
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2010

Enhancing Web Browsing Security Enhancing Web Browsing Security

Chuan Yue
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Yue, Chuan, "Enhancing Web Browsing Security" (2010). Dissertations, Theses, and Masters Projects.
Paper 1539623575.
https://dx.doi.org/doi:10.21220/s2-jpwx-sw57

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623575&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539623575&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-jpwx-sw57
mailto:scholarworks@wm.edu

Enhancing Web Browsing Security

Chuan Vue

Lanzhou, Gansu Province, China

Master of Engineering, Xidian University, 1999
Bachelor of Engineering, Xidian University, 1996

A Dissertation presented to the Graduate Faculty
of the College of William and Mary in Candidacy for the Degree of

Doctor of Philosophy

Department of Computer Science

The College of William and Mary
August, 201 0

APPROVAL PAGE

This Dissertation is submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

Chuan Vue

Approved by the Committee, July, 2010 _ ..

~
Committee Chair

Associate Professor Haining Wang, Computer Science
The College of William and Mary

Associate Professor Weizhen Mao, Computer Science The /Z::ary
Associ e Professor Phil Kearns, Computer Science

The College of William and Mary

Associate Professor Qun Li, Computer Science
The College of William and Mary

Assistant Professor Gexin Yu, Mathematics
The College of William and Mary

ABSTRACT PAGE

Web browsing has become an integral part of our lives, and we use browsers to perform
many important activities almost everyday and everywhere. However, due to the
vulnerabilities in Web browsers and Web applications and also due to Web users' lack of
security knowledge, browser-based attacks are rampant over the Internet and have caused
substantial damage to both Web users and service providers. Enhancing Web browsing
security is therefore of great need and importance.

This dissertation concentrates on enhancing the Web browsing security through exploring
and experimenting with new approaches and software systems. Specifically, we have
systematically studied four challenging Web browsing security problems: HTTP cookie
management, phishing, insecure JavaScript practices, and browsing on untrusted public
computers. We have proposed new approaches to address these problems, and built
unique systems to validate our approaches.

To manage HTTP cookies, we have proposed an approach to automatically validate the
usefulness of HTTP cookies at the client-side on behalf of users. By automatically
removing useless cookies, our approach helps a user to strike an appropriate balance
between maximizing usability and minimizing security risks. To protect against phishing
attacks, we have proposed an approach to transparently feed a relatively large number of
bogus credentials into a suspected phishing site. Using those bogus credentials, our
approach conceals victims' real credentials and enables a legitimate website to identify
stolen credentials in a timely manner. To identify insecure JavaScript practices, we have
proposed an execution-based measurement approach and performed a large-scale
measurement study. Our work sheds light on the insecure JavaScript practices and
especially reveals the severity and nature of insecure JavaScript inclusion and dynamic
generation practices on the Web. To achieve secure and convenient Web browsing on
untrusted public computers, we have proposed a simple approach that enables an
extended browser on a mobile device and a regular browser on a public computer to
collaboratively support a Web session. A user can securely perform sensitive interactions
on the mobile device and conveniently perform other browsing interactions on the public
computer.

Table of Contents

Acknowledgments

List of Tables

List of Figures

1 Introduction

1.1

1.2

1.3

Motivation and Concentration .

Contributions

1.2.1

1.2.2

1.2.3

1.2.4

Automatic HTTP Cookie Management

'Iransparent Phishing Protection

Characterizing Insecure JavaScript Practices on the Web

Secure and Convenient Kiosk Browsing

Organization

2 Automatic HTTP Cookie Management

2.1

2.2

Motivation

Background

iv

xii

xiii

XV

2

2

4

4

5

7

9

10

12

12

15

2.3

2.4

2.5

2.6

2.7

HTTP Cookie Measurement

2.3.1 Website Selection and Crawling .

2.3.2 Measurement Results

CookiePicker Design

2.4.1 Regular and Hidden Requests .

2.4.2 Forward Cookie Usefulness Marking

2.4.3 Backward Error Recovery

HTML Page Difference Detection .

2.5.1 Restricted Simple Tree Matching

2.5.1.1 Tree Edit Distance .

2.5.1.2 Top-Down Distance

2.5.1.3 Restricted Simple Tree Matching .

2.5.1.4 Normalized Top-Down Distance Metric

2.5.2 Context-aware Visual Content Extraction

2.5.3 Making Decision

System Evaluation ..

2.6.1 Implementation .

2.6.2 Evaluation

2.6.2.1 First Set of Experiments

2.6.2.2 Second Set of Experiments

Discussions

2.7.1 Possible Evasion Techniques .

2.7.2 Evasion Sources

v

19

19

20

25

26

28

30

32

32

33

34

36

38

38

41

42

42

44

45

47

49

49

50

2.7.3 Concerns about Using CookiePicker 51

2.8 Related Work 52

2.9 Summary 55

3 Transparent Phishing Protection 56

3.1 Motivation 56

3.2 Background 61

3.3 Design 64

3.3.1 Design Overview 64

3.3.1.1 How It Works 65

3.3.1.2 Design Assumption 66

3.3.1.3 Design Objectives 67

3.3.2 Offensive Line. 67

3.3.2.1 Massiveness . 68

3.3.2.2 Indiscernibility 71

3.3.2.3 Usability 73

3.3.3 Defensive Line 74

3.3.3.1 Working Mechanism . 74

3.3.3.2 Deployment of Defensive Line 80

3.3.3.3 Scale-Independency Properties 81

3.4 Implementation 81

3.4.1 Information Extraction Module 82

3.4.2 Bogus Credential Generation Module. 83

vi

3.4.3 Request Submission Module .

3.4.4 Response Process Module

3.5 Evaluation .

3.5.1 Testbed Experiments.

3.5.2 Phishing Site Experiments .

3.5.3 Legitimate Site Experiments

3.6 Discussions

3.6.1 Deployment Scale

3.6.2 Massive Deployment Preparation

3.6.3 Limitations of BogusBiter

3.6.3.1 Offiine Evasions

3.6.3.2 Online Evasions

3.7 Related Work

3.8 Summary ..

4 Characterizing Insecure JavaScript Practices on the Web

4.1 Motivation

4.2 Background

4.3 Methodology

4.3.1 Instrumentation Framework

4.3.2 Analysis Toolkit

4.4 Data Set

4.5 Results and Analysis

vii

84

87

89

89

89

91

92

93

93

94

95

96

100

102

103

103

107

109

109

112

115

116

40501 Overall JavaScript Presence o

40502 Insecure JavaScript Inclusion

4050201 Results and Analysis

4050202 Safe Alternatives to Insecure Inclusion 0

40503 Insecure JavaScript Dynamic Generation

4o5o3o1 DJS Presence by Category and TLD 0

4o5o3o2 DJS Instance Summary

4050303 Structural Analysis of eval-generated DJS 0

40503.4 Safe Alternatives to eval()

4050305 Structural Analysis of Other Types of DJS

4050306 Safe Alternatives to jscode Generation via documentowrite()

and innerHTML

4o5.4 Event Handler Registration

406 Related Work

407 Summary

5 Secure and Convenient Kiosk Browsing

5o1 Motivation o

5o2 Related Work

50201 Securing Application or Data Access

50202 Securing User Authentication or Input

5o2o3

502.4

Verifying Software Integrity 0 0 0

Securing Web Browsing Sessions

viii

116

118

118

122

122

123

124

126

129

130

131

132

133

133

135

135

139

139

140

140

141

5.3 Design 142

5.3.1 A Motivating Example . 142

5.3.2 Threat Model and Assumptions . 144

5.3.3 Architecture Design 146

5.3.3.1 Connection Control 148

5.3.3.2 Request Authentication 149

5.3.3.3 Request Processing 150

5.3.3.4 Response Generation 151

5.3.3.5 Initial Webpage 156

5.4 Implementation . 156

5.5 Security Analysis 158

5.6 Evaluation. 161

5.6.1 Usability Evaluation 161

5.6.1.1 Participants 161

5.6.1.2 Scenario and Procedure 161

5.6.1.3 Data Collection 164

5.6.1.4 Results and Analysis 164

5.6.2 Performance and Feasibility Evaluation 166

5.7 Summary 168

6 Conclusions and Future Work 170

6.1 Conclusions 170

6.2 Future Work 171

ix

Bibliography 173

Vita 186

X

Dedicated to my parents, my wife and daughter, and my whole family

for their consistent love and support.

xi

ACKNOWLEDGMENTS

This long journey to a Ph.D. in computer science could not be accomplished without
the support and help from many people. First and foremost I want to thank my advisor
Professor Raining Wang. It has been my great honor and pleasure to be his Ph.D. student
for the past five years. I sincerely thank him for all his guidance, support, encouragement,
trust, time, and effort that made this dissertation possible. In addition to appreciating his
many qualities as an excellent advisor, I especially want to thank him for always giving me
the freedom to explore on my own, always setting a high standard for my research, always
being available to meet and discuss projects with me, as well as always treating me and
other students with respect.

I am very grateful to other committee members Professor Weizhen Mao, Professor Phil
Kearns, Professor Qun Li, Professor Gexin Yu, and my former committee member Professor
Evgenia Smirni, for their valuable feedback and suggestions that helped me improve the
quality of this dissertation. Particularly, I am heartily thankful to Professor Smirni, Profes
sor Mao, Professor Kearns, and my advisor for their tremendous support in helping me get
a job. I am also thankful to Professor Andreas Stathopoulos, Professor Xiaodong Zhang,
Professor Bruce Lowekamp, Pr.ofessor Dimitris Nikolopoulos, Professor Barry Lawson, and
Dr. Richard Tran Mills for their help in my first-year Ph.D. study.

My sincere appreciation also goes to graduate center course instructors Ms. Barbara
Monteith and Ms. Robin Cantor-Cooke. Barbara has helped me a lot in improving my
academic writing skills, and Robin has helped me a lot in improving my academic pre
sentation skills. Barbara and Robin have also given me great help in my job application
process. I also want to sincerely thank administrative members Ms. Vanessa Godwin and
Ms. Jacqulyn Johnson, as well as all the techies in our computer science department. Their
professional and efficient help made my Ph.D. study and research a pleasant experience.

I also thank many former and current students for their help, collaboration, and friend
ship. Qi Zhang gave me suggestions on applying for my first-year Ph.D. assistantship.
Mengjun Xie helped me in collecting and processing trace for the CookiePicker project. Zi
Zhu helped me in testing the RCB framework. Eli Courtwright and Benjamin Strahs gen
erously invited me to be deeply involved in their research projects. Zhenyu Wu provided a
great deal of useful information to me with his extensive software and hardware experience.
Thanks also go to Heng Yin, Chiu Chiang Tan, Bo Sheng, Ningfang Mi, Haodong Wang,
Steven Gianvecchio, Meghan Revelle, Ruth Lamprecht, Zhen Ren, Duy Le, Feng Mao, Kai
Tian, Yunlian Jiang, Zheng Zhang, Yixun Liu, and many others. It has been a very nice
experience to learn from all of them.

Finally, I owe my deepest gratitude to my parents and parents-in-law, my wife Weiying
and daughter Catherine, my brothers and sisters-in-law, my nieces, my brother-in-law and
his family, as well as many other relatives and friends for their consistent love, help, and
support. My life is meaningful because of them.

xii

List of Tables

2.1 Statistics of the selected websites and their usage of HTTP cookies. 21

2.2 Online testing results for thirty websites (S1 to S30) 46

2.3 Online testing results for 6 websites (P1 to P6) that have useful persistent

cookies. 49

3.1 Substitution from the original username/password pair (mcsmith/ Fuzzycat15). 77

3.2 Derivation from the username/password pair (lcsmith/ Fuzzycat05).

3.3 The 20 legitimate websites.

4.1

4.2

Category breakdown by top-level domain.

JavaScript presence by category and top-level domain.

4.3 DJS presence by category and top-level domain.

4.4 DJS instance summary for pre-onload/post-onload phases.

4.5 The 17 categories of eval-generated DJS instances.

77

92

115

117

123

125

128

4.6 Structural analysis of DJS instances generated by the document. write() method,

innerHTML property, and DOM methods. 130

5.1 The 10 tasks in procedure A. 162

xiii

5.2

5.3

5.4

The 18 tasks in procedure B.

The 16 close-ended questions.

Page size and response generation time of five homepages.

xiv

163

165

167

List of Figures

2.1 Internet Explorer 7 advanced privacy settings. 18

2.2 CDFs of the number of all cookies, the number of session cookies, the number

of persistent cookies per website, respectively. 22

2.3 CDFs of cookie size in bytes for all cookies, session cookies, and persistent

cookies, respectively. 23

2.4 CDFs of cookie PATH depth for all cookies, session cookies, and persistent

cookies, respectively.

2.5 CDF of persistent cookie lifetime ..

2.6 HTTP requests/responses in a single webpage view.

2.7 Data flow inside Gecko.

2.8 The five-step FORCUM process.

2.9 The restricted simple tree matching algorithm.

2.10 (a) Tree A, (b) Tree B

2.11 The text content extraction algorithm.

2.12 CookiePicker decision algorithm.

2.13 CookiePicker user interface. . ..

XV

24

25

26

27

29

35

36

40

42

43

3.1 (a) A phishing site designed to attack eBay users, (b) Firefox 2 phishing

warning mechanism.

3.2 Anti-phishing with BogusBiter.

3.3 Expected number of tries for a phisher to single out: (a) one real credential,

(b) all real credentials.

3.4 The Stolen Credential Identification (SCI) procedure.

3.5 Implementation of BogusBiter as a Firefox 2 browser extension.

3.6 Delay caused by BogusBiter on: (a) phishing sites, (b) legitimate sites, under

61

65

71

78

82

different set size S. 91

4.1

4.2

Overview of the instrumentation framework and analysis toolkit.

High-level AST signature creation and matching procedure. . .

4.3 Cumulative distribution of the 4,517 JavaScript file inclusion domains in

terms of their outdegree values.

4.4 Cumulative distribution of the 1,985 J avaScript file hosting domains in terms

110

114

119

of their indegree values. 120

4.5 Cumulative distribution of the web pages in terms of IPP (Instance Per Page)

for (a) eval-generated, (b) write-generated, (c) innerHTML-generated, and

(d) DOM-generated DJS instances. 126

4.6 Cumulative distribution of the AST trees in terms of the height of an AST

5.1

5.2

tree. 127

Kiosk browsing environment.

SessionMagnifier high-level architecture.

xvi

143

146

5.3 Response generation procedure. . . .

5.4 Performing the task TB9 on Fennec.

5.5 Mean ratings to questions Ql to Q6.

xvii

152

164

166

Enhancing Web Browsing Security

Chapter 1

Introduction

Web-centric computing is a significant trend in computing, and Web browsing has be

come an integral part of our lives. People use browsers to perform many important activities

such as banking, shopping, and bill-paying; they also use browsers to search, communicate,

and collaborate, as well as to teach, learn, and entertain. Meanwhile, Web browsers have

evolved dramatically since the invention of the first Web client in 1990 [186]. Web browsers

are no longer simple HTML document renderers; they have increasingly become the dom

inant platform for both current and future end-user applications. This fascinating trend

manifests the need and importance of providing modern Web browsers with higher security

assurance and better functionality.

1.1 Motivation and Concentration

Traditionally, attackers mainly focused on directly breaking into Web servers to acquire

sensitive information or damage the systems. However, in recent years, Web browsers have

2

3

gained increasing popularity as new attack vectors for launching various severe attacks such

as drive-by download, cross-site scripting, phishing, privacy, and even large-scale denial

of service attacks. Browser-based attacks are rampant over the Internet and have caused

substantial damage to both Web users and service providers. Meanwhile, Internet security

threat trends [159] show that malicious activities have increasingly become Web-based,

attackers are more and more targeting end users, the online underground economy has

matured, and attackers are able to rapidly adapt their attacking techniques. Enhancing

Web browsing security is therefore of great need and importance, and it has also become

much more challenging than before.

This dissertation concentrates on enhancing the Web browsing security through explor

ing and experimenting with new approaches and software systems. Specifically, we have sys

tematically studied four challenging Web browsing security problems: HTTP cookie man

agement, phishing, insecure JavaScript practices, and browsing on untrusted public comput

ers. These problems are real-world important problems that are closely related to a few top

cyber security threats. For example, all the four problems are tightly related to the threat

of online identity theft, which is the greatest fear for Internet users [159, 174]. For another

example, the problem of insecure JavaScript practices is also tightly related to cross-site

scripting, which is the number one Web application vulnerability of all time [33, 190, 193].

In studying these four Web browsing security problems, we have carefully surveyed

state-of-art solutions in literature and also carefully experimented with state-of-practice

security features in modern Web browsers. We have made important observations and

proposed novel approaches to address these problems. We have also built unique browser

based software systems to validate our approaches. In the next section, we briefly introduce

4

these four Web browsing security problems and our contributions. We detail the motivation,

design, implementation, and evaluation of each work in the following four Chapters 2, 3, 4,

and 5, respectively.

1.2 Contributions

The contributions of this dissertation include an automatic HTTP cookie management

system, a transparent phishing protection system, a large-scale measurement of insecure

JavaScript practices on the Web, and a simple approach to secure and convenient kiosk

browsing.

1.2.1 Automatic HTTP Cookie Management

HTTP cookies are designed and widely used to provide many beneficial features such as

maintaining session state and enabling web page personalization. However, despite their

importance and usefulness, HTTP cookies have raised significant user privacy and security

concerns. This is because HTTP cookies can be used to monitor users' browsing habits, and

possibly to associate what you have looked at with who you are. Moreover, stolen cookies

may also incur severe security problems; for example, they can be used to impersonate other

users and to gain access to session-protected services and resources.

Through a systematic study of HTTP cookie management on modern Web browsers

and a large-scale measurement of cookie usage on over five thousand websites, we made the

observation that handling first-party persistent cookies is .the most challenging problem in

HTTP cookie management. First-party persistent cookies are stored on the hard disk of a

user's computer until they expire or are deleted by a user. Websites often set a long lifetime

5

for first-party persistent cookies, thus leaving plenty of room for attackers to manipulate or

steal those cookies. Unfortunately, modern Web browsers only provide very limited cookie

management support, and often require users to manually define policies.

To address this problem, we designed CookiePicker [126, 127], a system that can au

tomatically verify the usefulness of first-party persistent cookies at the client-side. Cook

iePicker identifies those cookies that can cause perceivable changes on a webpage as useful,

while simply classifying the rest as useless. Useless cookies will be finally removed from the

browser to reduce potential security and privacy risks. CookiePicker therefore helps users

achieve the maximum benefit brought by cookies, while minimizing the potential risks. We

implemented CookiePicker as an extension to the Firefox Web browser, and evaluated its

efficacy and overhead through live experiments. The experimental results indicate that

CookiePicker can automatically make high-accuracy cookie usage decisions with very low

running overhead. We detail this work in Chapter 2.

1.2.2 Transparent Phishing Protection

Phishing is one of the most common Internet frauds, and it has caused serious damages

to Internet users ranging from denied account access to substantial financial loss. While it

seems that phishing is so simple, it is a very challenging problem because it is a third-wave

semantic attack that targets the way humans assign meaning to content [182]. It is also

important to note that phishing is not far away from us. For example, according to the

IT Administration of our university, phishing targets William and Mary online accounts

as well. Individuals on our campus frequently became the victims of phishing attacks,

and serious consequences have occurred. Many anti-phishing mechanisms focus on helping

6

users verify whether a website is genuine. They endeavor to prevent users from being

tricked into revealing their credentials to phishing sites. Nevertheless, prevention-based

approaches alone are insufficient to shield vulnerable users from "biting the bait" and defeat

phishers because human users are the weakest link in the security chain. The ever-increasing

prevalence and severity of phishing attacks clearly indicate that anti-phishing is still a

daunting challenge.

Two observations motivated us to explore a quite different approach. First, currently,

it is trivial for phishers to verify their collected credentials. The majority of credentials

collected by a phishing site are victims' real credentials. Meanwhile, when phishers go to a

legitimate site to verify their collected credentials, it is very hard for the legitimate site to

differentiate phishers' credential verification activities from users' regular login activities.

Therefore, we had such a question: can we make it harder for phishers to verify their col

lected credentials? Second, browsers warn instead of block users' connections to suspected

phishing sites. Although remarkable advances in automatic phishing detection have been

achieved, false positives may still happen. Therefore, giving warnings and expecting users

to leave suspected phishing sites have become the most common actions taken by modern

browsers. However, usability studies have demonstrated that many users still ignore the

strong phishing warnings. Therefore, we had another question: can we leverage the power

of automatic phishing detection and can we effectively transform this power into the power

of automatic fraud protection?

With these observations and questions, we explored a quite different approach to protect

against phishing attacks with "bogus bites." We developed BogusBiter [122, 125], a unique

client-side anti-phishing tool, which transparently feeds a relatively large number of bogus

7

credentials into a suspected phishing site. BogusBiter conceals a victim's real credential

among bogus credentials, and moreover, it enables a legitimate website to identify stolen

credentials in a timely manner. BogusBiter leverages the power of client-side automatic

phishing detection techniques, and it is complementary to existing preventive anti-phishing

approaches. Seamlessly integrated with the phishing detection and warning mechanisms in

modern Web browsers, BogusBiter is transparent to users. We implemented BogusBiter as

an extension to the Firefox Web browser, and evaluated its efficacy through real experiments

on both phishing and legitimate websites. Our experimental results indicate that it is

promising to use BogusBiter to transparently protect against phishing attacks. We detail

this work in Chapter 3.

1.2.3 Characterizing Insecure JavaScript Practices on the Web

JavaScript is an interpreted programming language widely used for client-side scripting.

JavaScript code embedded or included in webpages runs locally in a user's Web browser, and

it is mainly used by websites to enhance the interactivity and functionality of their webpages.

However, because JavaScript is equipped with a powerful and diverse set of capabilities in

modern Web browsers, it has also become the weapon of choice for attackers. Many severe

attacks such as drive-by-download, cross-site scripting, as well as the aforementioned cookie

stealing and phishing, are closely related to JavaScript. To a very large extent, JavaScript

has become a central battle ground of the Web security.

A great deal of attention has been paid to the JavaScript-related vulnerabilities that

could directly lead to security breaches. However, little attention has been given to the inse

cure practices of using JavaScript on legitimate websites. Similar to other insecure practices

8

on legitimate websites such as using customers' social security numbers as their login IDs,

insecure JavaScript practices may not necessarily result in direct security breaches, but they

could definitely cultivate the creation of new attack vectors and greatly increase the risks

of browser-based attacks.

This observation motivated us to identify insecure JavaScript practices on legitimate

websites, to analyze their severity, and to highlight their risks. To achieve this goal, we

devised an execution-based measurement approach [123]. The key idea of this approach is

to first use an instrumented Web browser to non-intrusively obtain JavaScript execution

information on different websites, and then use an offline analysis toolkit to sufficiently

analyze the collected trace information. Using our instrumentation framework and analysis

toolkit, we performed the first large-scale measurement study of the insecure JavaScript

practices on the Web. Our focus is on the insecure practices of JavaScript inclusion and

dynamic generation, and we examined their severity and nature on 6,805 unique websites.

Our measurement results reveal that insecure JavaScript practices are common at vari

ous websites: (1) at least 66.4% of the measured websites manifest the insecure practices

of including JavaScript files from external domains into the top-level documents of their

webpages; (2) over 44.4% of the measured websites use the dangerous eval() function to

dynamically generate and execute JavaScript code on their webpages; and (3) in JavaScript

dynamic generation, using the document.write() method and the innerHTML property is

much more popular than using the relatively secure technique of creating script elements

via DOM (Document Object Model) [191] methods. Our in-depth analysis indicates that

safe alternatives to those insecure JavaScript practices exist in common cases and ought to

be adopted by website developers and administrators for reducing potential security risks.

9

We detail this work in Chapter 4.

1.2.4 Secure and Convenient Kiosk Browsing

Many kiosk environments such as airport lounges and hotel business centers provide people

with Internet-connected public computers to facilitate ubiquitous Web access. Those public

computers often have high-speed network connections. They are also convenient to use

because they normally have full-size keyboards and large displays. People who do not own

a computer or carry a laptop with them frequently use those public computers to browse the

Web. Unfortunately, public computers are usually far less trustworthy than peoples' own

computers. Public computers are used by many people to run different applications and visit

various websites; therefore, it is very ,likely for them to be infected with malware. Simply

searching "public computer security" online, we can find numerous articles suggesting that

people should not use public computers to perform sensitive activities.

To secure kiosk computing environments, researchers have proposed a number of solu

tions. Many of those solutions focus on specific objectives such as securing application and

data access, securing user authentication and input, or verifying software integrity. How

ever, those solutions cannot be easily adopted to secure an entire kiosk browsing session. A

few solutions do have the objective of securing an entire kiosk browsing session, but they

are very complex, not very secure, and not practical. They are very complex and not very

secure because they all use the browser on the untrusted public computer to directly access

remote Web servers. They are not practical because they often require support from extra

proxies or extra authentication and key-exchange processes.

We proposed SessionMagnifier [124], a simple approach to secure and convenient kiosk

10

browsing. The key idea of SessionMagnifier is to enable an extended browser on a mobile

device and a regular browser on a public computer to collaboratively support a Web session.

This approach simply requires a SessionMagnifier browser extension to be installed on a

trusted mobile device. No third-party proxy is needed, no Web server modification is needed,

and no installation or configuration on the untrusted public computer is needed. A user

can securely perform sensitive interactions on the mobile device and conveniently perform

other browsing interactions on the public computer. We implemented SessionMagnifier for

Mozilla's Fennec mobile browser and evaluated it on a Nokia N810 Internet Tablet. The

evaluation and analysis demonstrate that SessionMagnifier is simple, secure, and usable.

We detail this work in Chapter 5. During the process of developing SessionMagnifier, we

realized that the technique we invented to solve this specific kiosk browsing problem could

be extended to build a simple and practical framework for real-time collaborative browsing.

Therefore, we made the decision to immediately build our RCB (Real-time Collaborative

Browsing) framework [121]. I do not include the RCB work [121] in this dissertation just

because it is not directly related to enhancing Web browsing security.

1.3 Organization

The remainder of this dissertation is organized as follows. Chapter 2 presents the details of

our work on automatic HTTP cookie management. We describe a measurement study of

HTTP cookie usage on the Web, and then fully present our CookiePicker system. Chapter 3

presents the details of our work on transparent phishing protection. We present the design

and implementation of our BogusBiter system, and we also discuss its deployment and lim-

11

itations. Chapter 4 presents the details of our work on characterizing insecure JavaScript

practices on the Web. We introduce our JavaScript measurement framework and analy

sis toolkit, and then completely present and analyze a large-scale measurement study of

insecure JavaScript inclusion and dynamic generation practices on the Web. Chapter 5

presents the details of our work on secure and convenient kiosk browsing. We present our

SessionMagnifier system and analyze its security and usability advantages in supporting

kiosk browsing. Finally, Chapter 6 concludes the dissertation and presents future work.

Chapter 2

Automatic HTTP Cookie

Management

In this chapter, we present our work on automatic HTTP cookie management. We

advocate that useless first-party persistent cookies should be removed from a user's browser,

so that potential security and privacy risks can be reduced. We present a pure client-side

solution that can automatically verify the usefulness of first-party persistent cookies on

behalf of a user. By removing those useless cookies, our solution can help a user achieve the

maximum benefit brought by HTTP cookies while minimizing the potential security and

privacy risks.

2.1 Motivation

HTTP Cookies, also known as Web cookies or just cookies, are small parcels of text sent by

a server to a Web browser and then sent back unchanged by the browser if it accesses that

12

13

server again [155]. Cookies are originally designed to carry information between servers and

browsers so that a stateful session can be maintained within the stateless HTTP protocol.

For example, online shopping websites use cookies to keep track of a user's shopping basket.

Cookies make Web applications much easier to write, and thereby have gained a wide range

of usage since debut in 1995. In addition to maintaining session states, cookies have also

been widely used for personalizing, authenticating, and tracking user behaviors.

Despite their importance and usefulness, cookies have been of major concern for privacy.

As pointed out by Kristol in [63], the ability to monitor browsing habits, and possibly to

associate what you have looked at with who you are, is the heart of the privacy concern that

cookies raise. For example, a lawsuit alleged that DoubleClick Inc. used cookies to collect

Web users' personal information without their consent [14]. Moreover, vulnerabilities of

Web applications or Web browsers can be exploited by attackers to steal cookies directly,

leading to severe security and privacy problems [34, 47, 106, 107].

As the general public has become more aware of cookie privacy issues, a few privacy

options have been introduced into Web browsers to allow users to define detailed policies for

cookie usage either before or during visiting a website. However, these privacy options are

far from enough for users to fully utilize the convenience brought by cookies while limiting

the possible privacy and security risks. What makes it even worse is that most users do not

have a good understanding of cookies and often misuse or ignore these privacy options [39].

Using cookies can be both beneficial and harmful. The ideal cookie-usage decision for

a user is to enable and store useful cookies, but disable and delete harmful cookies. It has

long been a challenge to design effective cookie management schemes that can help users

make the ideal cookie-usage decision. On one hand, determining whether some cookies

14

are harmful is almost impossible, because very few websites inform users how they use

cookies. Platform for Privacy Preferences Project (P3P) [177] enables websites to express

their privacy practices but its usage is too low to be a practical solution. On the other

hand, determining whether some cookies are useful is possible, because a user can perceive

inconvenience or webpage differences if some useful cookies are disabled. For instance, if

some cookies are disabled, online shopping may be blocked or preference setting cannot take

into effect. However, current Web browsers only provide a method, which asks questions

and prompts options to users, for making decision on each incoming cookie. Such a method

is costly [74] and very inconvenient to users.

In this work, we first conduct a large-scale cookie measurement for investigating the

current cookie usage on various websites. Our major measurement findings show that the

pervasive usage of persistent cookies and their very long lifetimes clearly highlight the

demand for removing useless persistent cookies to reduce the potential privacy and security

risks. Then we present CookiePicker, a system that automatically makes cookie usage

decisions on behalf o£ a Web user. CookiePicker enhances the cookie management for a

website by using two processes: a training process to mark cookie usefulness and a tuning

process to recover possible errors. CookiePicker uses two complementary algorithms to

effectively detect HTML page difference online, and we believe that these two algorithms

have the potential to be used by other online tools and applications. Based on the two

HTML page difference detection algorithms, CookiePicker identifies those cookies that cause

perceivable changes on a webpage as useful, while simply classifying the rest as useless.

Subsequently, CookiePicker enables useful cookies but disables useless cookies. All the

tasks are performed without user involvement or even notice.

15

Although it is debatable whether defining useful cookies as those that lead to perceivable

changes in webpages retrieved is the best choice, so far this definition is the most reasonable

measure at the browser side and it is also used in [97]. The reasons mainly lie in that very

few websites tell users the intention of their cookie usage, P3P usage is still very low, and

many websites use cookies indiscriminately [9].

We implemented CookiePicker as a Firefox Web browser extension, and validated its ef

ficacy through live experiments over a variety of websites. Our experimental results demon

strate the distinct features of CookiePicker, including (1) fully automatic decision making,

(2) high accuracy on decision making, and (3) very low running overhead.

The remainder of this chapter is structured as follows. Section 2.2 presents the back

ground of cookies. Section 2.3 shows our cookie measurement results. Section 2.4 describes

the design of CookiePicker. Section 2.5 details the two HTML page difference detection

algorithms used by CookiePicker. Section 2.6 presents the implementation of CookiePicker

and its performance evaluation. Section 2. 7 discusses the potential evasions against Cook

iePicker as well as some concerns about using CookiePicker. Section 2.8 reviews related

work, and finally, Section 2.9 summarizes this work.

2.2 Background

HTTP cookies allow an HTTP-based service to create stateful sessions that persist across

multiple HTTP transactions [76]. When a server receives an HTTP request from a client,

the server may include one or more Set-Cookie headers in its response to the client. The

client interprets the Set-Cookie response headers and accepts those cookies that do not

16

violate its privacy and security rules. Later on, when the client sends a new request to the

original server, it will use the Cookie header to carry the cookies with the request [61].

In the Set-Cookie response header, each cookie begins with a NAME=VALUE pair, followed

by zero or more semi-colon-separated attribute-value pairs. The NAME=VALUE pair contains

the state information that a server attempts to store at the client side. The optional

attributes Domain and Path specify the destination domain and the targeted URL path for

a cookie. The optional attribute Max-Age determines the lifetime of a cookie and a client

should discard the cookie after its lifetime expires.

In general, there are two different ways to classify cookies. Based on the origin and

destination, cookies can be classified into first-party cookies, which are created by the

website we are currently visiting; and third-party cookies, which are created by a website

other than the one we are currently visiting. Based on lifetime, cookies can be classified

into session cookies, which have zero lifetime and are stored in memory and deleted after

the close of the Web browser; and persistent cookies, which have non-zero lifetime and

are stored on a hard disk until they expire or are deleted by a user. A recent extensive

investigation of the use of first-party, third-party, session, and persistent cookies was carried

out by Tappenden and Miller [103].

Third-party cookies bring almost no benefit to Web users and have long been recognized

as a major threat to user privacy since 1996 [63]. Therefore, almost all the popular Web

browsers, such as Microsoft Internet Explorer and Mozilla Firefox, provide users with the

privacy options to disable third-party cookies. Although disabling third-party cookies is

a very good start to address privacy concerns, it only limits the profiling of users from

third-party cookies [63], but cannot prevent the profiling of users from first-party cookies.

17

First-party cookies can be either session cookies or persistent cookies. First-party session

cookies are widely used for maintaining session states, and pose relatively low privacy or

security threats to users due to their short lifetime. Therefore, it is quite reasonable for a

user to enable first-party session cookies.

First-party persistent cookies, however, are double-edged swords. As we will show in

Section 2.3, first-party persistent cookies could stay on a user's disk for a few years if not

been removed. Some cookies perform useful roles such as setting preferences. Some cookies,

however, provide no benefit but pose serious privacy and security risks to users. For instance,

first-party persistent cookies can be used to track the user activity over time by the original

website, proxies, or even third-party services. Moreover, first-party persistent cookies could

be stolen or manipulated by three kinds of long-standing attacks: (1) cross-site scripting

(XSS) attacks that exploit Web applications' vulnerabilities [58, 106, 193], (2) attacks that

exploit Web browser vulnerabilities [15, 88, 107], and (3) attacks that could directly steal

and control cookies launched by various malware and browser hijackers such as malicious

browser extensions [57, 67, 94]. These attacks can easily bypass the same origin policy [180]

of modern Web browsers, which protects cookies stored by one origin from accessing by

a different origin. As an example, recently cookie-stolen related XSS vulnerabilities were

even found in Google's hosting services [195, 197]; and the flaws in Internet Explorer 7 and

Firefox could enable attackers to steal and manipulate cookies stored on a PC's hard drive

[196].

Disabling third-party cookies (both session and persistent) and enabling first-party ses

sion cookies have been supported by most Web browsers. The hardest problem in cookie

management is how to handle first-party persistent cookies. Currently Web browsers only

{{ You can choose how cookies are handled in the lntemet
~ zone. This overrides automatic cookie handling.

Cookies

E2J Override automatic cookie handling

First -party Cookies

{?l.A.ccept

()Block
()Prompt

Third-party Cookies

(!_) .A.ccept

()Block
()Prompt

0 Always allow session cookies

OK J I Cancel

Figure 2.1: Internet Explorer 7 advanced privacy settings.

18

have very limited functions such as automatically accepting or blocking all first-party per-

sistent cookies, or prompting each of them to let users manually make decisions. Figure 2.1

shows the advanced privacy settings of Internet Explorer 7, in which the functions pro-

vided to control first-party persistent cookies are very cumbersome and impractical to use.

Therefore, the focus of this work is on first-party persistent cookies, that is, how to auto-

matically manage the usage of first-party persistent cookies on behalf of a user 1. Instead

of directly addressing XSS and various Web browser vulnerabilities, CookiePicker reduces

cookie privacy and security risks by removing useless first-party cookies from a user's hard

disk. Here we assume that the hosting website is legitimate, since it is worthless to protect

the cookies of a malicious site.

