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ABSTRACT

Theory and small-scale experiments predict that biodiversity losses can decrease the 
magnitude and stability of ecosystem services such as production and nutrient cycling. 
Most of this research, however, has been isolated from the immigration and emigration 
(dispersal) processes that create and maintain diversity in nature. Since common 
anthropogenic drivers of biodiversity change, such as habitat fragmentation, species 
introductions, and climate change, are mediated by these understudied processes, it is 
unclear how environmental degradation will affect ecosystem services. This dissertation 
examines how diversity interacts with spatial processes to affect the magnitude and 
stability of ecosystem functions, using seagrass communities as a model system, by: 1) 
determining the relationship between diversity of mobile, generalist grazers and 
resistance to colonization by similar consumers; 2) testing the interactive effects of 
mobile grazer diversity and dispersal on the magnitude and predictability of ecosystem 
properties in seagrass metacommunities, or networks of patches connected by dispersal;
3) examining possible mechanisms for dispersal modification of relationships between 
diversity and ecosystem properties in these experimental metacommunities; and 4) testing 
whether grazer diversity and dispersal increase resistance to and recovery from the 
addition of macroalgae, which can outcompete seagrass and cause hypoxic stress for 
invertebrates.

Diverse communities were more resistant to colonization, but the order of species 
arrivals affected competition outcomes. As predicted, grazer metacommunities 
assembled from diverse species pools were more diverse at all scales, had larger grazer 
populations, and usually kept their primary food resource, epiphytic algae, at lower 
abundances than metacommunities assembled from smaller species pools. Contrary to 
theoretical predictions, increasing the number of mobile grazer species in these 
metacommunities increased spatial and temporal variability of producers and grazers. 
Effects of diversity on stability also differed qualitatively between patch and 
metacommunity scales. Moreover, allowing grazers to move among and select patches 
reduced diversity effects on production and modified relationships between grazer 
diversity and stability. Finally, dispersal significantly increased resistance to and 
recovery from the addition of macroalgae. Counter to theory, diversity did not. None of 
the existing theories for dispersal modification of biodiversity-ecosystem function 
relationships or consumer-resource metacommunity dynamics completely explained the 
patterns observed in these experiments. Effects of diversity and dispersal on ecosystem 
functions were complex, but seemed to be influenced by habitat choice and 
synchronization of grazer and epiphyte dynamics among patches. Overall, these results 
emphasize the importance of incorporating both spatial processes and trophic interactions 
into the study of biodiversity-ecosystem function relationships. This information is 
critical for conserving diversity and managing ecosystem services in light of the ongoing 
and projected changes to regional species pools caused by anthropogenic disturbance.
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INTRODUCTION

Anthropogenic habitat fragmentation, species introductions, and climate change, the 

three main drivers of diversity change around the globe, affect diversity patterns at 

multiple spatial scales. In the last decade, scientists have demonstrated that biodiversity 

loss at fine spatial scales, namely experimental plots or microcosms, can negatively affect 

the magnitude and predictability of important ecosystem services, such as production and 

nutrient cycling. Most of this research, though, has been conducted in isolation from 

spatial processes, such as immigration, disturbance, and foraging, which create and 

maintain diversity. Since all three drivers of diversity-change create spatial mosaics, and 

are mediated by dispersal of organisms, we have very limited ability to predict how they 

will affect ecosystem function in natural communities. Likewise, we do not know if 

coarser-scale patterns of diversity, such as patch heterogeneity (beta diversity), species 

turnover along environmental gradients (Whittaker’s beta diversity)(Whittaker 1972), or 

the diversity of regional species pools (the set of species occurring in a region that is 

capable of reaching and surviving in a given location regional diversity), can also affect 

ecosystem function across landscapes. In order to mitigate biodiversity change, design 

reserves, and manage ecosystem functions that may be essential to societies, we need to 

understand how communities are responding to these relatively rapid changes in diversity 

at all spatial scales.

Regional species pools are dynamic in ecological time, primarily due to 

anthropogenic disturbances. Three of the major anthropogenic influences on
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ecosystems, habitat loss and fragmentation, climate change, and non-native species 

introductions, have the potential to affect regional species pools, or “the set of species 

occurring in a certain region that is capable of coexisting in the target community. A 

region is a reasonably large area of the Earth’s surface, with a more or less uniform 

physiography and climate, from which species are expected to reach the target 

community” (Zobel 1997). Each of these three disturbance sources can affect the size of 

the regional species pool through extinctions and/or introductions. Habitat loss and non­

native species introductions have been identified as the two biggest threats to global 

biodiversity (Wilcove et al. 1998), and (Sala et al. 2000) predict that land use and climate 

change will be the biggest drivers of diversity change in terrestrial systems. Habitat loss 

through conversion to human dominated landscapes can cause species loss from local 

communities and even catastrophic extinctions from regions (Brook et al. 2003). Climate 

change may facilitate non-native species invasions (Stachowicz et al. 2002). Introduced 

species can cause extinctions, they are themselves species additions, they can hybridize 

with native species to create entirely new species, and they may even facilitate further 

invasions (reviewed in Mooney and Cleland 2001).

Even when these anthropogenic forces do not cause extinctions, they can influence 

the abundance and distribution of species across a region, which can affect the dynamics 

of the pool of individuals dispersing throughout that region as well as the aggregate 

properties or ecosystem functions of the region. Habitat fragmentation can cause a 

decline in the abundance and distribution of species in a metacommunity (individuals in a 

regional collection of communities connected by dispersal over ecological time scales)1 

(Golden and Crist 1999, Gonzalez and Chaneton 2002, Zartman 2003), and has also been

1 Definition adapted from Hubbell 2001. The concept was originally outlined by (Wilson 1992).
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shown to decrease community biomass (a common proxy for aggregate ecosystem 

function) in the remaining patches (Gonzalez and Chaneton 2002). Species ranges are 

already shifting in response to climate change; they are not shifting uniformly (Parmesan 

and Yohe 2003), however, so regional species pools are dynamic as they have not been in 

studied ecological time. Introduced species can restrict ranges and abundances of 

natives, potentially diminishing and eliminating functional roles of native species in local 

communities (Mooney and Cleland 2001). How the balance of these processes affect 

patterns of diversity both within and between patches can depend on the mechanisms of 

extinction and invasion (Cassey et al. 2006, Byrnes et al. 2007).

Finally, and perhaps most importantly, regional species pools may be increasing, 

rather than decreasing. Recent work suggests that human breakdown of biogeo graphic 

barriers and increased long distance dispersal of both terrestrial and aquatic organisms are 

leading to a net increase in regional species richness despite the perceived threat of 

invasions to biodiversity (Rosenzweig 2001, Sax et al. 2002, Davis 2003, Sax and Gaines 

2003). This observed increase has been predicted by theory and models, some of which 

also predict a corresponding increase in richness in local communities (Brown 1995, 

Hraber and Milner 1997, Lockwood et al. 1997, Rosenzweig 2001). The burgeoning 

field of biodiversity and ecosystem function research, however, including investigations 

of the relationship between species richness and invasibility, continues to focus on the 

effects of biodiversity reductions at local scales. Although the demonstrated positive 

relationships between species richness and ecosystem function are generally curvilinear 

(reviewed in Kinzig et al. 2001, Loreau et al. 2002), it is not at all clear if, on average, 

adding and removing a species has the same effect (but different in sign) on ecosystem
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function. Indeed, some research indicates that additions and removals are unlikely to 

have countervailing effects. The few studies that have modeled species loss have found 

that removal of one species can cause cascading extinctions, and that re-introductions of 

removed species often fail, indicating that the removal and addition of a given species to 

regional pools may not have straightforward compensatory effects on community 

structure and stability (Borrvall et al. 2000, Lundberg et al. 2000). Furthermore, patterns 

of species loss and gain may increase trophic skew, as higher trophic levels tend to be 

lost first (Byrnes et al. 2007, Lotze et al. 2007).

The structure o f regional species pools should influence local community structure 

and function. Ecologists have long debated the relative roles of regional diversity and 

local processes in determining the diversity of local communities (Ricklefs 1987,

Ricklefs and Schluter 1993). While regional richness may not generally set the realized 

limit of species richness in local communities, it sets the upper limit by definition. There 

is also a fair amount of evidence suggesting that processes such as immigration that link 

regional species pools to local communities can play the most important role in 

determining local community structure. This evidence comes from both biogeographical 

data like local-regional richness curves and from local scale manipulative experiments. 

To begin with, null models oflocal abundance and richness based on random draws from 

a regional species pool are often close matches to real data (Gotelli and Graves 1996). 

This suggests that species abundance distributions are determined primarily by chance 

immigration rather than interactions between organisms. Hubbell (2001) recently 

advanced a neutral theory of biodiversity that predicts equilibrium species abundance 

distributions in both the metacommunity (regional pool of individuals) and local
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communities using only speciation rate and metacommunity size or local community size 

and immigration rate, respectively. His model fits data from a wide range of community 

types remarkably well, which also suggests that size and dynamics (speciation rate) of the 

regional pool are fundamental determinants of species abundance distributions. 

Furthermore, the main biogeographical evidence for a limit to local diversity due to 

species interactions, or “community saturation” has recently been cast into doubt. 

Ecologists had previously interpreted asymptotic local-regional richness curves as 

evidence of community saturation (Terborgh and Faaborg 1980). Recent corrections of 

methods used to create those curves and test for “saturation” (Caley and Schluter 1997, 

Srivastava 1999, Fox et al. 2000, Loreau 2000, Hillebrand and Blenckner 2002, 

Hillebrand 2005) have cast serious doubt on this evidence. Meta-analyses correcting for 

the non-independence of local and regional richness have found a significant relationship 

between the two variables (reviewed in Zobel 1997). In fact, regional richness can often 

explain a large proportion (>75%) of variance in local richness (Gaston 2000). It can 

partly explain differing rates of species loss and species retention in fragmented habitats 

(Telleria et al. 2003). Recent work also suggests that species- area relationships scale 

consistently from fine-scales to regional scales (Fridley et al. 2006). In sum, there is little 

biogeographical evidence for limits to local richness imposed by species interactions. 

Broad-scale patterns suggest that regional pool size is a fundamental determinant of local 

richness.

There is also a substantial amount of evidence from small-scale studies that 

dispersal limitation and immigration can structure communities (Cadotte 2006), including

2 Note that some o f these same studies, and others, have also shown that systems with strong interactions 
can produce linear or weakly curvilinear relationships (Fox et al. 2000; Loreau 2000a; Shurin & Allen 
2001). Consequently, lack of an asymptote does not prove the absence o f  community saturation either.
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grasslands (Tilman 1997, Symstad and Tilman 2001, Vandvik and Goldberg 2006), other 

plant communities (reviewed in Turnbull et al. 2000), wetlands (Freestone and Harrison 

2006), inquiline communities (Kneitel and Miller 2003), coral reef fish (Schmitt et al. 

1999), intertidal and subtidal invertebrates and algae (Hunt and Scheibling 1997, 

Connolly and Roughgarden 1998, Berlow 1999, Smith and Witman 1999), and forests 

(but see Webb and Peart 2001, Wootton 2001). Dispersal and corridors between patches 

have also increased species richness in multiple habitat fragmentation experiments 

(Debinski and Holt 2000). Oberdorff et al. (1998) used streams, which have distinctly 

limited colonist pools, to look at the relationship between local richness and regional 

richness, and found that similar habitats with richer colonist pools had proportionally 

richer local communities, in terms of species richness, total density, and total biomass. 

They suggest, therefore, that regional processes have a strong influence on local 

communities in these systems. Valone and Hoffman (2002) used temporal variation in 

the species richness of seed supply to determine the effect of regional species pool size 

on local communities, and also found that increasing regional pool size increased mean 

density and local richness. On an even larger scale, Mora et al. (2003) recently examined 

coral reef species distributions and found that dispersal from a major speciation center, 

the Indo-Pacific, seems to explain species richness patterns on both regional and local 

scales in the Pacific basin. Certainly, dispersal limitation may structure some 

communities more than others. The extent or distance of dispersal and disturbance 

frequency should mediate the relative influence of regional and local processes in 

structuring local communities (Palmer et al. 1996).
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We do not know what effects regional species pool dynamics or dispersal have on 

biodiversity-ecosystem function relationships. Biodiversity and ecosystem function 

research has been largely limited to local community scale experimental manipulations; 

regional processes such as immigration, disturbance, and habitat fragmentation have 

rarely been considered, and when considered, are usually strictly controlled. In addition 

to this exclusion of regional processes, as Gonzalez and Chaneton (2002) point out, most 

biodiversity experiments have used a static approach, and the “temporal aspect of 

community disassembly has been largely missing from biodiversity-function studies.” 

Limited empirical and modeling studies have demonstrated that community assembly and 

regional processes, such as dispersal and disturbance, can affect the relationship between 

biodiversity and ecosystem function at local scales (Gonzalez and Chaneton 2002,

Fukami and Morin 2003, Mouquet and Loreau 2003, Cardinale et al. 2004, Chase and 

Ryberg 2004, Flouseman and Gross 2006, Matthiessen and Hillebrand 2006). Other work 

has suggested that relationships between biodiversity and ecosystem function may 

depend on scale (Chase and Leibold 2002, Cardinale et al. 2004, Chase and Ryberg 2004) 

or environmental context (Cardinale et al. 2000, Cardinale and Palmer 2002). Recent 

reviews of the literature have explicitly called for an incorporation of regional processes 

into biodiversity and ecosystem function research, recognizing that the underlying 

processes which mediate local diversity may affect biodiversity-ecosystem function 

relationships (Srivastava 2002, Giller et al. 2004, Srivastava and Vellend 2005). 

Furthermore, between patch diversity (beta diversity) fostered by landscape heterogeneity 

may affect ecosystem function (Bengtsson et al. 2002). Beta-diversity can be affected by 

dispersal (Mouquet and Loreau 2003) and disturbance regimes, and is often profoundly
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influenced by anthropogenic modifications of the environment, such as agriculture 

(reviewed in Benton et al. 2003). Few ecologists have investigated the effects of 

regional species pool dynamics on beta diversity in models or real ecosystems, and little 

is known about beta diversity’s effects on ecosystem function.

Conservation decisions are, by necessity, being made in the absence o f information 

on how regional processes might affect ecosystem function. Conservation biologists 

know that dispersal can be important for maintaining populations in a fragmented 

landscape, by facilitating gene flow and rescuing local populations from extinction due to 

disturbance, stochastic population dynamics or competitive exclusion. Consequently, 

corridors or other strategies for improving connectivity among remaining patches of 

habitat, have become common elements of terrestrial conservation design (Debinski and 

Holt 2000). Likewise, in the marine realm, where many species have widely passively 

dispersing larval stages, connectivity between protected patches is a major focus of 

reserve design (Botsford et al. 2001, Lockwood et al. 2002, PISCO 2002, Gaines et al. 

2003, Lubchenco et al. 2003, Guichard et al. 2004). Indeed, connectivity between 

protected areas and unprotected and fishable areas is an oft-used justification for the 

institution of marine reserves: production from protected areas is supposed to spill over 

into the unprotected matrix (PISCO 2002, Balmford et al. 2004, Sanchirico et al. 2006). 

However, evidence supporting the use of corridors has been largely conceptual, and is 

often motivated by single-species conservation goals. Effects of connecting patches may 

not be limited to targeted populations, or a simple increase in species richness. Corridors 

can preserve important plant-animal interactions like seed dispersal and pollination 

(Tewksbury et al. 2002), but can also facilitate seed predation and shift the relative
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importance of these interactions for different species, potentially altering community 

composition (Orrock et al. 2003, Orrock and Damschen 2005). Dispersal can also have 

directly negative impacts on population viability by synchronizing dynamics among 

patches (Hastings 1993, Ranta et al. 1995, Ranta et al. 1997, 1998, Ruxton and Rohani 

1998, Blasius et al. 1999, Shimada and Ishihama 2000) or fixing harmful alleles under 

high frequencies of disturbance (Orrock 2005). Since connectivity between patches and 

landscapes may have direct effects on ecosystem function, independent of its effects on 

diversity, it is not clear that conservation strategies designed to maximize diversity will 

necessarily ensure maximal or stable ecosystem services. Understanding how processes 

such as dispersal and disturbance mediate or modify relationships between diversity and 

ecosystem function is essential for the conservation of both.

Consequently, for my PhD dissertation, I conducted an integrated study of 

relationships between regional biodiversity, community assembly and disassembly, and 

ecosystem function in marine ecosystems. In Chapter I, which was published in Oikos 

(France and Duffy 2006a), I investigated the relationship between biodiversity and 

invasibility in a partially open seagrass mesocosm system. This chapter demonstrates the 

importance of community assembly history to relationships between diversity and 

invisibility. Chapter II, which was published in Nature (France and Duffy 2006b), 

examines whether or not relationships between diversity and ecosystem function “scale 

up” to metacommunities, or networks of patches connected by dispersal. This chapter is 

the first experimental demonstration of the effects of biodiversity on ecosystem function 

at more than one scale, as well as one of the first tests of the effects of dynamic
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biodiversity (derived from regional species pool size and dispersal among local 

communities rather than static, imposed richness levels) on ecosystem function. In 

Chapter III, I consider possible mechanisms by which dispersal could have modified 

relationships between biodiversity and ecosystem function in the experiment discussed in 

Chapter II. Mechanisms examined include competition-colonization tradeoffs; 

metacommunity source-sink dynamics, or “mass effects”; effects on individual 

populations which might explain effects on aggregate properties; and synchronization. 

This chapter illustrates that dispersal can have subtle but important effects on the 

magnitude and predictability of ecosystem properties even when most previously 

proposed mechanisms for dispersal effects are not operating. Since Chapters II and III 

suggested, surprisingly, that both diversity and dispersal could de-stabilize ecosystem 

functions within metacommunities under normal conditions, I examined their effects on 

disturbed metacommunities in Chapter IV. These complex responses of 

metacommunities to species richness, dispersal, and spatially discrete disturbance, 

demonstrate the importance of incorporating both spatial processes and trophic 

interactions into the study of biodiversity-stability relationships. This information is 

critical for conserving diversity and managing ecosystem services in light of the likely 

changes to regional species pools caused by anthropogenic disturbance.
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CHAPTER 1:
CONSUMER DIVERSITY MEDIATES INVASION SUCCESS AT MULTIPLE

TROPHIC LEVELS

published as: France, K. E. and J. E. Duffy. 2006. Consumer diversity mediates invasion 
success at multiple trophic levels. Oikos. 113:515-529.

ABSTRACT

Theory and recent experiments, mostly focused on plants, indicate that biodiversity 
can reduce invasion success, but diversity effects on mobile animal invasion have 
received little attention. We tested effects of mobile crustacean grazer diversity (species 
richness) on the establishment of invaders at multiple trophic levels in flow-through 
seagrass mesocosms. On average, increasing diversity of resident grazers reduced 
population growth and biomass of experimentally introduced grazers. This increase in 
invasion resistance was concurrent with reductions in food and habitat availability and 
increases in resident density, paralleling previous results with plants. In many cases, 
mixtures of resident species resisted invasion better than did any single resident species, 
arguing that interactions among residents, rather than a sampling mechanism, explained 
diversity effects on invasion. Higher grazer diversity also generally reduced biomass of 
naturally recruiting invertebrates and algae and shifted epiphytic community dominance 
from algae to sessile invertebrates. Exploitation competition, then, appears to contribute 
to the diversity effect on invasion in both plant and animal systems. Our results further 
suggest that resident competitive advantage may also be at work in multi-trophic level 
systems. Thus, negative effects of local diversity on invasion appear general, and 
trophically mediated processes can also strongly influence invader success and identity in 
multi-trophic level systems.
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INTRODUCTION

Invasions are one of the primary threats to endangered species, community structure, 

and ecosystem functioning (Vitousek et al. 1996, Wilcove et al. 1998, Mack et al. 2000, 

Pimentel et al. 2000). Several community properties, including species richness and 

species composition, can influence a community’s resistance to invasion (Levine and 

D'Antonio 1999, Alpert et al. 2000, Miller et al. 2002, Brown and Fridley 2003). Elton 

(1958) originally proposed that communities with higher species richness are more stable 

and therefore less vulnerable to invasions. Recent theory has built on Elton’s arguments, 

suggesting that species-rich communities should be less invasible than depauperate 

communities because niche differences among resident species result in greater overall 

resource use, leaving fewer resources for invaders (MacArthur 1970, Tilman 2004, 

Naeem et al. 2000). The relationship between diversity and invasibility has, however, 

continued to resist generalization. For example, while most local-scale experiments have 

found that invasibility decreases with plot richness, the opposite relationship has been 

found in both models and larger-scale observational studies (Levine and D'Antonio 1999, 

Levine 2000, Hector et al. 2001, Fridley et al. 2004).

Despite strong interest in the relationship between biodiversity and invasibility, 

empirical research has been conducted in a limited number of systems, primarily 

terrestrial plant assemblages and aquatic microcosms. Although pioneering experiments 

on this problem were conducted in a marine fouling community (Stachowicz et al. 1999, 

Stachowicz et al. 2002), work in marine systems is otherwise extremely limited. This is
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despite widespread invasion pressure on marine ecosystems from ballast water exchange, 

ship hulls, and aquaculture (Ruiz et al. 2000, Naylor et al. 2001, Wonham et al. 2001). 

Furthermore, most studies have focused on plants or other sessile organisms at basal 

trophic levels (but see Miller et al. 2002, Shurin 2000). Effects of consumer diversity on 

ecosystem structure and function, however, may be different from those of plant diversity 

(Duffy 2002, Holt and Loreau 2002, Naeem 2002). For example, competitive exclusion 

maybe less frequent in mobile consumers than in sessile organisms (Peterson 1979), 

whereas interference competition may be more prevalent. Finally, like plants, consumers 

can affect habitat structure and resource availability for organisms at other trophic levels, 

which might mediate invasion dynamics at those levels via indirect effects. Yet few 

studies have examined effects of diversity at one trophic level on invasion success at 

other levels (McGrady-Steed et al. 1997, Duffy et al. 2003).

In this study, we examined how species richness and identity of native crustacean 

grazers affects establishment success of other native grazers and organisms at lower 

trophic levels in Zostera marina (eelgrass) mesocosms. Our experiment tested consumer 

effects on establishment by other native species both to explore processes of community 

assembly and as a model of diversity effects on invasion by non-natives. Several lines of 

evidence suggest that our approach using native “invaders” can also inform 

understanding of diversity effects on non-native invasion. First, the search for consistent 

ecological differences between “natives” and “non-natives” has been largely inconclusive 

(reviewed in Mack et al. 2000). In fact, regional-scale studies frequently find positive 

relationships between native and non-native richness (reviewed in Levine & D’Antonio 

1999; Sax and Gaines 2003). These patterns suggest that the processes governing
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community structure in native species assemblages are often similar, on average, to those 

governing the incorporation of introduced species into native assemblages. A second line 

of support for our approach is that experiments testing plant diversity effects on invasion 

have found comparable results when using native and non-native species as experimental 

invaders (Crawley et al. 1999, Hector et al. 2001, Troumbis et al. 2002). Indeed, a long­

term study of old-field succession concluded that “invasions by native and exotic species 

did not fundamentally differ” (Meiners et al. 2004). Consequently, “invasion dynamics” 

maybe thought of as a specific subset of community assembly processes, and study of 

native species community assembly should help inform studies of exotic species invasion 

dynamics.

We employed two novel design components to examine the effects of biodiversity on 

invasion success. First, by using all possible resident:invader pairs drawn from a pool of 

four species, we tested the potential role of differing assembly sequence (priority effects, 

or resident competitive advantage) in mediating invasion dynamics. Second, by 

measuring success of both experimentally stocked grazer invaders and “volunteer” 

invaders that naturally recruited into the flow-through mesocosms, we tested the effects 

of mobile consumer diversity on invasion and establishment of a wide range of sessile 

and mobile taxa at different trophic levels.
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MATERIALS AND METHODS

Study system and experimental design

Zostera marina (eelgrass) is the most widespread and abundant marine macrophyte

in the northern hemisphere, and it supports many commercially important species

(Hemminga and Duarte 2000). The dominant primary consumers in many eelgrass beds

are small crustacean mesograzers, which feed preferentially on epiphytic micro- and

macroalgae and can have important indirect, positive effects on eelgrass (Neckles et al.

1993, Duffy et al. 2001). Numerous sessile invertebrates also frequently grow on

eelgrass blades, and can have negative effects on the host macrophytes. Early settlement

stages of some of these sessile invertebrates are consumed by mesograzers (Duffy and

Harvilicz 2001, Duffy et al. 2003).

The experiment was conducted in outdoor, flow-through seagrass mesocosms on

the VIMS Ferry Pier, York River estuary, Gloucester Point, Virginia, USA. The

mesocosms were semi-transparent buckets filled with 13.5 L of water, fitted with 250-pm

mesh drain holes and covered with a layer of neutral-density plastic screen to

approximate natural light levels. The submerged mesocosm wall surface area available

• 2  •for colonization by invertebrates was approximately 0.2 m . Fifteen pre-weighed Z. 

marina shoots were planted in 8 cm of sand within the mesocosms. This eelgrass shoot
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density falls within the range observed locally (Orth and Moore 1986). Prior to planting, 

the shoots were spun 20 times in a salad spinner and then massed to determine an initial 

grass wet mass for each mesocosm.

We used four native grazers in the experiment: ampithoid (a mixture of Ampithoe 

longimana and Cymadusa compta) and Gammarus mucronatus amphipods, and 

Erichsonella attenuata and Idotea baltica isopods. The relative abundances of these four 

taxa fluctuate markedly in time and space, but usually comprise a large fraction of the 

mesograzer assemblage in York River seagrass beds (Duffy et al. 2001, Parker et al. 

2001), and therefore are likely to be the most important potential competitors influencing 

invasion of other grazer species. The same four grazer taxa were used as invaders in the 

experiment. All of these crustaceans have sexual reproduction, overlapping generations 

and direct development, and all feed on epiphytic algae and associated detritus (Duffy et 

al. 2003). At summer temperatures, generation times in our system can be as short as 

three weeks for amphipods (Fredette and Diaz 1986) and one month for isopods 

(Kouwenberg and Pinkster 1985, Jormalainen and Tuomi 1989). A. longimana and C. 

compta are in the same family, with similar life histories and feeding, and are difficult to 

distinguish when alive, so they were stocked as one taxonomic unit.

Our experimental design sought to test the influence of resident grazer presence, 

species identity, and species richness on establishment of invaders. To do so, we 

established four simultaneous experiments, with parallel designs, to test invasion success 

by each of the four grazer species into communities containing the remaining three 

species (Fig. 1). For each of the four invading grazer species, we established five 

treatments spanning a range in resident grazer richness, including no grazers (controls),
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each of the three remaining species alone (resident monocultures), and all three 

remaining species together (resident mixtures). Each of these five resident assemblage 

treatments was then experimentally invaded by the designated invader species. 

Consequently, there were a total of 20 treatments, each replicated five times (100 

mesocosms total). Treatments were randomly assigned to one of ten large tanks and one 

of 12 positions (mesocosm) within that large tank.

Mesocosms were stocked with the resident communities on 23 July 2002. With the 

exception of the grazer-free controls, 30 individual reproductively mature adult grazers 

were placed in each mesocosm (30 of a given species for monocultures, and 10 of each 

species for mixtures). Since roughly half of the grazers stocked were adult females 

carrying embryos, populations began to grow immediately and rapidly. We allowed 

grazer populations to grow for four weeks, by which time a previous experiment showed 

that grazers reached carrying capacity (Duffy and Harvilicz 2001). At that point we 

“invaded” each mesocosm with ten reproductively mature adults o f the designated 

invading species. After another month, all organisms retained by a 0.5-mm sieve were 

harvested. During this time, invader density increased by several- to 100-fold in controls, 

and some invasions failed completely (all invading individuals died, see Results). Nearly 

all of the planted eelgrass was consumed at the end of this 8-week period in a few 

mesocosms, so the experiment was terminated and harvested at this time to prevent 

population crashes. Note that the loss of grass biomass over the course of the experiment 

is not necessarily a mesocosm artifact; Z. marina often disappears during the late summer 

months in the York River estuary as well (personal observation).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



25

The mesocosms were continuously replenished with filtered York River water. The 

filtration system (pool sand filter + 150 pm-mesh) excluded most juvenile amphipod and 

isopod grazers, but allowed passage of microscopic propagules of other invertebrates and 

algae. We refer to organisms that recruited into the tanks via the flow-through seawater 

system as “volunteer invaders”. These were allowed to recruit throughout the 

experiment.

Prior to stocking experimental invaders (at 4 weeks) and at the end of the 

experiment (8 weeks), we estimated biomass of epiphytic algae by measuring epiphytic 

chlorophyll. Algae were negligible on the blades at the beginning of the experiment. 

Algae were scraped off of three haphazardly chosen blades from each mesocosm, pooled, 

collected on a glass fiber filter, and extracted in 20 ml of 90% acetone at -20°C for 24 

hours. Chlorophyll a was determined spectrophotometrically (Parsons et al. 1984) and 

normalized to leaf blade area.

At the end of the experiment, all epifaunal invertebrates, algae and eelgrass retained 

by a 0.5 mm mesh sieve were separated, identified, dried to constant mass, ashed at 450 

°C, and massed again. Amphipod and isopod grazers were separated into size classes 

using a stack of nested sieves, identified, and counted. Ash-free dry mass (AFDM) of 

amphipods was estimated using these size class data and empirically derived 

relationships between crustacean body size and biomass (Edgar 1990). Isopods did not 

uniformly size-fractionate through sieving, so were ashed and massed directly.

For stocked invaders, invasion success was measured as net invader population 

growth (final abundance/initial abundance) and final biomass. For volunteer invaders, 

invasion success was estimated as final abundance or final biomass.
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Statistical Analyses

Our primary interest was testing the influence of resident diversity on invasion 

success. For statistical purposes, the five resident treatments invaded by a given grazer 

species were considered one experiment and analyzed with a 1-way, fixed-factor 

ANOVA. Thus, separate one-way ANOVAs were conducted for each of the four parallel 

experiments invaded by a different species. We could not use a single ANOVA design 

for the entire experiment because identity of resident species necessarily differed 

systematically and non-independently among invader treatments, and would have 

rendered such an analysis non-orthogonal. Each of the four ANOVAs tested the effects 

of resident grazer presence, identity, and species richness on invasion success as follows. 

Again, each experiment included five levels of resident community (Fig. 1): control (no 

grazer residents), three resident monocultures, and one resident mixture. For each of the 

four experiments, we partitioned the treatment sum of squares (SS) from the ANOVA 

into two orthogonal a priori contrasts, after Duffy et al. (2005): (1) the overall effect of 

resident grazers was tested as the contrast of grazer-free controls vs. the remaining four 

grazer treatments (three monocultures and one mixture, contrast DF=1); (2) the effect of 

resident species richness was tested as the contrast of the resident mixture vs. the 

remaining three monocultures (contrast DF=1); this tests whether or not the mixture of 

resident species was more resistant, on average, than the monocultures. Since the 

variances in our model are additive, after these two contrasts, the only variation 

remaining that is due to the treatment is variation among the monocultures.

Consequently, we used this portion of the treatment SS remaining after accounting for the 

previous two contrasts to calculate an F-statistic (DF=2) for the effect of resident identity.
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This identity F-statistic tests whether resident species differ in their ability to resist 

invasion. Once each of the four experiments had been analyzed, we obtained a single 

estimate, across all four experiments, of the overall influence of resident presence, 

richness, and identity on invasion success by combining the p-values for each contrast 

across the four experiments using the approach of Sokal and Rolf (Sokal and Rohlf 

1995), pp. 794-797).

The analyses above test whether richness and identity of residents affect invasion, 

but do not indicate which resident species are responsible, nor whether richness effects 

result from sampling or complementarity (Huston 1997, Hector 1998). To determine 

whether particular resident species dominated effects on invasion success (a “sampling 

effect”), we ran a separate multiple regression for each of the four stocked invader 

species, including all five treatments which that species invaded. Each regression 

modeled invader population growth as the response, and used the final abundance of each 

of the three remaining (resident) species as predictors. Both response and predictor 

variables were transformed by logio (x) to meet the assumption of homogeneous 

variances. The predictors were not correlated (maximum absolute value of significant 

r=0.205). To stringently assess whether richness effects derived from interactions among 

species, we calculated Dmax for invasion resistance. Dmax, the overyielding criterion, 

measures the difference between the observed total response in mixture (yield) and the 

maximal response in monoculture, as a proportion of the maximal response in 

monoculture (Loreau 1998).

Competition for food and substratum may mediate resident effects on invasion. To 

estimate the strength of exploitation competition among grazer species, we measured the
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loss of available habitat and surface area for growth of algal food as loss of eelgrass to 

grazer consumption. Final eelgrass AFDM was subtracted from initial AFDM, the latter 

estimated as 0.097*initial wet mass (g). We tested whether eelgrass biomass, resident 

grazer biomass, and resident grazer density differed in mixtures vs. monocultures using 

one-way ANOVAs with a priori contrasts for each of the four invader experiments, as 

described above. As an index of resource limitation, resident density was calculated as 

mg resident grazers/(mg macroalgae+eelgrass).

Since the analyses just described treated the four invader species separately, they 

could not rigorously test the overall influence of invader identity, or the interaction of 

resident and invader identity, on community development. To do so, we conducted two- 

way ANOVAs, using only the resident monoculture treatments, with factors resident 

grazer identity (fixed factor, 4 levels) and stocked invader identity (fixed factor, 4 levels). 

There were five replicates of each treatment combination. Our experiment did not 

include treatments with residents and invaders of the same species (e.g. Erichsonella 

invading mesocosms with resident Erichsonella) because it would have been impossible 

to determine invasion success in such a combination. Therefore, we used data from the 

controls (e.g. Erichsonella invading a community initially free of grazers) for these 

treatment combinations in the ANOVAs. As invaders reached high population densities 

during their four weeks in the mesocosms (see Results), we considered that these initially 

grazer-free controls should closely approximate the state of mesocosms that had had 

residents of the same species for the full eight weeks of the experiment. These two-way 

ANOVAs were conducted only for volunteer invaders and community-level responses 

(i.e., not for population growth of the stocked invader species or for density or biomass of
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the resident grazers).

Finally, we explored whether the sequence of community assembly influenced the 

outcome of competition by examining whether resident grazer species had a consistent 

competitive advantage over invaders. To do so, we used a continuous version of the 

Bradley-Terry paired comparison model that was developed to detect and estimate home 

field advantages in team competitions (Harville and Smith 1994). We considered each 

mesocosm with a single resident species and single invader species as a game (12 

matchups, each replicated five times; see Fig. 1), and used the difference in performance 

between the residents (home team) and the invaders (visiting team) as the difference in 

score. By comparing the fit of the following model to one without a home field 

advantage term using Akaike’s Information Criterion (AIC), we were able to determine 

whether residents had a competitive advantage over invaders:

Yijk — Rresident j — Rinvader i H j Eijk.

