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Abstract

In this dissertation, we study three different sets of matrices. Pirst, we consider
Buclidean distance squared matrices. Given n points in Euclidean space, we construct
an n x n Buclidean squared digtance matrix by assigning to each entry the square
of the pairwise interpoint Euclidean distance. The study of distance matrices is
useful in computational chemistry and structural molecular biology. The purpose
of the first part of the thesis is to better understand this set of matrices and its
different characterizations so that a number of open problems raight be answered and
known results improved. We look at geometrical properties of this set, investigate
forms of linear maps that preserve this set, consider the uniqueness of completions
to this set and look at subsets that form regular figures. In the second part of
this thesis, we consider ray-pattern matrices. A ray-pattern matrix is a complex
matrix with each nonzero entry having modulus one. A ray-pattern is said to be
ray-nonsingular if all positive entry-wise scalings are nonsingular. A full ray-pattern
matrix has no zero entries. It is known that for n > 5, there are no full ray-nonsingular
matrices but examples exist for n < 5. We show that there are no 5 x 5 full ray-
nonsingular matrices. The last part of this thesis studies certain of the finite reflection
groups. A reflection is a linear endomorphism 7" on the Euclidean space V such that
T(v) = v—2(v,u)u for all v € V. A reflection group is a group of invertible operators
in the algebra of linear endomorphism on V that are generated by a set of reflections.
One question that has recently been studied is the form of linear operators that
preserve finite reflection groups. We first discuss known results about preservers of
some finite reflection groups. We end by showing the forms of the remaining open
Cases.

ix
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Chapter 1

Introduction

The theme of this dissertation is the study of certain sets of matrices. We will consider
different open problems for each of these sets. To begin, we will first give some basic

definitions and notation. Then we will give an overview of the remaining chapters.

1.1  Notation and Definition

We use R. and C to denote the real and complex fields. The set of m X n matrices
with entries from a field F are denoted by M,,,(F). For convenience, when F = R,
we will shorten this to M, ,. Also, we will use M, (F) to denote M, ,(F). Forz € C,
let T dencte the complex conjugate of # and |z| denote the absolute value of x. We
use || - || to denote the usual Euclidean norm. For a matrix 4 € M,,,(F), we use
A = (ay;) to denote that a;; € F is the entry of A lying in the ith row and jth column,

Let A € M, ,,(F), then the n x m matrix A* is the transpose of A, while |A] = (Jas;])
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conjugates of entries of 4 and A* = A’ is the Hermitian adjoint of A. Given maftrices
A, B e M,,, AoB is also in M,,, and is the entrywise product of A and B. It is
called the Hadamard (or Schur) product.

Let I € M,(F) be the identity matrix. Let e;,...,e, be the vectors forming the
standard basis for R. In other words, ¢; is the vector with the only nonzero entry in
the ith position and the value of that entry equal to one. Let e be the vector of all
ones. Let Fy; be a standard basis matrix of M,, . In other words, F;; is the matrix
whose only nonzero entry is in the 4th row and jth column and is equal to one. For
My, Ejj = emg Let J be the all ones matrix. For A € M, , and B € M, ,, the matrix

A®D B € My, g, is the divect sum and defined as

A0
AEB m

0 B
For any vector v € F”, then D = diag(v) € M,(F) is the diagonal matrix with
(D)zz = UV;.

A matrix A € M,(F) is symmetric if A* = A. A is Hermitian if A* = A. Note
that for AZ, (R), the properties of being Hermitian and symmetric are the same. Let
S, be the set of real n x n symmetric matrices. A matrix A € M,(F) is said to
be positive (semi-)definite if 2* Az > 0 (vespectively, 2* Az > 0) for all 0 # z € F™.
Alternatively, A is Hermitian and all the eigenvalues of A ave positive (respectively,
nonnegative). Let PD(n) be the set of real nxn positive definite matrices and PSD(n)

the set of real n x n positive semi-definite matrices. It is an easily proven fact that a
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matrix A = (a;) € PSD(n) if and only there exists a mattix X ¢ M, (F) such that
A= X" X, Furthermore, the rank of 4 and X agree. If we label the columns of X as
Ty, I € F*) then ay = (24, 25) where (-,-) is the standavd inner product. Such

matrices are called Gram matrices.

1.2  Overview

This thesis deals with three different sets of matrices:

In Chapter 2 we study the cone of Euclidean squared distance (ESD) matrices.
Given n points in Euclidean space, we can construct an n x n Euclidean distance
matrix by assigning to each entry of the matrix the pairwise interpoint Euclidean
distance. The study of distance matrices was motivated originally by statisticians
and psychometricians interested in (classical) multidimensional scaling and by more
recent work which involves computational chemistry and structural molecular biol-
ogy. The purpose of this chapter is to better understand this set and its different
characterizations so that a number of open problems might be answered and known
results improved. We start the chapter describing the motivation for studying this set
of matrices and then review different characterizations of this set and their history.
We then present some results on the facial structure of the convex cone, the angle
between rmatrices in the set and linear preservers of this set. The third section will
deal with the uniqueness of a completion to this set of ESD matrices. In a partial

matrix, some entries are given and others are left unknown. A completion of the
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partial matrix is a matrix whose entries agree in the specified locations of the partial
matrix and the unspecified entries have values assigned so that the matrix takes on
the desired properties. We consider the problem of testing the uniqueness of a given
completion. We generalize this result so that other completion problems might also
be considered. In the last section, we consider a subset of Buclidean squared distance
matrices, namely those that correspond to points that lie on a hypersphere whose cen-
ter is the origin and the centroid of the points is also the origin. We discuss known
results, especially characterizations, and then consider the form of linear preserver of
this set.

In Chapter 3, we consider ray-pattern matrices. This is a generalization of sign-
pattern matrices. A ray-pattern is a complex matrix with each nonzero entry having
modulus one. A ray-pattern A is said to be ray-nonsingular if Ao X is nonsingular for
each entry-wise positive matrix X. Looking at full ray-pattern matrices, i.e. no zero
entries, it is known that for n > 5, there are no n x n full ray-nonsingular matrices.
For n < 5 there are examples of full ray-nonsingular matrices. We show that for
n =5 there are no full ray-nonsingular matrices.

The last chapter of this thesis studies various sets of matrices generated by reflec-
tions. Recall that a reflection is a linear endomorphism 7" on the Buclidean space V
such that T'(v) = v—2(v,u)u for all v € V. A reflection group is a group of invertible
operators in the algebra of linear endomorphism on V' that are generated by a set
of reflections. These reflections can be represented by matrices and the resulting re-

flection groups are matrix sets. The particular problem that we study involves linear
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preservers of the space spanned by these reflection groups. We study this problem
by considering the representative matrix sets & and then determine the form of those
linear operators ¢ : [8] ++ [8] such that (&) = & We first discuss known results
about preservers of some finite reflection groups and then solve the problem for the
remaining open cases.

Sections 2.1 and 2.2 are based on joint work with Chi-Kwong Li and Michael
Trosset and found in [34]. Section 2.3 is based on [32], which is joint work with
my advisor, Chi-Kwong Li. Chapter 3 represents joint work with Chi-Kwong Li and
Bryan Shader and is based on [33]. Chapter 4 is based on [31], joint work with

Chi-Kwong Li.
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Chapter 2

Fuclidean Squared Distance

Matrices

We divide this chapter into four sections. In the first section, we will give background
information about the set of Buclidean squared distance (ESD) matrices. This will
include motivation for studying this problem, different characterizations of this set,
as well as a short history of the study of this problem. The second section will deal
with some consequences of these characterizations. We will present results concerning
the facial structure of the cone of n x n Euclidean squared distance matrices, bounds
on angles between certain matrices and a discussion on linear preservers of this set.
The third section will study the uniqueness of a completion of a partial matrix to an
ESD matrix. The final section will address future work. In particular, we will discuss
a subset of D(n) whose elements we call spherical ESD matrices.

One of the interesting facets of the study of ESD matrices is that the charac-

7
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terizations mentioned in this next section provide a relationship between the set of
ESD matrices and other types of matrices. To study n x n ESD rmatrices, originally
(n+1) x (n + 1) Menger matrices were studied. More recently, a subset of n x n
positive semidefinite (PSD) matrices have been extensively studied. Our results use
extensively (n — 1) x (n — 1) PSD matrices. Throughout this chapter, we will use
these other sets of matrices to study the set of ESD matrices. Not only does this
allow us to more easily say something about ESD matrices, but in some cases (see

subsection 2.3.3) to say something about other problems too.

2.1 Characterization of ESD Matrices

2.1.1 Motivation

Distance geometry is concerned with the interpoint distances of configurations of n
points in metric spaces. It is natural to organize these interpoint distances in the form
of an n X n distance matriz, so the study of distance geometry inevitably borrows
tools from: matrix theory. For example, a fundamental problem in distance geometry
is the embedding problem: determine whether or not a specified set of numbers can
be realized as a configuration of points in a specified metric space. This problem
was first avddressed (anonymously) in 1841 by A. Cayley [9], who derived a necessary
condition involving a matrix determinant for five points to reside in Euclidean space.

The ability to characterize distance matrices has important applications in a va-

riety of disciplines. Nearly a century after Cayley’s contribution, a characterization
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of distance matrices (re)discovered by G. Young and A.S. Householder [50] was the
impetus for (classical) multidimensional scaling [43, 46, 17]. Originally developed by
psychometricians and statisticians, multidimensional scaling is a widely used tool for
data visualization and dimension reduction. Research on multidimensional scaling
continues to exploit facts about distance matrices, e.g., [38]. Analogously, in com-
putational chemistry and structural molecular biology, the problem of determining a
molecule’s 3-dimensional structure from information about its interatomic distances
is the problem of finding a matrix of 3-dimensional Euclidean distances that satisfies
certain constraints, as in [11].

Characterizations of distance matrices are not only mathenmticdﬂy elegant, but
genuinely useful to researchers in other disciplines. Unfortunately, the literature
is fragmented and somewhat obscure. We have endeavored to collect several well-
known characterizations of Euclidean squared distance matrices. Applying the tools
of modern matrix theory, we provide short proofs of these characterizations and derive
several consequences of them.

Formally, a Buclidean squared distance (ESD) matrix A = (a;;) is a matrix for
which there exist zy,...,z, € R* such that ay; = ||z; — z;||>. If k is the smallest
dimension for which such a construction is possible, then k is the embedding dimension
of A. Clearly, the choice of @1, ..., 2, is not unique, for if #; = z; -z, then #; — F; =
xi ~ x5 Given w € R” with 17, wy = e'w # 0, let o = L% wz;/ T, wy. Then
P wi&5 = 0 € RF, so we can assume without loss of generality that 2 e WL ==

0 € R*. This linear dependence of the vectors %1, .. ., Ly demonstrates the well-known
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fact that the largest possible embedding dimension for » points is n — 1.

It follows iramediately from the definition that an ESD matrix is a real, symmetric,
nonnegative, hollow (a;; = 0) matrix. These properties are necessary but not sufficient
for a matrix to be an ESD matrix (a matrix with these properties is called a pre-
distance or dissimilarity matrix); in Subsection 2.1.2 we collect and provide short
proofs (some new) of a number of well-known characterizations of ESD matrices.

Let D(n) denote the set of n x n ESD matrices. Suppose that A = (||z; — z;]]?) €
D(n) and o > 0. Then (|jaw; — az;|*) = a*4 € D(n), and note that therefore D(n)

is a cone. In the next section we will show that it is a convex cone.

2.1.2 Characterizations

Let S, be the set of n x n symmetric matrices. Let ey, ..., e, denote the coordinate
unit vectors in R™ and let I denote the n xn identity matrix. Set e = ey +- - +-+e, and
J = ee’. Given w € R" such that efw # 0, define the linear mapping 7., : S, — S,

by

1 ew! wet .
Tw(A) == *“2“ (I et ;F’t;) A (I - ('_th) . (211)

Given w € R", we say that z,,...,z, € R¥ is w-centered if and only if P Wiy = 0.
The following theorem offers characterizations of the ESD matrices. The historical

context of these characterizations are discussed in the next section.

Theoremy 2.1 Suppose that A is an n X n pre-distance matriz. Let w be any vector
i R™ such thot etw # 0 and let U be any n x (n — 1) matriz for which the n x n

matriz V == (;—f/—;l[f | is orthogonal. Then the following conditions are equivalent.
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1l
(a) There exists a w-centered spanning set of R®, {ay, ..., 2.}, for which A =
(s~ az|%).
(b) There exists a w-centered spanning set of R¥, {xy,..., 2.}, for which 7,(A) =
(fzy).
(¢} The matriz UAU is negative semidefinite of rank k.

(d) The submatriz B in

1 0 0 e\ /1 0

0 vt e A 0 Vv

0 * B
is negative semidefinite of rank k.
0 €
(e) The matriz Ay = has nonzero eigenvalues ay > 0> ag 2 -+ 2 Qpas.
e A
0 ¢

(f) There exists an n x n permutation matriz P for which the matriz
e P'AP
has rank k + 2, and, for j = 2,...,k+ 2, each j x j leading principal minor is

nonzero and has sign (~1)771.
Proof We first establish the equivalence of conditions (a), (b), and (c).

(c) = (b) Let vy,...,v, denote the rows of V' and let uy, ..., u, denote the

rows of U. It follows from

I=VVi= (& U) = I U
o n
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¢

that UU* = I — LJ. Hence, it follows from J4 ;f‘;w = ﬁ’*j;;; = get = J that

ot . " P !,{t
vt 7 - we'\ _ (1 s ;) A I R L ];(] B A ffwﬂ,) ,
et n elw edw) n ’ ehw.

Because (AU is a negative semidefinite matrix and has rank k, we can write
] 4 A
~LUAU = Y'Y for some k x (n — 1) matrix ¥ of rank k. Let W = U(I %) and

let xy,..., 2, denote the columns of X = YW, Then

n ,,f
Z?Uj:tj = Xw = YU ([ — J.ffm) w = YU w ~ w) =0

etu

and

4 t
XX = WYYW = o W UIEAUW = —— (1 - “::%) UU AU (1 - W)

el
1{. ewt wet
2 e | [ e | A ] e e -} = 7, (A).
2 etw etw ’

It remains to show that @y,...,%, spans R*. The range space of U is e*. If

§
H

z € e*, then

et
I — = z 2.1.
( e‘w) z =z (2.1.2)

[ 3
hence, U* and U*(I - ’ﬁ%) have the same range space. Furthermore, because YU? =

(0|Y)V?, rank YU?! = rank Y = k. Hence,

ot
rank X = rank YW = rank YU (I - ———u—) = rank YU' = k.
(b) = (a) Definer:S, — S, by
K(B) = diag(B)J —~ 2B + Jdiag(B). (2.1.3)
Let X = (x| |x,) and
H=r (X‘X) (a" vy~ 2aba rﬁ%) = (“.Lz — J,”‘Z) : (2.1.4)
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Because J(I - we! )

gy w J o~ =0 and X(T -~ -:!;5;}) = X - f’ij{‘:* = X,
rall) = ~+ (1~ % (DJ —2X'X + JDY (I W XX = ()
“ R P N oty ] AT Twls

where D = diag(B). Furthermore, it follows from (2.1.2) that

i
e
(I e ;ﬁ"}z) (t;z‘ s {;?-j) =€ 4,y

50

=5 (e - e;) H (e; — €;) = (s — ;)" T (H) (e; — ¢;)
= (Cﬁi e (’ﬂj)t T'w(A) ((:57; - ,,:;) s A,;j,

ie., H = A,

Notice that this argument demonstrates that 7, is injective on the hollow sym-
metric matrices.

(8) = (¢) Let mp = Y}, 2;/n and &; = z; — 29, so that &,...,%, is an

e-centered spanning set of R¥ with A = (||& — ;][?). Let X denote the k x n

matrix with columns Z,...,%,. Then Xe =0, so XV = (0|XU) and it follows that
rank XU =rank X = k.

Because V is orthogonal, U'e = 0 and therefore Ut.J = Utee’ = 0 = JU. Applying
(2.1.4),

UPAU = U (JD - 2X*X + DI) U = 20K KU = -2 (}‘EU)” (Xv)

is a negative semidefinite matrix of rank &.
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() « (d) Because U'e =0,

) 1 0\ /0 e\ /1 0
Ag = = ViAo Vo (2.1.5)
o vi)\e 4/ \o v
0 0 N4 0
0 ¢ 1 0 0
) et/n = | n ede/n  x (31.6)

A)\o efym U
\o Ut 0 s ULAU

ek

i

Thus, B = U'AU and conditions (¢) and (d) are equivalent.

Now we establish the equivalence of conditions (d), (e), and (f). To do so, we rely

on the following interlacing inequalities (see, for example, [14]):

If by > .- > b, are the eigenvalues of an r X r principal submalriz of an

> oeee 2 oay, them a; 2> b, 2

8 X & symmetric maotriz with eigenvalues ay

G fori=1,...,r.

(d) = (e) Because V is orthogonal, so is V5 and it follows from (2.1.5) that
Ap and Ap have the same eigenvalues. By interchanging the first two rows of Ag and
performing Gaussian elimination, we see that rank Ay = rank Ay = 2+rank B = 2+k.
0 0
Because has no positive eigenvalues and is a principal submatrix of Ag, it
g P p
0 B

follows from the interlacing inequalities that Ay, hence Ay, has at most one positive
eigenvalue. But the leading 2 x 2 principal submatrix of Ay has a negative determinant
and therefore one positive and one negative eigenvalue; hence, by the interlacing
inequalities, Ay has at least one positive eigenvalue. Thus, Ag has exactly one positive

eigenvalue and, because rank Ay =k + 2, k 4 1 negative eigenvalues.
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(e) = (d) We have already argued that rank B = rank Ag — 2 = rank 4o - 2 =
k42-—2=k Given v € R", we demonstrate that b == v*Bv < 0. Toward that

end, let
01 0 0 1 0 0 vn 0

D=|10 0fd|1 0 0fl=|vn ¢ =|,

0 0 o 0 0 w 0 x« b

where ¢ = e’ 4e/n. Notice that det(D) = —nb.
Let dy > dy > dy denote the eigenvalues of D. Let ¢ be any orthogonal matrix of

the form

010
Q=110 0|

00 v

D =
in which case Q'A4¢Q = has the same eigenvalues as Ag, i.e., the same
* %

eigenvalues as Ay. Because D is a principal submatrix of Q! AyQ, it follows from the
interlacing inequalities that dy < dy < 0. Furthermore, it follows from the Rayleigh-

Ritz Theorem that d; > 0. We conclude that b = — det(D)/n = ~dydads/n < 0.

(e) = (f) Any matrix of the form
0 el
, (2.1.7)
e PLAP
where P is an n x n permutation matrix, must have the same cigenvalues as Ag.

It follows from (e) that any such matrix must have rank & -+ 2. We choose P so

that, for 5 = 2,...,k+ 2, the j x j leading principal submatrices of (2.1.7) have no
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zero eigenvalues. Then the 2 % 2 leading principal subatrix is . which has a
10

positive eigenvalue. Hence, for j = 2,..., k+2, each j x j leading principal submatrix

will have one positive and j ~ 1 negative eigenvalues and the corresponding minors

will have signs (—1)71.

(f) = (e) Because (2.1.7) has rank k +- 2, so does 4y. Because the 2 x 2 leading
principal minor of (2.1.7) is negative, the 2 x 2 leading principal submatrix has one
positive and one negative eigenvalue. Because the 3 x 3 leading principal minor of
(2.1.7) is positive, it follows from the interlacing inequalities that the 3 x 3 leading
principal submatrix has one positive and two negative eigenvalues. Continuing in this
manner, we conclude that the (k + 2) x (k -+ 2) leading principal submatrix, hence

(2.1.7), hence Ay, has one positive and k + 1 negative eigenvalues. t

2.1.3 Historical background and related results

Let us make some remarks about the characterizations established in Theorem 2.1.
We have already noted that the requirement that xy,..., 2, is w-centered entails no
loss of genierality; hence, condition (a) is simply the definition of a k-dimensional ESD
matrix, i.e., an ESD matrix with embedding dimension k.
A conmection between the ESD matrix A and the bordered matrix Ag, from con-
dition (e), was originally established by Cayley [9]. Bordering A on the bottom and
A e

right, Cawyley demonstrated that det = 0 if A € D(n) for n = 3,4,5 and
t
e 0
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certain embedding dimensions. Menger [40, 41] elaborated on this connection.! Given
A, let A(%) denote the (n—1) x (n—1) submatrix of A obtained by deleting row ¢ and
column 7. Obviously, if 4 € D(n), then each A7) € D{(n — 1). Suppose, conversely,
that each A(z) € D(n — 1). Then Menger’s Third Fundamental Theorem [41, p. 738]
states that A € D(n) if and only if the sign of det(4y) equals (—1)* or 0. This
led Menger to a recursive Metrical Characterization of Fuclidean Sets [41, p. 744],
the first characterization of ESD matrices. Menger’s hypotheses were subsequently
weakened by Blumenthal [6).2 Our condition (f) is Theorem 42.3 in {7, p. 104].

It is not easy to determine whether or not A is an ESD matrix by checking cou-
dition (f).* Furthermore, condition (f) is not constructive, i.e., it does not produce a
configuration of points for which A = (|ja; — z;]|*) if A is an ESD matrix. In 1935,
a constructive alternative to the Cayley-Menger approach was noted by Schoeuberg

[44]. Upon renumbering Schoenberg’s vertices 1,...,n as 21, ..., Tn—; and relabelling

'The matrices Ag are often called Cayley-Menger matrices; their determinants are often called

Cayley-Menger determinants.
’K. Menger and L.M. Blumenthal were the two most significant figures in classical distance

(“metrical” )} geometry. In [41, p. 721], Menger expressed his “thanks to Dr. Leonard M. Blumenthal
for his help in the editing of this paper...” In the preface to his University of Missouri monograph
[5, p. 3], Blumenthal attributed his “interest in abstract metrics” to “lectures that Karl Menger gave
at the Rice Institute the spring of 1931”7 and to “the second year [1934~-35] of [a National Reseaxch

Fellowship] spent with Professor Menger at the University of Vienna.”

*Computational applications of Cayley-Menger determinants include [28], in which Klapper and
DeBrota inferred a matrix of interatomic distances from boud lengths, geminal distances, and vicinal
distances; and [11], in which Crippen and Havel used a “tetrangle inequality” to smooth lower and

upper houncls on interatomic distances.
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his vertex O as 2, his Theorem 1 states that, with w == ey, 7, (A) is positive semidef-
inite and of rank k. In contrast to our statement of condition (b), Schoenberg did
not emphasize the Gram matrix representation 7,(4) = (xfz;); however, his proof
of sufficiency is constructive and he did emphasize that “the actual construction. .. is
therefore carried out by a reduction of the quadratic form. .. to its canonical form. ..”
Three years later, condition (b) with w = ¢, was rediscovered by Young and House-
holder [50].% In contrast to [44], their proof used “a matrix first given by Cayley in
1841,” the rank of which they demonstrated to equal k -+ 2; however, it appears that
Young and Householder were unaware of earlier work by Menger and Schoenberg.®
I xq, ..., 2, is e,-centered, then z,, is located at the origin. In contrast to [50, 43],
Torgerson [46] preferred locating the configuration’s centroid at the origin. Accord-

ingly, Torgerson popularized the use of w = e in condition (b). A thorough analysis

*G. Young received his M.S. from the University of Chicago (U.C.) in 1936 and remained as a
research assistant in mathematical biophysics through 1940. A.S. Householder received his Ph.D.
from U.C. in 1937. They were motivated by the interest of various U.C. psychologists in scaling,
noting: “This paper was written in response to suggestions by Harold Gulliksen and by M.W.
Richardson. The latter is working on a psychophysical problem in which the dimensionality of a set
of points whose mutual distances are available is a central idea.” Accordingly, [50] was published in
Psychometrika and was widely cited by psychometricians unfamiliar with [44]. Richardson’s paper,
[43], was the seminal work on multidimensional scaling. In 1946, Gulliksen [20] surveyed methods
for scaling via the method of paired comparisons; he subsequently directed the Ph.D. thesis of W.S.

‘Torgerson, who extended Richardson’s ideas to the case of fallible data in [46].
®In his rnonumental treatise on distance geometry [7], Blumenthal correctly attributed condition

(b) with w = e, to [44]. He did not cite [50].
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of the linear transformation 7, was undertaken by Critchley [12], who introduced the
now-ubiquitous 7 to honor Torgerson. The extension of condition (b) to arbitrary
w ¢ et is due to Gower [18, 19]. This condition is considered by many to be the most
practical; not only does it give a method of verifying if a matrix is an ESD matrix,
but also a straigtforward decomposition gives a realization of the generating points
Trye. o, B € RE

Both Schoenberg {44] and Young and Householder [50] gave (different) direct
proofs that conditions (a) and (b) are equivalent. In contrast, Blhumenthal [7] first
proved that (a) and (f) are equivalent, then demonstrated that (f) and (b) are equiv-
alent. Having thus demonstrated the equivalence of (a) and (b), he then argued that
(b) and (c) are equivalent and stated the equivalence of (a) and (c) as a corollary.
Although Blumenthal did not emphasize this result, we regard (¢) as the fundamental
characterization of ESD matrices. Condition (¢) states simply that the compression
of A on et ie., the restriction of both the domain and the range of the operator A
to the subspace e, is negative semidefinite. As it does not depend on the choice of w
and U, it is as nearly a coordinate-free characterization of D(n) as can be managed.

Because of (¢), any coordinatization of e* leads to a characterization of ESD

matrices. We note two examples from the literature.

Corollary 2.2 (Hayden and Wells [21]) Suppose that A is an n x n pre-distance
matriz. Let @ denote a Householder transformation that satisfies Qe = ~+/ney, let g
denote the first column of 3, and write Q@ = (q|~U). Then A & D(n) with embedding

dimensions k if and only if (~-UYA(~U) = Ut AU is negative semidefinite of rank k.
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Proof Let ¢, ... 7} denote the rows of (). Because Qe = —fney, ry, ..., 1y € .

Because Householder transformations are symmetric and orthogonal, we deduce that

g =1y = —e/\/n, then apply (c) to V = —Q. o

Corollary 2.3 (Hayden, Wells, Liu, Tarazaga [23]) Suppose that A is annxn
pre-distance matriz. Then A & D(n) with embedding dimension k if and only if there

ezist mutually orthogonal wectors qy, ..., € e+ such that

wwA = Aee! + ezt + zet + Z 4505 (2.1.8)
Gzl
where
L&,
JWL

and z 1s determined by (2.1.8), (2.1.9), and the fact that A is hollow.

Proof It suffices to prove that (2.1.8)-(2.1.9) is equivalent to (¢). Suppose that
there exist mutually orthogonal vectors g1, . . ., qx € e* for which (2.1.8) holds. Extend

e/, q1, . .., q, to an orthogonal basis e/\/7,q1,...,¢n-1 and let Q@ = (g gu-1)-

Then

@ (~34) Q=0 (Zq,q]) 0= (@) (@)’

J=1
is positive semidefinite of rank &, which is equivalent to ().
Conversely, suppose that (¢) holds for a specified U, in which case there exist

mutually orthogonal vectors wy, ..., wy € et such that

W%UtAU = Zw wj = WW*

Ve
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Then
1 et my\ 1 vyt
v (~La)v - (2a) (s )= 7
2 . ‘&‘ 4/ 7k e
Ut y Ww?
$0
v -+ trace (W ’i‘if"") = trace (wiA) == {)
2.
and
1 1 vyt et f/n
— i A » . &
~3A = VY (-ng)I/V‘W(W )

y W)\ U

Vg yut Uy ot byt
e Al o Ceae ~+WW + OWW ",

Now let A = v/n, z = Uy/\/n, and ¢; = Uw;. Then q,...,q € e*,

k k k
UWW'U* = U (Z w‘,-w;) Ub = 3" Uwwill’ =3 ¢;q,
Fe=1 Je==d

VES!
and
1 1 1
A= —-;}:tmce (WI/’W) = *‘;‘“t]ﬂ‘dte (WtW) = WEE wg Wy

1 k
=T Z wiUUw; = ey >4

g=1
£
We have not discovered our condition (d) in the literature. This is not surprising:
the equivalence of (¢) and (d) is trivial, and (c) is the more elegant condition. The
importance of (d} is that it involves the Cayley-Menger matrix 4;. One can then
use the interlacing inequalities to establish a direct connection between condition
(¢) and the classical condition (f) involving Cayley-Menger determinants, thereby

strengthening our conviction that (c) is fundamental to understanding ESD matrices.
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This connection interpolates condition (e), previously noted by Hayden and Wells
[21, Theorem 3.1]. From (c) and (e), we can easily deduce the possible ranks of an

ESD matrices.

Corollary 2.4 (Gower [19]) If A € D(n) and A hos embedding dimension k, then

rank (A) equals k+ 1 or k + 2.8

Proof It follows from (c) that Ut AU has k negative eigenvalues. Because UPAU is
a submatrix of V*AV, it follows from the interlacing inequalities that V*AV, hence
A, has at least k negative eigenvalues. Furthermore, because trace(A) = 0, A has at
least one positive eigenvalue. Hence, rank(A) is at least k- 1. Finally, it follows from
(e) that rank(Ag) = k + 2. Because A is a submatrix of Ag, rank(A4) is at most &+ 2.

