Bohr magneton f3e, the Boltzmann constant k, the 

temperature T, and the the g-tensor of the unpaired electron. Using this definition, the 

Hamlltonian can be rewritten as 

where Pen represents the nuclear-electron dipolar coupling tensor as defined by 

and with the scalar C, 

Pen= Cg · 9 ·Den 

c = ;J;s(s + 1) 
3kBT . 

(2.31) 

(2.32) 

(2.33) 

It is worth noting that the scalar component C is the only source of temperature 

dependence in this interaction. This means that if the paramagnetic tensor is being cal-

culated for a system at various temperatures (as is done in Chapter 4), the tensor can 
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be calculated once. It then only needs to be scaled according to the C factor evaluated 

at the appropriate temperature in order to obtain the correct interaction tensor. This can 

allow for a significant lowering of the cost of the subsequent calculations (described in 

Section 4.4). 

In order to determine the total effect of multiple neodymium sites near the lithium 

nucleus, the cumulative Pen can be represented simply as a sum of the interactions be-

tween the nucleus and each individual site, out to a specific cutoff distance from the 

nucleus. The cutoff is determined based on at what point the contribution to the total 

tensor is considered to be negligible, 

(2.34) 

Actually calculating Pen can be done most easily by representing it in the frame of 

the g-tensor of the electrons, 

P;z:x Pxy Pxz 

p9 = en Pyx Pyy Pyz (2.35) 

Pzx Pzy Pzz 

with the individual elements, 



Pxz = 9;x(-3sin()cOS1JCOsq))(CjT3
) 

Pyx= 9~y(-3sin2 Bcos¢sin¢)(C/T3
) 

Pyy = 9~y(l - 3 sin2 e sin2 ¢) ( C jr3
) 

Pyz = 9~y( -3 sin() cos() sin¢)( Cjr3
) 

Pzx = 9;z( -3 sin() cos() cos q) )( C jT3
) 

Pzy = 9;z(-3sinBcosBsin¢)(C/T3
) 

Pzz = 9;A1- 3cos2 1J)(C/r3
). 
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(2.36a) 

(2.36b) 

(2.36c) 

(2.36d) 

(2.36e) 

(2.36f) 

(2.36g) 

(2.36h) 

(2.36i) 

Here, ¢ and () represent the azimuthal and polar vectors, respectively, between the nucleus 

and each electron relative to the g-tensor frame. In general, this tensor is not traceless. 

However, much like the chemical shielding tensor, the anti-symmetric components can 

be ignored when the spectrum is calculated. This allows the spectra to be defined only in 

terms of the principal components of the diagonalized Pen tensor. Using the three princi-

pal components of Pen' the parameters of the paramagnetic contribution to the spectrum 

can be described as, 

1 
biso- J(Pxx + Pyy + Pzz) (2.37a) 

1 
fla - Pzz - 2 (Pxx + Pyy) (2.37b) 

_ Pyy- Pxx 
1]= ' 

Pzz- biso 
(2.37c) 

with 
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(2.38) 

In this form, the spectrum is defined in terms of the isotropic value Oiso• the anisotropy 

/).a, and the asymmetry Tf· These three parameters can be used to define the appearance 

of the spectra in the same way the chemical shielding counterparts do. Otso shifts the en

tire spectrum up or down field, /).a determines the total coverage in frequency-space of 

the spectrum, and 77 determines the shape of the spectrum. The process of actually using 

these values to simulate a line shape will be detailed in Chapter 4. 

2.4.3 The Quadrupole Interaction 

The quadrupole interaction results from the non-spherical electric charge distribution 

in the nucleus interacting with the local electric field gradient. Any location that is not 

in the center of a symmetric cubic lattice will have a non-zero electric field gradient. 

The degree to which the nucleus is affected by the EFG is determined by the quadrupole 

moment of the nucleus. 

"Quadrupole" refers to the order of charge distribution in the nucleus. The monopole 

order only describes the nucleus as a single positive charge, while the dipole splits it 

into negative and positive regions. However, the electric dipole is always zero in the 

nucleus. Otherwise the charges would interact with the nucleus' own electric field and 

the generated force would rearrange the charge distribution in such as way as to make 

the dipole zero. The next level of charge distribution is the quadrupole, which is what 

interacts with the local electric field gradient to produce the interaction described in this 

section. All nuclei with spins I > 1/2 will have an electric quadrupole moment, in 

addition to the magnetic dipole moment that all nuclei have. 

The Hamiltonian for a quadrupolar nucleus interacting with a local electric field 

gradient [9], Vis given by 
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(2.39a) 

(2.39b) 

where i is the nuclear spin vector and Q is the nuclear quadrupole moment. Q is a 

property of the type of nucleus and is the same regardless of the local environment. a, 

j3, and 1 refer to the x, y, and z coordinates of whatever axis system the electric field 

gradient is defined in, usually the PAS. 

The components of the electric field gradient are used to define the anisotropy of the 

field gradient tensor: the quadrupole coupling constant CQ and the asymmetry parameter 

(2.40a) 

(2.40b) 

As with the chemical shift interaction, it is sometimes easier to use terms like this 

to describe the interaction than to report it in terms of the tensor components since it 

gives direct information about the spectrum. CQ is analogous to span and determines the 

frequency range of the spectrum due to the quadrupole interaction and T]Q determines the 

asymmetry of the spectrum. Unlike the previous two interactions discussed, there is no 

isotropic component present, because V ( r) is a traceless tensor. 

The principal axis system (PAS) is chosen so as to diagonalize the quadrupole Hamil-

tonian, with the principal values defined such that l~zl > lv~IYI > IVxxl· The EFG tensor 

itself is a symmetric traceless tensor [23], 
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(2.41) 

where V ( r) is the Coulomb potential. This results in a field gradient described by 

r2 + r2- 2r2 y Z X -3TxTy -3TxTz 

q 
r

2 + r 2
- 2r2 (2.42) ~J(r) = 4 s -3rxry -3ryTz 

1TEor X Z y 

-3rxrz -3ryTz r 2 + r 2
- 2r2 

X y Z 

where ~J ( r) is the electric field gradient at a given position due to a charge q located at 

r. The net EFG at this position can be calculated by summing over all charges in the area. 

Using the above definitions for CQ and fJQ given the tensor i/iJ, the Hamiltonian can then 

be rewritten as 

(2.43) 

In Chapter 4 we will show how this Hamiltonian, combined with the paramagnetic inter-

action, can be used to simulate the NMR line shapes of the NdLxLi3x Ti03 materials. 
3 



CHAPTER3 

Experimental Methods 

3.1 Experimental Equipment Overview 

The nuclear interactions that make NMR useful in condensed matter physics were 

explained in Chapter 2. The purpose of this chapter is to describe how the experiments 

are actually performed. This includes the equipment used, the steps required to acquire 

the data, and procedures for analyzing the data to extract relevant NMR parameters for 

comparison with theory. 

The majority of experiments were performed using a Bruker Biospin 750 MHz wide

bore magnet, operating at 17.6 T, and controlled by a Bruker AVANCE I spectrometer 

system. The superconducting magnet is kept continuously at field to ensure adequate field 

stabiiity. Due to the low temperature requirements in order to maintain such a high field, it 

is a pumped magnet. This means that the primary method of keeping the temperature low 

is a liquid helium dewar, which is pumped on at all times by a vacuum pump in order to 

reduce the temperature of the liquid below the helium boiling point of 4.2 K. To insulate 

this dewar, it is surrounded by a vacuum chamber, which itself is surrounded by a liquid 

nitrogen chamber. 

32 
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The main superconducting coils provide the static magnetic field. In addition to 

these, there are additional lower-powered room temperature shim coils that are used to 

shim the field in the vicinity of the sample to provide as homogenous a field as possible 

(within 1 part in 108
). The shim settings are optimized for the individual probe being used 

as well as the type of experiment (static or MAS). Around the sample, located in the probe 

itself, there is a solenoid coil that is used to provide the transverse rf pulses as well as to 

detect the current induced by the precessing nuclear spins. The pulses themselves are 

supplied by a kilowatt amplifier, and are usually attenuated by approximately two to three 

decibels and are of the order of a few microseconds long, depending on the experiment. 

The actual power and duration of the pulses are optimized for the nucleus being observed 

as well as the specific experiment. The induced signal passes through a frequency filter 

(low-pass, high-pass, or bandpass) to reduce noise outside the desired range. It then enters 

the high-gain pre-amp before being digitized and processed by the spectrometer. 

The frequency of the rf pulses used to manipulate the nuclear spins is referred to 

as the carrier frequency. It must be close to the Larmor frequency of the nucleus in the 

field and is adjusted in order to optimize the experiment. Ideally, the applied pulse would 

be on resonance. However in practice, being directly on resonance can occasionally lead 

to artifacts in the resulting spectrum due to receiver imperfections. For this reason, the 

applied pulses are usually slightly displaced from exact resonance during experiments. 

While the pulse that is seen by the nucleus is at the carrier frequency w0 , the pulse is not 

actually generated at this frequency. Instead, it is the result of the mixing of two separate 

pulses, 

Wo = WIF ± Wmix· (3.1) 

Depending on the spectrometer, either the sum or difference of the two frequencies 

could be used to reach the desired carrier frequency. The intermediate frequency w1p 
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is a constant frequency defined by the spectrometer and is completely independent of 

the nucleus being observed. In the case of the Bruker Avance I system used here, the 

intermediate frequency is 20 MHz. The mixing frequency Wmix is used to bring the final 

carrier frequency to the desired value. While it may seem like needlessly complicating 

the process to generate a pulse, its purpose becomes clear during the acquisition phase of 

the experiment. 

Mix with IF 
signal of relative 

phase 0° 

Adjustable audio 
filters 

Signal x 

Mix down to IF 

Signal retains only 
2Aexp(-i(~fllw)l) 

component 

Mix with IF 
signal of relative 

phase 90° 

Signal y 

FIG. 3.1: Basic overview of the receiver stage of an NMR experiment 

A simplified version of the receiver stage of an NMR experiment [9, 24] is shown 

in Figure 3.1. Following the radio frequency pulse sequence, the NMR signal is initially 

generated in the induction coil in the form of 
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2Aet(wo+L'>w)t 
' 

(3.2) 

where A is the amplitude of the signal and the spectrum is defined in terms of a series of 

frequencies centered around the carrier frequency. The signal is then sent through a low

noise pre-amp to increase the gain(:::::::: 30 dB) and as a consequence, both the noise and the 

signal increase in this stage. The pre-amp usually features an analog filter (bandpass, low

pass, or high-pass) that helps isolate the signal in the vicinity of the observed frequency. 

After the pre-amp, the signal is mixed down to make it of the form 

2Aei(wr F+L'iw )t. (3.3) 

This now makes the spectrum a series of frequencies in the vicinity of the inter

mediate frequency instead of the carrier. At this point, a narrowband filter around the 

intermediate frequency is used. With the intermediate frequency being consant within 

the spectrometer, ali spectra at this point will be contained in a relatively narrow range 

regardless of the nuclei being observed; typically ±1-2 MHz is the largest observable 

bandwidth. The major advantage of working around the intermediate frequency is that 

only one set of frequency filters and other adjustments is necessary to perform a wide 

range of NMR experiments (with optimal signal-to-noise) on different nuclei by choos

ing the carrier frequency. 

With the signal now in terms of the intermediate frequency, it is split into two sepa

rate channels. One is mixed with wrF with a relative phase of oo while the other is mixed 

with w1p at a relative phase of goo. The two channels are usually referred to as "real" 

and "imaginary", or alternately ''A" and "B". The real and imaginary parts correspond to 

current in phase and 90° out of phase relative to the carrier, respectively. Phase-sensitive 

detection is then used in each channel to isolate the audio components, A cos( ~wt) in the 

case of the real channel and A sin(~wt) in the imaginary channel. The signals are then 
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each passed through two analog-to-digital converters and stored in a high-speed digital 

memory buffer, which can be routed as needed to normal computer memory for signal 

averaging. 

In addition to the 17.6 T magnet, some NMR experiments were performed using a 

7 T (300 MHz) Oxford magnet, along with an identical Bruker A VANCE I spectrometer. 

Since this is a lower-field magnet, it is not necessary to pump on the helium dewar. This 

spectrometer was used in order to observe any field-dependant properties of the NMR 

spectra. Using a lower field also has the advantage of reducing the strength of the chemical 

shielding interaction, making it easier to spin out interactions through the use of MAS. 

Most experiments were performed under magic angle spinning conditions (as ex-

plained in Section 2.3) in a 2.5 mm variable temperature probe at various spin rates, as 

shown in Figure 3.2. Signal-to-noise and acquisition time were not major issues since 

the majority of experiments were observing the abundant lithium isotope 7Li, which is 

generally a very easy nucleus to observe. The 2.5 mm probe was used because it allows 

stable spinning at speeds up to 30 kHz. 

6Li, the other isotope, was also observed in several materials. Unfortunately, the 

natural abundance of 6Li (7.42%) and lower gyromagnetic ratio (39.4 x l 06rad s-1 T-1 , 

as opposed to 104.0x 106rad s-1 T-1 for 7Li) results in relatively poor signal-to-noise. 

However, the 2.5 mm probe was still used since the amount of material available did 

not allow for multiple samples to be prepared. For this reason, an acceptable quality 6Li 

spectrum takes significantly longer to acquire. Most of the 6Li experiments used at least 

three times the number scans as the 7Li samples; even then, the signal-to-noise was still 

noticeably worse than for the 7Li spectra. In the case of the NdLxLi3x Ti03 samples, 
3 

the 7Li experiments ran for 100,000 scans, while the 6Li experiments acquired 300,000. 

This is why the majority of experiments were focused on the 7Li nuclei. In spite of 

these difficulties, the 6Li spectra were useful in comparing to the simulations detailed 

in Chapter 4. For the purposes of calibrating the pulse power for both 7Li and 6Li, an 
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FTG. 3.2: (a) 2.5 mm MAS probe as it is used in the field and (b) with the outer casing removed, 
with (c) a close-up of the stator where the sample is located. The sample itself is packed inside 
2.5 mm rotors (d) as shown. 3.2 mm and 4 mm rotors are included here for comparison. 

aqueous LiCl solution was used. 
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The first step for preparing a sample is crushing it into a powder and packing it inside 

a sample rotor as seen in Figure 3.2(d). The top of the rotor has turbine fins where the 

drive gas is aimed to provide sufficient torque to rotate the ~ample in MAS experiments. 

The bottom of the rotor has half of the circumference around the edge blackened in order 

to provide a squarewave signal to be used as feedback to the spin rate controller. The 

rotor is then placed in the stator near the top of the probe. A cross-section of an MAS 

stator during a spinning experiment is shown in Figure 3.3. For MAS experiments, dry 

nitrogen gas is blown towards the rotor from the sides of the stator in order to stabilize 

it; this is the bearing gas. A second stream of nitrogen gas, the drive gas, is then blown 

along the fluted top of the rotor to provide torque and spin the rotor. An optical sensor 

is used to monitor the spin rate by observing the black mark on the bottom of the rotor. 

An electronic feedback controller is used to automatically adjust the bearing and drive 
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gas pressure to maintain the desired spin rate. Under normal conditions, the spin rate is 

usually held within a few Hz of the target rate, for several hours to several days. 

Bearing gas -

d'T'"' ring• Drive gas 
flow 

FIG. 3.3: Cross-section of an MAS stator. The coil and stator housing are left out for clarity. The 
bearing gas (blue) maintains the stability of the rotor, while the drive gas (red) propels it using 
the turbine cap of the rotor 

The variable temperature probe used in these experiments can cover a range of ap-

proximately 210-330 K while the rotor is spinning. It is important to note that this is the 

target temperature and not the temperature of the sample itself. The temperature sensor 

is inline with the flow of VT gas to the sample rotor, but is not recording the actual tem

perature of the sample. The true sample temperature is always higher due to frictional 

heating that occurs as a result of the nitrogen gas spinning the rotor. A spin rate of 30 kHz 

can cause up to 30 K of frictional heating to the sample. This effect can be accounted for 

with proper calibration using lead nitrate, for which the temperature-dependant behavior 

is known, as shown in Appendix B. It is usually necessary to allow at least 15 minutes for 

a sample to come to thermal equilibrium before beginning an experiment. 

To cool the sample during a variable temperature experiment, dry nitrogen gas is 

passed through a heat exchanger submerged in a liquid nitrogen dewar to lower its tern-

perature. The gas then passes into a glass dewar inside the probe body. Inside this dewar, 
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the gas passes over a heating coil before entering the stator where the sample is located. 

By varying both the flow rate of the nitrogen gas as well as the current in the heating coil, 

the temperature can be controlled stably within 0.1 K (according to the sensor in-line with 

the gas flow). Temperature gradients in the sample can vary by more than this. The gas 

flow rate is set and remains constant during the experiment. The power to the heating coil 

is controlled automatically by the spectrometer software using a feedback loop that mon

itors the temperature in the vicinity of the sample. For variable temperature experiments 

above room temperature, room temperature gas is sent directly into the dewar and heated 

by the coil as needed. 

3.2 Pulse Sequences 

Different sequences of transverse radio frequency pulses are used to excite the spins 

and obtain an NMR signal. The actual sequence used for an experiment can depend 

on many factors, such as the nuclei being studied and the type of environment they are 

expected to be in. Some pulse sequences enhance certain energy transitions, while others 

may work to optimize the observed signal-to-noise of an experiment. 

3.2.1 Zero-Go Pulse Sequence 

The most basic NMR experiment commonly used is a single 90° pulse followed by 

signal acquisition, also referred to as a Zero-Go (ZG) pulse sequence. This sequence is 

shown in Figure 3.4, and consists of an initial delay D1 followed by a single 90° pulse. 

Following this, the FID is acquired after a brief delay ("de" > 15-20 p,s) is used in order 

to avoid pulse power being detected by the pre-amp receiver. 

By optimizing each of these parameters, the sensitivity and signal-to-noise ratio can 

be greatly increased. The value chosen for D1 is dependent upon the spin-lattice relax-
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ation time of the sample, T lz· The recycle delay is chosen to be sufficiently long for the 

spin system to return to thermal equilibrium before another pulse is applied. Since T lz 

recovery is an exponential function (equation 2.7), the recycle delay is a compromise cho

sen to maximize the amount of time the system is allowed to recover while minimizing 

the total time for each scan. Typically, this is three to five times the length ofT 1z, which 

allows the system to return to approximately 95%-99% of equilibrium. The optimal recy

cle delay value was shown by Ernst to be approximately 1.5T1z [14]. However, most of 

the experiments performed here waited more than 3T lz in order to avoid any saturation 

and line shape distortion due to site- or orientation-dependant T 1z across the line shape. 