Yjjk is the difference in net population growth between species j and species i. 

R residentj and Rinvader i are dummy variables for the resident competitive abilities (Rj=l 

when the species is a resident, -1 when it is an invader, and 0 when it is not present in a 

mesocosm; R,=l when the species is an invader, -1 when it is a resident, and 0 when it is 

not present). Hj is a dummy variable for the home field advantage of species j (H pl 

when species j is a resident, 0 otherwise). By assuming that the errors (£Vjk where k is the 

number of replicates of each resident:invader matchup) are normally distributed, this can 

be fit as an ordinary regression model (Harville and Smith 1994, Clarke and Norman 

1995). We fit this regression model to several measures of differences in competitive 

ability between residents and invaders (yijk): difference in net population growth (final
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abundance/initial abundance), final biomass, final biomass with a handicap for residents 

(final biomass divided by 2), and final abundance. Using the sums of squares for the two 

models, we tested the null hypothesis that home field advantage = 0. The formula for the 

F-statistic for this hypothesis test is described in Harville and Smith (1994). We used 

SAS (SAS 2001) to fit the regression models (Agresti 2002, Weiss per s. comm.).
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RESULTS

The experimental gradient in resident grazer diversity was maintained in the final 

grazer abundances (mean Shannon-Weaver index: controls=0.096; ampithoids=0.171; E. 

attenuata-0.310; G. mucronatus=0.118; I. baltica=0.204) mixtures=0.354). This 

diversity gradient overlaps the range found in York River seagrass beds (mean=0.378, 

range=0.125-0.594) (Duffy et. al. unpublished data). All four species of stocked invaders 

established populations in the initially grazer-free control treatments, indicating that the 

invading density was sufficient. Thirty-eight species of invertebrates, in addition to the 

stocked amphipods and isopods, invaded the mesocosms during the 8-week experiment, 

including anemones, bivalves, crabs, gastropods, nudibranchs, polychaetes, and tunicates. 

Seven species of macroalgae and two macroscopically different mixed microalgal 

assemblages (predominantly green or predominantly brown diatoms) colonized the 

experiment.

Both richness and identity of resident grazers strongly affected population growth 

and biomass of invading grazers (Fig. 2, Table 1). The overall effect of resident richness 

(i.e. combining the four experiments with different experimental invaders) was 

significant for both invader population growth (p<0.025) and invader biomass (p<0.001; 

Table 1). Resident richness also significantly reduced invasion success in the separate 

analyses for three of the four invaders (Appendix 1-1). This negative effect of resident 

species richness on invasion was generally consistent despite clear variation in invasion 

success among the four stocked invader species (Fig. 2). All four mixtures overyielded,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



32

or resisted invasion better than the maximal monoculture (Dmax was greater than zero). 

Within the initially grazer-free controls, invading isopods (E. attenuata and I. baltica) 

reached significantly lower final biomass and population growth than the amphipods 

(ampithoids and G. mucronatus) (one-way ANOVA p<0.001, followed by Tukey’s tests; 

Fig. 2).

The presence of grazers reduced the total biomass of volunteer epifaunal 

invertebrates (those invading through the seawater supply, Fig. 3a, Table 1). The 

aggregate biomass of these volunteer invaders was not significantly reduced at higher 

resident grazer species richness but was strongly affected by resident identity (Table 2).

In contrast, the number of volunteer invertebrate species was unaffected by the presence, 

identity, or richness of resident grazers (Fig. 3c, Table 2).

Of the five most frequent volunteer invaders, all were significantly reduced by the 

presence of grazers, and two were affected by the characteristics of the resident grazer 

community. Invasion success (biomass) of the sea slug Haminoea solitana, the second 

most frequent volunteer and the only volunteer herbivore, was reduced by resident grazer 

richness and strongly affected by resident grazer identity (Fig. 3e, Table 1). The 

abundance of Molgula manhattensis, a solitary tunicate and the fourth most frequent 

invader, was significantly reduced by resident grazer richness and affected by resident 

grazer identity (Fig. 3f, Table 1). The first and third most frequent volunteers, Hydroides 

dianthus, a tube-dwelling polychaete, and Corophium volutator, a detritivorous 

amphipod, were unaffected by resident richness or identity (data not shown).

Grazers significantly reduced biomass and species richness of invading algae, 

relative to initially grazer-free controls, although resident G. mucronatus tended to
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increase algal biomass (Fig. 3b,d). Algal biomass was also significantly reduced by 

resident grazer richness and strongly affected by resident grazer identity (Figs. 2b,d; 

Tables 1,2, Appendix 1-1).

Identity of the invading grazer species significantly affected only two of the eight 

response variables examined: the invasion success of one of the volunteer invaders, 

Molgula manhattensis (Table 2) and the number of successfully invading algal taxa 

(Table 2). Interactions between resident and invader identity were highly significant for 

two of the volunteer invaders, H. solitana and M. manhattensis (Table 2).

Multiple regressions conducted separately for each of the four stocked invader 

species showed that reduced success of E. attenuata invasions was attributable primarily
t  ■j

to /. baltica (overall regression p<0.001, adjusted R =0.556; /. baltica p<0.001; other 

residents p>0.716), and ampithoid invasion was marginally negatively affected by G.
-j

mucronatus (overall regression p=0.080, R =0.159; G. mucronatus p=0.056; other 

residents p>0.172). There were no significant effects of any particular species on G. 

mucronatus and I. baltica invasions.

Summed biomass of all resident grazers, i.e., potential competitors for the invaders, 

was significantly higher, on average, in grazer mixtures than in monocultures (Fig. 3i, 

Table 2). Habitat and substrate availability were reduced at high resident richness, as 

eelgrass lost significantly more biomass, on average, in mixtures than in the 

monocultures. In contrast, eelgrass mass loss did not differ, on average, between 

monocultures and controls (Fig. 3h, Table 2). As an index of resource limitation for 

invading grazers, we examined density of resident grazers per gram plant. Resident 

density was marginally non-significantly greater in mixtures than in monocultures on

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



average (Fig. 3j, Table 2), and was also affected by resident species identity. The 

resident densities measured in our mesocosm experiment are comparable to those found 

in the field if grazer abundance is normalized to all available surface area, including 

mesocosm walls (mean across treatments=0.067 mg residents/cm2 area, field mean=0.11 

mg/cm eelgrass), but are higher than the maximum observed field density if  only plant 

surface area is considered (mean across treatments=0.328 mg/cm2, field max=0.20 

mg/cm2; field data from Duffy and Harvilicz 2001).

The fit of the regression model including home-field advantage was highly 

significant, explained more than 50% of the variance in the competitive outcomes 

between residents and invaders, and was better than that of the model without home-field 

advantage, regardless of the competition measure used (Table 3). Residents had a 

significant competitive advantage over invaders (see F test for comparing model to null 

model without home field advantage, Table 3). In other words, for a given grazer 

species, performance against a given competitor was greater when the focal species was a 

resident than when it was an invader. We also compared invader biomass in controls (no 

competitors, 4 weeks of population growth) to resident biomass in monocultures 

(competitors for 4 weeks out of 8 weeks of population growth) to determine whether 

invader populations had time to reach carrying capacity in the absence of competitors. 

Amphipod populations that invaded control treatments reached population sizes equal to 

those of their conspecifics that had been residents in monocultures for 8 weeks (invader 

biomass, resampling two-tailed p= 0.0896 for ampithoids, p=0.8569 for G. mucronatus), 

suggesting that the 4-week invasion period was sufficient for amphipods to reach 

carrying capacity in the absence of competitors. Isopods, however, had significantly
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lower population sizes in controls than in monocultures (resampling one-tailed E. 

attenuata p= 0.0004,1, baltica p=0.0007), suggesting that they did not reach carrying 

capacity during the 4-week invasion period. Although these data advise caution in 

inferring resident competitive advantage, they suggest it is likely, at least for the 

amphipods.
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DISCUSSION

We found that resident grazer species richness significantly decreased 

establishment of other mobile grazers, including both experimentally stocked amphipods 

and isopods as well as “volunteer” sea slugs that recruited naturally from planktonic 

larvae. This pattern was consistent for three of the four experimental grazer invaders 

analyzed separately, and was strongly significant when results were pooled across the 

four invader species. Moreover, multiple regressions revealed that no single resident 

species dominated the inhibitory effects on invaders, strongly suggesting that invasion 

resistance was a general effect of diverse resident assemblages rather than a sampling 

effect due to presence of a particularly strong interactor. This consistency is particularly 

noteworthy given the marked differences among invader species in potential population 

growth rates, as observed in competitor-free controls (Fig. 2a), and the differences among 

resident species in ability to resist invaders. Thus, our finding that mobile consumer 

diversity reduced invasion success of other species at the same trophic level appears 

robust.

A second line of evidence for the generality of diversity effects on invasion in our 

experiment comes from naturally recruiting “volunteer” invaders. Grazer species 

richness significantly reduced the success of two of the most frequent volunteer invaders, 

one of which (H. solitana) is a mobile grazer and therefore a potential competitor, and 

marginally reduced the aggregate biomass of all naturally recruiting invaders. Most of 

these volunteers were sessile organisms probably affected by grazers ingesting or
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disturbing their newly settled recruits. More diverse grazer assemblages tended to shift 

the system from algal dominance towards sessile invertebrate dominance, as seen before 

(Duffy et al. 2003).

The most straightforward explanation for reduced invasion success at high resident 

richness in our experiment appears to be stronger competition for resources, namely food 

and habitat. Several lines of evidence support this possibility. First, as expected, 

invasion success of stocked grazers was greater in the competitor-free controls (Fig. 2), 

suggesting that competition mediated invasion success, at least in part. Second, as in 

other studies where more diverse assemblages use resources more fully (Tilman 1997, 

Naeem et al. 2000, Duffy et al. 2003), food consumption tended to be greater in the 

grazer mixtures than in monocultures. Specifically, algal biomass was significantly 

reduced by grazer richness, and both macro- and micro- algal biomass were quite low in 

all mixtures relative to controls, confirming that consumption pressure was high (Figs. 

3b&g, Table 2). Intense consumption in grazer mixtures is further indicated by the 

significantly greater loss of eelgrass biomass in these treatments compared with 

monocultures (Fig. 3h, Table 2), since grazers usually only consume eelgrass when 

epiphytic algae, their preferred food source, is limited (Jemakoff et al. 1996, Valentine 

and Duffy in press). These results for mobile consumers parallel those from both plant 

and zooplankton assemblages, where species richness and aggregate biomass of native 

“invading” species decreased with increasing species richness of residents (Kennedy et 

al. 2002, Shurin 2000, Troumbis et al. 2002). Finally, habitat availability, i.e., eelgrass 

leaf area, was also reduced by grazer richness. Seagrass blades simultaneously serve as 

surfaces for feeding, resting, building tube dwellings, and reproducing as well as
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substrate for the mesograzers’ main food source, epiphytic microalgae. There is some 

evidence for behaviorally mediated competitive exclusion among eelgrass-associated 

grazers when plant habitat is limiting (Nagle 1968), and both field experiments and 

energetic estimates suggest that mesograzer production often may be limited by diffuse 

competition in the field (Edgar 1990, 1993). Eelgrass biomass was lowest, and resident 

density tended to be highest, in mixtures (Figs. 3h,j; Table 2). This parallels findings of 

many plant studies that more diverse assemblages have more neighboring individuals or 

greater biomass (Naeem et al. 2000, Kennedy et al. 2002, Troumbis et al. 2002), 

presumably leaving less room and resources for invaders. Thus, the pattern emerging 

from our data on mobile consumers and previous studies is that resource limitation and 

competition are greater in more diverse assemblages.

The importance of resident density in influencing invasion success in our 

experiment is further supported by evidence of resident competitive advantage, or the 

advantage conferred simply by being there first. We suspected that residents might have 

such an advantage in our system because at least two of the grazers, I. baltica and G. 

mucronatus, consume juveniles of other grazer species as well as.conspecifics (J. G. 

Douglass unpublished data). We found that residents did have a competitive advantage: 

each species had significantly greater success as a resident than as an invader, regardless 

of which species it was paired with (Table 3). Although this apparent resident 

competitive advantage might be explained by invaders having insufficient time to reach 

their maximum population size, this seems unlikely. Only isopod invaders failed to reach 

carrying capacity in the absence of competition after four weeks of growth, suggesting 

that isopod invaders might be at a disadvantage. Yet half of the match-ups were isopod-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



isopod. Furthermore, our calculation of the difference between resident performance and 

invader performance could be considered biased (conservatively) towards invaders, since 

we divided final population size by initial population size (30 for residents and 10 for 

invaders) and populations increased by more than an order of magnitude. Finally, we 

found significant resident competitive advantage even when we “handicapped” residents 

by halving their final biomass (Table 3). Our demonstration of resident competitive 

advantage is consistent with considerable theoretical (e.g. Lotka 1932; Case 1990) and 

empirical (Shurin 2000, review in Morin 1999) evidence that the outcome of competition 

and/or invasion can depend on initial conditions, including relative abundances and the 

order of arrival. This evidence of resident competitive advantage lends support to the 

idea that the diverse assemblages resisted invasion due to higher aggregate resident 

biomass and density, in keeping with Elton’s (1958) original hypothesis.

The invasion resistance that we observed was not primarily mediated by the 

presence of a single species—that is, by a sampling effect—as it has been in some studies 

(McGrady-Steed et al. 1997, Hodgson et al. 2002). Several pieces of data confirm that no 

one resident species dominated the inhibition of invasion in our study. First, although I. 

baltica was the resident species most resistant to grazer invasion in monoculture (Fig. 2), 

it did not dominate the mixtures where it was present. Second, every resident species 

used in the experiment was absent from one of the 3-species resident mixtures. If 

invasion resistance was primarily conveyed by one species, then the mixture lacking that 

species should have lower invasion resistance relative to the other three mixtures. This 

was not the case for most variables (Fig. 3). Perhaps most importantly, multiple 

regressions examining the dependence of invader population growth on the abundance of
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each resident species were only significant for two of the four stocked grazer invaders, 

and the resident species with the greatest effect was different in these two cases. Finally, 

Dmax, a stringent index for overyielding, was positive for all four mixtures.

Experiments such as ours have potential implications for understanding how native 

biodiversity influences exotic invasion. These implications depend, however, on the 

assumption that the native species used as “invaders” are suitable proxies for exotic 

invaders. The course of any particular real invasion will of course be influenced by the 

idiosyncratic traits of both residents and invader. Nevertheless, several lines of evidence 

suggest that native and non-native species often establish in communities by similar 

mechanisms, and thus that using non-natives as invaders would not have changed the 

outwme of our experiment dramatically. First, searches for consistent trait differences 

between natives and non-natives, with the exception of organisms that invade 

unaccompanied by predators or pathogens, have been largely unsuccessful (reviewed in 

Mack et al. 2000). Second, the mechanisms apparently responsible for the richness effect 

on invasion in our experiment, reduced food and habitat availability and increased 

density of competitors, should similarly reduce success of native and non-native grazers. 

Third, our four native grazer invaders had different population growth rates and degrees 

of omnivory, but were similarly deterred by richness of co-occurring native grazers. 

Finally, most small marine crustaceans, in contrast to terrestrial insects, are generalists, 

and, at least in seagrass beds, are readily consumed by most predators (Edgar and Shaw 

1995). Although we appreciate the importance of studying how specific non-native 

invaders infiltrate communities, these considerations suggest that studying invasion 

dynamics of native species can provide important insights into the more logistically and
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ethically difficult questions of non-native invasions.

More generally, our experiment suggests that some mechanisms hypothesized to 

explain diversity effects on invasibility and community assembly in plants also apply to 

mobile consumers, and thus may be general. Our results suggest that three mechanisms 

of diversity effects may be important in mediating invasion success. First, species 

richness can reduce invasion success of some invaders by decreasing resource availability 

at a given point in time through complementary resource use (in our experiment, food 

and habitat availability) (Table 1). Second, species-rich communities can reduce 

invasion success of a diverse suite of invaders because they contain species that are better 

at deterring a particular invader (the sampling effect). For example, in our experiment,

H. solitana was primarily deterred by ampithoid residents (Fig. 3e, Table 1). Across the 

whole experiment, the proportion of variance in invasion success explained by different 

components o f the resident community (grazer presence, richness, and identity) also 

varied widely for the different invaders, suggesting that the best defense against invasion 

is a species-rich, intact community (data not shown). Finally, species-rich communities 

may stand a better chance of reducing invasion success through time by increasing 

average resource utilization through time (Davis et al. 2000, Davis and Pelsor 2001, 

Stachowicz et al. 2002). While our experiment does not test this, we note that our grazers 

show different seasonal abundance patterns (Parker et al. 2001, Duffy et al. 2001), which 

should produce more complete resource use through time as shown for space use by 

sessile invertebrates (Stachowicz et al. 2002). Our demonstration o f resident competitive 

advantage highlights the importance of having competitors present, regardless of their 

size or competitive ability, to impede invasion.
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In summary, as resident grazer diversity increased in the eelgrass system, food and 

habitat availability decreased, aggregate grazer biomass increased, and invasion success 

of both experimentally introduced grazers and naturally recruiting mobile (H. solitana) 

and sessile organisms was reduced. These effects could not be attributed to any 

particular resident species by way of a sampling effect. We found these significant 

effects of consumer species richness on invasibility despite using a low (albeit near 

natural) level of maximum diversity, studying invaders with different population growth 

capacities, and allowing trophic interactions and some natural recruitment to occur. 

Further work is necessary to determine the importance of invasion resistance conveyed 

by biodiversity relative to other factors, such as disturbance, resource availability, and 

propagule supply (Elton 1958, Crawley 1987, Huston 1994, Levine and D'Antonio 1999, 

Stohlgren et al. 1999, Davis et al. 2000, Levine 2000, Brown and Peet 2003). Our 

results, however, argue for the generality of a negative relationship between diversity and 

invasibility at the neighborhood scale, and they support straightforward and common 

mechanisms of exploitative resource competition as producing these relationships.
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TABLES

Table 1. Effects of grazer presence, species richness, and identity on invasion success 
and community development, pooled across all four invaders. Letters in last three 
columns indicate which invaders had significant effects in separate analyses by invader 
species (see Appendix 1-1), and correspond to the first letter of the invading genus or 
family. Letters in italics indicate marginally significant effects (p= approximately 0.05)

Chi square of com bined
p-values Significance of Chi-square Invader Identity

(-2 sum  ln(P»

R esponse Variable Grazers R ichness Identity G razers R ichness Identity G razers R ichness Identity

Invader population growth 19.16 19.55 27.60 <0.025 <0.025 <0.001 A E, I E,l

Invader biomass 35.27 31.58 19.79 <0.001 <0.001 <0.025 A,G E,G,I G,l

Volunteer richness 2.46 4.33 4.93 NS NS NS

Volunteer biomass 17.28 15.44 24.75 <0.05 NS <0.01 E,G E A,E

H. solitana biomass 40.32 23.39 43.57 <0.001 <0.01 <0.001 A,E,I E, I A,E,G,I

M. manhattensis abundance 43.91 34.39 27.07 <0.001 <0.001 <0.001 A,E,G A,E E,G

Algae richness 35.75 11.00 14.22 <0.001 NS NS E,G,I /

Algae biomass 31.79 20.45 20.10 <0.001 <0.01 <0.01 E.G.I G,l I

Epiphytic chlorophyll 44.26 4.46 35.41 <0.001 NS <0.001 A,G,/ A,G

Resident biomass NA 23.33 9.35 NA <0.01 NS A,E

Change in Zostera biomass 12.84 23.46 28.62 NS <0.01 <0.001 A A.E A

Resident density NA 15.38 18.59 <0.0001 NS <0.025 E,l E G,l
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Table 2. Interactive effects o f resident identity and invader identity. Data from 
monocultures only (see Fig. 1 and text). MS and p-values are from 2-way ANOVAs o f 
resident and invader identity.

R esident Identity Invader Identity R esident'lnvader Overall Model 
(df=3)_____________ (df=3)_____________ (df=9)_________________________

R esponse Variable MS P MS P MS P MS P MSE

Volunteer richness 3.79 0.7347 3.52 0.7562 3.99 0.9026 3.85 0.9626 8.88
Volunteer biomass 0.21 0.0012 0.01 0.8938 0.07 0.0638 0.09 0.0084 0.04
H. solitana biomass 3.09 0.0001 0.45 0.0897 1.17 0.0001 1.41 0.0001 0.20
M. manhattensis abundance 9.49 0.0001 31.42 0.0001 31.42 0.0001 14.01 0.0001 0.81
Algae richness 2.00 0.0348 3.36 0.0031 1.05 0.1341 1.70 0.0043 0.66
Algae biomass 6.23 0.0001 1.01 0.2258 1.61 0.0214 2.41 0.0002 0.68
Epiphytic chlorophyll 85.04 0.0001 0.21 0.9957 17.08 0.0893 27.30 0.0019 9.59
Change in Zostera biomass 3.33 0.0001 0.43 0.3174 0.49 0.2165 1.05 0.0014 0.36
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Table 3. Regression models and hypothesis tests for resident competitive advantage, 
tests for comparing models were calculated as: F(I vs 0) = (SSEo -  SSE i)/((SS |- 
SS2+SSE2)/56) and F(I1 vs 0) = (SSEo -  SSEt2)/((SSE2)/53), after Harville and Smith 
(1994).

No R esident Advantage (0) 

(null hypothesis) 

R egression
R esponse
Variable R2 P AIC
Population Growth 0.438 <0.0001 295.9
Biomass 0.198 0.0053 630.9
Biomass w/
resident handicap 0.105 0.0935 567.8
# of indiv. 0.164 0.0161 698.7

R esponse
Variable R2

R esident A dvantage (I) 

sam e for all species 

R egression F te s t (I vs 0)

P AIC F (1,50) P
Population
Growth 0.474 <0.0001 293.9 3.91 0.054
Biomass 0.753 <0.0001 562.3 125.68 <0.0001
Biomass w/
resident
handicap 0.702 <0.0001 504 111.83 <0.0001
# of indiv. 0.696 <0.0001 640.1 97.71 <0.0001

R esponse
Variable R2

R esident Advantage (II) 

different for all species 

R egression F te s t (I vs 0)

P AIC F (1,50) P
Population
Growth 0.531 <0.0001 293 2.65 <0.05
Biomass 0.761 <0.0001 566.2 31.23 <0.0001
Biomass w/
resident
handicap 0.776 <0.0001 497.9 35.32 <0.0001
# of indiv. 0.745 <0.0001 635.4 30.25 <0.0001

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



50

FIGURE LEGENDS

Figure 1. Experimental design. A = ampithoids, E = Erichsonella attenuata, G = 
Gammarus mucronatus, I = Idotea baltica, Con = control (no residents). Each of the 20 
treatments was replicated 5 times. Invaders were introduced one month after residents.

Figure 2. Effects of resident grazer identity and richness on (a) population growth and 
(b) final biomass of experimentally stocked grazer invaders. Controls (white bars) had 
no stocked residents prior to invasion. Mixtures (black bars) contained all three species 
other than the invader. Population growth= Nj,naiJ Nm,v,0/. The line at y=l indicates the 
threshold of invasion failure (net negative population growth). Error bars show ± 1 SE 
(n=5). See Tables 1 and 2 for statistical analysis.

Figure 3. Effects of resident grazer identity and richness on naturally recruiting 
(“volunteer”) species and on resource availability. 1st row: Total ash-free dry biomass of 
naturally recruiting (a) invertebrates and (b) algae. 2nd row: Taxon richness of naturally 
recruiting (c) invertebrates and (d) algae. 3rd row: Two of the five most abundant 
naturally recruiting invertebrates, (e) Haminoea solitana, a gastropod grazer, and (f) 
Molgula manhattensis, a solitary tunicate. 4th row: Resource availability: (g) Final 
epiphytic chlorophyll a, normalized to leaf blade area and (h) loss of eelgrass biomass.
4th row: Resident grazer community (i) biomass and (j) density. Error bars show ± 1 SE. 
Data for controls (n=20) and resident monocultures (n=15) are pooled across invader 
species while data for each resident mixture composition (and therefore each invader, 
n=5) are presented separately to allow the reader to compare a response in the 
monoculture of a given resident to the response in the mixture missing that species. See 
Tables 1 and 2 for statistical analysis.
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Appendix 1-1. Effects of grazer presence, species richness, and identity on invasion 
success and community development for each of the four experiments (one for each 
invader) conducted concurrently. SS and p-values are from one-way ANOVAs for each 
invader, partitioned as described in the text. The total SS is the total sum of squares for 
the whole model (model SS + error SS).

lnvader=Am pithoids

R esp o n se  Variable
Grazers (df=1) R ich n ess  (df=1) Identity (df=2) TOTAL

SS P SS P SS P SS P MSE

Invader population growth 11.765 0.0041 0.000 0.9981 7.465 0.1685 41.657 0.0118 22.427
Invader biomass 11.792 0.011 0.000 0.9917 9.234 0.1873 51.093 0.0255 1.503
Volunteer richness 0.645 0.8179 14.933 0.2746 2.533 0.8514 267.115 0.8221 249.200
Volunteer biomass 0.027 0.834 2.044 0.0787 8.290 0.0251 22.264 0.0108 11.903
Haminoea biomass 1.483 0.0085 0.544 0.0931 1.429 0.0554 7.214 0.0054 3.693
Molguia abundance 5.550 0 0854 16.041 0.0058 3.463 0.392 61 509 0.0182 35 774
A lgae richness 0.018 0.907 2.743 0.1584 4 933 0.178 34.615 0.2389 26.933
A lgae biomass 0.609 0 3994 2.691 0.0849 4.240 0.0714 24.739 0.0964 17.284
Epiphytic chlorophyll 107.620 0.0001 1.844 0.5434 16.287 0.0033 228.337 0.0014 101,477
Resident biomass NA NA 0.190 0.0078 0.010 0,9607 0.547 0.0571 0.356
Change in Zostera biomass 0.464 0.0263 0.921 0.0029 7.441 0.0001 10.581 0.0001 1.707

Resident density NA NA 0.005 0.7959 0.647 0.0573 1.970 0 0709 1.556

lnvader=& /c/Jsone//a

R esp on se  Variable
Grazers (df=1) R ich n ess  (df=1) Identity (df=2) TOTAL

SS P SS P SS P SS P MSE

Invader population growth 3.021 0.175 9.277 0.0232 11.825 0.0403 52.598 0.018 28.919
Invader biomass 8.575 0.0764 17.983 0.0138 8.780 0.2672 80.690 0.0263 2.442
Volunteer richness 6.422 0.4082 1.856 0.6545 0.133 0.9924 179.333 0.9102 170.600
Volunteer biomass 2.520 0.0354 3.179 0.0198 9.773 0.0019 24.567 0.0007 9.334
Haminoea biomass 0.703 0.0152 0.987 0.0052 4.365 0.0001 7.861 0.0001 1.878

Molguia abundance 23.849 0.0001 4.240 0.0001 40.275 0.0001 68.456 0.0001 0.927

A lgae richness 41.408 0.0003 2.654 0.2753 0.933 0.4418 85.958 0.0042 39.950

A lgae biomass 3.598 0.0457 1.560 0.1753 3.254 0.2287 23.166 0.0683 14.954

Epiphytic chlorophyll 8.249 0.3636 4.497 0.5002 36.743 0.2316 229.831 0.3104 180.855

Resident biomass NA NA 0.467 0.0013 0.125 0.1726 0.591 0.0047 0.445

Change in Zostera biomass 0.692 0.2329 3.347 0.0139 3.696 0.1078 16.263 0.0136 8.654

Resident density NA NA 0.260 0.0133 0.034 0.6022 0.788 0.0657 0.494
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Appendix 1-1 (cont’d)

lnvader=Gam marus
Grazers (df=1) R ich n ess (df=1) Identity (df=2) TOTAL

R esp o n se  Variable SS P SS P SS P SS P MSE

Invader population growth 0.354 0,5565 0.940 0.3414 0.618 0.1867 21.705 0.748 19.726
Invader biomass 1.593 0.0002 1.083 0.0011 0.935 0.0291 5.113 0.0001 0.075
Volunteer richness 0.010 0.9693 0.817 0.7283 8.533 0.4939 140.960 0.8371 131.600
Volunteer biomass 2.345 0.0299 0.404 0.3434 0.969 0.2795 12.302 0.11 8.583
Haminoea biomass 0.666 0.1357 0.047 0.6838 3.318 0.0092 9.539 0.0216 5.509

Molguia abundance 41.809 0.0001 1.405 0.3507 15.880 0.0338 89.852 0.0002 30.758
Algae richness 37.210 0.0014 3.750 0.2541 12.400 0.1519 107.760 0.0064 54.400
Algae biomass 8.060 0.0012 2.404 0.0536 4.084 0.095 25.978 0.0018 11.430
Epiphytic chlorophyll 188.376 0.0001 0.473 0.7483 5.439 0.0001 283.745 0.0001 89.456

Resident biomass NA NA 0.087 0.3596 0.677 0.0633 0.764 0.0878 1.564
Change in Zostera biomass 0.314 0.4657 0.992 0.2009 1.929 0.2972 14.580 0.2618 11.345
Resident density NA NA 0.134 0.1637 0.302 0.166 1.458 0.1184 1.286

lnvader=/dotea
Grazers (df=1) R ich n ess  (df=1) Identity (df=2) TOTAL

R esp o n se  Variable SS P SS P SS P SS P MSE

Invader population growth 0.174 0.1727 0.777 0.0072 1.014 0.0008 3.704 0.0033 1.739
Invader biomass 0.284 0.1307 0.950 0.0092 0.353 0.0346 3.874 0.0262 2.287
Volunteer richness 0.160 0.9035 0.267 0.8757 28.133 0.2042 240 960 0.6189 212 400
Volunteer biomass 0.755 0.2006 0.021 0.8281 1.305 0.3161 10.697 0.3387 8.617
Haminoea biomass 5.203 0.0001 1.264 0.0252 5.095 0.0068 15.885 0.0001 4.323

Molguia abundance 0.757 0.341 1.634 0.1673 0.000 NA 18.302 0.5689 15.912
A lgae richness 12.960 0.0452 2.400 0.3689 19.600 0.0685 91.760 0.0397 56.800
Algae biomass 4 800 0.0057 2.285 0.0454 6.221 0.0278 23.343 0.0014 10.035

Epiphytic chlorophyll 46.977 0.0674 5.174 0.5283 33.606 0.2683 336.990 0.188 251.232
Resident biomass NA NA 0.009 0.6521 0.008 0.8887 0.016 0.9403 0.664

Change in Zostera biomass 0.087 0.57 0.000 0.9955 0.890 0.1902 0.977 0.4622 5.205

Resident density NA NA 0.192 0.1247 0.770 0.0317 2.129 0.0195 0.073
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ECOSYSTEM FUNCTION

published as: France, K. E. and J. E. Duffy. 2006. Diversity and dispersal interactively 
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Theory and small-scale experiments predict that biodiversity losses can decrease the 

magnitude and stability of ecosystem services such as production and nutrient cycling1,2. 

Most of this research, however, has been isolated from the immigration and emigration 

(dispersal) processes that create and maintain diversity m nature ' . Since common 

anthropogenic drivers of biodiversity change, such as habitat fragmentation, species 

introductions, and climate change, are mediated by these understudied processes5'7, it is 

unclear how environmental degradation will affect ecosystem services3,4. We tested the 

interactive effects of mobile grazer diversity and dispersal on the magnitude and stability 

of ecosystem properties in experimental seagrass communities that were either isolated or 

connected by dispersal corridors. Here we show that, contrary to theoretical 

predictions2,8'11, increasing the number of mobile grazer species in these 

metacommunities increased spatial and temporal variability of primary and secondary 

production. Moreover, allowing grazers to move among and select patches reduced 

diversity effects on production. Finally, effects of diversity on stability differed 

qualitatively between patch and metacommunity scales. Our results indicate that 

declining biodiversity and habitat fragmentation synergistically influence the 

predictability of ecosystem functioning.

Broadening the spatial scope of biodiversity-ecosystem functioning (BD-EF) 

research to metacommunities, i.e., groups of patches connected by dispersal of 

organisms, adds two components of diversity: beta-diversity, or heterogeneity in species 

composition among patches, and gamma diversity, or diversity of the entire
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12metacommunity . Limited evidence suggests that, at these broader spatial scales, the 

functional consequences of diversity may be different13,14. Furthermore, effects of 

dispersal among patches on ecosystem properties have rarely been considered, despite 

dispersal’s demonstrated importance in maintaining diversity, particularly in fragmented 

habitats5,10,15. Given recent predictions that the mechanism of diversity maintenance 

strongly influences relationships between biodiversity and ecosystem function15,16, and 

the increasingly fragmented character of most habitats, scaling up BD-EF research to 

metacommunities is critical for its application to conservation.

Here, we test how diversity, dispersal, and spatial scale interactively affect 

properties of experimental multi-trophic seagrass {Zostera marina) ecosystems. We 

assembled metacommunities with low (3 spp.) and high (8 spp.) grazer species richness, 

simulating loss of rare species from a species pool. Each metacommunity had five 

patches which were either interconnected by dispersal corridors or unconnected (see 

Methods). Dispersal was extremely rare among unconnected patches and moderate 

among connected patches. Each patch received 30 mobile crustacean grazers (15 male- 

female species pairs), and the species composition of this founding community was 

determined by random draws from the appropriate species list (3 vs 8 spp.). Initial 

metacommunity-wide richness of grazers was set at either three or eight species, but both 

the relative abundances of species within metacommunities and the species richness 

within patches varied. We allowed this initial random assembly plus subsequent 

dispersal and species interactions to influence grazer diversity over the six- week 

experiment. This enabled us to determine how multiple spatial components of
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biodiversity affect ecosystem properties in both connected and unconnected 

metacommunities.

We tested four hypotheses: (1) Increasing metacommunity richness will increase 

mean patch richness15,17 and beta-diversity of grazers18. (2) Allowing dispersal will 

increase mean patch richness5,15 and decrease beta diversity17 of grazers. Based on these 

predicted diversity patterns, and on previously documented links between diversity and 

ecosystem properties1, we expected that (3) grazer abundance and grazing pressure will

13 15 1 7 *increase with metacommunity richness and dispersal ’ ' . Since increasing richness 

often increases the predictability of ecosystem properties2,8-11, even in multi-trophic 

systems19 and in metacommunities15, we hypothesized that (4) increasing 

metacommunity richness should increase predictability of ecosystem properties among 

and within patches.
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MATERIALS AND METHODS

Study system

Zostera marina (eelgrass) is the most widespread and abundant marine macrophyte 

in the northern hemisphere, and it supports many commercially important species27. The 

dominant primary consumers in many eelgrass beds are small crustacean grazers, which 

feed on epiphytic algae and can have important indirect, positive effects on eelgrass27.

