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ABSTRACT

A Trans-Laminar-Reinforced (TLR) composite is defined as composite laminate 
with up to five percent volume of fibrous reinforcement oriented in a “trans-Iaminar” 
fashion in the through-thickness direction. The TLR can be continuous threads as in 
“stitched laminates”, or it can be discontinuous rods or pins as in “Z-Fiber™” materials. It 
has been repeatedly documented in the literature that adding TLR to an otherwise two 
dimensional laminate results in the following advantages: substantially improved 
compression-after-impact response; considerably increased fracture toughness in mode I 
(double cantilever beam) and mode II (end notch flexure); and severely restricted size and 
growth of impact damage and edge delamination. TLR has also been used to eliminate 
catastrophic stiffener disbonding in stiffened structures. TLR directly supports the 
“Achilles’ heel” o f laminated composites, that is delamination. As little as one percent 
volume of TLR significantly alters the mechanical response of laminates.

The objective of this work was to characterize the effects of TLR on the in-plane 
and inter-laminar mechanical response of undamaged composite laminates. Detailed finite 
element models o f “unit cells,” or representative volumes, were used to study the effects 
of adding TLR on the elastic constants; the in-plane strength; and the initiation of 
delamination. Parameters investigated included TLR material, TLR volume fraction, TLR 
diameter, TLR through-thickness angle, ply stacking sequence, and the microstructural 
features of pure resin regions and curved in-plane fibers. The work was limited to the 
linear response o f undamaged material with at least one ply interface. An inter-laminar 
dominated problem o f practical interest, a flanged skin in bending, was also modeled.

Adding a few percent TLR had a small negative effect on the in-plane extensional 
and shear moduli, Ex, Ey and Gxy, but had a large positive effect (up to 60 percent) on the 
thickness direction extensional modulus, Ez. The volume fraction and the axial modulus of 
the TLR were the controlling parameters affecting Ez. The out-of-plane shear moduli, G*z 
and Gyz, were significantly affected only with the use of a TLR with a shear modulus an 
order of magnitude greater than that of the composite lamina. A simple stiffness 
averaging method for calculating the elastic constants was found to compare closely with 
the finite element results, with the greatest difference being found in the inter-laminar 
shear moduli, Gxz and The unit cell analyses results were used to conclude that in- 
plane loads are concentrated next to the TLR inclusion and that the microstructural 
features o f pure resin regions and curved in-plane fibers slightly lessen this stress 
concentration. Delamination initiation was studied with a strength of materials approach 
in the unit cell models and the flanged skin models. It was concluded that if the formation 
of a transverse crack is included as a source o f delamination initiation, the addition of TLR 
will not be effective at preventing or delaying the onset of delamination. The many 
benefits of TLR may be accounted for by an increased resistance to delamination growth 
by crack bridging phenomenon, which is best studied with a fracture mechanics approach.

• • . x i x i
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CHAPTER 1 
INTRODUCTION AND LITERATURE REVIEW

This chapter contains an overview and comprehensive literature review. Important 

terms are defined and a brief history and general state o f the art are discussed. The chapter 

closes with a section stating the purpose and scope of this research, and how it fits within 

the general realm o f trans-Iaminar-reinforced composites.

1 .1 .  MOTIVATION

“Composite materials,” are materials composed o f two or more constituents 

distinguishable on the macroscopic scale. Composite materials have a wide range of 

tailorable properties. When modem polymers or plastics are combined with high 

performance fibers such as carbon or glass, strong, stiff and lightweight materials result. 

These composites have demonstrated tremendous advantage in applications where weight 

and performance are critical factors. However, in applications where cost is a limiting 

factor, composites have been slow to make inroads against traditional engineering 

materials such as steel and aluminum. There is no question that composite materials offer 

tremendous potential in an almost unlimited variety o f applications. However, to realize 

that potential, much work needs to be done in the areas o f design, failure and cost.

1.2. OVERVIEW

Advanced polymeric matrix composites have a long and successful history in 

applications where performance and weight are overriding factors. Their wide spread use
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in structural applications has not been achieved due to limiting factors such as high cost, 

low damage resistance and low damage tolerance*. The most common form o f advanced 

composite in structural applications is layers o f fibrous reinforcement in a surrounding 

matrix. These composite “laminates” are plagued by a well documented inter-laminar 

weakness. The mechanical response o f  the region between the plies o f  a laminate is 

controlled by the relatively weak matrix. This weakness results in a low damage resistance 

and low damage tolerance, and is demonstrated by large impact damage areas, low 

couipression-after-impact strength, low fracture toughness, etc. Damage tolerance and 

damage resistance are very important considerations in aerostructures such as commercial 

aircraft. General discussions/overviews of damage tolerance, delamination, and concepts 

for their improvement may be found in [1-3],

In general, there are two approaches for strengthening the inter-laminar region.

The mechanical response o f  the matrix can be changed by using different matrix materials 

and/or adding particles or films between the plies (e.g. interleaving). Stronger and tougher 

resins are generally difficult to process and/or are prohibitively expensive. Alternatively, 

fibrous reinforcement may be included across lamina interfaces in a trans-laminar fashion. 

Stitching through-the-thickness is an example o f trans-laminar reinforcement (TLR). 

However, the use o f TLR is increasing. Only small amounts o f  out-of-plane reinforcement 

(volume fractions less than five percent) are required to significantly change the 

mechanical response o f the laminate. Established and developed processes such as

Damage resistance is measured by the size or amount o f  damage for a given event and 
damage tolerance is measured by the performance o f the material or part for a given 
damage size.
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industrial sewing/stitching and new processes/materials such as Z-Fiber™ offer economic 

means o f  achieving TLR, or through-thickness reinforcement.

The concept o f  three-dimensional (3-D) fibrous reinforcement has been around a 

long time. Three-dimensionally reinforced carbon-carbon composites have been studied 

and manufactured since the 1960's. More recently, research efforts have increased in the 

area o f  3-D polymeric matrix composites. Many composites utilizing fibrous 

reinforcements in the form o f 3-D weaving, 3-D knitting and 3-D braiding, do not have the 

same inter-laminar problems as laminates. Such true 3-D textile composites generally 

have significant volume fractions o f  fiber in all three directions, and hence do not have a 

simple layered structure. The following discussion will focus on the topic o f trans-laminar 

reinforcement (TLR) o f  an otherwise 2-D laminated composite. The important 

distinction is that only small amounts of TLR modify an otherwise laminated structure.

TLR composites in this work are defined as laminated fiber-matrix composites with 

thickness direction fibrous reinforcement totaling five percent or less o f  the total volume 

o f the laminate. The number five percent is somewhat arbitrary, and may be redefined as 

research in this field continues.

Trans-laminar reinforcement* (TLR) has two general forms: continuous and 

discontinuous (see Figure 1-1). Continuous rovings, threads, yams or tows can be 

inserted into the lamina with the use o f  industrial sewing/stitching technology. 

Discontinuous trans-laminar reinforcement (in the form o f short fibers, whiskers, pins,

“Trans-laminar-reinforcement” is used here as a general term encompassing several 
different phrases commonly used in the literature. Some examples include “through- 
thickness”, “through-the-thickness”, “Z-direction”, and “inter-laminar” .
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etc.) can also be used to bridge the inter-lamina region. When compared to similar 

unreinforced (2-D) laminates, both continuous and discontinuous trans-laminar 

reinforcement have been shown to significantly improve inter-laminar dominated responses 

such as compression-after-impact strength, fracture toughness, and inter-laminar shear 

strength.

The following sections are intended to present a general overview and 

comprehensive literature citation of trans-laminar-reinforced (TLR) composites. Although 

a few references can be found where TLR has been applied to ceramic matrix composites 

[4, 5] and carbon-carbon composites [6], this work and the vast majority o f published 

TLR research has dealt with polymeric matrix composites. Stitched laminates will be 

discussed first and in greater detail, as the vast majority o f published research and available 

data deals with stitched materials. Discontinuous TLR composites are discussed in section 

i.4 while section 1.5 provides a general review of analysis and modeling. Section 1.6 

closes the chapter with summary comments and a discussion o f the objective, approach 

and scope o f this research.

1. 3. STITCHED COMPOSITES

Previously published reviews of stitching can be found in the papers o f  Dransfield, 

Baillie and Mai [7, 8], While they cover many o f the important concepts, there is a vast 

amount o f  stitching research documented in U.S. government reports (e.g. NASA, DoD, 

Army, etc.) that is not cited in these two papers*. This review includes many such

Access to government reports included personal contacts with various authors and the 
grateful use o f  both facilities and services of the NASA Langley Technical Library.
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documents. While some o f these documents may not be readily accessible to the general 

public, this work is intended to be as comprehensive a bibliography of TLR research as 

possible.

Low density stitching (small threads and few stitches per unit area) is finding 

increasing use as a means o f stabilizing dry fabric preforms. Stitched preforms are made 

into composites by liquid molding processes such as resin transfer molding (RTM) and 

resin film infusion (RFI). Such use o f stitching technology aids the automation o f 

composite processing. When used in conjunction with RTM or RFI, stitching offers great 

potential for cost effective composite manufacturing (see for example [9-15]). The 

"multiaxial stitching" described in [15] is actually a multiaxial warp knitting process. Both 

knitting and stitching can produce some of the same textile looped-knotted-stitched 

structures. In general, knitting refers to the formation of fabric from yams or tows and is 

an integral part o f the initial fabric forming process. Stitching (which can be multi-needle) 

describes the process of tying together layers o f  previously formed fabric. High density 

stitching (larger threads and more stitches per unit area) can be used to enhance the 

properties o f  composite materials and structures. O f course both benefits, economical 

manufacturing and improved mechanical properties, can be achieved at the same time.

References [16-22] document some o f the earliest published stitched composites 

research. The author’s results varied, but one consistent conclusion was that significant 

in-plane fiber damage occurred when stitching prepreg. The in-plane fibers o f  prepregs, 

held in place by the matrix, were severely damaged by the needle and thread o f  the 

stitching process. This realization that significant damage occurs when prepreg is stitched
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has been echoed by several authors, with [17] being the earliest citation found. The 

majority o f recent development work found in the literature has dealt with stitching the 

fiber preform before impregnation with the matrix, followed by consolidation by liquid 

molding. Less fiber damage results since the in-plane fibers are free to  move slightly and 

allow the stitching needle and thread to penetrate the preform.

1. 3.1. SELECTIVE STITCHING

Selective stitching, that is stitching in a localized area only, has been investigated 

for joining applications and as a means o f handling the inter-laminar stresses near a free 

edge. In references [23-26], the study o f stitched and unstitched lap joints is discussed. A 

single row o f stitching near the end o f a single lap joint improved tension strength up to 38 

percent [23], References [25-31] studied the attachment o f stiffeners to flat panels with 

stitching. In [21] and [22], several trans-laminar reinforcement concepts including 

mechanical fasteners and stitching were studied for use in stiffener attachment. Reference 

[21 ] refers to carbon fiber laminates for aerospace applications while reference [22] refers 

to  fiberglass laminates for marine applications. Compared to bonding/co-curing alone, 

stitching completely eliminated stiffener separation as a failure mode in compression [29, 

30] and improved the stiffener pull-off strength by factors o f two to ten [28], In general, 

attachment by stitching has been shown to consistently offer significant improvements 

over simple bonding/co-curing or mechanical fastening.

The use o f stitching to suppress edge delamination in tension was experimentally 

evaluated in [32-35]. In references [26] and [34] stitching was tried around an open hole. 

Finite element analysis was used in [36] and [33] to stitched laminates, with the results of
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the analyses leading to the conclusion that the stitches must be very near the free edge to 

be effective. Although results varied somewhat, in practical terms, these research efforts 

suggest that it is unlikely that stitches can be close enough together and near enough to 

the free edge to effectively counter the free edge inter-laminar stresses that lead to 

delamination. However, stitching consistently and significantly restricted delamination 

growth once initiated.

1. 3.2. COMPREHENSIVE STITCHING

In addition to stitching in targeted areas only, a great deal o f  research has been 

done on comprehensive stitching, or stitching in a particular pattern across an entire part 

or panel. The terms “selective” and “comprehensive” stitching are somewhat arbitrary, 

but can provide helpful classification. Comprehensive stitching may be used in reference 

to material issues (e.g. material properties) while selective stitching refers to structural 

issues (e.g. joints). Most early comprehensive stitching research was done with woven or 

uniwoven fabric composites. Reference [37] appears to be the sole published work 

concerning the stitching together o f 2-D braided fabrics. Early data for stitched multi-axial 

warp knits can be found in [38-41], The stitched multi-axial warp knit became the 

material o f choice for the development o f a stitched wing for commercial aircraft 

documented in [42-47], The vast majority o f stitching research efforts have been 

experimental with many different exploratory and often similar investigations.

These efforts have shown that when compared to similar unstitched materials, 

stitched laminates have increased damage tolerance (e.g. higher strength for a given 

damage size) and damage resistance (e.g. smaller damage areas for a given impact

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



energy). Compared to unstitched materials, stitching has been shown to improve 

compression-after-impact (CAI) strength by more than 50 percent and ultimate 

compressive strain up to 80 percent [10, 16, 17, 30, 32, 37-41, 48-69]. In sublaminate 

buckling tests o f  laminates with artificial delaminations, stitching improved the 

compression strength up to 400 percent [68], For CAI, stitching with first generation 

fibers and matrix (AS4 carbon and 3501-6 epoxy) was equally effective as using "state o f 

the art" toughened material systems [53, 54]. Similar results were found in Tension-after- 

impact testing [67, 69], Compared to unstitched, stitching only slightly affected or did not 

affect the impact force required to initiate damage in low velocity impact [70], Stitching 

did raise the peak impact force for a given impact energy [17, 59, 67-69], Stitching has 

also been shown to improve ballistic impact performance [27, 71],

Stitching has also been shown to significantly increase inter-laminar fracture 

toughness [48-51, 55, 68, 72-79], In double-cantilever-beam (DCB) testing, stitching 

increased mode I critical strain energy release rate (G[C) by as much as a factor o f  30.

This finding is not surprising because stitching directly reinforces the inter-laminar region 

in a mode I fashion. Stitching has also been shown to improve the mode II behavior [48, 

68, 72, 73, 75], While 2-D laminates fail catastrophically in end notch flexure testing 

(ENF), stitched laminates exhibited a stable crack growth. Stitching has been shown to 

increase the mode II critical strain energy release rate by as much as a factor o f 15 [68,

75].

These improvements in inter-laminar dominated properties were achieved at a cost 

to the in-plane properties. Compared to unstitched materials, high density stitching has
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been shown to reduce in-plane tension and compression strengths by amounts ranging 

from almost nothing up to 50 percent (see for example [17, 30, 31, 52, 53, 55, 65, 66, 80- 

84]. Stiffness was also degraded in most cases, although to a much lesser ex ten t. 

However, in [85], stitching was reported to have improved the ultimate strain under 

compression loading at high strain rates, and both stitched and unstitched materials 

experienced an increase in the dynamic modulus as the strain rate was raised.

Charpy type impact and flexural test data for stitched and unstitched materials was 

reported in [34, 48, 72, 86-91], For comprehensive stitching, the impact resistance was 

increased while in-plane flexural properties were decreased.

The inter-laminar shear strengths o f TLR composites were investigated using 

short-beam-shear tests [48, 87, 91] and double-notch-shear tests [92, 93], The results 

reported are somewhat contradictory for cases with small amounts o f  stitching, but in 

general, sufficient amounts o f  comprehensive stitching was found to improve inter-laminar 

shear strength as measured by these tests. In-plane shear properties, as measured by 

isopescue [92] and by a "modified rail shear" test, [94] were not significantly affected by 

stitching.

While it is important to consider that stitching may reduce undamaged in-plane 

tension and compression strength, notched (open hole) properties are often critical design 

drivers for structural applications. Open hole tension and compression strengths were not 

adversely affected by stitching [54, 61-63, 94, 95], Independent analysis efforts in [96] 

and [97] were used to conclude that 3-D composites can be notch insensitive. Data in 

[95] support the idea that stitching may reduce the notch sensitivity in tension.
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Other important structural design considerations are fatigue and environmental 

degradation. Compared to unstitched materials, undamaged fatigue behavior is relatively 

unaffected by stitching and stitching helped retard damage growth in fatigue testing o f 

damaged and notched materials [51, 56, 61, 62, 64, 95, 97-101], The environmental 

effects o f  moisture and/or heat were investigated and reported in [83, 84, 100, 102-110]. 

Due to the complicated states o f stress near stitches and the unavoidable resin rich areas 

around the stitches, microcracks were found to be common. Stitched materials were also 

found to absorb moisture at a faster rate than unstitched materials. However, compared to 

similar 2-D laminates, stitched materials did not experience any worse environmental 

degradation o f static or fatigue compression properties.

In addition to affecting mechanical properties, stitching has been shown to 

significantly affect the quality and accuracy o f standard ultrasonic nondestructive 

evaluation (NDE) techniques. Various NDE techniques including ultrasound, 

photoelasticity and acoustic emission have been used on stitched and 3-D materials [111- 

116].

1. 3.3. STITCHING VARIABLES

The extent that stitching affects mechanical performance is a function o f many 

stitching variables (see Table 1-1) as well as the quality and proficiency o f the stitching 

process. It is intuitive that increasing the amount o f  trans-laminar reinforcement will 

increases fracture toughness, reduce impact delamination size and increase the critical load 

for sublaminate buckling. Ail researchers who studied the effect o f the amount o f  stitching 

found this to be the case, that is larger stitching threads and higher stitch densities (stitches
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per unit area) resulted in higher fracture toughness and greater compression-after-impact 

strength (see for example [17, 30, 49, 51, 52, 55, 56, 65, 66, 68, 72, 76, 79, 117]).

Table 1-1 Stitching variables.

Stitch Thread Stitch Pattern Stitching Process

material stitch density stitch type

size (linear density) stitch direction thread tension

finish stitch pitch (step) needle size/type

twist stitch row density (spacing) stitching machine

stitch angle

While "more stitching" has been shown to consistently improve inter-laminar 

dominated properties, it is not clear what stitch thread property is most important. 

Experimental results in [30, 117] lead to the conclusion that for a constant impact energy, 

CAI strength is a function o f  effective stitch strength (total contribution o f  stitch thread 

strength per unit area o f  laminate) and is not dependent on stitch thread material or 

modulus. Based on the results o f  an analytical model o f sublaminate buckling in [77, 118], 

it was concluded that the TLR or stitch modulus "strongly" affected sublaminate buckling 

strength. Based upon the results o f  finite element modeling o f  a double-cantilever-beam 

(DCB) specimen, the authors o f  [79] came to the conclusion that stitch thread strength is 

more important than stitch thread modulus in determining an effective critical strain energy 

release rate, Gc. However, computer modeling efforts described in [119] indicated that 

the ability to suppress delamination depends strongly on the effective axial stiffness o f the
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stitches. Experimental comparisons have shown no conclusive advantage for either 

Kevlar®, carbon or glass stitching threads. The only clear, consistent guideline is that 

large threads that are both strong and stiff need to be used to achieve the desired inter- 

laminar performance. Sufficient stiffness may be necessary to structurally carry load 

between plies and sufficient strength may be necessary for survival o f the TLR.

High intrinsic stiffness and strength may be necessary, but only small amounts are 

required to significantly change inter-laminar response. A closed-form sublaminate 

buckling model described in [96, 120, 121] was used to conclude that most 3-D 

composites (including stitched) were "over designed" in terms o f resisting sublaminate 

buckling. TLR volume fractions on the order o f 0.1 percent are sufficient to suppress 

sublaminate buckling.

Unfortunately, while more stitching with larger threads improves the inter-laminar 

or out-of-plane performance, larger threads and higher stitch densities lower the in-plane 

tension and compression properties (see for example [17, 49, 52, 53, 55, 65, 66, 94]).

More and larger threads lead to greater amounts o f damaged and curved in-plane fibers. 

This subject o f the mechanisms involved in the reduction o f  certain properties will be 

expanded upon in the next section. However, it is clear from the literature that there is a 

tradeoff o f  lowered in-plane tension and compression properties versus inter-laminar 

improvement.

This tradeoff was not evident for in-plane shear properties. Limited data for the in­

plane shear testing o f stitched laminates can be found in [92, 94], Shear modulus (Gxy) 

and strength were not significantly affected by stitch density or thread size.
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Stitch density and thread material are only two o f the many variables that should 

be considered when stitching laminates (see Table 1-1). Reference [122] presents a good 

discussion o f the various types o f stitches and stitching machines available in the textile 

industry. The modified lock stitch (with the knot at the surface of the preform/fabric) and 

the chain stitch are the stitch types most commonly used for laminated composites (see 

Figure 1-1). References [31, 52] discuss a direct comparison o f chain and modified lock 

stitch types used to reinforce graphite-epoxy laminates. Although the chain stitched 

materials had marginally better mechanical properties, the modified lock stitch was 

selected for continued development because o f a better capability to stitch large and 

complex preforms.

While the amount and type o f  stitching appear to be the most important 

considerations, a given stitch density and stitch type can be implemented in a variety o f 

patterns. Different zigzag, diagonal, horizontal and square patterns, investigated in [56, 

57], only changed the shape, and not the size o f delaminations caused by impact. The 

fracture mechanics model developed in [51 ] was used to conclude that a repeating pattern 

was more effective at resisting delamination than randomly located stitches. Parallel rows 

o f stitching in the 0° (loading) direction were found to be equally effective for 

compression-after-impact performance as stitching in both the 0° and 90° directions or 

both the +45 and -45° directions [31, 53, 100], While stitch pattern seems to have little 

affect on out-of-plane performance, this is not the case for in-plane properties. References 

[17, 31, 60] discuss how stitching perpendicular to load carrying fibers degraded in-plane 

properties more so than stitching parallel to the primary load direction. For fibers near the
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surface, greater crimping takes place if the plies are oriented perpendicular to the stitching 

direction (that is perpendicular to a row of stitching).

1. 3.4. FAILURE MODES AND MECHANISMS

In addition to displacing the in-plane fibers and thus creating waviness or crimp, 

stitching also damages or breaks in-plane filaments and creates resin rich regions next to 

the stitches (see Figure 1-2). Many authors have suggested that these microstructural 

changes are responsible for the in-plane property reduction (see for example [80, 82, 83, 

123]). The technology o f stitching fabrics made from high performance fibers has 

advanced to the point where stitched laminates can be manufactured with minimal in­

plane fiber breakage. As discussed above, cracks in and around the pure resin regions did 

not seem to affect mechanical properties. Hence, fiber waviness appears to be the driving 

factor for in-plane property reduction, particularly in compression [31, 82, 83, 123],

As expected with significant changes in mechanical properties, failure modes are 

altered by the addition o f TLR. In failure under compressive loading, delamination, 

brooming and sub-laminate buckling are suppressed, allowing the laminate to fail in a 

“transverse shear” mode (see for example [16, 50, 54, 99]). Detailed observations o f 

compression failure in stitched laminates [123-125] revealed the key damage sequence to 

be the micro-buckling o f load bearing fiber bundles followed by the formation and unstable 

propagation o f kink bands. While stitching played "no obvious part in initiating or 

moderating failure," failure was sudden and catastrophic making detailed observations o f 

the failure sequence difficult [125]. High speed video was used to observe the 

compressive failure o f stitched laminates [83],
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Figure 1-3 shows some o f the captured video images. These findings support the 

hypothesis that stitching caused local misalignment o f  the load bearing plies and hence 

lowered the strength as compared to unstitched m aterial. As others have also observed, 

post failure inspection o f compression loaded stitched laminates implied failure in a 45° 

shear band. Considered as a whole, a laminate that has failed in a “transverse shear” mode 

bears a close resemblance to the small kink bands discussed in [123-125], It is possible 

that the TLR holds the individual plies o f a laminate to together during failure and does 

not allow formation o f “kink bands” at the ply level. In effect, a single large kink band may 

be formed at the laminate level. This idea is consistent with the observations o f the 

various researchers, especially considering the great difficulty in detailed observations o f 

rapid catastrophic failure.

