Foraging ecology of the blue crab, Callinectes sapidus Rathbun, in lower Chesapeake Bay

Randa A. Mansour
College of William and Mary - Virginia Institute of Marine Science

Follow this and additional works at: https://scholarworks.wm.edu/etd
Part of the Ecology and Evolutionary Biology Commons, Marine Biology Commons, and the Zoology Commons

Recommended Citation

Mansour, Randa A., "Foraging ecology of the blue crab, Callinectes sapidus Rathbun, in lower Chesapeake Bay" (1992). Dissertations, Theses, and Masters Projects. Paper 1539616761.
https://dx.doi.org/doi:10.25773/v5-6mdx-bb24

This Dissertation is brought to you for free and open access by the Theses, Dissertations, \& Master Projects at W\&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W\&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality $6^{\prime \prime} \times 9^{\prime \prime}$ black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

Order Number 9236131

Foraging ecology of the blue crab, Callinectes sapidus Rathbun, in lower Chesapeake Bay

Mansour, Randa Ali, Ph.D.
The College of William and Mary, 1992

```
A DISSERTATION
PRESENTED TO
THE FACULTY OF THE SCHOOL OF MARINE SCIENCE
THE COLLEGE OF WILLIAM AND MARY IN VIRGINIA
```

In Partial Fulfillment
Of the Requirements for the Degree of
Doctor of Philosophy
by
Randa A. Mangour
1992

This dissertation is submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy

Panda A Mono

Randi A. Mansour

Approved, August 1992

Mark W. Luckenbach, Ph.D.

NeWham D. Des/are \angle
William D. DuPaul, Ph.D.

Dedicated to Brian and Connor Meehan, Marzell Deans and to the memory of Doris Deans.

TABLE OF CONIENTS

Page
ACKNOWLEDGEMENTS vii
LIST OF TABLES viii
LIST OF FIGURES xii
CHAPTER 1 FORAGING AND PREY SELECTION 1
ABSTRACT 2
INTRODUCTION 4
THE PREDATOR-PREY COMPLEX 7
MATERIALS AND METHODS 11
Study Sites 11
Blue Crab Abundance. 11
Blue Crab Diet 13
Dietary Diversity, Overlap and Selection. 15
Benthic Infaunal Abundance 17
Correlations Between Predator and Prey Abundance 17
Cannibalism 19
RESULTS 21
Blue Crab Abundance. 21
Summer 1988. 21
Summer 1989. 28
Sampling Requirements For Diet Analyeis 45
Blue Crab Diet: Spatial and Temporal Patterns 48
Summer 1988 48
Summer 1989 54
Blue Crab Diet: Diversity 63
Summer 1988 63
Summer 1989 63

TABLE OF CONTENTS (continued)
Page
Blue Crab Diet: Cannibaliam 64
Benthic Infuana Summer 1988 76
Benthic Abundance 76
Benthic Similarity 90
Benthic Infauna Summer 1989 99
Benthic Abundance 99
Benthic Similarity. 122
Dietary Overlap and Selection 124
Summer 1988 124
Summer 1989 127
Predatar-Prey Abundance Patterns 132
DISCUSSION 139
Diet Selection 139
Aggregative Reaponse 141
Cannibaliem 144
Predator-Prey Dynamics 147
APPENDIX 1 150
APPENDIX 2 151
APPENDIX 3 152
APPENDIX 4 153
APPENDIX 5 155
LITERATURE CITED 156
TABLE OF CONTENTS (continued)
Page
CHAPTER 2 FUNCTIONAL, AGGREGATIVE AND INTERFERENCE RESPONSES 164
ABSTRACT 165
INTRODUCTION. 167
THE PREDATOR-PREY SYSTEM. 170
MATERIALS AND METHODS 172
RESULTS 175
DISCUSSION 181
LITERATURE CITED 185
VITA 190

ACKINOFLLEDGEAENTS

I thank my major professor, R. N. Lipcius, for his support and guidance; he was always available and willing to assist, advise and support my endeavors. I am deeply grateful. I also thank my other committee members, A.H. Hines, J. van Montfrans, M. Luckenback, W. Dupaul, and B. Neilson, for constructive reviews of this manuscript. Field support was provided by J. Colvocoresses, D. Eggleston, P. Geer, P. Gerdeg, D. King, T. Leggett, J. Luo, W. Meehan, K. Metcalfe, and the Virginia Institute of Marine Science Trawl Survey Project. C. Bonzek and R. Harris provided access to VIMS Trawl Survey data, and were very supportive of this research. Critical reviews of portions of this dissertation were provided by D. Eggleaton, R. Mann, C.H. Peterson, J. Sutherland and D. Sved. Laboratory space fox gut contents analyees was generously provided by Benthic Ecology, R. Diaz and L. Schaffner. R. Diaz, L. Schaffner, R. Seitz, and R. Llanso aided with identification of species collected from the benthos. I thank my dear friends N. Balcolm, L. Granger, Robemary Lipcius, Otto and Margie Matherny, K. Metcalfe, L. Schaffner, and G. Vadas for their support.

This work was supported by funds from the National Science Foundation (Biological Oceanography Grants OCE 87-00414 to R. Lipaius \% A.H. Hines, and OCE 90-00483 to A.H. Hines, R. Lipcius, T. Wolcott and D. Wolcott), VIMS Minor Research Grants Program, the Commonwealth of Virginia, the Smithsonian Institution, and a generous contribution by L.I. Glucksman.

LIST OF TABLES

Table Page1.1 Analyais of variance and Ryan's Q resulta for total crababundance in 198823
1.2 Analysis of variance and Ryan's Q results for abundance
of crabs > 80 mm CW in 1988 25
1.3 Analysis of variance and Ryan's Q resulta for abundance of crabs $\leq 80 \mathrm{~mm} \mathrm{CW}$ in 1988 26
1.4 Analysis of variance and Ryan's Q results for abundanceof crabs < 50 mm CW in 1988 29
1.5 Analysis of variance and Ryan's Q results for total crababundance in 1989 331.6 Analysis of variance for abundance of crabs $>80 \mathrm{~mm} \mathrm{CW}$ in1989.34
1.7 Lower-level analysis of variance, river and station withinmonth, and Ryan's Q results for abundance of crabs $>80 \mathrm{~mm}$CW in 1989. 35
1.8 Lower-level analysis of variance, river and month withinstation, and Ryan's Q results for abundance of crabs $>80 \mathrm{~mm}$
CW in 1989. 39
1.9 Lower-level analysis of variance, station and month withinriver, and Ryan's Q results for abundance of crabs $>80 \mathrm{~mm}$CW in 1989. 41
1.10 Analyais of variance and Ryan's Q results for abundance ofcrabs $\leq 80 \mathrm{~mm} \mathrm{CW}$ in 1989 44
1.11 Analysis of variance and Ryan's Q results for abundance ofcrabs < 50 mm CW in 1989 46
LIST OF TABLES (continued)
Table Page
1.12 Diet diversity of blue crabs in 1988 and 1989 65
1.13
G-tests of frequency of occurrence of cannibalismas a function of year, river, month and size
class 68
Lower-level analysis of variance, station and month within river, and Ryan's 2 results for polychaete density in 1988. 88
1.21 Lower-level analysis of variance, river and station within month, for polychaete denaity in 1988 91

LIST OF TABLES (continued)

Table
Lower-level analygis of variance, river and month within station, and Ryan's Q results for polychaete density in 1988. 93
Analysis of variance and Ryan's Q results for bivalve density as a function of river, station and month in 1989 101
Analygis of variance for polychaete density as a function of river, station and month in 1989 103
Lower-level analysis of variance, station and month within river, and Ryan'a Q resulta for polychaete density in 1989. 104
1.26 Lower-level analysis of variance, river and station within month, and Ryan's Q results for polychaete density in 1989. 106
Lower-level analyais of variance, river and month within station, and Ryan's Q results for polychaete density in 1989. 109
1.28 Analysis of variance for crustacean density as a function of river, btation and month in 1989 112 Lower-level analysis of variance, station and month within river, and Ryan's Q results for crustacean density in 1989.113
Lower-level analysis of variance, river and station within month, and Ryan's Q reaults for cruatacean density in 1989.116
Table
1.31 Lower-level analysis of variance, river and month
within station, and Ryan's Q results for orustacean
density in 1989. 120
1.32 Electivity indices for dominant prey categories in 1988 128
1.33 Electivity indices for dominant prey categories
in 1989 133
1.34 Dietary overlap between trophic groups in 1988 and 1989 136
2.1 Analysis of variance of number eaten and proportional clam mortality as a function of clam and crab density . . 177
2.2 Analysis of variance of consumption rate and proportional clam mortality standardized by crab density as a function of clam and crab density. 178
2.3 Crab mortality as a function of clam and crab density . . 180

LIST OF FIGURES

Figure Page
1.1 Blue crab and benthic collection sites 12
1.2 Population gize structure of blue crabs in 1988 22
1.3 Population size structure of blue crabs in 1989 31
1.4 Graphical analysis of minimum sample size requirementsfor gut contents studies.47
1.5 Number of food types relative to percent gut fullness 49
1.6 Cluster diagram and proportional consumption of prey by
river, station, month and size class in 1988 50
1.7 river, station and size class in 1988 521.8
Cluster diagram and proportional consumption of prey bystation in 1988.53
1.9 Cluster diagram and proportional consumption of prey byriver and aize class in 1988 55Cluster diagram and proportional consumption of prey bymonth and size class in 198856
1.111.12Cluster diagram and proportional consumption of prey bygtation in 1989. 611.14 Cluster diagram and proportional consumption of prey bymonth and size class in 198962
1.15 Percent frequency occurrence of cannibalism by size class, river and month in 1988 and 1989. 67

LIST OF FIGURES (continued)
Figure Page
1.16 Frequency of cannibalism relative to new juvenile recruit and total juvenile abundance. 72
1.17 Mean density of prey types in the benthos in 1988 . . 77
1.18 Cluster diagram and mean benthic proportions by river, gtation and month in 1988 96
1.19 clugter diagram and mean benthic proportions by river and atation in 1988 97
1.20 Cluster diagram and mean benthic proportions by month in 1988 98
1.21 Mean density of prey types in the benthos in 1989 . . 100
1.22 Cluster diagram and mean benthic proportions by river, station and month in 1989 123
1.23 Cluster diagram and mean benthic proportions by river and station in 1989 125
1.24 Cluster diagram and mean benthic proportions by month
in 1989 126
1.25 Adult and large juvenile blue crab abundance relative to bivalve density and juvenile crab abundance 137
2.1 Mortality of Macoma balthica as a function of crab and clam density. 176

CHAPTHR 1

FORAGING ECOIOGY OF THE BLUE CRAB, CALIINECTES SAPIDUS

 RATHBUN, IN THREE SUBESTUARIES OF LOWER CHESAPEAKE BAY, VIRGINIA, USA
Abstract

This two-year investigation jointly examined the key features of predator-prey dynamics - predator abundance and distribution, predator feeding habits, including cannibalism, and prey abundance and distribution - in a model marine benthic system. Specifically, this study concurrently quantified blue crab feeding habits and preference, and examined the inter-relationships between diet, predator preference, and predator and prey abundance and diatribution in three subestuaries of lower Chesapeake Bay - the James, York and Rappahannock Rivers, Virginia. Blue crab diets were separable on the basis of proportional consumption of three dominant dietary components: bivalves, crabs and polychaetes. Crab abundance, prey abundance and crab diet were correlated such that blue crabs aggregated in areas of highest preferred (i.e., bivalve) prey abundance, as determined through electivity analyses. Spatial (i.e., upriver/downriver) and size-related differences in diet selection occurred. At least two trophic groups were distinguished, based on their relative consumption of bivalves and crabs, including conspecifics (i.e., older juveniles and adults) or polychaetes and small crustaceans (i.e., younger juveniles and new recruits). Spatial differences were reflected by proportional bivalve consumption: crabs always preferred bivalves, but in areas of relatively lower bivalve abundance, opportunistically expanded their diets to include other prey taxa.

Cannibalism was common, but the frequency of occurrence varied with crab size, season, location, new juvenile recruit abundance, and the density of alternative preferred prey. Specifically, cannibalism frequency increased with crab size, was highest in areas of relatively lower bivalve densities and predominated during the period of new juvenile recruitment in the Fall.

The results of this and other investigations indicate that blue crab predation may be the most important biotic determinant of community structure in this marine soft-bottom system. Furthermore, since a seasonal decline in prey abundance and availability did not occur, cannibalism, rather than intraspecific competition for limited resources, may be the most likely compensatory mechanism of blue crab population regulation in Chesapeake Bay.

foraging rcology of the blus crab

INTRODUCTION

Predation regulates community structure and the organization of marine soft-bottom habitats (Peterson 1979, Virnstein 1977, 1979, Holland et al. 1980, Woodin 1981, Posey 1986, Hines et al. 1990). Investigations in racky intertidal habitats indicate that predation can prevent competitive exclusion, thus determining species composition, diversity and abundance patterns (Peterson 1979, Paine 1966, 1980, Connell 1975, Dayton 1984, Menge 1978 a, b, 1983, Menge et al. 1986 a, b). This paradigm of community organization may not apply to marine soft-bottom communities where predator-prey interactions are dominated by guilda of generalized predators capable of switching among diverse prey, and few communities contain competitively dominant prey capable of monopolizing resources (Peterson 1979, Dayton 1984, Summerson \& Peterson 1984). Although a single "keystone" predator (Paine 1966) has not been identified in soft-bottom habitats, investigations indicate that decapod crustaceans are a critical component of these guilds, often affecting the abundance, species composition and distributional patterns of benthic infauna (Virnstein 1977, 1979, Holland et al. 1980, Woodin 1981, Laughlin 1982, Hines et al. 1990), as well as providing internal feedbacks to their populations (Laughlin 1979, 1982, Kurihara et al. 1988, Smith 1990, Mansour \& Lipcius 1991, Smith \& Hines 1991). Similarly, Paine $(1980,1992)$ emphasized the importance of the functional role of species within guilds. For instance, an herbivore guild in the intertidal zone of Tatoosh Island, Washington had a weakly negative per capita influence on a competitively dominant prey (i.e., brown algae). Two herbivores (i.e., Katharina tunicata \& Stronglyocentrotus purpuratus) had strongly negative, but nonadditive, effects. The effects of Stronglyocentrotus were further confounded by aggregation, whereby sea urchins can produce "barrens" devoid of brown
algal canopies (Paine 1992). Therefore, identification of "strong interactions" and the habitat specificity (e.g., random or aggregated) of predators are critical in investigations of community organization (Paine 1980, 1992).

A quantitative focus on the major components of predation intensity is also required in investigations of marine predator-prey dynamics and community organization (Menge 1983). These components incorporate the effectiveness and abundance of predators, as well as the types and identities of predator species (Menge 1983). Similarly, Holling (1959) proposed that the impact of predation differs according to components that are basic (i.e., functional and aggregative responses) and aubsidiary (i.e., prey characteristics, density and quality of alternate foods, characteristics of the predators), and emphasized the importance of a comprehensive approach -- determination of the total response of predators to prey -- to inve日tigations of population dynamics. Thus, an investigation of predator-prey dynamics in marine systems requires attention to the basic features characterizing predator-prey interactions: the relationships between predator abundance and distribution, predator diet, and prey abundance and distribution.

In the aggregative response, predators regulate prey populations by congregating in areas of high prey density and leaving those prey patches where the rate of prey capture falls below a threshold (Readshaw 1973). The general aggregative response is gigmoid in form, can stabilize predator-prey systems, and is characterized by three parts: (1) where predators do not distinguish between different areas of low prey density that are unprofitable; (2) where predators do not distinguish between areas of high prey density which are all very profitable; and (3) intermediate density regions where predators respond atrongly to the range of prey densities (Hassell \& May 1974, Murdoch \& Oaten 1975, Hassell 1978). Aggregative responges to uneven prey distributions can be quantified either in terms of predator numbers
(i.e., abundance), or the time spent by a predator per unit area of different prey density (Hagaeli \& May 1974). Therefore, the aggregative response is a function of predator behavior and measures relative predator and prey abundance and distributional patterns.

While predator aggregation can enhance the foraging efficiency of individual predators (Anger et al. 1977, Hassell \& May 1973, 1974), mutual interference due to aggregation may advergely effect a predator's searching efficiency or feeding rate (Free et al. 1977, Hassell 197B). Furthermore, cannibalism, an extreme form of interference competition, has been documented in a wide variety of vertebrates and invertebrates. It is most frequent during periods of low availability of alternative prey or high predator density, and acts as a density-dependent regulator of population size (Fox 1975, Polis 1981, 1988).

The interactive effects of the functional, aggregative and interference responses and predator preference (e.g., diet analyses) have not been defined in investigations of predator-prey dynamics in marine communities. Therefore, this field investigation quantified predator diet and preference, interference (i.e., cannibalism), and the aggregative response of a key epibenthic predator, the blue crab, in a model soft-bottom system of Chesapeake Bay. Complementary laboratory investigations (Mansour \& Lipcius 1991) estimated the combined effect of the functional, aggregative and interference (i.e., intraspecific competition) responses upon prey and predator survival and predator foraging rates for blue crabs and a common bivalve prey, Macoma balthica, in this system.

THE PREDATOR-PREY COMPLEX
The blue crab, Callinectes sapidus Rathbun, is a large (males up to 227 mm carapace width (CW)) epibenthic omnivore occurring in various habitats along the Northwest Atlantic Ocean, Gulf of Mexico and Caribbean Sea (Williams 1984). Blue crabs play a major role in energy transfer in estuaries, serving as both prey and consumers (Baird \& Ulanowicz 1989). In Chesapeake Bay, blue crabs axe abundant and actively foraging from late spring through autumn (Hines et al. 1987, 1990). The population is dominated by two year classes that occur concurrently in the tributaries of the Bay from April through December; during the colder months (i.e., January-March) blue crabs overwinter by shallow burial in benthic habitats (Schaffner \& Diaz 1988, Hines et al. 1987, 1990, Lipcius and Van Engel 1990). Field and laboratory studies indicate that blue crab foraging efficiency and prey mortality rates vary significantly across gradients in prey availability, predator density, and habitat features (Blundon \& Kennedy 1982 a, b, Arnold 1984, Lipcius \& Hines 1986, West \& Williams 1986, Hines et al. 1990, Mansour \& Lipcius 1991, Eggleston et al. 1992).

Despite the blue crab's ecological and economic importance, there have been no comprehensive investigations of its natural feeding habits In Cheaspeake Bay. Diet analyses are essential to understanding nutritional requirements, food webs, inter- and intraspecific interactions and resource partitioning, predator preference and predation effects (Hill 1976, Peterson \& Bradley 1978, Williams 1981, Laughlin 1982). Ryer (1987) conducted a 24-hr study on feeding periodicity of blue crabs in a lower Chesapeake Bay tidal marah creek and seagrass meadow. Crabs from the grassbed had fuller guts and exhibited a tendency towards nocturnal feeding, while feeding was related to tidal cycles in the marah creek. Therefore, habitat was
important in determining blue crab feeding patterns, and the quantity (i.e., measured as gut fullness) and types (i.e., plant or animal material) of foods consumed. Hines et al. (1990) investigated patterns of prey utilization through gut contents studies of large (mean size 124-133 mm CW (carapace width)) blue crabs in a amall mesohaline subestuary of upper Chesapeake Bay. C. sapidus preyed extensively on clams, and to a lesser extent on fish, other blue crabs and amphipods (Hines et al. 1990). Laboratory and field investigations indicate that cannibalism is common (Laughlin 1979, Peery 1989, Hines et al. 1990, Mansour \& Lipcius 1991). In the Apalachicola estuary, Florida, Laughlin (1979) observed an inverse relationship between blue crab recruitment levels and subsequent population abundance, and suggested that high densities of juveniles may stimulate cannibalism and exploitative competition. Blue crabs constituted 118 of the total diet of large crabs (> 60 mm CW) in that estuary (Laughlin 1982). Hines et al. (1990) observed a significant increase in the incidence of cannibalism by blue crabs in Chesapeake Bay from 3.0% in June to 10 and 12% in mud and sand substrates, respectively, in September.

The benthic community of Chesapeake Bay is dominated by a diverse assemblage of species (Wass 1972, Holland 1985, Hines \& Comtois 1985, Hines et al. 1987, Holland et al. 1987, Baird \& Ulanowicz 1989, Diaz \& Schaffner 1990). Salinity is the key abiotic factor determining benthic infaunal distribution and abundance (Boesch et al. 1976, Holland 1985, Holland et al. 1987, Diaz \& Schaffner 1990). Other important abiotic factors include sediment type, oxygen availability, energy gradients and frequency of bottom disturbance (Diaz \& Schaffner 1990). Predation appears to be the primary biotic factor determining species diversity and abundance patterns (Virngtein 1977, 1979, Holland et al. 1980, Hinea et al. 1990), and in this gystem the dominant guild of epibenthic predators consists of blue crabs, and the fish, Leiostomus xanthurus, Micropogonia日 undulatus, and Trinectes maculatus (i.e., spot, croaker and hogchoker, respectively; Virnstein 1977, 1979, Hines et al. 1990).

The collective evidence suggests that blue crabs are opportunists, with spatial and seasonal variations in feeding habits reflecting the spatial and temporal availability of prey (Darnell 1959, Tagatz 1968, Odum \& Heald 1972, Laughlin 1982, Alexander 1986, Ryer 1987, Baird \& Ulanowicz 1989, Stoner \& Buchanan 1990, Hines et al. 1990), and that cannibalism is common and may be important in blue crab population regulation (Laughlin 1979, Peery 1989, Hines et al. 1990, Lipcius \& Van Engel 1990, Mansour \& Lipcius 1991). Although several laboratory and field inve日tigations have been conducted to determine the predatory impact of blue crabs on benthic infauna in Chesapeake Bay (Virnstein 1977, 1979, Holland et al. 1980, Blundon \& Kennedy 1982a,b, Arnold 1984, Lipcius \& Hines 1986, Hines et al. 1990, Mansour \& Lipcius 1991, Eggleston et al. 1992), no study has assessed predation effects through diet analysis of different size clagses over extensive spatial and temporal scales encompassing both a significant portion of their range of occurrence and the period of intensive feeding activity in lower Chesapeake Bay. The blue crab may be a "strong interactor" (sensu Paine 1980) within the guild of epibenthic predators in Chesapeake Bay. Although this hypothesis can only be teated through manipulative field experiments (as in Paine 1992), the evidence accumulated thus far (Virnstein 1977, 1979, Holland et al. 1980, Baird \& Ulanowicz 1989, Hines et al. 1990, Eggleston et al. 1992), indicates that blue crabs play a critical role in the Chesapeake Bay system.

This quantitative investigation examines the key features of predator-prey dynamica (i.e., predator abundance and distribution, predator feeding habits including cannibalism, and prey abundance and distribution) in a marine benthic system to yield a unique comprehensive understanding of the patterns and underlying regulatory processes driving this predator-prey system at various scales of space and time. Therefore, this two-year study attempted to: (1) quantify the abundance and diet of blue crabs within three subestuaries of lower Chesapeake Bay - the James, York and Rappahannock Rivers, (2) assess annual, seasonal
and river-specific sources of variation in blue crab abundance and diet, (3) determine the types and densities of potentially available benthic prey, (4) estimate and relate fluctuations in prey abundance to blue crab diet and abundance, (5) determine whether resource partitioning occurs between various size-classes of the blue crab, and (6) quantify the occurrence and extent of cannibalism in the blue crab in Chesapeake Bay.

MATERIALS AND METHODS

Study Sites

All field studies were conducted in three major tributaries of Chesapeake Bay: the James, York and Rappahannock Rivers. Cheaapeake Bay, the largest estuary in the continental United States, is a partially mixed estuary with an average tidal range of approximately 0.6 m (Baird \& Ulanowicz 1989). About 90 \% of the freshwater entering the Bay comes from tributaries located along the northern and western sides (Davies \& DeMoss 1982). The three rivers under inveatigation flow into the polyhaline (Baird \& Ulanowicz 1989) portion constituting the lower Bay, and are characterized as partially mixed, coastal plain subestuaries (Kuo \& Neilson 1987). Chesapeake Bay and its tributaries provide critical refuge, food, and habitats used in reproduction by the blue crab and a diverse assemblage of marine and estuarine vertebrates and invertebrates (Baird \& Ulanowicz 1989, Hines et al. 1990).

Study sites in this investigation comprised aix mid-channel stations, two of each located in the James (J), York (Y) and Rappahannock (R) Rivers. Each river contained single downriver (i.e., Y10, J13, R15) and upriver (Y25, J27, R30) stations located 16.1 (Y10), 20.93 (J13), 24.15 (R15), 40.25 (Y25), 43.47 (J27) and $48.3 \mathrm{~km}(R 30)$ from the mouth of each river (Fig. 1). Sediments consisted of sand and shell (lower James), soft mud (lower York and Rappahannock), and mudclay (upper Rappahannock, York and James). Abiotic parameters for each station-month combination are depicted separately for 1988 (Appendix 1) and 1989 (Appendix 2).

Blue Crab Abundance

Blue crabs were collected by trawling with a 9.14-m semi-balloon otter trawl fitted with a tickler chain, $3.8-\mathrm{cm}$ meah body and cod end lined with $1.3-\mathrm{cm}$ stretch mesh. Two five-minute tows were taken at each

Figure 1. Sampling stations in 1988 and 1989 located in the James, York, and Rappahannock Riverg.

of the six stations. Stations were sampled once per month from June through October, 1988 and 1989, in conjunction with The College of William and Mary, Virginia Institute of Marine Science (VIMS) trawl survey.

