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A bstract

In this dissertation, we study three different sets of matrices, First, we consider 
Euclidean distance squared matrices. Given n  points in Euclidean space, we construct 
an n X n Euclidean squared distance m atrix by assigning to each entry the square 
of the pairwise interpoint Euclidean distance. The study of distance matrices is 
useful in computational chemistry and structural molecular biology. The purpose 
of the first part of the thesis is to better understand this set of matrices and its 
different characterizations so that, a number of open problems migiit be aixswered and 
known results improved. We look at geometrical propertitxs of this set, investigate 
forms of linear maps that preserve this set, consider the uniqueness of completions 
to this set and look at subsets that form regular figures. In the second part of 
this thesis, we consider ray-pattem matrices. A ra,y-pattern matrix is a complex 
matrix w ith  each nonzero entry having modulus one. A ray-pattern is said to be 
ray~nonsiiigular if all positive entry-wise scalings are nonsingular. A lull ray-pattern 
matrix has no zero entries. It is known that for n  >  5, there are no full ray-nonsingular 
matrices b u t examples exist for n < 5. We show that there are no 5 x 5 full ray- 
nonsingular matrice.s. The last part of this thesis studies certain of the finite reflection 
groups. A reflection is a linear endomorphism T  on the Euclidean space V  such that 
T{v) =  n — 2(u, u)u for all v G V. A reflection group is a group of invertible opei’ators 
in the algebra of linear endomorphism on V  tha t are generated by a set of reflections. 
One question that has recently been studied is the form of linear operators that 
preserve finite reflection groups. We first discuss known results about preservers of 
some finite reflection groups. We end by showing the forms of the remaining open 
cases.

IX
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Chapter 1

Introduction

The theme of this dissertation is the study of certain sets of matrices. We will consider 

different open problems for each of these sets. To begin, we will first give some basic 

definitions and notation. Then we will give an overview of the remaining chapters.

1.1 N otation  and Definition

We use R, and C to denote the real and complex fields. The set of m  x 7i matrices 

with entries from a field F  are denoted by For convenience, when F  =  R ,

we will shorten this to Also, we will use M„(F) to denote Mn,n(P)- For x € C,

let X denote the complex conjugate of x  and |rrl denote the absolute value of x. We 

use |j ■ II t o  denote the usual Euclidean norm. For a matrix A € we use

A ~  (ciij) to  denote that a-ij € F  is the entry of A lying In the ith  row and j th  column. 

Let A  € then the n x m matrix yF is the transpose of /I, while |A| =  (|aij|)
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is the matrix of absolute values of entries of ..4, A  =  (»5̂ J) is the matrix of complex 

conjugates of entries of .4 and ,.4* =  is the Henuitian adjoint of ,4. Given matrices 

A ,B  € Mm.n, A o B  is also in Mm,n and is the entrywise product of A and B. It is 

called the Hadamard (or Sclmr) product.

Let I  € M„(F) be the identity matrix. Let e i , , .  be the vectors forming the 

standard basis for R . In other words, Cj is the vector with tht) only nonzero entry in 

the ith position and the value of th a t entry equal to one. Let e be the vector of all 

ones. Let Eij be a standard basis matrix of In other words, Eij is the matrix 

whose only nonzero entry is in the *th n m  and yth column and is equal to one. For 

M„,j Eij ~  Citj. Let J  be the all ones matrix. For A  € Mp^g and B  E Mr,s, the matrix 

A ®  B  € Mp.i.r,q+s is the direct sum and defined as

A ®  B  =

\ "

For any vector v e  F ” , then D  =  diag(u) G M„(F) is the diagonal matrix with

{D)ii =  Vi.

A m atrix  A  € M„(F) is symmetric if 4^ =  A. 4  is Hermitian if 4* =  A. Note 

that for A f„(R), the properties of being Hermitian and symmetric are the same. Let 

Sn be th e  set of real n  x n symmetric matrices. A matrix A € Af„(F) is said to 

be positive (semi-)definite if x*Ax > 0 (respectively, j;*4.t >  0) for all 0 x  G F ” . 

Alternatively, A is Hermitian and all the eigenvalues of A  are positive (respectively, 

iioiinegative). Let PD(n) be the set of real n x n  positive definite matrices and PSD(n) 

the set of real n  x n positive semi-definite matrices. It is an easily proven fact that a
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matrix A = (ay) € PSJ.')(n) if and only there exists a niatrix X  € A4,„,(F) swch 

/I =  F’urt.hermore, tlie rank of A and X  agree. If we label the coiiinms of .A" as 

a-i)-- • ,ar„ € F*, then =  (xi,Xj) where (-, •) is the standard inner product. Such 

matrices are calk?d Gram matrices.

1.2 Overview

This thesis deals with three different sets of matrices;

In Chapter 2 we study the cone of Bjuclidean squared distance (BSD) matrices. 

Given n  points in Euclidean space, we can construct an 7i x n  Euclidean distance 

matrix by assigning to each entry of the m atrix tlie pairwise interpoint Euclidean 

distance. The study of distance matrices was motivated originally by statisticians 

and psychometridans interested in (classical) multidimensional scaling and by more 

recent work which involves computational chemistry and structural molecular biol

ogy. The purpose of this chapter is to better understand this set and its different 

characterizations so that a number of open problems might be answered and known 

results improved. We start the chapter describing the motivation for studying this set 

of matrices and then review different characterizations of this set and their history. 

We then present some results on the facial structure of the convex cone, the angle 

between m atrices in the set and linear preservers of this set. The third section will 

deal with the  uniqueness of a completion to this set of ESD matrices. In a partial 

matrix, som e entries are given and others are left unknown. A completion of the
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partial matrix is a m atrix whose entries agree in the specified locations of the partial 

matrix and the imspecified, entries have valu.es assigned so that, the matrix takes on 

the desired properties. We consider the problem of testing the uniqueness of a given 

completion. We generalize this result so that other completion problems might also 

be considered. In the last stjctioii, we consider a subset of Euclidean squared distance 

matrices, namely those that correspond to points that lie on a hypersphere whose cen

ter is the origin and the centroid of the points is also the origin. We discuss known 

results, especially characterizations, and then consider the form of linear preserver of 

this set.

In C,hapter 3, we consider ra,y-pattem matrices. This is a generalization of sign- 

pattern matrices. A ray-pattem  is a co.mplex matrix with eacli nonzero entry having 

modulus one. A ray-pattern A  is said to be ray-nonsingtilar if A o X  is no,nsinguIar for 

each entry-wise positive matrix X .  Looking at full ray-pattem matrices, i.e. no zero 

entries, i t  is known that for n >  5, there are no n x n  full ray-nonsingular matrices. 

For n < 5 there are examples of full ray-nonsingular matrices. We show that for 

71 = 5 there  are no full ray-nonsingular matrices.

The la s t  chapter of this thesis studies various sets of matrices generated by reflec

tions. Recall that a reflection is a linear endomorphism T  on the Euclidean space V  

such that T(v)  =  v — 2(v, u)u for all v £ V .  A  reflection group .is a group of invertible 

operators in  the algebra of linear endomorphism on V  that are generated by a set 

of reflections. These reflections can be represented by matrices and the resulting re

flection groups are matrix sets. The particular problem that we study involves linear
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6

preservers of the space spanned by these reflection groups. We study this problem 

by considering the representative m atrix S  and then determine the form of tfiose 

linear operators t/j : [5] [5] such th a t ip{S) =  S. We first discuss known results

about preservers of some finite reflection groups and then solve the problem for the 

remaining open cases.

Sections 2.1 and 2.2 are based on joint work with Chi-Kwong Li and Michael 

Ti'osset and found in [34]. Section 2.3 is based on [32], which is joint work with 

my advisor, Clii-Kwong Li. Chapter 3 represents joint work %vith Chi-Kwong Li and 

Bryan Sha<ier and is based on [33]. Chapter 4 is based on [31], joint work with 

Chi-Kwong Li.
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Chapter 2

Euclidean Squared D istance

M atrices

We divide this chapter into four sections. In the first section, we will give background 

information about the set of Euclidean squared distance (ESD) matrices. This will 

include motivation for studying this problem, different characterizations of this set, 

as well as a  short history of the study of this problem. The second section will deal 

with some consequences of these characterizations. We will present results concerning 

the facial structure of the cone of n x n Euclidean squared distance matrices, bounds 

on angles between certain matrices and a discussion on linear presei’vers of this set. 

The third section will study the uniqueness of a completion of a partial matrix to an 

ESD m atrix . The final section will address future work. In particular, we will discuss 

a subset o f  t>{n) whose elements we call spherical ESD matrices.

One o f  the interesting facets of the study of ESD matrices is that the charac-
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terizatioas mentioned in this next section pro'vide a relationstiip between the set, of 

ESD matrices and other types of matrices. To study n  x n ESD matrices, originally 

(n +  1) X (n +  1) Menger matrices were studied. More recently, a subset of n  x n 

positive semidcfiiiite (PSD) matrices have been extensively studied. Our results use 

extensively (n -  1) x (n ~~ 1) PSD matrices. Throughout this cha.pter, we will use 

these other sets of matrices to study the set of ESD matrices. Not only does this 

allow us to  more easily say something about ESD matrices, but in some cases (see 

subsection 2.3.3) to say something about other problems too.

2.1 Characterization of ESD M atrices

2.1.1 M otivation

Distance geometry is concerned with the interpoinfc distances of configurations of n 

points in metric spaces. It is natural to organize these interpoint distances in the form 

of an n  X n distance matrix, so the study of distance geometry inevitably borrows 

tools from  matrix theory. For example, a fundamental problem in distance geometry 

is the embedding problem: determine whether or not a specified set of numbers can 

be realiz€id as a configuration of points in a specified metric .space. This problem 

was first addrfjssed (anonymously) in 1841 by .4. Cayley [9], who derived a neces.sary 

condition involving a matrix determinant for five points to reside in Euclidean space.

The ab ility  to characterize distance matrices has important appIication.s in a va

riety of disciplines. Nearly a century after Cayley’s contribution, a characterization
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of distance matrices (re)discovered l>y G. Young and A.S. Householder [50] was the 

impetus for (classical) multidimensional scaling [43, 46, 17). Originally devclop^xi by 

psychometricians and statisticians, multidimensional scaling is a widely used tool for 

data visualization and dimension, reduction. Research on .rrniltidimeiisiojml scaling 

continues to exploit facts about distance matrices, e.g., [38]. Analogously, in com

putational chemistry and structural molecular biology, the problem of determining a 

molecule’s 3-dimensional structure from inform,atiori about its interatomic distances 

is the problem of finding a matrix of 3-dimensional Euclidean distances that satisfies 

certain constraints, as in [11].

Characterizations of distance matrices are not only mathematically elegant, but 

gerratiiely useful to researchers in other disciplines. Unfortunately, the literature 

is fragmented and somewhat obscure. 'We have endeavored to collect several well- 

known characterizations of Euclidean squared distance matrices. Applying the tools 

of modern matrix theory, we provide short proofs of these characterizations and derive 

several consequences of them.

Formally, a Euclidean squared distance (ESD) matrix A =  (a^) is a matrix for 

which th e re  exist x i , . . . ,X n  G R* such that =  ||zj — Xj||^. If k is the smallest 

dimension for which such a construction is possible, then k is the embedding dimension 

of A. Cleaxly, the choice of .rq,. . . ,  x„ is not unique, for if xq =  Xj, — then .x,; % =

Xi -  Xj. G iven w G R ” with Y.%\ ~  #  0, let xq =  WjXjf Then

=  0 € R*, so we can assume without loss of generality that EJUi Wi-Ft =  

0 G R^. T'liis linear dependence of the vectors Zi, . . . ,  .r;„ demonstrates the well-know,n
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fact that tlie largest possible embedding dimeiisiori for n  points is n ~  1.

It 'follows imrneciiately from 'the definit'ion that, an ESD matrix is a real, symmetric, 

nonnegative, hollow (an =  0) matrix. These properties are necessary but not sufficient 

for a matrix to be an ESD matrix (a matrix with these properties is called a pre

distance or dissimilarity matrix); in Subsection 2.1.2 we collect and provide short 

proofs (some new) of a number of well-known ctiaracteriza.fc'ions of ESD matrices.

Let 'D(n) denote the set of n x n  ESD matrices. Suppose that A  =  (j|.u,; -  ay IP) € 

V{n) and a  > 0. Then (||a.'r,; ”  a x j \ f )  =  a^A  € V(n),  and note that thertTore 1?(n) 

is a cone. In the next section we will show that it is a convex cone.

2.1.2 Characterizations

Let S« be the set of n  x n  symmetric matrices. Let e i , . . . ,  e„ denote the coordinate

unit vectors in R ” and let I  denote the n x n  identity matrix. Set e =  e i-1 he„ and

J  = eeK Given w € R " such that e*tu ^  0, define the linear mapping : S„ -> S„ 

by

2 \ eJ'W / \  e%  '

Given w €  R ”', we say that xy, . . .  G R^’ is w-centered if and only if WjXj — 0. 

The following theorem offers characterizations of the ESD matrices. The historical 

context o f these characterizations are discussed in the next section.

T h e o rem  2.1 Suppose, that A is an n x n  pre-distance matrix. Let w be any vector 

in R ” such  that edw ^  0 and let II be any n  x (n -- 1) matrix for tohich the n  x n 

matrix V  =  is orthogonal. Then the, following conditions are equivalent.
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(a) There exists a w-centered spanning set ofBl% for which A

{\\Xi x £ ) .

(b) There exists a w-centered spanning set of B f .  { x i , .. - for which t,u{A) 

{4 x j) .

(c) The rnatrk: U^AU is negative sernidefinite of rank k.

(d) The .snbmattix B  in

(1  0 \  /O  e‘ \  f l  0
An

F V  \ e \ o  y ,

/  0 0 \

* *

\  0 * B /

is negative sernidefinite of rank k.

fO e f \
(e) The matrix Ao =  has nonzero eigenvalues o-i > 0 >  0 2  >  • • • >  a&+2 -

\ e  A )

/O  e*
(f) There exists an n  x n permutation matrix P  for which the matrix

\ e
has rank k + 2, and, for j  = 2 , . . .  , k  + 2, each j  x j  leading principal minor is 

nonzero and has sign

P ro o f  W e first establish the equivalence of conditions (a), (b), and (c).

(c) =»• (b) Let v i , . . . ,V n  denote the rows of V  and let u i , . . . ,Un  denote the 

rows of 17. It follows from

f P / s / f i f

\  IP
™ J  +  UU^ 
n
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that U W  =  /  -- i /. Hence, it ft>liows from =  ce' =  J  that71* tr# T*/ t' 71/

UCft ( j  „  ( /  i  A f j  '£!!'] =  / /  ^  ^  i ( j  J) f j  ^  ! ^ y
\  e^'ii;/ V n J \  e*-w)  \  e/"w j  n ' \  e*u; /

Because U'^AU is a negative sernidefinite matrix and has rank k, we can. write

-~^WAU  =  Y ^Y  for some k x (n — 1) matrix Y  of rank k. Let W  ~  U*{1 — p - )  and

let ;ri , . . . ,  .x‘„, denote the columns of X  ~  F fF . Then

\
5;] =  ATe =  Ff;* 1 -  ^  «, =  Ff/*('u; -- w) =  0
i==̂ i V ®

and

..
2 2 \ e*w I \ e*"w,

XKX = ŵ Ŷ rW = -lw%r̂ AUW = f/ ~ ^1  UÛAUÛ (I
1 f  ew*\ (  we A  / ...

=  ~ 2

It remains to show that a;i,...,rj;„ spans R^. The range space of U is e- .̂ If 

z € e-̂ -, then

(2 .1.2)
eHv J

hence, C/* and U \ I  — have the same range space. Furthermore, because Y lP  =  

(0|F)F^, rank  Ft/* =  rank Y  =  k. Hence,

rank A  =  rank F IT  =  rank Ft/* ( /  -  ^  j =  rank Ft/* =  k.
\  ezw)

(b) => (a) Define k : S„, S,, by

«;(,F) =  diag(.B)./ 2.B +  Jdiag(i?). (2.1.3)

Let X  =  ( x i  I • • • |;r„) and

H  = K =  {x\xi — 2x\2:j +  A^’i)  “  (lN‘*"" TilP) • (2.1.4)
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Because J(1 -  = J -  7 =  0 and X ( / -  g f ) = A' =  A',

t , ( H )  =  - i  ( l  -  ^  {DJ -  2 X ‘X  +  J i l )  -  1 ^ )  =  A 'A- =  r„(.4)

where D  =  diag(B). Furthermore, it follows from (2.1.2) that

so

Eij =3 (di -  e.jf H  {e.i -  f%-) =  (e* ~  e,-)* (e* -  e^)

™ {fii ~~ €j) Til,{A) {(‘i — €j) ~  Aij,

i.e., H  =  A.

Notice that this argument demonstrates that r,„ is injecti\'e on the hollow sym

metric matrices.

(a) => (c) Let .-ro =  E ”=i.a/j7n and 5, =  Xi -  Xq, so  that x \ , . . . ,X n  is an 

e-centered spanning set of with A  =  (||sj — Xj\^^). Let X  denote the k x  n 

matrix w ith  columns x i , . . .  ,x„. Then X e  =  0, so X F  =  (0(X£/) and it follows that 

rank X U  — rank X  = k.

Because V  is orthogonal, I7*e =  0 and therefore U ^ J ~  f/*ee* =  0 =  JU. Applying

(2.1.4),

U^AU  == [JD -  2XKX + D j )  II = -2U ^X*XU  = - 2 ( x u f  (.AT/)

is a negative sernidefinite matrix of rank k.
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(c) (d) Because f/^e =  0,

1 0 \  /()  e<\ / I  0 \

0 |/y

0 e*\ / I

/i,
0 v y  [ e  A )  

( I  0 \

0 eV v €

Vo £/* /

0 0

0 ejy/n  U ̂

(2.1.5)

{ 0 y n  0 \

yH  (^'Ae/n * (S. 1.6)

\  0 =»= IP A U )

Thus, B  ~  U*AU and conditions (c) and (d) are equivalent.

Now we establish the equivalence of conditions (d), (e), and (f). To do so, we rely 

on the following interlacing inequalities (see, for example, [14]):

V  h  > • ■ • >  6,- are the eigenvalues of an r x r principal mhmatrix of an 

s X s  symmetric matrix with eigenvalues Uj, >  • ■ ■ >  a» , then iii > hi > 

as~r+i f o r i = l , . . . , r .

(d) =4̂  (e) Because V  is orthogonal, so is Fq ^ud it follows from (2.1.5) that

A q and A q have the same eigenvalues. By interchanging the first two rows of A q and

performing Gaussian elimination, we see that rank A q ~  rank A q = 2+rank B  — 2+yfc. 
/O  0 \

Because I has no positive eigenvalues and is a principal submatrix of A q, it
\ o  b )

follows from  the interlacing inequalities that do, hence do, has at most one positive 

eigenvalue. But the leading 2x 2  principal submatrix of do has a negative determinant 

and therefore one positive and one negative eigenvalue; hence, by the interlacing 

inequalities, do has at least one positive eigenvalue. Thus, do has exactly one positive

eigenvalue and, because rank do =  k +  2, k 4-1 negative eigenvalues.
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(e) => (d) Wb luxvi) alreaxiy argued that rank B  =  rank ~  2 =  rank Ao ~  2 == 

A: -f 2 ~  2 =  k. Given v € R ”“', we demonstrate that b = v*Bv < 0. Toward that 

end, let
/O 1 0 \

D -4(1

/() 1 0 \

0 0

Vo 0 v j

~nb.

(  0 s/Ti 0 \

\/ii c ♦

V o  * & /

1 0 0

Vo 0 %H

where c =  eKAefn. Notice that defc(,D)

Let d\ >  d,2 > dz denote the eigenvalues of D. Let Q be any orthogonal matrix of 

the form
/

0 1 0 

1 0 0Q

\

ill which case Q^AqQ
( D

has the same eigenvalues as /lo, i.e., the same 
V * ♦ /

eigenvalues as ^ q. BecaiivSe D is a principal submatrix of it follows from the

interlacing inequalities that dz < d'2 <0-  Furthermore, it follows from the Rayleigh- 

Ritz Theorem that d\ > 0. We conclude that h =  — det(D )/n  =  -didzd-s/n < 0.

(2.1.7)

(e) (f) Any matrix of the form

/O B  

P^AP^

where P  is an n  x n permutation matrix, must have the same eigenvalues as .Ao. 

It follows from (e) that any such matrix mu.st have rank k -f- 2. We choose P  so 

that, for j  =  2 , . . . ,  +  2, the j  x j  leading principal submatrices of (2.1.7) have no
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/{) 1\
'iiero eigenvalues. Tlieri the 2 x 2  leadin^g principal submatrix is . which lias a

Vi Oj
positive eigenvalue. Hence, for j  =  2 , . . . ,  jfe +  2, each j  x j  leading principal subraatrix

ill have one positive and j  ~  1 negative eigenvalues and the corresponding minors 

will have signs (-l)^ ’“ h

(f) => (e) Because (2.1,7) has rank A:+  2, so does -4o- Because the 2 x 2  leading 

principal minor of (2.1.7) is negative, the 2 x 2  leading principal submatrix has one 

positive and one negative eigenvalue. Because the 3 x 3 leading principal minoi' of

(2.1.7) is positive, it follows from the interlacing inequalities that the 3 x 3  leading 

principal subraatrix has one positive and two negative eigenvalues. Continuing in this 

manner, we conclude that the {k +  2) x {k +  2) leading principal submatrix, hence

(2.1.7), hence 4o, has one positive and k  +  1 negative eigenvalues. □

2.1.3 Historical background and related results

Let us m ake some remarks about the characterizations established in Theorem 2.1. 

We have already noted that the requirement that Xi, . . . ,  is it'-centered entails no 

loss of generality; hence, condition (a) is simply the definition of a Axdimensional ESD 

matrix, i.e ., an ESD matrix with embedding dimension k.

A coiiiiection between the ESD matrix A  and the bordered matrix Aq, from con

dition (e) , was originally established by Cayley [9]. Bordering A  on the bottom and
/ A  e \

right, Cayley demonstrated that det
0 /

0 if A e T>{n) for n  =  3,4,5 and
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certain embeckiitig dimensions. Menger [40, 41] elaborated on this cormection/* Given 

A, let A{i) denote the ( n - 1 )  x ( n - . l )  submatrix of ..4 obtained by deleting row i and 

coluinri i  Obviously, if .4 £- V{n), tlien each A{i) € V{n  -  1), Suppose, conversely, 

that each A{i) e  V ( n -  1). Then Menger’s Third Fundamental Theorem [41, p. 738] 

states th a t / i  e  'P(n) if and only if the sign of det(/lo) equals (~1)”' or 0. This 

led Meriger to a recursive Metrical Characterization of Euclidean Sets [41, p. 744], 

the first characterization of ESD matrices. Menger’s hypotheses were subsequently 

weakened by Bhiraenthal [6].  ̂ Our condition (f) is Theorem 42.3 in [7, p. 104].

It is no t easy to determine whether or not A. is an ESD m atrix by checking con

dition (f).® Furthermore, condition (f) is not constructive, i.e., it does not produce a 

configuration of points for which / i  =  {|ja;̂  — matrix. In 1935,

a constructive alternative to the Cayley-Menger approach was noted by Schoenberg 

[44]. Upon renumbering Schoenberg’s vertices 1 , . . . ,  n as .r;!,. . . ,  and relabelling

^The matrices do are often called Cayley-Menger matrices; their determinants are often called

Cayley-Menger determinants.
^K. Menger and L.M. Blumenthal were the two most significant figures in classical distance

(“metrical” ) geometry. In [41, p. 721], Menger expressed his “thanks to Dr. Leonard M. Blumenthal

for his help in the editing of this paper... ” In the preface to his University of Missouri monograph

[5, p. 3], Blumenthal attributed his “interest in abstract metrics” to “lectures that Karl Menger gave

at the Rice Institute the spring of 1931” and to “the second year [1934-35] of [a National Research

Fellowship] spent with Professor Menger at the University of Vienna.”
^Computational applications of Cayley-Menger determinants include [28], in rvhich Klapper and

DeBrota inferred a matrix of interatomic di.stances from bond length.?, geminal distances, and vicinal

distances; a n d  [11], in which Crippen and Havel used a “tetrangle inequality” to smooth lower and

upper bounds on interatomic distances.
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his vertex 0 as Xn, his Theorem 1 stjrtes that, with w = e„, 'ra,(/l) is positive semklel- 

inite and of rank k. In contrast to out statement of condition (b), Schoenberg did 

not emphasize the Gram matrix representation r^{A) = (xjxj); however, his proof

of sufficiency is constructive and he did emphasize th a t “the actual construction... is 

tlierefore carried out by a reduction of the quadratic form ... to its canonical form... ” 

Three years later, condition (b) with w  =  e„ was rediscovered by Young and House

holder [50].'* In contrast to [44], their proof used “a matrix first given by Cayley in 

1841,” the rank of which they demonstrated to ecpial A;+  2; however, it appears that 

Young and Flouseholder were u,ua,ware of earlier work by Menger and Schoenberg."'’

If a r t , , x„ is e„--centered, then Xn is located at the origin. In contrast to [50, 43], 

Torgerson [46] preferred locating the configuration’s centroid at the origin. Accord

ingly, Torgerson popularized the use of w = e in condition (b). A thorough analysis

*6. Young received his M.S. from the University of Chicago (U.C.) in 1936 and remained as a 

resea,rch iissistant in mathematical biophysics through 1940. A.S. Hou.seholder received his Ph.D. 

frorn U.C. in 1937. They were motivated by the interest of various U.C. psychologists in sctding, 

noting: “This paper was written in response to suggestions by Harold Gulliksen and by M.W. 

Richardson. The latter is working on a p.sychophysicaI problem in which the dimensionality of a set 

of points whose mutual distances are available is a central idea.” Accordingly, [50] was published in 

Psychometrika and was widely cited by psychometricia,n,s unfamiliar with [44]. Richardson’s paper, 

[43], was th e  seminal work on multidimensional scaling. In 1946, Gulliksen [20] surveyed methods 

for scaling v ia  the method of paired comparisons; he .subsequently directed the Ph.D. thesis of W.S.

Torgerson, who extended liidiardson’s idea.s to the case of fallible da,ta in [46].
®In his monumental treatise on distance geometry [7], Blumenthal correctly attributed condition

(b) with w =  to [44]. He did not cite [50].
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of the linear transforraatioii was undertaken by Critchtey [12], who introduced the 

now-ubiquitoiis r  to honor Torgerson. The extension of condition (b) to arbitrary 

'tv ^  cT is due to Gower [18, 19]. This condition is considered by many to be the most 

practical: not only does it give a method of verifying if a matrix is an ESD matrix, 

but also a straigtforward decomposition gives a realization of the generating points 

X i , . . . ,X n  €  R*.

Both Schoenberg (44] and Young and Householder [50] gave (diflhrent) dircsct 

proofs th a t conditions (a) and (b) are equivalent. In contrast, Blumenthal [7] first 

proved th a t (a) and (f) are equivalent, then demonstrated that (f) and (b) are equiv- 

alent. Having thus demonstrated the equivalence of (a) and (b), he then argued that

(b) and (c) are equivalent and stated the equivalence of (a) and (c) as a corollarj'. 

Although Blumenthal did not emphasize this result;, we regard (c) as the fundamental 

characterization of ESD matrices. Condition (c) states simply th a t the compression 

of A on i.e., the restriction of both the domain and the range of the operator A  

to the subspace e-*-, is negative sernidefinite. As it does not depend on the choice of w 

and U, it is as nearly a coordinate-free characterization of V{n)  as can be managed.

Because of (c), any coordinatizatioii of eA leads to a characterization of ESD 

matrices. We note two examples from the literature.

C o ro lla ry  2.2 (H ayden an d  W ells [21]) Stippose that A is an n  x n pre-distance 

matrix. L e t  Q denote a Householder transform.atwn that satisfies Qe =  let q

denote the fi.rst column ofQ, and ivrite Q ~  {q\~U). Then A  € V(n) with embedding 

dimension k i f  and only if {~~UyA{—U) =  IP'All is negative sernidefinite of rank k.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



20

P ro o f  Let r f , .. . j - \  denote the rows of Q. Because Qe •■= -'V^nei, . . .  ,r„ € e-̂ -. 

Becaii.se Householder transformations are symmetric and orthogonal, we deduce that 

q = n=-- ~e /y /n ,  then apply (c) to V ^  - Q .  □

C oro llary  2.3 (H ay d en , W ells, L iu, Taraaiaga [23]) Suppose that ..4 is an n x  n 

pre-distance matrix Then A  € t>{n) with embedding dimension k if and only if there 

exist mutually oHhogonal vectors qi, . . . G e-̂  such that

1 *
- - - A  =  Aee* +  ez^ +  +  X] (2.1.8)

^  3=1

where

and z is determined by (2A .8), (2.1.9), and the fact that A  is hollow.

P ro o f  I t  suffices to prove that (2.1.8)--(2.1.9) is equivalent to (c). Suppose that 

there exist mutually orthogonal vectors gi, G e-̂  for wdiich (2.1.8) holds. Extend 

e/y/n, q i , . . . ,qk  to an orthogonal basis e / i/n , g i , . . . ,  g.„_i and let Q =  (gi • ■ ■ qn-i)- 

Then

<f ( - 5 .4 )  Q = Q‘ 0  =  E  {q % )  ( o ‘® )‘

is positive semidefinite of rank k, which is equivalent to (c).

Conversely, suppose that (c) holds for a specified U, in which case there exist 

mutually orthogonal vectors Wi, .. .,Wk € e-'- such that

1 *

^ 3=1
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Then

i/i

so

J/ + trace (lVW^''j =  trace =  0

and

1 / I X  ^ /e V 7 « "
=  V V ^ { - ^ ^ A ) v r ^ i ^  £/)

2  \  2  /  V

=  !lee* +  +  {JWW^'U\
n  sjn  s/n

Now let A =  v /n , z  =  U y/\/n ,  and qj =  Utu-j. Then <?i, • • - ,9* € e-̂ ,

/  k \  k k
U W W ‘V^  ^  ir ^  fjt ^  UwjWp^‘ =

\ i = i  /  j = r  i = i

and

A =  - i t r a c e  (hFhF‘) =  - - t r a c e  ( w H v )  =  E'<4'Wi
i==i

i=i

□

We have not discovered our condition (d) in the literature. This is not surprising: 

the equivalence of (c) and (d) is trivial, and (c) is the more elegant condition. The 

importance of (d) is that it involves the Cayley-Menger matrix /io- One can then 

use the iriteriacing inequalities to establish a direct connection between condition 

(c) and th e  classical condition (f) involving Cayley-Menger determinants, thereby 

strengthening our conviction that (c) is fundamental to understanding ESD matrices.
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This coimectioji intcjrpolates condition (e), previously iiote<l by Hayden and, Weils 

[21, Theorem 3.1]. From (c) and (e), we can easily deduce the possible ranks of an

ESD matrices.

C oro lla ry  2.4 (G ow er [19]) I f  A  G 'P(n) and A has embedding dimension k, then 

rank {A) equals k + 1 or k +  2.®

P ro o f  I t follows from (c) that lAAU  has k  negative eigenvalues. Because IP'AU is 

a submatrix of V*AV, it follows from the interlacing inequalities that V*'AV, hence 

/I, has a t least k negative eigenvalues. Furthermore, because trace(y4) =  0, A  has at 

least one positive eigenvalue. Hence, rank(,/l) is at least A; + 1. Finally, it follows from 

(e) that rank(^o) -= k  +  2. Because .4 is a submatrix of Aq, rank(,4) is at most k +  2. 

□

Each o f the conditions in Theorem 2.1 specifies the embedding dimension of the 

distance m atrix. Alternatively, the set of all ESD matrices can be characterized 

through a  connection to the set of correlation matrices. The following characterization 

is noted in  [13, p. 535], as a corollary of an elegant but complicated general theory of 

cuts and metrics. Here we provide a direct proof, again relying on condition (c).

Corollary 2.5 (D eza and  L au ren t [13]) Let£{n) denote the set o f n x n  correla

tion matrices, i.e., syrnnietric positive semidefinite juatrices with diagonal e, and let

‘'Gower [19, Theorem 6] distinguished the two cases by demonstrating that r<mk{./l) = & + I if 

and only if the points that generate A lie on a sphere. We derive a different chai-acterization in 

Corolhiry 2.6.
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C(n) denote the closure of the set

{ A ( e c * - - C ' )  : A  >  0 ,  C ' €  ^ ( n ) }  .

Then tC(n) ~  T>{n).

P ro o f  To show that /C(n) C T>{n), we suppose that C =  (dj)  is a correlation matrix 

and that A >  0. Then C  is positive definite and cu =  1, so \dj\ < 1 and ee* -  C  is a

pre-distance matrix. Furthermore, if U is any n  x (n — 1) m atrix whose columns lie 

in e-*-, then

[a (ee* -  C)] U =  --XU'^CU

is negative sernidefinite. Applying condition (c) of Theorem 2.1, it follows that. X{e€* ~  

C) e  V {n ) ,  Then, because X>(n) is closed, it must be that /C(n) C V{n).