1The design of CookiePicker and its decision algorithms can be easily applied to other kinds of cookies
as well if needed.

19

2.3 HTTP Cookie Measurement

To comprehensively understand the usage of HTTP cookies over the Internet, we conducted

a large-scale measurement study in December 2009. We chose over five thousand websites

from directory.google.com, an online website directory containing millions of websites cate

gorized by topic. Then, we used a customized webpage retrieval tool wget [150] to identify

those websites that set cookies at client side. We only consider first-party cookies, including

both session cookies and persistent cookies, in this measurement study.

2.3.1 Website Selection and Crawling

Since there are numerous websites on the Internet, we select the websites for measurement

study based on the following two requirements: diversity and representativeness. As with

[79], the selection pool we use is directory.google.com, in which websites are organized into

hierarchical categories and listed in Google page-rank order indicating the relevance to the

classified category. There are fifteen top-level categories in directory.google.com. Our se-

lection covers thirteen of them, except categories "world" and "regional". These two are

avoided due to the existence of many non-English websites. Since a top-level category has

multiple sub-categories which also have further sub-categories, each top-level category may

consist of hundreds of thousands of websites. Thus, we only choose the websites listed

in the top-level categories and their immediate sub-categories. To select representative

websites, we filter out those websites with page-rank less than 0.252 • There may exist du

plicate websites inside a category or between two categories. We first remove the duplicate

2 Page-rank value is between 0 and 1. The bigger, the more relevant.

20

intra-category websites and then move all the duplicate inter-category websites into a new

category-"Multi-category". After filtering and removing, the total number of unique web

sites chosen for our study is 5,393. The number of websites in each category is listed in

Table 2.1, where the second column lists the total number of websites in the corresponding

category and the third column shows the number and percentage of the websites that set

cookies at client side. The fourth, fifth, and sixth columns of Table 2.1 show the number

of the websites that set only session cookies, only persistent cookies, and both session and

persistent cookies, respectively.

We instruct the customized wget to crawl the selected websites and save the correspond

ing cookies carried in the HTTP response headers. To simulate a user surfing the Web, we

turn on the recursive option in wget so that wget can recursively retrieve webpages. The

maximum depth of recursion level is set to two. We instruct wget to only save first-party

cookies. To avoid crawling being blocked or running too long, we use a random wait time

varied from zero to two seconds between consecutive retrievals, and limit the crawling time

on a single website within six minutes.

2.3.2 Measurement Results

After Web crawling, we found that 2,341 (43%) websites in total have set at least one first

party cookie at client side. The average number of retrieved unique URLs per website for

these 2,341 websites is 538. The percentage of websites setting cookies in each category

varies from 33% to 63%, as shown in Table 2.1. These numbers are conservative since wget

cannot obtain the cookies set by the webpages that require a user login or carried by the

client-side JavaScript. Even so, the results clearly show the pervasive cookie usage among

21

Category Web Cookies Session Persistent Both
Sites Only Only

Arts 342 113 (33%) 55 21 37
Business 602 265 (44%) 181 28 56

Computers 512 190 (37%) 108 33 49
Games· 151 51 (34%) 19 12 20
Health 303 148 (49%) 82 17 49
Home 324 157 (48%) 83 23 51
News 483 176 (36%) 86 51 39

Recreation 351 173 (49%) 86 36 51
Reference 308 134 (44%) 69 17 48
Science 537 215 (40%) 118 48 49

Shopping 461 290 (63%) 93 67 130
Society 214 78 (36%) 35 17 26
Sports 673 287 (43%) 152 51 84

Multi-category 132 64 (48%) 23 24 17
Total 5,393 2,341 (43%) 1,190 445 706

Table 2.1: Statistics of the selected websites and their usage of HTTP cookies.

various types of websites.

For those websites that use cookies, we compute the CDFs (Cumulative Distribution

Functions) of the number of cookies, the number of session cookies, and the number of

persistent cookies per website, respectively, and draw them in Figure 2.2. Note that the

X-axis is in logarithmic scale. We are interested in these numbers because Web browsers

usually set limits on the total number of cookies and the number of cookies per domain,

in order to save memory and disk space on a user's computer. For example, the maximum

default number of cookies per domain and maximum number of total cookies are set to

50 and 1,000 respectively in Firefox. From Figure 2.2, we can see that about 99% of the

websites set less than 10 cookies at client side and none of them sets more than 40 cookies.

This indicates that all websites under study follow the basic rule that a website should not

set too many cookies to a client.

Web browsers usually also set limit on the size of a cookie, which is mainly determined

by the length of cookie value. For example, Firefox limits the length of a cookie NAME/VALUE

0.9

0.8

~0.6
:0
Jg 0.
e

0... 0.4

0.3

0.2

22

10 100
Number of cookies per website

Figure 2.2: CDFs of the number of all cookies, the number of session cookies, the number of
persistent cookies per website, respectively.

pair up to 4,096 bytes. Figure 2.3 depicts the CDFs of cookie size in bytes for all cookies,

session cookies, and persistent cookies, respectively. Around 94% of cookies are less than

100 bytes and none of them is greater than 4,096 bytes.

If cookie is enabled during browsing a website, the path of URL will determine what

cookies to be transmitted together with the HTTP request to server. If the Path attribute

of a cookie matches the prefix of the URL path, the cookie previously set will be sent

back. We examine the Path depth for cookies, session cookies, and persistent cookies,

respectively, and draw their CDFs in Figure 2.4. Surprisingly, near 90% of cookies have

root "/" as their Path attribute values, which implies that these cookies will be sent back

to the original websites for any URL requests to those sites. Although some cookies may

need to be sent back to the Web servers for any URL on the servers, the abnormally high

percentage suggests that the Path attributes of many cookies may not be appropriately

set. As a consequence of this inappropriate setting, many requests carry cookies that are

functionally unnecessary: the cookies neither affect responses nor make difference to server

0.9

0.8

0.7

~0.6
:0
~ 0.5
e
a.. 0.4

0.3

0.

23

10 100 1000 3000
Cookie size (Byte)

Figure 2.3: CDFs of cookie size in bytes for all cookies, session cookies, and persistent cookies,
respectively.

states. Wide-spread indiscriminate usage of cookies not only impedes many optimizations

such as content delivery optimizations studied in [9], but also increases the risk of cookie

stealing.

We are especially interested in the lifetime of persistent cookies, which can be calculated

from the cookie attribute Max-Age specified in the Set-Cookie HTTP response header. We

compute the lifetime for all persistent cookies and draw its CDF in Figure 2.5 (The X-axis

is log-scaled). There are a few hikes in the curve, among which the lifetimes corresponding

to one year (365 days) and 30 years are most evident. Clearly, over 60% of persistent

cookies are set to expire after one year or longer. We also found that seven websites set

their cookies to expire in year 9999, nearly eight thousand years from now! The mean and

median lifetimes of persistent cookies are 38 years and one year, respectively.

In summary, our major measurement findings show that cookie has been widely used by

websites. Although the simple cookie collection tool we used cannot retrieve the webpages

that require login and cannot acquire the cookies set by JavaScript, we still found that about

0.9

0.8

0.7

~0.6
:c 1l 0.5
e
a.. 0.4

0.1

24

2 3 4 5 6 7
Directory depth of cookie path

Figure 2.4: CDFs of cookie PATH depth for all cookies, session cookies, and persistent cookies,
respectively.

43% of the total selected websites use either session cookies, persistent cookies, or both.

Moreover, around 21% of the total selected websites use persistent cookies and the majority

of persistent cookies have their lifetimes longer than one year. Therefore, the pervasive

usage of persistent cookies and their very long lifetimes clearly highlight the demand for

removing those useless persistent cookies to reduce potential privacy risks.

We did a similar measurement study in December 2006 [126]. The procedure and tool

for selecting and crawling websites used in that study are the same as our current study.

Although we cannot. directly compare the results of two studies due to the differences of

websites and crawling paths, we found that the findings mentioned above hold in the 2006

study. For example, in the 2006 study, about 37% of the total (5,211) selected websites use

cookies and about 18% of the total selected websites use persistent cookies. Similarly, more

than 60% of persistent cookies have lifetimes longer than one year in the 2006 study.

Recently Tappenden and Miller [103] did an extensive study on cookie deployment and

25

OL-------~------~------~------~~
1 hour 1 day 1 month 1 year 30 years

Lifetime of persistent cookie (Hour)

Figure 2.5: CDF of persistent cookie lifetime.

usage. Some of their study results have the similar implications as ours. For example, their

study shows that 67.4% (66,031) of the 98,006 websites use cookies and 83.8% (55,130) of

those 66,031 sites use first-party cookies. In addition, they observed that approximately

50.4% of all persistent cookies surveyed are set to live for over one year. The discrepancy in

numbers between their study and ours can be attributed to the differences in the sample set

and study methods. For example, they chose websites from Alexa while we chose websites

from Coogle directory; they instrumented Firefox browser while we instrumented wget.

2.4 CookiePicker Design

The design goal of CookiePicker is to effectively identify the useful cookies of a website,

and then disable the return of those useless cookies back to the website in the subsequent

requests and finally remove them. A webpage is automatically retrieved twice by enabling

and disabling some cookies. If there are obvious differences between the two retrieved

results, we classify the cookies as useful; otherwise, we classify them as useless. CookiePicker

26

(I) rRequests

(2) rResponses

Web Browser Web Server

Figure 2.6: HTTP requests/responses in a single webpage view.

enhances the cookie management for a website by two processes: forward cookie usefulness

marking and backward error recovery. We define these two processes and detail the design

of CookiePicker in the following.

Definition 1. FORward Cookie Usefulness Marking (FORCUM) is a training process, in

which CookiePicker determines cookie usefulness and marks certain cookies as useful for a

website.

Definition 2. Backward error recovery is a tuning process, in which wrong decisions made

by CookiePicker in the FORCUM process may be adjusted automatically or manually for a

website.

2.4.1 Regular and Hidden Requests

A typical webpage consists of a container page that is an HTML text file, and a set of

associated objects such as stylesheets, embedded images, scripts, and so on. When a user

browses a webpage, the HTTP request for the container page is first sent to the Web server.

Then, after receiving the corresponding HTTP response for the container page, the Web

browser analyzes the container page and issues a series of HTTP requests to the Web server

for downloading the objects associated with the container page. The HTTP requests and

responses associated with a single webpage view are depicted by the solid lines (1) and (2)

27

Figure 2. 7: Data flow inside Gecko.

in Figure 2.6, respectively.

Webpage contents coming with the HTTP responses are passed into the Web browser

layout engine for processing. Figure 2. 7 depicts the data flow inside of Gecko [143], one

of the most popular Web browser layout engines used in all Mozilla-branded software and

its derivatives. When a webpage comes into Gecko, its container page is first parsed and

built into a tree. The structure of the tree follows the W3C Document Object Model

(DOM) [191], thus the tree is known as DOM tree. Next, the data from the DOM tree

are put into abstract boxes called frames by combining the information from stylesheets.

Finally, these frames and the associated Web objects are rendered and displayed on a user's

screen.

In order to identify the cookie usefulness for a webpage, CookiePicker compares two

versions of the same webpage: the first version is retrieved with cookies enabled and the

second version is retrieved with cookies disabled. The first version is readily available to

CookiePicker in the user's regular Web browsing window. CookiePicker only needs to re-

trieve the second version of the container page. Similar to Doppelganger [97], CookiePicker

utilizes the ever increasing client side spare bandwidth and computing power to run the

second version. However, unlike Doppelganger, CookiePicker neither maintains a fork win-

dow nor mirrors the whole user session. CookiePicker only retrieves the second version of

28

the container page by sending a single hidden HTTP request. As shown in Figure 2.6, line

(3) is the extra hidden HTTP request sent by CookiePicker for the second version of the

container page, and line (4) represents the corresponding HTTP response. In the remainder

of the chapter, we simply refer the requests and responses, represented by the solid lines

(1) and (2) of Figure 2.6, as regular requests and responses; and refer the extra request and

response, represented by the dashed lines (3) and (4) of Figure 2.6, as the hidden request

and response.

2.4.2 Forward Cookie Usefulness Marking

As shown in Figure 2.8, the FORCUM process consists of five steps: regular request record

ing, hidden request sending, DOM tree extraction, cookie usefulness identification, and

cookie record marking.

When visiting a webpage, a user issues regular requests and then receives regular re

sponses. At the first step, CookiePicker identifies the regular request for the container page

and saves a copy of its URI and header information. CookiePicker needs to filter out the

temporary redirection or replacement pages and locate the real initial container document

page.

At the second step, CookiePicker takes advantage of user's think time [69] to retrieve the

second copy of the container page, without causing any delay to the user's regular browsing.

Specifically, right after all the regular responses are received and the webpage is rendered

on the screen for display, CookiePicker issues the single hidden request for the second copy

of the container page. In the hidden request, CookiePicker uses the same URI as the saved

in the first step. It only modifies the "Cookie" field of the request header by removing a

29

Regular Hidden DOM Cookie Cookie
Request - Request ~ Tree -Usefulness ~ Record

Recording Sending Extraction Identification Marking

Figure 2.8: The five-step FORCUM process.

group of cookies, whose usefulness will be tested. The hidden request can be transmitted

in an asynchronous mode so that it will not block any regular browsing functions. Then,

upon the arrival of the hidden response, an event handler will be triggered to process it.

Note that the hidden request is only used to retrieve the container page, and the received

hidden response will not trigger any further requests for downloading the associated objects.

Retrieving the container page only induces very low overhead to CookiePicker.

At the third step, CookiePicker extracts the two DOM trees from the two versions of the

container page: one for the regular response and the other for the hidden response. We call

these two DOM trees the regular DOM tree and the hidden DOM tree, respectively. The

regular DOM tree has already been parsed by Web browser layout engine and is ready for

use by CookiePicker. The hidden DOM tree, however, needs to be built by CookiePicker;

and CookiePicker should build the hidden DOM tree using the same HTML parser of the

Web browser. This is because in practice HTML pages are often malformed. Using the

same HTML parser guarantees that the malformed HTML pages are treated as same as

before, while the DOM tree is being constructed.

At the fourth step, CookiePicker identifies cookie usefulness by comparing the differences

between the two versions of the container page, whose information is well represented in

the two DOM trees. To make a right cookie usefulness decision, CookiePicker uses two

complementary algorithms by considering both the internal structural difference and the

30

external visual content difference between the two versions. Only when obvious structural

difference and visual content difference are detected, will CookiePicker decide that the

corresponding cookies that are disabled in the hidden request are useful. The two algorithms

will be detailed in Section 2.5.

At the fifth step, CookiePicker will mark the cookies that are classified as useful in the

Web browser's cookie jar. An extra field "useful" is introduced to each cookie record. At

the beginning of the FORCUM process, a false value is assigned to the "useful" field of

each cookie. In addition, any newly-emerged cookies set by a website are also assigned false

values to their "useful" fields. During the FORCUM process, the value of the field "useful"

can only be changed in one direction, that is, from "false" to "true" if some cookies are

classified as useful. Later on, when the values of the "useful" field for the existing cookies are

relatively stable for the website, those cookies that still have "false" values in their "useful"

fields will be treated as useless and will no longer be transmitted to the corresponding

website. Then, the FORCUM process can be turned off for a while; and it will be turned

on automatically if CookiePicker finds new cookies appeared in the HTTP responses or

manually by a user if the user wants to continue the training process.

2.4.3 Backward Error Recovery

In general, CookiePicker could make two kinds of errors in the FORCUM process. The first

kind of error is that useless cookies are misclassified as useful, thereby being continuously

sent out to a website. The second kind of error is that useful cookies are never identified

by CookiePicker during the training process, thereby being blocked from a website.

The first kind of error is solely due to the inaccuracy of CookiePicker in usefulness

31

identification. Such an error will not cause any immediate trouble to a user, but leave

useless cookies increasing privacy risks. CookiePicker is required to make such errors as few

as possible so that a user's privacy risk is lowered. CookiePicker meets this requirement via

accurate decision algorithms.

The second kind of error is caused by either a wrong usefulness decision or the fact that

some cookies are only useful to certain webpages but have not yet been visited during the

FORCUM process. This kind of error will cause inconvenience to a user and must be fixed

by marking the corresponding cookies as useful. CookiePicker attempts to achieve a very

low rate on this kind of error, so that it does not cause any inconvenience to users. This

requirement is achieved by two means. On one hand, for those visited pages, the decision

algorithms of CookiePicker attempt to make sure that each useful persistent cookie can be

identified and marked as useful. On the other hand, since CookiePicker is designed with

very low running cost, a longer running period (or periodically running) of the FORCUM

process is affordable, thus training accuracy can be further improved.

CookiePicker provides a simple recovery button for backward error recovery in the tuning

process. In case a user notices some malfunctions or some strange behaviors on a webpage,

the cookies disabled by CookiePicker in this particular webpage view can be re-marked as

useful via a simple button click. Note that once the cookie set of a website becomes stable

after the training and tuning processes, those disabled useless cookies will be removed from

the Web browser's cookie jar. CookiePicker also provides an user interface, allowing a

user to view those useless cookies and confirm the deletion action. We will introduce this

interface in Section 2.6.

32

2.5 HTML Page Difference Detection

In this section, we present two complementary mechanisms for online detecting the HTML

web page differences between the enabled and disabled cookie usages. In the first mechanism,

we propose a restricted version of Simple Tree Matching algorithm [117] to detect the HTML

document structure difference. In the second mechanism, we propose a context-aware visual

content extraction algorithm to detect the HTML page visual content difference. We call

these two mechanisms as Restricted Simple Tree Matching (RSTM) and Context-aware

Visual Content Extraction (CVCE), respectively. Intuitively, RSTM focuses on detecting

the internal HTML document structure difference, while CVCE focuses on detecting the

external visual content difference perceived by a user. In the following, we present these

two mechanisms and explain how they are complementarily used.

2.5.1 Restricted Simple Tree Matching

As mentioned in Section 2.4, in a user's Web browser, the content of an HTML webpage is

naturally parsed into a DOM tree before it is rendered on the screen for display. Therefore,

we resort to the classical measure of tree edit distance introduced by Tai [101] to quantify

the difference between two HTML webpages. Since the DOM tree parsed from the HTML

webpage is rooted (document node is the only root), labeled (each node has node name),

and ordered (the left-to-right order of sibling nodes is significant), we only consider rooted

labeled ordered tree. In the following, we will first review the tree edit distance problem;

then we will explain why we choose top-down distance and detail the RSTM algorithm;

and finally we will use Jaccard similarity coefficient to define the similarity metric of a

33

normalized DOM tree.

2.5.1.1 Tree Edit Distance

For two rooted labeled ordered trees T and T', let ITI and IT'I denote the numbers of

nodes in trees T and T', and let T[i] and T'[j] denote the ith and jth preorder traversal

nodes in trees T and T', respectively. Tree edit distance is defined as the minimum cost

sequence of edit operations to transform T into T' [101]. The three edit operations used

in transformation include: inserting a node into a tree, deleting a node from a tree, and

changing one node of a tree into another node. Disregarding the order of the edit operations

being applied, the transformation from T to T' can be described by a mapping. The formal

definition of a mapping [101] is as follows:

Definition 3. A mapping from T toT' is defined by a triple (M, T, T'), where M is any

set of pairs of integers (i, j) satisfying:

(1}1 ~ i ~ ITI, 1 ~ j ~ IT'I

(2}For any two pairs (i1,]I) and (i2,j2) in M,

(a}i1 =i2 iffjl =j2;

(b }il < i2 iff)I <)2,·

(c)T[ii] is an ancestor (descendant) ofT[i2] iff

T'[jl] is an ancestor (descendant) ofT'[j2]·

Intuitively, condition (2a) ensures that each node of both trees appears at most once in

the mapping, and condition (2b) and (2c) ensure that the structural order is preserved in

the mapping.

34

The algorithm presented by Tai [101] solves the tree edit distance problem in time

O(ITI·IT'I·IDI2 ·ID'I 2), where IDI and ID'I are the maximum depths, respectively, ofT and

T'. Zhang et al. [130] further improved the result via a simple fast dynamic programming

algorithm in time O(ITI · IT'I · min{IDI, ILl} · min{ID'I, IL'I}), where ILl and 1£'1 are the

numbers of leaves in T and T', respectively.

Since the solution of the generic tree edit distance problem has high time complexity,

researchers have investigated the constrained versions of the problem. By imposing condi

tions on the three edit operations mentioned above, a few different tree distance measures

have been proposed and studied in the literature: alignment distance [50], isolated subtree

distance [102], top-down distance [96, 117], and bottom-up distance [105]. The description

and comparison of these algorithms can be found in [10] and [105].

2.5.1.2 Top-Down Distance

Because RSTM belongs to the top-down distance approach, we review the definition of

top-down distance and explain why we choose this measure for our study.

Definition 4. A mapping (M, T, T') from T to T', is top-down if it satisfies the con

dition that for all i,j such that T[i] and T'[j] are not the roots, respectively, ofT and

T':

if pair (i,j) EM then (parent(i),parent(j)) EM.

The top-down distance problem was introduced by Selkow [96]. In [117], Yang presented

a O(ITI·IT'I) time-complexity top-down dynamic programming algorithm, which is named

as the Simple Tree Matching (STM) algorithm. As we mentioned earlier, our goal is to

35

Algorithm: RSTM(A, B, level)
1. if the roots of tree A and tree B contain different symbols then
2. return(O);
3. endif
4. currentLevel =level+ 1;
5. if A and B are leaf or non-visible nodes or
6. currentLevel > maxLevel then
7. return(O);
8. endif
9. m = the number of first-level subtrees of A;
10. n = the number of first-level subtrees of B;
11. Initialization, M[i, OJ = 0 for i = 0, ... , m;
12. M[O, j] = 0 for j = 0, ... , n;
13. for i = 1 to m do
14. for j = 1 to n do
15. M[i, j] = max(M[i, j - 1], M[i- 1, j],

M[i- 1,j- 1] + W[i,j]);
16. where W[i,j] = RSTM(A;,Bj,currentLevel)
17. where A; and Bj are the ith and jth

first-level subtrees of A and B, respectively
18. endfor
19. endfor
20. return (M[m, n] + 1);

Figure 2.9: The restricted simple tree matching algorithm.

effectively detect noticeable HTML webpage difference between the enabled and disabled

cookie usages. The measure of top-down distance captures the key structure difference

between DOM trees in an accurate and efficient manner, and fits well to our requirement.

In fact, top-down distance has been successfully used in a few Web-related projects. For

example, Zhai and Liu [128] used it for extracting structured data from webpages; and Reis

et al. [89] applied it for automatic Web news extraction. In contrast, bottom-up distance

[105], although can be more efficient in time complexity (O(ITI + IT'I)), falls short of being

an accurate metric [104] and may produce a far from optimal result [4] for HTML DOM

tree comparison, in which most of the differences come from the leaf nodes.

36

d

Nl8 Nl9 N21

(a)
Nl2 Nl3 Nl4

(b)
N22

Figure 2.10: (a) Tree A, (b) Tree B.

2.5.1.3 Restricted Simple Tree Matching

Based on the original STM algorithm [117], Figure 2.9 illustrates RSTM, our restricted

version of STM algorithm. Other than lines 4 to 8 and one new parameter level, our RSTM

algorithm is similar to the original STM algorithm. Like the original STM algorithm, we

first compare the roots of two trees A and B. If their roots contain different symbols,

then A and B do not match at all. If their roots contain same symbols, we use dynamic

programming to recursively compute the number of pairs in a maximum matching between

trees A and B. Figure 2.10 gives two trees, in which each node is represented as a circle

with a single letter inside. According to the preorder traversal, the fourteen nodes in tree

A are named from Nl to N14, and the eight nodes in tree Bare named from N15 to N22.

The final result returned by STM algorithm or RSTM algorithm is the number of matching

pairs for a maximum matching. For example, STM algorithm will return "7" for the two

trees in Figure 2.10, and the seven matching pairs are {Nl,Nl5}, {N2,N16}, {N6,Nl8},

{N7,N19}, {N5,N17}, {Nll,N20}, and {N12,N22}.

There are two reasons why a new parameter level is introduced in RSTM. First, some

webpages are very dynamic. From the same website, even if a webpage is retrieved twice

37

in a short time, there may exist some differences between the retrieved contents. For

example, if we refresh Yahoo home page twice in a short time, we can often see some different

advertisements. For CookiePicker, such dynamics on a web page are just noises and should be

differentiated from the webpage changes caused by the enabled and disabled cookie usages.

The advertisement replacements on a webpage use different data items (e.g., images or texts)

but they often stay at the same location of a webpage's DOM tree. Data items are mainly

represented by lower level nodes of a DOM tree [129]. In contrast, the webpage changes

caused by enabling/disabling cookies may introduce structural dissimilarities at the upper

level of a DOM tree, especially when the theme of the page is changed. By using the new

parameter level, the RSTM algorithm restricts the top-down comparison between the two

trees to a certain maximum level. Therefore, equipped with the parameter level, RSTM not

only captures the key structure dissimilarity between DOM trees, but also reduces leaf-level

noises.

The second reason of introducing the new parameter level is that the O(ITI · IT' I) time

complexity of STM is still too expensive to use online. Even with C++ implementation,

STM will spend more than one second in difference detection for some large webpages.

However, as shown in Section 2.6, the cost of the RSTM algorithm is low enough for online

detection.

The newly-added conditions at line 5 of the RSTM algorithm restrict that the mapping

counts only if the compared nodes are not leaves and have visual effects. More specifically,

all the comment nodes are excluded in that they have no visual effect on the displayed

webpage. Script nodes are also ignored because normally they do not contain any visual

elements either. Text content nodes, although very important, are also excluded due to

38

the fact that they are leaf nodes (i.e., having no more structural information). Instead,

text content will be analyzed in our Context-aware Visual Content Extraction (CVCE)

mechanism.

2.5.1.4 Normalized Top-Down Distance Metric

Since the return result of RSTM (or STM) is the number of matching pairs for a maximum

matching, based on the Jaccard similarity coefficient that is given in Formula 2.1, we define

the normalized DOM tree similarity metric in Formula 2.2.

J(A B)= IAnBI
' IAUBI

(2.1)

. RSTM(A,B,l)
NTreeS~m(A,B,l) = N(A,l) +N(B,l)- RSTM(A,B,l) (2.2)

The Jaccard similarity coefficient J(A, B) is defined as the ratio between the size of

the intersection and the size of the union of two sets. In the definition of our normalized

DOM tree similarity metric NTreeSim(A,B,l), RSTM(A,B,l) is the returned number of

matched pairs by calling RSTM on trees A and B for upper llevels. N(A, l) and N(B, l)

are the numbers of non-leaf visible nodes at upper l levels of trees A and B, respectively.

Actually N(A, l) = RSTM(A,A, l) and N(B,l) = RSTM(B, B, l), but N(A, l) and N(B,l)

can be computed in O(n) time by simply preorder traversing the upper llevels of trees A

and B, respectively.

2.5.2 Context-aware Visual Content Extraction

The visual contents on a webpage can be generally classified into two groups: text contents

and image contents. Text contents are often displayed as headings, paragraphs, lists, table

items, links, and so on. Image contents are often embedded in a webpage in the form

39

of icons, buttons, backgrounds, flashes, video clips, and so on. Our second mechanism

mainly uses text contents, instead of image contents, to detect the visual content difference

perceived by users. Two reasons motivate us to use text contents rather than image contents.

First, text contents provide the most important information on webpages. This is because

HTML mainly describes the structure of text-based information in a document, while image

contents often serve as supplements to text contents [154]. In practice, users can block the

loading of various images and browse webpages in text mode only. Second, the similarity

between images cannot be trivially compared, while text contents can be extracted and

compared easily as shown below.

On a webpage, each text content exists in a special context. Corresponding to the DOM

tree, the text content is a leaf node and its context is the path from the root to this leaf

node. For two webpages, by extracting and comparing their context-aware text contents

that are essential to users, we can effectively detect the noticeable HTML webpage difference

between the enabled and disabled cookie usages. Figure 2.11 depicts the recursive algorithm

to extract the text content.

The contentExtract algorithm traverses the whole DOM tree in preorder in time O(n).

During the preorder traversal, each non-noise text node is associated with its context,

resulting in a context-content string; and then the context-content string is added into set

S. The final return result is set S, which includes all the context-content strings. Note

that in lines 2 to 4, only those non-noise text nodes are qualified for the addition to set

S. Similar to [38], scripts, styles, obvious advertisement text, date and time strings, and

option text in dropdown lists (such as country list or language list) are regarded as noises.

Text nodes that contain no alphanumeric characters are also treated as noises. All these

40

Algorithm: contentExtract(T, context)
1. Initialization, S = 0; node= T.root; ,
2. if node is a non-noise text node then
3. cText = context+SEPARATOR+node.value;
4. S = S U {cText};
5. else if node is an element node then
6. currentContext = context+":"+node.name;
7. n = the number of first-level subtrees ofT;
8. for j = 1 to n do
9. S = SUcontentExtract(Ti, currentContext);

where Ti is the ith first-level subtrees ofT;
10. endfor
11. endif
12. return (S);

Figure 2.11: The text content extraction algorithm.

checkings guarantee that we can extract a relatively concise context-content string set from

the DOM tree.

Assume S1 and S2 are two context-content string sets extracted from two DOM trees

A and B, respectively. To compare the difference between S1 and S2, again based on the

Jaccard similarity coefficient, we define the normalized context-content string set similarity

metric in Formula 2.3:

(2.3)

Formula 2.3 is a variation [52] of the original Jaccard similarity coefficient. The extra

added s on the numerator stands for the number of those context-content strings that

are not exactly same, while having the same context prefix, in S1 and S2 . Intuitively,

between two sets S1 and S2, Formula 2.3 disregards the difference caused by text content

replacement occurred in the same context, it only considers the difference caused by text

content appeared in each set's unique context. This minor modification is especially helpful

41

in reducing the noises caused by advertisement text content and other dynamically changing

text contents.

2.5.3 Making Decision

As discussed above, to accurately identify useful cookies, CookiePicker has to differentiate

the HTML webpage differences caused by webpage dynamics from those caused by disabling

cookies. Assume that tree A is parsed from a webpage retrieved with cookies enabled and

tree B is parsed from the same webpage with cookies disabled. CookiePicker examines

these two trees by using both algorithms presented above. If the return results of NTreeSim

and NTextSim are less than two tunable thresholds, Threshl and Thresh2, respectively,

CookiePicker will make a decision that the difference is due to cookie usage. Figure 2.12

depicts the final decision algorithm.

Note that these two thresholds are internal to CookiePicker, so a regular user does not

need to know them. In our experiments (Section 2.6), we set the values of both thresholds to

0.85, and we found that no backward error recover is needed. We would like to recommend

this as a reference value for CookiePicker. However, it is possible to further tune these two

thresholds. For example, one approach is to self-adaptively adjust the thresholds based on

the number or frequency of a user's backward error recover actions. The bottom line is

that backward error recovery should not cause too much inconvenience to a user. Another

approach is to use site-specific thresholds so that the granularity of accuracy can be refined

to the site-level. In addition, it is also possible to allow users to share fine-tuned site-specific

thresholds.

Algorithm: decision(A, B, l)
1. if NTreeSim(A, B, l) :S Thresh! and
2. NTextSim(S1, S2) :S Thresh2 then
3. return the difference is caused by cookies;
4. else
5. return the difference is caused by noises;
6. endif

Figure 2.12: CookiePicker decision algorithm.

2.6 System Evaluation

42

In this section, we first briefly describe the implementation of CookiePicker, and then we

validate its efficacy through two sets of live experiments.

2.6.1 Implementation

We implemented CookiePicker as a Firefox extension. Being one of the most popular

Web browsers, Firefox is very extensible and allows programmers to add new features or

modify existing features. Our CookiePicker extension is implemented in about 200 lines of

XML user interface definition code, 1,600 lines of JavaScript code, and 600 lines of C++

code. JavaScript code is used for HTTP request/response monitoring and processing, as

well as cookies record management. The HTML page difference detection algorithms are

implemented in C++, because JavaScript version runs very slow. C++ code is compiled

into a shared library in the form of an XPCOM (Cross-Platform Component Object Mode)

component, which is accessible to JavaScript code. CookiePicker is a pure Firefox extension

and it does not make any change to the Firefox's source code.

We omit other details and only describe two key interfaces in CookiePicker's imple-

mentation: the interface to user and the XPCOM component interface. Figure 2.13 shows

Information about the selected Cookie

Nama: lucky9
Content: 315:173
Domain: .ebay.com

Path: I

s~nd For: Any type of connectton
Expi,.,s: 08ft.l712()1212:00:26 PM

Figure 2.13: CookiePicker user interface.

43

CookiePicker's main user interface. We port the code of a popular Firefox extension Cookie

Culler [140] and merge them into CookiePicker. Cookie Culler allows a user to access cookie

records and manually delete those cookies the user does not need to keep. By integrating

this interface, CookiePicker provides a user with the capability to easily view the decisions

made by CookiePicker and double check those useless cookies before they are finally re-

moved from a browser's cookie jar. As shown in Figure 2.13, if a user wants, the user can

know that these three first-party persistent cookies from ebay.com have been automatically

marked as useless and will be deleted by CookiePicker. The user can also make corrections

to this result if necessary.

In the XPCOM component interface, two functions are defined as follows and they cor-

respond to CookiePicker's two HTML page difference detection algorithms, respectively:

interface /CookiePickerComponent : ns/Supports {

float nTreeSim{in nsJDOMNode rNode, in nsiDOMNode hNode, in long l};

44

float nTextSim{in nsiDOMNode rNode, in nsiDOMNode hNode};

}

These two functions are implemented in C++, and can be accessed by JavaScript code

via the ICookiePickerComponent component. For nTreeSim, its three input parameters

match exactly with those in Figure 2.12. For nTextSim, its definition here is a little bit

different from that in Figure 2.12, because the DOM trees are directly passed in and the

corresponding context-content string sets are extracted internally.

2.6.2 Evaluation

We installed CookiePicker on a Firefox version 1.5.0.8 Web browser3 and designed two sets

of experi~ents to validate the effectiveness of CookiePicker in identifying the useful first-

party persistent cookies. The first set of experiments is to measure the overall effectiveness

of CookiePicker and its running time in a generic environment; while the second set of

experiments focuses on the websites whose persistent cookies are useful only, and examines

the identification accuracy of CookiePicker upon useful persistent cookies. For all the

experiments, the regular browsing window enables the use of persistent cookies, while the

hidden request disables the use of persistent cookies by filtering them out from HTTP

request header. The two thresholds used in CookiePicker decision algorithm are both set

to 0.85, i.e., Threshl= Thresh2=0.85. The parameter l for NTreeSim algorithm is set to 5,

i.e., the top five level of DOM tree starting from the body HTML node will be compared by

3 Porting CookiePicker to recent Firefox versions is quite feasible because CookiePicker uses the standard
XPCOM mechanism of Firefox.

45

NTreeSim algorithm.

2.6.2.1 First Set of Experiments

From each of the 15 categories listed in Table 2.1, we randomly choose two websites that

use persistent cookies. Thus, in total there are 30 websites in the first set of experiments.

As listed in the first column of Table 2.2, these 30 websites are represented as 81 to 830 for

privacy concerns.

Inside each website, we first visit over 25 webpages to stabilize its persistent cookies

and the "useful" values of the persistence cookies, i.e, no more persistent cookies of the

website are marked as "useful" by CookiePicker afterwards. Then, we count the number

of persistent cookies set by the website and the number of persistent cookies marked as

useful by CookiePicker. These two numbers are shown in the second and third columns

of Table 2.2, respectively. Among the total 30 websites, the persistent cookies from five

websites (81,86,810,816,827) are marked as "useful" by CookiePicker, and the persistent

cookies from the rest of 30 websites are identified as "useless". In other words, CookiePicker

indicates that we can disable the persistent cookies in about 83.3% (25 out of 30) of testing

websites. To further validate the testing result above, we check the uselessness of the

persistent cookies for those 25 websites through careful manual verification. We find that

blocking the persistent cookies of those 25 websites does not cause any problem to a user.