Variation in blue crab abundance was analyzed separately for each year as a function of river (James, York, Rappahannock), station location (upriver: J27, Y25, R30; downriver: J13, Y10, R15), and month (July-October in 1988, June-September in 1989) using full-factorial, fixed-effects analysis of variance (ANOVA) models. The dependent variable, number of crabs per tow, was obtained from each set of two monthly tows per station. Abundance was log-transformed to meet assumptions of normality and homogeneity of variance (Sokal \& Rohlf 1981). In all cases, either the variances were homogeneous (Hartley's F-max teat, Sokal \& Rohlf 1981), or the null hypotheses were rejected at alpha values leas than the P values of the test for homogeneity of variance (Underwood 1981). Where interaction effects were gignificant, main effects were examined within levels of the main factors (Underwood 1981) with ANOVA models and Ryan's Q test for multiple comparisons set at an experimentwise error rate of 0.05 (Day \& Quinn 1989). Crab abundance was analyzed separately for all crabs and different year classes ($<50, \leq 80$ and $>80 \mathrm{~mm} \mathrm{CW}$) as determined by inspection of sizefrequency histograms (see Results) or previous investigations (Eggleston 1990c, Hines et al. 1990, Smith 1990a). These size classes were selected becauge they represent (1) the new year class (i.e., $<50 \mathrm{~mm}$ CW, Lipcius \& Van Engel 1990), (2) individuals most vulnerable to Cannibalism (i.e., $\leq 80 \mathrm{~mm} \mathrm{CW}, \mathrm{Smith}$ 1990a); and (3) crabs of the previous year class and the most likely cannibals (i.e., $>80 \mathrm{~mm} \mathrm{CW}$, Smith 1990a).

Blue Crab Diet

Based on laboratory investigations of blue crabs feeding on bivalves (Eggleston 1990a, b, c), three size classes of male, mature female and immature female blue crabs were sampled: 60-99, 100-134 and

134-182 mm carapace width (CW) meagured from point to point of the lateral $\operatorname{spines.~Upon~capture,~blue~crabs~were~placed~on~ice,~the~dorsal~}$ portion of the carapace was removed, and the foregut was dissected out and individually preserved in 10% buffered formalin. Molt staging was accomplished by examination of the last two segments of the paddle fins for color changes associated with the formation of new shell (Oesterling 1988). Crabs were classified as hard intermolt, white sign indicating a molt within 2 wks, pink sign indicating a molt within 1 wk, red sign indicating a molt within 1 to 3 days (Oesterling 1988), and soft or paper shell (i.e., postmolt). Only hard intermolt crabs and non-berried females were used in diet analyses. Sexes were pooled for all analyses (Laughlin 1979, 1982).

The points method was chosen as the quantitative scoring method for stomach contents. This method is commonly used for describing gut contents of both fish and crabs, and adequately indicates the composition of the bulk of an animal's diet (Williams 1981, 1982, Hines 1982, Wassenberg and Hill 1989, Hines et al. 1990). In portunide, mastication of food by the mouth parts and gastric mill preclude counts of prey numbers in most cases and accurate determination of prey volume by traditional methods (Williams 1981, 1982). Methods used in stomach content analyses of fish and portunids have been assessed by Hynes (1950), Williams (1981) and Hyslop (1980).

The points method entails estimating the fullneas of each atomach as a percent of the total volume occupied by the contents. Gut contents were dissected out, identified to 9 (1988) or 10 (1989) broad categories (Appendix 3), and the percentage by volume of each category was estimated. Two additional categories, digeated and unknown/undigeatible material (i.e., sand, worn shell fragments, pebble), were used only for sample size analysis. These categories, while providing no pertinent information on the diet of blue crabs, could limit subsequent food consumption and were commonly found in the guts of crabs.

The average diet composition for each size class was calculated
using the fullness of the stomach as a weighting factor, so that the mean proportion of a food category in the diet was described by the equation (Hines 1982, Hines et al. 1990):

$$
p_{1}=\frac{\Sigma x_{i j} y_{j}}{\overline{\Sigma \Sigma x_{i j} Y_{j}}}
$$

where $x_{1 j}$ is the proportion of the contents of the ith food category of the jth crab, and y_{j} is the fullness of the stomach of the j th crab. Data were based on the number of stomachs that contained food, not on the total number of stomachs examined. Food items constituting less than 3% (Stoner and Buchanan 1990) of the diet in more than 50% of the cases were grouped into a miscellaneous category for graphical presentation, but not for analyses.

Dietary Diveraity, overlap and selection
Relative diet similarity was analyzed using the Flexible Grouping (6=-0.25) clustering strategy (Boesch 1977, Laughlin 1979, 1982, SAS Inst. 1985) on the mean proportion of each food category in the diet. Analyses were performed by clustering aize class, station, and month, or a combination of these variables. Groups were assigned by determining the point along each dendogram at which the branches were internally consistent when compared with the data matrices (Boesch 1973).

Diet diversity was calculated using the Shannon-wiener diveraity index (Zar 1984):

$$
\mathrm{H}^{\prime}=n \log n-\Sigma f_{i} \log f_{i} / n
$$

This index was calculated both for groups identified after clustering, and to investigate overall patterns in diversity aspociated with aize class, river, station and month.

Pairwise dietary overlap indicates the fraction of the diet in common between trophic groups (Hines et al. 1990). In this investigation, overlap between any two size classes i and h was calculated by (Hines 1982, Hines et al. 1990):

$$
c_{i h}=1-1 / 2 \Sigma\left|p_{i j}-p_{h j}\right|
$$

for the j diet categories.

Feeding preference was quantified with Chesson's (1978, 1983) α index:

$$
\alpha=\frac{r_{1} / p_{1}}{\Sigma\left(r_{1} / p_{1}\right)}
$$

where r_{1} is the proportion of food types in the diet, and p_{i} is the proportion of food types in the environment. The characteristics of α relative to other electivity indices have been thoroughly reviewed (Lechowicz 1982, Confer \& Moore 1987). Although the relativized electivity index, E^{*} (Vanderploeg \& Scavia 1979), is the most appropriate for field samples in which both the number and relative abundances of prey vary, the statistical properties of the index are not given (Lechowicz 1982, Chesson 1983, Confer \& Moore 1987). In contrast, α is amenable to parametric statistical analyses (Chesson 1983). The index ranges from 0 to $1, i s$ a function of n (i.e., the number of food types) and is symmetrical only when $n=2$ (Lechowicz 1982). Random feeding or neutral selection occurs when α equals $1 / n$, with values above and below $1 / n$ indicating preference and avoidance, respectively (Chesson 1978, 1983, Lechowicz 1982, Confer \& Moore 1987). Electivity (i.e., a) was calculated using the proportion of each food item in an individual crab gut and the mean proportion of that food in the benthos. Although Chesson (1983) suggested the use of multivariate techniques for $n>2$, biases in gear selectivity (i.e., 1-mm sieve) under-estimated the abundance of infauna with amall early developmental or juvenile stages, or that of species with extended reproductive periods and populations composed primarily of juveniles (e.g., spionid polychaetes; Table 2 in Holland et al. 1987). Therefore, α obtained for each food item was statiatically compared to the value of $1 / n$ for random feeding using twotailed student t-tests and individual crabs as replicates.

Graphical analysis of the 1988 data for large samples (i.e, upriver gtations, see Results) provided eatimates of the sample size (n ≥ 7) and gut fullness ($>50 \%$) required to include most food taxa,
stabilize scoring methods for common food types, and reduce bias due to differing residency times of food items in the gut (Williams 1981). In 1989, an additional size class (10-59 mm CW) was sampled, and only guts that were at least 50 \% full were retained for analysis.

Benthic Infaunal Abundance
Six (summer 1988) or eight (summer 1989) benthic samples were taken at each gtation with a Petersen grab (31 cm long X 21 cm deep x 21 cm wide), which sampled an area of $0.065 \mathrm{~m}^{2}$. Half of the samples each were taken at the start and end of a tow. Samples were immediately washed through a $1-\mathrm{mm}$ sieve and preserved in 10% buffered formalin. A flexible grouping ($6=-0.25$) Clustering strategy (Boesch 1977, Laughlin 1979, 1982, SAS Inst, 1985) was run on the mean proportion of each prey category in the benthos. Analyses were performed by clustering station, month and river, or a combination of these factors. Groups were assigned by determining the point along each dendogram at which the branches were internally consistent when compared with the data matrices (Boesch 1973).

Variation in benthic abundance was analyzed separately for each year as a function of river, station, and month with full-factorial, fixed-effects analysis of variance (ANOVA) models, as for crab abundance. The dependent variable, density for each of the most abundant prey types (i.e., bivalves, polychaetes and crustaceans), was log-transformed to meet assumptions of normality and homogeneity of variance (Sokal \& Rohlf 1981). In all cases, the variances were homogeneous as determined by Hartley's F-max test (Sokal \& Rohlf 1981). Significant interaction effects necessitated examination of effects within levels of the main factors (Underwood 1981) using ANOVA models and Ryan's Q test for multiple comparisons set at an experimentwise error rate of 0.05 (Day \& Quinn 1989).

Correlations Between Predator and Prey Abundance
Multiple regression analyses were run to determine the relationship between predator and prey abundance. The dependent
variable, crab abundance per tow for three size classes of crabs (i.e., $<50 \mathrm{~mm}, \leq 80 \mathrm{~mm}$ and $>80 \mathrm{~mm} \mathrm{CW}$), was regressed against prey abundance (i.e. crab abundance, bivalve, polychaete, and crustacean density), and the indicator variables station (i.e., downriver, upriver) and year (i.e., 1988, 1989). The prey categories selected for analyges represent the dominant dietary and benthic components. Abundance data were logtransformed to meet assumptions of normality and homogeneity of variance (Chatterjee \& Price 1977, Zar 1984). Standardized residuals were plotted againgt the fitted values and against the various independent variables to determine whether violations of model assumptions or misapecification of the model occurred (Chatterjee \& Price 1977). Violations would be reflected by a systematic pattern of variation to the residuals rather than random scatter.

The full regression model was:

$$
Y_{1}=6_{0}+6_{1} X_{1}+6_{2} X_{2}+6_{3} X_{3}+B_{4} X_{4}+\Gamma_{1} S+\delta_{1} Y
$$

where $Y_{1}=$ crab abundance with each gize class analyzed separately 60,61...66, $\Gamma 1, \delta 1=$ the model partial regression coefficients $X_{1}=$ crab abundance for each size class so that when the dependent variable was abundance of crabs $>80 \mathrm{~mm} \mathrm{CW}$, this independent variable was either abundance of crabs $\leq 80 \mathrm{~mm}$ or $<50 \mathrm{~mm}$. Similarly, for $Y_{1}=$ abundance of crabs <50 or $\leq 80 \mathrm{~mm} \mathrm{CW}, \mathrm{X}_{1}=$ large crab (i.e., $>80 \mathrm{~mm} \mathrm{CW}$) abundance. Therefore, analyses were run for each possible crab size class combination in conjunction with prey density and indicator variables.
$X_{2}, X_{3}, X_{4}=$ mean bivalve, polychaete, and crustacean density, reapectively

S \& $Y=$ dummy variables with one of two possible values each: downriver=1, upriver=0; 1988=1, 1989=0

The best model was subsequently determined using stepwise regression with backwards elimination until the minimum t-ratio was greater than 1 (Chatterjee \& Price 1977). Residual plots were inspected as above to
evaluate the fit of the models.

Cannibalism

Morphological cues used to differentiate blue crabs were lateral spines, claw parts, the distal portion of the walking legs, and paddle fins. Results for the incidence of cannibalism are presented as percent frequency of occurrence of blue crabs in the diet. Frequency of occurrence is a measure of the regularity of inclusion of a food item in the diet of a sample or population. Occurrence was recorded as presence or absence, and calculated by the equation (Williams 1981):

$$
\% F_{ \pm}=\frac{b_{i}}{n} \times 100
$$

where $\% F_{1}$ is the percent frequency of occurrence of cannibalism, b_{1} is the number of crabs whose gastric mills contained conspecifics, and n is the number of crabs in the sample without empty guts. Log-likelihood analysis was used to analyze cannibalism as a function of year, river, month, and size class (G-test: Sokal \& Rohlf 1981). Due to differences in sampling associated with size class and month in the two years, comparisons were made for three size classes (i.e., 60-99, 100-134, > 134 mm CW) and three months (July through September). A further analysis to include the main effect of station was conducted, but the occurrence of frequencies less than 5 or equal to 0 (Sokal \& Rohlf 1981) limited comparisons to July and August.

Multiple regression analysis was run to determine the relationship between cannibaliam and crab abundance. The dependent variable, percent frequency of occurrence of cannibalism, was regressed against mean abundance of new juvenile recruits (i.e., crabs < 50 mm CW) or the combined mean abundance of new recruits and older juveniles (i.e., crabs $\leq 80 \mathrm{~mm} C W$) and the indicator variables River (i.e., James, York, Rappahannock), Month (i.e., July, August, September) and Year (i.e., 1988, 1989). Cannibalism data were arcsin aquare-root transformed while abundance data were log-transformed to meet assumptions of normality and homogeneity of variance (Zar 1984). The full regresaion model was:

$$
Y_{1}=b_{0}+6_{1} X_{1}+\Gamma_{1} R_{1}+\Gamma_{2} R_{2}+\delta_{1} M_{1}+\delta_{2} M_{2}+\alpha_{1} Y
$$

where $Y_{i}=$ percent frequency of occurrence of cannibalism
$6_{0}, 6_{1}, \Gamma_{1}, \Gamma_{2}, \delta_{1}, \delta_{2}, \alpha_{1}=$ the model partial regression
coefficients
$x_{1}=$ abundance of either new juvenile recruitg or new recruits and older juveniles (i.e., < $50 \mathrm{~mm} \& \leq 80 \mathrm{~mm} \mathrm{CW}$ crabs, respectively).
$R_{1}, R_{2}, M_{1}, M_{2}, Y=$ dummy variables representing River, Month and Year, respectively, and having the values: $R_{1}=1 R_{2}=0$ for James, $R_{1}=0 \quad R_{2}=1$ for York, $R_{1}=0$ $R_{2}=0$ for Rappahannock; $M_{1}=1 \quad M_{2}=0$ for July, $M_{1}=0 \quad M_{2}=1$ for August, $M_{1}=0 \quad M_{2}=0$ for September; $Y=1$ for 1988, $Y=0$ for 1989.

The best fit was determined with atepwise multiple regression using backwards elimination until the minimum t-ratio was greater than 1 (Chatterjee \& Price 1977). Residuals were examined after all analyses, outliers were deleted and the regression equation was reestimated (Chatterjee \& Price 1977).

RESULTS

Blue Crab Abundance

Summer 1988
Seasonal population structure of blue crabs collected in 1988 is depicted in Fig. 2. The 1988 year class juveniles (i.e., crabs $<50 \mathrm{~mm}$ $C W)$ recruited in September, and by october the population primarily consisted of new juvenile recruits.

Total crab abundance varied significantly among stations (Table 1a). Though River and Month were gignificant, there was a significant interaction (i.e., River X Month, Table la). Most of the variation in abundance was associated with Station (21.3 \%, Table 1a). Crabs were most abundant at upriver stations (Fig. 2). Relatively high variation in abundance was due to the River X Month interaction $(13.3 \%$, Table 1a). Crab abundance in the three rivers was similar in July (ANOVA: $\mathrm{F}=2.86, \mathrm{df}=2,9, \mathrm{P}<0.1095$), August ($\mathrm{F}=1.17, \mathrm{df}=2,9, \mathrm{p}<0.3546$) and September ($F=0.51$, $\mathrm{df}=2,9, \mathrm{P}<0.6181$), but not in October ($\mathrm{F}=9.67$, $\mathrm{df}=2,9, \mathrm{P}<0.0057$): crabs were most abundant in the Rappahannock (Table 1b). Analyses of Month within each level of River indicated no seasonal effects in the James (ANOVA: $F=3.48$, $d f=3,12, P<0.0503$), York $(\mathrm{F}=1.77, \mathrm{df}=3,12, \mathrm{P}<0.2054$) or Rappahannock ($F=0.82, \mathrm{df}=3,12, \mathrm{P}<$ 0.5059). As in most analyses, variation due to error was relatively high (20.8 \%, Table 1a), indicating a need to increase the number of tows per station.

Most of the variation in the abundance of large juveniles and adults (i.e., > 80 mm CW) was associated with Month (27.4 \%, Table 2a). Crabs were more abundant in August than September or October, and more abundant in July than October (Table 2c). Stations differed such that crabs were most abundant upriver (Table 2a). Crabs were more abundant in the Rappahannock than York (Table 2b), and the order of river

Figure 2. Population size structure of blue crabs collected at downriver and upriver gtations from June through October, 1988. Rivers were pooled. Solid bars = males, Crosshatched bars = juvenile females, Stippled bars = adult females. Numbers above the bars represent total sample size if greater than 100.

Table 1. (a) Three-way analysis of variance with river, station and month as factors, and the dependent variable, log-transformed total crab abundance for each set of two monthly tows per station in 1988.

| SOURCE OF | | | | | | |
| :--- | ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SARIATION | DF | SS | PERCENTAGE
 OF
 VARIATION | MS | F | P< |
| RIVER | 2 | 3.9723 | 18.3% | 1.9861 | 10.49 | 0.0005 |
| STATION | 1 | 4.6348 | 21.3% | 4.6348 | 24.48 | 0.0001 |
| MONTH | 3 | 2.9729 | 13.7% | 0.9910 | 5.23 | 0.0064 |
| RIVERXSTATION | 2 | 0.1340 | 0.6% | 0.0670 | 0.35 | 0.7055 |
| RIVERXMONTH | 6 | 2.8954 | 13.3% | 0.4826 | 2.55 | 0.0471 |
| STATIONXMONTH | 3 | 0.7613 | 3.5% | 0.2538 | 1.34 | 0.2847 |
| RIVERXSTATIONXMONTH | 6 | 1.8396 | 8.5% | 0.3066 | 1.62 | 0.1850 |
| ERROR | 24 | 4.5436 | 20.8% | 0.1893 | | |

(b) Ryan's Q results for rivers in October, 1988. Means sharing the same line are not significantly different. * $P<0.05$

YORK	JAMES	RAPPAHANNOCK
0.43	0.75	$*$

abundance, from greatest to least was: Rappahannock, James, York (Table 2b).

Variation in abundance of juveniles $\leq 80 \mathrm{~mm} \mathrm{CW}$ produced gignificant interactions (i.e., River X Month and Station X Month; Table 3a). Most variation occurred with the River X Month interaction (23.3 \%, Table 3a). Examination of Month within each level of River indicated seasonal effects in the Rappahannock (ANOVA: $F=7.40$, $\mathrm{df}=3,12, \mathrm{P}<$ 0.0046) and James ($\mathrm{F}=5.16$, $\mathrm{df}=3,12, \mathrm{P}<0.0161$), but not in the York ($\mathrm{F}=0.93$, $\mathrm{df}=3,12, \mathrm{P}<0.4565$). More crabs occurred in the Rappahannock in October than in August or September (Table 3b). Crabs were alao more abundant in July than August (Table 3b). Abundances in August and September were equally low (Table 3b). Juvenile crabs were most abundant in the James in July (Table 3b). Rivers, compared within each level of Month, were significantly different in July (ANOVA: F=3.79, $\mathrm{df}=2,9, \mathrm{P}<0.0076$) and October ($\mathrm{F}=27.18$, $\mathrm{df}=2,9, \mathrm{P}<0.0002$). Lowest abundance occurred in the York in July, while abundances in the James and Rappahannock were comparably high (Table 3c). Crabs were most abundant in the Rappahannock in October (Table 3c).

The significant Station X Month interaction effect accounted for 13.3 \% of the variation in erab abundance (Table 3a). Analyses of Month within each level of station indicated no significant seasonal differences in crab abundance at either downriver $(\mathrm{F}=2.21, \mathrm{df}=3,20, \mathrm{p}<$ 0.1179) or upriver ($F=3.07, \mathrm{df}=3,20, \mathrm{P}<0.0515$) stations. Analysis of Station within each level of Month was significant only in September (ANOVA: $\mathrm{F}=21.72, \mathrm{df}=1,10, \mathrm{P}<0.0009$): significantly more crabs were collected upriver.

In the analysis of abundance of the newly recruited 1988 year class (i.e.r < 50 mm CW), the River X Month and Station X Month interaction effects were highly significant (Table 4a). The River X Month effect accounted for most variation in abundance (26.8\%, Table 4a). Analysis of abundance between months within each level of River indicated significant seasonal effects in the Rappahannocls (ANOVA:

Table 2. (a) Three-way analysis of variance with river, station and month as factors, and the dependent variable, log-transformed crab abundance for each set of two monthly tows per station and crabs $>80 \mathrm{~mm}$ CW in 1988.

SOURCE OF VARIATION	DF	SS	$\begin{aligned} & \text { PERCENTAGE } \\ & \text { OF } \\ & \text { VARIATION } \end{aligned}$	MS	F	\mathbf{P} <
RIVER	2	2.1113	11.6%	1.0557	6.23	0.0066
STATION	1	3.3306	18.3 \%	3.3306	19.66	0.0002
MONTH	3	4.9853	27.4 \%	1.6618	9.81	0.0002
RIVERXSTATION	2	0.4818	2.6 \%	0.2409	1.42	0.2609
RIVERXMONTH	6	0.9354	5.1 \%	0.1559	0.92	0.4979
STATIONXMONTH	3	0.2923	1.6 \%	0.0974	0.57	0.6370
RIVERXSTATIONXMONTH	6	1.9819	10.9 \%	0.3303	1.95	0.1135
ERROR	24	4.0667	22.48	0.1694		

(b) Ryan's 9 results for river, months and stations pooled. Means sharing the same line are not gignificantly different.

YORK JAMES RAPPAHANNOCK
$0.88 \quad 1.10 \quad 1.40$
(c) Ryan's Q results for months, stations and rivers pooled. Means sharing the same line are not significantly different.

OCTOBER	SEPTEMBER	JULY	AUGUST
0.65	1.01	1.38	1.46

Table 3. (a) Three-way analygis of variance with river, gtation and month as factors, and the dependent variable, log-transformed crab abundance for each set of two monthly tows per station and crabs $\leq 80 \mathrm{~mm}$ CW in 1988.

SOURCE OF VARIATION	DF	SS	$\begin{aligned} & \text { PERCENTAGE } \\ & \text { OF } \\ & \text { VARIATION } \end{aligned}$	MS	F	$\mathrm{P}<$
RIVER	2	3.7657	18.5\%	1.8828	14.58	0.0001
STATION	1	2.4744	12.2\%	2.4744	19.16	0.0002
MONTH	3	2.4232	11.9\%	0.8077	6.25	0.0027
RIVERxSTATION	2	0.3612	1.8\%	0.1806	1.40	0.2665
RIVERxMONTH	6	4.7404	23.3\%	0.7901	6.12	0.0005
STATIONxMONTH	3	2.7069	13.3\%	0.9023	6.99	0.0015
RIVERxSTATIONxMONTH	6	0.7387	3.6\%	0.1231	0.95	0.4768
ERROR	24	3.0997	15.3\%	0.1292		

(b) Ryan's Q results for months in the Rappahannock and James rivers. Means sharing the same line are not significantly different.

Rappahannock: AUGUST	SEPTEMBER	JULY	OCTOBER	
	0.70	0.93	1.47	1.57
James:	OCTOBER	AUGUST	SEPTEMBER	JULY
	0.24	0.49	0.53	1.52

Table 3 (cont).
(c) Ryan's Q results for river comparisons in July and october, 1988. Means sharing the same line are not significantly different. * P < 0.05

$\mathrm{F}=10.86, \mathrm{df}=3,12, \mathrm{P}<0.0010$): relatively more new recruits were collected in October than in July, Augugt or September (Table 4b). Rivers compared within each level of Month were gignificantly different in July (ANOVA: $F=11.19, \mathrm{df}=2,9, \mathrm{P}<0.0036$), August ($\mathrm{F}=9.00, \mathrm{df}=2,9, \mathrm{P}$ <0.0071) and October ($\mathrm{F}=38.52, \mathrm{df}=2,9, \mathrm{P}<0.0001$). In July, juveniles were least abundant in the York (Table 4c). Newly recruited crabs did not occur at sampling stations in the York or James in August. New recruits were most abundant in the Rappahannock in October (Table 4c). The significant Station X Month interaction effect accounted for 15.4 \% of the variation in new recruit abundance (Table 4a). Analysis of monthly abundance within each level of Station was significant for upriver (ANOVA: $F=4.33, \mathrm{df}=3,20, \mathrm{P}<0.0166$), but not downriver ($\mathrm{F}=1.68$, $d f=3,20, P<0.2043$) stations. New recruits were more abundant in September than August (Table 4d). Comparisons of Station within each level of Month were significant in September (ANOVA: $F=15.92, \mathrm{df}=1,10$, P < 0.0026): highest abundances occurred upriver.

In summary, juvenile crab recruitment began in September, and by October the population consisted primarily of new juvenile recruits. Juveniles and newly recruited crabs were usually more abundant at upriver sites, particularly in the fall. The analysis further indicated: (1) Crabs were generally more abundant at upriver stations; (2) Differences between rivers sometimes occurred such that crabs were most abundant in the Rappahannock; (3) Seasonal trends within rivers were usually associated with the influx of newly-recruited 1988 yearclass juveniles in the fall.

Summer 1989
Seasonal population structure of blue crabs in 1989 is depicted in Fig. 3. More juvenile crabs ($<50 \mathrm{~mm} \mathrm{CW}$) were collected in June, 1989 (Fig. 3), reflecting recruitment of the 1988 year clasa (Hines et al. 1990, Lipcius \& Van Engel 1990). The 1989 year class began recruiting as early as Auguat, and by October the population primarily consisted of juvenile crabs $<50 \mathrm{~mm} \mathrm{CW}$ (Fig. 3).

Table 4. (a) Three-way analysis of variance with river, station and month as factory, and the dependent variable, log-transformed crab abundance for each set of two monthly tows per station and crabs $<50 \mathrm{~mm}$ CW in 1988.

SOURCE OF VARIATION	DF	SS	PERCENTAGE OF VARIATION	MS	F	P<
RIVER	2	2.4888	15.2\%	1.2444	14.93	0.0001
StATION	1	1.8744	11.4\%	1.8744	22.48	0.0001
MONTH	3	2.4094	14.7\%	0.8031	9.63	0.0002
RIVERxSTATION	2	0.1799	1.1\%	0.0899	1.08	0.3558
RIVERXMONTH	6	4.3945	26.8\%	0.7324	8.78	0.0001
STATIONXMONTH	3	2.5252	15.48	0.8417	10.10	0.0002
RIVERxSTATIONxMONTH	6	0.5115	3.1\%	0.0853	1.02	0.4347
ERROR	24	2.0010	12.2\%	0.0834		

(b) Ryan's Q results for months in the Rappahannock river in 1988. Means sharing the same line are not significantly different. * $p<0.05$

AUGUST	SEPTEMBER	JULY	OCTOBER
0.23	0.58	0.77	1.54

(c) Ryan's Q results for rivers in July and October, 1988. Means sharing the same line are not significantly different. * $P<0.05$
July: YORK JAMES RAPPAHANNOCK

	0.08	0.69	0.77
october:	JAMES	YORK	RAPPAHANNOCK
	0.15	0.15	1.54

Table 4 (cont).
(d) Ryan's Q results for months at upriver gampling sites in 1988. Means sharing the same line are not significantly different.