To show that V{n) C fC{n), suppose th a t A  G 'Z>(rr) has embedding dimension k. 

Given e >  0, we will demonstrate tha t there exists A  € V(n)  such that ||A — /lj| <  e 

and A G K{n). Because K{n) is closed, the desired inclusion will then follow.

First w e construct A. Let 'X i,. . . ,  Xn be an e-centered spanning set of for which 

A  =  (||xj — x'_y|p). By construction, the rows of the k x  n matrix X  =  (.'iy ■ ■ -Xn) are 

linearly independent vectors in e- .̂ Choose t j i , . . . ,y n  € so that the rows of

the (n ~ 1  — k ) x n  matrix Y  =  (yi • • - extend the rows of X  to a basis for e -̂. Let 

Ap ~  (Ill/i — Given e >  0, let d'® =  <;/il2i-iy|| and z| =  (a;,-, Syf). Then z i , . . . ,  z„, is 

an e-centered spanning set of with ESD matrix

i  =  ( p i  - -  Z j f )  =  ( l | z i  -  )  +  (5  ̂ ( ||-y i -  % j |^ )  =  / I  +  S ' ^ A y ,

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



24

and | | i  ~  A|[ ~  =  c-

Next we show that yi € C(n), i.e., that there exists A >  0 stich that; ee* -  /1/A is a 

correlation matrix. Because ee* ~  A fX  has unit diagonal entries for any A, it suffices 

to find A >  f) for which ee‘ — A/X  is positive definite.

Again we apply condition (c) of Theorem 2.1. If U is such that V  =  is

orthogonal, then lAAU  is negative seniidefmite. It follows th a t we can choose U so 

that A =- ~W-AU  is a diagonal matrix with nonnegative entries. For this choice of U,

# 1 ... 1ee -A =  VlA-eeHnA ^  ^--VV^'AVV^ 
A A

=  fo

=  y

i n  Q\ J /  Ae^Ae
y« _  i v  1 V*'

{() Q j \~ ^U ^A e  A

f n ^ A e * - A e  - ^ j ^ e * A U \

iA  ;

is obviously positive definite for sufficiently large A >  0. □

Recently, Alfakih and Wolkowicz [2, Theorem 3.3] used Gale transforms to charac

terize those ESD matrices that can be represented as A =  A(ee  ̂~  C). The following 

result elaborates on their characterization; furthermore, it allows us to distinguish 

between ESD  matrices of ranks A; +  1 and A; +  2. Notice that, if V  is the orthogonal
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matrix cori8t;mcted in the proof of Corollary 2.5, then

h bi - • • bk b'k+t * ' • bn~l

h Ai

I 0

bk Afc

bk+i

0 0

bn—I )

(2 .1.10)

C o ro lla ry  2.6 Suppose that A  € X>(n) has embedding dimension k and that V  =  

orthogonal matrix for which (B.1.10) is obtained. Then the following 

are equivalent:

(a) There exist A > 0 and C e. £{n) such that A  =  A(eeA — C).

(b) =  • • • =  bn-i =  0.

(c) ra n k  (/I)  =  A; +  1 .

P ro o f  Because A =  U^AU is negative semidefinite of rank k, thus Aj , . . . ,  A/j < 0.
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(a) =» (b) Writing C  ee} -  A j \  it follows from (2.1.10) that

Xn — &o - h  ‘ • ■ ~ h —h-n ' ■ ■ -bn-i

- b i ~Xi

0

-bk

0 0

&n_l
)\

-Because C,  hence V*CV, is positive semidefinite, so are the principal submatrices

/  Xn ~~ bo —bi \

V 0

which necessitates =  0 for i =  :̂ +  1 , . . . ,  n — 1.

(b) =» (a) Conversely, if bk+i =  • • • =  6.„_i =  0, then we can choose A sufficiently 

large th a t the matrix in (2.1.11) is positive semidefinite. It follows that C = eeX — A/X  

is a correlation matrix.

(b) ^  (c) Let L  denote the leading {k +  1) x (A: +  1) principal submatrix of 

V*'AV, Bcicause Ai, . . . ,  A;. < 0, L has at least k  negative eigenvalues. But trace(L) =  

trace(y*/4F) =  trace (.A) = 0, so 6o > 0 and L  must have a positive eigenvalue. 

Thus, rank(L ) =  k + 1 and rank(Al) =  rank(F'vlC) >  k +  1. It is obvious from the 

form of (2.1.10) that rank(y-l) =  rank(FC iF) >  k +  1 if and only if some 6,; ^  0, 

i e  {k + l , . . . , n - l } .  □
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Alfakih and Wolkowicz [2] state condition (b) as A Z  = 0, where Z  is a Gale 

matrix associated with A. If k  =  n ■- 1, then Z  = { 0 , , 0Y  and A Z  — 0, while (b) 

is vacuously true. If k <  n — 1, then let Z  -■ {uk+i • • • Un~i)Q, where ui, «n-i are 

the columns of U and Q is nonsingular. Then lA A Z  =  0 and, because the rows of 

form a basis for e^, the columns of A Z  lie in the span of e. Hence, A Z  =  0 if and 

only if {hk+i,. . . ,  =  eiAZ  =  0.

2 . 2  C o n s e q u e n c e s  o f  t h e  C h a r a c t e r i z a t i o n s  o f  V { n )

We proceed to exploit a well-known connection between V{n)  and PSD(n -  1), the 

subset of positive semidefinite matrices in This connection follows immediately 

from our analysis of conditions (a), (b), and (c) in Theorem 2.1. The following 

notation is convenient: given M  C S „, let [M] denote the span of M  in S„ .̂

Given m G R ” such that e}w ^  0, let denote the set of matrices of the form 

for some k x  n  matrix X  that satisfies Â 'w =  0. The mapping : S„ —> S„ 

was defined by (2.1.1). Restricting its domain to [12(n)], we obtain the mapping 

Tw '■ —)■ Similarly, the mapping k  : S„ -> S„ was defined by (2.1.3).

Restricting its domain to [Qwi'' )̂], we obtain the mapping k, : [ /̂«,(n)] [R(n)]. It is

easily checked that these mappings are mutually inverse; see [12, 27] and our proof 

of the equivalence of conditions (a) and (b) in Theorem 2.1.

Let U  be any n x (n 1) matrix for which the n  x n  matrix V  =  is

orthogonal. If B  =  X*X  € g«,(n), then U^SU  =  (AT/)*(AT/) € PSD(n 1). Hence,
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Vu{B) =  ciefiuevS a linear mapping i\,. : l77t,,,(n)] -> [PSD(?j -  1)]. Similarly, if

C =  r* F  € P S D (n--1), then W ^C W  =  (F W )* (y ff) e  Q Jn ).  Let IP =  £ / '( / -  PfJ). 

Then =  |4''*(,7IP defines a linear mapping ; [PSD('n -- 1)] ~-4 I0w(n)\. To 

see that 0̂ , and '0.„ are mutually inverse maps, first let C  € [PSD(ri — 1)]. Because 

WU  =  U%‘ is the (n — l) x (n —1) identity matrix, %>u°(l>u{C) — W W *C W U  = C, i.e.,

'• [PSD (n~l)] [PSD{n—1)] is tlie identity map. Next Jet B  =  X ^ X  € Qw{n),

in wliich case X iv ~  0. Recall, from the proof that (c) entails (b) in Theorem 2.1,

that U W  =  Then X U W  = X  and 0«o 0^(17) =  W V ^ X '‘’X U W  =  X ‘,X =  B.

It follows that. 4>u O 'lAti is the identity map on C?w(n), hence on [C?M..(n)]. Notice that 

both '!/;« and preserve rank.

Given tv and U, let W =  'i/;„ o r.u,. Then ^  : [12(n)] [PSD(n ~  1)] is a linear 

bijection, and

t(y l)  =  ( l -  .4 ( l  -  U =  - -h /^ A U
 ̂ ' 2 V eH)j \  e^w) 2

because C/'̂ e =  0. In what follows, we rely on ^  to transfer well-known results and

techniques from PSD(n -  1) to D(n).

2 .2.1 Facial structure o f T>{n)

Following [47], a set C in a linear space £  is convex if, for each -x,y E C and for all 

A e  [0,1|, A.r +  (1 — X)y € C. Furtherinore, C C £  is a convex cone, with vertex ;ro if it 

is a convex set and, for each A > 0 and each x  € C, x  ^  xo, we have (1 — A):ro + Ax € C.

L em m a 2 .7  V{n) is a convex cone.
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P ro o f  We first sh,ow that 'P(n) is convex. Suppose that A,.B  € V{n)  and A e; [0,1]. 

So t(A ) , f  (,B) € PSD(n 1). By Theorem 2.1, A.4 +  (1 X)B  € V(n)  if and only 

if W(A/1 +  (1 A)l?) € PSD(n -  1). Because PSJ3(n ~  1) is a convex cone and #  is

linear, it follows that

t(A .4 +  (1 X)B) =  A^(.4) +  (1 -  A )t(B ) G PSD(n 1).

So T>{n) is a convex cone. □

Again following [47|, we say that a convex subset T  of a convex set C is a /ace  of C 

if and only if x, y £ C and tx + (1 ~  t)y  € .F for t € (0,1) implies z, y £ T .  Any convex 

set is a fece of itself, and the intersection of any two faces is a face. The intersection 

of all fact's of C tha t contain a € C is the face generated by a. Various studies, e.g., 

[45, 3], have explored the facial structure of PSD{ri!, ~ 1), and the following result is 

well-known.

Theorem  2.8 A set of matrices, £, is a face o/PSD(?r —1) i f  and only i f  there exists 

a k X {n ~  I) m atrix Y  of rank k such that

e  =  £{¥)  =  {y ^ Q Y  : Q € PSD (A,-)} . (2.2.12)

A matrix B  generates £{Y) if and only if B  =  Y*'QY for an inveriible Q G PSD(A:).

The facial structure of was investigated by Hayden, Wells, Liu, and Tarazaga 

[23], who relied on Corollary 2.3. In contrast, the bijective lineax mapping can be 

exploited to  deduce the facial structure of V{n)  directly from the facial structure of 

PSD (n— 1.), This yields a statement that is more accessible than Theorem 2.3 in [23].
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Theorem 2.9 Fixni € R” with w^e ^  0. A set of matrices, T , is a face of'D(ri) if  

and only if  there exists {xj.,. . . .  a w-centered spanning set of R*, such that

F  =  . F ( x t , . . . ,  Xn) ■= { (|15xi -  Sa-vlP) : S  e  . (2.2.13)

.4 matrix B  generates B ( x i , . . .  ,Xn) if and only if  there exists S  G stick that 

B  =  (||5a;.j — 5xj|p ) and S'‘S  is inveriible.

P ro o f  T he linear mapping ^  is bijective, so T  is a  face of 2>(n) if and only if

8 ~  f'(JF) is a face of PSD(n ~  1). Hence, by Theorem 2.8, T  is a face of X>(n) if and

only if there exists a x (n — 1) m atrix Y  of rank k  such that — £{¥).

If . t i , . . .  , Xn is a, n;~centered spanning set of R^, then

Sxjjp) =  [xlSkSxi -  2xiS'^Sxj +  x^S^Sx^  =  JD 2X*S^SX + DJ,

where D  =  diag(.Tj5^'5xi,. . .  ,xjj5h9a;„). Noting that UhJ =  JU = 0, it follows that

^  ((|15xi ~  Slxjlj-’) )  =  IXXKSKSXU.

Suppose that JF =  T { x i , x„), where { x i , . . . ,  is a u;-centered spanning set 

of R*. T o  show that T  is a face, write A' =  (.Xi • ■ • x„) and let Y  =  XU.  We claim 

that t ( J F )  =  ^ (y ).

Given .4 =  {\\Sxi 5x.;|l‘̂ ) G T ,  let Q -  SKS G PSD(A:). Then 

4/(/i) =  UKX^S^SXU =  Y^-QY e £{Y), 

so '^{X) CZ £{Y). Conversely, given F T JF  e 5(F), write Q = S^S. Then 

Y*-QY = U^X'hSKSXU ■= t  ((||5.Xi -  e  ^h(J'),
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so £{Y)  c  # ( J ) -

Now suppose tha t is a face of P (n ), in which case <if{T) =  £ (Y ).  As in the proof 

that (c) implies (b) in Theorem 2.1, let A' =  Y lP {I  -  and let Xi , .. .,Xn denote 

the columns of A , a 'tc-centered spanning sch of R*. Notice that lP'{J -  ^ ) U  =  I,  

hence that X U  =  Y .  We claim that X  =  , a’„).

Given A =  (||S'rr,: € T { x i , . . . ,  Xn), let Q =  S^S € PSD(/?). Then

t(A )  =  UYX^'SKSXU =  Y^'QY e  £{¥),

so . . .  ,.x„)) C £’{F) and therefore . . .  ,x„) C X .  Conversely, given

A G A, write t(A )  =  Y^Q Y  and Q == SKS. Then

F *Q F  =  U^X^S^SXU  =  t  ((||5x,; S x j f ) )  € t  { T { x u  ■ ■ • ,

so £{Y)  c  . . . ,  Xn)) and therefore T  C X { x i , , Xn).

Finally, A  =  {\\Sxi ~  S'xjlf'*) generates X {x i , . . .  ,x„) if and only if i? =  f'(A) =  

U^X*S^SXU  generates £{XU ).  By Theorem 2.8, B  generates £{XU )  if and only if 

Q =  S^S is invertible. □

2.2.2 A ngles between matrices in V{n)

Given A, B  G S„,,, let {A, B)  =  trace(,.4^B) denote the Frobenius inner product of 

A  and B.  The corresponding Frobenius norm is defined by ||.4|p =  (A, /I), and the 

angle between /I and B  with respect to the Frobenius inner product, d G [0, yr], is 

defined by-

cos $ =  =  COS {A, B ) .
IIAII It/ill
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For example, ail ra.iik--oiie matrices srr* €: PSD{m) have the same angle with the 

m  X rn identity matrix, Im, because

{xx \  Ifn) .'f̂ T 1
COS>s

In their study of the geometry of Hayden, Wells, Liu, and Tarazaga [23| 

obtained upper and lower bounds on the angle between an arbitrary A  € V{n)  of 

embedding dimension, k = 1 and E  =  ee* — J,» € !>{n). They deduced their ii{,)per

bounds from their analysis of the critical points of the function F  ; R ” —> R  defined

by

F  { X i ,  . . . , X n )  =  I { \ X i  -  X j  f ' j  -  E \ f .

Their analysis “is difficult and tedious,” reqiii.ring “a difficult case by case analysis” 

not included in [23]. Here, we map X>(n) to then infer bounds o.n cos(H, i?)

from properties of k , appealing to results obtained by Critchley [12].

We require two technical lemmas. Lemma 2.10 restates Proposition 2.3 and Corol

lary 2.9 in [12]; we provide a proof of Lemma 2.11 in Section 2.2.4.

Lemma 2.10 (Critchley [12]) The linear subspaces

=  {B  e  Gein) : B  o I  == 0}

S 2 =  G ^e(w) •' B  =  wef' +  ew* — mve* o / ,  u /e  =  o |

are pairwise orthogonal and have direct sum  ^e(n). The linear subspaces k{Si), K(Sa)f
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and K{S:i) are pairwise orthogonal and have direct sum V{n). Furthermore,

2 I|B |1 U B € S i 

2 ,/F4 B|l i f B € S ,

L em m a 2.11 For n  > 2, write x  ~  and define /  : R ” R, by f (x )

x j  H \r X*. Let Kn =  {a: e  R "  : x‘x ~  l,x*e =  0}. I f  x  G Kn, then

11? ~  3n 4- 3 
n  (n — 1 ) > f { x )  >

n ( r t - l ) ( n + l )

i
n

for n  odd 

for n even
(2.2.14)

The upper bound is obtained if  and only i f  a permutation of (x i , . . . ,  Xn) equals

±{a, b , . . . ,b ) ,
n ~ l

where a =  (n — — 1) and b = — — The lower bound is obtained

if  and only if a permutation of { x i , . . .  equals

± ( a , . . . ,  o, 6,. ■., b),
[ra/2j fn /2 l

where a ~  —b = l / \ / n  i f n  is even and

n — 1

i f n  is odd.

Now w e  bound cos(/l, £’). We obtain the upper bounds iri [23]; for n > 4, we 

obtain sh arp er lower bounds.
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Theorem  2.12 Forn > 2 , let E  =  e E ~ I  and suppose that A  € D{n) has embedding 

dirmnsion k ~  1. Then

4n
(n — l)(n  +  6)

2{r - J )

rt+l.

for n even 

fo rn  odd

P ro o f  From condition (b) in Theorem 2.1, there exists x  =  (.tj, . . . ,  e  R ” such 

that xJ'e =  0 and rf>(A) =  xx*. Because cos(A, E) is invariant under dilations of A, 

we can assume that xdx ~  1 .

Applying Lemma 2,10, we write xx*' =  a B i  +  fdB-i +  7 R 3 for some B\ € Si, 

Ih  € <S2 , and Because xh '  =  1, 1 =  |ja S i ,f  +  p ’R a f  +  l lT ^ s f  •

Because l|B.3 j|‘̂ ~  n - 1 ,

j ( n  — 1 ) =  {x:T, B-i) ~  trace ^{^xx*J =  trace =  1 .

Hence, 7  =  l / ( n  -  1 ) and H7 B 3 IP =  l / ( n  — 1).

By direct calculation,

||R2|f'* =  trace (jwe^ +  ew* — nwe* o ij* ]̂ ve* +  end — nwF  o =  n{n — 2)Ŵ 'W.

Because diag(Bi) =  0, diag(R2) = diag(we* +  e'tF — o I) =  (2 — n)w, and 

diag(B3) =: (n -  l)e/n ,

/3{2 -  n )w  =  diag (/IBa) =  diag {aBi +  flB-i) =  diag {^xxf -  7B3)
e
n
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Hence,

||/?i3 2 ir* =  0^n{n ~  2)w''vj =  — — [/j{ 2  ~ n)w]'* [^ ’( 2  - n)w] =  —!5~-
n ~  2 n  — 2

n ..
„4

,i=i "

Now we write A  =  k(xx*). We calculate that Tg (ee* -  I )  ~  \ { I  ~  and write 

E' =  k,{B:^/2), Then

( A  E) _  (aKjBi) +  /?K.(Bj) +  'yK(lh), ___
iRli m \  (ii«(aBi)ir'^ +  M f S B a W +

( 4 | | a B , i  I P  +  2 n \ \ m ¥  +  4 n | | 7 B 3 | | ' ^ j ‘^ ' '  H k C B s I

==   2v/n||7i?3||
(4 4 P B 2 IP -  4||7B3ir^ +  2nl|/ii2 ||" +  4n||7B3|r^)'^" 

2 y ^ ( n -  1 )

(4 +  2 n ( E L r 4 - i ) + 4 ) ' ^ '  

f  4n /(n  ~  1)
(2.2.15)

V6  +  2 n E i U 4 ;  ■

To minimize/maximize cos(/l, B), we maximize/minimize (2.2.15), i.e., mini

mize/maximize f{ x )  =  Y^xf subject to z  £ K .  Lemma 2.11 specifies the minimum 

and maximum values, which we substitute into (2.2.15) to conclude the proof. □

2.2.3 Linear preservers of T>{n)

One way t o  understand a set of matrices is by studying linear operators that preserve 

its structure  [37]. We exploit the connection Iretween V{n)  and PSD(n ~  1) to study 

linear operators that preserve the faces of V{n).

We begin by characterizing the linear operators that preserve the faces of PSD(n—

1).
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T h eo rem  2.13 hel K  =  {fcj,. . , , k„}  {()} he such that 0 < k\ < . . .  <  < n - ' l .

Let

C =  {C  e  PSD(n -  1) : rank(G) € K }  . (2.2.16)

Then a linear operator T  : S^_.j preserves C, i.e., T{C) — C, if and only if

there exists an invertible matrix R  such that T{C) ~  R fC R.

P ro o f  If T{C) =  R*CR  with R  invertible, then it follows from Sylvester’s Law of

Inertia th a t T{C) =  C. It remains to establish the converse. Let

k
Cj =  {C e  PSD(n 1 ) : rank(C) =  j }  and 4  =  U

,-=0

We claim th a t 4  =  cl(Cjfe), the closure of C*.

Because Ck C 4  and 4  is closed, cl(Cfe) C 4 -  If C  G Ck, then obviously C  €

cl{Ck). If C  € Cj for j  < n, then write C  =  YjYj  for a j  x (n — 1 ) matrix 5^. Let 

be any {k ~  j)  x (n — 1 ) matrix such that has rank k, let c =  l/\\Yl_^Yk-.j\\,

and let (7* =  Y^Yj +  {c/i)Yl_^Yk^j. Then C\ G Ck and WQ -  (7|| =  c/i  0 as i -> oo, 

so each C  ^C k  is the limit point of a sequence in C*. This proves that Ck C cl{Ck). It 

also dem onstrates that in t(4 )! the relative interior of Ck, is contained in Ck- Because 

Ck is open in 4 , int(4 ) =  Ck-

Now suppose tha t T(C) =  C. Because T  is continuous,

T (4„) =  T  (d  (C)) =  d  (C) =  4... (2.2.17)

Because T  is linear,

r fr V J  =  T (int ( 4 , , ) )  =  int ( 4 . . )  =  o , .  . (2.2,18)
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Subtracting (2.2,18) from (2.2.17), we obtain

= r ( c \ , .  -C fe .) = r ( 4 „ ) =  4 .  - 4 , .  =  4 . ..

We continue to “peel the onion” in this manner, concluding tha t T(C’i) =  Cj,. It tiien 

follows from Theorem 3 in [24] that T  is of the form T(C) = ±R*‘CB.. Because C  

and T(C)  are positive semidefinite, we conclude that T(C) ~  .ff'CR. O

Next we set w =  e and characterize the linear operators that preserve the faces of 

Oein).

T h e o rem  2.14 Let K  =  { k \ , . . . ,  km} ^  {0} be such that 0 <  ki < . . .  < km < n — 1. 

Let

B =  { B e  Qein) : rank(S) G K ]  . (2.2.19)

Then a linear operator T  : [Qe{n)] —>■ [^e(w)] preserves B, ie .,  T{B) = B, if and only 

if there exists a n n x n  m,atrix Q, with rank{Q) = n — l and Qe =  =  0, such that

T{B)  =  Q^BQ.

P ro o f  F ix  w = e and U, any n  x (n — 1 ) matrix for which is ortliogonaL

Then W =  B*(J -  ^ )  =  U \  so '0«(B) =  W B U  and 6,,{C) =  W ^C W  =  UClT.

Let C =  ij.Ju{B), in wliich case B =  ^m(C). Then T(B) =  B if and only if T  o 

<hu{C] = ^«(C) if and only if o T  o <pu{C) =  C. Because 4’u and preserve rank, 

C C P S D (n  — 1 ) is a set of the form (2.2.16); hence, it follows from Theorem 2.13 that 

T(B) =  B  if and only if there exists an invertible matrix R  such that '^ 4  o T  o (C) =  

R 'B R .

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



38

Suppose th a t tliere cjxists an (n -  1 ) x (?;, -  1 ) jjivertil)le matrix R  such that 

'(/;« oTo«p,,(C7) =  R ^C K  Let Q = U R I f .  Then, ra,nk(Q) =  n -  1 , Qe =  QR. = 0, ami

T{B)  =  < ^uo4k,oTo< p^oi,4B)= ^fK otlxuoTo(p ,,{ lRBU )

=  (j>u {iW B U R )  =  UR^IRBURIR  -•= Q^-BQ.

Conversely, suppose that there exists an n  x n  matrix Q such that rank(Q) =  n 1 , 

Qe =  Q^e =  0, and T{B)  =  QfBQ. Let R  =  IRQU. Then R  is invertible and

i ’n o T  o ^„(C) =  îl)u o T  (UCU*) = '<Pu {QHlCAJKj) =  U^-QRJCU^QU =  R^CR..

□

Finally, we characterize the linear operators that preserve the faces of D(n), Let 

dirn(T) denote the embedding dimension of 4̂ € X>{n).

T heorem  2.15 Let K  — { k \ , . . . , ^  {0} be .such that 0 < ki < . . .  < km < n -~ l .

Let

A  — {A e  V{n) : dim(/l) e  K }  .

Then a linear operaior T  : [Din)] —> [2?(n)] pre.serve.s A , i.e., T{A) = ^4, i f  and only 

i f  there exists an n x  n matrix Q, with rank{Q) — n  — 1 and Qe =  Q^e =  0, such that 

T{A) =  - - k {Q^AQ)/2.

P ro o f  L e t B  =  in which case A  = k{B). Then T{A)  =  .4 if and only if

T  o k{B) =  k{B) if and only if o  T o  k{B) =  B. Because of the equivalence of 

conditions (a) and (b) in Theorcirn 2.1, B C $«{«) is a set of the form (2.2.19); hence,
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it follows from Theorem 2.14 that T{A) = A  if and only if there exists an n  x n 

matrix Q, wit;!i raiik(Q) =  n — 1 and Qe =  QT; =  0, such that

Te o T  o k{B) =  Q\BQ. (2.2,20)

Now we apply k to both sides of (2.2.20), obtaining

r(,/i)  T  o k{B) =  K {Q^'BQ) =  K (C/re(/l)Q )

2.2.4 P roof of Lemma 2.11

We conchide with a proof of Lemma 2 .1 1 , which relies on two simple facts.

Lemma 2 .16  Suppose that a, /j, 7  6  R  and a  +  /i +  7  =  0. Then

14a +  /S'* +  7 "̂ =  -  (a^ +  +  7 *'̂  ̂ .

□

P roof o f  Lem m a 2.16 Let a =  a /2  and 6 =  /3 +  a. Then

ft** +  /I* T 7* “  (2o)^ +  (—Q, T 6)** T (—o — 6)* =  18fl* T -f- 26*;

+  7^y =  |^(2a)^ +  (—a +  6)  ̂+  (—a — 6)®y

=  +  2//‘*y =  36a* +  24a^6^ +  46*.

□

L em m a 2 .1 7  Siippose tha,t the cubic equation x'  ̂— ax — h — 0 has roots a, 0 , 7 . Then 

a  +  /5 +  Y =  0  and +  0^ -f 7 '̂  =  2 o.
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P ro o f  o f L em m a 2.17 Writing

x'̂  -  ax — b =  {x — a){x ~ 0){x ~  7 )

=  X'* ~  (« +  P +  i)x^ + {ap -h ,dj +  0 :7 )0? “  a/?7 ,

we see th a t o  +  /3 +■ 7  ;= 0 and a /5 +  p-y +  a j  == - a .  I t follows th a t

+  P" "h 7  ̂ 2fl =  “h p “ +  7~ ■”)” 2((.v/5 + /57 ''I" 0 7 } ~  (o 'h P 4" t)^  ~  0.

□

P roof o f  L em m a 2 .1 1  If n  =  2 and .x* G ifa, then it is easily verified that /{;?;) =  

1 / 2 , the value of both the upper and lower bounds.

If n  =  3 and x  =  (a, /i, € ll'a, then it follows from Lemma 2.16 that /(x )  =  1/2,

the value of both the upper and lower bounds.

Suppose that n  >  4. Because /  is continuous and is compact, /  attains both 

a maximum and minimum in K^- If x* is a constrained maximizer or minirnizer of / ,  

then there exist Lagrange multipliers A* and / /  such tha t (a;*, A *,//) is a stationary 

point of th e  Lagrangian function

L ( x i , . . . ,  x'„, A, / i )  =  +  h +  A {x\ 4- • • • +  — 1 j  4- /r (xi +  • • • +  Xn),

i.e., each x* is a solution of the cubic equation

4.x''̂  -  2X*x -  fi* =  0. (2.2.21)

Because x* G- Kn, the must assume more than one value. Because the x* are 

roots of a. cubic polynomial, they can assume at most three values. We claim that; 

they assum e exactly two values.
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Suppose that the :r| assume three distinct values, « , /?, 7 . Then a , 0 , 7  are t!ie roots 

of (2.2.21), so it follows from Lemma 2.17 th a t a  + /i +  7  =  0 and cf' +  — A*.

Choose three more distinct, values, a,,B, 7 , such that a  -f /3 +  7  =  0 , +  7 '̂  =  A*,

and a , p, 7  ^  (a , 0 , 7 }. It follows from Lemma 2.16 that a'* +  fP +  7 * =  (A*)'^/2 and 

+ /41. +, f  = (A*)‘V2.

To simplify notation, suppose that = (a, /0,7 ) and let

X =  ( d , / i , 7 , a ; 4 , . . . , O L

Then

a  +  /3 +  7 +  X! ”  a  +  /I +  7  +  X  0 ,
i “~l »=4

n n
2 , ,o2 I ,2 , t;™'

P  +  f T  +  7 ^  +  X  +  0 “ +  7 ^  +  X
i=-.l *=4

n  n

P  +  - f  7^* +  X  +  /i'̂  +  7'** +  X  ’
i=l

so X e  iT„ and f{x )  = f{x*). Hence, if x* is an extreme point of /  in Kn, then so is 

X .  But th e  X i  assume at least four distinct values, which an extreme point of /  in Kn 

cannot. W e conclude that the x* cannot assume more than two distinct values. 

Suppose that k of the x* ecpial a  and the remaining n ~ k  of the ;r* equal /?, where

a ,P  are chosen so that 0 <  fc <  n/2 . Be;cause 0 =  .xl +  b .x* =  ka  +  (n — k)p,

f5 =  ~ k a / ( n  — k) and therefore

1 =  W  =  ka^ + (n -  k)P‘̂ =  kcp -I— ~— a  =
n -  k n ~  k
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It follows that ~  (n k)/(nk)  and 0^ =  k/{n{n  — k)), and therefore

11? -  Urn. +  3fê  ^  jn -  2 k f  1 2  >>2 )
nk{n~~k) n k { n ~ k )  n '

By  inspection, (2.2.22) is maximal when ^ =  1 and minimal when k = [n/2], yielding

the specified bounds. □

2 . 3  U n i q u e n e s s  o f  C o m p l e t i o n s

In this section, we will give a brief introduction to the stud}'- of completion problems 

and to our problem in particular. This problem, can be generalized to a problem 

about PSD matrices. Using this generalization, we first obtain a necessary and suffi

cient condition for an n  x n partial matrix A  to have a unique positive semi-definite 

completion. We then use the result to deduce the conditions for the uniqueness of 

the ESD m atrix  completion. We also show how it is useful in the contractive matrix 

completion problem. (Recall that a matrix is contractive if its operator norm is at 

most one.) Furthermore, we describe an algorithm to check the conditions in our 

results, a n d  how to use existing software to check the conditions numerically. At the 

end of the  section, we illustrate our results by several numerical examples, and show 

that some results in [1 ] are not accurate.
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2.3.1 Compkjtion problems

In the study of completion problems, one considers a partially vSpecified matrix and 

tries to fill in the missing entries so that the resulting matrix has some specific prop

erties such as being invertible, having a specific rank, being positive semi-definite,

etc. One can a.sk the following general problems:

(a) Determine whether a completion with the desired property exists.

(b) Determine all completions with the desired property.

(c) Determine whether there is a unique completion with the desired property.

See [26] for general background of completion problems.

In [1], the author raised the problem of determining the condition on an n x 7i 

partial m atrix  >1 under which there is a unique way to complete it to an ESD matrix. 

In this section, we give a complete answer to this problem. It turns out that the 

desired uniqueness condition can be determined by the existence of a positive semi- 

definite m atrix  satisfying certain linear constraints. Such a condition can be checked 

by existing computer software such as the semi-definite programming routines; see 

[29, 49].

2.3.2 A  general formulation

In the following discussion, we will consider problems in the following more general 

settings.
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Lei: M  be a matrix space, aiui S  a subspace of M-. Suppose 'P is a subset of with 

certain desirable properties. Given A  € M .  we would like to determine X  € S  so 

that

.4  + x  e P .

In our case, we are interested in the condition for the uniqueness of X  € S  such that 

A  "I" X  G P .

To recover the completion problem, suppose a partial matrix is given. Let -4 be 

an arbitrary completion of the partial matrix, say, set all unspecified entries to 0 . 

Let S  be the space of matrices with zero entries at the specified entries of the given 

partial m atrix. Suppose 'P is a subset of M  with the desired property such as being 

invertible, having a specific rank, being positive semi-defmite, etc. Then completing 

the partial matrix to a matrix in V  is the same as finding X  E S  such that A-\-X  G V.

In the following, we always assume that there is an Xo ^ S  such that 4i +  Xo G V, 

and study the condition under wliich Xq is the only matrix in <5 satisfying A~\-Xq € V. 

