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Abstract

Knowledge of the size-specific fecundity of Placopecten magellanicus is important 
to managers of the commercial fishery for this species. The objective of this study 
was to estimate the size-specific fecundity of female sea scallops from the mid- 
Atlantic resource area during the spring 1993 spawning period for five shell height 
intervals (40-60mm, 65-75mm, 85-95mm, 105-115mm, and 120-130mm), using direct 
counts of oocytes suspended in seawater and using morphometric analysis of 
histological slides of scallop ovaries. The direct counting method involved the rinsing 
of oocytes from lacerated ovaries, and counting of oocytes in the resulting suspension 
using a compound microscope (6Qx mag.) and a Sedgwick-Rafter Cell (with a 
correction for the percentage of ovary suspended and of suspension sampled). The 
histologic method entailed estimating volume fractions of mature oocytes by the 
counting of points of a reticle superimposed over the ovary section (6Qx mag.). 
Fecundity in this case was calculated by multiplying the mature oocyte volume 
fraction by ovary mass and dividing by the mass of a single oocyte.

Fecundity estimates were consistently greater using the histologic method. Both 
methods, however, found scallops in the two largest size classes (which corresponded 
with the age groups five and six, respectively) to be considerably more fecund than 
those in the three smaller size classes (which corresponded with the age groups three, 
three-plus, and four, respectively). Furthermore, both methods found the 
commitment to germinal production to increase non-linearly with increasing scallop 
size (and thus age). These results suggest that scallop stocks that consist primarily 
of smaller, Age 3 and Age 4 scallops may not be capable of the gamete production 
necessary for the stocks to be self-sustained. Additionally, the non-linear increase 
in germinal production with age means that spawning stock biomass (SSB) may be 
overestimated, particularly in stocks consisting primarily of younger scallops. Since 
SSB is used to define appropriate levels of fishing effort, the scallop resource may 
be overexploited.



SIZE-SPECIFIC FECUNDITY OF THE SEA SCALLOP, PLACOPECTEN  
M AGELLANICUS, DURING ONE SPAWNING PERIOD IN THE MID-

ATLANTIC RESOURCE AREA



Introduction

The importance of reproductive biology as a component of 

management plans for marine fisheries has, in recent years, been firmly 

established. Annual gametogenic cycles of the commercially-important sea 

scallop, Placopecten magellanicus (Gmelin 1791), have received particular 

attention (Naidu 1970; Thompson 1977; MacDonald and Thompson 1986; 

Beninger 1987; Langton et al. 1987; Barber et al. 1988; MacDonald and 

Thompson 1988; DuPaul et al. 1989; Schmitzer 1990; Kirkley and DuPaul 

1991; Schmitzer et al. 1991). Seasonal changes in body component indices 

relating to gametogenesis have been noted and used to help shape the 

management plan for this species.

As a case in point, the Sea Scallop Fishery Management Plan 

(SSFMP) originally managed this fishery in part by requiring vessels 

shucking scallops at sea to maintain at maximum a 30 meats per pound 

limit year-round (New England Fisheries Management Council 1982). 

Amendment 2 to the SSFMP (NEFMC 1987) adjusted this limit to 33 

meats per pound during peak autumn reproductive months to compensate 

for a decrease in adductor muscle mass with increased gametogenic 

development (Kirkley and DuPaul 1989).

The question of how the local reproductive biology of P. magellanicus 

relates to its population biology over its wider geographical range is

2
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important. Significant differences in growth and reproduction over varying 

latitudes and depths have been noted for P. magellanicus as well as for 

another pectinid, Argopecten irradians (Sastry 1970). These functions are 

closely related to spatially-varying environmental conditions such as 

temperature and food supply (Sastry 1968; MacDonald and Thompson 

1986; Shumway et al. 1987). Studies using P. magellanicus have found not 

only differing growth functions over varying depths (MacDonald and 

Thompson 1985a; Schick et al. 1988) and latitudes (MacDonald and 

Thompson 1988), but spawning patterns that vary greatly in timing and 

magnitude (MacDonald and Thompson 1985b; Barber et al. 1988; 

MacDonald and Thompson 1988; DuPaul et al. 1989; Kirkley and DuPaul 

1991). While the existing SSFMP governs all of the sea scallop resource 

areas in United States waters, the question remains whether all 

subpopulations of P. magellanicus are equally important in terms of 

maintenance of the population as a whole. Barber et al. (1988) noted that 

one deepwater sea scallop subpopulation in the Gulf of Maine exhibited 

such low fecundities that the likelihood of its being self-sustaining would 

be quite low.

This study addresses the size-specific fecundity of P. magellanicus in 

the mid-Atlantic resource area. Prior fecundity determinations for P. 

magellanicus have used the regressions of ovary mass on shell height 

(defined as the dorsal to ventral distance from the hinge to the outer shell
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margin) at times of maximum and minimum ovary ripeness, with the loss 

of mass assumed to represent spawned gametes. The difference between 

these two functions divided by the calculated mass of a single egg would 

give a standardized value for fecundity for each shell height (Langton et 

al. 1987; Schmitzer 1990; Schmitzer et al. 1991). Cox (1988), working with 

Crassostrea virginica, made direct fecundity estimations by stripping oocytes 

from specimens using a blender. The suspension formed was filtered 

through 90 and 53 fj,m mesh, and oocytes in subsamples drawn from the 

suspension were counted in a Sedgwick-Rafter Cell using a compound 

microscope. Preliminary investigations have shown that such direct 

estimations are possible with P. magellanicus, though stripping in a blender 

resulted in very low yields of intact oocytes, as most oocytes were lysed 

during preparation of the suspension (Carnegie, personal observation). A 

better method is to lacerate the ovary and rinse the oocytes into 

suspension, obtaining pre- and post-laceration mass estimates of the ovary 

section. Additionally, the discrete nature of P. magellanicus ovaries and 

the random distribution of follicles and oocytes within the tissue 

(Robinson et al. 1981; MacDonald and Thompson 1985b, 1986) have made 

effective morphometric analysis possible. Weibel et al. (1966) noted that 

if structures are known to be randomly distributed in a three-dimensional 

space, it is permissible to extrapolate from area fractions (obtained by 

counting points of a grid superimposed on a thin two-dimensional
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histological slide) to a three-dimensional volume fraction. Analysis of the 

relationships between volume fractions and ovary masses versus shell 

height has provided additional information on size-specific reproductive 

output, in this case not in terms of numbers of oocytes but rather in terms 

of the percentage of ovary mass occupied by material to be spawned.