AUGUST JULY OCTOBER SEPTEMBER
$\begin{array}{llll}0.05 & 0.57 & 0.79 & 1.20\end{array}$

Figure 3. Population eize structure of blue crabs collected at downriver and upriver atations from June through October, 1989. Rivers were pooled. Solid bars = males, Crosshatched bars $=$ juvenile females, Stippled bars $=$ adult females. Numbers above the bars represent total sample size if greater than 100.

In the analysis of total blue crab abundance (Table 5a), the River X Month and Station X Month interaction effects were significant (Table 5a). The River X Month interaction effect accounted for 10.9% of the variation in crab abundance (Table 5a). Analysis of Month within each level of River indicated no seasonal differences in any river (ANOVA: James: $F=0.15, \mathrm{df}=3,12, \mathrm{P}<0.9289$; York: $\mathrm{F}=2.08, \mathrm{df}=3,12, \mathrm{P}<0.1569$; Rappahannock: $F=1.15, \mathrm{df}=3,12, \mathrm{P}<0.3677$). Similarly, there were no significant differences in crab abundance between rivers for any month (ANOVA: June: $F=0.34, \mathrm{df}=2,9, \mathrm{P}<0.7197$; July: $\mathrm{F}=0.46, \mathrm{df}=2,9, \mathrm{P}<$ 0.6471; August: $\mathrm{F}=1.32, \mathrm{df}=2,9, \mathrm{P}<0.3133$; September: $\mathrm{F}=1.28, \mathrm{df}=2,9, \mathrm{P}$ <0.3231). Thus, the River X Month interaction effect was not due to distinct patterns in abundance, but likely due to differing trends in abundance.

The Station X Month interaction effect accounted for 6.8 of the variation in crab abundance (Table 5a). Seasonal effects occurred at downriver (ANOVA: $F=7.06, \mathrm{df}=3,20, \mathrm{P}<0.0020$), but not upriver stations ($\mathrm{F}=0.88$, $\mathrm{df}=3,20 \mathrm{P}<0.4675$): crabs were most abundant downriver in August (Table 5b, Fig. 3). Analysis for Station within each level of Month indicated significant differences throughout the sampling period (ANOVA: June: $F=31.96$, $\mathrm{df}=1,10, \mathrm{P}<0.0002$; July: $\mathrm{F}=18.42, \mathrm{df}=1,10, \mathrm{P}<$ 0.0016; August: $F=6.97, \mathrm{df}=1,10, \mathrm{p}<0.0248$; September: $\mathrm{F}=15.79$, $\mathrm{df}=1,10$, $\mathrm{P}<0.0026$): crabs were always more abundant upriver.

The River X Station X Month interaction effect was significant in the analygis of large juvenile and adult blue crab abundance (i.e., >80 mm CW, Table 6). Analygis of River and Station within each level of Month indicated gignificant Station, but not River, effectg in June and September (Table 7a): crabs were most abundant upriver. The River X Station interaction effect was significant in July and August (Table 7a), necessitating examination of effects within each level of the main factors (Table 7b). Stations differed in the Rappahannock in July, and in the James and Rappahannock in August (Table 7b(i)): crabs were

Table 5. (a) Three-way analysis of variance with river, station and month as factors, and the dependent variable, log-transformed total crab abundance for each set of two monthly tows per gtation in 1989.

SOURCE OF VARIATION	DF	SS	PERCENTAGE OF VARIATION	MS	F	P<
RIVER	2	0.0481	0.4\%	0.0240	0.43	0.653
STATION	1	6.6961	52.4\%	6.6961	120.90	0.0001
MONTH	3	1.4457	11.3\%	0.4819	8.70	0.0004
RIVERxSTATION	2	0.1972	1.5\%	0.0986	1.78	0.1902
RIVERxMONTH	6	1.3970	10.9\%	0.2328	4.20	0.0050
STATIONxMONTH	3	0.8647	6.8\%	0.2882	5.20	0.0065
RIVERxSTATIONxMONTH	6	0.7975	6.2\%	0.1329	2.40	0.0585
ERROR	24	1.3293	10.4\%	0.0554		

(b) Ryan's Q results for months at downriver stations in 1989. Means sharing the same line are not significantly different. * $P<0.05$

| JULY | JUNE | SEPTEMBER | AUGUST |
| :---: | :---: | :---: | :---: | :---: |
| 0.86 | 0.87 | 0.98 | 1.57 |

Table 6. Three-way analysis of variance with river, station and month as factors, and the dependent variable, log-transformed crab abundance for each set of two monthly tows per station and crabs $>80 \mathrm{~mm} \mathrm{CW}$ in 1989.

SOURCE OF VARIATION	DF	SS	PERCENTAGE OF VARIATION	MS	F	P<
RIVER	2	0.1818	1.2 \%	0.0909	1.83	0.1818
StATION	1	7.7851	50.2 \%	7.7851	156.91	0.0001
MONTH	3	3.1533	20.38	1.0511	21.18	0.0001
RIVERxSTATION	2	0.4926	3.2 \%	0.2463	4.96	0.0157
RIVERxMONTH	6	0.9090	5.9%	0.1515	3.05	0.0230
STATIONXMONTH	3	1.0451	6.7 \%	0.3484	7.02	0.0015
RIVERxSTATIONxMONTH	6	0.7486	4.8 \%	0.1248	2.51	0.0495
ERROR	24	1.1908	7.7 \%	0.0496		

Table 7. (a) Two-way analysis of variance for river and station within each level of month, and the dependent variable, log-transformed crab abundance for each set of two monthly tows per station and crabs $>80 \mathrm{~mm}$ CW in 1989.

MONTH	SOURCE OF VARIATION	DF	SS	MS	F	P <
JUNE	RIVER	2	0.0746	0.0373	0.37	0.7043
	StATION	1	3.7241	3.7241	37.11	0.0009
	RIVERXSTATION	2	0.1489	0.0745	0.74	0.5154
	ERROR	6	0.6021	0.1004		
JULY	RIVER	2	0.0465	0.0233	0.49	0.6344
	STATION	1	2.0559	2.0559	43.41	0.0006
	RIVERXSTATION	2	0.7575	0.3788	8.00	0.0203
	ERROR	6	0.2842	0.0474		
AUGUST	RIVER	2	0.5309	0.2655	42.21	0.0003
	STATION	1	0.3178	0.3178	50.52	0.0004
	RIVERXSTATION	2	0.0754	0.0377	5.99	0.0371
	ERROR	6	0.0377	0.0063		
SEPTEMBER	RIVER	2	0.4387	0.2194	4.93	0.0541
	STATION	1	2.7324	2.7324	61.47	0.0002
	RIVERXSTATION	2	0.2593	0.1297	2.92	0.1303
	ERROR	6	0.2667	0.0445		

Table 7 (cont).
(b) Lower-level (i.e., one-way) analysis of variance for (i) station within each level of river and (ii) river within each level of station in July and August.
(i)

MONTH	RIVER	$\begin{aligned} & \text { SOURCE OF } \\ & \text { VARIATION } \end{aligned}$	DF	SS	MS	F	$\mathbf{P}<$
JULY	JAMES	STATION ERROR	1	$\begin{aligned} & 0.4171 \\ & 0.0796 \end{aligned}$	$\begin{aligned} & 0.4171 \\ & 0.0398 \end{aligned}$	10.47	0.0837
	YORK	STATION ERROR	1	$\begin{aligned} & 0.1049 \\ & 0.0779 \end{aligned}$	$\begin{aligned} & 0.1049 \\ & 0.0389 \end{aligned}$	2.69	0.2424
	RAPP	STATION ERROR	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 2.2914 \\ & 0.1267 \end{aligned}$	2.2914	36.18	0.0265
AUGUST	JAMES	STATION ERROR	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 0.2028 \\ & 0.0115 \end{aligned}$	$\begin{aligned} & 0.2028 \\ & 0.0058 \end{aligned}$	35.13	0.0273
	YORK	STATION ERROR	$\frac{1}{2}$	$\begin{aligned} & 0.1800 \\ & 0.0255 \end{aligned}$	$\begin{aligned} & 0.1800 \\ & 0.0127 \end{aligned}$	14.13	0.0640
	RAPP	STATION ERROR	$\frac{1}{2}$	$\begin{aligned} & 0.0104 \\ & 0.0007 \end{aligned}$	0.0104	29.07	0.0327

```
Table 7 (cont).
```

(ii)

MONTH	STATION	$\begin{aligned} & \text { SOURCE OF } \\ & \text { VARIATION } \end{aligned}$	DF	SS	MS	F	P <
JULY	DOWNRIVER	RIVER	2	0.4419	0.2210	2.94	0.1964
		ERROR	3	0.2255	0.0752		
	UPRIVER	RIVER	2	0.3622	0.1811	9.26	0.0520
		ERROR	3	0.0586	0.0195		
AUGUST	DOWNRIVER	RIVER	2	0.4908	0.2454	36.33	0.0079
		ERROR	3	0.0203	0.0068		
	UPRIVER	RIVER	2	0.1155	0.0577	9.92	0.0476
		ERROR	3	0.0175	0.0058		

(c) Ryan's Q results for river, downriver and upriver in August. Means sharing the same line are not aignificantly different. * $P<0.05$

Downriver:	JAMES 1.02	$\begin{aligned} & \text { YORK } \\ & 1.24 \end{aligned}$	RAPPAHANNOCK 1.71
Upriver:	JAMES	YORK	RAPPAHANNOCK
	1.47	1.67	1.81

always more abundant upriver. Rivers differed downriver and upriver in August (Table 7b(ii)): crabs were generally most abundant in the Rappahannock (Table 7c).

The analysis of River and Month within each level of Station
(Table 8a) indicated significant River and Month effects upriver. Crabs were most abundant in the Rappahannock, and densities were higher in June and August than September (Table 8e). A gignificant River X Month interaction occurred downriver (Table 8a). Examination of factors within each level of the main effecte indicated gignificant river differences in August (Table 7c) and September (Table 8b(i)): crabs were most abundant in the Rappahannock in August and in the James in September (Table 8c). Months differed downriver in the Rappahannock (Table 8b(ii)): crabs were most abundant in August (Table 8d).

The analysis of Station and Month within each level of Rivex indicated significant Station differences in the James and York (Table 9a): crabs were most abundant upriver. Months differed in the York (Table 9a): crabs were more abundant in August than September (Table 9c). The Station X Month interaction effect was significant in the Rappahannock (Table 9a). Lower-level ANOVA indicated gignificant Station differences in all monthe (Table 9b(i)): crabs were always more abundant upriver. Montha differed downriver and upriver in the Rappahannock (Table $9 b(i i), d)$ as described above (Table 8d,e).

Most of the variation in abundance of juvenile crabs $\leq 80 \mathrm{~mm} \mathrm{CW}$ was associated with station location (27.7 \%, Table 10a). Crabs were always more abundant at upriver locations (Fig. 3). A significant River X Month interaction effect accounted for 23.6 of the variation (Table 10a). Analysis of seasonal abundance within each level of River was significant for the York (ANOVA: $F=5.39$, $d f=3,12, p<0.0140$) : more crabs occurred in August and September than in July (Table 10b). Comparisons between rivers within each level of Month were not gignificant (ANOVA: June: $F=0.81, \mathrm{df}=2.9, \mathrm{P}<0.4738$; July: $\mathrm{F}=2.06$, $\mathrm{df}=2,9, \mathrm{P}<0.1834$; August: $\mathrm{F}=0.83, \mathrm{df}=2,9, \mathrm{P}<0.466$; September:

Table 8. (a) Two-way analysis of variance for river and month within each level of station, and the dependent variable, log-transformed crab abundance for each set of two monthly tows per station and crabs $>80 \mathrm{~mm}$ CW.

STATION	$\begin{aligned} & \hline \text { SOURCE OF } \\ & \text { VARIATION } \end{aligned}$	DF	SS	MS	F	$\mathbf{P}<$
DOWNRIVER	RIVER	2	0.1660	0.0830	1.26	0.3183
	MONTH	3	3.6215	1.2072	18.35	0.0001
	RIVERXMONTH	6	1.4159	0.2360	3.59	0.0284
	ERROR	12	0.7896	0.0658		
UPRIVER	RIVER	2	0.5084	0.2542	7.60	0.0074
	MONTH	3	0.5769	0.1923	5.75	0.0112
	RIVERXMONTH	6	0.2417	0.0403	1.21	0.3675
	ERROR	12	0.4012	0.0334		

(b) Lower-level (i.e., one-way) analysis of variance for (i) river within each level of month, downriver and (ii) month within each level of river, downriver.
(i)

MONTH	SOURCE OF VARIATION	DF	SS	MS	F	$P<$
JUNE	RIVER	2	0.0398	0.0199	0.12	0.8906
	ERROR	3	0.4954	0.1651		
JULY	RIVER	2	0.4419	0.2210	2.94	0.1964
	ERROR	3	0.2255	0.0752		
AUGUST	RIVER	2	0.4908	0.2454	36.33	0.0079
	ERROR	3	0.0203	0.0068		
SEPTEMBER	RIVER	2	0.6094	0.3047	18.87	0.0200
	ERROR	3	0.0484	0.0161		

Table 8 (cont).
(ii)

| RIVER | SOURCE OF
 VARIATION | DF | SS | MS | F | P $<$ |
| :--- | :--- | :--- | :---: | :--- | :--- | :--- | :--- |
| JAMES | MONTH | 3 | 0.1935 | 0.0645 | 2.39 | 0.2091 |
| | ERROR | 4 | 0.1078 | 0.0269 | | |
| YORK | | 3 | 1.3226 | 0.4409 | 3.19 | 0.1458 |
| | MONTH | 4 | 0.5524 | 0.1381 | | |
| RAPP | ERROR | 3 | 3.5213 | 1.1738 | 36.27 | 0.0023 |
| | MONTH | 4 | 0.1295 | 0.0324 | | |

(c) Ryan's Q results for rivers, downriver in September. Means sharing the same line are not significantly different. * $P<0.05$

September: RAPPAHANNOCK YORK JAMES
$0.00 \quad 0.15 * \underline{0.74}$
(d) Ryan's 9 results for months, downriver in the Rappahannock. Means sharing the same line are not significantly different. * $P<0.05$

SEPTEMBER	JULY	JUNE	AUGUST
0.00	0.24	0.39	1.71

(e) Ryan's Q results for rivers, upriver, months pooled and months, upriver, rivers pooled. Means sharing the game line are not significantly different. $* \mathbf{p}<0.05$

| River: | YORK | JAMES | RAPPAHANNOCK |
| ---: | ---: | ---: | :---: | :---: |
| | 1.32 | 1.47 | 1.68 |

Month: SEPTEMBER JULY JUNE AUGUST
$1.25 \quad 1.45 \quad 1.60 \quad 1.65$

Table 9. (a) Two-way analysis of variance for station and month within each level of river, and the dependent variable, log-transformed crab abundance for each set of two monthly tows per station and crabs $>80 \mathrm{~mm}$ CW in 1989.

RIVER	SOURCE OF VARIATION	DF	SS	MS	F	\mathbf{P} <
JAMES	STATION	1	1.8452	1.8452	99.75	0.0001
	MONTH	3	0.0893	0.0298	1.61	0.2621
	STATIONXMONTH	3	0.1699	0.0566	3.06	0.0914
	ERROR	8	0.1480	0.0185		
YORK	Station	1	1.6685	1.6685	15.32	0.0045
	MONTH	3	1.4464	0.4821	4.43	0.0411
	STATIONXMONTH	3	0.3007	0.1002	0.92	0.4736
	ERROR	8	0.8712	0.1089		
RAPPAHANNOCK	STATION	1	4.7640	4.7640	222.11	0.0001
	MONTH	3	2.5265	0.8422	39.26	0.0001
	STATIONXMONTH	3	1.3232	0.4411	20.56	0.0004
	ERROR	8	0.1716	0.0214		

Table 9 (cont).
(b) Lower-level (i.e., one-way) analysis of variance for (i) station within each level of month, and (ii) month within each level of station in the Rappahannock river.
(i)

| MONTH | SOURCE OF
 VARIATION | DF | SS | MS | F | P $<$ |
| :--- | :--- | :--- | :---: | :--- | :--- | :--- | :--- |
| JUNE | STATION | 1 | 2.0255 | 2.0255 | 119.03 | 0.0083 |
| | ERROR | 2 | 0.0340 | 0.0170 | | |
| JULY | STATION | 1 | 2.2914 | 2.2914 | 36.18 | 0.0265 |
| | ERROR | 2 | 0.1267 | 0.0633 | | |
| AUGUST | STATION | 1 | 0.0104 | 0.0104 | 29.07 | 0.0327 |
| | ERROR | 2 | 0.0007 | 0.0004 | | |
| SEPTEMBER | STATION | 1 | 1.7599 | 1.7599 | 346.18 | 0.0029 |
| | ERROR | 2 | 0.0102 | 0.0051 | | |

(ii)

| STATION | SOURCE OF
 VARIATION | DF | SS | MS | F | P $<$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| DOWNRIVER | MONTH | 3 | 3.5213 | 1.1738 | 36.27 | 0.0023 |
| | ERROR | 4 | 0.1295 | 0.0324 | | |
| URRIVER | MONTH | 3 | 0.3284 | 0.1095 | 10.40 | 0.0233 |
| | ERROR | 4 | 0.0421 | 0.0105 | | |

Table 9 (cont).
(c) Ryan's Q results for months in the York river, stations pooled. Means sharing the same line are not significantly different.

SEPTEMBER	JUNE	JULY	AUGUST
0.61	0.93	0.99	1.46

(d) Ryan's Q results for months, upriver in the Rappahannock river. Means sharing the same line are not significantly different. * $P<0.05$

SEPTEMBER	JULY	AUGUST	JUNE	
	1.33		1.75	1.81

Table 10. (a) Three-way analysis of variance with river, station and month as factors, and the dependent variable, log-transformed crab abundance for each get of two monthly tows per station and crabs $\leq 80 \mathrm{~mm}$ CW in 1989.

SOURCE OF VARIATION	DF	SS	$\begin{aligned} & \text { PERCENTAGE } \\ & \text { OF } \\ & \text { VARIATION } \end{aligned}$	MS	F	P<
RIVER	2	0.4217	3.0\%	0.2108	1.84	0.1799
STATION	1	3.8721	27.7\%	3.8721	33.87	0.0001
MONTH	3	0.9437	6.8\%	0.3146	2.75	0.0647
RIVERxSTATION	2	0.2509	1.8\%	0.1255	1.10	0.3499
RIVERxMONTH	6	3.3005	23.6\%	0.5501	4.81	0.0024
STATIONxMONTH	3	0.8624	6.28	0.2875	2.51	0.0824
RIVERxSTATIONxMONTH	6	1.5793	11.3\%	0.2632	2.30	0.0675
ERROR	24	2.7437	19.6\%	0.1143		

(b) Ryan's Q results for months in the York river in 1989. Means sharing the same line are not significantly different.

JULY	JUNE	AUGUST	SEPTEMBER
0.52	0.87	1.45	1.64

$F=3.17, d f=2,9, P<0.0909)$.
Station location was highly significant and accounted for the most variation in abundance (32.9\%, Table 11a) of newly recruited 1988 or 1989 year-clase crabs < 50 mm CW. These were more abundant at upriver locations (Fig. 3). There was a significant River X Month interaction (15.4 \% of variation, Table 11a). Comparisons between rivers within each level of Month indicated no significant differences in abundance for any month (ANOVA: June: $F=1.30$, $d f=2,9, P<0.3187$; July: $F=0.46$, df=2,9, $P<0.6455$; Auguat: $F=0.31, d f=2,9, P<0.7400 ;$ September: $\mathrm{F}=2.85$, $\mathrm{df}=2,9, \mathrm{P}<0.1099$). However, seasonal differences in abundance occurred in the York river (ANOVA: $F=6.59$, $d f=3,12, P<0.0070$): more new recruits occurred in September than in June or July (Table 11b).

In summary, recruitment of the 1989 year-class began as early as August, and by September and October the population was dominated by new juvenile recruits. In general there was: (1) greater abundance of all crab size classes at upriver stations, (2) seasonal trends in abundance within rivers due to recruitment of the new year class in the fall, and (3) similar abundance between rivers for older juveniles and new recruita, but generally greater abundance of adults in the Rappahannock river.

Similar patterns in blue crab abundance occurred in 1988 and 1989 such that crabs were most abundant upriver and in the Rappahannock river, and seasonal trends in abundance were associated with the influx of new recruita in the fall. However, recruitment occurred earlier in 1989, while small juveniles were generally less abundant in 1988.

Sampling Requirements for Diet Analysis

Most food items occurring in the guts of blue crabs were fragmented, but identifiable (Appendix 3). The percentage of identifiable prey types increased sharply to a mean of 64 (7 of 11) at sample sizes of 3-7 crabs (Fig. 4a-c). Asymptotic maxima of the number of food types occurred at sample sizes of 7 (J27, small crabs, Fig. 4a) to 18 (Y25, medium crabs, Fig. 4b) crabs. Therefore, a minimum sample

Table 11. (a) Three-way analysis of variance with river, station and month as factors, and the dependent variable, log-transformed crab abundance for each set of two monthly tows per station and crabs $<50 \mathrm{~mm}$ CW in 1989.

SOURCE OF VARIATION	DF	SS	PERCENTAGE OF VARIATION						MS	F	P<
RIVER	2	0.3830	2.3%	0.1915	1.67	0.2099					
STATION	1	5.5162	32.98	5.5162	48.02	0.0001					
MONTH	3	3.4329	20.5%	1.1443	9.96	0.0002					
RIVERXSTATION	2	0.6657	4.0%	0.3329	2.90	0.0746					
RIVERXMONTH	6	2.5976	15.4%	0.4329	3.77	0.0087					
STATIONXMONTH	3	0.1787	1.1%	0.0596	0.52	0.6734					
RIVERXSTATIONXMONTH	6	1.2279	7.3%	0.2047	1.78	0.1456					
ERROR	24	2.7569	16.5%	0.1149							

(b) Ryan's \mathbf{Q} results for months in the York river in 1989. Means sharing the same line are not significantly different.

JULY	JUNE	AUGUST	SEPTEMBER
0.23	0.42	0.98	1.60

Figure 4. Cumulative numbers of food types in the foreguts of three size classes of blue crabs in relation to sample size for crabs collected in 1988 from the three upriver stations:
 (a) James, (b) York and (c) Rappahannock Rivera.

size of 7 foreguts was required to quantify gut contents of blue crabs. The mean number of food types per crab increased with gut fullnese (Fig. 5). In general, asymptotes were reached at 25-50 \% gut fullness. Blue Crab Diet: Spatial and Temporal Patterns

Summer 1988
The strategy in the multivariate (i.e., cluster) analysis of diet entailed two components. Firgt, samples, meeting a minimum sample size of 7, were partitioned by all factor combinations jointly (i.e., river, month, station, and size) to determine general features of the blue crab diet. Second, particular factors or factor combinations were collapsed to assess the specific effects of non-collapsed factors upon diet. In the fully-partitioned analysis, the data clustexed into 5 groups (Fig. 6a), which were used to examine dietary differences between these groups (Fig. 6b). The major food items consumed by all blue crabs, regardless of grouping, were bivalves and crabs, with minor consumption of polychaetes and miscellaneous prey consisting of hydroids, gastropods, insects, crustaceans, fish and plants (Fig. 6b). In general, the groups could be separated by the proportions of bivalve, crab and polychaete prey in the diet (Fig. 6b). Some groupings were distinguished by their very high (group 2: 0.87-0.99) and very low (group 5: 0) proportions of bivalves. Similarly, crab consumption ranged from 0.79 (group 5) to low levels (groups 1-3). Diet diversity was equally variable with lowest values for group 2 (Fig. 6a) which reflected the almost exclusive consumption of bivalves (Fig. 6b). One group (i.e., group 4) had a moderate proportion of bivalves (0.30-0.68) and high proportion of crabs (0.12-0.52). Most crabs in group 4 were large (i.e., $>134 \mathrm{~mm}$). Blue crabs occurred in 17.8 \% of the guts, with the remainder congiating of xanthids, one spider cxab, and unknown species. The polychaete fraction was needed to differentiate group 3 from groups 1 and 4, such that group 3 had the highest proportion of polychaetes (0.53) in the diet (Fig. 6b).

Figure 5. Mean number (\pm S.E.) of food types per crab in relation to percent gut fullness for three size classes of blue crabs collected in July, 1988 from the three upriver stations in the James (JA27), York (YK25) and Rappahannock (RA30) Rivers. Numbers in parentheses represent sample size.

Figure 6. (a) Cluster diagram representing diet aimilarity in 1988 for the station (X25=York25, J27=James27, R15=Rappahannock15, R30=Rappahannock30), month ($J=J u l y, A=A u g u s t, S=S e p t e m b e r$, $0=$ October), and size class ($1=60-99 \mathrm{~mm}, 2=100-134 \mathrm{~mm}, 3 \geq 134$ mm) combinations with a minimum sample size of 7 crabs. The Shannon-Weiner diversity index is given at the root of each branch. Sample sizes were: Group $1=293$, Group $2=144$, Group $3=21$, Group $4=73$, Group $5=8$. (b) Diet composition in blue crabs illustrated as proportion in the diet for the station-month-gize class combinations described in (a). Major food items in the diet were bivalves, crabs and polychaetes. Minor items (see text for definition) were pooled into miscellaneous (i.e., hydroids, gastropods, insects, crustaceans, fish, plants).

(b)

To examine the effects of river, station and crab size, diets were pooled across month; five groupings were apparent (Fig. 7a). Group 1 primarily comprised upriver stations, where the major food item consumed was bivalves, followed by moderate consumption of crabs, and minor amounts of polychaetes, fish, crustaceans, hydroids, gastropods, insects, and plants (Fig. 7b). Group 2 consisted of all crab size classes at the R30 station (Fig. 7a). This group was unique in ita almost exclusive consumption of bivalves (Fig. 7b) and low diet diversity (Fig. 7a). Although clustering into three groups (i.e., Groups 3-5, Fig. 7), the downriver stations were very similar in the low proportions of bivalves and the relatively higher proportion of crabs, polychaetes or fish (Fig. 7b).