Therefore, none of the classified "useless" persistent cookies is useful, and no backward error

recovery is needed.

For those five websites that have some persistent cookies marked as "useful", we verify

the real usefulness of these cookies by blocking the use of them and then comparing the

46

Website Persistent Marked Real Detection CookiePicker
Useful Useful Time(ms) Duration (ms)

81 2 2 0 8.3 1,821.6
82 4 0 0 9.3 5,020.2
83 5 0 0 14.8 1,427.5
84 4 0 0 36.1 9,066.2
85 4 0 0 5.4 698.9
86 2 2 2 5.7 1,437.5
87 1 0 0 17.0 3,373.2
88 3 0 0 7.4 2,624.4
89 1 0 0 13.2 1,415.4

810 1 1 0 5.7 1,141.2
811 2 0 0 2.7 941.3
812 4 0 0 21.7 2,309.9
813 1 0 0 8.0 614.9
814 9 0 0 11.9 1,122.4
815 2 0 0 8.5 948.0
816 25 1 1 5.8 455.9
817 4 0 0 7.5 11,426.3
818 1 0 0 23.1 4,056.9
819 3 0 0 18.0 3,860.5
820 6 0 0 8.9 3,841.6
821 3 0 0 14.4 936.1
822 1 0 0 13.1 993.3
823 4 0 0 28.8 2,430.1
824 1 0 0 23.6 2,381.1
825 3 0 0 30.7 550.1
826 1 0 0 5.03 611.6
827 1 1 0 8.7 597.5
828 1 0 0 10.7 10,104.1
829 2 0 0 7.7 1,387.1
830 2 0 0 57.6 2,905.6

Total 103 7 3 - -
Average - - - 14.6 2,683.3

Table 2.2: Online testing results for thirty websites (Sl to 830).

disabled version with a regular browsing window over 25 webpages in each website. The

result is shown in the fourth column of Table 2.2. We observe that three cookies from two

websites (86,816) are indeed useful. However, for the other three websites (81,810,827),

their persistent cookies are useless but are wrongly marked as "useful" by CookiePicker.

This is mainly due to the conservative threshold setting. Currently the values of both

thresholds are set to 0.85, i.e., Threshl= Thresh2=0.85. The rationale behind the conser-

vative threshold setting is that we prefer to have all useful persistent cookies be correctly

47

identified, even at the cost of some useless cookies being misclassified as "useful". Thus,

the number of backward error recovery is minimized.

In Table 2.2, the fifth and sixth columns show the average running time of the detection

algorithms and the entire duration of CookiePicker, respectively. It is clear that the running

time of the page difference detection is very short with an average of 14.6 ms over the 30

websites. This detection time is roughly the extra CPU computation time introduced by

running the CookiePicker browser extension. The extra memory resource consumption

is also negligible because CookiePicker does not have a large memory requirement. The

average identification duration is 2,683.3 ms, which is reasonable short considering the fact

that the average think time of a user is about 10 seconds [69]. Note that websites 84, 817,

and 828 have abnormally high identification duration at about 10 seconds, which is mainly

caused by the slow responses from these websites.

2.6.2.2 Second Set of Experiments

Since only two websites in the first set of experiments have useful persistent cookies, we

attempt to further examine if CookiePicker can correctly identify each useful persistent

cookie in the second set of experiments. Because the list of websites whose persistent

cookies are really useful to users does not exist, we have to locate such websites manually.

Again, we randomly choose 200 websites that use persistent cookies from the 15 categories

listed in Table 2.1. Note that the 30 websites chosen in the first set of experiments are not

included in these 200 websites. We manually scrutinize these 200 websites, and finally find

six websites whose persistent cookies are really useful to users, i.e., without cookies, users

would encounter some problems. Because the manual scrutiny is tedious, we cannot afford

48

more effort to locate more such websites. The six websites are listed in the first column of

Table 2.3 and represented as Pl to P6 for privacy concerns.

In Table 2.3, the second column shows the number of the cookies marked as "useful" by

CookiePicker and the third column shows the number of the real useful cookies via manual

verification. We observe that for the six websites, all of their useful persistent cookies are

marked as "useful" by CookiePicker. This result indicates that CookiePicker seldom misses

the identification of a real useful cookie. On the other hand, for websites P5 and P6, some

useless persistent cookies are also marked as "useful" because they are sent out in the same

regular request with the real useful cookies. The fourth and fifth columns show the similarity

score computed by NTreeSim(A, B, 5) and NTextSim(S1, S2), respectively, on the web pages

that persistent cookies are useful. These similarity scores are far below 0.85, which is the

current value used for the two thresholds Threshl and Thresh2 in Figure 2.12. The usage

of these useful persistent cookies on each website is given at the sixth column. Websites

Pl, P4, and P6 use persistent cookies for user's preference setting. Websites P3 and P5 use

persistent cookies to properly create and sign up a new user. Website P2 uses persistent

cookie in a very unique way. Each user's persistent cookie corresponds to a specific sub

directory on the Web server, and the sub-directory stores the user's recent query results.

Thus, if the user visits the website again with the persistent cookie, recent query results

can be reused to improve query performance.

In summary, the above two sets of experiments show that by conservatively setting

Threshl and Thresh2 to 0.85, CookiePicker can safely disable and remove persistent cook

ies from about 83.3% of websites (25 out of the 30 websites that we intensively tested).

Meanwhile, all the useful persistent cookies are correctly identified by CookiePicker and no

49

Website Marked Real NTreeSim NTextSim Usage
Useful Useful (A,B,5) (S1,S2)

P1 1 1 0.311 0.609 Preference
P2 1 1 0.459 0.765 Performance
P3 1 1 0.667 0.623 Sign Up
P4 1 1 0.250 0.158 Preference
P5 9 1 0.226 0.253 Sign Up
P6 5 2 0.593 0.719 Preference

Average - - 0.418 0.521 -

Table 2.3: Online testing results for 6 websites (Pl to P6) that have useful persistent cookies.

backward error recovery is needed for all the 8 websites (S6,S16,Pl,P2,P3,P4,P5,P6) that

have useful persistent cookies. Misclassification happens only in 10% websites (3 out of 30),

on which useless persistent cookies are wrongly identified as useful.

2. 7 Discussions

In CookiePicker, useful cookies are defined as those that can cause perceivable changes

on a webpage, and as we discussed before this definition is probably the most reasonable

measure right now at the browser side. We assume that this measure is known to anyone who

wants to evade CookiePicker. In this section, we first identify possible evasion techniques,

and then we analyze potential evasion sources and explain why those evasion techniques

are not a serious concern to CookiePicker. Finally, we discuss some concerns about using

CookiePicker.

2.7.1 Possible Evasion Techniques

Since CookiePicker makes its decision based on HTML page difference detection, we identify

the following four possible techniques that could be used to evade CookiePicker:

50

• random advertising: A website can serve more random advertisements to different

retrieves of a webpage in order to reduce the accuracy of CookiePicker's difference

detection algorithms.

• dynamic content rewriting: A website can identify CookiePicker's hidden request and

use JavaScript to dynamically rewrite webpage contents at the browser side.

• dramatic structure changing: A website can identify CookiePicker's hidden request

and intentionally generate structurally different response pages (even if with very

similar visual content).

• cookie root path abusing: A website can set attribute values of all its cookies as root

"/" to let all its cookies, no matter useful or useless, return back for every Web request.

For the random advertising evasion technique, indeed as shown in previous experimen

tal results, CookiePicker's two difference detection algorithms can filter out the effects of

advertisements and webpage dynamics very well. Moreover, other advertisement removing

techniques such as those used in [178] can be integrated into CookiePicker to further im

prove the detection accuracy. The other three kinds of evasion techniques can be employed

by a website operator. However, as we discuss below, they will not pose a serious threat to

the usage of CookiePicker.

2.7.2 Evasion Sources

The evasion of CookiePicker will most likely come from two sources: website operators

who want to track user activities, and attackers who want to steal cookies. As stated in

Section 2.2, we assume that the hosting website is legitimate, since it is pointless to provide

51

cookie security and privacy services for a malicious website. For legitimate websites, if

some operators strongly insist to use first-party persistent cookies for tracking long-term

user behaviors, they can evade CookiePicker by detecting the hidden HTTP request and

m~nipulating the hidden HTTP response using the evasion techniques mentioned above.

However, we argue that many website operators will not pay the effort and time to do

so, either because of the lack of interest to track long-term user behaviors in the first

place, or because of inaccuracy in cookie-based user behavior tracking, which has long been

recognized [194]. These website operators are either not aware of the possible privacy and

security risks of stolen first-party persistent cookies, or simply not willing to pay the cost

to renovate their systems. Our CookiePicker is a pure client-side solution that especially

aims to protect the users of these websites.

For third-party attackers, unless they compromise a legitimate website, it is very difficult

for them to use any of the above evasion techniques to manipulate the web pages sending back

to a user's browser and circumvent CookiePicker. Therefore, CookiePicker can effectively

identify and remove useless cookies stored by most legitimate websites on a user's hard

disk, and prevent them from being stolen by malicious attacks such as cross-site scripting

attacks.

2.7.3 Concerns about Using CookiePicker

One concern is that CookiePicker might reject third-party cookies in the case of HTTP

redirection (see Section 5.1.2 of [103]). However, this concern is invalid because CookiePicker

does not block (or even touch) third-party cookies by itself- decision regarding third-party

cookies is made completely by the Web browser based on users' preference setting. Similarly,

52

whether a cookie is a first-party cookie of a website is also decided by the Web browser,

and CookiePicker makes its decision based on the browser's decision. Therefore, it does not

matter whether a website is using CDN (Content Delivery Network) or not.

Another concern is that CookiePicker may not work well on webpages that use Ajax

(Asynchronous JavaScript and XML). This concern is reasonable because Ajax requests

may use cookies and may also change webpage contents. Currently, CookiePicker only

sends hidden requests to retrieve container pages, as described in Section 2.4. But it is

possible to extend CookiePicker to evaluate the impact of cookies on Ajax requests, for

example, by asking CookiePicker to send out two Ajax requests (one with cookies and the

other without cookies) at the same time and then compare the response messages.

2.8 Related Work

RFC 2109 [61] specifies the way of using cookies to create a stateful session with HTTP

requests and responses. It is also the first document that raises the general public's aware

ness of cookie privacy problems. RFC 2965 [62] follows RFC 2109 by introducing two new

headers, Cookie2 request header and Set-Cookie2 response header. However, these two

new headers are not supported by the popular Web browsers such as Internet Explorer and

Firefox. RFC 2964 [76] focuses on the privacy and security of using HTTP cookies, and

identifies the specific usages of cookies that are either not recommended by the IETF or be

lieved to be harmful. Fu's study [34] suggests that setting authenticators in cookies should

be very careful and especially persistent cookies should not be used to store authenticators.

Cookies not only can be retrieved and stored by the headers of HTTP requests and

53

responses, but also can be read and written by client-side JavaScript. The same origin

policy [180] introduced in Netscape Navigator 2.0 prevents cookies and JavaScript in differ

ent domains from interfering with each other. The successful fulfillment of the same origin

policy on cookies and JavaScript further invokes the enforcement of this policy on browser

cache and visited links [44]. Recently, in order to mitigate cross-site scripting attacks, Inter

net Explore also allows a cookie to be marked as "HttpOnly" in the Set-Cookie response

header, indicating that a cookie is "non-scriptable" and should not be revealed to client

applications [170].

Modern Web browsers have provided users with refined cookie privacy options. A user

can define detailed cookie policies for websites either before or during visiting these sites.

Commercial cookie management software such as Cookie Crusher [139] and CookiePal [141]

mainly rely on pop-ups to notify incoming cookies. However, the studies in [39] show that

such cookie privacy options and cookie management policies fail to be used in practice, due

mainly to the following two reasons: (1) these options are very confusing and cumbersome,

and (2) most users have no good understanding of the advantages and disadvantages of using

cookies. A few Firefox extensions such as Cookie Culler [140] and Permit Cookies [175],

although convenient to use, are just very simple add-ons for user to easily access privacy

preference settings or view cookies. Acumen system [37] can inform a user how many other

users accept certain cookies. However, the system does not protect the privacy of the user

itself. Moreover, many users' decisions could be wrong, resulting in negative reference.

Another interesting system is Privoxy [178] Web proxy. It provides advanced filtering

capabilities for protecting privacy, modifying webpage data, managing cookies, controlling

access, and removing advertisement, banners, pop-ups and other obnoxious Internet junk.

54

However, Privoxy is more useful for those sophisticated users who have the ability to fine

tune their installation.

Recently, the most noticeable research work in cookie management is Doppelganger

[97]. Doppelganger is a system for creating and enforcing fine-grained privacy-preserving

cookie policies. Doppelganger leverages client-side parallelism and uses a twin window to

mirror a user's Web session. If any difference is detected, Doppelganger will ask the user to

compare the main window and the fork window, and then, make a cookie policy decision.

Although taking a big step towards automatic cookie management, Doppelganger still has

a few obvious drawbacks. First, Doppelganger still heavily relies on the user's comparison

between the main window and the fork window to make a decision. Second, the cost of

its parallel mirroring mechanism is very high. This is because not only every user action

needs to be mirrored, but every HTTP request also needs to be duplicately sent back to

the Web server. Third, due to the high cost, a user may not be patient enough to have

a long training period, thus the policy decision accuracy cannot be guaranteed. Last but

not the least, Doppelganger only achieves website level cookie policy making. In contrast,

our CookiePicker works fully automatically without user involvement or even notice. It has

very low overhead, and hence, can be trained for a long period on a user's Web browser to

achieve high accuracy. CookiePicker achieves cookie-group level policy making, implying

that usefulness is identified for a group of cookies used in a webpage view.

55

2.9 Summary

In this work, we conducted a large-scale cookie measurement, which highlights the demand

for effective cookie management. Then, we presented a system, called CookiePicker, to

automatically managing cookie usage setting on behalf of a user. Only one additional HTTP

request for the container page of a website, the hidden request, is generated for CookiePicker

to identify the usefulness of a cookie set. CookiePicker uses two complementary algorithms

to accurately detect the HTML page differences caused by enabling and disabling cookies.

CookiePicker classifies those cookies that cause perceivable changes on a webpage as useful,

and disable the rest as useless. We implemented CookiePicker as an extension to Firefox

and evaluated its efficacy through live experiments over various websites. By automatically

managing the usage of cookies, CookiePicker helps a user to strike an appropriate balance

between maximizing usability and minimizing security risks.

Chapter 3

Transparent Phishing Protection

In this chapter, we present our work on transparent phishing protection. Modern Web

browsers are often equipped with automatic phishing detection and warning mechanisms.

However, usability studies have demonstrated that many users still ignore the strong phish

ing warnings given by browsers and become victims. We present an approach that uses

bogus usernamefpassword credentials to protect against phishing attacks. Seamlessly in

tegrated with the phishing detection and warning mechanisms in modern Web browsers,

our approach properly leverages existing anti-phishing efforts and is capable of providing a

transparent protection to those most vulnerable users who still ignore the strong phishing

warnings.

3.1 Motivation

A phishing attack is typically carried out using an email or an instant message, in an at

tempt to lure recipients to a fake website to disclose personal credentials. Phishing attacks

56

57

have seriously afflicted Internet users and financial institutions with identity thefts and

brand reputation damage. According to recent Anti-Phishing Working Group (APWG)

reports [137] and Gartner surveys [149], the number of phishing sites, the number of phish

ing victims, and the amount of financial losses stemming from phishing attacks have all

increased over the past few years.

To defend against phishing attacks, a number of countermeasures have been proposed

and developed. Server-side defenses employ SSL certificates, user-selected site images, and

other security indicators to help users verify the legitimacy of websites. Client-side defenses

equip Web browsers with automatic phishing detection features or add-ons to warn users

away from suspected phishing sites. However, recent usability studies have demonstrated

that neither server-side security indicators nor client-side toolbars and warnings are suc

cessful in preventing vulnerable users from being deceived [21, 20, 95, 111, 114, 23]. This is

mainly because (1) phishers can convincingly imitate the appearance of legitimate websites,

(2) users tend to ignore security indicators or warnings, and (3) users do not necessarily

interpret security cues appropriately. Educational defenses teach users to understand and

avoid phishing attacks [45, 64, 100]. However they cannot completely foil phishing attacks.

Takedown defenses exploit spams and suspicious URLs to discover and shut down newly

emerged phishing sites. However, the efficacy of this approach is limited, due to the ease of

setting up and the short online time of phishing sites, as well as the application of takedown

evasion methods by phishers [46, 77, 137, 165].

These different approaches are all preventive by nature. They endeavor to prevent users

from being tricked into revealing their credentials to phishing sites. Nevertheless, these

prevention-based approaches alone are insufficient to shield vulnerable users from "biting

58

the bait" and defeat phishers, as human users are the weakest link in the security chain.

The ever-increasing prevalence and severity of phishing attacks clearly indicate that anti

phishing is still a daunting challenge.

In response to this challenge, we have made two observations with respect to the acqui

sition of credentials by phishers and the automatic detection of phishing attacks on Web

browsers. First, currently the majority of those who have "bitten the bait" and fallen victim

to phishing attacks are real victims; thus, it is trivial for a phisher to verify the acquired

credentials and trade them for money. However, if we can supply phishing sites with a large

number of bogus credentials, we might be able to hide victims' real credentials among bogus

credentials and make it harder for phishers to succeed.

Second, although remarkable advances in client-side automatic phishing detection have

empowered Web browsers to identify the majority of phishing sites [17, 35, 68, 132, 148, 169],

the possible false positives (legitimate websites misclassified as phishing sites) make it hard

for Web browsers to directly block users' connections to suspected phishing sites. Thus,

issuing warnings and expecting users to leave a suspected phishing site have become the

most common actions employed by modern Web browsers. However, instead of just wishing

vulnerable users could make correct decisions, if we can effectively transform the power of

automatic phishing detection into the power of automatic fraud protection, we will take a

big step forward towards winning the battle against phishing.

In this work, we propose a new approach to protect against phishing attacks with "bogus

bites" on the basis of the two observations we have mentioned. The key feature of this

approach is to transparently feed a relatively large number of bogus credentials into a

suspected phishing site, rather than attempt to prevent vulnerable users from "biting the

59

bait." These "bogus bites" conceal victims' real credentials among bogus credentials, and

enable legitimate websites to identify stolen credentials in a timely manner. Based on

the concept of "bogus bites," we design and develop BogusBiter, a unique client-side anti

phishing tool that is complementary to existing prevention-based mechanisms. Seamlessly

integrated with the phishing detection and warning mechanisms in modern Web browsers,

BogusBiter is transparent to users.

At a user's Web browser, BogusBiter is turned on once a login webpage is classified as

a phishing page by a Web browser's built-in phishing detection component or a third-party

detection toolbar. For a victim who is beguiled into divulging a real credential, BogusBiter

hides the real credential among a set of automatically generated bogus credentials, and then

submits these credentials one by one to the phishing site. For a security-conscious user who

does not reveal a real credential, BogusBiter also generates a set of bogus credentials, and

then submits them to the phishing site in the same way as it does for a victim.

At the phishing site, a phisher will thus receive a much larger number of credentials than

before, but the overwhelming majority are bogus credentials fed by BogusBiter. Elaborating

bogus credential generation and submission mechanisms, BogusBiter makes it difficult for a

phisher to distinguish who are real victims and which are real credentials. The only effective

way for a phisher to sift out bogus credentials is to visit the legitimate website and verify

whatever credentials have been collected from the phishing site.

At the legitimate website, if the phisher assumes the burden of verifying all the collected

credentials to single out the real credentials, the unique design of bogus credential generation

will enable the legitimate site to identify victims' stolen credentials in a timely manner and

make it harder for a phisher to succeed. In other words, the bogus credential filtering

60

process becomes the trigger for detecting stolen credentials at the legitimate website, and

hence, ironically, the phisher's attempt to bypass BogusBiter helps us to achieve automatic

fraud protection.

While leveraging the power of widely used client-side automatic phishing detection tech

niques, BogusBiter is not bound to any specific phishing detection scheme. Thus, Bogus

Biter can utilize the latest advances in phishing detection techniques such as blacklists and

heuristics to protect against a wide range of phishing attacks. Moreover, BogusBiter is in

crementally deployable over the Internet, and the fraud protection enabled at a legitimate

website is independent of the deployment scale of BogusBiter. We implemented BogusBiter

as a Firefox Web browser extension and evaluated its efficacy through real experiments

over both phishing and legitimate websites. Our experimental results indicate that it is

promising to use BogusBiter to transparently protect against phishing attacks.

The remainder of this chapter is structured as follows. Section 3.2 introduces the back

ground of phishing attacks and the automatic phishing detection and warning mechanisms

in modern Web browsers. Section 3.3 details the design of BogusBiter. Section 3.4 describes

the implementation of BogusBiter. Section 3.5 evaluates the capability and performance

of BogusBiter. Section 3.6 discusses the deployment of BogusBiter and potential evasions

against BogusBiter. Section 3.7 reviews the related client-side anti-phishing research work,

and finally, Section 3.8 summarizes this work.

-···~W'.!!1
New to eBoy?

tfyoul'f<~nllosignmycu11
needtoregrsterfiret

Rews1ratrontSfastand free

..•..... ·····~·····~········ --·-··
or Already an eBay user?

eBaymembeni lllgnrntcs,..Ettotnef~:~rbiddmg selling and
other actMin!S

e:B~yUseriO

~y.:..~:;..=~~:-r:G;·

,Pa66word

(a)

61

(b)

Figure 3.1: (a) A phishing site designed to attack eBay users, (b) Firefox 2 phishing warning
mechanism.

3.2 Background

Figure 3.1(a) illustrates a phishing site designed to attack eBay users. In a typical scenario,

a user receives a spoofed email that appears to be sent from the real eBay, luring the user to

log into the phishing site. Once the user believes this site is the genuine eBay website and

logs in, the user's username/password credential is stolen. Passwords have increasingly been

targeted by harvesting attacks, as they protect online accounts with valuable assets [31].

While some phishing attacks may steal other types of credentials such as credit card num-

bers and social security numbers, the most common type of phishing attack attempts to

steal account numbers and passwords used for online banking [48]. Therefore, protecting a

user's username/password credential is the primary focus of many client-side anti-phishing

research work such as SpoofGuard [17], Dynamic Security Skins [19], AntiPhish [56], Pwd-

Hash [91], Web Wallet [115], and Passpet [119]. Our work also focuses on protecting a

user's username/password credential. In the remainder of this chapter, we use the terms

credential and username/password pair interchangeably.

62

The potential threat of phishing or Web spoofing attacks was first uncovered by Felten

et al. [25]. Today, phishing is not merely about website forgery and email spoofing, it has

become a carefully planned and well structured multiphase effort to steal money. The life

cycle of a phishing attack consists of six phases: planning, setup, attack, collection, fraud &

abuse, and post attack, as defined by the Financial Services Technology Consortium [188].

Various techniques can be applied in these six phases to combat phishing. However, since

phishing sites can be easily set up and money laundering is still a difficult problem to curtail,

current research and industry efforts focus mainly on the attack phase, with the objective

of preventing users from submitting their credentials to phishing sites.

In contrast, the BogusBiter's protection against phishing attacks ranges from the attack

phase to the collection phase, and then to the fraud & abuse phase, covering the flow

of credentials. Specifically, BogusBiter retaliates against phishers with a large number of

bogus credentials in the attack phase, makes it hard for them to identify real credentials in

the collection phase, and detects their fraudulent activities in the fraud & abuse phase.

While distinct from preventive anti-phishing mechanisms, BogusBiter complements them

in a natural way. In particular, BogusBiter leverages the power of client-side automatic

phishing detection mechanisms and takes advantage of the state-of-practice phishing warn

ing mechanisms in popular Web browsers to transparently protect vulnerable users.

Among automatic phishing detection mechanisms, two commonly used techniques are

blacklists and heuristics. Blacklist-based techniques generate close-to-zero false positives

and can detect most phishing attacks [68, 131, 146, 151]. For example, Ludl et al. [68]

demonstrated that blacklists provided by Google (used by Firefox 2) can recognize al

most 90% of live phishing sites. However, because some phishing sites may not be added

63

into blacklists and the so-called zero-day attacks may occur, researchers have proposed

various heuristic-based techniques to identify phishing sites in real time [17, 35, 68, 132].

These heuristic-based techniques have obtained very encouraging results. For example,

CANTINA, a content-based detection tool proposed by Zhang et al. [132] can identify 90%

of phishing pages with only 1% false positives. A URL-based classifier proposed by Gar

era et a]. [35] is another tool that can catch 95.8% of phishing pages with only 1.2% false

positives.

Currently, Firefox 2 primarily employs blacklist-based techniques while Internet Ex

plorer (IE) 7 uses both kinds of techniques [148, 169]. Because BogusBiter's design is inde

pendent of any specific detection scheme, it can leverage advances in both blacklist-based

techniques and heuristic-based techniques to combat the majority of phishing attacks.

Regarding phishing site warning mechanisms, the state of practice is to make it manda

tory for a user to respond to the active warning of a suspected phishing site. Figure 3.1 (b)

illustrates the warning given by Firefox 2 [148] after correctly identifying the example web

site in Figure 3.1(a) as a phishing site. A user is unable to enter the username and password

without first interacting with the warning page. If the user clicks the "Get me out of here!"

link, the user is redirected to a default page and is protected. Otherwise, if the user clicks

the "Ignore this warning" link, the warning page disappears and the user is exposed to the

risk of credential theft. A similar warning mechanism is also used in IE 7 [169].

Both Firefox 2 and IE 7 might choose such a active warning mechanism because: (1)

issuing warnings simply through browser-based security indicators such as the address bar,

the status bar, and various toolbars is ineffective [21, 20, 95, 111, 114, 23], and (2) directly

blocking users' connections to suspected phishing sites is unacceptable, due to inevitable

64

false positives. Although using an active warning page represents current best practice, a

recent usability study conducted by Egelman et al. [23] demonstrates that overall about

21% of participants still ignore the IE 7 and Firefox 2 active phishing warnings and fall

for phishing attacks. Therefore, a crucial usability gap still exists in today's anti-phishing

ecosystem, and many users who are most vulnerable to phishing still cannot be protected.

Phishing attacks are very insidious, and so far there is no single silver bullet for com

pletely defeating phishers. Comprehensive, multifaceted, and integrated approaches are

clearly needed in the anti-phishing ecosystem. BogusBiter fits into such an anti-phishing

ecosystem especially by aiming to fill the aforementioned usability gap. Properly leveraging

existing anti-phishing efforts, BogusBiter is capable of providing a transparent protection

to those most vulnerable users.

3.3 Design

In this section, we first give an overview on the design of BogusBiter, including the basic

working mechanism, the main design assumption, and the two key design objectives. We

then detail the offensive line and defensive line of BogusBiter.

3.3.1 Design Overview

BogusBiter is designed as either a new component or an extension to popular Web browsers

such as Firefox 2 or IE 7. It integrates seamlessly with phishing detection and warning

mechanisms of current Web browsers to protect vulnerable users against phishing attacks.

Vulnerable e~
User •···················~.';.'~·······

~ '

io~~~i!~ ~ ~::~:~:=¥ .. ~."'."':----~z.l·====f
User V ,...... -

Offensive Line

Phishing Site

'
06

1 Phishing Page

f Real Credential

){' Bogus Credential

?-?t'il-'i'. ~
I. I
Legitimate Site

D
Defensive Line

Figure 3.2: Anti-phishing with BogusBiter.

3.3.1.1 How It Works

65

In the scenario without BogusBiter, when a phishing site is visited by users, only real

credentials are submitted by vulnerable users, and a phisher can easily verify the collected

credentials and trade them for money.

The basic idea of BogusBiter is very simple, as illustrated in Figure 3.2. When a

login page is classified as a phishing page by a browser's built-in detection component or

a third-party detection toolbar, BogusBiter is triggered. At this point, BogusBiter will

perform differently based on a user's response to the browser's phishing warning page. For

a vulnerable user who clicks the "Ignore this warning" link and submits a real credential,

BogusBiter will intercept the victim's real credential, hide it among a set of S -1 generated

bogus credentials, and then submit the S credentials one by one to the phishing site within

a few milliseconds. For a security-conscious user who clicks the "Get me out of here!" link

on the warning page, BogusBiter will generate a set of S bogus credentials, and then feed

them one by one into the phishing site in the same way as it does for a vulnerable user.

These actions are completely transparent to both vulnerable and security-conscious users.

66

The BogusBiter extensions installed on users' browsers make up the offensive line. Later

on, when a phisher verifies the collected credentials at the legitimate site, the defensive line

enabled by BogusBiter will help a legitimate site to detect victims' stolen credentials in a

timely manner.

3.3.1.2 Design Assumption

We assume that a phisher does not have a complete list of valid usernames for a targeted

legitimate website, and cannot directly query a targeted legitimate website for the validity of

a specific username. Although this assumption may not be strictly correct for email service

websites and community websites, it is generally true for financial institutions, which are

the main targets of phishing attacks. Financial institutions seldom have valid username

lists publicly accessible. Meanwhile, for a failed login attempt, websites often try to hide

whether the failure is due to an incorrect username or due to an incorrect password by

returning the same error message [12, 32], making it very hard to test the validity of a given

username.

Indeed, preventing the leakage of username validity information is necessary for pro

tecting user privacy, guarding users from invasive advertising and phishing, and defending

against password guessing attacks. To enhance such a protection, the recent work by Bortz

et al. [12] recommends that the response time of HTTP requests should be carefully con

trolled by some websites to remove timing vulnerabilities. Florencio et al. [32] further

suggest that increasing username strength could be more beneficial than merely increasing

password strength.

67

3.3.1.3 Design Objectives

To be effective, BogusBiter has two key design objectives:

• offensive objective: BogusBiter should inject as many bogus credentials as possible

into a phishing site, thus well hiding victims' real credentials among bogus credentials.

• defensive objective: Given that a phisher is aware of BogusBiter and is willing to

assume the heavy burden of sifting out bogus credentials, BogusBiter should enable

a legitimate website to exploit the filtering process initiated by the phisher to detect

victims' stolen credentials in a timely manner.

3.3.2 Offensive Line

To achieve its offensive objective, BogusBiter should strive to meet the following three

requirements.

• Massiveness: The number of bogus credentials fed into a phishing site should be

large so that the overwhelming majority of credentials received by a phisher are bogus.

• Indiscernibility: Without the credential verification at the legitimate website, it

is extremely difficult for a phisher to deterministically discern, either at credential

submission time or afterwards, who are real victims and what are real credentials.

• Usability: The usage of BogusBiter at the client-side should not incur undue over

head or unwanted side effects, nor should it produce any security or privacy concerns.

68

3.3.2.1 Massiveness

We use the real-to-all ratio-the ratio between the number of real credentials being col

lected and the total number of credentials being collected-to estimate how many bogus

credentials should be fed into a phishing site to hide victims' real credentials. In the sce

nario without BogusBiter, most or perhaps all credentials collected by a phisher are real

credentials submitted by victims, thus the real-to-all ratio is close to one. A phisher can

easily verify these credentials at the legitimate website, assess their values, and ultimately

use them to obtain money.

In the scenario of anti-phishing with BogusBiter (Figure 3.2), a phishing site receives

both real credentials and bogus credentials. Real credentials came from cheated users,

that is, users who visited the phishing site and meanwhile became victims by revealing

their credentials. The ratio between the number of cheated users and the total number of

phishing site visitors can be denoted as cheat-to-visit. This ratio is often used by researchers

to estimate the severity of phishing attacks. So if the total number of phishing site visitors

is N, the number of real credentials being collected at the phishing site becomes "N * cheat

to-visit." Meanwhile, because BogusBiter submits a set of S credentials in each phishing

site visit (either by a cheated user or by a security-conscious user as explained in the design

overview), the total number of credentials being collected at the phishing site becomes

"N * S." Therefore, in the scenario of anti-phishing with BogusBiter, the real-to-all ratio

can be computed as: cheat-~o-visit.

If all the phishing site visitors become victims, the cheat-to-visit ratio equals one. There

fore, the upper bound of the real-to-all ratio is ~· However, the experiments conducted

69

by Jakobsson and Ratkiewicz [47] demonstrate that even with the effects of modern anti

phishing efforts, about 11 ± 3% of users will read a spoofed email, visit the phishing site, and

enter their login credentials. In addition, Garera et al. [35] found that on average, 8.24%

of users become victims after visiting phishing sites. If we use 10% as a realistic value for

the cheat-to-visit ratio, the real-to-all ratio becomes rds. Thus, if the value of the set size

Sis 10, a real credential will be hidden among 100 bogus credentials. Moreover, it is plau

sible to assume that the cheat-to-visit ratio will decrease in the long run due to technical

advances and educational efforts - a trend that favors BogusBiter. Assuming that the

indiscernibility requirement is achievable, we now analyze the probability and the expected

number of tries for a phisher to single out a certain number of real credentials by verifying

them at the legitimate website. Since each set of S credentials is submitted by BogusBiter

from a user's browser within a few milliseconds, a phisher can easily group the collected

credentials by sets and verify them. If a set of S credentials is submitted from a victim's

browser, the real credential will be singled out by a phisher with an expected number of

8t 1 tries. However, because a phisher cannot discern which set includes a real credential,

the phisher has to verify all sets of the collected credentials in order to single out as many

real credentials as possible. Considering the very low cheat-to-visit ratio, without loss of

generality, we simplify our analysis by mixing together all sets of the collected credentials.

Let n be the total number of credentials collected at a phishing site, and m be the number

of real credentials revealed by victims. Let Xk be the discrete random variable representing

the number of tries performed by the phisher to single out k real credentials. Let Pr(Xk = i)

be the probability of "Xk = i" and E[Xk] be the expectation of Xk. Intuitively, Pr(Xk = i)

is the probability that a phisher identifies the kth real credential until the ith try. That is,

70

in the first i - 1 tries, the phisher has identified k - 1 real credentials; meanwhile, at the

ith try, the phisher also identifies a real credential. Therefore, based on the definition of

the binomial coefficient, we can calculate Pr(Xk = i) and E[Xk] using Formula (3.1) and

Formula (3.2), respectively, where L.~;;;+k Pr(Xk = i) = 1 and k = 1, 2, ... , m.

(~__=-km)(k-1) m- (k- 1)
(i'_1) . n-(i-1)

(3.1)

n-m+k

L i · Pr(Xk = i) (3.2)
i=k

n-m+k (n-m)(m) () L i . i-k k-1 . m - k - 1
i=k (f-1) n- (i- 1)

With the cheat-to-visit ratio set to 10%, Figure 3.3(a) illustrates the expected number

of tries for a phisher to single out one real credential, that is, E[X1]. The four curves

correspond to four different values of set size S. For example, if there are 6 real credentials

hidden among all the collected credentials, to single out one real credential, the expected

number of tries are 69 and 103, for set sizes 8 and 12, respectively. Figure 3.3(b) illustrates

the expected number of tries for a phisher to single out all real credentials. Similarly,

if there are 6 real credentials hidden among all the collected credentials, to single out

these 6 real credentials, the expected number of tries are 412 and 618, for set sizes 8 and

12, respectively. From this example, we can see that a set size of 8 can already allow

BogusBiter to feed a relatively large number of bogus credentials into a phishing site and

well hide victims' real credentials among bogus credentials. However, we should note that

such a hiding effect will never be enough to frustrate greedy phishers who intend to verify

all the collected credentials. Therefore, a defensive line enabled by BogusBiter is highly

160 -M-S=12
__._S .. 16 ~

~;;;:-~
60

,liY~::r~r;:::o-··-4.::r·· {) .-{)-··f.)-···~·:r·-0·. ··E.r-+) ···-t""\.· ·0-·· 1)---.f)· ·-·0 . ·;,

7'
40 tf

20~a
a 8 a a a a a a a e a 8 8 a c

~~~--~--~~.--~!O~~~~Z--~14--~16~~1~8--=~~ 
Number of Real Credentials 

(a) 

71 

2500 

2000 

1500 

1000 

500 

~~~~~~~-.~~10--~1Z~~1~4--~16--~18--~~~ 
Number of Real Credentials

(b)

Figure 3.3: Expected number of tries for a phisher to single out: (a) one real credential, (b) all
real credentials.

desirable (see Section 3.3.3).