Information concerning the size-specific fecundity of sea scallops is of 

clear importance to the management of the scallop fishery because it 

would affect the calculation of spawning stock biomass (SSB). SSB is 

defined as the total weight of all sexually mature scallops in the 

population, and a SSB level of <5% of maximum spawning potential 

(MSP, undefined in the SSFMP, but presumably the spawning potential of 

the scallop population if it were not commercially exploited) serves as the 

definition of overfishing of the scallop resource (NEFMC 1993). SSB 

would be overestimated if smaller scallops were not capable of producing 

the same number of oocytes per unit of biomass as larger scallops (i.e. sea 

scallop fecundity were characterized by non-linear size-specificity). Excess 

harvesting of the sea scallop resource would result, since SSB estimations 

are used to establish levels of fishing effort (NEFMC 1993).

Resource overexploitation caused by overestimations of SSB would be 

exacerbated if the exploited populations consisted primarily of smaller 

scallops. A recent survey showed that most mid-Atlantic sea scallops were 

50-70mm in shell height (National Marine Fisheries Service 1993); these
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primarily represented the then-Age 3 1990 year class. Recent observations 

questioned the importance of these Age 3 scallops to the maintenance of 

the natural scallop populations. McGarvey et al. (1993), in a stock- 

recruitment analysis, found correlation evidence that 3- and 4-yr-old 

scallops on Georges Bank "may not contribute measurably to recruitment," 

and suggested that this observation may have reflected a paucity of viable 

spawn produced by younger (< 105mm) scallops. Amendment #4  to the 

SSFMP (NEFMC 1993) states that "most sea scallops become sexually 

mature by the spring of their third year, but these small scallops may not 

produce many eggs." The question of size-specific fecundity of the sea 

scallop is thus an important one for management, particularly considering 

the current predominance of 3- and 4-yr-old scallops in mid-Atlantic stocks 

(Northeast Fisheries Science Center 1993).

While the current SSFMP does not account for size-specific fecundity 

in calculating sea scallop SSB, adjustments to the SSFMP to account for 

size-specific fecundity would not be without precedent. Regulations 

governing local striped bass (Morone saxatalis) fisheries in the eastern 

U.S.A. have in the last decade typically included maximum size limits and 

area restrictions, measures meant to protect large, gravid females (Atlantic 

States Marine Fisheries Commission 1990). These large females, whose 

egg production vastly exceeds egg production in smaller individuals, 

congregate in the early spring in major eastern rivers, and are extremely
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vulnerable to intense commercial fishing pressure at this time. Increases 

in indices of abundance of juvenile striped bass in the Chesapeake Bay 

appear to indicate that the above and other management regulations 

(notably moratoriums) have been effective in increasing the striped bass 

population levels (ASMFC 1993).

The lack of information concerning the age group-specific fecundity of 

sea scallops in the mid-Atlantic precludes the development of an 

amendment to the SSFMP concerned with protecting certain age groups 

of the spawning stock. The objectives of this study were to expand the 

knowledge of the size-specific fecundity of scallops in this region by 

directly estimating fecundity in two ways, using direct counts of suspended 

oocytes, and using morphometric analysis of histological slides of scallop 

ovaries, and to relate the results to the age group composition of natural 

mid-Atlantic sea scallop populations.



Literature Review

The sea scallop, Placopecten magellanicus (Gmelin, 1791), is a large, 

epibenthic, lamellibranch bivalve mollusc of the continental shelf of the 

western North Atlantic Ocean. Occurring from Strait of Belle Isle, 

Newfoundland, Canada, to the United States’ Cape Hatteras, North 

Carolina, P. magellanicus supports a lucrative commercial fishery almost 

everywhere it is found. Commercial landings in the United States in 1992 

of 33.5 million pounds of the marketable adductor muscle, worth 162.6 

million dollars, were reported (NOAA 1993a), making the commercial sea 

scallop fishery the United States’ fifth most valuable commercial fishery 

and the East Coast’s first, ahead of the fishery for the American lobster.

P. magellanicus has been the subject of numerous scientific 

investigations in recent years because of its economic importance. Early 

studies concerning P. magellanicus examined fishery-related topics such as 

abundance fluctuations (e.g. Dickie 1953,1955) and viability as a resource 

(e.g. Posgay 1950,1953,1957). Naidu (1970), however, examined the 

histology of the gonads over the entire gametogenic cycle. The use of 

histological methods and an interest in the gametogenic and reproductive 

cycles of P. magellanicus has been the focus of much of the literature 

regarding this species subsequent to Naidu (1970). Thompson (1977) 

investigated seasonal biochemical changes in Newfoundland P.

8
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magellanicus specimens; Beninger (1987) qualitatively and quantitatively 

studied the gametogenic cycle in Bay of Fundy specimens; and Langton et 

al. (1987) investigated age-specific fecundity and reproductive effort in P. 

magellanicus specimens from the Gulf of Maine.

Much of the sea scallop research of the last decade has focused on 

local and regional life history patterns. MacDonald and Thompson 

(1985a) examined life history differences in sea scallops over varying 

latitudes and depths (presumably relating to differences in temperature 

and food availability (Sastry 1968)), with gametogenesis a major focus. 