Under tensile loading, stitching suppressed delamination and longitudinal splitting 

at failure [49, 50], According to the authors o f [123], systems o f microcracks that 

develop in tensile-loaded TLR composites are periodic cracks normal to the applied load 

in transverse plies and shear cracks in off-axis plies. These cracks are very similar to those 

found in traditional tape laminates. Although the TLR minimizes delamination at large 

strains, ultimate failure accompanies rupture o f the aligned plies in a similar manner to 

laminates without TLR [123],

In tension-tension, compression-compression, and tension-compression fatigue, 

stitching retarded existing delamination growth and changed the sequence o f damage 

accumulation [95, 97, 98, 100],
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Under flexural loading, failure changed from a catastrophic, matrix-dominated, 

delamination predominate failure in the unstitched case, to a more gradual, fiber- 

dominated failure with fiber breakage, fiber buckling, debonding and fiber pullout in the 

stitched materials [87-89].

1. 4. DISCONTINUOUS TLR

Trans-Iaminar reinforcement does not have to be a continuous thread that traverses 

the laminate thickness and then loops back into the laminate. The TLR can be a 

discontinuous pin or rod traversing the lamina at some arbitrary angle through-the- 

thickness (see Figure 1-1).

Short steel wires were used as TLR in two independent investigations discussed in 

References [126] and [127], Compared to similar 2-D control laminates, inter-laminar 

shear strength was improved as much as 50 percent while less catastrophic and more 

gradual failures resulted. Inserting the discontinuous TLR at an angle 45° to the laminate 

plane (rather than normal to the plane) was found to effect the greatest improvement in 

inter-laminar shear strength. These improvements were brought about by TLR volume 

fractions on the order o f only one percent [126, 127],

The fabrication and testing o f another form o f discontinuous TLR is discussed in 

[128-132], The described "Z-fiber™ " materials consisted o f composite laminates with 

TLR in the form o f  discontinuous pins with a diameter ranging from 0.010 to 0.020 

inches, and TLR volume fractions ranging from 0.5-5.0 percent. The addition o f these 

pins through-the-thickness resulted in the same kind o f inter-laminar property
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improvements as stitching. In a stiffener attachment study documented in [132], a 

comparison was made between Z-fiber™ TLR, mechanical fasteners and simple co-curing 

without TLR. As was found for stitching, Z-Fiber™ out performed simple co-curing and 

mechancial fasteners. Z-Fiber™ materials were also compared to similar materials without 

TLR in [130, 131], Compression-after-impact strength was improved up to 50 percent, 

impact damage areas were reduced up 55 percent, and critical strain energy release rates 

(G k ) were increased by a factor o f 18. As was the case with stitching, in-plane tension 

strength decreased with increasing TLR diameter. However, these TLR materials retained 

91-98 percent o f  the tension strength of the 2-D materials. Up to 100 percent o f the 

unreinforced compression strength was retained. The addition o f the Z-fiber™ pins 

resulted in a 70 percent increase in the load required for the onset o f  edge delamination in 

tension. The edge delamination resistance was also a function of the density o f  the Z- 

fiber™ pins [130, 131],

These data support the conclusion that the surface loop found in stitching is not 

necessary to achieve the desired performance improvements. While the surface loops and 

knots o f continuous stitching may be useful in holding a debulked state in a dry fiber 

preform, it may be a liability in the final composite. These loops and knots result in the 

kinking o f the in-plane fibers near the surface [80-82]. In these investigations, the surface 

loop was removed from already fabricated materials (stitched and 3-D woven) by 

machining away part o f the outer layer o f material. Undamaged compression strength was 

improved up to 35 percent, CAI strength was increased by 11 percent, while impact 

damage size was unaffected. There was no apparent change in failure modes and
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mechanisms [80-82], Continuous and discontinuous TLR have also been compared by 

using separate fracture mechanics models. The superiority in mode I fracture toughness of 

continuous or discontinuous TLR structure was dependent on the TLR length, stiffness 

and strength, as these parameters would affect the load transfer into and by the TLR [78],

While discontinuous TLR offers similar or perhaps superior performance 

characteristics compared to stitching, technology for manufacturing discontinuous TLR 

materials is much less mature. Industrial sewing technology is well established and used in 

many industrial textile applications. Little if any modifications are required to stitch fabrics 

o f advanced fibers. For discontinuous TLR, such readily adaptable methods are not 

available and new technologies are necessary. The Russian development o f  automated 

methods o f inserting short fibers into laminates is discussed in [127, 133, 134].*

References [128-132] describe the "Z-fiber™ process" mentioned above (see Figure 1-4). 

The Z fiber process uses foam in the form of a sheet or tape. The foam contains short 

pins oriented perpendicular to the XY plane of the sheet. This foam layer is stacked 

within a standard prepreg bagging sequence used for curing. A release film is placed 

between the foam and the laminate. A steel shim or backing is placed over the foam. This 

entire assembly is autoclaved, where the pressure collapses the foam and inserts the fibers 

into the laminate which is softened by the heat needed for curing. The foam provides 

lateral support as the rods or fibers start into the laminate. After curing, the collapsed 

foam is simply peeled away leaving a trans-laminar reinforced laminate. Z direction

* A thorough review o f Russian literature was not included in this work.
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reinforcement (TLR) is thus obtained in a conventional prepreg-autoclave process. The 

in-plane fibers are minimally affected, resulting in little fiber damage [128, 129, 131].

Another method o f inserting pins utilizes ultrasonic vibration. Based upon 

experimental findings discussed in [134], it was concluded that ultrasonic vibration 

significantly increases the ease with which pins are inserted into a laminate. An 

ultrasonically assisted insertion process has been developed and made commercially 

available [132]. The Ultrasonically Assisted Z-Fiber™ (UAZ) process uses the same foam 

preforms containing the TLR pins. An ultrasonic horn, rather than autoclave pressure, is 

used for the insertion step. Using this technique allows insertion o f Z-Fiber™ into cured 

laminates as well as prepreg and preform materials. Thus, in addition to the already 

discussed applications, UAZ has tremendous potential for repair o f composite structures 

[132],

As with stitching, these discontinuous trans-laminar reinforcement methods may be 

used in selective areas for structural bonding, stiffener attachment or as reinforcement near 

holes or other stress concentrations. Unlike stitching, a discontinuous TLR process offers 

the potential o f being utilized in many o f the conventional 2-D composite manufacturing 

process (e.g. tape layup, vacuum bag-autoclave, compression molding, pultrusion, 

filament winding and automated tow placement) [130]. However, discontinuous TLR 

may or may not be suitable for the debulking and stabilization o f  dry fiber preforms fcr use 

in subsequent resin transfer molding.
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1. 5. ANALYSIS AND MODELING

The manufacture and testing o f composite structure is often prohibitively 

expensive, especially given the wide range o f material parameters that may be varied. 

Hence, if TLR materials are to be extensively used in structural applications, effective and 

accurate analysis/modeling techniques must be available. This section discusses modeling 

efforts reported in the literature. Empirical modeling is discussed first, followed by a 

general review/overview o f  analytical modeling, and ending with a focus on fracture 

mechanics type approaches. The discussions herein are kept fairly brief with the reader 

being referred to the appropriate references for pertinent details.

1. 5.1. EMPIRICAL MODELING

A large majority o f  the TLR literature has focused on exploratory investigations 

(often repetitive) with fewer efforts aimed at prediction o f material behavior. Several 

experimental studies have been conducted to examine the tradeoffs o f  in-plane properties 

vs. inter-laminar (out-of-plane) dominated properties in stitched materials. Two separate 

experimental programs resulted in empirical formulations in [55] and [65, 66]. These 

relations predicted tension, compression and compression after impact fairly well over the 

limited range o f parameters and materials studied. Two separate experimental studies, 

documented in [17] and [13, 30, 31, 52, 117], arrived at very similar sets o f  optimum 

stitching parameters. Reference [17] describes the development o f  stitched composites for 

turbine fan blade applications. The resulting optimum stitching was selected to be 40

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



22

stitches/in2 with a 1000 denier* Kevlar® 29 thread. References [13, 30, 31, 52, 117] 

summarize the ongoing development o f stitched composites for use in the primary wing 

structure o f  transport aircraft. Balancing increased CAI strength with lower tension and 

compression strength resulted in a similar selection o f stitching variables.

Laminate theory has been applied to stitched laminates using experimentally 

determined stitched lamina properties [30, 31]. In-plane stiffness was predicted fairly well 

for the one set o f stitching parameters studied, but the modified laminate theory under 

predicted compression and tension strengths by 30 percent and 15 percent respectively.

An empirical approach was also used in [97] to model the post impact fatigue of 

stitched laminates. The experimental fatigue lives were predicted to within one or two 

factors.

1. 5.2. ANALYTICAL MODELING

TLR composites are distinguished from laminates by the addition o f fibrous 

reinforcement through-the-thickness. The lamina o f TLR materials may be derived from 

textile fabrics or traditional unidirectional tape. No matter the lamina form, TLR materials 

may be considered a subset o f "textile composites" due to their 3-D nature. TLR 

laminates are distinguished from other 3-D textile composites (e.g. 3-D weaves, 3-D 

braids, etc.) due to the small amounts o f fibrous reinforcement in the thickness direction 

(on the order o f  one percent volume). True 3-D textile composites contain significant 

volume fractions o f fiber in many directions, and may or may not have a simple layered

* “denier” is unit o f  measure for linear density. One denier is equivalent to one gram per 
9000 meters.
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structure. Development, analysis and modeling o f textile composites is currently an active 

research area. In so far as the same or similar techniques and assumptions apply to both 

TLR and the more general "textile composites," the discussion in the following paragraphs 

will be broadened to include analysis methods for textile composites. Independent reviews 

o f analytical methods for textile composites can be found in [123, 135-139], Only a 

general discussion will be given here. For specific models and their references, the reader 

is referred to these excellent review articles.

In the mechanics o f composites field there is a large variety o f analysis methods 

and analysis products available. Compared to homogeneous metallic materials, composite 

laminates have inherent material inhomgeneity and complex microstructures that make 

them difficult to analyze and model, particularly with regard to material and structural 

failure. The microstructure o f textile composites involves yet another level o f  complexity, 

as the basic structural blocks are individual yams or tows rather than simple sheets or 

layers. These yams or tows are oriented in, and interact in all three dimensions. Thus, 

analysis problems are compounded when it comes to textile composites. Given the degree 

o f difficulty involved, it is very important to consider the objective when selecting an 

analysis method for textile composites. If engineering elastic constants (stiffnesses) are all 

that are required, relatively quick and simple analyses are available with adequate 

accuracy. If the objective is predictions o f strength, damage tolerance, etc., an entirely 

different level o f analysis is necessary. The models reviewed in [135-138] deal primarily 

with predictions o f elastic constants. The reviews found in [123, 139] also include more 

recent efforts at strength predictions. In addition to reviewing publicly available models
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and their codes, reference [123] also provides an in-depth discussion o f  the concepts 

underlying the simplifying assumptions necessary for textile modeling.

As proposed in [135], textile analysis methods may be placed into three broad 

categories; 1) Elementary Models, 2) Laminate Theory Models, and 3) Numerical 

Models. A brief discussion o f these three groups and how they apply to TLR composites 

follows.

1. 5.2.1. Elementary Models
The authors o f  [135] briefly discusses a variety o f  fiber-matrix models based on

strength o f materials approaches. They state that few o f these elementary models "have 

achieved broad acceptance beyond their limited range o f applicability". In [123] the 

authors also distinguished fairly simple and elementary models and methods. They include 

"orientation averaging" methods among theses simple modeling approaches.

Orientation averaging is based on the assumption that the textile can be 

represented by a periodic configuration known as a “unit cell.” The unit cell is composed 

o f individual segments o f unidirectional composite. Curved tows are broken into short 

segments o f straight fibers. Isostrain, isostress or a combination o f both is assumed. The 

spatial orientation and volume fractions o f the segments are known, allowing stiffnesses or 

compliances to be transformed to the global coordinate system using tensor 

transformation. The transformed stiffnesses or compliances are then averaged over the 

volume o f the unit cell*. Applying this methodology with the isostrain assumption is 

known as stiffness averaging. In a one dimensional consideration stiffness averaging
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follows the derivation o f the familiar rule o f mixtures equation for longitudinal stiffness o f 

a unidirectional composite:

Ei =  ErV f+ EmVm

Equation 1-1.

Orientation averaging with the isostress assumption is known as compliance 

averaging. In a one dimensional consideration it follows the derivation o f  the familiar rule 

o f mixtures equation for transverse stiffness o f a unidirectional composite:

J _ _ V f  Vm

Et Er Em

Equation 1-2.

Here E is the Young’s modulus and V is the volume fraction. The subscripts I and t 

refer to the longitudinal and transverse directions o f the unidirectional composite while m 

and f refer to the matrix and fiber constituents, respectively.

Properly applied orientation averaging will predict the fiber dominated material 

elastic constants with adequate accuracy, even for fairly complex textile geometries. From 

energy considerations, stiffness averaging (isostrain) will always provide a lower bound, 

while compliance averaging (isostress) provides the upper bound [123]. However, even 

under simple loading, neither isostrain nor isostress conditions actually occur throughout 

the internal microstructure o f even a fairly simple unit cell. In addition, real textile 

composites contain sufficient geometrical irregularities to raise serious questions as to the

* For more detail, see [123], and section 3.3.
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validity o f  modeling with a unit cell o f "ideal geometry." These errors are usually not 

significant in the determination o f global-macroscopic elastic constants. However, 

detailed and accurate stress-strain information is necessary for failure analysis. Hence, 

orientation averaging is not suitable for the analysis o f strength, damage initiation, damage 

progression, etc.

1. 5.2.2. Laminate Theory Models
Classical Laminate Theory (CLT) has long been used to model conventional 2-D

(tape) laminates. The history and development o f applying the principles o f  plate/laminate 

theory to textile composites is discussed in [135]. As suggested, "most o f  these plate 

bending/stretching models have two-dimensional (2-D) applications in mind, and so do not 

address the out-of-plane composite properties." As is noted in [123], for a 2-D laminate, 

orientation averaging with isostrain conditions is equivalent to standard laminate theory 

for in-plane deformations. Hence, these two methods yield similar results for “quasi- 

laminar” textile composites (e.g. 2-D woven laminates and 2-D braids). TLR composites 

may be considered quasi-laminar, and some of these type models could be adapted for use 

with TLR. However, as just noted, models based on laminate theory do not address 

thickness direction or trans-laminar properties and behavior. Hence, they are not suitable 

for most o f  the applications for which TLR is required, that is joining, damage resistance, 

etc. In addition, laminate theory approaches do not allow accurate and detailed 

representation o f stress and strain within the modeled microstructures. Hence they have 

the same limitations that orientation averaging methods have. As noted in the previous 

section, the direct application of laminate theory to TLR with the use o f  experimentally
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determined stitched lamina properties resulted in fairly accurate estimates o f in-plane 

stiffnesses, but inaccurate predictions o f strength. Such methods are also limited to the 

one set o f TLR parameters used to generate the lamina properties.

1. 5.2.3. Numerical Models
Numerical methods such as finite element analysis (FEA) provide the most general

and adaptable modeling method. There are many different general purpose FEA codes 

commercially available. As discussed in [123], the macroscopic stiffnesses o f  textile 

composites can be calculated with FEA. Typically this involves building the macroscopic 

stiffness matrix by applying six independent sets o f homogeneous boundary conditions 

(displacements). For each case a global, or macro average stress is obtained by integrating 

either the internal stresses or the boundary tractions. The elastic constants are calculated 

by relating the applied displacements (that is strains) to the average macrostress.

Since full field displacement, strain and stress results are available throughout a 

FEA model, failure analyses are possible. However, due to the level o f  detail required for 

3-D textile microstructures, this type modeling is both computationally and labor 

intensive. Even considering recent and continuing advances in computational hardware 

and software, general purpose FEA codes may not be suitable for use in the general design 

o f textile composites and their structures for the next decade.

To alleviate some o f these drawbacks, materials researchers using FEA to study 

textile composites have often employed simplifying assumptions and approximate 

modeling methods. These modeling short cuts can be classified into two categories: 2-D 

approximations and improvements in meshing. Although 2-D approximations are often
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used, plane strain or plane stress assumptions are not applicable in most cases due to the 

inherent 3-D geometry o f 3-D textiles. Detailed meshing o f 3-D structures is becoming 

easier with advances in ‘state o f the art’ solid modelers and automatic meshers. Another 

meshing shortcut that has been employed in the modeling o f textile composites is the use 

o f heterogeneous elements. In a heterogeneous element, different regions o f the element 

are assigned different material properties. During the generation o f the element stiffness 

matrix, the local material stiffness is determined at each Gaussian integration point. When 

these heterogeneous elements are used, the FEA mesh is not required to map directly to 

the microstructural geometry. With different material properties allowed within the same 

element, larger elements may be used. However, the stresses in heterogeneous elements 

may converge slowly with respect to mesh density [123],

Another problem with the traditional finite element approach is that the modeling 

is restricted to a representative and idealized unit cell. In real textile composites the 

microstructure will vary significantly from unit cell to unit cell. Unavoidable and irregular 

features such as fiber waviness, crimping, changing yam cross-sections, etc. play a very 

important role in failure mechanisms [123, 140], While giving detailed information, unit 

cell modeling does not account for the significant geometrical irregularity commonly 

found in even the best textile composites. In fact, this observation led the authors o f [140] 

to "infer that detailed analysis o f local stress distributions based on finite element 

simulations using highly refined grids to represent geometrically ideal unit cells are of 

questionable value in predicting strength." Although the calculation o f average stress and

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



29

elastic constants is not sensitive to these typical geometrical irregularities, accurate 

calculation o f  elastic constants can be done with much simpler methods.

The authors o f  [140] did not discount FEA methods in general, only the 

supposition that "ideal" unit cells are useful in modeling strength and failure. In fact they 

proposed a new modeling technique based on the numerical finite element method. In 

their "Binary Model" the textile composite is simulated by only two types o f  element; 1) 

tow  elements, representing the reinforcing fibers and 2) effective medium elements 

representing everything else. This simplification along with the inclusion o f a method 

allowing for the statistical variation in geometry, enabled the modeling o f a more realistic 

textile composite microstructure. This model may be particularly useful for analysis of 

complicated macrostructure (e.g. stiffener attachment, thickness changes, etc.) where 

"ideal" periodic unit cells can not be identified. For details, see [101, 123, 141, 142], This 

binary model has been thus far developed primarily for the study 3-D woven composites. 

Although a more general application is possible, the published literature only shows its use 

with the 3-D weaves. Although its originators also performed some experimental studies 

o f  stitched composites, their analytical work on TLR composites has taken the direction of 

the study o f bridged crack phenomenon (see next section).

Another specially developed numerical model was reported in [119, 143]. This 2- 

D model was based on a higher order plate theory with the TLR modeled as springs. It 

was intended to help designers determine the "optimum" stitching for stiffener/structure 

attachment. Model details are given in [119] while correlation with experiment and 

parametric studies are discussed in [143],
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Other researchers have also applied general purpose FEA modeling to TLR 

materials [33, 36, 79, 106-108, 110, 144], Two dimensional approximations were made 

with plane strain assumptions in [36, 79] and axisymetric assumptions in [108, 110].

Three dimensional FEA models were used and the results reported in [33, 106, 107, 110, 

144]. The TLR (stitches) were modeled with spring, rod or beam elements in [33, 36,

79]. These approaches did not capture many o f the important microstructural features 

(e.g. induced in-plane fiber curvature and pure resin regions) that are known to exist. In 

[106-108] the TLR and other microstructural features were modeled in detail, but the 

investigations were limited to thermal effects. The results o f a limited investigation o f 

extensional moduli and Poisson’s ratios (3-D) is reported in [144], but the models were 

limited to one layer with no inter-laminar interface. To date, there have been no detailed 

investigations using general purpose 3-D FEA to study the mechanical response o f  TLR 

composites. Particularly lacking are considerations o f macroscopic shear behavior.

Numerical modeling is not limited to the finite element method. The development 

o f  a one dimensional micromechanical model is described in [145], The model consists o f 

homogeneous, transversely isotropic and axisymmetric nested cylinders. Governing 

equations were formulated and a general solution procedure was under development. The 

author suggests that the model will be useful for mechanical and thermal analysis and 

design ofZ-Fiber™  materials.

1. 5.3. ANALYSIS OF BRIDGED CRACKS

As has been discussed in the preceding sections, many researchers have shown that 

sufficient TLR will prevent the growth o f delamination. TLR that bridge delamination
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cracks can both prevent sublaminate buckling and retard crack growth. The structural 

performance o f  the material or part is thereby significantly improved, as shown by the 

significantly higher loads required to sustain catastrophic failure. The important question 

is then, how much TLR is sufficient. Concepts developed for the analysis o f bridged 

cracks (see for example [146]) can be very useful in addressing this question.

Several different authors have applied sublaminate buckling and/or crack bridging 

concepts to the TLR problem. In terms o f sublaminate buckling, two different one 

dimensional sublaminate buckling models (based on beam on elastic foundation 

assumptions) are described in [96, 120, 121] and [77, 118]. Several different mode I 

fracture mechanics models are reported in [51, 76, 78]. Both sublaminate buckling and 

delamination extension were combined in a model discussed in [77], Cracks bridged with 

TLR in curved structures are addressed in [4, 123, 147, 148], Mode II delamination with 

bridged cracks is discussed in [123, 149], Such modeling approaches offer great promise 

for determining guidelines o f how much TLR is required to prevent premature structural 

failure due to the existence o f delaminations. However, it is important to understand that 

these approaches assume that delaminations already exist. While useful for determining 

the critical size o f  delaminations, they do not address the onset or initiation of 

delamination.

1. 6. OBJECTIVE AND SC O PE

As discussed above, most o f the variables and principles associated with TLR 

composites apply to both "stitched" (continuous TLR) and "pinned" (discontinuous TLR) 

laminates. Many researchers have shown that small amounts o f TLR can significantly
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delay damage progression. Both analytical and experimental work has consistently 

demonstrated that the load required for sublaminate buckling is increased; fracture 

toughness in mode I (double cantilever beam) and mode II (end notch flexure) are 

significantly improved; and the size and growth o f  impact damage and edge delamination 

are severely restricted. These benefits are found in both static and fatigue loading. TLR 

directly supports the "Achilles’ heel" o f laminated composite, that is delamination. By 

directly bridging cracks between lamina, even small amounts (order o f one percent 

volume) o f  TLR significantly alter the mechanical response o f the laminate.

While the restriction o f damage progression has been demonstrated many times, 

there is little or no data supporting the supposition that TLR increases the load or energy 

required to initiate damage/delamination. In fact, as discussed in section 1.2.2, research on 

low velocity impact has shown that the addition o f stitching did not alter the force at 

which damage initiates. O f course not all practical values and combinations o f values o f 

the many different TLR parameters have been investigated. At commonly investigated 

values o f  TLR parameters, it is likely that there is sufficient unreinforced space between 

the discrete through-thickness reinforcements for damage to initiate in the same fashion 

and at the same values as in the traditional unstitched 2-D laminate. After the 

delamination is initiated however, even in the dynamic event o f  low velocity impact, 

delamination growth is restricted by TLR and the resultant overall damage areas are 

smaller.

The question o f whether TLR does or does not improve damage initiation has not 

been specifically addressed in detail. Where it has been discussed, the definition o f
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“damage initiation” or “failure initiation” has not been clearly articulated. A great deal o f 

research has been and is currently being conducted on sublaminate buckling, crack 

bridging, damage progression, etc. However, little or no work has addressed how the 

addition o f TLR alters the stress states in pristine material, and how these changes might 

affect damage initiation. It is important to understand that failure in composite materials 

almost always involves a sequence or progression o f different but related mechanisms.