We can always assume that Xq =  0 by replacing by +  Xq.

We begin with the following result concerning the uniqueness of the positive setni- 

definite completion problem.

P ro p o s i t io n  2.18 Let A  G- PSD(n), and S  be a subspace of S„. Suppose V is 

orthogonal such that VK4V = diag {di, . . . ,  0 , . . . ,  0), where di > • • • > dr > 0. I f

X  e S  satisfies A 4-X  € PSD(n), then

'X n  X n \
V^XV

,X-2i A 2 2 /
{2.3.23)
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with

X 22 € PSD(» r) and rank {X 2 2 ) =  rank ([Xax Xaa]). (2.3.24)

Conversely, i f  there is X  Q S  such that (2.3.23) and (2.3.24) hold then there is an

c > 0 stick that A  +  5X  € PSD(n) for all S € [0,c:].

P ro o f. Suppose A  +  P  e  PSD(n). Let X  =  P, and consider the block matrix

V*XV  defined as in (2.3.23). We have X 2 2  € PSD(n ~  r) because

f D  + X n  X n \
1 G PSD(n) with D  ■■= diag (d i , . . . ,  dr).

\  X ‘21 X 22 /

Let M'" be orthogonal such that W*'X2 2 W  = diag (cj, . . , ,  c.,, 0 , . . . ,  0) with Ci >  ■ ■ • >  

c,, > 0. If W  =  i ,  e  W ,  then

f D  + Xix
W HA(A + P )V W  =

\  Y21

Since A - h P  £ PSD(n), we see that only the first s rows of L21 can be nonzero. Thus, 

rank ([Xai X 2 2]) = rank {[Y^i WYX2 2 W]) =  s =  rank (A a)-

Conversely, suppose there is an X  G «S such that (2.3.23) and (2.3.24) hold. Then

for sufficiently large r/ >  0, rjD +  X n  is positive definite. Moreover, if

/ / .  - ( r /P  +  Xn)"LAr2 '

V 0  In-r
r  =

then

T X ^ r j A  +  X )V T  =  {f]D +  X n )  © [X22 -  X 2.,('/?D +  X i;t)'^ 'X ,,2].

Since r a n k  ([X’21. XVij) =  rank  (X22), for sufficiently large r; >  0 we have

X22 -  .Xa,i(r/,D/2)-k A i2 e  PSD (n r)  and ( r /P /2)--^ --- (r;,D +  X „ ) ““'  €  P D ,.
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Hence, under the positive semi-clefinite ordering we have

X 22 -  X ^ i i v D  +  Xt iY -K X n  t  X 22 -  X2i{riD/2y-'YXx2 t  0„^ ,.

Thus, letting P  — Xfr) for sufficiently large r/, we have A +  P  ~  A A-X/rf € PSD('rf). 

□

R em ark  2.19 The proof of Proposition 2.18 is basically a Schur complement argu

ment. We give the details for the sake of completeness.

R em ark  2.20 Note that in Proposition 2.18 one needs only find an orthogonal ma

trix V  such that. V*AV  =  .D ® 0 for a positive definite matrix I), i.e., the last n ~  r 

columns of V  form an orthononnal basis for the kernel of A. The statement and the 

proof of th e  result will still be valid.

By Proposition 2.18, the zero matrix is the only element P  in <S such that .4 +  

P  6  PSD(w) if and only if the zero m atrix is the only element X  in S  such that 

V^-XV =  (Xij)i<ij< 2  with X n  € FSD(n -  r) and rank(X22) =  rank([X 2 i A'22]). 

This condition can be checked by the following algorithm.

An a lg o r ith m  Let S  be a subspace of S„, and A  € PSD(n). Let V  be an orthogonal 

matrix as described in Proposition 2,18.

S tep  1  C onstruct a basis {Ah, ■. - ,X k}  for S.

S tep  2  Determ ine the dimension I of the space

f f X n
^  -  < [A'21 X 22] : F 'A F  = with X  & S  ’

\ Â 21 X'22 J
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If k > tlien there is a nomem P  €• S  such fcliat V^'PV =  Pi €> On-r and -d + P  € 

PSD(n). Otherwise, g'o to Ste|> 3.

S tep  3 Determine whether there are real numbers a o ,« i,. - - , 04. such that

Q =  0-0 /1  +  a,iXi 4 h a^Xk £ PSD(n)

with (O r© 4.„.,,F 'Q V ') =  1 -

If such a matrix Q exists, then there is a. nonzero P  € S  such that /I 4- F  € 

PSD(n.)- Otherwise, we can conclude that 0,j is the only m atrix P  in S  such that 

A +  P  € PSD(n).

(Note th a t nrimerically Step 3 can be performed by existing software such as 

semi-definite programming routines, see [51] and [52].)

Explanation of the algorithm

Note th a t  in Step 2 , tlie condition k > I holds if and only if there is a nonzero 

matrix F  e  <S such that V^PV  =  Fj ® 0„_r and A +  F  € PSD(n). To see this, let 

]/ =  [VijV^I such that I4  is n x r. Then

5  =  {V-lXV  : X  e  S }

and {Vs-YiP,. . . ,  is a spanning set of S. Clearly, k > I and also, we can

use this fa c t to find I. Transforming these matrices into vectors, I is the rank of the 

matrix w ith  these vectors as columns.

If A: > I, then there is a nonzero real vector ( ttj,. . . ,  a&) such tha t oi V2 XiV' 4  h

UkVjXkV  =  On-r,n- Since A h , , Xk  are linearly independent, X  = aiX i -i 1-afcAA
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is nonzero. Tiierefore, V ^X V  has the ibrm .A'l ® By ^Proposition 2.18, there is 

S > 0 such that A +  tiX € PS,D('«).

Conversely, if there is a nonzero matrix P & S  such that V*PV  =  Pi ® 0„,-r 

and A x  P  e  PSD(n), then there is a nonzero real vector {ai,...,a& ) such that

P  =  a iX i  4  h OfcXfe so that aiV^CYiV 4 f- akV^XkV  =  0„,„.r.,n' Hence, S  has

dimension less than k.

So, If k ■= I, and if there is a nonzero P  £ S  such that A  +  P  € PSD{n), then 

\ r tp V  cannot be zero. By Proposition 2-18, V-jPV-z is nonzero, and Step 3 will detect 

such a m atrix F  if it exists.

By Proposition 2.18 and its proof, we have the following corollary.

Corollary 2.21 Suppose S  C .4 e  PSD(n), and the orthogonal matrix V satisfy 

the hypotheses of Proposition 2.18.

(a) I f  A. £  PD,„ then for any X  £ S  and sufficiently small 5 > 0, we have A+(5X € 

PD „.

(b) I f  there is an X  £ S  such that the matrix A'22 (2.3.23) is positive definite,

then A  + 6 X  £ PD„ for sufficiently small 5 > 0.

R e m a rk  2 . 2 2  To use condition (b) in Corollary 2.21, one can focus on the matrix 

space

T = ^ { \q X V 2 : X £ S } £ S n ^ r ,
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wiicjre 1'2 is obtained from V  by removing its first r  columns. Note that PD„., is the 

interior of PSD(m), and

PSD(m) == {X € S,,„ : (X, P) > 0  for ail X  € PSD(m)}.

By the theorem of alternative (e.g., see [16]), T  n  PD„.„,. ^  0 if and only if

n  PSD(n -  r) =  0. (2.3.25)

One can use standard semi-definite programming routines to check condition (2.3.25).

Here is another consequence of Proposition 2.18.

Corollary 2.23 Suppose S  C S„, A  € PSD(n), rank (A) =  n — 1 and the orthogonal 

matrix V  satisfy the hypotheses of Proposition 2.18. I f  S  has dimension larger than 

n —1, then there is X  € S  such that X+d’X' e  PSD(n) for all sufficiently small 6  > 0.

P ro o f. If there is X  € *S such that VXV'^ has nonzero (n, n) entry, we may 

assume th a t  it is positive; otherwise replace X  by —X .  Then by Proposition 2.18 

A + 5X  E  PSD(ra) for sufficiently small 5 > 0 . Suppose V X V ^  always has zero entry 

at the (n, n ) position. Since <S has dimension at least n, there exists a nonzero X  € S  

such tha t the last column of V'X'F* are zero. So, A + SX  G PSD(n) for sufficiently 

small (f >  0 . □

2.3.3 A pplication of results

Next, we can  use Proposition 2.18 to answer the question raised in [Ij.
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P ro p o sitio n  2,24 Let be the. subspace of matrices in S„ with all diagonal entries 

equal to zero. Let A  €  Viji), and S  be a subspace o/S®. Suppose V is n  x (n -- 1) 

such that iP'e =  0 , U '̂IJ =  and -IS 'A U  — diag (<ii,. . . ,  (4 ,0 , . . . ,  0), whe’re 

d% >  • "  dr > 0. Theji there is a nonzero matrix P  £ S  such that A  4- P  € 'Pin) if 

and only if there is nonzero matrix X  € S  such that

IP X U  =

with X -22 €  PSD(n — 1 — r) and rank (X22) =  rank ([A''2 i A 22]).

/ A'li .Ada .

(2.3.26)
^ 2 , ’

P ro o f. By the result in [12], the mapping X  -\U * 'X U  is a linear isomorphism 

from S® to  such that the cone T>{n) is mapped onto PSD(7?, -  1 ). Thus, the 

existence of a nonzero X  £ S  such that /I +  X  e  V{n)  is equivalent to the existence 

of a nonzero Y G { - \U * X U  : X  £ S }  such that +  F  € PSD(n -  1 ). One can 

therefore apply Proposition 2.18 to get the conclusion. □

Accordingly, we have the following corollary concerning unique ESD matrix com

pletion. P a r t  (a) in the following was also observed in [1 , Theorem 3.1].

Corollary 2.25 Use the notations in Proposition 2.24.

(a) I f  U"*'AU has rank 11 — 1 , then for any X  £ S  and sufficiently small S > Q, we 

have A + 6 X  £ V{n)

(b) I f  there is an X  £ S  such that the matrix X22 in (2.3.26) is positive definite, 

then A  +  6 X  £ V{n) for sufficiently small 5 >  0.
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(c) I f  rank {IPAU) — n ~  2  and S  has dimension larger than n — 2, then there is 

an X  e S  such that A  +  5X  € V{n) for all sufficiently small 6 > 0 .

Note that Proposition 2.18 is also valid for the real space of n x n complex 

Hermitian matrices. Moreover, our techniques can be applied to other completion

problems on the space of m  x n  complex matrices that can be formulated in 

terms of positive semi-definite matrices. For instance, for any B  €  the operator

norm ||B || <  1 if and only if

m B \
j G PSD(m +  n).

B* I n )

As a result, if <S is a siibspace of and A  6  such that ||/i|| <  1 , we can let

A
( /m i  .

€ PSD(m +  n),
VA* /„ ■

and S  be the subspace of consisting of matrices of the form

{ % n  X '
X  =

with X  E S .  Then there is X  G <S such that \\A +  X || < 1 if and only if there is 

X  e S  such that A +  X  G PSD(m +  n). We can then apply Proposition 2.18 to 

determine the uniqueness condition.

2.3.4 Exam ples and additional remarks

We illustrate  how to use our results and algorithm in the previous section in the 

following. We begin with the positive serai-definite matrix completion problem in the 

general setting .
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E xam ple 2.26 Let

A I ~  J(.; ® [0], A ‘2 — /g ® O2 , A% = I 4 0  O3 and A.\ =  © O4 .

Let b =  l /x / 2  and S  =  span where

- 1 0 0 -A b - 1 ~ 1 0 0 - 1 ^b ^b

0 1 0 1 0 b b 0 0 - 1 - h .....b

- 1 0 0 I h 0 0 ,1 1 0 h A)

0 1 0 1 0 b b 0 0 1 1 0 b ^b

- 1 0 - 1 0 - 1 ~b b - 1 0 0 - 1 - b ^b

- b b ~-b b b 0 1 6 b 0 - 1

b b b b b 1 0 - 6 ~~b A ) ^b - 1 0

- 1 1 0  0 - 1 h b

1 - 1 0  0 1

0 0 1 - 1 0 h - b

X 3 0 0 - 1  1 0 ~h b

- 1 1 0  0 - 1 b b

h ~b b - b b 0 - 1

b ~h - b  b b ■A 0
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X4 =

- 1 0 1 0 - 1 b

0 1 0 - • 1 0 b b

1 0 - 1 0 1 - b b

0 0 1 0 ^ 1,

- 1 0 1 0 - 1 b - 6

b b - b b 0 1

~b b b 1 0

Then for A i ,A 2 ,A?,, there exists a nonzero P  € S  such that Ai + S P  G PSD(7) for 

sufficiently small 5 > 0. For yf,}, the zero m atrix is the unique element X  in S  such 

that A 4 +  X  is positive semi-definite.

To see the above conchision, we use the algorithm in the hist section. Clearly, we 

can let V  =  Jy be the orthogonal matrix in the algorithm.

Suppose yi =  Ai. Applying Step 2  of the algorithm with V2 — ey, we see that 

k =  dim«S =  4  > 2 =  dimCVaA'j : j  — 1 , 2 , 3 ,4}. So, there is non-zero X  & S  such 

that A + 6 P  e  PSD(7) for sufficiently small S > 0. In fact, if P  is a linear combination 

of X i  +  X 2  and X 3 A'4 , then for sufficiently small 6  > 0, A  + 5P E PSD(7).

Suppose A  =  A'2 - Applying Step 2  of the algorithm with V2 =  [eg [ey], we sec 

that k =  d im 5  =  4 > 3 =  dimfKjA’j ; j  =  1,2,3,4}. So, there is non-zero € S  

such th a t A  + 6 P  £ PSD(7) for sufficiently small 6  > 0. In fact,, this is true for
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S e  [=-1/4,1/8| and

^ 4 0 0 0 .^4 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 4 0 0 0

.^..4 0 0 0 - 4 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

(2.3.27)

Suppose A  =  7I3 . Applying Step 2  of tlie algorithm with V2 =  [eg | ee 1 e?], we see 

that k ~  I ~  4; we proceed to step 3. If P  is defined as in (2.3.27), Q =  a./l — - P  £ 

PSD(7) where a  > 1 . Thus, we get the desired conclusion on A3 .

Note th a t one can also use standard semi-definite programming packages to draw 

our conclusion in Step 3. To do that we consider the following optimization problem:

Minimize (or Miucimize) (C,Q) subject to (Bi,Q) =  6 j and Q G PSD(n).

Since we are interested only in feasibility, we can set C  to be the zero matrix. To 

ensure th a t  Q =  uqA +  aiX i +  * • • +  0,4X 4 € PSD(n), we set the matrices {P,}, for 

i =  1, . . . ,  rn, to be a basis of (Pul/l})-^' in S7 and .set h  =  0. Then set Bm+i — 0 4 0 / 3  

with hm+i ~  1 . We will get the desired conchision by running any standard semi- 

definite programming package.

Suppose A  =  /I4 € PSD(7). Applying Step 2 of the algorithm with V} ~- 

[6 4  16 5  I e,s j e.j], we see that A: =  / =  4; we proceed to step 3. Since I 4 is orthogo-
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rial to all matrices in S  ~  span {IKlXjV^ ' j  =  1, . . .  ,4}, we see that I 4 € S"̂ - n  

By the theorem of alternative, S  f) PSD(4) =  {O4 }. Thus, there is no matrix Q 

satisfying Step 3, and O7 is the only tdement X  in S  such that A 4 + X  G PSD(7).

Actually, to get the conclusion on A 4 one can also check directly that the matrix 

Q  in Step 3 of the algorithm does not exist by a straightforward verification or using 

standard semi-definite programming routines.

We can use Example 2.26 to get examples for the ESD m atrix completion problem 

in the following. Denote by { E u ^ E u , . ~. ,Enn} th® standard basis for n  x n  real 

matrices.

E x a m p le  2.27 Let „4 -i,j4 2 , b e  defined as in Example 2.26. 

Suppose A3 , A4 G P ( 8 ) are such that

i  =  l,2.3,4,

where

U ..L
V I

1 1 1 1 1 V2 0

1 .^1 1 1 -V2 0

-1 1 -1 1 - 1 0 V2

-1 1 1 0 -V2

1 1 1 -̂V2 0

1 - 1 -1 V2 0

-1 1 --1 1 0 .-V2

- 1 - 1 1 - 1 1 0 V2
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Note that the matrices .4 i, . . . ,  J 4 are determined uiiiqwely by the result in [12]. Let 

S  ~  span {JSi3 +  ii’si, i ? x 4 + i d b  ■■E'23 +  £ '3 3 ,  ■E'24 +  £ ■ 4 2 } - Then.

~ U ‘{E n  + E „ ) V  =  - ^ D ' i E u  +  E n )U  =

Y U ‘(E.,3 + Bi2)U := ̂ X,. —?/•(/?,., + Ea)U -1
X4 .

By Proposition 2.24 and Example 2.26, we see tha t there exists a nonzero F  € 5  swch 

that Aj +  F  e  V { 8 ) for j  = 1,2,3, and Og is the unique element X  in S  such that 

I t  +  X  G F ( 8 ) .

In fact, we can present Example 2.27 in the standard completion problem setting. 

For instance, suppose A q is the partially specificxl matrix

An =

0 2 ? 2 2 7/4 7/4

2 0 ? ? 2 2 7/4 7/4

? ? 0 1 7/4 7/4 1 2

? ? 1 0 7/4 7/4 2 1

2 2 7/4 7/4 0 2 7/4 7/4

2 2 7/4 7/4 2 0 7/4 7/4

7/4 7/4 1 2 7/4 7/4 0 1

7/4 7/4 2 1 7/4 7/4 1 0

We can complete /4q to Ai by setting ail unspecified entries to 7/4. So, we have

W A-JI  =  / l i . If F  is a linear combination of E u  + £;u +  E u  +  £ ’4:1 a^td F 23 "L F 32 +

£ ’24 +  £ 4 2 5  then Ai +  5P G F ( 8 ) for sufficicmtly small 5 > 0.
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R em ark  2.28 Continue to u,se the notatiorjs in Ekample 2.27, and let F  e; S | be 

such ttiat ~ ir 'Y U /2  ^  0(i CB [1]. We have {U^YUJJKXIJ) =  0 for any X  e  <S, Then 

[1 , Theorem 3.3 (2 .a)] asserts that there exists a unique completion Aq, which is not 

true by .Example 2.27. Likewise, if F  € S | is such tiia,t. —LP'YU/2 — O5 ® h i  then 

the partial matrix corresponding to ./I2 has more than one ESD matrix completion, 

which disagrees with [1, Theorem 3.3 (2.b)].

The fla.w in [,1 , Theorem 3.3] .lies in the proof of Theorem 3.2 (Corollary 4.1) in 

the paper. Let

£  =, {~^lPxU /2  : W G 61, =  { X  6  S„,^i : (X, Z) = 0 for all ^  G £},

K  =  {S  G S„.^i : B  =  X{X  +  if/*Xol7), A > 0 ,X  € PSD(n 1)}

and

in t ( / r )  =  {C e  S„ _ 1  ; {C, B ) < 0  for all B  € K } .

The author of [1 ] claimed that: if  there exists some F  € PD„._i._r such that

'0 0 \
F

\ o  Y j
€ C^, (2.3.28)

then

£ ^ n m t { I C )  0, (2.3,29)

and hence £  fi cI ( jK') =  {0} by the theorem of alternative. However, in Example 

2.27, in sp ite  of the existence of F  € of the form (2.3.28) one can check that 

(2.3.29) does not hold. In particular, F  ^  int(.ftr°) because £  © On^i-r G K  but 

( F , / , ® 0 „,.^i^l =  0 .
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2.4 S p h e r i c a l  ESD M a t r i c e s

In this section, we are interested in a su1>set of I>, the Eiiicliciean squared distance 

(ESD) matrices, which we call spherical ESD matrices. They are those A € V  that 

admit a configuration of points that not only lia,ve centroid at the origin but also all 

lie on a sphere whose center is the origin. Such points are commonly called regular 

figtires, see [2 2 ],

Distance matrices are of interest in molecular biology and structural chemistry.

They are used to determine structure of molecules based only on information about 

the distances between atoms. There has been recent interest in trying to deter

mine molecular structure from incomplete and error-filled data. One approach is to 

look at substructures within a molecule th a t display certain properties <uid use those 

substructures to help determine the full structure of the molecule. One simple and 

common structure is that of a regular figure and the corresponding distance matrix 

is a spherical ESD matrix.

We le t P (n ) be the subset of V{n)  whose matrices A  admit a configuration of 

points :r J,, . . . ,  which lie on a sphere whose center is the centroid of the points. In 

other words, if A  € V{n) then A = \\xi — Xj\\'  ̂where Yh- i =  0 and there is some a 

such th a t =  a for all i =  1 , . . . ,  n. Formally, we define

V{n) =  {A € V{n) : Ae =  Ae}.

It is not im m ediately obvious that the set just defined is the same as the set described 

above. In the next subsection, We characterize spherical ESD matrices and see that
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these two desciiptioiiis are indeed the saine. We also discuss why a characterization 

theorem as in the first section is not practical. We will review some known results, see 

[22], and mention a few new ones. In particular, we will discuss some of the geometry 

of the cone of these matrices and, the forms of the linear preservers of the span o,f this 

set.

2 .4.1 Characterizations

We have defined the linear mappings r  : Sn S„, and k : S„ S„ by

r{A) -  - h i  -  - J ) A { I  -  h j )  (2.4.30)
2  n n

and

k{B) =  D b J  +  J D b -  2B  (2.4.31)

where D a  are just the diagonal entries of B. Note that throughout this section, we 

are considering the instance where w — e. We begin by presenting a characterization 

theorem similar to the one in the first section of this chapter. It is, however, signif

icantly shorter, as the majority of the characterizations of ESD matrices become far 

too im practical and cumbersome.

T h e o re m  2.29 Suppose /I is an n  x n predistance matrix. Let U be any n  x (n — 1)

matrix f 07' which the n  x n matrix V  -- [f|D] is oHhogonal. Then the following are

equivalent.

(a) Ae Xe and there exists an e-centered spanning set { ;ri,. . .  for

which A =  ||xi — .xylp.
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(b) There exists an e~centered spanning set o/R*', {.Xi,. . .  ,;r„} and an a > 0 for 

which t{A )  =  (x-Xj) and such that {t {A))u ~  ||x*:|p =  a for all i.

(c) The matrix

V^AV  =

2 na, 0

W A U

0

where U^AU is negative sernidejinite of rank k such that the diagonal entries of 

U'W'AUIT all equal -2 a .

P roo f.

(a) ^  (b ) Because of Theorem 2 .1 , we need only show th a t Ae =  Ae if and only 

if there exists some a > 0 such that {r(A))u ~  a for all i. Condition (c) of Theorem 

2.1 and trace (yf) =  0 suffices to show that A > 0 if such a A exists. Recall that 

K o t{A )  =  ^  as y4 € V { 7i). Letting B  = r{A) and Dg  the diagonal matrix /„  o B, 

we see tlia t

A =  k {B) =  Db J  +  J D b ~  2B.

Because B e  =  0 and JD bc  =  (trace (B))e, it follows that Ae =  Ae if and only if 

Db& =  ^(A  -  trace {B))e. But this occurs if and only if the diagonals B  all have the 

same value, i.e. {B)u ~ a ~  ^(A — trace(B)) for all i. This also shows that A =  2na.
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(a) (c) Because ,/le == Ae, V'̂ ’A V  =  [A] © U*'AIJ. Piirthermore, U*MJ is

negative semidefinite of rank k by Theorem 2 .1 . Since (a) and (b) axe equivalent 

and UlP'AULA ~2r{A), the diagonals of UWAUU^ are -2 (r(.4 ))«  =  -2o. where 

A =  2na.

(c) (b) Suppose the matrix

V^AV

2 na  0 0

[ f W

0

where U*AU is negative semidefinite of rank k  such that the diagonal entries of 

UU^AUlA all equal —2a. By Theorem 2.1, there exists an e-centered spanning set of 

• - ,x„} for which r{A) =  {x\xj). Note that UUKAUW =  ~ 2 r{A). Hence 

(r(ii))jj =  a for some o > 0 . □

The equivalence of (a) and (b) was previously shown in [2 2 ]. Note that our

description of T>{n) is evident in our statement (b). We use the origin as the center 

of the sphere (||a;j|p =  a for all i) and as the centroid of the points (xq,. . .  ,a;„ are 

e-centered). Considering this set of matrices formed by transforming the matrices in 

T>{n), we g e t the subset G{n) C PSD(n) consisting of matrices A  such that Ae =  0 and 

the diagonal entries of A  are constant- Equivalently, Q{ri) consists of positive scalar 

multiples o f  the subset of the n  x n correlation matrices C E £  such that Ce =  0 . 

While condition (c) was not shown in their paper, it is because it is not a convenient
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characterizatiott. One could replace condition (c) witli a simpler statement involving 

only the U^AU part, but the inclusion of the column e /s /n  to make the matrix V  

lets us state the following as a obvious corollary. For more on the Penron-Probenius

theorem, see [25, pp. 500,508)

C o ro lla ry  2.30 If A  € V{n) then e is the Perron vector with eigenvalue 2na where 

a is the radius of the sphere the points lie on.

This tlieorem also tells us more about the mapping r  and k. Recall that by

restricting the domains to [D{n)] and [C?(n)], the mapping's r  : ['D{n)] —t [t/(n)] smd

K : [Q{n)] [P(n)] as defined in 2.4.30 and 2.4.31 are invertible. We see that by

further restricting the domains to \t>{n)] and [G{n)], the mappings r  : [^(u)] -)■ [G{n)] 

and K : [^(n)] -> [T^(n)] are also invertible. In feet, when we so restrict r  and n, these 

mappings -will have the following forms.

r{A) =  - ~ A  + a J  (2.4.32)

and

k {B)  =  2bJ -  2B  (2.4.33)

where a i s  the square of the radius of the sphere and b are the diagonal entries of 

B. We c a n  use this knowledge to determine the forms of linear pre^servers of'P (n) by 

looking a t  linear preservers of G{n). We do this in the next section.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



63

2 .4.2 Linear preservers o f T>(n)

To furfelicjr examine the set V{n), it is necessary to use tii,e transformation r  and the 

resulting relationship between T>{n) and G{n). When dealing with V{n), we instead 

used the transformation from t>(n) to PSD(n -  1). The added condition that the 

points all lie on a sphere adds a complexity such that looking at an appropriate subset

of PSD(n -- 1 ) is too unwieldy to help, see condition (c) of Theorem 2.29.

In section 2.2, two of the three results on ©(n) focused on the embeddijig dimeii-- 

sion of the matrices. This corresponds to the rank of the matrices in ^(n). Define

0 k(n) = {-4 € 0 (n) : rank(/l) =  k j.

Note th a t the notation Qk will replace Qk{^) when it is clear from the (context what 

size matrices are being considered. It is not hard to see that for n odd, Qi{n) i.s 

the empty set and for n even, it is the positive multiples of a finite set of matrices. 

Thus, for different values of n, different results can be shown. We focus on the the 

particular problem of finding the form of the linear maps ; [D{n)] [T’(n)] such

that ip{T>(n)) = t>{n). We first solve the corresponding problem of finding the form of 

the linear m aps (j) ; [Q{n)] -> [^(n)] such that 0{^(n)) = §{n). For the even case, this 

problem is not too hard to solve, though the details take quite a bit to get through. 

For the o d d  case, this problem remains unsolved. Throughout the rest of this section, 

we will assume that n is even, unless explicitly stated otherwise.

We firs t need to look at some geometric properties of G(n). For all A € Gk(n), we 

can find a  matrix V  =  € Mfc,„(R) such that A — Note that since the
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diagonal entrit3s of A axe all equal, this means that for all =  v^Vj. This V

is not unique and, in fact, can be replaced by Q V  where Q is any k x  k orthogonal 

matrix.

The n  x n  matrix X  is a perturbation of A  € Q{n), written X  G Va, if and only 

if there is some 5 > 0 such that A ± e X  €  G(n) for all 0 <  e <  5. I f  A. =  V*V € Q{n),

then, the set of perturbations of A, P a is

P a = {V^RV  : R  =  G M k(R),vlRvi  == vlRvi  for all i}.

The property that R  =  ensures symmetry of the perturbation and vlRvi =  vlRvi 

is needed so th a t diagonal entries all agree. Note that if X  =  j A  for some 7 , then 

clearly X  €  V a - We can see that P a can be divided up into two parts, namely, P a — 

{A)®Paju where 'P^x - P a OA-^. In other wwds, ifX  e  P a , then X  = /\ /i4 -(A'--A/l) 

where A =  tr A7tr A. The matrix A' — A/1 € P a^, and tr  (A” — Aj4) =  0.

Let A  =  € G{n), with V  = [ni...u„], u, e  R'^ where r  =  rank(A) and

Ia — dim (span { n i t . ' i , }). Then

^  r(r + 1 ) 
dim P a ~ ^  h 1 ~

The num ber of free entries in R  =  i?* gives the term. The +1 term reflects 

that we c a n  add multiples of A  and the —tA term describes the number of con

straints imposed by assuming v\Rvi =  v[Rv\ for all i. This condition is equivalent to 

trace {v\Rvi)  ~  trace (uj jRui), which implies trace (vivjR) ~  trace {viv\R). Thus we 

are interested in the number of linearly independent matrices of the form Vivj. Note 

that r  < max{n, r (r  + l)/2}.
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Before we proceed, ive prove the following fact.

L em m a 2.31 Suppose A. e  Q{n) and P  is an n x n permutatum matrix. Then 

P'V aF  =

P ro o f. Suppose A € S{n) and P  is an n x n  permutation matrix. Then X  € P*'PaP 

if and only if FX P* 6  Va- But PX P* € Ta  if and only if tliere exists a 6  such that 

Ape.PXP'^ e  Q(n). By our supposition, this occurs if and only if P*AP + t X  € Q{n) 

which is equivalent to saying X  € P p*a p - O

We can divide Q{n) into the following subsets wdiich will be useful later. Let

Pk =  {A € g{n) ; d im P^ =  k}.

Since we are also interested in the rank of the matrices of g{n), we also consider the 

following subsets. Let

Ci =  {.4 € & (» ) : dim V a =  '‘A -X  +  1 ^

If ^  € Qi{n) then V a will have dimension 1 , therefore, C\ =  Q\{n). Following the 

proof of th e  followdng proposition, it can be seen that an alternative definition will 

be needed for n odd.

P ro p o s i t io n  2.32 Sttppose n  =  2m. Then

Ck -  {A G g{n) : .4 =  F 'y  where V  =  Vo[4 0  -  4  -  Q\P}

where Vq ^  iV4(R) is an invertible m.atrix with column vectors all the same Euclidean 

length, Q  g Mk,m.-k(R) >5uc/i that each column of Q has exactly one nonzero entry 

which is equal to 1 and P  is an n  x n permutation matrix.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



66

P ro o f. By construction, if .4 is in tlie set c'iescribed above, then ~  k. Therefore, 

diraP/i =  +  1 ~  k and so A €  C&. Now, assume A  € Ck- Since A € &•{«),

there exists a IT 6 with ra,nk{IT) =  k such th a t ^  == W W .  Since there

are k  independent cohimns in W , label them Wj,, Thus, are

also linearly independent. By the dimension of 7>At there must be exactly k  linearly 

independent WjWp namely the ones listed. Therefore, for all j  € {h+i} --ihn}, there 

exists an ax,..., a/, not all zero such that

/ax  0  0  \

Wjwj =  XI =  (w-ij ) 0  0

\  0 0 UkJ \  w*̂  /

/u>|, \

Since [wjj - • • '(Ujj,] is k x k and full rank, and hence invertible, therefore, it preserves 

rank. Since is rank one, there is only one value of that is nonzero,

call it ai. Since the trace is also the same, a? =  1, in other words, WjWj =  iviwj

where I e  ( * x , T h u s ,  for each j  € {4+ij there is an I G {ii, such

that Wj ~  ±wi. Recall that 0 =  W*e =  and each iVi €

therefore, 0 =  rhWi^ +  ... +  rikWi, .̂ But since Wjj , . . . , are linearly independent, 

m  =  ... =  Hfc =  0. Thus, for each I € {ii, occurs the same number of

times in W  as does ~wi. Thus W  = V  where V  is described in the statement of the 

Proposition. □

This gives us the following corollary.

C o ro lla ry  2.33 Forn even and k =  ^ ^ ^ 4 -1 ,  let A  =  V^V e Qrip)-
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Then A  €  Vk (ie . = r )  implies

(#  of times Vi is a column o fV )  ~  ( #  of times {—Vi) is a column o fV ) .

We now examirit? the relationship between Ck for different values of k. 