We manipulated diversity of these grazers, which all have overlapping generations, direct 

development, and summer generation times of 3-4 weeks.

Mesocosm system

The experiment was conducted in outdoor, flow-through 13.5-L eelgrass 

mesocosms. Filtered seawater from the York River estuary, Virginia, USA, was 

delivered in pulses to mesocosms shaded to approximate natural light levels. Fifteen pre­

weighed Z. marina shoots were planted in each mesocosm. Filters excluded grazers, but 

allowed passage of propagules of other invertebrates and algae28,29. We grouped 

mesocosms into metacommunities consisting of five patches (individual mesocosms) 

each. For half of the 20 metacommunities, patches within the metacommunity were 

connected to a central hub via clear 2.2 cm vinyl tubing. These dispersal corridors were 5 

cm long, so grazers had an equal chance of dispersing to all other patches within the 

metacommunity. All grazer species could swim rapidly through the dispersal corridors, 

but dispersal between patches was relatively infrequent, and species differed in their
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dispersal inclinations (Table SI). There was no active dispersal between unconnected 

patches, but these patches were linked into a metacommunity by sharing a common water 

supply, which was the source of propagules of all species other than the manipulated 

grazers.

Experimental design

We used a fully-crossed, two-factor ANOVA design with metacommunity richness 

and dispersal as the two factors. Metacommunity richness had two levels, low (3 spp.) 

and high (8 spp.). The low richness species pool was a subset of the high richness 

species pool, consisting of the three most abundant grazers in the field at the time of the 

experiment (Table S4). The high richness pool included approximately 75% of the 

crustacean grazer species known from the lower Chesapeake Bay region (Table S4).

Each treatment combination (metacommunity richness x dispersal) was replicated five 

times. The initial grazer community inoculated into each mesocosm was 15 

reproductively mature male-female pairs, species composition of which was determined 

by random draws of pairs of individuals from the designated species pool (Table S4). 

Each metacommunity initially contained the full complement of species from the whole 

pool, but most individual mesocosms did not. The experiment ran for 47 days, long 

enough for at least two complete generations of most species in addition to the founding 

generation, population increases approaching two orders of magnitude, and achievement 

of carrying capacity29’30.

Sampling ecosystem properties

At two-week intervals, we estimated biomass of epiphytic algae as epiphytic 

chlorophyll28. Mid-way through the experiment (day 26), we sampled grazers by
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sweeping a dipnet at mid-depth 10 times, and counting and identifying the grazers 

captured. We estimated spatial variability of ecosystem properties as the coefficient of 

variation (CV) of each response variable across the five patches in a metacommunity. 

Spatial variability was initially zero, and resulted from a combination of random variation 

in colonization through the flow-through system and subsequent interactions with the 

grazer community. We also estimated temporal CV of epiphytic chlorophyll (three time 

points) and grazer abundance (two time points). At the end of the experiment, all 

organisms retained by a 0.5 mm mesh sieve were separated, identified, dried to constant 

mass, ashed at 450 °C, and massed again.

Statistical analyses

To determine whether dispersal erased the signature of initial composition, we 

analyzed the relationship between initial and final relative abundance for each species 

using a GLM with dispersal as a class predictor (Table SI). For response variables 

measured within patches, we analyzed data using a GLM with three factors: grazer 

metacommunity richness and dispersal, which were fully crossed, and metacommunity 

ID, which was nested within the fully crossed design. When the p-value for 

metacommunity ID was >0.25, we ignored that factor and ran a fully-crossed, two-way 

ANOVA with metacommunity richness and dispersal (n=25). For response variables 

determined at the metacommunity level, data were analyzed using a fully factorial two- 

way ANOVA with metacommunity richness and dispersal as the factors (n=5). We also 

analyzed the relationship between final grazer diversity and ecosystem properties using a 

GLM with final Shannon-Weaver (S-W) diversity of grazers as a continuous predictor
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and dispersal as a class predictor. Patch S-W was used for responses in patches, and 

metacommunity S-W was used for metacommunity responses and spatial heterogeneity.

Selection effects

To determine whether effects of grazer metacommunity richness were due to the 

presence of a particular grazer species, we ran backwards elimination multiple 

regressions of each response variable against the final abundance of each grazer species. 

Backwards elimination regression showed that different combinations of species were 

significant contributors to the decrease in each food resource (Fig. 2); there was not a 

single species or a single combination of species that significantly explained all effects. 

Furthermore, the effects of metacommunity richness could not be explained simply by 

the presence of additional species in the high richness metacommunities; species also 

present in the low richness metacommunities contributed to all of the diversity effects 

observed. Species that were significant contributors to the spatial heterogeneity of algal, 

invertebrate, and Z  marina biomass were also not the same species responsible for the 

increase in beta-diversity.

Diversity measures

Beta-diversity was calculated as: Beta-diversity = 1 -  (UV/(U+V+UV)) where U is 

the relative abundance of the shared species in patch 1 and V is the relative abundance of 

the shared species in patch 21. Beta diversity was calculated for every possible pair of 

patches in a metacommunity and the mean was used as the datum from that 

metacommunity in the analyses.
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Synchrony

Synchrony was calculated as the sum of the covariances of epiphyte abundance 

through time for each possible pair of patches within a metacommunity2,3. To determine 

whether or not diversity and dispersal affected synchrony, we used these summed 

covariances as the response variable in a GLM with S-W diversity as a continuous 

predictor and dispersal as a class predictor. Results are not shown, but synchrony 

marginally significantly decreased with diversity in unconnected communities, and 

dispersal increased synchrony.
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RESULTS AND DISCUSSION

Both metacommunity richness and dispersal of grazers influenced grazer diversity 

(Fig. 1). As predicted, increasing initial metacommunity richness increased final grazer 

diversity at all scales: within patches (alpha diversity), between patches (beta diversity),

i c i n
and within entire metacommunities (gamma diversity) ’ . Grazer dispersal increased 

compositional similarity among patches, decreasing beta and gamma diversity without 

affecting alpha diversity in the patches (Fig. 1). Both local extinctions and colonizations 

occurred, at varying rates for different species (Table SI). Dispersal was frequent 

enough that all but one grazer species successfully founded populations in patches where 

they were not initially present, colonizing 25-100% of such patches. But dispersal was 

not so frequent that it erased the stamp of initial composition, since final proportional 

abundances of most species were significantly predicted by initial proportional 

abundances (Table SI). This evidence of colonization, extinction, and moderate dispersal 

rates confirms that our connected patches functioned as true metacommunities. Effects 

of this active dispersal on diversity in our experiment parallel the effects of passive 

dispersal observed for protozoans and other zooplankton20’21, suggesting that the dispersal 

effects on metacommunity diversity we found may be robust.

Metacommunity richness and dispersal of grazers also affected net production at 

multiple trophic levels. Mean grazer abundance increased with grazer richness both 

within patches (Table S2) and in entire metacommunities (Fig. 2a), as predicted13,15'17. 

Concomitantly, the larger grazer populations in richer metacommunities more effectively
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cropped biomass of primary producers, including macroalgae, cyanobacteria, the 

foundation species Zostera, and its epiphytic algae (Fig. 2c-f, Table S2). These 

metacommunity richness effects cannot be explained by “selection effects” (i.e. presence 

of a particular species at higher diversity), because several species from both small and 

large pools significantly contributed to these trends (see Supplementary Methods). Thus, 

even in a system with random assembly, immigration, and emigration, species richness 

pervasively influenced community and ecosystem properties.

Compared to diversity, grazer dispersal had relatively modest effects on ecosystem 

properties. Contrary to our prediction5’15, dispersal did not increase mean grazer diversity 

or abundance within patches (Fig. 1, 2a). Nonetheless, dispersal did affect grazing 

impact, allowing grazers to actively seek patches with preferred food and abandon 

patches with undesirable food. Specifically, connecting patches decreased the biomass of 

edible macroalgae and recruits of the tunicate Molgula manhattensis (Fig. 2c,d). In 

contrast, dispersal increased the biomass of less preferred cyanobacteria and Z  marina, at 

least in the less diverse communities (Fig. 2e,f). During the first 28 days of the 

experiment, this dispersal-mediated shift in grazing impact actually enhanced epiphyte 

biomass accumulation within connected patches (Table S2). Furthermore, connecting 

patches reduced the enhancement of secondary production by diversity seen in isolated 

patches. Specifically, total grazer abundance increased with grazer diversity, but the 

slope of this relationship was reduced by grazer dispersal (Fig. 2b, Table S3). In the 

absence of dispersal, diversity led to more effective and thorough grazing; however, 

when grazers could actively select favorable patches, they may have limited their own 

population growth by indirectly facilitating the colonization of limited substrate by less
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palatable algae22. Hence, active dispersal and habitat selection by multiple generations of 

grazers can affect ecosystem properties and modify the effects of biodiversity on 

ecosystem properties, underscoring a key difference between assemblages with single vs. 

multiple trophic levels.

Also contrary to our expectations2’8'11, higher metacommunity richness increased 

ecosystem variability both among and within patches. Whereas the similarity hypothesis 

predicts that increasing diversity increases compositional similarity, thereby increasing 

the predictability of ecosystem function across space11, we found that more diverse grazer 

metacommunities produced greater spatial variability in ecosystem properties, including 

algal and sessile invertebrate biomass accumulation (Fig. lb, Fig. 3b-d). This increased 

spatial variability probably stemmed from variability in grazer community composition 

(increased beta-diversity) in the more diverse metacommunities (Fig. lb), supporting the 

hypothesis that compositional similarity and spatial predictability of ecosystem function 

are positively related11. However, these results also suggest that when species are lost 

from entire landscapes, and not just local communities, declining diversity may increase 

patch compositional similarity, producing a negative relationship between diversity and

• 11 7T 74predictability in space. The contrast between our results and previous experiments ’ ’ 

highlights the importance of examining how different biodiversity loss scenarios affect 

ecosystem function, and recognizing that higher diversity does not necessarily increase 

the predictability of ecosystem functioning in space as it often does in time.

Metacommunity grazer richness also affected temporal variability of ecosystem 

properties, but in surprising, scale- and dispersal- dependent ways. First, temporal 

variabilities of both grazer abundance and epiphyte load were generally lower in
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metacommunities than in patches (Fig. 3e-h). At the patch scale, increasing grazer 

richness increased temporal variability of grazer abundance (Fig. 3e), contradicting 

predictions that diverse competitive assemblages will have lower temporal variability of 

aggregate properties2,8'10,15. Our results are consistent, however, with recent theory 

predicting that biodiversity can reduce stability of biomass in multi-trophic food webs 

with strongly generalist grazers, like ours19, and that mobile consumers can de-stabilize 

production in patchy landscapes .

In contrast to patch-scale patterns, at the metacommunity scale diversity stabilized 

both grazer and epiphyte abundance, at least in the absence of dispersal (grey bars, Fig. 3 

g,h), confirming predictions2,8'10,15. Since the patches in these unconnected 

metacommunities were isolated, the reduced variability of their summed properties at 

high diversity, even while individual patch variability was increased, must be due to 

asynchronous fluctuations. Asynchrony is often invoked as a mechanism stabilizing 

aggregate properties within patches at high diversity8. Similarly, spatial variability of 

species composition, or beta-diversity, may create asynchrony of ecosystem properties 

among patches, stabilizing ecosystem properties at the metacommunity scale (see 

conceptual diagram, Supp. Fig. 1). Dispersal may decrease beta-diversity and spatial 

heterogeneity (Figs. 2, 3) and increase synchrony, potentially eliminating this stabilizing 

effect (Supp. Fig. 1). In our experiment, grazer diversity did reduce synchrony of 

epiphyte abundance among patches, but only without dispersal (data not shown; see 

Supplementary Methods). This conceptually supports the spatial insurance hypothesis 

for metacommunities15, but also demonstrates that diversity can contribute insurance via 

spatial variation even in the absence of dispersal.
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The contrast between predicted stabilizing effects of diversity and dispersal, and our 

findings that diversity more often made ecosystem properties less predictable in space 

and time, highlights a potentially fundamental difference in processes mediating BD-EF 

relationships in single versus multi-trophic ecosystems: the influence of active food and 

habitat selection by mobile consumers. At the metacommunity level, grazer dispersal 

eliminated the stabilizing effect of diversity on ecosystem properties (Fig. 3g,h), and at 

the patch level, grazer dispersal consistently increased temporal variability (Fig. 3e,f). 

Both results contradict the spatial insurance hypothesis, which is based on equilibrium 

metacommunities of sessile organisms with passive dispersal15. In communities of 

mobile animals where dispersal is active and competitive exclusion is rare, connecting 

patches may allow both rapid recruitment to optimal habitat and emigration after resource 

depletion, inflating temporal variability within a given patch and enhancing spatial 

heterogeneity. This hypothesis is also consistent with our finding that, at least in less 

diverse communities, dispersal enhanced grazer impacts on edible algae but reduced 

impacts on inedible algae (Fig. 2c,e). Habitat selection, then, might be a means by which 

species interactions, including those that mediate production, transcend the local scale 

and affect patterns at metacommunity scales25,26.

Biodiversity-stability theory, like most ecological theory, assumes equilibrium ’ " 

10,15. Although our communities experienced colonization, extinction, and reached 

carrying capacity, they probably did not reach compositional equilibrium. Therefore, the 

increased temporal variability we observed in response to both diversity and dispersal 

might be due to transient dynamics. In nature, however, grazer composition shifts and 

seagrass patches change in size and location over timescales comparable to the length of
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our experiment, due to seasonal dynamics and disturbances (personal observation). Since 

such non-equilibrium phenomena are important in most natural ecosystems, we believe 

our results are broadly relevant. Furthermore, running the experiment for longer would 

probably increase the importance of dispersal, which eliminated the predicted and 

observed stabilizing effects of diversity (Fig. 3e-h). Consequently, our results probably 

differed from diversity-stability predictions because we used mobile consumers that can 

actively choose patches and affect spatial heterogeneity of resources, rather than sessile 

organisms with passive dispersal.

Our experiment demonstrates that the stabilizing effect of biodiversity can be 

modified by both dispersal and scale, supporting previous theory and empirical research 

demonstrating that both dispersal and scale can modify the effect of biodiversity on the 

magnitude of productivity14'17. Furthermore, our results indicate that increasing diversity 

will not necessarily increase the predictability of ecosystem functioning in space as it 

often does in time. There may be tradeoffs, then, between maximizing diversity across 

landscapes and stabilizing ecosystem services in time. However, our experiment also 

corroborates, for the first time, theory predicting that diversity can enhance reliability of 

ecosystem services through a spatial mechanism15: spatial heterogeneity created by more 

diverse metacommunities of grazers stabilized ecosystem properties at the 

metacommunity scale. Clearly, the spatial and temporal processes that influence 

diversity within natural landscapes can substantially influence the ways that biodiversity 

mediates ecosystem functioning. Integrating these influences is critical to effective 

management of ecosystem services in response to habitat fragmentation and other drivers 

of biodiversity change.
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FIGURE LEGENDS

Figure 1. Species pool size affects grazer diversity at multiple spatial scales. Grey 
bars=no dispersal corridors; black bars=dispersal corridors, (a) Mean (+ s.e.m.) patch 
diversity (Shannon-Weaver, SW, n=25 for each bar), (b) Beta-diversity (see 
Supplementary Methods-Diversity Measures, n=5 for each bar), (c) Metacommunity SW 
diversity (n=5 for each bar). R=richness; D=dispersal; f  p <.1, * p<.05, ** p <.01, *** p
< 001, oooi.

Figure 2. Metacommunity richness and dispersal affect the magnitude of ecosystem 
production at multiple trophic levels, (a) Mean (+s.e.m.) grazer abundance increased 
with diversity, but (b) this relationship was modified by dispersal. Open symbols = no 
dispersal, closed symbols = dispersal. n=50 for each set. More diverse (and denser) 
grazer communities more effectively reduced biomass of (c) edible macroalgae, (d) M. 
manhattensis recruits, (e) less edible cyanobacteria, and (f) Z. marina, the foundation 
species. Connecting patches allowed grazers to concentrate on preferred food (c,d), 
facilitating accumulation of less preferred food (e,f). n=5 for each bar. Symbols as in 
Fig. 1.

Figure 3. Diversity effects on ecosystem variability are modified by dispersal and spatial 
scale. Spatial variation (CV) (+ s.e.m.) among the five patches within a metacommunity 
for (a) grazer abundance, (b) biomass of Molgula manhattensis, the most frequent sessile 
invertebrate invader, (c) edible algae biomass (macroalgae), and (d) inedible algae 
biomass (cyanobacteria). n=5 for each bar. Temporal variation (CV) (+ s.e.m.) of (e, g) 
grazer abundance (n=10) and (f, i) epiphyte load (n=25) within patches and within whole 
metacommunities. Symbols as in Fig. 1.
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Supplemental Figure 1: Conceptual diagram of effects of species pool size and 
dispersal on spatial and temporal variability of ecosystem properties. Large circles 
represent patches, and each cluster of five patches is a metacommunity. Small circles 
within the patches represent individual grazers; colors signify species. Each combination 
of grazers consumes resources differently, creating spatial heterogeneity, as shown by the 
contrast between patch colors within a metacommunity. Patches of the same color are 
similar in species composition and grazing efficiency; consequently they have the same 
temporal fluctuations and are shown by the same color line on the graphs. Graphs show 
the fluctuations through time of a hypothetical ecosystem function, such as primary 
productivity, within each patch (thin lines, color matches patch color) and within the 
metacommunity as a whole (thick line, summed function of individual patches).

Increasing the number of species in the species pool used to assemble metacommunities 
leads to greater spatial variability in grazer species composition, which enhances spatial 
heterogeneity of the grazers’ resources and the variety of temporal patch trajectories.
This greater variety of patch trajectories stabilizes metacommunity function through time.

Dispersal decreases spatial variability and increases synchrony (temporal fluctuations in 
graphs are more in phase). This eliminates the stabilizing effect of metacommunity 
richness.
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Supplemental Methods:

Selection effects. To determine whether effects of grazer metacommunity richness were 
due to the presence of a particular grazer species, we ran backwards elimination multiple 
regressions of each response variable against the final abundance of each grazer species. 
Backwards elimination regression showed that different combinations of species were 
significant contributors to the decrease in each food resource (Fig. 2); there was not a 
single species or a single combination of species that significantly explained all effects. 
Furthermore, the effects of metacommunity richness could not be explained simply by 
the presence of additional species in the high richness metacommunities; species also 
present in the low richness metacommunities contributed to all of the diversity effects 
observed. Species that were significant contributors to the spatial heterogeneity of algal, 
invertebrate, and Z. marina biomass were also not the same species responsible for the 
increase in beta-diversity.

Diversity measures. Beta-diversity was calculated as: Beta-diversity = 1 -  
(UV/(U+V+UV)) where U is the relative abundance of the shared species in patch 1 and 
V is the relative abundance of the shared species in patch 21. Beta diversity was 
calculated for every possible pair of patches in a metacommunity and the mean was used 
as the datum from that metacommunity in the analyses.

Synchrony. Synchrony was calculated as the sum of the covariances of epiphyte 
abundance through time for each possible pair of patches within a metacommunity2,3. To 
determine whether or not diversity and dispersal affected synchrony, we used these 
summed covariances as the response variable in a GLM with S-W diversity as a 
continuous predictor and dispersal as a class predictor. Results are not shown, but 
synchrony marginally significantly decreased with diversity in unconnected communities, 
and dispersal increased synchrony.

REFERENCES for Supplementary Information
1. Chao, A., Chazdon, R. L., Colwell, R. K. & Shen, T.-J. Ecol. Lett. 8,148-159 (2005).
2. Steiner, C. F., Long, Z. T., Krumins, J. A. & Morin, P. J. Ecol Lett 8,819-828 

(2005).
3. Tilman, D. Ecology 80,1455-1474 (1999).
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Supplementary Table 1 (Table SI): Effects of dispersal on extinction, colonization, 
and final composition compared with initial composition. Extinctions were instances 
where initial abundance was >0 and final abundance was 0; colonizations were instances 
where initial patch abundance was 0 and final abundance was >0. Comparisons of initial 
and final relative abundances of each species were made using a GLM with initial 
relative abundance as a continuous predictor and dispersal as a class predictor. Table 
cells are (F-statistic, p-value).

Species

Extinction rate 
No W/ 

Disp Disp

Colonization
rate

W/ Disp

R2
Initial

Com position

F, p-value 

D ispersal
Comp
*Disp Overall

Erichsonella 2.21, 5.92, 6.69,
attenuata 0.38 0.45 0.2 0.3037 9.97, 0.0028 0.1438 0.0189 0.0008
Gammarus 28.35, 2.99, 1.63, 13.19,
mucronatus 0 0 1 0.4625 <0.0001 0.0907 0.2082 <0.0001

0.59, 8.30, 4.27,
Idotea baltica 0.08 0.09 0.67 0.208 7.27, 0.0098 0.4471 0.0060 0.0096

Ampithoe 0.15, 0.53, 2.17,
valida 0 0.05 0.4 0.1238 6.04, 0.0178 0.7046 0.4692 0.1048
Cymadusa 21.01, 1.31, 5.23, 10.54,
compta 0 0 1 0.4073 <0.0001 0.2585 0.0268 <0.0001
Dulichiella 0.15, 1.26, 5.15,
appendiculata 0.11 0.21 0.75 0.2516 13.09, 0.0007 0.7047 0.2676 0.0037
Elasmopus 0.50, 0.64, 2.51,
levis 0.22 0.17 1 0.1407 7.42, 0.0091 0.4851 0.4295 0.0703
Paracerceis 0.28, 0.60, 0.79,
caudata 0.67 0.85 0 0.0457 1.48, 0.2300 0.6023 0.4422 0.5082
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Supplementary Table 2 (Table S2): Effects of metacommunity richness and 
dispersal on patterns of diversity and ecosystem properties within patches and 
metacommunities. Data were analyzed using a GLM. Metacommunity ID is fully 
nested within the interaction term. When the p-value for it exceeded 0.2, we removed it 
from the analysis, changing the model d.o.f. from 7 to 3. Table cells are (F-statistic, p- 
value). When data were not normally distributed, they were log-transformed.

Metacomm.
Metacommunity Richness * Meta-

R ichness Dispersal Dispersal community 
R esponse Variable_____________________  (df=1)_________(df=1)________ (df=1) ID (df=4) Total (df=7,3)

Patch (n=2S for each combination of treatments, n=100 total)
Grazer species richness 64.93, <0.0001 0.9, 0.3441 3.2, 0.0768 4.05, 0.0045 29.08, <0.0001
Grazer Shannon-Weaver diversity 700.19 <0.0001 1.05, 0.3090 1.49, 0.2257 NS 234.69, <0.0001
Log grazer abundance 24.05, <0.0001 0.10, 0.7568 0.92, 0.3391 4.08, 0.0044 5.99, <0.0001
Epiphytic chi a  (week 2) 33.44, <0.0001 10.93, 0.0014 3.61, 0.0604 7.53, <0.0001 7.48, <0.0001
Epiphytic chi a (week 4) 0.24, 0.6227 4.02, 0.0477 0.1, 0.7532 NS 1.46, 0.2317
Epiphytic chi a (week 6) 0.14, 0.7130 0.53, 0.4695 1.59, 0.2108 NS 0.76, 0.5219
Log total algal biomass 20.91, <0.0001 0, 0.9482 1.0, 0.3197 NS 7.3, 0.0002
Edible algae biomass (macroalgae) 7.65, 0.0068 1.29, 0.2583 0.75, 0.3874 3.23, 0.0258
Inedible algae biomass (cyanobacteria) 4.85, 0.0301 0.28, 0.6011 3.17, 0.0781 NS 2.76, 0.0461
Z. marina biomass 19.05, <0.0001 4.98, 0.0280 1.93, 0.1682 NS 8.65, <0.0001
Invertebrate biomass 38.16, <0.0001 1.87, 0.1752 0.09, .7637 NS 13.37, <0.0001
Log M. manhattensis biomass 10.93 0.0014 6.96, 0.0098 8.52, 0.0044 3.51, 0.0104 7.42, <0.0001
Temporal CV of grazer abundance 4.56, 0.0397 1.44, 0.2386 0.63, 0.4308 NS 2.21, 0.1039
Temporal CV of epiphytic chi a 0.14, 0.7107 11.31,0.0011 1.89, 0.1726 1.64, 0.1708 2.00, 0.0629

Metacommunity (n=S for each combination o f treatments, n=20 total)
Grazer species richness 77.04, <0.0001 1.04, 0.3226 0.04, 0.8408 N/A 26.04, <0.0001
Grazer Shannon-Weaver diversity 647.44, <0.0001 5.95, 0.0267 0.24, 0.6333 N/A 217.88, <0.0001
Grazer beta-diversity 4.94, 0.0411 3.39, 0.0844 0.15, 0.7063 N/A 2.82, 0.0720
Grazer abundance 19.78, 0.0004 0.05, 0.8305 3.73, 0.0715 N/A 7.85, 0.0019
Total algal biomass 9.91, 0.0062 0.08, 0.7828 0.61, 0.4477 N/A 3.53, 0.0390
Edible algae biomass (macroalgae) 4.96, 0.0406 0.84, 0.3731 0.49, 0.4942 N/A 2.10, 0.1408
Inedible algae biomass (cyanobacteria) 4.43, 0.0514 0.25, 0.6227 2.90, 0.1078 N/A 2.53, 0.094
Z. marina biomass 17.69, 0.0007 4.62, 0.0472 1.79, 0.1997 N/A 8.03, 0.0017
Invertebrate biomass 27.06, <0.0001 1.32, 0.2670 0.06, 0.8028 N/A 9.48. 0.0008
M. manhattensis biomass 67.71, <0.0001 1.68, 0.2129 3.42, 0.0831 N/A 24.27, <0.0001
Spatial CV of grazer abundance 0.01, 0.9239 1.67, 0.2147 1.96, 0.1811 N/A 1.21,0.3377
Spatial CV of epiphytic chi a (week 2) 1.32, 0.2683 2.42, 0.1397 0.30, 0.5904 N/A 1.34, 0.2952
Spatial CV of epiphytic chi a (week 4) 0.39, 0.5418 0.46, 0.5088 0 ,0 .9776 N/A 0.28, 0.8376
Spatial CV of epiphytic chi a  (week 6) 0.02, 0.8841 0.79, 0.3879 1.5, 0.2388 N/A 0.77, 0.5281
Spatial CV of total algal biomass 10.38, 0.0053 1.31, 0.2688 0.24, 0.6318 N/A 3.98, 0.0270
Spatial CV of edible algae biomass 3.67, 0.0736 3.44, 0.0820 0.03, 0.8564 N/A 2.38, 0.1078
Spatial CV of inedible algae biomass 8.80, 0.0091 1.84, 0.1937 0.79, 0.3884 N/A 3.81, 0.0310
Spatial CV of Z. marina biomass 1.68, 0.2128 1.29, 0.2732 0.74, 0.4016 N/A 1.24, 0.3287
Spatial CV of invertebrate biomass 4.17, 0.0581 0.8, 0.3843 1.63, 0.2201 N/A 2.2, 0.1279
Spatial CV of M. manhattensis biomass 21.65, 0.0003 3.01, 0.1020 0 ,0 .9468 N/A 8.22, 0.0015
Temporal CV of grazer abundance 1.25, 0.3262 0.91, 0.3943 10.34 0.0324 N/A 4.17, 0.1009
Temporal CV of epiphytic chi a 1.42, 0.2502 0.31, 0.5863 3.07, 0.0991 N/A 1.60, 0.2288
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Supplementary Table 3 (Table S3): Effects of final grazer diversity on ecosystem 
properties at both patch- and metacommunity- scales. Data were analyzed using a 
GLM with grazer Shannon-Weaver (S-W) diversity as a continuous predictor and 
dispersal as a class predictor. Local response variables were regressed against local 
grazer S-W and metacommunity response variables were regressed against 
metacommunity S-W. Table cells are (F-statistic, p-value).

G razer S-W *
Grazer S-W D ispersal D ispersal 

R esponse  Variable (df=1) (df=1) (df=1) R2 Total (df=3)

Patch (n=100)
Grazer abundance 19.30, <0.0001 3.52, 0.0638 4.52, 0.0361 0.189 7.37, 0.0002
Log total algai biomass 16.18, 0.0001 0.33, 0.5669 0.69, 0.4083 0.156 5.92, 0.0010
Edible algae biomass (macroalgae) 3.67, 0.0585 1.87, 0.1861 0.42, 0.5183 0.054 1.82, 0.1496
Inedible algae biomass (cyanobacteria) 3.80, 0.0542 2.48. 0.1184 2.67, 0.1059 0.073 2.51,0.0634
Z. marina biomass 12.92,0.0005 0.19, 0.6653 1.53, 0.2197 0.175 6.73, 0.0004
Invertebrate biomass 24.68, <0.0001 0.84, 0.3624 0.03, 0.8537 0.224 9.13, <0.0001
Log M. manhattensis biomass 19.24, <0.0001 0.31,0.5811 0.28, 0.5979 0.168 6.42, 0.0005
Temporal CV of grazer abundance 2.43, 0.1279 0.10, 0.7499 0.27, 0.6086 0.101 1.34, 0.2753
Temporal CV of epiphytic chi a 0.17, 0.6849 0.85, 0.3579 0.72, 0.3980 0.168 2.57, 0.0591

Metacommunity (n=20)
Grazer abundance 20.57, 0.0003 3.51,0.0795 3.50, 0.0798 0.601 8.04, 0.00017
Algal biomass 9.50, 0.0071 0.03, 0.8718 0.42, 0.5266 0.382 3.29, 0.0478
Edible algae biomass (macroalgae) 0.63, 0.4369 3.46, 0.0812 0.35, 0.5649 0.269 1.96, 0.1608
Inedible algae biomass (cyanobacteria) 0.54, 0.4723 0.08, 0.7862 3.64, 0.0745 0.350 2.87, 0.0688
Z. marina biomass 18.34, 0.0006 4.41, 0.052 1.69, 0.2120 0.603 8.12, 0.0016

Invertebrate biomass 24.83, 0.0001 0.40, 0.5347 0.09, 0.7668 0.620 8.70, 0.0012

M. manhattensis biomass 48.11, <0.0001 5.31,0.0350 2.32, 0.1472 0.766 17.48, <0.0001

Spatial CV of grazer abundance 0.01, 0.9255 0.05, 0.8176 1.68, 0.2137 0.172 1.11, 0.3750
Spatial CV of epiphytic chi a (week 2) 3.17, 0.0941 0.00, 0.9749 0.49, 0.4920 0.287 2.15, 0.1138
Spatial CV of epiphytic chi a (week 4) 0.04, 0.8456 0.00, 0.9722 1.41, 0.2530 0.226 1.55, 0.2391

Spatial CV of epiphytic chi a (week 6) 0.00, 0.9682 1.02, 0.3282 1.15, 0.2499 0.072 0.41, 0.7472

Spatial CV of total algal biomass 8.44, 0.0103 0.41, 0.5313 0.03, 0.8649 0.376 3.22, 0.0510

Spatial CV of Z. marina biomass 0.06, 0.8080 2.31, 0.1484 1.02, 0.3278 0.535 6.13, 0.0056

Spatial CV of invertebrate biomass 3.16, 0.0946 1.12, 0.306 0.65, 0.4303 0.218 1.48, 0.2569

Spatial CV of M. manhattensis biomass 17.38, 0.0007 0.52, 0.4816 0.00, 0.9628 0.557 6.70, 0.0039

Temporal CV of grazer abundance 0.32, 0.6036 6.19, 0.0676 5.94, 0.0714 0.651 2.49, 0.1994

Temporal CV of epiphytic chi a 1.12, 0.3063 1.06, 0.3179 2.72, 0.1184 0.210 1.42, 0.2741
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10 48 5 8 2 0 0 0 0 0 30 3 0.421
10 49 3 5 7 0 0 0 0 0 30 3 0.453
10 50 4 9 2 0 0 0 0 0 30 3 0.403
11 51 + 4 1 0 2 4 2 0 2 30 6 0.735 0.889
11 52 + 1 0 4 2 0 3 2 3 30 6 0.744
11 53 + 0 0 1 4 3 3 2 2 30 6 0.744
11 54 + 2 2 2 3 2 1 2 1 30 8 0.880
11 55 + 2 2 3 2 1 3 2 0 30 7 0.825 0.879
12 56 1 1 3 1 0 5 1 3 30 7 0.752
12 57 3 2 1 0 0 4 2 3 30 6 0.744
12 58 2 4 1 1 1 1 3 2 30 8 0.840
12 59 2 2 2 2 1 2 2 2 30 8 0.895
12 60 0 2 2 2 2 1 4 2 30 7 0.815
13 61 6 6 3 0 0 0 0 0 30 3 0.458 0.477
13 62 3 6 6 0 0 0 0 0 30 3 0.458
13 63 4 4 7 0 0 0 0 0 30 3 0.461
13 64 6 3 6 0 0 0 0 0 30 3 0.458
13 65 5 7 3 0 0 0 0 0 30 3 0.453
14 66 + 2 2 3 1 0 1 3 3 30 7 0.810 0.881
14 67 + 3 2 3 1 2 3 1 0 30 7 0.810
14 68 + 1 2 6 2 0 0 2 2 30 6 0.704
14 69 + 4 1 1 0 3 1 5 0 30 6 0.687
14 70 + 3 4 0 2 1 2 1 2 30 7 0.800
15 71 + 5 8 2 0 0 0 0 0 30 3 0.421 0.469
15 72 + 5 8 2 0 0 0 0 0 30 3 0.421
15 73 + 5 4 6 0 0 0 0 0 30 3 0.471
15 74 + 6 5 4 0 0 0 0 0 30 3 0.471
15 75 + 4 6 5 0 0 0 0 0 30 3 0.471
16 76 1 5 1 3 1 0 1 3 30 7 0.752 0.893
16 77 1 3 0 1 4 3 2 1 30 7 0.810
16 78 3 0 1 3 3 0 3 2 30 6 0.754
16 79 4 1 3 1 1 1 2 2 30 8 0.840
16 80 4 0 3 1 0 2 3 2 30 6 0.744
17 81 + 6 5 4 0 0 0 0 0 30 3 0.471 0.474
17 82 + 5 5 5 0 0 0 0 0 30 3 0.477
17 83 + 8 3 4 0 0 0 0 0 30 3 0.438
17 84 + 4 8 3 0 0 0 0 0 30 3 0.438
17 85 + 5 5 5 0 0 0 0 0 30 3 0.477
18 86 3 0 3 2 0 2 1 4 30 6 0.744 0.879
18 87 2 1 5 1 0 1 2 3 30 7 0.767
18 88 1 1 4 0 2 4 2 1 30 7 0.775
18 89 0 3 2 2 3 3 2 0 30 6 0.769
18 90 1 2 2 2 3 4 1 0 30 7 0.800
19 91 4 4 7 0 0 0 0 0 30 3 0.461 0.475
19 92 4 7 4 0 0 0 0 0 30 3 0.461
19 93 5 6 4 0 0 0 0 0 30 3 0.471
19 94 4 5 6 0 0 0 0 0 30 3 0.471
19 95 9 5 1 0 0 0 0 0 30 3 0.371
20 96 + 2 1 3 4 3 1 1 0 30 7 0.785 0.896
20 97 + 2 2 1 1 3 3 2 1 30 8 0.865
20 98 + 3 0 3 1 2 2 3 1 30 7 0.810
20 99 + 2 3 2 1 2 2 2 1 30 8 0.880
20 100 + 2 1 3 0 5 2 2 0 30 6 0.727
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CHAPTER 3:
MECHANISMS FOR DISPERSAL MODIFICATION OF ECOSYSTEM PROPERTIES 

WITHIN EXPERIMENTAL SEAGRASS METACOMMUNITIES

ABSTRACT

Habitat fragmentation, climate change and species invasions are changing 
biodiversity at both local and regional scales. Dispersal of individuals can mediate how 
all three of these changes to regional biodiversity affect diversity in networks of local 
communities, or metacommunities. But there is little theory or empirical evidence to 
suggest how dispersal or other metacommunity processes might affect the relationships 
between biodiversity and ecosystem function (BD-EF). We tested the interactive effects 
of grazer diversity and dispersal (patch connectivity) on the magnitude and predictability 
of ecosystem properties in experimental seagrass metacommunities. Previous analyses of 
this experiment suggested that dispersal had limited effects on the magnitude of 
community-level or aggregate properties but could modify BD-EF relationships and de­
stabilize grazer and algal abundance. Here we examined how dispersal affected the 
temporal and spatial variability of individual grazer and resource populations. We 
investigated several possible mechanisms for the observed dispersal modification of BD- 
EF: competition-coIonization tradeoffs, metacommunity source-sink dynamics, effects on 
individual metapopulations, and synchronization of metacommunity dynamics. We did 
not find evidence of competition-colonization tradeoffs among the eight species of 
grazers. Instead, the best competitors were the best dispersers, and dispersal rarely 
affected relative competitive performance. Likewise, dispersal had limited effects on the 
spatial and temporal variability of individual grazer species. We think the best remaining 
explanation for the reduction of grazer abundance in diverse metacommunities by 
dispersal is that dispersal indirectly reduced carrying capacity by allowing the 
accumulation of less edible algae. Selective foraging and/or a decrease in consumption 
pressure within patches during the first weeks of the experiment, mediated by mass 
effects, could have increased accumulation of less edible algae. Overall, dispersal tended 
to homogenize other ecosystem components across space, synchronize resource 
dynamics, and reverse the effects of diversity on the magnitude and predictability of 
ecosystem properties. Our experiment illustrates that dispersal can have subtle but 
important effects on the magnitude and predictability of ecosystem properties even when 
most previously proposed mechanisms for dispersal effects are not operating.
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INTRODUCTION

In the last decade, research has shown that biodiversity losses may affect both the 

magnitude and stability of ecosystem processes such as production, decomposition, and 

nutrient cycling at the scale of local patches (e.g. Naeem et al. 1994, Tilman et al. 1996, 

McGrady-Steed et al. 1997, Loreau et al. 2001, Tilman et al. 2001, Hooper et al. 2005). 