MacDonald and Thompson (1985b) found that shallow-water P. 

magellanicus specimens in Newfoundland tended to show "greater somatic 

growth and reproductive output" than their deeper-water counterparts, 

owing perhaps to "qualitative differences in ration (e.g. fatty acids, amino 

acids between depths and sites)." MacDonald and Thompson (1986) found 

that while mean egg size was consistent between shallow- and deep-water 

populations, gamete output per unit ingested ration of food was higher in 

shallow-water populations, as was "fecundity and the rate of gamete 

development." Similarly, Barber et al. (1988) found that while egg size 

was consistent between shallow- and deep-water populations, specimens 

from deep-water populations exhibited lower fecundity, and noted that 

"when faced with the apparently less favorable conditions associated with 

increasing depth, the strategy of P. magellanicus is to produce fewer eggs
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without sacrificing egg size and potential larval survival.” MacDonald and 

Thompson (1988) found that P. magellanicus from lower latitudes 

experienced a shift in emphasis from growth to reproduction at an earlier 

age, were capable of greater total production, were more fecund, and 

experienced reduced longevity.

While P. magellanicus is found at shallow depths (to 2m) as well as in 

deeper waters in the northern part of its range, near its southern 

distributional limit it is always found at greater depths (to 200m) because 

it is intolerant of warmer inshore waters (Posgay and Norman 1958; 

MacKenzie 1979). Results of the many studies based on P. magellanicus 

in the Gulf of Maine and the Canadian Maritime Provinces may not 

necessarily be applicable to the populations near the scallop’s southern 

distributional limit because of possible latitudinal and depth-related 

differences. Several studies (DuPaul et al. 1989, Kirkley and DuPaul 1991, 

Schmitzer et al. 1991) have investigated spawning behavior and 

gametogenesis in mid-Atlantic populations of P. magellanicus and found 

that behavior differed from that in northern populations. The most 

striking difference was the presence of a semiannual spawning period, with 

one spawn dominant (spring) and one erratic or sometimes absent (fall) 

(DuPaul et al. 1989; Kirkley and DuPaul 1991; Schmitzer et al. 1991).



Ovary Internal Structure and Oogenesis

Placopecten magellanicus, unlike most other members of the 

Pectinidae, is not hermaphroditic, although Naidu (1970) and Worms and 

Davidson (1986) report low prevalences (1.3 and 1.7 percent, respectively) 

of hermaphroditism. The spermatogenic cycle has been documented in 

the literature (summarized in Beninger and Le Pennec 1991) and will not 

be addressed in this study. The assumptions made in this study are that 

sperm are present in excess, and that males and females at a given 

location spawn synchronously.

The ovary of P. magellanicus is a crescent-shaped organ located 

anterior to the adductor muscle, and is composed primarily of numerous 

"acini" (Beninger and Le Pennec 1991) or "alveoli" (Naidu 1970). These 

lobules are bounded by germ cells which give rise to primary oogonia, and 

open into a system of ciliated tubules or gonoducts (Naidu 1970; Beninger 

and Le Pennec 1991) that "eventually join up and open into the kidney." 

"A loop of the alimentary canal passes through" the ovary, entering and 

leaving the ovary just posterior to the foot at the dorsal extreme of the 

ovary and making a long circuit within the ovary (Naidu 1970).

Oogenesis begins with a premeiotic stage in which cells produce 

primary oogonia that divide mitotically to form secondary oogonia. These 

oogonia begin the next stage, previtellogenesis, with their entry into the

11
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first meiotic prophase. The oocytes now pass through the leptotene, 

zygotene-pachytene, and diplotene stages of prophase. The third, 

vitellogenic stage of oogenesis begins as the acinar auxiliary cells (which 

"probably play a trophic role for the vitellogenic oocyte" (Dorange and Le 

Pennec 1989)) migrate from the acinar walls, establishing "an intimate 

contact with the developing oocytes (Beninger and Le Pennec 1991)."

In vitellogenesis the oocytes become pedunculated as nutrients, 

especially lipovitellin, accumulate within the cells. As vitellogenesis nears 

an end, the oocytes detach from the auxiliary cells. Oocyte atresia, if it 

occurs, begins at this point (Beninger and Le Pennec 1991). Otherwise, 

the mature oocytes are evacuated from the acini in a spawning event.

While oocyte atresia is poorly documented for P. magellanicus, it is a 

common occurrence within the Mollusca. Atresia in Pecten maximus has 

been recently addressed in the literature. Lubet et al. (1987) suggest that 

atresia is a common component of the gametogenic cycle of P. maximus, 

with resorbed material recycled in the production of future generations of 

oocytes. Dorange and Le Pennec (1989) note in an ultrastructural study 

of the ovaries of P. maximus that atresia of an oocyte progresses from a 

degeneration of the rough endoplasmic reticulum (with a resulting 

vacuolation of the ooplasm), mitochondria, and nucleus, to an increase in 

the perivitelline space, disintegration of the cytoplasmic membrane, and 

glycogen accumulation at the oocyte periphery and in the vitelline coat.
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The vitelline coat ultimately breaks down, releasing the nuclei and 

ooplasmic contents into the acinar lumen. The authors note that "cells 

which have the same ultrastructural characteristics as macrophagic 

haemocytes are frequently observed among the remains of the lytic 

oocytes, in the acini, and at the junction between the gonoducts and the 

acini," and speculate that these probably are macrophagic haemocytes 

which likely play a role in resorption.



Materials and Methods

Samples of 100-200 Placopecten magellanicus specimens were obtained 

on a frequent (1-2 per week) basis from commercial scallop vessels. 

Ovary ripeness of specimens was macroscopically monitored, shell heights 

(mm) and gonad wet masses (g) were determined for all specimens, and 

latitude and longitude coordinates of the sample locations were recorded. 