If one site has a sufficiently long T lz compared to other sites, it is possible to suppress it 

completely in the spectrum. This is often helpful in identifying and assigning individual 

sites in the spectrum. 

The length and power of the pulse is chosen so that it rotates the magnetization 90° 

from the B0 axis and the pulse is in the x-y plane. There are usually specific phase cycles 

in a sequence in order to compensate for imperfections in the audio amplifiers. These 

include DC offsets in the receiver channels, as well as artifacts arising from unwanted 

coherence transfer pathways generated by pulses in multi-level spin systems. In addition 

to the relative phase of the pulses, the routing of the signal to the A and B channels is 

also changed in order to minimize these effects in the Fourier transformed spectra. The 

total number of scans for the experiment are then chosen to be a multiple of the number 

of phases in the cycle. In this specific case (the ZG pulse sequence), the phase cycle that 

was used was [x -x -x x y -y -y y] i.e., signals were accumulated on successive scans 

with phase 0, phase 180, phase 270, phase 0, phase 90, phase 270, phase 270, phase 0, 

and routed to computer memory in such a manner that "real" x and "imaginary" y pass 

through both digitizers and always appear in A and B sections of computer memory [24]. 

In this case, the real part would be routed as [A -A -A A B -B -B B], where '-A' represents 

-1 times the signal routed to channel A. 
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FIG. 3.4: Pulse sequence diagram of a ZG (Zero-Go) experiment. A single 90° pulse is used, 
followed by signal acquisition. The recycle delay of the pulse is adjusted to account for the 
relaxation time of the nuclei. 

3.2.2 Hahn-Echo Pulse Sequence 
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Another common pulse sequence is the Hahn-Echo [25], shown in Figure 3.5, which 

was first developed by Hahn and Maxwell and used a pair of 90° pulses. The sequence 

was also discovered independently by Carr and Purcell, who used a 90-180 pulse sequence 

with both pulses along the x-axis [12]. The sequence was later modified by Meiboom and 

Gill to have the echo pulse along they-axis [26]. 

It begins with the same delay, D1• as the basic single pulse experiment followed by 

a 90° pulse. After this, there is a delay, T, before a second, 180° pulse is applied along an 

axis perpendicular to the first pulse. For instance, if the first pulse is along the x-axis, the 

second will be along the y-axis. Following this second pulse, the FID is acquired. 

The second pulse functions to refocus the signal and produces an echo that is located 

T after the pulse. This works by taking advantage of the dephasing of the nuclear spins in 

the system. Following the initial 90° pulse, the transverse component of the net spin will 

begin to dephase over time, as shown in Figure 3.6. The 180° pulse reverses the direction 
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of the precessing spins. This causes the magnitude of the transverse component of the 

spin to refocus (producing the echo) before continuing to dephase. In order to properly 

refocus the magnetization for a rotating sample, the pulse sequence must be synchronized 

with the rotor spin rate [27]. In an MAS experiment, the delay T is chosen such that the 

time between the center of the two pulses is a multiple of a rotor cycle. 

In the case of a single-pulse experiment, such as the ZG sequence described above, 

the signal occurs immediately following the pulse. This has the potential to cause prob-

lems if there is electronic ringing that results from the pulse at a frequency close to what 

is being observed. The signal can be significantly obscured by electronic noise. The ad-

vantage of the echo pulse sequence is that it allows the observed signal to be displaced in 

time from the rf pulse. The disadvantage of observing the echo is that the farther out the 

echo is, the lower the observed signal intensiry. The rate at which the signal drops off is 

dependent upon the T 2 relaxation time. For a site with a very shortT 2 , an echo experiment 

may not be a viable option. The phase sequence used for the Hahn-Echo experiments is 

Pulse 1: [x y -x -y] and Pulse 2: [x x x x y y y y -x -x -x -x -y -y -y -y]. As with the 

previous pulse sequence, the signal routing is also adjusted to ensure the real signal goes 

to the A channel, with the routing going as [A A A A B B B B-A-A -A -A -B -B -B -B]. 

-t-
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FIG. 3.5: Hahn-Echo pulse sequence. Following the initial 90° pulse, a second, 180° pulse is 
applied to refocus the signal in order to produce an echo spaced T after the second pulse. 
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FIG. 3.6: Time evolution of transverse magnetization during a Hahn-echo NMR experiment. 
The dephasing transverse magnetization is rotated by a 180° pulse in order to produce an echo, 
which is recorded as the FID. 

3.2.3 T lz Saturation-Recovery Pulse Sequence 
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It is possible to determine the value of the spin-lattice relaxation time, T 1z, for nuclei 

in a material by using a variety of different pulse sequences. The experiment used in this 

work (described in Chapter 5) is the T lz Saturation-Recovery pulse sequence and is shown 

in Figure 3.7. The beginning of the pulse sequence (following the initial recycle delay D1) 

is a series of 90° pulses separated by delay d10 . The number and spacing of the pulses 

are optimized so that immediately following the pulse train, the system is completely 

saturated, i.e., the free induction decay (FID) recorded at this time will show no signal. 

After the saturation pulses, there is a delay T before a detection 90° pulse, followed by 

the digitization of the FID signal. The phase sequence used for the acquisition pulse (the 

final 90° pulse) in this pulse program was [x x -x -x y y -y -y]. 

The complete saturation-recovery experiment is composed of a series of lD spectra, 

each with a different value of the relaxation delay, 7. 7 is varied such that the intensities 

of the resulting spectra can be fit to an exponential recovery curve in order to determine 

the value of T1z, an example of which is shown in Figure 5.1. It is important to have 

an approximate value for the relaxation time when choosing values for the delay list. 

That way, a series of T values can be chosen so that they are evenly distributed along 

the relaxation curve, including a short value which has the system sufficiently saturated. 

In addition, there is always an "infinity" value chosen which is sufficiently long that the 

system has nearly completely recovered. A good series of 7 values usually contains on 
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the order of 10 to 15 values, which can make these experiments time consuming. When it 

comes to running the experiment, the ordering of the T list is usually randomized to avoid 

systematic errors. This is meant to account for any spectrometer drift that may result over 

the course of the expenment. The data manipulation used to analyze the resulting spectra 

in order to obtain the values ofT lz will be discussed in more detail in Chapter 5. 

1--dlO-

~Dl---t~--~~~~~ 
Saturation Pulse Loop 
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FIG 3 7 Pulse sequence diagram of a T lz SaturatiOn-Recovery experiment. After completely 
saturating the spectrum with the initial pulse tram, the recovery of the system over time can be 
observed by varymg the delay before the acqms1tlon pulse. 

3.3 Signal Processing 

At the end of each pulse sequence, the free induction decay (FID) signal is digitized 

by the analog-to-digital converters (ADC) of the spectrometer and stored in computer 

memory. This signal is the current induced in the coil by nuclear spins as they precess and 

relax and is recorded in two ADC channels (real and imaginary signal) that are orthogonal 

to each other (described in Figure 3.1). The spectrometer ensures the proper routing of 

the audio components signal in order to cancel artifacts while allowing desired signals to 

accumulate. At this point, the signal can now be processed by the workstation to produce 

a usable spectrum. The FID is initially recorded in the time-domain, so it must first go 
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through a few steps of processing in order to transform it into the frequency-domain where 

it can be more easily interpreted. 

In the case of an MAS experiment, the FID usually appears as a series of rotary 

echoes that decay exponentially over time, as seen in Figure 3.8(a). Depending on the 

phasing of the real and imaginary channels, there will likely be some signal visible in 

both channels. When on resonance, the zeroth-order phase correction of the FID can be 

adjusted such that there is a minimal amount of signal in the imaginary channel and a 

maximum in the real channel. The most effective way to phase the spectrum in the time

domain is to adjust the zeroth-order phase correction until the real part of the FID shows 

no signal, causing all of the signal to be isolated to the imaginary channel, followed by 

an additional 90° phase correction to bring it back to the real channel. When there are 

components of the spectrum off-resonance, this does not work since there will always be 

some signal in both channels. Alternatively, the phase correction can also be done after 

the Fourier transformation. When done in the frequency-domain, the goal is to adjust 

the phase until the real component of the spectrum is absorption mode. This usually 

requires both zeroth- and first-order phase corrections and can be slightly more difficult 

to determine when it is correct. 

The beginning of the FID is also shifted so as to set the zero time of the acquisition on 

the peak of a rotary echo. Doing this decreases the likelihood of artifacts being introduced 

into the spectrum as a result of the finite recovery time of the electronics. Shifting points 

in this manner has the same effect as first-order phase correction, i.e. a linear combination 

Ai cos ¢i + Bi sin rPi where ¢i is proportional to the offset of frequency component wi from 

the center of the spectrum. The reason for this shift is that there is sometimes electronic 

noise resulting from some of the pulse bleeding into the receiver. or simply ringing in 

the electronic circuit. When this happens, it is necessary to shift past this initial noise. 

However, shifting farther than necessary can result in losing a lot of information on the 

high frequency components in the spectrum; this is also important if some regions of the 
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spectrum have a shorter T 2 relaxation time. 

Another artifact in the frequency spectrum occurs if the signal acquisition time is 

not long enough. This leads to the FID being truncated and the usual fix for this is to 

multiply the FID by a decaying exponential, either Gaussian or Lorentzian, in order to get 

the FID to approach zero by the end of the acquisition time. This has the apparent effect 

of smoothing the spectrum in the frequency domain. While line broadening may make the 

signal-to-noise appear improved, overusing it can lead to compromised resolution: fine 

details in the spectrum being completely lost. Most of the experimental spectra shown in 

later chapters used Gaussian broadening on the order of a few hundred Hertz. 

Once the time-domain FID has been processed, it is then Fourier transformed so as to 

present the signal in the frequency domain. The zeroth- and first-order phase correction of 

the Fourier transformation can then be further adjusted in order to provide an absorption 

mode spectrum, i.e., having a flat baseline with all of the signal appearing positive. It is 

not always possible to get a completely flat baseline, and occasionally the best phasing 

still results in a rolling baseline. If necessary, this can often be corrected by a spline fit 

and subtraction of the rolling baseline, depending on how important a flat baseline is to 

the analysis. Once the spectrum is finally in a satisfactory state, it can then be analyzed 

to determine the desired parameters such as the chemical shift tensor components and 

quadrupolar coupling constants. This will be done in Chapters 4 and 5 for the materials 

of interest. 

The initial time-domain FID and resulting frequency-domain spectrum from a deu

terium D20 experiment at 17.6 Tis shown in Figure 3.8. Since the two deuterium nuclei 

in the molecule are identical by symmetry, there is only a single peak in the spectrum. 

Also, since it is a liquid sample, this ends up being a relatively narrow peak with no 

asymmetry, arising from molecular tumbling (as explained in Chapter 2). For this reason, 

D20 can be useful in optimizing the homogeneity of the B0 field. Any inhomogeneity 

in the field will result in a broadened line shape as different regions of the sample would 
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FIG. 3.8: The results of a single 90° pulse experiment on D20, observing the deuterium nuclei, 
before and after applying a Fourier transformation. 
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be exposed to slightly different field strengths. By adjusting the shim coils until the line 

width is minimized, any inhomogeneity can be eliminated. 

It is also worth noting that the frequency axis in the spectrum is actually offset rel-

ative to the carrier frequency, and is not an absolute value. In order to compare the peak 

positions and other line shape features to other experiments, it is necessary to reference 

them to a common value. For most nuclei, there is a standard reference material, which 

is the standard established by IUPAC [19], that can be used to calibrate the frequency 

axis. For instance, lithium experiments can easily be referenced to aqueous LiCl. Also, 

the frequency axis can be reported in units of Hertz or parts per million (ppm). This is 

determined by expressing the chemical shift as defined by, 

V- VR 
6=---, 

Vo 
(3.4) 

where VR is a reference value that is used to determine the zero of the axis and v0 is 

the operating frequency of the spectrometer for the nucleus being observed. Since the 

difference in frequencies is on the order of Hertz and the operating frequency of the 

spectrometer is on the order of MHz, the resulting value is easily expressed in parts per 
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million. This unit has the benefit of being field-independent, so it makes it easier to 

compare experiments that were performed at different Bo field strengths. 

Through the use of the equipment and procedures described in this chapter, NMR 

spectra can be obtained on a wide range of nuclei in many different materials. The high

resolution offered by being able to take measurements at tenths of a microsecond provide 

enough detail to clearly identify individual sites of a nucleus. This allows NMR to provide 

invaluable information about the small-scale structure of materials, as well as the dynam

ics of the atoms, that can lead to observable properties on the macroscopic scale. 



CHAPTER4 

A Study of Complex Paramagnetic 

4.1 An Overview of N d~_xLi3x Ti03 
3 

Magic angle spinning NMR was used to study a series of materials with the compo-

sition Nd.LxLi3x Ti03 , where x=0.05, 0.083, 0.116, and 0.142. These materials exhibit 
3 

a novel nano-checkerboard phase separation between the lithium and neodymium atoms 

that occurs spontaneously during synthesis. The nano-scale dimensions of the separate 

lithium-rich and lithium-poor regions can be finely controlled just by varying the con-

centration of lithium during the initial synthesis. One possible application of this type 

of material is as a template for creating small, controlled structures on a surface, such as 

nano-scale circuits for electronic devices. 

All of the Nd.LxLbx Ti03 materials have the same basic perovskite crystal structure, 
3 

as seen in Figure 4.1. The perovskite's atomic structure is denoted by ABX3 . In the case 

of NdLxLi3x Ti03 , the A-sites are each either lithium, neodymium, or simply vacant; 
3 

the B-sites are all titanium; and the X-sites are oxygen. Along the z-axis of the crystal, 

49 



0 

FIG. 4.1: Idealized perovskite crystal structure AB03 . The red spheres represent the oxygens, 
the blues spheres are B-atoms (Ti in the case of Nd:LxLi3x Ti03 ), and the silver spheres are 

3 

A-atoms (mixture ofLi and Nd in NdLxLi3" Ti03) 
" 
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there are alternating planes of A-sites and B-sites. The oxygens are distributed through-

out the crystal, fom1ing octfu,edral cages around each of the B-site atoms. The A-site 

planes alternate between pure-neodymium layers and neodymium-lithium mixed layers. 

It is in these mixed layers that the phase separation between the lithium and neodymium 

occurs. The checkerboard-like structure is evident in the idealized crystal structure shown 

in Figure 4.2 [1]. In the neodymium region of the mixed layer, the neodymium sites are 

only partially occupied (the fraction occupied is 0.2947 in the case of x = 0.083), and it 

is assumed to be with a random distribution of vacancies. All other sites in the material 

appear to be 100% occupied [ 1]. The actual dimensions of the square lithium region are 

directly dependant upon the bulk lithium concentration, and are shown in the TEM im-

ages of several concentrations, with the borders of the lithium regions noted (Figure 4.3). 

It is worth noting that the checkerboard separation is a macroscopic structural effect not 

limited to the surface of the crystallite. 

With regards to charge distribution, the structure can be divided into two domains: 

lithium-rich and lithium-poor. These domains are defined by the square lithium regions of 
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the mixed layer and extend along the z-axis of the structure. This results in the lithium-

rich region having the stoichiometry of Nd112Li112 Ti03 , while the lithium-poor region 

is Nd2; 3Ti03 • The net charge of each of these regions is zero. This also supports the 

idea that the neodymium vacancies are only located in the lithium-poor region of the 

mixed layer. If vacancies were present in the neodymium-pure layer, the net charge of the 

lithium-rich region would no longer be neutral. 

Li poor 

• ¥ • • • • • !!> • • • • • • • 
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FIG. 4 2: A CrystalMakerTM rendmon of a single supercell ofNd 58L1 25T103 (sample 2) VIewed 
fwm two perspectives [1]. In the Nd/Li-mixed layer, the neodymium sites are 29.47% occupied. 
(Red=Li, Green=Nd, Blue=Ti, Oxygens are hidden). 

A total of four different Nd.L 2 Li3x Ti03 samples were studied as part of this work, 
3 

each with a different lithium concentration. These samples were all prepared by Professor 

Peter Davies' group at the University of Pennsylvania, which also performed powder X-

Ray diffraction, neutron diffraction, and TEM imaging experiments [1, 2]. The TEM 

images clearly show the regularity and dimensions of the square lithium regions and how 

they differ in size with varying lithium concentration. Ideally, the diffraction experiments 

could be used to determine the exact crystal structure of a sample. However, due to the 
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large number of atoms per unit cell (over 1000 just for x = 0. 083), doing this for anything 

more than a low-concentration sample becomes very time-intensive and impractical to 

accomplish. This is one of the reasons NMR is a worthwhile addition to the study of 

these materials. The four samples featured in the NMR study are as follows: sample 1: 

x = 0.05, sample 2: x = 0.083, sample 3: x = 0.116, and sample 4: x = 0.142. 

FIG. 4.3: TEM images taken with the electron beam parallel to [001] and their corresponding 
SAED patterns of grains with nominal compositions (Nd0 62Li0 15 )Ti03 (a), (Ndo ssLio 25 )Ti03 
(b), (Nd0 55Li 0 35 )Ti03 (c) and (Nd0 53Li0 43 )Ti03 (d). Supercells are indicated with a thick 
outline, where the dimensions are 12x20aP (a), 14x28aP (b), 16x26ap (c) and 26x28ap (d), as 
measured from the SAED patterns. Li-rich square domains are indicated with a thin outline. 
The outlines are intended to guide the eye only - the images do not demonstrate atomically flat 
interfaces. The scale bars are 5 nm. [1] 

The structure for sample 2 (shown in Figure 4.2) was determined by a combination 

of TEM imagery and powder X-Ray diffraction [2]. Due to the number of atoms in a 

single unit cell and the difficulty in fitting the diffraction data, sample 2 was the only con-

centration that a complete crystal structure was available for. For the other concentrations, 

the dimensions of the unit cell as well as the phase boundaries were determined from the 

TEM images, but the individual atom locations were not calculated. 
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4.2 Summary of Experiments 

Lithium MAS NMR spectra were recorded for each of the four samples at various 

temperatures (set temperatures ranging from 220 K to 330 K) and in both 7 T and 17.6 

T static fields. Both 7Li and 6Li spectra were obtained, but due to the significantly better 

signal-to-noise of 7Li over 6Li, more extensive data was taken observing the 7Li isotope. 

However, it is important to understand that 6Li spectra are critical to independently obtain 

some of the NMR parameters for the structure (this will be addressed later in this chapter). 