Recent reviews of the BD-EF field have pointed out that three of the major challenges to 

making BD-EF research relevant to conservation are 1) scaling up to landscapes, 2) 

studying BD-EF relationships within foodwebs, rather than simply within trophic levels, 

and 3) separating the direct effects of habitat fragmentation, species introductions, and 

climate change on ecosystem function from their indirect effects on ecosystem function 

mediated by their effects on diversity (Giller et al. 2004, Srivastava and Vellend 2005).

As a first step towards meeting these challenges, we tested how diversity and 

dispersal interactively affect the magnitude, spatial variability, and temporal variability of 

ecosystem properties in experimental multi-trophic seagrass (Zostera marina) 

metacommunities. We manipulated metacommunity-wide species richness (gamma 

diversity) of mobile crustacean grazers by randomly assembling founding communities of 

grazers from two different species pools: one with three species and one with eight 

species. This mimicked loss of rare species from a regional species pool. Initial 

metacommunity-wide richness of grazers was set at either three or eight species, but both 

the relative abundances of species within metacommunities and the species richness 

within individual patches varied. We allowed this initial random assembly plus
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subsequent dispersal and species interactions to influence grazer diversity over the six 

weeks of the experiment. This design allowed us to simultaneously consider how 

metacommunity richness affected diversity within and between patches, to indirectly 

examine how beta-diversity affected ecosystem function, and to examine how dispersal 

might modify BD-EF relationships in metacommunities.

We found that, although dispersal only slightly affected diversity patterns and only 

modestly influenced aggregate ecosystem properties at any scale, dispersal still 1) 

significantly reduced the effect of grazer diversity on grazer abundance and 2) eliminated 

the few temporally stabilizing effects of diversity that we observed, increasing temporal 

variability of grazers and epiphytes (France and Duffy 2006b). Here we follow up on 

these findings by examining evidence for several mechanisms by which dispersal could 

mediate BD-EF relationships. These include: 1) competition-colonization tradeoffs, 2) 

source-sink metacommunity dynamics and mass effects, 3) sampling effects on 

variability due to dispersal favoring species with high or low population variability, 4) 

increasing synchronization of dynamics among patches, and 5) diminishing spatial 

variability of individual populations.

Both competition-colonization tradeoffs and source-sink metacommunity dynamics 

could explain how dispersal reduces the effects of diversity on grazer abundance that we 

observed in our experiment (France and Duffy 2006b). First, a tradeoff between 

competitive ability and dispersal ability is a common premise of many metacommunity 

models (summarized in Mouquet et al. 2005) and has been demonstrated in plant and 

parasitoid assemblages (Tilman 1994, Tilman et al. 1994, Lei and Hanski 1998). Under 

such a tradeoff, and assuming that productivity is directly positively related to
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competitive ability (Tilman et al. 1997, Loreau 1998, Mouquet et al. 2002), dispersal 

could decrease production because species that maximize production will not be the same 

species favored by high dispersal. So, dispersal could simultaneously increase diversity 

and decrease production if it helps maintain poorer competitors within patches.

Second, dispersal could help maintain species in patches where they perform poorly 

through source-sink dynamics or mass effects (net flow of individuals to a patch from 

other patches with larger populations) (Shmida and Wilson 1985, Amarasekare and 

Nisbet 2001, Mouquet et al. 2005). Again, if dispersal maintains poorly performing 

species, then total resource acquisition and production could be reduced by dispersal 

(Loreau and Mouquet 1999, Bond and Chase 2002, Mouquet and Loreau 2002).

However, if patches differ considerably in resource availability or other environmental 

conditions, the effect of dispersal on ecosystem function might depend on scale. In this 

case, mass effects could decrease positive relationships between diversity and ecosystem 

function within patches by sustaining species in unfavorable patches with reproductive 

output from more favorable patches. Conversely, at the metacommunity scale, these 

dynamics could still yield predominantly positive relationships between biodiversity and 

ecosystem function. This is because dispersal could ensure that species best-suited to 

each patch will reach those patches, leading to positive BD-EF at the metacommunity 

scale -  a kind of niche complementarity acting through space (Bond and Chase 2002). In 

our experiment, dispersal reduced the slope of the relationship between diversity and 

grazer abundance at both patch and metacommunity scales (France and Duffy 2006b), 

suggesting that competition-colonization tradeoffs or mass effects might be mediating 

BD-EF.
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In addition to decreasing the effect of diversity on grazer abundance in our 

experiment, dispersal also increased temporal variability of grazers and epiphytes (France 

and Duffy 2006b). There are several possible explanations for this. First, dispersal could 

increase temporal variability of both grazers and epiphytes if it allows a grazer species 

with high temporal variability to spread and dominate throughout the metacommunity 

(Loreau et al. 2003). Alternatively, dispersal could stabilize individual metapopulations 

within the metacommunity by enabling new individuals from patches with successful 

populations to subsidize populations in patches of poorer quality or lower reproductive 

success (the “rescue effect”). Relatively small subsidies for each grazer species could 

substantially reduce temporal variability of their aggregate abundance. Somewhat 

similarly, if patches are heterogeneous and that heterogeneity changes through time, 

dispersal could decrease temporal variability of metacommunities by enabling dispersing 

species to find suitable habitat, averaging out environmental variation across patches 

(Holt 1993, Gonzalez and Holt 2002, Loreau et al. 2003). This spatial averaging effect 

can buffer ecosystem processes.

In contrast to these potentially stabilizing benefits of dispersal, if dispersal reduces 

the time lag between population dynamics of consumers and their resources in a patchy 

landscape, dispersal could de-stabilize ecosystem processes (Neubert et al. 2002). This 

could explain why dispersal increased temporal variability of epiphytes and eliminated 

stabilizing effects of consumer diversity (France and Duffy 2006b). As metapopulation 

researchers have recognized, dispersal could also de-stabilize metapopulations of 

individual species by synchronizing population dynamics (Hastings 1993, Ranta et al. 

1995, Ranta et al. 1997, 1998, Ruxton and Rohani 1998, Blasius et al. 1999, Shimada and
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Ishihama 2000). We suggest similarly that dispersal-mediated synchronization of 

dynamics among patches might increase temporal variability of ecosystem processes in 

metacommunities (France and Duffy 2006b). As others have recognized, asynchronous 

population fluctuations among patches can be an important stabilizer for consumer- 

resource dynamics in metacommunities (De Roos et al. 1991, McCauley et al. 1993, 

1996). In general, all of these potential dispersal effects on individual species could 

affect variability of aggregate ecosystem properties within metacommunities. Limited 

theoretical work suggests that, within metacommunities, dispersal can also de­

synchronize and/or de-stabilize dynamics, depending on fecundity and interspecific 

competition (Neuhauser 2002), the number of patches (Ylikaijula et al. 2000), and which 

trophic levels disperse between patches (Koelle and Vandeimeer 2005). Some of these 

predicted mechanisms for direct effects of dispersal on stability might explain the striking 

de-stabilizing effects of dispersal we observed.

Finally, consideration of multiple trophic levels (two in our case), adds additional 

complexity. When dispersing consumers can substantially affect their resources at lower 

trophic levels, such as habitat-forming plants, dispersal might mediate the stability of 

ecosystem properties at the metacommunity-scale by affecting the degree of spatial 

heterogeneity of resources and structure among patches. In our experiment, beta- 

diversity, or variability among patches in grazer species composition, was the component 

of diversity most affected by dispersal, and it was reduced (France and Duffy 2006b). 

Previously, we suggested that patch heterogeneity may stabilize metacommunity 

temporal dynamics in the same way that species diversity can stabilize patch temporal 

dynamics (France and Duffy 2006b): the greater the differences in species composition
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among patches, the greater the chance that patches will fluctuate asynchronously. This 

can stabilize dynamics and ecosystem properties at the metacommunity scale, analogous 

to the “portfolio effect” of diversity within a patch (Doak et al. 1998), where the 

fluctuations of different species cancel each other out, rendering community abundance 

more stable. So, grazer dispersal could synchronize grazer dynamics across patches 

through 1) population connectivity, as discussed in the previous paragraph, and 2) by 

homogenizing the environmental conditions among patches which, in turn, mediate 

grazer dynamics. The importance of spatial heterogeneity for the stability of ecosystem 

processes was recognized early on in BD-EF research (Frank and McNaughton 1991), 

but has received relatively little attention since. Though we know spatial heterogeneity 

can affect BD-EF (Cardinale et al. 2000), most metacommunity BD-EF theory has 

imposed spatial heterogeneity that dictates local and between-patch species composition 

(Mouquet and Loreau 2002, Loreau et al. 2003, Mouquet and Loreau 2003). This makes 

it difficult to predict how between-patch diversity per se (in the absence of abiotic 

heterogeneity) might affect the spatial and temporal variability of ecosystem function.

Here we examine evidence for mechanisms by which dispersal could have affected 

the magnitude and predictability of ecosystem properties in our experimental 

metacommunities, independent of dispersal effects on diversity. Competition- 

colonization tradeoffs and mass effects might explain the reduction in the dependence of 

grazer abundance on grazer diversity seen in the experiment. Selection of species with 

high population-level temporal variability by dispersal, synchronization of dynamics 

among patches, and reductions in spatial heterogeneity might each have eliminated the 

stabilizing effects of diversity we documented.
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MATERIALS AND METHODS

Study system

Seagrasses are important foundation species in marine environments, and often 

harbor high diversity of invertebrates and fishes (Hemminga and Duarte 2000, Williams 

and Heck 2001). While seagrasses often form large contiguous beds, natural processes 

such as new recruitment and growth, storms, bioturbation by large animals, and disease,
•y

can create patches as small as 0.5m (Robbins and Bell 1994, Hovel and Lipcius 2001). 

Seagrass habitats worldwide are disappearing at alarming rates (Duarte 2002, Orth et al. 

2006) due to nutrient and sediment pollution, disease, and possibly food-web alteration 

(Williams and Heck 2001). The Chesapeake Bay, where we conducted our work, has 

lost more than half of its underwater grass cover since the early 20 century, with much 

of this loss occurring in the last several decades (Orth and Moore 1984, Orth et al. 2005). 

The dominant species found in the lower Chesapeake Bay, Zostera marina (eelgrass), is 

the most widespread and abundant marine macrophyte in the northern hemisphere, and 

supports many commercially important species (Hemminga and Duarte 2000, Heck et al. 

2003). The dominant primary consumers in many eelgrass beds are small crustacean 

mesograzers, which feed preferentially on epiphytic micro- and macroalgae and can have 

important indirect, positive effects on eelgrass (Neckles et al. 1993, Valentine and Duffy 

2006).

We tested the interactive effects of grazer richness and dispersal using a fully- 

factorial design. We manipulated metacommunity richness by changing the size of the
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species pool of these crustacean grazers used to assemble the grazer metacommunities. 

The small species pool was a subset of the large species pool, and included the three most 

abundant grazers in the field at the time of the experiment (two isopods, Erichsonella 

attenuata and Idotea baltica, and an amphipod, Gammarus mucronatus). The large pool 

of eight species included approximately 75% of the epifaunal crustacean grazer species 

known from the lower Chesapeake Bay region (Wass 1972), and included the three 

species from the small pool as well as four more amphipods, Ampithoe valida, Cymadusa 

compta, Dulichiella appendiculata, and Elasmopus levis, and one additional isopod, 

Paracerceis caudata. All of these crustaceans have sexual reproduction, overlapping 

generations and direct development, and all feed on epiphytic algae and associated 

detritus (Duffy and Hay 2000, Duffy et al. 2003). At summer temperatures, generation 

times in our system can be as short as three weeks for some amphipods (Fredette and 

Diaz 1986) and one month for isopods (Kouwenberg and Pinkster 1985, Jormalainen and 

Tuomi 1989). These species can all swim and crawl along eelgrass blades, but differ in 

their swimming ability and activity level (personal observation, Duffy and Hay 1994). 

Dispersal distances and frequencies for these organisms are not well-known; however, all 

species used have been observed to disperse 10s-100s of meters by swimming or drifting 

on tidal currents to new seagrass patches (Matich et al. in prep. Vimstein and Curran 

1986). Both drift macroalgae and eelgrass detritus wrack are potential long-distance (up 

to 10s of km) dispersal vectors (Holmqvist 1994, Brooks and Bell 2001, Harwell and 

Orth 2002).

The experiment was conducted in outdoor, flow-through seagrass mesocosms at the 

Virginia Institute of Marine Science, Gloucester Point, Virginia, USA. The mesocosms
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were semi-transparent buckets that held 13.5 L of water, fitted with 250-pm mesh drain 

holes. Seawater from the York River estuary was filtered by passing through a sand filter 

and then 500 micron mesh bags, and delivered to each mesocosm in pulses via vinyl 

tubing angled to create turbulent flow. The mesocosm arrays were shaded with a layer of 

neutral-density fiberglass screen to approximate natural light levels. Fifteen pre-weighed 

Z. marina shoots were planted in each mesocosm. This eelgrass shoot density falls 

within the range observed locally (Orth and Moore 1986). Prior to planting, the shoots 

were spun 20 times in a salad spinner and then massed to determine an initial grass wet 

mass for each mesocosm.

Each experimental metacommunity consisted of five of these mesocosms clustered 

together and indirectly connected by sharing a common flow-through water supply. A 

trapezoidal trough periodically dumped seawater into a common basin drained by tubing 

to each mesocosm within the metacommunity. Hereafter, we call a mesocosm a “patch” 

and a group of five mesocosms a “metacommunity.”

Experimental design

We used a fully-crossed, two-factor ANOVA design with grazer metacommunity 

richness and dispersal as the two fixed factors. Metacommunity richness had two levels, 

low (three spp.) and high (eight spp.). Dispersal regime also had two levels: no dispersal 

between patches, and some dispersal (mesocosms connected with corridors). 

Metacommunities with dispersal had all five patches connected to a small central hub via 

5 cm long corridors of clear vinyl tubing. We used this configuration so that grazers 

leaving one patch had an equal chance of dispersing to all of the other patches within the 

region. Entrances to the corridors were 3 cm from the water surface and 2.2 cm in 

diameter, or 5-20x the width of adult amphipods and isopods. All grazer species could
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swim through the dispersal corridors, but varied in their dispersal “inclinations”. Active 

(voluntary) dispersal could not occur between unconnected patches. Passive dispersal 

may have occasionally occurred by transfer via sampling and maintenance equipment. 

Each of the four treatment combinations (metacommunity richness x dispersal regime) 

was replicated five times, for a total of 20 metacommunities and 100 patches.

At the start of the experiment, each patch was inoculated, or “colonized”, by 30 

individuals (15 male-female pairs of reproductively mature adults). We determined the 

species composition of these founding communities by randomly drawing pairs of 

individuals from the designated species pool. Each species had an equal chance of being 

chosen at each draw. Thus, although initial metacommunity-wide richness of grazers was 

set at either three or eight species, both the relative abundances of species within 

metacommunities and the species richness within patches varied. We allowed this initial 

random assembly plus subsequent dispersal and species interactions to influence grazer 

diversity over the six weeks of the experiment. The initial composition for each patch is 

available in the on-line supplementary information of France & Duffy (2006b). The 

experiment ran for 47 days, which was long enough for nearly two complete generations 

of most grazer species in addition to the founding generation, population increases 

approaching two orders of magnitude (France and Duffy 2006b), and achievement of 

carrying capacity.

In a few mesocosms, nearly all of the planted eelgrass was consumed or had 

senesced at the end of this 47-day period, so the experiment was terminated and 

harvested at this time to prevent grazer population crashes. Note that the loss of grass 

biomass over the course of the experiment is not necessarily a mesocosm artifact: Z
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marina is near the southern edge of its range in the Chesapeake Bay (Green and Short

2003), and often declines precipitously during the late summer months in the York River 

estuary as well (Duffy et al. unpublished data, Orth and Moore 1986).

Sampling ecosystem properties

At two-week intervals, we estimated biomass of epiphytic algae, the grazers’ main 

food source, by measuring epiphytic chlorophyll. Algae were negligible on the blades at 

the beginning of the experiment. Algae were scraped off of three haphazardly chosen 

blades from each mesocosm, pooled, collected on a glass fiber filter, and extracted in 20 

ml of 90% acetone at -20°C for 24 hours. Chlorophyll a, b, c and carotenoid pigments 

were determined spectrophotometrically (Parsons et al. 1984) and normalized to leaf 

blade area.

Mid-way through the experiment (day 26), and immediately prior to the end of the 

experiment (day 42), we sampled grazer species composition in each local community by 

sweeping a small aquarium dipnet through the mesocosm at mid-depth 10 times. We 

counted the number of individuals of each species of amphipod and isopod captured by 

the net and then returned them to their mesocosms. The capture efficiency of this method 

differs among species, underestimating the relative abundance of D. appendiculata and E. 

levis while overestimating the relative abundance of isopods (I. baltica and E. attenuata), 

but patterns predicted by the final sweep sampling were largely borne out in the actual 

final counts. Proportional abundance in the final sweep sample was a significant 

predictor (p<.05) of final proportional abundance for all species except A. valida (mean r 

across species =.275, range .06-.67). At the end of the experiment, all epifaunal 

invertebrates, algae and eelgrass retained by a 0.5 mm mesh sieve were separated, 

identified, dried to constant mass, ashed at 450 °C, and massed again.
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We estimated spatial variability of ecosystem properties as the coefficient of 

variation (CV) of each response variable across the five patches in a metacommunity. 

While there are many indices used to characterize variability, CV is most often used for 

comparing variability between samples with different means (Cottingham et al. 2001, 

Morin and McGrady-Steed 2004, Steiner et al. 2005). Spatial variability was initially 

zero for all properties except Z. marina mass and grazer richness and composition, whose 

initial spatial variability was recorded. Spatial heterogeneity in our system results from a 

combination of random variation in colonization of algae and non-grazing invertebrates 

through the flow-through system, as well as subsequent interactions with the grazer 

community. We also estimated temporal CV of epiphytic pigments (three time points) 

and grazer abundance (two time points).

Extinction and colonization

Extinction frequency was estimated as the ratio of patches where a species was 

initially present, but absent at the end of the experiment, divided by the number of 

patches where it was initially present. Colonization frequency was estimated as the 

number of patches where a species was initially absent but present at the end of the 

experiment, divided by the number of patches where a species was initially absent.

Aggregation

To determine whether dispersal affected species distributions across the 

metacommunity, we estimated both intra- and inter-specific aggregation (Ives 1988 ,

1991, Sevenster 1996). Intraspecific aggregation was estimated as:
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where nr is the abundance of species a in patch r, N is the number of patches, and er is the 

carrying capacity of patch r. We calculated intraspecific aggregation for each species 

stocked in the experiment within each metacommunity (which consisted of five patches 

each). We assumed that carrying capacities were equal, so set er=l.

Interspecific aggregation was estimated as:

where x and y are the two species being examined, nxr is the abundance of species x in 

patch r, Nx is the total abundance of species x in the metacommunity, and er is the 

carrying capacity (of individuals) of patch r. We again assumed that er=l for all patches, 

and calculated interspecific aggregation within each metacommunity for every possible 

pair of stocked species.

Synchrony

To examine the effect of dispersal on metacommunity dynamics, we estimated the 

degree of synchrony among patches for epiphytic chlorophyll (the proxy for epiphyte 

biomass). We calculated synchrony as the sum of the covariances of epiphytic 

chlorophyll a for all possible pairs of the five patches within each metacommunity. We
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chose this metric over other candidates because it is often used to detect the portfolio 

effect of diversity, i.e. the increased likelihood that the more species present in a 

community, the more likely it is that some population dynamics will be out of phase, 

stabilizing aggregate community abundance (Doak et al. 1998, Tilman 1999, Steiner et al. 

2005). Since we were looking for the analogous buffering effect of patch differences 

(rather than species differences), here we calculated covariances among patches rather 

than among species. Other metrics, such as average Pearson or cross-correlation 

coefficients, are more commonly used to detect population synchrony among patches 

within metapopulations, but these are not ideal when considerable asynchrony is present, 

and are unaffected by variation in amplitude of fluctuations (Bjomstad et al. 1999, 

Liebhold et al. 2004). We wanted variation in amplitude of fluctuations to affect the 

synchrony metric. Synchrony (and asynchrony) of high amplitude dynamics in a natural 

system with considerable noise seems less probable than synchronization of low 

amplitude dynamics. So, we wanted to use a metric that yielded higher values of 

synchrony for that rarer scenario. Given the limitations of these metrics and the small 

number of time points we have for our data, we also visually inspected the time course of 

epiphytic chlorophyll within individual patches for each metacommunity.

Statistical analyses

Competitive performance of each species was estimated as the difference between 

final and initial relative abundance within a patch, and was evaluated separately for 

isolated and connected patches.

Effects of dispersal and grazer species identity on the magnitude and variability of 

final grazer abundances were determined using a two-way ANOVA with grazer species

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



99

and dispersal as fixed factors (n=25 per dispersal treatment for final abundance and 

temporal variability, n=5 per dispersal treatment for spatial variability). Effects of 

diversity and dispersal on epiphyte pigments within patches were analyzed using a 

General Linear Model (GLM) with three factors: grazer metacommunity richness, 

dispersal, and metacommunity ID. Richness and dispersal were fully-crossed, and 

metacommunity ID was nested within the fully crossed design. When the p-value for 

metacommunity ED was >0.25, we ignored that factor and ran a fully-crossed, two-way 

ANOVA with metacommunity richness and dispersal (n=25 for each treatment 

combination). For spatial heterogeneity and metacommunity-level responses of epiphyte 

pigments, data were analyzed using a fully factorial two-way ANOVA with 

metacommunity richness and dispersal as the factors (n=5 for each treatment 

combination).

We analyzed relationships between final, realized grazer diversity and ecosystem 

properties for unconnected and connected patches using linear regression. To detect 

whether effects of dispersal on these relationships were significant, we used a GLM with 

dispersal as a class predictor and Shannon-Weiner diversity (S-W) as a continuous 

predictor. Patch S-W was used as the predictor for responses in patches, and 

metacommunity S-W was used for metacommunity responses and spatial heterogeneity. 

These results partially appear in the supplementary information of France and Duffy 

(2006b), and are summarized in Table 4. In Table 4, we indicate whether or not the slope 

of the relationship was increased, reduced, inverted, or unchanged by dispersal. To 

qualify as other than a “no change”, the slope had to change by >25% of the maximum 

absolute value, and at least one of the regressions had to explain more than 5% of the
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variance. Likewise, we tallied whether or not the intercept changed more than 25% and 

in what direction.

All statistical analyses were conducted using SAS (SAS 2001).
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RESULTS

Grazer abundance and competition

Since competition-colonization tradeoffs might explain the effects of dispersal on 

ecosystem function that we previously observed, we determined whether or not dispersal 

affected competitive outcomes. We examined grazer population growth and changes in 

relative abundances over the course of the experiment to determine which species were 

the best competitors and whether or not the competitive hierarchy changed when patches 

were connected. Dispersal did not affect net population growth (species F=33.29, p 

<0.0001; dispersal F=0.14, p=0.7074; interaction F=1.47, p=0.1766), and none of the 

effects on individual species were significant (Table 2), although dispersal tended to 

increase net population growth of the best competitor, G. mucronatus, and the large 

isopod, I. baltica (Fig. li; Table 2).

Initial proportional abundance significantly predicted final proportional abundance 

for all grazer species except P. caudata (Fig. lh), which went extinct in most patches. G. 

mucronatus was clearly the best competitor, and both E. levis and C. compta increased in 

proportional abundance in more than half of the replicates. D. appendiculata 

occasionally managed to dominate patches, either when allowed to disperse (three of the 

six points clustered well above the 1:1 line in the D. appendiculata panel) or in patches 

with G. mucronatus initially absent (the other three points). E. attenuata and P. caudata 

were the poorest competitors.
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Dispersal had limited effects on the relationship between initial and final 

abundance. Interactive effects of initial abundance and dispersal on final proportional 

abundance were only significant (p<.05) for three of the eight species: E. attenuata, I. 

baltica and C. compta (Table 1). Dispersal tended to decrease the fit of the finabinitial 

relative abundance relationship (when significant) for all species except D. 

appendiculata. Generally, dispersal reduced the slope of the relationship (Fig. 1). 

Colonization and extinction

We could not directly measure grazer dispersal rates without disrupting the 

communities. At the end of the experiment, however, we found that dispersal had 

occurred: at least seven of the eight originally stocked grazer species migrated to patches 

where they were not initially present, colonizing 25-100% of such patches, depending on 

the species. Even with dispersal, though, final proportional abundance of seven of the 

eight grazer species was significantly explained by initial proportional abundance (Table 

1), suggesting that dispersal did not erase effects of initial relative abundance.

Extinction risk decreased with the number of founding individuals (Fig. 2a). 18% 

of founding populations consisting of a single male-female pair ultimately failed, while 

only 8% of those started with eight individuals did. All species except G. mucronatus 

and C. compta went extinct in some patches where they were initially present, at rates 

ranging from 2% to 73%, depending on the species. G. mucronatus, C. compta and E. 

levis were the most successful colonizers (Fig. 2b). As expected, overall, extinction 

frequency was inversely proportional to colonization frequency (Fig. 2b; without 

dispersal: slope=-0.456, std. error=0.1648, R2=0.5607, p=0.0325; with dispersal: slope— 

0.607, std. error=0.1788, R2=0.6578, p=0.0146). Oddly, though, for all species except E.
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levis and those that never went extinct, extinction risk tended to increase when patches 

were connected and dispersal was possible (Fig. 2b), though this trend was non­

significant.

Contrary to the hypothesis of a competition-colonization tradeoff, the best 

colonizers were also the best competitors (Fig. 2d), and dispersal had little effect on 

species competitive performances (Fig. 2c). The relationship between competition and 

colonization was unaffected by the presence of dispersal corridors (Fig. 2d).

Mass effects

Mass effects, i.e. a net flow of individuals from high density to low density patches, 

could also have decreased the relationship between diversity and ecosystem properties. If 

dispersal created mass effects, we would expect dispersal to homogenize total grazer 

densities among patches and/or reduce intraspecific aggregation for some species. 

Dispersal did marginally significantly reduce mean grazer density within patches 

assembled from the more diverse species pool (Fig. 3; GLM: richness MS=0.257, 

p=0.0006; dispersal MS=0.058, p=0.095; interaction MS=0.050, p=0.1218). Dispersal 

also tended to reduce intraspecific aggregation of the more mobile species (Fig. 4a; C. 

compta, F=7.03, p=0.0468; G. mucronatus, F=11.69, p=0.0091). Interspecific 

aggregation patterns were also affected by dispersal, but the effect depended on the 

identity of the species involved. Interspecific aggregation in the presence of dispersal 

was strongly and negatively related to interspecific aggregation in the absence of 

dispersal. Moreover, the effect of dispersal switched sign with decreasing aggregation. 

Pairs of species that were most aggregated in unconnected metacommunities tended to 

become less aggregated when grazers were allowed to move between patches, while pairs
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of species that were less aggregated in the absence of dispersal tended to become more 

aggregated when allowed to move between patches (Fig. 4b,c; regression on re-sampled 

data p<0.0001). Several species pairs were significantly affected by dispersal. 

Associations between G. mucronatus and two other species, C. compta (MS=.322, 

F=32.38, p=0.0005) and A valida (MS=.990, F=11.06, p=0.0105), became less negative 

when the grazers were allowed to disperse (Fig. 4b). In contrast, positive aggregations of 

A. valida with C. compta (MS=.654, F=5.37, p=0.0491) and E. attenuata (MS-6.64, 

F=11.59, p=0.0093) were eliminated and even reversed by dispersal.

Variability of grazer populations

We examined the effects of dispersal on the temporal and spatial variability of each 

species to determine whether any one species could explain the marginal increase in 

temporal variability of aggregate grazer abundance found when patches were connected 

(France and Duffy 2006b). Temporal variability of individual species abundances, 

however, was unaffected by dispersal (Table 2). Temporal variability of relative 

abundance of the most mobile/dispersive species, G. mucronatus, was decreased by 

dispersal (Table 2).

Spatial variability (among patches) of most species tended to increase over the 

course of the experiment regardless of dispersal (Fig. 5). Overall, the consistency of 

changes in spatial variability through time between non-connected and connected 

metacommunities is remarkable. The final spatial variability (determined from the final 

destructive harvest) of the most mobile species (G. mucronatus and C. compta) was 

marginally reduced by dispersal (Fig. 5; Table 2).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



105

Grazing

Allowing grazers to move among patches increased the total biomass (chlorophyll) 

of epiphytes in the first four weeks of the experiment, as estimated based on epiphytic 

chlorophyll (France and Duffy 2006b). We hypothesized that this was because dispersal 

enabled the grazers to selectively forage, or emigrate from patches where less edible 

algae became established. If this was the case, we might expect effects of dispersal on 

different components of the algal community to differ. Dispersal did indeed affect the 

chlorophyll pigments differently (Fig. 6, Table 3). The mass of chlorophyll b, found in 

green algae and prochlorophytes, as well as higher plants (Van den Hoek et al. 1995, 

Miller 2004), remained relatively unaffected by dispersal, whereas chlorophylls a (found 

in all photosynthetic organisms) and c (found in diatoms and dinoflagellates, among other 

organisms) were significantly increased by dispersal in the first few weeks of the 

experiment (Fig. 6a-d; statistics in Table 3). Carotenoids, present in a wide range of 

algae, were also initially increased by dispersal, but that algal component was 

subsequently rapidly consumed. We also calculated the fractions of epiphyte biomass 

that each pigment represented, and these data show that dispersal significantly decreased 

the fractions of chlorophylls b and c (data not shown). Importantly, among marine 

phytoplankton and algae, there is little to no overlap between taxa that contain 

chlorophyll b and taxa that contain chlorophyll c (Van den Hoek et al. 1995, Miller

2004). So, although we cannot completely resolve which functional groups of algae 

created the patterns shown in Fig. 6, allowing grazer dispersal clearly affected epiphytic 

community composition through time.
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Spatial variability of most components of the epiphyte community tended to 

increase over the course of the experiment, just as spatial variability of grazer abundance 

did (data not shown). Connecting patches did not generally diminish spatial variability, 

as we originally expected. Instead, within the more diverse metacommunities, dispersal 

increased the spatial variability of chlorophyll b and carotenoids (Fig. 7). In fact, 

dispersal often reversed or eliminated the effects of grazer diversity on spatial variability 

of food resources (Tables 3&4). Furthermore, allowing grazers to move between 

patches increased the synchrony of epiphyte biomass dynamics among patches (Fig. 6e, 

note different scales). In unconnected metacommunities, epiphytic chlorophyll a within 

different patches had low and, in one metacommunity, negative covariance through time, 

but epiphyte loads in connected patches had overwhelmingly positive covariances (Fig. 

6e; w/o dispersal, R2=0.1228, p=0.3208; w/ dispersal, R2=0.0009, p=0.9346; GLM 

diversity F=0.02, p=0.8879, dispersal F=0.93, p=0.35, diversity*dispersal F=0, 

p=0.9776). Visual inspection confirmed that dispersal tended to make the time course of 

epiphyte abundance more similar among patches (Appendix 3-1).