P ro p o s itio n  2.34 Let n = 2m. Then Ck — UjckCj-

P roof. Suppose X  is in Ck- Bather X G and we are done, or there exists a se

quence of elements of Ck that converge to X .  In other words {F(r)V '''(f)F(r),P*(r)}

X  where V  (r) is a k  x k  matrix such that

V{r) =  [%(r) ■ • - Vk{r)][Ik -  h  Q{r) -  Q(r)],

where Q (r) is a fe x (m — k) (0 , 1 )—m atrix with exactly one nonzero entry in each 

column. Since there are a finite number of n  x n  permutation matrices, divide 

the sequence up by each type of permutation P.  At least one such subsequence 

will converge; consider that subsequence. Since there are only a finite number of 

(0 , 1 )—m atrices of size k x {m — k), divide the sequence up by each type of ma

trix Q. Since there are only a finite number of subsequences, one must be con

vergent; choose that one. Thus we have a sequence FV*{r)V{r)P'^ -> X  where 

V{t )  =  ••• Vk{r)\[Ik “  h  Q Q]- Clearly, then X  will be of the form

A" =  PW ^W F^' where

W =  K  ■■■WkWh - i k Q  -Q ]-
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Since {w i , mi ght  not be linearly indepeiKletit, tills miglit not; be in Ck, but tluiig

by Proposition 2.32, it will be in Cj where j  is tlie number of linearly in,depeiKie:ot

vectors in {to,,..., Wfe}. □

We now consider linear mappings 4>: [0(w)] -> \G{n)] such, th a t 4>{G{n)) ~  G(n). 

For 71 even we will show tlie forms of of such mappings and briefly discuss what 

happens when n  is odd. First we show the following three lemmas.

L em m a 2.35 Let cj): [G{n)] \Q{n)] be a linear mapping such that (l>{Q{n)) — Q{ri)

and A ,B  € g(n). I f  ^(A)  =  B  then <f){VA) =  V b -

P roof. Suppose (f>{A) =  B. Note that A"' € V a if and only if there exists some 5 > 0 

such that A  ±  eX  E G(n). But A ±  eX  € Q{n) if and only if <I){A ±  cA) € &’(n). But 

<̂){A ± € X )  =  <l>{A)±€<j){X) =:B±e<p{X). Thus A  e  'Pa if and only if ^(A ) € V b - □

Lemma 2 .3 6  I f  <f) : [G{n]] —> [Q(n)] is a linear mapping such that (j>{G{n)) =  Q{n) 

then 4>{Vk) =  Vk.

P ro o f. Using the linearity of (f and Lemma 2.35, we see that dim V a ~  dim 4>{Pa ) = 

dmiV^(A}- Therefore, is A G Vk, then (p{A) G Vk- Since <p(0(n)) = Q{n) and 

g(n) =  U V>k, therefore (f>{Vk) =  Vk- □

We use  the following lemma in the proof of the main theorem of this section.

Lemma 2 .3 7  Let n  =  2m. I f f  : [^(n)] [^(n)] is a linear map such that <j){Q{n)) =

0(n), th en  4>{Ck) =  Ck for k = 1, ...,rn. In particular, 4>{Ci) — Ci-
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P roof. Define

Tk
2  2

Note that by definition, Ck Q “Pfki th a t CjQ'Pr^ =  0 whenever j  k. Therefore, 

by Proposition 2.34,

-  (Ct+j uc. u ■ ■ • u o  L)co) rip.. “
Note that if ^(Cfe+i) =  CT+j, then by linearity 4>{Ck+}) ~  Ck+i- Since ^(Prt) =  Pru 

by Lemma 2.36, therefore if 4>{Ck+i) ~  Ck.\~î  then <j){Ck) =  Ck- In particnlar, we will 

show that (j){Cm) =  C,„ and therefore (j>{Ci) =  Ci. First, note that C„i C 'Prm- We now 

show that ^  Cm- Since the dimensions of V a are the same for elements in these 

two set, we need only show that if A  € then rank A = m. Suppose A  € Vr„,- If 

rank A = k  < ni, then the dimension of V a is -f I — k < - p i ™ m, so

A  is not in  Vr,„- Suppose rank A = k > m. Then the smallest possible dimension of 

V a is

k(k + l)  ( m + l ) ( 7n +  2 ) , „ m ( m + l )  „ m (m  + l) _
^  I + l - 2 m =  ......- + 2 - rn  >  ---- ^+l™m.

Therefore, A is not an element of Vr„. And hence, Vr„, =  C„i, and so ^(Cm) =  Cm- 

Hence t/>(Ci) =  Ci. □

Recall that ^i(n) =  Cj. Thus if </>(Ci) =  Ci, then =  ffi.

T h e o re m  2.38 Suppose n = 2m. Let 4> '■ [G{n)] —> [^(n)] be a linear map. Then, 

for n > 4 , (f){Q[v)) =  Q{n) if and only i f  there exists a permutation matrix P  sitch
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that 4> has the form

X  j P X P K

Forn  =  4, <j>{Q{n)) =  Q{n) if and only i f  there exists a basis {Xi jX^yXs}  of [^(4)]

and scalars 7 1 , 7 2 , 7 3  >  0  and a permutation a such that 4> has the form

B

where X  = '£ u iX i,

We will give an outline of the proof. Note that (<̂ =) is clear. F'or (=>), we use the 

fact that =  Qi by Lernma 2.37.

First, we define the set T  = Qi n{-4 G Q{n) : tr  =  n} and show that it is finite of 

order t — We label the elements X i , . . . ,  Xt  and let x i , . . ., xt be the vectors

such th a t Xjxl =  Xi  and note that each Xi has m Is and m  —Is. Because (j) is linear, 

(f>{Xi) = jiXff(i) for some permutation a. Also, Xi  =  ^ ( n l n  -  Jn)-

We next show that for n >  4, 7 * =  7  ̂ for all i , j .  To do this, we assume 7  ̂ is the 

largest such scalar and replace f  with ~(j). We show that because

0 < 4>(Y.Xi -  = ET.W(i) -
jXi n — i ^  n ~  1

therefore
t  ̂ ^

0 ^  '̂aSk) (y~̂  hiXffd) — " 7 Z T < r ( f e ) “  0

. This im plies that 7 j =  1 whenever 7  ̂ 0. Repeating this argument shows

j i  =  1 for all i. This gives us tlmt 0(T) =  T  and f { n l  ~~ J) = n l  — J.
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Next, we show that <p preserves ioiicr product on T  by grouping together those Xi 

and Xj  such that, for different values of a and /3, fS(nJ -  J )  ~  Xi  — a.Xj and therefore 

f){nl — J) ~  .Yo-(j) — aXff(j) is positive semidefinite.

We now begin the process of replacing <f> with the mapping X i—> P4>{X)P^ in 

a sncessive manner, each time adding at least one element of X  € T  such that 

(l>{X) — X .  We first choose the element X i G T  and let Pi be such that X \  =  

Replace <f> with X  i-~> Pi f {X)Pl .  Because 4> preserves inner product, 

we can find subsets of T  that are mapped to themselves, defined by their inner 

product with X i.  By a judicious choose of (relabelling as necessary), we can find 

a permutation matrix P2 such that P^XiP^ — X \  and X 2 — P2X<,(2)Pl. Replace 

(f> with X  i-> P2<j>{X)P2 . Repeat this process with an appropriate X 3 andPa to get 

=  X j for i = 1,2,3. This is sufficient to show that <f>{X) X  for all X  G T.  

Because ^  is linear, this implies 4>(X) =  X  for all X  € ^ 1 . Because spans [^(n)]? 

(j) is the identity map. This implies that the original (j> will be of the desired form for 

n >  4.

For 71 ~  4, note that T  =  {X j, X 2 , X '3 }  is a linearly independent set. This problem 

is similar to  one in which you map the positive octant of a 3 -dimensional Euclidean 

space back to itself. Each of the axes are mapped to another axis with a scaling 

factor. In other words, there is a permutation a  of (1,2,3) associated with <p such 

that <p{Xi) — 7 iX(,.(.,:). lieealling that (j) is linear, we see tha t will have the desire 

form.

As we have only shown the form of preservers of Q{n) for when n is even, we can
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only find the form of linear mappings : [©(«)] -4 ['P(n)) such that ^(P(n)) =  'D{n).

Theorem  2,39 Suppose n ~  2m. Let tj) : [^(n)] —v [P(n)] fee a linear map. Then 

’ilj{'D{n)) ~  V{n)  i f  and only i f  there exists a permutation matrix P  such that if has 

the form

X  >--> jP X P *

for n >  4 and

X  DPXP^D^  

for n —■ 4, whej'e D is a diagonal scaling.

P roof. Note that if{'D{n)) =  'D{n) if and only if if o K{Q{n)) =  «(^(n)) if and only 

if r  o t/j o k{Q{u)) -■ P(n). R'om Theorem 2.38, if n > 4, then ijjft>{n)) =  t>{n) if and 

only if there exists a permutation matrix F  and 7  > 0  such that

T O l f o  k { X )  =  j P X P * .

Applying « to both sides of the above equation, and choosing V' € V(n)  such that 

k{ X)  ~  K , we obtain

i f {Y)  =  i f oK{X)  = K{^PXP^)  = K{'yPr{Y)P*)

=  - i r .  (^7 ( /  -  i j )  F FF* [ l  -  i j ) )  =  « o r f j P Y P ^ )  = -fPYP*-

because F»YP^ G V{n)  if and only if 'P (n ). If n = 4, then — 'P(n) if and

only if there exists the basis {X i, JiCa, X 3 }, scalars 7 1 , 7 3 ,7 3  >  0 and permutation <r
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such that

?
T  O Ip  O k (X)  =

where X  = J^aiXi. As before, applying k  to both sides and letting y] =  K{Xi) and

F  =  K.{X), we obtain

i H Y )  -  '̂ Aor.:,(A0 = «(i;a.7.A',(i))
i=l,

3

a 3
^  ®»7i^(i))) "  y~!

i = l  i=l

because r  is linear and 5 3 aj7 *Ffr(i) € '^(4). □

The proof of Theorem 2.38 (for n > 4) relied on the fact that we could find a set 

T  that was finite, spanned [5(n)] and had the property that it could be shown that 

^(T)  = j T .  We then showed that <i>{X) =  7 PX P''  for all X  £  T- This was sufficient 

to show th a t  ^ had the desired form. In the odd case, we would like to find such a

T .  For n odd, we tried numerous approaches similar to the even case, but each time,

were unable to find a useful finite subset. It is our belief that a new approach will be 

necessary to  solve this problem for n odd.
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Chapter 3

Ray-Nonsingular M atrices

3.1 Introduction

A complex m atrix is a ray-pattern matrix if all of its nonzero entries have modulus 1. 

A ray-pattern matrix is full if each of its entries is nonzero. An n  x n complex matrix 

A  is ray-nonsingular if A o X  is nonsingiilar for all entry-wise positive matrices X .  

Ray-nonsiiigular matrices with real entries are known as sign-nonsingular matrices; 

see [39] an d  its references. In [39], the authors posed the following question:

For which n  does there exist a full n x n ray-nonsingular matrix?

It is not h a rd  to construct examples of full n  x n  ray-nonsingular matrices for n < 4; 

see [30, 39], In [30], the authors showed that there are no liill n  x n  ray-nonsingular 

matrices fo r  n  > 6 . The question of whether there are full 5 x 5 ray-nonsingular 

matrices rem ained open. In this section, \ve show that no full 5 x 5 ray-pattern
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matrix is ray~no:nsiiigiilax. As a result, we ha.ve the following complete answer for the 

question raised in [39]:

M ain  T h e o re m  There is a full n  x n ray-nonsingular matrix i f  and only if n  < 4.

The proof of the main theorem is quite detailed. In section 2, we recall some 

known results and outline our strategy for the proof. The key to the proof is an 

understanding of 3 by 3 ray-patterns that are not ray-nonsingular. These are studied

in section 3. The proof of the main theorem is given in section 4.

3 . 2  P r e l i m i n a r y  R e s u l t s  a n d  S t r a t e g i e s  o f  P r o o f

We first recall some terminology from [30]. A nonzero, diagonal ray-pattern matrix is a 

called a complex signing. A  complex signing is strict if all diagonal entries are nonzero. 

A (1 , —I)-signing is a diagonal matrix with diagonal entries in {1 , —1 }. A vector v 

is balanced if zero is in the relative interior of the convex hull of {uj : 1 < i <  n}. 

Furthermore, it is strongly balanced if its entries take on at least three distinct values. 

A ray-pattern vector v is generic if for all i < j ,  Vi  ^  ± V j .

Consider the relation on the set of ray-patterns defined by A ~  S  if and only if 

there exist matrices P  and <5, each a product of permutation matrices and complex 

signings, such that D =  PAQ  where A =  A, A* or A. Clearly, ~  is an equivalence 

relation, a n d  we have the following observation.

L em m a 3 .1  Suppose A and B  are full ray-pattern matrices with A B. Then A is 

ray-nonsingular if and only if  B  is ray-nonsingula.r.
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We say t.ha,t tlie matrix A is strongly balancm-ble if A  ~  B  for some B  eadi of 

whose columns is strongly balanced. The following three lemmas from [30] will be 

useful in establishing the nonexistence of a 5 x 5 full ray-nonsingular matrix.

L em m a 3.2 [30, Lemma 3.7] Let A  — (oy) €  Mn be a. my-pattem matrix. I f  A has 

cm m  X m strongly balanceable snbrnatrix with m  > 3; then A  is not ray-nonsingular.

In section 3, we establish sufBcient conditions for a 3 by 3 full ray-pattern to be 

strongly balanceable.

L em m a 3.3 [30, Theorem 4.3] Let A  = (ay) € Mr> be a full ray-pattern. I f  Uij € 

( 1 , — l , i ,  —i}, then A is not ray-nonsingular.

L em m a 3 .4  [30, Proposition 4.4] Let A  be a full 5 x 5  ray-pattern matrix with first 

column consisting of all 1 ’s and each remaining column generic. Then A is not ray- 

nonsingular.

Note th a t  Lemma 3.4 implies that if A is a full 5 x 5  ray-nonsingular matrix, then 

each row and column of A  intersects a 2 x 2 submatrix of the form

X y 

z ± .yzfx

Otherwise we can find some B  ~  A  with the first column all I ’s and the last four 

columns generic.

G en era l s tra te g y  o f proof. We now give a basic outline of our strategy for proving 

the main theorem. The proof will be by contradiction. Thus, we will assume to the
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contrary that there is a full 5 h j  5 ray-nonsingular matrix A =  («y). We then use 

the results of section 3 (tliafc give sufficient conditions for a full 3 by 3 ray-pattern to 

be strongly balanceable) and Lemmas 3.1-3.4 to  show that, up to equivalence, the 

leading 3 x 3 subniatrix of A Inrs one of the following forms:

1 1 1 1 1 1 1 1 1

(a) 1 1 1 , (b) 1 - 1  1 (c) 1 - 1

1 e*« 1 e*“ i - 1

1 1 1 1 1 1

(d) 1 1 or (e) 1 1

1 - 1 1 e“  1

Next, for each of these cases, we use Lemma 3.3 and the results of section 3 to conclude 

that either

(!) all entries of A  belong to {1, —1 , i, —i}, or

(ii) all entries of A  belong to arranged in certain patterns.

Finally, we obtain a contradiction by showing that if A satisfies (i) or (ii), then A  is 

not ray-nonsingular.
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3 . 3  S u f f i c i e n t  C o n d i t i o n s  f o r  3 x 3  P a t t e r n s  t o  b e  

S t r o n g l y  B a l a n c e a b l e

One of the keys to our proof of the main theorem is Lemma 3.2 which asserts that

no 3 X 3 subrnatrix of a 5 x  5 ray-nonsingular m atrix is strongly balanceable. In 

this section, we give sufficient conditions for a  full 3 x 3 ray pattern to be strongly

balanceable.

By Lemma 3.1, we may restrict our attention to ray-patterns B  of the form

B

1 1 1 

1

][ p*'«3

(3.3.1)

As the function e**, x real, is 2 ?r-periodic, we may assume th a t each of 0 2 , ft;;, 0 2  and 

^ 3  lies in the interval (—7r , 7r]. For convenience we partition (—7r ,7r] by the following 

sets:

T  = {0 ,n), M  ^  ( - 7T,0 ), {0 }, {tt},

We first determine the strict signings S  for which the vector (1 ,1 ,1 )5  is strongly 

balanced. Note that for each d G (—tt, tt], the vector (1 ,1 ,1)5  is strongly balanced 

if and only if the vector (1,1, l)(e**^5) is strongly balanced. Hence, it suffices to 

determine; the S  whose leading diagonal entry is 1 .

L em m a 3 .5  Let S  =  d'ia5 (l,c*®,e*^) be a strict signing vrith x , y  € ( ~ 7 r , tt]. Then

(1 ,1 ,1)5  is  strongly balanced if and only if x  € T  and — tt < y < x  — n, or x € M  

and 7r +  x  < y  <tt.
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P roof. Note th a t (1 , 1 ,1 )5  is strongly balanced if and only if no two of 1, e*"’’ and 

are equal or opposite, and the convex IruIL H, of {1, c“ , contains the origin. Thus, 

(1 , 1 ,1)5 is not strongly balanced if x =  0, x  =  t t ,  p =  0, p = tt or x  =  ±p.  If x  € P,  

then it is easy to verify that I I  contains the origin if and only if — t t  < y  < x  — if. If 

X € M, then it is easy to verify that H  contains the origin if and only if 7f +.x < y < w. 

The lemma now follows. ■

The shaded regions without their boundaries given in Figure 3.1, represent the 

region of the Cartesian plane determined by the inequalities in Lemma 3.i5.

(-TC.rt-p)

(-a,-n:-P)

Figure 3,1: Graphical representation of Figure 3.2: Graphical representation of 

solution se t balancing [1,1,1] shifted solution set balancing [l,e*“ ,e"^]

with 0  < P < (X < IT

Next, le t’s investigate a general vector z =  ( l ,e “ ,e*^), and let R{a,,d) be the 

region of th e  Cartesian plane consisting of the points {x, y) such that ^:diag(l, e*®, e*'̂ ) 

is strongly balanced and x ,y  G ( — tt, tt] .  Thus R{Q,Q) is the region described in
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I.emma 1, and illustrated in Figure 3.1. Let D  =  diag(l, e*^). Note that S  is a 

strict signing such that zS  is strongly balanced if and only if D S  is a strict signing 

such that (1 ,1 ,1 )D 5 is strictly balanced. It follows that R{a,fi)  can be obtained 

from R{0,Q) by identifying opposite edges of the square [—-Tr̂ Tr] x [-7r,7r] to form a 

torus, and then translating the shaded region in Figure 3.1 by ( - a ,  - 0 ) .

For example, R{a., 0) is presented as the shaded region in Figure 3.2 wliere o, fi £ 

(0, tt) and a  >  0 .

Note th a t ^ { 0 ,0 )n B (a , 0) rci)re.sents the points {x, y) in the plane such that both 

rows of

1 1 1

I pia
d iag(l,e“ ,c ’' )̂

are strongly balanced.

It is tedious, but straightforward, to determine the regions i?(0,0) f\ E.{a.,0). We 

do this as follows. First partition the vectors of the form z =  |[ 1 according to

the locations and relationships between a  and 0  as given by the 24 classes described 

in Table 3.1 below. The sets i?(0 ,0 )n i?(a , 0) for each of these 24 cases are the shaded 

regions w ithout the boundaries illustrated in Section 5.

We finally turn our attention to studying the strong balanceability of the ma

trix B  in  (3.3.1). Note that B  is strongly balanceable if and only if li(0 ,0) f1 

R{q.2 , 0 2 ) 0:0 7  ̂ 0, or equivalently if and only if {R{Q, 0 )ni?(o:2 , /l2 ))Fi(.R(0 ) 0)n

R{az, b-0) ^  0. If the second (or third) row has form (C9) in Table 3,1, i.e. is [1,1,1], 

then trivially, this intersection corresponds to the solution set of the first and third
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Tabk) 3.1: Classes of vectors of the form |le'*®c'ia

Class 0  in ,5 in Conditions Class
= = =

a  i n 0  i n

1 (0 ,7r) (OCf) a  >  B " w r
2 (0,7r) (0 ,7r) a  <  f ) C2 (-7r,0) {0}
3 (-■'/r,0) (~7r,0) 0. >  (3 C3 (0, 9t)
4 { — 7 ! \ 0) (-rr, 0) a  <  p G4 (“ Tr, 0)
5 (0,7r) (--7r,0) (X ~  P  <  X C5 {0} (0>
6 (0, tt) 0) a  — f i  >  '/r C6 {0} (™7r,0)
7 (™?r,0) (0,-7r) f i  —  a  < 7 f C7 (0,7r)
8 (0 ,7r) p  — a  >  'IT C8 {^} (-71,0)
9 (0, vr) (0,7r) a  ~  f i C9 (0} {0}
10 (—TT, 0) (-T T , 0) a  ~  0 CIO {0} {rr}
11 (0, -̂ r) (-T T , 0) a  ~  f i  ~  n G il {0}
12 {-T T , 0) (0,'/r) 0  —  a  ■= 'K

(J
\ j 1 jC {-/r} M

(or second) row. Also, if the second (or third) row has form (C10)-(C12), then the 

solution set is empty (see Figure 3.24) and so the intersection is trivially empty. 

Thus, we need only consider those cases when the second and third rows are of one 

of the first 20 types listed on Table 3.1. That is, we need to  study the intersection of 

{R{0 , 0) n  i?(ft2 j ^ 2 )) and (i?(0,0) fi R{cys, b^)) for pairs of the first 20 classes listed in 

Table 3.1.

The results of this straight-forward but tedious study are summarized in Table 

3 . 2  found a t the end of Section 3.5. The rows and columns of Table 3.2 are indexed 

by the 20 classes other than (C9)~(C12). An entry of T ’ indicates tha t the pair of 

specified regions always has nonempty intersection, an entry ‘0’ indicates that the 

pair of specified regions always has an empty intersection, and an entry ‘c’ indicates 

that the intersection is empty or nonempty depending on the values of a-2 , cx’i, (S-i,

Table 3.3 will list the conditions on the values of 012, ag, Ai for an empty inter

section corresponding to some of the ’c’s in Table 3.2.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



82

The ibliowiiig example illustrates how we obtain the (x>iK:iitions in Table 3.3.

Exam ple 3.6 Consider the matrix B  in (3.3.1). Let u\,U2 ,u^ be the rows of B.

Suppose th a t has form (C5) and txg has form (Cl). Since we are interested in the

conditions on and a% such that the matrix is not strongly balanced, we examine

when tlie solution set.s described geometrically above do not intersect. In the upper 

left quadrant, we see that the upper bound for (C5) is tt -  fit while the lower bound 

for (Cl) is CX2 , thus tt ™ < cx2 . When we examine the lower right quadrant, we get

the same inequality.

Next, we illustrate how to use Tables 3.2 and 3.3 to examine specific matrices. 

This will allow the reader to get a feel for how these arguments work while also 

providing information needed latter.

E x a m p le  3.7 Suppose ui,U2 ,v ,3 are rows of B  with

wj =  I 1 1 1 ]. =  [ 1 1 ]> «3 =  ( 1 ™-l I

with n  {±1} =  0, so that B  cannot be strongly balanced. If we assume

that Pi E V ,  then « 2  has form (C5) and « 3  has form (C7) or (C8 ). By Table 3.3, 

if Us has form (C7) then p2 ^  Ph if has form (08), then p2 + P: Pi- If we are 

interested in the vector u =  [ j g«̂ i (AP2 ], then v has one of the following forms:

(1 ), (6 ), (9) or (1 1 ). Similarly, if P2 € JSf, then v has one of the following forms: (4), 

(8), (10), or (12).

Using a  similar analysis, we have the followdng.
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E xam ple  3.8 Suppose ui,U2 ,v.:i are rows of .B with

«;i =  [ 1 1 1 ], '«2 [ 1 ~ 1  ], Ms =  [ 1 1 e**

with {e*^i,e*^}n (± l}  =  0, so that, B  cannot be strongly balanced. Then [1 

has one of the following forms: (2), (3), (6 ) or (8 )-"(12).

3 . 4  P r o o f  o f  M a i n  T h e o r e m

Assume A  is a 5 x 5 full ray-nonsingular matrix. We first show that up to the 

equivalence relation defined before Lemma 3.1, we may assume tha t the leading 3 x 3  

principle submatrix has one of the following forms.

1 1 1 1 1 1 1  1 1

(a) 1 1 1 (b) 1 - 1  1 ) (*-) 1  - 1

1 c“ 1 e“  - 1

(d)

1 1 1

1 1

1 ~ 1

or (e)

1 1 1 

1 1 

1 1

Recall that if A =  {ajk) is a 5 x 5 full ray-nonsingular matrix, then each row and 

column intersects a 2  x 2  submatrix of the form

X y

z
X
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By Lemma 3.1, we may assume that the 2 x 2  submatrix intersecting the first row 

lies on the first and second row and column. Likewise, we assume that ajt =■ 1 

whenever j  = 1  or k =  1. Then 022 =  ±1, Let a,jk =  and uj =  for

i  =  1 , 2 ,3 ,4 ,5 .

First, suppose =  ±1 or =  ±1 for some j  =  3,4 or 5. Then A has a 3 x 3 

siibmatrix equivalent to a m atrix of form (a) or (b). By Lemma 3.1, we can replace 

A  with the equivalent m atrix with leading 3 x 3  principle siibmatiix of form (a) or 

(b).

Now suppose, for some j  =  3 ,4 or 5, that =  ± 1 . Then A  has a 3 x 3 submatrix

equivalent to a matrix of form (c), (d) or (e). By Lemma 3.1, w'e can replace A  with 

the equivalent matrix with leading 3 x 3  principle submatrix of form (c), (d) or (e). 

Suppose;, for some j  =  3,4 or 5, that . Then

1 ±1 ± 1  1

1 1 1

1 ± 1

1 ± 1

In other w^ords, A  has a 3 x 3 submatrix equivalent to a matrix of form (c), (d) or 

(e). By Lemma 3.1, we can replace .4 with the equivalent m atrix with leading 3 x 3 

principle subrnatrix of form (c), (d) or (e).

Now suppose that neither of the two cases above hold. We will then show, using 

Table 3.2 and the fact that ,/i cannot have a 3 x 3 strongly balanced subrnatrix, that 

no such m atrix  is possible. Note that by our assumption, u^, U4 and û , do not have 

forms (C l)  -  (C12) nor (9) (12). Also, u.2 can only have form (C5) (C8 ). In fact,
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since /4 ~  /i', we may assume that G and therefore « 2  has either forro (C5) or 

(C7). Suppose « 2  has form (G5). Beeause the matrix with rows ui, U2  and Uj is not 

strongly balanced, by Table 3.2, tor j  =  3 ,4 ,5  can only have form

(1), (4), (6 ) or (8 ).

Note that if two vectors, say uj and Uk, have the same form, then the matrix with

rows ui, Uj and u* will be strongly balanced by Table 3.2, Now' suppose one of the 

row vectors, say u^, has form (1), Then « 4  and Us botli have fonn (6 ), else the matrix 

with rows u i, and Uk is strongly balanced, wdth k =  4,5. But then the matrix with 

rows Ml, « 4  and ua is strongly balanced. So w-3 cannot have form (1). Suppose has 

form (4). Then and both have form (8 ), else the matrix with rows ui, «a and 

Uk is strongly balanced, with k =  4,5. But then the matrix with rows ui, U4 and Us 

is strongly balanced. So M3 cannot have fonn (4). Thus we have three vectors and 

only two possible forms, so two vectors have the same form and we have a strongly 

balanced 3 x 3  submatrix. Thus, « 2  cannot have form (C5). Now, suppose « 2  has 

form (C7). Because the matrix with rows ui, U2 and Uj is not strongly balanced, by 

Table 3.2, Uj for j  =  3 ,4 ,5  can only have form

(2), (5) or (6 ).

As no form  can be repeated, we can assume that Uz has form (2), U4 has form (5) and 

Ms has fo rm  (6 ). But then the matrix with rows «i, u$ and Us is strongly balanced 

by Table 3.2. Therefore, M2 cannot have form (C7) and we have a contradiction.
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3.4.1 Cas€  ̂ 1

First we assume th a t the leading 3 x 3  principal submatrix of .4 has form (a). Suppose 

UuU2 ,'U3 ,V4 ,U5 are the five rows of [%]i<*<5,Ky<3 . Then ui =  Ms =  { i  i i  ]• Let

« 3  =  [ 1 e^s 1> “ 4 =  ( 1 e^* ], «s = [ 1 e*'*® e*̂ ® ]•

Note that for i =  3,4,5, «j cannot be of the form (1)-(12) or (C1)-"(C8); otherwise 

the matrix with rows Ui,U2 , tk can be strongly balanced by Table 3.2. So tk h«as form 

(CIO), (C ll)  or (C12). If uz — « 4  =  then the matrix with roŵ s uz,u,i,U5 can be 

strongly balanced. Suppose uz,U4 ,U5 are not all equal. Then up to the equivalence 

relation ~  described after Lemrna 3.1, we may assume that A  is equal to one of the 

following two matrices.

B i ,=

1 1 1 1 1 1 1 1 1 1

1 1 1 tt24 >̂ '25 1 1 1 U 2 4 U 25

1 1 - 1 U.34 £*33 , B2 = 1 1 - 1 a.34 £*35

1 1 - 1 0 4 4 0'45 1 - 1  - 1 0 4 4 <^45

1 1 U 5 4 U5 5 1 - 1  1 U 5 4 O5.3

In both cases, A  has the 3 x 3  submatrices

1 1 1 1 1 1

1 1 0'2j and 1 1 0 2 /

1 1 azj _ 1 1 ar,j
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for j  =  4,5. So an ~  ±1 for i =  2 ,3 ,5  and j  ~  4,5- If A ~  i?i, then A  has the 3 x 3 

submatrices

1 1 1 

1 1 a,2i

4 X

and so a.4j  — ±1 for j  =  4,5. If .4 =  B-2 , then 7i has the 3 x 3 sub,matrices

1 1 1 1 1 1

1 1 « 2 i 1 1 «2 i

- 1 a,4j 1 1

Thus, ttij ~  ± 1  for j  =  4,5. iVnd therefore, a,-j =  ±1 for all i , j ,  and by Lemma 3.3

(a), A  is not ray-nonsingular.

3.4.2 Case 2

Assume th a t  the leading 3 x 3  principal submatrix of A  has form (b). We will show 

that A  has  entries G {±1, ± i} , which contradicts Lemma 3.3 (a).

Suppose are the five rows of Then =  [11 1] and

U2 =  [1 ~ 1  1 ], i.e. they have forms (C9) and (C ll)  respectively. Let

Mg =  [ I e«3 fim }, M4 =  1 1  I  =  ( i  e“ » ]■

Since for c;ach j  £ (3,4,5} the matrix with rows ui, u-i, % cannot be strongly balanced, 

using A* and Example 3.8 we see that uj has one of the following forms:

(2 ), (3), (6 ), (8 ) -  (1 2 ), (C3) - (C8 ), (CIO) or (C ll).
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Note tlia-t, if =  1 for any j  = 3 ,4 ,5 . then A  is equivalent to a. matrix with 

a subrnatrix of form (a), and rve are back to Case 1. Similaxly, if =  “ 1 for all 

j  ~  3,4,5, then A  is equivalent to a matrix with a 3 x  3 submatrix of form (a) and 

we are back to case 1 . So there exists a j  € {3,4,5} such that i=- ± 1 . We may

assume j/3  € V  since A  ~  A. By this assumption, we see that will be of the 

following forms;

(2 ), (8 ), (9), (1 2 ), (C5) or (07).

Next, let v i , . . . ,V 5 be the rows of the matrix obtained from by

miiltiplyiiig ~1 to its second column. Then

=  [1 - 1  1], =  [1 1 1], .̂3 -  [1 -c*** tq =  [1 wr> =  [1

Note th a t us has form (2), (9), (C5) if and only if '03 has form (8 ), (1 2 ), (C7), 

respectively. Thus, we may assume that u$ has form

(2), (9) or (05)

otherwise, multiply the second column oi A  by —I, and interchange the first two rows 

of the resulting matrix. Now, we consider several subcases.

A. Assume either W4 or has form (CIO) or (012). In particular, we may assume 

that 'Ug h a s  form (OlO) or (012); otherwise we permute the fourth and fifth row of

A.

A.i. Suppose U5 =  [1,1, —1 ] has form (CIO). Recall that u$ has form (2), (9) or (05) 

while U4 lia s  one of the forms: (2), (3), (6 ), (8 ), (9)-(12), (C3)--(C8), (CIO) or (012).
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Suppose U-) lias form (C5). But then

U i 1 1 1

1 1

U s 1 1 g m

is equivalent to a tnatrix of the form in Case 1. 

Next, consider the matrix

1 1 1

1 1 - 1

1

U i

« 5

U j

for j  = 3, 4, Since this submatrix is not strongly balanced, by Example 3.7, wg cannot 

have form (2). Hence it has form (9). Furthermore, « 4  cannot have form (2) or (3). 