The higher signal-to-noise of 7Li is due mostly to the relative natural abundance of each 

isotope: 92.58% natural abundance for 7Li compared to 7.42% for 6Li. 

For the initial experimental tune-up and optimization, an aqueous LiCl solution was 

used to set the pulse widths and power levels. In addition, the LiCl solution was also used 

to determine the spectral coverage of the pulse sequences used. This was done by running 

a series of single-pulse NMR experiments on LiCI with the exact same parameters as was 

used for the Nd.LxLi3x Ti03 experiments, including spectral window and pulse sequence 
3 

parameters. The carrier frequency offset was then changed incrementally farther away 

from the LiCl signal, with the change in intensity of the lithium signal with respect to 

its distance from the carrier noted. This intensity distribution was then used to determine 

the amount of loss in intensity for portions of the Nd.LxLhx Ti03 spectrum due to the 
3 

finite pulse width. The envelope generated by this fit was used to scale the simulated line 

shapes (discussed in Section 4.4) in order to allow them to more accurately be compared 

to experimental results. The changes in intensity of the LiCl solution 7Li spectrum with 

respect to the frequency of the carrier are shown in Figure 4.4, and Equation 4.1 shows 

the scaling factor used on the simulations to account for the finite pulse width, where ~ 

is the carrier frequency offset in kHz from the resonance frequency. 

y = -(3.45 X 10-4)~2 - ( 4.22 X 10- 15)~ + 94.3 (4.1) 
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For the 7Li spectra, the pulse sequence used was a basic Zero-Go sequence (Fig-

ure 3.4), consisting of a single 90° pulse followed by signal acquisition. Most of these 

experiments had an MAS spin-rate of 30 kHz and used a 2.5 mm rotor. The sample tern-

perature range covered was 277-360 Kin the 17.6 T field, while the 7 T experiments were 

only performed at ambient temperature. At 17.6 T, typical experimental parameters were 

a pulse width of 1.5 JlS at 5 dB, recycle delay of 10 ms, and a spectral window of 2 MHz. 

In the 7 T field, the parameters were the same aside from changing the spectral window 

to 1 MHz. 

The 6Li experiments utilized a Hahn-Echo pulse sequence (Figure 3.5). Due to the 

lower resonant frequency of 6Li, a ZG pulse sequence produced a large amount of elec-

tronic ringing in the probe electronics at the beginning of acquisition, making it difficult 

to obtain an undistorted spectrum. By using an echo pulse, it was possible to move the 

NMR signal far enough out in time to avoid this recovery problem. Most of these exper-

iments were performed with an MAS spin-rate of 15kHz in order to provide a sufficient 

number of spinning sidebands to compare to simulation. Since the overall anisotropy of 

the tensor is smaller by one-third in the frequency domain than 7Li (due to the smaller 
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Larmor frequency), spinning at 30kHz results in almost all of the anisotropy being elim-

inated. Having more spinning sidebands allows any resulting fit to the data to be more 

reliable and accurate. Typical experimental parameters used at both 17.6 T and 7 T fields 

were a pulse width of 1.5 J-LS at 5 dB, a recycle delay of 10 ms, and a spectral window of 

200kHz. 

In addition to the MAS NMR experiments that comprise the bulk of this study, a 

series of electron paramagnetic resonance (EPR) experiments were performed by Bruker 

Biospin in an attempt to investigate the g-tensor values for the paramagnetic interaction. 

There was also a measurement of the magnetic susceptibility of samples 2 and 4 as a 

function of temperature in a 7 T Superconducting Quantum Interference Device (SQUID) 

performed by Ale Lukaszew's lab, covering a range of 5-300 K. The results of both of 

these additional studies will be discussed in the next section. 

4.3 Qualitative Results 

The 7Li spectra acquired at 17.6 Tat various temperatures for each of the four avail

able lithium concentrations are shown in Figure 4.5. All of the spectra show three distinct 

sets of peaks, whose relative intensity changes with lithium concentration. It is easy to 

distinguish two sets of peaks from visual inspection of the spectrum. Through simula

tions, which are discussed later in this chapter, it becomes clear that one of these actually 

consists of two nearly coincident components. 

There are noticeable changes in the spectra both as a function of temperature and 

lithium concentration. With changing temperature, the spectra of each concentration have 

similar behavior. As the temperature is decreased, the apparent width of the spectrum in

creases, indicating an increase in the anisotropy (~a) of the interaction tensors. Also 

notable is the fact that the center of mass of the spectrum does not change as a function 

of temperature. This is true for all four samples and over the entire experimentally acces-
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sible temperature range. However, the relative positions of the isotropic chemical shift 

of each of the three component peaks does change with temperature. This leads to con-

siderable spectral overlap making it difficult to distinguish separate sets of peaks at the 

lower temperatures. Previous NMR experiments on similar paramagnetic materials have 

observed the same temperature independent behavior of the isotropic shift [28]. 

(a) Sample 1 (x=0.05) (b) Sample 2 (x=O 083) 
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(c) Sample 3 (x=O 116) (d) Sample 4 (x=O 142) 

FIG 4 5 7L1 spectra of Nd.:<_xLI3x T103 taken at different temperatures w1th varying Li con-
3 

centratwns (red=360 K, green=331 K, blue=277 K) Frequency axes are m umts of kHz 
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Sample 4 has one dominant set of peaks, with the other two sets visible as lower

intensity shoulders on the sides of the main peaks. As lithium concentration is decreased, 

the relative intensities of the shoulders increase relative to the major peaks, but with 

the relative position unchanged when observed at the same temperature. For the low

est concentration, the peaks which were previously the shoulders of the main peak in the 

high-concentration sample are now the largest peaks of the spectrum, with the previously 

dominant peaks appearing along the shoulders. By performing experiments at various 

MAS spin rates, it is possible to identify the center peak for each of the sets and thus, 

their relative chemical shifts. This demonstrates that the relative intensity of each of the 

three sets of peaks is changing with concentration, as opposed to their chemical shifts. 

The loss of signal-to-noise at lower concentrations is a direct result of less lithium in the 

sample. All of the experimental parameters were kept constant for each of the different 

concentrations. 

In addition to the NMR experiments performed on these samples, a series of electron 

paramagnetic resonance (EPR) experiments were performed courtesy of Bruker Biospin. 

The purpose of these measurements was to determine the g-tensor components of the 

neodymium atoms. The g-tensors are an important component of the point-charge calcu

lations for the paramagnetic interaction (discussed in Section 4.4) and it was hoped that 

they could be experimentally determined. A typical EPR spectrum is shown in Figure 

4.6. 

Unfortunately, the EPR spectra are inconclusive. There is a large amount of dipolar 

and exchange coupling among the unpaired spins; this is an unavoidable consequence of 

the high concentration of paramagnetic Nd+3 ions [29]. Because of this broadening, it is 

not possible to accurately determine the g-tensor values for the material. For this reason, 

the point-charge calculations performed in Section 4.4 treat the g-tensor components as 

free variables in the fits. 

Several experiments were also performed in a SQUID. There were two stages to 
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FIG. 4.6: Electron Paramagnetic Resonance spectrum of sample 2 (x=0.083) as performed at 
70 K by Bruker Biospin [29]. The spectra resulting from these experiments were too broad to 
determine the g-tensor principal values of the neodymium sites. 
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these experiments. The first stage kept the sample in a constant magnetic field of 45000 

Oe and lowered the temperature to 50 K. The magnetic moment of the sample was mea-

sured at each temperature in increments of 5 K, up to room temperature. The results of 

this experiment for samples 2 and 4 are shown in Figure 4. 7. 

OSr---~---,---.----~---.---,----,---'7~~~~ 
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FIG. 4.7: Magnetic susceptibility measurements of sample 2 (x=0.083) and sample 4 (x=0.142) 
of Nd.£ -xLhx Ti03 at 4.5 T as a function of temperature. 

3 
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The second part of the SQUID experiments kept the temperature constant (room 

temperature) while the applied field was varied in a loop from 45000 Oe to -45000 Oe in 

steps of 5000 Oe. The magnetic moment of the sample was recorded at each step, with 

the results shown in Figure 4.8. 
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FIG. 4.8: M vs H for sample 2 (x==0.083) and sample 4 (x=0.142) of Ndz ~xLi3x Ti03 
3 

Unlike the EPR measurements, the SQUID measurements were not intended to pro-

vide any specific information about NMR-relevant parameters. The goal was simply to 

see if there were any "interesting" results or trends that presented themselves as a result. 

However, it is true that the paramagnetic interaction tensor is supposed to depend on the 

anisotropy in the bulk susceptibility. The measurements show the expected result for any 

paramagnetic material [30, 31]. The "normal" temperature-dependence of the electron 

magnetic moment stands in stark contrast to the temperature independent isotropic chem

ical shift of 7Li in our samples, and may reflect local anti-ferromagnetic order that is not 

considered in the model leading to Equation 4.2 shown below. 



60 

4.4 Simulating the NMR Spectra 

Aside from the Zeeman interaction, the primary interaction present in these sam-

ples is the paramagnetic dipole-dipole interaction between the lithium and neodymium 

atoms. For 7Li, there is also an additional contribution from first-order quadrupole ef

fects. For 6Li, the quadrupole interaction is weak enough that it can be safely ignored 

(due to the lower quadrupole moment of 6Li). Following the discussion in Chapter 2, the 

total Hamiltonian for 7Li is 

. CQ A A A 

1{ = 'YNBo ·Pen· I+ 21(2! _ l) I· V ·1. (4.2) 

In order to simulate the spectrum, the equations for the time-dependence of the den-

sity matrix (equation 2.11) and the time-domain signal (equation 2.12) are used. The goal 

is to manipulate Equation 2.11 into a form that can be solved using a Matlab™ ODE 

solver. The way to do this is to express the Hamiltonian in terms of spherical irreducible 

tensors in the laboratory frame, the final result of which is [9] 

(4.3) 

Spherical irreducible tensors of rank two can be constructed from linear combina-

tions of Cartesian vector components, such that they transform under rotation according 

to the rule given by 

L 

T{,~- L T{,~DfvM(a,,B,ry), (4.4) 
N=-L 

where n = (a, (3, 1) is an Euler rotation that rotates coordinate axes F2 into coordinate 

axes Fl using the Wigner rotation matrix D'Nu· Using basic trigonometry for rotation 

of axes, applied to cartesian vectors A = (Ax, Ay, Az) and B = (Ex, By, Bz) it can be 

shown that in any axis system, 
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1 
To,o =- J3(AxBx + AyBy + AzBz) (4.5a) 

T1,o = -i(AyBx- AxBy)jV'i (4.5b) 

Tl,±l = (AzBx- AxBz) ± i(AzBy- AyBz)/2 (4.5c) 

T2.0 = A(AzBz- ~(A:LBx + AyBy)) (4.5d) 

1 
T2.±l = =t=2[AxBz + AzBx ± i(AyBz + AzBy)] (4.5e) 

1 
T2,±2 = 2[(AxBx- AyBy) ± i(AxBy + AyBx)]. ( 4.5f) 

The second-rank Hamiltonian operators for spin interactions relevant to these simu-

lations are quadrupole coupling and the paramagnetic interaction. Converting the Carte-

sian forms already shown to scalar contractions of two second-rank spherical irreducible 

tensors is useful because it simplifies calculating the Hamiltonian matrix elements and it 

reveals the rotational symmetries explicitly. 

Thus in general, we get 

2 L 

1-i = ~wofz + c L L ( ~1) 111 RL,M(o:, 13, ~r)TL,-M, 
L=-2 M=-L 

(4.6) 

where c = CQ for quadrupoles and c = 1Lt for chemical shielding and paramagnetic 

tensors. TL,M are spin operators, and RL,M(o:, ;3, 1) are lattice variables, which depend 

on the orientation of the tensor with respect to the external field. 

To compute the spectrum, note that w0 "'1 00 MHz is typically much larger than 11 .6.1 

or CQ. Thus, we retain only the part of the interaction that commutes with Iz (in lab fixed 

coordinates), 

(4.7) 
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Looking at the quadrupole coupling first, the R0,0T0,0 term is independent of orien

tation, and in the principal ,u,is system that diagonalizes the electric field gradient tensor, 

we get 

1 ( 2 2 2) 1 T0 o = -- I + I + I = --I · I , y13x v z y'3 (4.8) 

(4.9) 

Therefore, for first order quadrupole coupling, we end up with 

(4.10) 

The tensors represented in the PAS frame can be rotated to the lab fixed frame 

through the use of [32] 

2 

Rf,~B = I: Rf1f D?},0(a, /3, 1), (4.11) 
M=-2 

with the Rf 17 tensors defined as 
' 

(4.12a) 

RPAS 0 
2±1- (4.12b) 

PAS 1 
R2,±2 = 2(qx:L- qyy), (4.12c) 

where qu are the principal components of the quadrupole interaction tensor in the PAS 
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frame and are defined such that lqzzl > lqyyl > lqxx 1. In the event of magic angle spinning, 

which was used for these experiments, an additional Wigner rotation is performed in 

order. The first rotation is from the PAS frame to the rotor-fixed frame. The second takes 

the rotor-fixed frame to the lab frame. 

Using the Hamiltonian for each energy level, along with the vector VQ as defined in 

VQ = J6 [RPAS RPAS RPAS RPAS RPAS] 
2.2 2,1 2,0 2,-1 2,-2 

(4.13a) 

= J6 [ ~(qxx- qyy) 0 JI(q'"'"- ~(qxx + qyy)) 0 MQxx- Qyy)] (4.13b) 

= 3qzz [_!_ (qxx-qvv) 
.J6 qz;;; 

(4.13c) 

= 3qzz [ )617 0 1 0 )61],] (4.13d) 

allows the energy level transitions to be determined. For this particular example of a 

spin-3/2 system the results are, 

(E1- E2) = wo- 3CQ [ :/-6 0 1 0 ...!L] ·D .J6 
(4.14a) 

( E3 - E4) = w0 + 3CQ [ Jr, 0 1 0 ...!Z...]·D v6 
(4.14b) 

(E2- E3) = Wo. (4.14c) 

These resulting energy-level transitions can now be used in the differential equation 

to determine how the density matrix evolves with time. The next step is to address the 

paramagnetic component of the Hamiltonian. The paramagnetic component is solved 

similarly to the quadrupole portion, beginning with the Hamiltonian in 



_ -w I + w """TPARA RPARA 
- 0 z 0 ~ L,-AI L,M · 

L,M 

The spherical tensors in this case are defined as 

and 

r,PARA ___ 1_I 
00 - .J3 z 

T
PARA _ 0 

1,0 -

TPARA- -I ± /y 
1,±1 - X 2 

r,PARA = fi. I 
2,0 v 3 z 

r,PARA- ~I - i Iy 
2,±1 - X 2 

T PARA _ 0 
2,±2 -

PAS 1 
Roo = - .J3wo(O"xx + O"yy + O"zz) 

RPAS- RPAS- 0 
1,0 - 1,±1 -

PAS fi 1 
R2,0 = y 3wo(O"zz- 2(0"xx + O"yy)) 

R PAS 0 
2,±1 -

PAS 1 
R2 ±2 = -wo(O"yy- O"xx), 

' 2 

resulting in the Hamiltonian 
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(4.15a) 

(4.15b) 

(4.16a) 

(4.16b) 

(4.16c) 

(4.16d) 

(4.16e) 

(4.16f) 

(4.17a) 

(4.17b) 

(4.17c) 

(4.17d) 

(4.17e) 
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(4.18) 

The relation, 

fi RPARA-LAB = f!_ ~ RPARA-PAS D(2) (a f3 r) v 3 2,0 v 3 L..t 2,AJ M,O ' ' 
M=-2 

(4.19) 

is then be used to v...'lite the irreducible spherical R-tensor in the Hamiltonian in terms of 

the LAB frame. As with the quadrupolar derivation above, an additional Wigner rotation 

is necessary if magic angle spinning is used. 

Defining the vector v; as 

v. = ('!_ [RPAS 0 RPAS 0 RPAs] (4.20a) 
p v 3 2,2 2,0 2,-2 

= Wo~ [ ~(ayy- axx) 0 /j(azz- ~(axx + Dyy)) 0 ~(ayy- axx)] (4.20b) 

= Wo [ )6(ayy- axx) 0 ~~a 0 )6(ayy- D"xx),] (4.20c) 

allows the energy levels in the lab frame to be simplified to the form 

(4.21) 

This can then be included along with the previously determined quadrupolar component 

in the differential equation to solve for the density matrix. 

The net change in energy between levels is determined by adding the contributions 

from the paramagnetic and quadrupole interactions for each level. At this point, the en-

ergy levels are in terms of the principal values of both the paramagnetic and quadrupolar 

interaction tensors (!5,80 , ~a, rJ, Cq, and rJq). These values are calculated through lat-

tice sums, approximating each nucleus as a point charge, and using the definitions for 
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the tensors given in in Chapter 2. In performing the point-charge calculations, only the 

paramagnetic neodymium sites are included in the calculation of the paramagnetic in

teraction tensors, while the electric field gradient calculation necessary to determine the 

quadrupole tensors includes all atoms present. Additionally, the partial occupancy of the 

neodymium sites in the mixed layer is taken into account. The model used assumes a 

random distribution of vacancies among the neodymium sites of this layer, with a random 

number generator determining whether each individual site is included according to the 

occupancy rate of29.47% [1, 2]. Two other models ofvacancy distribution were also con

sidered. One was to force the neodymium sites directly next to the lithium-rich domain 

to be 100% occupied, adjusting the occupancy rate of the other neodymium sites accord

ingly. This produced no discemable difference in calculated tensor components. The 

other method attempted was to manually assign vacancies with the intention of spacing 

them as evenly as possible throughout the neodymium region. This fixed-location va

cancy model resulted in a significant change ( '"'"'20%) in the calculated tensor components 

and would not fit well with the experimental results. 

Density functional theory (DFT) is frequently used to account for electron distribu

tions and provides reasonably accurate values for the tensor components [33, 34]. How

ever, due to the large number of nuclei per unit cell, as well as the relatively complicated 

electron distributions present around neodymium nuclei, DFT calculations are impractical 

in this case. Since lithium's outer electrons are s-electrons with a spherical distribution, 

the point charge approximation seems reasonable. This was verified by comparing point

charge and DFT calculations for the EFG at the location of lithium atoms in both the 

paraelectric and ferroelectric forms of lithium niobate (LiNb03 ). While the point-charge 

calculations did not tum out identical to the DFT calculations, they were close enough 

(i.e., within an order of magnitude) to use in this case where the quadrupole interaction is 

much smaller than the paramagnetic interaction. This comparison between point -charge 

and DFT calculations is discussed in detail in Appendix A. 