3.3.2.2 Indiscernibility

The indiscernibility requirement is essential for BogusBiter to work. It has two implications:

(1) the submission actions initiated from victims' browsers should be very difficult to be

differentiated from the submission actions initiated from security-conscious users' browsers,

and (2) victims' real credentials should be very difficult to be differentiated from bogus

credentials generated by BogusBiter.

For a victim who ignores a browser's phishing warning, BogusBiter first intercepts the

credential submission HTTP request before it is sent out. Next, BogusBiter creates S- 1

bogus credentials based on the victim's real credential and spawns S -1 new HTTP requests

based on the original HTTP request. Each of the S- 1 spawned requests is exactly the

same as the original request, except for carrying a bogus credential instead of a real one.

Then, BogusBiter inserts the original HTTP request into the S - 1 spawned requests and

72

sends out all the S requests within a few milliseconds. Finally, BogusBiter interprets and

properly processes the returned HTTP responses so that a phishing site cannot identify the

differences between the S submissions.

For a security-conscious user who accepts a browser's phishing warning, BogusBiter

first imitates a victim's behavior by entering a generated bogus credential into the phishing

page and submitting it. Next, similar to the above case for a real victim, BogusBiter

intercepts this original HTTP request, spawns S- 1 new HTTP requests, and generates the

corresponding S - 1 bogus credentials as well. Finally, BogusBiter sends out the S requests

and processes the returned responses in the same way as it does for a victim, thereby making

it hard for a phisher to distinguish these submissions from those initiated from a victim's

browser.

As for bogus credential generation, BogusBiter uses the original credential as the tem

plate to generate the S - 1 bogus credentials. For a victim, the original credential is the

victim's real credential and thus is ready to use. For a security-conscious user, the auto

matically generated original credential should be similar to a human's real credential. In

current design, BogusBiter randomly generates a usernamefpassword pair as the original

credential. For the remaining S - 1 bogus credentials, a specific rule should be followed

to generate them so that neither a human nor a computer can easily discern which is the

original credential and which are the rest. We will present the rule used by BogusBiter in

Section 3.3.3.

73

3.3.2.3 Usability

In terms of usability, the major advantage of BogusBiter is its transparency to users. Com

plementary to existing preventive anti-phishing approaches, BogusBiter automatically de

fends against phishing attacks without user involvement. Meanwhile, because BogusBiter

only needs to submit some extra bogus credentials to a suspected phishing site and does

not contact any third-party service, it will not cause any security or privacy problems.

The main usability concerns come from the scenario of a false positive (i.e., a legitimate

website is wrongly classified as a phishing site). While the occurrence of false positives is rare

for Firefox 2, IE 7, and recent detection techniques as mentioned in Section 3.2, BogusBiter

should eliminate or reduce the possible side effects on users' access to misclassified legitimate

websites.

The first side effect is that submitting a set of S login requests and waiting for responses

will induce an additional delay to users. To reduce the delay, BogusBiter sends out all the

S requests within a few milliseconds, so that the round-trip times of the S submissions

can be overlapped as much as possible. Accordingly, as long as the set size S is not too

large, the additional delay incurred by BogusBiter should be minimal and unobtrusive. Our

experimental results in Section 3.5 confirm that the additional delays are negligible.

The second side effect is that a user's real account may be locked because multiple

login requests are submitted from the user's browser to a legitimate website within a few

milliseconds. To defend against password guessing attacks, some websites may lock a user's

account for a period of time after several failed login attempts. However, because all the

usernames are different for the S login requests sent out by BogusBiter, the "account with

74

many failed login attempts" alarm will not be triggered as discussed in [85]. Our experiments

on 20 legitimate websites confirm that account locking is not a concern for BogusBiter.

The third side effect is that a user may be asked to complete a CAPTCHA [3] test, for

the same reason that multiple login requests are submitted from the user's browser within a

few milliseconds. Some websites may resort to this mechanism to counter password guessing

attacks or denial of service attacks. However, in our legitimate site experiments where false

positives are assumed to occur, no CAPTCHA test is triggered if the set size S is not greater

than 10, and only two of the 20 websites ask a user to do a CAPTCHA test if the set size

Sis greater than 10.

3.3.3 Defensive Line

Simply requiring BogusBiter to meet the offensive objective is not sufficient. This is because

even if victims' real credentials are well hidden among bogus credentials, a phisher can still

visit the legitimate website to verify each of the collected credentials. Therefore, a defensive

line is highly desirable, and BogusBiter should enable a legitimate website to exploit the

verification process initiated (either manually or automatically) by the phisher to detect

victims' stolen credentials in a timely manner.

3.3.3.1 Working Mechanism

BogusBiter makes such a defensive line feasible by imposing a correlation requirement

upon the generation of the S - 1 bogus credentials. It is important that this correlation

requirement should not violate the indiscernibility requirement of credential generation,

that is, victims' real credentials should be very difficult to be differentiated from bogus

75

credentials generated by BogusBiter.

• Correlation Requirement: Based on the original credential, a specific rule is ap

plied to generate the S - 1 bogus credentials. This rule must guarantee that the S

credentials in a set are correlated: given any one of them, we can reversely derive a

small superset that includes all the S credentials.

BogusBiter attempts to meet both the correlation and indiscernibility requirements on

credential generation by using a simple substitution rule. While there are other ways to

meet the two requirements, we choose the substitution rule because of its simplicity and

efficiency for verification. Due to our empirical experience that if the set size S is not greater

than 10, no usability problem occurs and the delay overhead is small (see Section 3.5), the

substitution rule is tailored to have S < 10. Note that the exact value of S should be

publicly known.

To generate the S- 1 bogus usernamejpassword pairs, BogusBiter first computes an

integer position i between 1 and S inclusively. This integer position determines which

set of S - 1 bogus credentials will be generated, and it also determines in which order

the S credentials will be sent out to a phishing site. BogusBiter uses Formula (3.3) to

deterministically compute this integer position i:

PRF(k, original_username) mod S + 1, (3.3)

76

where k is a master secret that is randomly chosen when a BogusBiter is installed or

configured, and P RF is a secure pseudorandom function. The master secret k is securely

stored and used by BogusBiter. A user does not need to memorize the master secret, but

is allowed to export and use the same master secret on different computers. From a given

original credential, the same S - 1 bogus credentials will always be generated, and the S

credentials will always be submitted to a phishing site in the same order. Therefore, even

if a phisher can attack a victim multiple times, the phisher cannot find the real credential

by observing which credential over time appears most often. Meanwhile, since this formula

only securely hashes the original username, it is applicable both to websites that ask a user

to submit username/password pair at the same time, and to websites that require a user to

first submit a username and then submit a password.

Next, BogusBiter identifies the first digit in the original username as the username

replacement character, denoted as username-rc; if the original username does not contain a

digit, the first letter (upper or lower case) is identified as the username-rc. Using the same

method, BogusBiter identifies the password replacement character in the original password,

denoted as password-rc.

Then, for each integer position j from 1 to S inclusively where j =1- i, BogusBiter

generates a bogus usernamejpassword pair by substituting both the username-rc character

and the password-rc character in the original usernamejpassword pair using one of the

following two replacement methods:

(1) For the case of j - i > 0: if username-rc (also for password-rc) is a letter, this

lower (or upper) case letter is replaced by another lower (or upper) case letter j- i

places further down the alphabet, wrapped around if needed, i.e., 'z' is followed by

77

'a' (or 'Z' is followed by 'A'); if username-rc (also for password-rc) is a digit, this

digit is replaced by another digit j - i places further down the single digit sequence

"0123456789", wrapped around if needed, i.e., '9' is followed by '0'.

(2) For the case of j - i < 0: if username-rc (also for password-rc) is a letter, this lower

(or upper) case letter is replaced by another lower (or upper) case letter i- j places

further up the alphabet, wrapped around if needed, i.e., 'a' is followed by 'z' (or 'A' is

followed by 'Z'); if username-rc (also for password-rc) is a digit, this digit is replaced by

another digit i- j places further up the single digit sequence "0123456789", wrapped

around if needed, i.e., '0' is followed by '9'.

Position Username/Password
j=l (kcsmith/Fuzzycat95)
j=2 (lcsmith/Fuzzycat05)

--->i=3 (mcsmith/Fuzzycat 15)
j=4 (ncsmith/Fuzzycat25)

Table 3.1: Substitution from the original user
name/password pair (mcsmith/ Fuzzycatl5).

Username/Password
(icsmith/Fuzzycat75)
(jcsmith/Fuzzycat85)
(kcsmith/Fuzzycat95)

-+ (lcsmith/Fuzzycat05)
(mcsmith/Fuzzycat15)

(ncsmith/Fuzzycat25)
(ocsmith/Fuzzycat35)

Table 3.2: Derivation from the user-
name/password pair (lcsmith/ Fuzzycat05).

Table 3.1 illustrates an example of applying the substitution rule to the original user-

name/password pair (mcsmith / Fuzzycat15). In this example, the username replacement

character username-rc is the first 'm' in the original username and the password replace-

ment character password-rc is the digit '1' in the original password. These two alphanumeric

characters will be replaced to generate S - 1 bogus credentials. If S = 4 and the computed

integer position i is 3, three bogus usernamejpassword pairs are generated for j=1, 2, and

4, respectively.

Algorithm: SCI (f-uname/f-pword)
1. Initialize the result set as empty : R = 0;
2. Construct the set: D = {(d-uname/d-pword): (d-uname/d-pword)

is a credential derived from (f-uname,f-pword) };
3. for each (d-uname/d-pword) E D do
4. if d-uname matches a valid account's username then
5. if d-pword matches the valid account's password then
6. R=R U {(d-uname/d-pword)};
7. endif
8. endif
9. endfor
10. return the result set R;

Figure 3.4: The Stolen Credential Identification (SCI) procedure.

78

Finally, BogusBiter submits the S usernamejpassword pairs to a suspected phishing site

following their corresponding position order. Using Formula (3.3) to compute the integer

position i and using their position order to send out the S credentials, BogusBiter makes

it hard for a phisher to narrow down a victim's real credential even if the victim visits a

phishing site twice from the same browser and enters the real credential twice. However,

we should note that the overall extent to which the indiscernibility requirement can be met

still depends on the characteristics (such as meaningfulness) of a victim's real credential.

We further discuss this limitation in Section 3.6.3.1.

Clearly the substitution rule above meets the correlation requirement. Given any one of

the S credentials, we can derive at most 2 * (S- 1) variations based on the substitution rule,

in which further down replacement produces S- 1 variations and further up replacement

produces otherS -1 variations. These 2 * (S- 1) + 1 credentials cover all the S credentials

submitted to the phishing site. Table 3.2 lists an example derivation from the credential

(lcsmith / Fuzzycat05).

79

Now let us see how a legitimate website can take advantage of the correlation requirement

to identify the credentials stolen by phishing attacks. If a phisher is lucky enough (with ~

probability) to choose a victim's real credential as the first try to verify at the legitimate

website, this login attempt will succeed and the legitimate website cannot detect the fact

that a real credential has been stolen and verified. However, for any failed login attempt, the

legitimate website will trigger the procedure of Stolen Credential Identification (SCI), which

is illustrated in Figure 3.4. SCI takes the failed username/password pair (f-uname/f-pword)

as its input. It constructs the set D of derived credentials (line 2), and seeks a match

between a derived username/password pair and a valid account's username/password pair.

Then, it adds any derived username/password pair (d-uname/d-pword) that matches a valid

account's usernamejpassword pair to the result set R (line 6). SCI finally returns the result

set R as its output.

If the failure of a login attempt is caused by a phisher who is verifying any one of the S -1

bogus credentials generated from a victim's real credential, SCI must report a match since

the derived credential set D contains the victim's real credential. The matched credential

is the victim's real credential that has been revealed to the phisher, and is included in

the result set R. However, if the failure of a login attempt is due to any other reasons,

even if there is a chance that a derived username d-uname may match a valid account's

username (line 4), the probability that the correspondingly derived password d-pword also

happens to match this valid account's password (line 5) is extremely low. This probability

is equivalent to that of randomly guessing a valid account's password. As an example, if a

user accidentally mistypes the user's real password (or an attacker launches online password

guessing attacks against a user), the login attempts will fail but SCI will not report a match.

80

Therefore, if the result set R is not empty, the usernamejpassword pair (the probability

of having two or more credential pairs in the result set R is also extremely low) contained in

R must have been stolen by a phisher. The legitimate website can take immediate actions to

protect the victim even before the phisher figures out the victim's real credential. Because

SCI is turned on only when a login attempt fails and it only needs a small number of

verifications (at most 2 * (S- 1) for our substitution rule), the overhead is very small for a

legitimate website. If necessary, this identification task can even be delegated to a separate

machine.

3.3.3.2 Deployment of Defensive Line

While BogusBiter is installed in a user's Web browser, the defensive line enabled by Bo

gusBiter needs to be deployed only on those legitimate websites that are really targeted by

phishers. These phishing-targeted legitimate websites listed in the APWG database [138]

usually have properly registered domain names and well-designed webpages, and may even

be whitelisted by some phishing detection tools. None of their login pages will be mis

classified as phishing pages by popular detection tools. The rare false positives [131, 151]

produced by phishing detection tools are mainly caused by some legitimate websites that

are almost never targeted by phishing attacks. We do not need to deploy the defensive line

of BogusBiter on them.

Moreover, the deployment work on phishing-targeted legitimate websites is very simple

because SCI only uses these websites' existing authentication information and does not

change their authentication mechanisms (no matter plaintext-equivalent mechanisms or

verifier-based mechanisms). This server-side deployment cost is minimal compared to that

81

of Dynamic Security Skins [19], which changes authentication mechanisms via the SRP

protocol [116], and to that of BeamAuth [1], which demands an extra secret token for every

user account.

3.3.3.3 Scale-Independency Properties

The defensive line enabled by BogusBiter also has two valuable scale-independency prop

erties. First, the efficacy of the defensive line does not depend on the cheat-to-visit ratio,

that is, it does not require a large percentage of users to properly respond to anti-phishing

warnings. Second, the efficacy does not depend upon a massive installation of BogusBiter in

users' browsers, i.e., even a single vulnerable user who installs BogusBiter can benefit from

a deployed defensive line. These two scale-independency properties are not only valuable

by themselves, they also ensure that BogusBiter cannot be easily evaded by sophisticated

phishers, as will be discussed in Section 3.6.

3.4 Implementation

We have implemented BogusBiter as a Firefox extension in approximately 1700 lines of

JavaScript code and 100 lines of C++ code. Seamlessly integrated with the built-in phishing

protection feature of Firefox 2 [148], BogusBiter consists of four main modules: Information

Extraction, Bogus Credential Generation, Request Submission, and Response Process, as

illustrated in Figure 5.2. We detail these four modules in the remainder of this section.

82

Web Browser

BogusBiter Extension
Credential
Generation ... (Bogus Credential Generation Module)
Extensions () Information Extraction Module

Phishing (Request Submission Module)
Detection

Extensions (Response Process Module)
1 •. t l

,---~l---~-------------------------------, I --------, I
1

1 Ph' h' I I
1 1 ts mg 1 General Web Browser 1

I D t . I I
: 1 e ectJOn 1 Components 1
1 : Component 1 1

'-~~~~~~~~~------------------------------)

Figure 3.5: Implementation of BogusBiter as a Firefox 2 browser extension.

3.4.1 Information Extraction Module

The information extraction module extracts the username and password pair and its cor-

responding form element on a login page by analyzing Document Object Model (DOM)

objects. First, all the HTMLinputElement objects within the HTMLDocument object of

the login page are collected. Next, the password object is located by examining its special

attribute type= "password." A similar password locating method is also used in [31, 91].

Then, the HTMLFormElement object-the submission form object-associated with the

password object is directly extracted. Finally, based on object attributes, the username ob-

ject is extracted from other HTMLinputElement objects included in the submission form.

Following this element extraction order combined with the attribute analysis of the visible

input fields, BogusBiter can accurately identify username, password, and form elements on

a login page. Note that phishers may use non-standard login pages to disrupt this automatic

information extraction procedure and evade BogusBiter. We discuss some solutions to this

kind of evasions in Section 3.6.3.2.

83

The information extraction module also implements a protection mechanism to defend

against input-stealing attacks that use malicious J avaScript code on a phishing page to di

rectly steal a victim's credential. Existing works such as AntiPhish [56] and PwdHash [91]

provide good technical guidance for implementing such a protection mechanism. In Bo

gusBiter, we adopt the keystroke intercepting technique introduced in PwdHash and create

protectors on username and password elements. More precisely, username and password

keystrokes are intercepted by the registered event handlers and are masked to hide from the

JavaScript on a webpage. Therefore, a victim's real keystrokes are recorded by BogusBiter,

but are blocked from being received by various JavaScript attacks [91]. We choose the

keystroke intercepting technique because it is more generic than the temporary deactivating

technique used in AntiPhish's Firefox version.

3.4.2 Bogus Credential Generation Module

The bogus credential generation module generates S - 1 bogus credentials based on an

original credential. For a victim, the original credential is the victim's real credential. For a

security-conscious user, in our current implementation, this module will randomly generate

a username/password pair composed of upper/lower case letters and digits as the original

credential. Advanced original credential generation methods can also be incorporated into

BogusBiter, so that a randomly generated original credential will look more like a real user's

credential. The substitution rule of BogusBiter is implemented in JavaScript. The open

source HMAC_SHA256_MAC() JavaScript function implemented by Poettering [164] is used

as the secure pseudo-random function of Formula (3.3).

84

3.4.3 Request Submission Module

The request submission module is responsible for spawning and submitting multiple HTTP

requests. Its implementation is guided by both the indiscernibility and usability require

ments of BogusBiter. Since each HTTP request can only carry one credential, S requests

are needed to submit a set of S credentials to a phishing site. For a victim, once a credential

is entered and the submit button is clicked, the first HTTP request is initiated from the

current browser window. For a security-conscious user, the action of accepting a phishing

warning triggers BogusBiter to imitate a human's credential entering and button clicking

actions and initiate the first HTTP request from the current browser window.

Next, just before the first HTTP request is actually sent out, BogusBiter is notified by

Firefox's global notification service and intercepts this HTTP request. Then, BogusBiter

quickly spawns the other S -1 HTTP requests with each of them carrying a bogus credential.

The main challenge here lies in how to efficiently spawn S - 1 new HTTP requests and

schedule the submission of all the S requests. A few solutions are available, for example,

using multiple submission windows, or reusing the submission form on one browser window

to submit multiple times. However, they suffer from various usability drawbacks such as

multiple webpage refreshing and long interaction time.

BogusBiter, instead, creates and uses internal HTTP channels to submit requests behind

the screen. In order to make our extension code more portable, we choose to use XML

HttpRequest objects [192] to create internal HTTP channels. XMLHttpRequest objects are

supported by both Firefox 2 and IE 7, and they allow JavaScript to perform HTTP client

functionalities such as submitting form data or loading data from a server. The first HTTP

85

request is also associated with an HTTP channel, which is created by the browser. For this

first HTTP request, all its contents, such as message header and message body [27] can be

extracted from its HTTP channel. Then, S - 1 XMLHttpRequest objects are created and

their corresponding HTTP channels are established based on the contents extracted from

the first HTTP channel. More specifically, BogusBiter executes the following four steps:

request initialization, message body replacement, header fields setting, and header fields

reordering:

(1) Request Initialization: For each of the S- 1 XMLHttpRequests, the same request

type and URL as those in the first HTTP request are used. Asynchronous mode is

used so that request sending is nonblocked and all the corresponding HTTP responses

can be handled in a specified callback function. Since HTML forms, especially login

forms, are in general submitted using POST instead of GET type of HTTP requests

for security reasons, we only consider POST type of HTTP requests in the following

discussion. Indeed, it is much simpler to process the GET type of HTTP requests.

(2) Message Body Replacement: For each of the S- 1 XMLHttpRequests, BogusBiter

only needs to make a copy of the message body extracted from the first HTTP

request, and then replace the original usernamejpassword pair with a bogus user

name/password pair. Nothing else needs to be changed in the message body. Because

the bogus usernamejpassword pair and original usernamejpassword pair have the

same length, the message body length does not change. Meanwhile, since the first

HTTP request's message body is extracted before its HTTP channel is encrypted, this

message body replacement also works correctly for secured (HTTPS) connections.

86

(3) Header Fields Setting: For each of the S- 1 XMLHttpRequests, the "Content

Type" request header field is set as "applicationjx-www-form-urlencoded" to mimic

the case of submitting a form on a browser window. The "Content-Length" request

header field is set to the same value as that of the first HTTP request, because the

message body length is unchanged. The "Referer" request header field also needs to

be set as the same value as that of the first HTTP request. The "Cookie" request

header field is automatically set by the Firefox Web browser because the same URL

has been specified. For each of the S - 1 XMLHttpRequests, BogusBiter also makes

sure that "no-cache" is assigned to both the "Pragma" request header field and the

"Cache-Control" request header field so that the form submissions will not be cached,

and the "close" is assigned to the "Connection" request header field so that its TCP

connection will not be persisted and shared with any other requests. The first HTTP

request also needs to be adjusted to have the same values for these three request

header fields.

(4) Header Fields Reordering: For each of the S- 1 XMLHttpRequests, the request

header fields must be reordered so that the same order used in the first HTTP request

will be used. Since the order of request header fields is not significant as defined

in [27], this reordering will not cause any problem. In our implementation, only the

order of "Content-Type," "Content-Length," "Pragma," "Cache-Control," "Cookie,"

and "Referer" is adjusted by BogusBiter, due to some subtle implementation dif

ferences between an XMLHttpRequest and a regular HTTP request in Firefox. To

support this reordering, we actually introduced a new function switchHeaderField-

87

sPosition(headerFieldA, headerFieldB) to Firefox's nsiXMLHttpRequest interface and

nsiHttpChannel interface and implemented this new function in C++. This new

function may also be useful for other applications that use XMLHttpRequest objects.

After the completion of these four steps, the S -1 XMLHttpRequests and the first HTTP

request all have the same request type, URL, header fields, and header field order. Their

message bodies are all the same except for carrying different username/password pairs.

As previously described in BogusBiter's substitution rule, the submission order of these S

requests is decided when the S- 1 bogus credentials are generated. If the ith position (I :::;

i :::; S) is computed for the original credential, BogusBiter first asynchronously transmits

i - 1 XMLHttpRequests, which carry the first i - 1 bogus credentials. Then, BogusBiter

transmits the first initiated HTTP r~quest, which carries the original credential. Finally,

BogusBiter asynchronously transmits the remaining S - i XMLHttpRequests, which carry

the last S - i bogus credentials. All the S requests are sent out within a few milliseconds,

and no timing clue can be observed on a Web server or proxy.

3.4.4 Response Process Module

After receiving and interpreting an HTTP request, a website replies with an HTTP response

message. For a legitimate website, if the credential carried in a request is valid, a successful

login page is returned in the response message; otherwise, a failed login page is returned

in the response message. Phishing sites may take different response actions after receiv

ing credential submission requests (see Section 3.5.2). In every case, BogusBiter parses

and renders the response message of the first HTTP request on the browser window, and

processes the response messages of the S - 1 XMLHttpRequests behind the screen using

88

a callback function. Therefore, BogusBiter can always correctly match responses to their

corresponding requests and work transparently to users.

Many times there are Web objects such as JavaScript and embedded images associated

with each response message. These objects will be downloaded by the Web browser if the

response message corresponds to an HTTP request initiated from the browser window, but

by default will not be downloaded if the response message corresponds to an XMLHttpRe

quest. Future phishers may want to discern which are XMLHttpRequests by exploiting this

fact and manipulating response contents. For example, a phisher may return a different

HTML page to each submission, which includes a slightly different named image. Later

on, by examining whether an image has ever been downloaded from the phishing site, the

phisher can identify bogus credentials submitted by XMLHttpRequests.

To defend against such rendering-based attacks, BogusBiter utilizes a set of hidden DOM

windows to render these asynchronously returned response pages for XMLHttpRequests,

thus leaving no clue to phishers. Because the same Web objects cached by a browser

will be directly used by different DOM windows, bandwidth-overhead incurred by this

mechanism is negligible, especially for legitimate websites. For a phishing site that returns

a different HTML page for each of BogusBiter's S submissions, the possible long delay due

to downloading different Web objects will only annoy a victim and encourage the victim to

leave the phishing site-a result that actually favors victims' interests.

89

3.5 Evaluation

We conducted three sets of experiments to evaluate BogusBiter. In the first set of ex

periments, we built a testbed to verify the implementation correctness of BogusBiter with

respect to indiscernibility. In the second and third sets of experiments, we ran BogusBiter

against' 50 phishing sites and 20 legitimate websites to validate its efficacy, in terms of

attacking capability and usability.

3.5.1 Testbed Experiments

In the testbed experiments, we set up an Apache 2 Web server in a Linux machine and

hosted over twenty various phishing webpages on it. We used BogusBiter to send various

login requests to these phishing webpages either directly or through proxies. By examining

both request logs and request contents at the Web server, we verified that all the S requests

in a set are exactly the same, except for the credentials carried in the request bodies. In

addition, we placed an open-source tool, Tcpmon [185], in between the Web browser and

Web server to monitor TCP connections. We verified that the S submission requests are

transmitted over S independent non-persistent TCP connections; therefore, it is hard for a

phisher to differentiate these requests at the TCP connection level.

3.5.2 Phishing Site Experiments

In the phishing site experiments, we ran BogusBiter against 50 verified phishing sites chosen

from PhishTank [176]. PhishTank is a community based anti-phishing service and its data

have been widely used for evaluating phishing detection techniques [68, 131, 132, 146]. These

50 chosen phishing sites are diverse in terms of their locations, design styles, and targeted

90

brand names. For each phishing site, when it was online, we tested BogusBiter with four

different set sizes of 4, 8, 12, and 16. Our major experiential findings are summarized as

follows.

First, BogusBiter is capable of attacking all the 50 phishing sites. Acting as either a

victim or a security-conscious user, BogusBiter always works correctly: it sends out all the

S requests within 10 milliseconds, and then processes all the responses properly. In rare

cases that phishing sites were not correctly detected by Firefox 2, we manually corrected

the detection results to trigger BogusBiter.

Second, the delay caused by BogusBiter is minimal when the set size S is 4 or 8. Here

the delay means the submission interaction time difference between using BogusBiter and

not using BogusBiter. The submission interaction time is the time elapsed between the

transmission of the first request and the reception of the last response. Figure 3.6(a) depicts

the percentage of phishing sites versus the delay caused by BogusBiter under four different

set sizes. We can see that if the set size S is 4 or 8, for over 85% of phishing sites, the delay

is less than 4 seconds. This delay measure is common to either a security-conscious user

or a victim, but the delay effect is different. A security-conscious user is unaware of such

a delay because the user is actually redirected to a default webpage by Firefox. A victim

may perceive this delay because the victim is waiting for the response from the phishing

site. Nevertheless, it is definitely worthwhile adding a small delay on revealing a victim's

credential, in order to make it less likely for phishers to succeed.

Third, phishing sites take three different response actions after receiving a user's cre

dential submission request. Among 50 phishing sites, 38 of them simply redirect a user to

the invalid login pages of the targeted legitimate websites; 11 of them keep a user at their

91

0.9

0.

10 15 20 • Delay (seconds) Delay (seconds)

(a) (b)

Figure 3.6: Delay caused by BogusBiter on: (a) phishing sites, (b) legitimate sites, under different
set sizeS.

local sites by using more faked webpages; and the last phishing site is very tricky because it

verifies the received credential in real time at the legitimate website and then sends back a

response based on the verification result. If a user submits a valid credential, the phishing

site steals the credential and then redirects the user to the legitimate website; otherwise,

it lets the user re-login on the phishing site. All three types of response actions attempt

to continue deceiving a victim and prevent the victim from realizing that an attack has

happened. But the third type of response action not only obtains and verifies a credential

in real time, it is also more deceptive to vulnerable users. The defensive line of BogusBiter

indeed provides an excellent opportunity for a legitimate website to defend against such

attacks in real time.

3.5.3 Legitimate Site Experiments

In the legitimate site experiments, we ran BogusBiter against 20 legitimate websites listed

in Table 3.3. None of these websites is classified as a phishing site by either Firefox 2 or

92

paypal.com amazon.com gmail.com cox.com myspace.com
ebay.com buy. com yahoo.com sprint. com walmart.com
citibank.com ecost.com msn.com geico.com career builder. com
53.com ubid.com aol.com aaa.com my.wm.edu

Table 3.3: The 20 legitimate websites.

IE 7. We intentionally set the detection results as phishing to simulate false positive cases,

and used real accounts on these legitimate websites to evaluate the usability of BogusBiter.

We summarize the major experimental results as follows.

First, as we expected, none of these legitimate websites lock a real account during our

extensive tests. Second, if the set size S is 4 or 8, none of these legitimate websites require

CAPTCHA tests. If the set size S is 12 or 16, only two websites ask a user to do a

CAPTCHA test after receiving S credentials. This test is a burden to a user but will not

block a user's further interactions with a Web server. Third, the delay caused by BogusBiter

is very small when the set size S is 4 or 8. Figure 3.6(b) depicts the percentage of legitimate

sites versus the delay caused by BogusBiter under four different set sizes. We can see that

if the set size S is 4 or 8, for all the 20 legitimate sites the delay is less than 3 seconds, and

for over 85% of legitimate sites the delay is less than one second. Therefore, BogusBiter

only induces a very small delay to users even if false positives really occur. The delay on

legitimate websites is much smaller than that on phishing sites, since the request processing

capability of legitimate websites is generally higher than that of phishing sites.

3.6 Discussions

In this section, we discuss the deployment scale of BogusBiter, the preparations that may

be needed for BogusBiter's massive deployment, and the limitations of BogusBiter.

93

3.6.1 Deployment Scale

As discussed in Section 3.3.3.2, the defensive line (the SCI procedure) enabled by BogusBiter

needs to be deployed only on those legitimate websites that are really targeted by phishers.

So, here we only discuss the deployment of the BogusBiter browser extension. Like most

client-side protection mechanisms, BogusBiter protects only those users who install it. On

one hand, due to its scale-independency properties, the defensive line enabled by BogusBiter

can effectively identify the stolen credentials whose owners use BogusBiter, no matter how

many users install BogusBiter and what percentage of them are real victims. On the

other hand, the power of BogusBiter's offensive line against a phishing site is scaled to the

number of users who install BogusBiter. With the increase of BogusBiter users, victims'

real credentials can be better hidden among bogus credentials. Therefore, in order to

protect as many users as possible, BogusBiter should be deployed as widely as possible.

Ideally, if BogusBiter could be integrated into popular Web browsers as a built-in feature, a

ubiquitous deployment will be easily achieved and the benefits brought by BogusBiter will

be maximized.

3.6.2 Massive Deployment Preparation

When BogusBiter is integrated into popular Web browsers, it can be triggered with high

confidence for blacklisted phishing login pages; it can also be triggered for suspicious (but

not blacklisted) phishing login pages hosted on less popular websites. The main concern

about such a massive deployment of BogusBiter is that if the login page of a legitimate

site is wrongly flagged as a phishing page, the load on the site's authentication servers

will increase by a factor of S due to BogusBiter. However, the false positives produced by

94

widely deployed phishing detection mechanisms such as used in IE 7 and Firefox 2 are rare,

especially for popular websites that have a large number of users. This is because otherwise

the false positives would have been noticed and corrected by these websites to prevent losing

users. As reported in [131], both IE 7 and Firefox 2 achieve a zero false positive rate for 516

representative legitimate websites. Thus, we expect that only few less popular and poorly

designed legitimate websites need to prepare for a massive deployment of BogusBiter.

We suggest two simple solutions for these websites to prepare. Let us assume that

BogusBiter's functionality is integrated into a new version of IE or Firefox Web browser.

Using the browser, the operator of a legitimate website can easily verify whether the site's

login page will be incorrectly classified as a phishing page. If a misclassification does occur,

two simple solutions exist. One solution is to report this misclassification and request the

Web browser vendor to either remove this legitimate site from the blacklist or add it to the

whitelist. The other solution is to revise the login page of this site, for example by removing

suspicious features, so that the page can pass heuristic-based tests [17, 35, 68, 132]. We

suggest these preparations not merely for the need of BogusBiter's massive deployment.

Indeed, legitimate websites may lose customers if they do not take active measures to

reduce their chances of being misclassified.

3.6.3 Limitations of BogusBiter

Should BogusBiter become widely deployed, phishers may explore its limitations to circum

vent it. In general, the potential evasions can be divided into offline evasions and online

evasions.

95

3.6.3.1 Offline Evasions

In offiine evasions, phishers analyze their collected credentials by using local username

filtering techniques, meaningful credential filtering techniques, or statistical filtering tech

niques.

(1) Local usemame filtering: In BogusBiter's design, we assume that a phisher does not

have a complete list of valid usernames for a targeted legitimate website, and cannot directly

query a targeted legitimate website for the validity of a specific username. Otherwise, a

phisher can simply conduct local username filtering without doing remote credential verifi

cation. Currently, this assumption may not be valid for some websites. For example, Bank

of America's website can tell a user whether a login is valid before a password is entered. For

these websites, we recommend them to hide their username validity information by using

some protection methods such as suggested in [12] and [32], thus not just to receive better

protection from BogusBiter, but also to provide a necessary defense against privacy leaking,

invasive advertising and phishing, password guessing, and even DoS attacks [12, 32].

(2) Meaningful credential filtering: Using current substitution rule, BogusBiter may

generate meaningless bogus credentials from users' meaningful credentials (e.g., credentials

containing dictionary words or human names), especially if an original username or original

password does not contain a digit. Thus, a phisher may only select meaningful credentials

to verify, while discarding the rest. Although this kind of meaningful credential filtering

is error-prone because a victim's real credential may be indeed meaningless and thus may

be directly thrown away by a phisher, it can still be used by phishers to evade BogusBiter.

Perhaps this is less of a concern for passwords, because the insecurity of low-entropy and

96

guessable passwords has long been recognized [40, 59, 75, 78], and more and more high

security websites require users to choose passwords that contain at least one letter and one

number.

(3) Statistical filtering: A phisher may also analyze the variations of credentials and use

statistical language models such as bigrams or trigrams to identify victims' real credentials.

However, we argue that this type of statistical filtering is also error-prone for the same rea

sons as already mentioned in the meaningful credential filtering. Unfortunately, we cannot

obtain representative credential datasets to further analyze and support this argument. In

addition, we need to emphasize that other new rules (in addition to our substitution rule)

could also be designed to generate bogus credentials from an original credential. Especially,

if those new rules take into account the statistical characteristics of credentials in repre

sentative datasets, they could better hide victims' real credentials among generated bogus

credentials. It is worthy to design and apply such kinds of new rules, even if they may incur

the cost of increasing the derivable credentials (see Table 3.2).

3.6.3.2 Online Evasions

Unlike offline evasions, in online evasions, phishers have to redesign their phishing sites

and use special techniques to identify, in real time, which are real credentials submitted by

victims. However, some inherent drawbacks limit the application and effectiveness of online

evasion techniques. We now examine three representative classes of potential online evasion

techniques.

(1) JavaScript attacks: A phisher may use two basic forms of JavaScript attacks to evade

BogusBiter. One is an input-stealing attack that steals a user's credential using techniques

97

such as keystroke monitoring, and then sends back the results to the phishing site at form

submission time or in real time. The other is a rendering-based attack that manipulates

response contents to discern which are bogus credentials submitted by XMLHttpRequests.

As discussed in Section 3.4.1 and Section 3.4.4, BogusBiter defends against these two basic

forms of JavaScript attacks by using the keystroke intercepting technique and the hidden

DOM windows technique, respectively.