2

Each of the conditions in Theorem 2.1 specifies the embedding dimension of the
distance matrix. Alternatively, the set of all ESD matrices can be characterized
through a connection to the set of correlation matrices. The following characterization
is noted in [13, p. 535], as a corollary of an elegant but complicated general theory of

cuts and metrics. Here we provide a direct proof, again relying on condition (¢).

Corollary 2.5 (Deza and Laurent [13]) Let £(n) denote the set of nx n correla-

tion matrices, i.e., symmetric positive semidefinite matrices with diagonal e, and let

SGower [19, Theorem 6] distinguished the two cases by demonstrating that rank(A) = k + 1 if
and only if the points that generate A lie on a sphere. We derive a different characterization in

Corollary 2.6.
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K(n) denote the closure of the set
Aedd =€) Az, Ceem).

Then K(n) = D(n).

Proof To show that K(n) < D(n), we suppose that ' = (¢;;) is a correlation matrix
and that A > 0. Then C is positive definite and ¢; = 1, 80 |¢;;] < 1 and e’ — C is a
pre-distance matrix. Furthermore, if U is any n % (n — 1) matrix whose columns lie
in e, then

Ut [\ (ect C)|U = -xutcu

is negative semidefinite. Applying condition (¢) of Theorem 2.1, it follows that A(ee
C) € D(n). Then, because D(n) is closed, it must be that K(n) < D(n).

To show that D(n) ¢ K(n), suppose that A € D(n) has embedding dimension k.
Given € > 0, we will demonstrate that there exists A € D(n) such that |4 — A|| < ¢
and A € K(n). Because K(n) is closed, the desired inclusion will then follow.

First we construct A. Let ry,..., %, be an e-centered spanning set of R* for which
A = (l|lz; — z;]|*). By construction, the rows of the k x n matrix X = (z;---z,) are
linearly independent vectors in et. Choose 41, ...,y, € R* 1% so that the rows of
the (n—1 — k) x n matrix Y = (y, - - -y,) extend the rows of X to a basis for e*. Let
Ay = (llye —y5]]?). Given e > 0, let % = ¢/||4,|| and 2! = (2!, 8y!). Then z1,..., 2, is

an e-centered spanning set of R*! with ESD matrix

A= (llzi -~z

N = (e = i) + 0 (s~ wl?) = 4 +8°4,,
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Al = A =

Next we show that A € € K(n), i.e., that there exists A > 0 such that, ee’ - Afdisa
correlation matrix. Becanse ee’ — A/ has unit diagonal entries for any ), it suffices
to find A > 0 for which ee* — A/X is positive definite.

Again we apply condition (c) of Theorem 2.1. If U is such that V' = (5|U) is
orthogonal, then U*AU is negative semidefinite. It follows that we can choose U so

that A = ~U*AU s a diagonal matrix with nonnegative entries. For this choice of U,

%A = VViee'VV! - -‘};V'thh’r 1%
n 0 Let Ae ml;;e‘ﬁi(f
= V Vi lv " v Vv
0 0 M\Lutde A

tde ot
7} - ;\-;;c Ae ’Wn( tAL

=V vt

T s 1
b ”X’JT‘; lJ fAf ‘“gA

is obviously positive definite for sufficiently large A > 0. o

Recently, Alfakih and Wolkowicz [2, Theorem 3.3] used Gale transforms to charac-
terize those ESD matrices that can be represented as A = A(eet — C). The following
result elaborates on their characterization; furthermore, it allows us to distinguish

between EESD matrices of ranks k -+ 1 and k + 2. Notice that, if V' is the orthogonal
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matrix constructed in the proof of Corollary 2.5, then

\
( bg b; bk b;,«ﬁ;;; bnwl
b} 1‘\1
)
VIAV = | A . (2.1.10)
brey
0 0
b
\ 73 /

Corollary 2.6 Suppose that A € D(n) has embedding dimension k and that V =
(wéwg!U) 18 an orthogonal matriz for which (2.1.10) is obtained. Then the following

are equivalent:

(a) There exist A > 0 and C € E(n) such that A = X ee! — C).

(¢c) rank(A) =k + 1.

Proof Because A = U'AU is negative semidefinite of rank &, thus Ay, ..., Ay < 0.
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(a) = (b) Writing € = ee’ — A/, it follows from (2.1.10) that

(,xn,wbg P A Y w&m,l\
~by |~y
0
VIOV = i ‘ 2.1.11
V= 5 by Ak . (2.1.11)
b1
0 0
\ e )

Because C, hence V*CV, is positive semidefinite, so are the principal submatrices
ATy b() ”'"hi
—b; 0

which necessitates b; =0 fori=Fk-+1,...,n— 1.

(b) = (a) Conversely, if by = - -+ = b,_; = 0, then we can choose X sufficiently
large that the matrix in (2.1.11) is positive semidefinite. It follows that C = eet— A/A

18 a correlation matrix.

(b) & (¢) Let L denote the leading (k + 1) x (k + 1) principal submatrix of
VEAV. Because A, ..., A\, < 0, L has at least k negative eigenvalues. But trace(L) =
trace(VIAV) = trace(4) = 0, so by > 0 and L must have a positive eigenvalue,
Thus, rank(L) = k+ 1 and rank(A4) = rank(V*AV) > k + 1. It is obvious from the
form of (2.1.10) that rank(A) = rank(V'AV) > k + 1 if and only if some b; # 0,

i€{k+1,...,n—1}L t
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Alfakibh and Wolkowicz [2] state condition (b) as AZ = 0, where Z is a Gale
matriz associated with A, IF & == n 1, then Z = (0,...,0)" and AZ = 0, while (b)
18 vacuously true. If k& < n 1, then let Z == (w01 )@, Where uy, ..., U,y are
the columms of U and @ is nonsingular. Then U'AZ = 0 and, because the rows of
U form a basis for e, the columns of AZ lie in the span of e. Hence, AZ = 0 if and

only if (bpga, ..., by )t == ! AZ = 0.

2.2 Consequences of the Characterizations of D(n)

We proceed to exploit a well-known connection between D(n) and PSD(n — 1), the
subset of positive semidefinite matrices in S,,-;. This connection follows immediately
from our analysis of conditions (a), (b), and (¢) in Theorem 2.1. The following
notation is convenient: given M C S,,, let [M] denote the span of M in S,,.

Given w € R™ such that elw 5 0, let G,,(n) denote the set of matrices of the form
X'X for some k x n matrix X that satisfies Xw = 0. The mapping 7, : Su — Sn
was defined by (2.1.1). Restricting its domain to [D(n)], we obtain the mapping
Tw : [D(n)] = [Gw(n)]. Similarly, the mapping x : S, — S, was defined by (2.1.3).
Restricting its domain to [G,,(n)], we obtain the mapping & : [Gy,(n)] ~ [D(n)]. Tt is
easily checked that these mappings are mutually inverse; see [12, 27] and our proof
of the equivalence of conditions (a) and (b) in Theorem 2.1.

Let U be any n x (n — 1) matrix for which the n x n matrix V' = (:;’,’;-L{U) is

orthogonal. If B = X'X € G, (n), then U'BU = (XUY(XU) € PSD(n — 1). Hence,
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Yu(B) = U'BU defines a linear mapping ¢y, : [Gu(n)] = [PSD(n — 1)]. Similarly, if

4

C= Y% € PSD(n—1), then WICW = (YW)'(YW) € G,(n). Lot W = U]~ 4,
Then ¢,(C) = W'CW defines a linear mapping ¢, ¢ [PSD(n — 1)} ~+ [G,(n)]. To
see that ¢, and v, are mutually inverse maps, first let C € [PSD(n — 1)]. Because
WU = U is the (n—1) x (n—~1) identity matrix, ¢, 0¢,(C) = UW!ICWU = C, i.e.,
Puoy t [PSD(n-1)] ~ [PSD{n-1)] is the identity map. Next let B = X'X € G, (n),
in which case Xw = 0. Recall, from the proof that (¢) entails (b) in Theorem 2.1,
that UW = [ ;"5’;% Then XUW = X and ¢, 0t (B) = W' X' XUW = X'X = B.
It follows that ¢, o 1, is the identity map on G, (n), hence on [G,(n)]. Notice that
both 1, and ¢, preserve rank.

Given w and U, let ¥ = ¢, o 7. Then ¥ : [D(n)] ~» [PSD(n ~ 1)] is a linear

bijection, and

t 1
U(A4) = -;,13U* (z = f’f‘i’m) A (1 = ) U= W%U%AU

etw etw
because U'e = 0. In what follows, we rely on ¥ to transfer well-known results and

techniques from PSD(n — 1) to D(n).

2.2.1 Facial structure of D(n)

Following [47], a set € in a linear space £ is convex if, for each z,y € C and for all
A€ [0,1], Az+ (1 - Xy € C. Furthermore, C C L is a conver cone with vertex xq if it

is a convex set and, for each A > 0 and each z € C, x # %y, we have (1~ Xxg+ Az € C.

Lemma 2.7 D(n) is o convex cone.
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Proof We first show that D(n) is convex. Suppose that A, B € D(n) and A € [0, 1].
So W(A4), ¥(B) € PSD(n - 1). By Theorem 2.1, A4 + (1~ A)B € P(n) if and only
if WAA + (1~ A)B) € PSD(n — 1). Because PSD(n — 1) is a convex cone and ¥ is

linear, it follows that
W(AA A+ (1~ A)B) == AP(A) + (1 -~ \)¥(B) € PSD{n - 1).

So D(n) is a convex cone. i

Again following [47], we say that a convex subset F of a convex set C is a face of C
ifand ouly if z,y € C and tx+(1~1t)y € F fort € (0,1) ruplies z,y € F. Any convex
set is a face of itself, and the intersection of any two faces is a face. The intersection
of all faces of C that contain ¢ € C is the face generated by a. Various studies, e.g.,
[45, 3], have explored the facial structure of PSD(n — 1), and the following result is

well-known.

Theorem 2.8 A set of matrices, £, is a face of PSD(n~1) if and only if there exists

a kx (n— 1) matriz Y of rank k such that
£=£(Y)={V'QY: Qe PSD(k)}. (2.2.12)
A matriz B generates E(Y) if and only of B = Y'QY for an invertible ) € PSD(k).

The facial structure of D(n) was investigated by Hayden, Wells, Liu, and Tarazaga
[23], who relied on Corollary 2.3. In contrast, the bijective linear mapping ¥ can be
exploited to deduce the facial structure of D(n) directly from the facial structure of

PSD(n—1). This yields a statement that is more accessible than Theorem 2.3 in [23].
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Theorem 2.9 Firw ¢ R™ with wle # 0. A set of matrices, F, s a foce of D(n) if

and only if there exists {xy,...,2n}, o w-cenlered spanning set of R*, such that
f s ‘7:(;[;1(‘ vy i o {(“S(l)‘z o Sfl,'j“ ) : S & H!"}\k} . (4’33.{})
A matric B generates F(xy,...,x,) if and only if there exists § € R¥F such that

B = (||Sz; - Sz;||*) and S'S is inveriible.

Proof The linear mapping ¥ is bijective, so F is a face of D(n) if and only if
& = W(F) is a face of PSD(n ~ 1). Hence, by Theorem 2.8, F is a face of D(n) if and
only if there exists a k x (n — 1) matrix ¥ of rank k such that W(F) = £(Y).

If 21, ..., 1, is a w-centered spanning set of RE, then
(l1Sz: — Suj|*) = (245" Sws ~ 22,5' S + 2t 5'S;) = JD — 2X*S'SX + D,
where D = diag(z!5'Sz,,...,255'Sx,,). Noting that UtJ = JU = 0, it follows that
U ((1152; — Sz;|°)) = U*X'S'SXU.

Suppose that F = F(1,...,%,), where {z1,...,2,} is a w-centered spanning set
of R*. To show that F is a face, write X = (&, ---%,) and let ¥ = XU. We claim
that W(F) = £(Y).

Given A = (||Sz; — Sz;||*) € F, let Q = §'S € PSD(k). Then
U(A) = UtX'SISXU = YIQY € E(Y),
so W(F) < E(Y). Conversely, given Y*QY € £(Y), write Q = S*5. Then

YIQY = U'X'S'SXU = ¥ ((|Sz: - Sz;[*)) € w(F),

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



31

so E(Y) C Ww(F).

Now suppose that F is a face of D{n), in which case W(F) = £(Y). Asin the proof
that (¢} implies (b) in Theorem 2.1, let X = YU ~ f%f,;%) and let xy, ..., 2, denote
the columns of X, a w-centered spanning set of R¥. Notice that U(] ~ ;‘1‘:)&7 = f,

hence that XU =Y. We claim that F = F(xy,...,Zs).

Given A = (||Sz; ~ Sz||*) € Fz, ..., 20), let Q = S5 & PSD(k). Then
W(A) = EXESISXU = Y'IQY € E(Y),

$0 W(F(xy,...,20)) C EY) and therefore F(xy,...,7,) C F. Conversely, given

Ae F, write ¥(A) = Y*'QY and Q = 5*S. Then
YIQY = U'X'S'SXU = ¥ (|52 — S]*)) € ¥ (F (21, 7)),

s0 E(Y) C U(F(zy,...,3,)) and therefore F C F(zy,..., ).
Finally, 4 = (||9%; ~ Sz;||*) generates F(z1,...,%,) if and only if B = ¥(A4) =
U'X'S5'S XU generates £(XU). By Theorem 2.8, B generates £(XU) if and only if

Q = 5'S is invertible. 1

2.2.2 Angles between matrices in D(n)

Given 4, B € S, let (A, B) = trace(A'B) denote the Frobenius inner product of
A and B. The corresponding Frobenius norm is defined by ||4]|* = (4, A), and the
angle between A and B with respect to the Frobenius inner product, @ € [0, 7], is
defined by

cos @ = A B) =2 cos (A, B) .
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For esample, all rank-one matrices 22t € PSD(m) have the same angle with the

m x m identity matrix, I,,, because

{xat, 1) 2ty 1

;

€08 (:1:,7:*‘, Im) :

R Y R s e

In their study of the geometry of D(n), Hayden, Wells, Liu, and Tarazaga {23}
obtained upper and lower bounds on the angle between an arbitrary 4 € D(n) of
embedding dimension k = 1 and EF = ee* — I, € D(n). They deduced their upper
bounds from their analysis of the critical points of the function F': R" - R defined
by
l:z

Their analysis “is difficult and tedious,” requiring “a difficult case by case analysis”

‘2)%}3

Fay, ... zy) = “(Lr, - Z;

not included in [23]. Here, we map D(n) to G.(n), then infer bounds on cos(4, E)
from properties of k, appealing to results obtained by Critchley [12].
We require two technical lemmas. Lemma 2.10 restates Proposition 2.3 and Corol-

lary 2.9 in [12]; we provide a proof of Lemma 2.11 in Section 2.2.4.
Lemma 2.10 (Critchley [12]) The linear subspaces

S = {B€G/n):Bol=0}

S = {B € Go(n) : B = we! + ew' — nwe' o I,w'e = ()}
83 Ee {BGQg:(TL)ZBmfy([m» E;");’YER},

are pairwise orthogonal and have direct sum Go(n). The linear subspaces k(S,), k(Sz),
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and k{8s) are puirwise orthogonal and have direct sum D{n). Furthermore,

¢ )

NBI ifBES

(B = V2Bl ifBeS: |-

| 2vElBl| i BeS, |

Lemma 2.11 For n > 2, write x = (21,...,2,)" and define f: R* = R by f(z) =

a4 -b ot Let Ky ={x € R*: 2'z = L,ate = 0}. Ifz € K,, then

2 : R for o odd

n* —3n+3 - 1y(n+1) Al

DR T} o> . 2.2.14
n (n l) jasis f( ) i ] ( )

= for n even

The upper bound is obtained if and only f o permutation of (¥1,...,%,) equals

+(a,b, ..., D),

n--1

where a = (n — 1)/y/n(n—-1) and b = —1//n(n — 1). The lower bound is obtoined

if and only if a permutation of (z1,...,%,) equals

+(a,...,a,b,...,b),

ln/2] [n/2]

where a = —b=1/y/n if n is even and

N =),

if nis odd.

Now we bound cos(4, E'). We obtain the upper bounds in [23]; for n > 4, we

obtain sharper lower bounds.
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Theorem 2.12 Forn > 2, let E = e¢’ I and suppose that A € D(n) has embedding

dimension k == 1. Then

dn sy Jor n even

(n~1{n+6)

< [eos (4, BY <
2L forn odd

2n,
Proof From condition (b} in Theorem 2.1, there exists z = (z1,...,2,)" € R" such
that z'e = 0 and 7.(A4) = zz'. Because cos(4, E) is invariant under dilations of A,
we can assume that 2tz = 1.
Applying Lemma 2.10, we write az' = aB; -+ 8B + vB, for some B, € &,
By € 8, and By = [ —~ ff’;i Because 2’z = 1, 1 = |jaB|® + |BB:® + |y Bs|*.

Because ||Bs|]* =n 1,
n

:
ntf . ee
v(n—1) = (za’, Bs) = trace ((:m:") ([ - w«w)) = trace (;z::z:‘) = 1.

Hence, v == 1/(n ~ 1) and ||[yB3]|? = 1/(n — 1).

By direct calculation,
; | t . |
| Bal]” == trace ([wet + ew! — nwe' o I] [wet + ewt — nwe' o I]) = n(n — 2)w'w.

Because diag(By) = 0, diag(Bs) = diag(we® + ew' — nwe' o I) = (2 ~ n)w, and

diag(Bs;) = (n — 1)e/n,

@
B(2 — n)w = diag (8B,) = diag (aB; + BBy) = diag (:z;:,z" o "yB;;) molor e 2
T,
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Hence,
V2 o e £t ore ‘ O 1
NB8Bs|]” = A*n(n — 2yw'w = — B(2 ~ n)w]' [B(2 ~ n)w] = "‘W”E‘“T' { z - } .
2

Wt . ¥ Y 4 - - vt :
Now we write A == x(xz'). We calculate that 7, (ee’ — I} = L(I ~ %) and write

E = k(By/2). Then

(4, B) (an(By) + Br(By) -+ 7(By), Ln(By))

TATIEL — (saB)|? + |5(8B)|2 + ll5(7.Bs)][2) T
s (By)|?
(B[ + 20| 8Bl + AnllyBall)7 (Bo)]
= 2v/nilyBsl|
R W:ﬂ@f?”) + 20| BB} + dn||yBs||®)"?
m. 2‘\/7;/‘(71 ~ 1)
(4 + 2m, (Z?::l zh —~ 'i ) + 4) 12
( dnf(n ~1) )1/2‘

2.2.15
6+ 2n 30, vt ( )

To minimize/maximize cos(4, E), we maximize/minimize (2.2.15), i.e., we mini-
mize/maximize f(z) = ¥ a! subject to x € K. Lemma 2.11 specifies the minimum

and maximum values, which we substitute into (2.2.15) to conclude the proof. |

2.2.3 Linear preservers of D(n)

One way to understand a set of matrices is by studying linear operators that preserve
its structure [37]. We exploit the connection between D(n) and PSD(n ~ 1) to study
linear operators that preserve the faces of D(n).

We begin by characterizing the linear operators that preserve the faces of PSD(n—

1).
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Theorem 2,13 Let K = {ky,.. .k} # {0} besuch thal 0 < ky < ... < ky, < n-1.
Let

C={C & PSD{n~ 1) : rank(C) € K}. (2.2.16)

there exists an invertible matriz R such that T(C) = R'CR.

Proof If T(C) = R'CR with R invertible, then it follows from Sylvester’s Law of

Inertia that T(C) = C. It remains to establish the converse. Let

k
C; = {C € PSD(n — 1) : rank(C) = j} and G = |JC;.

G0
We claim that €y, = cl(Cy.), the closure of Cy.

Because C, ¢ Cr and Cy, is closed, c{Cr) © Cy. If C € G, then obviously C &
cl(Cp). If C € € for § < n, then write C' = Y][Y; for a j x (n— 1) matrix Y. Let ¥;_;
be any (k — j) x (n— 1) matrix such that (Y}|Y{_;) has rank £, let ¢ = 1/||Y} Vil
and let C; = Y}Y; + (¢/9)Yy_;Yi—;. Then C; € Gy and ||C; — C|| = ¢/i -+ 0 as i — o0,
so each C' & C,, is the limit point of a sequence in Cy. This proves that G C cl(Cx). It
also demonstrates that int(C;), the relative interior of Gy, is contained in Cy. Because
Ck is open in Gy, int(Cy) = Gy

Now suppose that T(C) = €. Because T is continuous,

T (C,.) =T (el (C)) = ¢l (C) = . (2.2.17)

Because 7" is linear,

T (Ck,,) =T (int (Cp,, ) ) = int (Cy,, ) = Cp,. (2.2.18)
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Subtracting (2.2.18) from (2.2.17), we obtain
T (Ckz) =T (Chp = Ch) =T (Chp ) = T (Chn) = Ch = Ciy = Chpr-

We continue to “peel the onion” in this manner, concluding that 7°(C;y) == Cy. It then
follows from Theorem 3 in [24] that 7" is of the form T(C) = R'CR. Because C

and T'(C') are positive semidefinite, we conclude that 7(C) = R'CR. Q

Next we set w = e and characterize the linear operators that preserve the faces of

ge:: (TL) .

Theorem 2.14 Let K = {ki,...,kn} # {0} besuch thal 0 < ky < ... < kyp < n—1.
Let

B = {B & G.(n):rank(B) € K}. (2.2.19)

Then o linear operator T : [Ge(n)] — [Ge(n)] preserves B, i.e., T(B) = B, if and only
if there exists an n x n matriz Q, with rank(Q)) = n—1 and Qe = Qe = 0, such that

T(B) = Q'BQ.

Proof Fix w = e and U, any n X (n — 1) matrix for which (-5 -%=|U) is orthogonal.
Then W = UY(I - %) = U*, s0 ¢,(B) = U*BU and ¢,(C) = W'CW = UCU".

Let C = 4,(B), in which case B = ¢,(C). Then T(B) = B if and only if T o
$.(C) = ¢, (C) if and only if 1, 0 T 0 ¢,(C) = C. Because 9, and ¢, preserve rank,
C C PSD{n —1) is a set of the form (2.2.16); hence, it follows from Theorem 2.13 that
T(B) = B if and only if there exists an invertible matrix R such that 4, 0T 0 ¢, (C') =

R'CR.
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Suppose that there exists an (n ~ 1) x (n ~ 1) invertible matrix R such that
Yy 0T 0 ¢ (C) = RICR. Let Q = URU*. Then rank(Q)) = n ~ 1, Qe = % = (), and
T(B) = ¢uothoT op,otu(B)=d,0t,0T s, (U'BU)
=y (R“U%‘UR) = URW'BURU' = Q'BQ.
Conversely, suppose that there exists an nxn matrix ¢ such that rank(Q) = n~1,
Qe = Q'e = 0, and T(B) = Q'BQ. Let R = U'QU. Then R is invertible and
th 0T 0 ¢,(C) = v, o T (UCU*) = 4, (QUCU'Q) = U'QUCU'QU = R'CR.
3
Finally, we characterize the linear operators that preserve the faces of D(n). Let

dim(A) denote the embedding dimension of 4 € D(n).

Theorem 2.15 Let K = {k1,...,kn} # {0} be such that 0 < ky < ... < kp <n-1.

Let
A={AecD(n): :dim(4) € K}.
Then a linear operator T': [D(n)] — [D(n)] preserves A, i.e., T(A) = A, if and only

if there exists an n X n matriz Q, with rank(Q) = n—1 and Qe = Q'e = 0, such that

T(A) = —rk(Q'AQ)/2.

Proof Let B = 7,(A), in which case A = s(B). Then T(A) = A if and only if
T o w(B) == &(B) if and only if 7, 0 T o k(B) = B. Because of the equivalence of

conditions (a) and (b) in Theorem 2.1, B C G.(n) is a set of the form (2.2.19); hence,
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it follows from Theorem 2.14 that T(A) = A if and only if there exists an n x n

matrix ¢, with rank(Q)) = n — 1 and Qe = Q% = 0, such that
1. 0T o k(B) = Q'BQ. (2.2.20)
Now we apply # to both sides of (2.2.20), obtaining

T(A) = Toxr(B)=r(QBQ)=r(Q7.(4)Q)

1 eet eet YN
=~k (Q (1 - n) A (1 - "}";") Q) = —2x (Q4Q).

2.2.4 Proof of Lemma 2.11
We conclude with a proof of Lemma 2.11, which relies on two simple facts.
Lemma 2.16 Suppose that o, 8,7 € R and oo+ B+ = 0. Then

(az + A%+ 72)2 .

PO

ot + pt 4t =

Proof of Lemma 2.16 Let ¢ = /2 and b= §+ a. Then
ot + 844 = (20) + (—a+ )+ (—a —b)* = 18a* + 120207 + 2%,
(042 + B% + ’y?)? = ((2&)2 + (~a +b)? + (~a — Z))2)2

= (6a*+ :21;2)2 = 360" + 242 + 4B,

Lemma 2.17 Suppose that the cubic equation 2* —ax —b = 0 has roots o, 8,v. Then

@+ B4y =0 and o? + B2+ = 2.
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Proof of Lemuna 2.17 Writing

= g0 (- B+ 7t A (o + By +ay)z — afy,
we see that o + 8+ v = 0 and off + Ay + @y = ~a. It follows that

of + g2 Y- 20 = of A+ B 2B+ By + oy) = (a+ B+ 7)* = 0.

Proof of Lemma 2.11 If n =2 and z € K5, then it is easily verified that f(z) =
1/2, the value of both the upper and lower bounds.

Ifn=3and z = (o, 8,7) € K3, then it follows from Lemma 2.16 that f(z) = 1/2,
the value of both the upper and lower bounds.

Suppose that n > 4. Because f is continuous and K, is compact, f attains both
a maximum and minimum in K,,. If 2* is a constrained maximizer or minimizer of f,
then there exist Lagrange multipliers \* and p* such that (z*, \*, u*) is a stationary

point of the Lagrangian function
L@ ymn, )= (st 4 ad) + 2 (g + 422 = 1) b pa+ o ),
L.e., each x} is a solution of the cubic equation
4z — 2Nz — p* = 0. (2.2.21)

Because z* € K, the z} must assune more than one value. Because the x} are
roots of & cubic polynomial, they can assume at most three values. We claim that

they assume exactly two values.
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Suppose that the «} assume three distinet values, ¢, #,y. Then v, 8,y are the roots
of (2.2.21), so it follows from Lemma 2.17 that o+ 8+ v = 0 and o + B2 4 4% = A%,
Choose three more distinct values, &, £, %, such that &+ G-+% = 0, a2+ B2 4 4% = X\,
and & B, % ¢ {e, B,7}. Tt follows from Lemma 2.16 that ot + g% + 4% = (A*)2/2 and
6 A = ()22

To simplify notation, suppose that (x], 23, 23) = (o, 8,7) and let

&= (&, B, 4, %5, . .., ah ).

Then
-~ n "
G+B+F+D> 3] = a+f+y+D =0,
k1) T
F+P7 @) = 2B @) =1,
(=) E
. F1A ) n
A4 @) = ot B Y ()
jx=l fomd

so £ € Ky, and f(&) = f(z*). Hence, if 2* is an extreme point of f in K, then so is
%. But the #; assume at least four distinct values, which an extreme point of f in K,
cannot. We conclude that the 27 cannot assume more than two distinct values.
Suppose that k of the z} equal « and the remaining n—k of the =¥ equal 3, where
@, 3 are chosen so that 0 < k < n/2. Because 0 = 2} + -+ 2}, = ka + (n — k),

B = —ka/(n— k) and therefore

1 i(f)z ka? 4 (n — k)% = ka? + K o nk o’
. 2V = kot 4+ (n— k)82 = ka® + ey = v,
P g ' n -k n -k
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WO S ¢ JUEAY- RN I AY:: IR n-k ’ P MM{'MW M
(&) = Z(‘Li) w ot 4 (- k)Y e A,( oy ) + (n - k) (n(nmk:))

daml hhd
n® — 3kn +3k*  (n - 2k) Ll
nkin—k) — mk(n—-k) n

(2.2.22)

By inspection, (2.2.22) is maximal when £ = 1 and minimal when &k = [n/2], yielding
Y : v ¥ £

the specified bounds. -

2.3 Uniqueness of Completions

In this section, we will give a brief introduction to the study of completion problems
and to our problem in particular. This problem, can be generalized to a problem
about PSD matrices. Using this generalization, we first obtain a necessary and suffi-
cient condition for an n X n partial matrix A to have a unique positive semi-definite
completion. We then use the result to deduce the conditions for the uniqueness of
the ESD matrix completion. We also show how it is useful in the contractive matrix
completion problem. (Recall that a matrix is contractive if its operator norm is at
most one.) Furthermore, we describe an algorithm to check the conditions in our
results, and how to use existing software to check the conditions numerically. At the
end of the section, we illustrate our results by several numerical examples, and show

that some results in [1] are not accurate.
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2.3.1  Completion problems

In the study of completion problems, one considers a partially specified matrix and
tries to fill in the missing entries so that the resulting matrix has some specific prop-
erties such as being invertible, having a specific rank, being positive semi-definite,

etc. One can ask the following general problems:
(a) Determine whether a completiou with the desired property exists.
(b} Determine all completions with the desired property.
(¢) Determine whether there is a unique completion with the desired property.