When the samples began to contain specimens of nearly maximal ovary 

ripeness, females were retained. Twelve samples were collected between 

March 22 and April 18, 1993. The first four of these were collected on 

March 22 during a trip by the author aboard a commercial scallop vessel; 

the remainder were brought to port by commercial fishermen. Spatial and 

temporal proximity of the commercial samples allowed grouping into two 

areas. Area A was located at the latitude of Chincoteague, VA, at a depth 

of 55-60m, and samples from this area were collected between March 22 

and March 28. Area B was located east of the mouth of the Chesapeake 

Bay at a depth of 37-48m; samples from this area were collected between 

March 29 and April 9. Additional samples were collected on March 31 

(Latitude 39°40’, 68m depth), April 5 (Latitude 38°30’, 40m depth), and 

April 18 (Latitude 37°15’, 46m depth) (Figure 1).

The female scallops separated from these commercial samples in the 

laboratory were retained on ice. Each scallop belonged to one of five size

14



Figure 1. Collection locations of P. magellanicus samples.
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classes: 40-60mm, 65-75mm, 85-95mm, 105-115mm, and 120-130mm. 

These size classes correspond with the age groups 3, 3 + , 4, 5, and 6, 

respectively. Processing of each specimen was completed within 100 hours 

from the time of harvest. The left or upper valve was removed and the 

dorsal to ventral distance from the hinge to the valve edge was measured 

on a measuring board to the nearest 1.0mm. The ovary was resected and 

(after removal of the foot and crystalline style, and rinsing off of debris) 

weighed to the nearest O.lg. Three sections were haphazardly selected 

and removed from the ovary using a single-edged razor blade. The first 

section was weighed and placed in a plastic zip-loc bag for dry weight 

determination (to O.lg after drying to constant weight at 90°C) to allow a 

wetrdry mass conversion. The second section was weighed and placed in 

modified Karnovsky’s fixative (1.25% glutaraldehyde, 2.0% 

paraformaldehyde in 0.1M phosphate buffer at pH = 7.4; Vogelbein, 

personal communication) and processed for high resolution light 

microscopy (HRLM) and quantitative analysis (Table 1). The third 

section was weighed and then lacerated using a razor blade. Material 

exuding from these lacerations was rinsed gently, using a wash bottle 

containing artificial sea water (salinity 34 ppt), to form a suspension of 

known volume. After rinsing, the ovary section was blotted dry to remove 

excess water and reweighed to establish the approximate mass of matter 

in the suspension.



Table 1: Tissue Processing Protocol

Fixation: 1.25% glutaraldehyde and 2.0% paraformaldehyde in 0.1M 
phosphate buffer (pH = 7.4), for 18-24 hrs, at 4°C.

Buffer Wash: 0.1M phosphate buffer, four 30 min. rinses at 4°C.

Dehydration: Ethyl alcohol (EtOH) at room temperature: two rinses of 
45 min. each with 50%, 70%, and 80% EtOH; one rinse overnight 
with 95% EtOH and one for 30 min. the next day at 95% EtOH.

Infiltration: LKB Historesin Embedding Kit, consisting of a basic resin of 
glycol methacrylate, a benzoyl peroxide activator, and a barbituric 
acid hardener:
- 1:1 resin + activator: 95% EtOH, 3 hrs, room temperature
- 100% resin + activator, overnight, 4°C
- 100% resin + activator, 3 hrs, room temperature.

Embedding: Resin + activator + hardener; allowed to polymerize for 3 
hrs at room temperature.

Sectioning: 3.0£im sections cut using Ralph glass knives on a Reichert 
Supercut retracting microtome.

Staining: Harris’ Hematoxylin and Eosin-Phloxine, at room 
temperature:
- Harris’ Hematoxylin, 2 hrs
- Running tap water, 5 min.
- 0.25% HC1 in 70% EtOH), 2 dips
- Running tap water, 5 min.
- Saturated lithium carbonate solution (aq), 2 min.
- Running tap water, 5 min.
- Eosin-Phloxine, 20 min.
- 95% EtOH, 2 dips
- 95% EtOH, 2 dips
- 100% EtOH, 3 min.
- 100% EtOH, 3 min.
- Air dry, cover slip.

17
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Three 1.0ml aliquots were drawn from the suspension. Oocytes in 

each of these were counted in a Sedgwick-Rafter Cell using a compound 

microscope at 60x magnification. Fecundity was calculated using the 

equation:

F = NxVxMx/M s,

where F was fecundity, N was the mean number of oocytes counted per 

ml in the suspension, V was the total suspension volume, MT was the total 

mass of the ovary, and Ms was the mass of matter in the suspension 

(modified from Cox 1988).

Morphometric analysis (N =53, all belonging to samples from Area A) 

was performed using histologic sections of plastic-embedded tissues that 

were in thickness and a compound microscope at 60x magnification. 

For each slide, each representing one specimen, volume fractions of 

mature and atretic oocytes (no developing oocytes were observed) and of 

other ovarian or alimentary structures (epithelium, connective tissue, 

muscle tissue, alimentary canal, gonoducts, and lumen spaces) were 

determined using the point-counting technique described by Weibel et al. 

(1966) and used previously by Schmitzer (1990). A reticle of intersecting 

lines forming 64 points was superimposed over the image of the tissue 

section, and each point was determined to overlay a certain ovary 

component. Volume fractions of were calculated for five haphazardly- 

selected fields of each tissue section, and an average volume fraction was
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obtained for each component and specimen. The use of volume fractions 

enabled fecundity to be estimated by a second method. The size-specific 

fecundity trends observed using the oocyte counting method were validated 

using the equation:

F = OWMxVFmo/1.6x10'7, 

where F was fecundity, OWM was ovary wet mass (g), VFMO was the 

mean mature oocyte volume fraction, and 1.6xl0‘7g was the wet mass of 

a single oocyte (Langton et al. 1987).

The relationships among fecundity, ovary mass, and shell height were 

explored using regression analysis. A simple = a + Bx; + p function was 

used to characterize the relationships between fecundity and ovary wet 

mass, volume fractions and ovary wet mass, and volume fractions and shell 

height. The function y ^ ax /^ e 82* ^  was used to describe the relationships 

between ovary wet mass and shell height and between fecundity and shell 

height. This function was chosen because while shell height is a linear 

function, ovary mass and fecundity are cubic and relate to ovary volumes. 