Only very small amounts o f TLR are required to change dominant failure mechanisms, 

alter their sequence, and revise their relative importance. The question o f  the effect of 

TLR on delamination initiation has important implications regarding different philosophies 

that can be used to design composite structures: design to prevent the initiation o f 

delamination, or design to prevent the growth o f potential existing delaminations

With these ideas in mind, it was the general objective o f this work to characterize 

the effects o f  TLR on the in-plane and inter-laminar mechanical response o f undamaged 

composite laminates. Primary goals included the determination and understanding o f TLR 

effects on the elastic constants and delamination initiation. A unit cell approach was 

utilized with 3-D finite element modeling o f TLR laminates. Such modeling is necessary 

to investigate the complicated 3-D states o f stress in and around the microstructural 

details o f TLR as it bridges lamina interfaces. Various TLR parameters were studied, 

including; TLR material, TLR diameter, TLR volume fraction, TLR through-thickness 

angle, laminate ply stacking sequence (layup), and the microstructural features o f  pure 

resin regions and curved fibers. These investigations were performed with current ‘state 

o f  the a rt’ analysis tools and commercially available general purpose finite element
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software. The work was limited to the study o f the linear response (undamaged) o f a unit 

cell with a ply interface. The unit cell results are presented in terms o f the effects o f TLR 

on 1) elastic constants, 2) strength implications and 3) delamination initiation. In addition 

to the unit cell models, a simplified model o f the stiffener pull-off test was created and 

used to investigate the application of TLR to a practical, “real life,” inter-laminar 

dominated problem..
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CHAPTER 2 
UNIT CELL ANALYSIS, BOUNDARY CONDITIONS, 

AND CALCULATION OF ELASTIC CONSTANTS

In all forms o f numerical modeling, including finite element analysis (FEA), 

assumptions are necessary to define both the general scope and particular details o f the 

models. Since it is most often impractical to model universal conditions, modeling 

assumptions must be made that restrict the size o f the actual model. Typically only a 

portion o f the structure to be analyzed is actually modeled with detail. At times, certain 

limiting assumptions about behavior are made. Appropriate boundary conditions (BC’s) 

are required to insure that the modeled part relates properly to the rest o f  the structure. In 

addition, certain BC's may be required to make a problem numerically tractable*. This 

chapter begins with a discussion of the "unit cell" (UC) modeling approach and the 

boundary constraints that it requires. Calculation o f material elastic constants using a unit 

cell analysis is then described. These discussions are then followed by a summary o f the 

actual BC's applied to the UC.

2 .1 .  UNIT CELL APPROACH

Many different researchers have used the concept o f  the “representative volume 

element” (RVE), or “unit cell” (UC) for the modeling o f textiles. Although the basic 

concept is simple, particulars vary and many definitions o f the “unit cell” may be found in

* An example o f  this type BC for FEA is the requirement o f  enough boundary 
displacement constraints to prevent rigid body translation and rotation. For details, the 
reader is referred to any general text on FEA.
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the literature. The term “unit cell” has been used for many years in the traditional textile 

industry and reference [123] suggests that the term “unit cell” is borrowed from 

crystallography. In all cases, the concept is that an entire material can be represented by 

simply modeling a representative volume. In the same manner that a sine wave can be 

represented by one cycle or period, a material with a periodic structure can be represented 

by one unit cell. Under uniform external loads, a material with a periodic structure will 

have stress and strain distributions that are periodic. The material “response to external 

loads can be computed by analyzing the behavior o f a single unit cell with suitable 

boundary conditions” [123], This statement implies that the entire material structure, 

before and after deformation, can be generated by simply replicating the unit cell. This 

concept is shown schematically in Figure 2-1.

Just as a single period o f a sine wave can begin at any point and end at the 

corresponding point one wavelength later, there are an infinite number o f possible unit 

cells in any periodic material. For this discussion the definition o f  a unit cell will be 

restricted to an orthogonal hexahedral shaped volume that can be used to generate the 

entire material structure by replication and translation. A 2-D analogy can be used by 

saying that an entire puzzle is made up of a single repeated piece. This puzzle can be put 

together by copying the one piece and fitting the copies around the original without 

rotation.

Although the use o f unit cell modeling with periodic boundary conditions has been 

shown repeatedly in the literature, most authors simply state that “periodic boundary 

conditions” are used and then list those conditions. Adequate discussions o f exactly what
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the unit cell assumption requires in terms o f  boundary conditions have been sorely lacking. 

For a hexahedron with three sets o f opposing faces, the UC requirement can be stated as 

follows: the relative spatial relationship between points o f  one face must also apply to its 

opposing face, both before and after deformation. These opposing faces (e.g. opposite 

sides o f  a cube) must be symmetrical with respect to each other. During deformation, it is 

not sufficient that the overall shape o f these opposing sides be maintained, but distances 

between internal points must also match up for both sides.

To illustrate this important point, consider a 2-D example. Figure 2-2 shows the 

unit cell o f the material in Figure 2-1. Let one fourth o f this representative piece of 

material (the shaded area) be much stiffer than the rest. Let a uniform loading be applied 

to the entire piece as shown in Figure 2-2 a. Without the constraints imposed by 

neighboring unit cells, the piece would want to deform as in Figure 2-2 b. In this free 

deformation, the right and left hand sides do not stretch the same amount. Not only are 

they different lengths after deformation, but the internal points do not have the same 

relative displacement. Requiring the two sides to have the same length is not sufficient, as 

the right and left side would not match up internally. For this example to meet unit cell 

requirements, each point on the right side must have the same vertical displacement as its 

corresponding point on the left side. Deformation with unit cell constraints is shown in 

Figure 2-2 c. This constraint is the same as would be imposed by the neighboring unit cell 

in the real structure. Displacement continuity (and hence strain continuity) is thus 

maintained across the boundaries o f the unit cell. While strain must be continuous in a 

continuous structure, all stress components are not. In the 2-D example o f  Figure 2-2, 

the vertical component o f  stress at point R2 in the stiff material would not be the same as
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the vertical component o f stress at point L2 in the flexible material. O f course the 

horizontal components o f  stress must be the same at R2 and L2.

Although the unit cell approach is general and very useful, it does have its 

limitation. The assumption o f uniform loading does not always apply. Macrostructural 

discontinuities typically give rise to stress gradients that are significant at the scale o f  the 

smallest identifiable unit cell. Strict unit cell assumptions only apply to internal structure 

under uniform stress, far away from free edges and other geometrical discontinuities. In 

addition, the unit cell represents an “ideal” structure. Textiles composites contain 

unavoidable geometrical and material irregularities that are not periodic. Such 

irregularities (e.g. fiber waviness) and the variation in those irregularities typically play an 

important role in the material response. This fact is particularly true for damage 

progression and failure. Such limitations aside, a great deal o f understanding can be 

gained about the basic mechanical response of a material using simple unit cell 

assumptions. Given the magnitude o f the computational effort required, a ‘unit cell’ or 

‘representative volume element’ approach is the only way to get detailed stress-strain 

information for complicated microstructure.

2. 2. CALCULATION OF ELASTIC CONSTANTS

A unit cell analysis as described in section 2.1 was used to calculate elastic 

constants for TLR materials. The technique involved applying a known macrostress to a 

finite element model that is constrained in its deformation to meet both unit cell 

requirements and basic definitions o f strain. Macrostrain is calculated from the 

displacement output o f  the FEA analysis. The macrostrains are then used in simple

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



constitutive relations to determine the engineering elastic constants. This procedure is 

detailed in the following three subsections.

2. 2.1. EQUATIONS AND DEFINITIONS

Discussions and derivations o f stress, strain and their constitutive relations can be 

found in many texts. The following equations are taken largely from [150] and [151]. 

Small displacement formulation is assumed and only engineering strains are used. The 

reader is referred to these or other texts for detailed derivations o f these basic concepts o f 

elasticity.

The 3-D strain displacement relations o f elasticity are given as: 

du dv dw
£x=J ^  £y = ~d̂> S:"1h

du dv  dv dw du dw
'̂xy d y  dx ŷ~ dz d y  d z dx

Equation 2-1.

Figure 2-3 graphically shows the basic concept o f one dimensional normal strain, e. 

If  the deformation is distributed uniformly over the original length, the normal strain is 

defined as the change in length, Al, divided by the original length, l<j. I f  the deformation is 

not uniform, the aforementioned is the average strain. Shear strain, y, is defined as the 

total change in the right angle DAB shown in Figure 2-4a. y is the sum o f the two angles 

a . For small deformations, a  is approximated by tan(a). The shear strain can also be
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shown graphically with the schematic in Figure 2-4b. Figure 2-4b is the same as Figure 2- 

4a with an arbitrary rotation applied. Applying these simple graphical definitions in three 

dimensions and taking the limit results in the above definitions o f  strain*.

Strains can be written in contracted form:

£ .  =

11

V

£ i

yyz £ -i

£ s

£

(i = 1,2...6)

Equation 2-2.

Similarly, the contracted notation for stress is:

a .  =

"®i'

a y
cr.

r>- 0-4

_ v

(i = 1,2...6)

Equation 2-3.

The constitutive relations or generalized Hooke’s can be written:

For a more rigorous derivation/definition o f strain, the reader is referred to any basic text 
on elasticity.
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'C» C,3 C„ V
a2 Cn G , Q . Qs c*

Cli ^3 C33 C34 c* C* *3
C,4 C24 C34 C« *4

5̂ c„ C* C3S C45 c„ C* *5
.a 6. c* C36 G* C56 C« As.

Equation 2-4.

where Cjj is the stiffness matrix.

Equation 2-4 can also be written in the inverted form:

V "5„ 5 , 2 5„ 5 ,4 5| J Sis' "o',"
Gl Sn 522 S* Gs s» cr;
% S» 523 S» s» 5M S* o3
£4 5, 4 5„ 5„ 4̂5 0-4

5̂ 5„ GS Gs Gs 5* S» o5

As. 5,. 5* 5* 5* 5«_ .<J6.

Equation 2-5.

where S;j is the compliance matrix.

For an orthotropic material (3 planes o f symmetry), Equation 2-5 simplifies to:

V "5,, 5,a 5,3 0 0 0 '

£, 5.2 522 0 0 0 °2
5,3 523 533 0 0 0 3̂

*4 0 0 0 5„ 0 0
0 0 0 0 5* 0

.*6. 0 0 0 0 0 ■V

Equation 2-6.
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In terms of engineering constants, the above equation becomes:

47

Equation 2-7.

The engineering constants are used for a physical interpretation o f  the elastic 

behavior o f materials and structures. Extensional modulus, E, relates the normal strain to 

normal stress and is the “stiffness” o f a material undergoing elongation. Shear modulus, 

G, relates the shear strain to shear stress. The subscripts refer to the coordinate 

directions and relate each stiffness with its corresponding stress and strain component.

2. 2.2. ASSUMPTIONS AND METHOD OF APPLICATION

TLR materials may be considered homogeneous and orthotropic on the “macro” 

scale. However, at the “micro” level, there is considerable material variation*. Whiie a 

large number o f unit cells may collectively be assumed homogeneous, a single unit cell is 

not homogeneous. As discussed in section 1.5.2.3, consideration o f  only macrostresses 

and macrostrains should be sufficient for the determination o f elastic stiffnesses (that is
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engineering constants). However, the variation in the microstresses and microstrains 

within the unit cell must be considered when failure is to be modeled.

The basic approach used in this work was to apply a known macrostress to a finite 

element model o f  the unit cell. The deformations o f the unit cell boundaries were 

constrained to meet both unit cell requirements (see section 2.1) and the basic definitions 

of strain as shown in Figures

Figure 2-3 and Figure 2-4b. The displacements o f  the unit cell boundaries, or 

overall change in unit cell dimensions, were then used to determine a macro strain by way 

o f Equation 2-7. Equation 2-7 can thus be written as:

Aw Aw Aw
sx =   sx = -------------  ex =  — =-

w* w y w .

Aw Aw Aw Aw A w  Aw
y  = -------- £ .  +  y .  y  =  --------£ .  + --------- — y  =   Z .  + ---------- —

Wy W x w . w x > w . w

Equation 2-8.

where wx, wy, and wz are the dimensions o f the unit cell in the x, Y and Z directions 

respectively. Awx, Awy, and Awz represent the change in those dimensions.

The constitutive relations (Equation 2-7) reduce to one equation and one unknown 

when only one stress component is non-zero. Hence, by applying six independent cases of 

loading and respective BC’s, each with only one non-zero applied stress component, 

Equation 2-7 reduces to six equations each with one unknown.

* “Macro” and “micro” are relative terms. For the materials in this study, order of 
magnitude estimates refer to scales o f about 1.0 inches and 0.010 inches, respectively.
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These same six independent equations can be derived conceptually by applying 

Hooke’s law (ID ) to the unit cell six different times, for the six stress components. These 

equations are shown here using the conventional notation associated with engineering 

constants.

1 1

1 1

Equation 2-9.

By applying a known macrostress and calculating the macrostrain from the FEA results, 

Be, Ey, Ez, Gxy, Gxz, and Gy* are determined with the above equations in a straight forward 

manner.

For the cases o f extensional loading and ensuing boundary conditions, a Poisson 

effect is allowed. The Poisson ratios, v;j, are then calculated using:

£v s. e.

Equation 2-10.

Thus, the nine engineering constants o f an orthotropic material may be calculated 

by applying six separate cases o f  loads/BC’s to a finite element model o f a unit cell. These 

six cases will hereafter be referred to as the sx, ev, s2, yxy, y^, and y„ load cases. The 

global coordinate system used throughout this work is defined such that the xy plane
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corresponds to the plane o f  the laminate and the Z direction corresponds to the through­

thickness or TLR direction.

Even though advantage can be made of some limited commonality among these six 

load cases, building large detailed FEA models o f TLR composite unit cells involves a 

significant amount o f tedious work. As already discussed in section 1.5, when compared 

to experimental data, simpler techniques can result in reasonable estimations o f 

engineering constants. However, the shear moduli Gxz and Gyz, are very difficult to obtain 

experimentally, making verification o f any technique questionable for Gxz and G^. In 

addition to providing predictions o f engineering constants, these large FEA models result 

in complete stress-strain information at the detailed microstructure level. Such 

information is used to investigate the failure mechanisms o f these materials. While it is 

impractical to use large FEA models to calculate these properties for design purposes, 

they can be used to gain a fundamental understanding o f how the addition o f TLR affects 

laminate mechanical response.

This method o f using FEA unit cell models to calculate engineering constants is 

similar to that described in [152] and [123], However, in those works a known 

macrostrain is applied to the unit cell by applying prescribed displacements to the unit cell 

boundaries. The macrostress is numerically integrated over certain faces, or throughout 

the unit cell volume. In the method used in this work, a known macrostress is applied, the 

unit cell is constrained to deform to a certain shape, and the displacements o f the unit cell 

boundaries are used to calculate macrostrains. In effect, this method applies periodic 

boundary displacements o f an unknown value. This method avoids some potential error
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arising from the use o f the finite element method. In displacement based finite element 

formulation, the problem is set up such that the displacements are the unknowns. Stress 

and strain results are then calculated from the displacement results. By measuring the 

macrostrain by way o f the unit cell displacements, rather than the macrostress by way o f 

the unit cell stress results, the added difficulty and inaccuracy o f an additional numerical 

integration are avoided. Since the unit cell is constrained to deform to a certain shape at 

the boundaries, the difficult problem o f how to introduce load is not an issue.

The constraining o f the unit cell boundaries was done with the use o f multi-point 

constraints (M PC’s). It is assumed that in actual material, the neighboring unit cell would 

be imposing similar constraints. However, it is reasonable to suspect potential problems 

with reactions at these heavily constrained boundaries, particularly when the material and 

geometrical variations o f the microstructure are large near the unit cell borders. It is likely 

that error due to artificial boundary reactions would not piay an important role in 

determination o f engineering constants, since these calculations are based only on 

macrostress and macrostrain. However, if microstress and microstrain distributions 

internal to the unit cell are to used to draw conclusions about material failure, potential 

boundary effects must be considered.

2. 3. UNIT CELL BOUNDARY CONDITIONS AND MULTIPOINT 
CONSTRAINTS

The BC’s discussed in this section are for a full unit cell buried inside o f  the 

laminate. That is, none o f faces o f the unit cell are “free.” This set o f boundary conditions 

is referred to as [bc-uc], and serves as the baseline set o f boundary constraints. Only
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translational degrees o f freedom are considered, as the element types used in this work 

did not have rotational degrees of freedom. In addition to the specific details o f  BC ’s and 

their application, the limitations o f the FEA software and modeling assumptions are 

discussed. Section 2.4 discusses variations on this baseline set o f BC’s.

2. 3.1. GENERAL OVERIVEW

Displacement constraints at the boundaries o f  the unit cell were carefully selected 

in order to 1) satisfy requirements o f the unit cell assumption, 2) create unit cell 

deformations that conform to basic definitions o f  strain, and 3) result in a numerically 

solvable problem. These three objectives were accomplished by selectively utilizing large 

numbers o f multi-point constraints (MPC’s) and prescribed zero displacements.

Limitations o f  the commercial FEA analysis software used in this research did not allow 

for perfect application o f  general unit cell assumptions in all cases. However, reasonable 

approximations were made, and discussions o f the minor exceptions are included in the 

following sections. Although some 2-D problems were formulated during the 

development o f  the unit cell procedure and BC’s, the following discussions will be 

restricted to the full 3-D case, as this is the problem o f interest.

The orthogonal hexagonal volume (rectangular parallelepiped) o f the 3-D unit cell 

has dimensions o f wx, wy, and wz, in the X, Y, and Z directions, respectively. The origin 

o f  the global coordinate system is at the center o f  the unit cell. Each face o f the 

parallelepiped is perpendicular to the X, Y, or Z axis, and located at a distance o f hwx, 

hwy, or hwz from the origin (see Figure 2-5). The term hwx refers to the half width o f the 

unit cell in the X direction and is one half o f wx. The terms hwy and hwz are similarly

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



related to wy and wz. The six faces o f the unit cell are labeled 1 through 6, with odd 

numbers (1,3,5) representing faces at positive axis coordinates, and even numbers (2,4,6) 

representing faces at negative axis coordinates. Faces I and 2 are X axis faces (yz 

plane). Faces 3 and 4 are Y axis faces (xz pane). Faces 5 and 6 are Z axis faces (xy 

plane). Laminate orientation relates to the global coordinate system as follows: the Z axis 

is in the thickness direction, and the X axis is the 0° direction. This nomenclature is used 

throughout the following discussions.

To analyze the TLR unit cell, detailed 3-D FEA models were required. Creating 

new FEA analysis code was not within the scope o f this work. The objective was to use 

existing general purpose codes to build and solve the large FEA models. The general 

purpose commercial FEA package COSMOS/M™, by Structural Research and Analysis 

Corporation, was utilized for this research. COSMOS/M™ was selected based on several 

criteria: cost, functionality, ability to run on both persona! computers and engineering 

workstations, and use (acceptance) by other research institutions and industry.

While COSMOS/M™ was a very capable package, certain limitations were 

encountered. Most popular general purpose codes would likely have similar limitations. 

For example, only displacement multi-point constraints were available. Boundary nodes 

could not be constrained to have the same unknown force (stress). As discussed in section 

2.1, certain stress components, such as normal surface tractions, would be expected to be 

continuous across opposite borders o f a true unit cell. This type o f multi-point constraint 

was not available in COSMOS/M™.
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The general requirement o f the unit cell assumption is that the spatial relationship 

between nodes on a face also apply to the nodes on the opposing face, both before and 

after deformation. This requirement could not be programmed directly, but was met by 

careful selection and application o f M PC’s within the limitations and command structure 

o f  COSMOS/M™. COSMOS/M™ command language was used extensively to write 

programs that would automatically apply the MPC’s and other boundary conditions to the 

unit cell models. As the borders o f these large FEA models contained thousands o f nodes, 

the use o f such programming capability was the only practical means o f applying the BC’s 

described herein.

2. 3.2. NORMAL STRAIN CASES

All three normal strain cases, sx, ey, and sz, shared the same boundary conditions. 

There were two general requirements for these cases:

1) all nodes on a given face must have the same out-of-plane displacement (that is 

same displacement perpendicular to the face). The “box” can grow or shrink, 

but it must maintain its rectangular box shape.

2) each node on a given face, and the corresponding node on the opposing face 

must have the same in-plane displacements. These two conditions satisfy both 

unit cell assumptions and the basic definitions o f normal strain. To prevent 

rigid body motion and a singular stiffness matrix, additional prescribed zero 

displacements were added, as shown Figure 2-6.

The combination o f requirement I above and the prescribed zero displacements at 

the comer o f faces 1, 4, and 6; results in all nodes on faces 1, 4 and 6 having prescribed
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zero displacements perpendicular to their face. Although not intended, faces 1, 4, and 6, 

thus have BC’s that suggest that the faces are each a plane o f symmetry. The planes 

associated with faces 1, 4, and 6 are indeed planes o f symmetry for 0° or 90° plies. 

However, a +45° or - 45° ply is in reality not symmetric, but anti-symmetric at the border 

o f the unit cell. This compromise was necessary and was kept in mind during 

interpretation o f  the results. A brief summary o f  the final BC’s are listed in Table 2-1.

Table 2-1 Full unit cell boundary conditions for normal strain load c a ses .

[bc-uc] Ex> £y5 Ez LOAD CASES

Displacement Constraint Boundary Coordinates Unit Cell Face

ux = 0 x = +hwx face 1
ux = constant x = -hwx face 2
uy = constant y = +hwy face 3

Uy = 0 y = -hwy face 4
uz = constant z = +hwz face 5

uz = 0 z = -hwz face 6

uv‘ = uyJ, uz'=  uzJ x = +hwx, x -  -hwx faces I, 2
Sc I k I ••Ux = u x, uz = u z y = +hwy, y = -hwy faces 3, 4

Uxm = Ux", Uy™ = Uy" z = +hwz, z =- -hwz faces 5, 6

i and j refer to matching nodes on opposing faces (corresponding y and z coordinates) 
k and I refer to matching nodes on opposing faces (corresponding x and z coordinates) 
m and n refer to matching nodes on opposing faces (corresponding x and y 

coordinates)

Since the shape o f the unit cell is forced to remain a rectangular box, and one 

comer is tied or fixed at zero displacement, the displacements o f comer node A (see 

Figure 2-6) represent the overall change in unit ceil dimensions, that is the X direction 

displacement at A corresponds with Awx o f Equation 2-8. Similarly, the Y and Z 

direction displacements o f node A correspond to Awy, and Awz. The constraints as just 

described also make the introduction o f a macrostress very simple. Since face 2 is
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constrained to have the same X displacement everywhere, an X direction force applied to 

node A will give the same results as a uniform o x applied to face 2. o y, and a z loads are 

accomplished similarly by simply applying a force to node A in the appropriate direction.

2. 3.3. XY SHEAR STRAIN

Figure 2-6 shows the basic method o f applying the shear strain y.xy. One face was 

constrained while the opposite face was displaced parallel with its plane, resulting in a 

shear strain on the unit cell. Prescribed zero displacements were assigned to all nodes on 

face 4 (fixed in space). All the face 3 nodes were constrained to have the same x, Y and Z 

displacement (like a rigid plate). Each pair o f corresponding nodes on opposing faces 1 

and 2 were constrained to have the same x, Y and Z displacements. Each pair o f 

corresponding nodes on opposing faces 5 and 6 were also constrained to have the same X 

and Y displacements. All nodes on face 5 and 6 were constrained to have the same Z 

direction displacement. These constraints allowed the box to skew in the X direction 

while maintaining proper nodal relationships across opposing faces. Careful consideration 

o f  these constraints reveals that all nodes at the boundaries are required to have zero Z 

direction displacement. This fact is consistent with the intent o f  applying pure xy shear in 

the macroscopic sense. These BC’s are summarized in Table 2-2.
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Table 2-2 Full unit cell boundary conditions for xy shear load case.