See [26] for general background of completion problems.

In [1}, the author raised the problem of determining the condition on an n x n
partial matrix A under which there is a unique way to complete it to an ESD matrix.
In this section, we give a complete answer to this problem. It turns out that the
desired uniqueness condition can be determined by the existence of a positive semi-
definite matrix satisfying certain linear constraints. Such a condition can be checked
by existing computer software such as the semi-definite programming routines; see

[29, 49)].

2.3.2 A general formulation

In the following discussion, we will consider problems in the following more general

settings.
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Let M be a matrix space, and & a subspace of M. Suppose P is a gubset of A with
certain desirable properties. Given A € M, we would like to determine X € & so
that

A+ X eP.

In our case, we are interested in the condition for the uniqueness of X € & such that
A+ XeP

To recover the completion problem, suppose a partial matrix is given. Let A be
an arbitrary completion of the partial matrix, say, set all unspecified entries to 0.
Let & be the space of matrices with zero entries at the specified entries of the given
partial matrix. Suppose P is a subset of M with the desired property such as being
invertible, having a specific rank, being positive semi-definite, etc. Then completing
the partial matrix to a matrix in P is the same as finding X € & such that A+ X € P.

In the following, we always assume that there is an X, € S such that A+ X, € P,
and study the condition under which X is the only matrix in 8 satisfying A+ X, € P.

We can always assume that X, = 0 by replacing A by A + X,.

We begin with the following result concerning the uniqueness of the positive semi-

definite completion problem.

Proposition 2.18 Let A € PSD(n), and S be o subspace of S,,. Suppose V is
orthogonal such that V*AV = diag (dy,...,d,,0,...,0), wheredy > -+ > dp > 0. If

X € & satisfies A+ X € PSD(n), then

X X
VIXV = (2.3.23)
A Xy
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with
Noy € PSD(n —r)  and  vank (Xg) = rank ([ Xy X)) (2.3.24)
Conversely, if there is X € & such that (2.3.23) and (2.3.24) hold then there is an

£ >0 such that A+ 86X € PSD(n) for all § € [0,¢].

Proof. Suppose A + P € PSD(n). Let X = P, and consider the block matrix

V!XV defined as in (2.3.23). We have Xy € PSD(n — r) because

D+ X 11 X 12
€ PSD(n) with D = diag (dy, ..., d.).
X Xoo
Let W be orthogonal such that Wi X,,W = diag (¢1,...,6,0,...,0) with¢; > -+ >
¢ > 0. IFW = I, @ W, then
. W D+ Xy Yo
WWHA + PYVW =
Y WiXpW

Since A+ P € PSD(n), we see that only the first s rows of Y3; can be nonzero. Thus,
rank ([X1 Xye]) = rank ([Yo; WX W) = s = rank (Xy).

Conversely, suppose there is an X € S such that (2.3.23) and (2.3.24) hold. Then

for sufficiently large n > 0, nD + X, is positive definite. Moreover, if

I, =D+ Xu) " Xy
T = ,
0 Ly

then
'TtV"(nA 4 .X)»V:[‘ = (T)D 4 X}‘l) b [)(;gg e ;Ym (f}D -+ }irlj;)lew].

Since rank ([Xy; Xo)) = rank (Xy), for sufficiently large 5 > 0 we have

Xoo = Xo(nD/2) ' X2 € PSD(n~7) and (nD/2)"! — (nD + X5))"' € PD,.
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Hence, under the positive semi-definite ordering >, we have

Koo ~— Xy (Tﬂ) -+ .Xu)mi.}(‘lrg = Koo — Xo (77[:7/2)¥""'L4Y19 # Opp-

A s

Thus, letting P == X/n for sufficiently large 7, we have A + P = A+ X/n € PSD(n).

]

. “he proof of Proposition 2.18 is basically a Schur complement argu-
Remark 2.19 The proof of Proposition 2.18 is k lly a Scl plement

ment. We give the details for the sake of completeness.

Remark 2.20 Note that in Proposition 2.18 one needs only find an orthogonal ma-
trix V such that VAV = D @ 0 for a positive definite matrix D, i.e., the last n — r
columns of V' form an orthonormal basis for the kernel of 4. The statement and the

proof of the result will still be valid.

By Proposition 2.18, the zero matrix is the only element P in § such that A +
P € PSD(n) if and only if the zero matrix is the only element X in & such that
VIXV = (Xij)i<ij<2 with Xo» € PSD(n — r) and rank (Xy) = rank ((Xz; Xa]).

This condition can be checked by the following algorithm.

An algorithm Let & be a subspace of S,,, and A € PSD(n). Let V' be an orthogonal
matrix as described in Proposition 2.18.

Step 1 Construct a basis {X),..., X} for 8.

Step 2 Determine the dimension [ of the space

- »Xl,l X 12
S [Ny Xy VIXV = with X ¢ &
Xoy Xa
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Ik > 1, then there is a nonzero P € & such that VPV = P& 0y and A 4+ P &

PSD(n). Otherwise, go to Step 3.

Step 3 Determine whether there are real numbers ay, ay, . .., a; such that
Q == Qofi 4y ;{1 S G a;,,X;c & PSD(T?)

with (0, @ [,..,, VIQV) = L.

If such a matrix @ exists, then there is a nonzero P € & such that A + P €
PSD(n). Otherwise, we can conclude that 0, is the only matrix P in & such that
A+ P € PSD(n).

(Note that numerically Step 3 can be performed by existing software such as

semi-definite programming routines, see [51] and [52].)

Explanation of the algorithm
Note that in Step 2, the condition & > [ holds if and only if there is a nonzero
matrix P € § such that VPV = P, ® 0, and A + P € PSD(n). To see this, let

V = [W}|V5] such that V; is n x 7. Then
S={ViXV:.:X eS8}

and {VIX,V,... ,VAX,V} is a spanning set of S. Clearly, k& > [ and also, we can
use this fact to find I. Transforming these matrices into vectors, ! is the rank of the
matrix with these vectors as columns.

If k > ¢, then there is a nonzero real vector (ay, ..., ax) such that g VXV -« -+

arVIXLV = 0,_,,. Since X1, ..., X} are linearly independent, X = a; X+ - -+ap Xy
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is nonzero, Therefore, VXV has the form X; & O,.,. By Proposition 2.18, there is
d > 0 such that A+ 6X &€ PSD(n).

Conversely, if there is a nonzero matrix P € & such that VPV = P, & 0,_,
and A+ P ¢ PSD(n), then there is a nonzero real vector (ay,...,a;) such that
P o= ay Xy + -4 ap Xy so that ey VEXGV 4+ -+ apVIXLV = Oprn. Henee, S has
dimension less than k.

8o, if k = [, and if there is a nonzero P € & such that A + P € PSD(n), then
Vi PV cannot be zero. By Proposition 2.18, VPV, is nonzero, and Step 3 will detect

such a matrix P if it exists.
By Proposition 2.18 and its proof, we have the following corollary.

Corollary 2.21 Suppose § C 8, A € PSD(n), and the orthogonal motriz V' salisfy

the hypotheses of Proposition 2.18.

(a) If A € PD,,, then for any X € S and sufficiently small § > 0, we have A+46X €

PD,,.

(b) If there is an X € S such that the matriz Xoy in (2.3.23) is positive definite,

thers A+ 6X € PD,, for sufficiently small 6 > 0.

Remark 2.22 To use condition (b) in Corollary 2.21, one can focus on the matrix
space

T = {ViXV;: X € 8} € 8,,,
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where V3 is obtained from V' by removing its fivst 7 columns. Note that PIJ,, is the

interior of PSD(m), and
PSD{m) = {X € §,, 1 (X, P) 2 0 for all X ¢ PSD(m)}.
By the theorem of alternative (e.g., see [16]), T N PD, ., % 0 if and only if
T+NPSD(n —r) = 0. (2.3.25)
One can use standard semi-definite programming routines to check condition (2.3.25).
Here is another consequence of Proposition 2.18.

Corollary 2.23 Suppose § € 8, A € PSD(n), rank (A) = n -1 and the orthogonal
matriz V' satisfy the hypotheses of Proposition 2.18. If 8 has dimension larger than

n—1, then there is X € § such that A+3X € PSD(n) for all sufficiently small § > 0.

Proof. If there is X € & such that VXV? has nonzero (n,n) entry, we may
assume that it is positive; otherwise replace X by - X. Then by Proposition 2.18
A+ 060X € PSD(n) for sufficiently small § > 0. Suppose VXV* always has zero entry
at the (n, ) position. Since S has dimension at least n, there exists a nonzero X € S
such that the last column of VXV are zero. So, A + 46X € PSD(n) for sufficiently

small 6 > Q. I

2.3.3 Application of results

Next, we can use Proposition 2.18 to answer the question raised in [1].
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Proposition 2.24 Let 8) be the subspace of matrices in 8, with oll dicgonal entries
equal to zero. Let A ¢ D(n), and 8 be a subspace of 8L. Suppose U is n % (n - 1)
such that Ule = Q, UtU = I,.;, and ~U'AU = diag(dy,...,d,,0,...,0), where
dy 2 <+ 2 d, > 0. Then there is a nonzero matriz P € § sueh that A+ P € D(n) if
and only if there is nonzero motric X € 8 such that

,X“ ‘Yy)
XU = (2.3.26)
Xy X

with Xoy € PSD(n — 1 —7) and vank (Xas) == rank ([Xg X))

Proof. By the result in [12], the mapping X +» —1U*XU is a linear isomorphism
from S? to 8,_; such that the cone D(n) is mapped onto PSD(n — 1). Thus, the
existence of a nonzero X € & such that A + X &€ D(n) is equivalent to the existence
of a nonzero Y € {—1U'XU : X € S8} such that —$A+Y € PSD(n — 1). One can
therefore apply Proposition 2.18 to get the conclusion. o

Accordingly, we have the following corollary concerning unique ESD matrix com-

pletion. Part (a) in the following was also observed in [1, Theorem 3.1].

Corollary 2.25 Use the notations in Proposition 2.24.

(a) If Ut AU has rank n — 1, then for any X € S and sufficiently small § > 0, we

have A+ 46X € D(n)

(b) If there is an X € 8§ such that the matriz Xq in (2.3.26) is positive definite,

there A+ 0X € D(n) for sufficiently small § > 0.
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(¢) If rank (II*AU) = n — 2 and S has dimension larger than n — 2, then there is

an X € & such that A + 60X &€ D(n) for all sufficiently small § > 0.

Note that Proposition 2.18 is also valid for the real space H,, of n x n complex
Hermitian matrices. Moreover, our techniques can be applied to other completion
problems on the space My, of m X n complex matrices that can be formulated in
terms of positive semi-definite matrices. For instance, for any B € M,,, », the operator

norm ||B]} < 1 if and only if

I, B
€ PSD(m + n).
B* I,

As a result, if S is a subspace of My, ,,, and A € M, , such that ||A]] < 1, we can let

L, A
A=1| € PSD(m + n),
and & be the subspace of H,,,.,, consisting of matrices of the form
0712 X
X=1
X* 0,

with X € & Then there is X € & such that ||A + X|| < 1 if and only if there is
X &€ & such that A+ X € PSD(m + n). We can then apply Proposition 2.18 to

determine the uniqueness condition.

2.3.4 Examples and additional remarks

We illustrate how to use our results and algorithm in the previous section in the
following. We begin with the positive semi-definite matrix completion problem in the

general setting.
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Example 2.26 Let
A p o I g B {O}, 14‘3 wm [5 &3 02, ,4,3 ey [4 & 0_{; and fL{ = [,; & 04.

Let b= 1/y/2 and & = span {X, Xz, X3, X} where

10 10 -1 b b o1 0 0 -1 b
01 01 0 b b ~1 ~1 0 0 =1 —b

-1 0 =1 0 =1 —b b 0 0 1 1 0 b

Xi=1 01 01 0 bb|, Xe=| 0 0 1 1 0 b
-10 -1 0 =1 ~b b -1 =1 0 0 =1 —b

~b b ~b b ~b 01 ~b ~b b b —b 0

bb bbb 10 | b b b b ~b -1
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Ay = 0 -1 0 1 0 —b ~b

b b b b b 0O 1

- b b -b -~ 1 O

Then for A;, Ay, As, there exists a nonzero P € & such that A; - 6P € PSD(7) for
sufficiently small 6 > 0. For Ay, the zero matrix is the unique element X in & such

that Ay + X is positive semi-definite.

To see the above conclusion, we use the algorithm in the last section. Clearly, we

can let V' = [; be the orthogonal matrix in the algorithm.

Suppose A = A;. Applying Step 2 of the algorithm with V5 = e7, we see that
k=dimS8 =4>2=dm{ViX;:j=1,23,4}. So, there is non-zero X € & such
that A+38P & PSD(7) for sufficiently small § > 0. In fact, if P is a linear combination

of X} + Xy and X3 + X, then for sufficiently small § > 0, A+ dP € PSD(7).

Suppose A = A,. Applying Step 2 of the algorithm with Vi = [eg]er], we sec
that £ = dim8 =4 > 3 = dim{V}X, : j = 1,2,3,4}. So, there is non-zero X € &

such that A + 6P ¢ PSD(7) for sufficiently small § > 0. In fact, this is true for
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6 € [~1/4,1/8] and

0000 000
0000 000
P=Y"X;=| 0004 00 0] (2.3.27)

Fa)

~4 0 00 -4 00

60000 000

6000 000

Suppose A = A;. Applying Step 2 of the algorithm with Vi = [es | eg | e7], we see
that k = [ = 4; we proceed to step 3. If P is defined as in (2.3.27), @ =ad ~ 1P €
PSD(7) where a > 1. Thus, we get the desired conclusion on Aj.

Note that one can also use standard semi-definite programming packages to draw

our conclusion in Step 3. To do that we consider the following optimization problem:
Minimize (or Maximize) (C, Q) subject to (B;, Q) = b; and @ € PSD(n).

Since we are interested only in feasibility, we can set C to be the zero matrix. To
ensure that @ = agA + a1 Xy + -+ - + as Xy € PSD(n), we set the matrices {B;}, for
i=1,...,m, to be a basis of (SU{A})* in S; and set b; = 0. Then set By = 0,H1;
with by = 1. We will get the desired conclusion by running any standard semi-

definite programming package.

Suppose A = A; € PSD(7). Applying Step 2 of the algorithm with V5 ==

led]es | es | er], we see that k = [ = 4; we proceed to step 3. Since [y is orthogo-
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nal to all matrices in 8 = span {VEX,; Vo @ j = 1,...,4}, we see that Iy € &+ NPD;.
By the theorem of alternative, & N PSD(4) = {04}. Thus, there is no matrix ¢
satistying Step 3, and 0y is the only elemient X in & such that Ay + X € PSD(7).

Actually, to get the conclusion on A4, one can also check directly that the matrix
() in Step 3 of the algorithm does not exist by a straightforward verification or using
standard semi-definite programming routines.

We can use Example 2.26 to get examples for the ESD matrix completion problem
in the following. Denote by {Ey, Ei2,..., Epn} the standard basis for n x n real

matrices,

Example 2.27 Let Ay, As, A3, Ay, Xy, Xo, X3, Xy be defined as in Example 2.26.

Suppose Ay, Ay, Ay, A, € D(8) are such that
—1 o
*‘é*‘U AJU = Aj, 1= 1,2, 5,4,

where

F——
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Note that the matrices Ay, ..., 4, are determined uniquely by the result in [12]. Let

& = span {Eyy + By, Evg + By, Fog + Esg, Eyy -+ Eg}. Then

-1, ( -1 el . -1
""Z“U t(E]‘g “p ‘E;g'g)u == "'*g“?fl, "';ém j" (.EM ope E‘”)Lf = ”é .Xg,
""‘"‘I, t ey ; "”"1 T ml TR y s m‘). -~
-~;)U (Egg 4 f?‘xgg,)U e M‘*S Xa, - U (E'“ - E,;;g)[) = mé"“ Ny

By Proposition 2.24 and Example 2.26, we see that there exists a nonzero P & & such
that A; + P € D(8) for 7 = 1,2,3, and 0g is the unique element X in & such that

As+ X € D(8).

In fact, we can present Example 2.27 in the standard completion problem setting.

For instance, suppose Ag is the partially specified matrix

B
<>
~2
-..a
jA]
v
~3
T
yhia
-3
e
L

702 0 1 7/47/4 1 2
7 07 1 0 7/4 74 2 1
22 T/47T/4 0 2 7/4 7/4
2 2 T/4T/4 2 0 7/4 7/4

7/4 T4 1 2 T/4 T/4 0 1

/4 T/A 2 1 T/4 74 1 0

We can complete 4y to A; by setting all unspecified entries to 7/4. So, we have
:%}U PAU = Ay, If P is a linear combination of Fyg + Fy; + Fiq + Eq and Fag + Bz +

Eyy + By, then Ay + 6P € D(8) for sufficiently small § > 0.
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Remark 2.28 Continue to use the notations in Example 2.27, and let ¥V & 8% be
such that YU /2 = 0g ¢ [1]. We have (U*YU, Ut XU) = 0 for any X € §. Then
[1, Theorem 3.3 (2.a)] asserts that there exists a unique completion Ag, which is not
true by Example 2.27. Likewise, if ¥ € 8§ is such that —U*Y /2 = 05 & I, then
the partial matrix corresponding to A, has more than one ESD matrix completion,
which disagrees with {1, Theorem 3.3 (2.b)].

The flaw in [1, Theorem 3.3] lies in the proof of Theorem 3.2 (Corollary 4.1) in

the paper. Let
L={-U'XU/2:X eS8}, L' ={X€S,1:(X,Z)=0forall Ze L},

K={BeS, :B=\X+ %U”AOU), A3 0,X € PSD(n— 1)}
and
int(K°) = {C € 8,1 : (C,B) < 0forall Be K}

The author of [1] claimed that: if there exists some Y € PD,,_,._, such that

) 0 0
Y = € L*, (2.3.28)
0 Y
then
LENint(K°) # 0, (2.3.29)

and hence £ N ecl(K) = {0} by the theorem of alternative. However, in Example
2.27, in spite of the existence of ¥ € L1 of the form (2.3.28) one can check that
(2.3.29) does not hold. In particular, N ¢ int(K°) because I, & 0,1, € K but

(V, 1 ® 0y ) = 0.
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2.4  Spherical ESD Matrices

In this section, we are interested in a subset of D, the Euclidean squared distance
(ESD) matrices, which we call spherical ESD matrices. They are those A € D that
admit a configuration of points that not only have centroid at the origin but also all
lic on a sphere whose center is the origin. Such points are commonly called regular
figures, see [22].

Distance matrices are of interest in molecular biology and structural chemistry.
They are used to determine structure of molecules based only on information about
the distances between atoms. There has been recent interest in trying to deter-
mine molecular structure from incomplete and error-filled data. One approach is to
look at substructures within a molecule that display certain properties and use those
substructures to help determine the full structure of the molecule. One simple and
common structure is that of a regular figure and the corresponding distance matrix
is a spherical ESD matrix.

We let D(n) be the subset of D(n) whose matrices A admit a configuration of
points ¢, ..., x, which lic on a sphere whose center is the centroid of the points. In
other words, if A € D(n) then A = ||a; — x;]|* where Y27, «; = 0 and there is some a

such that ||z;]|? = a for all i =1,..., n. Formally, we define
D(n) = {A € D(n) : Ae = Ae}.

It is not irnmediately obvious that the set just defined is the same as the set described

above. In the next subsection, We characterize spherical ESD matrices and see that
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these two descriptions arve indeed the same. We also discuss why a characterization
theorem ag in the first section is not practical. We will review some known results, see
[22], and mention a few new ones. In particular, we will discuss some of the geometry
of the cone of these matrices and the forms of the linear preservers of the span of this

set.

2.4.1 Characterizations

We have defined the linear mappings 7 : 8,, = S,, and x: 8,, ~+ S,, by

1 1 1 .
’T(A) = "“:‘“2"([ - ;‘{J)/&(I - ;;J) (2430)
and
K‘.(B) = DgJ+ JDg — 28 (2»1.31)

where Dpg are just the diagonal entries of B. Note that throughout this section, we
are considering the instance where w == e. We begin by presenting a characterization
theorem similar to the one in the first section of this chapter. It is, however, signif-
icantly shorter, as the majority of the characterizations of ESD matrices become far

too impractical and cambersome.

Theorem 2.29 Suppose A is an n x n predistance matriz. Let U be any n % (n—~1)
matriz for which the n x n matriz V = [£|U] is orthogonal. Then the following are

equivalent,

(a) Ae = Xe and there exists an e-centered spanning set of R, {xy,...,z,} for

wheeh A = ||z; — "K’j“:l-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



60

(b) There ewists an e-centered spanning set of R, {zy, ... 2.} and an a > 0 for

(¢} The matriz
2na 0 -+ 0

0
VEAV =

UtAU

0

where Ut AU is negative semidefinite of rank k such that the diagonal entries of

UU*AUU? all equal —2a.

Proof,

(a) & (b) Because of Theorem 2.1, we need only show that Ae = Ae if and only
if there exists some a > 0 such that (7(4));; = o for all . Condition (¢) of Theorem
2.1 and trace (4) = 0 suffices to show that A > 0 if such a A exists. Recall that
koT(A) = A as A € D(n). Letting B = 7(A) and Dp the diagonal matrix I, o B,
we see that

A= ‘(B) = DgJ +JDp — 2B.

Because Be = 0 and JDge = (trace (B))e, it follows that Ae = Ae if and only if
Dpe = L(X ~ trace (B))e. But this occurs if and only if the diagonals B all have the

same value, i.e. (B); = a = L(\ ~ trace (B)) for all 7. This also shows that A = 2na.
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(a) =+ (c) Because de = Ae, VIAV = [A] @ UtAU. Furthermore, U'AU is
negative semidefinite of rank k by Theorem 2.1. Since (a) and (b) are equivalent
and UPAUU! = ~27(A), the diagonals of UUAUU* are —2(7(A4))y = —2a where

A= Ina.

(c) = (b) Suppose the matrix

na O - 0

VIAY =
UtAU

0

b =

where U*AU is negative semidefinite of rank k& such that the diagonal entries of
UUtAUU? all equal —2a. By Theorem 2.1, there exists an e-centered spanning set of
RF, {z1,...,z,} for which 7(4) = (2lx;). Note that UU*AUU? = —27(A4). Hence

(7(A))i; = a for some a > 0. 0

The equivalence of (a) and (b) was previously shown in [22]. Note that our
description of D(n) is evident in our statement (b). We use the origin as the center
of the sphere (||z;||* = a for all ¢) and as the centroid of the points (z1,...,%, are
e~centered). Considering this set of matrices formed by transforming the matrices in
D(n), we get the subset G(n) ¢ PSD(n) consisting of matrices A such that Ae = 0 and
the diagonal entries of A are constant. Equivalently, G (n) consists of positive scalar
multiples of the subset of the n % n correlation matrices C € € such that Ce = (.

While condition (¢) was not shown in their paper, it is because it is not a convenient
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characterization. One could replace condition (¢) with a simpler statement involving
only the Ut AU part, but the inclusion of the column e//n to make the matrix V
lets ns state the following as a obvious corollary. For more on the Perron-Frobenius

theorem, see [25, pp. 500,508]

Corollary 2.30 If A € D(n) then e is the Perron vector with eigenvalue 2na where

a s the radius of the sphere the points lie on.

This theorem also tells us more about the mapping 7 and k. Recall that by
restricting the domains to [D(n)] and [G(n)], the mappings 7 : [P(n)] — [G(n)] and
k1 [G(n)] — [D(n)] as defined in 2.4.30 and 2.4.31 are invertible. We see that by
further restricting the domains to [D(n)] and [G(n)], the mappings 7 : [D(n)] - [G(n)]
and & : [G(n)] — [D(n)] are also invertible. In fact, when we so restrict 7 and &, these

mappings will have the following forms.
1
7(A) = w§A +aJ (2.4.32)

and

k(B) =2bJ - 2B (2.4.33)
where a is the square of the radius of the sphere and b are the diagonal entries of
B. We can use this knowledge to determine the forms of linear preservers of D(n) by

looking at linear preservers of G(n). We do this in the next section.
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2.4.2  Linear preservers of D(n)

To further examine the set D{(n), it is necessary to use the transformation 7 and the
resulting relationship between D(n) and G(n). When dealing with D(n), we instead
used the transformation from D(n) to PSD(n — 1). The added condition that the
points all lie on a sphere adds a complexity such that looking at an appropriate subset
of PSD(n — 1) is too unwieldy to help, see condition (¢) of Theorem 2.29.

In section 2.2, two of the three results on D(n) focused on the embedding dimen-

sion of the matrices. This corresponds to the rank of the matrices in G(n). Define
Ge(n) = {A € G(n) : rank(A) = k}.

Note that the notation Gy, will replace G (n) when it is clear from the context what
size matrices are being considered. It is not hard to see that for n odd, G (n) is
the empty set and for n even, it is the positive multiples of a finite set of matrices.
Thus, for different values of n, different results can be shown. We focus on the the
particular problem of finding the form of the linear maps % : [D(n)] — [D(n)] such
that 1(D(n)) = D(n). We first solve the corresponding problem of finding the form of
the linear maps ¢ : [G(n)] — [G(n)] such that ¢(G(n)) = G(n). For the even case, this
problem is not too hard to solve, though the details take quite a bit to get through.
For the odd case, this problem remains unsolved. Throughout the rest of this section,
we will assume that n is even, unless explicitly stated otherwise.

We first need to look at some geometric properties of G(n). For all 4 € o (n), we

can find a matrix V = [v..0,] € My (R) such that A = V*V, Note that since the
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diagonal entries of A are all equal, this means that for all 4,5, viv = vivj. This V
18 not unique and, in fact, can be replaced by QV where () is any k x & orthogonal
matrix.

The 7 x n matrix X is a perturbation of 4 € ¢ (n), written X € Py, if and only
if there is some 6 > 0 such that A+eX € § (myforall0 < e« d. If A= ViV ¢ é}(n),

then the set of perturbations of A, P4 is
Py = {VIRV : R = R' ¢ M(R),v!Rv; = v} Rv, for all i}.

The property that R = R' ensures symumetry of the perturbation and v!Ruv; = v R
is needed so that diagonal entries all agree. Note that if X = vA for some -, then
clearly X & P,. We can see that P4 can be divided up into two parts, namely, P4 =
(A)DPas where Py = Py A+, Inother words, if X € Py, then X = A+ (XN —~AA)
where A = tr X/tr A. The matrix X — AA € Py, and tr (X — AA) = 0.

Let A = V'V € G(n), with V = [v1..0,], v; € R" where r = rank(A) and
t4 = dim{span {v,v{,...,v,vt}). Then

r(r+1)
—t 4

-

dim 'P, = 1= fA.

The number of free entries in B = R? gives the T«%"ﬂ term. The +1 term reflects
that we can add multiples of 4 and the —t4 term describes the number of con-
straints imposed by assuming v} Ru; = v Ry, for all . This condition is equivalent to
trace (v{R2a;) = trace (viRv;), which implies trace (vu!R) = trace (v;vlR). Thus we
are interested in the number of linearly independent matrices of the form v}, Note

that 7 < ¢4 < max{n,r(r +1)/2}.
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Before we proceed, we prove the following fact.

Lemma 2.31 Suppose A € G(n) and P is an n x n permutation matriz. Then

P'PoF == Ppigp.

Proof. Suppose A4 € G(n) and P is an n xn permutation matrix. Then X € PP, P

if and only if PXP' € P4 But PX P! e P, if and only if there exists a ¢ such that

A+ePXP* ¢ G(n). By our supposition, this occurs if and only if PPAP +eX € G(n)

which is equivalent to saying X € Ppeap. EIJ
We can divide G(n) into the following subsets which will be useful later. Let

P = {A € G(n): dim Py = k}.

