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NOTE TO THE READER

The work presented in this thesis consists of two related projects using different 

techniques to explore the effects of PGE2 on neurons in the ventromedial preoptic area of 

the hypothalamus. The first technique is extracellular single-unit recording. The findings 

of this investigation are reported in the form of a manuscript titled The Effects o f 

Prostaglandin E2  on the Firing Rate Activity o f Thermosensitive and Temperature 

Insensitive Neurons in the Ventromedial Preoptic Area o f the Rat Hypothalamus (by H. J. 

Ranels & J.D. Griffin). Presented here in Chapter II., this manuscript has been submitted 

to Brain Research.

A second manuscript titled The Effects o f Prostaglandin E2  on the Cellular 

Properties o f Thermally Classified Neurons in the Ventromedial Preoptic Area o f the Rat 

Hypothalamus (by H.J. Ranels & J.D. Griffin) is in progress. This manuscript is 

presented here in Chapter III and utilized the technique of whole-cell patch clamp 

recording. Due to the format chosen for this thesis, some of the information provided in 

the manuscripts (Chapter II and III) may also be found in the Introduction and the 

Conclusions (Chapter I and IV, respectively). However, all appropriate considerations 

concerning experimental findings of this thesis are addressed in Chapter IV, and the 

reader is encouraged to refer to this chapter for a comprehensive examination of the 

results related to the current literature.



ABSTRACT

Fever, an elevation in body temperature, is thought to play an adaptive role in the 
immune system’s attempts to fight invading infectious organisms through the actions of 
endogenous pyrogens, such as prostaglandin E2 (PGE2) directly on the central nervous 
system. A suggested mechanism for the induction of fever is the up regulation of the 
thermostatic set-point for body temperature achieved through the integration of thermal 
information by neurons in the hypothalamus that can be classified as either warm 
sensitive of temperature insensitive.

The ventromedial preoptic area of the hypothalamus (VMPO) has been confirmed 
morphologically and physiologically as a site of fever induction, including through the 
local production of PGE2. Within the VMPO, there is overlapping expression of 
prostaglandin receptor subtypes, EP3 and EP4. Both of these receptor subtypes are 
activated during a fever response and result in either a decrease or an increase in 
intracellular cAMP. This may result in changes in ionic conductance may alter the 
activity of hypothalamic neurons.

To examine firing rate activity and thermosensitivity extracellular single- unit 
recordings from the VMPO were made. Neurons were classified as either warm sensitive 
(m > 0.8 imp s LoC 1) or temperature insensitive. Hypothalamic tissue slices were 
maintained at a constant temperature of ~36°C and perfused with PGE2 (200nM). This 
study provided evidence that the majority of temperature insensitive neurons responded 
to PGE2 with an increase in firing rate activity, while warm sensitive neurons showed a 
reduction in firing rate. This suggests that both warm sensitive and temperature 
insensitive neurons in the VMPO may play critical and contrasting roles in the production 
of a fever during an acute phase response to infection.

To characterize the cellular properties of VMPO neurons, whole-cell patch clamp 
recordings were made in hypothalamic tissue slices perfused with PGE2 (2 0 0 nM or 
1 pM). In response to both 200 nM and 1 pM, all neurons showed a decrease in input 
resistance. However in response to a depolarizing current, temperature insensitive 
neurons responded to PGE2 with an increased firing rate frequency and a decreased delay 
in the onset of action potential generation, while warm sensitive neurons decreased firing 
rate frequency. Temperature insensitive neurons treated with PGE2 also showed 
depolarized membrane potential. Changes in firing rate activity were only seen in 
response to 1 pM PGE2. Insensitive neurons showed an increase in firing rate activity, 
while warm sensitive neurons showed a decrease in firing rate activity. In addition there 
was no change in local synaptic input in response to temperature or PGE2 .

x
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CHAPTER I

INTRODUCTION

The regulation of body temperature is highly efficient and employs regulatory 

changes in cardiovascular and respiratory activity, as well as osmotic, metabolic and 

behavioral responses. The neural pathway of this control system involves the 

hypothalamus, limbic system, lower brainstem, reticular formation, spinal cord, and 

sympathetic ganglion (Boulant, 1991). Within the hypothalamus, a major autonomic 

center, neurons integrate afferent sensory information from thermoreceptors in the skin 

and body core with inherent responses to local brain temperature. Through the integration 

of this information, these neurons initiate thermoregulatory responses to maintain a 

constant body temperature within a narrow range, except in rare instances such as fever, 

exercise induced hyperthermia, and other pathological states. With a rise in temperature, 

hypothalamic thermoregulatory neurons initiate heat loss responses, ranging from 

panting, sweating, and an increase in skin blood flow, to behavioral responses such as 

fanning and seeking shade. If body temperature falls, these neurons initiate heat 

production or retention responses, which include shivering, non-shivering thermogenesis, 

cutaneous vasoconstriction, and changes in behavior (Boulant, 1998).



3

1. Thermosensitivity in the Hypothalamus

Evidence for central thermosensitivity comes from studies in which discrete

neural areas of the hypothalamus were thermally stimulated, and from

electrophysiological studies which characterized the temperature sensitivity of

hypothalamic neurons. Within the hypothalamus, approximately 60% of the neurons are

classified temperature insensitive, 30% are warm sensitive, and less then 10% are cold

sensitive (Boulant, 1998). To thermally classify neurons based on changes in spontaneous

firing rate, two differing criteria have been used: neuronal Qio and the slope of the

thermoresponsive curve. Neuronal Qio, in its simplest form, is the ratio of a response

before and after a theoretical 10°C change in temperature. If the response doubles during
\

a 10°C increase then the Qio is considered to be 2.0. The slope of the thermoresponsive
*

curve is preferred for most neural integration studies, as it can be applied to the activity 

of a neuron in response to local changes in temperature, as well as responses to afferent 

input concerning peripheral and visceral temperature (Boulant, 1989).

Although the hypothalamus is a major center of thermoregulation, the majority of 

O neurons in the hypothalamus are characterized as temperature insensitive. These neurons 

show little or no change in firing rate activity in response to local changes in temperature. 

The activity of these neurons may not be directly correlated with thermoregulatory 

responses, but it has been proposed for many years that synaptic input from temperature 

insensitive neurons serves as a steady-state reference signal to thermoregulatory effector 

neurons (Hammel, 1965; Boulant & Dean, 1986; Boulant, 1998). In addition, a recent 

study showed that temperature insensitive neurons have distinct dendritic morphology. 

These neurons tend to have dendritic projections, which parallel the third ventricle



4

(Griffin et al., 2001). This is in contrast to warm sensitive neurons, which orient their 

dendrites towards major sites of afferent pathways, both medially and laterally. The 

contrasting morphology of temperature insensitive and warm sensitive neurons suggests a 

different functional role depending on thermosensitivity classification.

Neurons are considered to be warm sensitive if their firing rate substantially 

increases during local warming or decreases during local cooling. To classify a neuron as
I  i

warm sensitive, the minimum criterion is a regression coefficient of 0 . 8  impulses*s' -°C 

(Boulant, 1980; Boulant & Dean, 1986). This criterion is based on the result of several in 

vivo studies (Boulant & Bignall, 1973; Boulant & Hardy, 1974; Boulant & Dean, 1986). 

In particular, Boulant & Hardy (1974) studied the integration o f  peripheral thermal 

information and thermoregulatory responses that corresponded with changes in neuronal 

sensitivity to local, preoptic temperature. Although this criteria for warm sensitivity is 

widely accepted, several investigators still use no criteria or criteria far below accepted 

minimums, suggesting that many studies overestimate thermosensitive hypothalamic cell 

populations (Jansky et al., 1992; Matsuda et al., 1992; Morimoto, 1988).

2. Intracellular Mechanism of Neuronal Thermosensitivity

Initial intracellular recording studies have suggested that the basis of neuronal 

temperature sensitivity in the hypothalamus depends on thermal changes in membrane 

potential (Gorman & Marmor, 1970; Carpenter, 1981; Kobayashi & Takahashi, 1993). 

However, Griffin & Boulant (1995) provided evidence that indicated membrane potential 

remains stable in all neuronal classes during warming and cooling. Instead Griffin et al. 

(1996) characterized a temperature dependant, depolarizing prepotential, which may be
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the primary determinant of thermosensitivity for warm sensitive neurons. Warming 

increases the rate the depolarization of this prepotential, which in  turn decreases the 

interspike interval and increases the firing rate of warm sensitive neurons. Further 

evidence suggests that the depolarization rate of the prepotential in warm sensitive 

neurons may be due to the inactivation of a potassium A current (Griffin et al., 1996).

3. Hypothalamic control of Temperature Regulation

J A proposed model for neuronal control of thermoregulation shows the 

development of a hypothalamic set-point temperature, which can account for changes in 

thermoregulatory responses and apparent shifts in body temperature (Figure I.I.; 

Hammel, 1965). Hammel suggests that each type of thermoregulatory response is 

controlled by groups of effector neurons. These effector neurons are located in the 

hypothalamus or brainstem nuclei and control specific thermoregulatory responses 

through a change in firing rate activity. Insensitive and warm sensitive neurons in the 

hypothalamus integrate peripheral and central temperature information with their own 

inherent spontaneous activity to produce mutually antagonistic synaptic input to each 

effector neuron. Through the integration of this synaptic information, the activity of 

effector neurons determines a set-point, and the level of activation of specific 

thermoregulatory responses (Boulant, 1980).
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Figure 1.1. Hammel’s proposed model for explaining temperature regulation

Synaptic inputs from warm sensitive neurons (W) and temperature insensitive neurons (I) 
in the preoptic area of the hypothalamus are integrated by, warm (w) and cold (c) effector 
neurons, which trigger thermoregulatory responses, which correlates with changes in 
temperature from the integrated set- point temperature. An increase in firing rate of warm 
sensitive neurons will trigger a heat loss response by warm effectors neurons, and a 
decrease in firing rate of warm sensitive neurons will trigger a heat production response 
from cold effector neurons. OC, optic chiasm, MB, mammillary body (Adapted from 
Boulant, 1991).
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4. Fever

With respect to Hammel’s model (Figure I.I.), 311 upward shift in the given

hypothalamic set-point will result in a fever. Fever, which is part of the acute phase

response to infection or inflammation, is characterized by an elevation of body

temperature of 1-4°C (Saper & Breder, 1994). Several studies have shown that

endotoxins, such as lippopolysaccharide (LPS), a complex glycolipid found in the outer

membrane of most gram-negative bacteria, stimulate leukocytes and other cells to

produce certain mediators of inflammation that have a pyrogenic effect (Elmquist et al.,
*

1996; Scammell et al., 1996; Scammell et al., 1998). This has made the use of LPS a 

good experimental model for the acute phase response of infection. It triggers the release 

and secretion of endogenous pyrogens such as Interleukin-1 (IL-1), tumor necrosis factor 

a, interferon p, and interferon y (Saper & Breder, 1994). Experimentally, these 

endogenous pyrogens tend to inhibit the firing rate activity of warm sensitive neurons 

while having little effect on insensitive neurons. However, studies indicate that they do 

not act directly on hypothalamic neurons, but induce the production of prostaglandin E2 

(PGE2) in the preoptic area (POA) of the hypothalamus. PGE2 may act on the neural 

pathways to raise body temperature by directly inhibiting warm sensitive neurons 

controlling heat loss responses or through the activation of temperature insensitive 

neurons. This suggests that the mechanism for the induction of a fever appears to be the 

up regulation of the thermostatic set-point for body temperature in the POA (Saper & 

Breder, 1994; Boulant, 1998) (Figure I.2.).
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EVENTS OF AN "IDEAL” FEVER
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Figure 1.2. Responses of neurons and whole body before, during, and after fever

Top: the integration of the normal firing rates (FR) of temperature insensitive neurons (I) 
and warm sensitive neurons (W) yielding a set-point of 37°C. An upregulation of W 
sensitive neurons raises the set-point inducing a fever (dashed line). Middle: the degree 
of thermoregulatory responses as a function of hypothalamic temperature under normal 
conditions (solid line) and fever (dashed line). Bottom: Temperature changes during fever 
corresponding with bodily responses during ( 1 ) initiation of fever steady, (2 ) stated of 
fever and, (3) decline in fever (Adapted from Boulant, 1991).
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5. Prostaglandin E2

Prostaglandins (PGs) comprise a diverse family of autocoids, whose synthesis is 

initiated by cyclooxygenase-mediated metabolism of the unsaturated 2 0 -carbon fatty acid 

arachidonic acid, generating five primary bioactive prostanoids including PGE2 (Breyer et 

al., 2001). PGs are produced by a variety of cells in response to both physiological and 

pathological stimuli, and are released into the interstitial space immediately after 

synthesis. They then act locally to stimulate cellular activity via specific G-protein- 

coupled receptors (Breyer et al., 2001; Ushikubi et al., 1995).