The function ln(yj) = a + 6ln(Xj) was selected to characterize the 

relationships between the combined volume fraction of mature and atretic 

oocytes (VFMO+AO) and shell height and between VFMO+AO and ovary wet 

mass, not because of a priori knowledge about these relationships, but 

rather because this function provided a better fit to the data than would 

a simple linear function.



Results

Summary statistics (sample means and standard deviations for shell 

height, ovary wet mass, and fecundity) for those specimens where fecundity 

was estimated by the counting of suspended oocytes are presented in 

Table 2. Data are pooled by sample and shell height interval. Ovary mass 

and fecundity increased with increasing shell height, a trend particularly 

pronounced in those samples pooled into Area B. In this area, mean 

values for ovary wet mass and fecundity for the 120-130mm size class were 

21.6g and 7,800,000 oocytes, 5.4 and 17.8 times, respectively, the values for 

the 65-75mm size class. In Area A, however, ovary wet mass and 

fecundity for 120-130mm specimens reached mean values of 8.0g and 

1,500,000 oocytes, respectively. A Chow test (Maddala 1977) was used to 

test the stability of the coefficients of the regression equations for 

fecundity on shell height for these two areas. This test proved the 

fecundity differences between areas to be significant at the a = 0.05 level.

Despite the large degree of variability in ovary mass and fecundity 

between and within samples and shell height intervals, representations of 

these data graphically and using regression analysis (with compensations 

for heteroscadasticity, where necessary, following Wesolowsky (1976)) 

illustrate some trends. Ovary mass increased with increasing shell height 

(Figure 2). The variability in ovary mass for a given shell height, however,
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Table 2. Summary statistics for all samples processed by the method of 
directly counting suspended oocytes. Included are, by size class (1 
= 65-75mm, 2 = 85-95mm, 3 = 105-115mm, 4 = 120-130-mm), the 
number of specimens of P. magellanicus processed (N), and sample 
means and standard deviations for shell height (mm), ovary wet 
mass (g), and fecundity. Data are pooled into Areas A and B 
according to the geographical and temporal proximity of the 
commercial samples from which the scallops were obtained. The 
data under the category "Overall” reflect scallops included in 
samples A and B as well as those in the three commercial samples 
not pooled with the others.

Area Size Class, N Shell Height 
Mean+/-St.Dev.

Ovary Wet Mass 
Mean+/-St.Dev.

Fecundity
Mean+/-St.Dev.

A 1. 4 72.5+/-1.0 1.8+/-1.1 9.2x10¥+/-1.8x1 ( f

A 2, 14 89.4+/-3.1 3.1 +/-1.0 I.IxK f+ M .O xK f

A 3, 21 109.9+/-2.5 5.3+/-1.9 3.0x10*+/-5.3x10*

A 4, 23 123.5+/-2.8 8.0+/-3.1 1.5x10c+/-3.7x10*

B 1. 1 7 • 72.1 +/-3.0 4.0+/-1.6 4.4x10+/-5.2x1cf

B 2, 22 89.0+/-3.4 S.4+/-3.6 2.1x10+/-2.5x10*

B 3, 26 110.3+/-3.3 15.3+/-6.0 4.6x10‘+ /-3 .6x104

B 4, 10 - 123.4+/-2.0 21.6+/-9.7 7.8x1 o‘+ /-9 .4x10*

Overall 1, 27 71.8+/-2.8 3.1+/-1.8 2.9x1 (ft/-4.6x105

Overall 2, 46 89.4+/*3.4 5.5+/-3.6 1.0x10+/-1.9x106

Overall 3, 56 110.4+/-3.0 10.1+/-6.6 2.4x10+/-3.3x10c

Overall 4, 44 123.7+/-2.5 12.3+/-7.2 3.0x10+ /-5 .5x106
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Figure 2. Regression of ovary wet mass (OWM) on shell height (SH), for 
all P. magellanicus specimens processed by the oocyte counting 
method (N =173). The regression equation is: ln(OWM) =
-14+3.7xln(SH)-0.01xSH (p<0.0005; R2=43.9%; t-ratios 
((m-/x)/(s/n0'5)): a =-1.46, B ^ l.3 6 , B2=-0.36 (170 degrees of 
freedom)).
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led to even greater variability in estimates of size-specific fecundity (Figure 

3), as fecundity was a function of ovary mass and each value of ovary mass 

was associated with its own distribution of calculated fecundity values. As 

would be expected, ovary mass was a better indicator of fecundity than 

was shell height (Figure 4).

The increase in fecundity with increasing scallop size was not 

explained solely by the tendency of larger scallops to have larger ovaries, 

but also by an increase in the concentration of oocytes within the ovary 

with increasing scallop size. The mean number of oocytes counted per 

gram of ovary mass increased with increasing shell height (Figure 5).

Histological evaluation (the summary statistics (sample means and 

standard deviations for shell height, mature oocyte volume fraction, atretic 

oocyte volume fraction, and fecundity) for which are presented in Table 

3) of 53 ovaries found all to be at or approaching peak maturity. There 

was no evidence (such as oocytes having been evacuated from the follicles, 

or the presence of oocytes in gonoducts) in any section examined that a 

spawning event had begun. No discernible relationship was found between 

fecundity and the volume fractions of mature or atretic oocytes or of non

oocyte ovary components. The volume fraction of mature oocytes was 

similarly unrelated to shell height or ovary wet mass. The combined 

volume fractions of mature and atretic oocytes, however, did increase with 

increasing shell height (Figure 6) and ovary wet mass (Figure 7). Caution



Figure 3. Regression of fecundity (FEC) on shell height (SH), for all P. 
magellanicus specimens processed by the oocyte counting method 
(N = 173). A semilog plot is used. The regression equation is: 
ln(FEC) = -37 + 13xln(SH)-0.09xSH (p < 0.0005; R2 = 12.8%; t-ratios: 
a = -1.01, B, = 1.22, B2=-0.80 (170 d.f.)).