Since we are also interested in the rank of the matrices of G(n), we also consider the
following subsets. Let

k(k + 1)

Cr={A € Gi(n) : dim Py = ==

+1 -k}

IfAed (n) then P4 will have dimension 1, therefore, ¢} = G (n). Following the
proof of the following proposition, it can be seen that an alternative definition will

be needed for n odd.
Proposition 2.32 Suppose n = 2m. Then
Ch={A€G(n): A= V'V where V =WV[I, @ — I — Q|P}

where Vo € My(R) is an invertible matriz with column vectors all the same Euclidean
length, @ € My pm-x(R) such that each column of @ has exactly one nonzero entry

which is equal to 1 and P is an n % n permutation matriz.
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Proof. By construction, if A is in the set described above, then ¢4 == k. Therefore,

dim Py o= m}’»ﬂ 4+ 1k and so A € Cp. Now, assumne A € (. Since A € Gy(n),

there exists a W &€ M, (R} with rank (W) = k such that A = W'W. Since there
fys -y W W, are

are k independent columns in W, label them w;,, ..., w;,. Thus, w;w e

also linearly independent. By the dimension of P4, there must be exactly & linearly
independent ijj, namely the ones listed. Therefore, for all § € {4g41, ..., bin}, there

exists an ay, ..., a; not all zero such that

P

ap 0 0 W,
ki
KA AR S 2 . , ‘.
wiwh =Y apwyw, = (w;, wy, ) 0 .0
e

it

0 0 a Wi,

Since [wy, -+ wy, ] is k x k and full rank, and hence invertible, therefore, it preserves
rank. Since wj*w; is rank one, there is only one value of ay,...,ax that is nonzero,
call it a;. Since the trace is also the same, a; = 1, in other words, ijj— = wyw}
where | € {i,,...,4,}. Thus, for each j € {ixs1, ..., bm}, there is an | € {41, ..., %} such
that w; == +w,. Recall that 0 = W' = 5., w; and each w; € {£w,,...,®w; },
therefore, 0 = mw;, + ... + npw;,. But since w,,, ..., w;, are linearly independent,
ny = .. = ny = 0. Thus, for each [ € {41,...,%}, w; occurs the same number of
times in W as does —w;. Thus W = V where V is described in the statement of the

Proposition. =

This gives us the following corollary.

Corollary 2.33 Forn even and k = ﬂ«’%gil L == 1‘%53—)-+ 1, let A=VV ¢ G.(n).
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Then A € Py (ie. 14 == 1) implies

We now examine the relationship between Cy for different values of .
Proposition 2.34 Let n = 2m. Then Cy, = U, C;-

Proof. Suppose X is in ;. Either X € Cy, and we are done, or there exists a se-
quence of elements of Cj, that converge to X. In other words {P(r)V!(r)V (r)P(r)} —

X where V(r) is a k x k matrix such that
V(r) ={o(r) - wln)]ll — L Q(r) - Q)]

where Q(7) is a k X (m — k) (0,1)—matrix with exactly one nonzero entry in each
column. Since there are a finite number of n x n permutation matrices, divide
the sequence up by each type of permutation P. At least one such subsequence
will converge; consider that subsequence. Since there are only a finite number of
(0,1)—matrices of size k x (m — k), divide the sequence up by each type of ma-
trix (). Since there are only a finite number of subsequences, one must be con-
vergent; choose that one. Thus we have a sequence PV'(r)V(r)P* -+ X where
V(r) = [og(r) -« w0k —Ix Q@ — Q). Clearly, then X will be of the form

X = PWWV P! where

W == {'wl s w;c}[[k - f;c Q e (Q]
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Since {wy, ..., w0y } might not be linearly independent, this might not be in Cy, buf, then,
by Proposition 2.32, it will be in C; where j is the number of linearly independent

vectors in {wn, ..., wi}. L

We now consider linear mappings ¢ : [G(n)] — [¢(n)] such that ¢(G(n)) = G(n).
For n even we will show the forms of of such mappings and briefly discuss what

happens when n is odd. First we show the [ollowing three lemmas.

Lemma 2.35 Let ¢ : [G(n)] = [G(n)] be a linear mapping such that $(G(n)) = G(n)

and A, B € G(n). If p(A) = B then ¢(P,) = Pg.

Proof. Suppose ¢(A) = B. Note that X € P4 if and only if there exists some & > 0
such that A+ eX € G(n). But 4+ eX € G(n) if and only if ¢(A + eX) € G(n). But

P(AEeX) = $(A) L ed(X) = B ep(X). Thus X € Py if and only if ¢(X) € Py. O

Lemma 2.36 If ¢ : [G(n)] — [G(n)] is a linear mapping such that $(G(n)) = G(n)

then ¢(Pr) = Py.

Proof. Using the linearity of ¢ and Lemma 2.35, we see that dim P4 = dim ¢(P4) =
dimPyay. Therefore, is A € Pk, then ¢(A) € Py Since $(G(n)) = G(n) and

~

G(n) = U P, therefore ¢(Py) = P. ]

We use the following lemma in the proof of the main theorem of this section.

Lemma 2.37 Letn = 2m. [f¢: [G(n)] — [G(n)] is a linear map such that $(G(n)) =

é(n), them ¢(Cr) = Cy for k =1,...,m. In particular, $(C,) == C,.
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Proof. Define

ik A1 E(k -1
e = k(k + 1) bl = (k1) | 1.

2
Note that by definition, Cy C Py, but that C; Py, = § whenever j # k. Therefore,

by Proposition 2.34,

Cor [ VP, = G UG- UG U C) N Pry = Co

by Lemma 2.36, therefore if ¢(Cry1) = Cry1, then ¢(Cy) = Cp. In particular, we will

show that &(C,,) = C,, and therefore ¢(Cy) = C;. First, note that C,, € P,,,. We now

e "
show that P, C C,,. Since the dimensions of 74 are the same for elements in these

two set, we need only show that if A € P,_, then rank A = m. Suppose AP, . If

kX 7

rank A = & < m, then the dimension of P4 is 25 1 — & < Z.@L%LU +1—1m, so

Ais not in P, . Suppose rank A = k > m. Then the smallest possible dimension of

PA is
k(k+1 1 2 ‘ 1

Therefore, A is not an element of P, .. And hence, P,,, = Cpp, and so ¢(Cp,) = Cp.

Hence ¢(C,) = C,. 0

Recall that §;(n) = C;. Thus if ¢(C;) = Cy, then ¢(Gy) = G,.

Theorem 2.38 Suppose n = 2m. Let ¢ : [G(n)] — [G(n)] be a linear map. Then,

forn > 4, $(G(n)) = G(n) if and only if there exists « permutation matric P such
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that ¢ has the form

Xy yPXP.

Forn = 4, ¢(G(n)) = G(n) if and only if there exists a basis {X1, Xy, X3} of [G(4)]

and scalars vy, vq, vs > 0 and a permutation o such that ¢ has the form

X e Z“z %X (7{7

where X = Y oy X;.

We will give an outline of the proof. Note that (<=) is clear. For (=), we use the
fact that c/)((j;) =: G; by Lemma 2.37.

First, we define the set 7 = Gy {A € G(n) : tr A = n} and show that it is finite of
order t = AWW We label the elements X,..., X; and let 2y, ..., z; be the vectors
such that z;2¢ = X; and note that each z; has m 1s and m —1s. Because ¢ is linear,
P(Xi) = 7 Xoq for some permutation o. Also, 5, X = = (nl, — J,).

We next show that for n > 4, v, = v; for all 4, j. To do this, we assume -y is the

largest such scalar and replace ¢ with ;Yi‘;q’). We show that because

! t . t t o
0< oD X~ - 1?&}3) = %iXou) — — 1x“&a(k)7
ie=l fem]

therefore

t
> t >
0< 2 O %X — ——7 Xo())To) = 0
PECH) ' |

. This implies that y; = 1 whenever (1 (,(“1(,(1 y) # 0. Repeating this argument shows

7; = 1 for all 4. This gives us that ¢(7) = 7 and ¢(nl — J) =nl — J.
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Next, we show that ¢ preserves inner product on 7 by grouping together those X;
and X such that, for different values of a and g, g(nd ~ J) — X; — aX; and therefore
Blnd — I} — Xy ~ Xy i positive semidefinite.

We now begin the process of replacing ¢ with the mapping X + Po(X)P? in
a sucessive manner, each time adding at least oue element of X € 7T such that
H(X) = X. We first choose the element X; € 7 and let P, be such that Xy ==
P XomyPL. Replace ¢ with X = Pio(X)Py. Because ¢ preserves inner product,
we can find subsets of 7 that are mapped to themselves, defined by their inner
product with X;. By a judicious choose of Xy (relabelling as necessary), we can find
a permutation matrix P, such that PX3Pf = Xy and Xy = PoX,5 P Replace
¢ with X' s Pod(X)Pf. Repeat this process with an appropriate X3 andP; to get
H X)) = X, for i = 1,2,3. This is sufficient to show that ¢(X) = X for all X ¢ T
Because ¢ is linear, this implies ¢(X) = X for all X € Gi. Because G, spans [G(n)],
¢ is the identity map. This implies that the original ¢ will be of the desired form for
n > 4.

For n = 4, note that 7 = {X, X», X3} is a linearly independent set. This problem
is similar to one in which you map the positive octant of a 3-dimensional Euclidean
space back to itself. Each of the axes are mapped to another axis with a scaling
factor. In other words, there is a permutation o of (1,2, 3) associated with ¢ such
that ¢(X;) = ¥iX o). Recalling that ¢ is linear, we see that ¢ will have the desire
form.

As we have only shown the form of preservers of G(n) for when n is even, we cau
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only find the form of linear mappings ¥ : [D(n)] -+ [D(n)] such that ¥(D(n)) = D(n).

Theorem 2.39 Suppose n = 2m. Let 4 : [D(n)] — [D(n)] be a lincar map. Then
P(D(n)) = ‘ﬁ(n) if and only if there exists a permutation matriz P such that v hos
the form

X v yPX P!
formn >4 and

X — DPXPtD
for n =4, where D is a diagonal scaling.

-~

Proof. Note that 1(D(n)) = D(n) if and only if ¢ o 5(G(n)) = x(G(n)) if and only
if 709 0 K(G(n)) = G(n). From Theorem 2.38, if n > 4, then (D(n)) = D(n) if and

only if there exists a permutation matrix P and vy > 0 such that
T oo k(X) =yPXP

Applying & to both sides of the above equation, and choosing ¥ € ’ﬁ(n) such that

k(X) =Y, we obtain

YY) = Ypor(X)=kr(yPXP") = x(yPr(Y)P")

R D N
h W.QQ'%(FYP([ 'n,J)} (I nJ)P)

1 VN s ] o
= s (7 (1 ~~1) PYP (.[ - »ﬁj)) = ko 7(yPY PY) = yPY P

because Y Pt € D(n) if and only if D(n). If n = 4, then (D(n)) = D(n) if and

only if there exists the basis {X1, Xo, X3}, scalars v, 72,73 > 0 and permutation o
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such that
T ?l} (] ""i L (3:&’75)‘0{ }

where X = 3" ; X;. As before, applying k to both sides and letting ¥; = £(X;) and

Y = k{X), we obtain

(’{;(Y) e l/} O K x\) = E QY :r(t))

R (L i (Yo(i)))

da]

= f‘(T(Z Qi o*(c))) = Za’z’ﬁ o(i)

because 7 is linear and ¥ o4y Y, € D(4) -

The proof of Theorern 2.38 (for n > 4) relied on the fact that we could find a set
T that was finite, spanned [G(n)] and had the property that it could be shown that
#(T) = 7. We then showed that ¢(X) = vPX P! for all X € 7. This was sufficient
to show that ¢ had the desired form. In the odd case, we would like to find such a
T. For n odd, we tried numerous approaches similar to the even case, but each time,
were unable to find a useful finite subset. It is our belief that a new approach will be

necessary to solve this problem for n odd.
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Chapter 3

Ray-Nonsingular Matrices

3.1 Introduction

A complex matrix is a ray-pattern matriz if all of its nonzero entries have modulus 1.
A ray-pattern matrix is full if each of its entries is nonzero. An n X n complex matrix
A is ray-nonsingular if A o X is nonsingular for all entry-wise positive matrices X.
Ray-nonsingular matrices with real entries are known as sign-nonsingular matrices;

see [39] and its references. In [39], the authors posed the following question:

For which n does there exist a full n x n ray-nonsingular matrix?

It is not hard to construct examples of full n X n ray-nonsingular matrices for n < 4;
see [30, 39]. In [30], the authors showed that there are no full n x n ray-nonsingular
matrices for n > 6. The question of whether there are full 5 x 5 ray-nonsingular

matrices remained open. In this section, we show that no full 5 x 5 ray-pattern

74
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matrix is ray-nonsingular. As a result, we have the following complete answer for the

question raised in [39]:

Main Theorem There is a full n x n ray-nonsingular matriz if and only if n < 4.

The proof of the main theorem is quite detailed. In section 2, we recall some
known results and outline our strategy for the proof. The key to the proof is an
understanding of 3 by 3 ray-patterns that are not ray-nonsingular. These are studied

in section 3. The proof of the main theorem is given in section 4.

3.2 Preliminary Results and Strategies of Proof

We first recall some terminology from [30]. A nonzero, diagonal ray-pattern matrix is a
called a compler signing. A complex signing is strictif all diagonal entries are nonzero.
A (1, ~1)-signing is a diagonal matrix with diagonal entries in {1,~1}. A vector v
is balanced if zero is in the relative interior of the convex hull of {v; : 1 < i < n}.
Furthermore, it is strongly balanced if its entries take on at least three distinct values.
A ray-pattern vector v is generic if for all i < 7, v; # +v;.

Consider the relation on the set of ray-patterns defined by A ~ B if and only if
there exist matrices P and @, each a product of permutation matrices and complex
signings, such that B = PAQ where A = A, At or A. Clearly, ~ is an equivalence

relation, and we have the following observation.

Lemma 3.1 Suppose A and B are full ray-pattern matrices with A ~ B. Then A is

ray-nonsenigular if and only if B is ray-nonsingular.
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We say that the matrix A is strongly balanceable if A ~ B for some B each of
whose columns is strongly balanced. The following three lemmas from [30] will be

useful in establishing the nonexistence of a 5 x 5 full ray-nonsingular matrix.

Lemma 3.2 {30, Lemma 3.7 Let A = (a;;} € M, be a ray-pattern matriz. If A has

an m X m strongly belanceable submatriz with m > 3, then A is not ray-nonsingular.

In section 3, we establish sufficient conditions for a 3 by 3 full ray-pattern to be

strongly balanceable.

Lemma 3.3 [30, Theorem 4.3] Let A = (a;;) € Ms be a full ray-pattern. If ai; €

{1,—1,4, —i}, then A is not ray-nonsingular.

Lemma 3.4 [30, Proposition 4.4] Let A be a full 5 x 5 ray-pattern matriz with first
column consisting of all 1’s and each remaining column generic. Then A is not ray-

nonsingular.

Note that Lemma 3.4 implies that if A is a full 5 x 5 ray-nonsingular matrix, then

each row and column of A intersects a 2 x 2 submatrix of the form

r oy
z tyz/x

Otherwise we can find some B ~ A with the first column all 1’s and the last four
columns generic.
General strategy of proof. We now give a basic outline of our strategy for proving

the main theorem. The proof will be by contradiction. Thus, we will assume to the
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contrary that there is a full 5 by 5 ray-nonsingular matrix 4 = (a;). We then use
the results of section 3 (that give suflicient conditions for a full 3 by 3 ray-pattern to
be strongly balanceable) and Lemimas 3.1-3.4 to show that, up to ~ equivalence, the

leading 3 x 3 submatrix of A has one of the following forms:

o P - s - oy

(d) {1 1 &% |, or (& |1 1 ¢&*

1 e* ~1 1 e« 1

Next, for each of these cases, we use Lemma 3.3 and the results of section 3 to conclude
that either
(i) all entries of A belong to {1,—1,%,—i}, or

(ii) all entries of A belong to {1,e*"/% ¢**/3} arranged in certain patterns.

Finally, we obtain a contradiction by showing that if A satisfies (i) or (ii), then A is

not ray-nonsingular.
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3.3 Sufficient Conditions for 3 x 3 Patterns to be
Strongly Balanceable

One of the keys to our proof of the main theorem is Lemma 3.2 which asserts that
o 3 %X 3 submatrix of a 5 x b ray-nonsingular matrix is strongly balanceable. In
this section, we give sufficient conditions for a full 3 x 3 ray pattern to be strongly
balanceable.

By Lemma 3.1, we may restrict our attention to ray-patterns B of the form

11 1
B=| 1 pior b2 | (3.3.1)

1 &ias eiﬁa

As the function e, z real, is 2n-periodic, we may assume that each of as, ag, £, and
B3 lies in the interval (—m, 7). For convenience we partition (—, ] by the following
sets:
P=(0,n), N=(-m0), {0}, {«},
We first determine the strict signings S for which the vector (1,1,1)S is strongly
balanced. Note that for each 6 € (~m, ], the vector (1,1,1)5 is strongly balanced
if and only if the vector (1,1,1)(e®S) is strongly balanced. Hence, it suffices to

determine the S whose leading diagonal entry is 1.

Lemma 3.5 Let § = diag(l,e™®,e") be a strict signing with x,y € (—n,x]. Then
(1,1,1)S s strongly balanced if and only if v € P and —n <y < x—7, orx € N

and w42 <y < 7.
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Proof. Note that (1,1,1)8 is strongly balanced if and only if no two of 1, ¢ and ™
are equal or opposite, and the convex hull, H, of {1, e e} contains the origin. Thus,
(1,1,1)5 is not strongly balanced if & = 0, e =m, y = 0, y=ow ov & = +y. Lz &P,
then it is easy to verify that H contains the origin if and only if —r <y <z —o. If

x € N, then it is easy to verify that H contains the origin if and only if w2 < y < =,

The lemma now follows. L

The shaded regions without their boundaries given in Figure 3.1, represent the

region of the Cartesian plane determined by the inequalities in Lemma 3.5.

( 0’75) ("‘(x"‘ﬁ,ﬂ}

{~7,m—3)

(=10~

(m,0) (o)

(wn’(})

(0,-7)

(’nwa,»ﬂ)

Figure 3.1: Graphical representation of Figure 3.2: Graphical representation of
solution set balancing [1,1,1] shifted solution set balancing [1, ¢*, et]

with0< f<a<n

Next, let’s investigate a general vector z = (1,¢",¢"), and let R(c, ) be the
region of the Cartesian plane consisting of the points (i, y) such that zdiag(l, e*, e¥)

is strongly balanced and z,y € (—n,x]. Thus R(0,0) is the region described in
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Lemma 1, and illustrated in Figure 3.1, Let [ = diag(l, e, ¢?#). Note that S is a
strict signing such that z5 is strongly balanced if and only if D)5 is a strict signing
such that (1,1,1)D8 is strictly balanced. It follows that R(w, #) can be obtained
from R(0,0) by identifying opposite edges of the square [—x, 7] X [~m, 7] to form a
torus, and then translating the shaded region in Figure 3.1 by (~a, ~73).

For example, R(w, £) is presented as the shaded region in Figure 3.2 where o, § €
(0,7) and o > 8.

Note that R(0,0)NR(e, 8) represents the points (z,y) in the plane such that both

rows of
1 1 1 _
diag(1, e, ")
1 e ¢
are strongly balanced.

It is tedious, but straightforward, to determine the regions R(0,0) N R(w, 5). We
do this as follows. First partition the vectors of the form z = [1 e eiﬂ] according to
the locations and relationships between « and 8 as given by the 24 classes described
in Table 3.1 below. The sets R(0,0)NR(«, B) for each of these 24 cases are the shaded
regions without the boundaries illustrated in Section 5.

We finally turn our attention to studying the strong balanceability of the ma-
trix B in (3.3.1). Note that B is strongly balanceable if and only if R(0,0) N
R0, B2) MRz, B3) # B, or equivalently if and only if (R0, 0)NE (e, B2))N(R(0,0)N
R(cu3, b3)) 5 0. If the second (or third) row has form (C9) in Table 3.1, i.e. is [1,1,1],

then trivially, this intersection correspounds to the solution set of the first and third
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Table 3.1: Classes of vectors of the form [1 € '),

81

Class || o in B in | Conditions | Class || o n fin |
1 0,7} | (0,n) o> f C1 (0,7) {0}
2 0,7) | (0,%) o < 3 C2 (—-m,0) | {0}
3 (~#,0) | (—=,0) o> 3 (0, m) {n}
4 (7,0} | (=, 0) o< f C4 (—~7,0) | {=}
5 O,7) {(+m0)] a—-F<w C5 {0} (0, %)
6 O, | (~m0)| a—B>n C6 {0} | (~n,0)
7 (=7, 0) | (O,n) | B—~a<w C7 {r} (0,7)
8 (=m,0) | (O,7) | B~a>xn C8 {n} | (~=,0)
9 (0,7) | (0,7) =3 C9 {0} {0}
10 (~m,0) | (~m,0) o= C10 {0} {r}
11 0,7 | (-~m,0) | a—f= C11 {w} {0}
12 (~,0) 1 (0,7) — =T C12 {n} {r}

(or second) row. Also, if the second (or third) row has form (C10)-(C12), then the
solution set is empty (see Figure 3.24) and so the intersection is trivially empty.
Thus, we need only consider those cases when the second and third rows are of one
of the first 20 types listed on Table 3.1. That is, we need to study the intersection of
(R(0,0) M R(cxg, B2)) and (R(0,0) N Ras, bs)) for pairs of the first 20 classes listed in
Table 3.1.

The results of this straight-forward but tedious study are summarized in Table
3.2 found at the end of Section 3.5. The rows and columns of Table 3.2 are indexed
by the 20 classes other than (C9)-(C12). An entry of ‘1’ indicates that the pair of
specified regions always has nonempty intersection, an entry ‘)" indicates that the
pair of specified regions always has an empty intersection, and an entry ‘c’ indicates
that the intersection is empty or nonempty depending on the values of g, oy, £, fs.

‘able 3.3 will list the conditions on the values of oy, ag, B, B4 for an empty inter-

section corresponding to some of the '¢’s in Table 3.2.
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The following example illustrates how we obtain the conditions in Table 3.3.

Example 3.6 Consider the matrix B in (3.3.1). Let wuy, us, us be the rows of B.
Suppose that u, has form (C5) and w1y has form (C1). Since we are interested in the
conditions on A, and g such that the matrix is not strongly balanced, we examine
when the solution sets described geometrically above do not intersect. In the upper
left quadrant, we see that the upper bound for (C5) is m — Sy while the lower bound
for (C1) is a, thus 7 — By < aa. When we examine the lower right quadrant, we get

the same inequality.

Next, we illustrate how to use Tables 3.2 and 3.3 to examine specific matrices.
This will allow the reader to get a feel for how these arguments work while also

providing information needed latter.
Example 3.7 Suppose uy,us, us are rows of B with

up={1 1 1) w=[11 &b} us=[1 -1 ]

with {¢*, "2} N {£1} = 0, so that B cannot be strongly balanced. If we assume
that 81 € P, then uy has form (C5) and uz has form (C7) or (C8). By Table 3.3,
if us has form (C7) then f; < By, if ug has form (C8), then gy + 7 < f;. If we are
interested in the vector v = [ | ¢ B2 |, then v has one of the following forms:
(1), (6), (9) or (11). Similarly. if 3, € N, then v has one of the following forms: (4),

(8), (10), or (12).

Using a similar analysis, we have the following.
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Example 3.8 Suppose wuy, ug, 1y are vows of I3 with

w1 1] w1 1 Pl w1 1 el

has one of the following forms: (2), (3), (6) or (8)-(12).

3.4 Proof of Main Theorem

Assume A is a 5 x 5 full ray-nonsingular matrix. We first show that up to the
equivalence relation defined before Lemma 3.1, we may assume that the leading 3 X 3

principle submatrix has one of the following forms.

RN FIEERE EREEE
(a) 1t 1|, ® j1 -1 1), (o |1 -1 e
gl pib 1 et ¢if 1 e —1
RN 11
@ |1 1 &* or  (e) |1 1 ¢f
1 ee —1 1 1

Recall that if A = (a;) is a 5 x 5 full ray-nonsingular matrix, then each row and

column intersects a 2 x 2 submatrix of the form
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By Lemma 3.1, we may assume that the 2 x 2 submatrix intersecting the first row
lies on the fiest and second row and column. Likewise, we assume that aj = 1
whenever j = 1 or k = 1. Then agy = 1. Let ajp = % and u; = [1, "2, ¢™%] for
J=1,2,3,45.

First, suppose e = %1 or €2 = &1 for some j = 3,4 or 5. Then 4 has a 3x 3
submatrix equivalent to a matrix of form (a) or (b). By Lemma 3.1, we can replace
A with the equivalent matrix with leading 3 x 3 principle submattix of form (a) or
(b).

Now suppose, for some § = 3,4 or 5, that ¢/ == £1. Then A has a 3x 3 submatrix
equivalent to a matrix of form (¢}, (d) or (e). By Lemma 3.1, we can replace A with
the equivalent matrix with leading 3 x 3 principle submatrix of form (c), (d) or (e).

Suppose, for some j = 3,4 or 5, that ¢®2 = +e™®2 Then

1 1
1 =1
1 et

etz

+ eimﬁ

+1

e~ 12

1 1
1 et
1 41

1

+1

ev—ia}jz

+4-giT2a

*1

In other words, A has a 3 x 3 submatrix equivalent to a matrix of form (c), (d) or
(e). By Lemma 3.1, we can replace 4 with the equivalent matrix with leading 3 x 3
principle submatrix of form (c), (d) or (e).

Now suppose that neither of the two cases above hold. We will then show, using
Table 3.2 and the fact that A cannot have a 3 x 3 strongly balanced submatrix, that
no such matrix is possible. Note that by our assumption, ug, u4 and us do not have

forms (C1) - (C12) nor (9) — (12). Also, uz can only have form (C5) - (C8). In fact,
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since A ~ A, we may assume that 293 € P, and therefore 4y has either form (C5) or
(C7). Suppose uy has form (C5). Because the matrix with rows uy, uy and u; is not

strongly balanced, by Table 3.2, u; for j = 3, 4,5 can only have form

(1), (4), (6) or (8).
Note that if two vectors, say w; and uy, have the same form, then the matrix with
rows uy, %; and uy will be strongly balanced by Table 3.2, Now suppose one of the
row vectors, say ug, has form (1), Then uy and us both have form (6), else the matrix
with rows w,, us and wy, is strongly balanced, with & = 4, 5. But then the matrix with
Tows Uy, u4 and us is sirongly balanced. 8o u3 cannot have form (1), Suppose ug has
form (4). Then u4 and us both have form (8), else the matrix with rows u, ug and
uy, is strongly balanced, with k = 4,5. But then the matrix with rows uy, uy and us
is strongly balanced. So uz cannot have form (4). Thus we have three vectors and
only two possible forms, so two vectors have the same form and we have a strongly
balanced 3 x 3 submatrix. Thus, uy cannot have form (C5). Now, suppose ug has
form (C7). Because the matrix with rows uy, us and u; is not strongly balanced, by

Table 3.2, u; for j = 3,4,5 can only have form

(2), (5) or (6).
As no form can be repeated, we can assume that uz has form (2), uy has form (5) and
us has form (6). But then the matrix with rows uy, us and us is strongly balanced

by Table 3.2. Therefore, uy cannot have form (C7) and we have a contradiction.
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3.4.1 Case 1

First we assume that the leading 3 % 3 principal submatrix of 4 has form (a). Suppose

Uy, g, Uz, Ug, Uy are the five rows of [oi]icicsicjes. Thenwy =ug=[1 1 1] Let

ug=[ ) gios gifa ], ugm[ ) g g ], us [y efes gifs |

Note that for i == 3,4,5, u; cannot be of the form (1)-(12) or (C1)-(C8); otherwise
the matrix with rows uy, us, u; can be strongly balanced by Table 3.2. So u; has form
(C10), (C11) or (C12). If ug = uy == usz, then the matrix with rows us, us, us can be
strongly balanced. Suppose ug, us, us are not all equal. Then up to the equivalence
relation ~ described after Lemma 3.1, we may assume that 4 is equal to one of the

following two matrices.

4 1 1 11 1 M H 1 1 1 1 1 ”
1 1 1 a9y aos 1 1 1 as4 ass
Bi=|1 1 -1 ay as |- By=|1 1 -1 ag asz
1 1 —~1 a4 Gq5 1 —1 =1 agq ag5
1 —=1 1 agy ass I -1 1 as4 ass
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for j == 4,5. So a5 = 1 for 4= 2,3,5 and j = 4,5, If A = By, then A has the 3 x 3

submatrices

11 oy |

and 80 aq; = &1 for j = 4,5. If A = By, then A has the 3 X 3 submatrices

- - - vy

1 1 a4 ~ 11 gy

-1 -1 &43' 1 1 WCZM

s

Thus, a4; = 1 for j = 4,5. And therefore, a;; = 1 for all ¢, j, and by Lemma 3.3

(a), A is not ray-nonsingular.

3.4.2 Case 2

Assume that the leading 3 x 3 principal submatrix of A has form (b). We will show
that A has entries a;; € {£1, 4}, which contradicts Lemma 3.3 (a).
Suppose uy, ..., us are the five rows of [a;]i<i<s1<j<cs.- Then wy = [1 1 1] and

uz = [1 —11], i.e. they have forms (C9) and (C11) respectively. Let
ug =[] gits g ], ug=[1 g g ], wus=[1 e eiws |

Since for each § € {3,4, 5} the matrix with rows uy, uy, u; cannot be strongly balanced,

using A and Example 3.8 we see that u; has one of the following forms:

2), (3), (6), (8) - (12), (C3) — (C8), (C10) or (C11).
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Note that if ¢ == 1 for any j = 3,4, 5, then A is equivalent to a matrix with
a submatrix of form (a), and we are back to Case 1. Similarly, if €% == -1 for all
4 =3,4,5, then A is equivalent to a matrix with a 3 X 3 submatrix of form (a) and
we are back to case 1. So there exists a § € {3,4,5} such that €% # 1. We may
assume y; € P since A ~ A. By this assumption, we see that u; will be of the
following forms:

(2), (8), (9), (12), (C5) or (C7).
Next, let vy,...,v5 be the rows of the matrix obtained from [ai]i<icsi<ics by

multiplying —1 to its second column. Then
vy =1 =1 1], va = [111], vg = [1 —e W], vy = [1 —ei™ &%), yg = [1 ~™® '),
Note that us has form (2), (9), (C5) if and only if vs has form (8), (12), (C7),
respectively. Thus, we may assume that ug has form

(2), (9) or (Cb)

otherwise, multiply the second column of A by —1, and interchange the first two rows

of the resulting matrix. Now, we consider several subcases.