Interactive effects of diversity and dispersal

We examined the effect of dispersal on the relationships between grazer diversity 

and the magnitude and stability of ecosystem properties. Although only some effects of 

dispersal were significant, we tallied the direction of the effect of dispersal on the slope 

of diversity-function relationships (increased absolute value, decreased absolute value, 

reversed, or no change). Results are shown in Table 4 with significant interactions 

bolded and in red. Dispersal tended to reverse the effects of diversity on the magnitude

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



107

and predictability of ecosystem function. When it did so, it tended to eliminate BD-EF 

relationships more often than strengthen them.
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DISCUSSION

Our experiment demonstrated that connecting patches decreased the effect of grazer 

diversity on grazer abundance within both patches and metacommunities (France and 

Duffy 2006b). If dispersal allowed less successful species to persist in metacommunities 

where patches were connected, either through competition-colonization tradeoffs or mass 

effects, grazer abundance and grazing efficacy could be reduced, explaining the pattern 

we observed. However, our present analysis found no evidence of competition- 

colonization tradeoffs among the eight species we used in our experiment. Dispersal did 

tend to homogenize grazer density among patches in diverse metacommunities, creating a 

kind of mass effect, but it primarily affected the best competitor rather than the poorer 

competitors. Consequently, these mass effects are unlikely to entirely explain the effect 

of dispersal on BD-EF we observed. We think the best remaining explanation for the 

reduction of grazer abundance in diverse metacommunities by dispersal is that dispersal 

indirectly reduced carrying capacity by allowing the accumulation of less edible algae. 

Selective foraging and/or a decrease in consumption pressure within patches during the 

first weeks of the experiment, mediated by mass effects, could have increased 

accumulation of less edible algae.

We also found previously that dispersal increased temporal variability of grazer and 

epiphyte abundance, and that it eliminated the stabilizing effects of grazer diversity on 

grazer and epiphyte abundance at the metacommunity scale. Here we show that this is
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not due to the effects of dispersal on any one species, and that it is more likely due to 

synchronization of both grazer and epiphyte dynamics among patches.

Competition-colonization tradeoffs

We found no evidence of competition-colonization trade-offs for these generalist, 

mobile grazers. Instead, our estimates of competitive and colonization abilities were 

positively related in the grazer species we studied (Fig. 2d). The best competitors, G. 

mucronatus, C. compta, and E. levis, remained the best competitors even when grazers 

could move among habitat patches, and in fact were the best colonizers as well.

Likewise, E. attenuata and P. caudata were the least successful competitors and 

colonizers. These performances are consistent with previous studies comparing invasion 

success and species performance in monocultures vs. mixtures in this system (Duffy et al. 

2001, Duffy et al. 2003, Duffy et al. 2005, France and Duffy 2006a). Likewise, the 

comparative colonization abilities we observed mostly matched our predictions based on 

the swimming ability and structure affinity of these grazers. G. mucronatus is ubiquitous 

in a wide range of estuarine habitats in Chesapeake Bay, and is often observed swimming 

within our mesocosms and in the plankton (Williams and Bynum 1972). E. levis has also 

been observed at low abundances within estuarine plankton (Williams and Bynum 1972). 

While C. compta is a tube-dwelling amphipod, it has been demonstrated to utilize drift 

algae at night, suggesting that it is willing to leave seagrass blades for alternative habitat 

(Brooks and Bell 2001). In contrast, E. attenuata is a long, thin, stick-like isopod well- 

suited for crawling along eelgrass, and it often flails clumsily when knocked off of grass 

blades (personal observation). P. caudata is roly-poly and a rather slow swimmer.
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Furthermore, field evidence suggests that P. caudata may be limited by dispersal and/or 

recruitment, and have trouble increasing from low numbers (S. Marion, pers. comm.).

It is important to note that our estimated colonization frequency is the product of 

several processes: innate dispersal inclination, affected by behavior and relative strength 

of structural associations; swimming ability, often correlated with dispersal inclination 

and structure association; intrinsic population growth rates and/or Allee effects 

(reductions in population growth rates at low densities) that differ among species; and 

finally, competitive ability. Since we determined colonization frequencies based on 

species presence in patches where they were initially absent, these data clearly 

incorporate colonization success in an already settled habitat as well as dispersal 

inclination and ability, which might bias our results away from finding a competition- 

colonization tradeoff. However, we used forgiving criteria for “colonization”; population 

growth was not required, simply presence of a single individual where there had been 

none. Also, on average, 15% of final colonizations were in place and detected in the first 

half of the experiment by non-destructively sampling the grazer populations, even though 

this sampling only captures about 10% of the population and only adults were identified 

(because the identification had to be done with the naked eye). This suggests that much 

of the movement between patches was done by the founding generation before 

populations were at carrying capacity.

Both theory and evidence for competition-colonization tradeoffs are stronger for 

plants than for animals. For example, large seeds often yield more successful plants, but 

those large seeds travel less far, or, because large seeds are costly, the plant produces 

fewer of them (Turnbull et al. 2004) and references therein). However, for mobile
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grazers, particularly those that interact with ephemeral or patchy resources, it is not clear 

that the ability to acquire resources, or to compete, is different from the ability to move to 

and become established within new habitats. Empirical evidence for competition- 

colonization tradeoffs is limited, particularly among animals (Amarasekare 2003, Kneitel 

and Chase 2004). Most studies with insects, reasonable terrestrial analogs for our 

grazers, have failed to find a tradeoff between competitive and dispersal abilities 

(Harrison et al. 1995, Amarasekare 2000a, c). Some consumers do exhibit a trade-off 

between the ability to find new patches and consume resources down to low levels once 

there (see references in Kneitel and Chase 2004). Since grazers are important 

components of all ecosystems, it may be time to re-examine the utility of this tradeoff 

assumption for constructing general mathematical and conceptual models for biodiversity 

maintenance, particularly since mechanisms of biodiversity maintenance can affect 

predictions of the effects of diversity on ecosystem function (Moore et al. 2001,

Cardinale et al. 2004).

Competition-colonization tradeoffs, then, cannot explain the reduction of aggregate 

grazer abundance by dispersal that we observed. Since the best competitors in isolated 

patches were also the best dispersers, one might expect metacommunity-wide grazer 

populations to increase with dispersal, as the competitive dominant could disperse to all 

patches. This may have been the case in low diversity metacommunities, but not in high 

diversity metacommunities, where grazer populations were reduced by dispersal (France 

and Duffy 2006b).

Mass effects and rescue effects
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We also found little evidence for source-sink dynamics or mass effects within our 

connected metacommunities. The scope for source-sink dynamics in our system was 

limited because patches did not differ intrinsically in favorability for any species 

(Mouquet et al. 2005, Mouquet et al. 2006). Still, initial variation in the species 

composition of the founding communities, combined with priority and Allee effects, 

could essentially create “source” and “sink” habitats that would differ for each species. 

Models have shown that heterogeneity in initial abundances, even in the absence of 

environmental heterogeneity, can generate source-sink dynamics (Amarasekare 2000b, 

Yu and Wilson 2001, Levine and Rees 2002). However, we found little evidence of 

rescue effects provided by dispersal. Extinction rates of the less common species were 

actually increased by dispersal, though not significantly (Fig. 2b; paired t-test for all 

species p=0.1201). Likewise, only the performances of the dominant species were 

improved by dispersal (Fig. 1). Local richness was unaffected by dispersal (France and 

Duffy 2006b), further suggesting that dispersal did not generally “rescue” species. In our 

system, where priority effects are important (France and Duffy 2006a), stochasticity of 

population dynamics and environmental factors, along with seasonal changes, might be 

important mechanisms generating co-existence. Therefore, dispersal might actually 

reduce diversity by reducing the patch differences generated by these mechanisms. 

Furthermore, in our system, dispersal by either the dominant or other grazer species may 

have indirectly made entire metacommunities slightly more sink-like, by facilitating 

growth of less edible species throughout the metacommunity (France and Duffy 2006b).

Dispersal did tend to facilitate spread of the most competitive grazer species, 

reducing their intraspecific aggregation (Fig. 4a) and their spatial heterogeneity (Fig. 5),
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and thereby reducing metacommunity-wide diversity and beta-diversity (France and 

Duffy 2006b). This spatial homogenization is also somewhat evident across all species in 

the patterns of interspecific aggregation. With dispersal, the association of most species 

pairs became closer to a random distribution (Fig. 4b). Such spatial homogenization 

could be considered a kind of mass effect, where the most competitive and dispersive 

grazers spread from areas of high founding density to low founding density. Here, the 

mass effects are driven by stochastic variation in population densities among patches, 

rather than resource heterogeneity across patches. In models, such spatial averaging 

facilitated by dispersal has reduced temporal variability (Loreau et al. 2003). However, 

in our system, dispersal tended to increase temporal variability of aggregate grazer 

abundance (France and Duffy 2006b), even though it had little or no effect on temporal 

variability of individual species (Table 2).

This difference between prediction and our results probably reflects differences 

between producers, the subject of most theoretical models, and consumers that interact 

with a dynamic resource. In our system, the “best” patches, in terms of resource 

availability, probably fluctuated through time. Over the course of the experiment, algae 

colonized, senesced or were consumed, and new recruits from a dynamic pool outside of 

the mesocosm system re-colonized. By allowing more mobile grazers to move among 

patches and exploit this dynamic and patchy resource, dispersal corridors could inflate 

temporal variability of grazer abundance within patches, which tended to occur in our 

experiment. Similar inflationary effects of dispersal on temporal variability have been 

observed in metapopulation models (Holt 1992). Note that one might expect this active 

foraging to aggregate grazers, increasing spatial variability. Others have observed that if
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consumers aggregate too well on resources, it can synchronize patches and destabilize 

dynamics (Murdoch et al. 1992). However, we did not detect pronounced aggregation of 

grazers, at least in the limited “snapshots” we took at the mid-point and at the final 

harvest (Figs. 4,5; France & Duffy 2006b). Still, we think grazer interactions with a 

spatially and temporally patchy resource remain the best explanation for why dispersal 

increased the temporal variability of grazer abundance in our experiment.

Synchronization

In addition to destabilizing grazer dynamics, connecting patches de-stabilized 

epiphyte dynamics. By either enabling selective foraging among patches or decreasing 

overall consumption pressure within patches through mass effects (Fig. 3), dispersal 

allowed the accumulation of less edible algae, increasing temporal variability of epiphyte 

dynamics within patches (Fig. 6a-d) and the spatial variability of some pigments (Fig. 7). 

As modeling results have suggested, generalist consumers can destabilize producer 

dynamics (Thebault and Loreau 2005), and mobile consumers can actually have “an 

inordinate destabilizing effect” on systems when their activities strongly couple local 

habitats (McCann et al. 2005). By coupling patches, grazers can increase temporal 

variability at the metacommunity scale as well as the patch scale. Consistent with these 

theoretical predictions, in our system, grazer dispersal did tend to couple patches. 

Connecting patches synchronized epiphyte dynamics among patches within a 

metacommunity, which de-stabilized epiphyte abundance still further, at least in diverse 

systems (Fig. 6, Appendix A).

Homogenization
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In addition to synchronizing epiphyte dynamics, dispersal blurred the otherwise 

pervasive (France and Duffy 2006b) effects of grazer diversity on temporal and spatial 

patterns of resources. Although dispersal did not affect the spatial heterogeneity of 

grazer abundance at the times we sampled, it nevertheless tended to homogenize 

ecosystem properties across space, blurring the differences between patches created by 

diverse grazer communities. This probably occurred due to dispersal’s homogenization 

of species composition: dispersal reduced beta diversity (France and Duffy 2006b) and 

tended to randomize species co-occurrences (Fig. 4b). Dispersal inverted the slope of the 

relationship between grazer diversity and the magnitude and variability of ecosystem 

properties for 15 out of 43 variables examined (Table 4). Ten of those instances were at 

least marginally significant changes. Dispersal only strengthened the effects of diversity 

in eight cases. It may be that, by facilitating the spread of the more successful species, 

dispersal minimized differences in patch dynamics created by initial random assembly. 

We think it is important to note that dispersal effects on diversity itself, which were 

essentially non-existent, could not have predicted these effects of dispersal on ecosystem 

properties. Neither could dispersal’s effects on individual grazer species. The effects of 

dispersal on the spatial heterogeneity of the grazers themselves could not even have 

predicted the homogenizing effects of dispersal on other ecosystem properties. But the 

combined effects of connecting patches in this multi-trophic grazing system led to 

increased similarity among patches for many response variables, and increased the 

variability of both grazers and epiphytes.
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Since dispersal often eliminated the differences in ecosystem properties between 

high and low richness metacommunities, it is possible that maintaining connectivity 

among patches in a fragmented landscape could ameliorate losses of production due to 

changes in biodiversity, at least for mobile grazers. This potential benefit, is, of course, 

in addition to the well-recognized benefits of connectivity for maintaining individual 

populations (Brown and Kodric-Brown 1977, Gonzalez et al. 1998). But it is not clear 

that all systems will have highly successful competitors that are also the most effective 

short and long-range dispersers. And, while connecting patches often blurred the 

differences between species-rich and species- poor communities in terms of overall 

production, it usually did so by both increasing the magnitude and stability of ecosystem 

properties in species-poor communities and decreasing them in species-rich communities 

(Table 4, Fig. 6e) (France and Duffy 2006b). Dispersal essentially eliminated the few 

temporally stabilizing effects of diversity we observed. As other authors have pointed 

out, the level of connectivity among patches required to maintain individual populations 

may simultaneously reduce landscape-wide diversity by reducing beta-diversity and/or 

total landscape diversity (Forbes and Chase 2002). There may be similar dispersal- 

mediated tradeoffs between maintaining local diversity and landscape-wide stability of 

ecosystem properties.

Our finding that dispersal-mediated reductions in beta-diversity and/or biotically 

generated heterogeneity de-stabilized metacommunities through time might also apply to 

other systems, particularly if those reductions lead to increased synchronization, as they 

did, in a limited fashion, in our system. First, spatial heterogeneity has long been 

recognized as an important mechanism for maintaining diversity (e.g. Levins 1979,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



117

Huston 1994, Rosenzweig 1995), and has been shown to be important for maximizing 

diversity of metacommunities (Mouquet et al. 2006). Losses of this heterogeneity could 

jeopardize diversity. Second, for mobile consumers, regional spatial heterogeneity 

provides not only opportunities for niche partitioning, but can help mobile consumers 

compensate for temporal variability of resources at a local scale (Fryxell et al. 2005). 

Restricting consumer movement to fewer areas and homogenizing habitats could de­

stabilize grazing interactions (Van de Koppel et al. 2005). Our experiment suggests that 

this may be an important consideration when trying to manage for both diversity and 

predictability of ecosystem services.

While metapopulation researchers have widely recognized that synchronization is a 

likely and often detrimental consequence of dispersal among patches within 

metapopulations (Hastings 1993, Ranta et al. 1995, Ranta et al. 1997,1998, Ruxton and 

Rohani 1998, Blasius et al. 1999, Shimada and Ishihama 2000), the consequences of 

synchronization for ecosystem function in metacommunities have not yet been much 

explored. One modeling study suggested that decreasing the distance between patches 

could sometimes ^synchronize population dynamics, particularly when the benefits for 

dispersal conveyed by increasing proximity vary among trophic levels (Koelle and 

Vandermeer 2005). We believe that the latter condition was true in our experiment, 

because dispersal of producers through the corridors was either impossible (eelgrass) or 

limited by currents (epiphytes). However, we found that consumer dispersal increased 

synchrony in metacommunities, which might be explained through either of two 

mechanisms: 1) by coupling resource dynamics between patches within grazer 

generations and, 2) in the longer term, by homogenizing species composition, thereby
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increasing the likelihood that patches will respond similarly to exogenous temporal 

fluctuations. Our time course data is limited, however, and more explicit tests of the 

effects of dispersal on synchronization and consequences for metacommunity-scale 

function are clearly needed.

Finally, we emphasize that the composition and movement of mobile consumers 

can generate spatial heterogeneity (e.g. Pickett et al. 2000, Adler et al. 2001, Bakker et al. 

2003, Flecker and Taylor 2004). Spatial heterogeneity is often imposed or abiotically 

generated in models, but biotically generated heterogeneity can have different 

consequences for the persistence of communities (Shurin et al. 2004). Mouquet et al. 

(2006) recently suggested that metacommunity diversity is maximized when both 

dispersal and spatial heterogeneity are at intermediate levels. Our work supports 

previous work (examples cited above) pointing out that dispersal of mobile grazers can 

interact with spatial heterogeneity. Since it is common for mobile consumers to integrate 

resources over coarser spatial scales than environmental heterogeneity is manifested at 

(e.g. Polis et al. 1997, Ritchie 1998), such interactive effects between dispersal and 

spatial heterogeneity might be common, and may have important consequences for the 

predictability of ecosystem functions in both space and time.

Overall, our experiment illustrates that dispersal can have subtle indirect effects on 

the magnitude and predictability of ecosystem properties even when most of the 

previously proposed mechanisms for dispersal effects are not prominently operating. 

Amongst our grazers, there were no competition-colonization tradeoffs, at least at this 

experimental scale. Likewise, source-sink dynamics were not operating, perhaps due to 

limited spatial heterogeneity in resource supply relative to natural systems. We think it
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noteworthy that dispersal modified relationships between diversity and most ecosystem 

properties measured, even in our system where dispersal arguably had a lesser 

community-structuring role than is observed in many systems. Also, in the absence of 

strong dispersal-mediated community structuring, grazing-mediated community 

structuring seems to have considerable potential to impact the predictability of ecosystem 

properties in both space and time.
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TABLES

Table 1. The predictability of final relative abundances of grazer species based on initial 
relative abundances, with and without dispersal (regression lines plotted in Fig. 1). 
General Linear Model table cells are the p-value of the dispersal effect. Regression table 
cells are R2 value, p-value.

GLM effect of GLM effect of R egression No R egression With 
Disperal Diversity*Dispersal Dispersal D ispersal

R esponse Variable______________ p-value____________p-value_________ R2, p-value R2, p-value

Erichsonella attenuata .1438 .0189 .3144, .0037 .0423, .3240
Gammarus mucronatus .0907 .2082 .5470, <.0001 .2289, .0155
Idotea baltica .04 .006 .3418, .0021 .001, .8797

Ampithoe valida .7046 .4692 .1129, .1006 .1269, .0805
Cymadusa compta .2585 .0268 .4344, .0003 .1621, .0460
Dulichiella appendiculata .2626 .2676 .0844, .1588 .4468, .0003
Elasmopus levis .4851 .4295 .1661, .0431 .1034, .1170

W hole model not .0390, .3442
Paracerceis caudata significant .0311, .3994
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Table 2. Effects of dispersal on each grazer species. Data were analyzed using General 
Linear Models. Table cells are (MS, F-statistic, p-value).

Temporal CV of Spatial CV of 
Net Population Temporal CV of Relative A bundance Spatial CV of

Growth A bundance A bundance (mid-pt) A bundance (final)
R esponse  Variable (total df=48) (total df=48) (total df=48) (total df=9) (total df=9)

Species
A. valida 1990, 1.89, .1754 .001, 0.01, .9168 .280, 1.42, .2390 .034, 0.37, .5580 .005, 0.02, .8874
C. compta 311, 0.10, .7541 .001, 0.02, .887 .216, 2.33, .1334 .000, 0, .9687 .402, 6.63, .0329
D. appendiculata * 9383, 1.21, .2778 .013, 0.16, .6898 .003, 0.01, .9063 .012, 0.03, .8607 0, 0, .9644
E. levis 1234, 0.70, .4084 0, 0, .9907 .127, 0.72, .3991 .113, 0.36, .5793 .057, 0.45, .5226
E. attenuata ** 1.35, 0.99, .3254 .012, 0.07, .7985 .028, 0.28, .6021 .241, 1.22, .3011 .015, 0.08, .7882
G. mucronatus 2116, 0.48, .4914 .006, 0.18, .6757 .882, 7.03, .0108 .374, 8.57, .0191 .281,9.76, .0141
1. baltica 1457, 1.51, .2254 .09, 0.48, .4926 0, 0, .9894 .132,1.23, .3003 .029, 0.14, .7144
P. caudata *** .014, 0.03, .8734 .034, 0.85, .3610 .016, 0.33, .5696 N/A N/A

* Net population growth df=43.
** Net population growth df=42.
*** Net population growth df=45.
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Table 3. Effects of metacommunity richness and dispersal on epiphyte pigments.
Data were analyzed using a General Linear Model. Metacommunity ID is fully nested 
within the interaction term. When the p-value for it exceeded 0.2, we removed it from 
the analysis, changing the model degrees of freedom from 7 to 3. Table cells are (MS, F- 
statistic, p-value). NS= p-values > 0.30.

M etacommunity M etacommunity
R ichness R ichness * M etacommunity

R esponse Variable_______________ (df=1)_______ D ispersal (df=1) D ispersal (df=1) ID (df=4) Total (df=7,3)

Patch (n=25 for each combination o f treatments, n=100 total)
Epiphytic chi a (wk 2) 33.44, <0.0001 10.93, 0.0014 3.61, 0.0604 7.53, <0.0001 7.48, <0001
Epiphytic chi b (wk 2) .178, 7.44, .0076 .0786, 3.29, .0730 .027, 1.13, .29 .211, 8.85, <.0001 0.126, <0001
Epiphytic chi c (wk 2) 2.11,27.19, <.0001 .908,11.68, .0009 0.33, 4.25, .0422 .5447, 7.00, <.0001 0.635, <.0001
Epiphytic carotenoids (wk 2) 13.9, 25.78, <.0001 5.39, 9.97, .0022 1.64, 3.03, .0852 15.6, 7.22, <.0001 3.64, <.0001
Epiphytic chi a (wk 4) NS 4.02, 0.0477 NS NS 1.46, 0.2317
Epiphytic chi b (wk 4) .157, 2.65, .107 .156, 2.62, .1089 .22, 3.71,.0573 .204, 3.43, .0117 0.123, .0558
Epiphytic chi c (wk 4) NS NS NS NS 0.357, .4247
Epiphytic carotenoids (wk 4) .00039, 2.6, .1103 NS .0002, 1.32, .254 .00064, 4.3, .0031 0.0005, .0035
Epiphytic chi a (wk 6) NS NS 1.59, 0.2108 NS 0.76, 0.5219
Epiphytic chi b (wk 6) .042, 2.16, .1446 NS .0413, 2.12, .149 .0853, 4.38, .0028 0.053, .0138
Epiphytic chi c (wk 6) NS .0307, 1.3, .2571 NS NS 0.027, .3556
Epiphytic carotenoids (wk 6) NS NS NS NS 0, .9628
Temporal CV of epi. chi a NS 11.31, 0.0011 1.89, 0.1726 1.64, 0.1708 2.00, 0.0629
Temporal CV of epi. chi b NS NS NS NS 1.94, .8266
Temporal CV of epi. chi c NS 1.85, 0.1766 3.25, .0745 NS 0.11, .1716
Temporal CV of epi. carat. NS 1.148, 1.58, .2118 NS NS 0.60, .4810

Metacommunity (n=5 for each combination of treatments, n=20 total)
Epiphytic chi a (wk 2) 271.1,3.86, .0671 NS NS N/A 130.2, .1784
Epiphytic chi b (wk 2) NS NS NS N/A 0.079, .9126
Epiphytic chi c (wk 2) 2.398, 1.55, .2315 8.833, 5.7, .0297 NS N/A 4.00, .0894
Epiphytic carotenoids (wk 2) NS 36.409, 3.29, .0886 NS N/A 17.05, .2426
Epiphytic chi a (wk 4) NS 308.2, 2.09, .1673 NS N/A 111.5, .5344
Epiphytic chi b (wk 4) NS NS NS N/A 0.07, .9677
Epiphytic chi c (wk 4) 6.259, 2.18, .1592 NS NS

.00181, 1.32,
N/A 2.21, .5269

Epiphytic carotenoids (wk 4) .00232, 1.69, .2117 NS .2671 N/A 0.001, .3863
Epiphytic chi a  (wk 6) NS NS NS N/A 9.65, .6872
Epiphytic chi b (wk 6) NS NS NS N/A 0.047, .8211
Epiphytic chi c (wk 6) NS NS .664, 4.2, .0572 N/A .225, .2727
Epiphytic carotenoids (wk 6) NS NS NS N/A 0, .6199
Temporal CV of epi. chi a NS .084, 1.42, 0.2502 .180, 3.07, 0.099 N/A 1.60, .2288
Temporal CV of epi. chi b .094, 1.39, .2563 NS NS N/A 0.037, .6577
Temporal CV of epi. chi c NS NS .0563, 1.78, .201 N/A 0.030,.4345
Temporal CV of epi. carat. .0074, 1.26, .2785 .0121,2.06,-1705 .009, 1.53, .2344 N/A 0.010, .2253
Spatial CV of epi. chi a  (wk 2) NS .238, 7.11,.0169 .140,4.17, 0.058 N/A 3.76, 0.0323
Spatial CV of epi. chi b  (wk 2) NS NS .597, 1.92, .1844 N/A 0.31, .4136
Spatial CV of epi. chi c (wk 2) NS .0649, 3.73, .0714 NS N/A 0.024, .2853
Spatial CV of epi. carot.(wk 2) NS .136, 2.14, .1633 .143, 2,24, .1537 N/A 0.11, .2009
Spatial CV of epi. chi a (wk 4) NS NS NS N/A 0.28, 0.8376
Spatial CV of epi. chi b (wk 4) .497, 2.12, .1651 NS NS N/A 0.18, .5356
Spatial CV of epi. chi c (wk 4) NS NS NS N/A 0.019, .8852
Spatial CV of epi. carot.(wk 4) NS 1.90, 2.36, .1443 1.50, 1.85, .1922 N/A 1.18, .2615
Spatial CV of epi. chi a (wk 6) NS NS .116, 1.4, .2579 N/A 0.77, 0.5281
Spatial CV of epi. chi b (wk 6) NS NS 48.52, 5.16, .037 N/A 18.31, .1626
Spatial CV of epi. chi c (wk 6) NS NS NS N/A 9.97, .7847
Spatial CV of epi. carot.(wk 6) .319, 1.17, .2953 NS NS N/A 0.14, .6701
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Table 4. Effects of dispersal on the relationships between biodiversity and the magnitude 
and predictability of ecosystem functions. Table cells are slope of the biodiversity- 
ecosystem function (BD-EF) relationship, p-value, R2, determined by general linear 
regression. The BD-EF column indicates whether the slope of the BD-EF relationship for 
that response variable was positive, negative, or changed from one to the other by 
dispersal. The “Direction” column indicates the effect of dispersal on the slope of the 
BD-EF relationship (+ for an increase in the absolute value of the slope); bolded values 
indicate a significant effect of dispersal. Changes in slope that exceeded 25% of the 
higher value were counted as changes in direction, provided each regression line still 
explained at least 5% of variance in both instances. When regressions were significant 
but did not meet the latter criteria, they were still counted. The intercept column 
indicates whether or not dispersal increased or decreased the intercept by >25%.

R esp o n se  Variable
No Dispersal 

Slop e, p  value, R2
D ispersal 

Slop e, p  value, R2
BD-
EF

Direction o f  
ch a n g e  Interc

Patch (n=2S for each combination of treatments, n=100 total)
Log grazer abundance 926.86, .0002, .2617 322.25 .0722, .0658 + - +
Epiphytic chi a (week 2) 2.16, .0377, .0905 4.43, .0062, .1457 + + 0
Epiphytic chi a  (week 4) .656, .7006, .0032 -2.29, .3978, .0149 + t o - N/A [R2 to o  low) +
Epiphytic chi a (week 6) 1.87, .1521, .0431 -.646 .333, .0195 + t o - N/A/J +
Log total algal biom ass -1.158, .0385, .0879 -1.76, 00006, .2181 - + 0
Edible a lgae biom ass -.083, .1949, .0355 -.018, .3235, .0207 - N/A (R2 too low) -
Inedible algae biom ass (cyanobacteria) -.014, .7615, .002 -.134 .008, .1404 - N/A/created +

Z. marina biom ass -.628, .0725, .067 -1.001 .0007, .2163 - + +
Invertebrate biom ass -1.66, .0037, .166 -1.789 .0002, .2565 - 0 0
Log M. manhattensis biom ass -1.406, .0012, .2007 - 11 , .0077, .139 - 0

- N/A /created(R2
Nereis biom ass -.01, .4203, .0145 -.035, .0589, .0754 too low) 0
Botryllus biom ass -.048, .575, .0067 .144, 2124, .0322 - to + N/A (R2 too low) 0
Temporal CV of grazer abundance .264, .5109, .0244 .526, .1164, .300 + N/A (R2 too low) +

Temporal CV of epiphytic chi a -12.729, .5144, .009 4.06, 8186, .0011 - to + N/A/J +
Temporal CV of epiphytic chi b -.08, .7203, .0028 -1.38, .5304, .0083 - N/A (R2 too low) -
Temporal CV of epiphytic chi c -.269, .1714, .0394 .232, .078, .0632 - t o  + J 0
Temporal CV of epiphytic chi carot -.103, .5555, .0074 -.383, .5971, .0059 - N/A (R2 too low) 0

Metacommunity (n=5 for each combination of treatments, 20 total)
Spatial CV o f g razer abundance .121, .4224, .0820 -.14, .3522, .1087 + to  - J 0

Spatial CV of epiphytic chi a (week 2) .7375, .0057, .6359 .0128, .9568, .00004 + -/elim inated +

Spatial CV of epiphytic chi a (week 4) -.35, .5572, .0446 .11164, .8019, .0083 - to  + N/A (R2 too low) -
Spatial CV of epiphytic chi a (week 6) 087, .8444, .0051 -.375, .1476, .2432 + to  - J/created +•

Spatial CV o f epiphytic chi b  (week 2) .2493, .1145, .2817 -.175, .3208, .1228 + t o - J +

Spatial CV of epiphytic chi b (week 4) .203, .1973, .1982 .158, .3667, .1027 + - +

Spatial CV of epiphytic chi b (week 6) -.832, .0149, .5442 .343, .4555, .0818 - t o  + J/elim inated -
Spatial CV of epiphytic chi c  (week 2) .1727, .361, .105 .2161, .1571, .2336 + + 0

Spatial CV of epiphytic chi c (week 4) -.069, .8826, .0029 .2774, .1952, .1999 - to  + J/created

Spatial CV of epiphytic chi c  (week 6) .648, .2695, .1496 -.315, .6104, .0459 + to - J +

Spatial CV of epiphytic chi carotenoids (week 2) .600, .0770, .3398 -.216, .4686, .0675 + to  - J/e lim inated +

Spatial CV of epiphytic chi carotenoids (week 4) .373, .3432, .11226 .129, .8056, .008 + N/A (R2 too low) 0

Spatial CV of epiphytic chi carotenoids (week 6) -.1233, .7965, .0088 -.402, .6067, .0346 - N/A (R2 too low) +

Spatial CV of to ta l algal biomass .900, .0576, .3801 1.014, .0878, .3208 + 0 +

Spatial CV of edible algae biomass .634, .5745, .0411 -2.16, .0032, .6822 + to  - J/created +

Spatial CV of inedible algae biomass .6132, .0775, .3389 .924, .1126, .2841 + + -

Spatial CV of Z  marina biomass .091, .6059, .0348 .2114, .2374, .169 + N/A/+ -

Spatial CV o f invertebrate biomass .081, .4387, .0766 .218, .1491, .2416 + + 0

Spatial CV of M. manhattensis biomass .800, .0115, .5708 .782, .0274, .4752 + 0 -

Spatial CV of Nereis biomass 1.02, .0276, .4743 .3733, .4949, .0601 + -/elim inated +

Spatial CV of Botryllus biomass N/A N/A N/A N/A

Temporal CV of Spatial CV of epi chi a -.451, .0465, .4089 .1497, .5849, .0389 - to  + J/elim inated -

Temporal CV of Spatial CV of epi chi b -1.019, .00004, .8115 .3195, .3656, .1031 - t o  + J/elim inated -
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Temporal CV of Spatial CV of epi chi c 
Temporal CV of Spatial CV of epi chi carot 

Temporal CV of grazer abundance 
Temporal CV of epiphytic chi a 
Temporal CV of epiphytic chi b 
Temporal CV of epiphytic chi c 

Temporal CV of epiphytic chi carotenoids

Increased (+)
Reduced (-)

No Change (0) or too little variance explained 
Reversed ( j )

. 0 4 6 8 ,  . 8 9 5 7 ,  . 0 0 2 3  -.682, .0332, .4520 +  t o  -  J / c r e a t e d  +

. 1 5 5 ,  . 4 7 4 9 ,  . 0 6 5 6  . 2 6 9 ,  . 2 6 4 4 ,  . 1 5 2 6  +  +

- . 3 9 6 ,  . 2 3 4 5 ,  . 5 8 6  .250, .0717, .8618 -* °  + j

.55828, .0825, .3299 . 1 2 2 4 1 ,  . 6 9 5 8 ,  . 0 2  - t ° +  J/elim inated
- . 1 1 4 2 ,  . 6 5 2 5 ,  . 0 2 6 6  . 0 5 4 2 1 ,  . 8 8 6 3 ,  . 0 0 2 7  - to + N/A (R2 too low) 0
- . 1 9 1 ,  . 4 8 8 6 ,  . 0 6 1 8  . 1 3 8 1 8 ,  . 3 8 5 3 ,  . 0 9 5 4  -  t o  +  J  0

. 0 5 9 ,  . 8 7 6 7 ,  . 0 0 3  . 1 8 0 ,  1 . 5 7 ,  . 2 3 5  +  +  0

8  17
4  12

16 13
14 N/A

Note:
-There were 12 instances where dispersal made BD-EF more negative (either reversed 
from a positive to a negative slope, increased the absolute value of an already negative 
slope, or decreased the absolute value of a positive slope).
-There were 14 instances where dispersal made BD-EF more positive (either reversed 
from a negative to a positive slope, increased the absolute value of an already positive 
slope, or decreased the absolute value of a negative slope).
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FIGURE LEGENDS

Figure 1. a-h: Competitive performance with and without dispersal. Final proportional 
abundance vs. initial proportional abundance of each species in all patches where it was 
present. Empty dots are isolated patches; black dots are connected patches. Diagonal 
lines are 1:1 ratio; dots above the line represent populations that increased relative to their 
initial proportional abundance. Regression lines are shown where significant; 
dashed=isolated patches, solid=connected patches, i: Net population growth (final 
abundance/initial abundance) for each species. White bars=isolated patches; black 
bars=connected patches.

Figure 2. Extinctions and colonizations, a) Cumulative frequency of extinctions (black) 
and population increases (grey) by initial founding population size. Initial populations 
consisted of a variable number of reproductively mature male-female pairs. Extinction 
frequency decreased with increasing size of the founding population. Data for P. caudata 
are not included because P. caudata’s extinction rate was four times that of any other 
species, b) Colonization frequency vs. extinction frequency in isolated (light blue) and 
connected (dark blue) patches. Genus and species initials indicate points. Note that G. 
mucronatus and C. compta points (both with and without dispersal) are at (1,0). c) 
Competitive performance with and without dispersal, determined by the change in 
proportional abundance over the course of the experiment (y-x from Figure 1). d) 
Competition vs. colonization. Symbols as in b). Competition and colonization as in c) 
and b).