More sophisticated JavaScript attacks can be launched by phishers. For example, a

phisher can first have the phishing site code pause for a second or two to wait for BogusBiter

submitting all the S credentials. The phisher can then present all of the S credentials back

to a user, along with lines of a message "To improve our security process and defend your

account against automated attacks, please select your usernamefpassword from this list of

credentials." If a user is fooled by such an attack, the phisher obtains the user's credential.

However, such attacks contain obvious hallmarks to distinguish themselves as malicious

attacks that are specially fabricated to evade BogusBiter. Therefore, filtering functionalities

can be added to BogusBiter to confidently detect and disable malicious JavaScript code.

Note that detecting and filtering of malicious HTML content and JavaScript code is both

desirable and feasible, and generic solutions can be found in recent research work such as

SpyProxy [80] and BrowserShield [88].

{2} Nonstandard login page: A phisher may use nonstandard login pages to evade Bo

gusBiter. A phisher may use a login form without the type= "password" HTML attribute,

may write the entire phishing page in Flash, and may even display a virtual keyboard to

users. For legitimate websites, using nonstandard login pages is not popular because it may

cause some problems. For example, non-HTML login forms may create accessibility and

98

usability problems [112], and virtual keyboards are inconvenient to users and increase the

risk of shoulder surfing attacks [152, 144]. Meanwhile, for phishing sites, using non-HTML

login forms is also not popular because it makes a phishing attack more evident to users

or phishing detection tools if its surface-level or deep-level characteristics become deviated

from that of the targeted legitimate website. For these reasons, standard HTML pages

remain the central focus of most anti-phishing research work [17, 56, 91, 115, 132].

Indeed, BogusBiter can borrow some solutions proposed by other researchers to defend

against these attacks. For example, one solution can be borrowed from Dynamic Security

Skins [19]. More specifically, a customized "trusted window in the browser dedicated to

username and password entry" [19] can also be used by BogusBiter. A user is required

to copy the entered username and password from the trusted window and paste them to

the user recognized username and password fields in a login form. Using this solution,

BogusBiter can intercept an original credential before filling a phishing login form. Since

BogusBiter only needs to use a user's paste actions to more accurately determine which are

username and password fields, it can just paste a replaced bogus credential into a phishing

login form and then do further replacements and submissions behind the screen. It is

important to note that for BogusBiter, such a "trusted window" only needs to be triggered

when a login page is classified as a phishing page and its username and password fields

cannot be confidently identified. Also in such a case, BogusBiter will not be transparent to

security-conscious users. After a security-conscious user clicks the "Get me out of here!"

link on the phishing warning page, the user will be provided with the option to either

really leave the site, or use the "trusted window" to help battle phishers by filling a bogus

credential and identifying the username and password fields. The power of BogusBiter's

99

offensive line may be reduced because some users may just choose to leave a phishing site,

but perhaps some security-conscious users are willing to intentionally do some volunteering

work to help strike back at the phishers.

(3} CAPTCHA testing attack: A phisher may use a CAPTCHA [3] test to evade Bogus

Biter. CAPTCHA tests are mainly used to prevent automated registrations, but are seldom

used in user authentication processes. As shown in our legitimate site experiments, none of

the legitimate sites asked a user to do a CAPTCHA test when the set size S is less than 10,

and we actually assumed that false positives happened on all those websites. Introducing

CAPTCHA testing attacks may decrease the number of phishing victims because the look

and feel of the phishing site becomes quite different from that of the targeted legitimate

website, and perhaps some users are unable or unwilling to solve CAPTCHAs [54, 158]. Ig

noring these disadvantages, a phisher may still want to invoke a CAPTCHA testing attack

at either a login page or a login response page.

These attacks may reduce the power of BogusBiter's offensive line, but will not affect

the defensive line enabled by BogusBiter. If a phisher invokes the CAPTCHA testing at

the login page, the S - 1 requests generated by BogusBiter contain the same CAPTCHA

answer as that of the original request; therefore, it is difficult for a phisher to tell which

credential is entered by a human. If a phisher invokes the CAPTCHA testing at each of

the S response pages, we recommend letting BogusBiter to make a replacement so that the

CAPTCHA image on the first received response page is used on all the response pages.

Therefore, it is still difficult for a phisher to identify the credential entered by a human.

If there are legitimate websites that suffer from false positives and meanwhile want to use

CAPTCHA testing on each of their response pages after seeing a small set of credential

100

submissions from BogusBiter, they can simply send back the same CAPTCHA image on

each of the S response pages thus will not be affected by this approach.

3. 7 Related Work

Basically the various client-side anti-phishing techniques can be classified into three different

approaches. The first approach focuses on building tools or toolbars to enhance the security

of a login process. Ye and Smith [118] designed a prototype of "Trusted Path" to convey

relevant trust signals from a Web browser to a human user. Dhamija and Tygar [19]

proposed "Dynamic Security Skins" to allow a legitimate website to prove its identity in

a way that is easy for a user to verify but hard for a phisher to spoof. Ross et al. [91]

designed PwdHash to transparently produce different passwords for different domains, so

that passwords stolen at a phishing site are not useful at a legitimate website. Wu et al. [115]

introduced "Web Wallet" to direct an alternative safe path to a user if the user's intended

website does not match the current website. Yee and Sitaker [119] developed Passpet

to combine the advantages of several previously devised techniques including petnames,

password strengthening, and UI customization. Adida [1] proposed BeamAuth to use a

secret token in a URL fragment identifier as a second factor for Web-based authentication.

These tools are very helpful, but users must be well trained to use them and must change

some of their login habits. Usability is critical to the success of anti-phishing tools [16].

The second approach focuses on improving the accuracy of automatic phishing detection

techniques. Chou et al. [17] built SpoofGuard to compute spoof indexes using heuristics

and to provide warnings for suspected phishing websites. Recent work by Zhang et al. [132]

101

and Garera et al. [35] demonstrate that heuristic-based techniques can correctly identify

over 90% of phishing pages with about 1% false positives. Fette et al. [26] demonstrated

that their machine-learning based techniques can correctly identify over 96% of phishing

emails while mis-classifying only 0.1% of legitimate emails. Many other automatic phishing

detection tools or toolbars have been developed, and both Firefox 2 and IE 7 have automatic

phishing detection as a built-in feature. The evaluation of popular automatic phishing

detection tools, toolbars, and Web browser features can be found in [68, 131, 146, 151].

Researchers have also sought to develop nonpreventive anti-phishing approaches. Flor€mcio

and Herley [30] proposed a password rescue scheme that relies on client-side reporting and

server-side aggregation to detect and protect stolen credentials. However, this scheme can

only statistically make a detection decision after several users become victims, and it also

raises privacy concerns by using an extra server to collect user activity information. Parno

et al. [84] proposed a Phoolproof anti-phishing mechanism. Although their mechanism elim

inates reliance on perfect user behavior, a trusted mobile device must be used to perform

mutual authentications. Birk et al. [11] introduced an "active phishing tracing" method,

which injects fingerprinted credentials into phishing sites to trace money laundering. Their

method can support forensic analyses and enforce judicial prosecutions, but it cannot di

rectly protect phishing victims. Anti-phishing companies such as Cyota (acquired by RSA

Security) [179] and Markmonitor [167] have also experimented with injecting special cre

dentials into a phishing site. However, these solutions are less effective than BogusBiter

because they neither take the browser integration approach nor enable legitimate websites

to detect victims' stolen credentials.

Finally, there is a related work in "spamming the spammers," and IBM actually offered

102

a service to bounce unwanted email back to the computers that sent them [156]. The

objective of a spammer is to send junk emails, and IBM's approach intends to offend

spammers by consuming their resources. In contrast, the objective of a phisher is to collect

real credentials, and our approach intends to make it less likely for phishers to succeed by

building both an offensive line and a defensive line.

3.8 Summary

We introduced BogusBiter, a new client-side anti-phishing tool to automatically protect

vulnerable users by injecting a relatively large number of bogus credentials into phishing

sites. These bogus credentials hide victims' real credentials, and force phishers to verify their

collected credentials at legitimate websites. The credential verification actions initiated by

phishers, in turn, create opportunities for legitimate websites to detect stolen credentials in

a timely manner. BogusBiter is transparent to users and can be seamlessly integrated with

current phishing detection and warning mechanisms on Web browsers. We implemented

BogusBiter as a Firefox 2 extension and evaluated its effectiveness and usability.

Phishing is a serious security problem today, and phishers are smart, economically moti

vated, and adaptable. We must therefore actively pursue different approaches and promote

the cooperation of different solutions. The effectiveness of BogusBiter depends on many

factors, as we discussed in Section 3.6. But we believe its unique approach will make a

useful contribution to the anti-phishing research.

Chapter 4

Characterizing Insecure JavaScript

Practices on the Web

In this chapter, we present our work on characterizing insecure JavaScript practices.

Insecure JavaScript practices may not necessarily result in direct security breaches, but

they could definitely cultivate the creation of new attack vectors and greatly increase the

risks of browser-based attacks. We present an execution-based measurement approach and

the first large-scale measurement study of the insecure JavaScript practices on the Web.

Our work sheds light on the insecure JavaScript practices and especially reveals the severity

and nature of insecure JavaScript inclusion and dynamic generation practices on the Web.

4.1 Motivation

Security is an important aspect of Web engineering, and it should be taken into serious

consideration in the development of high quality Web-based systems [13, 55, 73, 81, 86]. In

103

104

many cases, however, security does not receive sufficient attention due to the complexity

of Web-based systems, the ad hoc processes of system development, and even the fact that

many designers or developers lack security knowledge on Web development techniques. It is

not a surprise therefore, that website security breaches are common [22] and Web applica

tions are more susceptible to malicious attacks than traditional computer applications [93].

Browser-based attacks have posed serious threats to the Web in recent years. Exploiting

the vulnerabilities in Web browsers [15, 88] or Web applications [41, 53], attackers may

directly harm a Web browser's host machine and user through various attacks such as drive

by download [79, 87, 107], cross-site scripting [33, 193], cross-site request forgery [7, 181],

and Web privacy attacks [12, 44]. Attackers may even use browsers to indirectly launch

large-scale distributed attacks against Web servers [65] or propagate Internet worms [66].

Most of these browser-based attacks are closely tied with JavaScript, which is an in

terpreted programming language most often used for client-side scripting. JavaScript code

embedded or included in HTML pages runs locally in a user's Web browser, and it is mainly

used by websites to enhance the interactivity and functionality of their webpages. How

ever, because JavaScript is equipped with a powerful and diverse set of capabilities in Web

browsers [28], it has also become the weapon of choice for attackers.

Modern Web browsers impose two restrictions to enforce JavaScript security: the sand

box mechanism and the same-origin policy. The former limits JavaScript to execute only

in a certain environment without risking damage to the rest of the system, while the latter

prevents JavaScript in a document of one origin from interacting with another document of

a different origin [28, 180]. Unfortunately, most JavaScript-related security vulnerabilities

are still the breaches of either of these two restrictions [160]. Some of these vulnerabilities

105

are due to Web browser flaws, but the majority of them have been attributed to the flaws

and insecure practices of websites [181, 184].

A great deal of attention has been paid to the JavaScript-related security vulnerabilities

such as cross-site scripting [33, 109, 142, 181, 184] that could directly lead to security

breaches. However, little attention has been given to websites' insecure practices of using

JavaScript on their webpages. Similar to websites' other insecure practices such as using

the customers' social security numbers as their login IDs [24], insecure JavaScript practices

may not necessarily result in direct security breaches, but they could definitely cultivate

the creation of new attack vectors.

In this work, we present the first measurement study on insecure practices of using

JavaScript at different websites. We mainly focus on two types of insecure practices: in

secure JavaScript inclusion and insecure JavaScript dynamic generation. We define the

former as the practices of using the src attribute of a <script> tag to directly or indi

rectly include a JavaScript file from an external domain into the top-level document of a

webpage. A top-level document is the document loaded from the URL displayed in a Web

browser's address bar. By "directly", we mean that the <script> tag belongs to the top

level document, and by "indirectly", we mean that the <script> tag belongs to a sub-level

frame or iframe document whose origin is the same as that of the top-level document. We

define the latter as the practices of using dangerous techniques such as the eval() function

to dynamically generate new scripts. Both types of insecure practices create new vectors

for attackers to inject malicious JavaScript code into webpages and launch attacks such as

cross-site scripting and cross-site request forgery.

The primary objective of our work is to examine the severity and nature of these two

106

types of insecure JavaScript practices on the Web. To achieve this goal, we devised an

execution-based measurement approach. More specifically, we instrumented the Mozilla

Firefox 2 Web browser and visited the homepages of 6,805 popular websites in 15 different

categories. The instrumented Firefox non-intrusively monitors the JavaScript inclusion

and dynamic generation activities on those webpages, and it precisely records important

information for offline analysis.

Our measurement results reveal that insecure JavaScript inclusion and dynamic gen

eration practices are widely prevalent among websites. At least 66.4% of the measured

websites have the insecure practices of including scripts from external domains into the

top-level documents of their homepages. Over 74.9% of the measured websites use one or

more types of JavaScript dynamic generation techniques, and insecure practices are quite

common. For example, eval() function calls exist at 44.4% of the measured websites. Using

the document.write() method and the innerHTML property is much more popular than

using the relatively secure method of creating JavaScript elements via DOM (Document

Object Model) [191] methods. Our results also show that around 94.9% of the measured

websites register various event handlers on their homepages, implying that the captured

insecure JavaScript practices in inclusion and dynamic generation are likely conservative

estimates.

The main contribution of our work is threefold. First, we introduce a browser instru

mentation framework that enables us to capture essential JavaScript execution behavior

on webpages. Not only can this framework measure the insecure JavaScript practices, it

can also examine other JavaScript execution characteristics such as function call patterns

and code (de)obfuscation activities. Second, we present a classification method to analyze

107

and classify different types of dynamically generated JavaScript code. By extracting the

AST (abstract syntax tree) trees of scripts and performing AST signature creation and

matching, our classification method can effectively assist us in understanding the structural

information of the hundreds of thousands of dynamically generated scripts. Third, our

measurement study sheds light on the insecure JavaScript practices and especially reveals

the severity of insecure JavaScript inclusion and dynamic generation practices on the Web.

Our in-depth analysis further indicates that safe alternatives to these insecure practices do

exist in common cases. We therefore suggest website developers and administrators pay

serious attention to these insecure engineering practices and use safe alternatives to avoid

them.

The remainder of this chapter is structured as follows. Section 4.2 explains why the

two types of JavaScript practices are insecure. Section 4.3 introduces our measurement

and analysis methodologies. Section 4.4 describes the data set of this study. Section 4.5

presents and analyzes our measurement results. Section 4.6 reviews related work, and

finally, Section 4.7 summarizes this work.

4.2 Background

In the same-origin policy, the origin of a document is defined using the protocol, domain

name, and port of the URL from which the document is loaded. It is important to realize

that this policy does not limit the origin of a script itself. Although JavaScript code cannot

access another document loaded from a different origin, it can fully access the document

in which it is embedded or included even when the code has a different origin than the

108

document [28]. Including scripts from an external domain into the top-level document of a

webpage is very dangerous because it grants the scripts the maximum permissions allowed

to control the webpage and the browser window. Therefore, if the author of a script file or

the administrator of a script hosting site is insincere or irresponsible, insecure JavaScript

inclusion practices could lead to serious security and privacy breaches. Moreover, script

hosting sites could become attractive targets of attacks, especially when their JavaScript

files are included by multiple websites. To lower the potential risks, websites should avoid

external JavaScript inclusion by using internal JavaScript files from the same sites when

possible. Otherwise if external inclusion is really inevitable, for example some advertising

sites or traffic analysis sites may necessitate it [82], external included scripts should be

retrieved using HTTPS connections and should be restricted within a sub-level HTML

frame or iframe document whose origin is different from that of the top-level document.

The eval() function takes a string parameter and evaluates it as JavaScript code. This

function is dangerous because it executes the passed script code with the privileges of the

function's caller [145]. Therefore, attackers may endeavor to inject malicious code into the

evaluated string in order to take advantage of this capability. Meanwhile, since scripts

are dynamically generated and evaluated, it is very challenging to effectively filter out

maliciously injected code [51, 88, 120]. Eval() should be avoided 1 if at all possible, and its

safe alternatives should be used [133, 145]. Other JavaScript dynamic generation techniques

such as using the document.write() function and the innerHTML property also pose similar

security risks, as discussed in Section 4.5.

Once attackers have successfully exploited these insecure practices and injected their

1 Searching "eval is evil" on the Web for many discussions.

109

malicious JavaScript code, they can easily launch severe attacks such as cross-site script

ing and cross-site request forgery. These attacks can be used to conduct many malicious

activities such as account hijacking, user behavior tracking, denial of service attacking,

and website defacing. Therefore, insecure engineering practices of using JavaScript should

be thoroughly investigated, their risks should be highlighted to Web developers, and safe

alternatives should be used to avoid them.

4.3 Methodology

We devised an execution-based measurement approach to study the insecure JavaScript

practices on the Web. Our strategy is to first use an instrumented Web browser to obtain

actual JavaScript execution trace information on different webpages, and then use offiine

analysis to characterize and understand various JavaScript practices. An alternative ap

proach is to simply perform static analysis on web pages. However, this approach suffers

from the problem of undecidability and is unable to precisely determine which scripts will

be generated and executed. In contrast, our approach allows us to effectively capture the

dynamics of webpages and JavaScript code in their real runtime environments. Figure 4.1

gives an overview of our instrumentation framework and analysis toolkit.

4.3.1 Instrumentation Framework

To achieve an accurate and efficient measurement, we employed the source code instrumen-

tation technique and instrumented the most popular open source Web browser-Mozilla

Firefox. Our instrumentation method is similar to program tracing, which is a well-known

approach for monitoring program behavior and measuring program performance. We fol-

Web

I Pages>

r------------,
Web Browser 1

I
.------,I

Instrumented
SpiderMonkey

JavaScript
Engine

I
I
I

I
I
I
I

'----------'I
I

L ___________ _J

~- - - -ruffin~ An-;1%i; io;;ikit- - -~
I I
~~--------------------,1

I
I JavaScript Code Classification Tools
I I

II I
II I
I: I

I I
II I
1 1 I
I: I I--------------------- I

: I Other Tools :

~~---------------~

Figure 4.1: Overview of the instrumentation framework and analysis toolkit.

110

lowed a few rules suggested in [6] to minimize instrumentation overhead. More specifically,

we attempted to insert less instrumentation code and place the code only at necessary points

with low execution frequency.

We mainly instrumented three modules of Firefox 2 source code: the JavaScript engine,

the content module, and the DOM module. Firefox uses SpiderMonkey as its JavaScript

engine [183]. SpiderMonkey JavaScript engine is written in C programming language and

is a relatively independent module in Firefox. The major interface between SpiderMonkey

and other modules in Firefox is the SpiderMonkey JSAPI [161]. JSAPI facilitates other

modules in Firefox to use the core JavaScript data types and functions of SpiderMonkey,

and it also allows other modules to expose some of their objects and functions to JavaScript

code.

Inside the SpiderMonkey, our instrumented code written in C consists of three parts.

First, eight trace logging functions were integrated into the JSAPI interface. These func-

tions facilitate the trace collection in a consistent manner, recording various information

such as script text, function calls, and event handler registrations. Second, we added code

to the byte-code interpreter of SpiderMonkey so that we can record the execution informa-

111

tion of any global scripts and function scripts. Third, we instrumented the object system

implementation of Spider Monkey to monitor the calls to the eval() function and collect both

the calling context information and the evaluated content information.

The trace files generated in the above instrumentation points enable us to analyze the

practices of JavaScript inclusion and the practices of JavaScript dynamic generation using

eval(). We also needed to monitor the practices of other JavaScript dynamic generation

techniques. Originally we attempted to fulfill this task by still instrumenting inside the

SpiderMonkey and monitoring the engine's native callbacks to the content and DOM mod

ules. However, we found that this approach induces high overhead and could only record

partial information. Therefore, we decided to directly instrument the content module and

the DOM module of Firefox.

In the content module of Firefox, we integrated C++ code to measure the other three

types of JavaScript dynamic generation techniques. We instrumented the document.write()

method 2 and the method for setting the innerHTML property of an HTML element to track

their invocations. Both techniques can be used to add new content to an HTML document,

and the added content may contain new JavaScript code. We also added code to monitor the

method for replacing, inserting or appending a new DOM element, which could be created by

using DOM methods such as document.createElement() and document.createTextNode().

Our instrumentation code can identify the script type of elements and record their source

and text information. Other techniques such as the insertAdjacentHTML() method or the

outerHTML property are supported in the Internet Explorer Web browser only, and we

cannot measure them in Firefox.

2 In this work, it also include.s the document.writeln() method.

112

In the DOM module and the content module, we added C++ code to measure various

event handler registration techniques supported in Firefox. Event handlers can be triggered

by user interaction or timer events. We collected event handler registration information

to show that further JavaScript inclusion and execution could happen and our captured

insecure practices are likely conservative estimates. Event handler registration and other

aspects of information described above are written into a set of six different trace files to

assist our offline analysis.

Since many internal user interface components of Firefox also heavily use JavaScript,

special care is needed to ensure that the above instrumentation code only records the

JavaScript execution activities of a visited webpage. Our code checks the JSPrincipals [163]

information of an object or script to guarantee this requirement. We also ensured that our

instrumentation code only monitors and records essential information and does not change

the execution logic of Firefox and Spider Monkey.

4.3.2 Analysis Toolkit

We took an offline analysis approach so that we can sufficiently analyze the trace information

without interfering with the actual measurement process. We developed an offline analysis

toolkit that consists of a set of tools written in approximately 5,000 lines of Java code, 200

lines o£ C code, 500 lines of Linux shell script code, and 300 lines of Matlab script code.

About half of the tools are used for classifying dynamically generated JavaScript code, and

the others are used for processing trace records and calculating statistical information. The

detailed description of the JavaScript code classification tools is as follows.

The motivation for developing these classification tools is to automate the challenging

113

task of understanding a large number of dynamically generated JavaScript code. To achieve

this goal, we explored the concepts in software engineering and developed an AST (abstract

syntax tree)-based classification method. As illustrated in Figure 4.1, the key idea is to first

extract the AST trees of scripts, then create and match AST signatures, and finally merge

signatures into different categories. We devised such an AST-based approach in that ASTs

have been demonstrated effective in program understanding [8, 110].

The AST tree extraction tool is a standalone C program that embeds the Spider Monkey

1.7 [183]. This is the same version of the Spider Monkey as used in our instrumented Firefox

2 Web browser. Therefore, our extraction tool can create a token stream and parse the

stream into a syntax tree for a script in the same manner as in the instrumented Firefox.

The tool finally constructs the essential structure of a syntax tree as an AST tree and writes

the tree into an X1'4L file to facilitate further comparison.

We applied top-down tree matching techniques to perform AST signature creation and

matching, and the high-level procedure is illustrated in Figure 4.2. First, an empty AST

signature set S is initialized. Next, for each AST tree in the XML files, its top N level

structure is used to generate an AST signature, denoted as thisSig. Then, top-down tree

comparisons are made to seek a match between the thisSig and an existing signature in the

set S. If a match exists, this procedure keeps a record of the related information, otherwise,

the thisSig is added to the set S as a new AST signature. Finally, this procedure returns

the signature set S as its output.

To be accurate and representative, an AST signature keeps the name and type informa

tion of an operator node, but it only keeps the type information of an operand. Top-down

tree matching techniques can capture the key structural differences between trees, and they

114

SigCreateMatch (XMLfiles, N)
1. Initialize an empty AST signature set S;
2. for each AST tree in the XML files do
3. thisSig=the top N level structure of the AST tree;
4. if thisSig matches an existing signature in S then
5. Record the information of this matching;
6. else
7. S = S U {thisSig};
8. endif
9. endfor
10. return the result set S;

Figure 4.2: High-level AST signature creation and matching procedure.

have been used in several Web-related projects [89, 126, 128]. The comparison algorithm

used in line 4 of this procedure is adapted from the STM (simple tree matching) algorithm

presented in [117]. STM is an efficient top-down tree distance comparison algorithm, and

our adaptation is to only compare the top N levels of trees. As shown in Section 4.5, such

an adaptation is effective in striking a good balance between retaining the accuracy and

reducing the total number of signatures.

The AST signature categorization tool was developed to further merge AST signatures

into different categories. We defined categories according to different types of JavaScript ex-

pressions and statements such as arithmetic expressions and assignment statements. Such

a categorization can help us to understand the use purposes of JavaScript code from a

programming language perspective. This tool is especially useful for analyzing dynami-

cally generated scripts, most of which have specific use purposes in terms of programming

language functionality as revealed in our analysis.

115

Category com org gov net edu cc other Total
arts 417 16 0 27 1 39 0 500
business 430 7 10 4 0 49 0 500
computers 432 29 1 21 1 15 1 500
games 428 13 0 43 0 14 2 500
health 277 107 41 8 33 30 4 500
home 415 28 22 14 2 18 1 500
news 412 24 6 12 3 43 0 500
recreation 409 19 12 19 0 40 1 500
reference 116 17 11 4 192 158 2 500
regional 292 23 21 6 3 152 3 500
science 209 96 68 8 47 64 8 500
shopping 479 2 0 2 0 17 0 500
society 302 84 34 11 3 58 8 500
sports 403 13 0 21 0 62 1 500
world 199 15 1 23 0 262 0 500
Total 5220 493 227 223 285 1021 31 7500
Uniq-Total 4727 445 170 212 276 950 25 6805

Table 4.1: Category breakdown by top-level domain.

4.4 Data Set

To obtain a representative data set, we followed a similar method as used in [60] and

selected top websites listed by Alexa.com [136]. We chose 15 categories and then top 500

sites from each of these categories. Table 4.1 gives the breakdown of 15 categories by DNS

top-level domain (TLD). Since some sites appear in multiple categories, the total number

of unique sites is 6,805 in our study. This number is over five times larger than that in [60],

and we also only visited the homepages of those sites so that we can have a consistent

measurement. Meanwhile, measuring the insecure JavaScript practices on homepages is

sufficient to illustrate the severity of the problem. Table 4.1 shows that the majority of the

6,805 sites come from the .com TLD and the country code (denoted as the cc) TLD. The

former contributes 4, 727 unique sites and the latter contributes 950 unique sites.

The execution of JavaScript on a webpage can be roughly divided into two phases: the

document loading and parsing phase and the event-driven phase [28]. When the document

116

loading and parsing phase ends, the event-driven phase starts and event handlers can be

asynchronously executed in response to various user interaction and timer events. In our

study, we developed a browser extension to automatically visit each of the 6,805 webpages

using our instrumented Firefox Web browser. On each page, our browser extension waits

for the end of the document loading and parsing phase and then stays in the event-driven

phase for 10 seconds. Our browser extension has no intention to trigger the execution of any

specific event handlers on a page. This is because the event handlers registered on different

webpages are very diverse, and it is difficult to trigger their executions in a consistent

manner. Therefore, the JavaScript execution data set collected in our measurement study

covers the whole document loading and parsing phase and 10 seconds of the event-driven

phase for each of the 6,805 homepages. The data set was collected in the second week of

July 2008.

4.5 Results and Analysis

We present and analyze our measurement results in this section. We first briefly present

the results on JavaScript presence. Then, we detail the results on the insecure practices

of JavaScript inclusion and dynamic generation. Finally, we give a short summary of the

results on event handler registrations.

4.5.1 Overall JavaScript Presence

Table 4.2 lists the results of overall JavaScript presence for the 6,805 measured homepages.

We use JS to represent any JavaScript code, and we use DJS to represent the JavaScript

code that is dynamically generated by using one of the four dynamic generation techniques

117

Category/ Pages with any JS Pages with
TLD embedded JS included JS Total DJS
arts 484(96.8%) 483(96.6%) 491(98.2%) 437(87.4%)
business 482(96.4%) 473(94.6%) 492(98.4%) 380(76.0%)
computers 471(94.2%) 465(93.0%) 484(96.8%) 374(74.8%)
games 471(94.2%) 473(94.6%) 488(97.6%) 375(75.0%)
health 467(93.4%) 451(90.2%) 481(96.2%) 330(66.0%)
home 479(95.8%) 471(94.2%) 487(97.4%) 389(77.8%)
news 477(95.4%) 475(95.0%) 483(96.6%) 430(86.0%)
recreation 477(95.4%) 467(93.4%) 487(97.4%) 389(77.8%)
reference 455(91.0%) 443(88.6%) 476(95.2%) 286(57.2%)
regional 479(95.8%) 457(91.4%) 492(98.4%) 401(80.2%)
science 421(84.2%) 405(81.0%) 449(89.8%) 274(54.8%)
shopping 487(97.4%) 486(97.2%) 493(98.6%) 393(78.6%)
society 441(88.2%) 435(87.0%) 466(93.2%) 329(65.8%)
sports 492(98.4%) 482(96.4%) 496(99.2%) 456(91.2%)
world 481(96.2%) 438(87.6%) 489(97.8%) 377(75.4%)
com 4551 (96.3%) 4504(95.3%) 4629(97.9%) 3838(81.2%)
org 401(90.1%) 378(84.9%) 422(94.8%) 247(55.5%)
gov 150(88.2%) 137(80.6%) 160(94.1%) 75(44.1%)
net 194{91.5%) 189(89.2%) 204{96.2%) 153(72.2%)
edu 239{86.6%) 223(80.8%) 250{90.6%) 122{44.2%)
cc 863(90.8%) 817(86.0%) 902(94.9%) 654(68.8%)
other 23(92.0%) 22(88.0%) 24{96.0%) 9(36.0%)
All 6421(94.4%) 6270{92.1%) 6591{96.9%) 5098{74.9%)

Table 4.2: JavaScript presence by category and top-level domain.

measured in our instrumented Firefox Web browser. The embedded JS indicates that the

executed JavaScript code is embedded within an HTML document, and the included JS

indicates that the executed JavaScript code is included from a separate file.

Overall, JavaScript execution has been widely observed on 6,591(96.9%) homepages.

Both the JS embedding and JS inclusion are very common, and they are practiced on 6,421

and 6,270 pages, respectively. The percentage of webpages containing JavaScript execution

within a category ranges from 89.8% for science to 99.2% for sports, and the percentage

of webpages containing JavaScript execution within a TLD ranges from 90.6% for .edu to

97.9% for .com. JavaScript dynamic generation is also very popular, and there are 5,098

(74.9%) sites containing DJS on their homepages. For the DJS presence within a category,

118

the lowest percentage is 54.8% for science, and the highest percentage is 91.2% for sports.

For the DJS presence within a TLD, the highest percentage is 81.2% for .com, and the

lowest percentage is 36.0% for other domains such as .mil and .info.

4.5.2 Insecure JavaScript Inclusion

Among all the 6,270 webpages with the included JS, we identify and analyze insecure prac-

tices of JavaScript inclusion. Note that we defined the insecure JavaScript inclusion as the

practices of using the src attribute of a <script> tag to directly or indirectly include a

JavaScript file from an external domain into the top-level document of a webpage. Keep-

ing JavaScript code separate from HTMLmarkups is actually a good engineering practice,

advocated especially in the unobtrusive JavaScript programming paradigm [28, 189]. There-

fore, there is no need to analyze the good practices of including JavaScript files from the

same host or domain, and we only focus on the insecure inclusion practices.

4.5.2.1 Results and Analysis

To our surprise, insecure JavaScript inclusion is very prevalent. Around 66.4% (4,517 out

of 6,805) of websites directly or indirectly include JavaScript files from external domains

into the top-level documents of their homepages. Note that our analysis tool applies a

conservative standard to compare the domain name of a JavaScript file and that of its

including homepage. Two domain names are regarded as different only if, after discarding

their top-level domain names (e.g., .com) and the leading name "www" (if existing), they

do not have any common sub-domain name3 . Therefore, this 66.4% result is basically an

3 For example, two domain names www.dlsub2.dlsubl.dltld and d2sub3.d2sub2.d2subl.d2tld are re
garded as different only if the intersection of the two sets {dlsub2, dlsubl} and {d2sub3, d2sub2, d2subl}

http://www.dlsub2.dlsubl.dltld

"' c:
0.9

·~ 0.8
0
"0

5 0.7
·u;
::>

~ 0.6

0.1

10°

119

10' 102

The outdegree value

Figure 4.3: Cumulative distribution of the 4,517 JavaScript file inclusion domains in terms of their
outdegree values.

objective estimate of the severity of insecure JavaScript inclusion practices.

After further analyzing the domain name relationship between JavaScript file inclusion

sites and JavaScript file hosting sites, we found that those 4,517 sites include JavaScript files

from a diverse set of 1,985 external domains. We can use a directed graph to characterize

the domain name relationship between these sites. Different vertices represent different

domain names, and a direct edge from vertex A to vertex B means that the homepage in

domain A includes at least one JavaScript file from domain B. Therefore, 4,517 vertices have

a greater than zero outdegree value, and 1,985 vertices have a greater than zero indegree

value.

Figure 4.3 illustrates the CDF (cumulative distribution function) of the 4,517 JavaScript

file inclusion domains in terms of their outdegree values. We can see that approximately

43.6% of the 4,517 sites include JavaScript files from at least three external domains. While

the mean value of outdegree is 3.1, the maximum value of outdegree reaches 24. These

is empty.

0..0.5

~
~ 0.4,
0 0.3
c
.2
tl 0.2
U:

0.1

120

10'
The indegree value

Figure 4.4: Cumulative distribution of the 1,985 JavaScript file hosting domains in terms of their
indegree values.

results indicate that not only 66.4% of measured sites are at the risk of having their home-

pages under the control of the included JavaScript code, but many of them also face higher

risks from multiple sources.

From a different perspective, Figure 4.4 depicts the CDF of the 1,985 JavaScript file

hosting domains in terms of their indegree values. We can observe two interesting phe-

nomena. On the one hand, JavaScript files in approximately 60.6% of the hosting domains

are only included by one of our visited homepages. On the other hand, JavaScript files

in approximately 7.7% of the hosting domains are included by at least 10 of our visited

homepages, and JavaScript files in 14 sites are even included by at least 100 of our visited

homepages. The mean value of indegree is 7.2, but the maximum value of indegree reaches

a very high value of 2,606. After inspecting those 14 high-profile JavaScript file hosting

domains and many other low-profile domains, we found that a few of them are popular

traffic analysis service sites and advertising servers. However, most of them are the kind

of "hidden" sites that provide nothing on their root URLs but just point to some stored

121

JavaScript files using URL paths. Understanding the properties of those sites is beyond the

scope of this work, but what we need to emphasize is that external JavaScript file hosting

sites, especially those high-profile ones, create new vectors for large-scale browser-based

attacks. Even a single compromised JavaScript file could directly cause security breaches

on thousands of websites.

Among the 4,517 sites that include JavaScript files from external domains, we also

observed that 125 sites only use the HTTPS protocol to retrieve JavaScript files and 138

sites use both the HTTP protocol and the HTTPS protocol to retrieve different JavaScript

files. In total, there are 263 sites using HTTPS to include scripts from 72 JavaScript file

hosting sites. These observations imply that some JavaScript file hosting sites do provide

the secure transmission service for accessing their hosted JavaScript files, and some of our

measured sites do use this service. However, this secure JavaScript transmission service is

not popular. Only 3.6% (72 out of 1,985) of the JavaScript file hosting sites provide the

service, and only 5.8% (263 out of 4,517) of the JavaScript file inclusion sites use the service.

Also note that HTTPS protects data in transit, but it does not guarantee that a JavaScript

file is uncompromised in a hosting site.

In contrast to these 4,517 sites, we did find that there are 324 other sites, in which

an external included JavaScript file is always restricted within a sub-level HTML frame

or iframe document whose origin is different from that of the top-level document. This

observation implies that some sites do limit the control of external included JavaScript

code within sub-level documents and provide a protection to the top-level documents of

their homepages. However, such a relatively secure practice is exclusively followed by only

324 measured sites, and those 4,517 sites still use a very insecure way to include external

122

JavaScript files.