Size-Specific Fecundity
Oocyte Counting Method, All Specimens
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Figure 4. Regression of fecundity (FEC) on ovary wet mass (OWM), with 
a compensation made for heteroscadasticity, for all P. magellanicus 
specimens processed by the oocyte counting method (N = 173). The 
regression equation is: FEC=2.1xl05(OWM)-3.6xl05 (p <0.0005; 
R2=18.5%; t-ratios: a  = 12.70, 6=-6.45 (171 d.f.)).
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Figure 5. Regression of the mean number of oocytes counted (per g of 
ovary mass suspended) on shell height (SH), for all P. magellanicus 
specimens processed by the oocyte counting method (N =173). The 
regression equation is: Oocytes/g= - 1.5x10s+2.0xl03(SH)
(p = 0.021; R2=6.8%; t-ratios: a =-1.64, B=2.36 (171 d.f.)).
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Table 3. Summary statistics for 53 Pmagellanicus specimens processed 
histologically. Included by shell height interval (0 = 40-60mm, 1 
= 65-75mm, 2 = 85-95mm, 3 = 105-115mm, 4 = 120-130mm) are 
the number processed (N) and sample means and standard 
deviations for mature oocyte volume fractions, atretic oocyte 
volum e fractions, and fecundity  (ca lcu lated  using 
F=OW MxVFMO/1.6xlO'7g). All histologically-processed scallops 
were taken from samples belonging to Area A.

Slz« C lass, N
Mature Oocyte Volume Fraction 
Mean+/-St.Dev.

Atretic Oocyte Volume Fraction 
Mean+/-St.Dev.

Fecundity
Mean+/-St.Dev.

0.5
1.1

0.25+ /-0 .13

0.31+/-N /A

0.28+ /-0 .16

0.34+/-0.21

0.28+ /-0 .23

0.11+/-O .17

0.57+W A

0 .51+ /-0 .18

0.43+ /-0 .22

0.46+ /-0 .20

3 .1 8  

4, 18

2 .8 6.5x10+M .2x1C ^ 

1^x l0+ /-1 .0x10 r  

1.7x10+/-1.7x10T

0.30+ /-0 .20 0.43+ /-0 .23
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Figure 6. Regression of the combined volume fraction of mature intact 
and atretic oocytes (VFMO+AO) on shell height (SH). The 
regression equation is: ln(VFMO+AO) = -5.0+ l.Oxln(SH) (p< 0.0005; 
R2=41.8%; t-ratios: a=-6.53, 6 =6.05 (N=53; 51 d.f.)).
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Figure 7. Regression of the combined volume fraction of mature intact 
and atretic oocytes (VFMO+Ao) on ovaiy wet mass (OWM). The 
regression equation is: ln(VFMO+Ao) = -0.78+0.29xln(OWM) 
(p< 0.0005; R 2=58.8%; t-ratios: a =-13.12,6 = 8.53 (N=53;51 d.f.)).
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should be exercised, however, in drawing inferences about relationships 

based on these particular regression results due to low numbers of 

representatives (particularly in the smaller size classes) and due to the fact 

that the regression functions used were technically inappropriate because 

the data analyzed was censored (all volume fraction values necessarily fell 

between zero and one). The frequencies of atretic oocytes observed in the 

specimens processed histologically were higher than previously 

documented fo ri5, magellanicus. To determine whether these observations 

may have been a function of the time the specimens spent out of the 

water, the volume fraction of atretic oocytes was regressed linearly upon 

the number of hours elapsed between harvest and processing. This 

regression proved not significant (p = 0.371).

The histologic method of estimating fecundity used the equation:

F = OWMxVFmo/  1.6x 10'7.

Fecundity estimates obtained exceeded those produced by directly 

counting oocytes. The regression of histologic fecundity estimates on shell 

height is presented in Figure 8. The regression of fecundity on ovary wet 

mass for this method proved not significant after compensating for 

heteroscadasticity (Wesolowsky 1976). A scatterplot of fecundity versus 

ovary wet mass for both methods is presented in Figure 9.

The monthly mean ovary wet mass trend for sea scallop populations 

in the mid-Atlantic resource area during the period from October 1992 to



Figure 8. Regression of fecundity (FEC), determined by the histologic 
method, on shell height (SH). The regression equation is: 
ln(FEC) = -0.2+9.2xln(SH)-0.07xSH (p<0.0005; R2=52.5%; t- 
ratios: a=-1.60, 61=2.49, B2=-1.51 (N=53; 50 d.f.)).
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Figure 9. Scatterplot of fecundity, determined by the histologic method 
and the direct counting method, against ovary wet mass. A semilog 
plot is used.
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August 1993 is illustrated in Figure 10. The trends for five shell height 

intervals were chosen, corresponding with those examined in this study. 

A departure from the typical P. magellanicus gametogenic cycle was 

observed in March 1993, as mean ovary wet mass in all five size classes 

decreased, then increased again in April as the normal gametogenic 

pattern resumed.



Figure 10. Graph of the monthly mean ovary wet mass trend for P. 
magellanicus in the mid-Atlantic resource area, for five shell height 
intervals, for the period from October 1992 through August 1993.
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Discussion

The estimates of size-specific fecundity obtained by directly counting 

suspended oocytes were lower than expected based on the published data 

of Langton et al. (1987) and Schmitzer et al. (1991). While Langton et al. 

(1987) found Gulf of Maine scallops to contain 1 to 270 million oocytes 

per individual, and Schmitzer et al. (1991) found that a standardized 

scallop of 103mm from the mid-Atlantic contained an estimated 40 million 

oocytes, the direct counting method in this study found no scallop to 

contain more than 28 million oocytes.

While the absolute levels of fecundity estimated using the direct 

counting method were lower than those documented in the literature, the 

size-specific trends were similar. Langton et al. (1987) found that a 

125mm scallop produced 1.6 times as many eggs as a 110mm scallop, 3.1 

times as many as a 90mm scallop, and 6.5 times as many eggs as a scallop 

of 70mm. In this study, based on the regression equation of fecundity on 

shell height for the direct counting method, the corresponding factors were 

1.4, 3.0, and 12.2.