67 

When calculating the line shape for 6Li, the Hamiltonian remains the same, except 

for the omission of the quadrupole term and the different nuclear spin value. The free 

induction decay signal resulting from an NMR experiment can be calculated using the 

trace of the density matrix, as shown in 

s(t) = trace(p(t)r) 

= LPjk(kil-lj) 
j,k 

where Equation 4.22c shows the specific case of a spin-312 system. 

(4.22a) 

(4.22b) 

(4.22c) 

The time-dependent behavior of the density matrix p is determined from the com-

mutator of p with the Hamiltonian, as given by 

p = i[p, 11] 

Pik = i L(Pjl'Hlk -'HjlPlk) 
l 

(4.23a) 

(4.23b) 

(4.23c) 

with Equation 4.23c giving the result for a specific element of the density matrix. The 

Hamiltonian used must be evaluated in the lab-frame to properly simulate the observed 

signal, which is why the Wigner rotations were used to go from the PAS frame to the lab 

frame. The result is a differential equation of the form, 

P = i(ae2ikt + beikt + ce-ikt + de-2ikt + f)p(t) (4.24) 
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This is then solved numerically using the ODE solving routines available in Mat

lab™, specifically ODE45. Powder averaging is done over several hundred increments 

in order to account for the various orientations of the tensors in the powder sample. The 

distribution of powder increments is calculated using routines already present in the EX

PRESS software [8]. The resulting signal of each crystallographically unique lithium site 

is calculated individually. Each F1D is then added to produce the simulated signal of 

the entire system, which is then Fourier transformed to provide the simulated frequency

domain spectrum which is compared to the experimental spectrum. 

The Matlab™ functions that actually calculate the time-domain signal were written 

as a module for the Exchange Program for Relaxing Spin Systems (EXPRESS), a general 

purpose program developed by Professors Vold and Hoatson for modeling the effects of 

jump dynamics on a wide class ofNMR experiments [8]. The reason for using EXPRESS 

in this way was that it was convenient to use the existing front-end and data structure or

ganization to set up the simulations and calculate the powder increments. In addition, the 

processing functions used in EXPRESS were useful in making the time-domain simula

tion into a form that could be properly compared with experimental data. This includes 

the Fourier transformation, as well as zero-filling and line-broadening routines. Since the 

simulations are an ideal situation with no decay, it was necessary to artificially add spin

spin relaxation in the form of exponential multiplication (em) to the time-domain signal. 

In addition, it was necessary to account for the limited spectral coverage of the pulses by 

scaling the frequency-domain spectrum by the envelope determined in Equation 4.1. 

4.5 Fitting the Simulations to Experiment 

Once the simulations were performed, they could be directly compared to the ex

perimental results. There were several steps to this process. First, the simulation was 

shifted along the frequency axis so that the maxima of the peaks were aligned with those 
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of the experimental results. This is equivalent to changing the reference frequency for 

the simulation's frequency axis. Following this, the scale of the simulation was adjusted 

by multiplying all of the points across the spectrum by a constant factor in order to best 

match the spectral intensities with the experimental results (which would vary depending 

on total number of scans, for instance). This scaling factor was varied to give the best pos

sible fit and was uniform across the spectrum in order to maintain the relative intensity of 

individual peaks. The quality of the fit was determined by the sum of squares of residuals 

across each peak in the spectrum. The points chosen for the fit were the maximum of each 

peak as well as several points to either side of the maximum. The resulting sum of the 

squares of residuals for all of the points chosen was then taken to represent the quality of 

the fit. 

In order to determine the NMR parameters accurately, both 6Li and 7Li spectra were 

fitted. Assuming the proposed crystal structure is accurate for sample 2, a series of lat

tice sums can be used to calculate both the paramagnetic and quadrupole tensors for each 

lithium site using the equations of each interaction as shown in Chapter 2, namely Equa

tions 2.34 and 2.42. The paramagnetic interaction depends directly on the g-tensor com

ponents of the neodymium electrons. Since the EPR measurements were inconclusive, 

the three primary components of the g-tensor were left as free parameters in the fitting of 

the spectra. 

Due to the much lower quadrupole moment of 6Li, the only interactions that need to 

be taken into account for the simulation are the Zeeman interaction and the paramagnetic 

interaction. For this reason, it was useful to first fit the 6Li spectrum and detemline the 

best-fit g-tensor components before attempting to fit the 7Li experiments. The g-tensor 

values obtained through these fits were then used in the fits of the 7Li results, which 

required incorporating the quadrupole interaction. 

While it is possible for different neodymium sites to have different g-tensors, the 

number of sites present in the material would make this impractical to analyze. Conse-
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quently, it is assumed that the difference in g-tensor values between different neodymium 

sites is negligible. Thus, only three parameters were varied independently, 9xx• gYY' and 

9zz· In order to save on computing time, the lattice sum for the paramagnetic tensor was 

calculated once with the g-tensor principal values set to one. For each set of principal 

values being evaluated, the individual elements of the paramagnetic tensor only needed 

to be scaled by the appropriate factor of 9xx• gYY' or 9zz· Finally, the tensor was diag

onalized to provide the principal values necessary to determine 6tso• ~a. and ·q. These 

values were then used to calculate a spectrum that could be compared to the experimen

tal results. The method for choosing permutations was simply to decide on a range of 

values for each component (divided into discrete values) and run through each possible 

permutation. Once approximate values were determined, the range of each component 

was refined to test a finer distribution of values. 

The initial fits were completed on spectra with a temperature set-point close to room 

temperature so as to have the material in a state as close as possible to the proposed x-ray 

structure [1]. The actual sample temperature (determined from the calibration described 

in Appendix B) was approximately 332 K. The values for the g-tensor components were 

also kept constant between calculations for both the 6Li and 7Li spectra. Through the 6Li 

fit, it was determined that the best values for the g-tensor of the neodymium electrons are 

9xr = 1.48, 9yy = 0.87, and 9zz = 1.22. 

The results of simulating the spectra of both 6Li and 7Li of sample 2 at a room tem

perature set-point are shown in Figures 4.9 and 4.1 0. The 6Li experiment was performed 

at only 15 kHz in order to provide more spinning sidebands to increase the accuracy of 

the fit. The 7Li simulation in this figure also includes the quadrupole interaction, which 

is not present in the 6Li simulation. 

Once the room temperature spectra of sample 2 were satisfactorily fit, the high- and 

low-temperature spectra were considered. In fitting the other temperatures, all of the pa

rameters of the room temperature fit were kept constant except for the constant in front of 
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the paramagnetic tensor, C. This was scaled with the inverse of the sample temperature 

according to its expected behavior. The results of fitting both a low-temperature and a 

high-temperature spectrum in this manner are shown in Figures 4.11 and 4.12, respec-

tively. 

The high-temperature simulation fits the experiment quite well, comparable to how 

well the room temperature simulation fit. However, for the low-temperature the fit is 
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noticeably worse. This shows that at lower temperatures, it is not sufficient to scale the 

paramagnetic term in order to get an accurate fit. A possible explanation for this will be 

discussed in the Section 4.7. 
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FIG. 4.13: The 28 unique lithium sites of Nd 58Li 2sTi03 (sample 2). Only the "mixed" layer 
is shown here, for clarity. 

4.6 Quantitative Results of x=0 .. 083 

As mentioned in the previous section, the values which provided the best possible fit 

were 9xx = 1.48, 9yy = 0.87, and 9xx = 1.22. While these values are a bit lower than may 

be expected (usually rv2) [35, 36], they are not unreasonably so. These g-tensor values 

were then kept constant for all of the subsequent 7Li calculations and simulations. 

For the initial fits at a sample temperature T=331 K for 7Li, the paramagnetic and 

quadrupole tensor components used were the results of the point-charge calculations, with 

no other adjustments to the values. The resulting tensor components for each for the 28 

unique lithium sites in sample 2 are shown in Table 4.1 (see Appendix C for complete 

tensors), with the sites being labeled according to Figure 4.13. The resulting spectrum 

using these parameters is compared to the experimental result in Figure 4.10. 

The point-charge approximation used for the quadrupole interaction (as demon-

strated in Appendix A) is not expected to be exact. However, the order of magnitude 

of the interaction, as well as the symmetry properties of the model, are correct. Since the 



Site tJtSO I::::. a r] CQ r]Q 

Number (kHz) (ppm) (kHz) 
1 3.3325 -831.3 0.4922 -0.7731 0.4739 
2 -0.5768 -807.7 0.5079 -0.418 0.4013 
3 -3.4773 -790 0.5183 0.3885 0.5899 
4 -7.4509 -766.2 0.5371 -0.1368 0.4402 
5 -11.5574 -741.7 0.5589 0.3973 0.1895 
6 -15.5388 -717.9 0.5816 -0.6248 0.1827 
7 -51.0427 -510.4 0.9324 -1.5066 0.9105 
8 3.4567 -832.2 0.4932 -0.5656 0.4973 
9 -0.1855 -810.3 0.5079 -3.5128 0.249 
10 -3.2228 -791.7 0.5182 -0.9968 0.2902 
11 -7.137 -768.2 0.5367 -6.0581 0.2925 
12 -11.4743 -742.2 0.5592 -0.7214 0.5508 
13 -46.3723 -537.5 0.8689 -2.8349 0.603 
14 -50.9951 -510.9 0.9346 0.9891 0.6705 
15 3.2617 -831 0.4936 -2.35 0.2253 
16 -0.2526 -809.5 0.5048 -2.736 0.3506 
17 -3.6621 -788.8 0.5186 2.5697 0.1863 
18 -7.9556 -763.3 0.5407 -0.9441 0.1895 
19 -42.1661 -561.8 0.815 -3.1864 0.25 
20 -46.3522 -537.7 0.8687 -3.0688 0.699 
21 -50.8089 -511.8 0.9293 -0.2485 0.3019 
22 53.1811 -1169.9 0.5741 -0.4343 0.5395 
23 52.4197 -1163.6 0.5666 -0.2368 0.9739 
24 50.874 -1152.9 0.5637 0.1922 0.6083 
25 49.473 -1142.1 0.5544 0.1936 0.2604 
26 49.4399 -1140.3 0.5452 0.2084 0.1053 
27 47.9625 -1130 0.5413 0.1934 0.142 
28 46.8274 -1121.4 0.5342 1.0201 0.1933 

TABLE 4.1: Paramagnetic and quadrupolar tensor components of each site for 7Li in 
Nd 58Li 25 Ti03 (sample 2) at T=331 K. Site numbers refer to labels used in Figure 4.13. 
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results of the point-charge calculations in this case are quite small (compared to the para-

magnetic interaction), the error in their values is negligible in this case. In fact, ignoring 

the quadrupole interaction entirely shows no appreciable effect on the results of this fit. 

While the simulation is a good fit to the experimental spectrum, it is not a precise match, 

which is to be expected. The crystal structure being used for the point -charge calculations 

is an idealized structure. 
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From the paramagnetic tensor components (Table 4.1), the 28 unique lithium sites 

can be easily grouped into three sets based on the values of the isotropic shift and anisotropy. 

These three sets correspond to the three sets of peaks visible in the spectrum. The lithium 

sites that fall into each group are shown in Figure 4.14. 

FIG. 4.14: From the parameters generated by the simulations, it is possible to assign each peak 
in the spectrum to a group oflithium sttes in the Nd_a_,_Li3x Ti03 structure. The labels m the 

3 

spectrum mdicate the center peak of each group. 

While it is convenient to group the 28 lithium sites qualitatively into three sets, it is 

insufficient to simply simulate a three-site model with correct relative weights. Within 

each set of sites, there is still a distribution of tensor components which allows the sim-

ulation to fit the experimental spectrum as well as it does. Ignoring this distribution and 

only using an average set of parameters for each set results in a significantly worse fit. 

The temperature-dependence of the anisotropy and isotropic shift [21], based on the 

fit results for T=331 K, are shown in Figures 4.15 and 4.16 respectively. The values of the 

isotropic shifts are shifted so as to be relative to the average value of all isotropic shifts. 

This is necessary to accurately line up with the experimental spectrum and is analogous 

to changing the reference frequency of the spectrum. Both figures also demonstrate the 

grouping of values that occurs as shown in Figure 4.14. 
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The isotropic shifts show how the largest group of lithium sites (group 2) remains 

relatively constant, while the other two groups shift in opposite directions with tempera-

ture. The paramagnetic interaction tensors' principal components that produce this effect 

are shown in Figures 4.17, 4.18, and 4.19 for Pzz, P'l/Y' and Pxx· 

Fitting the high-temperature results (T=360 K) only required scaling the paramag-

netic tensors inversely with temperature, as shown in the expected values for the isotropic 

shift and anisotropy. No other adjustments needed to be made in order obtain an adequate 

fit, as shown in Figure 4.12. The low-temperature fit was not as straight-forward. Only 

scaling the paramagnetic tensor, while leaving the quadrupole tensor unchanged, results 

in the fit shown in Figure 4.11. The difference between the simulation and the experi-

mental spectrum is significantly worse than the high-temperature fits. There are several 

potential causes for the poor fit at low temperature. 

One likelihood is that there is some distortion to the crystal lattice as a function of 

temperature. It is not known whether there is any contraction or expansion that may result 



79 

in changes to the interaction tensor components. However, the fit is still reasonably close 

enough that any physical distortion is likely minimal. 

The other likely contributing factor to the low-temperature spectrum is suppression 

of motion in the lithium sites. Each lithium site in the idealized lattice is located at the 

center of a cage formed by the nearest-neighbor oxygen atoms. The point-charge calcu-

lations performed assume that there is no displacement for the lithium site. However, it 

is very likely that the lithium is displaced towards any one of the nearest-neighbor oxy-

gen sites. There are six possible sites the lithium could be randomly jumping between-

one for each neighboring oxygen nucleus. In the high-temperature scenario, this will be 

averaged by motion and the displacement can be safely ignored. The jump rate will in-

crease as temperature increases, leading to motional averaging that results in the effective 

quadrupole tensor appearing as if the lithium is at the center position. 

When the temperature is lowered, the jump rate will slow down to the point where it 

no longer averages the result of the displacement. Being displaced from the center of the 

octahedral cage will result in a larger quadrupole interaction due to the more asymmetric 

local environment (i.e., larger field gradients). In addition, the asymmetry parameter will 

a1so change. The current code for producing the simulations does not take into account 

displacements and jumping. Therefore, the quality of the low-temperature fit is not ex

pected to be very good. However, it is still possible to examine what effects dynamics 

have on an individual site. 

4.7 Lithium Dynamics inN d~_xLi3x Ti03 
3 

The idealized crystal lattice used in point-charge calculations described in Section 4.4 

places Li+ cations in A-sites of nominal cubic symmetry, i.e., at the centers of undistorted 

octahedral cages defined by the six nearest 0 2
- anions. In this model, finite electric field 

gradients at the Li nuclear positions arise exclusively from the broken symmetry arising 

http://Nd2_3.Li3a.TiO3
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from the random introduction ofLi+, Nd3+, and vacancies in nearby A-sites. The relevant 

internuclear distances are much larger than the nearest neighbor Li+ -02- distance, so the 

calculated nuclear quadrupole coupling constants for 7Li are quite small, on the order of 

a few kilohertz (See Table 4.1). 

However, numerous X-ray and neutron scattering [1, 2] experiments reveal that the 

Li+ cations are located at sites of lower symmetry, off-center from distorted octahedral 

cages. Tables C.4 and C.5 show the results of a representative point charge calculation in 

which the Li+ cations in each of the 28 crystallographically distinct sites were displaced 

by ±1.5 A along Cartesian axes. As expected, some of the distorted sites (presumably, 

those which involve a close encounter between Li+ and 0 2
-), exhibit quadrupole cou

plings as large as ""'250 kHz. No such values are found in fits to the experimental 7Li 

NMR spectra. For example, an adequate fit to the spectrum of sample 2 (x=0.083), ob-

tained at T = 331 K, is obtained with quadrupole coupling constants on the order of 3 

kHz. 

Although the unit cell is too large to permit the design and testing of detailed mod-

els that incorporate distorted lattices, there is no doubt that the observation of very small 

quadrupole coupling constants for nominally off-center lithium ions is due to ionic mo-

tion. Note that ion migration from cage to cage, which leads to significant bulk conductiv-

ity in materials such as Li0 _3 La0 .567 Ti03 [37], is too slow to measure in the paramagnetic 

Nd..._xLi3x Ti03 samples. Instead, random "rattling" motions within the confines of a 
3 

single, distorted octahedral cage can reduce the large electric field gradients expected for 

off-center 7Li cations. The temperature-dependent NMR line shapes shown in Figure 4.5 

provide support for this hypothesis. It can be seen that as temperature is lowered from 

360 K to 277 K, the overall barycenter of the spectra scarcely change, while the spans 

(edge-to-edge distance) increase by more than the amount expected on the basis of 1/T 

scaling for each paramagnetic tensor. Moreover, there is a significant broadening of the 

individual sidebands at low temperature, accompanied by slightly lower signal to noise 
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ratio. 

Attempts to account for the observed temperature dependence were made using EX

PRESS. An obvious model, entirely consistent with the point-charge calculations, con

sists of defining seven orientational "sites" defined by the computed paramagnetic ten

sors for each of the 28 distorted crystallographic configurations specified, for example, 

in Tables 4.2 and 4.3. These seven sites are "connected" by sudden jumps, at rate k, that 

correspond to ion motion from site to site. Note that site orientations in this model are de

fined by Euler angles derived from the 3 x 3 Cartesian rotation matrices that diagonalize 

the relevant paramagnetic tensor. Thus, potentially large-angle rotational jumps "con

nect" sites that also differ in their isotropic and anisotropic paramagnetic tensor principal 

components. For purposes of calculating the site-dependent electric field gradient tensors, 

it is also necessary to specify their relative orientations with respect to the paramagnetic 

tensors. Thus, for each of the 28 crystallographic configurations, the seven-site model 

depends on no less than 78 independent variables. These consist of one jump rate, and 

for each of seven sites, three Euler angles defining the orientation of principal axes of the 

paramagnetic tensor, three more to define the relative orientation of the site-dependent 

electric field gradient tensor, three principal components of the paramagnetic tensor, and 

two principal components of the (traceless) electric field gradient tensor. EXPRESS han

dles most of the labor involved in defining these parameters. and then integrates equations 

of motion [38] that account both for coherent time dependence of the site frequencies in

duced by magic angle spinning, and random site-to-site jumps, summed over a sufficient 

number of randomly oriented crystallites to generate the spectrum expected for a poly

crystalline powder sample. 