PGE2 is a major product of cyclooxygenase-initiated arachidonic acid 

metabolism and may have multiple, and at times apparently opposing, functional effects 

on given target tissues. For example, it exerts vasodilator effects on both arterial and 

venous beds, and causes smooth muscle relaxation or constriction dependant on the 

location (Coleman et al., 1990). Molecular cloning has now confirmed the existence of 

multiple PGE2 receptor subtypes, encoded by distinct genes. These receptors are EPi, 

EP2 , EP3 , and EP4 and likely account for the diverse effects of PGE2 (Ek et al., 2000).

To characterize the role of PGE2 in the production of a fever, Morimoto et al. 

(1988) performed in vivo studies in which PGE2 was injected directly into the POA and 

ventral medial hypothalamus (VMH) of the rat while monitoring rectal temperature. They 

also investigated the effect of PGE2 on neuronal activity in the POA and VMH in tissue 

slice preparations. This study reported that regardless of thermosensitivity, neurons in the 

VMH decreased their firing rates in response to PGE2 ; while in the POA, neurons 

increased their firing rates. From this evidence, the investigators concluded that 

responses to PGE2 could not be characterized on the basis thermosensitivity. However,
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this study used a thermocoefficient of 0.5 impulses-s'^C' 1 as a minimum criterion for 

classification of warm sensitive neurons. This may have resulted in the classification of 

insensitive neurons as warm sensitive. In addition, the slice preparations were often 

treated with multiple consecutive exposures of PGE2 at varying concentrations. Finally, 

the specific locations of the neurons were poorly characterized.

Another prominent study in 1992 (Matsuda et al.) used tissue slices containing the 

organum vasculosum of the lamina terminalis (OVLT) region of the hypothalamus to 

characterize the effect of PGE2 on neuronal activity. The tissue slices were perfused with 

varying concentrations of PGE2 during the recording of extracellular neuronal responses. 

This study reported that in response to PGE2, the majority of warm sensitive neurons 

decreased their firing rates. However, some warm sensitive cells did show increases in 

firing rate in response to PGE2 . Once again, this study used an alternative 

thermocoefficient of only 0.7 impulses-s'^C' 1 to classify a neuron as warm sensitive. In 

addition, PGE2 was only perfused for periods of two minutes, and responses had 

extremely variable times of onset and duration. As in the previous studies, the 

characterization of the specific location of recorded neurons was vague and without any 

morphological confirmation. Varying minimum criterion for classification of warm 

sensitive neurons and broad generalized characterization of a neuron’s location in the 

hypothalamus are recurrent problems in several other similar studies and may be reasons 

for reported variability in neuronal response to PGE2 (Hori et al., 1988; Nakashima et al., 

1989; Jansky et al., 1992).
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6. Cellular actions of PGE2

Throughout the nervous system, studies have focused on characterizing the 

mechanism through which PGE2 can alter neuronal activity. Experimental findings 

support the notion that PGE2-induced sensitization of sensory neurons results from 

activation of a cAMP transduced cascade (Lopshire & Nicol, 1998). Evidence for this is 

three-fold: PGE2 increases intracellular levels of cAMP in sensory neurons, exogenous 

application of membrane-permeant analogs of cAMP mimics the sensitizing effect of 

PGE2, and inhibition of the cAMP-dependant protein kinase (PKA) blocks sensitization 

to PGE2 . This study also showed that PGE2, through the activation of the cAMP-PKA 

signaling pathway, increases whole-cell currents that are elicited by capsaicin. In contrast 

Evans et al. (1999) demonstrated that PGE2 attenuated whole cell potassium currents in 

sensory neurons and that this suppression was also dependent on the activation of the 

cAMP-PKA transduction cascade. Within the hypothalamus, Griffin et al., (1990) 

showed that neurons increased firing rate activity with an increase of intracellular cAMP. 

This evidence suggest that changes in ionic conductance, due to cAMP, may be a 

possible mechanism for altering the activity of hypothalamic neurons. Therefore, within 

the hypothalamus, PGE2 induced changes in neuronal activity may be due to cAMP 

dependant mechanisms.

7. Sites of Fever Induction

As stated previously, the POA has been identified as playing a primary role in 

thermoregulation (Boulant, 1991). Numerous studies over 50 years indicate that 

approximately 40% of the neurons in the POA are thermosensitive and have control over
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thermoregulatory responses. Early lesion studies demonstrated that neurons in the POA 

are affected by pyrogenic substances (for reviews see, Boulant, 1991; Saper & Breder, 

1994). More specifically, evidence suggests that the OVLT is a site at which circulating 

cytokine signals are transduced into the central nervous system and trigger change in 

neuronal activity, resulting in a typical fever response to infection (Elmquist et al., 1996). 

However, these early lesion studies generally removed more than just the OVLT, 

including several prominent nuclei in the POA (Blatteis et al., 1983; Katsura et al., 1990; 

Stitt, 1986).

To more precisely characterize the site of fever activation, Scammell et al. (1998) 

reported that an intravenous injection of LPS rapidly induced production of a critical 

enzyme involved in PG production, cyclooxygenase-2 (COX2). COX2 is seen in the 

perivascular microglia and leptomenigal macrophages and catalyzes the formation of PGs 

that can diffuse into adjacent brain regions to influence neural activity. With 

microinjection of keterolac, a COX2 inhibitor, this study was able to identify potential 

production sites of PGs and found that PG synthesis in the POA is necessary for fever 

after the intravenous injection of LPS. This research identified a  specific cell group 

adjacent to the OVLT that is activated by LPS and important in the production of fever, 

the ventromedial preoptic area (VMPO).

8. The Ventromedial Preoptic Area

The role of VMPO as a site of fever induction has also been confirmed 

anatomically (Elmquist et al., 1996; Scammell et al., 1996). With injections of LPS, 

specific areas activated during a fever show labeling with Fos, an immediate early gene
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product. Fos is expressed with increased levels of cellular activation and is used as a 

marker to identify extended neural systems activated by specific stimuli. Using this 

anatomical approach, the VMPO was identified as being physiologically activated during 

the generation of a fever (Elmquist et al., 1996). In addition, Scammell et al. (1996) 

utilized Fos to identify the pattern of neural activation induced by preoptic injection of 

PGE2 . Fos induction was seen in the VMPO as well as the paraventricular nucleus 

(PVH). This evidence suggests that PGE2 activates the VMPO, which in turn stimulates 

the PVH to produce a fever response (Scammell et al., 1996; Figure 1.3.).

APFx QA BA  (-)

PVH
Autonomic
Activation

GABA

(+)

lLPS I /
,UI LL
TNF yTpoi 
etc. / ' VMPO

perivascular microglia 
A meningeal macrophages

Figure 1.3. A proposed model for the generation of fever

Abbreviations: APFx, anterior perifomical area; PVH, paraventricular nucleus; GABA, 
gamma amino butyric acid; VMPO, ventral medial preoptic area; LPS 
lippopolysaccharide; IL-1, interleukin- 1 p, PGE2, prostaglandin E2 ; TNF, tumor necrosis 
factor.
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Further support for the importance of the VMPO in fever is found in recent 

studies that identified the location and activation of the specific PGE2 receptor subtypes: 

EPi, EP2, EP3, and EP4. All four subtypes have been identified in the hypothalamus (Oka 

et al., 2000; Ushikubi et al., 2000). Some areas important to thermoregulation, like the 

POA, show overlapping expression of EPi, EP3, and EP4 (Ek et al., 2000). The receptor 

subtypes that may be involved in febrile response remain hotly debated, partly because of 

this diffuse pattern of receptor expression, and partly because individual neurons may 

alter expression and affinity of receptors subtypes during the course of an inflammatory 

response (Ek et al., 2000; Oka et al., 2000).

9. Importance of EP3 and EP4 in the Generation of a Fever

Ushikubi et al. (2000) studied the responses of mice lacking the specific EP 

receptor subtypes to different pyrogenic substances. Mice lacking the EP3 receptor did 

not develop a fever in response to centrally administered PGE2 . There was also no 

generation of a fever in response to peripheral or central administration of II-1 or LPS. 

This evidence suggests that EP3 is essential for a febrile response to infection. Another 

principal study used a combination of in situ hybridization and immunohistochemical 

techniques to determine the central distribution of EP3 mRNA within the rat central 

nervous system, with an emphasis on II-1 responsive cell groups (Ek et al., 2000). This 

study showed that the mRNA probe for the EP3 receptor is expressed in a very restrictive 

manner in the brain, which included expression in the VMPO. Oka et al. (2000) further 

investigated the roles of all the receptor subtypes in association with LPS activated Fos. 

However, this research showed that the EP3 receptor subtype did not appear within the
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VMPO or OVLT in correlation with LPS activated Fos. This may be due to the 

possibility that Fos depends on the activation of cellular mechanisms. The activation of 

the EP3 subtype has been shown to decrease the intracellular cAMP levels and may lead 

to the inhibition of cellular mechanisms and a lack of Fos activation (Oka et al., 1994; 

Oka et al., 2000).

This same study did, however, show a strong relationship between the expression 

of EP4 receptors and Fos expression in the VMPO during intravenous LPS (Oka et al., 

2000). Evidence also suggests that EP4 activation will result in an increase in intracellular 

cAMP (Ek et al., 2000). Based on this data, the presence of EP4 in the VMPO and 

apparent activation of Fos with LPS injection, the EP4 receptor subtype has been 

implicated as having a role in altering the activity of neurons in the VMPO, resulting in a 

febrile response.

8 . Summary and Hypotheses

Since previous studies only characterized the indirect responses of hypothalamic 

neurons to endogenous cytokines, this thesis will focus directly on characterizing the 

thermosensitivities of VMPO neurons and their responses to PGE2 . Research has shown 

PGE2 is produced within the central nervous system in response to systemic LPS, 

followed by the generation of a fever. The presence and activation of PGE2 receptors, and 

the activation of Fos during an immune system challenge in the VMPO, further 

emphasizes the importance of this area in the generation of a fever. However, there are no 

current studies looking at the neuronal activity specific to this region. Furthermore, little 

is known about the cellular conductances, which are involved in the changes of firing rate
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activity in the hypothalamus that occurs in response to PGE2, and how this may alter 

thermoregulatory responses to produce a fever.