The results obtained using histology validated the trend observed using 

the direct counting method. Using the regression equation for the 

relationship between fecundity (calculated using the histologic method) 

and shell height, a 125mm scallop in this study was found to produce 1.2
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times as many oocytes as a 110mm scallop, 2.0 times as many as a 90mm 

scallop, and 5.5 times as many as a 70mm scallop. Estimated fecundity for 

all size classes was found to be higher using the histologic method than 

using direct counts, which suggests that oocyte recovery by the direct 

counting method was incomplete.

The discrepancies between fecundity estimations by the two methods 

in this study and between these estimations and those published may be 

due to the condition of the ovaries and the high level of oocyte atresia. 

Langton et al. (1987) and Schmitzer et al. (1991) made the assumption 

that the pre- versus post-spawn difference in ovary wet mass was attributed 

almost completely to the loss of eggs. Histological evaluation in this study, 

however, found an average of 43% of ovary mass to be occupied by atretic 

oocytes, while just 30% on average was occupied by intact, apparently 

viable oocytes. Fecundity estimates an average of 2.4 times greater than 

the histologic estimates would result if all non-structural ovarian material 

consisted of mature, intact oocytes.

Other factors made absolute fecundity estimations difficult to obtain. 

A key assumption made by Langton et al. (1987) and Schmitzer et al. 

(1991) was that the wet mass of a single oocyte was 1.6xl0‘7g. To verify 

this figure, an independent calculation was conducted using histological 

sections prepared during this study. Oocyte diameters (N=520) were 

estimated using a compound microscope (lOOx) with an ocular micrometer.
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In all cases, maximum distances across the sectioned oocyte were 

measured. The mean estimated diameter was 73/mi (without taking 

shrinkage of sections during histological processing into account). 

Assuming oocytes to be spherical, oocyte volume was calculated using 

volume = (4/3)7rr3, and oocyte mass by multiplying the volume by density 

(assumed to be 1.03g/cm3). The calculated wet mass of a single oocyte 

was 2.0x10‘7g. Lower histological fecundity estimates in this study (and 

lower estimates in Langton et al. (1987) and Schmitzer et al. (1991)) 

would have been obtained had this value for oocyte wet mass been used. 

Oocyte wet mass may in reality have been greater than 2.0xl0'7g. The true 

mean oocyte diameter likely was even higher than the estimated mean, 

because the estimated mean reflects sections of oocytes that had been 

grazed, rather than cut through the middle into two halves. The oocyte 

wet mass would thus have been calculated to be greater, and fecundity 

estimates to be lower.

Electron microscopy has been used to study oocyte atresia, and has 

produced the description of several diagnostic traits of atretic oocytes 

(Dorange and Le Pennec 1989). These signs are beyond the resolution of 

light microscopes, however. Atresia in this case becomes evident when the 

oocytes in section begin to assume a characteristic jigsaw puzzle-type 

appearance (Schmitzer 1990). Oocytes that appear mature and viable, and 

that are counted as such in the estimation of volume fractions, may in fact
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be in the early stages of resorption. This may present a problem when 

making direct counts of suspended oocytes, because atretic oocytes lack 

the structural integrity of non-atretic oocytes (Dorange and Le Pennec

1989) and may be lysed during the preparation of a suspension. The 

presence of a significant though unquantifiable amount of cell membrane 

fragments observed in the suspensions supports this argument. It is likely 

that the fecundity results produced by the two methods in this study differ 

in magnitude because many oocytes counted as intact and mature in 

histological sections were in fact atretic and broke apart in suspension.

Lubet et al. (1987) found that gametogenesis in Pecten maximus 

involved the production and resorption of several generations of oocytes, 

with the resorbed materials being recycled within the organism during the 

production of future generations of oocytes. The phenomenon of oocyte 

atresia has not been documented as playing such a role in the 

gametogenesis of P. magellanicus. Oocyte atresia in sea scallops may 

occur periodically in response to adverse environmental conditions, and in 

particular may be indicative of an inadequate food supply (Barber, 

personal communication).

The monthly mean ovary wet mass trend for October 1992 through 

August 1993 (Figure 10) shows that the mean ovary wet mass decreased 

from a peak value in March 1993, only to increase to another peak in 

April. It is unlikely that this represented a spawning event, because no
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evidence of spawning was found macroscopically or histologically. This 

decrease in mean ovary mass more likely was the result of atresia and 

resorption, perhaps because of adverse environmental conditions caused 

by the strong late-winter storms that occurred in early 1993 in the study 

areas (NOAA 1993b). Caution must be exercised in drawing this 

conclusion, however. The samples in March may have been collected 

from areas in which maximal ovary mass was not attained, perhaps 

because of adverse environmental conditions. The apparent loss of ovaiy 

mass in March may therefore be an illusory product of the inconsistency 

in sample collection locations.

The differences in fecundity between and within Areas A and B in this 

study confirm previously published observations of variability in P. 

magellanicus’ spawning patterns (MacDonald and Thompson 1985b; 

Barber et al. 1988; MacDonald and Thompson 1988; DuPaul et al. 1989; 

Kirkley and DuPaul 1991) over small geographic scales. This temporal 

and geographical variability in fecundity may limit the value of absolute 

fecundity estimations, particularly with respect to management of the 

commercial fishery. Size-specific fecundity trends, however, are important 

for the management of the commercial sea scallop fishery. MacDonald 

and Thompson (1985b, 1988) found that larger sea scallops allocate more 

energy to germinal production relative to somatic production than do 

smaller scallops. This study supports the view that sea scallops commit
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more energy to reproduction with age. This is reflected in the significant 

increases with age in the number of oocytes counted per g ovary mass and 

in the volume fraction occupied by the combination of mature and atretic 

oocytes. The failure of the SSFMP to account for these trends may lead 

to overestimation of SSB and MSP, resulting in overexploitation of the sea 

scallop resource, due to the establishment of excessive levels of fishing 

effort.