The final line shape could then be obtained simply by adding the line shapes for the 

28 crystallographic configurations. Clearly, there are far too many potentially adjustable 

parameters in this model to warrant any serious attempt at fitting to experimental data. 

Nevertheless, it is instr-uctive to examine the results for a representative crJ7stallographic 
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FIG. 4.20: Simulated MAS spectra of 7Li in Nd 58 Li 25Ti03. Spin rate 30kHz, Lannor fre
quency 291.4 7 MHz. Intra-cage "rattling" motion at rates between 0 and 107 s -l is incorporated 
by methods described in the text. 

configuration, as shown in Figure 4.20. 

Site orientation and principal tensor components used to generate the line shapes in 

Figure 4.20 are summarized in Tables 4.2 and 43. These were generated from the Carte-

sian tensors for crystallographic site number 13 (as defined in Figure 4.13), by equating 

the orthogonal 3 x 3 matrix that diagonalizes the relevant tensor, element by element, to 

standard expressions for the 3 x 3 matrix that defines an Euler rotation. [The standard 

convention in NMR defines the second rotation (angle /3) to be counter-clockwise positive 

about they-axis [39]]. Crystallographic site 13 was chosen for this simulation because 

it revealed the largest dispersion of quadrupole coupling constants, ranging from -92.2 

kHz to +256.1 kHz (see Table 4.3). It should be noted that the line shape is invariant to 

the sign of the quadrupole coupling constant in absence of motion, but motion that leads 

to a change in sign will have a profound effect. 

Using EXPRESS, "rattling" motions of u+ cations can be modeled by sudden site

to-site jumps at an average rate k, such that the average lifetime in any given site is 1/ ( 7 k). 



83 

The bottom line shape in Figure 4.20 was generated with jump rate zero. This spectrum is 

a simple superposition of line shapes from the seven sites, summed over several thousand 

random crystallite orientations. In this limit, the site-specific tensor orientations do not 

matter, and site-specific differences between the tensor components are too small do be 

resolved as separate peaks within each rotational echo. 

As the jump rate increases, the rotational echoes begin to broaden, and when the 

jump rate becomes comparable to the MAS spin rate (21!x30 kHz,....., 2x 105 s-1), the 

spectrum almost disappears. This occurs because the random jumps, which now occur at 

least once (on average) during each rotor cycle, drastically interfere with the formation 

of rotational echoes. This behavior is at first glance surprising, since the dominant (para

magnetic) interaction constants are, according to Table 4.2, quite similar for all seven 

sites. However, the paramagnetic tensor orientations are strongly site-specific and the 

random jumps from site to site therefore produce large, sudden changes in the orientation

dependent spin precession frequencies. At faster rates, such that many jumps occur on 

average during each rotor cycle, the spins precession during each rotor cycle can be en

visioned as responding to a single interaction tensor, averaged over all seven sites. Thus, 

in this limit of fast motion, the rotational echoes become sharp again, and define the Hne 

shape of a motionally-narrowed tensor. 

Experimental temperature-dependent line shapes (see Figure 4.5) do not exhibit a 

large loss of intensity over the experimentally accessible temperature range. It may there

fore be concluded that the rattling motion does not involve large-angle jumps; presumably, 

the off-center distortions are significantly smaller than the 1.5 A values that were used to 

generate Figure 4.20. 

The computations described above are lengthy and intricate. Before attempting to 

(semi-quantitatively) estimate a realistic set of distortions such that point-charge calcula

tions produce acceptably small-angle jumps, it is worth examining a simpler model that 

may provide an estimate of what angular jump sizes are required to reproduce the ex-



Site Displacement 1 0:2 {3 I 5iso ~a3 'r/a 
1 X, y, Z 276.8 144.2 8.0 99.46 -511.6 0.97 
2 X +1.5 15.80 93.9 271.3 99.57 -512.1 0.96 
3 X- 1.5 142.1 154.0 318.0 97.37 -503.3 0.99 
4 y-1.5 209.1 76.2 262.5 100.82 -519.5 0.97 
5 y-1.5 347.7 106.5 269.0 97.94 -503.6 0.96 
6 z +1.5 147.2 137.0 252.5 98.84 -508.9 0.97 
7 z-1.5 314.1 127.0 177.9 99.15 -510.4 0.97 

TABLE 4.2: Site-specific parameters for off-center 7Li paramagnetic tensors computed by point
charge methods described in the text. 
1The undistorted coordinates for Li+ (site 1) are denoted by x,y,z; data in this table is for crystal
lographic site 13 (as defined in Figure 4.13). Displacements by 1.5 A along x, y, or z directions 
define sites 2 - 7. 
2Euler angles (a, (3, /')rotate the paramagnetic tensor principal axes for each site into coinci
dence with the 7Li electric field gradient tensor principal axes for that site (see Table 4.3). 
3The isotropic shift 0;80 , anisotropy L\o- and asymmetry parameter TJu are derived from the eigen
values of the 3 x 3 paramagnetic tensor using standard IUPAC (Haeberlen) conventions for chem
ical shielding tensors. Units are ppm except for rJu which is dimensionless. 

Site Displacement 1 a 2 {3 I Cq TJQ 
1 x,y,z 82.4 94.6 179.7 -2.85 0.60 
2 X +1.5 98.7 4.0 3.5 +3.31 0.60 
3 X~ 1.5 98.0 72.9 269 ~92.23 0.09 
4 y +1.5 269.9 15.6 359.7 +256.07 0.04 
5 y+l.5 121.2 16.5 8.9 +2.25 0.54 
6 z +1.5 133.0 50.0 235.2 +0.7 0.63 
7 Z+l.5 170.9 91.6 313.7 +3.83 0.11 

TABLE 4.3: Site-specific parameters for off-center 7Li quadrupole coupling tensors computed 
by point-charge methods described in the text. 
1The undistorted coordinates for Li+ (site 1) are denoted by x,y,z; date in this table is for crystal
lographic site 13 (as defined in Figure 4.13). Displacements by 1.5 A along x, y, or z directions 
define sites 2 - 7. 
2Euler angles (a, (3, ')')rotate the 7Li electric field gradient tensor principal axes for each site 
into coincidence with a crystal-fixed reference axis system. 
3The quadrupole coupling constant, Cq, and asymmetry parameter TJQ are derived from the 
eigenvalues of the 3 x 3 EFG tensor using standard IUPAC (Hahn) conventions. Units of Cq are 
kHz. 
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Site(Q) a j3 I CQ(kHz) T}Q 

1 0 0 0 3.0 0 
2 180 90 90 3.0 0 
3 90 90 0 25.0 0 

Site(P) a /3 I Oiso ~a TJa 
1 0 0 0 0 550 0.6 
2 -90 -70 -180 5 560 0.6 
3 0 -70 -90 10 540 0.6 

TABLE 4.4: Site-specific parameters for a heuristic model of tensor interactions in a distorted 
perovskite lattice. 
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perimentalline shapes. Such a model must account for the experimental observations 1) 

the overall span of the experimental spectrum increases significantly at low temperatures, 

without dramatic loss of intensity 2) high temperature spectra can be fit with very small 

quadrupole coupling tensors, on the order of a few kHz, while low temperature spectra 

can be fit better with quadrupole coupling tensors on the order of 20-30kHz and 3) the 

first moment ("barycenter") of the spectrum is essentially independent of temperature. 

Qualitatively, all three features can be reproduced in the framework of a simple, three-site 

model, with site-specific parameters listed in Table 4.4. 

As before, the Euler angles for paramagnetic interactions (P) rotate the paramagnetic 

tensor principal axis frame for each site into coincidence with the quadrupole coupling 

tensor (Q) for that site. Thus, in site 1 the two tensors are exactly coincident. Since the in-

verse of a rotation (a,/3,1) is just ( -~,-/3,-a), it is evident that the paramagnetic tensors 

for sites 2 and 3 are coincident, and rotated only slightly from that for site 1, through Euler 

angles (0,20,0). On the other hand, the site angles chosen for the quadrupole coupling ten-

sor place each of its principal components along x, y and z axes with equal probability, so 

that the fast-limit average tensor would be exactly zero if all three principal components 

were equal. The principal values listed in Table 4.4 were chosen to correspond roughly 

to values that fit the experimental spectra at low and high temperatures. Principal values 

for site-specific paramagnetic tensor principal components were also selected to roughly 
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match the expenmental spectra, with the arbitrary reference frequency set to zero at the 

middle of the spectrum. 

Line shapes for this model, simulated as a function of jump rate, are shown in Fig-

ure 4.21. The red dashed lines are spline fits to the echo maxima, meant to outline the 

powder pattern traced by the envelope of sideband maxima. As expected for small-angle 

jumps, there is much more intensity at intermediate jump rates than for the large-angle 

jumps featured in the seven-site model. The asymmetric shape of the envelope, preserved 

at all jump rates, arises from the choice of 1]17=0.6 for all sites. It is encouraging that the 

point-charge (seven site) model with large distortions yields essentially equal values for 

this parameter in all sites. 

It can be concluded from these simulauons that small off-center displacements of 

the Li+ cations can lead to sufficiently small reorientations of the paramagnetic tensor to 

account at least qualitatively for the temperature-dependent line shapes, and the time scale 
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for jumps among the off-centered positions is on the order of 106 s-1 at room temperature. 

It is worth noting that point-charge calculations of the 7Li EFG tensor are very sensitive 

to the distance between 7Li+ cations and neighboring 0 2- anions, while the paramagnetic 

tensor depends only on the more distant Nd3+ ions. It remains to be seen whether carefully 

chosen directions for small ion displacements can approximately reproduce the tensor 

components listed in Table 4.4. 

4.8 Conclusion 

The NMR study of these Nd~_xLhx Ti03 materials supports the previously com

pleted crystallographic work, demonstrating the fine structural control possible through 

adjustment of the lithium concentration of each sample. It has also been observed that 

there is no visible phase transition occurring with changing temperature. While the spec

tra do change with temperature, as is to be expected based on the interactions present, 

there are no sudden changes as temperature is varied over the "'1 00 K range observed. 

The structure of the materials with respect to the lithium/neodymium phase separation 

appears to remain intact. 

The use of point-charge calculations to determine the lithium paramagnetic and 

quadrupole interaction tensors in the Nd.58 Li. 25Ti03 (sample 2) material has allowed for 

accurate simulations of the experimental spectra at high temperature. While the low

temperature simulations are not accurate to the degree of the high-temperature ones, 

they still demonstrate the temperature-dependence of the paramagnetic tensor compo

nents quite well. It is clear from the qualitative results, and supported by the point-charge 

calculations, that the peaks in the spectrum can be grouped into three sets. While the over

all center of mass of the spectrum is unchanged with respect to temperature, the relative 

position of the three isotropic shifts does change. Also, the anisotropy of the interaction 

scales inversely with temperature as expected for the paramagnetic tensor. 
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The results of the simulations for sample 2 of the NdLxLi3x Ti03 materials allows 
3 

for some extrapolation as to what is seen in the spectra of the ot.her samples. Even at other 

lithium concentrations, there are still three visible sets of peaks, with similar differences 

in isotropic shifts. This suggests that the model of three sets of lithium sites still holds 

at other concentrations, with only the relative populations of each of the groups chang

ing. This explains the observation that the "shoulders" on sample 2 become the most 

prominent peaks of the high-concentration sample 4, based on isotropic position. It also 

explains how each sample appears to have the same temperature-dependence with respect 

to the changing isotropic shifts and anisotropy of the peaks. 



CHAPTERS 

Study of High-Dielectric Microwave 

Ceramics 

5.1 Overview of High-Dielectric Microwave Ceramics 

The use of oxide dielectrics is of great importance to microwave wireless commu

nications, specifically mobile telecommunications. They allow both the size and cost of 

components such as frequency filters and oscillators to be reduced significantly. In order 

to be useful materials, they must satisfy several criteria: have a high dielectric constant, 

low dielectric loss in the microwave region, and temperature stability of its resonant fre

quency [3-5]. 

Previous work on these materials by Professor Peter Davies' group has been focused 

on trying to understand what aspects of their structure and chemistry allow for optimum 

performance as microwave ceramics; specifically, the role of cation disorder. For this rea

son, NMR spectroscopy can prove to be a useful addition to other methods of studying the 

materials. NMR can aid in elucidating structure information as well as potentially pro

viding information on dynamics in the systems through the behavior of the T lz relaxation 
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rates. 

Work was done on a pair of high-dielectric microwave ceramics in order to supple-

ment previous studies that had been performed by Daniel Pechkis [ 40] as well as Peter K. 

Davies at the University of Pennsylvania [3-5]. In particular, the 7Li T lz relaxation times 

studied. There were also some observations of the niobium nucleus in both materials. 

Like the NdLxLi3x Ti03 samples discussed in Chapter 4, these microwave ceramics 
3 

also feature a perovskite structure, AB03 (see Figure 4.1). All of the materials in this se-

ries feature a mixture of lithium and niobium in the B-site, while the A-site contains earth 

metals [3]. For the two specific samples examined in this chapter, the A-sites are entirely 

calcium for one of the samples and a two-to-one mixture of calcium and lanthanum in the 

second. 

5.2 Summary of Experiments 

7Li MAS NMR spectra of both Ca(Li1;3 Nb2;3 )03 and (Ca2;3La1/3)(Li1/3Nb2;3)03 

were recorded in the 17.6 T field over a temperature range of 240 K to 330 K. Most 

experiments were performed with an MAS spinning speed of 8 kHz in a 4 mm MAS 

probe. A typical 90° pulse had a width of 5.5 JlS and a power level of 5 dB, with a recycle 

delay of approximately 30 seconds to one minute. The actual recycle delay used was 

adjusted to be approximately three times the observed relaxation time. 

In addition to basic single-pulse experiments, T lz saturation-recovery experiments 

were also run under MAS conditions (as described in Section 3.2). The saturation pulse 

train typically used thirty 90° pulses spaced 5 JlS apart, with the same pulse power and 

duration as for the single-pulse experiments. In order to record a well-defined recovery 

curve, the delay list used in the T lz experiments varied with temperature and approximate 

T1z value. Once a rough estimate of the relaxation time was determined (using a series 
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of short Zero-Go experiments with varying recycle delays), a delay list containing ten to 

twelve values was constructed that would give an even distribution of points along the 

recovery curve, an example of which is shown in Figure 5.1. 

Once the complete set of spectra was obtained, analysis was performed using a Mat-

lab™ package developed by Professor Robert Vold (initially "viewld", later revised to 

"nrnrlv"). The spectrum resulting from the "infinity" value of the delay list (the longest 

delay) is used in order to determine the amount of left shift and phase correction necessary 

to produce an absorbtion spectrum. Identical left shift and phase corrections are applied 

to all other partially relaxed spectra. 

The value ofT lz is determined on a point-by-point basis. For each point across the 

peak, the amplitude relative to the infinity value is plotted as a function of delay value 

to produce a recovery curve as shown in Figure 5.1. The points are fit to an exponential 

function to determine the value of the relaxation rate (see Equation 2.7) for that position 

in the spectrum. The error in the T lz value of the peak is determined by performing the 

same fit for a range of points across the width of the peak. 

10"6 

~------L-----~----~------L-----~----~ 

0 10 20 30 40 50 60 
Delay Value (s) 

FIG. 5.1: The T1 recovery curve of (Ca2; 3 La1; 3 )(Li1; 3 Nb2; 3 )03 at 319 K. The line through 
the data points represents a single-exponential fit applied to the results. 
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In addition to the 7Li relaxation study, 93Nb MAS NMR spectra were obtained for 

both samples. There was no T Iz analysis performed on these spectra due to the difficulty 

in getting a sufficiently saturated spectrum in order to properly perform a saturation

recovery experiment. However, there is still structural information to be obtained from the 

MAS spectra. For the (Ca2; 3La1; 3 )(Li1; 3Nb2; 3)03 sample, a two-dimensional double

quantum satellite-transition MAS (STMAS) spectra was also obtained. 

5.3 Results and Interpretation 

5.3.1 Analysis of the Isotropic Shift and T lz Relaxation of 7Li 

Typical 7Li MAS spectra for Ca(Lh;3Nb2;3)03 and (Ca2/3La1;3)(Li1/3Nb2;3)03 

are show11 in Figures 5.2 and 5.4, respectively, with the center peak of each spectrum 

shown in more detail in Figures 5.3 and 5.5. Both spectra are relatively simple: a strong 

central peak with a small secondary peak located slightly upfield. The only noticeable 

difference between the spectra of the two materials being the shape of the small sec

ondary peak. Ca(Li1;3Nb2; 3)03 has a relatively narrow peak ( rv70 Hz), while the other 

composition has a much broader shoulder ("-'300Hz). 

For lithium in these two materials, the primary interaction is the chemical shielding 

interaction (described in Section 2.4.1 ). The behavior of the isotropic chemical shift 

for the primary peaks of both materials was studied as a function of temperature. The 

isotropic position is taken as the frequency location of the highest point of the center peak 

of the spectrum. The results for temperature dependence of the isotropic chemical shift 

of Ca(Li1;3Nb2; 3)03 are shown in Figure 5.6. 

When the isotropic shift is plotted against temperature, it results in a linear relation 

as defined by, 
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FIG. 5.2: 7Li MAS spectrum of Ca(Li1; 3 Nb2; 3 )03 performed at a spin rate of 8kHz in a 17.6 
T static field at a temperature of 280 K 
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FIG. 5.3: Center peak of 7Li MAS spectrum of Ca(Li1; 3 Nb2 ; 3 )03 performed at a spin rate of 
8kHz in a 17.6 T static field at a temperature of 280 K 
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6~80 (Hz) = (3.53 ± 0.53)T + ( -2032 ± 154). (5.1) 

In addition to the isotropic shift, the behavior of the T Iz relaxation time was also 
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FIG. 5.4: 7Li MAS spectrum of (Ca2; 3 La1; 3 )(Li1; 3 Nb2; 3 )03 performed at a spin rate of 8kHz 
in a 17.6 T static field at a temperature of 280 K 
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FIG. 5.5: Center peak of 7Li MAS spectrum of (Ca2 ; 3 La1 ; 3 )(Li1; 3 Nb2 ; 3 )0.3 performed at a 
spin rate of 8 kHz in a 17.6 T static field at a temperature of 280 K 
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studied as a function of temperature. The results of this for Ca(Lh;3 Nb2; 3 )03 are shown 

in Figure 5.7, with the relaxation rate plotted on a logarithmic scale with respect to inverse 

temperature. Fitting these results leads to the relationship between relaxation rate and 

temperature as given by, 
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FTG. 5.6: Temperature dependence of the isotroptc chemical shift of Ca(Li1; 3 Nb2; 3 )03 . Error 
bars are within the radius of each data point. 
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; = (O.?S ± O.l 3)e(-S08817±424l/RT_ (5.2) 
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FIG. 5.7: Temperature dependence of the relaxation rate of Ca(Li1; 3Nb2; 3 )03 

While there is some visible scatter in the T lz plot, all of the values fall along the fit 

line within their error bars. The error bars themselves were determined by the scatter of 
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the relaxation rate measured at multiple points across the line shape. From examining 

both the isotropic chemical shift as well as the relaxation rate, it is clear that there is no 

structural phase change of these material over the temperature range covered by these 

experiments. This is important since it means that any devices made from these materi-

als would not have sudden changes in performance with fluctuations in temperature. An 

attempt was made to also look at the relaxation behavior of the secondary peak. Unfor-

tunately, due to the much lower intensity of the peak, accurate values for T lz were not 

possible. 