[bc-uc] y,v LOAD CASE
Displacement Constraint Boundary Coordinates Unit Cell Face

uz =  0 x = ±hwx, y = ±hwy, z = ±hwz faces 1 -  6

c X

II C II o y = -hwy face 4
u* = constant, uy =  constant y =  +hwy face 3

ux' =  uxJ", Uy' =  Uy x =  +hwx, x =  -hwx faces 1, 2
Uxm =  Uxn, Uym =  Uyn z =  +hwz, z =  -hwz faces 5, 6

i and j refer to matching nodes on opposing faces (corresponding y and z coordinates) 
m and n refer to matching nodes on opposing faces (corresponding x and y coordinates)

As with the normal strain cases, the constraints resulted in the equivalence o f the X 

displacement o f  node A with Aw, o f Equation 2-8. Similarly, the Y direction displacement 

corresponded to Awy. The shear strain yxy was then calculated using the displacements of 

node A. The macro shear stress was accomplished by applying an X direction force to 

node A. Due to the constraints, application o f this single force was equivalent to applying 

a uniform on face 3.

2. 3.4. XZ SHEAR STRAIN

Figure 2-6 shows the basic method of applying the shear strain y^. One face was 

constrained while the opposite face was displaced parallel with its plane, resulting in a 

shear strain on the unit cell. Prescribed zero displacements were assigned to all nodes on 

face 6 (fixed in space). All the face 5 nodes were constrained to have the same x, Y and Z 

displacement (like a rigid plate). Each pair o f corresponding nodes on opposing faces 1 

and 2 were constrained to have the same x, Y and Z displacements. Each pair o f 

corresponding nodes on opposing faces 3 and 4 were also constrained to have the same X 

and Z displacements. All nodes on face 1 and 2 were constrained to have the same Y
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direction displacement. These constraints allowed the box to skew in the X direction 

while maintaining proper nodal relationships across opposing faces. Careful consideration 

o f these constraints reveals that all nodes at the boundaries are required to have zero Y 

direction displacement. This fact is consistent with the intent o f  applying pure xz shear in 

the macroscopic sense. These BC’s are summarized in Table 2-3.

Table 2-3 Full unit cell boundary conditions for xz shear load case.

[bc-uc] y„ LOAD CASE
Displacement Constraint Boundary Coordinates Unit Cell Face

Uy = 0 x = ±hwx, y = ±hwy, z = ±hwz faces 1 - 6

c X

II C N

II o z = -hwz face 6
ux = constant, uz = constant z = +hwz face 5

U.x' = UXJ, Uz‘ = UZJ x = +hwx, x = -hwx faces 1, 2
uxk = ux‘, uzk = uz‘ y = +hwy, y = -hwy faces 3, 4

i and j refer to matching nodes on opposing faces (corresponding y and z coordinates) 
k and 1 refer to matching nodes on opposing faces (corresponding x and z coordinates)

As with the normal strain cases, the constraints resulted in the equivalence o f the X 

displacement o f  node A with Awx o f Equation 2-8. Similarly, the Z direction displacement 

corresponded to Aw2. The shear strain y^ was then calculated using the displacements o f 

node A. The macro shear stress was accomplished by applying a Y direction force to 

node A. Due to the constraints, application o f this single force was equivalent to applying 

a uniform t^.

2. 3.5. YZ SHEAR STRAIN

Figure 2-6 shows the basic method of applying the shear strain y^. One face was 

constrained while the opposite face was displaced parallel with its plane, resulting in a 

shear strain on the unit cell. Prescribed zero displacements were assigned to all nodes on
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face 6 (fixed in space). All the face 5 nodes were constrained to have the same x, Y and Z 

displacement (like a rigid plate). Each pair of corresponding nodes on opposing faces 3 

and 4 were constrained to have the same x, Y and Z displacements. Each pair o f 

corresponding nodes on opposing faces 1 and 2 were also constrained to have the same Y 

and Z displacements. All nodes on face 1 and 2 were constrained to have the same X 

direction displacement. These constraints allowed the box to skew in the Y direction 

while maintaining proper nodal relationships across opposing faces. Careful consideration 

o f these constraints reveals that all nodes at the boundaries are required to have zero X 

direction displacement. This fact is consistent with the intent o f applying pure yz shear in 

the macroscopic sense. These BC’s are summarized in Table 2-4.

Table 2-4 Full unit cell boundary conditions for yz shear load case.

[bc-uc] Y„ LOAD CASE
Displacement Constraint Boundary Coordinates Unit Cell Face

ux = 0
Uy = uz = 0

Uy = constant, uz = constant

x = ±hwx, y = ±hwy, z = ±hwz 
z = -hwz 
z = +hwz

faces 1 - 6 
face 6 
face 5

Uy' = uyJ, uz'= uzJ 
t I k 1 *•Uy = Uy , U2 = UZ

x = +hwx, x = -hwx 
y = +hwy, y = -hwy

faces I, 2 
faces 3, 4

i and j refer to matching nodes on opposing faces (corresponding y and z coordinates) 

k and I refer to matching nodes on opposing faces (corresponding x and z coordinates)

As with the normal strain cases, the constraints resulted in the equivalence o f the X 

displacement o f node A with Awy o f Equation 2-8. Similarly, the Z direction displacement 

corresponded to Aw*. The shear strain was then calculated using the displacements of 

node A. The macro shear stress was accomplished by applying a Y direction force to
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node A. Due to the constraints, application o f  this single force was equivalent to applying 

a uniform tyz-

2. 4. OTHER SETS OF BOUNDARY CONDITIONS

Large numbers o f MPC’s were utilized to meet the requirements. COSMOS/M™ 

1.75a has a limit o f 3000 MPC’s, which restricted the size and mesh density o f the unit 

cell models. In order to get around this restriction, and to examine cases where full unit 

cell assumptions did not apply, two other sets o f  boundary conditions were applied to the 

“unit cell” models.

“Laminate” boundary conditions [bc-lam] were developed which did not enforce 

unit cell requirements across the top and bottom (faces 5 and 6). These bc’s were the 

same as [bc-uc] described in section 2.3, with the exception that corresponding opposing 

nodes on faces 5 and 6 were not required to have the same in-plane displacements. Hence 

faces 5 and 6 were not required to match up internally, relaxing the unit cell requirement in 

the thickness direction. A unit cell with these conditions simulates a full laminate with the 

top and bottom faces free, rather than a unit cell buried internal to the laminate. To insure 

adherence to the definitions o f strain, faces 5 and 6 were required to remain flat, that is all 

Z displacements the same. Only the sx, ey, sz and y ^  load cases were affected by these 

changes. The y** and y^ load cases were exactly the same as [bc-uc]. The [bc-lam] BC’s 

are summarized in Table 2-5.

A third set o f boundary conditions, [bc-noopp], were developed with the idea o f 

possible further relaxation o f unit cell requirements. Pairs o f corresponding and opposing 

nodes were not required to match up on any set o f  opposing faces. These conditions only
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enforced the overall shape o f the model to conform to the strain definitions, and did not 

meet the unit cell criteria. These [bc-noopp] were the least stringent o f the three sets.

The [bc-noopp] boundary conditions are summarized in Table 2-6.

The different boundary conditions, [bc-uc], [bc-lam] and [bc-noopp], were 

evaluated by application to a set o f  representative models*. These evaluation models were 

control models without TLR. Both [0/90] and [+45/-45] layups were included in the 

evaluation. Based on maximum stress values and calculated properties, there was no 

practical difference between the results o f models with [bc-uc] and [bc-lam] BC’s. There 

was also no practical difference between the results o f models with [bc-uc] and [bc- 

noopp] BC’s, in the ex, sy and ez load cases. However, in the yxy, y^ and y„  load cases, 

there were significant differences between the output o f  models with the baseline [bc-uc] 

BC’s, and models with the [bc-noopp] BC’s. In the models with [bc-noopp] BC’s and yxy, 

yxz and load cases, large stress concentrations at the boundaries dominated the results. 

Once these comparisons were made, it was determined that there were no important 

differences between [bc-uc] and [bc-lam] BC’s. Hence, [bc-lam] BC’s were used in all 

subsequent unit cell models*.

* Model details will be discussed in the next chapter.
* A master list o f all models and their BC’s is given in the next chapter.
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[bc-lam] Sx) By) Sz LOAD CASES
Displacement Constraint Boundary Coordinates Unit Cell Face

ux = 0 
ux = constant 
uy = constant

Uy =  0
uz = constant 

uz = 0
Uy' =  UyJ, uz = u zJ 

k 1 k 1 ** 
Ux = U x ,  Uz = U Z

x = +hwx 
x = -hwx 
y = +hwy 
y = -hwy 
z = +hwz 
z = -hwz 

x = +hwx, x = -hwx 
y = +hwy, y = -hwy

face 1 
face 2 
face 3 
face 4 
face 5 
face 6 

faces 1, 2 
faces 3, 4

[bc-lam] Yxv LOAD CASE
Displacement Constraint Boundary Coordinates Unit Cell Face

uz = 0
ux =  Uy = 0

ux = constant, uy = constant
Ux' = UXJ, Uy' =  uyJ

x =  ±hwx, y =  ±hwy, z =  rhw z 
y =  -hwy 
y = +hwy 

x =  +hwx, x = -hwx

faces 1 -  6 
face 4 
face 3 

faces 1, 2

[bc-lam] yrz LOAD CASE
Displacement Constraint Boundary Coordinates Unit Cell Face

Uy =  0
ux =  uz =  0 

ux =  constant, uz =  constant 
U x ' =  UxJ, uz = u zJ 

Uxk =  Ux', uzk =  uz'

x =  ±hwx, y =  ±hwy, z =  ±hwz 
z =  -hwz 
z =  +hwz 

x =  +hwx, x =  -hwx 
y =  +hwy, y =  -hwy

faces 1 -  6 
face 6 
face 5 

faces 1, 2 
faces 3, 4

[bc-lam] Yvt LOAD CASE
Displacement Constraint Boundary Coordinates Unit Cell Face

ux =  0
Uy =  uz = 0

uy =  constant, uz =  constant
Uy' =  Uy, uz' =  uzJ 

k I k 1 ••
Uy =  Uy , UZ =  UZ

x =  ±hwx, y =  ±hwy, z =  ±hwz 
z =  -hwz 
z =  +hwz 

x =  +hwx, x =  -hwx 
y =  +hwy, y =  -hwy

faces 1 -  6 
face 6 
face 5 

faces I ,  2 
faces 3, 4

i and j refer to matching nodes on opposing faces (corresponding y and z coordinates) 
k and 1 refer to matching nodes on opposing faces (corresponding x and z coordinates)
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Table 2-6 “No opposing node constraint” boundary conditions.

[bc-noopp] £x, Ey, ez LOAD CASES
Displacement Constraint Boundary Coordinates Unit Cell Face

ux = 0 x = +hwx face 1
ux = constant x = -hwx face 2
uy = constant y = +hwy face 3

Uy =  0 y = -hwy face 4
uz = constant z = +hwz face 5

c N

II o z = -hwz face 6

[be- noopp] Yiv LOAD CASE
Displacement Constraint Boundary Coordinates Unit Cell Face

uz = 0 y = ±hwy, z = ±hwz faces 3 -6
Ux =  Uy =  0 y = -hwy face 4

ux = constant, uy = constant y =  +hwy face 3

[be- noopp] Y« LOAD CASE
Displacement Constraint Boundary Coordinates Unit Cell Face

Uy =  0 y = ±hwy, z = ±hwz faces 3 -6

c X

II C N

II o z = -hwz face 6
ux =  constant, uz = constant z = +hwz face 5

[be- noopp] Y« LOAD CASE
Displacement Constraint Boundary Coordinates Unit Cell Face

c X

II o x = ±hwx, z =  ±hwz faces 1,2,5, 6

c '<

II c N

II o z = -hwz face 6
Uy =  constant, uz =  constant z = +hwz face 5
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Extension

Undeformed

Figure 2-1 Schem atic of “Unit Cell” concept showing deformation due to 
extension and due to shear.
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L1
L2

L3

L4

t t t t t

J4W

R1
R2

R3
R4

t t t t t

W U  I UM
a. undeformed b. naturally 

deformed
c. unit cell 
constrained

Figure 2-2 Schem atic of a unit cell in uniform tension show ing the 
concept of proper unit cell constraints.
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a y = 2a

A B

a. Classical definition of shear strain.

y ~ tan(y) =
A_
w

b. Shear strain as applied in this work.

Figure 2-4 Graphical definition of shear strain.
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y  Origin is at center
of the unit cell

Face

hwy

Face

IWZ

Face 1
hwx

w refers to widthWX

hw refers to half-width

Figure 2-5 Schem atic o f the unit cell with labeled faces and dim ensions.
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Figure 2-6 Unit cells showing the six load c a se s  corresponding to the 
com ponents of strain.
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CHAPTER 3 
MODELING DETAILS

This chapter describes the various models used for this research. Model geometry 

and numerical details are discussed for the finite element models. Stiffness averaging and 

its application by way o f the TEXCAD analysis software is also briefly discussed. The 

final section o f  this chapter describes the models used for the application o f TLR 

principles to a practical problem.

3.1. TLR MODEL GEOMETRY

A typical microstructure o f TLR materials is shown in Figure 3-1. Shown in the 

figure points are important microstructural details such as the unavoidable pure resin 

regions and curved in-plane fibers. A schematic o f this microstructure is shown in Figure 

3-2. Based on the features shown in Figure 3-2, the fairly simple 2-D model shown in 

Figure 3-3 was developed.

Here R and d refer to the radius and diameter o f the TLR and hWx and hWy are the 

half lengths o f  the unit cell. The inclusion length and half length, I and hi, refer to the sum 

o f the lengths o f the matrix regions and TLR. The TLR was assumed to be cylindrical 

(circular in the xy plane). The boundary o f the resin region was created by drawing a line 

from the tip o f the TLR inclusion to a point tangent to the TLR. The angle 9 is the angle 

made by the intersection o f this line with the X axis. When the TLR is inserted into a 

lamina, the otherwise straight in-plane fibers are pushed aside, creating a region o f curved
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fibers. This curved fiber region was modeled as shown in Figure 3-2 and Figure 3-3. The 

width o f  the curved fiber region was defined by the parameter L 1. The material in this 

curved fiber region was assumed to have fiber oriented in the 0 direction. The ratio o f  the 

TLR inclusion length to the TLR diameter (I/d) was used as another parameter. Hence, 

using elementary geometry, both 0 and the coordinates o f  the tangent point can be defined 

in terms o f d and I/d ratio. The parameter L2 was used to define a region o f fine mesh in 

the FEA models (discussed in the next section). Another important variable is the TLR 

angle through the thickness o f the laminate, \|/. The through-thickness angle, \\i, was 

defined as the angle o f the TLR as referenced to a line normal to the laminate plane as 

shown in Figure 3-4. As can be seen in the schematics in these figures, the entire unit cell 

can be defined by setting the values for a few simple parameters.

This model does not include the knots or surface loops associated with stitched 

laminates. For Z-Fiber™ materials, in-plane fiber displacement in the thickness direction 

were also neglected. Some “fiber-wash” in the Z direction is typically found in Z-Fiber™ 

materials, and is a result o f the insertion process. These simplifications aside, the 

described model is a reasonable approximation and does capture important microstructurai 

details neglected in other published research. Specifically, the resin regions, curved fiber 

regions and the TLR through-thickness angle have not previously been modeled at this 

level o f  detail, if  at all.

3. 2. UNIT CELL FINITE ELEMENT MODELS

The general purpose finite element software, “COSMOS/M™,” was used for the 

FEA analysis performed for this research. The accompanying pre- and post-processor
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“Geostar” was used to build and post-process the FEA models. An incremental approach 

was used, with early efforts involving 2-D plane strain models. The 2-D models were only 

used to develop the unit cell strategy within COSMOS/M™ since full 3-D models were 

the objective from the beginning. Only the fully developed 3-D unit cell models are 

discussed in this report. Model building and analysis was automated as much as possible 

by writing “scripts,” or programs, using the COSMOS/M™ command language.

3. 2.1. MODEL GENERATION

The FEA unit cell models were based on the model described in section 3.1. Table 

3-1 is a master list o f all FEA unit cell models. The unit cell models utilized the eight 

node “SOLED” element o f COSMOS/M™. The SOLID element is a three dimensional 

“brick” element with three translational degrees o f freedom per node. “Prism” or “wedge” 

shaped elements were judiciously utilized by collapsing one side o f the brick. The unit cell 

models ranged in size from 20,000 to 75,000 degrees o f freedom. Typical two ply unit cell 

models were on the order o f 25,000 degrees o f freedom. All results reported here in were 

obtained using a “PC” with a single Intel 200 Mhz Pentium-Pro™ processor and 

Microsoft Windows NT 4.0. Typical models are shown in Figure 3-5.
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Table 3-1 Master list of finite elem ent models and their variable values.

Series
Name

TLR Variables Unit Cell Variables FE Information
Material d

(in.)
Vf
(%)

\j/ n 
deg (/in.2)

Wx
(in.)

Wy
(in.)

Wz
(in.)

I/d L1 L2 Layup Nodes Elements BC's

c2a gr/ep 0.025 1.9% 0 38 0.162 0.162 0.012 5 (1/4)d (1/4)d [0/90] 7539 8160 [bc-uc]
c2p7a gr/ep 0.025 1.9% 45 38 0.162 0.162 0.012 5 (1/4)d (1/4)d [0/90] 6899 6264 [bc-lam]
c2ap15 gr/ep 0.025 1.9% 15 38 0.162 0.162 0.012 5 (1/4)d (1/4)d [0/90] 6899 6264 [bc-lam]

c3a gr/ep 0.010 1.9% 0 242 0.064 0.064 0.012 5 (1/4)d (1/4)d [0/90] 6419 6996 [bc-lam]
c2abig gr/ep 0.025 1.9% 0 38 0.162 0.162 0.108 5 (1/4)d (1/4)d [0/90]g 24975 30576 [bc-lam]

c4a gr/ep 0.010 0.3% 0 38 0.162 0.162 0.012 5 (1/4)d (1/4)d [0/90] 9051 9390 [bc-lam]
cSa gr/ep 0.025 4.9% 0 100 0.100 0.100 0.012 3.5 (1/4)d (1/8)d [0/90] 10136 10332 [bc-lam]
c2b gr/ep 0.025 1.9% 0 38 0.162 0.162 0.012 5 (1/4)d (1/4)d [+45/-45] 7539 8160 [bc-uc]
c2c gr/ep 0.025 1.9% 0 38 0.162 0.162 0.012 5 (1/4)d (1/4)d [0/0] 7539 8160 [bc-uc]

c2quasi gr/ep 0.025 1.9% 0 38 0.162 0.162 0.024 5 (1/4)d (1/4)d [+45/0/-45/90] 12025 14112 [bc-lam]
c2a-kev kevlar 0.025 1.9% 0 38 0.162 0.162 0.012 5 (1/4)d (1/4)d [0/90] 7539 8160 [bc-lam]

c2a-ti titanium 0.025 1.9% 0 38 0.162 0.162 0.012 5 (1/4)d (1/4)d [0/90] 7539 8160 [bc-lam]
c2a-steel steel 0.025 1.9% 0 38 0.162 0.162 0.012 5 (1/4)d (1/4)d [0/90] 7539 8160 [bc-lam]
c2a-sfm gr/ep 0.025 1.9% 0 38 0.162 0.162 0.012 5 (1/4)d (1/4)d [0/90] 7539 8160 [bc-lam]
c2a-dhm gr/ep 0.025 1.9% 0 38 0.162 0.162. 0.012 5 (1/4)d (1/4)d [0/90] 7539 8160 [bc-lam]
c2a-lam gr/ep 0.025 1.9% 0 38 0.162 0.162 0.012 5 (1/4)d (1/4)d [0/90] 7539 8160 [bc-lam]

c2a-noop gr/ep 0.025 1.9% 0 38 0.162 0.162 0.012 5 (1/4)d (1/4)d [0/90] 7539 8160 [bc-noop]
c2b-noop gr/ep 0.025 1.9% 0 38 0.162 0.162 0.012 5 (1/4)d (1/4)d [+45/-45] 7539 8160 [bonoop]
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One o f the greatest difficulties in building the 3-D multi-ply FEA models was 

maintaining mesh compatibility across the interface between plies o f  different orientation. 

The first step in the model building procedure was to create a 2-D geometric model o f  the 

schematic shown in Figure 3-2. This unidirectional geometry was then duplicated and 

rotated to produce a star-like geometry that could be utilized for a 0°, 90°, +45° or -45° 

oriented ply (see Figure 3-6). This “star” model approach is very similar to the “flower 

pedal” model originally proposed by Dr. Gary Farley, and utilized in a limited fashion in 

[144], A less detailed but similar approach was also used and reported in [106] and [107],

Utilizing symmetry, 178th o f the geometry shown in Figure 3-6 was meshed using a 

combination o f automatic meshing and manual mesh manipulation. This 178th pie slice was 

then replicated and rotated to produce a meshed version of Figure 3-6. Scripts were 

written to keep track o f and apply the correct material properties and material directions 

for each of the 209 different regions shown in Figure 3-6. A different script was 

developed for each ply orientation; 0°, 90°, +45° and -45°. Three different materials 

(unidirectional lamina, TLR and pure matrix) and 13 different material directions (z 

direction, 0°, 90°, +45°, -45°, and a ±9 for each 0°, 90°, +45°, -45°) were necessary to 

characterize the four ply orientations. Typical graphite-epoxy and neat epoxy resin 

properties were used. Graphite-epoxy, Keviar®-epoxy, titanium and steel were used as 

TLR materials. The material properties are listed in Table 3-2. A micro-mechanics 

analysis described in [153, 154] was used to generate the properties for composites listed 

in the table. The inputs for the micro-mechanics analysis were taken from manufacturers 

product information sheets and from references [153, 155], The properties for titanium
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and steel were obtained from a built in material library within the COSMOS/M™ 

software.
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Table 3-2 Material input properties for unit cell models.

LAMINA TLR TLR TLR TLR PURE RESIN
A S4/3501-6 Kevlar/3501-6 T 300/9310 Titanium STEEL 3501-6

E1 (Msi) 19.4 5.6 20.5 16.0 30.0 0.632
E2 (Msi) 1.26 1.30 1.04 - - -

E3 (Msi) 1.26 1.30 1.04 - - -

G12 (Msi) 0 .847 0 .790 0 .634 6.3 12.0 0.235
G23 (Msi) 0 .457 0.765 0.378 - - -

G13 (Msi) 0 .847 0 .790 0 .634 - - -

v 12 0.25 0.31 0.25 0 .30 0.28 0 .34
v23 0.38 0.39 0.39 - - -

v 13 0.25 0.31 0.25 - - -

v, 0.60 0 .60 0 .60 - - -

Ov
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Once a full 2-D (xy) mesh was created and given the appropriate properties, the 

elements were “extruded” in the Z direction to create 3-D elements with the correct 

properties. Since the same FEA mesh was used to create the different plies, mesh 

compatibility was maintained when plies o f different orientation were stacked. Models 

with a non-zero TLR through-thickness angle, vj/, were created by extruding the 2-D 

geometry/mesh at an angle and manually meshing the empty areas o f the rectangular unit 

cell box. All elements created by extrusion at an angle were inherently skewed. However, 

concern over severe error induced by misshapen elements was alleviated with straight 

forward model verification procedures discussed in the next section. Extrusion o f the 2-D 

circular TLR perpendicular to the xy plane (\|/=0) resulted in a cylindrical TLR. Extrusion 

at an angle (v/*0) maintained a circular cross-section on the xy plane, but created a TLR 

with an elliptical cross-section when viewed along the TLR longitudinal axis. Given that 

the cross-section can vary significantly in actual TLR materials, this variation was not 

considered significant as long as proper volume fractions were utilized in the 

interpretations o f the results.