Figure 3. Grazer density with (black bars) and without (white bars) dispersal. Significant 
effects indicated in top left, f  p<.10, * p<.05, ** p<.01, *** pc.OOl. Error bars are S.E..

Figure 4. Dispersal effects on a) intraspecific and b) interspecific aggregation within 
high richness metacommunities. In b), species pairs are arranged in order of decreasing 
interspecific aggregation in unconnected metacommunities. Species pairs are listed as 
GenusspeciesGenusspecies. Species are listed below the x-axis in order of increasing 
dispersal ability for reference. The effect of dispersal on interspecific aggregation 
depended on the degree of aggregation in unconnected patches, shown more clearly in c), 
where the difference between interspecific aggregation with and without dispersal was 
estimated by resampling the data 100 times for each species pair. Error bars are S.E..

Figure 5. Changes in the degree of spatial heterogeneity of individual species abundance 
(a-h) and aggregate grazer abundance (i) through time. Spatial heterogeneity estimated 
as the coefficient of variation of abundance among all five patches within a 
metacommunity. Empty dots are isolated patches; black dots are connected patches.

Reproduced with permission o fthe copyright owner. Further reproduction prohibited without permission.



133

Figure 6. Time course of algal pigments, in pg/cm2 eelgrass leaf blade, within patches, 
a) Chlorophyll a, common to most producers; b) chlorophyll b, found in higher plants, 
green algae and prochlorophytes; c) chlorophyll c, found in diatoms, dinoflagellates, 
cryptomonads and haplophytes; and d) carotenoids. Circles = low metacommunity 
richness; triangles = high metacommunity richness. Empty symbols are isolated patches; 
filled symbols are connected patches, e) Synchrony of epiphyte load among patches 
within a metacommunity through time. Empty symbols and dashed line = 
metacommunities without dispersal; filled symbols and solid line = metacommunities 
with dispersal.

Figure 7: Among-patch variation (C.V.) of epiphytic algal pigments through time. Data 
are from large species pool treatments only (n=5 for each point). Error bars are standard 
error.
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Appendix 3-1. Epiphyte biomass through time in each metacommunity, as estimated by 
epiphytic chlorophyll a. Each line represents a patch, and each panel is an individual 
metacommunity.
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CHAPTER 4:
DISPERSAL MEDIATES STABILITY OF ECOSYSTEM PROPERTIES IN 

RESPONSE TO DISTURBANCE IN EXPERIMENTAL EELGRASS
METACOMMUNITIES

ABSTRACT

Theory and small-scale experiments predict that biodiversity losses can decrease the 
stability of ecosystem services such as production and nutrient cycling. Diversity’s role 
in mediating stability within metacommunities, or networks of patches connected by 
dispersal, however, is not clear. Since many forms of disturbance, such as habitat 
fragmentation and species introductions, are inherently spatial, it is unclear how 
biodiversity will affect stability of ecosystem services in response to those perturbations. 
We tested the effects of diversity and dispersal on metacommunity responses to a 
perturbation within one patch using experimental seagrass metacommunities. Although 
we have previously demonstrated positive relationships between diversity and ecosystem 
properties in this system, we did not find positive relationships between diversity and 
stability. Species-poor metacommunities had greater resistance to the perturbation, a 
macroalgal bloom. Increasing grazer diversity decreased temporal variability of grazer 
abundance and epiphyte biomass under some circumstances, but those effects were often 
disrupted or reversed by dispersal or perturbation. Dispersal effects were also complex. 
Although connecting patches decreased grazer abundance in undisturbed 
metacommunities, it increased grazer abundance in disturbed metacommunities, 
increasing resistance to negative effects of the macroalgal disturbance. Dispersal also 
occasionally de-stabilized undisturbed metacommunities, but usually stabilized grazer 
abundance in disturbed metacommunities. Our results emphasize the importance of 
incorporating both spatial processes and trophic interactions into the study of 
biodiversity-stability relationships. While diverse, connected communities may offer the 
greatest resistance to perturbations, tendencies for both diversity and dispersal to amplify 
temporal fluctuations of ecosystem services could increase the likelihood of state 
changes. Influences of diversity and spatial dynamics on both aspects of stability need to 
be considered to effectively conserve ecosystem services.
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INTRODUCTION

The possible influence of biodiversity on stability is a long-standing controversy 

(Odum 1953, MacArthur 1955, Elton 1958, May 1972). The last decade of research 

generally supports a positive influence of diversity on stability, but the nature of that link 

is still debated, and empirical evidence is limited (reviewed in McCann 2000, Cottingham 

et al. 2001, Loreau et al. 2002). Biodiversity can affect the stability of community 

structure and ecosystem function in several ways. First, if  temporal variations in 

abundance of different species within a trophic level are asynchronous, the variance of 

their aggregate abundance will be less than that of their individual abundances (statistical 

averaging or the “portfolio effect”) (Doak et al. 1998, Tilman et al. 1998, Ives et al. 1999, 

Ives et al. 2000). This asynchrony can be increased by biological mechanisms as well: if 

species compete strongly, or have different responses to environmental variation, then 

they will have negative covariances (Doak et al. 1998, Tilman et al. 1998, Ives et al.

1999, Tilman 1999, Ives et al. 2000). Second, due to niche differentiation or simply 

differences among species, as species richness increases, there is a greater chance that 

some species will perform well in a new suite of environmental conditions; diversity 

provides insurance for a wide range of conditions (Yachi and Loreau 1999). Third, 

functional redundancy may increase as species richness increases, buffering ecosystem 

function if a few species go extinct (Naeem 1998, Loreau 2004). These mechanisms, 

alone and/or combined, may increase the resistance of an ecosystem to perturbations such 

as drought or other effects of climate change; increase predictability (the inverse of
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temporal variability) of ecosystem functions (Pimm 1984), and increase resilience, or 

“the ability of a community to return to a former state after exogenous disturbance” 

(definition from Lincoln et al. 1998).

Although all three of these types of stability have been well-defined within the 

literature, relationships between them are not well-established. Much of the controversy 

over biodiversity-stability relationships stems from the fact that different kinds of 

stability might be differently affected by diversity (Pimm 1984, McCann 2000). Still, 

different kinds of stability are often treated as conceptually interchangeable. Most of the 

convincing evidence for BD-stability relationships comes from measures of general 

stability, or the inverse of temporal variability (Tilman et al. 1996, McGrady-Steed et al. 

1997, Naeem and Li 1997, McGrady-Steed and Morin 2000, Stachowicz et al. 2002). 

Limited evidence exists for positive relationships between biodiversity and resistance 

(Tilman and Downing 1994, Boles et al. 2004, Hughes and Stachowicz 2004), resilience 

(Griffiths 2000, Reusch et al. 2005), or combinations of both resistance and resilience as 

recovery from a disturbance (Leps et al. 1982, Mulder et al. 2001). There are also studies 

which have found positive relationships between diversity and one kind of stability, but 

not others (Allison 2004, Caldeira et al. 2005), and several which have found weak or 

even negative relationships between diversity and stability, particularly resistance 

(Loreau and Behera 1999, Wardle et al. 2000, Pfisterer and Schmid 2002, Downing 

unpublished data). Most of these experiments have been conducted within single trophic 

levels, and with plants. Demonstrated effects of diversity on stability within multi- 

trophic systems are even more limited and equivocal, with many studies, other than the 

seminal early papers (McGrady-Steed et al. 1997, Naeem and Li 1997, McGrady-Steed
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and Morin 2000), finding no or even negative effects of diversity on general stability, 

resistance (nutrient addition, Wojdak 2005; drought resistance, Wardle et al. 2000), and 

resilience (predation, Smedes and Hurd 1981). Furthermore, the statistical significance 

of positive biodiversity-stability relationships in those early papers has been questioned 

(e.g. Huston 1997 but see Morin and McGrady-Steed 2004).

Diversity’s role in mediating any form of stability is even less clear within 

metacommunities, or networks of patches connected by dispersal. Theory is limited, but 

suggests that diversity could stabilize ecosystem function, namely production, in 

heterogeneous landscapes in ways similar to its effects in isolated patches. Diversity 

among patches (beta diversity) can provide spatial insurance, just as diversity within a 

patch provides insurance: the more species there are in a system, the more likely it is that 

one or several of them can survive and even thrive under current conditions, including 

dramatically altered ones (Loreau et al. 2003). For diversity to serve as spatial insurance, 

though, organisms need to move between patches. Dispersal among patches may be 

essential for system recovery after a perturbation. If local communities are connected, 

species that can handle the perturbation are more likely to reach the disturbed area 

(Nystrom and Folke 2001, Bengtsson et al. 2002, Starzomski and Srivastava in press). 

Empirical evidence for positive relationships between diversity and stability of ecosystem 

function within metacommunities is almost entirely lacking, however. Preliminary 

evidence suggests that diversity can actually increase both spatial and temporal 

variability within metacommunities connected by dispersal (France and Duffy 2006b). 

Increased variability is usually equated with decreased stability (McCann 2000, 

Cottingham et al. 2001). There is good reason for this: larger population fluctuations can
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lead to greater risks of extinction, and larger fluctuations in ecosystem states could 

increase the risk of systems switching to an alternative state. It may be that stabilizing 

benefits of diversity are apparent only at longer time-scales than observed in this 

experiment, as the mechanisms described above may only operate under when 

communities experience a wide range of environmental conditions. Coordinately, while 

dispersal among patches can synchronize dynamics and therefore increase temporal 

variability at the metacommunity level (De Roos et al. 1991, Holyoak and Lawler 1996, 

Ruxton and Rohani 1998, Bull et al. 2006), it could be critical to facilitating recovery 

after a perturbation in one particular location. Finally, spatial insurance provided by 

beta-diversity and patch connectivity, as discussed above, might be most beneficial after 

a perturbation.

Consumer diversity might also stabilize resource diversity, even if  it increases 

spatial and temporal variability of consumers under normal conditions (France and Duffy 

2006b). First, environmental temporal variability can stabilize biomass within patches, 

by reducing covariance among individual populations (Gonzalez and Descamps-Julien 

2004). This is one of the same mechanisms by which diversity can stabilize biomass. 

Within metacommunities, autocorrelated environmental temporal variability can increase 

abundance (Gonzalez and Holt 2002, Holt et al. 2003, Roy et al. 2005), which might, in 

turn, stabilize dynamics by decreasing risks of stochastic extinctions. This inflationary 

effect on abundance can persist even if patches are synchronized, but it is strengthened by 

asynchrony among patches (Roy et al. 2005). Although this inflationary effect has 

primarily been modeled and tested using abiotic variability and primary producers, 

biotically-mediated temporal variability, such as that generated by diversity and
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consumer-resource interactions, might also have this inflationary and potentially 

stabilizing effect. So, consumer diversity might stabilize resource metacommunity 

dynamics by increasing temporal variability within patches, particularly if  it also 

increased asynchrony among patches.3

Since disturbances are often spatially discrete, incorporating space and connectivity 

between patches into predictions about the effects o f diversity on all forms o f stability is 

necessary. Habitat fragmentation, one o f the major threats to diversity (Wilcove et al.

1998), is by nature a spatial phenomenon, and its effects are clearly mediated by 

dispersal. Furthermore, broad-scale perturbations can cause or interact with habitat 

fragmentation, compounding effects o f both. For instance, although climate change is a 

broad scale phenomenon, nearshore temperature anomalies associated with it are often 

quite localized, and may facilitate disease on coral reefs, fragmenting reef habitat (Selig 

et al. in prep.). Similarly, eutrophication o f marine and freshwaters is often due to non­

point source pollution, yet, by facilitating macro- and micro- algal blooms, it can have 

local effects, leading to fragmentation o f submerged aquatic vegetation.

Seagrass beds are one o f the marine ecosystems threatened by the combined effects 

o f eutrophication and fragmentation. Seagrasses are important foundation species in 

shallow marine habitats, supporting commercially important fisheries and often harboring 

higher diversity than adjacent, unvegetated areas, but they are threatened worldwide 

(Orth et al. 2006). Though seagrass beds are naturally patchy (Robbins and Bell 1994, 

Hovel and Lipcius 2001), they are becoming increasingly fragmented, particularly within 

the Chesapeake Bay (Orth and Moore 1983, Orth et al. 2002). Nutrient pollution can also

3 N ote, though, that G onzalez and Descam ps-Julien (2004) manipulated both temperature variability and 
algal richness, and found that, at a given richness, increasing environmental variability decreased CV o f  
biom ass, but that richness still increased CV. T hese were within isolated patches.
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contribute to the decline of eelgrass (Kemp et al. 2005) by shifting competitive 

dominance for light from seagrass to macroalgae, epiphytic microalgae, and 

phytoplankton (Kenworthy et al. 2006, Ralph et al. 2006). Macroalgal blooms are now a 

common disturbance within eelgrass beds, shading and occasionally replacing eelgrass 

(Fletcher 1996, Valiela et al. 1997). Mesograzers can partially mitigate these effects by 

preferentially feeding on epiphytic micro- and macroalgae (Neckles et al. 1993, Valentine 

and Duffy 2006). However, macroalgal blooms can increase hypoxia and anoxia within 

the sediments, stressing small invertebrates and shifting benthic community structure 

(Raffaelli et al. 1998).

We tested the interactive effects of grazer species richness and patch connectivity 

on experimental eelgrass metacommunity responses to disturbance in the form of an 

addition of macroalgae within one patch. Eelgrass (Zostera marina is an important 

estuarine foundation species throughout much of the northern hemisphere, and is the 

dominant seagrass species in the mid-Chesapeake Bay region. We have previously 

demonstrated positive relationships between grazer richness and grazer abundance, as 

well as corresponding negative relationships between grazer richness and abundance of 

their food resources, in this system (France and Duffy 2006b). With this experiment, we 

addressed the following questions: 1) Do species-rich grazer assemblages maintain larger 

abundances than species-poor assemblages when patches are perturbed by a macroalgal 

bloom? 2) Do corridors between perturbed and unperturbed patches facilitate recovery of 

grazer populations? 3) Do either grazer richness or dispersal affect the variability of 

ecosystem properties within the macroalgae laden patches, and/or the entire 

metacommunity?

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



149

MATERIALS AND METHODS

We manipulated grazer metacommunity richness by changing the size of the species 

pool used to assemble the grazer metacommunities. The small species pool was a subset 

of the large species pool, and included the three most abundant grazers in the field at the 

time of the experiment (two amphipods, Gammarus mucronatus and Cymadusa compta, 

and an isopod, Idotea baltica). The large pool included approximately 75% of the 

epifaunal crustacean grazer species known from the lower Chesapeake Bay region (Wass 

1972), and included the three species from the small pool as well as four more 

amphipods, Ampithoe valida, Dulichiella appendiculata, Elasmopus levis, and Melita 

nitida, and one additional isopod, Erichsonella attenuata. All of these crustaceans have 

sexual reproduction, overlapping generations and direct development, and all feed on 

epiphytic algae and associated detritus (Duffy 1990, Duffy et al. 2003). At summer 

temperatures, generation times in our system can be as short as three weeks for 

amphipods (Fredette and Diaz 1986) and one month for isopods (Kouwenberg and 

Pinkster 1985, Jormalainen and Tuomi 1989). These species can all swim and crawl 

along the eelgrass blades, but differ in their swimming ability and dispersal inclination 

(Duffy and Hay 1994, France & Duffy in prep. (Chapter III)). Dispersal distances and 

frequencies for these organisms are not well-known. Both drift macroalgae and eelgrass 

detritus wrack are potential long-distance (up to 10s of km) dispersal vectors (Holmqvist 

1994, Brooks and Bell 2001, Harwell and Orth 2002). All species used in the experiment 

have been observed to disperse 10s-100s of meters by swimming or drifting on tidal
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currents to colonize seagrass patches (Vimstein and Curran 1986, Duffy et al. 

unpublished data, Matich et al. unpublished data).

The experiment was conducted in outdoor, flow-through seagrass mesocosms at the 

Virginia Institute of Marine Science, Gloucester Point, Virginia, USA. The mesocosms 

were semi-transparent buckets filled with 13.5 L of water, fitted with 250-pm mesh drain 

holes. Filtered seawater from the York River estuary was delivered to each mesocosm in 

pulses via vinyl tubing angled to create turbulent flow. The mesocosm arrays were 

shaded with a layer of neutral-density plastic screen to approximate natural light levels. 

Fifteen pre-weighed Z. marina shoots were planted in the mesocosms. This eelgrass 

shoot density falls at the low end of the range observed locally over the past twenty years 

(Orth and Moore 1986), although it is in the middle of the range of densities observed 

within the past several years, when eelgrass declined precipitously in the lower Bay (Orth 

2007, Duffy et al. unpublished data). Prior to planting, the shoots were spun 20 times in 

a salad spinner and then massed to determine an initial grass wet mass for each 

mesocosm.

The experimental metacommunities consisted of three of these mesocdsms 

clustered together and indirectly connected by a common flow-through water supply. 

Hereafter, we call a mesocosm a “patch” and a group of three mesocosms a 

“metacommunity. ”

Experimental design

We used a fully-crossed, three-factor factorial design with grazer metacommunity 

richness, patch connectivity, and macroalgal addition as the three factors.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



151

Metacommunity richness had two levels: low (3 spp.) and high (8 spp.). Patches within a 

metacommunity were either isolated or connected with corridors that the mobile grazers 

could swim through. These dispersal corridors were 5 cm of clear vinyl tubing connected 

to a small central hub so that grazers leaving one patch had an equal chance of dispersing 

to all of the other patches within the metacommunity. Entrances to the corridors were 3 

cm from the water surface and 2.2 cm in diameter, or approximately 5-20x the width of 

adult amphipods and isopods. All grazer species could swim rapidly through the 

dispersal corridors, but dispersed at different frequencies, due to differences in encounter 

rates with the corridor entrances and propensity to swim into the corridors. There was no 

active dispersal between unconnected patches. Finally, metacommunities were either 

undisturbed or disturbed by an addition of macroalgae, mimicking a macroalgal bloom, to 

one of the three patches. Macroalgae, primarily Ulva lactuca, a common bloom species 

in Virginia (Tyler et al. 2001), was added at day 19, after the grazers had approached 

carrying capacity. We used 125 g wet weight of algae (after 25 spins in a salad spinner to 

standardize water removal) in each disturbed patch, or 2 kg/m . This falls within the 

range of macroalgal bloom densities observed in coastal Virginia (450-650 g dw m'2) 

(Tyler et al. 2001)), and is consistent with densities used by other researchers to study the 

effects of macroalgal blooms (Hull 1987, Raffaelli et al. 1998, Cardoso et al. 2004).

When added to the mesocosms, this biomass of macroalgae covered the water surface and 

filled approximately two-thirds of the water column within the mesocosms. Each of the 

eight treatment combinations (metacommunity richness x patch connectivity x 

macroalgal addition) was replicated seven times, for a total of 56 metacommunities and 

168 patches.
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At the start of the experiment, each patch was stocked with 30 grazers, that is, 15 

reproductively mature male-female pairs. We determined the species composition of 

these founding communities by randomly drawing pairs of individuals from the 

designated species pool. Each species had an equal chance of being chosen at each draw. 

Initial metacommunity-wide richness of grazers was set at either three or eight species, 

but both the relative abundances of species within metacommunities and the species 

richness within patches varied. We allowed this initial random assembly plus subsequent 

dispersal and species interactions to influence grazer diversity over the six weeks of the 

experiment. The initial composition for each patch is available in Appendix 3-1. The 

experiment ran for 45 days, which was long enough for about two generations of grazers, 

in addition to the founding generation.

Sampling ecosystem properties

We sampled grazer species composition in each patch before (day 18) and after 

macroalgal addition (days 24, 32, and 39) by sweeping a small aquarium dipnet through 

the mesocosm at mid-depth 10 times. We counted the number of individuals of each 

species of grazer captured by the net and then replaced them all. By comparing final 

abundances to sampled abundances from immediately prior to harvest, we know that the 

capture efficiency of this method differs among species: it underestimates the relative 

abundance of the amphipods D. appendiculata, E. levis and M. nitida, while 

overestimating the relative abundance of isopods (I. baltica and E. attenuatd) and the 

dominant species, G. mucronatus and C. compta. However, patterns observed in the final 

sweep sampling were largely borne out in the actual final counts (proportional abundance 

in the final sweep sample was a significant predictor of final proportional abundance for
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all species, and raw abundance was a significant predictor for all species except E. levis).

We estimated biomass of epiphytic algae, the grazers’ main food source, by 

measuring epiphytic chlorophyll before (day 16) and after macroalgal addition (days 22, 

30, and 44). The longer gap between sampling dates towards the end of the experiment 

was due to very low epiphyte accumulation; we waited to maximize the biomass 

sampled. At each sampling point, we harvested two artificial seagrass blades made of 

green curling ribbon that had been in the patches for at least a week. All blades harvested 

at a particular time had been in the experiment for the same length of time. These 

artificial blades were then frozen and later extracted in 20 ml of 90% acetone at -20° C for 

24 hours. Chlorophyll a, b, c and carotenoid pigments were determined 

spectrophotometrically (Parsons et al. 1984) and normalized to leaf blade area. Clean 

ribbon undergoing the same extraction served as a blank, but the pigments in the ribbon 

dye do not absorb at the same wavelengths used to determine chlorophyll pigments.

To estimate whole-ecosystem metabolism, we also measured daytime production 

and nighttime consumption of oxygen within the mesocosms. Daytime measurements 

were taken between 10:00 and 14:30 on sunny days, and nighttime measurements were 

initiated at least 1 hour after sunset and taken between 21:30 and 03:00 on the same or 

adjacent days. The flow-through seawater system was turned off, and the water column 

in each patch was sealed off at the surface with transparent plastic bags anchored in place 

by flexible circles of tubing. Connections between patches were sealed off with caps.

We measured dissolved oxygen at three time points using a Hach Portable LDO HQ 10 

Dissolved Oxygen Meter. Daytime production was underestimated in a few patches 

because the water became supersaturated with oxygen, and the meter only measures
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accurately below 20 mg/L. We chose this meter because of its accuracy and precision 

below 4.0 mg/L, because we were most interested in hypoxic stress caused by the 

macroalgal addition and wanted to be able to characterize slight differences in low 

oxygen levels.

At the end of the experiment, all epifaunal invertebrates, algae and eelgrass retained 

by a 0.5 mm mesh sieve were separated, identified, dried to constant mass, ashed at 450 

°C, and massed again. Amphipod and isopod grazers were separated into size classes 

using a stack of nested sieves, identified, and counted. Ash-free dry mass (AFDM) of 

amphipods was estimated using these size class data and empirically derived 

relationships between crustacean body size and biomass (Edgar 1990).

We estimated spatial variability of ecosystem properties as the coefficient of 

variation (CV) of each response variable across the three patches in a metacommunity. 

The coefficient of variation is the traditional way of scaling variance relative to the mean 

within the biodiversity-stability field (May 1972, Tilman 1996). Spatial variability was 

initially zero for all properties other than eelgrass biomass and grazer composition.

Spatial heterogeneity in our system results from a combination of random variation in 

colonization of algae and invertebrates (such as barnacles, anemones, tunicates, 

polychaetes, and nudibranchs) through the flow-through system, and subsequent 

interactions with the grazer community. We also estimated temporal CV of epiphytic 

pigments (four time points) and grazer abundance (four time points). We estimated 

synchrony among patches of both grazer abundance and epiphyte biomass for all 

metacommunities that were sampled at least three times during the experiment. After 

calculating the covariance of grazer abundance or epiphyte biomass for all three possible
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pairs of patches within a metacommunity, we summed those pairwise covariances to 

obtain an estimate of synchrony (Doak et al. 1998, Tilman 1999, Steiner et al. 2005).

Statistics

For metacommunity response variables (abundances summed across all patches 

within a metacommunity) and spatial variability of all response variables, data were 

analyzed using a fully-crossed 3-way General Linear Model design, with metacommunity 

richness, dispersal, and macroalgal addition as fixed factors. Each factor had two levels: 

low vs. high richness, no dispersal vs. dispersal, and no macroalgal addition vs. 

macroalgal addition. Data were log transformed to meet assumptions of normality and 

homogeneity of variance when necessary.

For response variables measured at the patch scale, we randomly chose one patch 

from each of the undisturbed metacommunities, and compared those patches to the 

patches which were actually subjected to the macroalgae addition within the disturbed 

metacommunities, using the 3-way GLM described above.

We also separately examined responses in patches directly subjected to the 

macroalgal addition, using a fully-crossed 2-way ANOVA (metacommunity 

richness*dispersal).
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RESULTS

The summer of 2005 was one of the hottest summers on record for the Chesapeake 

Bay region. Water temperature exceeded 30°C, a critical threshold temperature for Z. 

marina (Marsh et al. 1986), for an unprecedented number of days (VIMS 2006). Under 

these conditions, eelgrass within the mesocosms, as well as in the field, failed to produce 

new growth and senesced. Eelgrass virtually disappeared within our mesocosms by the 

end of the experiment in early September, and disappeared in the field by October.

While we often see nearly complete consumption of the eelgrass in treatments with high 

grazing pressure (Duffy et al. 2001, Duffy et al. 2003, Duffy et al. 2005), the 

simultaneous die-off of eelgrass within the mid-Chesapeake Bay in 2005 was 

unprecedented (Orth pers. comm.).

Diversity patterns

As expected, increasing the size of the grazer species pool used to assemble the 

metacommunities increased species richness and Shannon-Weaver diversity (S-W) within 

the patches for all combinations of dispersal and macroalgal addition (Fig. 1, 1st and 2nd 

rows; Table 1). Connecting patches had no significant main effects on S-W, but it tended 

to have opposite effects on diversity in disturbed metacommunities compared to 

undisturbed communities (Fig. 1, 2nd row; Table 1). Disturbance, i.e. adding macroalgae, 

reduced S-W diversity of metacommunities assembled from the large species pool (Fig.

1, 2nd row, right panel; Table 1). Finally, increasing the size of the species pool also
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significantly increased beta-diversity, or heterogeneity of species composition among 

patches (Fig. 1, 3rd and 4th rows). Adding macroalgae tended to homogenize species 

composition in high richness metacommunities, but increased composition differences 

among patches in low richness metacommunities (Fig. 1, 3rd and 4th rows). Dispersal 

tended to reduce beta-diversity, enabling most species to persist in most patches, 

particularly in disturbed metacommunities (Fig. 1, 3rd and 4th rows, right panels).

Grazers

As we have observed before (France & Duffy 2006b), in undisturbed and 

unconnected metacommunities, increasing grazer richness tended to increase grazer 

abundance and biomass, but this relationship was not significant in this experiment (Fig. 

2a,d,f,i; Table 1). When patches were disturbed, grazer richness actually decreased 

grazer biomass (p=0.0507, Table 2, Fig. 2h) and resistance to the addition of macroalgae 

(p=0.0181, Table 1). Connecting these disturbed patches to undisturbed patches tended 

to increase grazer abundance (p=0.0224 at wk 5, p=0.1676 final; Table 2; Fig. 2c) and 

resistance to the macroalgae disturbance (p=0.0609; Table 2). Grazer dispersal tended to 

have opposite effects on grazer abundance and biomass in disturbed and undisturbed 

metacommunities (interaction p=0.0717, 0.1487, respectively; Table 1). Overall, adding 

macroalgae significantly reduced the number of grazers within the disturbed patches 

(p=0.0198, Fig. 2c), but because the remaining individuals were considerably larger 

(Appendix 3-6), adding macroalgae did not significantly affect grazer biomass (Fig. 2h).

Reductions in grazer populations in disturbed patches were evident, though not 

significant, by day 32, thirteen days after the macroalgal addition (Fig. 3, Table 2).
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Grazer resistance to the macroalgae disturbance, or the change in grazer abundance from 

day 18 to day 32, was marginally significantly increased by dispersal (p=0.0609, Fig. 3, 

Table 2).

Producers

Contrary to expectation, eelgrass had the greatest biomass within the disturbed 

patches (p=0.002, Fig. 4, 1st row). Oddly, diverse grazer communities had higher 

biomass of blue-green algae and other microalgal mats (p=0.0314, Fig. 4, 2nd row).

Grazer richness increased microalgal biomass on the walls of the mesocosms in 

both undisturbed and disturbed patches (p=0.0397, Fig. 4, 4th row). Allowing grazers to 

disperse tended to increase epiphyte biomass on eelgrass (day 42, metacommunity-wide 

p=0.0743; Fig. 4, 3rd row; Fig. 5, days 23&42; Table 1). Adding macroalgae reduced 

epiphyte biomass on all sampling dates, as expected (Table 1, Fig. 5).

Temporal variability

Grazer richness did not stabilize grazer abundance in undisturbed patches (Fig. 6a), 

as we have found previously (France and Duffy 2006b). In contrast, more diverse grazer 

patches did have marginally significantly lower temporal variability of epiphyte biomass 

(p=0.0958, Table 1, Fig. 7a). Connecting patches tended to increase temporal variability 

of both grazer abundance and epiphytes (Figs 6d; 7a,d), as we have shown before (France 

and Duffy 2006b), but the effects in this experiment were not significant.

Disturbing patches by adding macroalgae altered some of the relationships between 

richness, dispersal, and temporal variability. First, dispersal and macroalgae interactively 

affected the temporal variability of grazer abundance at the metacommunity scale.
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(p=0.0261, Table 1). Dispersal actually stabilized grazer abundance in disturbed 

metacommunities (Fig. 6e). Second, the macroalgal disturbance interacted significantly 

with grazer richness to affect epiphyte biomass at the patch scale (p=0.0656, Table 1). 

Epiphytes were more variable through time in diverse patches and metacommunities 

subjected to the macroalgae (Fig. 7c,e). Note that the figures and analyses include both 

pre- and post- macroalgal addition sampling points. Patterns were fairly similar if pre- 

macroalgal addition sampling points were excluded (App. 3-2, 3-3, & 3-4; Table 1).

Spatial variability

Metacommunity grazer richness significantly increased spatial variability (among 

patches) of grazer abundance (p=0.0354, Fig. 8a&b; Table 1). This pattern was even 

more marked in disturbed metacommunities, as grazer populations foundered more in the 

species-rich metacommunities.

Spatial variability of epiphyte biomass within metacommunities was generally 

increased by metacommunity richness as well (p=0.0818, Fig. 8, lower panels). It was 

also, not surprisingly, increased by adding macroalgae to one patch. Spatial variability of 

epiphyte biomass tended to decrease over the course of the experiment in undisturbed 

metacommunities and increase in disturbed metacommunities (Fig. 8c&d).

Grazer richness, dispersal and the addition of macroalgae had complex effects on 

spatial variability of epiphyte biomass (Fig. 8c&d). When we examined the average 

spatial variability of each metacommunity over the course of the experiment, the three- 

way interaction was significant (p=0.0048, Fig. 9a&b, Table 1). In undisturbed, low 

richness metacommunities, grazer dispersal tended to reduce the spatial variability of this
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primary food resource (Figs. 8c&9a). Grazer dispersal did not homogenize epiphyte 

biomass among patches in diverse grazer metacommunities though (Figs. 8c&9a). In 

disturbed metacommunities, allowing low richness grazer assemblages to move between 

patches increased spatial variability of epiphytes, while the dispersal of high richness 

grazer assemblages decreased spatial variability of epiphytes (Figs. 8d&9b). Disturbing 

one of the patches in a metacommunity also tended to reverse the effects of grazer 

richness on spatial variability of food resources: low richness grazer assemblages had 

higher spatial variability of epiphytes than high richness grazer assemblages. In general, 

though, grazer richness tended to increase spatial variability of food resources except in 

disturbed metacommunities with dispersal (Fig. 9a&b). Spatial variability of the biomass 

of microalgae growing on the mesocosm walls at the end of the experiment was not 

significantly affected by any of the factors (Fig. 9c&d).

Changes in the degree of spatial heterogeneity

Our experimental system is extremely dynamic, and the spatial pattern of resources 

changed continuously. To examine the effects of grazer richness, patch connectivity, and 

macroalgal disturbance on the rate of change of these patterns, we estimated the temporal 

variability of the degree of spatial heterogeneity by calculating the temporal CV of the 

spatial CV for each metacommunity. Interestingly, in unconnected metacommunities, 

grazer richness increased the temporal variability of the spatial pattern of grazers, both 

with and without disturbance (p=0.0016, Fig. lOa&b). However, when patches were 

connected by dispersing grazers, grazer richness led to a more consistent degree of spatial 

heterogeneity of grazer populations, even when the metacommunities were perturbed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



161

Eight species grazer metacommunities also had a more consistent degree of spatial 

heterogeneity of food resources under all conditions (Fig. lOc&d).

Synchrony

The effects of richness, dispersal and disturbance on the synchrony of grazers and 

epiphytes among patches largely mirrored their effects on metacommunity-wide temporal 

variability (Figs. 6 and 7, lower panels). Grazer richness tended to increase synchrony of 

grazers among patches (App. 4-1, Fig. 1 la&b) and decrease synchrony of epiphytes (Fig. 

1 lc&d). Flowever, when macroalgae was added to one of the patches, richness increased 

synchrony of epiphytes among patches (Fig. 1 Id). Somewhat surprisingly, connecting 

patches did not significantly affect synchrony of grazers or epiphytes.

Ecosystem respiration

Immediately after we added the macroalgae, species-rich, connected patches were 

the only disturbed patches that had net positive oxygen production during the day (Fig. 

12a). The effects of the macroalgae may have carried over into neighboring patches in 

diverse, connected metacommunities, as rates of net oxygen production were decreased 

in those patches (Fig. 12a). Three weeks after we added the macroalgae, all disturbed 

patches had net oxygen production during the day, but eight-species patches had 

marginally significantly less (Fig. 12b, Appendix 4-7). Dispersal significantly increased 

daytime oxygen production within disturbed patches (Fig. 12d, insert).

Sediment organic matter

Although there were no detectable effects of any of the factors on the organic 

carbon content of the sediments (Fig. 13, 1st row), there was an interactive effect of
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dispersal and macroalgae on the C:N ratio of the organic matter in the sediments (Fig. 13, 

3rd row; Table 1). Dispersal also tended to reduce the spatial variability among patches of 

the quality of organic matter (Fig. 13, 4th row; Table 1). Metacommunity richness also 

affected the spatial variability of the C:N ratio, but the effect depended on disturbance 

(Fig. 13, 2nd row).
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DISCUSSION

Diversity, dispersal, and effects of disturbance

The effects of the macroalgal addition were not as straightforward as we intended. 