The values of the isotropic chemical shifts for (Ca2; 3La1; 3 )(Li1; 3Nb2; 3 )03 are shown 

in Figure 5.8. As with the Ca(Lh;3Nb2; 3 )03 material, this also demonstrates a linear re

lation between isotropic shift and temperature, which is defined as, 
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FIG. 5.8: Temperature dependence of the isotropic chemical shift of 
(Ca2; 3La1; 3 ) (Li1; 3 Nb2; 3 )03 . Error bars are within the radius of each data point. 

The behavior of the T1z relaxation rate for (Ca213La1, 3)(Li1nNb2n)03 is shown in 

Figure 5.9. There is noticeably more scatter in this result than the other material. While 



97 

the values of the relaxation rate still all fall with the error bars of the fit, the amount of 

error present in each point is noticeably greater. This is a result of the relaxation rate not 

being as constant across the range of the peale 
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FIG. 5.9: Temperature dependence of the relaxation rate of (Ca2; 3 La1; 3 )(Li1; 3 Nb2; 3 )03 

The fit of the relaxation rates results in the dependence between T lz and temperature 

as given by, 

; = (2.01 ± 0.2o)e(-22u 52±291)/RT. 

lz 
(5.4) 

As with the previous material, the temperature-dependencies of both the isotropic 

chemical shift and the T lz relaxation rate of ( Ca2;3La1; 3) (Lh;3Nb2; 3)03 exhibit no sud

den jumps that would indicate a phase transition. It is also worth noting that the tem

perature dependence of both the isotropic shift and relaxation rate is less pronounced in 

(Ca2;3La1;3)(Li1; 3Nb2;3)03 than was observed with Ca(Li1; 3Nb2; 3 )0J. The isotropic 

shift of Ca(Li1; 3 Nb2; 3 )03 changes at a rate of 3.53 Hz/K, while the isotropic shift of 

(Ca2; 3 La1; 3)(Li1; 3 Nb2; 3 )03 is only affected at a rate of 2.65 Hz/K. Similarly, the activa

tion energy for the relaxation rate is over twice as large for the Ca(Li1; 3Nb2; 3 )03 sample 
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5.3.2 Analysis of 93Nb Results 

While most of the work on these materials focused on the behavior of the lithium 

nuclei, there were also several experiments performed that observed the niobium nuclei. 

The 93Nb spectra resulting from a basic single-pulse experiment for Ca(Li1; 3 Nb2; 3 )03 

and (Ca2; 3La1; 3)(Li1; 3 Nb213 )03 are shown in Figures 5.10 and 5.11, respectively. Con-

trary to the lithium spectra, the niobium ones are noticeably more complicated with more 

overlap between adjacent peaks. 

-100 -150 ·200 -250 
kHz 

FIG. 5.10: 30kHz MAS Y:!Nb spectrum of Ca(Li1; 3 Nb2; 3)03 in 17.6 T static field at T=310 K 

The spectrum for Ca(Li1; 3Nb2; 3)03 shows at least two peaks clearly. The main peak 

is approximately 15kHz wide, with a broader shoulder located slightly upfield. With how 

broad the peaks are, it is possible that more than two are present and are simply obscured 

by the overlap between them. The 93Nb spectmm for (Ca2; 3La1; 3 )(Li1; 3 Nb2; 3 )03 clearly 

shows four to five peaks. However, the peaks are much better resolved. The tallest peak 

has a linewidth of only 4 Hz. However, the total range of the center set of peaks is still 
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FIG. 5.11: 30kHz MAS 93Nb spectrum of (Ca2;3La1;3)(Li1; 3Nb2; 3 )03 in 17.6 T static field 
atT=310K 

wide enough to cause overlap with the spinning sidebands. 
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Unlike the lithium spectrum, the saturation-recovery pulse sequence was not usable 

to determine the T lz relaxation time of the niobium spectra. The reason for this is that 

it was not possible to sufficiently saturate the spectrum as part of the pulse sequence. 

However, in an attempt to gain a better understanding of the line shape, a double-quantum 

satellite-transition magic angle spinning (STMAS) pulse sequence was used to separate 

the isotropic and anisotropic components of the spectrum [41-43]. This pulse sequence 

results in a two-dimensional spectrum as shown in Figure 5.12. 

In this 2D spectrum, the coordinates of each peak are defined as (51; 2 ) (along the 

F2 axis) and 5,d (along the Fl axis). A total of five distinct sites were identified, with 

their positions listed in Table 5.1 and slices taken along each peak shown in Figure 5.13. 

The direct dimension is referenced relative to NbCl solution. The indirect dimension is 

referenced relative to the direct through the relation 

(5.5) 
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FIG. 5.12: 30kHz Double-Quantum STMAS 93Nb spectrum of (Ca2; 3La1; 3)(Li1; 3Nb2;3)03 
at T=300 K with standard shearmg. Red lines represent locations of slices shown in Figure 5.13. 

b c 

i\ 
J~i \ 

Stte2 Sit" 3 

,, J' \ 
,·~ 

7011 4300 -'1100 IOOIJ ..stiO .S51J ..!l!IO 850 IOOIJ 

""' ""' 
e 

..B6Q 1000 1060 1100 1150 

"'"' 

FIG. 5.13· Slices taken from a 30 kHz Double-Quantum STMAS 93Nb spectrum of 
(Ca2;3La1;3)(Li1;3Nb2;3)03 at T=300 Kat positions (a) o,d = -903.1 ppm, (b) oid = -923.8 
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where £5~ and 6f;2 represent the chemical shift value of the center of the anisotropic and 

isotropic axes, respectively. From the derivations shown in [44] and [45], the isotropic 

chemical shift and the isotropic shift of the second-order quadrupole (in Hertz) can be 
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Site Jid (Jl/2) JCS 2Q PQ •so Jiso 
Number (ppm) (ppm) (ppm) (kHz) (MHz) 

1 -903.1 -922.9 -915.7 -1313.2 13.17 
2 -923.8 -950.2 -940.6 -1751.0 15.20 
3 -929.7 -976.5 -959.6 -3104.0 20.24 
4 -971.6 -1042.7 -1017.0 -4715.7 24.95 
5 -991.0 -1070.9 -1042.0 -5299.3 26.45 

TABLE 5.1: Identification of unique sites of 93Nb in (Ca2; 3 La1; 3 )(Li1; 3 Nb2; 3 )03 using 
STMAS. Fl dimension is referenced relative to NbC1 5 solution 

determined by the equations, 

(5.6) 

(5.7) 

In Equations 5.6 and 5.7, the scaling factor R is dependent on the nuclear spin and 

quantum coherence being observed. According to Table 2 of Ref. [45], in the case of 

double-quantum STMAS for a spin-9/2 nucleus, R = 127/72. The isotropic shift of the 

second-order quadrupole can be used to determine the quadmpole product (PQ) using the 

relation, 

2Q - 3P2 3 I 4 - s ( s + 1) 
Jiso- Q 10vo[2S(2S- 1)]2 · (5.8) 

Using these relations, the NMR parameters for each of the peaks was determined as 

shown in Table 5.1. 

5.4 Conclusion 

From the temperature-dependent studies of the high-dielectric microwave ceramics, 

it was shown that (Ca2; 3La1; 3 )(Li1; 3Nb2; 3 )03 is significantly less temperature-sensitive 
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with regards to both isotropic chemical shift and T1z relaxation time. Ca(Li1; 3 Nb2; 3 )03 

was found to have a chemical shift that changed linearly with temperature at a rate of 

3.53 ± 0.53 Hz · K-1 and a relaxation rate that followed an Arrhenius relationship with an 

activation energy of 5.08 kJ ·(mol· K)-1
. (Ca2; 3La1; 3)(Li1; 3 Nb2; 3 )03 , on the other 

hand, resulted with an isotropic chemical shift that changed at a rate of 2.65 ± 0.33 

Hz· K- 1 and a T 1z relaxation rate with an activation energy of 2.21kJ ·(mol· K)-1
. The 

most important thing to be inferred from these results is that (Ca2; 3La1; 3 )(Li1; 3 Nb2; 3 )03 

has noticeably less temperature-dependent behavior, likely making it much more useful of 

a material for the purpose of constructing electronic components. Less sensitivity totem

perature for the NMR parameters would likely also result in less temperature-dependence 

of the device parameters if ionic motions responsible for spin-lattice relaxation are also 

responsible for dielectric loss. 

The niobium spectra of each material mainly shows that while the total number of 

sites is similar, the linewidths for ( Ca2 ; 3 La1; 3 ) (Li1 ; 3 Nb2 ; 3 ) 0 3 are significantly narrower, 

making it easier to identify individual peaks. However, the MAS spectrum alone does 

not make it clear how many overlapping peaks may be present. The STMAS experiment 

performed on this material resulted in the identification of five unique sites, as well as 

the values of both the isotropic chemical shift and the quadrupole product (listed in Table 

5.1) for each site. 



CHAPTER6 

Conclusion 

Through the studies discussed in this dissertation, several perovskite structures were 

examined. While the crystallographic structures of the NdLxLi3x Ti03 materials and 
3 

the dielectric microwave ceramics were all similarly perovskites, the composition of each 

lead to very different behaviors, even when observing the same nucleus. While the lithium 

NMR spectra of the microwave ceramics was dominated by the chemical shielding inter-

action, the presence of neodymium in the Nda_xLi3x Ti03 materials leads to the param-
3 

agnetic interaction taking precedence. Also, the highly ordered checkerboard structure of 

the Nd.LxLi3x Ti03 materials results in a much larger number of unique sites (and there-
3 

fore a much more complicated spectrum) when compared to the number of unique sites 

present in the microwave ceramics. These differences lead to slightly different approaches 

being taken to study each series of materials. 

With the large number of unique lithium sites in the Nd.LxLi3x Ti03 materials (28 
3 

in the case of ~c=0.083), the spectra were too complicated to simply deconvolute in order 

to obtain the NMR interaction tensor values. Fortunately, previous studies [1, 2] resulted 

in a proposed crystal structure for one of the concentrations (x=0.083). This made it 

possible to perform point-charge calculations in order to determine the tensor components 
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for each lithium site, for both the paramagnetic and quadrupole interactions. In addition 

to performing the point-charge calculations for the tensor components, software was also 

written to simulate the NMR spectra of both a spin-1 (6Li) system with a paramagnetic 

interaction present and a spin-3/2 CLi) system with both paramagnetic and quadrupole 

interactions. 

At high-temperature, simulated spectra based on the point-charge calculations re

sulted in a very good match to the experimental results. Several points of interest also 

became apparent. The paramagnetic interaction in these samples is a couple orders of 

magnitude stronger than the quadrupole interaction. Based on the principal values of the 

paramagnetic tensors, the 28 unique lithium sites could be easily grouped into three sets. 

Each set featured similar principal values (6280 , ~CJ, and 17). These three groups corre

spond to the three visible sets of peak present in each spectrum. It also fits the idea that 

the relative intensities of the peaks change with respect to lithium concentration, meaning 

that the relative populations of each group is changing based on the size of the lithium 

regions in the material. 

While the simulated spectra agreed well with room-temperature and high-temperature 

experimental results, the low-temperature simulation does not match as well with exper

iment. It was theorized that this is due to possible displacement of the lithium atoms 

within octahedral cages formed by the neighboring oxygen atoms. At high enough tem

peratures, the jump rate between displacements is quick enough to be in the fast limit, 

leading to averaging of the interaction tensor. In the lower-temperature experiments, the 

nuclei are in the intermediate range where it is necessary to take into account the jump 

rate in order to accurately simulate the spectrum. Due to the number of sites present, each 

with its own set of displacements, the dynamics of the complete system were not simu

lated. However, the behavior of the interaction tensors of one of the lithium sites along 

the edge of the lithium-rich region was studied with respect to displacement amount and 

jump rate. The behavior of one-site simulations with respect to jump rate seems to match 
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with the observed behavior of the overall experimental spectra as temperature is lowered. 

In the case of the microwave ceramic samples, the much simpler structure resulted 

in lithium NMR spectra that were much easier to interpret. The temperature dependence 

of both the isotropic chemical shift and the T lz relaxation rate was determined for each 

of the two samples. In both cases, the isotropic chemical shift behaved linearly with tem

perature, at a rate of 3.53 ± 0.53 HzjK for Ca(Li1; 3Nb2; 3)03 and 2.65 ± 0.33 Hz/K for 

(Ca2;3La1; 3)(Li1; 3 Nb2; 3)03 . The relaxation time for each of these materials followed 

an Arrhenius behavior with an activation energy of 5.08 ± 0.424 kJ ·(mol· K)-1 for 

Ca(Lh;3Nb2;3)03 and 2.21 ± 0.29 kJ ·(mol· K)-1 for (Ca2/3La1;3)(Li1/3Nb2;3)03. 

From these results, it is clear that the composition ( Ca2; 3La1; 3) (Li1; 3Nb2; 3)03 is sig

nificantly less affected by temperature over the range observed, making it much more 

desirable in the use of electronic components. 

In addition to the lithium studies that composed the majority of the microwave ce

ramics work, several experiments also observed the 93Nb nucleus. The lD single-pulse 

spectrum of each material did not reveal too much information, aside from the fact that 

there are clearly several unique sites with overlapping line shapes. While the range of 

isotropic shifts and overall span are similar between the two materials, the spectrum of 

(Ca2; 3La1; 3)(Li1; 3Nb2; 3)03 has noticeably narrower linewidths, allowing the different 

sites to be better resolved. Additionally, a double-quantum satellite transition MAS ex

periment was performed on (Ca2/3La1; 3)(Lh;3Nb2; 3)03 in order to better isolate the in

dividual sites, separating the isotropic and anisotropic components of the spectrum. This 

resulted in the clear identification of five unique sites, as well as the values of the isotropic 

chemical shifts and quadrupole products. 



APPENDIX A 

Point Charge EFG Calculations of 

Lithium Niobate 

The calculations described in Chapter 4 use a point-charge approximation in order to 

calculate the electric field gradient of the Nd~ ~xLi3x Ti03 samples. The large number of 
3 

atoms present per unit cell in these materials, as well as the complexity ofthe neodymium 

electron distribution, make the more accurate method of using density functional theory 

(DFT), not feasible. In order to determine how accurate the point-charge model is, the 

same calculations were also performed for two phases of lithium niobate (LiNb03). These 

materials have a much simpler structure which allows DFT calculations to be performed, 

from which the field gradient tensors can be determined. This permits direct comparison 

to the point -charge model. 

Two forms of lithium niobate were examined, the paraelectric and ferroelectric struc-

tures. Both of these are distorted forms of the basic perovskite structure which is similar 

to the Nd~ ~xLi3x Ti03 idealized structure. Equation A.l gives the primitive vectors of the 
3 

LiNb03 unit cell (illustrated in Figure A.2) that were used for the paraelectric structure, 

with the atom positions shown in Table A.l and the structure shown in Figure A.l. The 
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ferroelectric structure is shown in Figure A.3 with the corresponding unit cell parameters 

given in Equation A.2 (illustrated in Figure A.2) and atom positions listed in Table A.2. 

FIG. A.l: The crystal structure of the paraelectric form of LiNi03 along the [001], [010], and 
[100] axes Niobium= Blue, Oxygen= Red, Lithium= Green. [46] 

2.62749913905;- 1.5169873360:0 + 4.59700065602 (A.1) 

hpara 0.00000000005; + 3.03397467101) + 4 . .5970006.5602 

Cpara -2.62749913905;- 1.5169873360!} + 4.59700065602 

Nucleus a b c 
Li 0. 2500000000 0. 2500000000 0.2500000000 
Li 0. 7 500000000 0. 7 500000000 0.7500000000 
Nb 0.0000000000 0. 0000000000 0.0000000000 
Nb 0.5000000000 0.5 000000000 0.5000000000 
0 0.6313333333 0.8686666667 0.2500000000 
0 0.2500000000 0.6313333333 0.8686666667 
0 0.8686666667 0.25 00000000 0.6313333333 
0 0.3686666667 0.1313333333 0. 7500000000 
0 0. 7 500000000 0.3686666667 0.1313333333 
0 0.1313333333 0. 7 500000000 0.3686666667 

TABLE A.1: Atom positions in paraelectric LiNb03 
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FIG. A.2: The basis vectors of the paraelectric form ofLiNi03 

aferro 2.5999991470x- 1.50lll02070y + 4.62433397302 (A.2) 

bferro O.OOOOOOOOOO:T + 3.0022204140y + 4 62433397302 

Cferro -2 5999991470:£- 1 5011102070y + 4.62433397302 

For both the paraelectric and ferroelectric states, the electric field gradient tensor was 

calculated at the location of each nucleus using several DFT codes with different levels of 

approximation, as well as the point-charge model. The DFT methods used include vari-

ants of the linearized augmented plane wave (LAPW) method [34], the Elk full-potential 

linearized augmented plane wave (Elk), and the Gauge Including Projector Augmented 

Waves approach [33] within the Quantum Espresso package (gipaw). 

LAPW allows for several approximations of exchange and correlation, but makes no 



FIG A 3 The crystal structure of the ferroelectnc form of LIN103 along the [001], [010], and 
[100] axes Niobium= Blue, Oxygen= Red, Lithium= Green [46] 

Nucleus a b c 
Li 0.28180000 0.28180000 0.28180000 
Li 0.78180000 0.78180000 0.78180000 
Nb 0.00000000 0.00000000 0.00000000 
Nb 0.50000000 0.50000000 0.50000000 
0 0.85856667 0.61136333 0.22037000 
0 0.61136333 0.22037000 0.85856667 
0 0.22037000 0.85856667 0.61136333 
0 0.11136333 0.35856667 0.72037000 
0 0.72037000 0.11136333 0.35856667 
0 0.35856667 0.72037000 0.11136333 

TABLE A.2: Atom positions in ferroelectric LiNb03 
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approximations with regards to the shape of the crystal potential, unlike other methods 

which may use a spherical approximation around each atom. The basis used for LAPW 

considers the crystal as two separate zones: spheres around each atom and the remain-

ing region. The areas near the atoms are treated as a linear combination of atomic-like 

functions. The interstitial region is treated as a collection of planewaves. 