4.5.2.2 Safe Alternatives to Insecure Inclusion

Our results show that insecure JavaScript inclusion is widely practiced by the majority

(66.4%) of our measured sites. Our in-depth analysis on the domain name relationship

between JavaScript file inclusion sites and hosting sites further reveals the severity and

nature of those insecure practices. Although HTTPS and sub-level documents are used

by a small portion of sites to enhance the security of external JavaScript file inclusion, we

believe that the majority of measured JavaScript file inclusion sites and hosting sites have

not paid sufficient attention to the potential risks of insecure JavaScript inclusion. For

JavaScript file inclusion sites, we suggest them (1) avoid external JavaScript inclusion by

using internal JavaScript files from the same sites, if at all possible; (2) restrict the permis

sion of external included scripts by placing them within a sub-level HTML frame or iframe

document whose origin is different from that of the top-level document, if external inclusion

is really inevitable; and (3) retrieve external JavaScript files using HTTPS connections, if

the HTTPS service is available. The third suggestion needs a hosting site to provide the

HTTPS service for accessing its JavaScript files, but the first two suggestions can be easily

adopted by JavaScript file inclusion sites.

4.5.3 Insecure JavaScript Dynamic Generation

Since 74.9% of measured sites (5,098 out of 6,805) contain DJS scripts on their homepages,

we now characterize all the DJS scripts based on their generation techniques and analyze

insecure practices.

123

Category/ eva!- write- innerHTML- DOM-
TLD generated generated generated generated
arts 258(51.6%) 403(80.6%) 76(15.2%) 83(16.6%)
business 253(50.6%) 295(59.0%) 73(14.6%) 56(11.2%)
computers 205(41.0%) 307(61.4%) 55(11.0%) 55(11.0%)
games 203(40.6%) 327(65.4%) 58(11.6%) 57(11.4%)
health 190(38.0%) 276(55.2%) 35(7.0%) 34(6.8%)
home 240(48.0%) 357(71.4%) 57(11.4%) 73(14.6%)
news 314(62.8%) 412(82.4%) 161(32.2%) 110(22.0%)
recreation 229(45.8%) 310(62.0%) 67(13.4%) 57(11.4%)
reference 144(28.8%) 214(42.8%) 44(8.8%) 22(4.4%)
regional 258(51.6%) 337(67.4%) 97(19.4%) 58(11.6%)
science 137(27.4%) 234(46.8%) 39(7.8%) 35(7.0%)
shopping 245(49.0%) 307(61.4%) 37(7.4%) 38(7.6%)
society 163(32.6%) 283(56.6%) 42(8.4%) 42(8.4%)
sports 322(64.4%) 424(84.8%) 114(22.8%) 95(19.0%)
world 212(42.4%) 341(68.2%) 92(18.4%) 55(11.0%)
com 2359(49.9%) 3359(71.1%) 724(15.3%) 656(13.9%)
org 109(24.5%) 195(43.8%) 25(5.6%) 22(4.9%)
gov 32(18.8%) 50(29.4%) 9(5.3%) 9(5.3%)
net 77(36.3%) 135(63.7%) 26(12.3%) 21(9.9%)
edu 50(18.1%) 92(33.3%) 17(6.2%) 7(2.5%)
cc 393(41.4%) 558(58.7%) 130(13.7%) 79(8.3%)
other 4(16.0%) 7(28.0%) 3(12.0%) 0(0.0%)
All 3024(44.4%) 4396(64.6%) 934(13.7%) 794(11.7%)

Table 4.3: DJS presence by category and top-level domain.

4.5.3.1 DJS Presence by Category and TLD

Table 4.3 lists the overall DJS presence by category and TLD for the four different DJS

generation techniques. We can see that the eval() function and the document. write() method

are widely used on 44.4% and 64.6% of webpages, respectively. In contrast, the innerHTML

property and the DOM methods (i.e., replacing, inserting or appending a new created script

element) are only used on 13.7% and 11.7% of web pages, respectively. It is also interesting

to notice that the categories with the highest DJS presence values are news and sports for all

the four generation techniques. The TLDs with the highest DJS presence values are .com,

.net, and country code domains. These results indicate that JavaScript dynamic generation

is more likely to be used on those sites that have more dynamic contents.

124

4.5.3.2 DJS Instance Summary

We now examine the generated DJS instances on each webpage. A DJS instance is identified

in different ways for different generation techniques. For the eval() function, the whole

evaluated string content is regarded as a DJS instance. Within the written content of the

document.write() method and the value of the innerHTML property, a DJS instance can be

identified from three sources: (1) between a pair of <script> and </script> tags; (2) in an

event handler specified as the value of an HTML attribute such as onclick or onmouseover;

and (3) in a URL that uses the special j avascript: protocol specifier [28]. For the DOM

methods, each new script element is identified as a DJS instance.

Table 4.4 gives a summary of DJS instances for both the document loading and parsing

phase, denoted as the pre-onload phase, and the event-driven phase, denoted as the post

onload phase. The two numbers in each table cell represent the data for the pre-onload

and post-onload phases, respectively. The data in the second row of the table gives the

total number of DJS instances identified in the two execution phases for the four different

techniques. The data in the third row of the table gives the total number of webpages on

which those DJS instances are identified. The IPP in the last three rows of the table stands

for the "Instance Per Page".

It is evident that the eval() function generates the largest number of DJS instances

in both phases (194,676 in the pre-onload phase and 22,632 in the post-onload phase).

The mean value of IPP for eval-generated DJS instances is 65.2 in the pre-onload phase

and 62.3 in the post-onload phase. The maximum value of IPP for eval-generated DJS

instances reaches 2,543 in the pre-onload phase and 6,350 in the post-onload phase. These

125

Summary eva!- write- innerHTML- DOM-
generated generated generated generated

total number 1946761 674461 287171 13701
of DJS instances 22632 519 6626 557
total number 29861 43851 8441 6801
of pages 363 63 187 260
mean value 65.21 15.41 34.01 2.01
of IPP 62.3 8.2 35.4 2.1
maximum value 25431 10531 50011 131
of IPP 6350 160 1403 25
standard deviation 174.41 41.61 184.31 1.1 I
of IPP 367.2 20.9 134.1 2.7

Table 4.4: DJS instance summary for pre-onloadlpost-onload phases.

numbers indicate that eva!() may be misused or abused. The document.write() method also

generates a large number of DJS instances in the pre-onload phase, but it only generates

519 DJS instances on 63 pages in the post-onload phase. Calling document.write() in post-

onload phase is usually not desirable because it will overwrite the current document with

the written content. In both phases, the innerHTML property also generates a large number

of DJS instances, while DOM methods generate much fewer DJS instances.

For the four JavaScript dynamic generation techniques, Figures 4.5(a) to 4.5(d) further

illustrate the cumulative distribution of the webpages in terms of IPP. In each of these four

figures, the "o" curve is for the pre-onload phase and the "*" curve is for the post-onload

phase. Note that the total number of pages is different for the two phases (as shown in the

third row of Table 4.4), and we present the two curves together for ease of comparison. We

can see that the indication of misuse or abuse is especially evident for the eval() function.

While the majority (about 60%) of webpages have 10 or less eval-generated DJS instances,

nearly 17% and 11% of webpages have 100 or more eval-generated DJS instances for the

pre-onload phase and the post-onload phase, respectively.

126

1/)

Cl
-g 0.8

~
~
"0.6
~
.c
i
:g 0.4

~
0
c r·

~~ ~~ ~~
IPP lor eval-generated DJS instances

(a)

10° ~~ ~~ ~~ 10' 10'
IPP lor innerHTMLciJenerated DJS instances

(c)
IPP for DOMciJenerated DJS instances

(d)

Figure 4.5: Cumulative distribution of the webpages in terms of IPP (Instance Per Page) for
(a) eval-generated, (b) write-generated, (c) innerHTML-generated, and (d) DOM-generated DJS
instances.

4.5.3.3 Structural Analysis of eval-generated DJS

The prevalence of DJS on various categories of webpages and the high IPP values motivate

us to further understand the use purposes of the large number of DJS instances. Using our

JavaScript code classification tools, we now uncover the use purposes of eval-generated DJS

instances in terms of programming language functionality.

From the total 217,308 (both the pre-onload phase and the post-onload phase) eva!-

generated DJS instances, 217,308 AST trees are extracted by our AST tree extraction tool.

The maximum height of these AST trees is 19. Figure 4.6 shows the cumulative distribution

0.9

O.B

0.7

* ;, 0.6

~
0 0.5
c:
0
ti 0.4
e
lL

0.1

127

Figure 4.6: Cumulative distribution of the AST trees in terms of the height of an AST tree.

of the AST trees in terms of the height of an AST tree. Nearly 90% of AST trees have

a height less than or equal to 4. Therefore, we selected N = 4 as the input parameter

(Figure 4.2) and used the top-four level structure of AST trees to create and match AST

signatures. A total number of 647 AST signatures are created and matched from the 217,308

AST trees. These 647 AST signatures capture the essential structural information of the

217,308 AST trees, and they greatly facilitate our further analysis. Using more levels of

AST tree structure is unnecessary because lower-level AST tree nodes only contain less

important structural information.

Finally, AST signatures with the same programming language functionality are merged

into the same category by using our AST signature categorization tool. For example, two

AST signatures representing two types of function calls with different number or type of

parameters are merged into the same function calls category. Table 4.5 lists the final 17

categories of DJS instances classified from the 647 AST signatures, and in turn from the

217,308 DJS instances.

128

Category Presence Number of Average
in Pages DJS instances DJS length

parse error 20(0.7%) 111(0.05%) 1175.5
empty content 124(4.1%) 291(0.13%) 0.0
simple expression 1209(40.0%) 134251(61.8%) 13.9
arithmetic expression 12(0.4%) 158(0.1%) 67.9
relational expression 79(2.6%) 3246(1.5%) 31.7
logical expression 159(5.3%) 3249(1.5%) 75.8
object/array literal 265(8.8%) 4798(2.2%) 623.0
other expression 126(4.2%) 5789(2.7%) 18.5
variable declarations 98(3.2%) 411(0.2%) 586.0
function declarations 1157(38.3%) 1929(0.9%) 13380.7
assignment statements 1289(42.6%) 42015(19.3%) 51.9
function calls 527(17.4%) 2733(1.3%) 368.9
method calls 561(18.6%) 2062(0.9%) 75.9
object/array creations 29(1.0%) 212(0.1%) 41.3
conditional statements 181(6.0%) 9371(4.3%) 519.1
try-catch statements 1075(35.5%) 4127(1.9%) 51.7
mixed statements 910(30.1%) 2555(1.2%) 6884.1

Table 4.5: The 17 categories of eval-generated DJS instances.

We can see that 0.05% of the DJS instances have parse error when AST trees are ex-

tracted, and 0.13% of the DJS instances have empty content. The majority (around 98.6%)

of the eval-generated DJS instances are classified into the 14 categories from simple expres-

sian to try-catch statements. The DJS instances in these 14 categories all have specific use

purposes in terms of programming language functionality. Only 1.2% of the DJS instances

have mixed programming language functionalities, and they are classified into the last cat-

egory of mixed statements. The generated DJS instances in the last 15 categories are either

various expressions (from simple expression to other expression) or various statements (from

variable declarations to mixed statements). In general, a JavaScript expression is used only

to produce a value, while a JavaScript statement normally has side effects and is often used

to accomplish some tasks.

129

4.5.3.4 Safe Alternatives to eval()

To further understand whether using eval() is necessary in these different categories, we

randomly sampled and inspected both the content and the calling context of 700 DJS

instances. We sampled 200 DJS instances from the simple expression category and 200 DJS

instances from the assignment statements category. These two categories have the largest

numbers of DJS instances, accounting for 61.8% and 19.3%, respectively, of all the eval

generated DJS instances. The remaining 300 DJS instances are sampled from the other 15

categories, with each of them contributing 20 instances.

In at least 70% of the sampled cases, the eval() function is misused or abused while

safe alternatives can be easily identified. Here we illustrate three representative sampled

cases. The first one is: this.homePos = eval("O" + this.dirType + this.dim), in which a

string simple expression "0-500" is generated. Indeed, such a kind of string concatenation

directly generates a string value, and using eval() is redundant. The second one is: var

ff_nav=eval("nav_"+tt[i][1]), in which a variable name "nav_20912" is dynamically accessed.

A safe alternative is using the JavaScript window object to directly access the variable: var

ff_nav=window["nav_"+tt[i][1]]. The third one is: var responses = eval(o.responseText),

in which the response content of an XMLHttpRequest [192] is directly evaluated. This

practice is used in many of our sampled cases to convert a responseText into a JSON

object. However, since malicious JavaScript code could be injected into the responseText,

it would be better to use a JSON parser rather than the eval() function to perform such

a transformation [162]. The other 30% of the sampled cases usually have complex calling

context, so we do not further identify their safe alternatives.

130

Technique Presence Number of Avg. Main usage
and Type in Pages DJS instances length

jscode 4000 26125 77 JS inclusion
write eventhandler 1773 38650 39 function call

jsprotocol 501 3190 45 function call
jscode 120 503 262 JS inclusion

innerHTML eventhandler 747 31267 60 function call
jsprotocol 336 3573 33 function call

DOM
src 779 1866 - JS inclusion
text 33 61 623 assignment

Table 4.6: Structural analysis of DJS instances generated by the document. write() method, inner
HTML property, and DOM methods.

We suggest that eval() should be avoided if at all possible. In addition to the safe

alternatives exemplified above, DOM methods can be generally used to generate and execute

various JavaScript statements.

4.5.3.5 Structural Analysis of Other Types of DJS

As mentioned before, the DJS instances generated by the document.write method() and the

innerHTML property are identified from three different sources. We use jscode to present

a DJS instance identified between a pair of <script> and </script> tags, use eventhandler

to represent a DJS instance identified in an event handler, and use jsprotocol to represent a

DJS instance identified in a javascript: protocol URL. The DJS instances generated by

the DOM methods are specified in either the src attribute or the text attribute of a script

element. Table 4.6 gives the structural analysis results of the DJS instances generated by

these three dynamic generation techniques. The main usage of each type of DJS instance

is summarized in the last column of the Table 4.6.

131

4.5.3.6 Safe Alternatives to jscode Generation via document.write() and in

nerHTML

For the eventhandler and jsprotocol DJS instances generated by document. write() and in

nerHTML, their usages are relatively safe. When new content is added to a document, event

handlers are directly specified on various elements of the newly-added content to respond to

various events. The j avascript: protocol scripts are often used on links to execute some

statements without loading a new document.

What we emphasize is that generating jscode using document.write() and innerHTML is

not desirable. For document.write(), the generated jscode is immediately executed. Multiple

document.write() calls can be used to construct a jscode, and document.write() calls can

be nested. All these factors make the filtering of write-generated malicious JavaScript code

a very challenging task [120]. However, our results show that 26,125 instances of write

generated jscode are identified on a large number of 4,000 homepages. For innerHTML,

the generated jscode is recognized by a browser, but it is not necessarily executed. For

example, Firefox does not directly execute a jscode generated by innerHTML. In Internet

Explorer, the defer attribute and some tricks need to be used to execute an innerHTML

generated jscode, but this practice is also not recommended due to potential script-injection

attacks [173]. Fortunately, only 503 instances of this practice are identified on 120 pages as

shown in Table 4.6.

The best practice is to use DOM methods to dynamically generate JavaScript code.

Using DOM methods (such as createElement() and createTextNode()) to create JavaScript

elements explicitly declares that the new elements are scripts. This practice can enable

132

potential Web content protection mechanisms such as those presented in [51, 88, 120] to

accurately define security policies and weed out potential malicious JavaScript code. Un

fortunately, only 1,927(1,866 plus 61) instances of this practice are identified.

Our results show that the main usage of jscode generated by document.write() and

innerHTML is for including other JavaScript files (denoted as JS inclusion in Table 4.6).

Indeed, by specifying the src attribute of a script element, DOM methods fit well for

such a usage. By specifying the text attribute of a script element, DOM methods can

also be used to generate and execute various statements such as assignment statements or

function calls, thus safely replacing the relatively insecure practices of jscode generation via

document.write() and innerHTML.

4.5.4 Event Handler Registration

Our measurement results show that event handler registrations occurred on 6,451(94.9%)

pages in the pre-onload phase, with an average of 108.2 registrations per page and a maxi

mum of 5,074 registrations per page. Event handler registration occurred on 1,767(26.0%)

pages in the post-onload phase, with an average of 61.4 registrations per page and a max

imum of 2,229 registrations per page. These results include majority event types (e.g.,

event attributes of HTML tags, timer events, and XMLHttpRequest events) and event reg

istration techniques supported in Firefox. The execution of event handlers may trigger

further JavaScript inclusion and dynamic generation, implying that our captured insecure

JavaScript practices are likely conservative estimates.

133

4.6 Related Work

To the best of our knowledge, there is no directly related work on characterizing the insecure

practices of JavaScript inclusion and dynamic generation. Therefore, we only briefly review

some JavaScript related measurement studies. Krishnamurthy and Wills [60] measured the

homepages of 1,158 unique sites selected from Alexa.com [136] to study the content delivery

tradeoffs in Web access. The focus of their study is on the performance impact of extraneous

content, and their results show that JavaScript is often used on popular webpages to retrieve

extraneous content such as images and advertisements.

In the investigation of malware, several execution-based measurement studies [79, 87,

107] have been conducted to identify malicious webpages that contain code (in many cases,

JavaScript code) for exploiting Web browser vulnerabilities and installing malware. Instead

of targeting at malicious sites, our focus in this work is on legitimate websites' insecure

JavaScript practices.

4.7 Summary

In this work, we presented the first measurement study on insecure practices of using

JavaScript on the Web. We focused on investigating the severity and nature of insecure

JavaScript inclusion and dynamic generation. Through an instrumented Mozilla Firefox 2

Web browser, we visited the homepages of 6,805 popular websites in 15, different categories.

We found that at least 66.4% of the measured websites have the insecure practices of includ

ing JavaScript files from external domains into the top-level documents of their homepages.

Our in-depth analysis on the domain name relationship between JavaScript file inclusion

134

sites and hosting sites further reveals the severity and nature of those insecure practices.

Our measurement results on JavaScript dynamic generation show that the "evil" function

eval() was called on 44.4% of the measured homepages, and the document.write() method

and the innerHTML property were also used to generate JavaScript code. Our AST-based

structural analysis on various DJS instances further uncovers their usages with respect to

programming language functionality. Our analysis indicates that in common cases, safe

alternatives do exist for both the insecure JavaScript inclusion and insecure JavaScript

dynamic generation. Since Web-based attacks have become more common and damaging

in recent years, we suggest website developers and administrators pay serious attention to

these insecure JavaScript practices and use safe alternatives to avoid them. In the future, we

will measure insecure JavaScript practices on more specific types of websites and webpages.

We will also investigate whether other insecure J avaScript practices exist on the Web.

Chapter 5

Secure and Convenient Kiosk

Browsing

In this chapter, we present our work on secure and convenient kiosk browsing. Many

people use public computers provided in kiosk environments to browse the Web. Unfor

tunately, public computers are usually far less trustworthy than peoples' own computers.

We present a simple approach that enables an extended browser on a mobile device and

a regular browser on a public computer to collaboratively support a Web session. Using

this approach, a user can securely perform sensitive interactions on the mobile device and

conveniently perform other browsing interactions on the public computer.

5.1 Motivation

Web browsing has become such an integral part of our everyday lives that we use browsers

to perform many important tasks such as banking, shopping, and bill-paying. To facilitate

135

136

ubiquitous Web access, many kiosk environments such as cafes, airport lounges, and hotel

business centers provide people with Internet-connected public computers. These public

computers often have high-speed network connections. They are also convenient to use

since they normally have full-size keyboards and large displays. People who do not own a

computer or carry a laptop with them frequently use these public computers to browse the

Web.

Unfortunately, public computers are usually far less trustworthy than peoples' own com

puters. By "trustworthy", we mean that it is less likely that malware or spyware has been

installed on a computer to log user input, steal account information, and even secretly

hijack a secure (HTTPS) Web browsing session to make fraudulent transactions. Public

computers are used by many people to run different applications and visit various websites;

consequently, it is very likely for them to be infected with malware or spyware. Simply

searching "public computer security" online, we can find numerous articles suggesting that

people should not use public computers to perform sensitive activities. For example, Mi

crosoft suggests that to be really safe, a user should not enter any sensitive information into

a public computer [134].

To secure kiosk computing environments, researchers have proposed a number of so

lutions [18, 29, 36, 49, 70, 71, 72, 83, 84, 92, 98, 99, 113]. Most of these solutions use a

trusted mobile device such as a PDA (Personal Digital Assistant) or a mobile phone to

enhance the security of kiosk computing environments, and we refer to them as FDA-based

solutions. Mobile devices are favored by PDA-based solutions because (1) they are more

portable than desktop and laptop computers, and (2) they are generally more trustworthy

than public computers. Nevertheless, using small user interfaces on mobile handheld devices

137

is inherently difficult [108].

Many of these PDA-based solutions focus on specific objectives such as securing appli

cation or data access [83, 99], securing user authentication or input [18, 70, 72, 84, 113], and

verifying software integrity [36], so they cannot be easily adopted to secure an entire Web

browsing session. Some solutions do have the objective of securing an entire kiosk browsing

session [49, 71, 92, 98], but they suffer from a few drawbacks that limit their practical use.

In this work, we propose SessionMagnifier, a simple approach to secure and convenient

kiosk browsing. SessionMagnifier also relies on a trusted mobile device and is a PDA

based solution. However, our position is that with the support of a trusted mobile device

(referred to as FDA), a solution to the problem of securing Web browsing on an untrusted

public computer (referred to as PC) should, in essence, strive to synthesize the usability

advantages of a PC and the security advantages of a PDA. Otherwise, a user can simply

take the security risks of only using a PC, or a user can simply tolerate the inconvenience

of only using a PDA with its small keyboard and display. Note that we use the term PDA

to represent either a mobile phone or a PDA in this chapter, and we expect people to

eventually use our solution on mobile phones which are more popular than PDAs.

SessionMagnifier is designed as a browser extension, and the key idea is to enable an

extended browser on a PDA and a regular browser on a PC to collaboratively support a

Web session. After a user types in the address of a website and initiates a Web session from

the PDA, the extended browser on the PDA accurately synchronizes a modified copy of its

latest webpage document to a regular browser on the PC. The copied webpage document

is modified to achieve accurate webpage rendering on the PC browser, to track a user's

interaction with the same webpage on the PC browser, and to prevent sensitive information

138

from leaking to the PC.

This solution is simple and practical because a user only needs to carry a trusted mobile

device and install a SessionMagnifier extension to the device's Web browser - no third

party proxy is needed, no installation or configuration on an untrusted computer is needed,

no Web server modification is needed, and no extra cryptographic key exchange is needed.

SessionMagnifier provides a strong security guarantee because end-to-end security is directly

established between a trusted mobile device and a remote Web server; meanwhile, simple

and explicit communication interfaces are defined to enforce strong isolation between a

PDA and a PC. SessionMagnifier enables a user to fully take advantage of the convenience

of using a PC. This is because only very sensitive interactions such as entering username and

password need to be directly performed from the PDA while all other browsing interactions

can be conveniently performed from the PC.

We implemented SessionMagnifier for Mozilla's Fennec mobile browser [171]. We in

stalled Fennec and SessionMagnifier on a Nokia N810 Internet Tablet and conducted evalu

ations on usability, performance, and feasibility. Our evaluation and analysis demonstrate

that the proposed simple solution can be practically used to support secure and convenient

Web browsing on untrusted public computers.

The remainder of this chapter is structured as follows. Section 5.2 reviews related work.

Section 5.3 details the design of SessionMagnifier. Section 5.4 describes the implementation

of SessionMagnifier. Section 5.5 analyzes the security of SessionMagnifier. Section 5.6

presents the usability, performance, and feasibility evaluation of SessionMagnifier. Finally,

Section 5.7 summarizes this work.

139

5.2 Related Work

Balfanz and Felten [5] introduced a splitting-trust paradigm to divide an application between

a small trusted mobile device and a bigger, more powerful, but possibly untrusted computer.

SessionMagnifier is inspired by this paradigm; however, we do not split a browser but instead

enable an extended browser on a trusted mobile device and a regular browser on an untrusted

computer to collaboratively support a Web session. The splitting-trust paradigm has also

inspired many other kiosk computing solutions that rely on a trusted mobile device. We

classify these solutions into four categories based on their different objectives.

5.2.1 Securing Application or Data Access

Oprea et al. [83] proposed a three-party secure remote terminal architecture to enable users

to access their sensitive home computing environment via a trusted mobile device and an

untrusted terminal. This three-party architecture is based on a thin-client VNC (Virtual

Network Computing) remote display system [90], in which a VNC server can update the

framebuffer displayed on a VNC client. Sharp et al. [99] proposed a VNC-based thin-client

architecture to support secure access to unmodified applications. This architecture is similar

to the three-party architecture [83], but it provides additional mechanisms to obfuscate

the content displayed on an untrusted display. These VNC-based secure application or

data access solutions work at the framebuffer level with high overhead, so they cannot be

naturally adopted to support smooth Web interactions. In addition, trusted VNC servers

must be deployed in these solutions.

140

5.2.2 Securing User Authentication or Input

Parno et al. [84] built a Phoolproof phishing prevention system that uses a trusted mo

bile device to perform mutual authentication between a user and a website. Mannan and

Oorschot [70] proposed the MP-Auth protocol, in which a trusted mobile device turns a

long-term password into a one-time password via the public key of an intended server;

therefore, a user's long-term password will not be revealed to phishing sites or untrusted

computers. McCune et al. [72] proposed a BitE framework that leverages the features

of TPM (Trusted Platform Module) [187] to establish an encrypted input tunnel from a

trusted mobile device to an application running on a TPM-equipped untrusted computer.

Clarke et al. [18] and Wu et al. [113] designed protocols that rely on both a trusted third

party proxy and a trusted mobile device to secure authentication on untrusted computers.

In addition, Florencio and Herley [29] proposed approaches to secure password input on

untrusted computers without using mobile devices. All these solutions focus on securing

user authentication or input, so they are not directly applicable for securing Web browsing

sessions.

5.2.3 Verifying Software Integrity

Garriss et al. [36] built a system that uses a mobile device to establish trust in a kiosk

computing environment. This system employs both a TPM [187] module equipped on a

kiosk computer and an integrity attestation server of the kiosk, and it focuses on verifying

the identity and integrity of software loaded on a public computer before revealing sensi

tive information to the computer. However, our SessionMagnifier focuses on securing Web

browsing sessions on potentially untrusted public computers.

141

5.2.4 Securing Web Browsing Sessions

A few kiosk computing solutions share the same objective with our SessionMagnifier: secur

ing Web browsing sessions. Ross et al. [92] proposed a composable secure proxy architecture

to provide secure multi-modal access to Web services from any device. A similar proxy

based architecture called Delegate [49] was proposed to enable users to access Web services

from untrusted computers. In these solutions, essentially it is the browser on an untrusted

computer that accesses remote Web servers; meanwhile, secure proxies perform content and

control filtering functionalities. Two main obstacles impede the adoption of these proxy

based solutions. First, secure third-party proxies must be widely deployed, well managed,

and fully trusted by users. Second, to secure Web browsing, a proxy must use very com

plicated and comprehensive rules to validate requests, remove sensitive content, maintain

user information, and manage session information such as HTTP cookies.

Margolin et al. [71] introduced a Guardian framework that uses a PDA as a proxy for

all interactions between an untrusted computer and remote Web servers. Guardian uses

LWP::UserAgent Perl module to interact with remote servers, and uses the HTTP::Daemon::SSL

module to interact with the untrusted public computer. This framework eliminates there

quirement of using secure third-party proxies by moving their content and control filtering

functionalities to a PDA. However, since it is still the browser on the untrusted computer

that accesses remote Web servers, this solution does not reduce the inherent complexity of

proxy-based solutions. Our SessionMagnifier directly uses the Web browser on a trusted

mobile device to access remote Web servers, so it provides strong security assurances and

greatly reduces the complexity of content and control filtering.

142

Recently, Sharp et al. [98] proposed a split-trust browsing architecture to explore split

ting trust at the HTML level for Web applications. However, this architecture has three

drawbacks that limit its practical application. First, its critical component the RDC (Re

mote Device Communication) agent must be installed on an untrusted computer. Second,

its end-to-end security between a trusted mobile device and a remote Web server depends on

an extra authentication and key-exchange process coordinated by the RDC agent. Third,

it assumes that either Web applications are explicitly written or secure HTML-rewriting

proxies are used to support split-trust browsing. In contrast, our SessionMagnifier is much

simpler and more practically applicable - nothing needs to be installed or configured on

an untrusted computer, end-to-end security between a trusted mobile device and a remote

Web server is ensured by existing HTTPS connections, no third-party proxy is needed, and

no modification needs to be made to existing Web applications.

5.3 Design

In this section, we first use a motivating example to illustrate the use of SessionMagnifier in a

kiosk browsing environment. We then define the threat model and assumptions under which

SessionMagnifier operates. Finally, we present the architecture design of SessionMagnifier.

5.3.1 A Motivating Example

Alice goes on a trip without carrying her laptop, but she wants to bid an item at eBay.com.

During the last hours of the bidding, she needs to check the latest bidding status and make

appropriate adjustments as necessary. Alice takes a PDA (or a mobile phone) with her, but

she feels uncomfortable to continuously use the small keyboard and display of the PDA. She

m
User

' ' ' ' I
I
I
I
I
I
I
I
I
I
I
I
I

' ' I
I I
~------------------

Local Area Network (LAN)

Internet Connection

Figure 5.1: Kiosk browsing environment.

143

finds a public computer in an Internet cafe, but she has concerns about the security and

privacy of using this public computer to log into her online accounts. Figure 5.1 illustrates

such a kiosk browsing environment, and the problem here is how Alice can securely and

conveniently sign into her online accounts and make transactions.

Fortunately, Alice can use a simple SessionMagnifier extension installed on the PDA

browser to solve the problem. Alice first uses the PDA to connect to the Internet and signs

into her eBay account from the PDA browser. The Internet connection is established either

directly via Wi-Fi or indirectly via a USB-based or Bluetooth-based virtual network adapter

of the public computer. Next, Alice turns on the SessionMagnifier extension installed on

the PDA browser. She then types a URL address displayed by SessionMagnifier into the

address bar of a regular PC browser and enables the connection between the PDA browser

and the PC browser.

Starting from this point, SessionMagnifier synchronizes new webpage content from the

PDA browser to the PC browser, and Alice can conveniently view and interact with the

same webpage using the PC browser. Her interactions initiated from the PC browser will

be sent back to SessionMagnifier and then securely sent out to eBay.com. Alice can verify

and confirm any important interactions initiated from the PC browser, and she can also

144

use an "Auto On" toolbar button to bypass this verification and confirmation step for less

important interactions. Meanwhile, using a "Sync On" toolbar button, Alice can switch on

or off the synchronization on each specific web page so that she can input and view sensitive

information only on the PDA browser. Alice may continue the bidding process until she

wins or loses the auction.

5.3.2 Threat Model and Assumptions

In a kiosk browsing environment, attackers are interested in stealing a user's sensitive infor-

mation such as username and password to commit identity theft. They are also interested

in hijacking a user's browsing session to generate fraudulent transactions [43]. More specif

ically, attackers may use the following five types of attacks to achieve their goals.

• input stealing - acquire sensitive input information by using software or hardware

key loggers.

• output stealing - acquire sensitive output information by using screen or window

capture software.

• session information stealing - acquire sensitive session information such as HTTP

cookies and session IDs through malware or spyware.

• session hijacking - (secretly) control a session and make fraudulent transactions

through malware.

• network attacks- perform the above stealing and hijacking attacks at the network-

level.

We define the capabilities of an attacker at two different levels: host-level and network

level. With host-level capabilities, an attacker can install malicious hardware and software

145

on a public computer and perform the first four types of attacks listed above. With network

level capabilities, an attacker can eavesdrop or tamper with network messages to perform

passive or active network attacks.

We consider three typical types of Web sessions: pure HTTPS sessions, pure HTTP

sessions, and hybrid sessions. In a pure HTTPS session, a Web server uses SSL/TLS

cryptographic protocols to protect all important interactions with an authenticated user,

and a user can also authenticate the Web server by inspecting its certificate. In a pure

HTTP session, a Web server does not provide any transport layer security protection. In

a hybrid session, a Web server uses SSL/TLS cryptographic protocols to protect the user

authentication process, but it uses both HTTP and HTTPS to serve an authenticated user.

Pure HTTPS sessions are supported by high-security institutions such as banks and credit

card companies. Hybrid sessions are used by service providers such as Yahoo Mail. Pure

HTTP sessions are used by websites that provide less sensitive services. For pure HTTPS

sessions, we grant an attacker both the host-level and network-level capabilities. For hybrid

and pure HTTP sessions, we only grant an attacker the host-level capabilities. Recently,

solutions such as SessionLock [2] and ForceHTTPS [42] have been proposed to enhance the

security of hybrid sessions in potentially hostile network environments. For hybrid sessions,

assuming the success of these solutions, we may further grant an attacker the network-level

capabilities.