From in vitro tissue slice preparations using single-unit extracellular recording 

techniques I proposed to characterize the firing rate activity of neurons in the VMPO with 

respect to temperature and PGE2 . Once this initial study was completed, I used a whole­

cell patch recording technique examine the cellular conductances of VMPO neurons in 

response to PGE2 .

Hypothesis 1: In response to the local production o f PGE2, temperature insensitive 

neurons in the VMPO will increase their spontaneous firing rate activity while warm 

sensitive neurons will decrease their spontaneous firing rate activity.

Specific Aim 1: To determine the neurophysiologic responses of the VMPO neurons 

to local changes in temperature and exposure to PGE2, which has been shown to be 

produced locally in response to a LPS immune system challenge.

Hypothesis 2: The VMPO neuronal changes in firing rate in response to PGE2  result 
from changes in cellular conductances that alter input resistance, membrane potential, 
and the generation o f action potentials.

Specific Aim2: To determine the cellular conductances involved in the changing 
spontaneous firing rate of the VMPO neurons in response to PGE2 by examining 

input resistance, membrane potential, the generation of action potential, and 

synaptic input.



17

CHAPTER II

The Effects of Prostaglandin E2 on the Firing Rate Activity of Thermosensitive and 
Temperature Insensitive Neurons in the Ventromedial Preoptic Area of the Rat 
Hypothalamus.

Heather J. Ranels and John D. Griffin
The College of William and Mary, Williamsburg, VA 23188

Abstract

In response to an immune system challenge with lipopolysacharide (LPS), recent 

work has shown that Fos immunoreactivity is displayed by neurons in the ventromedial 

preoptic area of the hypothalamus (VMPO). In addition, neurons in this region show 

distinct axonal projections to the anterior perifomical area (APFx) and the paraventricular 

nucleus (PVN). It has been hypothesized that neurons within the VMPO may integrate 

their local responses to temperature, with changes in firing activity that result from LPS 

induced production of prostaglandin E2 (PGE2). This may play a critical role in altering 

the set-point regulation of thermoeffector neurons in the APFx and PVN, resulting in 

hyperthermia. To characterize the firing rate activity of VMPO neurons, single-unit 

recordings were made of neuronal extracellular activity in rat hypothalamic tissue slices. 

Based on the slope of firing rate as a function of tissue temperature, neurons were 

classified as either warm sensitive or temperature insensitive. Neurons were then treated 

with PGE2 (200 nM) while tissue temperature was held at a constant level (~36°C). The
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location of each neuron was later confirmed through histochemical staining. The majority 

of temperature insensitive neurons responded to PGE2 with an increase in firing rate 

activity, while warm sensitive neurons showed a reduction in firing rate. This suggests 

that both warm sensitive and temperature insensitive neurons in the VMPO may play 

critical and contrasting roles in the production of a fever during an acute phase response 

to infection.

1. Introduction

The acute phase response is a multi-system coordinated reaction to immune 

stimulation that includes a wide variety of metabolic, endocrine, autonomic, and 

behavioral responses, which are controlled by the central nervous system (Saper & 

Breder, 1994). Current theories suggest that these responses are triggered by the actions 

of circulating endogenous pyrogens on vagal sensory pathways, as well as by altering the 

activity of hypothalamic neurons that are in close proximity to the organum vasculosum 

of the lamina terminalis (OVLT; Blatties, 2000). These varying pathways of activation 

may allow for specific immune conditions to elicit unique patterns o f  stimulation.

Fever, which is a component of the acute phase response, is an elevation in body 

temperature of 1-4°C. A suggested mechanism for this response is the up regulation of a 

thermostatic set-point (Boulant, 1998). This set-point is achieved through the integration 

of both central and afferent thermal information by neurons in the anterior regions of the 

hypothalamus, that can be classified as either inherently thermosensitive or temperature 

insensitive. These neurons regulate the activity of efferent pathways, to control 

thermoregulatory responses. During a fever, changes in the activity of neurons in the
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anterior hypothalamus may be the mechanism by which the thermostatic set-point is 

adjusted into the hyperthermic range.

Several studies have shown that endotoxins such as lippopolysaccharide (LPS), a 

complex glycolipid found in the outer membrane of most gram-negative bacteria, 

stimulate leukocytes and other cells to produce certain endogenous substance that have 

pyrogenic effects (for review, Blatteis, 2000). These endogenous pyrogens may not act 

directly on hypothalamic neurons, but induce the production of prostaglandin E2 (PGE2) 

within specific regions of the hypothalamus. This hypothesis is supported by data 

indicating that in addition to a fever, intravenous injection of LPS resulted in an increased 

production within the hypothalamus of cyclooxygenase-2 (COX2), a  primary enzyme in 

the synthesis of PGE2 (Scammell et al., 1998). Further experiments using microinjections 

of keterolac (a COX2 inhibitor) identified discrete sites of activation that are necessary 

for fever. More specifically, this research identified a critical cell group adjacent to the 

OVLT that is now known as the ventromedial preoptic area (VMPO).

The role of the VMPO as a site of fever induction has also been confirmed 

anatomically. In response to intravenous injection of LPS or microinjection of PGE2 

directly into the VMPO, neurons in this region showed expression o f  Fos, an immediate 

early gene product that is present during increased levels of cellular activation (Elmquist 

et al., 1996; Scammell et al., 1996). The ability of neurons in the VMPO to respond to the 

local production of PGE2 is also supported by evidence that all four PGE2 receptor 

subtypes are present within the hypothalamus (Oka et al., 2000). Within the anterior 

regions of the hypothalamus, including the VMPO, there is overlapping expression of 

EPi, EP3, and EP4 receptor subtypes (Ek et al., 2000). With respect to the generation of a
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fever, recent work indicates that both EP3 and EP4 receptor subtypes are selectively 

important (Ushikubi et al., 2000; Ek et al., 2000; Oka et al., 1994).

If an increased concentration of PGE2 in the anterior hypothalamus is responsible 

for the production of a fever, then it would be expected that a correlation exists between 

the thermosensitivity of neurons in this region and responses to PGE2 . Although several 

extracellular single-unit recording studies have characterized the effects of PGE2 on the 

firing rate activity of hypothalamic neurons, no correlation with thermosensitivity has 

been reported. Matsuda et al. (1992) showed that PGE2 decreased the firing rates of some 

warm sensitive neurons, while having no effect or increasing the firing rates of other 

warm sensitive neurons. This is in contrast to similar studies, which indicated that some 

cytokines selectively decreased the firing rates of warm sensitive neurons (Hori et al., 

1988; Nakashima et al., 1989). However, these previous studies used varying criteria to 

define warm sensitivity and did not limit their recording locations to any specific 

functional nuclei within the anterior hypothalamus. Using a well established functional 

criteria to define thermosensitivity, our study has characterized the firing rate activity of 

VMPO neurons in response to temperature and PGE2 .

2. Materials and Methods

Hypothalamic tissue slices containing the VMPO were prepared from male Sprague- 

Dawley rats (100-150 grams in weight), which were housed under standard conditions 

and given food and water ad lib. Prior to each recording session, an animal was 

anesthetized using isoflourene and sacrificed by decapitation, according to procedures 

approved by the Animal Care and Use Committee of the College of William and Mary.
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The brain was then quickly removed and a tissue block containing the hypothalamus was 

cut using a vibratome. Two or three coronal slices of the anterior hypothalamus, 

containing the VMPO, were sectioned and placed in a tissue chamber (Kelso et al., 1982). 

Slices were allowed to equilibrate for 2 hours before recordings were attempted.

Throughout the recording session, the tissue slices were perfused with a pyrogen free 

nutrient medium consisting of (mM): 124 NaCl, 26 NaHCOa, 10 glucose, 5 KC1, 2.4 

CaCl2, 1.3 MgS0 4 , and 1.24 KH2PO4 . This medium was oxygenated (95% O2 - 5% CO2), 

warmed to a constant temperature of approximately 36°C, and allowed to flow into the 

chamber at 1-1.5 ml'min' 1 (Kelso et al., 1983). A small thermocouple was positioned just 

below the tissue slices to continuously monitor temperature.

Extracellular single-unit recordings were made from neurons in the VMPO using 

glass microelectrodes with tip diameters of less than 1 pm and filled with 3M NaCl. All 

recordings were made using an Xcell-3 Microelectrode Amplifier (FHC Inc.) and stored 

along with temperature on digital tape for later analysis. Once the activity of a neuron 

was isolated (signal : noise > 3 : 1 )  and stable for several minutes, temperature in the 

recording chamber was varied 2-3°C above and below 36°C to determine responses to 

temperature. Neuronal thermosensitivity (impulses* s' 1 ̂ C"1) was characterized by plotting 

firing rate as a function of temperature to determine the regression coefficient (m) of this 

plot. As in previous studies (Kelso et al., 1982; Griffin et al., 2001), warm sensitivity was 

defined as a regression coefficient of at least 0.8 impulses-s'^C"1. All other neurons in 

this study were defined as temperature insensitive.

After the thermosensitivity of a neuron had been characterized, each neuron was 

tested for its response to PGE2 . Once a stable temperature was achieved (~36°C), the
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perfusion medium was switched to one containing PGE2 (200 nM, Sigma Chemical Co.). 

The duration of exposure to PGE2 ranged from 5 - 1 5  minutes. Treatment was stopped 

prior to 10 minutes only when a change in firing rate (impulses-s'1) was > 15%. Exposure 

to PGE2 was followed by a control period of at least 10 minutes. After the recording 

session, one minute samples of stable firing rate activity were digitized (60 Hz) for 

comparison (pClamp Software, Axon Instruments). These samples were collected during 

baseline conditions (just prior to perfusion with PGE2), at the end o f  perfusion with PGE2 

or at the peak of a change in firing rate, and at the end of a 1 0  minute control period or 

when firing rate returned to baseline levels. For each sample of firing rate activity, a 

mean and standard error were calculated (Sigmaplot Software, SPSS Inc.). To 

characterize a significant response to perfusion with PGE2, firing rate had to change at 

least 15% from baseline levels. In addition, the response had to be significant (p < 0.05), 

when compared to baseline levels using a standard T test.

Once a recording had been completed, a dissection microscope was used to visually 

confirm the location of the electrode. Tissue slices were then removed from the chamber 

and fixed in a 10% formalin solution for at least 2 hours. This was followed by at least 2 

hours in a 30% sucrose solution and then tissue slices were sectioned again to a thickness 

of 50 pm. A giemsa staining procedure was used to identify specific hypothalamic areas 

so that the location of each electrode within the VMPO could be reconfirmed (Griffin et 

al., 2 0 0 1 ).



3. Results

Thermosensitivity:

The thermosensitivities of 30 VMPO neurons were characterized and their firing 

rate activities studied in response to PGE2 . The majority of these neurons were classified 

as temperature insensitive (n=25; Table II.l.). Based on their responses to PGE2 , this 

class was divided into two groups: low-slope temperature insensitive neurons (n=19), 

which had thermosensitivities of 0.49 impulses-s'^C' 1 or less; and high-slope 

temperature insensitive neurons (n=6 ), which had thermosensitivities in a range o f 0.5 - 

0.79 impulses-s' 1 ̂ C*1. All other neurons were classified as warm sensitive (n=5). There 

was no specific pattern to the distribution of these neurons throughout the VMPO (Figure

II.1.).

Table II.1. Thermosensitivity of neurons in VMPO.