Once the 3-D mesh o f the model was completed, scripts were used to locate and 

identify boundary nodes; and to apply displacement constraints, multi-point constraints, 

and loads for each o f the six strain cases (see Chapter 2).

3. 2.2. MODEL VERIFICATION

The built in check routines o f COSMOS/M™ were consistently used to interrogate 

the quality o f the FEA models. These commands and routines often proved grossly 

inadequate at identifying troubled areas o f these very complex and detailed models.
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Therefore other practical measures were also used to evaluate the quality o f the models. 

Engineering judgment was used extensively in the trade off o f  model complexity and size 

versus accuracy and convergence.

To have some feeling for the validity o f the unit cell modeling assumptions and the 

quality o f  the FEA models, control models were constructed and evaluated. Control 

models were made by copying an existing TLR model and changing the material 

properties and materials directions so that the model simulated an unreinforced laminate, 

that is without TLR and its ensuing microstructure. For the uniformly applied loads 

described in Chapter 2, the resulting stress should be uniform throughout the control 

models. Many poorly constructed models with misshaped elements were identified with 

this technique. Control cases were run for each o f the six different load cases, thereby 

checking the elements for all six stress components.

In addition to validating the quality o f the FEA mesh, the method o f calculating 

engineering constants was also validated. The stiffnesses were calculated for the control 

cases o f a unidirectional laminate, a two layer model with a [0/0] layup. These calculated 

values exactly matched the material input properties, within adequate precision. In 

addition to model validation, the control models were used extensively as a control to 

determine the effects o f the addition o f TLR.

3. 3. STIFFNESS AVERAGING MODEL (TEXCAD)

As was discussed in section 1.5, simple stiffness averaging methods can be used to 

predict the fiber dominated macroscopic elastic constants reasonably well. Isostrain is 

assumed across the entire unit cell. A unit cell is composed o f N discrete unidirectional
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segments, each with a known volume fractions, V, and stiffness, [C ]. The average 

stiffness o f this unit cell can be calculated by transforming each segments stiffness to 

global coordinates, and summing the fractional contribution o f all segments:

[cr-=i;(r.[7-j:[cur].)
m=I

Equation 3-1.

[T], and its transpose, [F]r , are the well know stress transformation matrices o f tensor 

algebra (see for example [ 150]).

The limitations and application o f stiffness averaging concepts, and other textile 

modeling techniques, are discussed in more detail in [123], The publicly available software 

“TEXCAD,” (Textile Composite Analysis for Design) was used to perform the stiffness 

averaging for the TLR materials in this work. TEXCAD is described in references [138, 

139, 155] and is included in the review found in [123], TEXCAD was developed to run on 

a desktop computer with sufficient ease o f use to enable effective utilization as a design 

tool. For these reasons, stiffness averaging by way o f TEXCAD was selected for 

comparison with the FEA unit cell approach described in Chapter 2.

3. 4. FLANGE-SKIN MODEL

The problem o f a flanged skin in bending was selected as the problem o f practical 

interest for this study. It is a problem having high inter-laminar stresses and whose failure 

modes are dominated by the response to those stresses. In reference [156], the authors 

proposed this problem as a simplified test o f the bond strength between a skin and a
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secondarily bonded or co-cured stiffener when the dominant loading in the skin is bending 

along the edge o f the stiffener. An illustration o f the stiffener-skin interface is shown in

Figure 3-7. The test is performed by putting a flanged skin specimen in three or 

four point bending, as shown in

Figure 3-8 and Figure 3-9. The flange-skin specimen is a representation o f a larger 

stiffened skin structure. This simple and relatively inexpensive test captures the same 

failure mechanisms as in the larger structure. In addition to being a problem that could be 

modeled in some detail with a reasonable computational effort, the experimental portion o f 

the study reported in [156] involved detailed observations o f specimen failure.

A two dimensional generalized plane strain model was used to model the flanged 

skin in reference [156]. Due to the three dimensional nature of TLR, the flange-skin 

problem was modeled in three dimensions in this work.

The specimen with a 20° tapered flange, shown in

Figure 3-8, was modeled with the twenty node “SOLID” element o f  

COSMOS/M™. The SOLID element is a three dimensional “brick” element with three 

translational degrees o f freedom per node. “Prism” or “wedge” shaped elements were 

judiciously used by collapsing one side o f the brick. Quasi-isotropic layups, [45/0/- 

45/90]6s, o f AS4-3501-6 graphite-epoxy lamina were used in both the flange and skin. As 

was the case in the unit cell models, each ply was 0.006 inches thick. The dimensions of 

the specimen are shown in

Figure 3-8. The width o f the specimen was carefully selected so that at least one 

unit cell could be fully represented across the width in the Y direction. The edges o f the
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specimen, the XZ planes at the maximum and minimum Y coordinates, were constrained 

to have zero Y direction displacements, thus placing the model in plane strain. The finite 

element mesh for this problem is shown in Figure 3-10. As failure has been shown to 

begin near the tip o f  the flange, only the region near the flange tip was modeled with a fine 

mesh. In the fine mesh region extended four plies into the flange and four plies into the 

skin, with each ply and each TLR modeled by separate elements with the proper material 

properties. The coarse mesh region was modeled with smeared properties o f a quasi- 

isotropic laminate composed o f AS4-3501-6 lamina, with and without TLR. Input 

material properties are listed in Table 3-3. Symmetric boundary conditions were used at 

the specimen centerline so that only half o f the specimen was actually modeled. Boundary 

conditions representing three point bending were applied as shown in Figure 3-10 and a 

force o f 4.36 lbs was applied to each node across the width at the centerline o f the 

specimen.
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Table 3-3 Material input properties for the coarse m esh region o f the 
flange-skin FEA model.

"Smeared” Properties for Quasi-Isotropic 
Laminates with and without 2% TLR 

Gr-Ep Lamina (AS4-3501-6)
No TLR Graphit/Epoxy Steel

Ex (Msi) 7.58 7 .07 7 .72
Ey (Msi) 7.58 7 .06 7 .72
Ez (Msi) 1.43 1.76 2 .04

Gxy(Msi) 2.937 2.71 2.99
Gyz (Msi) 0.651 0 .582 0 .846
Gxz (Msi) 0.651 0 .5 8 4 0 .846

v*y 0.29 0 .30 0 .29

vyz 0.26 0.29 0 .27
Vxz 0.26 0.21 0 .27

Four different versions o f this basic model were analyzed. A control model 

without TLR, and three models with TLR throughout the specimen. The control model 

without TLR is shown in Figure 3-10. This baseline model was duplicated and TLR was 

added by changing the material properties for certain elements in the fine mesh region, and 

changing the properties for all the elements in the coarse mesh region. Three variations 

were examined: a graphite-epoxy TLR with a diameter o f 0.025 inches, a graphite-epoxy 

TLR with a diameter o f 0.008 inches, and a steel TLR with a diameter o f 0.008 inches. 

The volume fraction o f the TLR was two percent in all three cases. The material input 

properties for the TLR were the same as those used for unit cell models and are listed in 

Table 3-2. The properties used for the coarse mesh were “smeared" by calculating the 

laminate properties with the TEXCAD software discussed in the previous section. These 

“smeared” properties for a quasi-isotropic laminate with and without TLR are listed in 

Table 3-3. The FEA mesh for the stiffener-skin models with TLR is shown in Figure 3-11.
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The primary objective o f  this modeling effort was to examine the effect o f the TLR 

on the material in regions in between the TLR. Considering the limitation of available 

computational resources, a careful study o f the results o f the unit cell analyses was used to 

determined that the modeling objectives could be met by neglecting the microstructural 

features o f pure resin regions and curved fibers next to the TLR. The shape o f the TLR 

was also approximated to be a square. Correct proportions and properties for the TLR 

and lamina materials were maintained, thereby resulting in the proper structural response 

being translated to the regions between the TLR. After several iterations, a uniform three 

dimensional grid was selected with the elements being 0.0082 inches square and 0.006 

inches thick with an aspect ratio o f 1.4. These element dimensions allowed the individual 

lamina to be modeled separately and the different diameter TLR to be modeled with an 

integer multiple o f the basic element size. Thus the same element grid was used in all four 

variations o f the flange-skin model. Figure 3-12 is a close-up view o f these elements with 

the different material properties being shown. Even with these approximations, the final 

model contained 6,804 elements and 32,818 nodes.

The “bond” feature o f COSMOS/M was used to join the fine mesh region to the 

coarse mesh of the rest o f the model. This bonding of surfaces consisted o f using multi­

point constraints to tie together the displacements o f nodes associated with the adjoining 

faces. The disparity between the element size o f  the fine mesh and that o f  the coarse mesh 

was too large for this method to work very accurately. Hence, error was introduced in the 

areas that were bonded. This error appeared in the stress results as severe stress 

concentrations at the “bonded” points. Another limitation o f these models was the general 

refinement o f the finite element mesh. The fine mesh was not small enough to accurately
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capture the severe stress gradients in and near the TLR. The regions o f  interest were four 

plies away from the “bond” points and the stress gradients between the TLR were much 

less severe than those within the TLR. For these reasons, it was felt that these models 

were adequate for addressing the question o f damage initiation in the regions between the 

individual TLR at the interface between the skin and flange.
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0.010 inch
titanium TLR ^

\ Curved fiber

■►X \  Pure resin
Gr-Ep lamina region

Figure 3-1 Micrograph showing curved fibers and pure resin regions of a 
graphite-epoxy laminate with a titanium TLR. Z-Fiber™ sam ple courtesy of 
Foster-Miller Inc. and Aztex Inc.
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pure resin region
inclusion length
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curved fiber region

WX

Y 
in-plane fiber direction

I— * X  -------------------------- ►

Figure 3-2 Schem atic of TLR microstructure show ing curved fiber and 
pure resin regions.
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hwx

C o a rse  m e sh

Fine m esh

TLR

11

in-plane fiber direction
► X

hwy

L*1
I

Figure 3-3 Schematic of V*. model of TLR lamina with all necessary  
dim ensions and parameters labeled.
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l a m i n a

Figure 3-4 Definition of TLR through-thickness angle vj/.
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pure  resin regions

[0/90] two ply unit cell model color coded 
for material properties (1/4 cut away)

curved fiber

90  d e g r e e  ply

[0/90] two ply unit cell model color coded 
for material direction (1/2 cut away)

Figure 3-5 Typical finite elem ent unit cell m odels with the elem ent color 
coded for material properties (above) and for material directions.
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Figure 3-6 2-D geometry unit cell geometry.
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Figure 3-7 Illustration o f stiffener-skin interface [156].
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Figure 3-8 Proposed flange-skin test specim ens for simulation of the 
stiffener-skin disbond problem in a stiffener pull-off test [156].
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Figure 3-9 Bending test configurations for flange-skin test [156].
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Figure 3-10 Finite element model of the fiange-skin specim en without TLR.
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Figure 3-12 Details o f the fine elem ent m esh for the flange-skin model.
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CHAPTER 4 
ELASTIC PROPERTIES - STIFFNESS

The nine independent engineering constants, E*, Ey, Ez, Gxy, G^, Gyz, Yxy, Vxz, and 

Vyz, completely define the stiffness o f an orthotropic material. As noted in Chapter 2, a 

TLR material is not orthotropic in the strictest sense. However, in the macroscopic sense 

the assumption is a reasonable one. The engineering constants are used for a physical 

interpretation o f  the elastic behavior o f materials and structures. Extensional modulus, E, 

relates the normal strain to normal stress and is the “stiffness” o f a material undergoing 

elongation. Shear modulus, G, relates the shear strain to shear stress. The Poisson’s 

ratio, v, refers to the lateral contraction of a material under a uni-directional extensional 

loading. The subscripts refer to the coordinate directions and relate each stiffness with its 

corresponding stress and strain component.

These nine engineering constants were calculated by using two methods: 1) a 

stiffness averaging technique using TEXCAD analysis software, and 2) a unit cell analysis 

using FEA. The results o f these analyses are listed in Table 4-1 through Table 4-3. The 

focus o f the following discussions will be on the extension and shear moduli, E ’s and G ’s, 

which have physical meaning that can be grasped fairly easily. This chapter begins by 

discussing the results for the control cases without TLR, followed by discussions o f the 

effects o f various important TLR parameters. The chapter closes with a brief summary 

discussion of the important findings and their significance.
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Table 4-1 TEXCAD and FEA stiffness  results for control c a se s ,  without TLR.

C o n tro l
V a lu e s

Layup E E EL-x *-y z 
(Msi) (Msi) (Msi)

^ x y  ^ x z  ^ y z
(Msi) (Msi)

v xy v xz v yx v yz v zx v zy

TEXCAD
c 2 a
c 2 b

c 2 q u a
c 2 c

[0/90]
[+45M5]

[+45/0/-45/90]
[0/0]

10.36 10.36 1.43 
2.92 2.92 1.43 
7.58 7.58 1.43 
19.40 1.26 1.26

0.847 0.651 0.651 
5.027 0.651 0.651 
2.937 0.651 0.651 
0.847 0.847 0.456

0.03 0.36 0.03 0.36 - 
0.73 0.10 0.73 0.10 - 
0.29 0.26 0.29 0.26 - 
0.25 0.25 0.02 0.38 -

FEA I:
c 2 a
c2 b

c 2 q u a
c2 c

[0/90]
[+45/-45]

[+45/0/-45/90]
[0/0]

10.36 10.36 1.43 [ 0.847 0.'593 0.593 
2.92 2.92 1.43 | 5.027 0.605 0.605 
7.58 7.58 1.43 12.937 0.599 0.602 
19.40 1.26 1.26 j 0.847 0.846 0.457

0.03 0.36 0.03 0.36 0.05 0.05 
0.73 0.10 0.73 0.10 0.05 0.05 
0.29 0.26 0.29 0.26 0.05 0.05 
0.25 0.25 0.02 0.38 0.02 0.38

Inpu t :j
AS4/3501-6 19.4 1.26 1.26 ! 0.847 0.847 0.457 0.25 6.25 - 6.38 -

v£>00
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Table 4-2 TEXCAD stiffness  results for all c a s e s  with TLR.

TEXCAD Layup
i

Ex
(Msi) (Msi)

E,
(Msi)

GXy
(Msi)

Gxz
(Msi)

Gy,
(Msi)

VXy vxz VyX vy. vzx v,y

c2a [0/90] 9.83 9.83 1.77 0.813 0.634 0.634 0.04 0.29 0.04 0.29 - -

c2ap15 [0/90] 9.82 9.83 1.71 0.813 0.652 0.634 0.04 0.31 0.04 0.30 - -

c2 p 7 a [0/90] 9.84 9.81 1.48 0.815 0.715 0.632 0.03 0.39 0.03 0.34 - -

c3a [0/90] 9.82 9.82 1.77 0.812 0.634 0.634 0.04 0.29 0.04 0.29 - -

c2ab ig [0/90]g 9.83 9.83 1.77 0.813 0.634 0.634 0.04 0.29 0.04 0.29 - -

c4a [0/90] 10.28 10.28 1.49 0.841 0.648 0.648 0.03 0.34 0.03 0.34 - -

c5a [0/90] 9.40 9.40 2.34 0.787 0.625 0.625 0.04 0.21 0.04 0.21 - -

c2b [+45/-45J 2.80 2.80 1.77 4.746 0.634 0.634 0.73 0.08 0.73 0.08 - -

c2c [0/0] 18.31 1.28 1.60 0.813 0.818 0.450 0.28 0.20 0.02 0.31 - -

c 2 q u a [+45/0/-45/90] 7.20 7.20 1.77 2.779 0.634 0.634 0.29 0.21 0.29 0.21 - -

c2a-kev [0/90] 9.81 9.81 1.49 0.815 0.637 0.637 0.03 0.34 0.03 0.34 - -

c2a-ti [0/90] 10.10 10.10 1.73 0.922 0.740 0.740 0.04 0.36 0.04 0.36 - -

c2 a -s t [0/90] 10.37 10.37 2.04 1.024 0.846 0.846 0.05 0.36 0.05 0.36 - -

c2a-sfm [0/90] - - - - - - - - - - - -

c2a-dhm [0/90] 10.23 10.23 1.79 0.838 0.651 0.651 0.03 0.28 0.03 0.28 - -

njDO
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Table 4-3 FEA results for stiffness  for all c a s e s  with TLR.

FEA L ayup E x
(Msi)

Ey
(Msi)

e 2
(Msi)

Gxy
(Msi)

Gxz
(Msi)

G y Z | 

(Msi) !
vxy vxz vyx Vyz Vzx vzy

c 2 a [0/90] 9.60 9.60 1.76 0.836 0.576 0.576 0.04 0.29 0.04 0.29 0.05 0.05
c 2 a p 1 5 [0/90] 9.59 9.59 1.74 0.835 0.577 0.576 0.04 0.29 0.04 0.29 0.05 0.05
c 2 p 7 a [0/90] 9.59 9.59 1.64 0.836 0.576 0.576 0.04 0.31 0.04 0.31 0.05 0.05

c3 a [0/90] 9.56 9.56 1.76 0.831 0.577 0.577 0.04 0.28 0.04 0.28 0.05 0.05
c2 a b ig [0/90]+B38 9.61 9.61 1.76 0.838 0.574 0.574 0.04 0.29 0.04 0.29 0.05 0.05

c4a [0/90] 10.22 10.22 1.48 0.844 0.591 0.591 0.03 0.34 0.03 0.34 0.05 0.05
c5 a [0/90] 8.78 8.78 2.33 0.860 0.569 0.569 0.06 0.21 0.06 0.21 0.06 0.06
c2b I+45/-45] 2.86 2.86 1.76 4.564 0.588 0.588 0.71 0.09 0.71 0.09 0.05 0.05
c2 c [0/0] 17.72 1.27 1.59 0.826 0.815 0.451 0.31 0.19 0.02 0.31 0.02 0.38

c 2 q u a s i [+45/0/-45/90] 7.07 7.06 1.76 2.714 0.582 0.584 0.30 0.21 0.29 0.21 0.05 0.05
c2a-kev [0/90] 9.58 9.58 1.49 0.841 0.579 0.579 0.04 0.34 0.04 0.34 0.05 0.05

c2a-ti [0/90] 9.67 9.67 1.68 0.854 0.664 0.664 0.04 0.31 0.04 0.31 0.05 0.05
c 2 a -s t [0/90] 9.70 9.70 1.94 0.856 0.751 0.751 0.04 0.27 0.04 0.27 0.05 0.05

c2 a -s fm [0/90] I 9.57 9.57 1.76 0.799 0.576 0.576 0.04 0.29 0.04 0.29 0.05 0.05
c 2 a -d h m [0/90] I 9.86 9.86 1.78 0.835 0.594 0.594 0.04 0.28 0.04 0.28 0.05 0.05

O©
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4 .1 .  CONTROL CASES

Four different lamina stacking sequences, or layups, were selected for this study: a 

cross-ply laminate, [0/90]; an angle-ply laminate, [+4S/-45]; a uni-directional laminate, 

[0/0]; and a quasi-isotropic laminate, [+45/0/-45/90], The elastic response o f these four 

layups captures many o f the important aspects o f the behavior o f laminated composites. 

The results for the control cases, that is laminates without TLR, are listed in Table 4-1. 

Also shown are the input properties for the AS4-3501-6 lamina materials used throughout 

this work. Both the TEXCAD and FEA results for the [0/0] laminate are within one 

percent o f the input properties. With the exception o f G** and G^, the TEXCAD and 

FEA results for the other unreinforced laminates were in agreement also. The and G« 

values differed by 7-9 percent. Hence TEXCAD and FEA agreed very well for the control 

cases. Since it was the objective o f this work to study the effect o f adding TLR to a 

laminate, the discussions and figures in the following sections will focus on the percent 

change in the properties in question. The percent change is defined as the difference 

between two values, divided by the control value. The change is relative to the control 

case for each specific layup and analysis method. A positive percent change indicates an 

increased value while a negative percent change indicates a decreased value.

4. 2. LAMINA STACKING SEQUENCE (LAYUP)

Figure 4-1 through Figure 4-3 are plots o f the effect o f TLR on the different 

layups. The [0/90] layup, with a 0.025inch diameter Gr-Ep TLR at 1.9 percent volume 

fraction will be used as a baseline and will appear in all plots in this chapter.
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In general, adding TLR to an otherwise 2-D laminate slightly reduces the in-plane 

stiffness in the X direction, Ex. This reduction o f in-plane stiffness was under seven 

percent in all layups and can be attributed to the replacement o f in-plane material with the 

softer TLR inclusion. The effect on the Y direction stiffness, E y> was similar, with the 

exception o f the uni-directional laminate, where the TLR caused a one percent increase in 

Ey. A possible explanation for this difference is the greater Poisson effect o f a uni­

directional laminate under transverse (Y direction) loading. The addition o f the TLR 

would restrict the Poisson contraction in the Z direction. Such restriction could cause 

resistance to the applied load and thereby result in an effective increase in the stiffness in 

the Y direction. This increase in stiffness offsets the softening due to the added pure resin 

regions o f the TLR inclusion. Although these effects are fairly small, it is important to 

understand the mechanics o f the material if implications for strength are to be made.

The effect o f  TLR on Z direction stiffness, E*, is shown in Figure 4-3. The 

addition o f the stiff Gr-Ep TLR oriented in the Z direction resulted in a 23 percent to 27 

percent improvement in the overall material Z direction stiffness. The [0/0] laminate had a 

slightly higher value for the same likely reasons as just discussed for Ey.

The shear stiffnesses Gxy, Q a and G^ were reduced in a similar manner and for 

similar reasons as the in-plane extensional stiffnesses, Ex and Ey, that is the replacement o f 

in-plane stiffness with softer material o f the TLR inclusion. For this amount o f TLR (1.9 

percent), these reductions were relatively small, only nine percent in the worst case.
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4. 3. TLR THROUGH-THICKNESS ANGLE

The effect o f the through-thickness angle o f the TLR, vy, was studied by evaluating 

this parameter at values o f 0° (baseline), 15° and 45°. A value o f  vy = 0° has the TLR 

normal to the plane o f  the laminate. The variation o f vp had no effect on the reduction o f 

the in-plane stiffnesses, Ex and Ey. This finding is not surprising in that the models used 

herein varied v|/ without changing the volume fractions o f  the constituents (see section 3.2 

for details). Only the orientation o f the TLR was changed.

The TLR through-thickness angle did have an effect on extensional stiffness, Ez 

(see Figure 4-4). Increasing vy lowered the Ez. This trend is consistent with the fact that 

an angled TLR has less stiffness in the Z direction. The stiffness averaging method used in 

TEXCAD predicts that the increase in Ez, will drop from 23 percent to 3 percent when the 

TLR angle is changed from 0° to 45°. The FEA analysis predicts a change from 23 

percent to 15 percent for the same values. It is likely that TEXCAD under-predicts the 

positive contribution o f a TLR at 45°. In the more detailed FEA model, the TLR has a 

larger contribution than what is assumed by simple stiffness averaging.

Changing the TLR angle did not significantly affect the small reductions o f the 

shear stiffnesses Gxy and G>z. Likewise, the FEA calculated changes in Gxz were also not 

affected. However, as can be seen in Figure 4-5, TEXCAD predicted that the TLR effect 

on Gxz would change from negative three percent to positive ten percent. This change can 

be accounted for by the fact that 45° is the optimum orientation for maximum shear 

stiffness. Stiffness averaging captures this effect, and as the small amount o f TLR rotates 

away from 0° toward 45°, the increased shear stiffness contribution o f the TLR offsets
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the softening effect o f the added pure resin regions. This effect is not observed in the FEA 

results, suggesting that actual microstructure would not respond according to G ^ 's 

predicted by stiffness averaging.