In the field, macroalgal blooms often shade the eelgrass sufficiently to prevent growth, 

whereas eelgrass maintained dramatically higher biomass in disturbed patches in our 

experiment. We suspect that this difference in Z. marina biomass between undisturbed 

and disturbed patches was probably due to both a lack of senescence in disturbed patches 

as well as actual growth. Z. marina is near the southern end of its range in the 

Chesapeake Bay, and July and August 2005 had record breaking water temperatures 

accompanied by an unprecedented disappearance of eelgrass beds in September. We 

suggest that shading by the macroalgae reduced water temperatures in the mesocosms 

and prevented Z. marina senescence. Unfortunately, we only have anecdotal temperature 

data for mesocosms-when measuring dissolved oxygen, we noted that temperature was 

consistently lower underneath the macroalgal canopies in disturbed patches. An 

additional possible explanation for the higher eelgrass biomass is that the macroalgae 

provided additional food sources for the grazers both directly and indirectly by creating 

more substrate for epiphyte growth, preventing reduction of eelgrass biomass through 

overgrazing.

Either way, the macroalgae still lowered oxygen levels at night, and hypoxia stress 

was observed at night (most grazers were at the water surface, climbing out of the water 

and up onto the sides of the mesocosms). This stress is probably what reduced the
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number of grazers (Figs. 2&3), as intended. However, the remaining grazers in the 

species poor metacommunities were better able to take advantage of the macroalgal food 

source, and grew larger (Appendix 3-6). This increase in size in disturbed 

metacommunities may have been achieved by delaying reproduction or by not having to 

compete with new generations, which may have been more susceptible to low oxygen 

conditions. While we intended the macroalgae to have a direct negative effect on grazer 

abundance through increased nighttime hypoxia, effects of real macroalgal blooms, as 

well as other disturbances, are often equally complex. And, environmental conditions 

that are detrimental for some species enable other species to thrive. This is one of the 

underlying premises for the beneficial effects of diversity on resistance and resilience, as 

well as one of the reasons that periodic disturbances can help maintain diversity.

That said, the macroalgal addition altered the relationships between grazer richness, 

dispersal, and grazer and epiphyte abundance in three major ways. In disturbed 

metacommunities: 1) low richness metacommunities maintained higher aggregate 

abundance and biomass immediately after and throughout the remainder of the 

experiment; 2) dispersal increased, rather than decreased, grazer abundance; 3) patterns 

of temporal and spatial variability with respect to richness and dispersal differed from 

those in undisturbed metacommunities.

First, the low richness metacommunities actually had greater resistance to the 

macroalgal addition: species-poor grazer communities maintained higher aggregate 

abundance immediately after we added the macroalgae (Fig. 3, Table 2) and ultimately 

attained higher aggregate abundance and biomass (Fig. 2, Table 2) than species-rich 

grazer communities. Furthermore, differences between grazer abundance and biomass in
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undisturbed and disturbed patches were greater for species-rich patches (Fig. 2, Table 2). 

Diverse, disturbed metacommunities also had greater among-patch differences in 

sediment organic matter and the quality of organic matter in the sediments, suggesting 

that diverse communities of grazers did not manage to ameliorate the effects of the algal 

addition (Fig. 13). Day rates of net oxygen production, which were low or even negative 

in diverse patches, also suggest that diverse grazer assemblages were less capable of 

cleaning the macroalgae, causing it to decay, consuming oxygen (Fig. 12). This seems 

the most plausible explanation for lower rates of net oxygen production in those disturbed 

patches, as algal biomass was not lower (Figs. 4 and 5), grazer biomass was certainly not 

higher (Fig. 2), and biomass of other invertebrates (mainly Nereis diversicolor and 

Molgula manhattensis) was not higher (Appendix 3-5).

The three species metacommunities probably had greater resistance than the eight 

species metacommunities because they contained higher abundances of G. mucronatus, 

which was present in both species pools. Virtually all of the recovery of the grazer 

community and associated ecosystem properties can be attributed to G. mucronatus, 

which dominated disturbed patches and whose net population growth was increased by 

the addition of macroalgae (data not shown). G. mucronatus is a cosmopolitan species, 

with a wide salinity tolerance and remarkable hypoxia tolerance (Bousfield 1973, Sagasti 

2000). As an example of these tolerances, we often find G. mucronatus in tiny pools of 

rainwater within our emptied mesocosms after they have sat outdoors over the winter 

(sometimes for over six months). Perhaps because of this robustness, G. mucronatus is a 

consistent and often dominant member of the dynamic grazer assemblages in the lower 

Chesapeake Bay throughout the year (Marsh 1970, Duffy et al. unpublished data). In
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another experiment, we recently observed that monocultures of G. mucronatus 

outperformed mixtures of three and five species subjected to both bottom-up (nutrient 

addition) and top-down (predator presence) press perturbations (Duffy et al. unpulbished 

data). So, we did observe response diversity, or variation in how species responded to the 

addition of macroalgae, which has previously explained a positive relationship between 

diversity and resistance to or recovery from a disturbance (Chapin III et al. 1997, Norberg 

et al. 2001, Elmqvist et al. 2003). In our experiment, though, both pools contained the 

species best equipped to resist hypoxic stress and take advantage of the additional food 

source. Our results highlight the importance of predicting realistic species loss patterns 

and examining their consequences (Srivastava 2002, Ives and Cardinale 2004, Solan et al.

2004, Zavaleta and Hulvey 2004, Larsen et al. 2005, Srivastava and Vellend 2005, Gross 

and Cardinale 2006).

A few other studies have demonstrated that species-poor communities can resist 

disturbance as well as, if not better than, species-rich communities. Species-poor 

communities can maintain higher biomass in response to drought or thermal stress, even 

though, under normal conditions, diversity leads to increased production (Pfisterer and 

Schmid 2002, Allison 2004), and some species-poor plant communities may also recover 

more quickly or extensively post-drought (Leps et al. 1982). Other studies have found no 

differences between low and high diversity communities in response to disturbance 

(Petchey et al. 1999), even when diversity increased general stability (Caldeira et al.

2005, Dang et al. 2005). Dominant species can sometimes maintain ecosystem function 

when other species are lost from communities (Smith and Knapp 2003). Likewise, a few 

other studies have also showed that diversity can decrease general stability (Petchey et al.
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2002, Gonzalez and Descamps-Julien 2004, France and Duffy 2006b). Theoretical 

studies have pointed out that a positive relationship between diversity and stability can 

depend on species having different responses, rather than highly correlated responses, to 

environmental fluctuations (Ives et al. 2000, Ives and Hughes 2002). Although the 

crustacean grazer species we used exhibit clear differences in their response to seasonal 

temperature and light fluctuations (Duffy et al. unpublished data), they probably respond 

similarly to epiphyte fluctuations and anoxia. Our estuarine organisms may actually be 

selected for tolerances of a wide range of environmental conditions, as estuaries are 

notoriously dynamic. Indeed, current seagrass epifaunal communities may have been 

recently selected for even wider tolerances, as loss of habitat through seagrass wasting 

disease, several hurricanes, and rising water temperatures have been accompanied by 

shifts in the grazer community within just the last several decades (Marsh 1970, Parker 

1998, Orth 2007, Duffy et al. unpublished data). In other systems, where perturbations 

are less of a community structuring and selective force, diversity could still increase both 

the magnitude and the stability of ecosystem services.

The second major difference in disturbed patches is that grazer abundance was 

higher and more stable when the disturbed patches could be re-colonized by grazers from 

species-rich neighboring patches. After macroalgae were added, colonization clearly 

played a role in stabilizing grazer populations within those patches, as connected 

disturbed patches had higher grazer numbers than unconnected disturbed patches 

throughout the post-disturbance time period (Fig. 3, right panels). So, while dispersal has 

reduced grazer populations under normal conditions (France and Duffy 2006b), it 

increased grazer populations under disturbed conditions. The importance of dispersal for
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“rescuing” populations within patches where they are poorly performing has been long- 

recognized in metapopulation ecology (Brown and Kodric-Brown 1977, Gotelli 1991, 

Hanski 1991). While such rescue effects are often studied in model or empirical systems 

with relatively fixed spatial variability of patch quality, rescue effects could also certainly 

be important in facilitating amelioration of and recovery from a disturbance (Gyllenberg 

and Hanski 1997, Johst et al. 2002). Here, we demonstrate the importance of dispersal 

for mediating response to a spatially discrete disturbance within a multi-trophic 

metacommunity. Somewhat similarly, others have demonstrated that the effect of 

dispersal on metacommunity diversity can depend on disturbance, where dispersal 

reduces richness in the absence of disturbance but increases richness when the 

metacommunity is disturbed (Ostman et al. 2006). As others have recognized, given the 

frequency of spatially discrete disturbances within ecosystems, connectivity is an 

important aspect of conservation designs targeting ecosystem services as well as 

diversity.

Third, there were also several cases of a factor having opposite effects on variability 

under normal and disturbed conditions. 1) Dispersal tended to decrease stability of 

grazers in patches under normal conditions but increased resistance and stability in 

disturbed patches. 2) Increasing grazer richness stabilized epiphyte biomass through time 

except under disturbed conditions. 3) Changing grazer richness had opposite effects on 

synchrony of grazers and epiphytes in undisturbed and disturbed metacommunities. 4) 

Increasing grazer richness increased spatial variability of epiphyte biomass except under 

disturbed conditions.
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The first two differences highlight the fact that temporal variability of a system is 

not necessarily an indicator of its resistance or resilience. Dispersal amplified temporal 

variability under normal conditions, yet decreased variability in patches subjected to the 

macroalgal bloom by facilitating resistance and/or a quick recovery of grazer populations 

(Figs. 2, 3, Table 2). And even though species-rich grazer communities stabilized their 

food resources under normal conditions, they failed to do so when one patch was 

disturbed with a macroalgal bloom that shaded the epiphytes (Fig. 7). Other studies have 

also found a disconnect between general stability and resistance to disturbance. For 

instance, in modeling studies, increasing species richness decreased variance of 

community biomass under normal conditions, but did not stabilize it in response to 

perturbation (Hughes and Roughgarden 2000). As mentioned above, Caldeira et al. 

(2005) also found that grassland diversity had no effect on responses to disturbance, 

despite increasing general stability. Of course, temporal variability is still an important 

characteristic of communities, and a valid indicator of stability. Systems with high 

variability of species abundances are more likely to have extinctions, and may be more 

likely to exceed thresholds and switch to alternate stable states. However, our 

experiment demonstrates that, in spatially heterogeneous habitats, temporal variability of 

abundance in patches may not translate to other scales or to ecosystem functions.

The third and fourth differences, opposing effects of grazer richness on synchrony 

and spatial variability in undisturbed and disturbed communities, can be largely explained 

by the comparatively poor performance of eight-species grazer metacommunities in 

response to the macroalgal bloom. Grazer populations declined in the disturbed patch, 

and when they could, fled to the undisturbed patches, dramatically decreasing synchrony
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among patches. Epiphyte dynamics were more synchronized within diverse, disturbed 

metacommunities for the same reason: macroalgae reduced epiphytes in the disturbed 

patch through shading, while grazer populations in undisturbed patches, inflated by 

refugees, also reduced epiphytes to lower levels.

Finally, we think it is interesting that diverse, connected metacommunities had the 

most consistent degree of spatial variability of both grazers and epiphytes, even when 

disturbed. We also observed this in a previous experiment with five patches per 

metacommunity (France & Duffy, unpublished data, Chapter III). The consistency of 

spatial variability through time was not due to low levels of spatial variability — diverse 

grazer communities tended to increase spatial variability of most ecosystem properties. It 

seems that diverse grazer communities resisted homogenization and synchronization 

sufficiently to maintain different epiphyte time courses within different patches: epiphyte 

patterns in diverse metacommunities were less synchronized even in connected 

metacommunities, with widely divergent epiphyte loads for all sampling dates (Fig.l 1, 

Appendix 3-3). Since synchronization can de-stabilize populations, and therefore 

perhaps ecosystem functions, resistance to synchronization could be important for 

stabilizing ecosystem function in metacommunities. It will be interesting to explore 

whether diversity can indeed prevent synchronization in other situations and systems.

It is important to note that neither grazer richness nor dispersal were strongly 

stabilizing under any conditions, disturbed or undisturbed, in these experimental 

metacommunities. There are many possible explanations for why grazer richness did not 

stabilize abundance under normal conditions, as it has in previous experiments in other
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systems (Tilman 1996, McGrady-Steed et al. 1997, McGrady-Steed and Morin 2000, 

Valone and Hoffman 2003, Morin and McGrady-Steed 2004, Steiner et al. 2005). First, 

the mathematical neutral expectation that diversity will reduce variability of aggregate 

biomass depends on the assumption that species interactions have no effects on biomass 

(Doak et al. 1998). Clearly, in our system, species interactions and behavior matter. 

Second, we used fairly generalist mobile consumers, and recent theory suggests that 

diverse communities of generalist grazers could reduce stability of biomass (Thebault and 

Loreau 2003, 2005, 2006). In those studies, consumer diversity usually increased 

variability of producers as well, which we did not observe. Perhaps the complexity added 

by having a dynamic resource community caused that difference. Finally, an important 

difference between most models and our experiment is that our metacommunities were 

certainly not at equilibrium. Although our grazers reached carrying capacity and 

continued to experience births and deaths, the community was unlikely to reach 

equilibrium either in the experiment or in nature because seasonal change in this system 

is fast relative to demographic processes of most species. Furthermore, seagrass patches 

themselves are dynamic over these time scales due to disturbance by storms and foraging 

by large predators (i.e. rays) (Hovel and Lipcius 2002). Even if the effects of richness 

and dispersal on temporal and spatial variability that we observed were due to transient 

dynamics and community assembly processes, we think that they are important to 

consider. Transient dynamics and community assembly processes are important even in 

equilibrial metacommunities (Fukami and Morin 2003, Fukami 2004), and are likely to 

be increasingly important in community responses to disturbances in today’s rapidly 

changing ecosystems. Nevertheless, a lack of equilibrium, or the short experimental
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duration relative to the time needed for a wide range of experimental conditions which 

might favor different species, might explain the differences between our results and 

others.

Comparison to Chanter II

Somewhat surprisingly, patterns in undisturbed metacommunities in this 

experiment differed from those in metacommunities in the experiment described in 

Chapters II and III (which were all undisturbed). In both experiments, grazer richness 

increased grazer abundance, biomass, and population growth, while dispersal reduced 

both slightly (Fig. 2, left side; population growth not shown). These patterns were 

significant and marked in the Chapter II experiment, but much less significant and 

noticeable in this disturbance experiment. Still, we expected that the higher grazer 

abundance in richer grazer treatments would correspondingly decrease biomass of 

epiphytes, the grazers’ main food resource, as it has in other experiments with these 

grazers (Duffy et al. 2001, Duffy et al. 2003, Duffy et al. 2005, France and Duffy 2006b 

(Chapter II)). However, in this experiment, grazer richness did not decrease epiphyte 

biomass (Fig. 5, Table 1), and in fact, significantly increased algal growth on the walls of 

the mesocosms (Fig 4, 4th row), the biomass of microalgal mats (Fig. 4, 2nd row), and the 

biomass and abundance of Molgula manhattensis, a solitary tunicate (data not shown), all 

of which were reduced by grazer richness in other experiments (Duffy et al. 2001, Duffy 

et al. 2003, Duffy et al. 2005, France and Duffy 2006b). While we have often observed 

that grazer richness increases epiphyte biomass during the early days of an experiment, 

since some species have lower population growth rates, we have always found that
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diverse grazer communities more effectively reduce algal biomass by the end of the 

experiment.

We suspect that these differences between experiments are due to different 

“trajectories” of species loss among experiments. While previous experiments have used 

monocultures or quasi-random combinations of species at the low end of the richness 

gradient, here we eliminated the least common species to create the smaller species pool. 

Consequently, both the amphipods Gammarus mucronatus and Cymadusa compta were 

present in the small species pool, a combination which we have not used before. Both 

species are competitive dominants (France and Duffy 2006a, Chapter III, in prep.). G. 

mucronatus is one of the most abundant species in the field throughout most of the year, 

and C. compta is found in high abundances in the late summer months in the lower 

Chesapeake Bay (Duffy et al. unpublished data). In this experiment, the net population 

growth of these two species was an order of magnitude greater than for any of the other 

six species (data not shown). Although richness effects in some previous experiments 

could not be attributed to any one species or even a combination of species, these two 

species were previously combined only in high richness treatments. They may have 

driven relationships between richness and micro- and macro- algal biomass in those 

experiments. Alternatively, the record-breaking water temperatures in July and August 

could have favored the population growth of C. compta more than usual; C. compta is 

most abundant in seagrass beds in the lower Chesapeake Bay during July and August, the 

hottest months of the year (Duffy et al. unpublished data).
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Summary

Although BD-stability reviews have carefully distinguished between different kinds 

of stability (Cottingham et al. 2001, McCann 2000), opposing effects of diversity on 

those different kinds of stability have perhaps been underemphasized. Here, we 

demonstrate that increasing grazer species richness did decrease both general stability 

and resistance to a macroalgal addition. However, dispersal decreased the general 

stability of both grazers and epiphytes, but increased resistance to and recovery from the 

macroalgal addition. Dispersal increased grazer abundance in patches subjected to the 

macroalgal addition, marginally improved the performance of eelgrass in those patches, 

and stabilized grazer abundance in those disturbed metacommunities. Grazer richness 

also had subtle benefits under disturbed conditions, despite its tendencies to decrease 

stability: species-rich, connected metacommunities had the lowest temporal variability of 

grazer abundance throughout the experiment. Species-rich, connected metacommunities 

also had the most consistent degree of spatial heterogeneity of both grazer abundance and 

epiphyte biomass. Overall, our results emphasize the importance of incorporating both 

spatial processes and trophic interactions into the study of biodiversity-stability 

relationships. While species-rich, connected communities may sometimes offer the 

greatest resistance to perturbations, tendencies for both grazer richness and dispersal to 

amplify temporal fluctuations of ecosystem services could increase the likelihood of state 

changes. Influences of diversity and spatial dynamics on both aspects of stability need to 

be considered in order to effectively manage and conserve ecosystems and the services 

they provide.
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TABLES

Table 1. Main and interactive effects of metacommunity richness, dispersal and 
disturbance on the magnitude and variability of ecosystem properties. Significant (p 
< 0.05) values are 11118111 and highlighted in red. Marginally significant (0.05 < p <
0.10) effects are in italics and highlighted in yellow. Data were analyzed using a fully- 
crossed 3-way GLM with all factors fixed. MS are Type III.

R ichness *
M etacomm unity R ichness * R ichness * D ispersal * D ispersal *

R ichness_________ Dispersal_______ D isturbance Dispersal D isturbance D isturbance D isturbance

Response
Variable

Model
d.o.f.,
Error
d.o.f. R2 MS p-value MS p-value MS p-value MS

P-
value MS

P-
value MS

P-
value MS

P-
value

Patch (subsamplet
Grazer S-W 
diversity

i  1 pat

7, 32

ch fro

.548

7i each metacommunity)

.350 ■ ■  .013 .4118 .098 .010 .4604 .019 .3166 .092 .043 .1355
Grazer abundance 
(FINAL) 7, 31 .123 1974 .9040 19582 .7045 811817 ®M 277963 .1593 22362 .6853 84796 .4318 6880 .8220
Grazer biomass 7, 33 .167 7706 .7442 11396 .6916 93844 .2591 20173 .5980 108933 .2248 237607 .0767 53.6 .9783
Grazer resistance 
(d32-d18) 7, 48 .165 26827 mm 2.92 .9796 3.97 .9763 697 .6937 1466 .5683 2760 .4346 7092 .2130
Epi. chi. a (d 16) 7, 48 .343 13.2 8HB 0 .9790 5.48 M S .631 .3991 .103 .7325 .057 .7988 1.21 .2437
Epi. chi. a (d 22) 7, 48 .352 .969 .1157 .814 .1477 4.73 M .481 .2636 1.46 MM .006 .8982 .042 .7412
Epi. chi. a (d 30) 7, 48 .234 .434 .2502 .171 .4682 3.77 M .116 .5507 .034 .7459 .012 .8500 .006 .8811
Epi. chi. a  (d 42) 7, 48 .255 .178 .5238 .333 .3839 5.13 m b .279 .4250 0 .9792 .027 .8016 .194 .5056
Wall chL a 7, 48 .111 .009 0 .7656 0 .9791 0 .6679 .001 .4626 0 .7428 0 .7947
Microalgal mat 
biomass (mainly 
cyanobacteria) 7, 48 .145 .011 0 .9439 0 .5195 0 .6008 0 .7560 .004 .1784 .003 .2605
Change in Z  
marina biomass 7, 48 .301 5.42 .2571 .085 .8864 . 68.9 m .679 .6868 3,11 .3887 .809 .6598 2.80 .4140
Sediment C:N 7, 22 .362 .001 .9728 .362 .5851 1.35 .297 0 .9924 2.47 .1634 7.27 mm 2.79 .1393
Temporal CV of 
grazer abundance- 
all sampling points 7, 32 .188 .015 .7067 .003 .8588 .413 .7636 .003 .8736 .228 .0502 .037 .5514 .002 .8775
Temporal CV of 
epi. chi a- all 
sampling points 7, 48 .308 .267 .0958 .001 .9121 1.10 .013 .7079 .329 .0656 .004 .8412 .067 .3995

Metacommunity
Grazer S-W 
diversity 7,33 .507 .602 .012 .4728 .019 .3725 0.0000 .9641 .093 .0520 .001 .8051 .064 .1048
Grazer abundance 
beta-diversity 7,33 .447 .080 m m .0008 .6312 .005 .2402 .0004 .7181 .007 .1541 .0005 .6913 0.000 .9467
Final grazer 
abundance (d 45) 7,33 .224 86346 .6578 5809 .9084 1762710 .0516 179162 .5241 522781 .2793 149614 .0717 2598 ,9387
Final grazer 
biomass (d 45) 7. 33 .135 21862 .8034 411371 .2842 42090 .7299 1917 .9412 232094 .4194 758880 .1487 296086 .3624
Avg spatial CV of 
grazer abund 7,48 .268 .117 H I .039 .2185 .146 — .003 .7300 .045 .1865 .026 .3079 .004 .7075
Temporal CV of 
spatial CV of 
grazer abundance 7,48 .253 .004 .8388 .285 .0749 .001 .9109 .852 .008 .7587 .263 .0864 0 .9428
Epiphytic
chlorophyll a (d 42) 7, 48 .482 .218 .5456 1.96 .0743 15.9 m m 2.76 H .443 .3897 1.39 .1307 .122 .6503
Spatial CV of 
sediment C:N 7, 22 .455 .0007 .6566 .0165 m .0009 .6016 .009 .1103 .013 .0596 .007 .1661 .013 .0631
Spatial CV of epi 
chi a (d 42) 7, 48 .655 .049 .2135" 0 .8703 2.38 H I 0 .9470' .124 .0515 .002 .8064 .071 .1377
Avg spatial CV of 
epi. chi. a 7, 48 .586 .037 .0818 .002 .6486 .540 w m .009 .3956 .011 .3288 0 .9964 .101 mm
Temporal CV of 
spatial CV of epi 
chi a 7, 48 .409 .622 .006 .7438 .782 wm 0 .9722 .274 m s .011 .6561 .009 .6937
Temporal CV of 
grazer abund.- 
including before 
disturbance 7, 47 .257 .168 .0829 -020 .5475 .054 .3187 .116 .1472 .009 .6829 .282 .060 .2930
Temporal CV of 
epi. chi. a -  
including before 
disturbance 7, 48 .149 .036 .1972 .005 .6305 .002 .7425’ 0 .9514 .021 .3247' .002 .7814 .003 .7259
Synchrony of 
epiphytic ch! a 7, 48 .153 .046 .7282 .616 .2069 .307 .3711 .123 ,5700 1.72 .179 .4942 .522 .2448
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Table 2. Effects of richness and dispersal on patches that were actually disturbed 
by the macroalgal addition. Significant (p<0.05) effects are bolded. Marginally 
significant effects are italicized. Data were analyzed using a fully-crossed two-way GLM 
with both factors fixed. MS are Type III.

M etacom m unity R ichness *
__________________R ich n ess_________D ispersal_______D ispersal
Model

df,
R esp o n se  Variable Error df R2 MS p-value MS p-value MS p-value

Patch Type III sum of squares
Grazer abundance (wk 3) 3 ,8 .196 631 .6129 2160 .3586 1656 .4185
Grazer abundance (wk 5) 3, 14 .366 1384 .2760 7093 .0224 26.7 .8772
Grazer abundance (wk 6) 3, 8 .481 24842 .0268 243 .7957 65.3 .893
Grazer abundance (FINAL) 3, 15 .167 76590 .4334 248454 .1676 28648 .6296
Grazer biom ass 3, 15 .257 505259 .0507 20016 .6880 100381 .3738
Grazer resistance (wk 5- wk 2) 3, 14 .307 1253 .4385 8184 .0609 1083 .4707
Temporal CV of grazer 
abundance 3, 15 .119 .016 .6910 .012 .2464 .024 .5971
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FIGURE LEGENDS

Figure 1. Final diversity patterns. Is* row, from left to right: Patch species richness 
within a) undisturbed patches, b) undisturbed patches in disturbed metacommunities, and 
c) disturbed patches. Light grey = no dispersal corridors to the patch; dark grey = 
dispersal corridor to the patch. Unmarked bars are undisturbed patches, coarsely-hatched 
bars are undisturbed patches in disturbed metacommunities, and finely-hatched bars are 
disturbed patches. 2nd row: Patch Shannon-Weaver diversity (S-W) of grazers, panels d- 
f  as in 1st row. 3rd row: Beta-diversity, or dissimilarity of species composition among 
patches, estimated using relative abundance of all species. Light grey = no dispersal 
corridors among patches within the metacommunity; dark grey = dispersal corridors 
among patches within the metacommunity, g) Unmarked bars are undisturbed 
metacommunities and h) coarsely-hatched bars are disturbed metacommunities. 4th row: 
Beta-diversity estimated using solely presence-absence of all species within the 
metacommunity for i) undisturbed and j) disturbed metacommunities. Significant effects 
are shown to the right: R=richness, Dp=dispersal, Db=disturbance; f  p<0.1, * p<0.05, ** 
p<0.01, *** p<0.001, **** p<0.0001. Error bars are standard error (S.E.).

Figure 2. Final grazer abundance. 1st row, from left to right: a) Grazer abundance 
within undisturbed patches, b) undisturbed patches in disturbed metacommunities, and c) 
disturbed patches. 2nd row, from left to right: d) Grazer biomass (estimated) within 
undisturbed patches, e) undisturbed patches in disturbed metacommunities, and f) 
disturbed patches. 3rd row, from left to right: Grazer abundance within g) undisturbed 
and h) disturbed metacommunities. 4th row, from left to right: Grazer biomass 
(estimated) within i) undisturbed and j) disturbed metacommunities. Bars as described in 
Figure 1. Significant effects are shown to the right, as in Figure 1. Error bars are S.E..

Figure 3. Time course of grazer abundance. Panels, from left to right: undisturbed 
patches in undisturbed metacommunities; undisturbed patches in disturbed 
metacommunities; disturbed patches. Circles = 3 spp. pool; triangles = 8 spp. pool; open 
symbols = no dispersal; closed symbols = dispersal. Dashed line indicates when 
macroalgae were added to the disturbed patches. Error bars are S.E..

Figure 4. Effects on primary producers. Bar colors and shading as described in Figure
1. Significant effects shown on the right, as in Figure 1. All error bars are S.E. 1st row, 
from left to right: Change in Z. marina biomass over the course of the experiment in 
undisturbed patches, undisturbed patches in disturbed metacommunities, and disturbed 
patches. 2nd row: Inedible algae (blue-green mats and unidentified cohesive algal mats). 
3rd row: Epiphytic chlorophyll a, final week of the experiment. 4th row: Final epiphyte 
biomass on mesocosm walls. Bars and statistics as described in Figure 1. Error bars are 
S.E..
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Figure 5. Time course of epiphyte biomass, as estimated by meg chlorophyll a per cm2 
leaf. Panels, from left to right: undisturbed patches in undisturbed metacommunities; 
undisturbed patches in disturbed metacommunities; disturbed patches. Circles = 3 spp. 
pool; triangles = 8 spp. pool; open symbols = no dispersal; closed symbols = dispersal. 
Red line indicates when macroalgae were added to the disturbed patches. Error bars are 
S.E.. Bars and statistics as described in Figure 1. Error bars are S.E..

Figure 6. Temporal variability of grazer abundance (coefficient of variation) within (a- 
c) patches (top row) and (d-e) metacommunities (bottom row). Panels as described 
above. Bars and statistics as described in Figure 1. Error bars are S.E..

Figure 7. Temporal variability of epiphyte biomass (coefficient of variation) within (a-c) 
patches (top row) and (d-e) metacommunities (bottom row). Panels as described above. 
Bars and statistics as described in Figure 1. Error bars are S.E..

Figure 8. Spatial variability (coefficient of variation) of grazer abundance (top row) 
and epiphyte biomass (bottom row) through time. Circles = metacommunities 
assembled from 3 spp. grazer pool; triangles = 8 spp. pool; open symbols = no dispersal; 
closed symbols = dispersal. Red line indicates when macroalgae were added to the 
disturbed patches. Statistics as described in Figure 1. Error bars are S.E..

Figure 9. Average spatial variability of epiphytes on eelgrass (top row) and mesocosm 
walls (bottom row). Bars and statistics as described in Figure 1. Error bars are S.E..

Figure 10. Temporal variability of spatial heterogeneity of (a,b) grazers and (c,d) 
epiphytes in undisturbed and disturbed metacommunities. Bars and statistics as described 
in Figure 1. Error bars are S.E..

Figure 11. Synchrony of (a,b) grazer abundance and (c,d) epiphyte biomass among 
patches within a metacommunity. Synchrony is estimated as the sum of the covariances 
for each of the three possible pairs of patches within a metacommunity. Bars and 
statistics as described in Figure 1. Error bars are S.E..

Figure 12. Rates of (a,b) daytime oxygen production and (c,d) nighttime oxygen 
consumption within patches one week and three weeks after the addition of macroalgae. 
Bars and statistics as described in Figure 1. Error bars are S.E..

Figure 13. Sediment organic matter. 1st row, from left to right: % total organic carbon 
in the sediments in undisturbed patches in undisturbed metacommunities, undisturbed 
patches in disturbed metacommunities, and actually disturbed patches. 2nd row: Spatial 
heterogeneity (coefficient of variation) of sediment % organic carbon. 3rd row: 
Approximate C:N ratio of sediment organic matter. Panels as in 1st row. 4th row: 
Variation among patches in the quality of organic matter in the sediments. Bars and 
statistics as described in Figure 1. Error bars are S.E..
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LIST OF APPENDICES 

Appendix 4-1: Initial species composition of each patch.

Appendix 4-2: Time course of grazer abundance in each metacommunity with at least 
three sampled time points. Each line is an individual patch, and there is a panel for each 
metacommunity. Within the panels for disturbed metacommunities, blue dashed lines are 
the actually disturbed patches.

Appendix 4-3: Time course of epiphytic chlorophyll a in each metacommunity. Each 
line is an individual patch, and there is a panel for each metacommunity. Within the 
panels for disturbed metacommunities, dashed lines with triangle symbols are the actually 
disturbed patches.

Appendix 4-4: Temporal variability of grazer abundance and epiphytic chlorophyll a 
when all time points, including prior to disturbance, are included.

Appendix 4-5: Biomass and abundance of the most abundant, non-grazing invertebrates 
that recruited into patches through the flow-through seawater system. Panels, from left to 
right: undisturbed patches, undisturbed patches in disturbed metacommunities, and 
disturbed patches. Light grey bars=no dispersal, dark grey bars=dispersal. Error bars are 
S.E..

Appendix 4-6: Size class distributions of grazers in high richness metacommunities. 
Lighter bars are metacommunities without dispersal corridors, darker bars are 
metacommunities with dispersal corridors. Hatched bars are disturbed metacommunities. 
Error bars are S.E..