The GIPAW method uses a pseudopotential approximation, which has been used 

with previous methods, but takes into account the difference in contributions from the 

core and valence electrons. 

The full-potential augmented plane wave method used by Elk allows the potential 

to be of a general form, representing the full potential, as opposed to using a shape ap-
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FIG. A.4: The basis vectors of the ferroelectric form of LiNi03 
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proximation (such as a muffin tin approximation) [47]. Using a full potential makes it 

possible to overcome the limitations of the basic LAPW method, which is accurate for 

dose-packed metal systems, but less reliable for open semiconductor surfaces or other 

situations where highly accurate solutions to local density functional equations are re-

quired. 

The resulting tensor components and asymmetry values are shown in Tables A.3 

(paraelectric) and A.4 (ferroelectric). It is clear that the point-charge model is not good 

enough for providing exact values for the tensor components in these materials. The 

agreement between the different DFf methods is significantly better than the agree-

ment between any one of them and the point-charge model. However, the point-charge 

model may be considered sufficient for the calculations performed in Chapter 4 on the 

Nd.LxLhx Ti03 materials. The values from the point-charge calculations do still pro-
3 

vide at least an order of magnitude to the quadrupole interaction (which turns out to 
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Nucleus Method vzz Vyy Vxx 17 
Li LAPW -0.235 0.118 0.118 0 

Elk -0.235 0.117 0.117 0 
gipaw ~0.201 0.100 0.100 0 

Point-charge -0.050 0.025 0.025 0 
Nb LAPW 0.710 -0.355 -0.355 0 

Elk 0.694 -0.347 -0.347 0 
gipaw 0.678 -0.339 -0.339 0 

Point-charge 0.0026 -0.0013 -0.0013 0 
0 LAPW -0.720 0.484 0.236 0.35 

Elk -0.881 0.553 0.328 0.26 
gipaw -0.704 0.482 0.222 0.37 

Point-charge -0.0507 0.0367 0.0141 0.44 

TABLE A.3: EFG tensor components of atom sites in paraelectric LiNb03 (units are ,;;2 x 1021 ) 

Nucleus Method vzz Vyy Vxx 17 
Li LAPW -0.107 0.053 0.053 0 

Elk -0.106 0.053 0.053 0 
gipaw ~0.090 0.045 0.045 0 

Point-charge -0.0152 0.0074 0.0074 0 
Nb LAPW -1.198 0.599 0.599 0 

Elk -1.060 0.530 0.530 0 
gipaw -1.179 0.589 0.589 0 

Point-charge -0.0169 0.0085 0.0085 0 
0 LAPW 1.519 -1.147 -0.372 0.51 

Elk 1.545 -1.241 -0.304 0.61 
gipaw 1.505 -1.105 -0.400 0.47 

Point-charge 0.0932 -0.0758 -0.0174 0.60 

TABLE A.4: EFG tensor components of atom sites in ferroelectric LiNb03 (units are ,;;2 x 1021 ) 
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be quite small in the case of Nd.LxLi3x Ti03) as well as a reasonably accurate result 
3 

for the symmetry propertie~ of the structure. With the paramagnetic interaction in the 

Nd2-xLi3x Ti03 materials being orders of magnitude larger than the estimated quadrupole 
3 

interaction, the error in the EFG calculations due to the point-charge approximation is 

negligible in comparing the simulations to experimental results. 

The primary source of the inaccuracy of the point-charge calculations is the cova-

lent bonding present in these materials, which distorts the electron distribution. It has 

been shown in other studies that in the case of highly ionic materials, the point-charge 

model is much more successful. For example, Barton and Cashion used a point charge 

approximation to calculate the quadrupole splitting for Gd3+ in highly ionic gadolinium 

compounds and had agreement within 12% of experimental results [48]. Some of the 

error in this case was attributed to slight variations in the crystal structure due to variation 

in the temperature at which the crystal structure was determined (room temperature) and 

the temperature at which the spectra to determine the quadrupole splitting was performed 

(4.2 K). 

While point-charge calculations are generally limited to ionic crystals, it has been 

shown that they can still be useful in some covalent systems. Dane Spearing examined 

the quadrupole tensor for oxygen in the highly covalent Si02 cristobalite compound using 

a point -charge approximation. The calculations produced values reas.onably close to pre

vious experimental results: CQ = 7.63 MHz and fJ = 0.20 calculated using point charges, 

compared to the experimentally determined Cq = 5.3 ± 0.1 MHz and fJ = 0.125 ± 0.005 

[49]. While this agreement is still noticeably worse than the case of ionic materials, it 

does show that in covalent systems the point-charge calculation can still be a good start-

ing point to get an approximate value. 



APPENDIXB 

Temperature Calibration Using Lead 

Nitrate 

When studying the temperature-dependence of an NMR spectrum, it is necessary to 

be able to determine the temperature of the sample. Chapter 3 discussed how variable 

temperature (VT) experiments are performed. To briefly summarize: these NMR exper

iments work by passing dry nitrogen gas through a heat exchanger where it is in close 

thermal contact with liquid nitrogen (at least in the case of experiments below room tem

perature). This cooled gas then enters the NMR probe, initially passing across a heating 

element. Temperature is monitored by a resistive sensor located near the sample, and an 

analog PID controller uses the sensor's resistance to vary the heater current so that the 

sensor output matches the user-specified set point. 

It is important to note that the temperature is not actually monitored in the sample 

itself. In static experiments it is usually enough to use the observed "set" temperature 

from the sensor in the probe as the sample temperature. As long as enough time is allowed 

for the sample temperature to equilibrate before running an experiment, it will settle to 

the same temperature as the nitrogen VT gas. In some cases, there may be some minimal 
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heating from the rf field coils in the probe, particularly in larger diameter coils that require 

more power to produce a suitable rf field. In our situation, this effect is negligible except 

for multiple pulse sequences with high duty cycles. 

In the case of a magic angle spinning experiment, the difference between the tem

perature observed by the sensor and the true sample temperature can be very large. As a 

result of the rotor spinning, frictional heating due to the spinner gas moving against the 

rotor will cause the sample temperature to rise. For a 30kHz MAS experiment, this effect 

may be as large as 30 K. For this reason, it is necessary to calibrate the set temperature 

(the temperature monitored by the feedback controller) and the true sample temperature. 

It is also necessary to note that the calibration is probe and spin rate specific and may vary 

with different nitrogen VT gas flow rates, and spinner drive and bearing gas pressures. 

The calibration method of choice is to utilize a sample with a very strong, well 

known, temperature-dependant chemical shift [6]. Depending on the material, the isotropic 

chemical shift of an MAS spectrum can be very easy to determine as a function of tem

perature. The sample used in this case was lead nitrate [Pb(N03 )2], with the observed 

nucleus being 207Pb. The isotropic chemical shift of lead nitrate has been thoroughly 

studied [6, 7]. It is also a very simple MAS spectrum to interpret since there is only a 

single site for the lead nucleus. 

From previous studies [50], it has been shown that the isotropic chemical shift of 

207Pb varies with temperature according to the relation, 

o~(Treal) = 0.666Treal + Oo. (B.l) 

This provides the slope of the calibration line, by determining how much change in sample 

temperature occurs by a change in the set temperature. 

Since the chemical shift values recorded are relative to a reference value and not 

absolute, it is necessary to find a fixed point in order to set they-intercept of the calibration 
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line. For this we used deuterated stearic acid, CH3 (CH2 ) 16COOH. Our sample of stearic 

acid has a freezing point of 69.6°C, determined outside the magnetic field with a mercury 

thermometer. Like most materials in NMR, the liquid state spectrum of stearic acid is 

significantly different from its solid state spectrum. The liquid state causes all of the 

spins to be motionally averaged, collapsing the spectrum to a single narrow peak in the 

frequency domain. In solid form, the spectrum takes the form of a traditional powder 

pattern. The observed nucleus in these experiments was deuterium. It is also very easy 

to see the difference between the two states by looking at the FID. When in the liquid 

state the FID has a significantly longer T 2 and a single narrow peak in the spectrum. 

Figure B .1 shows the difference in spectra between a frozen [Figure B.1 (a)] and melted 

[Figure B.l(b)] sample. 
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F1G. B.l: 2H spectra of stearic acid below (a) and above (b) the freezing point of 69.6°C 

The stearic acid sample was placed in the field with the temperature initially set well 

below the freezing point, and allowed to equilibrate for at least 15 minutes. A spectrum 

was acquired with the sample in the solid state. The temperature was then subsequently 

raised and allowed to stabilize for 15 minutes before acquiring another spectrum. This 

procedure was repeated until the spectrum changed significantly, signalling the melting 

of the sample. The temperature was then adjusted up and down in finer increments (being 

allowed to stabilize after each adjustment) so that the melting point (true sample temper-
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Probe Spin Rate(kHz) m b (K) 
2.5mm 20 0.960±0.009 31.3±2.3 

25 0.928±0.006 52.3±1.7 
30 0.917±0.057 57±18 

4mm 8 1.029±0.011 10.48±3.12 

TABLE B.l: Temperature calibration for magic angle spinning experilnentl.. Treal = mTset + b 

ature of 69.6°C) could be accurately determined. 

Once the melting point of the stearic acid was determined, the sample was then re-

moved and replaced with the lead nitrate sample. The sample was placed under identical 

conditions used to determine the melting point of the stearic acid. This includes the set 

temperature of the sample, the nitrogen gas flow rate, the heater power, and the spinning 

speed. Under these conditions, an NMR spectrum was acquired. The resulting isotropic 

chemical shift can then be used to determine a common reference for other lead nitrate 

experiments. This then provides the intercept point for the calibration line. The result-

ing calibration lines for several spin rates are sho\\'TI in Figure B.2. Table B shows the 

parameters of each of the calibration lines. This temperature calibration was performed 

for the 2.5 mm probe in the 17.6 T field. Additionally, the 4 mm probe was calibrated 

for its use in the microwave ceramics study. The results of this are shown in Figure B.3. 

Since the stearic acid melting point is only used to determine a reference frequency for 

lead nitrate, it only needs to be determined for one set of conditions. The resulting lead 

nitrate chemical shift reference can than be used for all other lead nitrate spectra in the 

same field. 
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APPENDIXC 

Nd.ssLi.2sTi03 Interaction Tensors 

Tables C.1, C.2, and C.3 show the paramagnetic and quadrupole interaction tensors 

that result in the principal values previously shown in Table 4.1, producing the simulated 

line shape shown in Figure 4.10. Tables C.4 and C.5 list the CQ and 1JQ of each site 

resulting from point-charge calculations performed with the sites each moved 1.5 A off

center in various directions. 

118 



Site Paramagnetic Quadrupole 
Number Tensor (kHz) Tensor (kHz) 

-65.2578 73.8206 26.162 -0.1461 -0.0016 -0.3744 
l 73.8206 42.4419 -6.8698 -0.0016 0.6786 0.0524 

26.162 -6.8698 165.1077 -0.3744 0.0524 -0.5325 
-64.189 71.43 22.7391 -0.2898 -0.0396 -0.2328 

2 71.43 40.0076 -5.8833 -0.0396 0.4473 0.0113 
22.7391 -5.8833 162.1172 -0.2328 0.0113 -0.1575 
-63.4499 69.6436 19.8125 -0.3005 0.0635 -0.1983 

3 69.6436 38.4119 -5.0247 0.0635 0.5453 0.0107 
19.8125 -5.0247 159.7418 -0.1983 0.0107 -0.2448 
-62.1428 67.1565 17.0674 -0.1711 -0.0206 -0.0352 

4 67.1565 35.8611 -4.2344 -0.0206 0.1767 -0.0001 
17.0674 -4.2344 156.5579 -0.0352 -0.0001 -0.0056 

-60.6398 64.5646 15.0155 0.1704 -0.0795 -0.1251 
5 64.5646 33.1324 -3.6099 -0.0795 0.013 0.0086 

15.0155 -3.6099 153.2077 -0.1251 0.0086 -0.1834 
-59.1455 62.028 13.3415 0.5525 -0.0349 -0.6653 

6 62.028 30.503 -3.1204 -0.0349 -1.1059 -0.0275 
13.3415 -3.1204 149.9064 -0.6653 -0.0275 0.5533 
-46.4578 38.6558 6.9473 -1.4077 0.4717 -0.0058 

7 38.6558 5.3642 -1.2159 0.4717 1.3615 0.0048 
6.9473 -1.2159 122.7961 -0.0058 0.0048 0.0463 

-68.2966 74.2076 2.0864 -0.2027 0.2539 0.0261 
8 74.2076 42.4975 -0.5454 0.2539 0.1756 0.0455 

2.0864 -0.5454 168.2294 0.0261 0.0455 0.0271 
-66.7252 71.8776 1.4187 -0.5499 -1.2751 0.0552 

9 71.8776 40.2467 -0.3592 -1.2751 0.5467 -0.0285 
1.4187 -0.3592 164.8503 0.0552 -0.0285 0.0031 

-65.4282 69.9249 1.418 -0.8473 0.3579 0.0155 
10 69.9249 38.6243 -0.3496 0.3579 0.5968 -0.0041 

1.418 -0.3496 161.7913 0.0155 -0.0041 0.2505 

TABLE C.l: Paramagnetic and quadrupolar tensors of each site for 7Li in Nd 58Li 25Ti03 (sam
ple 2) at T=331 K. Site numbers refer to labels used in Figure 4.13 
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Site Paramagnetic Quadrupole 
Number Tensor (kHz) Tensor (kHz) 

-63.7474 67.4156 0.6808 -5.2911 -1.5419 0.0372 
11 67.4156 36.1141 ~0.1502 -1.5419 3.298 0.068 

0.6808 -0.1502 158.2592 0.0372 0.068 1.9931 
-61.8484 64.6515 0.7559 0.8013 -0.2779 -0.673 

12 64.6515 33.2441 -0.182 -0.2779 -1.1476 0.0355 
0.7559 -0.182 154.3972 . -0.673 0.0355 0.3463 

-48.1915 41.8255 0.008 -2.8551 -0.3226 0.0393 
13 41.8255 8.501 -0.0208 -0.3226 2.3489 0.0125 

0.008 -0.0208 126.5971 0.0393 0.0125 0.5062 
-46.8764 38.649 -0.2001 -0.6868 -0.4802 0.0846 

14 38.649 5.3224 0.0411 -0.4802 0.9086 -0.0052 
-0.2001 0.0411 123.3095 0.0846 -0.0052 -0.2218 

-66.1808 73.8697 -21.6798 11.5203 5.4923 -0.0276 
15 73.8697 42.3343 5.6825 5.4923 11.7895 2.4024 

-21.6798 5.6825 166.0594 -0.0276 2.4024 -23.3098 
-64.9633 71.6946 -19.4873 -2.6084 0.6299 0.0239 

16 71.6946 40.4118 5.04 0.6299 1.8322 -0.1986 
-19.4873 5.04 162.8484 0.0239 -0.1986 0.7762 
-63.779 69.5619 -17.4099 1.5542 0.2706 -0.0184 

17 69.5619 38.3598 4.4279 0.2706 -0.2499 -0.6031 
-17.4099 4.4279 159.917 -0.0184 -0.6031 -1.3044 
-62.2205 66.849 -15.1686 -0.7311 0.4494 0.0055 

18 66.849 35.4538 3.78 0.4494 0.7309 0.0087 
-15.1686 3.78 156.4804 0.0055 0.0087 0.0002 
-49.1721 44.6916 -7.3488 -3.0839 -1.1491 0.7248 

19 44.6916 11.4514 1.298 -1.1491 2.2114 -0.8352 
-7.3488 1.298 129.3142 0.7248 -0.8352 0.8725 

-47.8661 41.8489 -7.034 -2.5685 -1.2035 -0.0423 
20 41.8489 8.4671 1.2091 -1.2035 2.227 -0.0339 

-7.034 1.2091 126.3279 -0.0423 -0.0339 0.3415 

TABLE C.2: Paramagnetic and quadrupolar tensors of each site for 7Li in Nd 58Li 25 Ti03 (sam
ple 2) at T=331 K. Site numbers refer to labels used in Figure 4.13 
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Site Paramagnetic Quadrupole 
Number Tensor (kHz) Tensor (kHz) 

-46.5251 38.8154 -6.9724 0.0002 -0.0201 -0.0009 
21 38.8154 5.5044 1.206 ~0.0201 -0.0008 0.0013 

-6.9724 1.206 122.9836 -0.0009 0.0013 0.0006 
-47.3721 94.7305 119.9224 0.0437 0.1353 -0.1558 

22 94.7305 46.9843 -36.5463 0.1353 0.3713 0.0233 
119.9224 -36.5463 198.2252 -0.1558 0.0233 -0.4151 
-46.0803 94.2325 120.2638 -0.0719 0.0425 -0.1216 

23 94.2325 47.7037 -36.6417 0.0425 0.3477 0.0137 
120.2638 -36.6417 195.3656 -0.1216 0.0137 -0.2758 
-46.3315 93.6455 118.2916 -0.1068 -0.0289 -0.0999 

24 93.6455 47.5876 -35.9566 -0.0289 0.3165 0.0076 
118.2916 -35.9566 194.0106 -0.0999 0.0076 -0.2097 
-43.6816 92.5072 119.5395 -0.1283 -0.0428 -0.0864 

25 92.5072 48.4116 -36.3722 -0.0428 0.3074 0.0042 
119.5395 -36.3722 188.9755 -0.0864 0.0042 -0.1791 
-42.5728 92.4343 120.2589 -0.1389 0.0108 -0.0853 

26 92.4343 49.4986 -36.5501 0.0108 0.3045 0.0026 
120.2589 -36.5501 186.7428 -0.0853 0.0026 -0.1656 
-41.9493 91.6188 119.4063 -0.1267 0.1144 -0.0712 

27 91.6188 49.5775 -36.2616 0.1144 0.2809 0.001 
119.4063 -36.2616 184.3941 -0.0712 0.001 -0.1542 

-39.77 90.6815 120.3594 -0.0912 -0.1428 -0.0812 
28 90.6815 50.147 -36.5806 -0.1428 0.265 0.0004 