______ Thermosensitivity: (impulses-s'1•°C~1)______

Classification___________ N____ Criteria_____ Mean ± S.E. Range___________
Low-Slope
Temperature Insensitive 19 <0.49 0.08 + 0.05 -0.42 to 0.40

High-Slope
Temperature Insensitive 6  0.5 - 0.79 0.58 ± 0.04 0.50 to 0.78

Warm Sensitive 5 >0.8 1.18 + 0.10 0.95 to 1.50
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Figure 11.1. Neuronal location of VMPO neurons shown in coronal sections

Key: •  are low-slope temperature insensitive neurons; ■ are high-slope temperature 
insensitive neurons; ▲ are warm sensitive neurons. 3V, third ventrical; ac, anterior 
commisure; AVPe anterior periventricular nucleus; LPO, lateral preoptic area; MnPO, 
medial preoptic area; ox, optic chiasm; Pe, periventriclar hypothalamic nucleus; VMPO, 
ventromedial preoptic nucleus. (Adapted from Paxinos & Watson, 1998).
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Firing Rate Activity and Responses to PGE2 :

The mean baseline firing rate for all recorded VMPO neurons in this study was 

4.41 ± 0.62 impulses-s'1. Although the mean baseline-firing rate of low-slope 

temperature insensitive neurons was lower than high-slope temperature insensitive 

neurons, this difference was not significant (Table II.2.). Warm sensitive neurons also 

had a similar mean baseline firing rate, however, there was a large range within this class 

(1.87 -16.0 impulses-s"1).

Table n.2. Effect of PGE2 on the Spontaneous Firing Rate Activity of VMPO 
Neurons.

___________ Firing Rate: (impulses-s"^ S.E.)___________

Classification__________Baseline_______PGE2 (200 nM)_____ Control_________
Low-Slope
Temperature Insensitive 3.34 ± 0.60 6.39 ± 0.84*

High-Slope
Temperature Insensitive 6.49 ± 0.73 6.47 ± 0.76

Warm Sensitive________ 5.29 ± 2.35_____ 0.69 ± 0.68*
* Significantly different from Baseline Firing Rate (P< 0.01)

In response to PGE2 , 17 of 19 low-slope temperature insensitive neurons showed 

a significant increase in firing rate, with an average increase of 90% above baseline. 

(Table H.2.). Figure II.2. shows the firing rate activity of a low-slope temperature 

insensitive neuron that relative to other neurons in this group, had a high baseline firing 

rate. In response to PGE2 , firing rate increased from 4.90 + 0.16 impulses-s"1 to 11.63 ±

0.31 impulses-s"1, and lasted approximately 2 0  minutes beyond when perfusion with 

PGE2 was stopped.

3.59 ±0.81 

6.51 ±0.71 

1.59+1.41
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Figure II.2. The effects of temperature and PGE2 on the firing rate activity of a 
VMPO low-slope temperature insensitive neuron

A shows the firing rate during changes in temperature and during perfusion with PGE2 . In 
B, firing rate is plotted as a function of temperature. In C, one minute samples of firing 
rate activity are plotted as individual bar graphs, just before perfusion with PGE2 

(Baseline; 4.90 ±0.16) and during the peak of the response (PGE2; 11.63 ± 0.31). For 
each plot in C, the error bars may be obscured.
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Figure II.3. shows the firing rate activity of a low-slope temperature insensitive neuron, 

which had a low baseline firing rate. In response to PGE2, firing rate increased from 0.27 

+ 0.05 impulses-s’1 to 4.57 + 0.15 impulses-s’1. This increase in firing rate lasted more 

than 45 minutes before returning to baseline levels.

Although high-slope temperature insensitive neurons showed some degree of 

thermosensitivity none of these neurons responded to PGE2 with a significant change in 

firing rate (n=6 ; Table II.2.). Figure II.4. shows the firing rate activity of a high-slope 

temperature insensitive neuron. After determining this neuron's thennosensitivity, PGE2 

was added to the perfusion medium for 1 0  minutes, during which there was no change in 

firing rate.

All five VMPO neurons that were classified as warm sensitive responded to PGE2 

with a significant decrease in firing rate (Table II.2.). This inhibition had a long duration 

and only two neurons showed a return to baseline firing rate levels before recordings 

were terminated. Figure II.5. shows the firing rate activity of a warm sensitive neuron, 

which during perfusion with PGE2 , firing rate decreased by 95.6%. The activity of second 

warm sensitive neuron is detailed in Figure II.6 . In response to  PGE2 , firing rate 

decreased from 16.0 ± 0.07 to 0.11 + 0.02 impulses-s' 1 (99.3%). This response lasted for 

25 minutes, without showing any indication of a return to the baseline level of activity.
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Figure II.3. The effect of temperature and PGE2 on the firing rate activity of a 
VMPO low-slope temperature insensitive neuron

A shows the firing rate during changes in temperature and during perfusion with PGE2 . In 
B, firing rate is plotted as a function of temperature. In C, one minute samples of firing 
rate activity are plotted as individual bar graphs, just before perfusion with PGE2 

(Baseline; 0.27 ± 0.05) and during the peak o f the response (PGE2 ; 4.57 + 0.15). For each 
plot in C, the error bars may be obscured.
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Figure II.4. The effect of temperature and PGE2 on the firing rate activity of a 
VMPO high-slope temperature insensitive neuron

A shows the firing rate during changes in temperature and during perfusion with PGE2 . In 
B, firing rate is plotted as a function of temperature. In C, one minute samples of firing 
rate activity are plotted as individual bar graphs, just before perfusion with PGE2 

(Baseline; 8.51 ±0.14) and during the peak of the response (PGE2 ; 8.71 ± 0.13). For each 
plot in C, the error bars may be obscured.
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Figure II.5. The effect of temperature and PGE2 on the firing rate activity of a 
VMPO warm sensitive neuron

A shows the firing rate during changes in temperature and during perfusion with PGE2 . In 
B, firing rate is plotted as a function of temperature. In C, one minute samples of firing 
rate activity are plotted as individual bar graphs, just before perfusion with PGE2 

(Baseline; 1.59 + 0 .1 2 ) and during the peak of the response (PGE2 ; 0.07 + 0.03). For each 
plot in C, the error bars may be obscured.
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Figure II.6. The effect of temperature and PGE2 on the firing rate activity of a 
VMPO warm sensitive neuron

A shows the firing rate during changes in temperature and during perfusion with PGE2 . In 
B, firing rate is plotted as a function of temperature. In C, one minute samples of firing 
rate activity are plotted as individual bar graphs, just before perfusion with PGE2 

(Baseline; 15.98 ± 0.07) and during the peak of the response (PGE2 ; 0.11 ± 0.02). For 
each plot in C, the error bars may be obscured.
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4. Discussion

An enduring model of temperature regulation suggests that a  set-point for body 

temperature is achieved through the integration of both central and afferent thermal 

information by neurons within the hypothalamus (Hammel, 1965). This model has been 

supported by numerous studies, which indicate that the anterior hypothalamus has control 

over virtually all thermoregulatory responses, and is sensitive to  changes in local 

temperature (Boulant, 1991). Within this region, approximately 35%  of the neurons can 

be classified as warm sensitive. These neurons are not only inherently thermosensitive, 

but many are influenced by peripheral temperature and show a direct correlation o f their 

firing rate activity with the stimulation of specific thermoregulatory responses. Recent 

data also indicates that warm sensitive neurons receive local synaptic input primarily 

from temperature insensitive neurons (Griffin et al., 2001). This input may provide a 

reference signal that contributes to the establishment of the thermostatic set-point.

It can then be hypothesized that either an increase in the firing rate activity of 

temperature insensitive neurons or a decrease in the firing rate activity of warm sensitive 

neurons could result in an adjustment of the set-point into the hyperthermic range. 

Although this model would suggest a strong correlation between inherent 

thermosensitivity and responses to PGE2, previous electrophysiology studies have not 

presented support for this theory. As stated earlier, this may have been due to the lack of 

standard criteria for defining warm sensitivity and a general sampling of neurons from 

the anterior regions of the hypothalamus.

For the present study we used a criteria of m > 0.8 impulses-s"1 ̂ C ' 1 to define 

warm sensitivity. This is based on in vivo recordings indicating that neurons which meet
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this criteria not only responded to local changes in temperature, but many were directly 

affected by afferent thermal input or showed a correlation in firing rate and the activation 

of specific thermoregulatory responses (Boulant & Bignall, 1973; Boulant & Hardy, 

1974). Recent work also indicates that these warm sensitive neurons show a distinct 

pattern of dendritic morphology, which may be functionally significant (Griffin et al., 

20Q1). Previous studies that investigated the effects of PGE2 on the activity of 

hypothalamic neurons used criteria that ranged from 0.5 -  0.7 impulses-s"1- ^ ' 1 to define 

war sensitivity (Morimoto et al., 1988; Matsuda et al., 1992). Although we found that the 

VMPO had a smaller population of warm sensitive neurons compared to other regions of 

the anterior hypothalamus, all of these neurons responded to perfusion with PGE2 with a 

significant decrease in firing rate (Table II.2.).

Based on their responses to PGE2 , temperature insensitive neurons were divided 

into two groups (Table II.2). High-slope temperature insensitive neurons did not respond 

significantly to PGE2, suggesting that they may not be directly involved in the stimulation 

of a fever. However, the majority of low-slope temperature insensitive neurons responded 

to PGE2 with a significant increase in firing rate activity. In a similar manner to the 

responses of warm sensitive neurons, PGE2 dependent changes in firing rate had a slow 

onset and lasted for at least 10 minutes after perfusion with PGE2 had ended. This would 

suggest an indirect mechanism of cellular activation, such as is typical with the activation 

of a second messenger pathway. Both the activation of EP3 and EP4 receptor subtypes, 

which have been linked to the development of a fever, have been shown to decrease 

intracellular cAMP or increase intracellular cAMP respectively (Ek et al., 2000; Oka et 

al., 1994; Oka et al., 2000).
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Although neurons throughout the anterior hypothalamus may be responsive to 

endogenous substances such as PGE2 , there is evidence that discrete neuronal populations 

within this region may specifically regulate homeostatic mechanisms such as those 

involved in temperature regulation. With respect to the acute phase response to infection, 

neural activation of the VMPO has been established as a critical step in the production of 

a fever (Elmquist et al., 1997). In addition, two distinct groups o f  LPS induced Fos 

activated neurons in the VMPO have been characterized, which form local efferent 

projections that may underlie the adjustment of the thermostatic set-point that results in 

fever.

The larger of these two efferent pathways from the VMPO is an inhibitory 

projection to the anterior perifornical region (APFx), an area of the hypothalamus, which 

contains a high proportion of warm sensitive neurons (Elmquist & Saper, 1996; Dean & 

Boulant, 1989). From the APFx, Roland & Sawchencko (1993) have shown that there is a 

similar inhibitory projection to the autonomic parvicellular division of the PVN. 

Therefore, activation of this efferent pathway may result in the inhibition of warm 

sensitive neurons in the APFx, decreasing the level of inhibition to the PVN. Consistent 

with this hypothesis and the current model of set-point thermoregulation, our data would 

suggest that this efferent pathway is made up of temperature insensitive neurons from the 

VMPO, that respond to PGE2 with an increase in firing rate activity (Table 1).