4. 4. UNIT CELL THICKNESS AND TLR DIAMETER

The thickness o f the unit cell and the diameter o f  the TLR were studied by 

maintaining a 1.9 percent TLR volume fraction and adjusting other model parameters. A 

thick unit cell was modeled with the FEA method by duplicating the [0/90] baseline in the 

thickness direction, resulting in a [0/90]9 laminate model. A small diameter FEA model 

with the same TLR volume fraction was created by scaling down the in-plane dimension o f 

the unit cell while leaving ply thickness constant. The diameter o f  the TLR was reduced 

from the baseline 0.025 inch to 0.010 inch, with unit cell outer dimension adjusted 

accordingly. Since these models all had the same volume fractions, it was expected that 

the stiffness averaging method would predict the same values for each case. The FEA 

models were used to determine if a thickness effect, or a TLR-diameter/ply-thickness 

effect were possible. As shown in Table 4-2 and Table 4-3, changing these thickness did 

not affect the calculation o f  the engineering constants. For all nine constants, the results 

calculated from the three different models were all within one percent o f each other. 

Therefore, changing the ratio o f TLR-diameter/ply-thickness and changing the number o f 

plies did not change the effect o f adding TLR. Getting the same results for the [0/90] and 

the [0/90]9 models was particularly important, as it confirms that potential boundary 

reaction problems at the top and bottom surfaces did not affect calculation o f engineering 

constants.
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4. 5. TLR VOLUME FRACTION

The TLR volume fraction was varied from the baseline 1.9 percent in two cases.

A 0.3 percent TLR model was created by keeping unit cell outer dimensions constant, and 

decreasing the TLR diameter from 0.025 inch to 0.010 inch. The TLR inclusion was 

scaled accordingly. A 4.9 percent TLR model was created by decreasing the unit cell in­

plane dimensions (Wx and Wy) while maintaining the same 0.025 inch TLR diameter. In 

order to fit the TLR inclusion within the unit cell borders and maintain adequate FEA 

mesh, the ratio o f  inclusion-length/TLR-diameter (I/d) was reduced from five to three. It 

was felt that this change would not obscure the import influence of the amount o f TLR.

As can be seen in Figure 4-6, increasing the TLR volume fraction significantly 

decreased the in-plane X direction stiffnesses, Ex. An identical result was found for Ey.

The stiffness prediction calculated using TEXCAD was consistently lower than that from 

FEA. This trend is most prominent in the case with 4.9 percent TLR, where the 

TEXCAD and FEA methods predicted a reduction in Ex o f nine percent and 15 percent, 

respectively. This difference may be explained by the fact that the TEXCAD models do 

not account for the curved in-plane fiber. In addition, in the FEA models the pure resin 

regions shield the TLR and keep it from carrying load and contributing to the overall 

stiffness. Stiffness averaging assumes that all segments contribute their share o f stiffness 

and do not interact with each other.

Unlike for the in-plane stiffnesses Ex and Ey, the TEXCAD and FEA results for 

out-of-plane stiffness, Ez, were within one percent o f each other, in both percent change 

from control and in actual Ez values (see Figure 4-7). Increasing the TLR volume fraction
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significantly increased the positive effect on Z direction stiffness. A 1.9 percent addition 

o f  TLR increased Ez by 23 percent while adding 4.9 percent TLR resulted in a 64 percent 

improvement. Adding even a small amount o f a very stiff material in a trans-laminar 

fashion has a significant impact on the otherwise compliant Z direction elastic response.

The effect o f TLR volume fraction on the in-plane elastic shear response, G*y, can 

be seen in Figure 4-8. The TEXCAD results show a steadily increasing reduction o f G.™ 

with increasing TLR volume fraction. As discussed before, more TLR results in larger 

amounts o f the relatively compliant pure resin regions. However, the FEA results show a 

minimal effect. This difference is likely due to the presence o f the curved fibers in the 

FEA models. Angled fibers can carry more shear load. Hence, the small amount o f in­

plane curvature caused by inserting the TLR may be contributing to the effective 

resistance to shear, and thus providing stiffness that offsets the added compliance o f the 

pure resin regions. This difference is most prominent in the case o f 4.9 percent TLR, 

where the angle o f the curved fibers is slightly higher than that o f the other cases. This 

greater fiber curvature was a result o f the shortened TLR inclusion length for that case.

For the out-of-plane shear stiffnesses G^ and Gyz, in both the TEXCAD and FEA 

results, increasing TLR volume fraction increased the reduction caused by adding TLR. 

There was no fiber curvature in the out-of-plane, or z, direction in these models. This 

effect was small however, with the change in G^ and G>T only being negative four percent 

at the worst case 4.9 percent TLR.
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4. 6. TLR MATERIAL

The effect o f  varying the properties o f the TLR was examined by creating and 

comparing models with four different TLR materials: Graphite-Epoxy (baseline), 

KevIar®-Epoxy, Titanium and Steel. As can be seen in Table 3-2, listed in order o f 

increasing longitudinal modulus, E, these materials rank K-EP, Titanium, Gr-Ep and Steel. 

They rank K-EP, Gr-Ep, Titanium and Steel with increasing shear modulus, G. In 

addition to allowing a determination of the relative importance o f E and G, these materials 

are readily available and have been used for TLR in various experimental studies.

The results for the effect o f the different materials on the X direction stiffness, Ex is 

shown in Figure 4-9. An identical result was found for Ey, hence the figure refers to the 

results o f both Ex and Ey. In the TEXCAD results, the reduction in these in-plane 

stiffnesses decreased as the TLR modulus increased. It is likely that increasing the 

stiffness o f the TLR material added sufficient stiffness to compensate for the softening 

effect o f  the pure resin regions, at ieast as calculated by stiffness averaging. In the case 

with steel TLR, the positive effect o f the added stiffness o f the TLR and negative effect o f 

the pure resin regions offset each other, resulting in a net overall effect o f  zero percent 

change. This trend was not the case in the FEA results, where the in-plane stiffness 

reduction remained fairly constant at about negative seven percent. As suggested in 

previous sections, the pure resin regions shield the TLR in plies oriented in the loading 

direction and prevent it from contributing to the over all stiffness. Therefore, the high 

transverse modulus o f steel and titanium TLR could not contribute to overall stiffness, and 

the FEA in-plane stiffness results were all about the same.
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In Figure 4-10, the relative ranking o f the changes in Z direction stiffness, Ez, 

follows the same order as that for the increasing TLR modulus, E. Adding steel TLR 

resulted in a 35 percent and 42 percent increase according to the FEA and TEXCAD 

analyses, respectively. As with the in-plane stiffness results, the TEXCAD analysis 

consistently predicted a greater out-of-plane stiffness, Ez, than did the FEA analysis. This 

difference was the greatest for the case with the stiffest TLR material, steel.

This difference between the TEXCAD and FEA results can be seen with a much 

greater magnitude in the in-plane shear, Gxy, results. As shown in Figure 4-11, with 

stiffness averaging, the larger shear stiffness o f  titanium and steel caused significant 

increases in Gxy. These large effects were not evident in the FEA results, where changing 

material had a minimal effect on Gxy. As was discussed earlier in section 1.5, stiffness 

averaging over predicts matrix dominated properties such as in-plane shear stiffness, Gx>.

This difference between TEXCAD and FEA was also evident in the out-of-plane 

shear stiffnesses Gxz and Gyz, although to a much lesser extent. The Gxz and G „ results 

were identical and the effects on Gxz shown in Figure 4-12 are representative for both Gxz 

and G^. As can be seen in the figure, the TLR only had an effect on inter-laminar shear 

stiffness in the cases with steel and titanium TLR; that have a shear stiffness an order o f 

magnitude higher than that o f either the composite TLR or the unreinforced lamina (see 

Table 3-2).
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4. 7. TLR CREATED MICROSTRUCTURE - RESIN REGIONS 
AND CURVED FIBERS

During the insertion o f TLR the straight in-plane fibers are pushed aside, creating 

regions o f  pure matrix and curved fibers next to the TLR. As has been discussed above, 

these microstructural features play an important role in the mechanical response o f TLR 

materials. To study the effect o f this microstructure, the baseline [0/90] TLR model was 

modified to create two new cases. The first case is referred to as the straight fiber model 

(SFM). The regions o f curved fibers were not included in this model. In the FEA model, 

this was done by simply changing the material properties o f the elements that constituted 

the curved fiber volume. It is important to note that all TEXCAD cases were effectively 

SFM models, as properties o f curved fibers were not included in any o f  the stiffness 

averaging. The second varied microstructure model is referred to as the drilled hole model 

(DHM). In the DHM, neither the curved fibers nor the pure resin regions were included, 

resulting in a microstructure that could have been created by drilling a hole and then 

inserting the TLR.

The results for the in-plane extensional stiffnesses Ex and Ey are shown in Figure 4- 

13 (only Ex results are plotted as the Ey results were identical). The SFM results were 

essentially the same as those o f the baseline. For the DHM TEXCAD results, not 

including the pure resin region caused the reduction in in-plane stiffness to change from 

negative five percent for the baseline to negative one percent for DHM. Therefore, for 

stiffness averaging, it was the addition o f the soffer pure resin regions that dominated the 

reduction o f in-plane properties. In the FEA results, the reduction only changed from 

negative seven percent to negative five percent, a much smaller effect.
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The curved in-plane fibers and pure resin regions did not play a significant role in 

the TLR effect on out-of-plane or Z direction stiffness, Ez, (see Figure 4-14). Compared 

to the 23 percent change in Ez for the baseline, the DHM resulted in a 25 percent increase. 

The SFM and DHM Z direction stiffness results for TEXCAD and FEA agreed relatively 

closely.

The in-plane shear, G^,, results are shown in Figure 4-15. There was minimal TLR 

effect in the DHM which had no curved fiber and no pure resin regions. Considering the 

pure resin regions only, that is the SFM, adding TLR reduced the in-plane shear stiffness 

by about four to five percent. This is consistent with the lower shear stiffness o f  pure 

matrix. Considering the curved fibers and resin regions, that is the baseline FEA case, the 

in-plane shear stiffness was again minimally affected. This finding supports the hypothesis, 

discussed in section 4.4, that the curved fibers contribute shear stiffness that offsets the 

softness o f  the neat resin.

The inter-laminar or out-of-plane shear stiffnesses and were only minimally 

affected by the presence o f the curved fiber and pure resin regions. The change was only 

negative three percent in the base line, and zero percent in the DHM.

4. 8. SIGNIFICANCE AND APPLICATION

The addition o f small amounts o f TLR (less than five percent) had small effects on 

the in-plane extensiona! and shear stiffnesses, Ex, Ey, and G*y. However, adding only a 

few percent o f  very stiff TLR resulted in relatively large improvements in the out-of-plane 

stiffness, Ez. The longitudinal modulus o f the TLR is an order o f magnitude greater than 

that o f the unreinforced laminate in the Z direction. With the exception o f the titanium and
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steel TLR cases, the inter-laminar shear properties, Gxz and Gyz, were mildly degraded, 

even in the material with 4.9 percent TLR. Both steel and titanium have a shear stiffness 

an order o f  magnitude larger than that o f the unreinforced lamina.

These findings suggest that using TLR with an extremely high stiffness will result 

in a significant improvement in the corresponding elastic constant. Although a 20 to 60 

percent improvement is considerable, it is important to realize that increasing a small 

number by 60 percent still results in a small number. The thickness direction properties o f 

composite laminates are an order o f  magnitude lower than the in-plane properties. In 

addition, the large improvements in inter-laminar stiffness suggested by these analyses may 

not be achievable in real materials. In these models, a perfect bond was assumed between 

the TLR and the surrounding medium, allowing full transfer o f inter-laminar loads from 

the lamina into the TLR. In real TLR materials, bonding would not be “perfect.” There 

will always be microcracks in and around the TLR and the pure resin regions. Such 

microcracks are caused by the different thermal expansion o f the different materials during 

processing, and by disbonding of the TLR from the surrounding medium due to high inter- 

laminar stresses. For these reasons, it is unlikely that an order o f magnitude higher 

intrinsic stiffnesses o f  a TLR can be fully translated into the laminate on a volume 

averaging basis.

The slight reductions in the in-plane properties have been generally attributed to 

the replacement o f stiff in-plane material with the relatively soft TLR inclusion materials.

In these models, neither changes to in-plane fiber volume fraction nor increases in laminate 

thickness were considered. Rather a direct substitution v/as made. In a real laminate
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adding two to five percent volume must cause a change either in the overall thickness, in 

the fiber volume fraction, or in both. In various references on TLR, the authors have noted 

the added thickness caused by adding the TLR (see for example [62, 66]). Once such a 

change is accounted for, the already small reductions in in-plane stiffnesses become even 

less o f  an issue.

Being able to predict the engineering constants quickly and easily is still an 

extremely valuable asset for design purposes. Comparing the TEXCAD and FEA analyses 

used here, there was less than ten percent difference in all cases o f  in-plane extensional 

stiffness, Ex and Ey. The maximum difference for Z direction stiffness, Ez, was six percent 

for the steel TLR case, and less than three percent in all other cases. The TEXCAD and 

FEA in-plane shear Gxy results differed by more than ten percent only in the steel TLR 

case and the 4.9 percent TLR case. The differences between TEXCAD and FEA results 

for the inter-laminar shear stiffnesses, Gxz and Gyz, ranged from zero to 21 percent in all 

cases examined. These things considered, stiffness averaging offers a quick, easy and 

reasonably effective method to estimate the engineering constants.
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Effect o f Ply O rientation on  Ex
I— I  Ex TEXCAD 
■M B Ex FEA

[+45/0/-45/90] - 

[0/ 0] - 

[+45/-45] - 

[0/90]

-20 -15 -10 -5 0 5 10 15 20 25 30

% Change From Control Case Without TLR 

Gr-Ep TLR d = 0.0025 in. Vf = 1.9% y = 0

Figure 4-1 Effect of various ply orientations on the TLR induced changes  
to laminate Ex.
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E ffect o f Ply O rientation on Ey
r— 1  Ey TEXCAD 
mmm Ey FEA

[+45/0/-45/90]

[0/0]

[+45/-45]

[0/90]

-20 -15 -10 -5 0 5 10 15 20 25 30

% Change From Control Case Without TLR 

Gr-Ep TLR d = 0.0025 in. Vf = 1.9% vy = 0

Figure 4-2 Effect of various ply orientations on the TLR induced changes  
to laminate Ey.
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E ffect o f Ply O rientation on Ez
I— U  Ez TEXCAD 

Ez FEA

[+45/0/-45/90]

[0/0]

[+45/-45]

[0/90]

-20 -15 -10 -5 0 5 10 15 20 25 30

% Change From Control Case Without TLR 

Gr-Ep TLR d = 0.0025 in. Vf=1.9% vj/ = 0

Figure 4-3 Effect of various ply orientations on the TLR induced changes  
to laminate Ez.
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E ffect o f TLR Through T h ick n ess A ngle, vj/, on Ez
C = ]  E z TEXCAD 

Ez FEA

-20 -15 -10 -5  0 5 10 15 20  25  30

% Change From Control Case Without TLR 

[0/90] Gr-Ep TLR d = 0.0025 in. Vf = 1.9%

Figure 4-4 Effect of TLR through-thickness angle on TLR induced chan ges  
to laminate Ez.
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E ffect o f  TLR Through T h ickn ess A ngle, vy on Gxz

45

(cleg) 15

o

-20 -15 -10 -5 0 5 10 15 20 25  30

% Change From Control Case Without TLR 

[0/90] Gr-Ep TLR d = 0.0025 in. Vf = 1.9%

Figure 4-5 Effect of TLR through-thickness angle on TLR induced ch an ges  
to laminate Gxz.

Gxz TEXCAD 
Gxy FEA
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E ffect o f  TLR Volum e Fraction, Vp on Ex
£ = □  Ex TEXCAD 
wmm  Ex FEA

-20 -15 -10 -5 0 5 10 15 20 25  30

% Change From Control Case Without TLR 

[0/90] Gr-Ep TLR d = 0.0025 in. y  = 0

Figure 4-6 Effect of TLR volume fraction on TLR induced changes to 
laminate E*.
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Effect of TLR Volume Fraction,Vf, on Ez
Ez TEXCAD 
Ez FEA

4.9 ■

TLR Vf

(% ) 1.9 4

0.3 -

3

-20 -15 -10 -5 0  5 10 15 20  60  65

% Change From Control Case Without TLR 

[0/90] Gr-Ep TLR d = 0.0025 in. vy = 0

Figure 4-7 Effect of TLR volume fraction on TLR induced chan ges to 
laminate Ez.
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Effect of TLR Volume Fraction, Vf, on GXy
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Gxy TEXCAD 
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Figure 4-8 Effect o f TLR volume fraction on TLR induced ch an ges to  
laminate Gxy.
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E ffect o f  TLR M aterial on Ex
C = 3  Ex TEXCAD 
mmm Ex FEA

Steel 

Titanium 

K-Ep 

Gr-Ep

-20 -15 -1 0  -5 0 5 10 15 20 25  30

% Change From Control Case Without TLR 

[0/90] d = 0.0025 in. vy = 0 Vf = 1.9%

Figure 4-9 Effect of TLR material on TLR induced changes to laminate Ex.
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E ffect o f TLR Material on Ez
C = l  Ez TEXCAD

Steel - 
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K-Ep ■ 

Gr-Ep -

-20 -15 -10 -5 0 5 10 15 20 35 40  45

% Change From Control Case Without TLR 

[0/90] d = 0.0025 in. y = 0 Vf = 1.9%

Figure 4-10 Effect of TLR material on TLR induced changes to laminate E z .
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Effect o f  TLR Material on GXy
r = l  Gxy TEXCAD 
mmm Gxy FEA

Steel

Titanium

K-Ep

Gr-Ep

I

C—

-20 -15 -10 -5 0 5 10 15 20  25  30

% Change From Control Case Without TLR 

[0/90] d = 0.0025 in. vj/ = 0 Vf = 1.9%

Figure 4-11 Effect o f TLR material on TLR induced chan ges to laminate 
Gxy-
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E ffect o f TLR Material on
err—1 Gxz TEXCAD 
m m * Gxz FEA

Steel

Titanium

K-Ep

Gr-Ep

-20 -15 -10 -5 0 5 10 15 20 25 30

% Change From Control Case Without TLR 

[0/90] d = 0.0025 in. vj/ =  0 Vf =1.9%

Figure 4-12 Effect of TLR material on TLR induced changes to laminate
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E ffect o f Pure R esin R eg ion s and Curved Fiber on Ex
r ~ m  Ex TEXCAD 
mmm Ex FEA

Drilled Hole

Straight Fiber

Baseline

-20 -15 -10 -5 0 5 10 15 20 25 30

% Change From Control Case Without TLR 

[0/90] Gr-Ep TLR d = 0.0025 in. vjy = 0 Vf = 1.9%

Figure 4-13 Effect of pure resin regions and curved fiber on TLR induced 
chan ges to Ex.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



126

Effect o f Pure R esin R eg ion s and Curved F ibers on Ez

Drilled Hole 

Straight Fiber 

Baseline

-20 -15 -10 -5 0 5 10 15 20 25 30
% Change From Control C ase Without TLR

[0/90] Gr-Ep TLR d = 0.0025 in. v(/ = 0 Vf = 1.9%

t = s  E z  TEXCAD 
m m m  E z  F E A

Figure 4-14 Effect of pure resin regions and curved fiber on TLR induced  
changes to Ez.
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E ffect o f Pure R esin R egions and Curved F ibers on GXy

Drilled Hole 

Straight Fiber 

Baseline

-20 -15 -10 -5 0 5 10 15 20 25 30

% Change From Control C ase Without TLR 

[0/90] Gr-Ep TLR d = 0.0025 in. y  = 0 Vf = 1.9%

rm zi Gxy TEXCAD 
—  Gxy FEA

(

'P
r*

Figure 4-15 Effect of pure resin regions and curved fiber on TLR induced 
changes to Gxy.
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CHAPTER 5 
STRESS AND IMPLICATIONS FOR STRENGTH

A large number o f different “failure mechanisms” for composite laminates can be 

found in the literature. There is not a consensus on the names o f  many o f  them.

However, most failure events can be broken down into combinations and sequences o f 

three simple mechanisms: fiber failure, transverse crack formation, and delamination. 

Stated another way, laminate failure can most always be traced to cracks forming 

transverse to the fiber direction in a the uni-directional ply, and/or cracks forming between 

the plies and/or fibers breaking.

The strength o f any material is the stress at which failure, however defined, occurs. 

In the following sections the effect o f adding TLR will be discussed in terms o f stress and 

implications for failure and strength. After a brief examination of the in-plane tension and 

compression response, the discussion will focus on the “Achilles’ Heel” o f  laminates, that 

is delamination. A strength of materials approach is used to examine the initiation of 

delamination.

5.1. IN-PLANE STRENGTH - TENSION AND COMPRESSION

Unless instability under compression is considered, the tension and compression 

linear elastic responses o f materials as modeled by FEA are equivalent. The term 

compression will be used here, but the stress concentration results o f the FEA should 

apply equally to tension failure.
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As discussed in Chapter I, many researchers have found that adding TLR reduces 

the in-plane properties o f composites. Many discussions cay be found in the literature 

about how the microstructure associated with TLR affects the in-plane tension and 

compression response. Pure resin regions and curved or broken in-plane fibers are 

associated with the reduction o f  in-plane tension and compression properties. While this 

hypothesis is conceptually sound, there have been few detailed experimental or analytical 

studies focusing on the mechanisms o f in-plane property reduction due to the addition o f 

TLR.

The top portions o f Figure 5-1 through Figure 5-3 show the microstructural 

features o f pure resin regions and curved fibers associated with TLR. The figures contain 

close-up views o f the elements color coded for material property, hence showing model 

details. In Figure 5-1 a “drilled hole model,” (DHM) is shown. The TLR laminate is 

modeled as if a hole were drilled in the uni-directional lamina and the TLR inserted. This 

simplification does not include pure resin regions and curved fibers. Figure 5-2 shows a 

close up o f the “straight fiber model,” (SFM). In this case the resin regions have been 

added, but all the in-plane fibers are assumed to remain straight. Figure 5-3 shows the 

baseline model which includes both pure resin regions and curved fibers. As discussed in 

Chapter 3, these three FEA models were all copies o f the same finite element mesh, with 

the materials properties for elements appropriately assigned in each case.

The bottom portions o f Figure 5-1 through Figure 5-3 display the stress 

distributions around the TLR. These plots have the same view of the elements in and 

around the TLR as the plots in the top portions. However, in the stress plots the color

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



coding corresponds to stress level. A 10 ksi compressive load was applied in all cases (see 

Chapter 2 for loading details) and the plots all have the same stress scale, zero to negative 

50 ksi. As expected for a filled hole, in the drilled hole model there was a strong stress 

concentration adjacent to the TLR. In the three figures, the stress concentrations are 

noted and are evidenced by the concentration o f color at the extremes o f  the stress scale. 

Comparing the stress plots for the three models, it can be seen that adding the pure resin 

regions lessened this stress concentration and shielded the TLR from carrying in-plane 

compressive load. Addition of the curved fiber lessened the stress concentration even 

further, and spread the concentrated stress over a larger area. This finding is consistent 

with the practice o f stitching dry fiber preforms rather than prepreg materials. In a dry 

fiber preform, the stitching needle and thread push in-plane fiber aside creating fiber 

curvature that lessens the stress concentration. By stitching prepreg, where the in-plane 

fibers are held in place by the resin, the needle and thread poke a hole and break in-plane 

fibers, resulting in a larger stress concentration and lower in-plane strengths. While having 

fibers that curve around the TLR may be better than effectively drilling a hole, the curved 

fibers themselves offer a potentially weak region where failure can start, resulting in a 

lower in-plane compression strength than laminates without TLR.