A. Assume either uy or us has form (C10) or (C12). In particular, we may assume
that us has form (C10) or (C12); otherwise we permute the fourth and fifth row of
A.

AL Suppose us = [1,1,~1] has form (C10). Recall that us has form (2), (9) or (C5)

while us has one of the forms: (2), (3), (6), (8), (9)-(12), (C3)-(C8), (C10) or (C12).
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Suppose uy has form (C5). But then

on 11 1 “
(U5 = 11 -1
Uy i 1 1 e ]
is equivalent to a matrix of the form in Case 1.
Next, consider the matrix
~ulh ¢1 1 1‘“ ‘1 1 1“
ug | < |1 1 =1t~ 1 1 e
U, 1 e e 1 -1 e _

for § = 3, 4. Since this submatrix is not strongly balanced, by Example 3.7, us cannot
have form (2). Hence it has form (9). Furthermore, u, cannot have form (2) or (3).
Also, if ugq has form (9) or (C10) or if €** = 1, then there is a submatrix of the form
in Case 1.

Note that

Uy 1 1 1 1 1 1
ug | = | ~1 1 €% |~ |1 —~1 -
Uy 1 —1 ¢ 1 -1 iy

From Table 3.2, we see that if the above matrix is not strongly balanced and €™, ¢'¥
41, then the sign of the imaginary parts of —e® and €% do not agree. In other words,
x; € P implies y; € P and x; € A implies y; € N. So uy can only have form (10),

(C3), (C4), (C7), (C8) or (C12).
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If 24 has form (10), then the matrix formed by rows uy, us, 14 i equivalent to

1 eiwa PRI Qmim 1 11,

1 e gios N

and again we are back to Case 1. If uq has form (C3), then note that v4 has form (11)
and vy has form (C4) and so the matrix with rows v, vs, vy is strongly balanced. The
vector uy cannot have forms (C4) or form (C8) else the matrix with rows us, ug, 1y 18

strongly balanced. Likewise, u4 cannot have form (C7); otherwise, for some x3,74 €

P, the matrix with rows us,us, ugq can be strongly balanced because it is equivalent

to
1 -1 1 1 1
1 s gios |~ 1] gi®a _gls
1 —1 ¢t 1 -] —givs

which has rows of form (11) and (C8). If u4 has form (C12), the matrix with rows

u1, U3, Ug 18 equivalent to

1 67'.:1:3 eiw;; ~ e«-—z’mg 1 1

and we are back to Case 1.
Al Suppose ug = [1, ~1, —1] has form (C12). Recall that us has form (2), (9) or

(C5) while wu, has one of the following forms: (2), (3), (6), (8), (9)-(12), (C3)-(C8),
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(C10) or (C12). Suppose uy has form (2) or (9). But then

1wy 11 1 |
us | T 1 e eiun |~ L] girr ]
g 1 =1 -1 1 e -1

can be strongly balanced because the last two rows both have form (C3).

Suppose u3 has form (C5). Note that if us has form (C10) then we are back to
Case A.i. and if it has form (C12) then we have a 3 x 3 submatrix of form (a) and we
are back to Case 1. By Table 3.2, u4 can only have one of the following forms: (6),
(8), (10), (12), (C3), (C6), (C7) or (C8).

Suppose u4 has either form (6) or (8). Then the matrix

strongly balanced.

Also, u4 does not have form (10); otherwise

Us 1 -1 -1 1 1 1
us | <11 -1 ~ 1 -]
Uy 1 el gty 1~ i

which has third row of form (5) or (7) respectively. By Example 3.7, this matrix is

Uy 1 1 1 1 1 1
Us == 1 8ia:3 ez':z::; ~ 1 eimg —1 y
U 1 -1 -1 1 e —1

which has second and third row of form (C4), and the matrix is strongly balanced.

Next, us does not have form (12); otherwise
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the matrix with rows wug, ug, 44 18 equivalent to

Us 1 — e 1 1 1
Uy 1 —efte it 1 e give
ko s e ] 8 i

where ys, 44 € P. This matrix has second row of form (C8) and third row of form

(11), and hence is strongly balanced. Note that uy does not have form (C3); otherwise

the
A - )
Uy 1 ~1 1 11 1
ug | =1 1 e [~ 1 ~1 ¥
Us 1 oef —1 1 —efes -1

where 73, y4 € P. But then the second row has form (C7) and the third row has form
(C4), and the matrix is strongly balanced. If 44 has form (C6), then the matrix with

rows uy, g, uq is equivalent to

1 1 e

1 1 e

and we are back to Case 1. Likewise, if u4 has form (C7) or (C8), then

. . ) .
o 1 -1 1 11 1
g | =11 —1 e [~ 1 1 e
U 1 -3 -1 P 1 -1

and we are back to Case 1.
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B. Assume u, and us have neither form (C10) nor (C12). Recall from the beginning
of this subsection that wy has form (2), (9) or (C5). Alse, for j = 4,5, u; has form

(2)7 (3)7 (6), (8) (5‘2): (0'3)1 (CJ';&): (C76)9 (CV) or (08)

B.i. Suppose {e™ e ¢} N {£1} = @. Suppose uz bas the form (2). Since the
matrix with rows wuy, ug, 1y is not strongly balanced for j == 4,5, u; has form (8) or
(12) by Table 3.2. Since the matrix with rows u;, 14, us is not strongly balanced, by
Table 3.2, u4 and us do not have the same form. We may assurne that u4 has form (8)
and us has form (12), but then the matrix with rows wuy, u4, u5 is strongly balanced.

Suppose uy has form (9). Since the matrix with rows uy, us, u; is not strongly
balanced for j == 4,5, u; has form (6), (8), (10), (11), (12) or (C3) by Table 3.2.
However, note that uz has form (9) means that vy has form (12); since the matrix
with rows vy, 3, v; is not strongly balanced for j = 4, 5, by Table 3.2 v; has form (2),
(6), (9), (10), (11) or (C3). Accordingly, u; can only have form (8), (10), (11) or (12).
If u; has form (8), then v; has form (2) and we are back to Case A.i. If u; has form

(10), then we are back to Case 1 because

us | = 1 eiz:; 62':1:3 ~ em,;m 11
Uy 1 e eifﬂj emiTi 11 -J

Now, u; raust have the from (11) or (12). As before, u, and us cannot have the same

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



form. We may assume that uy has form (11) and ug bas form (12). But then

U 1 -1 1 1 emw gmiis

N B L T I B R 1>
g 1 —e®s gt 11 1
- - by b b ol

and we are back to Case 1.

Finally, note that uy cannot have form (C5) because ¢** ¢ {41}.

B.ii. Suppose {e"¢, el e} N {41} # (. Suppose uy has form (2) or (9). Then
there exists j &€ {4,5} such that €® = 41 while e 3 %1. Now, interchange rows 3
and j and if €% = —1, multiply the second column by ~1 and interchange the first
two rows. We may assume y3 € P since A ~ A. Note that this new third row has
form (C5). Therefore, we may assume that us has form (C5). Recall that @ # 1

for j = 4,5, else

Uy 11 1
ug | = |1 1 e
u; 11 e

which is equivalent to a matrix of form (a) and we are back to Case 1. In other
words, u; does not have form (C6). Furthermore, by Table 3.2, u; does not have form
(2), (3), (9), (11), (C4) or (C5) else the matrix with rows u, uz and u; is strongly
balanced. In other words, u; can only have one of the following forms: (6), (8), (10),
(12), (C3), (C7) or (C8). But w3 has form (C7) and hence, because the matrix with
TOWS Uy, w3 and v; is not strongly balanced, therefore v; has form (2), (11), (9), (C5)

or (C6), i.e. u; has form (8), (10), (12), (C7) or (C8).
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Let {7,k} = {4,5}. Suppose u; has form (8). Then wu; does not have form (8),
(12) or (C7) else the matrix with rows wuy, u;, ux is strougly balanced. Note that v,
has form (2). If uy, bas form (10) or (C8), then vy has form (11) or {C6) and so the
matrix with rows vy, v; and vy is strongly balanced. Therefore, u,; cannot have form
(8). Now suppose u; has form (C7). But then the matrix with rows wy, u; and u]
is strongly balanced for uy of any form but (C8). However, if u; has form (C8), then

the matrix formed by rows ug, uj, uy is equivalent to

U 1 -1 1 1 1 1
wi | =1 -1 e [ ~11 1 1
U 1 —~1 et 1 W gie

and we are back to Case 1.

We can now assume that w; and u; will have one of the following forms: (10), (12)
or (C8). They will not have the same form, else the matrix with rows u, u; and 1
will be strongly balanced. We will examine the restrictions on the entries in each of

the possible combinations of forms by considering the following subcases.

B.i.a. Suppose uy and us have forms (C8) and (10) respectively. In other words,

there exist «, 8, € P such that
Ug = [ 11 em ]’ Ug == [ 1 -1 ei(ﬁm'lz‘) }7 Uy m{ 1 5}(’7"""”) (g‘i(’)’”ﬂ") ]

By Table 3, we find conditions on these angles such that there are no 3 x 3 submatrices

that can be strongly balanced. Because the matrix with rows uy, u4, us is not strongly
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balanced,
Because the matrix with rows vy, vy, v5 18 not strongly balanced,
vz B (3.4.3)

Equations (3.4.2) and (3.4.3) imply v = £. Also, because the matrix with rows

u, U3, Ug 18 not strongly balanced,

Suppose v = 8 < a. For j = 3,4,5, let 4; be such that

Uy 1 1 E,m 1 1 1 i 1
Uy P 1 -1 e’i(ﬁ"'?r) P 1 -1 ei(ﬁ~aw7r) o ,&"1
U, 1 etB-m)  Gi(B—n) 1 iB-m)  gi(f-a—) s

But 0 < 8 < B+ (17— @) < a+ (17— ) = 7 and efB+7-a) = ¢ilf-2=m) Qo 4, has
form (C7) and 45 has form (8), and hence the matrix with rows i, @y, 45 is strongly
balanced. Therefore

B.iib. Assume u4 and vz have forms (C8) and (12) respectively. In other words,

there exist «, 8,y € P such that

ug=[1 1 ¢o],  w=[1 -1 Q0] us=[1 g o]
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But the matrix formed by rows wu, ..

(1, ~1)-signings and row permutation, to

1 1 1 " " 1 -1 1 w 1 1 m
1 -1 1 1 1 1 -1 1

1 1 e 1 -1 e 1 efleh)
1 —~1 eifm | 1 1 e ifm ~1 i)

1 —er et 1oe™™ e e eV

07

s 18 equivalent, by complex conjugation,

Note that the third, fourth and fifth rows of this matrix have forms (C5}), (C8) and
(10) respectively. Thus, by Case B.ii.a., o = f = .
Biic. Assume uy and us have forms (10) and (12) respectively. Therefore, there

exists o, 3,y € P such that

ug =11 1 egia], ug=[1 B~ i8], us =[ 1 eilr=m) gilr-m) |.

Once again, we use Table 3 to find necessary conditions on these angles for there to
be no 3 x 3 submatrix that can be strongly balanced. Because the matrix with rows

Uy, u3, w4 1S not strongly balanced,

8 < a. (3.4.6)
Because the matrix with rows vy, v3, v4 is not strongly balanced,
8> a. (3.4.7)

Iherefore, =2 X 'AISO IZ)GCZLUSQ the matrix with rows wu, Ty, Us is not stron ]
’ 1y tidy 105
ba,lanced,

(3.4.8)
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Suppose v < § = a. For § = 3,4, 5, let 4; be such that

-

ey

4 =

Uz

b L

1 1
1 Gi{mmvr)
1

@7:(’7“'7{‘}

147
€

6,i¢:v

ei(wwr)

- 2 o -y

1 ety gilakmey) s
~ 11 Gi(amrr) e‘i(u%—arm“y) r ,&4

11 1 s

ol N - b ol

Because v < «, thus 0 < (@ — ) < &~ < 7. Also, X010 = (ilo~r=7)_ Qg 4,

has form (11) and is has form (6), and therefore the matrix with rows ds, i3, @ is

strongly balanced. Hence

Now that we know some conditions on rows u, and ug, we consider the 5 x 5

matrix and see what values other entries must have. First, for a € P, let

.41 ==

by

Uy

U9

U3

1 -1 1 | blm[l -1 wemy

1)2::[1 it ___eia}, bg::[l —ei® em}_

Note that because A} = A,

e

B PR ) S )4

,u’4 ei/.-q.z{ ezz45 »

ug €vs gl

ol

where wuy, us, vy, v5 € {by, bo, b3}. First, we use the 4 x 4 subnatrices

44 1 ’U;

up €k
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to show that e ¢ {:£1, £’} and that €' = 4. (Recall that o € P).

Suppose v; = by. Note that

oo o i ]
1 -1 1 ~1 “11 -1 1
1 1 eie g | 1 o it
Lor st Fo1 Fs T
o1 1] (i o
1 -1 1 -1 1 -1 1 -1
) 1 1 et gl i 1 1 —eia gio
LerooTm T 1 » 73

Therefore, 7,7t € {£1,2e™™}. Let uy = [1,7,5] and e

{b2,bs}, then r = —e*® But this implies —€'® = ¢, je. @ = 4.
t € {1, 4}, If up = by, then 7 = ~1 and ¢ € {1, Le}.

Suppose v; = by. Note that

* 11 1 1 11 1 1 ee e [ 11 1
I -1 1 —e@ 1 =1 et 1 1 -1 1
1 1 ele i 1 1 1 1 1 1 —ei
1 r s 1 7 se™'® —gemio I 1 —temi®

99

== t. Note that if v, €

And thus

6,wz'on

st

Therefore, r,~te™™® € {&1, e ™} Let uy = [1,7, 5] and e = ¢. Note that

if up € {by, b3}, then r = —e®. But then —¢™® = ¢ ie.

t € {1, 24}, If up = by, then r = —1 and ¢ € {&1, e},
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Now suppose v; == by, Note that

"1 1 1 1 | I 1 1 1 M w 1 1 e® erie]
=1 1 —g® -1 1 =1 ¢ -1 1 ~e™ 1
11 e ¢ 1 1 €& ¢* (R S 1
L r s ¢ Tl osFF R A
hl 1 1 1 | ~1 1 1 1 h

1 -1 1 e 1 -1 1 ~e™

11 eria grie 1 1 e e

1 7 (Fe™® gFe™® 1 r 7l r3ec ]

So r,rie*™ & {£1,4e®} ie. t € {r,dre™}. Let up = [1,r,s]. If ux = b then
r = —1 and so e =t ¢ {£1, £’} If up € {bs, b3}, or in other words, r = —e'®,
then t € {de'™ e}

Note that there are 3 choices for the two vectors v;, therefore, at least one, say
vg 18 in {by, by}. Similarly, there are two vectors uy, thus at least one of them, say
g 18 in {by, bs}. Therefore, €® = 4, and s0 €** = —~1 and &' € {1,+i} for all

J,k=4,5. By Lemma 3.3 (a), A is not ray-nonsingular.

3.4.3 Case 3

Assume that the leading 3 x 3 principal submatrix of 4 has form (c) and that A4 is not

equivalent to a matrix B whose principal submatrix has form (a), (b) or is strongly
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balanced. Let

Uy 1 1 1

o 1 ] e
ug | =1 e -1
g 1 6'&1«‘4 (;:é-y;;
ug 1 ¢les gl

We may assume that e'® e £ +1; otherwise, we are back to Case 1 or Case 2.
Furthermore, we may assume that o € P as A ~ A. Therefore, up has form (C7).
Since the matrix with rows uy, 4y and ug is not strongly balanced, by Table 3.2, w3
has form (C3), i.e. 8 € P. Also, note that i e # +1 for j = 4,5; otherwise,
there exists a submatrix of the form (a) or (b). For j = 4,5, since the matrix with
rows g, g and u; is not strongly balanced, u; has form (1), (7}, (8), (9) or (12) by
Table 3.2. Since the matrix with rows uy, uz and u; is also not strongly balanced,
u; can only have form (9). But this means that rows uy4 and us both have form (9)
and therefore the matrix with rows u,, 14 and us is strongly balanced, which is the

desired contradiction.

3.4.4 Case 4

Assume that the leading 3 x 3 principal submatrix of 4 has form (d) and that A is

not equivalent to a matrix B whose principal submatrix has form (a), (b), (c) or is
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strongly balanced. First, let

Uy 1 1 1

Ug 1 1 e«
ug | =1 &f 1
Uy 1 Gi:z: 4 Giy 4
s 1 @“’ 5 e'l"!!ﬁ

We may assume that ¢ e £ 41; otherwise, we are back to Case 1 or Case 2.
Furthermore, we may assume that o € P as A ~ A. Therefore, us has form (C5).
Since the matrix with rows uj, us and u; is not strongly balanced, by Table 3.2, ug
has form (C3), i.e. B € P. Also, note that "%, % # 41 for j = 4,5, else there exists
a submatrix of the form (a) or {(b). As in Case 3 in the previous subsection, ug has
form (C3), and so for j = 4,5, w; has form (1), (7), (8), (9) or (12). Since the matrix
with rows wuy, us and u; is also not strongly balanced, u; can only have form (1), (8)
or (12). By Table 3.2, we see that the pairwise intersections of the solution sets are

non-empty; thus, the matrix with rows u,, us and us is strongly balanced.

3.4.5 Case 5

Assume that the leading 3 x 3 principal submatrix of A has form (e) and that A is
not equivalent to a matrix B whose principal submatrix has form (a), (b), (¢), (d) or
1s strongly balanced. We will show that this implies that a;; € {1, eH27/%} and that

A has a 4 x 4 strongly balanced submatrix.
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Suppose wuy, . .., uy are the five rows of |ay;),

Uy 1 1 1
up | =11 1 e
Us 1 ef* 1

Let

ug==[ ] g g ], ug =l gin e ]
Note that '@, ' et Wi # +1, for § = 4, 5; otherwise we are back to Case 1 or Case
2. Furthermore, we may assume that o € P, otherwise replace A with A. Therefore,
uy has form (C1). Because the matrix with row wuy, ug, u3 is not strongly balanced,

by Table 2, us has form (C5), i.e. § € P. We also know that
T a+f (3.4.10)
by Table 3. Because the matrix with rows w,,us,u;, for j = 4,5, is not strongly
balanced, u; has forms (1), (4), (6), (8), (10) or (12). Because the matrix with rows
u1, U3, U; is also not strongly balanced, u; has one of the following forms:
(6), (8) or (10).

We now consider the three cases where u; has form (6), (8) and (10) and examine
the matrices with rows wuy, g, u; where [,k € {1,2,3}, to find bounds on x; and
y; dependent on « and 3. These bounds are found by using Table 3 for the given
matrices.

A. Suppose u; has form (6), i.e., z; € P, y; € N and z; —y; > 7. Because the matrix

with rows iy, uy, u; is not strongly balanced,
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0 <y —fB+2r < ;. (3.4.11)
Because the matrix with rows w, ug, u; is not strongly balanced,

@ < o (3.4.12)

Note that the following matrices are equivalent.

- - - . -

Uy 1 1 é&* 11 1

Uy o 1 @m 1 ~ 1 &ia aw«-iﬂ

uj 1 €% Wi 1 e elui—h)

b ol b = n wd

The second row of the second matrix has form (6) or (11) because a + 8 > « by
(3.4.10). Because ¢~ = ¢ilui-o+2m) and (3.4.11) holds, the third columu has

either form (1) or (9). By Table 3,
Equations (3.4.12) and (3.4.13) imply

Also, equation (3.4.11) implies

a+ B>y +2r > (3.4.15)

B. Assume u; has form (8), ie, z; € N, y; € P and y; — x; > 7. Note that the
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following matrices are equivalent,

m 1 1 1 [ B |

Uy 11 e 11 e
jriniund £

U3 1 e 1 1 e# 1

4 1 e gt 1 ¢ ¢

Using the same argument in Case A, we have

y; = f and (3.4.16)
a2 z;+ 2 > (3.4.17)

C. Assume u; has form (10}, i.e. z; = y; € N. Because the matrix with rows uy, ug, u;
is not strongly balanced,

B = x;+m. (3.4.18)
Also, because the matrix with rows w,, us, u; is not strongly balanced,

> T+ (3.4.19)

We now use the above information to further determine the structure of uq, . .., us.

We have the following three cases.
A’ Assume uy and us have forms (6) and (8) respectively. Then z; = «, ys = 8 and
a+ 2 v+ 2% > 7 where v = y, and z5. Suppose that a + 8 > y4 + 27. Then the

following matrices are equivalent,.

(5 1 1 ¥ 1 1 1
wg | = | 1 el plya |~ |1 pia olya—f)
U 1 612:&5 (ei/.‘f 1 63”“ 1
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But the second row has form (1) and the third row has form (C2) and, by Table 3.2,

the matrix is strongly balanced. Therefore,
o *,kw [)’ e yi de "zﬂ" (3.’L~20)

Similarly, using the matrix with rows ug, ug, us, we can show that

a+ =y + 2. (3.4.21)
Therefore,
ty 1 1 1
Ug 1 1 ]
ug | =11 e 1
g 1 en giletd)
Us 1 eiloth) i

B'. Assume u, and us have forms (6) and (10) respectively. Then

Ty = a+ 8>y +2n >,
zs =1ys EN and 75 + 7 < «, 8.
Because the matrix with rows uy, u4, us is not strongly balanced,
Y4 = Ts. (3.4.22)

Note that
U 1 1 ¢# 1 1 1
ug | =1 et g |~ ] e eiva-h)

Us 1 61::1:5 eim;', 1 eia:s C'l;(:)’::—; - )
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Label the second row 1y and the third row @5. By equation (3.4.15), we know 44 has
form (1) if 92 < a4+ B or (9) if gyt 270 = @+ 8. Also, by (3.4.18) and z5—a > 257,
we see that 45 has form (8) if > a5 +n or (C4) if 8 == x5 + m. Referring to Table
3.2, we see that ¢, maust bave form (9), ie. w27 = o + 4, and {5 must have form
(8), i.e. B > x5 + 7 because this matrix is not strongly balanced.

Similarly, we note that the matrix

Uz 1 e* 1 1 1 1
Uy s 1 eia t‘}i Y ot 1 1 e Ya
us 1 s gics 1 ei(mg,—ma) eles

Again, label the second row iy and the third row 4. Note that @, has form (C6) and
fis has form (8) or (C8) because x5 — a > x5 — 7 and (3.4.19). But this matrix is not

strongly balanced and so by Table 3,

Equations (3.4.22), (3.4.23) and the refinement of (3.4.15) imply

Ty =Yg =+ —2m. (3.4.24)
So o )
Uy 1 1 1
s 1 1 eif
ug | =1 e 1
Uy 1 ele gilath)
us 1 eilats) gilath)
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C'. Assume uy and ug have forms (8) and (10) respectively. Then

b

U

Un

Uy

s

b

I 1
1 1
1 e
1 ¢
1 et

1 11
e'h 1 1

1 | ~11 &°
etf 1 ef
ei:c.a 1 pm;;;

Using the argument in Case B', we see that

and

Let

Uy

e

Uy

g

Us

Ty == g = - 27

pned

oy

f,ia
(gi(a+f'3)

gi(a'{”ﬁ)

e’

eif

ez‘(whﬁ)

15
{5’

i
e 4

ﬁiﬂ?(,

108

Cy = [ 1 eia Ei(aJr,B) ] , Cg= { 1 ez’(rx%ﬁ) eiﬁ J , 3= { 1 ez’(cy+;9) ei((ﬂ-ﬁ) :{ s

Cq == { 1 f pilatsd) ] , Oy = l: 1 eilatB)  gin ] )

Using both A by A, we see that if Ay is the 3 x 3 leading principal submatrix of A,
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i.e., with rows uy, ug, us, then

Ay b wt

A == uy e pieas

ug e gt

where wg,uy € {1, co,ca} and vy, v5 € {e3,04,¢5}. We consider the possible 4 x 4
submatrices for the different values of u; and v and determine the possible values of
eimﬂj.

Suppose u; = cz. Let vy = [1,€'7,e%] and z;; = A. We consider the following

submatrix of A*:

11 1 1 1 1 el griladd)

1 1 efe gilath) 11 1 1

1 e# 1 eilerd) 1 ¢ emin 1

1 e et et 1 7 ild~a)  pi(A-a—p)
11 1 1

1 1 6—»6(&-}-,8) e»—ia

1 (,i'y eé(l\wawﬂ) ei(c‘i»—c’k)

Applying the arguments in Cases A, B, C, A/, B/, (' to the right most matrix with
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(v, ) replaced by (8, — (e + 8)), we conclude that

. . - - e .
1 1 1 1
(ﬁ?:‘“:‘ & ! 61?{3 , amm , ewiw Y,
(ﬁi()\-wm»ﬂ) {fmirx 6--i(a+;9) i
. N \ L 4oL 4 L A

Thus, ¢ € {1,¢¥} and €7 € {e, -9}, Because ~ao, (@ + 8) € N and 8 € P, if
Up = 3 OF ¢, then 7 = 08 = it j o H2048) =
Now suppose u; = cp. Let vy = [1, €7, €”] and z; = A. We consider the following

submatrix of A%

” 1 1 1 1 | ” 1 1 1 1

1 1 elo gileth) el pmin 1 Gif

1 e? 1 ¥ ) 1 e 1 ef

1 e b eid e~ Q=8 | iA-6)
~ 1 e 1 e H 01 1 1 1 —
emia  gmilB+a) g 1 11 it i

1 1 1 1 1 eTie 1 e~ilatB)

e pily=0-8) 1 pi(A-d-8) 1 e iA-8=B) i(y—6~B)

Applying the arguments in Cases A, B, C, A, B', ' to the right most matrix with

(o, B) replaced by (—a, —f), we conclude that

- - - - - - . -+ N
1 1 1 1
(EWM € 4 g 3 ﬁ~-~~i(cy~+/3) 3 (3-—i(cc~+-ﬁ) &
ei(/\”’amﬁ) ({“‘M“‘*"ﬂ) e”‘”zﬂ e“i(a+ﬁ)
b . \ L ol e ok L. wd
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Thus, e ¢ {e¥, @01 Also,

1 1 1 1 n [ 11 1 1 w
1 1 gin gilatd) 1 1 gie  giats)

1 e 1 e¥ ) e 1 et 1

1 e? e g e” 1 eilf-m Lildem)

11 1 1

1 1 PACEY) e

1 e 1 e

1 e g gild-)

o P

Applying the arguments in A, B, C, A', B, C' to the right most matrix with (e, 8)

replaced by (-, « + ), we conclude that

- - ;r - " - - 1 3
1 1 1 1
e“"’i”f & 4 6“iﬁ s 6“" 5 6'1:(! ’ .
pRiCs) el etlatf) ettt
b - . b P L, o e wl A

Thus, e € {1 ¢ilotN} and ¢ € {9, ¢}, Since —a € N and 8 € P, if
Uk = €3 OF ¢5, then €7 = ¢@+F) = ¢~ In other words, e??**#) = 1. Furthermore, if
vk = ¢3, then € = ¢®h) and therefore, e € {e'@t8) By N{e# 1}. So e = ¥,
If v = 5, then € = €; therefore, ¢ € {e™ 1}N{e',1}. So either ¢ = 1
or ¢ = e = ¢f If u = ¢y, then ¢ = ¢t gnd € = ¢®. Hence, e® €

{048 iB) {eiCB+e) ¢ileth)) Recall that o, B € P = (0,7). Thus, e = gieth),

Suppose u; = ¢;. Let ve = [1,€7,¢%] and z,; = A. We consider the following
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submatrix of A%

” 11 1 1 “ “ 11 1 *
11 = g 11 ef gileth)
1 ¥ 1 gilath) ” 1 e 1 i
Loem e et 1 el elr g

Interchanging the roles of (a,7y) and (5,0), we see that this is similar to the case

when uj == ¢g. In other words,
e? € L€, e} M{ellet P4 B4} and e € {1P) ¢,

If ur = c3 Or ¢4, then € = e{@+8) and go ) = ¢~ je. ¢?F+2) = | Furthermore,

if v = ca, then ¢ = €. If v, = ¢4, then either ¢ = 1 or e = ¢ = ¢ If vy, = ¢;,
then ¢ = giath),
i)

Now suppose that v; = c5. Let uy, = [1, e, e¥] and z;, = A. Interchanging « and

B, and using the transpose of A, we see that this is similar to the case when u; = ¢,.
Thus, € € {e¥, A} n{ellotP+7) iB+1) and €7 € {e,e"¥}. Therefore, if
U = €y OF cg, then € = eXoth) = =18 je. ¢{@+28) = 1 Furthermore, if ux = c3,
then e == ™. If uy, = ¢y, then either ¢ =1 or e = " = ¢, And if u, = ¢, then
A = ei(a«}—ﬁ)‘

Suppose that v; = ¢4 Let up = [1,€"7,€%] and zj, = A. Interchanging o and j,
and using the transpose of A, we see that this is similar to the case when uj = .