To clarify the effects of river and station, diets were collapsed across month and size. The river stations clustered into two major groups: downriver stations (group 1) and upriver stations (group 2; Fig. 8a). Bivalves (Fig. 8b) were consumed in the greateat proportions upriver and diet diversity was relatively low (Fig. 8a). Crabs at downriver stations (Fig. 8b) consumed proportionally fewer bivalves and more crabs (Y10, 6.7 \% blue crab), polychaetes (R15), fish (Y10, J13), or gastropods (J13). Diet diversity was correspondingly higher in this group (Fig. 8a).

Crab size effects were examined by collapsing diets across station and month. Three groupings were apparent (Fig. 9a). The first group consisted of small crabs in all three sivers (i.e., 60-99 mm CW, Fig. 9a) and was characterized by a moderate consumption of bivalves, low consumption of crabs, and relatively high consumption of polychaetes (Fig. 9b). Group 2 comprised medium and large crabs in the York and James Rivers; these consumed proportionally more crabs and fish (Fig. 9b). Group 3 consisted of medium and large crabs in the Rappahannock. This group was unique in its high consumption of bivalves (Fig. 9b) and low diet diversity (Fig. 9a). The difference among rivers was only evident in larger crabs (medium and large): the James and York Rivers

Figure 7. (a) Cluster diagram representing diet similarity among three size classes of crabs collected from six stations in 1988. Months were pooled. The Shannon-Weiner diversity index is given at the root of each branch. Sample sizes were: Group $1=248$, Group $2=313$, Group $3=32$, Group $4=15$, Group $5=$ 9. (b) Station differences in diet composition of three size classes of blue crabs illustrated as proportion in the diet for station-size combinations described in (a). Major food items in the diet were bivalves, crabs, polychaetes and fish. Minor items (see text for definition) were pooled into miscellaneous (i.e., hydroids, gastropods, insects, crustaceans, plants).

Figure 8. (a) cluster diagram representing diet similarity among crabs
collected from six stations in 1988 . Months and size classes
were pooled. The Shannon-Weiner diversity index is given at
the root of each branch. Sample sizes were: Group $1=76$,

Group $2=553 . ~(b)$ Diet composition of blue crabs

illustrated as proportion in the diet for the stations

described in (a). Major food items in the diet were

bivalves, crabs, polychaetes and fish. Minor items (see text

for definition) were pooled into miscellaneous (i.e.,
hydroids, gastropods, insects, crustaceans, plants).

(b)

■misc
Drish
Dpoly
Dcrab
Daiv
separated from the Rappahannock River such that diet diversity was lowest in the Rappahannock (Fig. 9a), where crabs consumed the greatest proportion of bivalves (Fig. 9b).

There were no obvious seasonal effects on blue crab diet when rivers and stations were pooled (Fig. 10a). Although five groups differed in the relative proportions of bivalves, crabs, polychaetes and fish in the diet (Fig. 10b), there were no clear seasonal patterns.

In summary, the analysis of 1988 diets indicated the following major patterns: (1) Blue crab diets were separable on the basis of proportional consumption of bivalves, crabs and polychaetes, the dominant dietary components (Fig. 6); other dietary components, such as fish, hydroids, gastropods, insects, cxustaceans other than crabs, and plants had little influence in cluster analysis within the Chesapeake Bay sygtem. (2) Diets of crabs collected upriver differed from those of crabs collected downriver, such that upriver crabs consumed proportionally more bivalves and fewer crabs, polychaetes and fish (Figs. 7 \& 8). (3) Diets of juveniles (60-99 mm CW) differed from those of larger juveniles and adult crabs (100-134\&>134 mm CW) such that smaller juveniles generally ate proportionately more polychaetes, and fewer crabs and fish (Fig. 9). Large juveniles and adults in the Rappahannock River ate proportionately more bivalves than those in the York and James, where more crabs and fish were eaten (Fig. 9). (4) Some stations were uniquely separable from other stations; for instance, the upriver Rappahannock station (R30) had the highest proportions of bivalves in the diet (Figs. $7 \& 8$). (5) Neither seasonal (Fig. 10) nor broad inter-river patterns were apparent (e.g., Fig. 9).

Sumer 1989
In 1989, analyses were similar except that a smaller size class of crabs (10-59 mm CW) was added. In the complete analysis, diets clustered into 7 groups (Fig. 1la). The major food item consumed by all crabs was bivalves, followed by crabs and polychaetes, and then minor consumption of hydroids, gastropods, insects, crustaceans, fish,

Figure 9. (a) Cluster diagram repreaenting diet gimilarity among the three size classes of crabs collected in 1988 within the three rivers. Months and stations were pooled. The ShannonWeiner diversity index is given at the root of each branch. Sample size日 were: Group $1=162$, Group $2=205$, Group $3=$ 262. (b) Diet composition of blue crabs illustrated as proportion in the diet for the three rivers described in (a). Major food items in the diet were bivalves, crabs, polychaetes and fish. Minor items (bee text for definition) were pooled into miscellaneous (i.e., hydroids, gastropods, insects, crustaceans, plants).

(b)

Figure 10. (a) Cluster diagram of food similarity among months for the three size classes of crabs collected in 1988. Rivers and stations were pooled. The Shannon-Weiner diversity index ig given at the root of each branch. Sample sizes were: Group $1=104$, Group $2=362$, Group $3=43$, Group $4=94$, Group 5 $=26$. (b) Diet composition of blue crabs illustrated as proportion in the diet for the four months described in (a). Major food items in the diet were bivalves, crabs, polychaetes and fish. Minor items (see text for definition) were pooled into miscellaneous (i.e., hydroids, gastropods, insects, crustaceans, plants).

(b)

■misc
Dfish
■poly
Dchab
Wiv
ophiuroids and plants (Fig. 11b). Although bivalves were consumed by all groups, the proportions in the diet again varied substantially from $0.05-0.92$ (Fig. 11b). As in 1988, groups were separable based on their proportional consumption of bivalves, crabs and polychaetes (Fig. 11a,b). Some crabs (groups 1 and 4) were unique in their extremely high and low proportional consumption of bivalves (Fig. 11b). Crabs in group 1 were all large juveniles or adults ($260 \mathrm{~mm} C W$) from upriver stations. Blue crab remains occurred in 25.8 \% of their guts (Fig. 11b). Diet diversity was relatively low (Fig. 11a). Group 4 (Fig. 11a) consisted of young juveniles $<60 \mathrm{~mm}$ CW collected at R30 in July. These crabs almost exclusively consumed small crustaceans other than crabs (Fig. 11b). Their diet diversity was the lowest of all groups (Fig. 11a). Three groups (5, 6\&7) were distinguishable based on their bivalve and crab consumption. All three groups were larger crabs (≥ 60 mm CW) that ate either low (groups $6 \& 7$) or moderate (group 5) amounts of bivalves and a moderate (groups $5 \& 7$) to high (group 6) proportion of crabs (Fig. 11b). Percent occurrence of blue crabs in the guts was $50 \%, 46.7$ \% and 12.5% for groups 5,6 and 7 respectively. Within groups, blue crabs occurred most frequently in the diets of adults and very large juveniles $>99 \mathrm{~mm} C W$ (i.e., group 5: 47.9 f for crabs $>99 \mathrm{~mm}$ and 2.1 for crabs $60-99 \mathrm{~mm}$). A aignificant proportion of the diet of group 7 crabs consisted of gastropods (Fig. 11b), which also had the highest diet diversity (Fig. 11a).

The remaining groups (groups 2 \& 3; Fig. 1la) were characterized by their moderate congumption of bivalves, crabs, and polychaetes. These groups were not separable on any single factor or combination thereof, although in group 3 crustaceans made up the major proportion of the diet (Fig. 11b).

To differentiate the combined effects of river, station and size, the data were pooled acrose month. Three groupings were apparent (Fig. 12a). Group 1 primarily compriged young juveniles (i.e., $<60 \mathrm{~mm} \mathrm{CW}$) whether upriver or downriver. Diet diversity was relatively high (Fig.

Figure 11. (a) Cluster diagram representing diet similarity in 1989 for the station (Y10=York10, Y25=York25, J13=James13, J27=James27, R15=Rappahannock 15, R30=Rappahannock30), month (JN=June, JY=July, $A G=A u g u s t, S P=S e p t e m b e r)$, and size class ($1 \leq 60 \mathrm{~mm}, 2=60-99 \mathrm{~mm}, 3=100-134 \mathrm{~mm}, 4 \geq 134 \mathrm{~mm}$) combinations with a minimal sample size of 7 crabs. The Shannon-Weiner diversity index is given at the root of each branch. Sample sizes were: Group $1=145$, Group $2=100$, Group $3=78$, Group $4=12$, Group $5=87$, Group $6=15$, Group $7=24$. (b) Diet composition in blue crabs illustrated as proportion In the diet for the station-month-size class combinations described in (a). Major food items in the diet were bivalves, crabs, and polychaetes. Minor items (see text for definition) were pooled into miscellaneous (i.e., hydroids, gastropods, insects, crustaceans, fish, ophiuroids, plants).

(b)

Dmisc
Dpoy
Derab
Div

12a), with moderate consumption of bivalves, high consumption of polychaetes and crustaceans, and low consumption of crabs (Fig. 12b). Groups 2 and 3 consisted of large juveniles and adults that consumed a relatively high proportion of crabs (Fig. 12b). Group 2 occurred only at downriver stations (Fig. 12a), where bivalve consumption was low (Fig. 12b), while diet diversity was generally high (Fig. 12a). This group consumed the most crabs (16.7 \% blue crab) and gastropoda (Fig.12b). Large crabs in group 3 were mostly from upriver atations (Fig. 12a). These crabs consumed the most bivalves and moderate to high quantities of crabs (Fig. 12b, 2.8 \% blue crabs). Their diet diversity was the lowest of all groups (Fig. 12a).

To define river and station effects clearly, diets were collapaed across month and size. As in 1988, diets clustered into downriver (group 1) and upriver (group 2) sites (Fig. 13a). Crabs from downriver stations consumed fewer bivalves and more polychaetes, fish and gastropods (Fig. 13b). With the exception of R15 which had a high proportion of crabs (24 \% blue crab remains), diet diversity was higher for this group (Fig. 13a). Crabs at upriver stations predominantly consumed bivalves and crustaceans (Fig. 13b).

When crab diets were lumped by rivers and stations (Fig. 14a) the data clustered into four groups indicating differences by crab size: groups 1 and 2 consisted of small juveniles, usually $<60 \mathrm{~mm} \mathrm{CW}$, whereas groups 3 and 4 crabs were all larger juveniles and adults $\geq 60 \mathrm{~mm} \mathrm{CW}$ (Fig. 14a). Small juveniles consumed fewer bivalves and crabs, but proportionally more polychaetes and crustaceans (Fig. 14b). Diet diversity was generally higher for these crabs (Fig. 14a). Blue crabs occurred in 4.1 of the guts of gmall juveniles (groups $1 \& 2$), with 2.6 \% in crabs $60-99 \mathrm{~mm} \mathrm{CW}$ and 1.5% in crabs $<60 \mathrm{~mm} \mathrm{CW}$. In contrast, blue crabs occurred in 27.6% of the guts of larger crabs (groups $3 \times$ 4). Again there were no major seasonal differences in diet composition (Fig. 14).

The analyais of 1989 diets indicated the following major patterns:

Figure 12. (a) Cluster diagram representing diet similarity among four size classes of crabs collected from six stations in 1989. Months were pooled. The shannon-Weiner diversity index is given at the root of each branch. Sample sizes were: Group $1=180$, Group $2=55$, Group $3=281$. (b) Station differences in diet composition of four size classes of blue crabs illustrated as proportion in the diet for station-size combinations described in (a). Major food items in the diet were bivalves, crabs, polychaetes and crustaceans. Minor items (see text for definition) were pooled into miscellaneous (i.e., hydroids, gastropods, insects, fish, ophiuroide, planta).

Figure 13. (a) Clugter diagram representing diet similarity among crabs collected from six stations in 1989. Months and size classes were pooled. The Shannon-Weiner diversity index is given at the root of each branch. Sample gizes were: Group $1=110$, Group $2=413$. (b) Diet composition of blue crabs illustrated as proportion in the diet for the stations described in (a). Major food items in the diet were bivalves, crabs, polychaetes, crustaceans and fish. Minor items (see text for definition) were pooled into miscellaneous (i.e., hydroids, gastropods, insects, ophiuroids, plants).

Figure 14. (a) cluster diagram of food similarity among months (i.e., June-September) for the four size classes of crabs collected in 1989. Rivers and stations were pooled. The ShannonWeiner diversity index is given at the root of each branch. Sample aizes were: Group $1=167$, Group $2=27$, Group $3=$ 180, Group $4=143$. (b) Diet composition of blue crabs illustrated as proportion in the diet for the four months described in (a). Major food items in the diet were bivalves, crabs, polychaetes and crustaceans. Minor items (see text for definition) were pooled into miscellaneous (i.e., hydroids, gastropods, insects, fish, ophiuroids, plants).

(b)

(1) Blue crab diets were again separable on the basis of bivalve, crab and polychaete fractions, which dominated the diet (Fig. 11). (2) Dietg of crabs from upriver stations again differed from those downriver, whereby upxiver crabs ate relatively more bivalves, and fewer crabs, polychaetes and other categories (Fig. 13). (3) Even with the addition of a smaller gize class ($10-59 \mathrm{~mm} C W)$, size-related patterns were similar to 1988 , such that large juveniles and adults ate relatively more crabs and bivalves than small juveniles, which ate more polychaetes and small crustaceans, and had a more diverse diet (Figs. $12 \& 14$). The smallest juveniles were unique in their high consumption of polychaetes and crustaceans and relatively low consumption of bivalves and crabs (Figs. 12 \& 14). Large crabs in the Rappahannock River again ate relatively more bivalves and less crabs than those in the York and James Rivers (Fig. 12), though the difference was not as great as in 1988. (4) As in 1988, some stations were uniquely separable on the basis of diet; for example, small crabs at the upriver Rappahannock station were unique in their low consumption of bivalves and high consumption of small crustaceans (Fig. 12). (5) Seasonal and river-specific patterns again were incongistent (e.g., Fig. 14).

Blue Crab Diet: Diversity
1988
Diet diversity was negatively correlated with crab size (Table 12a), though there were exceptions (e.g., in the York River) where larger juveniles (i.e., 100-134 mm CW) consumed the greatest variety of prey (Table 12b). Furthermore, diet diversity was relatively higher downriver in all rivers where polychaeteg, crustaceans and other miscellaneous prey were consumed in addition to the dominant dietary constituents - bivalves and crabs (Table 12c). The overall seasonal pattern indicated highest diveraity in September (Table 12d), and low values in July, Auguat and October.

1989
Diet diversity again correlated negatively with crab size (Table

12a). However, diet diversity of new recruits in the Rappahannock river was lower than that of larger juveniles and small adults (Table 12b). As in 1988, diet diversity was generally higher downriver (Table 12c). The overall seasonal pattern indicated highest diet diversity in August followed by September and July, and lowest diversity in June (Table 12d).

In summary, the generalized conclusions for both years indicated: (1) diet diversity correlated negatively with crab size, and (2) higher diversity at downriver stations due to consumption of various prey such as crustaceans, polychaetes and fish in addition to bivalves and crabs.

Blue Crab Diet: Cannibalism
The incidence of cannibalism increased with crab size (Fig. 15a;
Table 13a), and frequency differed significantly between all aize classes comparable in 1988 and 1989 (Table 13c(iii)). River differences occurred (Fig. 15b; Table 13a) such that cannibalism was most frequent in the James and York and significantly lower in the Rappahannock (Table 13c(ii)). A significant Year X Month interaction effect necessitated examination within levels of the main factors (Table 13a). Months compared within each level of Year were significantly different in 1988 and 1989 (Table 13b(i)). Cannibalism occurred more frequently in September than August in 1988, but there were no differences in July and August, and July and September (Fig. 15c; Table 13c(i)). In 1989, cannibalism occurred more frequently in August and September than July (Fig. 15c; Table 13c(i)). The frequency of occurrence of cannibalism was higher in 1989 in all monthe (i.e., July through September, Table 13b(ii)).

The analysis for cannibalism as a function of Year, River, Month (i.e., July a Auguat), Size and Station also indicated a highly significant size effect (Table 14a): cannibalism increased with size class (Table 14c(ii)). Significant Year X Month and River X Station interaction effects occurred (Table 14a) necessitating examination within levels of the main factors (Table 14b, c). Stations

Table 12. (a) Diet diversity of blue crabs by size class in 1988 and 1989. Stations, rivers and months were pooled. Numbers in parentheses represent sample size.

SIZE CLASS (MM)	1988	1989
<60	-	$0.670(140)$
$60-99$	$0.570(162)$	$0.651(139)$
$100-134$	$0.514(261)$	$0.528(135)$
>134	$0.386(206)$	$0.419(109)$

(b) Diet diversity of blue crabs by size class and river in 1988 and 1989. Months and stations are pooled. Numbers in parentheses represent sample size.

$\begin{aligned} & \text { SIZE } \\ & \text { CLASS (MM) } \end{aligned}$	JAMES		YORK		RAPPAHANNOCK	
	1988	1989	1988	1989	1988	1989
< 60	-	$\begin{aligned} & 0.619 \\ & (47) \end{aligned}$	-	$\begin{aligned} & 0.658 \\ & (66) \end{aligned}$	-	$\begin{array}{r} 0.485 \\ (27) \end{array}$
60-99	0.589	0.578	0.437	0.688	0.539	0.561
	(43)	(39)	(21)	(45)	(98)	(55)
100-134	0.568	0.419	0.559	0.565	0.412	0.526
	(54)	(45)	(61)	(32)	(146)	(58)
>134	0.489	0.413	0.462	0.449	0.239	0.360
	(34)	(32)	(56)	(25)	(116)	(52)

(c) Diet diversity of blue crabs by station in 1988 and 1989. Months and size classes are pooled. Numbers in parentheses represent sample size.

STATION	1988	1989
J13	$0.686(14)$	$0.791(19)$
J27	$0.542(117)$	$0.536(144)$
Y10	$0.654(15)$	$0.735(66)$
Y25	$0.469(123)$	$0.604(102)$
R150	$0.622(47)$	$0.470(25)$
	$0.342(313)$	$0.544(167)$

Table 12 (cont).
(d) Diet diversity of blue crabs by month in 1988 and 1989. Rivers, stations and size classes are pooled. Numbers in parentheses represent sample size.

MONTH	1988	1989
JUNE	-	
JULY	$0.473(316)$	$0.475(123)$
AUGUST	$0.468(212)$	$0.617(150)$
SEPTEMBER	$0.524(60)$	$0.731(147)$
OCTOBER	$0.424(41)$	$0.661(103)$

Figure 15. Percent frequency occurrence of cannibalism in 1988 and 1989 as a function of (a) size Class, rivers and months (i.e., July - September) pooled, (b) River, size classes (i.e., 60-99, 100-134, > 134 mm CW) and months (i.e., July September) pooled, and (c) Month, rivers and size classes (i.e., 60-99, 100-134, > 134 mm CW) pooled. Stations were pooled for all figures.

Table 13. (a) G-test of cannibalism as a function of Year, River, Month, and size class. Analyses were run only for comparable months (i.e., July, August and September) and size classes (i.e., 60-99, 100134, $>134 \mathrm{~mm}$) in the two years, and to insure minimal occurrence of frequencies <5 or $=0$ (Sokal x Rohlf 1981).

$\begin{aligned} & \text { SOURCE OF } \\ & \text { VARIATION } \end{aligned}$	DF	X^{2}	$\mathrm{P}<$
YEAR	1	55.206	0.00005
RIVER	2	6.263	0.0436
MONTH	2	2.377	0.3047
SIZE	2	31.184	0.00005
YEAR X RIVER	2	5.410	0.0669
YEAR X MONTH	2	6.829	0.0329
YEAR X SIZE	2	1.606	0.4479
RIVER X MONTH	4	3.465	0.4832
RIVER X SIZE	4	3.269	0.5139
MONTH X SIZE	4	1.197	0.8786
YEAR X RIVER X MONTH	4	5.045	0.2827
YEAR X MONTH X SIZE	4	3.442	0.4868
YEAR X RIVER X SIZE	4	1.401	0.8440
RIVER X MONTH X SIZE	8	6.822	0.5560
YEAR X RIVER X MONTH X SIZE	4	4.369	0.3583

(b) Lower-level G-tests for the Xear X Month interaction to evaluate (i) Month within each level of Year, and (ii) Year within each level of Month.
(i)

YEAR	SOURCE OF VARIATION	DF	x^{2}	$\mathbf{P}<$
1988	MONTH	2	9494	0.0087
1989	MONTH	2	11.310	0.0035

Table 13 (cont).
(ii)

MONTH	SOURCE OF VARIATION	DF	\mathbf{x}^{2}	$\mathrm{P}<$
JULY				
MEAR	1	7.372	0.0066	
AUGUST	YEAR	1	45.869	0.00005
SEPTEMBER YEAR	1	7.990	0.0047	

(c) Lower-level G-tests for (i) Month in 1988 and 1989, (ii) the main effect of River, and (iii) the main effect of size.
(i)

YEAR	SOURCE OF VARIATION	DF	x^{2}	\mathbf{P} <
1988	JULY V. AUGUST	1	3.254	0.0712
	AUGUST V. SEPTEMBER	1	10.059	0.0015
	JULY V. SEPTEMBER	1	3.454	0.0631
1989	JULY V. AUGUST	1	6.522	0.0107
	AUGUST V. SEPTEMBER	1	1.249	0.2637
	JULY V. SEPTEMBER	1	9.965	0.0016

Table 13 (cont).

(ii)

SOURCE OF VARIATION	DF	X^{2}	$\mathbf{P}<$
JAMES V. YORK	1	0.898	0.3432
YORK V. RAPPAHANNOCK	1	6.223	0.0126
JAMES V. RAPPAHANNOCK	1	13.198	0.0003

(iii)

SOURCE OF VARIATION	DF	x^{2}	$P<$
$60-99$ V. $100-134$	1	5.476	0.0193
$60-99$ V. >134	1	23.454	0.00005
$100-134$ V. >134	1	9.139	0.0025

compared within each level of River were not gignificantly different (Table 14b(iii)), while river differences occurred upriver (Table 14b(iv)): cannibalism was least frequent in the Rappahannock (Table 14c(i)). Months differed only in 1989 (Table 14b(i)), reflecting the reaults of previous analyses (i.e., greater frequency in August than July in 1989 and no differences in July and August in 1988). Annual differences occurred in both months (Table 14b(ii)) with higher frequencies in 1989.

Residual analysis indicated no violations of model assumptions or model misapecification after data transformation and removal of one extreme outlier in the analysis of cannibalism as a function of either new juvenile recruit (i.e., $<50 \mathrm{~mm} \mathrm{CW}$) or total juvenile (i.e., $\leq 80 \mathrm{~mm}$ CW) abundance. The following best fit regression equation is depicted for transformed data (see Methods). The frequency of cannibalism was independent of new recruit (Fig. 16a) or total juvenile (Fig. 16b) abundance and river, but was significantly affected by month (M_{1} : $\mathrm{t}=$ = 2.75, $P<0.017 ; \mathrm{M}_{2}: \mathrm{t}=-1.63, \mathrm{P}<0.128$) and Year ($\mathrm{t}=-5.08, \mathrm{P}<0.0005$). The equation explained 63.9 \% of the total variability in cannibalism frequency (ANOVA: $F=10.43, d f=3,13, p<0.001$) and was:

$$
Y_{1}=0.809-0.238 M_{1}-0.141 \mathrm{M}_{2}-0.353 Y
$$

In summary, these analyses indicated that cannibalism: (1)
increased with crab size, (2) occurred with greatest frequencies in the James and York Rivers, (3) was most frequent during the period of new juvenile recruitment in the Fall in both years (i.e., September in 1988 and August and September in 1989), and (4) occurred with greater frequency in 1989, the year of higher new recruit abundance. Although regression analyges indicated that cannibalism was unrelated to juvenile blue crab abundance, there were significant seasonal and annual effects (i.e., greatest frequency in September and in 1989).

Figure 16. Percent frequency occurrence of cannibalism, *arcain square-root transformed data, as a function of (a) mean new juvenile recruit abundance (i.e., crabs $<50 \mathrm{~mm}$ CW) and (b) mean abundance of Juveniles $\leq 80 \mathrm{~mm} \mathrm{CW}$. Abundance data were $\log (X+1)$ transformed for analyais ($N=17$) and graphical presentation ($\mathrm{N}=18$).

Table 14. (a) G-test of cannibalism as a function of Year, River, Month, Size Class and Station. Analyses were run only for comparable months (i.e., July and August) and size classes (i.e., 60-99, 100-134, > 134 mm) in the two years, and to ingure minimal occurrence of frequencies <5 or $=0$ (Sokal \& Rohlf 1981).