A more restricted efferent projection also exists directly from the VMPO to the 

PVN (Elmquist & Saper, 1996). In contrast to previous electrophysiology studies o f the 

anterior hypothalamus, we found that only a small percentage of neurons in the VMPO 

are warm sensitive. We also report that all of these warm sensitive neurons responded to
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PGE2 with a significant decrease in firing rate (Table H.2.). Thus, it may be suggested 

that warm sensitive neurons provide excitatory input to the PVN through this direct 

efferent projection. In response to increased concentrations of PGE2  in the VMPO, the 

level of excitation would be reduced which may limit the activation of heat loss 

thermoregulatory responses (i.e., vasodilatation) and result in a fever.
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CHAPTER III

The Effects of Prostaglandin E2 on the Cellular Properties of Thermally Classified 
Neurons in the Ventromedial Preoptic Area of the Rat Hypothalamus

Heather J. Ranels and John D. Griffin
College o f William and Mary, Williamsburg, Va 23185

Abstract

Physiological and morphological evidence suggest that in response to an immune 

system challenge with lipopolysacharide, activation of the ventromedial preoptic area of 

the hypothalamus (VMPO) is important in the generation of fever. Extracellular single- 

unit recordings from the VMPO have provided evidence that prostaglandin E2 (PGE2) 

dependent changes in firing rate can be correlated with thermo sensitivity. We have 

hypothesized that neuronal response to PGE2 result from changes in cellular 

conductances that lead to a change in firing rate. To characterize the cellular properties of 

VMPO neurons, whole-cell patch clamp recordings were made in  hypothalamic tissue 

slices. Neurons were classified as either warm sensitive (m >  0.8 imp's"l oC_1) or 

temperature insensitive. At a constant temperature of ~36°C, tissue slices were perfused 

with PGE2 (200nM or lpM). In response to either 200 nM or 1 pM concentration of 

PGE2, all recorded neurons showed a decrease in input resistance. However in response 

to a depolarizing current, temperature insensitive neurons responded to PGE2 with an 

increased firing rate frequency and a decreased delay in the onset of action potential
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generation, while warm sensitive neurons decreased firing rate frequency. The membrane 

potential of temperature insensitive neurons also depolarized in response to PGE2 . 

Changes in firing rate activity were only seen in response to 1 pM  PGE2 . Insensitive 

neurons showed an increase in firing rate activity, while warm sensitive neurons showed 

a decrease in firing rate activity. In addition there was no change in local synaptic input 

in response to temperature or PGE2.

1. Introduction

Fever, an elevation in body temperature, is thought to play an  adaptive role in the 

immune system’s attempts to fight invading infectious organisms throug the actions of 

endogenous pyrogens directly on the central nervous system (Saper & Breder, 1994). A 

suggested mechanism for the induction of fever is the up regulation of the thermostatic 

set-point for body temperature (Saper & Breder, 1994; Boulant, 1998). This set-point is 

achieved through the integration of both central and afferent thermal information by 

neurons in the anterior regions of the hypothalamus, that can be classified as either 

inherently thermosensitive or temperature insensitive (Boulant, 1980). These neurons 

regulate the activity of efferent pathways that originate in the paraventricular nucleus 

(PVN), to control the responses of thermoregulatory effector mechanisms.

During a fever, changes in the inherent activity of neurons in the anterior 

hypothalamus may be the mechanism by which the thermostatic set-point is adjusted into 

the hyperthermic range. Evidence suggests that this response is due to endogenously 

produced cytokines, such as prostaglandin E2 (PGE2 ; Saper & Breder, 1994; Boulant, 

1991). It has also been established that fever can be generated by the stimulation of
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neural activity across the organum vasculosum lamina terminalis (OVLT), which is in 

close proximity to the thermoregulatory control centers of the hypothalamus. One of 

these control centers, the ventromedial preoptic area of the hypothalamus (VMPO) has 

been shown to be activated by the local production of PGE2 (Scammell et al., 1996).

The role of the VMPO as a site of fever induction has also been confirmed 

anatomically. In response to intravenous injection of LPS or microinjection of PGE2 

directly into the VMPO, neurons in this region showed expression o f Fos, an immediate 

early gene product that is present during increased levels of cellular activation (Elmquist 

et al., 1996; Scammell et al., 1996). The ability of neurons in the VMPO to respond to the 

local production of PGE2 is also supported by evidence that all four PGE2 receptor 

subtypes are present within the hypothalamus (Oka et al., 2000). Within the VMPO, there 

is overlapping expression of EP3 and EP4 . Both of these receptor subtypes are activated 

during a fever response and result in a decrease in intracellular cAMP or an increase in 

intracellular cAMP, respectively (Ek et al., 2000; Oka et al., 1994; Oka et al., 2000; 

Ushikubi et al., 2000). Changes in ionic conductance, due to cAMP, may be a possible 

mechanism for altering the activity of hypothalamic neurons. (Lopshire & Nicole, 1998; 

Evans et al., 1999; Griffin et al., 1990).

Physiological and morphological evidence suggests that in response to an im m une  

system challenge, activation of neurons in the VMPO is an important component in the 

generation of fever. Single-unit recordings from the VMPO have provided evidence that 

PGE2 dependent changes in firing rate can be correlated with thermosensitivity, in which 

warm sensitive neurons are inhibited and temperature insensitive neurons are excited. 

These contrasting responses of VMPO neurons may be explained by the presence of
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different PGE2 receptors, which may alter the activity of specific cellular conductances. 

The present study utilizes intracellular whole-cell patch recording techniques to examine 

changes in cellular conductances that may lead to PGE2 induced changes in the firing rate 

activity o f  the VMPO neurons.

2. Materials and Methods

Hypothalamic tissue slices containing the VMPO were prepared from male 

Sprague-Dawley rats weighing 100-150 grams. All animals were housed under standard 

conditions and given food and water ad lib. Prior to each recording session, an animal 

was anesthetized using isoflourene and sacrificed by quick decapitation, according to 

procedures approved by the Animal Care and Use Committee of the College of William 

and Mary. Following removal of the brain, a tissue block containing the hypothalamus 

was cut using a vibratome into 400 pm thick slices (Kelso et al., 1982). Two or three 

coronal slices of the anterior hypothalamus containing the VMPO were then placed in a 

recording chamber and allowed to equilibrate 1 - 2  hours before recordings were 

attempted.

Slices were continually perfused with pyrogen free artificial cerebral spinal fluid 

(aCSF), which consisted of (in mM), 124 NaCl, 26 NaHC0 3 , 10 glucose, 5 KC1, 2.4 

CaCh, 1.3 MgS0 4 , and 1.24 KH2PO4. This nutrient medium was oxygenated (95% O2- 

5% CO2) and warmed to a constant temperature of ~36°C by a thermoelectric assembly 

and allowed to flow into the chamber at 1-1.5 ml-min"1 (Kelso et al., 1983). A small 

thermocouple was positioned just below the tissue slices to continuously monitor 

temperature.
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Tight-seal whole-cell recordings (WCR) were made using glass microelectrodes 

with tip diameters of 2 pm, filled with a solution that consisted o f (in mM) 130 K- 

gluconate, 10 EGTA, 2 ATP, 1 MgCh, ICaCI, having a pH of 7.2 and an osmolarity of 

295 mOsmols. Acceptable recordings consisted of action potential amplitudes through 

zero and stable recordings for at least 20 minutes. As described previously (Griffin & 

Boulant, 1995), the liquid junction potential was experimentally determined to be 12.0 

mV, and was subtracted from all recorded potentials.

Recordings were made using an integrated patch-clamp amplifier (Axopatch 

200B amplifier, Axon Instruments). Specific protocols to measure input resistance and 

action potential activity were generated by a Pentium computer that was interfaced with 

the amplifier (using pClamp software and digital interface, Axon Instruments). 

Continuous recordings of membrane potential activity and temperature were also stored 

on digital tape for later analysis.

A stereomicroscope was used to place each recording electrode into the VMPO. 

Once the electrode was positioned against the surface of a neuron and a gigaohm seal 

achieved, the cell membrane was ruptured by suction, establishing an intracellular 

recording. When the activity of the neuron was stable for several minutes, temperature in 

the recording chamber was varied 2-3 °C above and below 36°C. Neuronal 

thermosensitivity (impulses-s' 1 ̂ C'1) was characterized by plotting firing rate as a function 

of temperature to determine the regression coefficient (m) of this plot. As in previous 

studies (Kelso et al., 1982; Griffin et al., 2001), warm sensitivity was defined as a 

regression coefficient of at least 0.8 impulses-s'^C'1. All other neurons in this study were 

defined as temperature insensitive.
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After the thermosensitivity of a neuron had been characterized, each neuron was 

tested for its response to PGE2 (200nM or lpM). At a stable temperature (~36°C), the 

perfusion medium was switched to one containing PGE2 . The duration of exposure to 

PGE2 ranged from 5-15 minutes with treatment being stopped prior to 1 0  minutes only if 

a notable response had occurred. Exposure to PGE2 was followed by a perfusion with the 

pyrogen free aCSF for a control period for at least 10 minutes. A standard input 

resistance test (Griffin & Boulant, 1995) and a small depolarizing current (50pA, 500 

mSec) were administered every 5 minutes throughout the recording session.

To determine if PGE2 had a significant effect on firing rate activity, one-minute 

samples of stable activity were digitized (60 Hz) for comparison (pClamp Software, 

Axon Instruments). These samples were collected during baseline conditions (just prior to 

perfusion with PGE2) at the end of perfusion with PGE2, and at the end of a 1 0 -minute 

control period (or when firing rate returned to baseline levels). For each sample, a mean 

and standard error were calculated (Sigmaplot Inc. Software). To characterize a 

significant response to perfusion with PGE2, firing rate had to change at least 15 % from 

baseline levels. In addition, the response had to be significant (p<0.05), when compared 

to baseline levels using a standard T test.

Input resistance was determined by the slope of a current-voltage plot obtained 

from a standard test in which ten hyperpolarizing current injections (ranging from - 1 0  to 

-100 pA) were administered Current pulses of 210 mSec durations were used to insure 

that the membrane capacitance was fully charged, and only the linear portion of the 

potentials were plotted. In response to a depolarizing current (50 pA, 500 mSec), a 

change in action potential frequency was determined by the difference in the number of
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potential before and during the depolarizing current. In addition the delay to onset of 

action potential generation was measured from the start of the depolarizing current to the 

peak of the first action potential.

A baseline membrane potential was also determined by measuring the midpoint 

between start of the prepotential and threshold. When comparing changes in these 

characteristics, significant differences were determined using a paired t-test (p > 0.05), 

and are reported as a mean ± standard error.

Synaptic input was also measured and classified as excitatory post-synaptic 

potentials (EPSPs) and inhibitory post-synaptic potentials (IPSPs). Individual potentials 

were identified as rapid changes in membrane potential of at least lmV greater then 

background noise (Burgoon & Boulant, 1998). Frequencies of EPSPs and IPSPS were 

determined at baseline, during perfusion with PGE2 exposure, and during control. For 

each sample, the number of postsynaptic potentials were counted over for 2 0  seconds. 

From these data, frequency averages and standard errors were obtained and reported. 

Thermosensitivities of synaptic input was determined by frequencies collected at three 

different temperatures (33°C, 36°C, and 38°C). From these data, frequency averages and 

standard errors were obtained and plotted as a function of temperature.

Once a recording had been complete, a dissection microscope was used to 

visually confirm the location of the electrode. Tissue slices were then removed from the 

recording chamber and fixed in a 10% formalin solution for at least 2 hours (Viana et al., 

1990). This was followed by at least 2 hours in a 30% sucrose solution and sectioned 

again to a thickness of 50 pm. Sections were then stained with giemsa to identify specific
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hypothalamic areas (Griffin et al, 2001). The location of each recording electrode within 

the VMPO was then reconfirmed.