Also, i f '« 4  has form (9) or (CIO) or if e“ '* =  1, then there is a subrnatrix of the form 

in Case 1 ,

Note th a t

- •

U 2 1 1 1 1 1 1

U 5
=

- 1 1 1 - 1

U 4 1 - 1 1 - 1 e % 4

From Table 3.2, we see that if the above matrix is not strongly balanced and e*®’, e*̂ -’ 

±1, then th e  sign of the imaginary parts of and e*-''-’ do not agree. In other words, 

Xj € V  implies 'ijj e  V  and xj 6  J\f implies y,- G M. So can only have form (10), 

(C3), (0 4 ) , (07), (C8 ) or (C1 2 ).
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If'U.1 has form (1 0 ), tlien the matrix formed by rows is equivalent to

1 1 1 1 1 1

1 0*9 1 1

1 1 1

and again we are back to Case 1 . If ?i4 has form (C3), then note that has form (11) 

and Vi has form (C4) and so the matrix with rows v-j, v$,V4 is strongly balanced. The 

vector 'U4 cannot have forms (C4) or form (08) else the matrix with rows uj,u^,Ui is 

strongly balanced. Likewise, u.i cannot have form (07); otherwise, for some Xz,y4 € 

V,  the m atrix  with rows U(y,u-i,u.i can be strongly balanced because it is equivalent 

to

1 1 - I 1 1 1

1 gi.’es 1

1 -1 1 - 1

which has rows of form (1 1 ) and (08). If Ui has form (012), the matrix with rows 

is equivalent to

1 1 1 1 1 1

1 e'“ '9 1 1

1 - 1  - I 1 1

and we a re  back to Case 1.

A.ii. Suppose =  [1, —1 , —1 ] has form (012). Recall that uy has form (2 ), (9) or

(05) w hile U4 has one of the following forms: (2), (3), (6 ), (8 ), (9) (12), (03) (08),
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(CIO) or (C12). Suppose Wg has form (2 ) or (9). then

U i 1 1 I 1 1 1

— 1 1 -1

'«-5 1 - 1 ~1 1 - 1

can be strongly balanced because the last two rows both have form (C3).

Suppose? « 3  has form (C5). Note th a t if 'U4 has form (CIO) then we are back to 

Case A i. and if it has form (C12) then we have a 3 x 3 submatrix of form (a) and we 

are back to  Case 1. By Table 3.2, M4 can only have one of the following forms: (6 ), 

(8 ), (10), (1 2 ), (C3), (C6 ), (C7) or (08).

Suppose has either form (6 ) or (8 ). Then the matrix

1 - 1 ^ 1 1 1 1

Uz 1 - 1 1 1 1

« 4 1 gW4 1

which has third row of form (5) or (7) respectively. By Example 3.7, this matrix is 

strongly balanced. Also, does not have form (10); otherwise

Ul 1 1 1 1 1 1

= 1 1 - 1

U5 1 - 1 - 1 1 - 1

which has second and third row of form (C4), and the matrix is strongly balanced. 

Next, M4 does not have form (1 2 ); otherwise
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the matrix witli rows u«„v,z,U4 is equivalent to

1 - 1  - 1  

1 1

1 e%4

W5

U z

U.I

1 1 1

1 - 1  --e’-*'®

g*3/4

where 1/3 , € V.  Tills matrix has second row of form (C8 ) and third row of form

(11), and hence is strongly balanced. Note that does not have form (C3); otherwise 

the

U‘2 1 1 1 1 1

1 1 e‘» 1

U4 1 1 - 1

where .x's, 1/4 G V. But then the second row has form (C7) and the third row has form 

(C4), and the matrix is strongly balanced. If M4 has form (C6 ), then the matrix with 

rows Mi,M3 , « 4  is equivalent to

1 1 1 

1 1 

1 1

and we a re  back to Case 1. Likewise, if U4 has form (C7) or (C8 ), then

U'2 1 - 1 1 1 1  1

U4 -•=
1 - 1 (.m 1 1

Us 1 - 1 1 1  - 1

and %ve a re  back to Case 1.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



93

B. Assume u,i ajicl ttg have neither fbrm (CIO) nor (C l2). Recall from the begiimmg 

of this subsection that Mg has form (2 ), (9) or (C5). Also, for j  — 4,5, uj has form

(2), (3), (6 ), (8 ) (12), (C3), (C4), (C6 ), (C7) or (C8 ).

B.i. Suppose e*®®} n { ± l}  =  0. Suppose Mg has the form (2). Since the

matrix with rows ui,u-s,Uj is not strongly balanced for J ~  4,5, uj has form (8) or 

(1 2 ) by Table 3.2. Since the m atrix with rows Ui,U4 ,u& is not strongly balanced, by

Table 3.2, U4 and U5 do not have the same form. We may assume that U4 has form (8 ) 

and '«5 has form (1 2 ), but then the matrix with rows ui,Ui,u^  is strongly balanced.

Suppose «;> has form (9). Since the matrix with rows Ui,u^i,Uj is not strongly 

balanced for j  — 4,5, Uj has form (6 ), (8 ), (10), (11), (12) or (C3) by Table 3.2. 

However, note that wg has form (9) means that V3  has form (12); since the matrix 

with rows vi,Vz,Vj is not strongly balanced for j  =  4,5, by Table 3.2 Vj has form (2), 

(6 ), (9), (10), (1 1 ) or (G3). Accordingly, Uj can only have form (8 ), (10), (11) or (12). 

If Uj has form (8 ), then Vj has form (2) and we are back to Case A.i. If Uj has form 

(10), then we are back to Case 1 because

Ml 1  1  1 1 1  1

M3
_ 1 1 1

Uj 1 1  1

Now, Uj m u st have the from (11) or (12). As before, « 4  and uq cannot have the same
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form. We may assume that U4 has form (1 1 ) and ua has form (1 2 ). But then

?i2 1 - 1 1 1 c

« 4 I 1 1 1

1 g « 5 1 1 1

and we are back to Case 1 .

Finally, note that u$ cannot have form (C5) because e*®* ^  {±1}-

B ii. Suppose f1  { ± 1 } ^  0. Suppose «.■? has form (2 ) or (9). Then

there exists j  G {4,5} such that e**-' =  ±1 while ±1. Now, interchange rows 3 

and j  and if e"*-*' =  —1 , multiply the second column by — 1 and interchange the first 

two rows. We may assume ^ 3  € V  since A  ~  A. .Note that this new third row has 

form (C5). Therefore, we may assume that U3 has form (C5). Recall that 1

for j  =  4 , 5, else

Ml 1 1 1

U-i 1 1

U j 1 1

which is equivalent to a matrix of form (a) and we are back to Case 1. In other 

words, Uj does not have form (06). Furthermore, by Table 3.2, Uj does not have form

(2), (3), (9), (11), (04) or (05) else the matrix with rows Wj, and Uj is strongly 

balanced. In other words, Uj can only have one of the following forms: (6), (8), (10), 

(12), (0 3 ), (07) or (08). But has form (07) and hence, because the matrix -with 

rows V2 , Vz and Vj is not strongly balanced, therefore Vj has form (2), (11), (9), (05) 

or (06), i.e . has form (8), (10), (12), (07) or (08).
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Let { j ,k }  =  {4>5}. SiJ.pi>ose Uj lias form (8 ). Then Uk does not have form (8 ),

(12) or (C7) else the m atrix with rows ui, Uj, is strongly balanced. Note that Vj 

has form (2 ). If Uk has form (10) or (C8 ), then Vk has form (1 1 ) or (C6 ) and so the

matrix with rows Vi, Vj and Vk is strongly balanced. Therefore, Uj cannot have form 

(8 ). Now suppose Uj has form (C7). But then the matrix with rows ui, Uj and lifc] 

is strongly balanced for of any form but (C8 ). However, if lias form (C8 ), then 

the m atrix formed by rows U2 ,Uj,Uk is equivalent to

'«2 1 - 1 1 1 1 1

U j = 1 1 1 1

U k 1 - 1 1

and we are back to Case 1 .

We can now assume that Uj and Uk will have one of the following forms: (10), (12) 

or (C8 ). They will not have the same form, else the matrix with rows Wi, Uj and tik 

will be strongly balanced. We will examine the restrictions on the entries in each of 

the possible combinations of forms by considering the following subcases.

B.ii.a. Suppose 114 and Us have forms (C8 ) and (1 0 ) respectively. In other words, 

there exist a, 13,'j e V  such that

“ 3 =  [ 1  1 ]» « 4  =■- [ 1 - 1  ]> « 5  =  [ 1 ]•

By Table 3, we find conditions on these angles such that there are no 3 x 3  submatrices 

that can b e  strongly balanced. Because the matrix with rows ui, U4 , « 5  is not strongly
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balanced,

■I' <  0 - (3.4.2)

Because the matrix with rows vi,V4 ,vs is not strongly balanced,

7 > (3.4.3)

Equations (3.4.2) and (3.4.3) imply 7  •= Also, because the matrix, with .rows 

ui,u$,U4 is not strongly balanced,

'y =' P (X-

Suppose 7  =  < a . For j  = 3,4,5, let Uj be such that

(3.4.4)

'U3

U4 =

'«5

1 1 e*« I 1 1 Us

1 - 1 1 gi(^-a-7r) tXi

1 J gt(/3-Q-7r) Us

But 0 < < ^  +  (tt — o) < a: +  (tt — a) =  -w and So has

form (C7) and has form (8 ), and hence the m atrix with rows U3 ,Ui,Ur, is strongly 

balanced. Therefore

7  =  /? =  a . (3 .4 .5 )

.B.ii.b. Assume U4 and «g have forms (C8 ) and (12) respectively. In other words, 

there exist a, ,8 , 7  €• V  such that

Us = [ 1 1  e“  ]= « 4  =  [ 1  - 1  ], Us =  [ 1 e*  ̂ J-
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I3iit the m atrix formed by rows M) , . . . ,  M5 is eqiiivaieiit, by complex conjiigatioiij 

(1 , -l)~sigiiings and row permutation, to

1 1 1 1 --1 1 1 1 1

1 - 1 1 1 1 1 1 --1 1

1 1 1 1 1

1 - 1 1 1 1 --1

1 1 1 e - n

Note th a t the third, fourth and fifth rows of this matrix have forms (C5), (C8 ) and 

(10) respectively. Thus, by Case B.ii.a., a  =  ••= 7 .

B.ii.c. Assume U4 and w.5 have forms ( 1 0 ) and (1 2 ) respectively. Therefore, there 

exists a , ^ , ' y e P  such that

=  [ 1 1 ]> «4 =  [ 1 ], =  [ 1 ]•

Once again, we use Table 3 to find necessary conditions on these angles for there to 

be no 3 X 3 submatrix that can be strongly balanced. Because the matrix with rows 

Ui,’U‘s,U4 is not strongly balanced,

p < a .  (3.4.6)

Because th e  matrix with rows u;i, ^3 , ^ 4  is not strongly balanced,

^  >  tt. (3.4.7)

Therefore, 13 = a. Also, because the matrix with rows Ui,U4 ,ur, is not strongly 

balanced,

J  < fj = a. (3.4.8)
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Suppose 7  < fi =■ a. For j  = 3 ,4 ,5 , let % be such that

1 1 1 g*{w-“T)

■Ui := 1 gi(a-Tr) 1 gi(«+w~7) «4

U-t 1 e'47-w) g«(7-w) 1 1 1 ‘h

Because 7  <  a, thus 0 <  {a — 7 ) <  tt — 7  <  tt. Also, =■ So «4

has form (1 1 ) and M3 has form (6 ), and therefore the matrix with rows Us,uz,U4 is 

strongly balanced. Hence

7  =  =  a . (3.4.9)

Now th a t we know some conditions on rows ’11,4 and mq, we consider the 5 x 5  

matrix and see what values other entries must have. First, for a  € 'P, let

Ai

W,l 1 1 1

M2
= 1 - 1 1

uz 1 1 gfa

6 , = 1 - 1  -e"

h  =

Note th a t because A{ = Ai,

e”  - .gW , =  1

A ~ «4

M5

1 e*'

where M4 , « 5 , e  {b\,b2 , h } .  First, we use the 4 x 4 submatrices

uj

u/i
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to vshow that e  {±l,±e*®} and tluit e'“* =  i. (Recall that a  € 'P). 

Suppose Vj ~  bi. Note that

1 1 1 1 1 1 1 1

1 1 ~ 1  1 1

1 1 p'ict —e*® 1 1 fM

1 r  s t f  1 rs f t

1 1 1 1 1 1 1 1

1 1 1 - 1  1

1 1 1 1 p-~*a

1 f f t f s 1 r  7‘t rs

Therefore, i \ i ' i  E (± 1 ,± e ”*“ }. Let Uk =  and =  t. Note that if u* €

{h ,b z j ,  then r  =  —e*“ . But this implies —e*“ =  e”"’*®, i.e. e’® =  i. And thus 

t € {±1, ± 7;}. If Uk =  h ,  then r  =  ~1 and t e  {±1, ±e*®}.

Suppose Vj =  6 2 . Note that

- *• - -
1 1 1 I 1 1 1 1 1 1

1 1 ^ i a  —6 1 ^ —ict 1 1 - 1 1 e~“

1 1 g ia 1 1 1 1 1 1

1 r S t 1 r ,sc"*“ 1 r

Therefore, r ,- - te " ’'® € { ± l ,± e “*®}. Let Uk =  [l,r , s] and =  t. Note that 

if Uk € { b 2 ,b$}, then r =  —e’“ . But then ~(f^  

t G {±1, ± 'i} . If Uk = bi, them r  =  —1 and t  G {±1, ±e*®}

e'""'", i.e. e"* =  i. And thus
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Now suppose Vj =  &3 . Note that

1 1 1 1 1 1 1 1 1 1

1 - 1  1 pKX ~1 1 —1, - 1  1 1

1 1 e*a ^ia 1 1 e*'* gjci 1 1 1 1

1 r s t f  1 s?‘ t/~ f  1 .sfe-”*

1 1 1 1 1 1 1 1

1 ~ i 1 1 -1 1 -e*®

1 1 g—ia p—i« 1 1

1 f tre ia 1 r rte*® rise'”*

€ {±l,±e*®}, i.e. t G {±r, ±re*®}. Let Uk =  [ l,r , ,5]. 1f Uk =  6 ;i

r  =  - 1  and  so t € { ± 1 , ie'*®}. If Uk e  {6 2 ,^3 }, or in other words, r  =  -e^®,

then t  e  {±e*®,±e*^“}.

Note that there are 3 choices for the two vectors Vj, therefore, at least one, say 

V4 is in {6 1 , 6 2 }. Similarly, there are two vectors Uk, thus at least one of them, say 

U4 ivS in {6 2 , 63}. Therefore, e“  =  i, and so =  ~1 and G { ± l ,± i}  for all 

j, k = 4 ,5 . By Lemma 3.3 (a), A  is not ray-nonsingular.

3 .4.3 Case 3

Assume th a t  the leading 3 x 3  principal submatrix of A  has form (c) and that A  is not 

equivalent to a matrix B  whose principal subrnatrix has form (a), (b) or is strongly
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balanced. Let

1 1 1

1 -1 pta

1 ~1

1

Wf, 1 g'tef, eiys

We may assume that ± 1 ; otherwise, we are back to Case 1 or Case 2 .

Furthermore, we may assume that a  G V  as ..4 ~  /I. Therefore, has form (C7). 

Since the matrix with rows M] , U2 and '«3 is not strongly balanced, by Table 3.2, « 3  

has form (C3), i.e. P £ T .  Also, note that 7  ̂ ± 1  for j  =  4,5; otherwise,

there exists a siibmatrix of the form (a) or (b). For j  =  4,5, since the matrix with 

rows ui, « 3  and uj is not st;rongiy balanced, Uj has form (1), (7), (8 ), (9) or (12) by 

Table 3.2. Since the matrix with rows Ui, u -2 and Uj is also not strongly balanced, 

Uj can only have form (9). But this means that rows U4 and M5 both have form (9) 

and therefore the matrix with rows ui, U4 and U5 is strongly balanced, which is the 

desired contradiction.

3 .4.4 Case 4

Assume th a t  the leading 3 x 3  principal submatrix of A  has form (d) and that A  is 

not equivalent to a matrix B  whose principal submatrix has form (a), (b), (c) or is
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strongly balanced. First, let

1 1 1

'«2 1 1 gta

Us 1

U4 1 gi*.» e%4

U5 1

We may assume that ^  ± 1 ; otherwise, we are back to Case 1 or Case 2.

Furthermore, we may assume that a  €zV  as A  ~  A. Therefore, has form (C5). 

Since the matrix with rows Ui, U2 and u$ is not strongiy balanced, by Table 3.2, u-̂  

has form (C3), i.e. fS € T .  Also, note tha t ^  ±1 for j  =  4,5, else there exists

a subm atrix of the form (a) or (b). As in Case 3 in the previous subsection, has 

form (C3), and so for j  — 4,5, Uj has form (1), (7), (8 ), (9) or {12). Since the matrix 

with rows Ui, U2 and uj is also not strongly balanced, Uj can only have form (1 ), (8 ) 

or (12). B y Table 3.2, we see that the pairwise intersections of the solution sets are 

non-empty; thus, the matrix with rows ui, « 4  and is strongiy balanced.

3.4.5 Case 5

Assume th a t  the leading 3 x 3  principal submatrix of A  has form (e) and that A is 

not equivalent to a matrix .B whose principal submatrix lias form (a), (b), (c), (d) or 

is strongly balanced. We will show that this implies that a-ij G {1, and that

A has a 4  x  4 strongly balanced submatrix.
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Suppose « i , . . .  , ' «,5 are the five rows of [«»iji<«<5,t<,r<3 . Then

Let

Ui 1 1 I

« 2 = 1 1 g d

« 3 1 ^jia 1

gW4 1, 'Ufj — [ l

Note th a t e*®, ^  ±1, for j  =  4,5; otherwise we are back to Case 1 or Case

2 - Furthermore, we may assume that a  € "P, otherwivse replace A  with A. Therefore, 

uz has form (C l). Because the matrix with row « i ,« 2 sW3 is not strongly balanced, 

by Table 2, « 2  has form (C5), i.e. /? € V.  We also know that

(3.4.10)

by Table 3. Because the matrix with rows Ui,U2 ,Uj, for j  = 4,5, is not strongiy 

balanced, Uj has forms (1), (4), (6 ), (8 ), (10) or (12). Because the matrix with rows 

is also not strongly balanced, Uj has one of the following forms:

(6 ), (8 ) or (1 0 ).

We now' consider the three cases where Uj has form (6 ), (8 ) aird (10) and examine 

the m atrices with rows ui,Uk,Uj where l ,k  € (1 ,2 ,3 ), to find bounds on Xj and 

Pj dependent on a  and fi. These bounds are found by using Table 3 for the given 

matrices.

A. Suppose Uj has form (6 ), i.e., xj  € V, yj € N  and Xj — yj > ir. Because the matrix 

with rows 'ui,U2 ,Uj is not strongly balanced,
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0  <  yj — p  +  2 % < Xj.

Because the matrix with rows - u i , i s  not strongly balanced,

(3,4.11)

Xj < a .

Note that the following matrices are equivalent.

1 1

1 e“  1 

1 e*w

(3.4.12)

«2

=

U j

1 1 1

1 e”‘

1

The second row of the second matrix has form (6 ) or (11) because a +  /I >  tt by

(3.4.10). Because =  gi(i/j-<*+2 )̂ (3 ,4 .1 1 ) holds, the third column has

either form (1) or (9). By Table 3,

a  < Xj. (3.4.13)

Equations (3.4.12) and (3.4.13) imply

CY —  X i (3.4.14)

Also, equation (3.4.11) implies

Q: +  /3 >  V j  +  ‘i-K  >  TT. (3.4.15)

B. Assume U j  has form (8 ), i.e., X j  6  M, yj € V  and Hj  ~  xj > t t .  Note that the
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following matrices are equivalent.

■uj 1 1 1 1 1 1

«2 1 1 1 1 e*“

Uz 1 1 1 1

Ui 1 e«i ffyj 1 (Jy.i e»*i

Using the same argument in Case A,  we have

't/j =  /9 and (3.4.16)

CK + P > Xj + 27T > TT. (3.4.17)

C. Assume Uj has form (1 0 ), i.e. xj  =  yj € M.  Because the matrix with rows ui,U2 ,Uj 

is not strongiy balanced,

P > X j  + 7i. (3.4.18)

Also, because the matrix with rows ui,uz/Uj  is not strongiy balanced,

a  > Xj +  7T. (3.4.19)

We now use the above information to further determine the structure of « i , . . . ,  u^. 

We have th e  following three cases.

A'. Assume U4 and ur, have forms (6 ) and (8 ) respectively. Then Z4 = a , 1/5 =  P and 

o-A P > y  A  2ii > Tt where 7  =  and .1:5 . Suppose that a; +  /? >  r/4 +  27t. Then the 

following matrices are equivalent.

«2 1 1 1 I 1

Ui = 1 1

1 e'*’*® 1 e“ '̂ 1
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But tlie second row has form (1) and the third row has form (C2) and, by 'Fable 3.2, 

the matrix is strongly balanced. Therefore,

a  +  0 =  1/4 -f 27t. (3.4.20)

Similarly, using the matrix with rows we can shoŵ  that

a  +  0  s s  +  2 v t. ( 3 . 4 . 2 1 )

Therefore,

M l 1 1 1

'«2 1 1 6 0

U$ 1 1

« 4 1 gia

M.5 1

B'. Assume U4 and 115 have forms (6 ) and (10) respectively. Then

X 4 =  a ,  a  +  0  >  '1/4 +  2 n  >  TT,

'̂5 =  'I/5  G  A /*  and X5 +  w  <  a ,  

Because th e  matrix with rows Ui,U4 ,Ur, is not strongly balanced,

1/4 >  T'S-

Note th a t

U2 1 1 6 0 1 1 1

M.1 r= 1 ^ia g'%-1 1 e*“ e**

«5 1 e*®-' 1 e*'Xft—0)

( 3 . 4 . 2 2 )
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Label the second row U4 and the third row Wg. By equation (3.4.15), we knew {14 has 

form (1 ) if;?/4 2 -iT < a + / l  or (9) if | /4 + 2-;r =  a + /L  Also, by (3.4.18) anda'g — a  > 

we see that %  has form (8 ) if (3 > X5 +  t t  or (C4) if f3 =  ay, +  i t . Ilefening to Table 

3.2, we see that U4 must have form (9), i.e. 'i/4 2 7 t =  a  + /5, and ur, must have form 

(8 ), i.e. ^  >  x' 5 +'/T because this matrix is not strongly balanced.

Similarly, we note tha t the matrix

1 1 1 1 1

U,i = 1 ^ ia ( .m 1 1 e«/4

U s I 1 ed'x t,~ a ) gfes

Again, label the second row U4 and the third row wg. Note that w.4 has form (C6 ) and 

Us has form (6 ) or (C8 ) because ay — a  > ay — z  and (3.4.19). But this matrix is not 

strongiy balanced and so by Table 3,

x-o >  V i-

Equations (3.4.22), (3.4.23) and the refinement of (3.4.15) imply

x s  =  y i  =  a  +  / 3  - 2 n .

So

(3.4.23)

(3.4.24)

1 1 1

U'i 1 1

U'S == 1 e*® 1

U.i 1

Us 1
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CT. Assume « 4  aiMi Uf, have forms (8 ) and (1 0 ) rtispectively. 'rhen

U\ 1 1 1 1 1 1

U2 1 1 gi/J 1 1 c*«

= 1 g'iO! I 1 1

«4 1 g**4 e*^ 1

?15 1 (ii'-fr. giT., 1 6**®

Using the argument in Case B', we see that

a:s =  .x'4 =  a  +  0  — 27t

and

1 1 1

tt2 1 1

«3 = 1 e“ 1

«4 1 Qi(a+(i) e*̂

«5 1 gi(a+;3)

Let

Cx = 2  gta gi(a+i3) ('2 C3 1 gj(a+/3) gdtt+^)

) C5

Using both A  by A^, we see that if .4j is the 3 x 3 leading principal submatrix of A,
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i.e., with rows then

/i

*'4 4

Ua

Uq e«,54

where UiyUn € {ci, 0 2 , 0 3 } and € {03, 04, 05}. We consider the possible 4 x 4 

si.ibmatrices for the different values of Uj and and determine the possible values of

Suppose Uj =  C3 . Let Vk =  [l,e*'^,e*‘̂] and z^j =  A. We consider the following 

subrnatrix of A^:

1 1 1 1 1 1

1 1 pia pi{a+̂ ) 1 1 1 1

1 1 1 e'i/3 g - f e  1

1 gjA 1 ê 7 g i(5 -a )  gi(A—(s—/?)

1 1 1 1

1 1 e~“

1 1 e~'*“

1 e*7 (AX-a-P) g'i(<S--a)

Applying the arguments in Cases A, B, C, A', B', C' to the right most matrix with
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( a ,0 ) replaced by (,6‘, ~ ( a  +- /T)), we conclude that

€

1

^J,(X-a-0 )

Thus, e*̂  €  {1,6*̂ *} and e*'’' € Because - a ,  (a 0)  € M  and 0  €  V,  if

=  Cg or Cg, theii i.e. =  1.

Now suppose Uj =  C2 - Let % =  [1, e*' ,̂ e*'̂ ] and z^j ™ A. We consider the following 

submatrix of A^:

1 1 1 1 1 1 1 1

1 1 gj(a+^) fj- 'ia g-»« 1 f,id

1 f>iP 1 gi/3

r-̂

1 1

1 e'T' gi<5 e~ tS 0 ( 7 - ^ ) 1 f>i{X~S}

1 1 1 1 1 1

g - i a  g-?;(/J+a) J J 1 1 g- i ^ g-j/S

1 1 1 1 1 e~*“ 1 g “ »(«+/5)

g —W 2 gj(^~'5--/3) 1 g*(A-5-^) gi(7-5-/5>

Applying the arguments in Cases A, B, C, A', B', C' to the right most matrix with 

(a,/?) replaced by (—a , —/?), we conclude that

1

€

1

e -if)

► .
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Thus, Also,

1 1 1 1 1 1 1 1

I 1 p-i.a pi{a+8) 1 1 gia g*(a+#)

.1, 1
e"»/S 1 1

I e*̂ e»̂ 1

1 1 1  1

1 ] e*(«+'®) e*®

1

I e"®'’ e*('̂ “7) gj(*'-7)

Applying the arguments in A, B, C, A', B', C' to the right most matrix with (a, (i) 

replaced by (—/3,a +  ^), we conclude that

1

g-iT

JiX-j)

-i/3

1

^ia

A(a+/3)

Thus, c*̂  G {e*(«+^-H)^e»(af7 )} and e  Since - a  € AT and fS e  'P, if

Vk =  C3 or C5 , then In other words, =  1. Furthermore, if

Vk = C3 , th en  e®̂ =  and therefore, e®'' € e®̂ } 1}- So e*̂  ™ e*̂ .

If Vk =  C5 , then e*** =  e®®; therefore, c*'̂  e  (e*“, 1} 1}- So either e®̂ =  1

or ei \ e®“ =  e®̂ . If =  c*4 , then and e*'*' =  e*̂ . Hence, e®-̂  €

{gi(a+/3)^e*-«}n{eT^^+®\e®(“+«}. Recall that a,/3 G P  =  {0 , 7r). Thus,

Suppose Uj = Cl. Let Vk — [1,e®'̂ ,e®**] and Zkj =  A. We consider the following
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subrnatrix of A*:

1 1 1 1 1 1 1 1

1 1 gia ,l 1 g»(«+.S}

1 1 1 1

1 e*'*' AS 1 e*^

Interchanging the roles of (0 , 7 ) and ((5,S), we see that this is similar to the case 

when Uj =  C'j. In other words,

If w* =  C3 or C4 , then e*̂  =  e*(«+/9) g*(«+/)) _  ^A2()+a) j_ Furthermore,

if Vk ~  cs, then e*̂  =  e*®. If Vk =  C4 , then either e*̂  ■•= 1 or e*'’' =  e*“ =  e*'‘b If u* =  C5 , 

then e*'̂  =  g»X«+̂ ).

Now suppose that Vj =  C5 . Let Uk =  [l,e*'^,e*^] and Zjk ~  A. Interchanging a  and 

/?, and using the transpose of A,  we see that this is similar to the case when Uj =  Ca- 

Thus, € {e***, j. p||g»(“+^+7 )̂  gh^+7) |  and Therefore, if

Uk =  C2 o r  C3 , then el'*' =  =  e”*̂ , i.e. =  1 . Furthermore, if Uk =  C3 ,

then =  e*“ . If Uk =  C2 , then either =  1 or e*̂  =  =  e*®. And if u.k ~  Ci, then

e*'*' =  .

Suppose that Vj =  C4 . Let Uk =  [1 , e"'*', e*'̂ '] and Zjk =  A. Interchanging o  and /!, 

and using the transpose of A, we see that this is similar to the case when Uj — c j.

Hence,............................. .« ) } and e   *“ }• Therefore, if

Uk — 6*1 o r  C3 , then =  e""", i.e. .,,3 p  Furthermore, if Uk =  C's,
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then e*'*' =  And if =  ci, then either e**̂ =; 1 or =  e*̂  =  e*®. If Uk =  c‘2 , then

Lastly, suppose Vj — C3 . Let Uk =  [1, e*'’’, e*̂ ] and Zjk =  A. Interchanging a

and ,d, and using the transpose of A, we see tha t this is similar to the case when

Uj C'j. Thus, and e*'*' € So, if Uk = or C3, then

e*'y =  e*(a+ih _  In other words, =  1 .

Note that {tt4,U5} f|{c2,C3} #  0 and also {t?4 ,vg} f){c3>C5} ^  0. Therefore, e“*̂  =

™ g-*« ĝ j Q ™ g*(3oi) „  ^  „  gift ,ŷ 2 „  g*{a-f/J)_

We can always assume that if C3 € {t/4 , 115, V4 , V5 }, then « 5  =  C3 (since A ~  A*

and A  ~  PAQ  where F,Q  are permutation matrices). Also, if'u^ =  Ci, then in

terchange the second and third row and column to get uj =  C2 . Thus, we may as

sume th a t the pair of pairs ((M4, %,), (U4, Ug)) is one of the following: ((0 2 , c$), (cg, C3)), 

( (C 2 ,  C s ) ,  ( C 4 ,  C 3 ) ) ,  ( (C 2 ,  C 3 ) ,  (cg, C 4 ) ) ,  ((c2 , C j ) ,  (cg, C 4 ) ) .  Hencc, A  is one of the followmg 

matrices:

B i

1 1 1 1 1 1 1 1 1 1

1 1 w L tP 1 1 w OJ

1 U! 1 OJ B 2  = 1 u 1 U J^

1 U )^ UI X;i OJ 1 OJ OJ

1 U)'^ U J^ U) y i 1 i j ^ LO X 2
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1 1 1 1 1 1 1 1 1 1

1 1 U ) UJ 1 1 OJ LO'^ to

1 1 w , B 4 - 1 CO 1 to uj'̂

1 U ) ■X?. 1 fw to X.i uj'̂

1 UJ itj 1 LO to'̂ 1/4

with x-ijpi € {l,w } for i =  1 , . . .  ,4. However, if Xi,%ji/X2 ,xz  or 1/4 =  u/, then we are 

back to Case 1 because A has the submatrix

1 1 1 1 UJ

1 UJ^ OJ 1 1 1

1 OJ® OJ 1 1 1

Also, if X4  =  UJ, then we are back to Case 1 because A has the submatrix

1 1 1 1 OJ® OJ

1 UJ OJ® 1 1 1

1 UJ OJ® 1 1 1

Thus, Xj, Pi ~  1 for all i  But, for each of the four matrices Bi, B 2 , there exists

a 4 X 4 strongly balanced submatrix (i.e., each row contains the entries To

find these subrnatrices, in each ca.se remove the first row'. For Bi  and ^ 4 , remove 

the first column. For i ?2 and Bz, remove the third and second columns, respectively. 

Thus A  is not ray-nonsingular.
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3 . 5  F i g u r e s  a t i d  T a b l e s

Below are graphical representations of R{(), 0) P  R(a, 0) according to  the 24 forms of 

[1 e‘“ e»] in Table 3J..

Figure 3.3: i?(0,0) n  R{o., f3) for Forms (1) ■- (4)

Form (1) Form (2)

Form (3)

(ji-a-jt) (n-a,~K)

Form (4)
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.F'igirre 3.4: ,R(0,0) H R{a,B)  for Forais (5) (10)

Form (5) Form (6 )

("■a+P,®)

Form (7)

Form (9)

(

Form (8)

i~2n-a+ m  
{-■®, 7
2n+a-p)|’̂  :7  ̂

(-rt,«-p) r**7

)

Form (10)
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Figure 3.5; i?.(0,0) (1 l?.(a,/?) for Forms (11) ■- (C4) 

Form (11) Form (12)

Form (Cl)

(7i-a,-jc)

Form (03)

{n-a,~(

i~n~a,n)

Forni (C2)

i-Tt'-ix.n)

Form (C4)

(-4t,7t4-cx)
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Figure 3.6: i?,(0,0) n  R{a,  /5) tor Forms (C5) - {C12) 

Form (C5) Form (C6 )

Form (C7)

(M .«)

a

Form (C9)

Form (C8 )

7
(-p.-K-.-p)

(K,-K-p)

Forms (C10)-{C12)

(0,11)

r (n,0)
(”3E,0)

(0,-K)

(«,0)
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Table 3.2: Intersection of soiiition sets.