SOURCE OF VARIATION	DF	x^{2}	\mathbf{P} <
YEAR	1	45.377	0.00005
RIVER	2	10.647	0.0049
MONTH	1	0.112	0.7378
STATION	1	0.057	0.8116
SIRE	2	21.709	0.00005
YEAR X RIVER	2	5.585	0.0613
YEAR X MONTH	1	6.950	0.0084
year X station	1	0.000	1.0000
YEAR X SIZE	2	1.827	0.4010
RIVER X MONTH	2	4.104	0.1285
RIVER X STATION	2	7.740	0.0209
RIVER X SIZE	4	4.615	0.3291
MONTH X STATION	1	0.192	0.6613
MONTH X SIZE	2	0.253	0.8813
STATION X SIZE	2	0.315	0.8544
YEAR X RIVER X MONTH	2	1.127	0.5692
YEAR X RIVER X Station	2	0.000	1.0000
YEAR X MONTH X STATION	1	0.000	1.0000
YEAR X MONTH X SIEE	2	3.645	0.1616
YEAR X RIVER X SIZE	4	2.227	0.6941
Year X StATION X SIZE	2	0.025	0.9876
RIVER X MONTH X STATION	2	0.155	0.9256
RIVER X MONTH X SIZE	4	8.195	0.0847
RIVER X STATION X SIZE	4	2.772	0.5967
MONTH X STATION X SIZE	2	0.077	0.9621
YEAR X RIVER X MONTH X STATION	2	0.000	0.9999
YEAR X RIVER X MONTH X SIEE	4	0.886	0.9265
YEAR X RIVER X STATION X SIEE	4	0.336	0.9874
YEAR X MONTH X STATION X SIZE	2	0.000	0.9999
RIVER X MONTH X STATION X SIZE	4	0.212	0.9948
YEAR X RIVER X MONTH X STATION X SIZE CLASS	3	0.000	1.0000

Table 14 (cont).
(b) Lower-level G-tests for the Year X Month and River X Station interactions to evaluate (i) Month within each level of Year, (ii) Year within each level of Month, (ili) Station within each level of River, and (iv) River within each level of station.
(i)

YEAR	$\begin{aligned} & \text { SOURCE OF } \\ & \text { VARIATION } \end{aligned}$	DF	X^{2}	P <
1988	MONTH	1	3.254	0.0712
1989	MONTH	1	7.502	0.0062

(ii)

MONTH	SOURCE OF VARIATION	DF	\mathbf{x}^{2}	$P<$
JULY				
MUGUST	YEAR	1	4.911	0.0267
		1	45.869	0.00005

(iii)

RIVER	SOURCE OF VARIATION	DF	X^{2}	$\mathrm{P}<$
		1	0.993	0.3190
JAMES	STATION	1	0.301	0.5835
YORK	STATION	1	2.049	0.1523
RAPP	STATION			

(iv)

STATION	SOURCE OF VARIATION	DF	X^{2}	$\mathrm{P}<$
DOWNRIVER RIVER	2	0.087	0.9573	
UPRIVER		2	15.864	0.0004

Table 14 (cont).
(c) Lower-level G-tests for (i) River, upriver and (ii) the main effect of size.
(i)

SOURCE OF VARIATION	DF	X^{2}	\mathbf{P} <
JAMES V. YORK	1	0.623	0.4300
JAMES V. RAPPAHANNOCK	1	14.307	0.0002
YORK V. RAPPAHANNOCK	1	7.864	0.0050

(ii)

SOURCE OF VARIATION	DF	X^{2}	$\mathbf{P}<$
$60-99$ V. $100-134$			
$60-99$ V. >134	1	4.380	0.0364
$100-134$ V. >134	1	23.454	0.00005

Benthic Infaunal Abundance

Summer 1988
Abundance.-- Bivalves and polychaetes dominated benthic samples in density and relative abundance (Fig. 17, Appendix 4). Significant three-way interactions, River X Station X Month, in the analyses of bivalve (Table 15) and polychaete (Table 19) densities precluded singular conclusions about main effects, and necessitated analyses with lower-level ANOVA models.

First, bivalve abundance was examined for Station and Month effects within each level of River. Bivalve abundance differed significantly between stations in both the James and York (Table 16a): bivalve densities were greater upriver. For the Rappahannock, a significant Station X Month interaction (Table 16a) necessitated examination of main effects within each level of Station and Month. In the ANOVA for Station within each level of Month for the Rappahannock, bivalve densities were significantly higher upriver only in September and October (Table 16b(ii)). Seasonal differences in bivalve abundance occurred at the downriver (R15) station, but not upriver at R30 (Table 16b(i)): densities in July and August were significantly greater than those in September (no bivalves collected in six grabs, Table 16c). Significant seasonal differences in bivalve density occurred in the York, but not in the James (Table 16a). The order of mean abundance, from greatest to least, was July, August, October, September in the York (Table 16d).

Second, bivalve abundance was examined for River and Station effects within each level of Month (Table 17a). Significant differences between stations occurred in July and Augugt (Table 17a): bivalve densities were greatest upriver. Neither the main effect of River nor the interaction effect (i.e., River X Station) were gignificant in these months (Table 17a). The River X Station interaction effect was significant in September and October (Table 17a), necessitating examination of main effects within levels of the main factors (Table

Figure 17. Mean dengity of prey typea collected through benthic sampling downriver and upriver in the James (i.e., J13\& J27), York (i.e., Y10, Y25) and Rappahannock (i.e., R15, R30) Rivers from July through October, 1988. Numbers in parentheses represent sample size defined as grabs in which at least one living animal was recovered. The Miscellaneous category includes ophiuroids, fish, tunicates, anemones, sponges, and bryozoans. The Poly* category includes polychaetes, nemerteans and phoronids (Appendix 4).

Table 15. Three-way analyaia of variance with river, station and month as factors, and the dependent variable, log-transformed bivalve density, for each get of six benthic grabs per station in 1988. In cases of $n=1$, the mean for benthic densities which grouped similarly in cluster analysis was substituted to insure a minimum sample size of two within all treatment combinations.

SOURCE OF VARIATION	DF	SS	$\begin{aligned} & \text { PERCENTAGE } \\ & \text { OF } \\ & \text { VARIATION } \end{aligned}$	MS	F	P<
RIVER	2	11.5572	13.7\%	5.7786	16.21	0.0001
Station	1	21.7744	25.8%	21.7744	61.10	0.0001
MONTH	3	5.1696	6.18	1.7232	4.84	0.0035
RIVERxSTATION	2	0.3549	0.4%	0.1774	0.50	0.6093
RIVERXMONTH	6	2.3460	2.8\%	0.3910	1.10	0.3695
STATIONXMONTH	3	0.6038	0.78	0.2013	0.56	0.6395
RIVERxSTATIONxMONTH	6	6.9178	8.2\%	1.1530	3.24	0.0060
ERROR	100	35.6399	42.2\%	0.3564		

Table 16. (a) Two-way analygis of variance for Station and Month within each level of River, and the dependent variable, log-transformed bivalve density in 1988.

RIVER	SOURCE OF VARIATION	DF	SS	MS	F	$\mathbf{P}<$
JAMES	STATION	1	5.7327	5.7327	15.02	0.0005
	MONTH	3	3.2951	1.0984	2.88	0.0503
	STATIONXMONTH	3	1.2307	0.4102	1.07	0.3729
	ERROR	34	12.9795	0.3817		
YORK	Station	1	6.5266	6.5266	18.68	0.0001
	MONTH	3	3.0413	1.0138	2.90	0.0495
	STATIONXMONTH	3	1.6049	0.5350	1.53	0.2247
	ERROR	33	11.5293	0.3494		
RAPP	Station	1	9.8700	9.8700	29.26	0.0001
	MONTH	3	1.1792	0.3931	1.17	0.3377
	STATIONXMONTH	3	4.6861	1.5620	4.63	0.0082
	ERROR	33	11.1311	0.3373		

(b) Lower-level (i.e., one-way) analygis of variance for (i) Month within each level of Station, and (ii) Station within each level of Month in the Rappahannock river.
(i)

STATION	$\begin{aligned} & \text { SOURCE OF } \\ & \text { VARIATION } \end{aligned}$	DF	ss	MS	F	P <
DOWNRIVER	MONTH	3	5.4124	1.8041	9.77	0.0012
	ERROR	13	2.3994	0.1846		
UPRIVER	MONTH	3	0.4528	0.1509	0.35	0.7926
	ERROR	20	8.7317	0.4366		

Table 16 (cont).
(ii)

MONTH	$\begin{aligned} & \text { SOURCE OF } \\ & \text { VARIATION } \end{aligned}$	DF	SS	MS	F	P <
JULY	STATION	1	0.0620	0.0620	0.43	0.5301
	ERROR	9	1.3081	0.1453		
AUGUST	STATION	1	0.6367	0.6367	0.74	0.4231
	ERROR	6	5.1725	0.8621		
SEPT	Station	1	10.5110	10.5110	66.14	0.0001
	ERROR	9	1.4302	0.1589		
OCT	STATION	1	3.0164	3.0164	8.43	0.0175
	ERROR	9	3,2203	0.3578		

(c) Ryan's q results for months at R15 in 1988. Means sharing the same line are not aignificantly different.

SEPTEMBER	OCTOBER	AUGUST	JULY
0.00	0.79	1.06	1.45

(d) Ryan's Q results for months in the York river, stations pooled. Means sharing the same line are not significantly different.

SEPTEMBER	OCTOBER	AUGUST	JULY
0.33	0.62	0.64	1.05

Table 17. (a) Two-way analysis of variance for River and Station within each level of Month, and the dependent variable, log-transformed bivalve density in 1988.

MONTH	SOURCE OF VARIATION	DF	SS	MS	F	$\mathrm{P}<$
JULY	RIVER	2	1.2386	0.6193	1.68	0.2045
	STATION	1	3.9768	3.9768	10.79	0.0027
	RIVERXSTATION	2	1.1738	0.5869	1.59	0.2212
	ERROR	28	10.3167	0.3685		
AUGUST	RIVER	2	3.4302	1.7151	3.31	0.0575
	STATION	1	3.6330	3.6330	7.00	0.0155
	RIVERXSTATION	2	0.0965	0.0483	0.09	0.9116
	ERROR	20	10.3776	0.5189		
SEPT	RIVER	2	3.2524	1.6262	4.48	0.0209
	STATION	1	9.2682	9.2682	25.53	0.0001
	RIVERXSTATION	2	3.9050	1.9525	5.38	0.0108
	ERROR	27	9.8024	0.3631		
OCT	RIVER	2	5.3365	2.6683	12.97	0.0001
	STATION	1	6.1654	6.1654	29.97	0.0001
	RIVERXSTATION	2	1.9405	0.9703	4.72	0.0183
	ERROR	25	5.1432	0.2057		

Table 17 (cont).
(b) Lower-level (i.e., one-way) analyais of variance for (i) Station within each level of River, and (ii) River within each level of Station in September and October.
(i)

MONTH	RIVER	$\begin{aligned} & \text { SOURCE OF } \\ & \text { VARIATION } \end{aligned}$	DF	SS	MS	F	$\mathbf{p}<$
SEPT	JAMES	STATION ERROR	1 9	$\begin{aligned} & 2.4434 \\ & 5.3755 \end{aligned}$	$\begin{aligned} & 2.4434 \\ & 0.5973 \end{aligned}$	4.09	0.0738
	YORK	STATION ERROR	1	$\begin{aligned} & 0.2188 \\ & 2.9967 \end{aligned}$	$\begin{aligned} & 0.2188 \\ & 0.3330 \end{aligned}$	0.66	0.4385
	RAPP	STATION ERROR	1 9	$\begin{array}{r} 10.5110 \\ 1.4302 \end{array}$	$\begin{array}{r} 10.5110 \\ 0.1589 \end{array}$	66.14	0.0001
OCT	JAMES	STATION ERROR	1	$\begin{aligned} & 0.0185 \\ & 1.7403 \end{aligned}$	$\begin{aligned} & 0.0185 \\ & 0.2486 \end{aligned}$	0.07	0.7929
	YORK	STATION ERROR	1	$\begin{aligned} & 5.0711 \\ & 0.1826 \end{aligned}$	$\begin{aligned} & 5.0711 \\ & 0.0203 \end{aligned}$	249.89	0.0001
	RAPP	STATION ERROR	1	$\begin{aligned} & 3.0164 \\ & 3.2203 \end{aligned}$	$\begin{aligned} & 3.0164 \\ & 0.3578 \end{aligned}$	8.43	0.0175

(ii)							
MONTH	STATION	$\begin{aligned} & \text { SOURCE OF } \\ & \text { VARIATION } \end{aligned}$	DF	SS	MS	F	P <
SEPT	DOWNRIVER	RIVER ERROR	$\begin{array}{r} 2 \\ 14 \end{array}$	$\begin{aligned} & 0.5666 \\ & 3.7285 \end{aligned}$	$\begin{aligned} & 0.2833 \\ & 0.2663 \end{aligned}$	1.06	0.3715
	UPRIVER	RIVER ERROR	$\begin{array}{r} 2 \\ 13 \end{array}$	$\begin{aligned} & 5.9940 \\ & 6.0739 \end{aligned}$	$\begin{aligned} & 2.9970 \\ & 0.4672 \end{aligned}$	6.41	0.0115
OCT	DOWNRIVER	RIVER ERROR	$\begin{array}{r} 2 \\ 14 \end{array}$	$\begin{aligned} & 7.3118 \\ & 3.8112 \end{aligned}$	$\begin{aligned} & 3.6559 \\ & 0.2722 \end{aligned}$	13.43	0.0006
	UPRIVER	RIVER ERROR	$\begin{array}{r} 2 \\ 11 \end{array}$	$\begin{aligned} & 0.6158 \\ & 1.3319 \end{aligned}$	$\begin{aligned} & 0.3079 \\ & 0.1211 \end{aligned}$	2.54	0.1237

(c) Ryan's Q reaults for rivers compared upriver in September and downriver in October. Means sharing the same line are not significantly different. * $p<0.05$

Upriver in September:	YORK	JAMES	RAPPAHANNOCK
	0.49	1.40	1.96

| Downriver in October: | YORK RAPPAHANNOCK | JAMES | |
| :--- | :---: | :---: | :---: | :---: |
| | 0.00 | 0.79 | |
| | | | |

17b). Station was significant in the Rappahannock in September (Table 17b(i)): highest bivalve densities occurred upriver. Rivers compared within each level of station in September were significantly different at upriver sampling sites (Table 17b(ii)): bivalves were least abundant in the York (Table 17c). Stations differed in the York and Rappahannock (Table 17b(i)) in October: bivalves were most abundant upriver. Rivers compared within each level of Station differed downriver in October (Table $17 \mathrm{~b}(\mathrm{ii})$) with greategt abundance in the James followed by the Rappahannock then York (no bivalves collected in 6 grabs; Table 17c). Third, bivalve abundance was analyzed for River and Month effecta within each level of station (Table 18a). River was significant at upriver gtations (Table 18a): bivalves were least abundant in the York (Table 18c). Month and the River X Month interaction effect were not significant (Table 18a). However, for downriver stations, the River X Month interaction was significant (Table 18a). The analysis of River within Month downriver was significant in October (Table 18b(i)): abundance was greateat in the James followed by the Rappahannock then York (Table 18c). Month compared within River was significant for the Rappahannock (Table 18b(ii)): bivalves were more abundant in July and August than September (no clams collected in 6 grabs; Table 18d).

The analyses for polychaete abundance progressed aimilarly to those for bivalve abundance (Fig. 17; Table 19). Firgt, Station and Month wexe analyzed within each level of River (Table 20a). Polychaete abundance differed significantly between atations in the York and James (Table 20a), and between months in the York (Table 20a).

Polychaetes were most abundant downriver in the York and James. A pronounced seasonal effect occurred in the York (Table 20a): polychaete densities were greater in September and October than July (Table 20c). A seasonal effect also occurred in the lower Rappahannock (Table 20b(i)); however, multiple comparisons were precluded by low abundances.

A aignificant Station X Month (Table 20a) interaction effect occurred for the Rappahannock, requiring examination of effects within

Table 18. (a) Two-way analysis of variance for River and Month within each level of Station, and the dependent variable, log-transformed bivalve density in 1988.

STATION	$\begin{aligned} & \text { SOURCE OF } \\ & \text { VARIATION } \end{aligned}$	DF	SS	MS	F	P <
DOWNRIVER	RIVER	2	4.0904	2.0452	6.21	0.0039
	MONTH	3	4.7494	1.5831	4.80	0.0051
	RIVERXMONTH	6	6.2053	1.0342	3.14	0.0107
	ERROR	51	16.8050	0.3295		
UPRIVER	RIVER	2	4.2673	2.1337	5.55	0.0067
	MONTH	3	1.0854	0.3618	0.94	0.4280
	RIVERXMONTH	6	2.9971	0.4995	1.30	0.2751
	ERROR	49	18.8348	0.3844		

(b) Lower-level (i.e., one-way) analysis of variance for (i) River within each level of Month, and (ii) Month within each level of River, downriver.
(i)

MONTH	SOURCE OF VARIATION	DF	SS	MS	F	P <
JULY	RIVER	2	1.8678	0.9339	2.71	0.1014
	ERROR	14	4.8309	0.3451		
AUGUST	RIVER	2	0.5655	0.2828	0.57	0.5827
	ERROR	9	4.4344	0.4927		
SEPTEMBER	RIVER	2	0.5666	0.2833	1.06	0.3715
	ERROR	14	3.7285	0.2663		
OCTOBER	RIVER	2	7.3118	3.6559	13.43	0.0006
	ERROR	14	3.8112	0.2722		

Table 18 (cont).
(ii)

RIVER	$\begin{aligned} & \hline \text { SOURCE OF } \\ & \text { VARIATION } \end{aligned}$	DF	SS	MS	F	$\mathbf{P}<$
JAMES	MONTH	3	4.0672	1.3557	3.03	0.0561
	ERROR	18	8.0477	0.4471		
YORK	MONTH	3	1.4751	0.4917	1.55	0.2334
	ERROR	20	6.3580	0.3179		
RAPP	MONTH	3	5.4124	1.8041	9.77	0.0012
	ERROR	13	2.3994	0.1846		

(c) Ryan's Q results for rivers upriver, months pooled, and downriver in October. Means sharing the same line are not significantly different. * $\mathrm{P}<0.05$

Upriver, months pooled: YORK JAMES RAPPAHANNOCK

(d) Ryan's Q results for months downriver in the Rappahannock. Means sharing the same line are not significantly different.

SEPTEMBER	OCTOBER	AUGUST	JULY
0.00	0.79	1.06	1.45

Table 19. Three-way analysis of variance with river, station and month as factors, and the dependent variable, log-transformed polychaete density, for each set of six benthic grabs per station in 1988. In cases of $n=1$, the mean for benthic densities which grouped similarly in cluster analysis was substituted to insure a minimum sample size of two within all treatment combinations.

SOURCE OF VARIATION	DF	SS	PERCENTAGE OF VARIATION	MS	, F	$\mathrm{P}<$
RIVER	2	3.5411	3.7\%	1.7706	4.06	0.0202
STATION	1	13.7184	14.3\%	13.7184	31.46	0.0001
MONTH	3	19.4946	20.3\%	6.4982	14.90	0.0001
RIVERXSTATION	2	2.7579	2.9\%	1.3789	3.16	0.0466
RIVERxMONTH	6	3.0859	3.2\%	0.5143	1.18	0.3233
STATIONXMONTH	3	1.7786	1.98	0.5929	1.36	0.2595
RIVERxSTATIONxMONTH	6	7.8724	8.2\%	1.3121	3.01	0.0096
ERROR	100	43.6037	45.4\%	0.4360		

Table 20. (a) Two-way analysis of variance for Station and Month within each level of River, and the dependent variable, log-transformed polychaete density in 1988.

RIVER	SOURCE OF VARIATION	DF	SS	MS	F	$\mathbf{P}<$
JAMES	Station	1	12.0499	12.0499	26.36	0.0001
	MONTH	3	3.4238	1.1413	2.50	0.0763
	STATIONXMONTH	3	1.2927	0.4309	0.94	0.4309
	ERROR	34	15.5441	0.4518		
YORK	StATION	1	3.1178	3.1178	6.79	0.0136
	MONTH	3	8.8617	2.9539	6.44	0.0015
	STATIONXMONTH	3	0.9030	0.3010	0.66	0.5849
	ERROR	33	15.1421	0.4589		
RAPP	STATION	1	1.3087	1.3087	3.34	0.0765
	MONTH	3	10.2950	3.4317	8.77	0.0002
	STATIONXMONTH	3	7.4553	2.4851	6.35	0.0016
	ERROR	33	12.9175	0.3914		

(b) Lower-level (i.e., one-way) analyais of variance for (i) Month within each level of station, and (ii) Station within each level of Month in the Rappahannock river.
(i)

STATION	SOURCE OF VARIATION	DF	SS	MS	F	$\mathbf{P}<$
DOFNRIVER MONTH	3	13.6120	4.5373	19.25	0.0001	
	ERROR	13	3.0640	0.2357		
UPRIVER	MONTH	3	4.1384	1.3795	2.80	0.0664
	ERROR	20	9.8536	0.4927		

Table 20 (Cont).
(i.i)

MONTH	$\begin{aligned} & \text { SOURCE OF } \\ & \text { VARIATION } \end{aligned}$	DF	SS	MS	F	P <
JULY	STATION ERROR		no polychaetes collected			
August	STATION ERROR	$\frac{1}{6}$	$\begin{aligned} & 1.7734 \\ & 3.5691 \end{aligned}$	$\begin{aligned} & 1.7734 \\ & 0.5948 \end{aligned}$	2.98	0.1350
SEPT	STATION ERROR	1	$\begin{aligned} & 6.6826 \\ & 4.1652 \end{aligned}$	$\begin{aligned} & 6.6826 \\ & 0.4628 \end{aligned}$	14.44	0.0042
OCT	STATION ERROR	1	$\begin{aligned} & 0.3799 \\ & 5.1833 \end{aligned}$	$\begin{aligned} & 0.3799 \\ & 0.5759 \end{aligned}$	0.66	0.4376

(c) Ryan's Q results for months in the York in 1988. Means sharing the same line are not significantly different.

JULY	AUGUST	SEPTEMBER	OCTOBER
0.50	0.99	1.50	1.60

each level of the main factors. Rappahannock stations compared within each level of Month differed significantly in September (Table 20b(ii)): greatest densities occurred at R15.

In the analysis of River and Station effects for polychaete density within each level of Month, significant differences occurred between stations, but not rivers, in July and September (Table 21a): polychaetes were most abundant downriver. A significant River X Station interaction occurred in Auguet (Table 21a). Examination of Station within each level of River in August indicated aignificantly greater densities in the lower James (Table 21b(i)), but no differences in the York or Rappahannock (Table 21b(i)). River differences did not occur at either station in August (Table 21b(ii)). Polychaetes were similarly abundant in all rivers and stations in October (Table 21a).

In the analysis of polychaete abundance for River and Month within each level of Station, there were significant River and Month (Table22a) differences upriver. The River X Month interaction effect was not significant (Table 22a). Polychaetes were least abundant in the James river (Table 22c). Abundance was also greater in September and October than July (Table 22d). The River X Month interaction was marginally significant in the analysis for downriver sites (Table 22a). River differences did not occur in any month (Table 22b(i)). Months differed in the Rappahannock (Table 22b(ii)): polychaetes were not collected in July or August, but occurred in high densities in September and October (Table 22e).

In summary bivalves were generally more abundant (1) at upriver stations, (2) in the Rappahannock, and (3) in summer (i.e., July \& August). Polychaete densities were generally higher (1) downriver, (2) in the York, and (3) in Fall (i.e., September \& October). Benthic Similarity. -- Benthic abundance clustered into three groupa (Fig. 18a) separable primarily by the proportion of polychaetes and bivalves in the benthos (Fig. 18b). With the exception of Y25 in September and October (1.e., group 2), groups 1 and 2 were downriver

Table 21. (a) Two-way analysis of variance for River and Station within each level of Month, and the dependent vaxiable, log-tranaformed polychaete density in 1988.

MONTH	SOURCE OF VARIATION	DF	SS	MS	F	P<
JULY	RIVER	2	1.5114	0.7557	2.65	0.0882
	STATION	1	1.4944	1.4944	5.24	0.0298
	RIVERXSTATION	2	0.8187	0.4094	1.44	0.2548
	ERROR	28	7.9799	0.2850		
AUGUST	RIVER	2	0.1304	0.0652	0.11	0.8941
	STATION	1	3.4025	3.4025	5.87	0.0250
	RIVERXSTATION	2	7.4467	3.7234	6.43	0.0070
	ERROR	20	11.5869	0.5793		
SEPT	RIVER	2	2.2577	1.1289	2.58	0.0944
	STATION	1	8.6664	8.6664	19.80	0.0001
	RIVERXSTATION	2	1.5949	0.7975	1.82	0.1811
	ERROR	27	11.8187	0.4377		
OCT	RIVER	2	1.5355	0.7678	1.57	0.2277
	STATION	1	1.9037	1.9037	3.90	0.0596
	RIVERXSTATION	2	0.1698	0.0849	0.17	0.8416
	ERROR	25	12.2182	0.4887		

Table 21 (cont).
(b) Lower-level (i.e, one-way) analysis of variance for (i) station within each level of River, and (ii) River within each level of Station in August.
(i)

RIVER	SOURCE OF VARIATION	DF	SS	MS	F	$\mathbf{P}<$
JAMES	STATION	1	6.4721	6.4721	33.02	0.0004
	ERROR	8	1.5679	0.1960		
YORK	STATION	1	2.6037	2.6037	2.42	0.1706
	ERROR	6	6.4498	1.0750		
RAPP	STATION	1	1.7734	1.7734	2.98	0.1350
	ERROR	6	3.5690	0.5948		

(ii)

STATION	SOURCE OF VARIATION	DF	SS	MS	F	\mathbf{P} <
DOWNRIVER	RIVER	2	4.5594	2.2797	3.02	0.0991
	ERROR	9	6.7896	0.7544		
UPRIVER	RIVER	2	3.0625	1.5312	3.51	0.0662
	ERROR	11	4.7972	0.4361		

Table 22. (a) Two-way analysis of variance for River and Month within each level of Station, and the dependent variable, log-transformed polychaete density in 1988.

STATION	SOURCE OF VARIATION	DF	SS	MS	F	$\mathrm{P}<$
DOWNRIVER	RIVER	2	1.6899	0.8450	1.64	0.2043
	MONTH	3	14.2631	4.7544	9.22	0.0001
	RIVERXMONTH	6	7.1888	1.1981	2.32	0.0465
	ERROR	51	26.2971	0.5156		
UPRIVER	RIVER	2	3.2419	1.6210	4.59	0.0149
	MONTH	3	6.8166	2.2722	6.43	0.0009
	RIVERXMONTH	6	3.9631	0.6605	1.87	0.1050
	ERROR	49	17.3066	0.3532		

(b) Lower-level (i.e., one-way) analysia of variance for (i) River within each level of Month, and (ii) Month within each level of River, downriver.
(i)

MONTH	$\begin{aligned} & \text { SOURCE OF } \\ & \text { VARIATION } \end{aligned}$	DF	SS	MS	F	\mathbf{P} <
JULY	RIVER	2	1.9122	0.9561	1.97	0.1765
	ERROR	14	6.8009	0.4858		
AUGUST	RIVER	2	4.5594	2.2797	3.02	0.0991
	ERROR	9	6.7896	0.7544		
SEPTEMBER	RIVER	2	1.6471	0.8236	2.72	0.1006
	ERROR	14	4.2407	0.3029		
OCTOBER	RIVER	2	0.7751	0.3875	0.64	0.5416
	ERROR	14	8.4658	0.6047		

Table 22 (cont).
(ii)

RIVER	$\begin{aligned} & \text { SOURCE OF } \\ & \text { VARIATION } \end{aligned}$	DF	SS	MS	F	P <
JAMES	MONTH	3	3.3776	1.1259	1.76	0.1912
	ERROR	18	11.5286	0.6405		
YORK	MONTH	3	4.4622	1.4874	2.54	0.0853
	ERROR	20	11.7045	0.5852		
RAPP	MONTH	3	13.6120	4.5373	19.25	0.0001
	ERROR	13	3.0640	0.2357		

(c) Ryan's Q results for rivers, months pooled, upriver. Means sharing the same line are not significantly different. * $\mathrm{P}<0.05$

JAMES	RAPPAHANNOCK	YORK
0.26	0.64	0.83

(d) Ryan's Q results for months, rivers pooled, upriver. Means sharing the same line are not aignificantly different.