Like previous studies, we assume that a user's mobile device is a priori secure. In our

design, the simple and explicit communication interfaces between a PDA and a PC further

protect the security of the PDA. Given the prevalence of phishing attacks [20, 25], we also

assume that a user is security conscious and is able to discern phishing through, for example,

146

Extended PDA Browser Regular PC Browser

SessionMagnifier Initial Webpage

-1 Request Processing J head
Regular f Webpage

J Request Authentication! HTTP Requests r ~ Ajax-Snippet ~

~.

~~~ 
·---------------------
---------------------· L+ i B 
HTIP Responses 

• Control 

I I 
....___.,--.... i body 

+ TCP Connection 

-+j Response Generation J ~ 

Figure 5.2: SessionMagnifier high-level architecture. 

inspecting a Web server's certificate validated by the PDA browser. 

5.3.3 Architecture Design 

Figure 5.2 illustrates the high-level architecture of SessionMagnifier. A user simply installs 

the SessionMagnifier extension on a PDA browser; nothing needs to be installed or config-

ured on a regular PC browser, and no third-party proxy is required. At the network layer, 

the PC can access the PDA via TCP connections. At the application layer, the regular 

PC browser communicates with the extended PDA browser using the HTTP protocol. A 

user directly uses the PDA browser to establish a Web session with a remote Web server. 

The SessionMagnifier extension is responsible for synchronizing the latest HTML webpage 

document from the PDA browser to the PC browser, and it is also responsible for accepting 

interactions initiated from the PC browser and securely performing these interactions on 

the PDA browser. 

The simple architecture of SessionMagnifier leverages two important features of mod-

ern Web browsers: end-user extensibility [147, 157] and Ajax (Asynchronous JavaScript 



147 

and XML) technology [135]. End-user extensibility allows the SessionMagnifier browser 

extension to maximize its capabilities and seamlessly integrate its functionalities with mod

ern browsers. Ajax technology enables a regular PC browser to periodically send HTTP 

requests to SessionMagnifier and maintain the communication with the PDA browser. End

user extensibility is well supported by popular browsers such as Firefox [147] and Internet 

Explorer [157], and Ajax technology has received wide acceptance among all popular Web 

browsers [135]. Therefore, SessionMagnifier can be practically implemented and deployed 

on popular Web browsers. 

In a kiosk browsing environment, establishing TCP connections between a PDA and a 

PC is feasible, and having Internet access for a PDA is also feasible. Using Wi-Fi, a user 

can easily establish both types of network connections. If Wi-Fi is not available, a user 

can use USB or Bluetooth to enable TCP connections between a PDA and a PC; mean

while, using various Internet access over USB or Internet access over Bluetooth techniques 

(e.g., Microsoft ActiveSync [168]), a user can also easily obtain Internet access for a PDA. 

Therefore, SessionMagnifier can be practically used in kiosks. 

The SessionMagnifier extension consists of four main components: connection control, 

request authentication, request processing, and response generation. In addition, it also 

contains an initial webpage, which is an HTML file to be sent to a regular PC browser. We 

still use the previous motivating example to describe the roles played by the four components 

and the initial webpage in a kiosk browsing session. 



148 

5.3.3.1 Connection Control 

When Alice turns on the SessionMagnifier extension installed on the PDA browser, the 

connection control component starts to work. This component uses a server socket to 

listen for new incoming connections from a PC. The server socket is TCP-based so that 

connections can be directly made from a regular PC browser. After the server socket binds 

to the IP address (e.g., 192.168.1.3, assigned by the kiosk LAN network) and a TCP port 

(e.g., 3000) of the PDA, the connection control component will display the URL address of 

SessionMagnifier (e.g., http:/ /192.168.1.3:3000) to Alice. 

Establishing the connection from a PC browser to the PDA browser is just like visiting 

a regular website. Alice simply types the URL address of SessionMagnifier into the address 

bar of the regular PC browser and sends out an initial HTTP request. When the connection 

control component of SessionMagnifier receives this initial HTTP request, it displays the 

source IP address of the request in a dialog box and asks Alice to confirm this connection. 

This confirmation dialog box is employed to help Alice make sure that the initial connection 

request does come from her PC. 

If Alice accepts this initial connection request, the connection control component will 

read the initial webpage and send it to the PC browser. In an analogy, the initial webpage 

of SessionMagnifier is like the homepage of a regular website. The body of the initial 

webpage is very simple. It provides a simple form to ask Alice to submit a one-time 

password. The head of the initial page mainly contains Ajax-Snippet, which is a set of 

XHR (XMLHttpRequest) [135] related objects and functions. After the initial webpage 

is loaded on the PC browser, Ajax-Snippet will periodically send out "POST" type XHR 

http://192.168.1.3:3000


149 

polling requests to the connection control component of SessionMagnifier. Ajax-Snippet 

sends an XHR polling request and the connection control component returns a response; 

therefore, all further communication between the PC browser and the PDA browser can be 

automatically carried out. 

If Ajax-Snippet receives a response message that contains a new webpage document, 

it will smoothly update the head and body of the initial webpage to keep the webpage 

content on the PC browser synchronized with that on the PDA browser. Meanwhile, Ajax

Snippet always resides in the head of the current webpage on the PC browser to maintain 

the communication with the PDA browser. Ajax-Snippet uses "POST" type XHR polling 

requests so that any interaction information such as link clicking or form filling on the PC 

browser can be directly piggybacked onto an XHR polling request and sent to the PDA 

browser. 

5.3.3.2 Request Authentication 

The one-time password mentioned above is generated and stored by SessionMagnifier on 

the PDA browser. On the PC browser, the same password submitted by Alice will not 

be transmitted to the PDA; it is just stored and used by Ajax-Snippet to compute the 

HMAC (keyed-Hash Message Authentication Code) [153] for each XHR polling request. 

Before sending an XHR polling request, Ajax-Snippet computes an HMAC for the header 

and content of the request and appends the HMAC as an additional parameter of the 

request-URI [27]. 

When the connection control component of SessionMagnifier receives an XHR polling 

request, it will forward the request to the request authentication component. The request 



150 

authentication component will then compute a new HMAC for the received request (discard

ing the additional HMAC parameter) and compare the computed HMAC with the HMAC 

embedded in the request-URI. If the two HMACs are identical, the XHR polling request is 

regarded as valid and is further forwarded to the request processing component. We use 

such a request authentication mechanism to protect the browsing session on the PDA and 

to ensure that SessionMagnifier only processes the requests sent from Alice's PC browser. 

5.3.3.3 Request Processing 

When the request processing component receives a valid X:ijR polling request, it will perform 

two tasks: new content checking and interaction information merging. The former is to 

check whether new webpage document on the PDA browser needs to be synchronized to 

the PC browser. The later is to check whether a user's interaction information on the PC 

browser needs to be merged to the PDA browser. 

SessionMagnifier keeps a timestamp for the latest webpage document on the PDA 

browser. A timestamp used by SessionMagnifier is the number of milliseconds since mid

night of January 1st, 1970. Whenever a new webpage document is synchronized to the 

PC browser, the timestamp of the document is also sent to Ajax-Snippet using the same 

response message. Whenever Ajax-Snippet sends an XHR polling request to SessionMag

nifier, it carries back the timestamp of the current webpage document on the PC browser 

using the same request message. 

The request processing component compares the two timestamp values to determine 

whether the webpage document on the PC browser is outdated. If the timestamp of the 

webpage document on the PC browser is older than that on the PDA browser, the request 



151 

processing component informs the response generation component to synchronize the new 

webpage document on the PDA browser to the PC browser. Otherwise, it simply informs the 

response generation component to send back an empty response message to Ajax-Snippet. 

The request processing component also examines the content of this "POST " type 

XHR polling request to see whether any interaction information is carried back from the 

PC browser. If new interaction information is carried in the XHR polling request, the 

request processing component will further execute the following four steps to merge the 

interaction information to the PDA browser. First, it will accurately reflect the interaction 

information (e.g., form filling information) to the corresponding webpage elements on the 

PDA browser. Second, it will highlight these webpage elements and scroll them into the 

view window of the PDA browser. Third, it will display a modal dialog box to ask Alice 

to verify the highlighted webpage elements. Finally, if Alice confirms that the interaction 

information reflected on the PDA browser is what she did on the PC browser, the request 

processing component will actually perform the interaction (e.g., submitting a form) on the 

PDA browser; otherwise, the request processing component will undo the changes made 

in the first two steps and ignore the interaction information carried in this XHR polling 

request. By only performing confirmed interaction information on the PDA browser, the 

request processing component assures a user that important interaction information is not 

tampered with or injected by attackers. 

5.3.3.4 Response Generation 

The response generation component is the most critical component of SessionMagnifier, and 

it poses three main design challenges: (1) how to enable high-quality webpage document 



Latest 
Webpage 
Document 

Cloned 
Webpage 
Document 

SessionMagnifier 

Modified 
Webpage 
Document 

G) tagging ® cloning @ modifying @) generating 
L----------------------------------------

Figure 5.3: Response generation procedure. 

152 

synchronization from the PDA browser to the PC browser, (2) how to enable accurate 

user interaction on the PC browser, and (3) how to prevent sensitive information from 

leaking out of the PDA. When a new webpage document is loaded on the PDA browser, 

the response generation component uses the procedure shown in Figure 5.3 to generate a 

response message for the PC browser. This procedure consists of four main steps: tagging, 

cloning, modifying, and generating. We now detail these four steps to explain how we 

addressed the design challenges of the response generation component. 

(1} Tagging: In the tagging step, the response generation component adds id at-

tributes [154] to the interested actionable elements of the latest webpage document on the 

PDA browser. We define interested actionable elements as the elements on which keyboard 

or mouse interactions will trigger the loading of a new webpage document. For example, 

links, forms, and clickable input elements outside of the forms are all regarded as interested 

actionable elements. 

Tagging allows SessionMagnifier to simply use unique element identifiers to accurately 

track interested actionable elements on both the PC browser and the PDA browser. By 



153 

directly tagging the web page document on the PDA browser, the response generation com

ponent saves memory space and avoids the complexity of using any additional mapping 

mechanisms. Note that the response generation component only tags those interested ac

tionable elements that do not have an id attribute, so it will not affect the behavior of the 

webpage document on the PDA browser. 

(2) Cloning: In the cloning step, the response generation component uses the standard 

cloneNode DOM (Document Object Model) [191] method to clone a complete copy of the 

above tagged webpage document. Using a cloned webpage document has two advantages. 

One is that standard DOM methods can still be handily used to modify the webpage. The 

other is that any further modification is only made to this cloned copy without polluting 

the web page document on the PDA browser. 

(3) Modifying: In the modifying step, the response generation component makes three 

main modifications to the cloned webpage document: URL address modification, event 

handler modification, and sensitive information filtering. 

In general, each HTML webpage document has a set of associated supplementary objects 

such as stylesheets, images, and scripts. After loading a webpage document synchronized 

from the PDA browser, the PC browser must also download the associated supplementary 

objects in order to accurately render the webpage. To support the downloading of supple

mentary objects, the response generation component changes all the relative URL addresses 

contained in the cloned webpage document to the absolute URL addresses of the original 

Web servers. Without such a modification, the PC browser will send all relative URL 

requests to the PDA browser because it actually always connects to the SessionMagnifier 

browser extension on the PDA browser. 



154 

To track Alice's interaction with the same web page on the PC browser, the response gen

eration component must change the event handlers of those interested actionable elements. 

For form elements, the response generation component changes their onsubmit event han

dlers by adding a call to a specific JavaScript function residing in Ajax-Snippet. Therefore, 

later on when Alice submits a form on the PC browser, the id attribute value and element 

values of the form will be passed to Ajax-Snippet and then sent back to SessionMagnifier 

via an XHR polling request. In a similar way, the response generation component changes 

onclick event handlers of links and other clickable input elements outside of the forms to 

track click interactions performed on the PC browser. 

Filtering sensitive information is much simpler in SessionMagnifier than in existing solu

tions [49, 71, 92, 98]. The main reason is that SessionMagnifier only synchronizes webpage 

documents to the PC browser, and no session control information such as HTTP cookies 

will be leaked to the PC. Therefore, the response generation component only needs to filter 

out sensitive information contained in a webpage document itself. To achieve this goal, the 

response generation component mainly uses the following two strategies. 

One is to remove any possibly sensitive information that is useless to the interaction and 

display of the webpage on the PC browser. For example, webpages often contain sensitive 

information such as session IDs in their URL links and form action attributes. The response 

generation component simply sets all form action attribute values to empty, and it also sets 

all link href attribute values to empty. Note that tracking form submitting and link clicking 

is enabled by the above event handler modifications; therefore, the original action and href 

attribute values are useless to the interaction of a webpage on the PC browser. 

The second strategy is to obfuscate personalized sensitive information. The basic idea 



155 

is to replace user-specified sensitive information with information that is meaningless to 

attackers. For example, many websites display username information on their webpages 

for a logged-in user. Preventing the leakage of username information is important for 

protecting against attacks such as invasive advertising, password guessing, and even denial

of-service [12, 32]. SessionMagnifier maintains a rule table, in which simple filtering rules 

are defined by a user to specify which information should be obfuscated for each specific 

website. These rules could be defined for stable values (e.g., username), and they could also 

be defined for dynamic values (e.g., online banking balance) if the corresponding HTML 

elements of those values have stable IDs. The response generation component simply applies 

the rules to remove sensitive information contained in the cloned webpage document. 

(4) Generating: In the last step, the response generation component extracts informa

tion from the modified webpage document and generates an XML-format response message. 

The response message is in XML-format so that later Ajax-Snippet can accurately extract 

structured response information from the responseXML attribute of an XHR object. The 

modified webpage document is an HTML document, but an XHR object expects to receive 

a valid XML document. Since HTML webpages are often malformed, directly sending a 

modified webpage document to Ajax-Snippet will often result in parsing errors. Therefore, 

the response generation component will extract essential head and body information from 

a modified webpage document, encapsulate the extracted information in an XML-format 

response message, and finally send out the response message to Ajax-Snippet. 



156 

5.3.3.5 Initial Webpage 

We mentioned that after the initial webpage is loaded on the PC browser, Ajax-Snippet will 

always keep itself within the head of the current web page on the PC browser and periodically 

send out "POST" type XHR polling requests to communicate with SessionMagnifier. 

Whenever Ajax-Snippet receives an XML-format response message that contains a new 

webpage document, it will first use the head information contained in the response message 

to replace the head of the current webpage on the PC browser. To support proper rendering 

on different browsers such as Internet Explorer and Firefox, Ajax-Snippet detects the type of 

the PC browser and performs this replacement for each top-level child of the head element. 

Ajax-Snippet will then use the body information contained in the response message to 

replace the body of the current webpage on the PC browser. By combining the structural 

advantages of using DOM methods and the simplicity advantages of using the innerHTML 

property of HTML elements, Ajax-Snippet can smoothly and accurately keep the webpage 

content on the PC browser synchronized with that on the PDA browser. 

Meanwhile, whenever Alice interacts with an interested actionable element of the syn

chronized webpage on the PC browser, a call to a specific JavaScript function is made to 

extract the interaction information. The extracted information will be carried in the content 

of the next XHR polling request and synchronized to SessionMagnifier. 

5.4 Implementation 

The SessionMagnifier browser extension is designed to be implementable on different Web 

browsers. Indeed, only the connection control component is browser-specific; the request 



157 

authentication, request processing, and response generation components and the initial 

webpage can all be implemented using standard JavaScript and HTML that are supported 

by modern Web browsers. 

We implemented a full-fledged SessionMagnifier browser extension for Mozilla's Fennec 

browser [171], which is the mobile version of Firefox and is currently in alpha release. 

Similar to Firefox, Fennec provides full support for add-ons and rich Internet applications. 

Our SessionMagnifier extension for Fennec is purely written in JavaScript and HTML. Due 

to the space limit, we only briefly describe the implementation of the connection control 

component that is specific to Fennec, and delineate the webpage content and interaction 

synchronization capabilities of SessionMagnifier in our current implementation. 

We implemented the connection control component of SessionMagnifier as a server socket 

object of Mozilla's nsiServerSocket interface [172]. For this server socket object, we created a 

socket listener object of Mozilla's nsiServerSocketListener interface [172] to asynchronously 

accept incoming TCP connections, and we also associated a data listener object of Mozilla's 

nsiStreamListener interface [172] to a connected socket transport to asynchronously accept 

HTTP requests. In a Fennec browser extension, these objects can be easily created and 

manipulated using JavaScript code to realize the functionality of the connection control 

component. Our preliminary investigation indicates that Internet Explorer also supports 

the creation of a server socket through its BHO (Browser Helper Object) extension mech

anism [157]. 

For webpage content synchronization, SessionMagnifier supports various webpages in

cluding dynamic webpages (e.g., Google Maps) that use Ajax, CSS, or other DHTML 

techniques. SessionMagnifier detects dynamic webpage changes on a PDA browser and 



158 

synchronizes the new content to a PC browser. In principle, any type of webpage content 

could be synchronized by SessionMagnifier. However, the current version of SessionMag

nifier cannot properly synchronize some webpages such as Gmail webpages due to the un

finished implementation on iframe elements. For interaction synchronization, our current 

implementation supports interactions on those interested actionable elements as defined in 

our design. However, SessionMagnifier can also easily synchronize any other interactions 

(e.g., those altering document elements without calling for new data) as long as their cor

responding HTML elements support event handlers (which could be onsubmit, onclick, or 

any other handlers). We will provide support for other necessary interactions in our future 

implementation. 

5.5 Security Analysis 

The security assurances provided by SessionMagnifier can be attributed to three factors: 

using a trusted PDA, accessing a remote Web server directly from a PDA browser, and 

enforcing strong isolation between a PDA and a PC. We now analyze the security of Ses

sionMagnifier based on the threat model and assumptions defined in our design. We must 

emphasize that SessionMagnifier aims to enhance the security of using an untrusted public 

computer for Web browsing, but it does not attempt to secure a kiosk environment itself. 

In other words, the security upper-bound of using SessionMagnifier is equivalent to that of 

using a user's own laptop computer in a kiosk environment. 

Using a trusted PDA, SessionMagnifier is robust against input stealing attacks and 

output stealing attacks. A user simply enters sensitive information such as username and 



159 

password on the PDA browser, so the keyloggers installed on the PC cannot acquire sensi

tive input information. Meanwhile, user-specified information is obfuscated by the response 

generation component of SessionMagnifier, so it is very hard for screen or window capture 

software installed on the PC to acquire sensitive output information. The ability of Ses

sionMagnifier to provide these two types of security assurances is the same as that of other 

solutions to securing kiosk browsing sessions [49, 71, 92, 98]. 

Accessing a remote Web server directly from the PDA browser is a unique feature of 

SessionMagnifier because other solutions [49, 71, 92, 98] all use the browser on an untrusted 

computer to establish a Web session with a remote Web server. Besides, SessionMagnifier 

enforces a strong isolation between a PDA and a PC by only allowing HTTP communica

tions. Combining these two factors, SessionMagnifier provides high security assurances to 

protect against other three types of attacks: session information stealing attacks, session 

hijacking attacks, and network attacks. 

SessionMagnifier is robust against session information stealing attacks. Since Session

Magnifier only synchronizes the content of a modified HTML document from the PDA 

browser to the PC browser, session information such as HTTP cookies will never be leaked 

to the PC. Meanwhile, since all useless values such as form action attribute values and 

link href attribute values are simply set to empty by the response generation component 

of SessionMagnifier, no session IDs contained in these values will be revealed to the PC. 

Preventing the leakage of HTTP cookies and session IDs is important because an attacker 

can use them to further steal other sensitive user data or hijack browsing sessions. Un

fortunately, this type of security assurance is not considered in [98], and it is considered 

in [49, 71, 92] by employing very complex filtering rules and mapping mechanisms. 



160 

SessionMagnifier is robust against session hijacking attacks. Since a Web session is 

established between the PDA browser and a remote Web server, malware installed on the 

PC cannot directly seize the control of a session to make fraudulent transactions. The 

only possible way for an attacker to hijack a session is to tamper with or inject interaction 

information in an XHR polling request. SessionMagnifier defends against such attacks by 

using its request processing component to accurately reflect interaction information on the 

PDA browser and only perform user-confirmed interactions. Protection against session 

hijacking is also considered in [49, 71, 92, 98]. However, because these solutions use the 

PC browser to establish a Web session with a remote Web server, they must perform 

very complex request validations but still cannot achieve the same security level as that of 

SessionMagnifier. 

In terms of network attacks, SessionMagnifier ensures end-to-end security between a 

trusted mobile device and a remote Web server by directly using existing HTTPS connec

tions. For pure HTTPS sessions, SessionMagnifier is robust against network attacks. For 

hybrid sessions, SessionMagnifier is robust against network attacks for HTTPS webpages. 

For pure HTTP sessions, there is no strong incentive to defend against network attacks be

cause in general Web servers that do not use SSL/TLS only provide less sensitive services. 

Existing solutions [49, 71, 92, 98] provide similar security guarantees against network attacks 

as provided by SessionMagnifier; however, they often necessitate an additional SSL/TLS 

connection or encryption channel still mainly because they use the PC browser to establish 

a Web session with a remote Web server. 



161 

5.6 Evaluation 

In this section, we focus on evaluating the usability of SessionMagnifier. We also briefly 

present the performance and feasibility evaluation results. 

5.6.1 Usability Evaluation 

Our primary goal is to measure whether using SessionMagnifier is more convenient than 

merely using a PDA browser. To achieve this goal, we conducted a usability study based 

on a real eBay bidding scenario. 

5.6.1.1 Participants 

Twenty-two adults, 11 females and 11 males, participated in this study. Nineteen partici

pants were between ages of 18 and 30, and three participants were over 30 years old. We 

did not screen participants based on experiences using different Web browsers, using mobile 

devices, or using eBay services. 

5.6.1.2 Scenario and Procedure 

We presented such a scenario to each participant: "Suppose you want to bid a book titled 

'Xbox 360 games in a nutshell' at eBay.com. You visit www.ebay.com and sign into an 

eBay testing account. You search the book using its title and find the item. You place a 

higher bid by adding one dollar and get confirmation that you are currently the highest 

bidder. Finally you sign out of the eBay website.". Note that the book item was added to 

eBay using a seller's account created by us, and the eBay testing account was also created 

by us. 

http://www.ebay.com


162 

TAl: On PDA, type the address www.ebay.com into the address bar of Fennec 
TA2: On the "homepage" of eBay, click on the "Sign in" link 
TA3: On the "welcome page" of eBay, sign into the testing account 
TA4: On the "logined page", type "Xbox 360 games in a nutshell" into the "Find" input 
field 
TA5: On the "logined page", click on the "Search" button 
TA6: On the "search result page", click on the link item "Xbox 360 games in a nutshell" 
TA7: On the "item page", type a higher amount into the "Your maximum bid" input field 
TA8: On the "item page", click on the "Place Bid" button 
TA9: On the "review and confirm bid page", click on the "Confirm Bid" button 
TAIO: On the "bid confirmation page", click on the "Sign out" link 

Table 5.1: The 10 tasks in procedure A. 

We asked each participant to perform this eBay bidding scenario using two procedures 

A and B. In procedure A, a participant only uses a PDA; in procedure B, a participant 

uses both a PDA and a PC. We used a Nokia N810 Internet Tablet as the PDA, and 

we pre-installed a Fennec browser [171 J and our SessionMagnifier browser extension on it. 

In procedure A, each participant used the Fennec browser (with SessionMagnifier turned 

off) on the PDA to perform the bidding scenario. In procedure B, each participant used 

the Fennec browser (with SessionMagnifier turned on) on the PDA and a regular browser 

on a PC to perform the bidding scenario. We randomly assigned 11 participants to first 

perform procedure A and the other 11 participants to first perform procedure B. Before a 

test, we trained each participant on the use of the PDA and the Fennec browser. We also 

explained the purpose of SessionMagnifier, and it seems that all the participants understood 

the threats addressed by SessionMagnifier. 

The step-by-step tasks for the two procedures are listed in Tables 5.1 and 5.2, respec-

tively, and we presented these two task lists to each participant. Procedure A has 10 tasks 

and procedure B has 18 tasks. Each task is a specific browsing action such as clicking on 

the "Sign in" link or typing "Xbox 360 games in a nutshell" into the "Find" input field. 

http://www.ebay.com


163 

TB1: On PDA, type the address www.ebay.com into the address bar of Fennec 
TB2: On PDA, on the "homepage" of eBay, click on the "Sign in" link 
TB3: On PDA, on the "welcome page" of eBay, sign into the testing account 
TB4: On PDA, click on the "Sync On" toolbar button 
TB5: On PC, type the address http:f/192.168.1.3:3000 into the address bar of a browser 
TB6: On PC, submit the one-time password to synchronize browsers 
TB7: On PC, on the "logined page", type "Xbox 360 games in a nutshell" into the "Find" 
input field 
TB8: On PC, on the "logined page", click on the "Search" button 
TB9: On PDA, verify the highlighted form on the "logined page" and confirm the form 
submission action 
TB10: On PC, on the "search result page", click on the link item "Xbox 360 games in a 
nutshell" 
TB11: On PDA, verify the highlighted link on the "search result page" and confirm the 
click action 
TB12: On PC, on the "item page", type a higher amount into the "Your maximum bid" 
input field 
TB13: On PC, on the "item page", click on the "Place Bid" button 
TB14: On PDA, verify the highlighted input field on the "item page" and confirm the input 
action 
TB15: On PC, on the "review and confirm bid page", click on the "Confirm Bid" button 
TB16: On PDA, verify the highlighted button on the "review and confirm bid page" and 
confirm the click action 
TB17: On PC, on the "bid confirmation page", click on the "Sign out" link 
TB18: On PDA, verify the highlighted link on the "bid confirmation page" and confirm the 
click action 

Table 5.2: The 18 tasks in procedure B. 

Procedure B has more tasks because we asked each participant to verify and confirm all 

the interaction information sent back to the PDA browser. For example, Figure 5.4 shows 

a picture of performing the task TB9 on Fennec. After the search of "Xbox 360 games in a 

nutshell'' performed on the PC browser is reflected on Fennec, SessionMagnifier highlights 

the border of the search form with red color and displays a modal dialog box on the PDA. 

Using this dialog box, a participant can either confirm this form submission by clicking on 

the "OK" button or ignore this form submission by clicking on the "Cancel" button. 

http://www.ebay.com
http://192.168.1.3:3000


164 

;:M·'.'"·~....,, 

Figure 5.4: Performing the task TB9 on Fennec. 

5.6.1.3 Data Collection 

We collected data through observation and obtaining feedback from participants. When 

a participant was performing the two procedures, we observed the progress of the tasks. 

After a participant finished the two procedures, we asked the participant to answer 16 

close-ended five-point Likert-scale (Strongly disagree, Disagree, Neither agree nor disagree, 

Agree, Strongly Agree) [166] questions. These 16 questions are listed in Table 5.3 (Q1 to 

Q6 were asked for both procedures). We also asked participants to write down open-ended 

comments on using SessionMagnifier. 

5.6.1.4 Results and Analysis 

We observed that all the 22 participants successfully finished the two procedures. We con-

verted the responses to the Likert-scale questions to numeric values (1=Strongly disagree, 



165 

The six questions common to both procedures A and B 
(replacing the 'X' in the questions with 'A' or 'B') 
Ql: Typing into input fields of a webpage in procedure X is easy 
Q2: Clicking links of a webpage in procedure X is easy 
Q3: Clicking buttons of a webpage in procedure X is easy 
Q4: Scrolling a webpage in procedure X is easy 
Q5: Viewing webpage content in procedure X is easy 
Q6: Overall, performing procedure X is easy 
The four questions specific to procedure B 
QB1: Typing the URL address http:f/192.168.1.3:3000 of SessionMagnifier into the address 
bar of a PC browser in procedure B is easy 
QB2: Clicking the "Sync On" toolbar button in procedure B is easy 
QB3: Verifying a highlighted element (form, link, button) in procedure B is easy 
QB4: Confirming an action (form, link, button) using the dialog box in procedure B is easy 

Table 5.3: The 16 close-ended questions. 

2=Disagree, 3=Neither agree nor disagree, 4=Agree, 5=Strongly Agree) and compared the 

responses to procedures A and B using t-tests. Strictly speaking, since the responses are 

ordinal data, they do not necessarily have interval scales. However, in practice this type of 

analysis is acceptable [16]. 

Figure 5.5 illustrates the mean ratings to questions Q1 to Q6 for the two procedures. 

We can see that for all the six questions the mean ratings to procedure B are much higher 

than those to procedure A. The t-tests (with 95% confidence interval) further reveal that 

the mean rating differences between the two procedures are significant for each of the six 

questions. These results clearly indicate that SessionMagnifier enables users to exploit the 

usability advantages of using the large keyboard and display of a PC. 

Using a similar method, we analyzed the responses to the four questions specific to 

procedure B. The mean ratings to questions QB1 to QB4 are: 3.96, 4.09, 3.64, and 3.86, 

respectively. One-sample t-test (with 95% confidence interval) against the test value of 

three shows that the mean ratings to these questions are higher than three with statistical 

significance. These results indicate that performing the specific interactions introduced in 

http://192.168.1.3:3000


5.00 
4.50 

4.00 
3.50 

"' Cl 3.00 

~ 2.50 
c:: 2.00 
:B 1.50 :::;: 

1.00 
0.50 

0.00 
Typing Unk Button Scrolling VieH ing C>.leraO 

OICking Oicking 

R'ocedureA 
Cl A"ocedure B 

Figure 5.5: Mean ratings to questions Ql to Q6. 

procedure B is not difficult to users. 

166 

We further analyzed participants' open-ended comments on using SessionMagnifier. We 

found that 14 participants clearly mentioned that typing into input fields and viewing web-

pages are very convenient in procedure B. We also found that nine participants mentioned 

that it would be better if the number of verifying and confirming steps could be reduced. 

We should note that verification and confirmation are necessary steps for important in-

teractions, and they were or should be considered in other splitting-trust based solutions. 

Moreover, SessionMagnifier allows a user to bypass this verification and confirmation step 

using the "Auto On" toolbar button. In procedure B, we disabled the "Auto On" feature 

to measure the worst case usability, but we believe that a user can actually be trained to 

use this feature to confidently bypass less important interactions. 

5.6.2 Performance and Feasibility Evaluation 

In our performance evaluation, we mainly measured the speed of SessionMagnifier in re-

sponse generation (i.e., the procedure illustrated in Figure 5.3) and response transmission. 

We used Fennec to visit five homepages. The page size and response generation time (av-

erage of five runs) of these homepages are listed in Table 5.4. We can see that the larger 



167 

Site Name Page Size (KB) Generation Time (second) 
google.com 8.9 0.36 
ebay.com 49.5 1.37 
bestbuy.com 80.2 2.64 
weather.com 148.7 2.71 
amazon.com 201.1 3.03 

Table 5.4: Page size and response generation time of five homepages. 