Compression failure o f laminated composite materials is a complex set o f  

mechanisms with terms such as “brooming,”, “shear kinking,” “kink band formation,” and 

“sublaminate buckling” commonly used in the literature. No matter which particular 

compression failure theory one subscribes to for a given situation, it stands to reason that 

the concentration o f applied compressive stress caused by adding TLR, will lower the so 

called “compression strength” o f the laminate. Additionally, curved fiber regions in plies
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aligned with the applied load should present a weak area, because these curved fibers are 

not oriented in the direction o f  compressive stress like the rest o f the ply.

In [80] the mechanism o f reduced compression was investigated in terms o f the in- 

plane fiber curvature caused by the surface loops and knots associated with stitching.

Such curvature is out-of-plane with respect to the laminate. However, in-plane curvature 

also occurs as shown in the models in this work, that is curvature due to in-plane fibers 

curving around the TLR inclusion. Such curved fiber imperfections are likely to play an 

important role in compression failure unless the curvature is small enough to be on the 

same scale as the inherent waviness o f  the lamina. Quantitative measurement o f fiber 

waviness is extremely difficult and exact values are not known. Fiber waviness is quite 

variable with the magnitude depending on the quality o f  processing. However, the 

addition of very small diameter (0.010 inches) discontinuous TLR in the form ofZ-Fiber™ 

was found to have a negligible affect on compression strength [131], The non-effect o f 

very small diameter TLR on compression strength would not be evident in the FEA 

studies done in this work, because the in-plane lamina were modeled as perfectly straight 

material with uniform material properties.

5. 2. DELAMINATION INITIATION

Many experimental and analytical studies have concluded that TLR restricts or 

impedes the growth o f delamination. However, there has been little or no detailed study 

o f  whether TLR can delay the onset or initiation o f delamination. In the following 

sections the question o f delamination initiation is addressed. The answer to this question 

has important design implications. The strength o f materials approach used in this work is
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first described and then a discussion o f the results o f  the FEA analysis is given. 

Comparison with experimental work is done in the last section where important 

mechanisms are discussed in the light o f  experimental findings reported in the literature.

5 .2 .1 . STRENGTH OF MATERIALS APPROACH

In the approach used here, it is assumed that a delamination will start in one o f two 

ways. Either a crack will form directly between plies due to an inter-laminar stress 

exceeding the inter-laminar strength o f the material, or a delamination may evolve from a 

transverse crack formed within a ply when a transverse tensile stress exceeds the 

transverse strength (90° strength) o f  the uni-directional lamina. In the second case, 

delamination is assumed to be initiated when the transverse crack is formed. In both types 

o f failure initiation, a maximum stress failure criterion is assumed. This approach is a 

strength o f materials approach, as opposed to a fracture mechanics approach, and hence is 

only valid in addressing the beginning or initiation o f damage. Damage progression is not 

considered.

Two stress components will be studied for the direct formation o f delamination: 

the inter-laminar normal stress, a z, and the inter-laminar shear stress, txz. These stresses 

will be examined at the interface between plies. The maximum transverse tensile principal 

stress, P I, will be studied for the formation o f a transverse crack, and hence initiation o f 

delamination. Figure 5-4 illustrates the concept o f  the maximum transverse tensile stress. 

Each individual lamina is transversely isotropic, with material properties being independent 

o f the direction perpendicular to the longitudinal fiber direction, or “ 1” direction in the 

principal materials coordinates. Hence, a simple application o f the two dimensional
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maximum principal stress formula (Mohr’s circle) yields the maximum transverse tensile 

stress in the ply, for a given state o f global stress. This method is the same as that used in 

[156], The stress at a point within the ply is transformed from the xyz global coordinate 

system to the 123 principal material coordinate system. The maximum transverse tensile 

stress, P I, can then be calculated by:

Equation 5-1.

To examine the effect o f TLR on delamination initiation, the stress results o f the 

unit cell analyses were used. The results in this section are for the ez and Yxz load cases for 

each unit cell model (see Chapter 2 for loading details). These two load cases represent 

inter-laminar normal and inter-laminar shear conditions, respectively. In a pure ez loading, 

the delamination is most likely to initiate directly from ctz at the ply interface, or indirectly 

from PI in an off-axis ply. The symbol P lz will be used to refer to the maximum 

transverse tensile stress under inter-laminar normal loading. Likewise for loading, xa  

and P f '2 will be used to refer to the stresses that are most likely to lead to delamination 

initiation. The inter-laminar stresses a z and Txz are o f interest at the interface between 

plies, hence the average stresses were calculated from the FEA results for the nodes at the 

interface. These interface nodes belong to the common face o f adjacent elements on 

opposite sides o f the interface. The P lz and P lxz stresses were calculated only at nodes 

within the off-axis plies (90° or 45° plies). The values for P 1 did not include results for 

any nodes at the interface or ply boundaries.
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The “nodal stress” output o f COSMOS/M was used to generate these results. The 

“nodal stress” is the average of the values o f  element stress at the node for all the elements 

to which that node belongs. In order to avoid having the results unduly influenced by 

extreme values that could occur due to numerical error, and in order to obtain a measure 

o f  stress over certain regions of interest, a stress averaging technique was used. The 

“nodal stresses” were averaged over areas shown in Figure 5-5 and Figure 5-6. These 

areas were selected in order to minimize potential boundary effects and to examine the 

stress both inside and outside the TLR. The “in” area refers to the cross section the TLR 

at the ply interface. The “out” area refers to the area outside the TLR and includes nodes 

belonging to the microstructural features o f  pure matrix and curved fiber. The “lam” area 

refers to nodes out in the lamina that belong solely to elements with straight lamina 

properties. Thus comparisons o f “in” and “out” average stress will illustrate potential load 

path changes where adding the TLR directs the load away from the interface into the 

TLR. Comparisons o f the “out” and “lam” areas demonstrates the effects o f  the pure resin 

regions and curved fibers..

These average stresses have been normalized by the same averaged stress found in 

the control cases without TLR. With the exception o f the models with 45° plies, in all 

control cases the applied 10 ksi a z or x^, resulted in uniform 10 ksi stress throughout the 

unit cell. There was a small variation o f stress in control cases that contained 45° plies. 

This variation was always less than two percent and was suspected to be a result of 

imperfect boundary conditions as previously discussed in section 2.2.2. This small 

variation was neglected and normalizing consisted o f dividing the stress value by 10,000. 

For normalized stress values greater than 1.0, adding TLR caused that stress component
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to increase. Likewise, normalized values less than 1.0 indicate that the stress at the point 

in question was lowered by the addition o f TLR.

5. 2.2. UNIT CELL INTER-LAMINAR NORMAL LOADING

Values for the average normalized inter-laminar normal stress, a z, are shown in 

Figure 5-7. The shaded bar is the average o f the values for all the nodes in the “in” area. 

The line above the bar denotes the peak values. In all cases o f  inter-laminar normal 

loading, the TLR picked up significant load: up to a factor o f  about 16 times the control 

value. The normalized a z for the “out” and “lam” areas is shown in Figure 5-8. As can be 

seen in the figure, the normal stress was lowered in all models, as measured over “out” or 

“lam” areas. With the exception o f the model with TLR at a 45° degree angle through the 

thickness, all the peak values o f the normalized inter-laminar stress, az, are below one. 

Hence, adding TLR caused a load path change that resulted in the TLR carrying a 

significant portion of the normal stress, relieving the inter-laminar normal stress at the 

interface.

The distribution o f normalized crz in the “in” and “out” areas is plotted in the 

scatter plot shown in Figure 5-9. The normalized, az has a uniformly high value inside the 

TLR and a low value outside the TLR. In the control case, all data points would lie on a 

plane at a value o f one. Hence the load path change is clearly evident with the bi-level 

distribution o f normalized o z. Since the values are greater than one within the TLR, the 

TLR clearly picks up load, allowing the rest o f the interface to carry less stress, with 

values less than one. These lower a z values between TLR pins (numbers less than 1.0) 

can be clearly seen in the scatter plot shown in Figure 5-10. Comparing the “out” and
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“Iam” values shown in Figure 5-10, it can be seen that the microstructural features o f  pure 

resin regions and curved fibers did not play a significant role in inter-laminar normal 

loading. While some areas o f  neat resin carry little stress, the limits o f  g z in the “out” area 

matches that found in the “lam” area for all three: baseline model, straight fiber model and 

the drilled hole model. With the exception o f a wide range o f values found at the nodes 

near the TLR, the a z distribution in the 45° TLR model is very similar (see Figure 5-11 

and Figure 5-12). This lowering o f interface stress is consistent in all the different models 

including the case with the lowest volume fraction o f TLR and the case with the relatively 

soft Kevlar® TLR (see Figure 5-8).

The question o f  whether or not the results were affected by the method o f 

introducing load at the boundaries is addressed by examining the inter-laminar stress 

results found at the mid-planes o f  both the [0/90] and the [0/90]9 models. Both models 

gave almost identical results. A stress contour plot o f the actual inter-laminar normal 

stress, ctz, in the 18 ply model is shown in Figure 5-13.

The maximum transverse tensile stress, P l z , for all models is shown in Figure 5- 

14. In general, adding TLR lowered the P lz within the off-axis plies in the area away from 

the TLR. All normalized P lz averages are below one. However, in the models with an 

angled TLR, the range of the P lz is much higher than one, suggesting that if  the TLR is 

not oriented perpendicular to the plane o f the laminate, a transverse crack will be more 

likely to form in an off-axis ply. As was the case in the inter-laminar normal stress, ctz, 

results, the pure resin regions and curved fiber increased the range o f P l z.
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Examining the data for the various parameters, the TLR volume fraction and TLR 

material exerted the most influence on ctz and P lz. This finding makes sense in that one 

would expect the amount and stiffness o f the TLR to be important factors. An effective 

single measure o f  these two parameters can be found in what will be referred to as the 

“effective extensional load” of the TLR, or nEA. Multiplying the axial modulus o f the 

TLR, E, by the XY cross-sectional area o f the TLR, A, and the number o f  TLR per unit 

area, n, results in a number indicating the relative load carrying ability o f  the TLR. The 

units o f nEA are the same as those for stress. Values o f nEA for the cases used in this 

study are shown in Table 5-1. Plots o f  nEA versus az and P lz are shown in figures Figure 

5-15 and Figure 5-16, respectively. As can be seen in the figures, there is a direct 

relationship between nEA and the lessening o f the stress between the TLR.

Table 5-1 TLR Effective extensional load for the different com binations of 
TLR parameters used in this study.

TLR Vf n d nEA
Material (%) (1/in.) (in.) (psi)
Gr-EP 1.9% 38 0.025 0.38
Gr-EP 1.9% 242 0.010 0.39
Gr-EP 0.3% 38 0.010 0.06
Gr-EP 4.9% 100 0.025 1.01
K-Ep 1.9% 38 0.025 0.10

Titanium 1.9% 38 0.025 0.30
Steel 1.9% 38 0.025 0.56

As the data indicate, adding very stiff fibrous reinforcement in a trans-laminar 

fashion increased the Z direction stiffness and reduced the inter-laminar stress between the 

TLR. Assuming that in the real material, load is transferred between lamina by the TLR as 

it was in these models, the initiation o f an inter-laminar normal stress induced delamination
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would require a higher applied load. The addition o f TLR improved the resistance to a 

mode I induced delamination, even for the area between the individual TLR.

5. 2.3. UNIT CELL INTER-LAMINAR SHEAR LOADING

Values for the normalized are shown in Figure 5-17 and Figure 5-18. The 

shaded bar is the average o f the values for all the nodes in the selected area. The line 

above the bar denotes the peak values. Unlike the results for ctz> the TLR did not pick up 

the shear load in all the models. The shear stress was redirected away from the interface 

into the TLR only in the cases with titanium and steel TLR. It is o f special interest to note 

that changing the angle o f the TLR did not allow it to carry more shear as might have been 

expected. Even in the 45° TLR model, the x^ values in and outside the pin all range 

above and below one, leading to the suggestion that simply having angled TLR will not 

delay shear induced delamination initiation. This finding is evidenced in the bar charts of 

Figure 5-17 and Figure 5-18, the scatter plots shown in Figure 5-19 and Figure 5-20, and 

in the stress plots o f Figure 5-21 and Figure 5-22. A shear stress load path change, with 

stress moving away from the interface and into the TLR only occurred in the cases where 

the shear modulus of the TLR was an order o f magnitude higher than that o f  the un­

reinforced laminate, that is in the titanium and steel TLR cases (see the material input 

properties, Table 3-2). The distribution o f the shear stress in the steel case is similar to 

that o f  the normal stress ctz in the baseline case (see Figure 5-23, Figure 5-24 and Figure 

5-25). The shear transfer to the TLR from the surrounding area is significant. However, 

the shear stress is not uniform within the TLR or in the surrounding area as it was in the oz 

results.
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This non-uniformity o f  normalized shear stress was evident to an even greater 

degree in the results for the maximum transverse tensile stress, P I*2 (see Figure 5-26 and 

Figure 5-27). Although the average P I”  was below one in both the “out” and “lam” 

areas, the range o f  the values goes much higher than one. It can be seen in Figure 5-27 

that even in a steel TLR material, transverse cracks would be likely to initiate in the area 

close to the TLR, where high stress gradients exist. The fact that there was essentially no 

variation o f P I”  in the drilled hole model suggests that the tendency for greater transverse 

cracking is due to presence o f  the pure resin regions.

As was the case for the normal stress, the TLR volume fraction and TLR material 

exerted the most influence on t** and P I” . A TLR “effective shear load” can be defined 

as nGA, where G is the longitudinal-transverse shear modulus o f the TLR, A is the XY 

cross-sectional area o f the TLR, and n is the number of TLR per unit area. The number 

for nGA indicates the relative shear load carrying ability o f the TLR. The units o f  nGA 

are the same as those for stress. Values o f nGA for the cases used in this study are shown 

in Table 5-2. Compared to Gr-Ep or K-Ep TLR using two percent titanium or steel TLR 

results in an order o f magnitude increase in nGA. The TLR material far outweighs the 

TLR volume fraction in the shear cases. As discussed above, the shear load path was 

significantly changed only when steel or titanium were used. This finding is also clearly 

evident in the plots o f nGA versus t** and PI'”  shown in Figure 5-28 and Figure 5-29, 

respectively. Only values o f nGA corresponding to steel and titanium TLR lowered the 

average and maximum txz and the average P I” . However, the maximum values o f 

normalized P I”  were much greater than one in the titanium and steel cases.
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Table 5-2 TLR Effective shear load for the different combinations of TLR 
parameters used in this study.

TLR Vf n d nGA
Material (%) (1/in.) (in.) (psi)
Gr-EP 1.9% 38 0.025 0.01
Gr-EP 1.9% 242 0.010 0.01
Gr-EP 0.3% 38 0.010 0.00
Gr-EP 4.9% 100 0.025 0.03
K-Ep 1.9% 38 0.025 0.01

Titanium 1.9% 38 0.025 0.12
Steel 1.9% 38 0.025 0.22

Considering the inter-laminar shear stress alone, these results imply that using a 

TLR with a very large shear modulus can delay the onset o f  delamination. In essence, 

adding small amounts o f reinforcement with very high shear stiffness in a trans-Iaminar 

fashion enables the material to carry a higher inter-laminar shear load before a 

delamination would initiate directly. This finding is based on the assumption that in the 

real material, load is transferred between lamina by the TLR as it was in these models. 

However, transverse cracking would be even more likely to occur, allowing an indirect 

contribution to the initiation o f a delamination. Hence it is unlikely that TLR can 

effectively prevent the initiation o f delamination due to a mode II or inter-laminar shear 

type load dominance. As just discussed above, damage in the form o f transverse cracks is 

more likely to begin in TLR material than un-reinforced material. Once cracks start to 

form near the TLR, the ability to transfer the shear stress into the TLR would be lowered 

and the inclination to delaminate is the same or greater.
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The following two sections discuss the important mechanisms involved in some 

common mechanical tests that involve the creation o f delaminations. The important 

concepts will be discussed in light of experimental evidence reported in the literature.

5. 2.4.1. Delamination Initiation - Material R esponse
Testing to induce edge delamination under tensile loading is an example o f a test

developed to study the initiation and growth of delamination. Analytical and experimental 

work described in [36] was used to demonstrate that TLR could slow the growth of 

delamination and allow the specimen to carry a higher ultimate load before final failure. 

The TLR effect varied greatly depending on the layup, and no conclusive evidence was 

given that suggested that TLR delayed the initiation o f delamination. The results o f edge 

delamination tests with and without Z-Fiber™ are reported in [131], The addition o f only 

one percent volume o f TLR practically doubled the load to initiate delamination.

However, the initiation o f delamination was determined by the change in slope o f a load 

displacement curve, rather than detailed observations o f failure in the specimen. It is 

possible that small and obscure delaminations occurred at or near the same value o f load in 

specimens with and without TLR. In the specimens with Z-Fiber™, TLR bridging the 

delaminations could have carried load allowing the specimen to exhibit the same or similar 

overall load displacement response. Minor changes in the slope o f the lead displacement 

curve could have also been overlooked Examples o f the load displacement curves were 

not included in the paper.
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The compression-after-impact (CAI) test is another test that has shown the benefit 

o f TLR. As noted in Chapter 1, many studies on the low velocity impact o f laminates with 

and without TLR have been reported in the literature. It is well documented that low 

velocity impact can result in large delaminations internal to the laminate that are not visible 

to the naked eye. The sublaminates created by the delaminations will buckle under 

compressive loading, resulting in failure o f the specimen at a lower than anticipated load. 

The addition o f  TLR has been shown to improve both damage resistance, as shown by a 

smaller damage area for a given impact energy or force, and damage tolerance as shown 

by a higher failure load for a given damage size. In terms o f  damage tolerance, the TLR 

reinforces the sublaminates, preventing them from buckling at a low load. However, the 

question considered in this work is that o f damage resistance. Even in the low velocity 

impact o f traditional laminates without TLR, the exact sequence o f damage and 

delamination formation is unclear. Nevertheless the sequence is likely to begin at some 

point with the formation o f transverse cracks within plies and/or small delaminations 

between the plies. As the impact event continues with transverse displacement o f  the 

laminated plate, unstable growth o f those original cracks/delaminations occurs. The 

presence o f TLR may not prevent the onset of the initial cracks, but it can play a role in 

the growth o f the delamination. This fact would explain how adding TLR results in both 

smaller damage areas for a given impact energy and higher compressive strengths for a 

given state o f damage.

It is the resistance to the growth o f delamination that can account for the improved 

performance o f TLR laminates in many materials tests. This resistance to delamination 

growth can be traced to the fact the as a crack progresses past TLR, the individual TLR
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often stay intact behind the crack front, thus bridging the crack faces. The TLR 

consequently applies a traction across the crack faces in the wake o f the advancing crack, 

thereby affecting the energy and load required to further grow the crack. This concept is a 

fracture mechanics problem, and section 1.5.3 sites important references using this 

approach.

5. 2.4.2. Delamination Initiation - Structural R esponse
As noted in Chapter 1, many researchers have investigated using TLR in joining

applications. In stiffened structures where the stiffener is simply adhesively bonded or co­

cured, the relatively soft region between the stiffener and skin is often the weak point in 

the design. Failure typically initiates at the tip o f the stiffener flange or at the “noodle” 

area underneath the web o f the stiffener. Once initiated, the delamination will typically 

grow in an unstable fashion along the area between the stiffener and skin causing the 

structure to fail catastrophically. I f  TLR is used in conjunction with co-curing, the 

stiffener typically does not separate catastrophically, and the structure carries a higher 

ultimate load (see [21, 22, 25-31, 132]).

The fine points o f  the mechanisms o f failure are rarely discussed in detail in reports 

on structural tests, and although some authors may refer to TLR having delayed damage 

initiation, care must be taken to understand how damage initiation is defined and 

identified. It is likely that transverse cracks and small delaminations form at similar loads 

in the same area o f the structure but that TLR prevents the unstable growth o f  the 

delamination, that is the separation o f a stiffener. The TLR structure may have an overall 

load response similar to that o f  an un-reinforced structure with two major differences; the
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“damage initiation” as noted by a change in the over all structural response occurs at a 

higher load, and ultimate failure is more gradual and occurs at a significantly higher load. 

Although not discussed by all researchers who studied TLR for joining applications, this 

concept can be found in literature as early as 1981 [22]. In that study TLR in the form of 

stitching was used for hat stiffener attachment in marine applications. It was concluded 

that stitching did not delay the initial formation o f cracks, but it did allow the structure to 

achieve a higher ultimate load.

The unit cell FEA results discussed in sections 5.2.2 and 5.2.3 support these 

findings. Although extremely stiff TLR do carry high load in undamaged materials, it does 

not prevent or delay transverse cracking and delamination.

A concept to enable the TLR to carry more o f the inter-laminar load in undamaged 

material is suggested in [132], The idea proposed is to put a compliant rubber-like layer 

between the stiffener and the skin. This layer has a lower transverse modulus than the skin 

and stiffener material, thus forcing load to be carried by the TLR. If  the TLR carries the 

load, stress may be kept away form the areas where damage initiates, enabling higher loads 

before delamination begins. Early FEA results look promising but experimental results 

have yet to be reported.

5. 3. SIGNIFICANCE AND APPLICATION

As suggested in section 5.1, in-plane tensile and compression property reduction 

can be minimized with the use o f small diameter TLR. If the structure will have holes or 

other geometric discontinuities with very large stress concentrations, the potential o f
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minor in-plane property reduction caused by TLR is o f limited concern. Therefore the 

most important questions in regard to TLR are how does it help and how much is needed?

The unit cell FEA results discussed in section 5.2.2 suggest that axially stiff TLR 

can pick up a significant amount o f applied inter-laminar normal stress, a z, and 

consequently delay the initiation o f delamination. However, perfect bonding between the 

TLR and surrounding laminate was assumed. Real materials will not have “perfect” 

bonding, but they will almost always have cracks in the pure resin regions, as well as 

cracks in and around the TLR. These imperfections would likely limit the load transfer to 

the TLR and prevent it from carrying the amount o f stress suggested in the results for 

these models.

The unit cell FEA results discussed in 5.2.3 suggest that the tendency for 

delamination initiation from a direct inter-laminar shear stress can only be delayed with the 

use o f  a TLR with an extremely high shear stiffness, such as titanium and steel. However, 

even if extremely shear-stiff TLR are used, the tendency for transverse cracking is not 

reduced, but increased. Transverse cracks would then allow the formation o f 

delaminations and further prevent shear stress transfer from the lamina into the TLR. The 

results o f this detailed investigation of TLR materials could not conclusively prove that 

TLR delays damage initiation. The benefits o f using TLR that have been shown 

experimentally and reported in the literature can all be explained by the restriction o f 

damage propagation.

As has been shown repeatedly in the literature, TLR can be used to overcome the 

inherent weaknesses o f composite laminates, and thus offers immense value in the design
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o f composite structures. For this value to be achieved, the design philosophy must be to 

contain a known or assumed crack size, rather than to prevent cracking in the first place. 