JULY	AUGUST	SEPTEMBER	OCTOBER
0.07	0.55	0.69	1.05

(e) Ryan's Q results for months downriver in the Rappahannock. Means sharing the same line are not significantly different. * $\mathbf{p}<0.05$

AUGUST JULY OCTOBER SEPTEMBER

0.00	0.00	1.28	2.12

stations where polychaetes occurred in much greater proportions (0.260.96) than bivalves (0.0-0.40) or other species (Fig. 18b). Group 3, with the exception of R15 in July and Auguat, consisted of upriver stations where bivalves (0.60-1.0) predominated (Fig. 18b) and benthic diversity was relatively low (Fig. 18a).

To clarify atation and river groupings the data were collapsed across month (Fig. 19a). As above, group 1 primarily consisted of downriver atations (except for Y25) with relatively high benthic diversity (Fig. 19a). Group 2 consisted of the upriver stations, R30 and J27. Proportionally more polychaetes (0.48-0.78) occurred downriver, while bivalves (0.84-0.86, Fig. 19b) were dominant upriver. The York upriver station was similar to James and Rappahannock upriver stations in that bivalve densities were higher than those downriver, but the York densities differed in that these were not as high as those in the James and Rappahannock (Fig. 19b). Crustaceans occurred in greater proportions at James River stations, while gastropods only occurred downriver (Fig. 19b).

Months clustered into two groups collapsed across river and station (Fig. 20a): July (group 1) was separable from August, September and October (group 2). Benthic diversity was lowest in July (Fig. 20a) reflecting the relatively high proportion of bivalves (Fig. 20b). Proportionally more polychaetes, crustaceans and gastropods occurred from August through October (i.e., group 2), while more miacellaneous speciea (i.e., ophiuroids, fish, tunicates, anemones, sponges, bryozoans) occurred in July (Fig. 20b).

In summary, polychaetes and bivalves dominated the benthos in 1988 (Fig. 17). The reaults of clugter and abundance analyses similarly indicated differences in benthic composition associated with station location (Figs. 17-19: greater bivalve abundance upriver but greater polychaete abundance downriver) and season (i.e., a Summer/Fall pattern of highest bivalve densities in summer but higheat polychaete densities in Fall). However, river-apecific trends were suggested only by the

Figure 18. (a) Cluster diagram representing benthic similarity in 1988 for station (Y10, J13, R15, Y25, R30, J27) and month (July, August, September, October) combinations. The ShannonWeiner diversity index is given at the root of each branch. (b) Benthic composition illustrated as proportion in the benthos for the station-month combinations described in (a). Animals predominating the benthos were bivalves and polychaetes. Rare benthic organisms were pooled into a miscellaneous category (i.e., crustaceans, ophiuroids, fish, gastropods, tunicates, anemones, sponges, bryozoans).

(b)

Figure 19. (a) Cluster diagram representing benthic similarity in 1988 among the six stations sampled. Months were pooled. The Shannon-Weiner diversity index is given at the root of each branch. (b) Benthic composition illustrated as proportion in the benthos for the stations described in (a). Animals predominating the benthos were bivalves, polychaetes and crustaceans. Rare benthic organisms were pooled into a miscellaneous category (i.e., gastropods, ophiuroids, fish, tunicates, anemones, sponges, bryozoans).

Dulse
■chust
■poly
Briv
Figure 20. (a) Cluster diagram representing benthic similarity in 1988among the four months sampled. Rivers and atations werepooled. The Shannon-Weiner diveraity index is given at theroot of each branch. (b) Benthic composition illustrated asproportion in the benthos for the months described in (a).Animals predominating the benthos were bivalves,polychaetes, crustaceans and gastropods. Rare benthicorganisms were pooled into a miscellaneous category (i.e.,ophiuroids, fish, tunicates, anemones, sponges, bryozoans).

(b)

abundance analysis (Fig. 17).
Summer 1989
Benthic Abundance. -- Polychaetes and bivalves again dominated the benthos, with sporadically high crustacean densities (Fig. 21, Appendix 4). A significant River X Station interaction in the analysis of bivalve density (Table 23a) and significant River X Station X Month interaction in the analysis of polychaete (Table 24) and crustacean (Table 28) densities precluded singular conclusions about main effects. Thus, as for the 1988 data, lower-level ANOVA models were employed. In the analysis of Station within each level of River, there were significant differences for all rivers (Table 23b(i)): bivalves were always more abundant upriver. The analygis for River within each level of Station was significant at both downriver and upriver (Table 23b(ii)) stations. Bivalves were most abundant in the Rappahannock at downriver stations, and in the Rappahannock and York at upriver stations (Fig. 21, Table 23c).

Polychaete abundance (Fig. 21, Table 24) required ANOVA models within levels of each of the main factors. The analysis for station and Month within each level of River indicated aignificant differences between stations and months in the York and James, but not in the Rappahannock (Table 25a). Polychaetes were more abundant downriver in both rivers. There were no obvious seasonal patterns in abundance in the York (Table 25b), while polychaetes were more abundant in the James in summer (i.e., relatively greater abundance in June and July than September; Table 25b). The Station X Month interaction effect was not significant in any analysia (Table 25a).

In the analyais of River and Station within each level of Month, there were significant station differences in June and September (Table 26a), and river differences in September (Table 26a). Polychaetes were most abundant downriver in both months, while the order of river abundance, from greateat to least in September was York, Rappahannock, and James (Table 26c). Significant River X Station interactions

Figure 21. Mean density of prey types collected through benthic sampling downriver and upriver in the James (i.e., J13, J27), York (i.e, Y10, Y25) and Rappahannock (i.e., R15, R30) Rivers from June through September, 1989. Numbers in parentheses represent sample size defined as grabs in which at least one living animal was recovered. The Miscellaneous category includes insects, ophiuroids, fish, tunicates, anemones, sponges, and bryozoans. The Poly* category includes polychaetes, nemerteans and phoronids (Appendix 4).

Table 23. (a) Three-way analysis of variance with river, gtation and month as factors, and the dependent variable, log-transformed bivalve density, for each set of eight benthic grabs per station in 1989. In cases of $n=0$, the mean for benthic densities which grouped gimilarly in cluster analygis was substituted to insure a minimum sample size of two within all treatment combinations.

SOURCE OF VARIATION	DF	sS	$\begin{aligned} & \text { PERCENTAGE } \\ & \text { OF } \\ & \text { VARIATION } \end{aligned}$	MS	F	P<
RIVER	2	27.4769	21.0\%	13.7384	34.80	0.0001
StATION	1	34.7911	26.6\%	34.7911	88.13	0.0001
MONTH	3	1.9943	1.5\%	0.6648	0.78	0.5852
RIVERXSTATION	2	3.4396	2.6%	1.7198	4.36	0.0145
RIVERxMONTH	6	1.8525	1.4\%	0.3088	0.78	0.5852
STATIONxMONTH	3	0.7823	0.6%	0.2608	0.66	0.5776
RIVERxSTATIONxMONTH	6	2.3138	1.8\%	0.3856	0.98	0.4431
ERROR	147	58.0302	44.4\%	0.3948		

(b) Lower-level (i.e., one-way) analysis of variance for (i) Station within each level of River and (ii) River within each level of station.
(i)

RIVER	SOURCE OF VARIATION	DF	SS	MS	F	P $<$
JAMES	STATION	1	13.0711	13.0711	34.38	0.0001
	ERROR	55	20.9129	0.3802		
YORK	STATION	1	21.7825	21.7825	50.15	0.0001
	ERROR	58	25.1932	0.4344		
RAPP	STATION	1	3.3771	3.3771	9.31	0.0036
	ERROR	52	18.8671	0.3628		

Table 23 (cont).
(ii)

STATION	SOURCE OF VARIATION	DF	SS	MS	F	\mathbf{P} <
DOWNRIVER	RIVER	2	17.9537	8.9768	22.65	0.0001
	ERROR	79	31.3111	0.3963		
UPRIVER	RIVER	2	7.5729	3.7865	9.67	0.0002
	ERROR	86	33.6622	0.3914		

(c) Ryan's 9 resulta for rivers compared within each level of station, months pooled. Means sharing the game line are not significantly different. * $\mathrm{P}<0.05$

Downriver:	JAMES	YORK	RAPPAHANNOCK	
	0.31	0.54	1.46	

Table 24. Three-way analysis of variance with river, station and month as factors, and the dependent variable, log-transformed polychaete density, for each get of eight benthic grabs per station in 1989. In cases of $n=0$, the mean for benthic densities which grouped similarly in cluster analysis was substituted to insure a minimum sample size of two within all treatment combinations.

SOURCE OF VARIATION	DF	SS	PERCENTAG OF VARIATION	MS	F	$\mathrm{P}<$
RIVER	2	10.5439	9.7\%	5.2720	13.81	0.0001
STATION	1	14.4714	13.3\%	14.4714	37.92	0.0001
MONTH	3	3.1162	2.9\%	1.0387	2.72	0.0466
RIVERxSTATION	2	8.4551	7.8\%	4.2276	11.08	0.0001
RIVERxMONTH	6	9.1382	8.4\%	1.5230	3.99	0.0010
STATIONXMONTH	3	1.2576	1.2\%	0.4192	1.10	0.3518
RIVERXSTATIONxMONTH	6	5.5957	5.1%	0.9326	2.44	0.0279
ERROR	147	56.0990	51.6\%	0.3816		

Table 25. (a) Two-way analyais of variance for Station and Month within each level of River, and the dependent variable, log-transformed polychaete density in 1989.

RIVER	SOURCE OF VARIATION	DF	SS	MS	F	P <
JAMES	STATION	1	13.0260	13.0260	41.79	0.0001
	MONTH	3	6.6948	2.2316	7.16	0.0004
	STATIONXMONTH	3	1.1344	0.3781	1.21	0.3148
	ERROR	49	15.2728	0.3118		
YORK	Station	1	9.8206	9.8206	26. 12	0.0001
	MONTH	3	3.8797	1.2932	3.44	0.0233
	STATIONXMONTH	3	1.8991	0.6330	1.68	0.1818
	ERROR	52	19.5480	0.3759		
RAPP	STATION	1	0.0799	0.0799	0.17	0.6795
	MONTH	3	1.6799	0.5599	1.21	0.3165
	STATIONXMONTH	3	3.8198	1.2733	2.75	0.0532
	ERROR	46	21.2783	0.4626		

(b) Ryan's Q results for months in the James and York. Means sharing the same line are not significantly different.

James:	SEPTEMBER0.52		$\begin{gathered} \text { AUGUST } \\ 0.94 \end{gathered}$	JUNE 1.25	$\begin{aligned} & \text { JULY } \\ & 1.36 \end{aligned}$
York:	JUNE	JULY	SEPT	BER	AUGUST
	1.33	1.49			1.97

occurred in July and August (Table 26a). Stations differed in July in the York and in July and August in the James (Table 26b(i)): abundance was greatest downriver. River differences occurred at downriver and upriver (Table 26b(ii)) sites in both months. Polychaetes were more abundant in the York than Rappahannock at downriver stations in July and August (Table 26d) with intermediate densities in the James. No consistent patterns occurred at upriver gtations in these months (Table 26d) .

Analysis of River and Month within each level of Station indicated significant river differences, but no seasonal or interaction effects at downriver stations (Table 27a). Polychaetes were most abundant in the York river (Table 27c). The River X Month interaction was gignificant for upriver stations (Table 27a). River differences occurred in July, August and September (Table 27b(i)). Polychaetes were most abundant in the Rappahannock in July (Table 27d) and in the York and Rappahannock in August and September (Table 27d). Seasonal variation in abundance occurred in all rivers (Table 27b(ii)). Although no clear seasonal patterns were detectable in the York (Table 27e), polychaete densities were greater in early and mid-summer than Fall in the James and Rappahannock (Table 27e), respectively.

In the analysis of crustacean abundance (Fig. 21) for Station and Month within each level of River, there were gignificant differences between stations in the York and James (Table 29a), but no seasonal effects in either river (Table 29a): abundance was generally greater in the lower York and upper James. A significant Station X Month interaction effect occurred in the Rappahannock (Table 29a), requiring examination within levels of the main effects. Monthly differences in Cruatacean abundance occurred in the upper Rappahannock (Table 29b(ii)): lowest densities occurred in July (i.e., no crustaceans collected, Table 29c). Significant station differences occurred in June and August (Table 29b(i)): highest densities occurred upriver.

Table 26. (a) Two-way analysis of variance for River and Station within each level of Month, and the dependent variable, log-transformed polychaete denaity in 1989.

MONTH	SOURCE OF VARIATION	DF	SS	MS	F	$\mathrm{P}<$
JUNE	RIVER	2	0.5096	0.2548	0.55	0.5834
	STATION	1	5.4097	5.4097	11.60	0.0016
	RIVERXSTATION	2	2.3581	1.1791	2.53	0.0931
	ERROR	38	17.7161	0.4662		
JULY	RIVER	2	0.2470	0.1235	0.28	0.7573
	STATION	1	2.0518	2.0518	4.65	0.0372
	RIVERXSTATION	2	5.8790	2.9400	6.66	0.0032
	ERROR	39	17.2009	0.4410		
AUG	RIVER	2	8.4053	4.2027	14.98	0.0001
	STATION	1	2.0672	2.0672	7.37	0.0097
	RIVERXSTATION	2	6.7064	3.3532	11.96	0.0001
	ERROR	40	11.2192	0.2805		
SEPT	RIVER	2	9.7182	4.8591	14.63	0.0001
	STATION	1	6.3773	6.3773	19.20	0.0001
	RIVERXSTATION	2	0.1208	0.0604	0.18	0.8346
	ERROR	30	9.962 B	0.3321		

Table 26 (cont).
(b) Lower-level (i.e, one-way) analysis of variance for (i) Station within each level of River, and (ii) River within each level of Station in July and August.
(i)

MONTH	RIVER	SOURCE OF VARIATION	DF'	SS	MS	F	$\mathbf{P}<$
JULY	JAMES	STATION ERROR	$\begin{array}{r} 1 \\ 14 \end{array}$	$\begin{aligned} & 2.0363 \\ & 5.4748 \end{aligned}$	$\begin{aligned} & 2.0363 \\ & 0.3911 \end{aligned}$	5.21	0.0386
	YORK	STATION ERROR	1 14	$\begin{aligned} & 4.2839 \\ & 7.5577 \end{aligned}$	$\begin{aligned} & 4.2839 \\ & 0.5398 \end{aligned}$	7.94	0.0137
	RAPP	STATION ERROR	1 11	$\begin{aligned} & 1.6106 \\ & 4.1684 \end{aligned}$	$\begin{aligned} & 1.6106 \\ & 0.3790 \end{aligned}$	4.25	0.0637
AUG	JAMES	STATION ERROR	$\frac{1}{13}$	$\begin{aligned} & 7.6979 \\ & 2.1831 \end{aligned}$	$\begin{aligned} & 7.6979 \\ & 0.1679 \end{aligned}$	45.84	0.0001
	YORK	STATION ERROR	$\begin{array}{r} 1 \\ 14 \end{array}$	$\begin{aligned} & 0.3396 \\ & 2.1729 \end{aligned}$	$\begin{aligned} & 0.3396 \\ & 0.1552 \end{aligned}$	2.19	0.1612
	RAPP	STATION ERROR	$\begin{array}{r} 1 \\ 13 \end{array}$	$\begin{aligned} & 0.7361 \\ & 6.8633 \end{aligned}$	$\begin{aligned} & 0.7361 \\ & 0.5279 \end{aligned}$	1.39	0.2588

(ii)

MONTH	STATION	SOURCE OF VARIATION	DF	SS	MS	F	$\mathbf{P}<$
JULY	DOWNRIVER	RIVER ERROR	2 18	$\begin{aligned} & 2.6376 \\ & 6.3487 \end{aligned}$	$\begin{aligned} & 1.3188 \\ & 0.3527 \end{aligned}$	3.74	0.0438
	UPRIVER	RIVER ERROR	21	$\begin{array}{r} 3.6067 \\ 10.8522 \end{array}$	$\begin{aligned} & 1.8033 \\ & 0.5168 \end{aligned}$	3.49	0.0492
AUG	DOWNRIVER	RIVER ERROR	2 20	$\begin{aligned} & 3.8575 \\ & 6.0101 \end{aligned}$	$\begin{aligned} & 1.9288 \\ & 0.3005 \end{aligned}$	6.42	0.0070
	UPRIVER	RIVER ERROR	2 20	$\begin{array}{r} 11.4250 \\ 5.2092 \end{array}$	$\begin{aligned} & 5.7125 \\ & 0.2605 \end{aligned}$	21.93	0.0001

Table 26 (cont).
(c) Ryan's Q results for rivers in September. Means sharing the same line are not significantly different. * $P<0.05$

JAMES	RAPPAHANNOCK	YORK		
0.52	1.08			1.75

(d) Ryan's Q results for rivers within each level of station in July and August. Means sharing the same line are not significantly different. P<0.05

Downriver, July:	RAPPAHANNOCK1.09		JAMES 1.72	$\begin{aligned} & \text { YORK } \\ & 2.01 \end{aligned}$
Upriver, July:	YORK	JAMES	RAPPAHANNOCK	
	0.98	1.00	1.	
Downriver, August:	RAPPAHANNOCK		JAMES	YORK
	1.10		1.61	2.12
Upriver, August:	JAMES	RAPPAHANNOCK		YORK
	0.17	1.54		1.82

Table 27. (a) Two-way analysis of variance for River and Month within each level of Station, and the dependent variable, log-transformed polychaete density in 1989.

STATION	SOURCE OF VARIATION	DF	SS	MS	F	P <
DOWNRIVER	RIVER	2	7.0643	3.5322	11.29	0.0001
	MONTH	3	0.4895	0.1632	0.52	0.6688
	RIVERXMONTH	6	4.1539	0.6923	2.21	0.0517
	ERROR	70	21.8980	0.3128		
UPRIVER	RIVER	2	12.1189	6.0595	13.64	0.0001
	MONTH	3	3.8816	1.2939	2.91	0.0396
	RIVERXMONTH	6	10.5827	1.7638	3.97	0.0016
	ERROR	77	34.2010	0.4442		

(b) Lower-level (i.e., one-way) analysis of variance for (i) River within each level of Month, and (ii) Month within each level of River, upriver.
(i)

MONTH	SOURCE OF VARIATION	DF	SS	MS	F	$P<$
JUNE	RIVER	2	2.4197	1.2099	1.97	0.1666
	ERROR	19	11.6559	0.6135		
JULY	RIVER	2	3.6067	1.8033	3.49	0.0492
	ERROR	21	10.8522	0.5168		
AUGUST	RIVER	2	11.4250	5.7125	21.93	0.0001
	ERROR	20	5.2092	0.2605		
SEPTEMBER	RIVER	2	5.6333	2.8167	7.39	0.0049
	ERROR	17	6.4837	0.3814		

Table 27 (cont).
(ii)

RIVER	$\begin{aligned} & \text { SOURCE OF } \\ & \text { VARIATION } \end{aligned}$	DF	SS	MS	F	P <
JAMES	MONTH	3	5.1807	1.7269	4.00	0.0192
	ERROR	24	10.3623	0.4318		
YORK	MONTH	3	5.5424	1.8475	3.29	0.0370
	ERROR	25	14.0293	0.5612		
RAPP	MONTH	3	3.7413	1.2471	3.56	0.0267
	ERROR	28	9.8094	0.3503		

(c) Ryan's q results for rivers, downriver, and months pooled. Means sharing the same line are not gignificantly different. * $P<0.05$

RAPPAHANNOCK	JAMES	YORK
1.34	1.50	2.02
		$*$

(d) Ryan's Q results for rivers, upriver in July, August and September. Means with the same letter are not significantly different. $* P<0.05$
July: YoRk JAMES RAPPAHANNOCK
$0.981 .00 * 1.81$

August: JAMES RAPPAHANNOCK YORK

0.17

September: JAMES RAPPAHANNOCK YORK

0.00

Table 27 (cont).
(e) Ryan's Q reaults for months upriver in the Yorkr Rappahannock and James rivers. Means gharing the same line are not significantly different.

Table 28. Three-way analysis of variance with river, station and month as factors, and the dependent variable, log-transformed crustacean density, for each set of eight benthic grabs per station in 1989. In cases of $n=0$, the mean for benthic densities which grouped similarly in cluster analysis was substituted to insure a minimum sample size of two within all treatment combinations.

SOURCE OF VARIATION	DF	SS	$\begin{aligned} & \text { PERCENTAGE } \\ & \text { OF } \\ & \text { VARIATION } \end{aligned}$	MS	F	P<
RIVER	2	0.0542	0.04\%	0.0271	0.06	0.9380
StATION	1	3.4679	3.0\%	3.4679	8.19	0.0048
MONTH	3	2.5118	2.2\%	0.8373	1.98	0.1201
RIVERxSTATION	2	28.3339	24.6\%	14.1670	33.44	0.0001
RIVERxMONTH	6	7.7793	6.8\%	1.2966	3.06	0.0075
STATIONxMONTH	3	1.1529	1.0\%	0.3843	0.91	0.4393
RIVERxSTATIONxMONTH	6	9.5854	8.38	1.5976	3.77	0.0016
ERROR	147	62.2824	54.18	0.4237		

Table 29. (a) Two-way analysis of variance for Station and Month within each level of River, and the dependent variable, log-transformed crustacean density in 1989.

RIVER	SOURCE OF VARIATION	DF	SS	MS	F	P <
JAMES	StATION	1	8.9333	8.9333	19.25	0.0001
	MONTH	3	0.5160	0.1720	0.37	0.7745
	STATIONXMONTH	3	3.5567	1.1856	2.55	0.0660
	ERROR	49	22.7408	0.4641		
YORK	STATION	1	9.8979	9.8979	20.41	0.0001
	MONTH	3	0.5659	0.1886	0.39	0.7614
	STATIONXMONTH	3	1.4011	0.4670	0.96	0.4173
	ERROR	52	25.2219	0.4850		
RAPP	STATION	1	12.9706	12.9706	41.67	0.0001
	MONTH	3	9.2092	3.0697	9.86	0.0001
	STATIONXMONTH	3	5.7806	1.9269	6.19	0.0013
	ERROR	46	14.3196	0.3113		

(b) Lower-level (i.e., one-way) analysis of variance for (i) station within each level of Month and (ii) Month within each level of Station in the Rappahannock river.
(i)

Table 29 (cont).
(ii)

| STATION | SOURCE OF
 VARIATION | DF | SS | MS | F | P $<$ |
| :--- | :--- | ---: | :--- | ---: | :--- | ---: | :--- |
| DOWNRIVER | MONTH | 3 | 0.5742 | 0.1914 | 1.64 | 0.2162 |
| | ERROR | 18 | 2.1054 | 0.1170 | | |
| UPRIVER | MONTH | 3 | 14.4155 | 4.8052 | 11.02 | 0.0001 |
| | ERROR | 28 | 12.2142 | 0.4362 | | |

(c) Ryan's Q reaults for months at $R 30$. Means sharing the same line are not gignificantly different. * $P<0.05$

JULY	SEPTEMBER	AUGUST	JUNE
0.00	1.28	1.34	1.81

Significant interaction effects occurred in the analygis of River and Station within each level of Month (Table 30a). Station differences occurred in June in the York and Rappahannock (Table 30b(i)): densities were highest downriver in the York but upriver in the Rappahannock. River differences occurred at both downriver and upriver (Table 30b(ii)) stations in June. Crustaceans were most abundant downriver in the York but least abundant upriver in the York (Table 30c) in June. In July, station differences occurred in the James (Table 30b(i)): crustaceans were most abundant upriver. Rivers differed at both downriver and upriver (Table 30b(ii)) stations. Crustaceans were most abundant downriver in the York (Table 30c) but upriver in the James (Table 30c). Similarly to June, station differences occurred in August in the York and Rappahannock (Table 30b(i)): abundance was greatest downriver in the York but upriver in the Rappahannock. Rivers differed at downriver sites (Table 30b(ii)): greatest densities occurred in the York (Table 30c). In September, gtation differences occurred only in the York (Table 30b(i)): abundance was greater downriver. River differences occurred downriver but not upriver (Table 30b(ii)): more crustaceans occurred in the York than Rappahannock (no crugtaceans collected) and the order of river abundance, from greatest to least was: York, James, Rappahannock (Table 30c).

When analyzing River and Month within each level of Station, there were significant river differences downriver (Table 31a): greateat densities occurred in the York (Table 31c). The River X Month interaction was significant (Table 31a) for upriver stations. River differences occurred in June and July (Table 31b(i)): crustaceans were more abundant in the Rappahannock and James in June, and in the James in July (Table 31d). Months differed upriver in the Rappahannock (Table 31b(ii)), with no crustaceans collected in July (Table 31e) and equally high densities in June, August and September.

In summary, as in 1988, bivalves were more abundant at upriver stations, and were generally most abundant in the Rappahannock river.

Table 30. (a) Two-way analysia of variance for River and Station within each level of Month, and the dependent variable, log-transformed crustacean density in 1989.