I 2 3 4 5 7 s 9 10 ri 12 Cl 02 C3 C4 C5 C6 CT cs
I 1
2 c 1
.■5 c 1 1
4 1 c c 1
5 c c c c 1
6 c 1 c 1 1 1
7 c c c c 1 c 1
8 1 c 1 c c 0 1 1
9 1 1 1 1 c c c c 1
10 .1 1 1 1 c c c c c 1
1.1 c 1 c 1 1 1 1 0 c c 1
12 1 c 1 c 1 0 1 1 c c 0 1
Cl 1 c c 1 1 c 1 c 1 c c 1 1
C2 1 c c 1 1 c 1 c c 1 1 c c 1
03 c 1 1 1 1 1 c 0 c 1 1 0 c c 1
C4 1 1 1 c c 0 1 I 1 c 0 1 c c 0 1
C5 c 1 1 c 1 c 1 c 1 c 1 c c 1 c 1 1
C6 c 1 1 c 1 c 1 c c 1 c 1 1 c 1 c c 1
o r 1 c 1 1 c 0 1 1 c. 1 0 1 c 1 0 1 c c  1
C8 1 1 c 1 1 1 c 0 1 c 1 0 1 c 1 0 c c  0 1
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120

Form of 
[1

Form of
[:i

Condition on Simplification

1 6 T  — O j <  “  02 0 2  < «1
1 11 7T "• <  K — «2 0 2  "0: 0,1
6 9 5T 0 2  S: ^  ~  O l O l <  0 2
6 10 “ '?<■ — A , <  ~ Ih 02 < 01
6 Cl « 2  <  — O l 0,1 <  0 2
6 C5 2w ~  a t  +  fii <  pz 01 -  02 +  27t <  a i
6 C6 —'/r — Pi <  —7T — 02 02 < 01
9 n It ~  a \  <  7T ~  «2 0 2  <  O t
9 C7 7r — « t  ~  'tt ~ 01 < It — 02 0 2 < O l l=  01
10 12 —7T — 0 2  <  “ ff — a t «1 <  02
1 0 Cl “ 0 2  <  ~  O j =  -7T -  01 -f- TT =  « t  +  TT <  0 2
10 C5 -0 2  < -Tt -  a i  =  -7T -  01 01 +  n — « !  -hTt < 02
10 C8 —Tt — 0 2 <  ~1t — O l =  —7T -  0i 01 =  Ol <  02
11 C6 —Tt — 0\ ~  —a t  <  —TV — 02 02 <01=^  O l “  tt
1 2 C5 t t - 0 2 < T t ~  01 =  - O l a t  +  TT =  /3;i <  02
C l C5 tt -  02 <  0.1 <  o t  +  02
C3 C5 -0 2  <  a t  -  7T 7r <  « !  +  02
C5 C7 Tt — 01 <  n — 02 02 < 01
C5 C8 02 +  IT  < 01 02 +  TT <  01
G 6 C7 0 l <  02~Tt 01 <  02 -T t
C 6 08 Tt ~  02 <  It -  01 01 < 02
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Chapter 4

F inite R eflection Groups

The following chapter represents work found in [31]. Let V  be a Euclidean space and 

let End(V’) be the alg'ebra of linear endomorphisms on V.  An operator T  6  End(F) 

is a reflection if there exists a unit vector u e  V  such that T{v) = v — 2{v, u)u for 

all V 6  V.  A group G of invertible operators in End(F) is a reflection group if it is 

generated by a set of reflections. The study of reflection groups has motivations and 

applications in many areas, and the theory is quite well developed; see [4, 8 ].

4.1 Introduction and Background

Recently, there has been considerable interest in characterizing those linear operators 

(f): E n d (F ) -> End(F) such that

=  G. (4.1.1)

121
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In otlier words, <p preserves G. Wei [48] showed tliat a linear opera'tor $ : End(F) 

End(V') preserves G — 0 (E ) , the group of orthogonal operators on F , if and only if

there exist F, Q £ G such that <l> has the form

or X ^ -^ P X * Q .  (4.1.2)

Here, .¥'* is the adjoint operator of A' acting on V  so that {Xu ,v )  ~  (u,X*v)  for all 

u ,v  € V.  (Once a basis is chosen, we can replace X*  with X*.) We are interested 

in the preservers of the finite reflection groups, which consist of A„, B„, D„, Gin),  

H 3 , H 4 , F 4 , Eg, E 7 and Eo; see [4, p. 76]. Note these are all subgroups of 0(V) .  

In [36], it was shown tha t the same result holds for G =  A«. In [35], the authors 

reproved th is result using a similar approach, and considered the problems for the 

cases when G ™ B „,D „ and l 2 (n). For D„ and l 2 (ri), (p : Erid(F) End(F) is a 

linear operator satisfying (4.1.1) if and only if there exist P  and Q in the normalizer 

N{G) < 0 { V )  of G such that <p has the form (4.1.2). The same statement is true 

for G ~  0 ( F )  and A„ because N{G) = G In these cases. However, the situation 

for G = J3„ is diflerent. Suppose G =  B„ is viewed as the group of n  x n  signed 

perm utation matrices, i.e., product of diagonal orthogonal matrices and permutation 

matrices, acting on V = R ”, and End(F) is identified with the set Mn(R.) of n  x n 

real m atrices. Then a linear operator cp : M „(R) —> M„(.R) satisfies (4.1.1) if and 

only if th e re  exist P,Q  G G and R  =  (r^) € M,i(R) with € {1 ,-1}  such that f  

has the form

X  R  o (PXQ)  or X  R  o (F X ‘Q ) ,
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where Y  o Z  ciertotes the Schur (entry-wise) product of two matrices 'Y,Z € ,Mrt(,Il).

In this tliesis, we consider the problem for the remaining casCwS, namely, G =  H 3 , 

H 4 , F 4 , Eg, E 7 and Ee, and confirm that a linear operator <p : Encl(V) -> Faid(fo) 

satisfies (4.1.1) if and only if there exist P,Q  € N{G)  such that (4.1,2) holds.

One may also study the more difficult problem of characterizing linear operators 

4> : End(l''') -y End(F) such that <p{€r) C G. When G ■= 0{n) ,  such a linear map 

has the usual form (4.1.2) except when n  2,4,8, and there are singular maps 

satisfying (4 .H ) in these cases; see [48] for details. Purthennore, one may consider 

other subsets S  of End(F) related to G and linear maps 4> • ErKl(F) —> End(F) such 

that ^ (5 ) =  S  and 4>{S) C S\ see [10, 35, 36]). AH of these can be viewed as studies 

of linear preserver problems related to groups and algebraic sets; see [42, Chapter 4].

This chapter is organized as follows. We present some preliminary results and 

describe some basic strategies of our proofs in the next section. In Sections 3 - 8 , 

we prove our preserver results for G =  H 3 , H 4 , F 4 , Eg, E 7 , and Eg, respectively. In 

each of these sections, we describe a natural matrix realization of G, and possible 

inner products (X, Y)  for elements X ,  Y  E G. These results are then used to solve 

the corresponding preserver problem. For G =  E 7 and Eg, we work on their 8 x 8  

matrix realizations (as subgroups of Eg). Some matlab programs used in our proofs 

are included in Section 9.

In our discussion, denote by { e i , . e„} the standard basis for R ”, e =  ĵ<

and Eij =  6*6* € M„(R). If V  is ecpraJ to (or identified with) R ”, then End(F) 

is equal t o  (or identified with) M „(R), which is also a Euclidean space with inner
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product defined by ( X , Y )  =  tr{XF*).

It is worth noting that, even thongli the general strategies of our proofs can be 

easily described, see Section 2, it require,s a lot of effort and technical details to prove 

our results. It would be nice if there are shorter conceptual proois for our results.

4 . 2  P r e l i m i n a r y  R e s u l t s

Denote by 0(ISnd(F)) the group of orthogonal operators on Eiid(V’') preserving the 

inner product. Wc have the following result; see [35, Corollaries 2 .2 ].

P ro p o s itio n  4.1 Let G be a finite refleciion group acting irreducibly on V. The 

collection of  linear maps : End(F) —>• Erid(V’) satisfying fi{G) =  G form a subgroup 

o/0{End{V )).

G enera l P ro c e d u re s  a n d  S tra teg ie s

We briefly describe some general procedures and strategies in our proofs in the 

next few Sections.

G Pl. To jfind a matrix realization of the given reflection group G, we use the standard 

root systrmis in R ” described in [4, p.76] to construct some basic reflections /« — 2xx^, 

and their products until we get all the elements in G. Very often, we partition the 

group G in to  different subsets to facilitate future discussion.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



125

G P2 . Using the matrix realixatioii iti G'Pl, we determine some possible inner products 

r  (A", Y)  for elements A", Y' € G. For each r, we define

Sr = { X  £ G : ( I , X ) ^ r }

which is used in the proof of the linear preserver result.

GPS. To characterize d> : M„.(R) M«(R) such that <P{G) =  G,  we can always

assume th a t =  In- Otherwise, we can replace 4> by a mapping of the form

By Proposition 4.1, we see that <j){Sr) =  S t, where Sr is defined as in G P 2 . Then we 

show th a t there is an overgroup G of G so th a t one can strategically modify <j) by a 

finite sequence of mappings of the form

A  F^4>{X)P or A  P*4)(xyp  (4.2.3)

by P  6  G  so that the resulting map is the identity map on M „(R). It will then follow 

that the original <j> has the desired form.

GP4. Using our results, one can show that the group G in GPS is N{G),  the normal

izer of G in  0{V) ,  as follows. By our linear preserver result, if (j) satisfies (j>{In) = In 

and 4>{G) =  G then has the form

A H-> P ^ X P  or A

for some JP in a certain group G. Since the mapping X  PKXP sends G onto itself 

for any P  e  G, we see that G < N{G).  Now, if Q £ N{G) then the mapping (f>
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defined by X  t-> Q^XQ  satisfies (f>{G) =  <’?. By our linear preserver result, tliere 

exists F  € G such that

P^XP  =  QPXQ for all X  € G or P^X^P ■= Q^XQ for all X  € G.

If the latter case holds, then XPQKX  =  PQ^' for all X  € G, which is impossible; if 

the former case holds, then one readily shows that P  = Q. Thus, we get the reverse

inclusion N{G) < G.

GP5. To study EgjE? and Eg, we first use strategies G P l - GP4 to handle E» C  

M a ( R ) .  Then we identify E 7 C  .M 7 ( R )  as a subgroup £ 7  of Eg C  jM s ( R )  by the 

mapping

c /e E :8
\0  A

fox some suitable orthogonal matrix U G Mg(R). To characterize a linear map tp : 

Mr(R)  —> M 7 (R) such that '■ (̂E?) =  E 7 , we consider an affine map tp induced by tj) 

on the affine space generated by £7 . We use a similar idea to investigate Eg.

4 . 3  H g

4 .3.1 M atrix realization

The group H 3 has 2® • 3 • 5 =  120 elements: see [4, p.80|. Using the standard root 

systems (see [4, p-76]) of H3 in R^, we see that Hg admits a matrix realization in 

consisting of the following matrices:
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(I) 24 matrices of the form PD,  where P  € A7 3 {R) is an even permutation (so P  

is either the identitj' or a length .3 cycle) and D  € Af3 (R) is a diagonal orthogonal 

matrix.

(II) 12 matrices of the form PHP*,  where P  is a matrix of type (I) and

/ a  b c \

i f  =  is — 2(~6, c, a)*(~6 , c, a) =  b c —a (4.3.4)

\  c —a —b /

with a =  ( 1  +  \/5 )/4 , b =  (~1 +  \/5 )/4 , c =  1/2. Note tha t the diagonals of these 

matrices have the form (a, c, —&), {—b, o, c) or (c, —b, o), and the sum of the diagonal 

entries is always one.

(III) 84 matrices of the form QD  where Q is a type (II) m atrix and D  is a diagonal 

orthogonal matrix not equal to Is,. In fact, each of these seven diagonal matrices D 

generates a  class of twelve matrices, and we get seven different classes. Note that the 

absolute values of the diagonals are (a, c, 6 ), (6 , a, c) or (c, h, a).

4.3.2 Inner product

Since (X, Y )  =  ( I 3 ,  X^Y)  for any X , Y  £ H 3 ,  we focus on the pos.sibIe values of {Iz, X )  

with X  e  H 3 . If X  G H 3 is type (I), then { h , X )  e  {0, ± 1 ,± 3}; X'' G H 3 is of type 

(II), then (4 ,X )  =  1; if X  is type (III), then { h , X )  G {0, - 1 ,  ± v ^ /2 ,  ±(1 + VS)/2}. 

Thus, if X  G H 3 , then

{I, X)  e  {0 , ± 1 , ± V ^ /2 , ± ( 1  + \/5 )/2 , ±3}.
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By GP2 in Section 2, for each r in the above set, define

5,. =  { X G H 3 :(4 ,2 f )  =  r}. (4.3.5)

For example, let r  =  I. If X  € Si,  then X  must of one of the following two forms.

(a) The 3 matrices of type (I), namely,

Di =  diag ( - 1 , 1 , 1 ), D'z =  diag (1 , - 1 , 1 ), Ai =  dhig ( 1 , - I ) i  (4.3.6)

(b) The 12 type (II) matrices.

4 .3.3 Linear preservers

T h e o rem  4.2 A linear operator <f> ; M3 (R) M 3 (R) satisfies ^(Hg) =  H 3 i f  and

only if  there exist P, Q e  H 3 such that has the form

X ^ P X Q  or X ^ P X ^ Q .

Consequently, Nf H^)  =  H 3 .

Proof. The assertion on N{Hz)  follows from GP4 in Section 2. The (<=) part 

of the first assertion is clear. We consider the (=̂ ») part. Define S,- as in (4.3.5). 

By Proposition 4.1, if (p preserves H 3 , then <j> preserves the inner product { X, Y)  ~  

tr(A’'W ). By GPS in Section 2, -we may assume that 4>{h) ~  h  and (p{Sr) ~  Sr for 

each r. In  the following, we will show that (p has the form X  P^ XPo x  X  PX'^'P

for some P* g Hg. We shall use the matrices Di, D>z, A$ and H  defined in §3.1 — 3.2.
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First, consider (j>{Dj) — Yj for some j  =  1,2,3. Then Yj € S'\- Since =  h  

and iPi  +  I ?3 + D$)/2 =  / ,  we have (I'l +  hg +  =  1. 'We consider 2 cases

depending on whether (j>{Di) is a type (a) or type (b) raatri,x defined in §3.2

C ase 1 . Suppose Y'l is a type (a) matrix. Then (I’l + 1 2  +  Yz)/2 ~  I  implies that 

all Yj are type (a) matrices. We can assume that I'j =  D j; otherwise, replace <l> by a 

mapping of the form X  ►-.> Q^{X)Q^' for a suitable even permutation matrix Q. Then

We will show that (p{Di) ~  Di for i ~  2 ,3.

Suppose that <I>{X) =  Y  for some X, Y  £ H 3 . Since (j) fixes Js and Di, (X, Iz) =  

(F, /g) and {X, Di)  =  {¥, Di). It folhnvs that tr  (X)  =  tr  (F ) and

2 {X,F.n)  =  { X J ,  -  A )  =  (F,/g -  Di)  =  2(Y,En)-

Now, consider

r =  { X e  S i :  (/g, X) =  1, {X, E n )  =  a} =  {H}  U {DiHD,  ; i =  1 ,2 ,3}

where H  is the matrix in (4.3.4). Then (l>{T) =  T , and thus G T.  We may 

assume th a t  <f>{H) =  H, otherwise replace (f> with X  i-> D,,4>{X)Di. Since

(/f, 4 > m )  =  {<m).  =  (h , a )  {h , a ) ,

it follows th a t <̂ (1 )2) =  D 2 , and thus =  H3 . So, we liave shown th a t the

modified mapping </> fixes A" for X  = I-s, Di, D2 , H.

Since <4>{Di) =  A  and (p preserves inner product, we see that (D^,X)  =  (A , 4>iX)) 

for all i =  1,2,3. Thus (j>{X) and X  have the same diagonal. Consider the four
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matrices with diagonal {—a ,c ,—b), namely,

Xi= ^D J-L  X 2 = H D i = X l  X3 =  -0 2 T O 3 , Xi = - ,£ > 3 ^ 2  =  ^ | .

Then 4>{Xi) ~  X j  for some j  € {1,2,3,4}. Since

=  (^(X x),</.(.&)) =  { X, , H)  -  ( X 2 , H)  #  (X;x,ff) =  (Xx,H),

we see th a t d’(X'i) € {Xi,.X2 }. We may assume that ~  Xi ;  otherwise, replace 

(p tvith the mapping X  i--)- (p{Xy.  Then (j){X2 ) ~  X^.  B'urthermore, we have <p{X3 ) € 

{A'3 ,X 4 }. Since

ix^,<j>ix,)) -  {<i>{Xi),HXB)) -  (Xx,X3) (Xx,X4),

we see th a t (P{Xb) = X^, As  a result, we have (f>{X.i) = Xi  for i =  1 ,2 ,3 ,4 .

Next, consider the four matrices with diagonal (a, —c, --6), namely,

AT =  DiH,  Ae --= f/D a, AT =  - D J I D b, AT =  ^D zH D i .

Since {H ~  A i ,X )  (H  ™ A i,A j) for 5 <  i < j  <  8 , we have ^{A^) =  A,- for 

i =  5 ,6 ,7 , 8 .

Now, we have ^(A) =  A  for A  G {Di, D 2 , D$, H, A i , . . . ,  Ag), which is a spanning 

set of M 3 (R); for example, it can be checked using MATLAB as shown in the last 

section. T hus (j>(X) = X  for all A e  iVk{R).

C ase 2. I f  IT is a type (b) matrix, then we may replace ^  by a mapping of the form 

A  h4  P(j>{X)P^ for a type (I) matrix P  and assume that T] =  H.  Then replace <f> 

by the m apping A  i-> HQ^‘D i4{X)D \Q H  with Q ~  E n  +  E23 + E^i; we see that 

(j>{Di) =  D i ,  and we are back to case 1. □
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4 . 4  H 4

4.4.1 M atrix realization

Note tliat H 4 has 2 ® • S'** - 5*'* elenwHits; see [4, p.80]. Let

t t = ( l  +  N/5)/4, &= (-- l +  \/5 )/4 , c = l / 2 .

Using G P l in. Section 2 and the standard root systems of H '4 in (see [4, p.76]), we

see that H 4 contains the following two matrices:

/ I  - 1  - 1  - 1 \

4. =  J  eeV2 =
-1 1 -1

-1 1
(4.4.7)

\ - l  - 1  - 1  1 /

and

B  — I4 -- 2(0, -b ,  c, a)‘(0, -b ,  c, a) —

/ I  0 0 0 \

0  a b c 

0 5 c —a
(4.4.8)

VO c —a —b )

Using these two matrices, we can describe the matrices in M4 (R) as follows.

(I) 4!2® =  2®3 matrices of the form P P ,  where P  is an even permutation, and D  is a 

diagonal orthogonal matrix. Note that {h^P)  € {0, ±1 ,± 4} .

(II) 2'̂ 3 m atrices of the form PAQ,  where A. is the matrix in (4.4.7), and P,Q  are 

matrices o f type (I). Note that

i h ,P A Q )  € {0 ,±1,±2}.
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(III) 2 ‘̂*3 matrices of the.; form. PB Q ,  wlie.te B  is the iMatrix in, (4.4.8), and P,Q  are 

matrices of type (I). The counting is (lo.tie as .follows. For a m atrix of the form .P.BQ, 

each P  and Q has 2^12 choices. However, P B Q  =  R B S  if and only if R*PBQS* =  B.  

So, we have to count pairs of (X, Y)  such that X B Y  — B.  One can check that

X B Y  =  B  if and only if X  =  [r] ® U and Y  =  [rj © V, where r  =  ±1 and (U, F) is

one of the following pairs:

± { k ,  h ) ,  ± i ~~Eu  +  E n  +  £ ’i3 +  i?2:i, -  E n ) ,

+ E‘m — Ezi-, En  + Ezi ~ En)-

So, there are 12 pairs of matrices (X, Y),  and the total number of type (I.II) matrices 

is (2H2)V12 =  2’03. Note that

{B, PBQ)  € {0, ±1, ±2, (±1 ±  \/5)/2 , (±3 ±  ■\/5)/2}.

(IV) 2^^3 matrices of the form PCQ,  where P, Q are matrices of type (I), and

/ o 1 0 0 \ ( 0 a b c \

1 0 0 0 a b 0 —c
c  =  s B  =

0 0 0 1 b 0 —a c

\ o 0 1 oj Kc —c c c J

The counting is done as follows. For a matrix of the form PCQ,  each P  and Q has 

2^12 choices. However, PCQ = P C S  if and only if B^PCQS^ = C. So, we have to 

count pa irs  of {X, Y )  such that X C F  =  C. One can check that X C Y  =  C  if and 

only if A = } ''’ =  ±(f7 0  [1]) with U =  /g, Ei^ — En  ~~ E n ,  or —E n  — E 2?, 4- En-  So,
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there are 6 pairs of such matrices (X', 1"'), and the total miinber of class (IV) matrices 

is (2n2)Ve» =  2‘ '̂3. Note that

i h ,  PCX^) € {0, ±1, (±1 ±  v ^ )/2 , (±3 ±  \/5 )/2} .

(V) 3*2®- 24 matrices of tlie form PEQ,  where P  and Q are type (III) matrices and

[Ei2 + E 21 +  E m

(  ^ 0 b ~a\

0 c —a -b

a c 0

\  a h 0 c )

(4.4.9)

The counting is done as follows. For a m atrix of the form PE Q ,  each P  and Q lias 

2'*12 choices. However, P E Q  = R E S  if and only if R^-PEQS^ =  E.  So, we have to 

count pairs of (X, F ) such that Â 'JS'y =  E.  One can check th a t X E Y  =  E  if and 

only if X  =  is the plus or minus of one of the following:

h ,  B v i .  —  E 2 1  +  E m  -  i ? 43 )  E xa  +  E -z a  —  £ ' 3 1  —  £ 4 2 ?  - £ ' 1 4  ~  E 2 3  +  £ 3 2  —  £ 4 1  •

So, there are 8 pairs of such matrices ( X , Y ) ,  and the total number of class (V)

matrices is  { 2 H 2 f /8  =  3 • 2 ® • 24. One checks that

(I4 , PEQ) <z {0, ±1, ± 2 , ( ± 1  ±  n/5)/2, ± 1  ±  Vs}.

4.4.2 Inner product

By the discussion in the last subsection, if X  € H 4 , then

(h ,  X )  € {(), : t l ,  ± 2 , ( ± 1  ±  V s ) / 2 , (±3 ±  V s ) / 2 , ± 1  ±  / 5 ,  ±4}.
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By GP2  ill Section 2, for each r in tlie above set,, define

=  { r  € H,4 ; (24,10 =• r}.

Then S-z consists of matrices of the following forms.

(a) The 4 diagonal matrices, namely

Di =  Li — 2Eii, * =  1,2,3,4.

(4.4.10)

(4.4.11)

(b) The 24 matrices of the form DAiD  for * =  1,2,3 where D  =  diag (1 ,±1,±1,±-1), 

j4i =  A dcTined in (4.4.7),

f l „1

1 1 1

1 1 1 - I

[ 1 - 1 1 1 J

and /I3 =

(c) The 48 type (III) matrices with diagonal entries l ,a ,  —b,c in a certain order. Note 

that these must be of the form PBP*  where P  is of type (I). To see this, note that 

if ,P and Q  are type (I) matrices such that P B Q  has diagonal entries l ,a ,  —b,c, then 

removing the row and column containing the entry 1 , we get a type (II) matrix of 

Section 3.1. Hence, we see that Q = P^.

(d) The 24  type (V) matrices of the form PEP'^- where P  is a type (I) matrix. This 

conjugation will leave the diagonal entries (namely c, c, c, c) on the diagonal.
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4.4.3 Linear preservers

Theorem 4 .3  A linear operator (j> : M j( I l)  ~¥ satisfies </>(H,}) =  H4  i f and

only if there exist P, Q € H 4 such that (ft has the form

y X ^ P X Q  or 

Consequently, iV(H4 ) =  H 4 .

Proof. The assertion on NlMi)  follows from GP4 in Section 2 . The {<-) paxt 

of the first assertion is clear. We consider the (=») part. Define Sr as in (4.4.10). 

By Proposition 4.1, if ^ preserves H4 , then <p preserves the inner product {X ,Y )  — 

tr(XF*). By GP3 in Section 2 , we may assume that 4>{h) =  h  and 4{Sr) =  Sr for 

each r. In the following, we will show that ^  has the form X  (-> F ‘X P  or X  P'^X^P 

for some P  £ H 4 . We shall frequently use the matrices D i ,D 2 ,Ds,Di-, Ai ,  A^, B  

and E  as defined in §4.1 ~  4.2 as well as the classification of elements of <S'2 as types

(a), (b), (c) and (d) as defined in §4.2. Furthermore, denote by Dij = DiDj.

For E  defined as in (4.4.9), since D i^EDu  =  and E  + E^ ~  J4 , the elements of

(d) can be paired up such that X  +  X* =  L , where both X  and X^  are in (d). Also, 

the same applies for those matrices in (b) of the form DAiD,  where i =  2,3. (For 

example, A 2 +  A3 =  Zi). Now consider 0 (P ,) =  Th Note that since there exists no 

X  e  S ‘2 such that Di +  X  — /; thus, L; must be of type (a), (c), or type (b) of the 

form D A i D .  We consider three cases according to these.

C ase 1 . Suppose that =  D j .  Then replace cl> with a mapping of the form
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h~h Pip(X)F^- 'wbere P  is an. even pe.r,miitat',ion such that Note that

2(^(;¥ ),i?n) =  { 4 i X ) , h -  D i )  -  (X i4  -  D i )  =  2{X,Eit).

Let Di + X 2 -\~Xs+X,i =  2 / 4  where Xi  e  S 2 . Since (X 2 + X<i+-X.}„Eii) =  3, and since 

1 is the largest possible value for (X,-. En),  it follows that each Xi Is either of type (a) 

or one of the 12 type (c) with the (1 , 1 ) entry equal to one. Thus, either ^(Dg) =  Dj 

or ^(Ds) =  Z'i where Z2  is one of the 1 2  type (c) matrices. If the first case happens, 

we may assume that 4>{D-2 ) = D 2 ; otherwise, .replace ^  by a mapping of t,he form 

X  t~> P4>(X)P* for a suitable even permutation matrix P  such that (F, i?jj) =  1. If 

the second case happens, then there exists a signed even permutation matrix Q with 

{Q,Eii) =  1 such that QU>{Di)Q =  B.  Now, replace by a mapping of the form 

X  BPD2Q^4>{X)QD2F^B with P  =  E n  +  E 2.4 +  F 32 +  £ 4 3 - Then the resulting 

map fixes J4 , Di,I>2 .

Recall th a t 4>{Di) =  l ^ o r  'i =  1 , . . . ,  4, and Fi +  Fa +  F  +  F4 =  3 / 4 . Thus,

{4>iD,),<l>iD,)}^{D3,D4}.

Moreover, for i e  {1,2}, {X,Eu)  = {4>{X),(j>{Eii)) =  {4{X),Eu).  Consider the set

r  =  { X e S 2 :  {X, E n )  =  1 , (X, E 2 2 ) =  a} =  { A F A ; : * =  L 2,3,4}.

(Note th a t  B  =  DiBDi) .  Then cKT) =  T . If (KB) = DiBDi,  then replace (p with 

X  Di4>{X)Di. So, we may assume (p fixes B.  Now, since {Dz-,B) /- {D4 KB), we 

have (piDii) ~  .D3 and 0 (A )  =  D 4 . It then follow that

{X,Eii) = iK X ) ,E u ) ,  i =
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Since {B, DiBDi) #  {B, DjBD^}  for * ,7 j ,  -we have

<l>(DiBDi} =  DiBDi, i =  2 ,3 ,4.

Let P  =  Ei 2 +  i ?23 +  E$i +  i?4 4 , and consider the matrices

Bi = B,  B2 PBPK. Bs =

Consider those matrices in S-i with diagonal (a, c, 1 . —b), namely, DiB^Di for i =  

1 ,2 ,3 ,4  (notfĉ  tha t i ?2 =  D 3 B2 B 3). Then

(B,S2) = {BJJADi)  {B,I>2B2l>2) = {B,DAD4).

We may assume that ~  Ba- Otherwise, <I>{B2 ) =  D 1B 2 D1 and replace ^  with

X  1-4 Di<p(X)Di. Now ^{D^BzDi) =  DiB^zDi for either i =  2 or % =  4. Since 

{B2 , D2 B 2 D 2 ) ^  (B2 , B 4B2 B 4), have

(-/.(A i ?2 A )  =  A B 2 A ,  i =  1 , 2 ,3,4.

The matrices with diagonal (c, l ,o ,  ~ 6 ) are A-B3 A  for * =  1 ,2 ,3 ,4  (note that 

i ?3 =  DzB^Dz).  We have

{B,Bs) =  (B, A B 3A )  7̂  (B, A A A )  =  (B, B A A ) .

But (B-2 , Bg) =  {B2 , D A D i )  =  {B2 ,D 4 B-iD^). Therefore,

6 { D i B M  = A B sB j, i = 1 , 2 ,3 ,4.

Next, c:onsider

B4 =  B 3B, B5 =  D2 B 2 , and Be =  D 1B3 .
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Tlieir diagonals axe ( l,a j  “- c ,  6), («, - c ,  1, ~b) and (-"C, l ,a ,  —b) respectively. Note

that for each i ~  4,5,6, that DjBiDj  share diagonal entries, wliere j  =  1 ,2 ,3,4, 

Since the triples ((B, {B2 ,D^BiDy) { Ih ,DjBiDj))  are different for d ife e n t

i , j ,  one can see that each of these 12 matrices must be mapped to themselves. Thus 

^{X)  =  X  where X  =  DjBiDj  for j  =  1,2,3, 4 and i =  One readily checks

that these 24 matrices span M4 (R); see the last section. So <j> fixes every matrix in 

,M4(R).

C ase 2. Suppose that I'j has the form PBP*'. Then replace <j> by the mapping of 

the form X  P(j){X)P*. Thus Id =  B.  Then replace (f> by the mapping X  i-> 

BP*<j){X)PB where P  =  E u  +  E 23, +  E u  +  E,n- Thus ^{D\)  =  Di,  and we are back 

to case 1.

C ase 3. Suppose that Fj has the form DA\D.  Tlien replace ^  by the mapping of 

the form X  i-> D(j){X)D where D  is such that 4>(Di) =  Ai.  Then replace <f> with the 

mapping o f the form X  t-> AiDi(f>{X)DiAi. Thus (f>{Di) — Di,  and we are back to 

case 1. □
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4 . 5  F ,

4.5.1 M atrix realization

The group ]p4 has 4!2‘̂ 3 elements (see [4, p.80]) and is generated b,y B 4 and the matrix

/  1 ~1 --1 - 1 \

A ee‘ / 2

1 /

Let G be the group in 0(4) generated by B 4 and tlie m atrix

1 1 \  / I I1

(4.512)

(4.513)
;i -1_

Then G iias 4!2®3 elements. Our result will show that G =  N {F 4 ) as discussed in 

G P l in Section 2 ,

4.5.2 Inner product

By the discussion in the last subsection, if A" e  F 4 , then

i h , X )  e  {0 ,± 1 ,± 2 ,± 4} .

By GP2 in  Section 2, for each r  in the above set, define

=  e F „  : ( /4 ,y )  =  r}.

The set S 2  consists of matrices of the following forms.

(I) There are 4 diagonal matrices, namely, Di =  I 4 — 2Eu, i =  1 , . . .  ,4.