3. Results

Thermosensitivity:

The thermosensitivities of 26 VMPO neurons were classified and cellular 

properties characterized in response to PGE2. Intracellularly recorded neurons in the 

VMPO had similar characteristics to neurons recorded from this region using 

extracellular single-unit techniques. The majority of these neurons were classified as 

temperature insensitive (n=19; Table III.l.). Based on their responses to PGE2 and 

previous extracellular recordings, these neurons were divided into two classes: low-slope 

temperature insensitive neurons (n=14), which had thermosensitivities of 0.49 

impulses-s^^C' 1 or less; and high-slope temperature insensitive neurons (n=5), which had 

thermosensitivity in a range of 0.5-0.79. All other neurons were classified as warm 

sensitive (n=7). There was no significant difference in the membrane potentials or 

baseline firing rates between these classes of neurons. There was also no specific pattern 

to the distribution of these neurons throughout the VMPO (Figure III.l).
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Table III.l Thermosensitivity, baseline firing rate activity, and membrane potential 
of VMPO neurons.

Class N Thermo sensitivity 
(impulses* s-1-°C-1)

Firing Rate 
(impulses* s'1)

Membrane 
Potential (mV)

Low-Slope
Temperature
Insensitive

14(54%) 0.21 ± 0.05 6.65 ±1.60 -42.39 ± 2.64

High-Slope
Temperature
Insensitive

5 (19%) 0.62 ± 0 . 0 2 8.94 ±1.52 -40.44 ±1.13

Warm 7 (27%) 1 . 1 0  ± 0 . 1 2 12.54 ±2.48 -40.40 ± 3.69



Figure 111.1. Neuronal location of VMPO neurons shown in a coronal section.

Key: •  are low-slope temperature insensitive neurons; ■ are high-slope temperature 
insensitive neurons; A are warm sensitive neurons. Abbreviations: 3V, third ventrical; 
ac, anterior commisure; AVPe anterior periventricular nucleus; LPO, lateral preoptic 
area; MnPO, medial preoptic area; ox, optic chiasm; Pe, periventriclar hypothalamic 
nucleus; VMPO, ventromedial preoptic nucleus.
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Intracellular properties:

Regardless of thermosensitivity, all neurons tested showed a significant decrease 

in input resistance from 286.8 ± 12.3 mOhms during baseline conditions to 258.0 ±11.6 

mOhms during perfusion to PGE2 (200 nM or 1 pM). In response to a depolarizing 

current (5 Op A, 500 mSec), low-slope temperature insensitive neurons showed a 

significant increase in firing rate frequency during perfusion with PGE2 (200 nM or 1 

pM) from 22.1 ± 2.0 imp s' 1 during baseline to 26.0 ±1.6 imp s’ 1 in response to PGE2 . In 

contrast, warm sensitive neurons showed a decrease in firing rate frequency (25.6 ±4.3 

imp s' 1 to 13.6 ± 5.2 imps'1). High-slope temperature insensitive neurons showed little or 

no change firing rate frequency due to depolarizing current during perfusion with PGE2 .

In addition to changes in firing rate frequency, low-slope temperature insensitive 

neurons showed significant decrease in delay onset of action potential generation during a 

depolarizing current (50 pA, 500 mSec) in response to PGE2 (200nM or 1 pM; Table

111.2.). Figure III.2. shows the effect of depolarizing current and PGE2 on the activity of a 

low-slope temperature insensitive neuron. The baseline to delay to the onset of action 

potential generation is 8.0 mSec (Figure III.2.A). In response to PGE2, the delay to the 

onset of action potential generation decreased to 3.0 mSec (Figure III.2.B.) In addition 

the firing rate frequency increased from 32.0 impulses-s' 1 to 34.0 impulsess' 1 during 

perfusion with PGE2 .

In contrast, warm sensitive neurons did not show a change in delay to the onset 

of action potential generation in response to a depolarizing current, during perfusion with 

PGE2 (Table III.2). Figure III.3 shows the effect of depolarizing current and PGE2 on the 

activity of a warm sensitive neuron. The delay to the onset of action potential generation
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was 5.0 mSec during both baseline conditions and perfusion with PGE2 . However firing 

rate frequency decreased from 36 impulses-s' 1 to 2.0 impulses-s'1. High-slope temperature 

insensitive neurons did not show a change in onset of action potential generation or firing 

rate frequency, in response to depolarizing current and perfusion with PGE2 .

Table III.2. Delay to the onset of action potential generation due to depolarizing 
current (50pA, 500 mSec) during baseline, PGE2 (200 nM or 1 uM), and control 
periods.

Class N Baseline PGE2 (200 nM or 1 pM)

Low-Slope
Insensitive 13 9.31 ± 1.41 mSec 6.69 ± 0.67 mSec*
High-Slope
Insensitive 5 10.82 + 1.56 mSec 10.42 + 1.62 mSec

Warm Sensitive 6  6.83 +1.47 mSec 8.50 + 1.71 mSec

* Significantly different from Baseline.
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Figure I1I.2. The effect of depolarizing current and PGE2 on the activity of a VMPO 
low-slope temperature insensitive neuron.

A shows the action potential activity during baseline conditions, in response to a 
depolarizing current injection (50 pA, 500 msec). The onset of the current is indicated on 
the line at the bottom of the figure and only the initial 62.0 mSec are shown. The delay to 
the onset of action potential generation was 8.0 mSec and the change in firing rate 
frequency was 32.0 impulses-s'1. In B, the action potential activity in response to a 
depolarizing current injection is shown during perfusion with PGE2 (1 pM). The delay to 
onset of action potential generation was 3.0 mSec and the change in firing rate frequency 
was 34.0 impulses-s'1.
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Figure ni.3. The effect of depolarizing current and PGE2 on the activity of a VMPO 
warm sensitive neuron.

A shows the action potential activity during baseline conditions, in response to a 
depolarizing current injection (50 pA, 500 msec). The onset of the current is indicated on 
the line at the bottom of the figure and only the initial 62.0 mSec are shown. The delay to 
the onset of action potential generation was 5.0 mSec and the change in firing rate 
frequency was 36.0 impulses-s'1. In B, the action potential activity in response to a 
depolarizing current injection is shown during perfusion with PGE2 (1 pM). The delay to 
onset of action potential generation was 5.0 mSec and the change in firing rate frequency 
was 2.0 impulses-s"1.



53

B.

20  m V  

10 m Sec

50 p A



54

Firing Rate Activity Responses to PGE2 :

Regardless of thermosensitivity, no significant changes in firing rate were 

recorded during perfusion with 200 nM PGE2 . However in response to 1 pM PGE2, all 

neurons classified as low-slope temperature insensitive showed a significant increase in 

firing rate, while warm sensitive neurons showed a decrease in firing rate (Table III.3.). 

There were no high-slope temperature insensitive neurons recorded from during the 

perfusion with 1 pM PGE2 .

Table III.3. Firing Rate responses to 1 pM PGE2

Class N Baseline PGE2 (1 uM)

Low-Slope
Insensitive 6 5.63 ± 2.93 imp -s'1 7.01 ± 3.26 imp -s’1*

Warm Sensitive 2 14.01 ± 8.18 imp •s'~1 10.01 ± 8.83 imp -s'1_________

♦Significantly different from Baseline.

Figure III.4. shows the thermosensitivity and the effect of 1 pM PGE2 on the 

firing rate activity of a VMPO low-slope temperature insensitive neuron, that had a low 

baseline firing rate of 0.15 ± 0.03 impulses-s'1, which increased in response to PGE2 to 

2.76 ±0.10 impulses-s'1. In Figure III.5 the firing rate activity of a low-slope temperature 

insensitive neuron that had a high baseline firing rate of 3.80 ± 0.12 impulses-s'1 

is shown. In response to PGE2 , firing rate significantly increased to 8.13 ± 0.03 

impulses-s1.
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Figure III.4. The effect of temperature and PGE2 on the firing rate activity of a 
VMPO low-slope temperature insensitive neuron

A shows the firing rate plotted as a function of temperature. In B, one minute samples of 
firing rate activity are plotted as individual bar graphs, just before perfusion with PGE2 

(Baseline; 0.15 ± 0.03 impulses-s'1) and during the peak of the response (PGE2 ; 2.76 ± 
0.10 impulses-s'1). For each plot in B, the error bars may be obscured.
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III.5. The effect of temperature and PGE2 on the firing rate activity of a VMPO 
low-slope temperature insensitive neuron

A shows the firing rate plotted as a function of temperature. In B, one minute 
samples of firing rate activity are plotted as individual bar graphs, just before perfusion 
with PGE2 (Baseline; 3.80 ± 0.12 impulses-s-1) and during the peak of the response 
(PGE2 ; 8.13 ± 0.03 impulses). For each plot in B, the error bars may be obscured.
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Figure 111.6. shows the thermosensitivity and the effect of 1 pM PGE2 on the 

firing rate activity of a VMPO warm sensitive neuron with a low baseline firing rate of 

5.83 ± 0.12 impulses-s'1, which significantly decreased in response to PGE2 to 0.98 ± 

0.11 impulses-s"1. In Figure III.7., a warm sensitive neuron that had a  high baseline firing 

rate of 23.85 ±0.10 impulses-s"1 is shown. In response to PGE2 firing rate significantly 

decreased to 17.64 ±0.12 impulses-s"1.

The increase in firing rate activity that was recorded from low-slope temperature 

insensitive neurons, in response to PGE2 (1 pM), may have been due to a depolarization 

of the membrane potential. Membrane potential of warm sensitive neurons remained 

steady throughout treatment. Figure III.8. shows the effect of PGE2 on the interspike 

interval activity of low-slope temperature insensitive neuron in which the interspike 

interval decreased during PGE2 . During the interspike interval the membrane potential 

was depolarized, which led to a shortened interval and an increase in firing rate.

In response to PGE2 (1 pM), a decrease in firing rate recorded from warm 

sensitive neurons, this may not have been due to a change in membrane potential, but a 

change in the properties of an active conductance such as the potassium A current. Figure 

III.9. shows the effect of PGE2 on the interspike interval activity of a warm sensitive 

neuron. Although changes in membrane potential were consistent during baseline 

conditions and PGE2 , the slope of the prepotential decreased in response to PGE2 .
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Figure DI.6. The effect of temperature and PGE2 on the firing rate activity of a 
VMPO warm sensitive neuron

A shows the firing rate plotted as a function of temperature. In B, one minute samples of 
firing rate activity are plotted as individual bar graphs, just before perfusion with PGE2 

(Baseline; 5.83 + 0.12 impulses-s'1) and during the peak of the response (PGE2 ; 0.98 + 
0.11 impulses-s'1). For each plot in B, the error bars may be obscured
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Figure UL7. The effect of temperature and PGE2 on the firing rate activity of a 
VMPO warm sensitive neuron

A shows the firing rate plotted as a function of temperature. In B, one minute samples of 
firing rate activity are plotted as individual bar graphs, just before perfusion with PGE2 

(Baseline;; 23.85 ± 0.10 impulses-s'1) and during the peak of the response (PGE2 ; 17.64 ± 
0.12 impulses-s'1). For each plot in B, the error bars may be obscured.
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20 mV

50 mSec

Figure III.8. The effect of PGE2 on the interspike interval activity of a VMPO low- 
slope temperature insensitive neuron

For baseline conditions and perfusion with PGE2 (action potentials are marked with 
asterisks), superimposed records show individual action potentials followed by 
subsequent changes in membrane potential and action potentials.
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Figure III.9. The effect of PGE2 on the interspike interval activity of a VMPO warm 
sensitive neuron

For baseline conditions and perfusion with PGE2 (action potentials are marked with 
asterisks), superimposed records show individual action potentials followed by 
subsequent changes in membrane potential and action potentials.
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As seen previously for all regions of the anterior hypothalamus (Griffin, et al., 

2001) local synaptic input did not show a change in frequency in response to temperature. 