MONTH	$\begin{aligned} & \text { SOURCE OF } \\ & \text { VARIATION } \end{aligned}$	DF	SS	MS	F	$\mathrm{P}<$
JUNE	RIVER	2	0.7473	0.3737	1.15	0.3264
	STATION	1	2.6673	2.6673	8.23	0.0067
	RIVERXSTATION	2	17.2227	8.6114	26.58	0.0001
	ERROR	38	12.3111	0.3240		
JULY	RIVER	2	4.8449	2.4225	7.13	0.0023
	STATION	1	1.9609	1.9609	5.77	0.0212
	RIVERXSTATION	2	7.4712	3.7356	10.99	0.0002
	ERROR	39	13.2581	0.3399		
AUG	RIVER	2	0.6939	0.3470	0.64	0.5341
	STATION	1	0.4698	0.4698	0.86	0.3585
	RIVERXSTATION	2	7.7274	386372	7.10	0.0023
	ERROR	40	21.7816	0.5445		
SEPT	RIVER	2	1.2228	0.6114	1.23	0.3071
	STATION	1	0.0267	0.0267	0.05	0.8186
	RIVERXSTATION	2	5.3385	2.6693	5.36	0.0102
	ERROR	30	14.9315	0.4977		

Table 30 (cont).
(b) Lower-level (i.e, one-way) analysis of variance for (i) Station within each level of Rlver, and (ii) River within each level of station in June, July, August and September.
(i)

MONTH	RIVER	SOURCE OF VARIATION	DF	SS	MS	F	\mathbf{P} <
JUNE	JAMES	STATION ERROR	$\begin{array}{r} 1 \\ 11 \end{array}$	$\begin{aligned} & 1.8903 \\ & 7.6463 \end{aligned}$	$\begin{aligned} & 1.8903 \\ & 0.6951 \end{aligned}$	2.72	0.1274
	YORK	STATION ERROR	$\begin{array}{r} 13 \end{array}$	$\begin{aligned} & 4.9352 \\ & 3.9907 \end{aligned}$	$\begin{aligned} & 4.9352 \\ & 0.3070 \end{aligned}$	16.08	0.0015
	RAPP	STATION ERROR	$\begin{array}{r} 1 \\ 14 \end{array}$	$\begin{array}{r} 13.0646 \\ 0.6741 \end{array}$	$\begin{array}{r} 13.0646 \\ 0.0481 \end{array}$	271.33	0.0001
JULY	JAMES	STATION ERROR	$\begin{array}{r} 1 \\ 14 \end{array}$	$\begin{aligned} & 8.9865 \\ & 3.1337 \end{aligned}$	$\begin{aligned} & 8.9865 \\ & 0.2238 \end{aligned}$	40.15	0.0001
	YORK	StATION ERROR	$\begin{array}{r} 1 \\ 14 \end{array}$	$\begin{array}{r} 0.4456 \\ 10.1245 \end{array}$	$\begin{aligned} & 0.4456 \\ & 0.7232 \end{aligned}$	0.62	0.4456
	RAPP	Station ERROR	no crustaceans collected				
AUG	JAMES	STATION ERROR	13	$\begin{aligned} & 1.2730 \\ & 6.8049 \end{aligned}$	$\begin{aligned} & 1.2730 \\ & 0.5235 \end{aligned}$	2.43	0.1429
	YORK	STATION ERROR	$\begin{array}{r} 1 \\ 14 \end{array}$	$\begin{aligned} & 3.2095 \\ & 6.6562 \end{aligned}$	$\begin{aligned} & 3.2095 \\ & 0.4754 \end{aligned}$	6.75	0.0211
	RAPP	STATION ERROR	1_{13}^{1}	$\begin{aligned} & 3.7148 \\ & 8.3204 \end{aligned}$	$\begin{aligned} & 3.7148 \\ & 0.6400 \end{aligned}$	5.80	0.0315

Table 30 (cont).

| MONTH | RIVER | SOURCE OF
 VARIATION | DF | SS | MS | F | P $<$ |
| :--- | :--- | :--- | ---: | :--- | :--- | :--- | :--- | :--- |
| SEPT | JAMES | STATION | 1 | 0.0586 | 0.0586 | 0.13 | 0.7303 |
| | | ERROR | 11 | 5.1560 | 0.4687 | | |
| | YORK | STATION | 1 | 2.6866 | 2.6866 | 6.64 | 0.0257 |
| | | ERROR | 11 | 4.4505 | 0.4046 | | |
| | RAPP | STATION | 1 | 2.6199 | 2.6199 | 3.94 | 0.0825 |
| | | ERROR | 8 | 5.3251 | 0.6656 | | |

(ii)

MONTH	STATION	$\begin{aligned} & \text { SOURCE OF } \\ & \text { VARIATION } \end{aligned}$	DF	SS	MS	F	$\mathbf{P}<$
JUNE	DOWNRIVER	RIVER	2	5.3529	2.6764	7.83	0.0033
		ERROR	19	6.4911	0.3416		
	UPRTVER	RIVER	2	12.5008	6.2504	20.40	0.0001
		ERROR	19	5.8201	0.3063		
JULY	DOWNRIVER	RIVER	2	3.6777	1.8389	5.35	0.0150
		ERROR	18	6.1816	0.3434		
	UPRIVER	RIVER	2	9.2480	4.6240	13.72	0.0002
		ERROR	21	7.0766	0.3370		
AUG	DOWNRIVER	RIVER	2	4.0063	2.0032	4.57	0.0232
		ERROR	20	8.7617	0.4381		
	UPRIVER	RIVER	2	4.3533	2.1767	3.34	0.0559
		ERROR	20	13.0199	0.6510		
SEPT	DOWNRIVER	RIVER	2	3.6954	1.8477	4.79	0.0276
		ERROR	13	5.0119	0.3855		
	UPRIVER	RIVER	2	2.8865	1.4432	2.47	0.1141
		ERROR	17	9.9196	0.5835		

Table 30 (cont).
(c) Ryan's Q results for rivers in downriver and upriver in June and July, and downriver in August and September. Means gharing the same line are not significantly different: * $P<0.05$

June

Downriver:
RAPPAHANNOCK
0.00 \qquad * 1.15
\qquad

July

Downriver: RAPPAHANNOCK	JAMES	YORK
0.00	0.00	0.86

Downriver

August:

JAMES	RAPPAHANNOCK	YORK
0.30	0.35	1.20

Upriver:

YORK	JAMES	RAPPAHANNOCK
0.00	1.22	1.81

Upriver:

RAPPAHANNOCK	YORK	JAMES
0.00	0.53	1.50

September: RAPPAHANNOCK JAMES YORK

YORK	
0.52	1.32

Table 31. (a) Two-way analysis of variance for River and Month within each level of Station, and the dependent variable, log-transformed crustacean density in 1989.

STATION	$\begin{aligned} & \hline \text { SOURCE OF } \\ & \text { VARIATION } \end{aligned}$	DF	SS	MS	F	$\mathbf{P}<$
DOWNRIVER	RIVER	2	16.2898	8.1449	21.56	0.0001
	MONTH	3	1.8895	0.6298	1.67	0.1820
	RIVERXMONTH	6	0.7444	0.1241	0.33	0.9199
	ERROR	70	26.4462	0.3778		
UPRIVER	RIVER	2	12.1628	6.0814	13.07	0.0001
	MONTH	3	1.4951	0.4984	1.07	0.3665
	RIVERXMONTH	6	16.9005	2.8168	6.05	0.0001
	ERROR	77	35,8362	0.4654		

(b) Lower-level (i.e., one-way) analysis of variance for (i) River within each level of Month, and (ii) Month within each level of River, upriver.
(i)

MONTH	SOURCE OF VARIATION	DF	SS	MS	F	P $<$
JUNE	RIVER	2	12.5008	6.2504	20.40	0.0001
	ERROR	19	5.8201	0.3063		
JULY	RIVER	2	9.2480	4.6240	13.72	0.0002
	ERROR	21	7.0766	0.3370		
AUGUST	RIVER	2	4.3533	2.1767	3.34	0.0559
	ERROR	20	13.0199	0.6510		
SEPTEMBER	RIVER	2	2.8865	1.4433	2.47	0.1141
	ERROR	17	9.9196	0.5835		

Table 31 (cont).
(ii)

	SOURCE OF VARIATION	DF	SS	MS	F	P $<$
JAMES	MONTH	3	2.8733	0.9578	1.48	0.2444
	ERROR	24	15.5033	0.6460		
YORK	MONTH	3	1.1067	0.3689	1.14	0.3537
	ERROR	25	8.1187	0.3247		
RAPP			3	14.4155	4.8052	1.1 .02
	MONTH	28	12.2142	0.0001		
	ERROR					

(c) Ryan's Q results for rivers, downriver, months pooled. Means sharing the same line are not significantly different. * $P<0.05$

RAPPABANNOCK	JAMES	YORK
0.11	0.30	1.13

(d) Ryan's Q reaults for rivers, upriver in June and July. Means
sharing the same line are not gignificantly different. ${ }^{2} \times 0.05$

June:	YORK	JAMES	RAPPAHANNOCK	
July:	0.00	1.22	1.81	
	RAPPAHANNOCK	YORK	JAMES	
	0.00	0.53	1.50	

(e) Ryan's Q results for months upriver in the Rappahannock. Means sharing the same line are not significantly different. * $P<0.05$

JULY	SEPTEMBER	AUGUST	JUNE
0.00	1.28	1.34	1.81

There were no distinct seasonal trends in bivalve abundance. Polychaetes were again most abundant downriver, but with lower proportions in the Rappahannock. However, seasonal and river-specific patterns were not as marked in 1989. For example, although polychaetes were often most abundant in the York, river-dominance varied, depending on atation location and month. Polychaetes were generally most abundant in the summer (i.e., June \& July). However, seasonal variation in abundance depended on river or station, and the Summer/Fall pattern of abundance was often not apparent. There were no consistent seasonal or river-specific trends in crustacean abundance. Crustaceans were most abundant downriver in the York and upriver in the James and Rappahannock. River-dominance depended on atation location and month. Benthic Similarity.-- Benthic abundance data clustered into five groups separable primarily by the proportions of bivalves and polychaetes, and secondarily by crustaceans (Fig. 22a). Group 1 consisted of downriver stations, Y10 and J13. Polychaetes dominated the benthos (0.67-0.87), whereas the proportions of bivalves were low (0.0-0.11, Fig. 22b). Bivalves dominated the benthos (0.68-0.89, Fig. 22b) of group 2 upriver stations (i.e, Y25 and R30), which also had the lowest benthic diversity (Fig. 22a). Group 3 included the upriver stations R30 and J27 (Fig. 22a), which were diverse and consisted of relatively high proportions of crustaceans (0.21-0.41), lower proportions of polychaetes (0.03-0.14), and moderate to high proportions of bivalves (0.44-0.73, Fig. 22b). This was the only group in which insects occurred (Fig. 22b) . Group 4 was the upriver station $J 27$ in July where crustaceans dominated, and bivalves and polychaetes occurred in moderate proportions (Fig. 22b). Group 5 was the downriver station, R15 from June through August, and the upriver station, Y25 in August (Fig. 22a). This group contained almost equal proportions of bivalves ($0.41-0.57$) and polychaetes ($0.43-0.52$), but very few crustaceans or miscellaneous species (Fig. 22b).

To clarify station differences, months were pooled. As above,
Figure 22. (a) Cluster diagram representing benthic similarity in 1989 for atation (Y10, J13, R15, Y25, R30, J27) and month (June, July, Auguat, September) combinations. The Shannon-Weiner diversity index is given at the root of each branch.
(b) Benthic composition illustrated as proportion in the benthos for the station-month combinations described in (a). Animals predominating the benthos were bivalves, polychaetes and crustaceans. Rare benthic organisms were pooled into a miscellaneous category (i.e., ophiuroids, fish, gastropods, tunicates, anemones, sponges, bryozoans, insects).

(b)

downriver stations (Y10 and J13) grouped together (group 1) while R15 clustered with the three upriver stations (group 2; Fig. 23a). Group 1 contained the greatest proportions of polychaetes, gastropods, and miscellaneous species (Fig. 23b). Group 2 contained the greateat proportions of bivalves and crustaceans (Fig. 23b). Benthic diversity was lowest at J13 (group 1) and highest at J27 (group 2, Fig. 23a). Contrary to 1988, in 1989 there were no obvious seasonal patterns (Fig. 24) -

In summary, polychaetes, bivalves and crustaceans dominated the benthos in 1989 (Fig. 21). Bivalves dominated the benthos of upriver stations, while polychaetes were dominant downriver, except in the lower Rappahannock where bivalve and polychaete densities and proportions were nearly equal (Figs. 21 \& 23b). Proportionally more crustaceans occurred in the upper James (Fig. 23b). There were no consistent seasonal trends in benthic abundance (Fig. 24), although abundance analyses gometimes indicated greater polychaete densities in Summer (Fig. 21). As in 1988, bivalves were generally most abundant in the Rappahannock while polychaete densities were generally highest in the York (Fig. 21).

Dietary Overlap and Selection

1988
The results of dietary and benthic analyses indicated dominance by three prey categories - bivalves, polychaetes and small crustaceans. Therefore, although α was calculated for all benthic categories, the results are presented only for the dominant prey types to illustrate trends in diet selection.

All crabs consumed bivalves in proportions significantly greater than their abundance in the benthos, and the magnitude of α generally increased with crab size (Table 32a,b). Crabs generally consumed polychaetes in significantly lower proportions than their abundance in the benthos (Tables 32a-c). However, juveniles and small adults

Figure 23. (a) Cluster diagram representing benthic aimilarity in 1989 among the six stations sampled. Months were pooled. The Shannon-Weiner diversity index is given at the root of each branch. (b) Benthic composition illustrated as proportion in the benthos for the stations described in (a). Animals predominating the benthos were bivalves, polychaetes and crustaceans. Rare benthic organisms were pooled into a miscellaneous category (i.e., gastropods, ophiuroids, fish, tunicates, anemones, sponges, bryozoans, insects).

(b)

Emisc
Dcrust
[DPOLY
Baiv

Figure 24. (a) Cluster diagram representing benthic similarity in 1989 among the four months atapled. Rivers and stations were pooled. The Shannon-Weiner diversity index is given at the root of each branch. (b) Benthic composition illustrated as proportion in the benthos for the months described in (a). Animals predominating the benthos were bivalves, polychaetes and crustaceans. Rare benthic organisms were pooled into a miscellaneous category (i.e., gastropods, ophiuroids, fish, tunicates, anemones, sponges, bryozoans, insects).

©misc Derust Epoly
selected polychaetes in July, while juveniles exhibited neutral selection in September (Table 32a) and in the Rappahannock (Table 32b). Small crustaceans, other than crabs, were either consumed in proportion to their availability in the benthos or avoided (Table 32a-c). There were no consistent upriver/downriver differences in prey selection (Table 32c), although the general pattern of bivalve selection and polychaete and crustacean avoidance were evident at all stations.

A seasonal trend occurred with generally higher a indices for bivalve prey in the Fall (i.e., September of October, Table 32a). Polychaetes were selected only in July, corresponding to the period of lowest bivalve selection (Table 32a). There were no seasonal trends in crustacean consumption (Table 32a).

Although bivalves were selected in all rivers (Table 32b), the magnitude of α varied such that values were generally highest in the York, followed by the Jameg then Rappahannock. Crustaceans and polychaetes were generally avoided, with overall highest indices in the Rappahannock followed by the James then York (Table 32b).

In order to determine dietary overlap between different gize classes, the data were collapsed across river, station and month. Pairwise dietary overlap was generally high between all size classes (Table 34). However, the lowest overlap occurred between juveniles (6099 mm CW) and large adults ($>134 \mathrm{~mm} \mathrm{CW}$; Table 34): adulta consumed proportionally more bivalves, crabs and fish, while juveniles consumed more polychaetes and miscellaneous prey (Fig. 9).

1989
As in 1988, electivity indices are presented only for the dominant dietary and benthic components - bivalves, polychaetes and crustaceans (Table 33). Although crabs generally selected bivalves for consumption, strongest selection occurred by larger juveniles and adults, again indicating a trend of increasing congumption with crab aize (Tables 33a,b). The smallest juveniles (i.e., $<60 \mathrm{~mm} \mathrm{CW}$) gelected cruataceans in June and July (Table 33a) and in the James and Rappahannock rivers

Table 32. Diet eelection (i.e., α) of blue crabs calculated for dominant benthic and dietary components in 1988. * $P<0.05$ ** $P<0.01$ *** $P<0.005$ **** $P<0.00005$ NS $P>0.05$
(a) Electivity by Month and Size Class (mm CW), stations and rivers pooled.

SEPTEMBER ($1 / \mathrm{n}=0.167$)

$60-99$	$0.74(0.13)$	$4.35 * * * 0.18(0.13)$	$0.10 N S$	$0.08(0.07)-1.27 N S$
$100-134$	$0.84(0.08)$	$8.81 * * * 0.08(0.06)$	$-1.48 N S$	$0.029(0.02)-5.66 * * * *$
>134	$0.96(0.01)$	$55.70 * * * * 0.00(0.00)$		$0.04(0.01)-9.06 * * * *$

OCTOBER ($1 / n=0.167$)

$60-99$	$0.96(0.02)$	$33.09 * * * * 0.00(0.00)$		$0.04(0.02)$
$100-134$	$0.91(0.05)$	$14.63 * * * * 0.07(0.05)$	-1.83 NS	$0.02(0.02)$
>1.34	$0.80(0.09)$	$6.97 * * * * 0.09(0.07)$	-1.18 NS	$0.04(0.03)$

Table 32 (cont).
(b) Electivity by River and Size Class, months and stations pooled.

RIVER	PREY TYPE				
	$\mathrm{X}(\pm \mathrm{SIVALVE}$	VE x (土S.E.)	N POLYCHAETE		
James $(1 / n=0.167)$					
60-99	$0.61(0.05)$	8.27****0.08(0.03)	-3.46***	0.06(0.01)	-6.94****
100-134	$0.79(0.04) 1$	15.13****0.10(0.04)	-1.77NS	$0.06(0.02)$	-5.08****
>134	$0.86(0.22) 1$	18.06****0.08(0.04)	-2.32*	0.04(0.01)	-8.71****
YORK ($1 / \mathrm{n}=0.167$)					
60-99	$0.95(0.03) 2$	28.85****0.01(0.01)	-22.93****	*0.02(0.02)	-9.09****
100-134	$0.90(0.03) 2$	23.49****0.04(0.02)	-6.19****	*0.02(0.01)	-14.96****
>134	$0.98(0.01) 10$	03.98****0.00(0.00)		$0.01(0.004)$	-33.13****
RAPPAHANNOCK ($1 / \mathrm{n}=0.200$)					
60-99	$0.61(0.05)$	8.92****0.17(0.04)	-0.72NS	$0.19(0.04)$	-0.12NS
100-134	$0.66(0.03) 13$	13.65****0.23(0.03)	1.04 NS	$0.11(0.02)$	-5.26****
>134	0.83(0.03) 2	22.61****0.11(0.03)	-3.53***	$0.05(0.01)$	-12.55****

Table 32 (cont).
(c) Electivity by Station, months and sizes pooled.

STATION	PREY TYPE					
	BIVALVE		CRUSTACEAN		POLYCHAETE	
$J 13$ $(1 / n=0.1$	${ }_{67)}^{0.67(0.12)}$	4.33***	$0.00(0.00)$		$0.00(0.00)$	
$\begin{aligned} & J 27 \\ & (1 / n=0.3 \end{aligned}$	$0.63(0.04)$	7.70****	$0.13(0.03)$	-7.90	$0.24(0.04)-2$	-2.61**
$\begin{aligned} & Y 10 \\ & (1 / n=0.1 \end{aligned}$	$0.88(0.10)$	7.26***	$0.00(0.00)$		$0.00(0.00)$	
$\begin{aligned} & Y 25 \\ & (1 / n=0.2! \end{aligned}$	$0.92(0.02)$	$38.02 * * * * 0.027(0.01)-15.95 * * * * 0.05(0.01)-17.08 * * * *$				
$\begin{aligned} & \text { R15 } \\ & (1 / n=0.2 \end{aligned}$	$0.71(0.07)$ 50)	6.87****	--		$0.22(0.06)-0$	-0.53NS
$\begin{aligned} & \mathrm{R} 30 \\ & (1 / n=0.2! \end{aligned}$	$0.68(0.02)$ 50)	$19.40 * * * *($	$0.18(0.02)$	-3.74	$0.14(0.01)-7$	7.65***

(Table 33b), but exhibited neutral gelection in August and September (Table 33a) and in the York (Table 33b). Larger juvenilea (i.e., 60-99 $\mathrm{mm} C W$) selected crustaceans in July (Table 33a). In contrast, crabs $>$ $134 \mathrm{~mm} C W$ always avoided crustaceans (except large adults in the York which exhibited random selection; Table 33a,b). Crabs 100-134 mm CW exhibited variable responses (i.e., avoidance or consumption in proportion to their abundance in the benthos) to crustacean prey, depending on month or river (Table 33a,b). Polychaetes were generally avoided by the largest crabs (i.e., $\geq 100 \mathrm{~mm} C W$, Table $33 \mathrm{a}, \mathrm{b}$). However, juveniles exhibited neutral selection (i.e., all rivers and months, Table 33a,b), avoidance (i.e., James and Rappahannock rivers, Table 35b), or preference (i.e., York River, Table 33b). As in 1988, there were no consiatent upriver/downriver patterns in prey selection (Table 33c). Bivalves were generally always a preferred prey, while crustaceans and polychaetes were either avoided or consumed in proportion to their abundance in the benthoe (Table 33c).

Although bivalves were preferred in all months (Table 33a), the overall magnitude of α was higher in June and September. Crustaceans were significantly preferred by the smallest juvenilea (i.e.r $<60 \mathrm{~mm}$ CW) in Summer (i.e., June and July), but were consumed in proportion to their abundance in the benthos in Fall (i.e.. August and September, Table 33a). There were no seasonal trends in polychacte consumption.

River differences occurred such that bivalves were preferred in the James and York, while selection in the Rappahannock varied with gize class (Table 33b). Crustaceans were preferred by gmall juveniles in the James and Rappahannock, but were consumed in proportion to their abundance in the benthos in the York (Table 33b). There were no general patterns in electivity for polychaetes (Table 33b).

Pairwise dietary overlap (Table 34) was lowest between small juveniles (i.e., $<60 \mathrm{~mm} \mathrm{CW}$) and large adultg (i.e., $>134 \mathrm{~mm} \mathrm{CW}$): juveniles consumed crustaceans and polychaetes, while large individuals ate bivalves and crabs (Figs. 12 E 14) Greatest overlap occurred
between 1988 year class juveniles/small adults and large adults (i.e., 100-134 \& > $134 \mathrm{~mm} C W$, Table 34).

Predator-Prey Abundance Patterns and Relationshipa

Residual analyses indicated no serious violations of model assumptions or model misspecification after log-transformation of the data. The following regression equations are depicted for log (X +1)transformed data and represent best fit models after stepwise regression with backwards elimination. Large juvenile and adult blue crab abundance (i.e., $>80 \mathrm{~mm} C W ; Y_{i}$) was positively and significantly correlated with mean bivalve density (i.e., $X_{2} ; t=2.91, P<0.004 ;$ Fig. 25a) and small juvenile (i.e, $X_{1} ; \leq 80 \mathrm{~mm} C W ; t=3.92, P<0.0005 ;$ Fig. 25b) abundance, but independent of station (i.e., s; $t=-1.83, P<0.071$) and year (i.e., $y ; t=1.93, P<0.056$). The model explained 43.3% (ANOVA; $F=19.14, \mathrm{df}=4,91, \mathrm{P}<0.0005$) of the total variation in crab abundance and was:

$$
Y_{1}=0.435+0.332 X_{1}+0.264 X_{2}-0.244 S+0.187 Y
$$

Large juvenile and adult crab abundance (i.e., Y_{1}) was independent of the abundance of new juvenile recruits (Fig. 25c), and the best fit model did not include X_{1}. The analyais indicated a gignificant and positive relationship between the abundance of crabs $>80 \mathrm{~mm} \mathrm{cF}$ and bivalve density (i.e., $X_{2} ; t=2.74, P<0.007$), no relationship with polychaete density (i.e., $X_{3} ; t=-1.31, P<0.194$), and a negative relationship with atation (i.e., s; $t=-2.52 \mathrm{P}<0.013$). The model explained 35.3 \% of the variation in crab abundance (ANOVA; F=18.25, $\mathrm{df}=3,92, \mathrm{P}<0.0005$), and was:

$$
Y_{1}=1.04+0.265 X_{2}-0.0943 X_{3}-0.362 \mathrm{~s}
$$

The abundance of juveniles $\leq 80 \mathrm{~mm} C W$ (1.e., Y_{1}) was aignificantly and poaitively correlated with large crab abundance (i.e., $X_{1} ; t=4.01$, p < 0.0005), negatively correlated with gtation (i.e., s; $t=-2.44, \mathrm{P}<$ 0.017), year (i.e., Y; $t=-4.11, P<0.0005$), and mean crustacean density (i.e. $X_{4} ; t=-2.13, P<0.036$), and independent of mean clam density (i.e., $X_{2} ; t=-1.23, p<0.222$). The equation explained

Table 33. Diet selection (i.e., a) of blue crabs calculated for dominant benthic and dietary components in 1989. * $P<0.05 * * P<0.01$ *** $\mathbf{P}<0.005 * * * * P<0.00005$ NS $P>0.05$
(a) Electivity by Month and Size Class (mm CW), stations and rivers pooled.