120.3594 -36.5806 180.3805 -0.0812 0.0004 -0.1738 

TABLE C.3: Paramagnetic and quadrupolar tensors of each site for 7Li in Nd.58Li 25 Ti03 (sam
ple 2) at T=331 K. Site numbers refer to labels used in Figure 4.13 
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Site x,y,z x+1.5 x-1.5 y+1.5 
CQ 1]Q CQ 1JQ CQ 1]Q CQ 1JQ 

1 -0.7731 0.4739 2.6065 0.2128 2.6828 0.0731 0.2596 0.2419 
2 -0.418 0.4013 2.0365 0.2121 2.5537 0.137 -0.2579 0.9913 
3 0.3885 0.5899 -3.7394 0.9259 2.5162 0.1966 -0.4466 0.9392 
4 -0.1368 0.4402 2.3141 0.73 2.5213 0.239 0.4027 0.5663 
5 0.3973 0.1895 7.8384 0.3352 2.5222 0.2681 -0.5507 0.6848 
6 -0.6248 0.1827 -3.1798 0.7279 2.5612 0.3096 0.2964 0.6872 
7 -1.5066 0.9105 -3.3164 0.9028 -42.5732 0.2283 106.5561 0.0842 
8 -0.5656 0.4973 1.9029 0.0518 1.7144 0.4411 -0.5573 0.0861 
9 -3.5128 0.249 -4.2276 0.8184 -3.2236 0.9721 0.7115 0.3647 
10 -0.9968 0.2902 1.6254 0.421 -18.235 0.5947 -0.5331 0.1961 
11 -6.0581 0.2925 -6.5525 0.4058 -11.6192 0.6131 0.2663 0.1996 
12 -0.7214 0.5508 -1.8587 0.7039 -21.2594 0.6 0.179 0.7647 
13 -2.8349 0.603 3.6087 0.5134 -92.1308 0.0856 256.2769 0.0362 
14 0.9891 0.6705 2.3604 0.6674 -27.5215 0.3456 -5.9837 0.0383 
15 -23.55 0.2253 3.2672 0.9132 2.9845 0.4849 0.8497 0.0578 
16 -2.736 0.3506 0.7218 0.2125 32.9568 0.8418 -1.0662 0.1808 
17 2.5697 0.1863 -3.1016 0.4695 3.7879 0.3682 -0.6226 0.4925 
18 -0.9441 0.1895 -1.1543 0.8609 29.0932 0.3109 -0.5042 0.5336 
19 -3.1864 0.25 2.9582 0.0102 -6.7178 0.1829 -1.827 0.5416 
20 -3.0688 0.699 2.6753 0.5625 -15.2556 0.7229 -5.6611 0.2164 
21 -0.2485 0.3019 3.2638 0.6636 -6.8223 0.1406 1.4788 0.6679 
22 -0.4343 0.5395 2.6137 0.0533 0.193 0.5221 0.2125 0.0191 
23 -0.2368 0.9739 2.4994 0.1437 0.1877 0.3408 -0.2373 0.5968 
24 0.1922 0.6083 2.4546 0.2052 0.1601 0.9747 0.316 0.9215 
25 0.1936 0.2604 2.4578 0.2383 -0.1624 0.6961 0.347 0.9073 
26 0.2084 0.1053 2.4595 0.2777 -0.1542 0.4636 0.3674 0.9477 
27 0.1934 0.142 2.4974 0.3349 -0.1299 0.2776 0.4394 0.8865 
28 1.0201 0.1933 2.3632 0.3912 -0.3998 0.4606 -0.4076 0.7141 

TABLE C.4: principal values of the quadrupole tensors for each site of 7Li in Nd 58Li 25Ti03 

(sample 2) with displacements of 1.5 A in various directions relative to the on-site positions 
(x,y,z). CQ listed in kHz. Site numbers refer to labels used in Figure 4.13. Additional displace
ments given in Table C.5 



Site y-1.5 z+1.5 z-1.5 
CQ 1]Q CQ 1]Q CQ 1]Q 

1 -0.2393 0.4373 2.495 0.0308 2.0522 0.0538 
2 0.3795 0.9458 2.3911 0.187 0.9245 0.3862 
3 0.3735 0.8922 2.3185 0.2863 1.7185 0.4721 
4 0.3824 0.9131 2.3548 0.2978 -3.0336 0.2901 
5 0.3851 0.9521 2.2839 0.3603 -2.1755 0.3164 
6 106.8192 0.0019 2.0874 0.4796 -44.1186 0.0467 
7 1.1091 0.3827 -3.7067 0.1621 -3.8801 0.3415 
8 0.5951 0.1481 2.8549 0.237 1.2472 0.2473 
9 -1.9683 0.1487 2.998 0.5879 3.0369 0.7826 
10 -0.3391 0.8257 2.7096 0.4649 -1.8597 0.2242 
11 -0.7507 0.8028 2.6611 0.7481 -1.2429 0.0763 
12 106.664 0.0019 2.1816 0.6257 -9.3152 0.355 
13 2.3744 0.3809 -0.4755 0.5655 3.8686 0.1307 
14 1.1518 0.3138 -21.1232 0.7141 0.9991 0.0703 
15 -5.3785 0.0045 3.3796 0.4795 2.9165 0.0897 
16 -0.3839 0.7293 2.8117 0.5014 1.1079 0.6244 
17 -1.3915 0.9224 2.9553 0.6839 0.9567 0.7885 
18 0.283 0.5242 2.1829 0.6393 -0.5696 0.3413 
19 2.0491 0.0852 1.7399 0.7065 -3.5756 0.2923 
20 0.5183 0.7802 -10.1802 0.2015 1.9889 0.4763 
21 -2.6474 0.7205 2.1134 0.1103 -37.2511 0.0189 
22 -0.2163 0.3622 1.0691 0.1147 0.9746 0.2071 
23 0.3008 0.9486 0.9913 0.162 0.8612 0.0665 
24 0.3399 0.888 0.9598 0.3282 0.8195 0.2241 
25 0.3628 0.9228 0.934 0.3565 0.7782 0.2634 
26 0.3873 0.9549 0.925 0.3966 0.7513 0.2899 
27 -0.394 0.7938 0.8669 0.3959 0.672 0.3473 
28 -0.3884 0.5799 1 0.8495 0.4191 0.6857 0.1881 

TABLE C.5: principal values of the quadrupole tensors for each site of 7Li in Nd. 58Li.25Ti03 

(sample 2) with displacements of 1.5 A in various directions relative to the on-site positions 
(x,y,z). CQ listed in kHz. Site numbers refer to labels used in Figure 4.13. Additional displace
ments given in Table C.4 
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APPENDIXD 

Matlab Source Code 

This appendix contains some of the Matlab TM source code used in order to calculate 

the paramagnetic and quadrupolar interaction tensors using a point-charge approximation, 

as well as the simulation of NMR line shapes based on those tensors. 

D.l Simulation of Paramagnetic & Quadrupolar FID for 

Spin-3/2 Nucleus 

The following section of code takes in a structure with NMR parameters, including 

the experiment parameters and the various tensor components. It then returns a simulated 

free induction decay. This can then be processed to produce a frequency-domain spectrum 

using the processing routines already present in EXPRESS [8]. This function can be used 

stand-alone, or as a custom module in the EXPRESS program. This function is for a spin-

3/2 system and takes into account paramagnetic and first-order quadrupolar interactions, 

such as 7Li. A separate routine, with minor variations, was used to simulate spin-1 (6Li) 

systems. This function can handle multiple sites, but will solve them independently. There 

are no dynamics taken into account. 
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function FID=paramag(param) 

%Function for calculating FID of Spin--3/2 paramagnetic systems 

%Assumes there are no dynamics between sites 

%Started 6-11-08 

sites = param. sites_total; %7o-cal number: of independent sites 

cq = 2000*pi*param.cq(l:sites); %Cq values 

eta= param.eta(l:sites); %Quadrupole asymmetry para~eters 

etacsa = param.etacsa(l:sites); %Paramagnetic tensor asy~metry 

wO = 2*pi*param.w0; %Larmer frequency 

dsigcsa = wO*param.dsigcsa(l:sites); 

%Anisotropy oi paramagnetic tensor 

disc= wO*param.diso(l:sites); %Isotropic shift 

sr = 2*Pi*l000*param.sr; %Spin Rate 

beta_r = param.beta_r; %MAS angle 

weight param.wts(l:sites); %relative weights of sites 

AnglesQ param.oneangle; 

AnglesC param.oneanglecsa; 

actualBeta = 180*acos(sqrt(l/3))/pi; 

beta= (beta_r+actualBeta)*pi/180; %back to radians ... 

dwell param.time*le-6; %Dwell time 

FID = zeros(l, param.nfid); 

nfid=param.nfid; 

Pinfo = gettiles(param.n,param.tiletype); 

%Get tiles for powder increments 
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NAVG slze(Plnfo,l); 

%Construct W1gner Rotat1on Matr1ces 

d = w1gnersmall(beta); 

dA d'; 

DQ wlgner(AnglesQ(l:sltes, :)); %Quadrupole frame to PAS 

DC Wlgner(AnglesC(1:sltes, :)); %Pararragnet1c frame to PAS 

wq (2*Pl*Cq/6); 

Vc 1/3*[dslgcsa'.*etacsa' zeros(sltes,1) 

2*ds1gcsa' .*ones(sltes,1) 

zeros(sltes,1) dslgcsa'.*etacsa']*DC; 

%Paramagnet1c terms 1n PAS frame 

Vq [wq' .*eta'/2 zeros(sltes,1) 

sqrt(3/2)*wq' .*ones(sltes,1) 

zeros(sltes,1) wq'.*eta'/2)*DQ; %Quadropole teLm~ 

R2 = 0*Pl*300; 

%U~ed to artlflclally add T2 decay to the result1ng FID 

for powindex=1:NAVG 

D=wlgner(Plnfo(powindex,1:3)); 

R2KR1 

R2KR2 

( (-Vc-sqrt ( 6) *Vq) *D).* [dA (3,1) *Ones (s1tes, 1) 

dA(3,2)*ones(sltes,1) 

dA(3,3)*ones(sltes,1) dA(3,4)*ones(sltes,1) 

dA(3,5)*ones(sltes,1)); %1-2 trans1t1on 

(-Vc*D) .*[dA(3,1)*0DeS(Sltes,1) 

dA(3,2)*0DeS(Sltes,1) 
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R2KR3 

[ta, ya] 

[tb,yb] 

[tc, yc] 

dA(3,3)*ones(sites,l) dA(3,4)*ones(sites,l) 

dA(3,5}*ones(sites,1}]; %2-3 tra.nsition 

( (-Vc+sqrt ( 6) *Vq) *D) . * [ dA (3, 1) *Ones (sites, 1) 

dA(3,2)*ones(sites,l) 

dA(3,3)*ones(sites,l) dA(3,4)*ones(sites,l) 

dA(3,5)*ones(sites,l)]; %3-4 transition 

ode45(@dydtA,linspace(O,nfid*dwe1l,nfid+l), 

ones(sites,l)); 

ode45(@dydtB,linspace(O,nfid*dwel1,nfid+1), 

ones (sites, 1)); 

ode45(@dydtC,linspace(O,nfid*dwell,nfid+l), 

ones(sites,l)); 

tor j=l:nfid 

end 

tor k=l:sites 

FID(j)=FID(j)+(weight(k)*(3*ya(j,k)+ 

4*yb(j,k)+3*yc(j,k)))* 

Pinfo(powindex,4); 

end; 

end %Powder loop 

FID = FID(:) 
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%Th1s ensures a column vector, required for proper post-processing 

%-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= 

function dydtA = dydtA(t,y) %1-2 Trdnsition 

R = R2KRl(:,l)*eXp(-2*l*Sr*t)+R2KR1(:,5)*eXp(2*i*Sr*t)+ 

R2KR1(:,2)*eXp(-l*i*Sr*t)+ 



dydtA 

end 

R2KR1(:,4)*exp(l*i*Sr*t)+R2KR1(:,3); 

i*(diso'+R) .*y-R2.*y; 

%-=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-= 
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tunctlon dydtB = dydtB(t,y) %2-3 Transit1on (Central Transitlon) 

R = R2KR2(:,l)*eXp(-2*i*Sr*t)+R2KR2(:,5)*eXp(2*i*Sr*t)+ 

R2KR2(:,2)*eXp(-l*i*Sr*t)+ 

R2KR2(:,4)*eXp(l*i*Sr*t)+R2KR2(:,3); 

dydtB 

end 

~-=-=-=-=-=-=-=-=-=-~-=-=-~=-=-=~=-= 

function dydtC = dydtC(t,y) %3-4 Transition 

end 

end 

D.2 

R = R2KR3(:,l)*eXp(-2*i*Sr*t)+R2KR3(:,5)*eXp(2*i*Sr*t)+ 

R2KR3(:,2)*exp(-l*i*Sr*t)+ 

R2KR3(:,4)*exp(l*i*Sr*t)+R2KR3(:,3); 

dydtC 

Calculation of EFG at a Site Due to One Nucleus 

This function determines the contribution to the electric field gradient at a specified 

x, y, z coordinate due to a single charge. 

function EFG = EFGinteraction(x, y, z, Site) 

%calculates the paramagnetic tensor 1nteraction between 

%'x, y, z' and 'Slte' 

%Site structure contains: x, y, z, charge, nucleus, spin, label 



%position information should be in angstrom to start 

T=zeros(3,3); 

%Conversion from angstroms to meters is held unLil end 

%to avoid Matlab floating point errors 

dx (x-Site.x); 

dy (y-Site.y); 

dz (z-Site.z); 

h 6.626e-34; %Planck's constant (kg•M-2/s) 

Q -4.01e-30; %Quadrupole moment of Li7 (m-2) 

eO = 8.85419e-12; %epsilon-0 (F/m) 

e = 1.60e-19; %electron charge (C) 

T (1, 1) 

T (1, 2) 

T (1, 3) 

T (2, 1) 

T (2, 2) 

T (2, 3) 

T (3, 1) 

T(3,2) 

T (3, 3) 

C•(dy-2 + dz-2- 2•dx-2)•r-(-2); 

C•(-3•dx•dy)•r-(-2); 

C•(-3•dx•dz)•r-(-2); 

C* (T (1, 2)) •r- (-2); 

C*(dx-2 + dz-2- 2*dy-2)*r-(-2); 

C*(-3*dY*dZ)*r-(-2); 

c* (T (1, 3)) •r' (-2); 

c* (T (2, 3)) •r- (-2); 

C*(dx'2 + dy'2- 2*dz'2)*r'(-2); 
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EFG=T; 

D.3 Calculation of Complete EFG Tensor 

This function uses the previous one to determine the EFG tensor due to all nearby 

charges. 

function EFG = CalcEFG(x, y, z, Sites, Range) 

\Calculates the Electric Field Gradient tensor at location "x, y, z" 

%nucleus 'Center 1 and all 1 Sites' (excluding 'Center' i no iar"lher c::han 

96 1 Range' a01ay 

%Site structuLe contains: x, y, z, charge, nucleus, spin, label 

T zeros(3,3); %Running total of EFG-tensor 

TotalSites length(Sites); 

MaxR=lOOOOOO; %Maximum distance to be included in calculation 

%Set high just to makes sure everything is included 

MinR=0.05; %Minimum distance to be included 1n calculation 

%To avoid counting interaction between an a"lom and itself 

Flag=O; %=1 if site is to be ignored for whatever reason 

Occupancy 0.2947; %Occupancy of Sample 2 for Ncl in mixed layer 

for ii l:TotalSites 

Skip=O; 



end; 

TempSite=Sites(ii); 

%Find distance between Center and Site-ii 

dx 

dy 

TempSite.x 

TempSite.y 

x; 

y; 

dz TempSite.z z; 

r = sqrt(dxA2 + dyA2 + dzA2); 

Dice=rand; 

%"class" groups the Nd depending on ~hether they are 

%partially occupied or not 

if (TempSite.class==2 II TempSite.class==3) 

end; 

if Dice>Occupancy %Occupancy rate of site 

Skip = 1; 

end; 

if (r>MinR && r~Range && Flag==O && Skip==O) 

Ttemp EFGinteraction(x, y, z,TempSite); 

T = T + Ttemp; 

end; 

EFG = T; 
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Calculation of Paramagnetic Tensor Due to a Single 

Nucleus 

This function works similarly to the single-site EFG calculation. It determines the 

contribution to the overall P-tensor due to a single nucleus. The function to calculate the 

total P-tensor for a given site is done similarly to the method used for the EFG tensor. 

function P = interaction(Center, Site) 

%calculates the paramagnetic tensor between 'Center' and 'Site' 

%Site structure contains: x, y, z, charge, nocleus, spin, label 

Para=zeros(3,3); 

%g-tensor principle components: 

%Real values are used outside this function 

%so they can be varied later 

%without need1ng to recalculate the entire tensor 

XX 1; 

yy 1; 

zz 1; 

Beta = 9.274009e-24; % J/T 

k 1.38065e-23; % J/K 

T 300; 9o K 

Spin=Site.spin; 

%C=(Beta'2*Spin*(Spin+l))/(3*k*T); 

C=1; %C is scaled outside this function 

dx Site.x- Center.x; 



dy 

dz 

Site.y 

Site.z 

Center.y; 

Center.z; 

%Convert to spherical coordinates (with 'Center' as origin) 

r = sqrt(dx~2 + dy~2 + dz~2); 

S sqrt(dx~2 + dy~2); 

eta= acos(dz/r); 

if r<O 

phi=pi- asin(dy/sqrt(S)); 

else 

phi=asin(dy/S); 

end 
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Para(1,1) xx~2 * (1 - 3 * sin(eta)~2 * cos(phi)~2) * (C/r~3); 

Para(1,2) xx~2 * (-3 * sin (eta) ~ 2 * cos (phi) * sin(phi)) * (C/r~3); 

Para (1, 3) xx~2 * (-3 * sin (eta) * cos (eta) * cos(phi)) * (C/r~3); 

Para(2,1) yy~2 * (-3 * sin(eta)~2 * cos (phi) * sin(phi)) * (C/r~3); 

Para(2,2) yy~2 * (1 - 3 * sin(eta)~2 * sin(phi)~2) * (C/r~3); 

Para(2,3) yy~2 * (-3 * sin (eta) * cos (eta) * sin (phi)) * (C/r~ 3); 

Para(3,1) zz~2 * (-3 * sin (eta) * cos (eta) * cos (phi)) * (C/r~3); 

Para (3,2) zz~2 * (-3 * sin (eta) * cos (eta) * sin (phi)) * (C/r~3); 

Para(3,3) zz~2 * (1 - 3 * cos(eta)~2) * (C/r~3); 

P=Para; 
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