Regardless of thermosensitivity, synaptic input did not change significantly in response to 

PGE2 (200 nM or 1 uM; Table III.4.).

Table III.4. Thermosensitivity and frequency of excitatory postsynaptic potentials 
(EPSPs) and inhibitory postsynaptic potentials (IPSPs) recorded from VMPO 
neurons in response to PGE2 (200 nM or 1 uM).

Frequency
(postsynaptic potentials's-1)

Class N Thermosensitivity 
(imp's-1 *°C-1)

Baseline p g e 2 Control

EPSPs:
Low-Slope
Temperature
Insensitive

12 0.19 ±0.06 1.81 ±0.34 1.93 ±  0.32 1.92 ± 0.24

High-Slope
Temperature
Insensitive

4 0.07 ± 0.07 2.24 ±0.53 2.36 ±  0.65 2.64 ±0.51

Warm Sensitive 5 0.10 ±0.04 1.85 ±0.68 2.23 ±  1.50 1.99 ±0.75

IPSPs:
Low-Slope
Temperature
Insensitive

12 0.26 ± 0.09 5.12 ±0.92 6.07 ±  0.89 5.65 ±0.81

High-Slope
Temperature
Insensitive

4 0.41 ±0.16 7.67 ±2.32 8.21 ±  1.42 7.89 ±1.67

Warm Sensitive 5 0.15 ±0.06 4.82 ±2.17 4.50 ±  2.22 5.45 ±1.77
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4. Discussion

Morphological and physiological evidence has shown the VMPO to be an 

important area in the generation of a fever (Elmquist et al., 1996; Scammell et al., 1996). 

As a model for temperature regulation suggests, the integration o f  synaptic input from 

warm sensitive neurons and temperature insensitive neurons in the anterior hypothalamus 

creates a set-point for temperature control (Hammel, 1996). The generation of fever is a 

result of an upregulation of this set-point. Previously, extracellular single-unit recordings 

from the VMPO showed a strong correlation between neuronal thermosensitivity and 

effect of PGE2 , an endogenous pyrogen, which inhibited warm sensitive neurons and 

excited temperature insensitive neurons (Chapter II.). This new evidence supports the 

hypothesis of an up-regulation of thermoregulatory set-point into hyperthermic range.

Intracellularly recorded neurons in the VMPO had similar proportions of 

temperature insensitive neurons and warm sensitive neurons as extracellular single-unit 

recordings in the VMPO and no unique pattern of location within the VMPO. The present 

study also found similar correlation of thermosensitivity and changes in firing rate 

activity in response to PGE2 (1 pM; Chapter II.). Since it is likely that PGE2 stimulates 

cellular activity through a second messenger signaling pathway, it is conceivable that 

with the intracellular whole-cell patch recording technique, the required concentrations 

needed to induce firing rate changes were not obtained when treated with a lower dose of 

PGE2 (200 nM).

In response to PGE2 (1 pM) low-slope temperature insensitive VMPO neurons 

responded to PGE2 with an increase in firing rate activity, while warm sensitive neurons 

responded with a decrease in firing rate activity (Table III.3.). This change in activity was
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not related to changes in local synaptic input, as the frequencies IPSPs or EPSPs recorded 

from both warm sensitive and temperature insensitive did not change significantly in 

response to PGE2 (Table III.4.).

Stimulation protocols were used to determine input resistance and response to 

depolarizing current. All neurons that were tested, regardless o f thermosensitivity, 

responded to PGE2 with a significant decrease in input resistance. This decrease in 

resistance would indicate an increase in membrane capacitance leading to the conclusion 

that ion channels were opening. In response to a small depolarizing current, low-slope 

temperature insensitive neurons increased their firing rate frequency, while warm 

sensitive neurons decreased their firing rate frequency. This would suggest that different 

channels were being affected by PGE2 . Low-slope temperature neurons were also 

observed to show a decrease in the delay to the onset of the generation of action 

potentials in response to PGE2 (Figure III.3.). In contrast, warm sensitive neurons showed 

little if any change in this delay. Several studies have shown that this delay to is due to 

the presence of a Ca** dependant K+ conductance (Fan et al., 2000; Tanaka, et al., 1998; 

Zhang et al., 1999). Thus, we might suggest that PGE2 is altering the activity of this 

conductance in VMPO temperature low-slope insensitive neurons.

In response to PGE2 (1 pM) distinct changes in the intracellular activity to low- 

slope temperature insensitive neurons were recorded. Low-slope temperature insensitive 

neurons showed an increase in firing rate activity that is likely due to a depolarization of 

membrane potential (Figure III.8). In contrast, warm sensitive neurons do not show a 

change in membrane potential in response to PGE2 (Figure III.9). The decrease in firing 

rate activity is most likely due to a decrease in the rate of depolarization of the



65

prepotential that precedes each action potential. Recent work from Griffin et al. (1996) 

has provided evidence that this prepotential is mediated by a slow inactivation potassium 

A current. A recent study demonstrated that PGE2 attenuated a whole cell potassium 

current in sensory neurons (Evans et al., 1999). Suppression of this potassium current is 

dependent on activation of the cAMP-PKA transduction cascade. This suggests an 

inhibitory mechanism that can be activated by PGE2, which may result in a decrease in 

neuronal firing rate activity.
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CHAPTER IV

CONCLUSIONS

The studies in this thesis, examined the effects of PGE2 on the activity of neurons 

in the VMPO by using both in vitro extracellular single-unit and whole-cell patch clamp 

recording techniques in rat hypothalamic tissue slices. More specifically, these studies 

uncovered the strong correlation between neuronal thermosensitivity in the VMPO and 

responses to PGE2 , and examined changes in cellular conductances that might lead to the 

different responses in firing rate activity.

Using extracellular single-unit recordings, this study demonstrated that low-slope 

temperature insensitive neurons in the VMPO increased their firing rate activity in 

response to PGE2 (200 nM) and that warm sensitive neurons decreased their firing rate 

activity. Likewise, intracellular whole-cell patch recordings in the VMPO showed the 

same correlation of thermosensitivity and response to PGE2 (1 pM). These responses fit 

well with the current model for the control of thermoregulation with an inhibition of 

warm sensitive neurons or excitation of temperature insensitive neurons resulting in an 

upregulation of the normal set-point into hyperthermic range.

My data indicates that the observed changes in firing rate activity in the presence 

of PGE2 were not due to changes in local synaptic input. Synaptic input was primarily 

from temperature insensitive neurons and showed little change in response to PGE2 . In
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addition, all neurons in the VMPO, regardless of thermosensitivity, significantly 

decreased input resistance with exposure to PGE2 (200 nM or 1 jaM ). These findings 

support the hypothesis that changes in firing rate activity in responses to PGE2 are due to 

changes in cellular conductances.

In response to a depolarizing current, low-slope temperature insensitive neurons 

showed an increase in firing rate frequency and a decrease in the delay to the onset action 

potential generation (Figure III.4). In addition, these neurons showed depolarization of 

the membrane in response to PGE2 . These responses may be due to affects on a Ca++ 

dependant K+ channel resulting in an increase firing rate activity.

Alternatively, warm sensitive neurons decreased their firing rate frequencies in 

response to PGE2 with little change in the delay to the onset of action potential generation 

of action potentials (Figure III.3., and III.8.). These neurons also showed no change in 

membrane potential during PGE2 exposure. However, the rate o f  rising slope of the 

prepotential appears to decrease. This prepotential has been linked to the potassium A 

current and is considered to play an important role in determining warm sensitivity 

(Griffin et al., 1996). This might indicate that the observed decrease in firing rate in 

response to PGE2 of warm sensitive neurons may not have been due to a change in 

membrane potential, but a change in the properties of an active conductance, such as the 

potassium A current.

Warm sensitive neurons accounted for approximately ~ 20 % of the sampled 

population in the VMPO. This is lower than the 35% seen throughout the anterior 

hypothalamus. However, this distinct population difference might be correlated to the 

two different local pathways known to be involved in the production of fever. These
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pathways are based on two distinct groups of LPS induced Fos activated neurons in the 

VMPO that have been characterized, which form local efferent projections to the APFx 

and PVN which may underlie the adjustment of the thermostatic set-point that results in 

fever.

A small, restricted efferent projection exists directly from the VMPO to the PVN, 

which might consist of the warm sensitive neurons in the VMPO. Since all of the warm 

sensitive neurons in the VMPO responded to PGE2 with a significant decrease in firing 

rate, it might be suggested that these neurons provide excitatory input to the PVN through 

this direct efferent projection. In response to increased concentrations of PGE2 in the 

VMPO, the level of excitation would limit the activation of heat loss thermoregulatory 

responses (i.e., vasodilatation) and resulting in a fever.

In contrast, the major pathway from the VMPO is an inhibitory projection to the 

APFx, which contains a high proportion of warm sensitive neurons (Elmquist & Saper, 

1996; Dean & Boulant, 1989). From the APFx, another inhibitory projection to the 

autonomic parvicellular division of the PVN has been characterized (Roland & 

Sawchencko, 1993). Therefore, activation of this efferent pathway may result in the 

inhibition of warm sensitive neurons in the APFx, decreasing the level of inhibition to the 

PVN. Consistent with this hypothesis and the current model of set-point 

thermoregulation, this would suggest that this efferent pathway is made up of temperature 

insensitive neurons from the VMPO, that respond to PGE2 with an increase in firing rate 

activity (Figure IV. 1.).
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Figure IV.l. Proposal for how responses of the VMPO neurons to PGE2 and the 
current model for the generation of fever

Warm sensitive neurons in the VMPO decrease firing rate activity in response to PGE2 

(dashed lines), which limits excitatory input to the PVH resulting in a decreased 
activation of heat loss responses. Meanwhile low-slope temperature insensitive neurons 
in the VMPO increase their firing rate activity in response to PGE2 (dashed lines), 
possibly inhibiting warm sensitive neurons in the APFx. This inhibition of warm 
sensitive neurons might results in a decreased level of inhibition o f the PVH that might 
then cause heat retention. Abbreviations: APFx, anterior perifomical area; PVH, 
paraventricular nucleus; GABA, gamma amino butyric acid; VMPO, ventral medial 
preoptic area; LPS lippopolysaccharide; IL-l, interleukin-ip, PGE2 , prostaglandin E2 ; 
TNF, tumor necrosis factor.
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Future directions for the study of the mechanism of fever might include additional 

whole-cell recordings to determine the specific conductances effected by PGE2 in warm 

sensitive neurons and temperature insensitive neurons. Specific conductances to examine 

would be the potassium A current in warm sensitive neurons and Ca++ dependant K+ 

channels in temperature insensitive neurons. In addition, the examination of the dendritic 

projections of neurons from the VMPO would be functionally important. Previous 

research has shown the pathway to the APFx to be inhibitory and the smaller pathway 

directly to the PVN that is possibly excitatory. If our hypothesis is correct then 

temperature insensitive neurons in the VMPO would be GABAergic and warm sensitive 

neurons might be glutaminergic. This last hypothesis is presently being examined in the 

Griffin Lab.