Hence, e** € {e¥,eilr-a)} {eile+Ptd) oot and ¥ € {e¥, e}, Therefore, if

ur = € Or ¢3, then ¥ = ¢Moth) = g=i jo 20tf) = 1 Furthermore, if ux = ¢z,
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3

then € = ¢, And if up == ¢y, then either € == 1 or e = e = ™ If uy, = ¢y, then
e ghlath)

Lastly, suppose v; = c3. Let uy = [1,e",¢%] and 2 = A Interchanging «
and 8, and using the transpose of A, we see that this is similar to the case when
u; = cg. Thus, e € {1,¢°} and €7 € {¢®™, e}, So, if ux = ¢ or ¢3, then
! = ¢Ho48) = o~ In other words, e+ = 1,

Note that {ug,us} e, s} # O and also {vyg, vs} N{ea, e5} # B, Therefore, e =
R = p~ie and 50 a = # and €0 = 1. Let w = e’ 50 that w? = e{*+d),

We can always assume that if ¢; € {uq, us,v4, 05}, then us = c3 (since 4 ~ A’
and A ~ PAQ where P,() are permutation matrices). Also, if u; = ¢;, then in-
terchange the second and third row and column to get u; = cy. Thus, we may as-
sume that the pair of pairs ((u4, us), (v4, vs5)) is one of the following: ((¢y, ¢3), (es, ¢3)),

((c2, €3), (e, ¢3)), ({2, €3), (€5, ¢4)), ((c2,€1), (cs5,¢4)). Hence, A is one of the following

matrices:
— 11 1 1 1 “ ” 11 1 1 1 “
11 w w W 11 w w w
Bi=11w 1 w W} Ba=11 w 1 w® |
1 w?w zy w 1 w? w W ow
1 w? w? w oy 1 w? w? w oz
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By |y

W

Lt

B4m

g

T4

wz

Y4

with z;,9; € {1,w} for i == 1,...,4. However, if 21,1, %2, T3 or Y4 = w, then we are

back to

Jase 1 because A has the submatrix

1 w
1 1
1 1

1 w?
11
1 1

Thus, z;,y; = 1 for all i. But, for each of the four matrices By, By, B3, By, there exists

a 4 x 4 strongly balanced submatrix (i.e., each row contains the entries 1,w,w?). To

find these submatrices, in each case remove the first row. For B; and By, remove

the first column. For B, and B3, remove the third and second columus, respectively.

Thus A is not ray-nounsingular.
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3.5 Figures and Tables

Below are graphical representations of R(0,0) M I(e, ) according to the 24 forms of

[Le'™ e®] in Table 3.1.
Figure 3.3: R(0,0) N R(a, B) for Forms (1) — (4)

Form (1) Form (2)

(o m-8)

™ (-ounef)

{mo-f3)

(a1} Bo-m)  (eeom)

Form (3) Form (4)

(Pom R iows i)

(—v-(l,w’ﬂwﬁ\
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Figure 3.4: R(0,0) N R(w, B) for Forms (5) — (10)

Form (5)

Form. (6)

116

Copm

[ R

i1}

(ﬂﬂﬂ,‘*ﬂ*"ﬁ) -

[Ty

Form (7)

)

(it 1)

{3}

21

Form (8)

Form (9)

(-2m-04Bim) (g )

(1~}

Form (10)

N )
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Figure 3.5: R(0,0) N R(ev, B) for Forms (11) - {C4)

Form (11) Form (12)

(Mﬂ,“(l)

Form (C1) Form (C2)

{17 e

e

0,60}

[ s) ‘ (0t~}

Form (C3) Form (C4)

L L)

{1,007}

{ Rt =)
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Figure 3.6: R(0,0) N R(w, B) for Forms (C5) - (C12)

Form (C5)

4 (n~5

(P~

Form (C6)

Form (CT7)

o

Bm

(r-nf3)

Form (C8)

(“ﬁan"‘ﬁ)

Form (C9)

(=)

T

()

(Ma“ﬂ)

Forms (C10)-(C12)

0.m)

(1,0}

(~,0)

0,-m)

{Hm)

{0}

(””TC,O)

(Ov"‘”ﬂ)
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o«

"able 3.2: Intersection of solution sets.
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o - SR et O e T
= - D e o S el DS et
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Table 3.3: Conditions for empty intersection of the two solution sets.

Form of
{1 airx; ﬁ'im]

Form of
[} eiaz oif)

Condikion on
g, ¥y, ﬂl v /I)"Q

Simplification

1 6 R s TR e oy <y

1 11 Aoy S Wy try <5 0y

6 9 T g % - oy < e

6 10 =7 - By & - By Ba < fh

6 Cl T 4y T T OV o % O

6 Cs 2r ~ay + P £ By By ~ Ba+ 2% < oy
6 C6 -y & -y Ba < By

9 11 T LT~ g <o

9 C7 R o S ey o Ba Loy =
10 12 - Ry e~ Oy <% oy

10 Ci gy K T e 5 - [ By 4wy b < ag
10 C5 oy K megr -y = e~ By Br+rm=o0q+n <P
10 C8 e By K g g =S e~ [y By o= < o
11 6 =7 = fy =y & By BoLPr=aq—n
12 Ch 7 By Ko Py = -y oy + = < By
C1 C5 w2 <y T <y + B
03 Ch --{32§0!1-—‘1( ﬁéal"f‘ﬁ'g
C5 Cc7 =B <7 o B2 £ 5
Cs C8 Br+m < P Bo+ 7 L By
Cé cr <pe—m Br<pBr—~nm
Cé C8 Py <w—f B < By
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Chapter 4

Finite Reflection Groups

The following chapter represents work found in [31]. Let V' be a Euclidean space and
let End(V") be the algebra of linear endomorphisms on V. An operator 7' € End(V)
is a reflection if there exists a unit vector u € V such that T(v) = v — 2(v, u)u for
allv € V. A group G of invertible operators in End(V') is a reflection group if it is
generated by a set of reflections. The study of reflection groups has motivations and

applications in many areas, and the theory is quite well developed; see [4, 8].

4.1 Imntroduction and Background

Recently, there has been considerable interest in characterizing those linear operators

¢ : End(V") — End(V) such that

#(G) = G. (4.1.1)

121
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In other words, ¢ preserves . Wei [48] showed that a linear operator ¢ : End(V}) —»
End(V) preserves G = O(V), the group of orthogonal operators on V, if and only if

there exist P, € G such that ¢ has the form
X PXQ or X PX'(Q. (4.1.2)

Here, X is the adjoint operator of X acting on V' so that {Xwu,v) = (u, X*v} for all
u,v € V. (Once a basis is chosen, we can replace X* with X*) We are interested
in the preservers of the finite reflection groups, which consist of A,,, B, Dy, La(n),
Hj, Hy, Fy, Eg, E; and Eg; see [4, p. 76]. Note these are all subgroups of O(V).
In [36], it was shown that the same result holds for G = A,. In [35], the authors
reproved this result using a similar approach, and considered the problems for the
cases when G = B,,D,, and I (n). For D, and Iy(n), ¢ : End(V) - End(V) is a
linear operator satisfying (4.1.1) if and only if there exist P and @ in the normalizer
N(G) < O(V) of G such that ¢ has the form (4.1.2). The same statement is true
for G = O(V) and A, because N(G) = G in these cases. However, the situation
for G = B, is different. Suppose G = B, is viewed as the group of n x n signed
permutation matrices, i.e., product of diagonal orthogonal matrices and permutation
matrices, acting on V' = R", aﬁd End(V) is identified with the set A,(R) of n x n
real matrices. Then a linear operator ¢ : M,(R) — M,(R) satisfies (4.1.1) if and
only if there exist P,Q) € G and R = (ry;) € M,(R) with r;; € {1, -1} such that ¢
has the form

X+ Ro(PXQ) or X Ro (PX'Q),
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where ¥ o 7 denotes the Schur (entry-wise) product of two matrices ¥, Z € M,(R).
In this thesis, we consider the problem for the remaining cases, namely, & == Ha,

Hy, Fy, Eg, B7 and Eg, and confirm that a linear operator ¢ : Eud(V) — End(V)

satisfies (4.1.1) if and only if there exist P, Q € N(G) such that (4.1.2) holds.

One may also study the more difficult problem of characterizing linear operators
¢ 2 End(V) -+ End(V) such that ¢(G) € G. When G = O(n), such a linear map
has the usual form (4.1.2) except when n = 2,4, 8, and there are singular maps ¢
satisfying (4.1.1) in these cases; see [48] for details. Furthermore, one may consider
other subsets & of End(V) related to G and linear maps ¢ : End(V) ~ End(V) such
that ¢(S) = S and ¢(8) C S; see [10, 35, 36]). All of these can be viewed as studies
of linear preserver problems related to groups and algebraic sets; see [42, Chapter 4].

This chapter is organized as follows. We present some preliminary results and
describe some basic strategies of our proofs in the next section. In Sections 3 — 8,
we prove our preserver results for G = Hj, Hy, Fy, Eg, E7, and Eq, respectively. In
each of these sections, we describe a natural matrix realization of G, and possible
inner products (X,Y) for elements X,Y € G. These results are then used to solve
the corresponding preserver problem. For G = E; and Eg, we work on their 8 x 8
matrix realizations (as subgroups of Eg). Some matlab programs used in our proofs
are included in Section 9.

In our discussion, denote by {ei,..., e} the standard basis for R”, e = 7., ¢,
and Ejj = el € M,(R). If V is equal to (or identified with) R”, then End(V)

is equal to (or identified with) M, (R), which is also a Euclidean space with inner
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product defined by (X,Y) == tr (XY7).
It is worth noting that even though the general strategies of our proofs can be
easily described, see Section 2, it requires a lot of effort and technical details to prove

our results. It would be nice if there are shorter conceptual proofs for our results.

4.2 Preliminary Results

Denote by O(End(V)) the group of orthogonal operators on End(V) preserving the

inner product. We have the following result; see [35, Corollaries 2.2].

Proposition 4.1 Let G be a finile reflection group acting irreducibly on V. The
collection of linear maps ¢ : End(V) —» End(V') satisfying ¢(G) = G form a subgroup

of O(End(V)).

General Procedures and Strategies
We briefly describe some general procedures and strategies in our proofs in the

next few Sections.

GP1. To find a matrix realization of the given reflection group G, we use the standard
root systems in R” described in [4, p.76] to construct some basic reflections I, ~ 2rt,
and their products until we get all the elements in G Very often, we partition the

group G into different subsets to facilitate future discussion.
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GP2. Using the matrix realization in GP1, we determine some possible inner products
re=(X,Y) for elements X,Y € G. For each r, we define

Slm{;YEfG.(I,JY)mT}

which is used in the proof of the linear preserver result.
GP3. To characterize ¢ : M,(R) — AM,(R) such that ¢(G) = G, we can always
assume that o(1,) = I,. Otherwise, we can replace ¢ by a mapping of the form

X ¢(1,) " (X).

By Proposition 4.1, we see that ¢(S,) = S,, where S, is defined as in GP2. Then we
show that there is an overgroup G of G so that oue can strategically modify ¢ by a

finite sequence of mappings of the form
X v P'O(X)P or X m Plo(X)P (4.2.3)

by P € G so that the resulting map is the identity map on M, (R). It will then follow

that the original ¢ has the desired form.

GP4. Using our results, one can show that the group @ in GP3 is N((), the normal-
izer of G in O(V), as follows. By our linear preserver result, if ¢ satisfies ¢(I,) = I,

and ¢(G) = @ then ¢ has the form
X PXP or X - PEXEP,

for some £ in a certain group (. Since the mapping X +» P!X P sends G onto itself

for any P e G, we see that G < N(G). Now, if @ € N(G) then the mapping ¢
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defined by X w» Q'XQ satisfies ¢(G) = (. By our linear preserver result, there

exists P € (¢ such that
PXP=Q'XQ foral X e G or PIX'P = Q'XQ forall X € G.

If the latter case holds, then XPQ'X = P@Q' for all X € (&, which is impossible; if
the former case holds, then one readily shows that P = ). Thus, we get the reverse

inclusion N(G) < G.

GP5. To study Es, Es and Eg, we first use strategies GP1 - GP4 to handle Ey ¢
Ms(R). Then we identify E; ¢ M;(R) as a subgroup & of Eg ¢ Mg(R) by the
mapping

1 0

AU Uekby
0 A

for some suitable orthogonal matrix U € Mg(R). To characterize a linear map 2 :
M;(R) — M;(R) such that ¢(E;) = E;, we consider an affine map ¢ induced by

on the affine space generated by &£;. We use a similar idea to investigate Esg.

4.3 H;

4.3.1 Matrix realization

The group Hs has 2° - 3.5 = 120 elements; see [4, p.80]. Using the standard root
systems (see [4, p.76]) of Hy in R?, we see that Hy admits a matrix realization in

M;(R) consisting of the following matrices:
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(I} 24 matrices of the form PD, where P € M3(R) is an even permutation (so P
is either the identity or a length 3 cycle) and D ¢ M,y(R) is a diagonal orthogonal
matrix.

(II) 12 matrices of the form PH P!, where P is a matrix of type (I) and

a b ¢
H e Iy — 2(=b,c,0)(~b,c,a) = | b ¢ ~—a (4.3.4)
¢ —a b

with @ = (1 + v5)/4, b = (~1 + V/b)/4, ¢ = 1/2. Note that the diagonals of these
matrices have the form (a, ¢, ~b), (~b, a,e) or (¢, ~b,a), and the sum of the diagonal
entries is always one.

(III) 84 matrices of the form QD where @ is a type (II) matrix and D is a diagonal
orthogonal matrix not equal to I5. In fact, each of these seven diagonal matrices D
generates a class of twelve matrices, and we get seven different classes. Note that the

absolute values of the diagonals are (a,¢,b), (b, q,c) or (¢, b, a).

4.3.2 Inner product

Since (X, Y) = (I3, X*Y) for any X,V € Hj, we focus on the possible values of (13, X)
with X € Hj. If X € Hy is type (I), then (I3, X) € {0,%1,£3}; X € Hj is of type
(II), then (I3, X) = 1; if X is type (I11), then (I3, X} € {0, -1, v5/2, £(1++/5)/2}.

Thus, if X ¢ Hj, then

(I, X) € {0, %1, £v5/2, (1 + v/5)/2, £3}.
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By GP2 in Section 2, for each r in the above set, define

Sy = {X € Hy: (I, X) = r}. (4.3.5)

For example, let r = 1. f X € &, then X must of one of the following two forms.

(a) The 3 matrices of type (I), namely,
Dy = diag (~1,1,1), Dy =diag(1,-1,1), Dy = diag (1,1, ~1), (4.3.6)

(b) The 12 type (II) matrices.

4.3.3 Linear preservers

Theorem 4.2 A linear operator ¢ : Mz(R) — M3(R) satisfies ¢(Hz) = Hy if and

only if there exist P, Q ¢ M3 such that ¢ has the form
X = PXQ or X PX'Q.
Consequently, N(H;) = H;.

Proof. The assertion on N(Hj) follows from GP4 in Section 2. The (<) part
of the first assertion is clear. We consider the (=) part. Define S, as in (4.3.5).
By Proposition 4.1, if ¢ preserves Hj, then ¢ preserves the inner product (X,Y) =
tr (XY*). By GP3 in Section 2, we may assume that ¢(f3) = I; and ¢(S,) = S, for
each r. In the following, we will show that ¢ has the form X + PIXPor X + PPX'P

for some P’ ¢ Hz. We shall use the matrices Dy, Dy, Dy and H defined in §3.1 — 3.2.
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First, consider ¢(D;) = Y; for some j == 1,2,3. Then Y; € 8. Since ¢(ly) = Iy
and (Dy + Dy + Dy)/2 == I, we have () + Yz -+ ¥3)/2 = 1. We consider 2 cases

depending on whether ¢(1;) is a type (a) or type (b) matrix defined in §3.2

Case 1. Suppose Y) is a type (a) matrix. Then (Y] + Yy + ¥3)/2 = [ implies that
all Y; are type (a) matrices. We can assume that Yy = Dy; otherwise, replace ¢ by a

mapping of the form X +~» Q¢(X ) for a suitable even permutation matrix ¢). Then

{9(D2), $(D3)} = {Ds, D3}

We will show that ¢(D;) = D; for i = 2, 3.
Suppose that ¢(X) =Y for some X, Y € Hy. Since ¢ fixes Iy and Dy, (X, [3) =

(Y, I3) and (X, Dy) = (Y, Dy). It follows that tr (X) = tr (¥) and
%X, By) = (X, Is — D1) = (Y, I — D) = 2(Y, Eyy).
Now, consider
T={Xe&: (I X)=1, (X,Bn)=a} = {HYU{D;HD, :i=1,2,3}

where H is the matrix in (4.3.4). Then ¢(7) = T, and thus ¢(H) € 7. We may
assumne that ¢(H) = H, otherwise replace ¢ with X — D,;¢(X)D;. Since

(H, $(D2)) = (¢(H), (D2)) = (H, D) # (H, D3),
1t follows that ¢(D,) = Dy, and thus ¢(Ds) = Dj. So, we have shown that the
modified mapping ¢ fixes X for X = I3, Dy, Dy, D3, H.

Since ¢(D;) = I; and ¢ preserves inner product, we see that (D;, X) = (D;, ¢(X))

for all i == 1,2,3. Thus ¢(X) and X have the same diagonal. Consider the four
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matrices with diagonal (-a, ¢, —b), namely,
Xy = DyH, Xp= HIDy= XY Xg= ~DyHDy, Xy= ~DyHDy = XL
Then ¢{Xy) = X for some j € {1,2,3,4}. Since
(@(X0), H) = ($(X1), ¢(H)) = (X3, H) = (Xo, H) # (X3, H) = (X4, H),

we see that ¢(X)) € {X,, Xo}. We may assume that ¢(X,) = X; otherwise, replace
¢ with the mapping X +» ¢(X)". Then ¢(Xy) = Xo. Furthermore, we have ¢(X3) €

{Xg, }(4} . Since
(X1, ¢(X3)) = ((X)), #(X3)) = (X1, Xa) # (X1, X4),

we see that ¢(X;) = X3. As a result, we have ¢(X;) = X; for 1 = 1,2,3,4.

Next, consider the four matrices with diagonal (a, —-¢, ~b), namely,
Xg=DoH, Xg=HDy X;=-~DHD;3, Xg=-—D3HD,.

Since (H — Xy, X;) # (H ~ X;,X;) for 5 < i < j < 8, we have ¢(X;) = X; for
1 =5,6,7,8.

Now, we have ¢(X) = X for X € {Dy, Dy, D5, H, Xy, ..., Xs}, which is a spanning
set of M3(R); for example, it can be checked using MATLAB as shown in the last
section. Thus ¢(X) = X for all X € M(R).

Case 2. If ¥} is a type (b) matrix, then we may replace ¢ by a mapping of the form
X e P(X)P* for a type (I) matrix P and assume that ¥ = H. Then replace ¢
by the mapping X v HQ'D1)(X)D)QH with Q = By -+ Faz -+ Eay; we see that

#(Dy) = Dy, and we are back to case 1. .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.4 Hy

4.4.1 Matrix realization
Note that I, has 2% - 37 - 57 elements; sce [4, p.80]. Let
a=(1+V5)/4, b= (-1+5)/4, c=1/2

Using GP1 in Section 2 and the standard root systems of Hy in R? (see [4, p.76]), we
see that ¥y contains the following two matrices:

(1 =1 ~1 -1\

1 -1 1 -1 =1
A= T ~ee' 2 = 5 , (4.4.7)
-1 -1 1 =1
\~-1 —1 -1 1/
and
/1 0 0 0
0 a b c
B = I; ~ 2(0, ~b,¢,a)"(0, —b,c,a) = . (4.4.8)

0 b ¢ ~—u

\0 ¢ —a —b)/

Using these two matrices, we can describe the matrices in My(R) as follows.

(I) 4123 = 23 matrices of the form PD, where P is an even permutation, and D is a
diagonal orthogonal matrix. Note that (I, P) € {0,+1, +4}.

(IT) 273 matrices of the form PAQ, where A is the matrix in (4.4.7), and P, Q) are

matrices of type (I). Note that

(I, PAQ) € {0, %1, £2}.
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(II1) 23 matrices of the form PBQ, where B is the matrix in (4.4.8), and P, Q are
matrices of type (1}. The counting is done as follows. For a matrix of the form PB¢Q),

each P and ) has 2'12 choices. However, PBQ = RBS if and only if R*PBQS' = B.

XBY = Bifand only U X =[] @ U and Y = [r| @ V, where r = &1 and (U, V) is

one of the following pairs:
+(13, Iy), &(—~E3 + By + Fsg, By + Egy — Ea),

By + Bog — Eay, Eyy + Fay — F3y).

So, there are 12 pairs of matrices (X,Y), and the total number of type (II1) matrices

is (2112)2 /12 = 2193, Note that
(I, PBQ) € {0, 41, £2, (+1 + v/5)/2, (3 + v/5)/2}.

(IV) 2Y'3 matrices of the form PCQ, where P, Q) are matrices of type (I), and

(0 1 0 0Y) (0 a b ¢
1 0 0 0 a b 0 -c
C=FB B =
0 0 0 1 b 0 —a ¢
\0 0 1 0/ \¢ —¢ ¢ (;)

The counting is done as follows. For a matrix of the form PCQ), each P and () has
2%12 choices. However, PCQ = RCS if and only if RIPCQS* = C. So, we have to
count pairs of (X,Y) such that XCY = C. One can check that XCY = C if and

()I]ly HX =Y = :}:(U & {1]) with U == 13, Em e EZL - E;;g, or *"Em - EQ:»} ~+ 1;7/13;1. SO,
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there are 6 pairs of such matrices (X, ¥), and the total number of class (IV) matrices

is (2'12)%/6 == 2''3. Note that
(I, PCQ) € {0, 1, (£1 £ v5)/2, (£3 4+ V5)/2}.
(V) 3-2%. 24 matrices of the form PE(Q, where P and () are type (I1I) matrices and

E = (Ew+ En+ By~ Ep)B(Ewy + By — B + En)B
e 0 b ma\
0 ¢ ~a =b

- . (4.4.9)
—-~b a ¢ ]

\a & O (:}

The counting is done as follows. For a matrix of the form PEQ, cach P and @ has
2*12 choices. However, PEQ = RES if and only if REPEQS* = E. So, we have to
count pairs of (X,Y") such that XEY = E. One can check that XEY = E if and

only if X = Y is the plus or minus of one of the following:
Iy, By — B9y + F3q — Ey3, By + Egq — B3y — Egg, By — Egs + B3z — Ey.

So, there are 8 pairs of such matrices (X,Y), and the total number of class (V)

matrices is (2412)%/8 = 3.2%-24. One checks that

(I, PEQ) € {0, %1, 2, (1 % v5)/2, £1 & V5}.

4.4.2 Inner product
By the discussion in the last subsection, if X' ¢ H,, then

(I, X) € {0,41,£2, (41 + V5)/2, (£3 + V5E)/2, 1 & V5, 4}
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By (P2 in Section 2, for each 7 in the above set, define
Sp={Y e Hy: (I, Y) =} (4.4.10)

Then &y consists of matrices of the following forms.

(a) The 4 diagonal matrices, namely
Di=1Iy —2E;  i=1,2,34 (4.4.11)

(b} The 24 matrices of the form DA;D for i = 1, 2,3 where D == diag (1, £1, £1, 1),
Ay = A defined in (4.4.7),

( 1 -1 -1 -1 \
1 1 -1 1
Ay = = and Ay = AL,
I 1 1 ~1
\1 -1 1 1)

(¢) The 48 type (1II) matrices with diagonal entries 1, a, —b, ¢ in a certain order. Note

that these must be of the form PBP? where P is of type (I). To see this, note that
if P and @ are type (I) matrices such that PBQ has diagonal entries 1, a, —b, ¢, then
removing the row and column containing the entry 1, we get a type (II) matrix of
Section 3.1. Hence, we see that (@ = Pt

(d) The 24 type (V) matrices of the form PEP* where P is a type (I) matrix. This

conjugation will leave the diagonal entries (namely ¢, ¢, ¢, ¢) on the diagonal.
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4.4.3 Linear preservers

Theorem 4.3 A linear operator o + My(R) - My(R) satisfies ¢p(Fy) = Hy if and

only if there exist P, ) € ¥y sueh that & has the form
X PXQ or X~ PX'Q.
Consequently, N(¥H,) = H,,

Proof. The assertion on N(H,) follows from GP4 in Section 2. The (<) part
of the first assertion is clear. We consider the (=») part. Define &, as in (4.4.10).

By Proposition 4.1, if ¢ preserves Hy, then ¢ preserves the inner product (X,Y) =

each 7. In the following, we will show that ¢ has the form X +» P*XP or X v+ PIX'P
for some P ¢ Hy. We shall frequently use the matrices Dy, Dy, D3, Dy, Ay, Ay, Ag, B
and E as defined in §4.1 — 4.2 as well as the classification of elements of S, as types
(a), (b), (¢) and (d) as defined in §4.2. Furthermore, denote by Dy; = D;D;.

For IV defined as in (4.4.9), since DpEDy, = E* and E + E* = Iy, the elements of
(d) can be paired up such that X + X* = I, where both X and X* are in (d). Also,
the same applies for those matrices in (b) of the form DA;D, where i = 2,3. (For
example, Ay + A3 = I). Now consider ¢(D;) = Y;. Note that since there exists no
X € Sy such that D; + X = I; thus, ¥; must be of type (a), (c), or type (b) of the

form DA, D). We consider three cases according to these.

Case 1. Suppose that ¥ = D;. Then replace ¢ with a mappiog of the form
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X k> PO(X)P' where P is an even permnutation such that ¢{Dy) = . Note that

Let Dy -+ Xy X5+ X, = 21y where X; € 8. Since (Xo-+ X3 +Xy, By = 3, and since
1 is the largest possible value for (X;, Ey;), it follows that each X is either of type (a)
or one of the 12 type (¢) with the (1, 1) entry equal to one. Thus, either ¢(Dy) = D,
or $(Dy) = Z, where Z, is one of the 12 type (¢) matrices. If the first case happens,
we may assume that ¢(Dy) = Dy; otherwise, replace ¢ hy a mapping of the form
X =+ PH(X)P? for a suitable even permutation matrix P such that (P, Ey) = 1. If
the second case happens, then there exists a signed even permutation matrix ¢ with
(@, E11) == 1 such that Q'¢(D)Q = B. Now, replace ¢ by a mapping of the form
X = BPDyQ'¢(X)QDoP'B with P = Eyy + Epy + Eyy + Eg. Then the resulting
map fixes I, Dy, Ds.

Recall that ¢(D;) =Y, for i =1,...,4, and Yy + Y5 + Y3 + Yy = 3[;. Thus,
{¢(Ds), ¢(D4)} = {Ds, Du}.
Moreover, for i € {1,2}, (X, Ey) = (¢(X), ¢(Ey)) = (¢(X), E;). Cousider the set
T={Xe& (X,By)=1, (X,Epn)=a}={D;BD;:i=1,23,4}.

(Note that B = D;BD,). Then ¢(7) = T. If ¢(B) = D;BD;, then replace ¢ with
X+ Dyp(X)D;. So, we may assume ¢ fixes B. Now, since (D3, B) # (D4, B), we

have ¢(D3) = Dy and ¢(Dy) = D,. It then follow that

(}(, E”) = (@(X), Eyn), 3 = l, ceey 4.
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Since (B, D;BI;) + (B, D,BI;) for 1 # j, we have
D, BLY) = DB, i==2,3,4.
Let Pz By + Eag 4 Esy + Eyq, and consider the matrices
By =B, By=PBP', DBjy=PBP.

Consider those matrices in & with diagonal (a, ¢, 1, —b), namely, [ B,D); for i =

1,2,3,4 (note that By = D3BsDs). Then

We may assume that ¢(B,) == Bs. Otherwise, ¢(By) = DBy D and replace ¢ with
X v Didp(X)VDy. Now ¢(DoByDy) = D;B,D; for either ¢ = 2 or ¢ = 4. Since

(Ba, DyBa D) # (By, 4B, Dy), we have
(I)(DngD,) == I)iBzDi, 7 == 1, 2, 3, 4.