Such an approach is typical for designing aerostructures where impact damage is a critical 

driver. However, designing a stiffened structure with design ultimate loads beyond where 

stiffeners would “start” to debond is not practical in un-reinforced laminates, and can only 

be accomplished in mechanically fastened stiffeners or stiffeners attached with TLR.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



L47

Lamina

T L R

Material

Element Stress

Figure 5-1 Normal stress a* in the 0° ply of the drilled hole m odel under 
com pressive loading.
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Figure 5-2 Normal stress  o x in the 0° ply of the straight fiber model under 
com pressive loading.
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Figure 5-3 Normal stress ox in the 0° ply o f the baseline model under 
com pressive loading.
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X  (laminate axis)

Figure 5-4 Illustration of the transverse state of stress in an angle ply [156].
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“in” nodes

“out” nodes

Figure 5-5 Plane of nodes used to average stress inside and outside the 
TLR at the ply interface or within a ply.
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“lam” nodes 
at ply interface

“lam” nodes 
within a ply

Figure 5-6 Plane of nodes used to average the maximum transverse tensile  
stress  over the area out in the lamina away from the TLR, at the ply 
interface and within the ply.
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Inter-Laminar Normal Stress, a z
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Figure 5-7 Normalized inter-laminar normal stress, aZI at the ply interface 
averaged over the “in” area inside the TLR. The key below the figure 
explains the identifiers used on the X axis.
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Inter-Laminar Normal S tress , a z
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Figure 5-8 Normalized inter-laminar stress, o z , at the ply interface 
averaged over the “out” and “lam” areas outside the TLR. The key below  
the figure explains the identifiers used on the X axis.
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Inter-Laminar Normal Stress at the Ply Interface, az
Baseline V p 1 .9% d=0.025 TLR=Gr/Ep \|/=0
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Figure 5-9 Scatter plot of the normalized inter-laminar normal stress,cj2, in 
the “in” and “out” areas at the ply interface of the [0/90] baseline model.
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Inter-Laminar Normal Stress at the Ply Interface, oz
Baseline V p 1 .9% d=0.025 TLR=Gr/Ep i|/=0
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Figure 5-10 Scatter plot of the normalized inter-laminar normal stress, ctZj in 
the “out” and “lam” areas at the ply interface of the [0/90] baseline model.
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Inter-Laminar Normal Stress at the Ply Interface, <jz
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Figure 5-11 Scatter plot of the normalized inter-laminar normal stress, a 2, in 
the “in” and “out” areas at the ply interface of the [0/90], iy=45° model.
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Inter-Laminar Normal Stress at the Ply Interface, a z
Vff=1.9% d=0.025 TLR=Gr/Ep y=45

Y Coordinate

Figure 5-12 Scatter plot of the normalized inter-laminar normal stress, a2, 
in the “out” and “lam” areas at the ply interface of the [0/90], vy=45° model.
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Figure 5-13 Inter-laminar normal stress , cjz , in the [0/90]g model under Z 
direction loading.
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Figure 5-14 Normalized maximum transverse tensile stress under Z 
direction normal loading, P1z, averaged over the “out” and “lam” areas 
within the off-axis ply. The key below the figure explains the identifiers 
used  on the X axis.
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TLR Effective Extensional Load versus cr2 in "lam” Area
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Figure 5-15 Effect o f TLR effective extensional load, nEA, on the inter- 
laminar normal stress, o z, in the “lam” area.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



162

TLR Effective Extensional Load versus P1z in "lam" Area
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Figure 5-16 Effect of TLR effective extensional load, nEA, on the maximum 
transverse tensile stress, P1z, in the “lam” area.
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Inter-Laminar Shear Stress, t x z
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Figure 5-17 Normalized inter-laminar shear stress, x XZt at the interface 
averaged over the “in” area in the TLR. The key below the figure explains 
the identifiers used on the X axis.
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Inter-Laminar Shear Stress, txz
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Figure 5-18 Normalized inter-laminar shear stress, x «, at the interface 
averaged over the “out” and “lam” areas outside of the TLR. The key below  
the figure explains the identifiers used on the X axis.
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Inter-Laminar Shear Stress at the Ply Interface, xxz
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Figure 5-19 Scatter plot of the normalized inter-laminar shear stress , xx2, 
over the “in,” “out” and “lam” areas o f  the baseline model.
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Inter-Laminar Shear Stress at the Ply Interface, txz
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Figure 5-20 Scatter plot of the normalized inter-laminar shear stress, x«, 
over the “in,” “out” and “lam” areas of the model with the TLR at a 
through-thickness angle of 45°.
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Figure 5-21 Inter-laminar shear stress, t « ,  in the baseline model under y * *  

loading.
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Figure 5-22 Inter-laminar shear stress, x«, in the model with the TLR at a 
through-thickness angle of 45°, under yxz loading.
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Inter-Laminar Shear Stress at the Ply Interface, txz
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Figure 5-24 Scatter plot of the normalized inter-laminar shear stress, txz, 
over the “out” and “lam” areas outside the TLR, at the interface of the steel 
TLR model.
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Figure 5-25 Inter-laminar shear stress, in the steel TLR m odel under 
loading.
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Figure 5-26 The normalized maximum transverse tensile stress, P1xz, 
averaged over the “out” and “lam” areas for all model under y« loading. 
The key below the figure explains the identifiers used on the X axis.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



173

Maximum Transverse Tension Principal Stress, P I*2 
Vf=1.9% d=0.025 TLR=Steel y=0

out

Y Coordinate

Figure 5-27 Scatter plot o f the normalized maximum transverse tensile  
stress, P1xz, over the “out” and “lam” areas within the 90° ply of the steel 
TLR model under Yxz loading.
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Figure 5-28 Effect of the TLR effective shear load, nGA, on the inter- 
laminar shear stress, x«, in the “lam” area.
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TLR Effective Shear Load versus PI512 in "lam" Area
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Figure 5-29 Effect of the TLR effective shear load, nGA, on the maximum 
transverse tensile stress, PI*2, in the “lam” area.
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' CHAPTER 6 
APPLICATION OF TLR TO AN INTER-LAMINAR 

DOMINATED PROBLEM

The results o f the unit cell analysis presented in Chapter 5 were based on the 

assumption o f a uniform loading applied to the unit cell. In actual structures made from 

composite materials, stress gradients in the regions where failure typically occur are not 

uniform, even over areas small enough to be on the scale o f the unit cell. Hence the 

conclusions presented in the previous chapter need to be verified on a more realistic 

problem with non-uniform loading. In the following sections a simplified stiffener pull-off 

problem [156] is modeled and the results are presented in terms o f damage initiation. A 

strength o f  materials approach similar to that discussed in Chapter 5 was used. This 

chapter closes with a few comments on the application and significance of the results.

6. 1. SKIN-STRINGER DEBOND TEST AND MODEL

Secondarily bonding or co-curing frames or stringers to skins is one method o f 

reducing or eliminating the use o f fasteners. Such manufacturing techniques offers 

potential to provide an economical means o f manufacturing composite stiffened structure. 

One potential problem with bonded or co-cured stiffener attachment is the disbonding o f 

the stiffener from the skin. This disbonding typically results in the catastrophic failure of 

the structure.

The stiffener pull-off test is a common method o f evaluating this weakness o f 

bonded or co-cured composite stiffened structure. However, the typical stiffener pull-off
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test specimen is expensive to fabricate and test, making the use o f this test for materials 

screening impractical. A simplified test o f the bond strength between a skin and a 

secondarily bonded or co-cured stiffener has been proposed for when the dominant 

loading in the skin is flexure along the edge o f the stiffener [156], An illustration o f the 

stiffener-skin problem is shown in Figure 6-1. The test is performed by putting a flanged 

skin in three or four point bending, as shown in Figure 6-2 and Figure 6-3. The flange- 

skin specimen is thus a representation o f larger stiffened skin structure. This simple and 

relatively inexpensive test captures the same failure mechanisms as in the larger structure. 

The authors o f  [156] used both detailed observations o f failure and finite element analysis 

to determine that failure initiates at the tip o f the flange, either at the interface between the 

stiffener and skin or in the topmost skin ply.

In order to model a problem of reasonable size that captures both the correct loads 

and failure mechanisms, the tapered flange-skin specimen shown in Figure 6-2 was 

modeled in three point bending. The model details are discussed in section 3.4. The FEA 

mesh is shown in Figure 6-4. Four different versions o f this basic model were analyzed. 

The control model without TLR is shown in Figure 6-4. This baseline model was 

duplicated and TLR was added by changing the material properties for certain elements. 

Three variations were examined: a graphite-epoxy TLR with a diameter o f 0.025 inches, a 

graphite-epoxy TLR with a diameter o f 0.008 inches, and a steel TLR with a diameter of 

0.008 inches. The FEA mesh for the stiffener-skin models with TLR is shown in Figure 6- 

5. As discussed in section 3.4, there were two major limitations associated with these 

large models: the FEA mesh was not fine enough to accurately capture the severe stress 

gradients associated with the different and discontinuous materials o f the composite
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microstructure, and error was introduced by using the COSMOS/M “bond” feature to join 

regions o f  incompatible mesh. In spite o f these limitations, it was feit that these models 

were sufficient to address the issue o f damage initiation between individual TLR.

6. 2. EFFECT OF TLR ON DAMAGE INITIATION

Use o f  the finite element method results in detailed stress and strain information at 

every point in the model. The following discussion will focus on the stress results for 

selected regions o f interest. These regions o f interest, shown in Figure 6-6, are at the 

interface between the skin and flange and within the topmost +45 ply o f  the skin. These 

regions correspond to where failure was observed to have initiated [156], In order to 

avoid potential boundary effects, the results will be shown only for internal nodes. Values 

for nodes within three elements o f the edge o f the specimen are not shown. The given 

stress results consist o f the “nodal stress” output from COSMOS/M, defined as the 

average o f the values o f element stress at the node for all the elements to which that node 

belongs.

Contour plots o f the inter-laminar normal and shear stresses for the four models 

are shown in Figure 6-7 through Figure 6-10. The stress scale is kept constant for all four 

o f  the figures. The range o f stress shown does not include the maximum stresses 

encountered in the TLR, but rather allows a comparison o f  what is happening between the 

TLR in the various models.

As required physically, the inter-laminar normal and shear stresses are zero at the 

surface o f the skin not covered by the flange. In the case without TLR (Figure 6-7) there 

is a concentration o f  both normal and shear stress just behind the flange tip. This
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concentration is a result o f  both the geometrical and material discontinuities where the 

bottom ply o f  the flange ends. This concentration o f stress is partially due to the artificially 

sharp com er in the FEA model. The real material would have a com er o f  some radius. 

Nonetheless, it is in this region that failure initiated according to the experimental 

observations in [156], The objective o f  this analysis was not to determine exact stress 

values, but rather to study the effect o f the TLR. The inter-laminar stresses for the models 

with TLR are shown in Figure 6-8 through Figure 6-10. As can be seen in the figures, the 

areas o f  stress concentrations remain, but are somewhat reduced.

It is difficult to make quantitative comparisons with contour plots such as those 

shown in Figure 6-7 through Figure 6-10. To gain a better feel for stress state at the 

interface, three dimensional surface plots of the inter-laminar normal stress for the cases 

without TLR and with steel TLR are shown in Figure 6-11 and Figure 6-12. In the case 

without TLR, the stress concentration just behind the flange tip is clearly visible as a ridge 

o f high stress. A somewhat shorter ridge of stress is evident in the surface plot o f  the 

results for the model with steel TLR. The locations o f the TLR are clearly indicated by 

the sharp spikes. The values in and next to the TLR are known to be inaccurate due to the 

very high stress gradients and coarse finite element mesh.

Although the three dimensional surface plot gives a different perspective o f  the 

stress state at the interface, quantitative comparisons o f models with and without TLR are 

still difficult. To make such comparisons, the normalized stress was calculated and plotted 

for a row o f  nodes across the width o f the model. The point o f  intersection o f this Y 

direction row o f nodes and the XZ plane is shown in Figure 6-6. The normalized stress
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was calculated by taking the value o f stress at a node in a model with TLR and dividing it 

by the value o f stress for the same node in the control model without TLR. Values less 

than one indicate that adding the TLR lowered the stress at that point. The normalized 

shear and normal stresses at the interface between the flange and skin and the normalized 

maximum transverse tensile stress within the top +45° ply o f  the skin are shown in Figure 

6-13 through Figure 6-15. The results for all three models with TLR are plotted in each 

figure. The position across the width (Y direction) begins and ends three elements in from 

the edge o f the specimen. The TLR locations are marked on the plot with both the small 

diameter and large diameter TLR position being indicated in the same figure. The values 

for the nodes that reside inside the TLR are not plotted. Although there may be some 

question as to the accuracy o f the values for the nodes inside o f and next to the TLR, this 

discussion is focused on the area between the TLR and the initiation o f damage therein.

The normalized inter-laminar normal stress, a z, at the interface between the flange 

and skin is shown in Figure 6-13. The normalized stress for both models with Gr-Ep TLR 

stay at or near a value o f one. Therefore it was concluded that adding two percent o f Gr- 

Ep TLR did not lower the tendency to delaminate due to a high crz. However, adding the 

steel TLR did lower the normal stress. The normalized values were in the 0.80 to 0.85 

range in the regions between the steel TLR. Hence, compared to a structure without 

TLR, the addition o f steel TLR would result in higher loads being required to get the area 

between the TLR to fail due to the inter-laminar normal stress.

The same trend was observed in the normalized inter-laminar shear stress, x*z, at 

the flange-skin interface (see Figure 6-14 ). Only the steel TLR made a difference in the
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stress in the unreinforced regions between the TLR. There was also no significant 

gradient o f  stress across the region between the TLR, a distance six times the diameter o f 

the TLR.

Interpreting these results alone leads to a conclusion similar to that discussed in the 

previous chapter; only an extremely stiff TLR such as steel can pick up the inter-laminar 

loads and relieve the inter-laminar stress in the region between the TLR. Such an effect 

would delay the onset o f  a delamination caused by direct inter-laminar stress.

However there is also the question o f transverse cracking. As discussed in section 

5.2, if within the ply the maximum transverse tensile principal stress, P I, is higher than the 

transverse tensile strength o f the lamina, a transverse crack will form. The normalized 

maximum transverse tensile stress, PI, is plotted in Figure 6-15. There are fewer points 

plotted because this region o f the model was represented by only the mid-side nodes o f the 

20 node brick elements. These results are consistent with those o f the inter-laminar 

stresses; only the steel TLR decreased the propensity to transverse crack within the top 

45° ply o f the skin. This finding was aiso discussed in the results o f the previous chapter. 

However, unlike in Chapter 5, these large coarse models do not allow examination o f the 

stresses next to the TLR where the likelihood o f transverse cracking may be increased.

6. 3. SIGNIFICANCE AND APPLICATION

As was the case in the unit cell models, these flange-skin models were proposed 

with the limiting assumptions o f perfect bonding and complete load transfer between the 

lamina and the TLR. These assumption are unlikely to hold true in most real TLR 

composites. If  these limitations are set aside, the results o f the flange-skin modeling can

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



182

be interpreted to conclude that only TLR with a stiffness on the order o f  that o f  steel can 

be effective at preventing the initiation o f delamination. However, as noted in the 

literature review discussed in Chapter 1, Kevlar® threads have been used by many 

researchers to increase the performance o f laminates in many inter-laminar dominated 

tests. This fact, along with the lack o f prevention o f damage initiation by KevIarO-epoxy 

and graphite-epoxy TLR, leads to the hypothesis that the true benefit o f  TLR lies only in 

its ability to retard the growth of damage, and not in an any potential capability to prevent 

it from initiating.
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Figure 6-1 Illustration of stiffener-skin interface [156].
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Figure 6-2 Proposed flange-skin test specim ens for simulation of the 
stiffener-skin disbond problem in a stiffener pull-off test [156].
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Figure 6-3 Bending test configurations for flange-skin test [156].
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Figure 6-4 Finite elem ent model o f the flange-skin specim en without TLR.
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Figure 6-5 Fine mesh regions o f flange-skin FEA m odels with TLR.
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Figure 6-6 R egions of interest in the flange-skin specim en model over 
which stress  is plotted in subsequent figures.
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Figure 6-7 Inter-laminar normal and shear stresses at the flange-skin 
interface in the control model without TLR.
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Figure 6-8 Inter-laminar normal and shear s tr e sse s  at the flange-skin  
interface in the model with Gr-Ep TLR of diameter 0.025 inches at a volume 
fraction o f two percent
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Figure 6-9 Inter-iaminar normal and sh ear stresse s  at the flange-skin  
interface in the model with Gr-Ep TLR o f diameter 0.008 inches at a volume 
fraction o f two percent.
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Figure 6-10 inter-laminar normal and shear s tr e sse s  at the flange-skin  
interface in the model with steel TLR of diameter 0.008 inches at a volume 
fraction o f two percent.
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Figure 6-12 Inter-laminar normal stress at the flange-skin interface for the
model with steel TLR of diameter 0.008 inches at a volume fraction o f two 
percent.
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Figure 6-13 Normalized inter-laminar normal stress across the width of the 
model at the flange-skin interface just behind the flange tip.
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Figure 6-14 Normalized inter-laminar shear stress across the width of the 
model at the flange-skin interface just behind the flange tip.
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Figure 6-15 Normalized maximum transverse tensile stress within the top 
+45° ply of the skin, across the width of the model just behind the flange 
tip.
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CHAPTER 7 
SUMMARY AND CONCLUDING REMARKS

A Trans-Laminar-Reinforced (TLR) composite has been defined in this work as a 

composite laminate with up to five percent of its volume in the form o f  fibrous 

reinforcement oriented in a trans-laminar fashion in the through-thickness direction. The 

trans-laminar reinforcement can be in the form o f continuous rovings or threads inserted 

by industrial stitching machines. TLR can also take the form o f discontinuous rods or 

pins. Z-Fiber™ materials are a commercial example o f discontinuous TLR. Both 

analytical and experimental work documented in the literature has consistently 

demonstrated that adding TLR to an otherwise two dimensional laminate results in the 

following advantages: significant increase in the load required for sublaminate buckling of 

delaminated plates; substantial improvements in the compression-after-impact response; 

considerable increase in the fracture toughness in mode I (double cantilever beam) and 

mode II (end notch flexure); and severely restricted size and growth o f impact damage and 

edge delamination. TLR has also been shown to completely eliminate catastrophic 

stiffener disbonding as a failure mode in stiffened structures. Many o f these benefits have 

been documented for both static and fatigue loading. By bridging cracks between lamina, 

even small amounts (order o f one percent volume) o f TLR significantly alter the 

mechanical response o f the laminate and directly strengthen a severe weakness o f 

laminated composites, that is delamination.
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Considerable research is being conducted on crack bridging mechanisms and the 

restriction o f damage growth offered by the addition o f TLR. A primary objective o f this 

work was to examine the issue o f whether or not TLR is o f benefit in delaying the onset o f 

delamination initiation. To that end, detailed three dimensional finite element analyses o f a 

“unit cell” or representative volume, were performed. The effects o f  various parameters 

were studied including TLR material, TLR volume fraction, TLR diameter, TLR through­

thickness angle, ply stacking sequence, and the microstructural details o f pure resin 

regions and curved in-plane fibers. The work was limited to the study o f  the linear 

response (undamaged) o f a unit cell with a ply interface. The unit cell results were used to 

examine the effects o f TLR on the elastic constants, in-plane tension and compression 

strength, and delamination initiation.

The calculation o f the elastic constants, or engineering constants, was performed 

by applying a known stress to a unit cell constrained to deform in a shape consistent with 

the basic definitions o f strain. The displacements were then used to calculate 

macrostrains. These macrostrains along with the known applied macrostress were used in 

constitutive relations resulting in the calculation of the full set o f  nine elastic constants for 

an orthotropic material. It was found that adding only a few percent o f  TLR had a small 

negative effect on the in-plane extensional and shear moduli, Ex, Ey and Gxy, but had a 

large positive effect (up to 60 percent) on the thickness direction extensional modulus, Ez. 

Although this positive change was significant, the actual values were still small relative to 

the in-plane extensional moduli. The volume fraction and the extensional modulus o f the 

TLR were the controlling parameters in terms o f overall thickness direction extensional 

modulus, Ez. The out-of-plane shear moduli, G** and G^, were significantly affected only
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when steel or titanium TLR were used. The shear moduli o f steel and titanium are an 

order o f magnitude higher than the out-of-plane shear moduli o f an unreinforced laminate.

The elastic constants were also calculated by using a stiffness averaging method 

documented in the literature. The two methods agreed to within ten percent for 

calculations o f extensional moduli, Ex, Ey, and Ez, and in-plane shear modulus, Gxy. The 

out-of-plane shear moduli, Gxz and Gyz, varied by as much as 21 percent.

The stress results o f  the unit cell analyses were used to draw implications about the 

in-plane tension and compression strength o f TLR materials. Adding TLR caused a stress 

concentration which was lessened by the presence o f pure matrix regions and curved fiber 

next to the TLR. It was speculated that the reduction of in-plane properties would be 

inconsequential if  the diameter o f  the TLR were sufficiently small or if the material’s 

failure was dominated by other stress concentrations such as those found at open holes 

and bolted repairs.

The initiation o f delamination was investigated using a strength o f  materials 

approach. In this approach, a maximum stress failure criterion was used to indicate the 

likelihood o f delamination. A delamination was assumed to initiate when either I) the 

inter-laminar stress at a ply interface exceeded the inter-laminar strength, or 2) the state o f 

stress within a ply exceeded the transverse tension strength resulting in a transverse crack 

that could then grow into a delamination. Rather than predicting the exact stresses o f 

failure, comparisons were made between models with and without TLR. This approach 

enabled a direct examination o f the effect o f  adding TLR. This method o f investigating 

delamination initiation was applied to the unit cell analyses and to an inter-laminar
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dominated problem o f practical interest. A flanged skin in bending was analyzed with a 

large finite element model. The flange-skin specimen has been proposed by other 

researchers as a simplified test capturing the important aspects o f ffame-skin disbonding 

failure in stiffened structure.

The results o f  both the unit cell and flange-skin modeling were used to conclude 

that the addition o f TLR may delay the direct formation o f  a delamination due to high 

inter-laminar stress only when the TLR is composed o f extremely stiff material such as 

steel. With such stiff TLR, the load path across the ply interface changes and the inter- 

laminar stress is directed away from the interface and into the TLR. For this to occur, 

both the extensional and shear moduli o f the TLR must be an order o f magnitude greater 

than that o f  the lamina in the transverse direction. Graphite-epoxy and Kevlar-epoxy TLR 

were not effective at delaying the onset o f delamination. This finding was particularly 

evident in cases dominated by the inter-laminar shear stress. Since the positive benefits of 

TLR have been reported for materials with graphite and Kevlar® TLR, prevention o f 

damage initiation must not be the key mechanism responsible for the performance changes 

associated with the addition of TLR. This conclusion was further substantiated when the 

tendency to form transverse cracks was examined. If the unavoidable microstructural 

features o f  pure resin regions and curved fibers are considered, the addition o f TLR was 

found to increase the likelihood o f transverse crack formation.

In total, these findings are consistent with the results o f many experimental studies 

reported in the literature and they support the hypothesis that the addition o f TLR has
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little or no positive effect on the initiation o f damage. The true benefit o f  TLR must then 

be the increased resistance to damage growth or progression.
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CHAPTER 8 
RECOMMENDATIONS FOR FUTURE WORK

A. Experimental studies with detailed observations o f  failure initiation. The 

studies should include materials with and without TLR and encompass 

different TLR materials, including an extremely stiff material such as titanium 

or steel. Acoustic emission and other NDE techniques in conjunction with 

destructive cross sectioning and microscopy should be employed to make 

accurate determinations o f the type and initiation o f  damage.

B. Application o f  detailed experimental observations in the ongoing investigation 

of using a rubber layer in the interface. This ongoing study discussed in 

Chapter 5 was outlined in [132], The idea is to prevent damage initiation by 

inducing the redirection of inter-laminar stress away from the interface and into 

the TLR.

C. Studies o f  the thermal response o f TLR materials with detailed FEA models o f 

a similar nature to the ones used in this work.

D. Development o f a method to automatically insert discontinuous TLR directly 

into prepreg or preforms at a very rapid rate.

E. Investigation o f the stability o f dry fiber preforms assembled using 

discontinuous TLR instead of stitching.
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F. Both analytical and experimental investigations o f  the important parameters in 

the crack bridging mechanisms associated with TLR.

G. Continued development and verification o f TLR design guidelines based on 

fracture mechanics and crack bridging phenomenon.
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