74

REFERENCES CITED

Blatteis, C.M., Bealer, S.L. Hunter, W.S., Llanos-q, J., Ahokas, R.A., and Mashbum Jr., 
T.A. (1983). Suppression of fever after lesions of the anteroventral third ventricle 
in guinea pigs. Brain Research Bulletin, 11:519-526.

Blatteis, C.M., Sehic, E., and Li, S. (2000). Pyrogen sensing and signaling: Old views and 
new concepts. Clinical Infectious Disease, 31: 168-177.

Boulant, J.A. (1980). Hypothalamic control of thermoregulation: Neurophysio logical
basis. In Morgane, P. J., and Panksepp, J. (eds). Hanbook o f the hypothalamus, vol 
3, part A. New York: Marcel Dekker.

Boulant, J.A. (1991). Thermoregulation. In Mackawiak, P. (ed.). Fever: Basic 
Mechanisms and Management. New York: Raven Press.

Boulant, J.A. (1998). Hypothalamic neurons: Mechanism of sensitivity to temperature. 
Annals New York Academy o f Science, 856:108-115.

Boulant, J.A., and Bignall, K.E. (1973). Determinants of hypothalamic neuronal
thermosensitivity in ground squirrels and rats. American Journal o f Physiology, 
225(2): 306-310.

Boulant, J.A., Curras, M.C., and Dean, J.B. (1989). Neurophysio logical aspects of
thermoregulation (cpt 4). Wang, L.C.H. (ed.) Advances in Comparative and 
Environmental Phsyiology, vol 4. Berlin: Springer-Verlag.

Boulant, J.A., and Dean, J.B. (1986). Temperature receptors in the central nervous 
system Annual Review o f Physiology, 48:639-654.

Boulant, J.A., and Hardy, J.D. (1974). The effect of spinal and skin temperatures on the 
firing rate and thermosensitivity of preoptic neurones. Journal o f Physiology, 
240:639-660.

Carpenter, D.O. (1981). Ionic and metabolic bases of neuronal thermo-sensitivity. 
Federation Proceedings, 40:2808-2813.

Coleman, R.A, Kennedy, I., Humphrey, P.P.A., Bunce, K., and Lumley, P. (1990).
Prostanoids and their receptors. Emmet, J.C. (ed) Comprehensive Medicinal 
Chemistry, pp. 643-714, Oxford, UK: Pergamon.



75

Dean, J.B., and Boulant, J.A. (1989). In vitro localization of thermosensitive neurons in 
the rat diencephalons. American Journal o f Physiology, 26: R l - 8 .

Ek, M., Arias, C., Sawchenko, P., Ericsson-Dahlstrand, A. (2000). Distribution of the EP3 

prostaglandin E2 receptor subtypes in the rat brain: Relationship to sites of 
Interleukin-1 induced cellular responsiveness. The Journal o f Comparative 
Neurology, 428:5-20.

Elmquist, J.K., and Saper, T.E. (1996). Activation of neurons projecting to the
paraventricular hypothalamic nucleus by intravenous lipopolysaccharide. 
The Journal o f Comparative Neurology, 374:315-31.

Elmquist, J.K, Scammell, T.E., and Saper, C.B. (1997). Mechanisms of CNS response to 
systemic immune challenge; the febrile response. Trends in Neuroscience, 
20:565-570.

Elmquist, J.K., Scammell, T.E., Jacobson, C.D., and Saper, C.B. (1996). Distribution of 
Fos-like immunoreactivity in the rat brain following intravenous 
lippopolysaccharide administration. The Journal o f Comparative Neurology, 
371:1-19.

Evans, A.R., Vasko, M.R., andNicol, G.D. (1999). The cAMP transduction cascade
mediates the PGE2 induced inhibition of potassium currents in rat sensory 
neurones. The Journal o f Physiology, 516(1): 163-168.

Fan, Y.-P., Horn, E.M, and Waldrop, T.G. (2000). Biophysical characterization of rat
caudal hypothalamic neurons; calcium channel contribution to excitability. The 
Journal o f Neurophysiology, 84:2896-2903.

Gorman, A.L.F., and Marmor, M.F. (1970). Temperature dependence of the
sodium-potassium permeability ratio of a molluscan neurone. Journal o f 
Physiology, 210:919-931.

Griffin, J.D., and Boulant, J.A. (1995). Temperature effects on membrane potential and
input resistance in rat hypothalamic neurons. Journal o f Physiology, 488(2), 407- 
418.

Griffin, J.D., Kapel, M.L., Chow, A.R., and Boulant, J.A. (1990). Hypothalamic regional 
differences in neuronal responses to temperature and cyclic AMP (abstract). 
Society o f Neuroscience Abstracts, 16: 574.

Griffin, J.D., Kapel, M.L., Chow, A.R., and Boulant, J.A. (1996). Cellular mechanisms
for neural thermosensitivity in the rat hypothalamus. Journal o f Physiology, 
492(1): 231-342.



76

Griffin, J.D., Saper, C.B., and Boulant, J.A. (2001). Synaptic and morphological
characteristics of temerature sensitive and insensitive rat hypothalamic neurons. 
Journal o f Physiology, 537:521-535.

Hammel, H.T. (1965). Neurons and temperature regulation. In Yamamoto, M.S., and 
Brobeck, J.R. (eds.) Physiological Controls and Regulations. Philadelphia, PA: 
Saunders Publishing.

Hori, T., Shibata, M., Nakashima, M., Yakashima M., Asami, A., Asami, T., and Koga,
H. (1988). Effects of interleukin-1 and arachiodonate on the preoptic and anterior 
hypothalamic neurons. Brain Research Bulletin, 20:72-89.

Horn, R., and Marty, A. (1988). Muscarinic activation of ionic currents measured by a 
new whole-cell recording method. Journal o f General Physiology, 92:145-159.

Jansky, L., Pierau, Fr.-K., and Schenda, J. (1992). The effect of PGE2 on activity and
thermosensitivity of hypothalamic neurones in rat brain slices. Physiology 
Research, 41:85-88.

Katsuura, G., Arimura, A., Koves, K., and Gottschall, P.E. (1990). Involvement of
organum vasculosum of lamina terminalis and preoptic area in interleukin 1(3- 
induced ACTH release. American Journal o f Physiology, 258:163-171.

Kelso, S.R., Nelson, D.O., Silva, N.L., and Boulant, J.A. (1983). A slice chamber for 
intracellular and extracellular recording during continuous perfusion. Brain 
Research Bulletin, 10:853-857.

Kelso, S.R., Perlmutter, M.N., and Boulant, J.A. (1982). Thermosensitive single-unit
activity in vitro hypothalmic neurons. American Journal o f Physiology, 242:R77- 
84.

Kobayashi, S., and Takahashi, T. (1993). Whole-cell properties of temperature insensitive 
neurons in rat hypothalamic slices. Proceedings o f the Royal Society, 251:89-94.

Lopshire, J.C., and Nicol, G.D. (1998). The cAMP transduction cascade mediates the
PGE2 enhancement of the capsaicin-elicited current in the rat sensory neurons: 
Whole cell and single channels studies. The Journal o f Neuroscience, 18(16): 
6081-6092

Matsuda, T., Hori, T., and Nakashima, T. (1992). Thermal and PGE2 sensitivity of the 
organum vasculosum lamina terminalis region and preoptic area in rat brain 
slices. Journal o f Physiology, 454:197-212.

Morris, C.E., and Horn, R. (1991). Failure to elicit neuronal macroscopic
mechanosensitive currents anticipated by single-channel studies. Science, 
251:1246-1249.



77

Morimoto, A., Murakami, N., and Watanabe, T. (1988). Effect of prostaglandin E2 on
thermoresponsive neurons in the preoptic and ventromedial hypothalamic regions 
of rats. Journal o f Physiology, 405:712-725.

Nakashima, T., Hori, T., Kuriyama, K., and Matsuda, T. (1988). Effects of interferon-a
on the activity of preoptic thermosensitive neurons in tissue slices. Brain 
Research, 454:361 -367.

Oka, T., Aou, S., and Hori, T. (1994). Intracerebroventricular injection of prostaglandin 
E2 induces thermal hyperalgesia in rats: the possible involvement of EP3 
receptors. Brain Research, 663:287-292.

Oka, T., Oka, K., Scammell, T.E., Lee, C., Kelly, J.F., Nantel, F., Elmquist, J.K., and
Saper, C.B. (2000). Relationship of E P ^  prostaglandin receptors with rat 
hypothalamic cell groups involved in lippolysaccharide fever response fever 
response. The Journal o f Comparative Neurology, 428:20-32.

Paxinos, G., and Watson, C. (1998). The Rat Brain: In stereotaxic coordinates (4th ed.). 
New York: Academic Press.

Roland, B.L., and Sawchenko, P.E. (1993). Local origins of some GABAergic
projections to the paraventricular supraoptic nuclei of the hypothalamus in the rat. 
The Journal o f Comparative Neurology, 332:123-143.

Saper, C.B., and Breder, C.D. (1994). The neurological basis of fever. New England 
Journal o f Medicine, 330:1880-1886.

Scammell, T.E., Elmquist, J.K., Griffin, J.D., and Saper, C.B. (1996). Ventromedial
preoptic prostaglandin E2 activates fever-producing autonomic pathways. The 
Journal o f Neuroscience, 16 (19): 6246-6254.

Scammell, T.E., Griffin, J.D., Elmquist, J.K., and Saper, C.B. (1998). Microinjection of 
a cyclooxygenase inhibitor into the anteroventral preoptic region attenuates LPS 
fever. American Journal o f Physiology, 274 (43): 783-789

Stitt, J.T. (1986). PGE as the neural mediator of febril response. Yale Journal o f 
Biological Medicine, 59:137-149.

Tanaka K., Shibuya, I., Kabashima, N., Ueta, Y., and Yamashita, H. (1998). Inhibition
of voltage-dependent calcium channels by prostaglandin E2 in rat melantrophs. 
Endocrinology, 139 (12): 4801-4810.

Ushikubi, F., Hirata, M., Narumiya, S. (1995). Molecular biology of prostanoid receptors; 
an overview. Journal o f Lipid Mediators Cell Signaling, 12:343-359.



78

Ushikubi, F., Sugimoto, Y., Ichikawa, A., Narumiya, S. (2000). Roles of prostanoid
receptors revealed from studies using mice lacking specific prostanoid receptors. 
Japanese Journal o f Pharmacology, 83:279-295.

Zhang, L., Karpinski, E., Benishin, C.G. (1999). Prostaglandin E2 modulates a non­
inactivation potassium current in rat neurohypophyseal nerve terminals. 

Neurochemistry Internation, 35: 345-355.



79

VITA 

Heather Jane Ranels

Bom in Richmond, Virginia, April 17, 1978. Graduated from Fredericksburg 

Christian High School, Salutatorian, May 1996. Attended The College of William and 

Mary in Virginia, from 1996 to 2000. Graduated with a B.S. in Biological Psychology, 

May 2000. In August, 2000, continued at the College of William and Mary as a graduate 

student in the Department of Biology. Defended thesis entitled: The Effects of 

Prostaglandin E2 on the Neurons of the Ventromedial Preoptic Area of the 

Hypothalamus: A Mechanism of Fever, April 2002. All requirements for the Master of 

Arts in Biology have been completed, May 2002. In August 2002, will attend the 

University of Alabama in Birmingham to pursue a Ph.D. in Neurobiology.


	The Effects of Prostaglandin E2 on the Neurons of the Ventromedial Preoptic Area of the Hypothalamus: A Mechanism of Fever
	Recommended Citation

	tmp.1539818640.pdf.29N5c