(4.5.14)
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(II) There are 24 matrices of the form £)Py € B 4 , where ,Fy is the matrix obtained 

from Li, by interdiaiigiiig tlie ifcli and ;/th rows for 1 < i < j  < 4, and D  is a diagonal 

orthogonal matrix such that tr (DPi^) = 2. For example,

/ I  0 0 0 \

Cl 1 0 0

0 0 0 1
34

\() 0 1 0 /

(III) There are 48 matrices of the form D A i D , D A qD,  where

/  1 - 1  - 1  - 1 \  / I  1   1 - 1 \

and

1 1 1 -1

-1 - 1  1

A k

V -1 - 1 - 1 1 y

/ I - 1 - 1 1  \

1 1 - 1 - 1

1 - 1 1 -1

VI 1 1 1 /

( 1 ~1 - 1

1 1 1 -1

1 - 1 1 1

VI 1 - 1 1  /

> 4̂2
1 1 1 1

1 --1 1 

VI - 1  - 1  1 /

, XI4

/ I  - 1  1

1 1 - 1  

1 1 1

-1 \

-1

dfi =  -

VI -1  -1  1 /

/ I  - 1  - 1  - l \

1 1 - 1 1  

1 1 1 - ]  

Vi -1 1 1 J

I)  € {diag <52, 1̂ 3) : €: {1, —1}}.
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4.5.3 Linear preservers

T heorem  4.4 A linear operator —> M4 (R) on (II) satisfies (t>{F4)  ~  F 4

i f and only i f  there exist P, Q  in  the group G generated by F 4 and B  defined in (4.5.13)

with PQ  f; F 4 such that q> has the form

X ^ y P X Q  or X  ^  P X H l

Consequently, N {F 4)  =  G.

Proof. The assextion on iV(F4 ) foilows from ttie GP4 in Section 2. The (4=) part 

of the first assertion is clear. We consider the {=>) part. Define Sr as in (4.5.14). 

By Proposition 4.1, if preserves H 4 ,  then preserve.s the inner product ( A ' ' ,  ! ' )  =  

tr(A F*). By GPS in Section 2, we may assume that =  I 4 and (j){Sr) =  *S,. 

for each r. In the following, we will show that (f> has the form X  PhXP  or 

X  F^X^P  for some F  € G. Throughout this px'oof we will use the matrices 

Di, Fa, £>3 , 1 )4 , Ai, ...,Aq and Pij as defined in §5.1 -  5.2. We also refer to matrices 

in S 2 as types (I), (II) and (III) as defined in §5.2.

Note th a t  the four type (I) matrices F i , . . . ,  F 4 are mutually orthogonal matrices 

satisfying (Di h h D 4 ) / 2  =  J 4 .  Let =  Yj for j  ~  1 , . . .  ,4..

Case 1. If Fj is one of the four type (I) matrice.s, then (Yi 4- Y2 +  +  Kt)/2 =  I

implies th a t  all Yj are type (I) matrices. We can assume that Yj — Dj for all j  =  

1 , . . .  ,4; otherwise, replace (f) by a mapping of the form X  Q4>{X)Cfi for a suitable 

perm utation matrix Q.
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Now note that ( D j , X )  ~  1 for all A" in type (HI) of Sy, and j  =  For

* < J <  4, let Pij be the set of 4 type (II) .matrices of tiie form D]f\j. Then for 

all X  e  'Pij, {Dk, X)  =  2 if k =  i , j  and (Dk,X)  =  0 otherwise. The same must be 

true of f ( X ) .  Thus, <b{'Pij) =  Py.

Let

'0  T
C'l =  /2  @ j j € P 34 and 4^{0i) =  ly 

1 0
e  P 3 4 .

\  1/2 0 7

We claim that pi =  1/2 . Note that Z  € Sy satisfies (Ci, Z) =  1 if and only if one of 

the following holds:

(a) Z  is one of the type (11) matrices with only one diagonal entry overlapping with 

those of Cl.  There are 16 such matrices having the form DP^, DPu, DFyz and DPw, 

with four choices of diagonal orthogonal matrices D for each Fy.

(b) Z  is one of the type (III) matrices such that the (3,4) and (4,3) entries have 

different signs. There are 32 such matrices having the form DAjD  for j  ~  3 ,4 ,5 ,6 , 

with eight choices of diagonal orthogonal matrices D for each Aj.

As a result, there should be 48 matrices Z  in Sy such that {<b{Ci),Z) =  1. However, 

if the (3 ,4) and (4,3) entries of ^(Cj) have different signs, then Z  6  Sy satisfies 

iH C t ) ,Z )  =  1 can only happen if Z  satisfies (a) or

(c) Z  is one of the type (III) matrices such that the (3,4) and (4,3) entries have the 

same sign, there are 16 such matrices having the form DAjD  for j  =  1,2, with eight 

choices of diagonal orthogonal matrices D for each Aj.

Thus, there  are only 32 such matrices, which is a contradiction. Therefore, (p maps
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symmetric matrices in 'Pu to syirimettic matrices in ' P m -  Note tliat one can generalize 

this argument for all Vij for all i , j .

We may assume that 4>{Ci) =  Cj; otherwise, replace ^  by a mapping of the form

X  D46(X)D4.  N o w ,

/O
C 2 ~  /a ® j j fc P m

\  1 0 ;

is not a symmetric matrix in 'P3 4 , and thus ( (̂C )̂ € Vu  is not symmetric. We may

assume that (p{C2 ) =  6 2 ; otherwise, replace <j> by the mapping X  f~> (p{XY'.

Divide type (III) matrices into two subclasses:

Ti is the set of type (III) matrices of the form P A i P \  %vhere i =  1,2 (i.e., 

{ X ,E u )  = {X,E4-i)Ymid

%  is the set of type (III) matrices of the form PAiP*, where i = 3 ,4 ,5 ,6  (i.e., 

{X,E:u) =  -{X,E4:i)).

Then { C i ,X )  =  1 for a. type (HI) matrix X  if and only if X  € % .  Let

f O  l \  / O 1
C*3 ~  ® /a? C4 =  [1]

\ 1  0 /

Since the symmetric matrices in V 12 are mapped to themselves, we may assume 

that (f>{Cz) =  Cz] otherwise, replace by a mapping of the form X  Dt(p{X)Di. 

Since symmetric elements of Pzs are mapped to themselves, we may assume that 

0 (6 4 ) =  C 4 ; otherwise, replace <p by a mapping of the form X  Di 2 (piX)Di2 .

Next, we show that <p fixes E  =  E u  +  E 2Z + Eu  H- £ ’4 1 . Since {E,Dj) =  0 for 

all j  G and ( E, X)  ■-= 0 for all X  e 'Pij with ( i,j)  e  {(1 ,3),(2 ,4)} , it

® [ 1].
Vi 0 /
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follows that ti>{E) has a zero in all eight; of the nonzero entry found among tliese 

eight matrices. Since Cg) =  (-*1)*'"''’' for i = 1 , 2 , we have {<i>{E),EJ$4 ) =  1 and 

{0 (.E),,E«) =  0. So (P{E) =  ±,l?i2 ±  E 2s +  Em ±  £«,. Since {B,Gd  =  1 for i =  3.4, 

■■= .&X2 “1* .£ 2 3  4" £ 3 4  +  Ei\i — E  or =  E '12 "I* £ 2 3  Em ~  £ 4 4  E.  But 

{E ,X )  =  2 for exactly one matrix, namely D2 A4 D2  in T%, whereas {E, X )  =  2 for 

3 different, matrices D 2.iAzD2 4 -,DiA^Di, and DuAe,D‘M in %• Thus, (f){E) ~  E.  A 

similar argument shows that 4>{EA) ~  E*.

Let
'0  -

£5 = 1  j ® /2 and Cfi = [1] ® 
1 0

/O --1 .
■ ® [1]. 

\  1 O '

Since {E,Ci)  =  — 1 and (E,Cf)  =  1 for i £ {5,6}, it follows tha t -= Ci and 

^(C{) =  C {for?:G {5,6}.

For each X  6  Ti define

f { X )  =  [(/, X),  (E, X ) ,  ( E \  X ) ,  {Di, X ) , (A , X ), {Cl, X ) , { C „  X)].

Then one can show (say, using MATLAB) that /(X )  ^  f ( Y )  whenever X' -/ Y  in TI- 

Since ^  fixes the matrices E, E, E \  D j , . . . ,  £>4 , C i , . . Cg, it follows that (j>{X) =  X  

for all X  One can check that

% U { D i , . . . , D 4 , C i , . . . , C e }  

span M n(R );  see the last section. Thus, i/HX') =  X  for all X  G M „(R),

C ase 2. Suppose Yj is a type (II) matrix. Then we may assume that Yi has the form
/ o  y i \

/a® . We claim that yiy2 =  L Otherwise, there are only 32 matrices Z  in
Vi/2 0
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S 2 sat.isfying {Vi,Z)  =  1, wliereas all tbe 48 type (III) matrices Z  satisfy (Di ,Z)  =  L 

Now, replace <l> by a mappiug of t.lie fc>,rm X  B(/>(,X).F. The modified mapping wi,ll 

satisfy <'A(,Dj) =  Dj with j  ~  3 or 4. Thus, we are back to case 1.

C ase 3. Suppose I'l is one of the type (III) matrix, .Note that Yi cannot liave tlie 

form P A jP  for j  =  5 ,6 , because

m in { (A ,X ) :Z G « 5 2 } -0 ,

but for {;/, k} =  {5,6} and we have

{PAjP, PDiAkDiP)  =

and hence

xxim{{PAjP, Z ) ' . Z £  52} <  0.

Now, suppose Yi ~  P A jP  for j  ~  1,2,3, or 4. We may assume that Fi =  A,-; 

otherwise, replace ^ by X  Pcl)(X)P. If I} =  Ai, replace 4> by A B^{A)B.  The 

resulting mapping satisfies 4>{Pi) = E u  +  -En +  B32 +  Eu-  We are back to Case 2 .

If Yi =  A 2 , As or A4 , replace 4> by A i~>- B(p(A)B. The resulting mapping satisfies 

(j){Di) =  £J-ii — E 2S + Es2 +  -E'44, which is impossible by the argument in Cfxse 2 . □

4.6 Eg

4.6.1 M atrix realization

The group Eg has 2̂ '̂ 3®5̂ 7 =  8!2'3®5 elements which can be divided into the following 

3 classes.
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(I) The 8!2’*’ elements of Dg.

(H) The matrices of the form AT4 F 5 where A", T  € Dg and,

A  =  Ig ~  u n i / / i  with w ~  e -  2e$ == (1, • • •, 1, —1)* G R^. (4.6.15)

The counting is done by: 2 '̂8 ! choices for each of X  and Y , and there are 2  ■ 8! pair

of (P, Q) in Dg X Dg satisfying PAQ  =  A.

(Ill) The 8!2® • 35 matrices of the form X B Y ,  where X ,  F  G Dg and

B  =  El  © S 2 =  A h E  © .h)A,  (4.6.16)

where

B ,  =  ( 1 , 1 , 1 , 1 ) ^ ( 1 , 1 , 1 ,  l ) / 2  -  l u  B2 =  h  -  ( 1 , 1 , 1 ,  1 , 1 ,  - l ) / 2 .

The counting can be done as follows. First choose 4 rows and 4 columns in ways. 

Then put m atrix pairs {XiB{Yi^ X 2 B 2 Y2 ) in the two complementary blocks, where

( i)X i,y i,X 2 ,F 2 e D 4 ,

( ii)X 4 ,y i,X 2 ,y 2 € (B 4 \D 4 ),

(iii) €  D 4  and y ,  F i  G ( B 4  \  D 4 ) ,  or

(iv) a t , X 2 € (B 4 \  D 4 ) and G D 4 .

The number of choices for XiBjY'i in each case is |F4\B4|/4 =  4!2'h Since D B \D  — Bg

with D =  diag (1 ,1,1, -1 ) , we see that cases (i) and (ii) yield the same matrices, and

also cases (iii) and (iv) yield the same matrices. So, there are 2(4!2®)‘‘̂ so many clioices

. . 2
for the pairs. Consequently, the total number of this clasKS is 2(4!2‘̂ )'- f̂y =  8!2’̂ 70.
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4.6.2 M aximum iiint^r product

Let X  € Eg with X  /  L  Then {/, X )  < n  -  2. The equality holds if and only if 

X  — I -  [a  ±  e_j)(ej ±  CjY for some I <  i <  j  <  B or X  =  P^AP for some P  €  Dg.

By GP2 in Section 2, for each possible valne of r  =  {I, .¥), define

5 , =  {X € Eg : (/a, X )  =  r}. (4.6.17)

Note that the largest value for r  is 6, and consists of matrices of the following

forms.

(a) The 56 matrices of the form

X i j  =  Jg (e.i -  ej){ei -  Cjf  or Ky = J g -  (a  +  ej)(e,- +  e-jY, 

where 1 <  i < j  < 8.

(b) The 64 matrices of the form D A D \  where A  is defined in (4.6.15) and £) is a 

diagonal orthogonal matrix in Dg.

4.6.3 Linear preservers

T h e o re m  4.5 A linear operator <p : MsCR) Ms{R.) satisfies ^>(Eg) =  Eg i f  a,nd 

only if  there exist P, Q € Eg such that <j> has the form

X > -^ P X Q  or X ^ -^ P X ^ Q .

Consequently, N{Es.) =  Eg.

Proof. The assertion on N(E$) follows from GP4 in Section 2. The (<̂ =) part 

of the f irs t assertion is clear. We consider the (=>) part. Define S.,. Jis in (4.6.17).
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By Proposition 4.1, if 4> preserves Eg, then </> preserves the inner product (.X, I"") =  

tr(,A''y'*). By GPS in Section 2, we may assume tliat =  h  and ™ Sr for 

each r. In the following, we will show th a t 4> has the Form X  t-> P ^ X P  ot X  PKK'’P  

for some P  e  Eg. We shall use the matrices A, Xij  and Yij as defined in §6.1 — 6.2 as 

well as the classification of elements of Sb as type (a) and (b) as defined in §6 ,2 .

Define Di ~= /g -  2Eu, and Dy =  Di 'Dj. Note that those D  described in (b) have 

one of three forms:

Dijf Dijkl DijDkh or Dij.

Note the following four types of conjugations will be used extensively throughout this 

first part. For 'i,j, A; distinct,

X ikX ju X i  =  Xij and YiuTikYL = VJ-

Since Xrs e  it follows that ^(AGs) =  X € 5f, If X =  Xy or ly ,  then replace 

^  by the mapping X  h» P4>{X)P*‘ with

ifX  =  Xy,
P =  .

^X„Yj^ if Z  = Yij.

Then ( (̂ATrg) =  Xj%. If 4>{Xj^) =  DAD*, then replace 4> by the mapping X  h-> 

D(j){X)D^ so that 4'{Xj%) =  A. Furthermore, replace S  by the mapping X  ^  

Qr(j>iX)Q\, where Q? D-t%AD\^, so that 4>{Xu) =  X n -

Now consider those ,/Y £ 8% such that (A', ATs) = 5. They are of the following two 

forms.

(c) 24 matrices of the form or Yij where i < 7 < j  < B.
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(d) 32 matrices of tiie form DAD*' where iD,Err) ~  {D,Em)  == 1-

If A' € S(i is not of these forms, then Aja) =- 4. It is important to note the 

sign pattern of the diagonal D  in type (d). For any i j ,  if (DAD*,.Xij) = 5, then 

{DAD*, Bij) must be positive. Thu.s,

{/), Eii) =  {D, Em)  if i < j  ~  8

but

{D,Eu) = --{D,Ejj)  i f ? ; < i < 8 .

We change the signs in this argument if we are interested in {DAD*,Xij)  =  4.

If (j){X^i) =  Xi 7  then replace (p be the mapping A' h-> Xi$4>{X)X-Q. If ̂ (̂A'67) =  Ajg 

then replace <j} be the mapping X  t—> Xn(p{X)Xig^, thus reducing the problem to the 

previous case. If (piX^j) =  Yij then replace 4> be the mapping X  t~> Dik(p{X)Dh^ 

for k ^  ij 7,8. If =  DAD* where (D, Ejr) = {D, Em), then replace be the

mapping A” h-> D4>{X)D* where D is a diagonal orthogonal matrix such that (piX^r) = 

Qr where is defined as before. Now replace (p by the mapping A' Qĝ {X)QI  

where Qq ~  DmAD\^ Therefore <P{X̂ t) =  Ag?.

Now consider those X  G <Ss such that (A, ATs) =  4 and (A, Atjr) =  5. They are 

of the following two forms.

(e) 10 m atrices of the form AT; or I T , « < 6.

(f) 16 m atrices of the form DAD* where D  =  Dm, Dijm or -1 %  for i < j  < 6.

Since is in this set, so must (p{Xm)- If <P(X$$) — AT>, then replace (p by

tlie m apping A  h-> Xix,(p{X)X-j^. If (^(A'se) =  IT;, then replace <;/> by the mapping
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X  Dik4>(X)Dik where k < 6 . If <^{Xsb)  =  D A 0  where (D.E^a) =  - { D , E n )  =  

{D, £-88 ,), then replaee </> by the mapping X  b4>{X)iX where I)  =- i>i?c,8 . Next 

replace 4> by the mapping A"" i~> Q^}>{X)Q\^ where =  ,D6aA„D|g.

We can fix first, A'4 5 , second, X 3 4 , and third, A"2 3 , in the same way a.s we fixed 

Xm  by the following arguments. For k  =  f>, 4 and then 3, consider those X  E Sq 

that have inner product of 5 with the matrix Xk,k+i (which has just been shown to 

be fixed by 4>) but inner product of 4 with for i > k +  1 . Then liave

one of three forms: Xi^k--i, and D A D  where D ~  £)Dk~.i,B- H it is one of the 

first two forms, then replace (p by a mapping of the form A' P(p{X)P^ where P  is 

a appropriate matrix of one of the first two forms. If it is of the third form, replace 

4> by the mapping

X  Q^^,b4>{X)bQk,..i for 1,8 •

Now define Qi =  DisAD\g. Then Qi  is the only type (b) matrix such that Q\ G S q 

and (Qi,  =  4 for i =  2,..., 7. There are no type (a) matrices where this

property holds, thus (p{Qi) ~  Qi. Consider those X  e  such that (X, X 23) =  5 and 

(X, Xj,j4.x) =  4 for i ~  3 , 7 .  Then X  =  A'l-i, X12 or Q2 . Inspecting the sign pattern, 

we have (Xi j ,Q i)  ^  {Yij,Qi) for all b i-  Thus, we may assume that 4>{X\2) ~  X i2 - 

Otherwise 4>{Xi2) =  ( h  replace </> by the mapping X  1—> Qi4^{X)Q\. Thus, 

4){Z) ~  Z  for Z  — h,Qi,Xi^i+i for i =  One can check that this is sufficient

to show th a t  (p(X) ~  X  for all X' G S^; see the last section.
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Suppose that f i X )  =•■ F  for some X  € E<4. Tlieu

2 (^ , %  +  ,1^,) -  (X, F i)  =  (F  -  Yij) =  2(y, Eij + Eji).

for ail I i ,  /  (Xy +  Ky)/2 == Eu +  Ej,. Therefore, {X, Eu) =  (Y, Bu) for all 

i and thus

^ ( X )  =  A" or A'* for all X  G E«.

Let Xijf. = XijXik €  Ss for each i < j  < k. Then Xijk is the type (I) matrix with

the following principal submatrices

/O 1 0 \

Xijk{i,j,E) = h .  0 0 1

\ 1  0 0 /

Here Z[i , j ,  A;] denotes the subniatrix of Z  lying in rows and columns i , j ,  and k; and 

Z{i, j , k) denotes the matrix obtained from Z  by deleting its rows and columns indexed 

by i , j ,  an d  k. Then we may assume th a t < (̂X678) =  ATrg. Otherwise, 0(As7g) =  A^^g, 

and replace (j) by the mapping X  h-> (f>{Xy. Note th a t (Xijk ,X^n)  =  5 if and only 

i f i  < 6  <  j  < k  < 8 .  But then ATts) =  4 .  Thus <f>(Xijk) = Xijk for all Xijk 

where i <. 6 < j  < k < S. Continuing in this manner, we can fix all matrices of the 

form Xijk.  Therefore ^{Z)  =  Z  whenever Xijk for all 1 <  * < j  <  A: < 8.

Let
71

P - ^ E i n  +  Af8(R).
i=2

Then, fo r all Q G of type (b), ({>{PQ) =  PQ  or {.PQ)L But clearly, (PQ, A 123) 

{ { P Q ) \ X i 2%), therefore, <^(PQ) =  PQ  for all Q € of type (b). Thus,
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for Z  =  I$,Xijk wliere i < j  < k, wlierr; i < j  and for Z  ~  Q and PQ  for all 

Q € <56 of type (b). One can check tha t these matrices span MgCR)^ see the last 

section. Thus 4>{X) =  X  for all X  € Eg. □

4.7 Ey

Let

w ~  6 — 2cg €

Then Ey Inrs a natural realization as a subgroup of Eg C defined and denoted by

£ 7  ~  { X  £• Eg : X w  w}

acting on the 7~dimensional subspace in R®, Suppose U is an orthogonal matrix 

with 10/ \ /S  as the first column. Then for every .4 € we have

( I  0 \
(PAU  =  . (4.7.18)

VO A J

The collection of such A  € M 7 (R) will form a matrix realization of Ey in My(R).

Moreover, for any A , B  € € 7  and the corresponding A , B q  Ey, we have

{A, B)  =  tr (ABA  =  1 +  tr  { A P )  -  l  +  {A, B).  (4.7.19)

Of course, one may have different realizations of By in My(R} by a different choice of 

U. Nonetheless, it is well known that all the realizations of Ey in 0 (7) are orthogonally 

similar. In  this section, we will study Ey via £ 7  as mentioned in GP5 of section 2.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



153

4.7.1 M atrix realization

The group £-f =  {.X € Es : X w  =  «;} has 8!72 elements which can. be divided into 

the following three classes.

(.1) The 8 ! elements in Dg n  £7 , t,hose elements X  £ Dg such that X'tu =  w.

(II) The 8136 mairices of the form X^\AY sat.isfyiiig XKAYw ~  w, w,here X , Y  € Dg 

and A ~  ig -  wie*/4 with to =  e -  2 es =  (1 , • • •, 1, ~ 1)* G R*. The counting is done 

as follows. Consider the equation j W w  =  ,Xto, i.e., Y w  ~  X w  = w{w^'Yw)/4. There 

are 3 cases,

(i) w^Yw =  85 Y w  — X w  ™ 2to. Then Y'w = w =    Xtv.  There are 8 ! choices for

each of X  and Y  and there are 8 ! pairs (F, Q) in Dg x Dg such that, PAQ  =  A  with 

Qw ~  w and w*P =  w*. So, there are 8 ! elements in this case. Clearly, these must 

coincide with the 8 ! elements of the form ~ P A  where P  is a matrix of type (I).

(ii) w Y tv  =  —8 , Y w  ~ X w  =  ~2w. Then Yw ~  —w =  ~~Xw. Every pair ( X, Y)  

in (b.i) can be converted to ( -X , —Y)  to this case, and we actually get the same 

X A Y  =  ( —X )yl(—y )  matrix. So, no new addition in this case.

(iii) t u Y w  =  0, Y'w ~  Xw.  For each of the 70 choices of Wi € nr‘-, where all entries of 

Wi are ± 1 , we have a fixed Pi £ Dg such tha t PiW = Wi, Y  — PiY and X  =  PiX  with 

Yw  =  w ~  Xw.  Now, there are 8 ! choices for each ofTY and F , and we have to factor 

out the 8 ! so many (.F, S)  pairs such that R*{FfAPi)S = P^APi with Sw  =  w =  Rtv. 

Thus, there  are 8 ! so many X''^AY corresponding to each choice of Wj. .However, for 

each Wi, th e  8 ! matrices X*AY  corresponding to Wi are the same as the 8 ! matrices 

corresponding to -Wi.  Thus, we have 8170/2 =  8135 matrices in this case. These are
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the matrices of the form PD AD'‘ where P  is a type (I) m atrix and D  is a diagonal 

matrix whose diagonal entries are permutations of (1 , 1 , 1 , 1 , — 1 , ~ 1 , ~ 1 , —I). In other 

words, Dw  € ur‘”.

(Ill) The 8135 matrices of the form X^'BY  satisfying X ^ B Y w  =  w, where A', Y  € Ds 

and B  =  B\ ® B 2 ~  -d( — 14  © pJAf  where

Bj  -  (1 , 1 , 1 , 1 , 1 , l ) / 2  ™ J4 , B 2 =  h  -  (1,1,1, 1,1, ™l)/ 2 .

The counting is done as follows. In order to hav€̂  X ^ B Y w  ~  w, the last row of X ^ B Y  

must contain either a row of X 2 B 2Y2 with a nonzero (8 , 8 ) entry or a row of X iB iY i  

with the (8 , 8 ) equal to zero. In the first case, we ha\'e 0^ 0^4! ways to put X iB iY i  

so as to make the first 4 entries of X ^ B Y w  ecpal to 1, and then 4! ways to put the 

X 2 B 2 Y2 matrices so that the last 4 entries of X^BY'w  are In the second

case, we have 0^ 0^4! ways to put X 2 B 2 Y2 so as to make the first 4. entries of X ^ B Y w  

equal to 1 , and then 4! ways to put the matrices so that the last 4 entries of

X ^ B Y w  are 1 , 1 , 1 , ~ 1 . Thus, total number is 2(0)0)(4!)^} =  8!35.

4.7.2 M aximum inner product

Let A  e  £ 7  with X  ^  L  Then (Is, A") <  6  and hence the inner product on the 

irreducible subspace E 7 is bounded by 5. Using the matrix realization in .Mg(R.) and 

by GP2 in  Section 2, for each possible value of r =  (Jg, A"), define

5 ; =  { A G f 7 : ( J 8 , A)  =  r}. (4.7.20)

Note th a t  «5r, consists of matrices in one of the following two forms.
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(a) The 28 matrices Xi.j of tlie form

Xij  =  is — (cj “  €.j){e,i — €jY for 1 <  i < j  < 7

XjM =  1% — (di +  es)(ej +  Cg)* for 1 <  i < 7.

(b) Tire 35 matrices of the form X  ~  D A IX  for some diagonal orthogonal D such 

that Dw  £■

4.7.3 Linefir preservers

T h e o re m  4.6 A linear operator : Mj(R.) —> M7 (R) satisfies =  E r if and

only if  there exist P, Q € E 7 such that 'ijj has the form

X ^ ^ P X Q  or

Consequenthj, N {E t) =  E 7 .

Proof. The assertion on NfEy)  follows from GP4 in Section 2. The {'i=) part of 

the first assertion is clear. We consider the (=>) part. Let ijj : MrfR)  M7 (R) be 

a linear m ap satisfying ilfiEij) =  E7. By Proposition 4.1, if 'fi preserves E?, then '<p 

preserves the inner product ( X , Y )  =  t r ( X F ’̂ ). Also, by GPS in Section 2 , we may 

assume th a t  =  J 7 .

Let V7  be the affine space generated by ^ 7 , and let U be an orthogonal matrix 

establishing the correspondence between £j  and E 7 as described in (4.7.18). Consider 

an affine m ap : V7 Vf defined by

, 1  0 \ 
c f l u '

‘.0 x j

’0 0 \  / I
£7* h =  I/-1 (X +  U

0 ' 0 ( 1 ) ;  \ o  0 7 /
u \
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Then (f>{£r) -  £7 . Since ?/■’ preserves inner product in M-rCR), we have ((l)(X),(p(¥)) ~  

{X ,Y )  for all X , Y  £ Sr by (4.7.19). Define Sr as in (4.7.20). Since ¥(1?) I 7 ,

therefore, =  Jg and by GP3 in Section 2, 6 {Sr) =  Sr for each r. In. t,h.e

following, we will show that for some P  € £7 , 4> has the form

A" P l X P  for all A’ e  £ 7  or ,A PXX^P for all X  € £7 .

We shall use the matrices A  and for 1 <  i <  j  <  8  as defined in §7.1 ~7.2. We also 

refer to matrices in 5s as type (a) a.rid (b) matrices as defined in §7.2. Furtheririore, 

let Di =  Jg -  2Eii, and Dij =  DiDj.  Note that those D  described in (b) will be 

of the form =  DijD^i where i , j , k , l  are ail distinct. If are such that

{h , i \  k, kf, I, £} =  {1 ,..., 8 }, then

D i j k l A D i j k l  ~  D i ‘j 'k 'V  A D i ’j t k ' l '■

Also, for i , j , k  distinct and Xjk, Xik and all of type (a),

Y" Y  V* _ V

We m ay assume that (j>{X7^) ~  X 7 8 . Otherwise <̂ (..̂ 78) =  X,y or <p(X7s) =  DAD

for an appropriate D. If ̂ (Xyg) =  Xij,  then replace 4> by the mapping X  P(f>{X)P^ 

where P  is an appropriate type (a) .matrix. If (l>{X7s) =  DAD*', then consider D. 

If D ~  .Dij 1^7 for i , j , k  < 7, then replace (f> by the mapping X  H* QAQ^ where 

Q =  DijksADijk^. If D ~  A j 78 , Then replace (f> by the mapping X  Xk%(l>{X)Xl^

for some k  ^  i , j .  Thus ^(Xts) =  DijkrADijkr, which has already been discussed. 

Therefore, (̂.AGs) =  ANs-
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Now, coi»sider those Â' G Se such that (X,  Ajg) =  5. They are of two forms.

(c) 12 matrices of the form Xij for i < 7 < j.

(cl) 20 matrices of the Ibmi D A D  where D ~  Dijkj and i < j  < k < 7.

We may assume that <i>{Xs7 ) =  Xgr- Otherwise f(Xffr) =  Xij  where i <  6 and

7 <  j  or <k{Xe7 ) =  D /ID  where P  =  Dyi-? and « <  j  < k <  7. If <f>{X$7 ) =  AV where 

* < 6 then, replace 0 by the mapping X  H> If ̂ (..Agy) =  Ahs where i < 6,

then replace (f> by the mapping X  t-» X 7$<j>{X)Xj^ and we are back to the previous 

case. If 4>{Xqt) ~  D A D  where D =  A ja? and i < j  < k < 7, then either k =■ 6 

or k ^  Q. If  k ^  6, then replace (j> by the mapping of the :for,ra X  i~> QAQ^' where 

Q — DijklADijkl,. If k =  6, replace <j) by the mapping X  t—>• Xk'r,<i>iX)Xk'B where 

k' ^  i , j  an d  a.lso k' < 6. Therefore, ^ (̂A's?) =  Agr-

Now, consider those X  G Sa such that {X,Xjs)  = 4 and (A, AT?) ~  5. They are 

of two forms.

(e) 5 m atrices of the form Ajg for i < 6.

(f) 10 m atrices of the form D A D  where D ~  Dij^a and i < j  < k < 6.

We m ay  assume that <?I>(AT6) =  X^r,. Otherwise ^(Ase) =  Xi^ where i < 5 or 

4>{Xm) — D A D  where D  =  AjA6 and i < j  < k < 6. If ^(ATe) =  Aj-e where 

i <  5 th e n  replace (f> by the mapping A i-> Ajg<^(A)Ah. If = D AD  where

D =  Dijke and i < j  < k < 6 , then either fc =  5 or k ^  5. If fc ^  5, then replace <f> 

by the mapping of the form A  QAQ^ where Q ~  Dijk^ADijk^. If k =  5, replace 

4> by the mapping A’ t-> Xk’7><t){X)Xk>t:-, where k' -■A i , j  and also k' < 5. Therefore,

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



158

(t>{X̂ ,f,) =  X^£. We may also fix X 45 in a similar manncjr, using those X  € S$ such 

that (X, A'gg) =  5, but has imier product 4 witli the ottier fixed matrices.

Now, consider those X  € Sa such that

[(X, Xra), (X, Xct), (X, Xge), (X, X45)] =  (4,4,4,4].

Then X  ~~ A'ta, X u  or X23. We may assume that <^{Xn) — X 1 2- Otherwise ^{Xvz)  =' 

Xi3 for i =  1 or 2 , in which case, replace <p by the mapping X  h> X j $ ^ ( X ) X j 3  where 

( i , j }  =  {1,2}. We may also assume that (j^iX^z) = X 2 3 ; otherwise (j>{X2$} X i3 . If 

this is the case, replace ^  by the mapping X  ^ 4  -Xi2 rKX)Xi2 . Thus ^(X) =  X for

X =  X i2 , Xaa, X 4 5 , X 5 6 , Xer and X 78-

One can check that this requires that </>(X) =  X  for all X' € see the last section.

Consider those X  € £ 7  such that X ^X  € and (Xi jX, Xij) =  5. In other words, 

X  6 <S5 and  (X,X'y) =  6. So X  is of the form XijXik,  where k ^  {'<,,?} but I €

or the form  XijDAD^  where Dw  G and {D,En)  =  —{D,Ejj).  If we add the

condition th a t (X, Xik) =  6 and (X, Xjk) =  6, then X' must be of the form XijXn,  or 

XijXjk ~  {XijXikY- Let Xijk =  XijXik € for each i < j  < k. Then Xijk is the 

type (I) m atrix  with the following principal submatrice.s.