and more complex the HTML page is, the more generation time is needed. Response gen-

eration is not very efficient for large webpages, but we believe that the main reason is the 

poor memory management in the current alpha release of Fennec. Using the Linux top 

command, we observed that even without SessionMagnifier, Fennec requires over 107% of 

memory (128MB RAM) on Nokia N810 Internet Tablet by just loading the google.com 

homepage; however, the built-in browser on Nokia N810 only requires less than 78% of 

memory even when loading the amazon.com homepage. We believe that increasing memory 

or an improved Fennec can help reduce the response generation time of SessionMagnifier. 

In terms of the response transmission speed, since the PDA and the PC are located in the 

same LAN, the generated response message can normally be transmitted from the PDA to 

the PC within a second. 

In our feasibility evaluation, we mainly tested whether TCP connections between a PDA 

and a PC can be established via Wi-Fi in kiosk environments. We conducted experiments 

at 20 public places (seven hotels, seven restaurants, three libraries, two gyms, and one 

coffee shop) that offer free Wi-Fi Internet access. Since some places do not provide public 

computers, we used a laptop to act as a public PC. At each place, we did not do any 

special configuration on either the PDA (the Nokia N810 Internet Tablet) or the PC, but 

just connected them to the same Wi-Fi access point to acquire IP addresses. We observed 

that TCP connections between the PDA and the PC are blocked (perhaps due to strict 



168 

security restrictions) at three hotels and two restaurants. At the other fifteen places, the 

PC can connect to the PDA using a TCP port (e.g. 3000), and we successfully performed 

Web browsing using SessionMagnifier. These results indicate that it is practical to use 

SessionMagnifier at many free Wi-Fi hotspots. Meanwhile, as mentioned in the design 

section, a kiosk environment that plans to enable SessionMagnifier can also use USB or 

Bluetooth, in addition to Wi-Fi. 

5.7 Summary 

We presented SessionMagnifier, a simple approach to secure and convenient kiosk brows

ing. Leveraging the end-user extensibility and Ajax technology of modern Web browsers, 

SessionMagnifier enables an extended browser on a mobile device and a regular browser 

on a public computer to collaboratively support a Web session. SessionMagnifier strives to 

synthesize the usability advantages of a public computer and the security advantages of a 

mobile device. Since a Web session is directly established between the PDA browser and a 

remote Web server, SessionMagnifier provides a strong end-to-end security guarantee and 

greatly reduces the complexity of content and control filtering. Since a user can perform the 

majority of browsing interactions from the PC and only perform very sensitive interactions 

from the PDA, SessionMagnifier enables a user to fully take advantage of the convenience 

of using a PC. We presented the design of SessionMagnifier in detail and analyzed the secu

rity of SessionMagnifier using a rigorous threat model. We implemented SessionMagnifier 

for Mozilla's Fennec browser and evaluated its usability, performance, and feasibility. Our 

evaluation and analysis demonstrate that SessionMagnifier is simple, secure, and usable. 



169 

In future work, we will enhance the implementation and evaluation of SessionMagnifier. 

In particular, we will improve our usability evaluation, for example, by gathering informa

tion about participants' experience with mobile devices, by allowing participants to use our 

tool with only basic instead of step-by-step instructions, by collecting data illustrating par

ticipants' thoughts on security aspects of using our tool, and by incorporating some security 

attack scenarios. 



Chapter 6 

Conclusions and Future Work 

In the previous chapters, we have introduced this dissertation and detailed its four 

main contributions in enhancing Web browsing security. In this final chapter, we make 

conclusions and outline the future work. 

6.1 Conclusions 

Traditionally, attackers mainly focused on directly breaking into Web servers to acquire 

sensitive information or damage the systems. However, in recent years, Web browsers have 

gained increasing popularity as new attack vectors for launching various severe attacks such 

as drive-by download, cross-site scripting, phishing, privacy, and even large-scale denial 

of service attacks. Browser-based attacks are rampant over the Internet and have caused 

substantial damage to both Web users and service providers. Enhancing Web browsing 

security is therefore of great need and importance, and it has also become much more 

challenging than before. 

170 



171 

This dissertation concentrates on enhancing the Web browsing security through explor

ing and experimenting with new approaches and software systems. Specifically, we have 

systematically studied four challenging Web browsing security problems: HTTP cookie 

management, phishing, insecure JavaScript practices, and browsing on untrusted public 

computers. We have proposed new approaches to address these problems, and built unique 

systems to validate our approaches. Our contributions include an automatic HTTP cookie 

management system, a transparent phishing protection system, a large-scale measurement 

of insecure JavaScript practices on the Web, and a simple approach to secure and convenient 

kiosk browsing. The four Web browsing security problems studied in this dissertation are 

real-world important problems, and our solutions presented in this dissertation are unique, 

meaningful, and useful. 

6.2 Future Work 

As malicious activities have increasingly become Web-based and as attackers have become 

more and more economically motivated and adaptable, enhancing Web browsing security 

will continue to be of critical importance. In the near future, I will keep the focus of my re

search on security, especially Web browsing security. For one example, based on the insecure 

JavaScript practice characterization work presented in Chapter 4, I will study JavaScript ob

fuscation and de-obfuscation activities to build browser-based anomaly intrusion detection 

systems. For another example, based on my experience in building CookiePicker (Chap

ter 2), BogusBiter (Chapter 3), and SessionMagnifier (Chapter 5), I will propose other 

new approaches to protect users' username and password credentials against various iden-



172 

tity theft malware. In addition to enhancing Web browsing security, I will continue to do 

research on collaborative browsing and mobile browsing, and I also plan to study cloud 

computing. Web browsers have increasingly become the dominant platform for both cur

rent and future end-user applications, and I believe that there are many interesting Web 

browsing research problems worth investigating in the future. 



Bibliography 

[1] BEN ADIDA. BeamAuth: Two-factor web authentication with a bookmark. In Pro
ceedings of the CCS, pages 48-57, 2007. 

[2] BEN ADIDA. Sessionlock: securing web sessions against eavesdropping. In Proceedings 
of the WWW, 2008. 

[3] L. AHN, M. BLUM, N. HOPPER, AND J. LANGFORD. CAPTCHA: Using hard AI 
problems for security. In Proceedings of the Eurocrypt, pages 294-311, 2003. 

[4] RAIHAN AL-EKRAM, ARCHANA ADMA, AND OLGA BAYSAL. diffx: an algorithm 
to detect changes in multi-version xml documents. In Proceedings of the GASCON, 
pages 1-11, 2005. 

[5] DIRK BALFANZ AND EDWARD W. FELTEN. Hand-held computers can be better smart 
cards. In Proceedings of the USENIX Security Symposium, 1999. 

[6] THOMAS BALL AND JAMES R. LARUS. Optimally profiling and tracing programs. 
ACM Trans. Program. Lang. Syst., 16(4):1319-1360, 1994. 

[7] ADAM BARTH, COLLIN JACKSON, AND JOHN C. MITCHELL. Robust defenses for 
cross-site request forgery. In Proceedings of the CCS, 2008. 

[8] IRA D. BAXTER, ANDREW YAHIN, LEONARDO MOURA, MARCELO SANT'ANNA, 
AND LORRAINE BIER. Clone detection using abstract syntax trees. In Proceedings of 
the ICSM, 1998. 

[9] L. BENT, M. RABINOVICH, G. M. VOELKER, AND Z. XIAO. Characterization of a 
large web site population with implications for content delivery. In Proceedings of the 
WWW, pages 522-533, 2004. 

[10] PHILIP BILLE. A survey on tree edit distance and related problems. Theor. Comput. 
Sci., 337(1-3):217-239, 2005. 

[11 J DOMINIK BIRK, MAXIMILLIAN DORNSEIF, SEBASTIAN G AJEK, AND FELIX 
GROBERT. Phishing phishers - tracing identity thieves and money launderer. Tech
nical Report, Horst-Gortz Institute of Ruhr-University of Bochum, 2006. 

[12] ANDREW BORTZ, DAN BONER, AND PALASH NANDY. Exposing private information 
by timing web applications. In Proceedings of the WWW, pages 621-628, 2007. 

173 



174 

[13] STEFANO CERI, PIERO FRATERNAL!, ALDO BONGIO, MARCO BRAMBILLA, SARA 
COMA!, AND MARISTELLA MATERA. Designing Data-Intensive Web Applications. 
Morgan Kaufmann, ISBN 1-55860-843-5, 2002. 

[14] SCOTT CHAPMAN AND GURPREET DHILLON. Privacy and the internet: the case of 
doubleclick, inc, 2002. 

[15] SHUO CHEN, JOSE MESEGUER, RALF SASSE, HELEN J. WANG, AND YI-MIN WANG. 
A systematic approach to uncover security flaws in gui logic. In Proceedings of the 
2007 IEEE Symposium on Security and Privacy (Sf3P), pages 71-85, 2007. 

[16] SONIA CHIASSON, P. C. VAN OORSCHOT, AND ROBERT BIDDLE. A usability study 
and critique of two password managers. In Proceedings of the USENIX Security 
Symposium, pages 1-16, 2006. 

[17] NEIL CHOU, ROBERT LEDESMA, YUKA TERAGUCHI, AND JOHN C. MITCHELL. 
Client-side defense against web-based identity theft. In Proceedings of the NDSS, 
2004. 

[18] DWAINE E. CLARKE, BLAISE GASSEND, THOMAS KOTWAL, MATT BURNSIDE, 
MARTEN VAN DIJK, SRINIVAS DEVADAS, AND RONALD L. RIVEST. The untrusted 
computer problem and camera-based authentication. In Proceedings of the Pervasive 
Computing, 2002. 

[19] RACHNA DHAMIJA AND J.D.TYGAR. The battle against phishing: Dynamic security 
skins. In Proceedings of the SOUPS, pages 77-88, 2005. 

[20] RACHNA DHAMIJA, J.D.TYGAR, AND MARTI HEARST. Why phishing works. In 
Proceedings of the CHI, pages 581-590, 2006. 

[21] JULIE S. DOWNS, MANDY B. HOLBROOK, AND LORRIE FAITH CRANOR. Decision 
strategies and susceptibility to phishing. In Proceedings of the SOUPS, pages 79-90, 
2006. 

[22] WOOJONG SuH (EDITOR). Web Engineering: Principles And Techniques. IGI Pub
lishing, ISBN 1-591-40433-9, 2005. 

[23] SERGE EGELMAN, LORRIE FAITH CRANOR, AND JASON HONG. You've been warned: 
An empirical study of the effectiveness of web browser phishing warnings. In Proceed
ings of the CHI, pages 1065-1074, 2008. 

[24] LAURA FALK, ATUL PRAKASH, AND KEVIN BORDERS. Analyzing websites for user
visible security design flaws. In Proceedings of SOUPS, pages 117-126, 2008. 

[25] EDWARD W. FELTEN, DIRK BALFANZ, DREW DEAN, AND DANS. WALLACH. Web 
Spoofing: An Internet Con Game. In Proceedings of the 20th National Information 
Systems Security Conference, 1997. 

[26] IAN FETTE, NORMAN SADEH, AND ANTHONY TOMASIC. Learning to detect phishing 
emails. In Proceedings of the WWW, pages 649-656, 2007, 



175 

[27] R. FIELDING, J. GETTYS, J. MOGUL, H. FRYSTYK, L. MASINTER, P. LEACH, AND 
T. BERNERS-LEE. Hypertext Transfer Protocol- HTTP /1.1, RFC 2616, 1999. 

[28] DAVID FLANAGAN. JavaScript: The Definitive Guide. O'Reilly Media, ISBN 0-596-
10199-6, 2006. 

[29] DINEI FLORENCIO AND CORMAC HERLEY. Klassp: Entering passwords on a spyware 
infected machine using a shared-secret proxy. In Proceedings of the ACSAC, 2006. 

[30] DINEI FLORENCIO AND CORMAC HERLEY. Password rescue: A new approach to 
phishing prevention. In Proceedings of the HOTSEC, 2006. 

[31] DINEI FLORENCIO AND CORMAC HERLEY. A large-scale study of web password 
habits. In Proceedings of the WWW, pages 657-666, 2007. 

[32] DINEI FLORENCIO, CORMAC HERLEY, AND BARIS COSKUN. Do strong web pass
words accomplish anything? In Proceedings of the HOTSEC, 2007. 

[33] SETH FOGlE, JEREMIAH GROSSMAN, ROBERT HANSEN, ANTON RAGER, AND 
PETKO D. PETKOV. XSS Exploits: Cross Site Scripting Attacks and Defense. Syn
gress, ISBN 1-597-49154-3, 2007. 

[34] KEVIN Fu, EMIL SIT, KENDRA SMITH, AND NICK FEAMSTER. Do's and donts of 
client authentication on the web. In Proceedings of the USENIX Security Symposium, 
2001. 

[35] SUJATA GARERA, NIELS PROVOS, MONICA CHEW, AND AVIEL D. RUBIN. A 
framework for detection and measurement of phishing attacks. In Proceedings of 
the WORM, 2007. 

[36] SCOTT GARRISS, RAMON CACERES, STEFAN BERGER, REINER SAILER, LEENDERT 
VAN DOORN, AND XIAOLAN ZHANG. Trustworthy and personalized computing on 
public kiosks. In Proceedings of the MobiSys, 2008. 

[37] JEREMY GOECKS AND ELIZABETH D. MYNATT. Social approaches to end-user pri
vacy management. In Security and Usability: Designing Secure Systems That People 
Can Use, 2005. 

[38] SUHIT GUPTA, GAIL KAISER, DAVID NEISTADT, AND PETER GRIMM. Dom-based 
content extraction of html documents. In Proceedings of the WWW, pages 207-214, 
2003. 

[39] VICKI HA, KORI INKPEN, FARAH AL SHAAR, AND LINA HDEIB. An examination of 
user perception and misconception of internet cookies. In CH1'06 extended abstracts 
on Human factors in computing systems, pages 833-838, 2006. 

[40] J. ALEX HALDERMAN, BRENT WATERS, AND EDWARD W. FELTEN. A convenient 
method for securely managing passwords. In Proceedings of the WWW, pages 471-479, 
2005. 



176 

[41] YAO-WEN HuANG, FANG Yu, CHRISTIAN HANG, CHUNG-HUNG TsAr, DER-TSAI 
LEE, AND SY-YEN Kuo. Securing web application code by static analysis and runtime 
protection. In Proceedings of the WWW, pages 40-52, 2004. 

[42] COLLIN JACKSON AND ADAM BARTH. Forcehttps: protecting high-security web sites 
from network attacks. In Proceedings of the WWW, 2008. 

[43] COLLIN JACKSON, DAN BONEH, AND JOHN MITCHELL. 'fransaction generators: root 
kits for web. In Proceedings of the HOTSEC, pages 1-4, 2007. 

[44] COLLIN JACKSON, ANDREW BORTZ, DAN BONEH, AND JOHN C. MITCHELL. Pro
tecting browser state from web privacy attacks. In Proceedings of the WWW, pages 
737-744, 2006. 

[45] TOM N. JAGATIC, NATHANIEL A. JOHNSON, MARKUS JAKOBSSON, AND FILIPPO 
MENCZER. Social phishing. Commun. ACM, 50(10):94-100, 2007. 

[46] MARKUS J AKOBSSON AND STEVEN MYERS. Phishing and Countermeasures: Un
derstanding the Increasing Problem of Electronic Identity Theft. Wiley-lnterscience, 
ISBN 0-471-78245-9, 2006. 

[47] MARKUS JAKOBSSON AND Sro STAMM. Invasive browser sniffing and countermea
sures. In Proceedings of the WWW, pages 523-532, 2006. · 

[48] MARKUS JAKOBSSON AND ADAM YOUNG. Distributed phishing attacks. In Proceed
ings of the workshop on Resilient Financial Information Systems, 2005. 

[49] RAVI CHANDRA JAMMALAMADAKA, TIMOTHY W. VAN DER HORST, SHARAD 
MEHROTRA, KENT E. SEAMONS, AND NALINI VENKASUBRAMANIAN. Delegate: A 
proxy based architecture for secure website access from an untrusted machine. In 
Proceedings of the ACSAC, 2006. 

[50] TAO JIANG, LUSHENG WANG, AND KAIZHONG ZHANG. Alignment of trees - an 
alternative to tree edit. Theor. Comput. Sci., 143(1):137-148, 1995. 

[51] TREVOR JIM, NIKHIL SWAMY, AND MICHAEL HICKS. Defeating script injection 
attacks with browser-enforced embedded policies. In Proceedings of the WWW, pages 
601-610, 2007. 

[52] SACHINDRA JOSHI, NEERAJ AGRAWAL, RAGHU KRISHNAPURAM, AND SUMIT NEGI. 
A bag of paths model for measuring structural similarity in web documents. In 
Proceedings of the KDD, pages 577-582, 2003. 

[53] STEFAN KALS, ENGIN KIRDA, CHRISTOPHER KRUEGEL, AND NENAD JOVANOVIC. 
Secubat: a web vulnerability scanner. In Proceedings of the WWW, pages 247-256, 
2006. 

[54] SRIKANTH KANDULA, DINA KATABI, MATTHIAS JACOB, AND ARTHUR W. BERGER. 
Botz-4-Sale: Surviving Organized DDoS Attacks That Mimic Flash Crowds. In Pro
ceedings of the Symposium on Networked Systems Design and Implementation (NSDI), 
pages 287-300, 2005. 



177 

[55] GERTI KAPPEL, BIRGIT PROLL, SIEGRIED REICH, AND WERNER RETSCHITZEG
GER (EDs.). Web Engineering: The Discipline of Systematic Development of Web 
Applications. John Wiley & Sons, ISBN 0-470-01554-3, 2006. 

[56] ENGIN KIRDA AND CHRISTOPHER KRUEGEL. Protecting users against phishing at
tacks with AntiPhish. In Proceedings of the COMPSA C, pages 517-524, 2005. 

[57] ENGIN KIRDA, CHRISTOPHER KRUEGEL, GREG BANKS, GIOVANNI VIGNA, AND 
RICHARD A. KEMMERER. Behavior-based spyware detection. In Proceedings of the 
USENIX Security Symposium, pages 273-288, 2006. 

[58] ENGIN KIRDA, CHRISTOPHER KRUEGEL, GIOVANNI VIGNA, AND NENAD JO
VANOVIC. Noxes: a client-side solution for mitigating cross-site scripting attacks. 
In Proceedings of the 2006 ACM symposium on Applied computing (SAC), pages 33Q-
337, 2006. 

[59] DANIEL V. KLEIN. Foiling the cracker - A survey of, and improvements to, password 
security. In Proceedings of the 2nd USENIX Workshop on Security, pages 5-14, 1990. 

[60] BALACHANDER KRISHNAMURTHY AND CRAIG E. WILLS. Cat and mouse: content 
delivery tradeoffs in web access. In Proceedings of the WWW, pages 337-346, 2006. 

[61] D. KRISTOL AND L. MONTULLI. HTTP State Management Mechanism, RFC 2109, 
1997. 

[62] D. KRISTOL AND L. MONTULLI. HTTP State Management Mechanism, RFC 2965, 
2000. 

[63] DAVID M. KRISTOL. Http cookies: Standards, privacy, and politics. ACM Trans. 
Inter. Tech., 1(2):151-198, 2001. 

[64] PONNURANGAM KUMARAGURU, YONG RHEE, ALESSANDRO ACQUISTI, LOR
RIE FAITH CRANOR, JASON HONG, AND ELIZABETH NUNG. Protecting people from 
phishing: The design and evaluation of an embedded training email system. In Pro
ceedings of the CHI, pages 905-914, 2007. 

[65] V. T. LAM, S. ANTONATOS, P. AKRITIDIS, AND K. G. ANAGNOSTAKIS. Puppetnets: 
misusing web browsers as a distributed attack infrastructure. In Proceedings of the 
CCS, pages 221-234, 2006. 

[66] BENJAMIN LIVSHITS AND WEIDONG CUI. Spectator: detection and containment of 
javascript worms. In Proceedings of the USENIX Annual Technical Conference, 2008. 

[67] MIKE TER Louw, JIN SooN LIM, AND V.N. VENKATAKRISHNAN. Extensible Web 
Browser Security. In Proceedings of the DIMVA, 2007. 

[68] CHRISTIAN LUDL, SEAN MCALLISTER, ENGIN KIRDA, AND CHRISTOPHER 
KRUEGEL. On the effectiveness of techniques to detect phishing sites. In Proceedings 
of the DIMVA, 2007. 



178 

[69] BRUCE A. MAH. An empirical model of http network traffic. In Proceedings of the 
INFOCOM, pages 592-600, 1997. 

[70] MOHAMMAD MANNAN AND PAUL C. VAN OORSCHOT. Using a personal device to 
strengthen password authentication from an untrusted computer. In Proceedings of 
the Financial Cryptography, 2007. 

[71] N. BORIS MARGOLIN, MATTHEW WRIGHT, AND BRIAN NEIL LEVINE. Guardian: 
A framework for privacy control in untrusted environments. Technical Report, Uni
versity of Massachusetts, Amherst, 2004. 

[72] JONATHAN M. McCuNE, ADRIAN PERRIG, AND MICHAEL K. REITER. Bump in the 
ether: a framework for securing sensitive user input. In Proceedings of the USENIX 
Annual Technical Conference, 2006. 

[73] EMILIA MENDES AND NILE MOSLEY (EDS.). Web Engineering. Springer, ISBN 
3-540-28196-7, 2005. 

[74] LYNETTE I. MILLETT, BATYA FRIEDMAN, AND EDWARD FELTEN. Cookies and web 
browser design: toward realizing informed consent online. In Proceedings of the CHI, 
pages 46-52, 2001. 

[75] FABIAN MONROSE, MICHAEL K. REITER, AND SUSANNE WETZEL. Password hard
ening based on keystroke dynamics. In Proceedings of the CCS, pages 73-82, 1999. 

[76] K. MOORE AND N. FREED. Use of HTTP State Management, RFC 2964, 2000. 

[77] TYLER MOORE AND RICHARD CLAYTON. Examining the impact of website take
down on phishing. In Proceedings of the APWG eCrime Researchers Summit, 2007. 

[78] ROBERT MORRIS AND KEN THOMPSON. Password security: a case history. Commun. 
ACM, 22(11):594-597, 1979. 

[79] ALEX MOSHCHUK, TANYA BRAGIN, STEVEN D. GRIBBLE, AND HENRY M. LEVY. 
A crawler-based study of spyware in the web. In Proceedings of the NDSS, 2006. 

[80] ALEXANDER MOSHCHUK, TANYA BRAGIN, DAMIEN DEVILLE, STEVEN D. GRIB
BLE, AND HENRY M. LEVY. Spyproxy: Execution-based detection of malicious web 
content. In Proceedings of the USENIX Security Symposium, pages 27-42, 2007. 

[81] SAN MURUGESAN AND YOGESH DESHPANDE (EDS.). Web Engineering: Managing 
Diversity and Complexity of Web Application Development. Springer, ISBN 3-540-
42130-0, 2001. 

[82] TERRI ODA, GLENN WuRSTER, PAUL VAN OORSCHOT, AND ANIL SOMAYAJI. Soma: 
Mutual approval for included content in web pages. In Proceedings of the CCS, 2008. 

[83] ALINA OPREA, DIRK BALFANZ, GLENN DURFEE, AND D. K. SMETTERS. Securing 
a remote terminal application with a mobile trusted device. In Proceedings of the 
ACSAC, 2004. 



179 

[84] BRYAN PARNO, CYNTHIA Kuo, AND ADRIAN PERRIG. Phoolproof phishing preven
tion. In Proceedings of the Financial Cryptography, pages 1-19, 2006. 

[85] BENNY PINKAS AND TOMAS SANDER. Securing passwords against dictionary attacks. 
In Proceedings of the CCS, pages 161-170, 2002. 

[86] THOMAS A. POWELL, DAVID L. JONES, AND DOMINIQUE C. CUTTS. Web Site 
Engineering: Beyond Web Page Design. Prentice Hall, ISBN: 0-13650-920-7, 1998. 

[87] NIELS PROVOS, PANAYIOTIS MAVROMMATIS, MOHEEB ABU RAJAB, AND FABIAN 
MONROSE. All your iframes point to us. In Proceedings of the USENIX Security 
Symposium, 2008. 

[88] CHARLES REIS, JOHN DUNAGAN, HELEN J. WANG, 0PHER DUBROVSKY, AND SA
HER ESMEIR. Browsershield: vulnerability-driven filtering of dynamic html. In Pro
ceedings of the USENIX OSDI, pages 61-74, 2006. 

[89] D. C. REIS, P. B. GOLGHER, A. S. SILVA, AND A. F. LAENDER. Automatic web 
news extraction using tree edit distance. In Proceedings of the WWW, pages 502-511, 
2004. 

[90] TRISTAN RICHARDSON, QUENTIN STAFFORD-FRASER, KENNETH R. WOOD, AND 
ANDY HOPPER. Virtual network computing. IEEE Internet Computing, 2(1):33-38, 
1998. 

[91] BLAKE Ross, COLLIN JACKSON, NICK MIYAKE, DAN BONEH, AND JOHN C 
MITCHELL. Stronger password authentication using browser extensions. In Proceed
ings of the USENIX Security Symposium, pages 17-32, 2005. 

[92] STEVEN J. Ross, JAsoN L. HILL, MICHAEL Y. CHEN, ANTHONY D. JosEPH, 
DAVID E. CULLER, AND ERIC A. BREWER. A composable framework for secure 
multi-modal access to internet services from post-pc devices. Mob. Netw. Appl., 
7(5):389-406, 2002. 

[93] GUSTAVO ROSSI, OSCAR PASTOR, DANIEL SCHWABE, AND LUIS 0LSINA (Ens.). 
Web Engineering: Modelling and Implementing Web Applications. Springer, ISBN: 
1-84628-922-X, 2007. 

[94] STEFAN SAROIU, STEVEN D. GRIBBLE, AND HENRY M. LEVY. Measurement and 
analysis of spywave in a university environment. In Proceedings of the Symposium on 
Networked Systems Design and Implementation (NSDI), pages 141-153, 2004. 

[95] STUART E. SCHECHTER, RACHNA DHAMIJA, ANDY OZMENT, AND IAN FISCHER. 
The emperor's new security indicators: An evaluation of website authentication and 
the effect of role playing on usability studies. In Proceedings of the IEEE Symposium 
on Security and Privacy, pages 51-65, 2007. 

[96] STANLEY M. SELKOW. The tree-to-tree editing problem. Inf. Process. Lett., 6(6):184-
186, 1977. 



180 

[97] UMESH SHANKAR AND CHRIS KARLOF. Doppelganger: Better browser privacy with
out the bother. In Proceedings of the A CM CCS, 2006. 

[98] RICHARD SHARP, ANIL MADHAVAPEDDY, ROY WANT, AND TREVOR PERING. En
hancing web browsing security on public terminals using mobile composition. In 
Proceeding of the MobiSys, 2008. 

[99] RICHARD SHARP, JAMES SCOTT, AND ALASTAIR R. BERESFORD. Secure mobile 
computing via public terminals. In Proceedings of the Pervasive Computing, 2006. 

[100] STEVE SHENG, BRYANT MAGNIEN, PONNURANGAM KUMARAGURU, ALESSANDRO 
ACQUISTI, LORRIE FAITH CRANOR, JASON HONG, AND ELIZABETH NUNGE. Anti
Phishing Phil: the design and evaluation of a game that teaches people not to fall for 
phish. In Proceedings of the SOUPS, pages 88-99, 2007. 

[101] Kuo-CHUNG TAr. The tree-to-tree correction problem. J. ACM, 26(3):422-433, 1979. 

[102] E. TANAKA AND K. TANAKA. The tree-to-tree editing problem. International journal 
Pattern Recognition And Atificial Intelligency, 2(2):221-240, 1988. 

[103] ANDREW F. TAPPENDEN AND JAMES MILLER. Cookies: A deployment study and 
the testing implications. ACM Trans. Web, 3(3):1-49, 2009. 

[104] ANDREA TORSELLO AND DZENA HIDOVIC-ROWE. Polynomial-time metrics for at
tributed trees. IEEE Trans. Pattern Anal. Mach. Intell., 27(7):1087-1099, 2005. 

[105] GABRIEL VALIENTE. An efficient bottom-up distance between trees. In Proceedings 
of the SPIRE, pages 212-219, 2001. 

[106] PHILIPP VOGT, FLORIAN NENTWICH, NENAD JOVANOVIC, ENGIN KIRDA, 
CHRISTOPHER KRUEGEL, AND GIOVANNI VIGNA. Cross site scripting prevention 
with dynamic data tainting and static analysis. In Proceedings of the NDSS, 2007. 

[107] YI-MIN WANG, DouG BECK, XuxiAN JIANG, Roussi RoussEv, CHAD VER
BOWSKI, SHUO CHEN, AND SAMUEL T. KING. Automated web patrol with Strider 
Honey Monkeys: Finding web sites that exploit browser vulnerabilities. In Proceedings 
of the NDSS, 2006. 

[108] ROY WANT, TREVOR PERING, GUNNER DANNEELS, MUTHU KUMAR, MURAL! SUN
DAR, AND JOHN LIGHT. The personal server: Changing the way we think about 
ubiquitous computing. In Proceedings of the Ubicomp, 2002. 

[109] GARY WASSERMANN AND ZHENDONG Su. Static detection of cross-site scripting 
vulnerabilities. In Proceedings of the ICSE, pages 171-180, 2008. 

[llO] C. A. WELTY. Augmenting abstract syntax trees for program understanding. In 
Proceedings of the ABE, 1997. 

[ll1] TARA WHALEN AND KORI M. INKPEN. Gathering evidence: use of visual security 
cues in web browsers. In Proceedings of the conference on Graphics interface, pages 
137-144, 2005. 



181 

[112] MIN Wu. Fighting Phishing at the User Interface. PhD thesis, MIT, 2006. 

[113] MIN Wu, SIMSON GARFINKEL, AND RoB MILLER. Secure web authentication with 
mobile phones. In Proceedings of the DIMACS Workshop on Usable Privacy and 
Security Software, 2004. 

[114] MIN Wu, ROBERT C. MILLER, AND SIMSON L. GARFINKEL. Do security toolbars 
actually prevent phishing attacks? In Proceedings of the CHI, pages 601-610, 2006. 

[115] MIN Wu, ROBERT C. MILLER, AND GREG LITTLE. Web Wallet: preventing phishing 
attacks by revealing user intentions. In Proceedings of the SOUPS, pages 102-113, 
2006. 

[116] THOMAS Wu. The secure remote password protocol. In Proceedings of the NDSS, 
1998. 

[117] Wuu YANG. Identifying syntactic differences between two programs. Softw. Pract. 
Exper., 21(7):739-755, 1991. 

[118] ZISHUANG (EILEEN) YE AND SEAN SMITH. Trusted paths for browsers. In Proceed
ings of the USENIX Security Symposium, pages 263-279, 2002. 

[119] KA-PING YEE AND KRAGEN SITAKER. Passpet: convenient password management 
and phishing protection. In Proceedings of the SOUPS, pages 32-43, 2006. 

[120] DACHUAN Yu, AJAY CHANDER, NAYEEM ISLAM, AND IGOR SERIKOV. Javascript 
instrumentation for browser security. In Proceedings of the POPL, pages 237-249, 
2007. 

[121] CHUAN YuE, ZI CHu, AND RAINING WANG. RCB: A Simple and Practical Frame
work for Real-time Collaborative Browsing. In Proceedings of the USENIX Annual 
Technical Conference, pages 369-382, 2009. 

[122] CHUAN YuE AND RAINING WANG. Anti-Phishing in Offense and Defense. In Pro
ceedings of the ACSAC, pages 345-354, 2008. 

[123] CHUAN YuE AND RAINING WANG. Characterizing Insecure JavaScript Practices on 
the Web. In Proceedings of the WWW, pages 961-970, 2009. 

[124] CHUAN YuE AND RAINING WANG. SessionMagnifier: A Simple Approach to Secure 
and Convenient Kiosk Browsing. In Proceedings of the Ubicomp, pages 125-134, 2009. 

[125] CHUAN YuE AND RAINING WANG. BogusBiter: A Transparent Protection Against 
Phishing Attacks. ACM Trans. Internet Technol., 10(2):1-31, 2010. 

[126] CHUAN YuE, MENGJUN XIE, AND RAINING WANG. Automatic Cookie Usage Setting 
with CookiePicker. In Proceedings of the Annual IEEE/IFIP International Conference 
on Dependable Systems and Networks (DSN), pages 460-470, 2007. 

[127] CHUAN YuE, MENGJUN XIE, AND RAINING WANG. An Automatic HTTP Cookie 
Management System. Journal of Computer Networks (COMNET), Elsevier, 2010. 



182 

[128] YANHONG ZHAI AND BING LIV. Web data extraction based on partial tree alignment. 
In Proceedings of the WWW, pages 76-85, 2005. 

[129] YANHONG ZHAI AND BING LIU. Structured data extraction from the web based 
on partial tree alignment. IEEE Transactions on Knowledge and Data Engineering, 
18(12):1614-1628, 2006. 

[130] K. ZHANG AND D. SHASHA. Simple fast algorithms for the editing distance between 
trees and related problems. SIAM J. Comput., 18(6):1245-1262, December 1989. 

[131] YUE ZHANG, SERGE EGELMAN, LORRIE FAITH CRANOR, AND JASON HONG. Phind
ing phish: Evaluating anti-phishing tools. In Proceedings of the NDSS, 2007. 

[132] YUE ZHANG, JASON HONG, AND LORRIE CRANOR. CANTINA: A content-based 
approach to detecting phishing web sites. In Proceedings of the WWW, pages 639-
648, 2007. 

[133] 24 ways: Don't be eval(). http: I /24ways. org/2005/dont-be-eval. 

[134] 5 safety tips for using a public computer. http: I /www. microsoft. com/protect/ 
yourself/mobile/publicpc.mspx. 

[135] Ajax(programming). http: I I en. wikipedia. org/wiki/ Ajax_ (programming). 

[136] Alexa Top Sites. http: I /www. alexa. com/browse?CategoryiD=1. 

[137] Anti-Phishing Working Group (APWG). http: I /www. antiphishing. org/. 

[138] APWG: Phishing Scams by Targeted Company. http: I /www .millersmiles. co. uk/ 
scams .php. 

[139] Cookie Crusher. http: I /www .pcworld. com/downloads. 

[140] Cookie Culler. http: I I cookieculler. mozdev. or g. 

[141] Cookie pal. http: I /www. kburra. com/ cpal. html. 

[142] Cross-site scripting. http: I I en. wikipedia. org/wiki/Cross-si te_scripting. 

[143] Data Flow Inside Gecko. http: I /developer .mozilla. org/en/docs. 

[144] eBanking Security. http: I /www. ebankingsecuri ty. com/ebanking_bad_for _your_ 
bank_balance.pdf. 

[145] eval-MDC. http: I /developer. mozilla. org/ en/Core_JavaScript_l. 5_ 
Reference/Global_Functions/eval. 

[146] Firefox 2 Phishing Protection Effectiveness Testing. http: I /www. mozilla. org/ 
security/phishing-test.html. 

[147] Firefox Browser Extensions. http: I /developer .mozilla. org. 

http://24ways.org/2005/dont-be-eval
http://www.microsoft.com/protect/
http://www.alexa.com/browse?CategoryID=l
http://www.antiphishing.org/
http://www.millersmiles.co.uk/
http://www.pcworld.com/downloads
http://cookieculler.mozdev.org
http://www.kburra.com/cpal.html
http://en.wikipedia.org/wiki/Cross-site_scripting
http://developer.mozilla.org/en/docs
http://www.ebankingsecurity.com/ebanking_bad_for_your_
http://www.mozilla.org/
http://developer.mozilla.org


183 

[148] Firefox Phishing Protection. 
phishing-protection/. 

http://www.mozilla.com/en-US/firefox/ 

[149] Gartner, Inc. Survey. http://www. gartner. com/it/page. j sp?id=498245. 

[150] GNUWget- GNU Project- Free Software Foundation (FSF). http://www .gnu. org/ 
software/wget/. 

[151] Gone Phishing: Evaluating Anti-Phishing Tools for Windows. http://www. 3sharp. 
com/projects/antiphishing/gone-phishing.pdf. 

[152] Hacker demos how to defeat Citibanks virtual keyboard. http: //blogs. zdnet. com/ 
security/?p=195. 

[153] HMAC. http:// en. wikipedia. org/wiki/HMAC. 

[154] HTML 4.01 Specification. http://www. w3. org/TR/html4/. 

[155] HTTP Cookie. http:// en. wikipedia. org/wiki/HTTP _cookie. 

[156] IBM set to use spam to attack spammer. http: //money. cnn. com/2005/03/22/ 
technology/ibm_spam/index.htm. 

[157] IE Browser Extensions. 
aa753587(VS.85).aspx. 

http://msdn.microsoft.com/en-us/library/ 

[158] Inaccessibility of CAPTCHA. http://www. w3. org/TR/turingtest/. 

[159] Internet Security Threat Report, Security research and analysis - Symantec. http: 
//www.symantec.com/business/theme.jsp?themeid=threatreport. 

[160] JavaScript. http:// en. wikipedia. org/wiki/ JavaScript. 

[161] JSAPI reference-MDC. http: //developer .mozilla. org/en/ JSAPI_Reference. 

[162] JSON in JavaScript. http://www. json. org/js .html. 

[163] JSPrincipals-MDC. http: //developer .mozilla. org/en/ JSPrincipals. 

[164] jssha256. http: //point-at-infinity. org/j ssha256/. 

[165] Know Your Enemy: Phishing. http://www .honeynet. org/papers/phishing/. 

[166] Likert scale. http: II en. wikipedia. org/wiki/Likert_scale. 

[167] MarkMonitor: Internet Fraud Prevention and Brand Protection. http://www. 
markmonitor.com/. 

[168] Microsoft ActiveSync. http://www. microsoft. com/windowsmobile/ en-us/help/ 
synchronize/device-synch.mspx. 

[169] Microsoft Phishing Filter. 
yourself/. 

http://www.microsoft.com/protect/products/ 

http://www.mozilla.com/en-US/firefox/
http://www.gartner.com/it/page.jsp?id=498245
http://en.wikipedia.org/wiki/HMAC
http://www.w3.org/TR/html4/
http://en.wikipedia.org/wiki/HTTP_cookie
http://money.cnn.com/2005/03/22/
http://msdn.microsoft.com/en-us/library/
http://www.w3.org/TR/turingtest/
http://www.Symantec.com/business/theme.jsp?themeid=threatreport
http://en.wikipedia.org/wiki/JavaScript
http://developer.mozilla.org/en/JSAPI_Reference
http://www.json.org/js.html
http://developer.mozilla.org/en/JSPrincipals
http://point-at-infinity.org/jssha256/
http://www.honeynet.org/papers/phishing/
http://en.wikipedia.org/wiki/Likert_scale
http://www
http://www.microsoft.com/windowsmobile/en-us/help/
http://www.microsoft.com/protect/products/


184 

[170] Mitigating Cross-site Scripting with HTTP-only Cookies. http: I /msdn2 .microsoft. 
com/en-us/library/ms533046.aspx. 

[171] Mobile/Fennec. https: I /wiki. mozilla. org/Fennec. 

[172] Mozilla XUL- MDC. http: I /xulplanet. com/references/xpcomref. 

[173] MSDN: innerHTML property. 
ms533897(VS.85) .aspx. 

http://msdn.microsoft.com/en-us/library/ 

[174] Online identity theft is the greatest fear for internet users. 
securitypark.co.uk/security_article264484.html. 

[175] Permit Cookies. https: I I addons. mozilla. org/f iref ox/ 44. 

[176] PhishTank. http: I /www. phishtank. com/. 

http://www. 

[177] Platform for privacy preferences (P3P) project. http://www.w3.org/P3P/. 

[178] Privoxy - Home Page. http: I /www. pri voxy. org/. 

[179] RSA, The Security Division of EMC. http: I /www. rsa. com/. 

[180] Same origin policy. http: I I en. wikipedia. org/wiki/Same_origin_policy. 

[181] SANS Top-20 2007 Security Risks (2007 Annual Update). http: I /www. sans. org/ 
top20/2007 /. 

[182] Semantic Attacks: The Third Wave of Network Attacks. http: I /www. schneier. 
com/crypto-gram-0010.html#1. 

[183] SpiderMonkey (JavaScript-C) Engine. http://www.mozilla.org/js/ 
spidermonkey/. 

[184] Symantec Internet Security Threat Report Volume XIII: April, 2008. http: I /www. 
symantec.com/business/theme.jsp?themeid=threatreport. 

[185] tcpmon: An open-source utility to Monitor A TCP Connection. https :I It cpmon. 
dev. java.net/. 

[186] Tim Berners-Lee: WorldWide Web, the first Web client. http: I /www. w3. org/ 
People/Berners-Lee/WorldWideWeb.html. 

[187] Trusted Computing Group. https: I /www. trustedcomputinggroup. org. 

[188] Understanding and countering the phishing threat, the financial services technol
ogy consortium (fstc) project white paper. http://fstc.org/projects/counter_ 
phishing_phase_1/. 

[189] Unobtrusive Javascript. http://www.onlinetools.org/articles/ 
unobtrusivejavascript/. 

https://wiki.mozilla.org/Fennec
http://xulplanet.com/references/xpcomref
http://msdn.microsoft.com/en-us/library/
http://www
https://addons.mozilla.org/firefox/44
http://www.phishtank.com/
http://www.w3.org/P3P/
http://www.privoxy.org/
http://www.rsa.com/
http://en.wikipedia.org/wiki/Same_origin_policy
http://www.sans.org/
http://www.schneier
http://www.mozilla.org/js/
http://www
http://www.w3.org/
https://www.trustedcomputinggroup.org
http://fstc.org/projects/counter_
http://www.onlinetools.org/articles/


185 

[190] Vulnerability Type Distribution in CVE. http: I /www. attrition. org/pipermail/ 
vim/2006-September/001032.html. 

[191] W3C Document Object Model. http: I /www. w3. org/DOM. 

[192] XMLHttpRequest. http: I /www. w3. org/TR/XMLHttpRequest/. 

[193] CERT Advisory CA-2000-02 Malicious HTML tags embedded in client web requests, 
2000. http://www.cert.org/advisories/CA-2000-02.html. 

[194] Accurate web site visitor measurement crippled by cookie blocking and deletion, 
jupiterresearch finds, 2005. http: I /www. jupi termedia. com/ corporate/releases/ 
05.03.14-newjupresearch.html. 

[195] Google plugs cookie-theft data leak, 2005. http: I /www. eweek. com/article2/0, 
1895,1751689,00.asp. 

[196] Flaws in IE7 and Firefox raise alarm, 2007. http: I /news. zdnet. co. uk/security, 
Febuary19th,2007. 

[197] Google slams the door on XSS flaw 'Stop cookie thief!', 2007. http: I /software. 
silicon.com/security/,January17th,2007. 

http://www.attrition.org/pipermail/
http://www.w3.org/D0M
http://www.w3.org/TR/XMLHttpRequest/
http://www.cert.org/advisories/CA-2000-02.html
http://www.jupitermedia.com/corporate/releases/
http://www.eweek.eom/artide2/0
http://news.zdnet.co.uk/security
http://software


186 

VITA 

Chuan Yue 

Chuan Yue enrolled in the computer science Ph.D. program at The College of William 

and Mary in Fall 2004. His broad research interests include Web-based systems, computer 

and information security, distributed and parallel computing, human-computer interaction, 

and collaborative computing. His Ph.D. research focuses on Web browsing security and 

collaborative browsing. Previously, he received his B.E. and M.E. degrees in computer 

science from Xidian University in 1996 and 1999, respectively; he then worked as a Member 

of Technical Staff at Bell Labs China, Lucent Technologies from 1999 to 2003, mainly on the 

development of Web-based distributed service management system for Intelligent Network. 


	Enhancing Web Browsing Security
	Recommended Citation

	ProQuest Dissertations