The matrices with diagonal (¢, 1,a, ~b) are D;B3D; for i = 1,2,3,4 (note that

By = DyB3D,). We have
(B, By) = (B, D{B3Dy) # (B, D3B3 D3) = (B, Dy B3 Dy).
But (By, B33) = (By, D3BaD3) # (By, Dy B3 D)) = (By, Dy B3 Dy). Therefore,
(DB D;) = D; By Dy, i=1,2,3,4.
Next, consider

134 = Dg.B, B{; w2 DQBQ, and ]jf, = Dlﬁg
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Their diagonals are (1, a, ~¢, b}, (@, —~¢, 1, ~b) and {~¢, 1,a, —b) respectively. Note
that for each @ = 4,5,6, that D,;B,D; share diagonal entries, where j = 1,2,3,4.
Since the triples ((B, D;B,.D;) (Bs, DyB,D;) By, DjB;D;)) are different for different
1, J, one can see that each of these 12 matrices must be mapped to themselves. Thus
P(X) = X where X == I;B;D; for j = 1,2,3,4 and i = 1, ...,6. One readily checks
that these 24 matrices span My(R); see the last section. So ¢ fixes every matrix in
My(R).

Case 2. Suppose that ¥} has the form PBP!. Then replace ¢ by the mapping of
the form X v Po(X)P'. Thus Yy = B. Then replace ¢ by the mapping X r3
BP'(X)PB where P = By + Fas + FEay -+ Ege. Thus ¢(Dy) = Dy, and we are back
to case 1.

Case 3. Suppose that ¥; has the form DA;D. Then replace ¢ by the mapping of
the form X s D¢(X)D where D is such that ¢(D;) = 4,. Then replace ¢ with the
mapping of the form X — A; D p(X) DAy, Thus ¢(D)) = Dy, and we are back to

case 1. 0
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‘4: » 5 F‘ 4

4.5.1 Matrix realization

"The group By has 412*3 elements (see [4, p.80]) and is generated by By and the matrix

/1 =1 =1 -1\

A= —ee' )2 = ,i . (4.5.12)
Al -1 1 -1

\ 1 —1 =1 1)/

Let G be the group in O(4) generated by By and the matrix

1 11 1 1
B == o ® , (4.5.13)
V2 1 -1 1 -1

Then & has 4!2°3 clements. Our result will show that G = N(F,) as discussed in

GP4 in Section 2.

4.5.2 Inner product

By the discussion in the last subsection, if X' € Fy, then
(Iy, X) € {0,£1, £2, +4}.
By GP2 in Section 2, for each 7 in the above set, define
S, ={V eFy:(I,Y) =r}. (4.5.14)

The set S; consists of matrices of the following forms.

(I) There are 4 diagonal matrices, namely, D; = Iy — 2Ey;, i = 1,...,4.
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(1) There are 24 matrices of the form DF,; € By, where Fy; is the matrix obtained
from I, by interchanging the ith and jth rows for 1 < ¢ < § < 4, and D is » diagonal

orthogonal matrix such that txr (DF;) = 2. For example,

/10 0 0\

010 0
Fag =

00 0 1

\0 0 1 0/

(11T} There are 48 matrices of the form DA, D, ..., DAgD, where

/1 =1 =1 =1\ /11 =1 =1\
~1 1 -1 -1 I T B T |
Alz% ,x‘igmé‘ 3
-1 =1 1 -1 I -1 1 -1
\wl =1 ~1 1/ \1 -1 ~1 1/
(1 -1 =1 1\ /1 =1 1 =1\
1 1 -1 -1 1 1 —1 -1
Aa‘:::%« ,J‘lgyzm%‘ ’
1 -1 1 -1 11 1 1
\1 1 1 1)/ \1 -1 -1 1/
(1 -1 =1 =1\ (1 =1 =1 —1\
1 1 1 -1 1 1 -1 1
/15m% ,‘46:7:1% 1
I -1 1 1 1 1 1 -1
\1 1 -1 1/ \1 -1 1 1/

and

D € {diag (1,1,82,83) : 01,05, 85 € {1, ~1}}.
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4.5.3 Linear preservers

Theorem 4.4 A linear operator ¢ @ My(R) — My(R) on My(R) satisfies p(Fq) = F4
if and only if there exist P, Q) in the group & genevated by ¥y and B defined in (4.5.13)

with PQ € Py such that ¢ has the form
X PXQ or X+ PX'Q
Consequently, N(Fy) = G.

Proof. The assertion on N(¥,) follows from the GP4 in Section 2. The (<=) part
of the first assertion is clear. We consider the (=) part. Define S, as in (4.5.14).
By Proposition 4.1, if ¢ preserves Hy, then ¢ preserves the inner product (X,Y) =
tr (XY*?). By GP3 in Section 2, we may assume that ¢(I,) = I and ¢(S,) = S,
for each 7. In the following, we will show that ¢ has the form X + P'XP or
X + PIX'P for some P € (. Throughout this proof we will use the matrices
Dy, Dy, Dy, Dy, Ay, ..., Ag and Py; as defined in §5.1 — 5.2. We also refer to matrices
in & as types (I), (II) and (III) as defined in §5.2.

Note that the four type (I) matrices Dy, ..., Dy are mutually orthogonal matrices

satisfying (Dy + -+ Dy)/2 =1y Let ¢p(D;) =Y for j=1,...,4.

Case 1. IfY] is one of the four type (I) matrices, then (Vi + Yo + Y5+ Yy)/2 =1
implies that all ¥; are type (I) matrices. We can assume that Y; = D; for all j =
1,...,4; otherwise, replace ¢ by a mapping of the form X + Q@(X)Q' for a suitable

permutation matrix .
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Now note that (D;, X) = 1 for all X in type (I1I) of & and 7 = 1,...,4. For
L=<y <4, let Py be the set of 4 type (I} matrices of the form DF;;. Then for
all X € Py, (D, X) = 21if k = 4,7 and (Dy, X) = 0 otherwise. The same must be

true of $(X). Thus, ¢(Pi;) = Py.

Let
0 1 L TH
Cy= Iy ® €Py and HC) =L € Pag.
1 0 e 0

We claim that yy = yo. Note that Z € &, satisfies (€}, Z) == 1 if and only if one of
the following holds:

(a) Z is one of the type (II) matrices with only one diagonal entry overlapping with
those of Cy. There are 16 such matrices having the form DPyy, DPg, DPyy and DPy,
with four choices of diagonal orthogonal matrices D for each P;.

(b) Z is one of the type (III) matrices such that the (3,4) and (4,3) entries have
different, signs. There are 32 such matrices having the form DA;D for j = 3,4,5,6,
with eight choices of diagonal orthogonal matrices I for each A;.

As a result, there should be 48 matrices Z in S; such that (¢(C}), Z) = 1. However,
if the (3,4) and (4,3) entries of ¢(C)) have different signs, then Z € S, satisfies
(#(Cy), Z) = 1 can only happen if Z satisfies (a) or

(c) Z is one of the type (III) matrices such that the (3,4) and (4, 3) entries have the
same sign. there are 16 such matrices having the form DA; D for j = 1, 2, with eight
choices of diagonal orthogonal matrices D for each A;.

Thus, there are only 32 such matrices, which is a contradiction. Therefore, ¢ maps
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symmetric matrices in Pyy to symimetric matrices in Pyy. Note that one can generalize
this argument for all Py for all 4, j.
We may assume that ¢(C) = Cy; otherwise, replace ¢ by a mapping of the form
1 14 s A ] 3
X 3 ﬁx;(f)(}f)z}; N()W,
0 -1

Og o € & 'p:};g
1 0

is not a syminetric matrix in Py, and thus ¢(Cy) € Py is not symmetric. We may
assume that ¢(Cy) == Cly; otherwise, replace ¢ by the mapping X v ¢(X)4

Divide type (III) matrices into two subclasses:

Ti is the set of type (III) matrices of the form PA;P!, where i = 1,2 (ie.,

(X, Ba) = (X, Ey3)), and

T2 is the set of type (II1) matrices of the form PA; Pt where 1 = 3,4,5,6 (i.e.,

(X, Esy) = —~(X, Eg3)).

Then (Cy, X) =1 for a type (III) matrix X if and only if X € 7. Let
0 1 0 1
Cy = @hL, Ci=[1]® & [1].
1 0 1 0
Since the symmetric matrices in Py, are mapped to themselves, we may assume
that ¢(Cs) = Cjy; otherwise, replace ¢ by a mapping of the form X — Dy¢(X)D;.

Since symumetric elements of Py3 are mapped to themselves, we may assume that

$(Cy) = Cy; otherwise, replace ¢ by a mapping of the form X w3 Dyd(X)Dys.

Next, we show that ¢ fixes F == Eyy + Eyy + Eyy + Ey. Since (E,D;) = 0 for

all j € {1,...,4}, and (E,X) = 0 for all X € Py; with (4,7) € {(1,3),(2,4)}, it
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follows that ¢(F) has a zero in all eight of the nonzero entry found among these

(0(E), Eaz) = 0. So ¢(E) = £Fyy & B + FEay -k Eyy. Since (E,C;) = 1 for i = 3,4,
(E) = By + Ep3 + Egq + By = E or ¢(E) = FEyp -+ Fos + Fyy — Egy = E. But
(B, X) = 2 for exactly one matrix, namely DyA,D; in 73, whereas (£, X) = 2 for
3 different matrices Doy AgDyy, D1 A Dy, and DyyAgDyy in T3, Thus, ¢(F) == E. A

similar argument shows that ¢(E*") = E*.

Let
0 ~1 0 ~1
Cly = @l and Cp=|[l]® @ [1].
1 0 1 0
Since (B, C)) = —1 and (E,C}) = 1 for 4 € {5,6}, it follows that ¢(C;) = C; and

#(C}) = Cf for i € {5,6}.
For each X ¢ T, define

f(*X) == {(fv X)a (EvX)v (Et, ‘X)v (Dh JY)a e (Dda ){)7 (Clax)> sy (CG: }{)]

Then one can show (say, using MATLAB) that f(X) # f(Y) whenever X # Y in 75.
Since ¢ fixes the matrices Iy, E, E*, Dy, ..., Dy, Cy,. .., Cs, it follows that ¢(X) = X

for all X' € 77. One can check that
Ty U {.Dl, ey g, Gy el e (:;’6}

span M, (R); see the last section. Thus, ¢(X) = X for all X € M, (R).

Case 2. Suppose Y] is a type (II) matrix. Then we may assume that Y; has the form

’ 0 nm
Iy @ . We claim that 1,92 = 1. Otherwise, there are only 32 matrices Z in
Yya 0O
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&y satisfying (Y, Z) == 1, whereas all the 48 type (II) matrices Z satisfy (I, Z) = L.
Now, replace ¢ by & mapping of the form X w3 B¢(X)B. The modified mapping will
satisfy ¢(Dy) == D; with j = 3 or 4. Thus, we are back to case 1.
Case 3. Suppose Y] is one of the type (III) matrix. Note that ¥} cannot have the
form PA;P for j = 5,6, because

min{ (D, Z): 2 € 8} =0,
but for {7, ¥} = {5,6} and we have

(PA;P, PD A P) = 2
and hence

win{(PA;P,Z): Z € 8} < 0.
Now, suppose Y; = PA;P for j = 1,2,3, or 4. We may assume that ¥; = A
otherwise, replace ¢ by X +> Po(X)P. If Yi = A;, replace ¢ by A+ Bg(A)B. The
resulting mapping satisfies ¢(Dy) = Eyy + By + Eg + Eys. We are back to Case 2.
ItY: = Ay, A; or Ay, replace ¢ by A — Bg(A)B. The resulting mapping satisfies

¢(Dy) = Eyy — Eyy + Ezg + Ey4, which is impossible by the argument in Case 2. [

4.6 g

4.6.1 Matrix realization

The group Eg has 2143°527 = 81273%5 elements which can be divided into the following

3 classes.
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(I) The 8127 elements of Dy,

(I1) The 812'% matrices of the form X AY, where X, Y € Dy and
A= Ty —ww'/4 with w=e -~ e = (1,--,1,—1} € R%. (4.6.15)

The counting is done by: 278! choices for each of X and Y, and there are 2 - 8! pair
of (P,()) in Dy x Dy satisfying PAQ = A.

(III) The 8128 - 35 matrices of the form X BY, where X,Y € Dy and
B = By ® By = A(~Iy ® I;) A, (4.6.16)
where
By= (1, L, 1,041, 1, ,10)/2~ 1, By=I~(1,1,1,-1)"1,1,1,-1)/2.

The counting can be done as follows. First choose 4 rows and 4 columns in (3)‘2 ways.
Then put matrix pairs (X B1Y1, XoB,Y3) in the two complementary blocks, where

(i) X1, Y1, X5, s € Dy,

(il) X1, 11, X5, Y2 € (B4 \ Dy),

(iii) Xy, Xo € Dyand Yy, Y, € (By \ Dy), or

(IV) Xl,XQ & (B4 \ D4) and Y7, Y, € Dy,
The number of choices for X;B,Y; in each case is |F4\By]/4 = 412°. Since DB\.D = By
with ) = diag (1,1,1, —1), we see that cases (i) and (ii) yield the same matrices, and
also cases (iii) and (iv) yield the same matrices. So, there are 2(412%)% so many choices

k * [y avg (812 RYLs
for the pairs. Consequently, the total number of this class is 2(4!2*‘)3(2) = 812770.
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4.6.2 Maximum inner product

Let X € Ky with X # I. Thes (I, X) < n ~ 2. The equality holds if and only if
X =T — ey e)(e; ) for some 1 <4< j<8or X = PAP for some P € Dy,

By GP2 in Section 2, for each possible value of » = (I, X), define
Sy = {X € By (I3, X)=r}. (4.6.17)

Note that the largest value for r is 6, and Sy consists of matrices of the following

forms.
(a) The 56 matrices of the form
Xij z= [y — (ez- - 6‘]')(63' e t?j)t or KJ zz fg - (f?f,; 4 6’1)((”@ e Gj)t,

where 1 <{ { < j < 8.
(b) The 64 matrices of the form DAD!, where A is defined in (4.6.15) and D is a

diagonal orthogonal matrix in Ds.

4.6.3 Linear preservers

Theorem 4.5 A linear operator ¢ : Mg(R) — Mg(R) satisfies ¢(Eg) = Bg if and

only if there exist P, Q) € By such that ¢ has the form
X PXQ or X PXYQ.
Jonsequently, N(Eg) = Eg.

Proof.  The assertion on N(Eg) follows from GP4 in Section 2. The (<=) part

of the first assertion is clear. We consider the (=) part. Define &, as in (4.6.17).
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By Proposition 4.1, if ¢ preserves By, then ¢ preserves the inner product (X,Y) =
tr (XYY, By GP3 in Section 2, we may assume that ¢(Ig) = Iz and ¢(8,.) = S, for
each r. In the following, we will show that ¢ has the forin X = PPXPor X v PIX'P
for some P ¢ Wy, We shall use the matrices 4, X;; and Y, as defined in §6.1 ~ 6.2 as
well as the clagsification of elements of 8 as type (a) and (b) as defined in §6.2.

Define D; = Iy - 2Ky, and Dy = D;D;. Note that those D described in (b) have
one of three forms:

.Dij, [)ijkt e ,D,;jl)kg, or e - l:)z'j.

Note the following four types of conjugations will be used extensively throughout this

first part. For 4, 7, k distinet,
> ~t .V . Yk (b AT
Py ik*’xjk){z‘k = Aij and Yikyjk ik & JX@'.

Since X5 € &, it follows that ¢(Xrs) = Z € Ss. If Z = X;; or Yy;, then replace
¢ by the mapping X > P¢(X)P*! with
Xz‘"('XjS if Z = X,‘,j,
P =
XuYjs if Z =Y.
Then ¢(Xpg) = Xpg. If ¢(Xpg) = DAD?, then replace ¢ by the mapping X
D¢(X)D* so that ¢(Xr) = A. Furthermore, replace ¢ by the mapping X +

Qv X)Q%, where Qy = DigADl, so that ¢(Xqg) = Xyg.

Now counsider those X € 8 such that (X, X73) = 5. They are of the following two

forms.

(¢) 24 matrices of the form Xijor Yy, where i <7< 5 <8,
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(d) 32 matrices of the form DAD' where (D, Ev) = (D, Egs) = 1.

If X € & is not of these forms, then (X, X7s) = 4. 1t is important to note the
sign pattern of the diagonal D in type (d). For any i,j, if (DADY X;;) = 5, then

(DALY, Eij) must be positive. Thus,

but,

(D, Ey) = —(D, Ey;)  ifi<j<8.

We change the signs in this argument if we are interested in (DAD!, X;) = 4.

If 9(Xg7) == X;r then replace ¢ be the mapping X = Xigd(X) X5 If (Xor) = Xig
then replace ¢ be the mapping X e Xygh(X) XL, thus reducing the problem to the
previous case. If ¢(Xg;) = Yi; then replace ¢ be the mapping X w5 Dy¢(X) DY,
for k # 4,7,8. If ¢(Xe7) = DAD where (D, E¢;) = (D, Egs), then replace ¢ be the
mapping X ﬁgb(X )Jf\)t where D isa diagonal orthogonal matrix such that ¢(Xg7) =
(v where @y is defined as before. Now replace ¢ by the mapping X + Qgi(X)Q%
where Qg = Dgg ADE; Therefore ¢(Xg7) = Xer.

Now consider those X € S such that (X, X7g) = 4 and (X, X¢7) = 5. They are

of the following two forms.

(e) 10 matrices of the form X or Yig, i < 6.

(f) 16 matrices of the form DAD' where D = Dyy, Djjes or —Dy; for i < j < 6.

Since Xy is in this set, so must ¢(Xss). If @(Xse) == Xig, then replace ¢ by

the mapping X — Xid(X)XEL. If ¢(Xs5) = Yie, then replace ¢ by the mapping
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replace ¢ by the mapping X v Qsd(X)QL where @5 = Dy ADL,.

We can fix first, X5, second, Xy, and third, Xo3, in the same way as we fixed
A by the following arguments. For k = 5, 4 and then 3, consider those X € S
that have inner product of 5 with the matrix Xy 141 (which has just been shown to
be fixed by ¢) but inner product of 4 with X4, for 4 > k -+ 1. Then (X1 4) have
one of three forms: X 4..;, Yipy and DAD where D = DDy, 18- I it is one of the
first two forms, then replace ¢ by a mapping of the form X 3 Po(X) P! where P is
a appropriate matrix of one of the first two forms. If it is of the third form, replace

¢ by the mapping
X = Qe DHX)DQy .y for Qrr = Dy gADyp 1 5.

Now define Q1 = DigAD!,. Then @y is the only type (b) matrix such that @, € S
and (@1, X;441) = 4 for i = 2,...,7. There are no type (a) matrices where this
property holds, thus ¢(@Q) = @;. Consider those X € Sg such that (X, Xo3) == 5 and
(X, Xiit1) =4fori=3,..,7. Then X = Xig, Yis or Q5. Inspecting the sign pattern,
we have (X5, Q1) # (Y, Q1) for all i, j. Thus, we may assume that ¢(X12) = Xia.
Otherwise ¢(X1,) = @y and replace ¢ by the mapping X v Qy¢(X)Q;. Thus,
MNZ) = Z for Z == Iy, Qq, Xiz4y for i =1,...,7. One can check that this is sufficient

to show that ¢(X) = X for all X € Sg; see the last section.
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Suppose that ¢(X) = Y for some X € Hy. Then
22X, By + Ey) = (X, Xi; — Yig) = (V, Xy — Vig) = 2(Y, By + Ey).

Also, for all i # j, [ ~ (X5 +Yy;)/2 = Ey -+ Ej;. Therefore, (X, Ey) = (Y, Ey) for all
+ and thus

H(X) = X or X* for all X € Eg.

Let Xy, = XX € 8 for each ¢ < j < k. Then Xy is the type (I) matrix with
the following principal submatrices
0 1 0
Xiinlt, gy k) = Is, KXijelt, 4, k) =10 0 1
100
Here Z[i, j, k] denotes the submatrix of Z lying in rows and columus 4, j, and k; and
Z(1, 7, k) denotes the matrix obtained from Z by deleting its rows and columns indexed
by 4, 7, and k. Then we may assume that ¢(Xgzs) = Xgrs. Otherwise, ¢(Xgrs) = X,
and replace ¢ by the mapping X > ¢(X)*. Note that (X,x, Xers) = 5 if and only
if1 <6 < j <k <8 Butthen (X}, Xes) = 4. Thus ¢(Xy5) = Xje for all Xy
where © < 6 < j < k < 8. Continuing in this manner, we can fix all matrices of the
form Xj;. Therefore ¢(Z) = Z whenever X, forall 1 <i < j <k <8.
Let

P=FEy+ Y Ejj1 € Ms(R).
v

Then, for all Q € S of type (b), $(PQ) = PQ or (PQ)'. But clearly, (PQ, X)) #

((PQ), X ya3), therefore, ¢(PQ) = PQ for all Q € S; of type (b). Thus, ¢(2) = Z
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for Z = Iy, Xj wheve ¢ < j < k, Xy; where ¢ < j and for Z = () and PQ for all
@ € & of type (b). One can check that these matrices span Mg(R); see the last

section. Thus ¢(X) = X for all X € Ej. &

4.7 b,

Let

w = e~ 2e5 € RY,

Then E; has a natural realization as a subgroup of Eg € My defined and denoted by
Er={X € Bg: Xw = w}

acting on the 7-dimensional subspace w* in R®. Suppose U is an orthogonal matrix
with w/\/8 as the first column. Then for every 4 & &, we have
1 0
U'AU = RE (4.7.18)
0 A
The collection of such A € M;(R) will form a matrix realization of E; in M7(R).

Moreover, for any 4, B € & and the corresponding A Be E;, we have
(A, B) = tr (AB*) = 1 + tr (AB") = 1 + (4, B). (4.7.19)

Of course, one may have different realizations of E; in M>(R) by a different choice of
U. Nonetheless, it is well known that all the realizations of E; in O(7) are orthogonally

similar. In this section, we will study Ey via £ as mentioned in GP5 of section 2.
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4.7.1 Matrix realization

The group & = {X € By : Xw = w} has 8172 elements which can be divided into
the following three classes.

(I) The 8! elements in Dy N &, those elements X € Dy such that Xw = w.

(II) The 8136 matrices of the form X‘AY satisfying X AYw = w, where X, Y & Dy
and A = Iy ~ ww'/4 with w = e — 2eg = (1,--+,1,~1)* € R3 The counting is done
as follows. Consider the equation AYw == Xw, i.e., Yw — Xw = w(w'Yw)/4. There
are 3 cases,

(i) wYw = 8, Yw — Xw = 2w. Then Yw = w = —Xw. There are 8! choices for
each of X and Y and there are 8! pairs (P, Q)) in Dg x Dy such that PAQ == A with
Qw = w and w'P = w'. So, there are 8! elements in this case. Clearly, these must
coincide with the 8! elements of the form —PA where P is a matrix of type (I).

(i) wYw = -8, Yw — Xw = —2w. Then Yw = ~w = —Xw. Every pair (X,Y)
in (b.i) can be converted to (—X,~Y) to this case, and we actually get the same
XAY = (-X)A(-Y) matrix. So, no new addition in this case.

(ili) w'Yw = 0, Yw = Xw. For each of the 70 choices of w; € w, where all entries of
w; are =1, we have a fixed F; € Dy such that Pw = w;, ¥ = BY and X = P.X with
Yw=w= Xw N ow, there are 8! choices for each of X and ¥, and we have to factor
out the 8! so many (R, S) pairs such that R*(P{AP)S = PIAP, with Sw = w = Ruw.
Thus, there are 8! so many X*AY corresponding to each choice of w;. However, for
each w;, the 8! matrices X*AY corresponding to w; are the same as the 8! matrices

corresponding to ~w;. Thus, we have 8170/2 = 8!35 matrices in this case. These are
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the matrices of the form PDAD' where P is a type (I) matrix and D is a diagonal
matrix whose diagonal entries are permutations of (1,1,1,1, -1, ~1, —1, ~1). In other
words, [w e wt.

(I1T) The 8!35 matrices of the form X*BY satisfying X‘BY w = w, where X, Y € Dy

and B = By @ By = A(~I; ® I;) A, where
By = (1,1,1,041,1,1,1)/2~ I, Bo=I —(1,1,1,~1)1, 1,1, ~1)/2.

The counting is done as follows. In order to have X*BYw = w, the last row of X'BY
must contain ecither a row of XoB,Y5 with a nonzero (8,8) entry or a row of X18,Y;
with the (8, 8) equal to zero. In the first case, we have (z) (Z)/i' ways to put X, B, Y,
80 as to rnake the first 4 entries of X*BY w equal to 1, and then 4! ways to put the
XoByYs matrices so that the last 4 entries of X*BYw are 1,1,1, ~1. In the second
case, we have (Z) (1)4' ways to put X, B,Y5 so as to make the first 4 entries of X*BY w
equal to 1, and then 4! ways to put the X B;Y; matrices so that the last 4 entries of

X'BYw are 1,1,1, ~1. Thus, total number is 2((2) (Z) (41)?) = 8135.

4.7.2 Maximum inner product

Let X € & with X # I. Then (I5,X) < 6 and hence the inner product on the
irreducible subspace By is bounded by 5. Using the matrix realization in My(R) and

by GP2 in Section 2, for each possible value of r = (Iy, X), define
S ={Xe&: (g X)=r} (4.7.20)

Note that S, consists of matrices in one of the following two forms.
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(a) The 28 matrices X;; of the form
Xy =TIy~ (& ~ej)e;—e) for 1 i< j<7
an 5 [g - ((}; e (33)(8, = f?g)t for 1 “ i = 7.

(b) The 35 matrices of the form X = DAD! for some diagonal orthogonal I) such

that Dw & wt.

4.7.3 Linear preservers

Theorem 4.6 A linear operator ¥ » Mz(R) — M(R) satisfies v(Eq) = Ey if and

only of there exist P,Q € By such that ¢ has the form
Xy PXQ or X+ PX'Q.
Consequently, N(E;) = E,.

Proof. The assertion on N(E;) follows from GP4 in Section 2. The (=) part of
the first assertion is clear. We consider the (=) part. Let ¢ : M>(R) — M;(R) be
a linear map satisfying ¥(E;) = E;. By Proposition 4.1, if ¢ preserves Ey, then ¢
preserves the inner product (X, ¥) = tr (X¥?). Also, by GP3 in Section 2, we may
assume that ¢([7) = I.

Let Vi be the affine space generated by &, and let U be an orthogonal matrix
establishing the correspondence between £; and Ey as described in (4.7.18). Consider

an affine map ¢ : Vo — V5 defined by

10 0 0 10
ol U Ut =U vt ut.
0 X 0 $(X) 0 0
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(X,Y) for all X,Y € & by (4.7.19). Define 8, as in (4.7.20). Since ¥:(ly) = I,
therefore, ¢(fs) = Iy and by GP3 in Section 2, ¢(S,) = &, for each r. In the

following, we will show that for some P € &, ¢ has the formn
X PPXPforall X € & or X > PEXEP for all X € &;.

We shall use the matrices A and X, for 1 €4 < j < 8 as defined in §7.1--7.2. We also

refer to matrices in & as type (a) and (b) matrices as defined in §7.2. Furthermore,

let D; = Iy — 2F;, and D;; = 1;D;. Note that those I described in (b) will be
J b

of the form Dy = DizDyy where 4,7, k, 1 are all distinct. If ¢/, §, ¥/, 1" are such that

16,4, 0,7, k, K, L'} = {1, ...,8}, then
D ADjjp1 = Dy iy ADy ppp.
Also, for 4, 7, k distinct and X4, Xix and X;; all of type (a),
X XX = Xij.

We may assume that ¢(X7s) = Xyg. Otherwise ¢(X7s) = Xy or ¢(Xys) = DAD
for an appropriate D. If ¢(X7g) = Xj;, then replace ¢ by the mapping X — Pg(X)P?
where P is an appropriate type (a) matrix. If ¢(Xz) = DAD?, then consider D.
If D = Dy for 4,5,k < 7, then replace ¢ by the mapping X = QAQ* where
Q = Dijrg ADjjrs. I D == Djjzs, Then veplace ¢ by the mapping X = Xpso(X) X}
for some k +# ¢,7. Thus ¢(Xvs) = Djjuy AD;jur, which has already been discussed.

Therefore, ¢(Xzg) = Xrg.
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Now, congider those X € 8 such that (X, X7g) = 5. They are of two forms.

(c) 12 matrices of the form X;; for i < 7 < 4.
(d) 20 matrices of the form DAD where D = Dijir and 1 < j < k<7,
7L< gor ¢(Xgr) = DAD where D = Dijpy and i < § < k < 7. If ¢(Xey) = Xizv where
¢ < 6 then replace ¢ by the mapping X +» Xigo( X)X If ¢(Xer) = Xis where ¢ < 6,
then replace ¢ by the mapping X v Xoo( X)X}, and we are back to the previous
case. If ¢(Xg7) = DAD where D = Dy and ¢ < j < k < 7, then either k£ = 6
or ks 6. If k # 6, then replace ¢ by the mapping of the form X +~ QAQ" where
Q = DijreAD;jpe. I k = 6, replace ¢ by the mapping X +— Xpe¢d(X)Xps where
k' # 4,5 and also k' < 6. Therefore, ¢(Xe7) = Xgr.

Now, consider those X € 8 such that (X, X75) = 4 and (X, X¢7) = 5. They are

of two forms.

(e) 5 matrices of the form X4 for ¢ < 6.