/  0 1 0 \

Xijkii, j, k) /g, Xjj^['i, j,  k) 0 0 Cj

U 2 0 o J

where ci =  62 =  1 if k < S  and — 1 if A; =  8 . Thus, <f>{Xijk) — Xijk or <t>{Xijk 

alH  < d <  k. Then we may assume that 4{X&!^ =  ATrs- Otherwise, ^(Xers) =  Xg^g

Xijk for
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and replace d> by the mapping X  i-> (i){Xy. Thus, also Consider

those Xijk such that {Xijk, X m )  =  5, Then either { j ,k }  =  {6,7} or A:} =  {7,8}. 

But for those Xijk, (Xijk,Xly^) =  4. So <f>{Xijk) =  Xijfc for all such Xjjfe. Using these 

newly fixed matrices, continue in the same manner until 4>{Xijk) =  Xijk for all Xijk 

such that l < i < j < k < 8 .

We have shown that <I>{X) =  X  for all X  € X  =  Jg and all X of the form X^k- 

It can be shown (see the last section) that there are 5(3 linearly independent matrices 

in tliis collection. Given this, and tlie fact that

/ I  0
^(0) =  u

0 O7

we see th a t the linear map

dp{x) m

is completely determined. In particular, (j){X) =  A' for all X  e £7 . It follows that the 

original affine map (,A on Vj has the form

A  P*XP  or A  PKX^P

for some P  E Sj- Note that if P, X  € £ 7 , there exists P , A  G E? such that

FAYF =  V
/O 0

\ 0  F*A F,
[£ +  U

( \  O'

\ 0  0.
UK

Thus, th e re  exists a P  € Er such that

x\){X) =  P x P  for ail A  G E 7  or t/;(A) =  P T t*F  for all A  e  E 7 .

Since E 7 spans M yCR), tp on A/7 (R) has the asserted form. O

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



160

Note that in the above proof, we showed that an affine map <p on Vj satisfies 

( ^ { £ 7 )  =  £ 7  and preserves the inner product on V 7  if and only if there exists ,P, Q €- £ 7  

such that (p has the form

X  P X Q  or X  -̂4 F X * a  (4.7.21)

on V7. The same proof can actually be used to show that a linear map <f>: span £7 Hi-

span ^ 7  satisfies ( p { € j )  ~  £ 7  and preserves the inner product on span € 7  if and only if 

there exists P ,Q  € £ 7  such that ^  has the form (4.7.21).

4 . 8  E e

In this section, continue to write

%ij =  g — 2eg G

and let

u =  C7 — 6 3  € R*.

Then Eg has a natural realization as a subgroup of Eg C Mg defined and denoted by

Sa =  { X  G £ 7  : X v  =  v} =  { X  G Eg : X v  =  u and Xw =  w }

acting on the 6 -dimensional siibspace span (u, w;)-̂  in R ‘'*. Suppose U is an orthogonal 

matrix w ith  iv /\/S  as the first column and the normalization of the component of u 

orthogonal to w as the second column. Then for every A e  £r>, we have

IPAU
f l ‘2 0 \

V 0 A )
(4.8.22)
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The collection of such .4 € M$(R) will tbrm a matrix .realization of Ee in 44(11). 

Moreover, for any A , B  € £$ and the corresponding A , B  e  Eg, wc.i have

{A, B) =  tr  (.4B^ =  2 +  tr  (AB^) =  2 +  ( i ,  B). (4.8.23)

Of course, one may have different realizations of Eg in M6 (R) by a. di,fferent choice of 

U. Nonetheless, it is well known that all the realizations of Eg in 0(6) are orthogonally 

similar. In this section, we will study Eg via as mentioned in GP5 of section 2 .

4.8.1 M atrix realization

The group =  {X G Eg ; X%u =  tc, X v  ~  v )  has 6172 elements which can be 

divided into the following 3 classes of matrices arising from €7 .

(I) The 612! elements in Dg n  Eg, namely, those elements X  e. Dg of the form X  =  

X i  ® X 2 for suitable choices of X i  G Bg and

/  0 ~ r

.X2 =  I2 or X 2 =
\ - l  0

(II) The 6!40 matrices of the form X ^A Y  satisfying X^'AYw = w and X *A Yv  =  n, 

where X , F  G Dg and 4  =  Jg -  w w ^ i  with w = e-~ 2eg =  (1, • • ■, 1, —1)* G R^. The 

counting is done as follows. Consider the equations AYiv — X w  and A Y v  =  X v , i.e.,

Y w  ~ X w  =  w{w*'Y w) IA and Y v  — X v  =  w{w A’'v) j  A.

Clearly, we must have viAYv ~  0 . Thus, we are studying the (II.iii) matrices of

£ 7  in §7.1. First, if w, G {w,v}-^ such that all entries of u;,; are ±1, then the last two 

entries o f  W{ have the same sign, and 3 of the first six entries equal to 1. So, there
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are 2 * =  40 possibilities. B’or each of th <3 40 choices of ?./;» € where all

entries of tci are ± 1 , have a fixed Pi G Dg such that PiW =  Wi, Y  =  F,;F- There 

are 8 f choices of such Y,  and for a fixed Y  there are 6!2! choices of X  € Dg so that. 

X w  =  w and P X v  =  P Y v . We have to factor out the 8 ! so many (R ,S )  pairs such 

that R{P lA P i)S  ~  PfAPi with Sw ~  w ~  RRw. Thus, there are 612! so many X*AY  

corresponding to each choice of to*. However, for each Wi, the 6!2! matrices X*AY  

are the same as those corresponding to — Thus,  we have 20(6!2!) ~  6140 matrices 

of E$ in this class. And we also see that they are equivalent to matrices of the form 

Y D A D  where Y  is a matrix of type (1) and D  is a diagonal orthogonal matrix such 

that D w  €  nP  and {D ,EP) ~  --{D ,E ^).

(Ill) The 6130 matrices of the form X ^ B Y  satisfying X*BYw  =  w and X^BYv  =  u,

where Y  € Dg and B  = B i®  J4 ® I ^ A ,  where

=  (1 , 1 , 1 , 1 )^(1 , 1 , 1 , l ) / 2  -  (1 , 1 , 1 , 1 , 1 , - l ) / 2 .

The counting is done tjs follows. In order to have X ^B Y w  =  w and X ^B Y v  =  

the 2 x 2  submatrix of X ^ B Y  at the right bottom corner cannot contain zero entries. 

Thus, we have to choose from the first 6  rows and the first 6  columns a 4 x 4 subinatrix 

to accommodate an .AiBxYi as described in E 7 , and there are 4! ways and there 

are 4 w ays to fixed the matrix X-zB'iYi’ Thus there are (4)**414 =  6!30 matrices in 

this case.
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4.8.2 Ma.ximui;ii inner product

Let X  € Ss with X  Jg. Then (Ib,X )  < 6. Therefore the inner product on the 

irreducible subspace Eg is bounded by 4. Using the matrix realization in Afa(R) and 

by GP2 in Section 2, for each possible value of r =  (ig, X ), define

5 , - { A 'G 4 : ( / 8 . A 0 - r } -  (4.8.24)

Note th a t S q consists of matrices in one of the following two forms.

(a) The 16 matrices of the form Xij ~  Jg -  (e* -- ej)(ej ■” ejY' for some 1 <  * < i  <  6 

and ~  Jg — (c7 +  eg)(e7 +  eg)*.

(b) The 20 matrices of the form X  =  D A D  where D  is an orthogonal diagonal matrix 

such that Dw  G and {D ,E j7 ) =  - ( D ,  Esb)-

4.8.3 Linear preservers

T h eo rem  4.7 A linear operator i/; : Mg(R) M6(R) satisfies ifi'Es) =  Eg if and 

only if there exist P, <5 € Eg such that 'if has the form

X r ^ P X Q  or X ^ P X ^ Q .

Consequently, iV(E6) =  Eg.

Proof. The assertion on iV(Ef>) follows from GP4 in Section 2. The ('!?=■■) part of 

the first assertion is clear. We consider the (=^) part. Let 'tj; : X fi(R ) —y Me{Jl) be 

a linear m ap satisfying ^(Eg) =  Eg. By Proposition 4.1, if ip preserves Eg, then if)
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preserves the irmer product {X, Y ) =■ tr(X F *) on Also, by GP3 in Section

2, we may assume that V̂ {if,) =  4 .

Let Va be the affine space generated by 5e. and let II be an orthogonal matrix 

establishing the correspondence between £*6 and Ef, as described in (4.8.22). Considfjr 

an affme map ^  : Vg -> defined by

’4  0 \  \
^  I fJ I \ u*

0 xJ )
'I2 0 ^

u* +  u
'  0 OeJ

u \

Then (Î {£q) ~  £^. Since ip preserves inner product in M $(R), we have ((f>{X), =

(X ,Y )  for all X ,Y  e  ^ 5  by (4.8.23). Define Sr as in (4.8.24). Since i ’ile) =  4 ,  

therefore, <p{I») =  Jg and by GPS in Section 2, </̂ (<S,.) =  Sr each '>'■ In t; 

following, we will show that for some P  E £$, 0  has the form

X  P ^X P  for all X  € 4  or X  ^  for all X  G 4;.

We shall use the matrices A  and Xij as defined in §8.1 — 8.2. Also, we shall use the 

classificatiori of matrices in into types (a) and (b) â s defined in §8.2.

Define D i ~ I ^  — 2Eu, and Dij = DiDj. Note that those D  described in (b) will 

be of the form Dijkr = DijDkf where i , j ,  fe #  7 are all distinct. If k' are such 

that {i, i’ , j ,  f ,  k, k'} = {1,..., 6}, then

DijklADijkl =  Diifk'BADi>j'k'»-

Also, for i ,  j, k distinct, i , j ,  k < 7  and Xjk, Xu- and Xij all of type (a),

XikXjkXik ~  Xij.
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Let 4K;^n) =  Sj. If Z  =  Xjg tlien we are done. If Z  = D A D , where D -■ Dijkt, 

then replace <l> by the mapping X  i-  ̂ Q(p{X)Q'' where Q =  DijksADijkn- And so 

(ffiXrs) =  Xtb- If, on the other hand, Z  ~  Xij for i < j  <  7, then replace (f> 

by the mapping X  Q 4>{X)Q* where Q  — DuajADikn for k, l ^  L j, 7,8. Thus 

<f>{Xm) ■— D A D  where D  -• D jm , and this case has already been covered. Therefore, 

(KXib) =  A'yg.

Note th a t if A' G 5a is of type (a), then {X, Xyg) =  4, w-hile if A  is of type (b), then 

{X, Ayg) =  5. Thus, those X  6  Sb that are of type (a) are mapped to themselves, 

and those of type (b) are mappcxi to themselves.

We m ay frssume that <̂ {Ar,6 ) AV̂ - Otherwise, ^(A"5f,) ™ X ij where ( i,j)  ^  (5,6) 

and i < j  < 6 . Then replace (j) by the mapping A' i-> P<j){X)P* where

' XiQ if i  =  6 ,

F = | a56 i f j  =  5,

. A"i5Aj(i if j <c j  5.

Now consider those A” G of type (a) such that (A, ~  5. Then A" =  X ij where

i <  j  and  j  e  {5,6}. We may assume that 4^ X 4 5 ) =  A 4 5 - Otherwise (^iX^s) = X ij 

where j  ^  {5,6}. If j  ~  5, then replace (j) by the mapping Â  i~> Xi4 (f>{X)Xi4 , If 

j  — 6 , th e n  replace (j> by the mapping X  h-> A 5f;<^(A)A56 and so we are back to the 

case w here j  =  5 .

Now consider those X  € Sb of type (a) such that (A, =  4 and (A", A 45) “  5.

They m u st be of the form Xu. We may assume that ^ ( ^ 3 4) =  A';m- Otherwise it 

equals X * 4  for i € {1 ,2}, in which case, replace (5 by the mapping X  t~> X i3 <f>(X)XiB.
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iN'ow consid€‘r those X  6  <5f; of type (a) such that (X, X$a) ■= 4, (X, X 45) =  4 and 

(A'', A'a.i) =  5. Then X  =  X"i3 or X 2 3 . If (kiXzi) ■= A'l.-), tlien replace by the mapping 

X  X i 2 (i>{X)Xi2 . And thus, ^(JCaa) =  X 2 3 . By considering the inner products, we 

also see tha,t ^(Xia) =  Xj,2 . Tims <p{Z) -  X for ^  =  k ,  X , , ,  X ,e, X45, X 3 4 , X23 

andX’i2 . This is sufficient to show that (f>{Xij) ~  A%- whenever i <  j  < 6  and that 

(f^iDijkrADiji^y) -- DijkriADijkrr or DijkfiADijks.

Now consider those X  € that are of type (b). In particular, consider

^(T^4567AI?4567) =  Z

. If Z  = D 456?AIl45e7 , then we are done. If Z  =  D.iamADi^^s, then replace </> by the 

mapping X  h-> Xfs(f}{X)Xr$. It can be sliown (see the last section) that

{DijklADijkr, D4567AD4567) ^  {DijkBADijkB} -£^4567-4̂ 4567).

Thus, for all X  G <^{X) =  X .

Let X ijk  =  XijXik- Then Xijk is the type (I) matrix as defined in §8.1 with the 

following principal submatrices.

/O 1 0 \

X ijk{i,j,k ) h ,  0  0  1

\ i  0  0 /

In a m anner similar to that of section 7.3, we consider those matrices X  £ Sr) such 

that (X, X ij)  =  6 , (X .X ik)  =  6 and {X ,X jk)  =  6  for i < j  < k. Then X  =  X ^k  

or Xb^. If 0(Xi23) =  XI2 3 , then replace <j> by the mapping X  <p{Xy. Thus 

<!>{Xi2s) ~  X 123. Note that (Xijk, X 123) =  5 if and only if i -f- 1 — j  < ^ < k < 6 . But
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if {Xijk.X izi) ~  5, then. {.Tfyjfc.Xfsa) =  4. So (j>(Xr2k) “  for k =  4,5,6. Using 

ttiese newly fixed matrices, continue in the same manner until #(Xy*) =  Xijk for all 

Xijk such that 1 < i < j  < k <Q.

Note that for any X  £ Eg, if Y  € Eg and {Y,X) ~  6, then F  =  X Z  for some 

Z £ Sfj. Thus, for all i < j  < k < 6, if F  is such that (F, Xy*) =  6 and {Y,Xrs) =  6, 

then Y  =  Thus, ^(Ay^AVg) ~  XijkXrs for all i < j  < k  < 6. In particular,

let Y  =  XiaaXTg, and consider those X  such that (YX, I s )  ~  6 and { Y X , X t») =  5. 

They will be of the form X  =  Y D  AD  where D ~  Aifc? and i < j  < k <  6. For each 

such X,  define

f { X )  =  [{Ai2, A ) , ( A s e ,  A ), {DrzmADvzz,. A ), A scr, A)].

One can show that f { X )  ^  f { Z)  whenever A" Z  where A  and Z  are both of the 

form Y D  A D  with I) ^  D i2m] see the last section.

These 18 matrices together with those A' G Sq and those matrices of the form Ay* 

for i < j  <  /c <  6 all have the property that <;̂ (A) =  A . It can be shown that there 

are 37 linearly independent matrices among this group; see the last section. Given 

this, and th e  fact that
( h  o \

m  =  u,
\ 0  % )

we see th a t

< K X ) ^(0)

is completely determined. In particular, (f){X) =  A'' for all A  e  E%. It follows that the
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original affine map 4 on '14 has the form

X  P {X P  or ,X 

for some P  e £q. Note that if F, X  € &„ there exists P, X  € Bo such that

U.
'O2 0 \  f h  0 \

P \X P  =  f/" I \ U P  U*\
0 P * X p )  \ 0  Of,/

Thus, there exists a P  6 E« such that

i i X )  =  P ^ X P  for all 1  6 Eg or P{X)  =  for all 1  € Eg.

Since Eg spans Mq{M.], 'tj) on Me{R) has the desired form. □

As in the case of E 7 , the above proof would also show a similar result if we 

replace the  linear map ip 011 MfiCR.) satisfying ip (Pie) =  Eg wdfch either an afline map 

(p : 1 4  Ve or a linear map (p : span 6$ —> span fg satisfying (p{£e) =  and

preserving inner product on I4 .

4.9 M ATLAB Programs

M ATLAB Program for H3

In the proof of the linear preserver of H 3 , we stated that 12 matrices

D „ D 2 ,D 3 ,H ,X i , . . . , X s

span M3 (B,). We put these 12 matrices as row vectors of the matrix “R” . The rank 

command will then show that there are 9 linearly independent vectors among these 

12 matric(is.
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a = ( l+ s q r t(5 ) ) /4 ;b = ( - l+ s q r t(5 } ) /4 ;c = l/2 ;  0 0 0 1 0 0 0 1; i 0

0 0 “ 1 0 0 0 1;

1 0 0 0 1 0  0  0  ~1; a b c b e  -a  c - a - b ;

-a, -b  “C b c ~a c ~a -b ; - a  b c ~b c ~a ~c ~a -b;

-a  -b  c b c a -c  a  -b ; “a b ~c “b c a c a -b ;

a b c ~b -c  a c ~a ~b; a -b  c b -c  ~a c a ~b;

a b ~c "b “C -a  -c  a -b; a -b  -c  b -c  a -c  - a  ~b ];

rank(R)

M A TLA B Program  for H 4

In the proof of t,he linear preserver of H 4 , we stated that 24 specific matrices could 

be shown to span M4 (R). We put these twelve matrices in row vector form stared 

in “R” . T he rank command will then show that there are 16 linearly independent 

vectors among these 24 matrices.

a=(1+sqrt (5) ) /4 ;b = (-1 + sq r t(5 ))/4 ;c= l/2 ;

= 0 0  0 ; 0 1 0  0 ; 0 0 1 0 ; 0 0 0  1] ;

,2 ) = [ 1 0 0 0 ; 0 -1 0 0 ; 0 0 1 0 ; 0 0 0 1] ;

: ,3) = C 1 0 0 0;  0 1 0 0; 0 0 -1 0; 0 0 0 1] ;

: ,4)  = [ 1 0 0 0;  0 1 0 0;  0 0 1 0; 0 0 0 -1];

: , l )  = Cl 0  0  0 ; 0  a b c; 0  b c -a; 0  c -a  -b] ;

: , 2 )  = [a b 0 c; b c 0 - a ;  0 0 1 0 ;  c - a  0 ™b] ;

,3> = [c 0  b -a; 0  1 0  0 ; b 0  a c; -a  0 c -b] ;
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B( ; , : ,5)»D(: , : ,2)*B(: , : , 2 ) ;  

k=0; fo r  i » l : 4

f or  j = l : 6

k=k+l; y=D(: , : ,i)* B ( ; , : ,  j)»'D(: , :  , i )  5 

RCk, : ) =Cy( l , :) y ( 2 , : )  y ( 3 , : )  y ( 4 , : ) ] ;  

end 

end rank (R)

M ATLAB Program for F4

In the proof of the linear preseiTer of F 4 , we stated that we could vshow that the 

16 matrices of the form D AjD  for i =  1,2 and D =  diag (1, ±1, ±1, ±1) were mapped 

to thems€;ives by comparing the inner products of these matrices with those already 

fixed by (p. Below follows the MATLAB code comparing the inner products of these 

16 m atrices with those of Ci for i =  1,3,5 and 6 . A simple comparison of the inner 

products will verify that these matrices must indeed be mapped to themselves. We 

put the 16 matrices in row vector form, storing them in ‘y’. The other matrices are

also on row  vector form, stored in ‘x’. Finally, we use the ‘rank’ command to show

that there  are 16 linearly independent matrices among the 26 listed.

el=Cl 0 0 0 3  ;e2=[0 1 0 0] ;e3=[0 0 1 03;e4=[0 0 0 1];

D=[l 1 1 1; 1 -1 1 1; 1 1 -1 1; 1 "1 1;

1 1 1 -1; 1 1 “1 ~1; 1 -1 1 -1; 1 -1 “1 - I ] ;

A( ; , : ,  1 ) - e y e (4 )-o n e s (4 )/ 2 ;
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AC: . : ,2)=.-[l 1 -1 ~1;1 1 1 1;1 -1 1 - l ; l  -1 l ] / 2 ;  k=0;

fo r  j™l:8 

f o r  i « l : 2

k=k+l ;B=diag(D( j , , : , i ) * d i a g ( D ( j , : ) ) ;  

y Ck . : ) - [ B ( l , : )  B(2 , : )  6 ( 3 . : )  B ( 4 , : ) ] ;  

end

end x=[~el ©2 e3 e4; e l  ~e2 e3 e4; e l  e2 ~e3 e4; e l  e2 e3 *-e4;

e l  e2 e4 e3; e l  e2 ~e4 e3; e2 e l  eS e4;

-e2 e l  e3 e4; e l  e3 e2 e4; e l  -eS e2 e4] ;

y*Cx(5, : ) ; x ( 7 , : ) ; x ( 9 : 1 0 , ; ra n k ([x ;y ])

MATLAB Program for Eg

In the proof of the linear preserver of Eg, we showed that ~  ^

X  ~  Is, Qi =  DisADis and for i =  1 , 7 .

We stated  that by comparing the inner product of these matrices with the rest of 

the elements in S&, tha t we could show that 4>{X) =  X  for all X  € We store 

those X  th a t  are fixed in row vector form in “rset” and store matrices of the forms 

DAD, X ij  and Yij in row vector forms in “rA8” , “rX8” and “r'Y8” respectively. Direct 

comparison of the inner product shows that each matrix must be fixed. We also stated 

that the m atrices of the forms

Is, DAD, Xij, Yij, X,,-,, and PD AD ,
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as defined in section 3.3, could be shown to span i¥g(Il). We form these matrices 

and put them in row vector form stored in ''‘r r ' , “rA8” , “rX8” , ‘"rYB” , 'irPS” and 

h,’PA8” respectively. The rank command will then show that there are 64 linearly 

independent vectors among these matrices.

d2==[l 1 1 1 1 -1  - I  1;1 1 1 1 -1  1 -1  1;1 1 1 ~1 1 1 -

1 1 -1 1 1 1 -1 1;1 " i  1 1 1 1 -1  i ; - i  1 1 1 1 1 -

1 1 1 1 ~1 -1  1 1;1 1 1 -1  1 ”1 1 1;1 1 “ 1 1 1 ~1

1 - 1 1 1 1 - 1 1  i j - l  I  1 1 1 - 1  1 1 ; 1  1 1 “ 1 “ 1 1

1 1 -1  1 -1 1 1 1;1 -1  1 1 -1  1 1 1;~1 1 1 1 - 1 1

1 1 - 1 - 1 1 1 1; 1 - 1 1 - 1 1 1 1 1 ;

1 - 1 - 1 1 1 1 1 ; - 1 1 - 1 1 1 1 1 1 ;

[ 1 1 1 - 1 - - 1  - 1 i ; - l  - 1  - 1  1 1 -

1 1 - 1 1 - - 1  - 1 1 ; - 1  - 1  1 - 1

1 - 1 1 1 - - 1  - 1 1 ; - 1  1 - 1  - 1 . 1 -

- 1  i  1 1 - - 1  - 1 1 ; 1  - 1  - 1  - 1 1 -

1 1 - 1 - 1 “ 1 ” 1 1 ; - 1  - 1 1 1 - 1 -

1 - 1 1 - 1 - 1  - 1 l ; - i  1 - 1 1 - 1 -

- 1 1 1 - 1 - 1  - 1 1 ; 1  - 1  - 1  1 - 1 -

1 - 1 - 1 1 " 1  - 1 1 ; - 1  1 1 ~ l  - 1 -

- 1 1 - 1 1 " 1  - 1 1 ; 1  - 1  1 - 1  - , 1 -

- 1 - 1 1 1 - 1  - 1 1 ; 1  1 - 1  “ 1 - 1 -

1 1  - 1 - 1 - 1  - 1  1 1 ; 1  - 1 1 - 1 - - 1

1 ;

1 ;

1;

1;

1;

1 ;

13;

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



173

■1 I 1 -1  ~1 "1 1 1;1 -1  “ 1 i  - 1  - i

-1 1 "1 1 -1 -1 1 1 :-1  ~i 1 1 “ I “ 1

1 ~1 -1  ~1 1 ~1 1 1 “ 1 “ 1 1 -1

1 -1  ~1 -1 -

“ 1 “ 1 -1 -1

d6=[l -1 - i  ~1 ~

1 1 1;~1 1 - I  - i  ” 1 1

1 1 1 ;-1  -1 - 1 1 - 1 1

1 1 1 ] ;

-1 “1 1 ;-1  1 -1 ~1 -1 -1 "1 1;

-1 -1 1;"1 -1 ~1 1 -1 -1 ~1 1;

~1 "1 -1 ~1 1 -1 -1 1;-1  -1  -1  -1  - I  1 -1 1;

-1  - 1  ~1 -1 -1  - 1 1 1 ] ;  

d_ 8 =[ d6 ; d4 ; d2 ; o ne s ( 1 , 8 ) ] ; w - [ l  1 1 1 1 1 1 - 1 ] ’ ; A=eye(8)  -  w*w’ / 4 ;  

f o r  i = l : 6 4 ;

a = d i a g ( d „ 8 ( i ,  : ) ) * A * d i a g ( d _ 8 ( i , : ) ) ;  A _ 8 ( : , : , i ) = a ;  

rABCi, : )  = C a( l . : )  a ( 2 , : )  a ( 3 , : )  a ( 4 , : )  a ( 5 , : )  a ( 6 , : )  a ( 7 , ; )  a ( 8 , : ) ] ;  

end 

k=0;

f o r  j = 2 : 8  

f o r  i = l : ( j " l ) ;

a=eye(8); a(i,i)=0; a( j, j)=0; 

b=zeros(8); b ( i , j )= l ;  b ( j , i )= l ;

X=a+b; Y==a-b; k-k+1;

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



174

r X 8 ( k , : ) - B ( l , : )  X ( 2 , : )  X ( 3 , : )  X ( 4 , : )  X ( 5 , : )  X ( 6 , : )  X ( 7 , : )  X ( 8 , : ) ] ;  

r Y 8 C k , : ) - [ y ( l , : )  Y ( 2 , ; )  Y ( 3 , : )  Y ( 4 , : )  Y ( 5 , : )  Y ( 6 , ; )  Y ( 7 , : )  1 ( 8 , : ) ] ;  

end 

end 

k=0;

f o r  m=3:8;  

f o r

f o r  i = l ; ( j ~ l )

k=k+l;  P=eye(8) ;  P ( i , i ) “0; P ( j . j ) = 0 ;

P(m,m) =0; P ( i , j ) = l ;  P ( j  ,m)=l;  P( i n , i ) = l ;

r P 8 ( k , : ) = C P ( l , : )  P ( 2 , ; )  P ( 3 , : )  F ( 4 , : )  P ( 5 , ; )  P ( 6 , : )  P ( 7 , : )  P ( 8 , : ) ] ;  

P „ 8 ( : , : ,k)=P;  

end 

end

end p= [ z e r o s ( 1 , 7 )  1; e y e (7) z e r o s ( 7 , 1 ) ] ;  f o r  i = l : 6 4  

P = p * A _ 8 ( : , ; . i ) ;

r P A 8 ( i , : ) = [ P ( 1 , ; )  P ( 2 , : )  P ( 3 , : )  P ( 4 , : )  P ( 5 , : )  P ( 6 , : )  P ( 7 , : )  P ( 8 , : ) ] ;  

end

a = [ l  z e r o s d  , 8 ) ]  ; r l = [ a  a a a a a a 1] ;

r s e t = [ r I ; r A 8 ( i , : ) ; r X 8 ( l . : ) ; r X 8 ( 3 , : ) ; r X 8 ( 6 , : ) ; r X 8 ( 1 0 , : ) ;

r X 8 ( 1 5 , : ) ; r X 8 ( 2 1 , : ) ; r X 8 ( 2 8 , : ) ] ; 

ip= [rA8; r X 8 ; rY8] *r s e t   ̂ rank ( [ r l ; rA8; rX8; rY8; r P 8 ; rPAB])
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MATLAB P ro g ram  for E7

in the proof of the linear preserver of E 7 , we stated that we could, s.how that 

the matrices of the form D AD  and X ,j, both in Ss were mapped to themselves by 

comparing the liinei: products of these matrices with those already fixed by 4>. Below 

follows the MATLAB code compaiing the inner products of these 63 matrices with 

those of A"ip4 .i for i =  1,2,4,5,6,7.  A simple comparison of the inner products 

verifies th a t these matrices must indeed be mapped to themselves. Since the matrix 

realizations used for E 7 form a subset of those used for Eg, we use the matrices 

previously defined in for Eg. We put the 63 matrices in row vector form, storing 

them in “rA7” and “rX8 ” respectively. The other matrices are also on row vector 

form, stored in “rset” . We also stated that these matrices tog'ether with Jg and 

matrices of the form Xijk as defined in section 3.3, could be shown to span the 50 

dimensional subspace of Mg{R). We store these new matrices in row vector form 

in “l i” and  “rP7” respectively. The rank command will then show that there are 50 

linearly independent vectors among these matrices.

rA7=rA8C8:42, : ) ;  rX7=[rX8( 1 : 2 1 , : ) ; rY8( 2 2 : 2 8 ) ] ;  r P 7 - r P 8 ( l : 3 5 , : ) ;

P_7=P_8 (  : , : ,  3 6 : 56 ) ;  f or  i = 3 6 :56 

P = d i a g ( [ l , l , l , l , l , l , l , “ l ] ) * P „ 8 ( : , ; , i ) + d i a g ( [ 1 , 1 , 1 , 1 , 1 , 1 . 1 , - 1 ] ) ;  

r P 7 ( i , : ) = [ P ( 1 , : )  P ( 2 , : )  P ( 3 , : )  P ( 4 , : )  P ( 5 , : )  P ( 6 , : )  P ( 7 , : )  P ( 8 , : ) 3 ;  

end

r s e t ^C r l  ; r X 7 Cl , : ) ;rX7C3,: ) ; r X 7 ( 1 0 , : ) ; r X 7 ( 1 5 , : ) ; r X 7 ( 2 1 , ; ) ; r X 7 ( 2 8 , ; ) 3 ; 

ip= [rA7; rX7] * r s e t   ̂ rank ( [ r l ; rA7; rX7; r P7 ] )
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M A TLA B P ro g ram  for Ef,

111 the proof of the linear preserver of Ef,  ̂ we stated tliat we could show that the 

matrices of the form X y were mapped to themselves and matrices of the form DAD  

were mapped to themselves or to DAA  (for D  and D  of particular forms) by comparing 

the inner products of these matrices witii those already fixed by S. Below follows the 

MATLAB code comparing the inner products of these matrices with those of X ^i^ i 

for i =  1 ,2 ,3 ,4 ,5 ,7 . A simple comparison of the inner products will verify that these 

matrices must indeed be mapped to themselves. Since the matrix realizations used 

for Er form a subset of those used for Eg, we use the matrices previously defined in 

for Eg. We put the matrices in row vector form, storing them in “rX6” and “rA6” 

respectively. The fixed matrices are also in row vector form, stored in “rset” . Next, 

we fixed one of these matrices of the form D A D  and compare inner products of 

the remaining with those fixed, whose row vectors are once again stored on “rset’. 

Comparison will once again verify that all matrices of the form D AD  are mapped 

to themselves. We store the matrices of the form P D A D  (as defined in section 5.3) 

in row vector in “rZA6” . Comparing inner products with those already fixed (whose 

row vector forms are once again stored in “rset”), shows that these matrices must 

be mappcHl to themselves. Finally, we stated that these matrices together wdtli Jg 

and m atrices of the form Xijk as defined in section 5.3, could be shown to span the 

37 dimensional subspace of We store these new matrices in row vector form

in “rl” a n d  “rP6” respectively. The rank command will then show' that there are 37 

linearly independent vectors among these matrices.
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A_6=A.8C:,:,8:27); rA6=^rA8(8:27 , : )  ; rX6 =rX8 ( i  : 15,:)  ; Y**Ceye(6 ) 

zeros(6 ,2) ;ze ro s (2 , 6 ) eye(2)-ones(2)] ; i-Y=rY8(28,: ) ;  

rP6 =rP8 ( l : 2 0 , :>;

rse t= [ r I ; rX 6C l , :3 ; rX 6(3 , : ) ; rX6(6 , : ) ;rX6(10,: ) ;rX6(15,: ) ;rY]; 

ip=CrA6 ; rX6 ]*rse t^  r s e t~ [ r I ; rX 6 ;rY;rA6 ( l , : ) ] ;  ip=CrA6 ] * r s e t ’ 

z»P„6 ( : , :  ,l,2,3)>i*Y; for  i=l;20 

Z=z*A_6 ( : , : , i ) ;

rZA6 ( i , : ) = [ Z ( l , : )  Z(2,:)  2 ( 3 , : )  Z(4,:)  Z(5. :)  Z(6 , : )  Z(7 , : )  Z(8 , : ) ] ;  

end rset*= [ r l ; rX6 ; rY; rA6 ] ; ip« [rZA6 ] * r s e t ' 

rank( [r  I ;rA6;rX6 ;rY;rP6 ;rZA6 (3 :20 , : )3 )
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