Relevance to the Management of the Sea Scallop Fishery

The objective of Amendment 4 to the SSFMP is to maintain a fishing 

mortality (defined as the part of the total mortality rate applying to a 

scallop population that is caused by fishing) of 0.71 through restrictions on 

the number of vessels entering the fishery, the annual number of days at 

sea, the crew size, and the harvesting gear (30ft. overall dredge width 

equipped with rings of 3.25" interior diameter until March of 1996, 3.5" 

thereafter). This fishing mortality theoretically corresponds to a SSB 

maintained at 5% of maximum spawning potential (NEFMC 1993). The 

concepts of SSB and MSP are problematic, however, because they assume 

that a given level of SSB has a given spawning potential, regardless of the 

size or age composition of the scallops that comprise the stock. This study 

has shown this assumption to be invalid.

The paucity of scallops 4-yrs-old and older in the mid-Atlantic makes 

the results of this study particularly relevant to managers of the fishery. 

Five- and 6-yr-old scallops recently were found to comprise <1.3% of 

existing scallop stocks (National Marine Fisheries Service 1993). Yet it is 

these 5- and 6-yr-olds that in this study consistently produced the largest 

numbers of oocytes (Figure 11). That the most fecund scallops should 

comprise such a small percentage of the stock is troublesome; the question 

of whether mid-Atlantic scallop stocks are self-sustaining is
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Figure 11. The frequency distribution of estimated fecundity values, 
by age group, for Area A.
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raised. The tendency of commercial fishermen to target larger scallops for 

harvest compounds the problem of the age composition of the stocks. 

DuPaul and Kirkley (1994) found that commercial tows in the mid- 

Atlantic near the time of the NMFS abundance survey (NEFMC 1993) 

contained higher percentages of Age 4 and Age 5 scallops than were found 

by NMFS. This is a function of sampling or collection strategy: NMFS 

randomly selects sample locations, while commercial fishermen, upon 

finding a population of large scallops, will fish in that location until it is 

no longer productive.

Preliminary observations on the impact of the gear change from 3" 

rings to 3.25" rings showed that while Age 3 and, to a lesser degree, Age 

4 scallops experienced a reduced fishing mortality, Age 5 and Age 6 

scallops continued to be heavily exploited by the new harvesting gear 

(DuPaul and Kirkley 1994). The reduced fishing mortality of Age 3 

scallops may do little, though, to improve scallop stocks, since these young 

scallops contribute relatively little to reproduction. Additional 

intervention by management may be necessary if the resource condition 

is not found to improve soon.

The analogy to the striped bass fishery may be relevant. Like the 

current sea scallop stocks, striped bass stocks a decade ago were found to 

be dependant on a relatively small number of highly fecund females. A 

Striped Bass Fishery Management Plan (SBFMP) was enacted to protect
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these females through size and area restrictions (summarized in ASMFC

1990), and striped bass stock conditions have begun to improve (ASMFC 

1993). The effects that changes to harvesting gear and reductions in 

fishing effort will have on sea scallop stocks remains to be seen. Should 

stock conditions not improve, however, measures to protect the highly 

fecund Age 5 and Age 6 scallops may prove desirable to managers of the 

sea scallop fishery in the future.



Conclusions

This study has shown that direct fecundity estimations are possible for 

P. magellanicus. That fecundity levels differed greatly between the direct 

counting method and the histologic method, however, underscores the 

need for caution in interpreting any of these estimates as absolute. Each 

method for estimating fecundity has its limitations. The direct counting 

method may overestimate fecundity, as oocytes in suspension that may 

never have been spawned in a natural setting are counted. Conversely, 

fecundity may be underestimated if the recovery of oocytes is incomplete. 

The use of volume fractions in the histologic method has the potential of 

introducing bias as well. The method used by Langton et al. (1987) and 

Schmitzer et al. (1991) may be flawed in assuming that the pre- versus 

post-spawn difference in mass represents nothing but spawned gametes. 

To have used this method for the spawning period examined in this study 

would have produced overestimates of fecundity because the frequency of 

oocyte atresia would not have been accounted for.

The high level of variability in size-specific fecundity in this study 

indicates that fecundity is not simply a function of ovary mass and shell 

height. Spatial and temporal variability in physical variables and in food 

supply contributed greatly to the variability in size-specific fecundity. This 

study would have been more effective had the variability caused by
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environmental variables been minimized. Future studies should focus on 

extensively sampling one particular location at one point in time, rather 

than on collecting a number of smaller samples from several locations at 

different times.

Oocyte atresia in P. magellanicus is poorly documented, but the high 

rates of atresia observed in this study suggest that it is a phenomenon that 

deserves more attention. The presence of a semiannual spawning period 

in the mid-Atlantic resource area (DuPaul et al. 1989) suggests that the 

gametogenic cycle of the sea scallop near the southern limit of its range 

is peculiar. Oocyte atresia may be found to play a similar role in P. 

magellanicus in the south as in Pecten maximusy though on a more sporadic 

basis. More research is needed on the frequency and extent of oocyte 

atresia in P. magellanicus, particularly in relation to the time series of 

environmental variables, as well as on the fate of the products of lysis in 

this organism.

Current sea scallop stocks remain at historically low levels (NEFMC 

1993). High fishing pressure has resulted in a dearth of larger scallops. 

Surveys in 1993 found that 98.7% of all scallops caught were below 

100mm in size (NMFS 1993). McGarvey et al. (1993) found that these 3- 

and 4-yr-old scallops were of questionable importance to recruitment in 

one location, on Georges Bank. As alternative management plans for sea 

scallops come under consideration (Moore 1994), it is imperative that
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these plans account for size-specific trends in reproductive capacity, 

particularly as sea scallop stocks necessarily have become increasingly 

dependent on younger year classes for maintenance of the populations.
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