(f) 10 matrices of the form DAD where D = Dijre and ¢ < j < k < 6.

We may assume that ¢(Xg6) = Xs6. Otherwise ¢(Xsg) = X6 where i < 5 or
#(Xs6) = DAD where D = Dijrs and ¢ < j < k < 6. If ¢(Xs6) = Xy where
i < 5 then replace ¢ by the mapping X = X;5d(X) XK. If ¢(Xs6) = DAD where
D = Djjrg and t < j < k < 6, then either k = 5 or k 5 5. If k 5 5, then replace ¢
by the mapping of the form X + QAQ" where Q = Dijus ADjps. I k = 5, replace

¢ by the mnapping X +>» Xps¢(X)Xws where &' % 4,7 and also k' < 5. Therefore,
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A Xag) = Xgs. We may also fix Xy in a similar manner, using those X € S such
that (X, Xsg) = 5, but has inner product 4 with the other fixed matrices.

Now, consider those X € Sg such that
{(")\; X’?‘&): (X, ,Xﬁ';'}, (“Yv »‘YSG)w (ﬂxa "Yd-ﬁ)l = {"17 ‘4’7 4‘* 4}

Then X = X3, X3 or Xg3. We may assume that ¢(Xyp) = Xio. Otherwise ¢(Xyy) =
X for i = 1 or 2, in which case, replace ¢ by the mapping X +» X;36(X)X;3 where
{7,7} = {1,2}. We may also assume that ¢(Xy) = Xag; otherwise ¢(Xog) = Xyg. If

this is the case, replace ¢ by the mapping X ++ X190(X)X12. Thus ¢(2) = Z for
Z = Xyg, Xaz, Xysy Xsg, Xer and Xog.

One can check that this requires that ¢(X) = X for all X € Sq; see the last section.
Consider those X & £7 such that X;X € & and (X;; X, Xi;) = 5. In other words,
X € 8 and (X, Xi;) = 6. So X is of the form X;; Xy, where k ¢ {4,7} but I € {4, j},
or the form X;DAD! where Dw € wt and (D, Ey) = ~(D, Ej;). If we add the
condition that (X, Xj;) = 6 and (X, Xj;) = 6, then X must be of the form X;; Xy or
Xij X = (XiyXae)' Let Xije = X3 Xi € 85 for each ¢ < j < k. Then Xjj; is the
type (I) matrix with the following principal submatrices.
0 1 0
Xin(i, 4, k) = Iy, Xijelt, 4,k =10 0 € |,
e 0 0
where €; == ¢; = 1ifk < 8and —1if k = 8. Thus, ¢(Xi) = Xij or ¢(Xijn) = X}y, for

all i < j << k. Then we may assume that ¢(Xgrg) = Ngrg. Otherwise, ¢(Xem) = Xz
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those Xy such that (X, Xems) == 5. Then either {j, &} = {6,7} or {4, k} = {7,8}.
But for those Xyjg, (Xijk, Xérs) = 4. S0 @(Xiji) = Xz for all such Xjj. Using these
newly fixed matrices, continue in the same manner until ¢(Xyp) = Xy for all Xy,
such that 1 <i < j<k <8

We have shown that ¢(X) = X for all X € 8, X = Iy and all X of the form Xy
It can be shown (see the last section) that there are 50 linearly independent matrices

in this collection. Given this, and the fact that

1 0
$(0) = U U,
0 0O
we see that the linear map
$(X) - $(0)

is completely determined. In particular, $(X) = X for all X € &;. It follows that the

original affine map ¢ on V7 has the form
X > PXP or X~ PPX'P

for some P € £&;. Note that if P, X € &;, there exists f’, X € BE; such that

0 0 10
PXP=U o Ut+ v Ut
0 P'XP 0 0
Thus, there exists a P € By such that

Pp(X)y=PXPforal X € By or (X)) = PX'P for all X € Er.

Since Er spans My(R), ¥ on M7(R) has the asserted form. o
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Note that in the above proof, we showed that an affine map & on V; satisfies
P(E7) = E; and preserves the inner product on V4 if and only if there exists P, Q) & &

such that ¢ has the form
X+ PX0Q or X = PX'Q (4.7.21)

on Vy. The same proof can actually be used to show that a linear map ¢ : span &, ++
span &7 satisfies ¢(&y) = &7 and preserves the inner product on span &, if and only if

there exists P, Q € &; such that ¢ has the form (4.7.21).

4.8 KEq

In this section, continue to write
w=e—2ez € R
and let
_ 8
v =er—eg € R°.

Then Eg has a natural realization as a subgroup of Ez C My defined and denoted by
Es={Xe& : Xv=ov}={X e Es: Xv=vand Xw=w}

acting on the 6-dimensional subspace span (v, w)* in R*. Suppose U is an orthogonal
matrix with w/+/8 as the first column and the normalization of the component of v

orthogonal to w as the second column. Then for every A € &, we have

L 0
UtAU == BE (4.8.22)
0 A
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The collection of such A € Mg(R) will form a matrix realization of g in My(R).

Moreover, for any A, B ¢ & and the corresponding A, B & Eg, we have

~ »

(A, B) = tr (AB') = 2 +tr (ABY) = 2+ (4, B). (4.8.23)

Of course, one may have different realizations of Eg in My(R) by a different choice of
U. Nonetheless, it is well known that all the realizations of Eg in O(6) are orthogonally

similar. In this section, we will study Eg via & as mentioned in GP5 of section 2.

4.8.1 Matrix realization

The group & = {X ¢ By : Xw = w, Xv == v} has 6!72 elements which can be
divided into the following 3 classes of matrices arising from &;.

(1) The 6!2! elements in Dy N Eg, namely, those elements X & Dy of the form X =
X, @ X, for suitable choices of Xy € Bg and

0 -1
,Xz = IQ or Xg =
-1 0
(II) The 640 matrices of the form X*AY satisfying X*AYw = w and X'AYv = v,
where X, Y € Dg and A = Iy — ww'/4 with w = e — 2eg = (1,--+,1,—1)* € R®. The

counting is done as follows. Consider the equations AYw = Xw and AY'v = X, ie.,
Yw — Xw = w(w'Yw)/4 and Yv — Xv = w(w'Yv)/4.

Clearly, we must have w'Yw == 0. Thus, we are studying the (ILiii) matrices of
Erin §7.0. First, if w; € {w,v}* such that all entries of w; ave =1, then the last two

entries of w; have the same sign, and 3 of the first six entries equal to 1. So, there
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are 2 - (‘;} == 40 possibilities. For each of the 40 choices of w; € {w,v}", where all

are 8! choices of such ¥, and for a fixed ¥ there are 612! choices of X € Dy s0 that
Xw =w and PXv = PYv. We have to factor out the 8! so many (R, 5) pairs such
that R(PIAP)S = PLAP; with Sw = w == Riw. Thus, there are 6!2! so many X*'AY
corresponding to each choice of w;. However, for each w;, the 6!12! matrices X*AY
are the same as those corresponding to —w;. Thus, we have 20(6!2!) == 6140 matrices
of Eg in this class. And we also see that they are equivalent to matrices of the form
YDAD where Y is a matrix of type (I) and D is a diagonal orthogonal matrix such

that Dw € wt and (D, Brp) = — (D, Egg).

(III) The 6!30 matrices of the form X'BY satisfying X*BYw = w and X*BYv = v,

where X, Y € Dy and B = By ® By = A(—Iy & I,) A, where
By = (1,1,1,1)%1,1,1,1)/2 = I, B,=IL —(1,1,1,-1)"1,1,1,~-1)/2.

The counting is done as follows. In order to have X!'BYw = w and X'BYv = v,

the 2 x 2 submatrix of X*BY at the right bottom corner cannot contain zero entries.

Thus, we have to choose from the first 6 rows and the first 6 columns a 4 x 4 submatrix
- . X o\ 2

to accomanodate an X, B, Y as described in Eq, and there are (4) 4! ways and there

are 4 ways to fixed the matrix XoBsY,. Thus there are (1) 414 = 8130 matrices in

this case.
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4.8.2 Maximum inner product

Let X € & with X # Iy Then (fs, X) < 6. Thevefore the inner product on the
irreducible subspace Eg is bounded by 4. Using the matrix realization in My(R) and

by GP2 in Section 2, for each possible value of r = (I, X), define

S, == {X & &t (Ia,X} e ?’“}. (‘1821:)

Note that &; consists of matrices in one of the following two forms.

(a) The 16 matrices of the form Xy = Iy ~ (&; — e;)(e; — ¢;)* for some 1 <i < j <6
and X7 = Iy ~ (er + es)(er + eg)".
(b) The 20 wmatrices of the form X = DAD where D is an orthogonal diagonal matrix

such that Dw € wh and (D, Epy) = —(D, Egg).

4.8.3 Linear preservers

Theorem 4.7 A linear operator 1 : Mg(R) — Ms(R) satisfies 1(Eg) = Eg if and

only if there exist P,Q € Eg such that 1 has the form
X PXQ or X PX'Q.
Consequently, N(Eq) = Eg.

Proof. The assertion on N(Eg) follows from GP4 in Section 2. The (=) part of
the first assertion is clear. We consider the (=) part. Let ¢ : Mg(R) — Ms(R) be

a linear map satisfying 1(Bs) = Es. By Proposition 4.1, if ¢ preserves Eg, then ¢
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preserves the inner product (X, V) = tr (XT?) on Mg(R). Also, by GP3 in Section
2, we may assume that ¥{lg) = I;.

Let Vg be the affine space generated hy &, and let I/ be an orthogonal matrix
establishing the correspondence between & and Fg as described in (4.8.22). Consider
an affine map ¢ : Vi — Vi defined by

Iy 0O 0, O L 0
ol U A Ul =U ) U+ U Ut
0 X 0 (X)) 0 O
Then (&) = &. Since ¢ preserves inner product in Mg(R), we have (¢(X), ¢(Y)) =
(X,Y) for all X,Y € & by (4.8.23). Define &, as in (4.8.24). Since (ls) = I,
therefore, ¢(fz) = Iy and by GP3 in Section 2, ¢(S,) = &, for each r. In the

following, we will show that for some P € &, ¢ has the form
X > PXPforall X € & or X e PPXTP for all X € &.

We shall use the matrices A and X; as defined in §8.1 — 8.2. Also, we shall use the
classification of matrices in Sy into types (a) and (b) as defined in §8.2.

Define D; = Iy — 2Ey;, and D;; = D;D;. Note that those D described in (b) will
be of the form Djjr = Dy Dyr where 4,7,k # 7 are all distinct. If &/, §', k" are such
that {i,7, 7,7, k, k'} = {1,...,6}, then

Dy ADijpr = Dipjrrog ADy s,

Also, for 4, j, k distinet, 4,7,k < 7 and X, Xy and X5 all of type (a),

> s »t
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Let (X)) = Z. If Z == Xyg then we are done. If Z = DAD, where D = Dyjpy,
then replace ¢ by the mapping X +— Q¢(X)Q" where Q = DjjngADijrs. And so

M X7g) = Xrg. If, on the other hand, Z = Xj; for i < j « 7, then replace ¢
by the mapping X > Qd(X)Q! where Q = Dy ADyy for k1 % 4,7,7,8. Thus
& Xg7) = DAD where [ = Dz, and this case has already been covered. Therefore,
P(Xag) = Xos.

Note that if X € & is of type (a), then (X, Xys) == 4, while if X is of type (b), then
(X, X5g) = 5. Thus, those X € S that are of type (a) are mapped to themselves,
and those of type (b) are mapped to themselves.

We may assume that ¢(Xs6) = Xsq. Otherwise, ¢(Xss) == Xy where (4, 7) # (5,6)
and 1 < j < 6. Then replace ¢ by the mapping X v P¢(X) P! where

Xis if j =6,

? = 0 Xig if j =5,

XisXig fi<j<hb.
Now consider those X € S of type (a) such that (X, Xs6) = 5. Then X = Xj; where
i < jand j € {5,6}. We may assume that ¢(Xys) = Xy5. Otherwise d(Xy5) = Xij
where j & {5,6}. If j = 5, then replace ¢ by the mapping X r+ X;ud(X)Xp. If
J = 6, then replace ¢ by the mapping X + Xz6¢(X)Xs6 and so we are back to the
case where j =5,

Now consider those X € Sy of type (a) such that (X, X5) = 4 and (X, Xy4s) = 5.
They must be of the form X;;. We may assume that ¢(Xsq) == Xgq. Otherwise it

equals X4 for 7 € {1,2}, in which case, replace ¢ by the mapping X =+ X;3¢0(X).Xis.
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Now consider those X & Sy of type (a) such that (X, Xse) = 4, (X, Nys) = 4 and

(X, X34) = 5. Then X = X3 or Xog. If ¢(Xs3) = Xy, then replace ¢ by the mapping
X e+ Xy (X)X 2. And thus, ¢(Xyg) == Xas. By considering the inner products, we

also see that ¢( X)) = Xjo. Thus ¢(2) = Z for Z = ls, Xos, Xser Nus, Xoa, XNog
andXy3. This is sufficient to show that ¢{Xi;) = Xy; whenever ¢ < j < 6 and that
¢ Dijkr ADyjir) = Dijrr ADigrr o Dyjus ADjjs.

Now consider those X € S that are of type (b). In particular, consider
H(Dyser ADyser) = Z

- M Z = Dysep ADyse7, then we are done. If Z = DyseedDyses, then replace ¢ by the

mapping X r» X756(X)Xvg. It can be shown (see the last section) that
(Dijer ADyjxr, DaserADyser) # (Dijis ADijre, Dassr ADaser)-

Thus, for all X € &, ¢(X) = X.
Let Xy = X;3Xip. Then X is the type (I) matrix as defined in §8.1 with the

following principal submatrices.

010

Kigelt, 4, k) = I, Kigelt, 5, kl =10 0 1

100
In a manuner similar to that of section 7.3, we consider those matrices X € 8 such
that (X, Xj;) = 6, (X, Xu) = 6 and (X, Xx) = 6 for i < § < k. Then X = X
or Xty I ¢(Xi23) = Xlyg, then replace ¢ by the mapping X v+ ¢(X)". Thus

$(X123) == Xy93. Note that (X, Xiag) =5 ifand only if i+ 1= j < 3 < k < 6. But
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if (\){Uk? Xﬂmg) o r’;, then (.(XY‘;[]\ ’ ,,,‘{{‘23) = 4. Bo (ff)( e\wmk) = )&’r]gﬁ; for k = 4, 57 6. {g‘?illg
these newly fixed matrices, continue in the same manner until ¢(X;) = Xy, for all

Xk such that 1 <1< j < k <6

Z € 8. Thus, forall ¢ < j < k£ < 6,ifY is such that (Y, X;) = 6 and (¥, Xys) = 6,

then ¥ = MY',jjka*('g. T}ms, gb(*X”i;;ka) B JY,zj;,;‘X'rg for all i < 3 < k < 6. In ;:)e;x,.x*tzic;:uha‘r“,

let Y = X909 X7g, and consider those X such that (Y X, Ig) = 6 and (Y X, Xy7s) = 5.

such X, define

JIX) = [(Xa2, X), -, (X6, X), (D237 AD1237, X), s (Daser ADuser, X))

One can show that f(X) 3 f(Z) whenever X # Z where X and Z are both of the
form Y DAD with D # Dyagr, Digsg; see the last section.

These 18 matrices together with those X € Sg and those matrices of the form X
for i < j <k < 6 all have the property that ¢(X) = X. It can be shown that there
are 37 linearly independent matrices among this group; see the last section. Given
this, and the fact that

L 0

$(0) = U* U,
0 0

we see that
#X) - $(0)

is completely determined. In particular, ¢(X) = X for all X & &. It follows that the
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original affine map ¢ on Vi has the form
X PIXP or X PIX'P

for some P ¢ £. Note that if P, X € &, there exists P, X € Eg such that

02 0 I, 0
P'XP = U" u+ur U.

0 PIXP 0 0
Thus, there exists a P € g such that
(XY= PP forall X e By or (X)) = PXP for all X € E.

Since Eg spans Ms(R), ¢ on Mg(R) hag the desired form. o

As in the case of E;, the above proof would also show a similar result if we
replace the linear map ¢ on My(R) satisfying 1(Eg) = Eg with either an afline map
¢ Vo = Vi or a linear map ¢ : span & —> span & satisfying ¢(&) = & and

preserving inner product on V.

4.9 MATLAB Programs

MATLAB Program for H;

In the proof of the linear preserver of Hj, we stated that 12 matrices
Dy, Dy, D3, H Xy, ..., X3

span M3(R). We put these 12 matrices as row vectors of the matrix “R”. The rank
commanc! will then show that there are 9 linearly independent vectors among these

12 matrices.
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a=(1+sqre(5))/4;b=(~1tsqut (8))/4;¢=1/2; R=[-1 0 00 1000 1; 10
00-10001;

100010 00-1;abc bec=-a ¢ -a-b;

~-a-b-¢ b ¢=-a ¢-a=-b;-ab ¢ ~b ¢-a -¢ -a b
~-a~b ¢ b ¢ a ~ a-b; ~-ab-c -b ¢ a ¢ a-b;

a b ¢ b~ a ¢c=-a-~b; a-bc b-¢c~a ¢ a-b;

a b=-¢ -b=~c=-a =¢ a-~b; a-b-¢c b-c a =-c¢c-a-bl;

rank (R)

MATLABRB Program for H,

In the proof of the linear preserver of Fly, we stated that 24 specific matrices could
be shown to span M(R). We put these twelve maftrices in row vector form stared
in “R”. The rank command will then show that there are 16 linearly independent

vectors among these 24 matrices.

a=(1+sqrt (5))/4;b=(-1+sqrt (5))/4;c=1/2;
DC:,:,1D=[-1000; 0100; 0010; 000 1];
DC:,:,2)=[1000; 0-100; 0010; 000 1];
D(:,:,33=[1000; 0100; 00-10; 000 1];
D(:,:,4>=[ 1000; 0100; 0010; 000 ~11;
BC:,:,1)=[1000; 0abg¢c; 0bc -a; 0 ¢ ~a~bl;
B(:,:,2)=[ab0c; becO~a; 0010; ¢c~-a0 -bl;

B(:,:,3=[c O0b=-a; 0100, b0ac; -a0c-bl;
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BC:,:,4)=D(:,:,3)B(:,:,1); B, :,8)=D(:,:,2)+B(:,:,2);
B(:,:,8)=D(:,:,1)#B(:,:,3); k=0; for i=1:4
for j=1:6
=kl y=D(:,:,1)%B(,:, 0D, 0,00,
Rk, D=0y(1,:) y(2,:) y(3,) y4,0];
end

end rank(R)

MATLAB Program for Fy

In the proof of the linear preserver of Fy, we stated that we could show that the
16 matrices of the form DA;D for i == 1,2 and D = diag (1, &1, 1, 1) were mapped
to themselves by comparing the inner products of these matrices with those already
fixed by ¢. Below follows the MATLAB code comparing the inner products of these
16 matrices with those of C; for 4 = 1,3,5 and 6. A simple comparison of the inner
products will verify that these matrices must indeed be mapped to themselves. We
put the 16 matrices in row vector form, storing them in ‘y’. The other matrices are
also on row vector form, stored in ‘x’. Finally, we use the ‘rank’ command to show

that there are 16 linearly independent matrices among the 26 listed.

el=[1 0 0 0];e2=[0 1 0 0];e3=[0 0 1 0];e4=[0 0 0 11;
D=1 1 1 t; 1t ~-111; 11 -11;1~-1~114;
1114 -4;¢1-1-1;1-11~1;1-1~-1~1];

AC:,:,1) =eye(4)~ones(4)/2;
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AC, D=1 1 ~1 ~1;1 11 1;1 -1 1 ~1;1 -1 ~1 11/2; k=0;
for j=1:8
for i=1:2
k=k+1;B=diag(D(j,: 1) *A(:,:,1)*diag(D{i,:));
y(k,:¥=[B(1,:) B(2,:) B(3,:) B4, )];
end
end x=[~e1l e2 3 e4; el ~e2 e3 e4; el o2 -e3 e4; el &2 e3 -e4;
el e2 ed e3; el e2 -ed e3; e2 el e3 e4;
~e2 el e3 e4; el e3 e2 e4; el ~e3 e2 e4d];

y*[x(5,:);x(7,:);x(9:10, )17; rank([x;y])

MATLAB Program for Es

In the proof of the linear preserver of Eg, we showed that ¢(X) = X for

X = Ig,(;h = DmADlg and Xg(i+1) for i = 1, very 7.

We stated that by comparing the inner product of these matrices with the rest of
the elements in Sg, that we could show that ¢(X) = X for all X € &. We store
those X that are fixed in row vector form in “rset” and store matrices of the forms
DAD, Xy; and Yy, in row vector forms in “rA8”, “rX8” and “rY8” respectively. Direct
comparison of the inner product shows that each matrix must be fixed. We also stated

that the natrices of the forms

,I@,, DAD, X,;j, 3’;7, Xijk; and pDAIj,
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as defined in section 3.3, could be shown to span Mg(R). We form these matrices
and put them in row vector form stored in “vI”, “rA&", “rX8”, “rY8”, “P8" and
tPA8” respectively. The rank command will then show that there are 64 linearly

independent vectors among these matrices.

d2=ft 1 111~1~115;1111-11~-11;121~111-11;
i1t-t1t11-145310~11111-115;-1311111-11;
11111 ~1113011-11~111;101-111~111%
i-t1t1t1-114-11111~-1145111~1-1111%4;
li1-1t1-11114;1-111-1114;-11011-1111;
i1t -1-1114431-11-111145,-111-11111%;
1-1-111111;-11-1111114;-1-1111111];

d4=[1 1 1 -1 -t -1 -1 1;-1 ~1 -1 111~-11
t1-11-1-1-14;-1~11-~111-11
ti-111t-1-1-13;-11-1-111-11
-t111~-1-1-114;1-1-1~111-11
it -1-11-1-14;-1~111-11-11
1-11~-11~-1-11;,-11-11-11-11
-l1i1i1~-1t-1~-14;0-1-11-11-11
ti-+~-111t-1-11;-111~-1-11-11
-t1-1t11-1-1434~11~1-11-11
-t-11t11-t-14311-1-1~11-11

i1t -1t-1-1-111;1~11-1-1-111
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S A IR U

H
o

I A e

H
ot
i
e

-1i1-t41~1-111;~1~-111~1

i
Fory
oncke
i

1-t-1-~11-111;~-11~-1~-11

i
fucy
it
[y

-1~-11-11~-111;-1-1-111

i
Jouls
[y
o

i-t~t~-1-1t111;~-11~-1-1-1111
-t ~-11-1-111 411111111
-1 ~1 -1 -1 1111};
d6={1 -1 -1 -1 -1 -1 -1 1;-1 1 -1 -1 ~1 =1 -1 1;
-1-14~-1~1+~1~11;~1 ~1~11~1 ~-1~11;
-{t-1-~1~-11~1~11;-1 -1 -1 -1 -11-11;
-1 ~1 -1 -1 ~1 -1 1 1];
d.8=[d6;d4;d2;ones(1,8)];w=[1 1 1 1 1 1 1 ~1]’; A=eye(8) - wrw’/4;
for i=1:64;
a=diag(d_8(i,:))xAxdiag(d_8(i,:)); A_8(:,:,i)=a;
rA8(d, :)={a(l,:) a(2,:) a(3,:) a4,:) a(5,:) a(6,:) a(7,:) a(8,)];
end
k=0;
for j=2:8
for i=1:(j~1);
a=eye (8); a(i,i)=0; a(j,j)=0;
b=zeros(8); b(i,j)=1; b(j,i)=1;

X=a+b; Y=a-~b; k=k+i;
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X8k, )=[X(1,:) X(2,:) X(3,:) X(4,:) %(5,:) X(6,:) X(7,:) X(8,01];
r¥8(k, )=[Y(1,:) Y(2,:) Y(3,:) Y(4,:) Y(5,:) Y(6,:) Y(7,:) Y(8,:)];
end
end
k=0
for m=3:8;
for j=2:(m-1)
for i=1:(j~1)
k=k+1; P=eye(8); P(i,i)=0; P(j,]j)=0;
P(m,m)=0; P(i,j)=1; P(j,m)=1; P(m,i)=1;
rP8(k, )=[P(1,:) P(2,:) P(3,:) P(4,:) P(5,:) P(6,:) P(7,:) P(8,:)];
P_8(:,:,k)=P;
end
end
end p=lzeros(1,7) 1; eye(7) zeros(7,1)]; for i=1:64
P=p*A_8(:,:,i);
rPA8(i, :)=[P(1,:) P(2,:) P(3,:) P(4,:) P(5,:) P(6,:) P(7,:) P(8,))];
end
a=[1 zeros(1,8)]; ri=fa a a a a a a 1];
rset=[rT ;rA8(1L,:);TX8(1,:);rX8(3,:);rX8(6,:);rX8(10,:);
rX8(15, 1) ;rX8(21,:);rX8(28, )];

ip=[rA8; r¥X8;rY8]*rset’ rank([rI;rA8;rX8;rY8;rP8;rFA8])
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MATLAB Program for B,

In the proof of the linear preserver of Eq, we stated that we could show that
the matrices of the forma DAD and Xj;, both in 8 were mapped to themselves by
comparing the inner products of these matrices with those already fixed by ¢. Below
follows the MATLAB code comparing the inner products of these 63 matrices with
those of Xjquq for 4 = 1,2,4,5,6,7. A simple comparison of the inner products
verifies that these matrices must indeed be mapped to themselves. Since the matrix
realizations used for B, form a subset of those used for By, we use the matrices
previously defined in for Ez. We put the 63 matrices in row vector form, storing
them in “rA7" and “rX8” respectively. The other matrices are also on row vector
form, stored in “rset”. We also stated that these matrices together with Iy and
matrices of the form X as defined in section 3.3, could be shown to span the 50
dimensional subspace of Mg(R). We store these new matrices in row vector form
in “rI” and “ctP7 respectively. The rank command will then show that there are 50

linearly independent vectors among these matrices.

TA7T=rA8(8:42,:); rX7=[rX8(1:21,:);rY8(22:28)]; rPT=rP8(1:35,:);
P.7=P_8(:,:,36:56); for i=36:56
P=diag ([1,1,1,1,1,1,1,-11)*P_8(:,:,i)*diag([1,1,1,1,1,1,1,-11);
rP7(i, )=[P(1,:) P(2,:) P(3,:) P(4,:) P(5,:) P(6,:) P(7,:) P(8,)];
end
rset=[rL ;xX7(L, ) ;xX7(3, ) ;rX7¢10, ) ;xX7 (5, 1) ;rX7(21, ) ;rX7(28,:)];

ip=[rA7; rX7]+rset’ rank([rI;rA7;rX7;rP7])
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MATLAB Program for Ey

[n the proof of the hinear preserver of Eg, we stated that we could show that the
matrices of the form Xj; were mapped to themselves and matrices of the form DAD
were mapped to themselves or to DAA (for [J and I of particnlar forms) by comparing
the inner products of these matrices with those already fixed by ¢. Below follows the
MATLAB code comparing the inner products of these matrices with those of Xy
fori=1,2,3,4,5,7. A simple comparison of the inner products will verify that these
matrices must indeed be mapped to themselves. Since the matrix realizations used
for Ey form a subset of those used for Eg, we use the matrices previously defined in
for Eg. We put the matrices in row vector form, storing them in “rX6” and “rAg”
respectively. The fixed matrices are also in row vector form, stored in “rset”. Next,
we fixed one of these matrices of the form DAD and compare inner products of
the remaining with those fixed, whose row vectors are once again stored on “rset’.
Comparison will once again verify that all matrices of the form DAD are mapped
to themselves. We store the matrices of the form PDAD (as defined in section 5.3)
in row vector in “rZA6”. Comparing inner products with those already fixed (whose
row vector forms are once again stored in “rset”), shows that these matrices must
be mapped to themselves. Finally, we stated that these matrices together with Ig
and matrices of the form X as defined in section 5.3, could be shown to span the
37 dimensional subspace of Mg(R). We store these new matrices in row vector form
in “rI” and “P6”respectively. The rank command will then show that there are 37

linearly independent vectors among these matrices.
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A6=R.8(:,:,8:27); TA6=rA8(8:27,:); rX6=rX8(1:15,:); Y=[eye(6)
zeros(6,2) ;zeros(2,6) eye(-ones(2)]; r¥=ry8(28,:);
rP6=rP8(1:20,:);
rset={rl;rX6(1,:);rX6(3,:) ;rX6(6,:);xX6(10,:);r¥6(15,:);xY];
ip=[rA6;rX6]*rset’ rset=[rI;rX6;rY;rA6(1,:)]; ip=[rA6ltrset’
z=P_6(:,:,1,2,3)*Y; for i=1:20

L=zxh B(r,:,1);

rZAG(L, )=[Z(1,:) Z(2,:) 2(3,:) Z(4,:) Z(5,:) Z(6,:) Z(7,:) 7(8,)];
end rset=[rI;rX6;rY;rA6}; ip=[rZA6]*rset’

rank([rI;rA6;rX6;rY;rP6;rZ46(3:20,:)1)
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