Appendix 4-7: Main and interactive effects of grazer richness, dispersal, and disturbance 
on all response variables examined.
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1 1 8 No 4 0 2 0 12 4 4 4 6 30
1 2 8 No 2 2 2 8 0 6 6 4 7 30
1 3 8 No 6 6 8 2 6 2 0 0 6 30
2 4 3 No 12 0 0 10 8 0 0 0 3 30
2 5 3 No 12 0 0 6 12 0 0 0 3 30
2 6 3 No 12 0 0 8 10 0 0 0 3 30
3 7 3 Yes 10 0 0 12 8 0 0 0 3 30
3 8 3 Yes 10 0 0 12 8 0 0 0 3 30
3 9 3 Yes 4 0 0 18 8 0 0 0 3 30
4 10 8 No 4 2 2 2 10 4 6 0 7 30
4 11 8 No 0 8 6 6 0 4 4 2 6 30
4 12 8 No 6 2 2 2 8 6 2 2 8 30
5 13 8 Yes 4 4 8 0 6 2 4 2 7 30
5 14 8 Yes 2 6 6 2 6 0 0 8 6 30
5 15 8 Yes 4 2 8 2 4 0 8 2 7 30
6 16 8 Yes 0 2 4 0 8 4 2 10 6 30
6 17 8 Yes 2 6 6 2 10 2 0 2 7 30
6 18 8 Yes 2 0 8 4 4 6 0 6 6 30
7 19 8 No 2 2 8 0 10 2 4 2 7 30
7 20 8 No 4 4 4 4 4 4 4 2 8 30
7 21 8 No 4 2 4 8 6 2 4 0 7 30
8 22 3 Yes 14 0 0 12 4 0 0 0 3 30
8 23 3 Yes 4 0 0 12 14 0 0 0 3 30
8 24 3 Yes 18 0 0 6 6 0 0 0 3 30
9 25 8 Yes 4 4 2 2 6 2 2 8 8 30
9 26 8 Yes 6 4 8 0 0 6 2 4 6 30
9 27 8 Yes 4 4 2 4 4 4 6 2 8 30
10 28 3 No 8 0 0 8 14 0 0 0 3 30
10 29 3 No 8 0 0 16 6 0 0 0 3 30
10 30 3 No 12 0 0 10 8 0 0 0 3 30
11 31 3 Yes 10 0 0 14 6 0 0 0 3 30
11 32 3 Yes 8 0 0 10 12 0 0 0 3 30
11 33 3 Yes 14 0 0 10 6 0 0 0 3 30
12 34 8 No 4 2 2 0 4 2 6 10 7 30
12 35 8 No 0 0 12 10 4 4 0 0 4 30
12 36 8 No 0 0 6 8 0 6 8 2 5 30
13 37 3 No 12 0 0 8 10 0 0 0 3 30
13 38 3 No 14 0 0 4 12 0 0 0 3 30
13 39 3 No 10 0 0 6 14 0 0 0 3 30
14 40 8 Yes 2 2 4 6 2 6 2 6 8 30
14 41 8 Yes 4 2 6 2 6 0 10 0 6 30
14 42 8 Yes 8 8 4 0 0 6 0 4 5 30
15 43 8 No 4 2 4 6 2 4 0 8 7 30
15 44 8 No 2 4 0 2 4 8 8 2 7 30
15 45 8 No 2 6 4 6 4 2 0 6 7 30
16 46 3 No 12 0 0 6 12 0 0 0 3 30
16 47 3 No 6 0 0 18 6 0 0 0 3 30
16 48 3 No 6 0 0 8 16 0 0 0 3 30
17 49 3 Yes 10 0 0 12 8 0 0 0 3 30
17 50 3 Yes 8 0 0 10 12 0 0 0 3 30
17 51 3 Yes 10 0 0 8 12 0 0 0 3 30
18 52 3 Yes 8 0 0 14 8 0 0 0 3 30
18 53 3 Yes 14 0 0 4 12 0 0 0 3 30
18 54 3 Yes 6 0 0 12 12 0 0 0 3 30
19 55 3 No 10 0 0 8 12 0 0 0 3 30
19 56 3 No 14 0 0 12 4 0 0 0 3 30
19 57 3 No 12 0 0 8 10 0 0 0 3 30
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20 58 8 Yes 4 6 2 4 0 6 4 4 7 30
20 59 8 Yes 0 0 6 2 8 2 6 6 6 30
20 60 8 Yes 2 6 2 4 0 8 4 4 7 30
21 61 3 Yes 8 0 0 12 10 0 0 0 3 30
21 62 3 Yes 4 0 0 8 18 0 0 0 3 30
21 63 3 Yes 14 0 0 8 8 0 0 0 3 30
22 64 8 No 0 6 0 2 2 2 6 12 6 30
22 65 8 No 0 6 8 2 2 4 4 4 7 30
22 66 8 No 4 0 6 4 2 4 4 6 7 30
23 67 8 Yes 2 6 4 2 2 4 4 6 8 30
23 68 8 Yes 8 2 6 0 4 2 4 4 7 30
23 69 8 Yes 4 2 8 2 0 2 2 10 7 30
24 70 3 Yes 6 0 0 14 10 0 0 0 3 30
24 71 3 Yes 8 0 0 14 8 0 0 0 3 30
24 72 3 Yes 6 0 0 14 10 0 0 0 3 30
25 73 3 No 8 0 0 14 8 0 0 0 3 30
25 74 3 No 14 0 0 14 2 0 0 0 3 30
25 75 3 No 10 0 0 10 10 0 0 0 3 30
26 76 3 Yes 14 0 0 12 4 0 0 0 3 30
26 77 3 Yes 8 0 0 10 12 0 0 0 3 30
26 78 3 Yes 8 0 0 14 8 0 0 0 3 30
27 79 3 No 12 0 0 10 8 0 0 0 3 30
27 80 3 No 4 0 0 16 10 0 0 0 3 30
27 81 3 No 10 0 0 10 10 0 0 0 3 30
28 82 3 No 12 0 0 8 10 0 0 0 3 30
28 83 3 No 6 0 0 12 12 0 0 0 3 30
28 84 3 No 10 0 0 10 10 0 0 0 3 30
29 85 8 Yes 2 2 4 6 2 8 4 2 8 30
29 86 8 Yes 4 4 0 0 4 0 8 10 5 30
29 87 8 Yes 2 0 6 6 10 4 2 0 6 30
30 88 3 No 6 0 0 16 8 0 0 0 3 30
30 89 3 No 14 0 0 10 6 0 0 0 3 30
30 90 3 No 10 0 0 10 10 0 0 0 3 30
31 91 8 Yes 6 2 4 10 0 6 2 0 6 30
31 92 8 Yes 4 4 2 2 2 4 8 4 8 30
31 93 8 Yes 4 4 4 4 2 6 6 0 7 30
32 94 3 Yes 14 0 0 6 10 0 0 0 3 30
32 95 3 Yes 14 0 0 10 6 0 0 0 3 30
32 96 3 Yes 14 0 0 4 12 0 0 0 3 30
33 97 3 Yes 12 0 0 8 10 0 0 0 3 30
33 98 3 Yes 14 0 0 8 8 0 0 0 3 30
33 99 3 Yes 10 0 0 16 4 0 0 0 3 30
34 100 8 No 2 2 0 8 4 4 4 6 7 30
34 101 8 No 2 4 4 2 6 6 4 2 8 30
34 102 8 No 2 2 2 4 8 4 4 4 8 30
35 103 8 No 2 4 6 2 4 6 2 4 8 30
35 104 8 No 4 6 6 2 2 2 4 4 8 30
35 105 8 No 2 2 0 4 6 10 2 4 7 30
36 106 8 No 4 0 4 0 6 6 6 4 6 30
36 107 8 No 4 8 6 4 4 2 2 0 7 30
36 108 8 No 4 2 2 2 2 10 4 4 8 30
37 109 3 No 10 0 0 10 10 0 0 0 3 30
37 110 3 No 8 0 0 16 6 0 0 0 3 30
37 111 3 No 14 0 0 4 12 0 0 0 3 30
38 112 3 Yes 6 0 0 16 8 0 0 0 3 30
38 113 3 Yes 16 0 0 6 8 0 0 0 3 30
38 114 3 Yes 6 0 0 16 8 0 0 0 3 30
39 115 3 No 10 0 0 6 14 0 0 0 3 30
39 116 3 No 6 0 0 12 12 0 0 0 3 30
39 117 3 No 8 0 0 8 14 0 0 0 3 30
40 118 8 No 6 4 2 4 6 6 0 2 7 30
40 119 8 No 6 2 8 0 4 4 4 2 7 30
40 120 8 No 2 4 4 6 6 2 4 2 8 30
41 121 8 Yes 0 0 4 6 2 6 4 8 6 30
41 122 8 Yes 6 2 4 2 0 6 6 4 7 30
41 123 8 Yes 4 0 2 10 4 4 0 6 6 30
42 124 8 No 0 10 0 4 4 4 2 6 6 30
42 125 8 No 6 6 0 4 0 6 4 4 6 30
42 126a 8 No 6 4 6 4 0 2 6 2 7 30
43 126b 3 Yes 4 0 0 18 8 0 0 0 3 30
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43 127 3 Yes 8 0 0 18 4 0 0 0 3 30
43 128 3 Yes 10 0 0 16 4 0 0 0 3 30
44 129 3 Yes 10 0 0 12 8 0 0 0 3 30
44 130 3 Yes 6 0 0 12 12 0 0 0 3 30
44 131 3 Yes 6 0 0 16 8 0 0 0 3 30
45 132 3 No 12 0 0 10 8 0 0 0 3 30
45 133 3 No 18 0 0 6 6 0 0 0 3 30
45 134 3 No 8 0 0 8 14 0 0 0 3 30
46 135 8 No 2 8 0 0 10 2 4 4 6 30
46 136 8 No 0 6 4 4 2 2 2 10 7 30
46 137 8 No 4 4 4 0 6 6 4 2 7 30
47 138 8 Yes 4 4 2 4 4 6 2 4 8 30
47 139 8 Yes 8 0 6 0 2 4 8 2 6 30
47 140 8 Yes 6 2 2 2 2 4 8 4 8 30
48 141 8 Yes 4 4 4 4 6 0 2 6 7 30
48 142 8 Yes 4 6 6 2 0 4 6 2 7 30
48 143 8 Yes 0 6 4 0 6 2 6 6 6 30
49 144 8 Yes 6 4 10 2 4 0 0 4 6 30
49 145 8 Yes 2 2 0 12 2 2 4 6 7 30
49 146 8 Yes 8 2 2 4 4 2 6 2 8 30
50 147 8 No 6 2 4 6 0 8 2 2 7 30
50 148 8 No 2 6 4 4 0 4 6 4 7 30
50 149 8 No 2 2 6 4 8 6 0 2 7 30
51 150 8 Yes 4 4 2 4 4 4 4 4 8 30
51 151 8 Yes 10 4 0 6 2 4 2 2 7 30
51 152 8 Yes 6 2 2 4 4 2 4 6 8 30
52 153 3 No 6 0 0 12 12 0 0 0 3 30
52 154 3 No 12 0 0 8 10 0 0 0 3 30
52 155 3 No 6 0 0 16 8 0 0 0 3 30
53 156 3 No 4 0 0 16 10 0 0 0 3 30
53 157 3 No 8 0 0 10 12 0 0 0 3 30
53 158 3 No 4 0 0 10 16 0 0 0 3 30
54 159 3 Yes 14 0 0 4 12 0 0 0 3 30
54 160 3 Yes 8 0 0 10 12 0 0 0 3 30
54 161 3 Yes 10 0 0 8 12 0 0 0 3 30
55 162 8 Yes 6 6 4 2 4 0 4 4 7 30
55 163 8 Yes 0 10 4 6 2 2 6 0 6 30
55 164 8 Yes 2 6 4 4 4 4 2 4 8 30
56 165 8 No 2 4 2 4 14 2 0 2 7 30
56 166 8 No 2 4 2 2 4 10 2 4 8 30
56 167 8 No 4 2 8 0 4 0 8 4 6 30
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Appendix 4-2
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Appendix 4-3 (continued, Disturbed Metacommunities)
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Appendix 4-7: Main and interactive effects of metacommunity richness, dispersal and 
disturbance on the magnitude and variability of ecosystem properties. Significant (p < 0.05) 
values are bolded and highlighted in red. Marginally significant (0.05 < p < 0.10) effects are in 
italics. Data were analyzed using a fully-crossed 3-way GLM with all factors fixed. MS are 
Type III.

Metacommunit 
y Richness Dispersal D isturbance

Richness *
Richness * Richness * Dispersal * Dispersal * 
Dispersal Disturbance Disturbance Disturbance

Model
d.o.f.,

Response Variable
Error
d.o.f. R2 MS p-value MS p-value MS p-value MS

P-
value MS

P-
value MS

P*
value MS

p-
value

Patch (subsampled 1 patch 
metacommunity Type III sui

Grazer richness

from eacl 
n ofsqua

7, 30
-es

.856 160.1 0 1.000 .053 .8117 .094 .7509 .288 .5791 .094 .7509 0 1.000
Grazer S-W diversity 7, 32 .548 .350 wm ,013 .4118 .098 wm .010 .4604 .019 .3166 .092 1 .043 .1355
Grazer abundance (day 18) 7, 32 .053 437 .5115 757 .3889 74.8 .7854 399 .5306 54.7 .8160 33.9 .8546 33.87 .8546
Grazer abundance (day 32) 7, 32 .078 562 .6399 808 .5750 1733 .4128 2158 .3614 103 .8406 186 .7876 1555 .4377
Grazer abundance (FINAL) 7, 31 .123 1974 .9040 19582 .7045 169634 .2685 277963 .1593 22362 .6853 84796 .4318 6880 .8220
Grazer biomass 7, 33 .167 7706 .7442 11396 .6916 93844 .2591 20173 .5980 108933 .2248 237607 .0767 53.6 .9783
Grazer resistance (day 32- 
day 18) 7, 48 .165

2682
7 2.92 .9796 3.97 .9763 697 .6937 1466 .5683 2760 .4346 7092 .2130

Epiphytic chi a (day 16) 7, 48 .343 13.2 wm 0 .9790 5.48 1 .631 .3991 .103 .7325 .057 .7988 1.21 .2437
Epiphytic chi a (day 22) 7, 48 .352 ,969 .1157 .814 .14 77 4.73 MW .481 .2636 1.46 .0548 .006 .8982 .042 .7412
Epiphytic chi a (day 30) 7, 48 .234 .434 .2502 .171 .4682 3.77 MW .116 .5507 .034 .7459 .012 .8500 .006 .8811
Epiphytic chi a (day 42) 7, 48 .255 .178 .5238 .333 .3839 5.13 wm .279 .4250 0 .9792 .027 .8016 .194 .5056
Wall chlorophyll a 7, 48 .111 .009 EBM 0 .7656 0 .9791 0 .6679 .001 .4626 0 .7428 0 .7947
Microalgal mat biomass 
(mainly cyanobacteria) 7, 48 .145 .011 m u 0 .9439 0 .5195 0 .6008 0 .7560 .004 .1784 .003 .2605
Change in Z  marina biomass 7,48 .301 5.42 .2571 .085 .8864 . 68.9 MM .679 .6868 3.11 .3887 .809 .6598 2.80 .4140
Day 02  production (d 24) 7, 22 .193 2,97 .2104 .726 .5302 .075 .8390 .102 .8129 .286 .6926 1.19 .4234 2.64 .2367
Night 0 2  production (d 20) 7,12 .306 .005 .7285 .005 .7403 .117 .1093 .033 .3746 ,011 .5992 .0002 .9423 .045 .3032
Day 02  production (d 7?) 7, 22 .626 5.33 .0869 ,726 .5153 42.3 i — a .082 .8261 7.41 wm 6.28 .0649 1.55 .3442
Night 02  production (d ??) 7, 21 .183 5.79 .3813 4.17 .4567 .535 .7885 4.013 .4652 2.04 .6010 1.88 .6164 2.04 .601
Sediment total organic 
carbon {%) 7, 22 ,157 .0003 .7709 .006 .1564 .004 .2788 .0008 .6133 0 .9395 0 .9085 .0006 .6553
Sediment C:N 7, 22 .362 .001 .9728 .362 .5851 1.35 .297 0 .9924 2.47 .1634 7.27 1 2.79 .1393
Temporal CV of grazer 
abundance-all sampling 
points 7, 32 ,188 .015 .7067 .003 .8588 .413 .0519 .003 .8736 .228 .1438 .037 .5514 .002 .8775
Temporal CV of grazer
abundance-post-disturbance
only 7,16 .310 .147 .1007 .018 ,5467 .051 .3181 0 .9852 .026 .4756 .060 .2830 .046 .3444
Temporal CVof epi. chi a- 
all sampling points 7, 48 .308 .267 .09S8 .001 .9121 1.10 M M .013 .7079 .329 .0656 .004 .8412 .067 .3995
Temporal CV of epi. chi a- 
post disturbance only 7, 48 .265 .102 .156* .030 .4394 .453 wm .012 .6203 .051 .3129 .010 .6585 ,063 .2650
Metacommunity

Grazer richness 
Grazer S-W diversity 7,33 .507 .602 .012 .4728 .019 .3725 0.0000 .9641 .093 .0520 .001 .8051 .064 .1048
Grazer pres-abs beta- 
diversity 7,33 .188 .009 .2550 .017 .1140 .003 .4946 .011 .2016 .002 .6148 .002 .5887 0 .9441
Grazer abundance beta- 
diversity 7,33 .447 .080 us— .0008 .6312 .005 ,2402 .0004 .7181 .007 .1541 .0005 .6913 0.000 .9467

Final grazer abundance (d45) 7,33 .224
8634

6 .6578 5809 .9084 1762710 .0516 179162 .5241 522781 .2793 1496145 .0717 2598 .9387

Final grazer biomass (d 45) 7, 33 .135
2186

2 .8034 411371 ,2842 42090 .7299 1917 .9412 232094 .4194 758880 .1487 296086 .3624

Grazer abundance (d 18) 7,47 .216
3970

5 859 .6517 3034 .3974 201 .8269 3161 .3878 629 .6991 2308 .4601

Grazer abundance(d 24) 6,10 .245 2.333 .9853 1428 .6505 15133 .1594 14.1 .9639 603 .7676 290 .8374 - -

Grazer abundance (d 32) 7,48 .132
4301

6 .1127 13372 .3722 8924 .4654 18134 .2994 1522 .7625 4942 .5865 17700 .3052
Grazer abundance (d 39) 7,16 .144 368 .8958 150 .9334 620 .8651 322 .9025 48780 .1453 416 .8892 5400 .6174
Spatial CV of grazers (d 18) 7,48 .164 .003 .8181 .157 .1149 .020 .5726 0.000 .9892 .057 .3392 .242 .0519 .080 .2573
Spatial CV of grazers (d 24) 6,10 .475 .183 M .050 .2523 .091 .1329 .079 .1589 .260 1 .064 .2016 . . . - -
Spatial CV of grazers (d 32) 7,48 .301 .368 1 .045 .4171 .486 HH .095 .2401 .039 .4534 .020 .5906 .137 .1612
Spatial CV of grazers (d 39) 7,16 .401 .011 .5704 .094 .1021 .020 .4365 .033 .3202 .084 .1208 .057 .1968 .037 .2934

Spatial CV of grazers (d 45) 7,48 .266 .034 .1178 .028 .1591 .017 .2723 .005 .5425 .054 wm .002 .6808 .002 .6723
Avg spatial CV of grazer 
abundance 7,48 .2 68 .117 .039 .2185 .146 H .003 .7300 .045 .1865 .026 .3079 .004 .7075
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Temporal CV of spatial CV of 
grazer abundance 7,48 .253 .004
Epi. chlorophyll a (d 16) 7, 48 .413 73.5
Epi. chlorophyll a (d 22) 7, 48 .345 7.39
Epi. chlorophyll a (d 30) 7, 48 .270 .827
Epi. chlorophyll a (d 42) 7, 48 .482 .218
Spatial CV of sediment TOC 7, 22 .221 ,074
Spatial CV of sediment C:N 7. 22 .455 .0007
Spatial CV of epi chi a (d 16) 7, 48 .122 .057
Spatial CV of epi chi a (d 22) 7, 48 .357 .600
Spatial CV of epi chi a (d 30) 7. 48 .468 .065
Spatial CV of epi chi a  (day 
42) 7, 48 .655 .049
Avg Spatial CV of epiphytic 
chi a 7, 48 .586 .037
Spatial CV of wall chlorophyll 
a 7. 48 .043 .027
Temporal CV of Spatial CV of 
epi chi a 7. 48 .409 .622
Temporal CV of grazer 
abundance-including before 
disturbance 7, 47 .257 .168
Temporal CV of grazer 
abundance-post disturbance 
only 7,16 .239 .008
Temporal CV of epi. chi a -  
including before disturbance 7, 48 .149 .036
Temporal CV of epi. chi a- 
post disturbance only 7, 48 .058 0
Synchrony (sum of covar) 
epiphytic chi a 7, 48 .153 .046

.8388 .285 .0749 .001 .9109 .852
@BH 2.13 .4057 9.14 .0888 3.88
IHBB 2.79 .1070 10.52 .0025 .275
.3318 .003 .9521 12.83 MM 1.09
.5456 1.96 .0743 15.9 m m 2.76
.1908 .055 .2582 .060 .2371 .004
.6566 .0165 H .0009 .6016 .009
.3752 .021 .5865 0 ,9589 .009

m 0 .8903 .162 wm .030
.1671 .004 .7322 ,964 — .047

.2135* 0 .8703 2.38 wm 0

.0818 .002 .6486 .540 .009

.6754 .033 .6439 .043 .6009 0

M .006 .7438 .782 wm 0

.0829 .020 .5475 .054 .3187 .116

.6094 .075 .1390 0 .9631 .010

.1972 .005 .6305 .002 .7425* 0

.9787 0 .9676 .005 .6158 .021

.7282 .616 .2069 .307 .3711 .123

wm .008 .7587 .263 .0864 0 .9428
.2633 .313 .7489 7.07 .1330 6.31 .1551
.6084 3.79 .0618 1.38 .2545 0 .9866
.2658 .009 .9159 .159 .6696 .648 .3898
MM .443 .3897 1.39 .1307 .122 .6503
.7643 .329 .3784 .017 .5286 .012 .5923
.1103 .013 .0596 .007 .1661 .013 .0631

.7256 .056 .3827 .005 .7989 .305 wm

.3668 .022 .4419 .032 .3524 .059 .2078

.2411 .055 .2058 .027 .3708 .069 .1553

.9470* .124 .0515 .002 .8064 .071 .1377

,3956 .011 .3288 0 .9964 .101

.9934 .041 .6101 .192 .2708 .025 .6890

.9722 .274 .011 .6561 .009 .6937

.1472 .009 .6829 .282 am .060 .2930

.5694 .017 .4703
.3247

.030 .3416 .015 .4922

.9514 .021 .002 .7814 .003 .7259

.2806 .016 .3465 .002 .7663 .012 .4073

.5700 1.72 wm .179 .4942 .522 .2448
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CONCLUSION

This dissertation demonstrates the importance of examining biodiversity-ecosystem 

function relationships in dynamic systems, where diversity is influenced by the history of 

community assembly and spatial processes. First, the history of community assembly is 

clearly important in this system. Chapter I demonstrated that priority effects, or the 

sequence of species colonization, could influence the outcome of competition. Being 

there first confers an advantage. Similarly, in the two experiments discussed in Chapters 

II-IV, patches retained their original composition signatures to a large degree, even after 

six weeks of population growth, as well as colonization through the dispersal corridors. 

These experiments, along with others (Fukami and Morin 2003, Cardinale et al. 2004, 

Matthiessen and Hillebrand 2006), illustrate the importance of studying the effects of 

dynamic diversity on ecosystem function. Species are being both lost from and added to 

systems, and the order and spatial pattern of these processes are likely to be important for 

diversity and ecosystem function (Cassey et al. 2006).

Second, this work suggests that biodiversity-ecosystem function relationships may 

scale-up to metacommunities, but that biodiversity-stability relationships might not. We 

found that diverse communities of mobile consumers contained more individuals, better 

resisted invasion by organisms at multiple trophic levels, and reduced producer biomass 

to lower levels than species-poor communities. These results mirror those from the large 

number of studies on plants and microbes, confirming the generality of biodiversity- 

ecosystem function relationships and the mechanisms that create them. We also found
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evidence that biodiversity-ecosystem function relationships can scale-up to 

metacommunities: the size of the species pool used to assemble metacommunities 

explained even more variance in ecosystem properties like consumer and producer 

abundance than patch diversity did. Despite finding prevalent positive effects of 

biodiversity on ecosystem properties, we did not find many positive effects of 

biodiversity on predictability of those properties. Though diverse patches had higher 

resistance to invasion (Chapter I), they had lower resistance to the macroalgae 

disturbance (Chapter IV). Patches with high diversity grazer communities also had 

higher temporal variability of grazers and epiphytes (Chapters II-IV), potentially making 

them more susceptible to population crashes or invasions. Finally, metacommunities 

assembled from large species pools had high beta-diversity, which made ecosystem 

properties less predictable in space. These results suggest that biodiversity-stability 

theory needs to consider both consumer-resource dynamics and spatial processes. Also, 

posited benefits of diversity for temporal and spatial predictability may not apply to 

fragmented landscapes.

Furthermore, dispersal of mobile organisms can have a variety of important indirect 

effects on ecosystem function. Although connecting patches had surprisingly small 

effects on diversity within patches, it reduced beta-diversity, homogenizing patch 

composition and other ecosystem properties (Chapters II and IV). Dispersal also 

homogenized the distribution of individuals throughout the metacommunity, decreasing 

intraspecific aggregation and reducing average patch density (Chapter III). Despite 

increasing the performance of already high-performing species, though, dispersal actually 

reduced grazer abundance, eliminating the positive effects of diversity on grazer
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abundance (Chapter II). Allowing grazers to move among patches also de-stabilized 

grazer and epiphyte abundance at both patch and metacommunity scales (Chapters II and 

IV). Although many dispersal effects were small and marginally significant, they were 

pervasive. Dispersal modified a large percentage of the relationships between diversity 

and ecosystem properties (Chapter III). Since this experimental system, with minimal 

initial patch heterogeneity, limited the scope for metacommunity dynamics, dispersal 

effects on ecosystem function are likely to be even more important in other systems.

Many of the results presented in this dissertation were not predicted by existing 

metacommunity theory or biodiversity-ecosystem function theory. For instance, 

increasing the size of the species pool used to assemble metacommunities:

(1) increased spatial heterogeneity of ecosystem properties (Chapters II and IV),

(2) increased temporal variability of grazer and epiphyte abundance at the patch 

scale, but not at the metacommunity scale (Chapters II and IV), and

(3) decreased metacommunity resistance to disturbance (Chapter IV).

All of these outcomes were unexpected, since diversity is hypothesized to increase 

predictability in space and time and provide insurance against disturbance. These 

deviations from diversity-stability predictions were even more surprising given the 

strength and prevalence of positive diversity-ecosystem function relationships we found 

at both patch and metacommunity scales. Allowing grazers to move between patches 

also had effects not anticipated by biodiversity-ecosystem function theory. Dispersal:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



214

(4) reduced grazer populations in diverse metacommunities without affecting 

metacommunity diversity (Chapters II and III),

(5) amplified temporal variability of grazer and epiphyte abundance within patches 

and metacommunities (Chapters II and IV), and

(6) eliminated the few stabilizing effects of diversity (Chapters II and IV).

I suspect that a large proportion of these deviations are because we studied a) 

effects of species pool size, rather than patch diversity, of b) actively mobile consumers 

that c) feed on a very dynamic resource. In combination, these three elements created a 

highly dynamic landscape, where patch heterogeneity was far from fixed. Grazers clearly 

affected patch heterogeneity of ecosystem properties in this system, as spatial variability 

of most properties mirrored patterns of beta-diversity. This dynamism in space and time 

contributed to many of the surprising results. For example, in our experiments, the 

number of possible interactions and resultant variety in community structures was greatly 

amplified, compared to previous microcosm experiments (McGrady-Steed et al. 1997, 

Naeem and Li 1997, Fukami et al. 2001, Morin and McGrady-Steed 2004), by allowing 

grazer composition to vary between patches, and having those grazers interact with 

temporally and spatially dynamic food resources. These differences explain why 

diversity increased, rather than decreased, spatial variability of ecosystem properties in 

our experiment (1). The scope of interactions made possible by diverse grazer 

communities, which can compete through behavior as well as simple resource 

acquisition, feeding on dynamic food resources, might also explain why diversity 

increased, rather than decreased, temporal variability. Competitive outcomes could have
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shifted over the course of the experiment, inflating temporal variability of aggregate 

abundance (2) (Tilman 1996, Ives et al. 1999, Tilman 1999, Hughes and Roughgarden 

2000, Ives et al. 2000, Ives and Hughes 2002). As another example, the interplay 

between selective grazer foraging in connected metacommunities and the continually 

recruiting microalgal community led to accumulations of less edible food sources, which 

limited grazer populations (4). Similarly, when mobile consumers can actively select 

habitat patches, connecting patches may allow both rapid recruitment to an optimal 

habitat and emigration after resource depletion, inflating temporal variability within a 

given patch (5). Finally, spatial heterogeneity created by grazers led to a wide variety of 

time courses of epiphytes and grazers among patches within the same metacommunity 

(Appendices 3-1, 4-2 and 4-3). This variety actually stabilized metacommunity-wide 

grazer and epiphyte abundance through time in unconnected metacommunities (Chapters 

II and IV). But, time courses became more synchronous with dispersal, just as patch 

compositions became more homogenized (6). While these effects are complex, the 

common theme is that the combination of mobile animals feeding on a dynamic resource 

in multi-patch landscapes produced the effects.

Actively mobile consumers feeding on dynamic resources is a common scenario in 

nature, but little theory in the biodiversity-ecosystem function or even the 

metacommunity and metapopulation realms explores it. This combination of elements is 

probably the rule, rather than the exception, in aquatic systems. Patch heterogeneity in 

resource supply is highly variable through time in many aquatic systems, and the striking 

effects of consumers on primary producers in these systems is legendary (Hairston et al. 

1960, Strong 1992). Dynamic patch heterogeneity is fairly common in terrestrial systems
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too (Levin et al. 1993), due to succession, localized disturbances like pest and disease 

outbreaks or treefalls, and, importantly, grazing (Sommer 2000, Adler et al. 2001, Flecker 

and Taylor 2004, Fryxell et al. 2005). However, most biodiversity-ecosystem function 

theory ignores both patch heterogeneity and temporal variability. Recent multi-trophic 

biodiversity-ecosystem function theory has predicted that generalist consumers could be 

de-stabilizing (Thebault and Loreau 2003, 2005, 2006), but has not included dynamic and 

diverse resources, or allowed consumers to disperse. Metacommunity theory, of course, 

considers patch heterogeneity and dispersal, but often assumes that patch heterogeneity is 

fixed, and that consumers cannot generate it. Metapopulation ecologists have tackled 

dynamic patch heterogeneity (Allen et al. 1993, Gyllenberg and Hanski 1997, 

Amarasekare and Possingham 2001, Johst et al. 2002), including predator-prey dynamics, 

but this work has not quite been placed within a metacommunity context yet. These gaps 

in theory may partly explain why virtually no empirical research has been conducted 

under these conditions. Hopefully this dissertation, along with recent papers and books 

focusing attention on these gaps (Srivastava 2002, Giller et al. 2004, Srivastava and 

Vellend 2005, Duffy et al. in press), the field of metacommunity ecology (Holyoak et al. 

2005), and unifying food web theory with landscape ecology (Polis et al. 2004), will help 

spur theory development and more field and experimental studies that will challenge 

theory.

Also, more theory on how diversity might interact with spatial processes is needed. 

There is some evidence in this dissertation that diverse communities may resist 

colonizations. As shown in Chapter I, diverse grazer assemblages better resist “invasion” 

of new individuals because they utilize resources more fully. There is, essentially, less
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room for new individuals. In Chapter I, we viewed this through the lens of “invasion 

dynamics.” But the same principle probably applies to colonizations in a broader sense, 

encompassing immigration of species already present in the patch as well as other 

species. Perhaps, then, diverse communities will be less affected by dispersal. Chapter 

IV presents slight evidence for this, in that diverse metacommunities may have better 

resisted synchronization by dispersal. I think that this idea merits exploring, particularly 

within plant communities. However, most ecosystem properties examined in Chapters II 

and IV were affected more by dispersal in diverse metacommunities than in species poor 

metacommunities. This apparent contradiction is intriguing, and it will be interesting to 

see whether or not other studies find that diverse metacommunities are more or less 

resistant to the effects of dispersal. Clearly, more work is needed to understand 

interactive effects of connectivity and diversity on ecosystem functions across 

landscapes.

Finally, I want to highlight the potential relationship between diversity and 

asynchrony of ecosystem function among patches suggested by this work (Chapters II 

and III). Asynchrony of aggregate abundance within diverse patches is a long recognized 

mechanism for generating stability (Tilman 1996, Doak et al. 1998, Tilman et al. 1998, 

Ives et al. 1999, Tilman 1999, Hughes and Roughgarden 2000, Ives et al. 2000, Ives and 

Hughes 2002). Likewise, metapopulation ecologists have studied the effects of dispersal 

on asynchrony of populations in patchy landscapes (Hastings 1993, Ranta et al. 1995, 

Ranta et al. 1997, 1998, Ruxton and Rohani 1998, Blasius et al. 1999, Shimada and 

Ishihama 2000). However, the idea that diversity at a coarser scale might generate patch 

heterogeneity sufficient to cause asynchrony among patches is fairly new. Evidence for
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asynchrony among patches in diverse metacommunities in my experiment was largely 

deductive: in order for patterns of temporal variability of grazer abundance within 

patches to differ from patterns of grazer abundance summed across patches within a 

metacommunity, as they did in Chapter II, patches simply must have asynchronous 

dynamics. This was slightly borne out by measures of asynchrony (Chapter III), but not 

to the extent I expected.4 Too, temporal variability of grazers and epiphytes was not 

stabilized by diversity at the metacommunity scale in the second metacommunity 

experiment (Chapter IV); diversity was de-stabilizing at both scales. I strongly suspect 

that this was because there were only three patches in those metacommunities, rather than 

five, restricting the scope for asynchrony. So, again, the evidence for relationships 

between diversity and asynchrony among patches in this dissertation is not 

overwhelming. But the hints are sufficiently intriguing to merit further study, particularly 

because it has important implications for conservation.

For instance, if the number and heterogeneity of patches in a metacommunity is 

important for stabilizing metacommunity-wide ecosystem function, just as diversity 

within patches can stabilize patch function, habitat loss will have consequences for 

ecosystem function in addition to consequences for species persistence. Second, there 

might be tradeoffs between the levels of connectivity necessary for maximizing diversity, 

target population survival, and stabilizing ecosystem function. Third, although 

metapopulation ecologists have been concerned about dispersal-induced synchronization 

of population dynamics, synchronization of ecosystem function might occur at lower 

dispersal frequencies than synchronization of individual population dynamics. It will be

4I think new measures o f synchrony, designed to capture both phase angle and amplitude, rather than 
simple linear correlations, might be important for examining synchronization o f ecosystem functions.
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important to determine if dispersal can synchronize ecosystem function in other systems 

and in real landscapes, and whether or not it occurs coordinately, before, or after 

synchronization of population dynamics.

Overall, this dissertation takes steps towards addressing three of the major 

challenges to making biodiversity-ecosystem function research relevant to conservation:

1) scaling up to landscapes, 2) understanding diversity-function relationships within 

foodwebs, rather than simply within trophic levels, and 3) separating the direct effects of 

habitat fragmentation and dispersal on ecosystem function from its indirect effects, 

mediated by its effects on diversity (Giller et al. 2004, Srivastava and Vellend 2005). It 

is encouraging that many of the metacommunity-scale results presented here mirror 

previous patch-scale diversity-function research, especially since I/we allowed diversity 

to be dynamic, rather than static. However, connecting patches did often completely 

reverse effects of diversity on ecosystem function, and often rendered effects less 

predictable. Such interactive effects of connectivity and diversity on ecosystem function 

seem likely in other systems, given increasing habitat fragmentation in most ecosystems. 

More work is clearly needed to understand how connectivity and diversity might 

interactively affect ecosystem function, particularly since patches and ecosystems can be 

connected, and those connections disrupted, in such an amazing variety of ways. Some 

examples for future study include: passive vs. active dispersal, spatial configuration of 

patches and dispersal vectors, bi-directional vs. uni-directional dispersal (i.e. streams), 

which trophic levels systems are connected at, the degree of spatial or temporal overlap 

in the dispersal kernels of organisms within and between trophic levels, and whether 

dispersal vectors also bring or remove nutrients (i.e. most aquatic systems). Since
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connectivity plays an extremely important role in all of the major drivers of diversity 

change, particularly habitat fragmentation, species introductions, and climate change, it is 

essential that we understand how it affects diversity and ecosystem functions. This 

information is critical for conserving diversity and managing ecosystem services in light 

of the ongoing and projected changes to regional species pools caused by anthropogenic 

disturbance.
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Appendix 5-1. Simplified seagrass food web diagram. Solid lines=direct 
interactions; dashed lines=indirect interactions. Red arrows indicate negative 
interactions; black arrows indicate positive interactions. Thickness of the arrows 
approximates relative interaction strength. Epifaunal grazers compete for 
resources and/or facilitate each other, depending on the species pair and 
environmental context. Some grazer species can consume juvenile grazers.
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Regional Pool Size 3 spp.
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x 5 x 5 x 5 x 5

Appendix 5-2. Experimental design for Chapters II and III.
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Appendix 5-3. Experimental design for Chapter IV.
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