MONTH	PREY TYPE					
	BIVALVE	CRUSTACEAN			POLYCHAETE	
	X (土 S.E.)	\pm	X (\pm S.E.)	t	X (\pm S.E.))
JUNE ($1 / \mathrm{n}=0.167$)						
<60	$0.46(0.09)$	3.00**	$0.39(0.09)$	2.35*	$0.09(0.04)$	-1.80NS
60-99	$0.75(0.06)$	9.46****	$0.08(0.03)$	-2.70*	$0.07(0.03)$	-2.97Ns
100-134	$40.82(0.05)$	13.74****	$0.09(0.04)$	$-1.96 \mathrm{NS}$	$0.05(0.02)$	-5.48****
>134	0.91(0.03)	23.27****	$0.05(0.03)$	-4.25***	$0.03(0.01)$	-11.94****
JULY ($1 / \mathrm{n}=0.167$)						
<60	$0.25(0.08)$	1.04 NS	$0.51(0.09)$	3.98***	$0.15(0.06)$	-0.28NS
60-99	0.46 (0.05)	5.83****	$0.35(0.05)$	3.88***	$0.12(0.03)$	-1.49Ns
100-134	$40.66(0.04)$	11.62****	$0.15(0.03)$	-0.47Ns	0.14(0.02)	-0.95NS
>134	0.86(0.04)	17.65****	$0.04(0.03)$	-4.78***	$0.09(0.04)$	-1.94NS
AUGUST ($1 / \mathrm{n}=0.167$)						
<60	$0.45(0.08)$	3.62***	$0.25(0.07)$	1.16NS	$0.30(0.07)$	1.86NS
60-99	$0.45(0.08)$	3.74***	$0.03(0.02)$	-6.85***	*0.14(0.05)	-0.54NS
100-134	$40.72(0.07)$	8.55****0.	$0.03(0.02)$	-8.44***	*0.13(0.05)	-0.72NS
>134	$0.93(0.04)$	20.78****0	$0.04(0.04)$	-3.56***	$0.03(0.01)$	-9.67****
SEPTEMBER ($1 / \mathrm{n}=0.167$)						
<60	$0.41(0.06)$	4.01***	$0.28(0.06)$	1.93NS	$0.24(0.05)$	1.40NS
60-99	$0.62(0.23)$	1.97NS 0	0.00(0.00)		$0.38(0.23)$	0.91 Ns
100-134	$40.99(0.002) 3$	385.44****0	$0.00(0.00)$		$0.002(0.002)$	$-76.47 * * * *$
> 134	$0.92(0.04)$	19.67****0	$0.05(0.03)$	-3.53 ***	$0.034(0.021)$	-6.47****

Table 33 (cont)
(b) Electivity by River and size Class, months and stations pooled.

RIVER	PREY TYPE					
	BIVALVE	CRUSTACEAN			POLYCHAETE	
	X (\pm S.E.)) t	X (\pm S.E.)	t	X (\pm S.E.)	
JAMES ($1 / \mathrm{n}=0.143$)						
< 60	$0.38(0.06)$	3.80***	$0.37(0.06)$	3.68***	$0.09(0.04)$	-1.06NS
60-99	$0.59(0.07)$	6.43***	*0.12(0.04)	-0.65NS	$0.06(0.03)$	-2.48*
100-134	$0.92(0.03)$	27.76***	*0.03(0.01)	-8.25****	*0.02(0.01)	17.01****
>134	$0.98(0.01) 1$	100.08****	*0.003(0.003)	-45.14****	*0.01(0.01)-1	16.30****
YORK ($1 / \mathrm{n}=0.167$)						
<60	$0.55(0.06)$	6.49****	0.13(0.04)	-0.93ns	$0.30(0.05)$	2.49*
60-99	$0.49(0.07)$	4.51***	$0.05(0.02)$	-5.24****	*0.11(0.05)	-1.15NS
100-134	$0.58(0.08)$	5.26****	*0.07(0.04)	-2.48*	$0.14(0.05)$	-0.47NS
>134	0.88(0.06)	12.39****	0.11(0.06)	-0.94NS	$0.01(0.01)$	31.40****
RAPPAHANNOCK ($1 / \mathrm{n}=0.333$)						
$\leqslant 60$	$0.17(0.06)$	-2.78**	$0.61(0.08)$	3.59***	$0.22(0.06)$	-1.87NS
60-99	$0.48(0.05)$	2.94***	$0.27(0.04)$	-1.60NS	0.25(0.04)	-2.01*
100-134	$0.62(0.04)$	6.58****	*0.14(0.03)	-6.51****	+0.25(0.03)	-2.51*
>134	$0.82(0.03)$	14.44****	*0.04(0.02)	-18.64***	*0.14(0.03)	-6.57****

Table 33 (cont).
(c) Electivity by station, months and sizes pooled.

STATION	PREY TYPE					
	BIVALVE	CRUSTACEAN			POLYCHAETE	
	X (土 S.E.)	t	X (\pm S.E.) t	X ${ }^{\text {(}}$ S.E.	
$\begin{aligned} & J 13 \\ & (1 / n=0.1 \end{aligned}$	$0.28(0.09)$	1.12NS	$0.08(0.05)$	-1.72Ns	$0.17(0.08)$	-0.01NS
$\begin{aligned} & J 27 \\ & (1 / n=0.2! \end{aligned}$	$\begin{aligned} & 0.73(0.03) \\ & 50)^{(0.03} \end{aligned}$	15.18****	*0.17(0.03)	-3.09***	0.06(0.02)	$-11.78 * * * *$
$\begin{aligned} & Y 10 \\ & (1 / n=0.1 \end{aligned}$	${ }_{67)}^{0.51(0.06)}$	5.37****	*0.04(0.02)	-6.30***	*0.22(0.06)	0.91 NS
$\begin{aligned} & Y 25 \\ & (1 / n=0.25 \end{aligned}$	${ }_{50}^{0.61(0.04)}$	8.57****	*0.17(0.04)	-2.16*	$0.22(0.03)$	-0.92NS
$\begin{aligned} & \mathrm{R15} \\ & (1 / \mathrm{n}=0.3 \vdots \end{aligned}$	$\begin{aligned} & 0.79(0.09) \\ & 33) \end{aligned}$	5.05***	$0.19(0.09)$	-1.47Ns	$0.01(0.01)$	-41.97****
$\begin{aligned} & \text { R30 } \\ & (1 / n=0.3: \end{aligned}$	${ }_{33}^{0.51(0.03)}$	6.08****	*0.19(0.02)	-5.75***	*0.29(0.02)	-1.70Ns

Table 34. Pairwise proportional dietary overlap for blue crab size classes collected in 1988 and 1989. Rivers, stations and months were pooled.

$\begin{aligned} & \text { SIZE } \\ & \text { CLASS (MM) } \end{aligned}$	60-99		100-134		>134	
	1988	1989	1988	1989	1988	1989
<60	-	0.671	-	0.579	-	0.506
60-99	-	-	0.897	0.843	0.799	0.762
100-134	-	-	-	-	0.895	0.914

Figure 25. Relationship between (a) large juvenile and adult blue crab ($>80 \mathrm{~mm} \mathrm{CW}$) abundance and mean bivalve denaity, (b) large juvenile and adult blue crab and amaller juvenile ($\leq 80 \mathrm{~mm}$ CW) abundance, and (c) large juvenile and adult blue crab abundance and new juvenile recruit ($<50 \mathrm{~mm} \mathrm{CW}$) abundance. Data are $\log (X+1)$-trangformed.

35.0 (ANOVA; $F=11.22, d f=5,90, P<0.0005$) of the variation in juvenile abundance, and was:

$$
Y_{1}=1.19+0.436 X_{1}-0.130 X_{2}-0.164 X_{4}-0.363 \mathrm{~s}-0.456 Y
$$

The abundance of new juvenile recruits (i.e., $Y_{1}=<50 \mathrm{~mm} \mathrm{CW}$ crabs) was negatively correlated with station (i.e., s; t=-4.57, $P<$ 0.0005) and year (i.e., Y; $t=-3.09, P<0.003$), but independent of bivalve density (i.e., $X_{2} ; t=-1.39, P<0.169$). The regression equation explained 25.4 \% of the variation in new recruit abundance, and was:

$$
X_{i}=1.33-0.148 X_{2}-0.678 s-0.336 Y
$$

In summary, adult and large juvenile blue crab abundance was positively correlated to the density of a key infaunal prey (i.e., bivalves) and the abundance of smaller conspecifics. New recruits were most abundant upriver and in 1989, but distributional patterns were unrelated to the abundance of either conspecifics or major benthic infaunal prey (i.e., bivalves, crustaceans, or polychaetes).

DISCUSSION

The key findings of this investigation were: (1) Blue crab diets were separable on the basis of proportional consumption of dominant dietary components - bivalves, crabs and polychaetes. Small crustaceans constituted a significant proportion of the diet of new juvenile recruits ($<60 \mathrm{~mm} \mathrm{CW}$) in 1989. (2) Bivalveg were preferred prey, regardless of crab size, station, river or season. (3) Spatial (i.e., upriver v downriver) and size-related differences in diet occurred in both years. (4) There was marked spatial variation in the abundance and distribution of both blue crabs and dominant benthic infauna (i.e., bivalves and polychaetes): crabs and bivalves were most abundant upriver, while polychaetes were more abundant downriver. (5) Blue crab diet, abundance and distributional patterns were strongly correlated with the abundance of their preferred prey, suggesting the occurrence of an aggregative response in this sygtem. (6) Cannibalism was common, occurring most frequently in areas of low alternative preferred prey abundance and during periods of peak juvenile recruitment into the three subestuaries. Furthermore, the abundance of large crabs was positively correlated with that of smaller conspecifics.

Diet Selection

Ontogenetic changes in diet selection were suggested by the differentially high consumption of amall crustaceans and polychaetes by juvenile blue crabs, the decline in bivalve consumption and cannibalism with decreasing crab size, and the low index of dietary overlap between juveniles and adults. In 1989, the index of dietary overlap between new juvenile recruits and large adults (i.e., < $60 \mathrm{~mm} \&>134 \mathrm{~mm} \mathrm{cW}$) was as low as that between fish species constituting the guild of epibenthic predators in upper Cheaapeake Bay (Hines et al. 1990). These results suggest the occurrence of at least two distinct trophic groups in lower

Chesapeake Bay. Laughlin (1982) similarly concluded that ontogenetic
 Bay, Florida such that three distinct trophic groups could be distinguished. Although bivalves were the dominant dietary component of all size classes, the percent composition or inclusion of other prey types varied with crab size. He suggested that allometric constraints in feeding apparatus as well as differing locomotory and sensory capabilities could account for these dietary differences (Laughlin 1982). Size-related differences in diet gelection have been documented for other crab species, and may be related to ontogenetic changes in the functional morphology of the feeding apparatus (Ropes 1968, 1988, Paul 1981, Stevens et al. 1982, Perez \& Bellwood 1988, Stoner \& Buchanan 1990).

Spatial variability in diet selection occurred such that crabs collected downriver consumed a greater variety of prey typea, while upriver crabs predominantly ate bivalves. Although polychaetes were most abundant downriver, high benthic densities were not reflected in the diets of crabs which preferentially consumed bivalves and either avoided or consumed polychaetes in proportion to their availability in the benthos. Thus, in axeas of relatively lower bivalve densities, blue crabs expanded their diets to include locally abundant fauna. This result is consistent with other studies auggesting that blue crabs are dietary opportunists whose feeding habits reflect prey availability (Darnell 1959, Tagatz 1968, Odum \& Heald 1972, Laughlin 1982, Alexander 1986, Ryer 1987, Hines \& Wolcott 1990 , Hines et al. 1990, Stoner \& Buchanan 1990).

River-specific prey density and predator dietary patterns, although sometimes inconsistent, were characterized by general trends. For example, bivalves were often most abundant in the benthos, and occurred in greatest proportions in the diets of crabs in the Rappahannock river. However, river dominance varied with month, , $\begin{aligned} & \text { ation }\end{aligned}$ and year.

There were no obvious seasonal patterns in diet selection in either year. These reaults probably reflect the weak (1988) or nonexistent (1989) seasonal trend in abundance of preferred bivalve prey. Prey availability can be a function of prey density, burial depth or specific morphological features of prey (Blundon \& Kennedy 1982a,b, Arnold 1984, Lipcius \& Hines 1986, West k Williams 1986, Hines et al. 1990, Sponaugle \& Lawton 1990). In this investigation, the dominant dietary and benthic component (i.e., Macoma balthica) did not exhibit marked differences in size throughout the sampling period (Appendix 5). These size clagses are generally available and vulnerable to predation by larger blue crabs (Blundon \& Kennedy 1982a,b).

The Aggregative Response
Predator aggregation in high density patches can provide a partial prey refuge in low density patches (Hassell 1978), thus stabilizing predator-prey $s y s t e m s$ (Hassell \& May 1974). In this investigation, blue crabs congregated upriver in areas of highest bivalve (i.e., Macoma balthica) abundance. Regression analysis indicated a positive correlation between the abundance of large crabs ($>80 \mathrm{~mm} \mathrm{cw}$) and mean bivalve density, while electivity analysis indicated that bivalves were preferred prey. Blue crabs can have marked effects on the population dynamics of Macoma balthica (Hines et al. 1990, Eggleston et al. 1992). Field evidence indicates a rapid decline in clam densities in summer in association with intense blue crab predation (Hines et al. 1990). However, Macoma find at least partial refuge from blue crabs through greater burial depth (Blundon \& Kennedy 1982b) and low population densities (Eggleston et al. 1992).

Aggregative responses have been described for various marine vertebrates and invertebrates (Hill 1979, Decho \& Fleeger 1988, Fairweather 1988, Friedland et al. 1989, Piatt et al. 1989), and ib measured either by counts of predator numbers or as time spent per unit area of differing prey densities (Hassell \& May 1974). Ultrasonic telemetry has provided information on movement and foraging activity of
blue crabs in the Rhode River subestuary, Maryland (Wolcott \& Hines 1988, 1989, Hines \& Wolcott 1990, Hines et al. in prep). Investigations indicate changes in movement patterns (i.e., from rapid directional movement to slow meandering) asaociated with encountering high density prey patches. Crabs forage selectively on clams at high densities but opportunistically on other prey (Hines \& Wolcott 1990). Thus, the combined reaults of this and other investigations (Wolcott \& Hines 1988, 1989, Hines \& Wolcott 1990, Hines et al., in prep) indicate that blue crabs commonly aggregate in areas of high prey abundance, selectively consume bivalves, and expand their diets in areas of low bivalve (i.e.. preferred prey) density.

Hassell \& May (1974) describe two behavioral models of predator searching behavior which allow predictions about the predator's response to prey denaity. In the first model, the predator exhibita changes in turning behavior after encountering prey, such that ita movement becomes one of "tight" turning, A random walk or other prefeeding pattern of movement is resumed if no further prey are encountered. This behavior appears to be typical of blue crabs (Wolcott \& Hines 1988, 1989, Hines \& Wolcott 1990, Hines et al. in prep), and results in a sigmoid, (i.e., density-dependent), potentially atabilizing aggregative response curve (Hassell \& May 1974). The second model suggests a threshold time for encountering prey and also generally produces a sigmoid aggregative response (Hassell \& May 1974). The existence of a threshold time has not been documented for blue crabs. Departure from prey patches is probably related to agoniatic interactions (i.e., interference) between searching crabs (Hines, pers. comm., R.N. Lipcius \& K. Moody unpub. data). The combination of aggregation and interference can atabilize the blue crab-bivalve predator-prey system by providing partial refuges for prey in low density patches, and by promoting emigration from patches which have been heavily exploited (Hassell 1978).

An alternative explanation for the abundance and diatributional patterns of blue crabs in this study is avoidance of adverse abiotic
(i.e., hypoxic or anoxic) conditions which commonly occur downriver in the three subestuaries investigated (Seliger et al, 1985, Kuo \& Neilson 1987, Kuo et al. 1991). Pihl et al. (1991) observed emigration of mantis shrimp, blue crabs, and demersal fish from hypoxic areas in the lower York River. However, the fish and blue crabs returned to these sites as conditions improved (Pihl et al. 1991). The response of benthic infauna depends on the severity (i.e., length of time and dissolved oxygen level) of the hypoxic event: intense hypoxia or anoxia ($<1 \mathrm{mg} / 1 区<0.2 \mathrm{mg} / 1 \mathrm{O}_{2}$, respectively) can result in defaunation while moderate events result in decreased burial depth and surface exposure (Holland 1985, Holland et al. 1977, 1987, Diaz et al. 1992, Rosenberg et al. 1991, Pihl et al. 1992). Thus, brief hypoxic events can enhance foraging of epibenthic predators by increasing prey availability (Diaz \& Schaffner 1990, Pihl et al. 1992, Diaz et al. 1992). In this investigation, hypoxia ($<2 \mathrm{mg} / 1 \mathrm{O}_{2}$, Diaz et al. 1992) occurred downriver in the Rappahannock (i.e., R15) in September, 1989 (Appendix 2), and was characterized by the absence of all benthic prey (Fig. 21) and a sample size of 9 blue crabs. Near-hypoxic conditions occurred at R15 in July and August, 1988 (Appendix 1) and June, 1989 (Appendix 2). However, bivalves were collected in both months in 1988 (Fig. 17), while bivalves and polychaetes were abundant in June, 1989 (Fig. 21). Blue crabs were also collected during these months in both years (i.e., 90 and 28 crabs in July and August, 1988, respectively, and 11 in June, 1989). Subsequent sampling indicated high densities of polychaetes in September, 1988 (Fig. 17; 31 blue crabs) and moderate densities of bivalves and polychaetes in July 1989 (Fig. 21; 5 blue crabs). Although blue crabs emigrate from hypoxic areas, the resulta of this investigation indicate generally lower abundances downriver in all rivers regardless of oxygen concentration. These results in conjunction with diet and prey preference analyses suggeat that crabs were aggregating upriver in response to abundance and distributional patterns of their preferred prey (i.e., bivalves).

Cannibalism

Spatial, geasonal, annual and size-related differences in the frequency of cannibaligm were documented in this investigation: (1) large crabs (i.e., > 134 mm CW) cannibalized most frequently, (2) cannibalism occurred least frequently in the Rappahannock river where densities of preferred alternative prey (i.e. . Macoma balthica) were generally highest, (3) frequency of occurrence was highest during the months of new juvenile recruitment into the subestuaries and in 1989 corresponding to the relatively greater abundance of juveniles in that year. Evidence that density-dependent rates of cannibalism may regulate blue crab populations includes: density-dependent autotomy and cannibalism of tethered juvenile blue crabs (Smith 1990, 1991a,b), increased occurrence of crabs in blue crab stomachs in late summer when alternative (bivalve) prey availability and densities are reduced (Hines et al. 1990), the highly developed and complex intraspecific agonistic behaviors of blue crabs (Jachowski 1974), the significant effect of previous year-classes on the stock-recruitment relationship for blue crabs in Chesapeake Bay (Lipcius \& Van Engel 1990), and increased cannibalism when juvenile recruitment is higher (this study). Cannibalism may be an efficient mechaniam of population control in age/size-structured populations (Fox 1975, Polis 1981, 1988). Furthermore, prey profitability analyses indicate that crustaceans are energetically more valuable than bivalve prey (Thayer et al. 1973, Hill 1979), and in one investigation non-portunid crabs were the principal prey of large ($>100 \mathrm{~mm} C W$) blue crabs (Fitz \& Wiegert 1991).

The magnitude of intraspecific predation required to substantially affect the blue crab population in Chesapeake Bay is unknown. Investigations in other systems indicate that cannibalism can be a major mortality factor, perhaps eliminating entire cohorts and resulting in fluctuations in recruitment and skewed age or size distributions (Fox 1975, Polis 1981). Blue crabs exhibit large fluctuations in abundance due to a variety of biotic and abiotic factors (Van Engel 1987, Hines et
al. 1987, Lipcius \& Van Engel 1990). Van Engel (1987) estimated total mortality from the egg to adult stage ranging from 0.999973 to 0.999996 , with fisheries mortality accounting for an additional 0.0000031 to 0.0000251 and removal rates by other sources ranging from 0.0000024 to 0.000001 . The hard crab fishery removes crabs $\geq 127 \mathrm{~mm} \mathrm{cW}$, the dominant cannibals in the Chesapeake Bay system. Despite the intensive fishery, we documented the highest frequency of occurrence of cannibalism of any investigation thus far. Hines et al. (1990) found that blue crabs constituted 3-12 \% (by volume) of the diet of large conspecifics in upper Chesapeake Bay, while the highest frequency of occurrence (i.e., 11 \%) was recorded by Laughlin (1982) for large blue crabs (> 60 mm CW) in the Apalachicola estuary, Florida. In contrast, Peery's (1989) laboratory investigations indicated cannibalism rates of 2-85 \%, depending on relative gizes of predator and prey. Lipcius and Van Engel (1990) found a gignificant and dome-shaped stock-recruitment relationship for blue crabs in Chesapeake Bay. This "overcompensatory" model (i.e., Ricker model) is appropriate where adults cannibalize prerecruits, or when intraspecific competition for critical reaources occurs between adults and progeny (Fogarty et al. 1991). Furthermore, the highest variance in recruitment occurs at intermediate levels of spawning stock size; recruitment variance increases with population fecundity and variance in mortality, but decreases with increasing mortality (Fogarty et al. 1991). Similarly, several investigators have suggested that density-dependent, inter-age mechanisms (i.e., cannibalism, competition for food) could be responsible for the cyclic abundance patterns of the commercially exploited Dungeness crab (Cancer magister) (Botsford \& Wickham 1978 and others cited therein, Stevens et al. 1982). In contrast, McKelvey et al. (1980) conoluded that cannibalism of juveniles by adults was unimportant in the generation of the 9-year cycle. However, avidence that amall (i.e., 15-60 mm CW) Dungeness crabs are the primary cannibals (i.e., frequency of occurrence: 24.9 \%) suggests the need to re-evaluate the madel (Stevens
et al. 1982).
Cannibalism and intraguild predation may be responsible for fluctuations in recruitment of the Cape anchovy (Engraulia capensis), and cycles in the abundance of commercially important clupeoids in the Benguela system, South Africa (Szeinfeld 1991). Leonardseon (1991) commonly observed cannibalism by the isopod, Saduria entomon, in the laboratory. However, gut contents investigations of field collected Saduria indicated a very low incidence of conspecifics in the diets of large isopods: small conspecifics occurred in only 3.3 \% of the guts of larger isopods, and only in one locality. Nevertheless, he concluded that cannibalism could be a critical factor affecting the size structure and spatial distribution of this species (Leonardsson 1991).

In contrast, we observed conspecifics in 39.4% of the guts of large blue crabs in 1989, and throughout the distributional range investigated. Furthermore, cannibalism occurred even when bivalves were abundant and available (Blundon \& Kennedy 1982b) in the benthos (Appendix 5). In laboratory prey size gelection experimenta, Ap Rheinallt (1986) observed relatively higher predation of larger juvenile Carcinus maenas by Liocaicinus puber. Larger ghore crabs were more active resulting in greater encounter rates between predator and prey, and were grasped and retained more easily than small prey (Ap Rheinallt 1986). Similarly, in Chesapeake Bay, relatively high encounter rates with small conspecifics during periods of juvenile recruitment may explain the consumption of conspecifics when alternative bivalve prey are abundant and available in the benthos. Cannibalism between disparate size classes is most common in nature (Polis 1981, 1988), and can provide direct and immediate nutritional benefits (Polis 1988). Polis (1988) suggests that interference competition (i.e., cannibalism) that supplies immediate net energy gains to the individual are likely to evolve regardiess of population structure (i.e., spatially structured v open populations).

Predator-Prey Dynamics in Soft-Bottom Communities

Predation may be the most important biotic factor determining the organization of marine communities (Connell 1975). The role of predation in structuring marine rocky intertidal communities is wellestablished: either a single keystone predator or strong interactors within a guild of predators (Paine 1966, 1980, 1992) enhance species diversity and abundance patterns by negatively affecting the actions of a dominant competitor. The importance of functional groups (Menge et al. 1986b) or guilds of predators in regulating community structure in environmentally less severe habitats of $10 w$ temperate and tropical rocky intertidal zones has also been eatablished (Menge 1983, Menge et al. 1986a,b). These studies suggest the absence of a single keystone species, and the importance of complex interactions between predator species, prey species and abundance, recruitment dynamics and environmental stress (Menge 1983, Menge et al. 1986a,b, Menge \& Sutherland 1987, Menge \& Olson 1990, Paine 1980, 1992).

Blue crabs are known to have major impacts on prey abundance and distribution in estuarine systems (Virnstein 1977, 1979, Holland et al. 1980, West \& Williams 1986, Kneib 1982, Woodin 1981, Lin 1989, Martin et al. 1989, Sponaugle $\&$ Lawton 1990, Hines et al. 1990). Bivalves are a dominant dietary component, and mortality rates vary with habitat type (i.e., sediment), density and species (Lipcius k Hines 1986, Hines et al. 1990, Eggleaton et al. 1992). Furthermore, predator density can have profound effects on the magnitude of predation intensity, potentially affecting the dynamics of both blue crab and bivalve prey (i.e., Macoma balthica) populations in Chesapeake Bay (Mansour \& Lipcius 1991). The combined evidence (Virnstein 1977, 1979, Holland et al. 1980, Hines et al. 1990) suggests that blue crabs are strong interactors (sensu Paine 1980, 1992) within the guild of epibenthic predators in Chesapeake Bay. A species is a strong interactor if its absence results in pronounced changes in community structure (Paine 1980). The effect depends on predator food preference, distributional and abundance
patterns, and whether the prey is the competitive dominant in the community (Paine 1980, 1992). Our results indicate that blue crabs prefer bivalve prey (i.e., Macoma balthica), and aggregate in areas of highest bivalve densities. Although a dominant competitor has not been identified for the Chesapeake Bay syotem, field investigations indicate that bivalves (i.e., Macoma balthica, Mya arenaria) may regulate community composition through direct and indirect effecta on recruitment (Hines et al. 1989). Hines et al. (1989) observed a decline in total macroinfuanal abundance with increasing clam density, but results for component species were variable (i.e., positive or negative) depending on clam density, clam species and year. Thus, blue crabs conform to Paine's (1980, 1992) criteria for "strong" interactors in geveral respects including: (1) their marked preferences for apecific prey, (2) declines in macroinfaunal abundance which are directly related to blue crab predation such that, in their absence, pronounced changes in community structure occur (predator exclusion studies: Virnstein 1977, 1979, Holland et al. 1980, Hines et al. 1990), and (3) abundance and distributional patterns which are positively correlated with those of preferred prey. However, Paine's (1980, 1992) definition unequivocally requires modification of the actions of a competitive dominant. In Chesapeake Bay, no study has identified a single species whose actions result in the formation of a "monoculture" (sensu Paine 1992). In summary, blue crab predation may be the most important biotic factor determining bivalve distribution and abundance patterna in Chesapeake Bay. Density-dependent functional, aggregative and interference responses promote prey persistence despite intense aeasonal blue crab predation such that: (1) foraging rates decline at low bivalve densities (i.e., functional response: Lipcius \& Hines 1986, Mansoux \& Lipcius 1991, Eggleston et al. 1992), (2) aggregation in high prey density patches provides refuge for bivalves at low densities, and (3) aggregation reaults in interference (i.e., cannibalism or agonistic interactions: Mansour \& Lipcius 1991, Hines, pers. comm.) which promotes
predator emigration. Finally, the occurrence of diatinct trophic groups suggests that blue crabs may differentially affect infaunal components. For example, polychaetes and small crustaceans (i.e., amphipods, isopods) are most vulnerable to juvenile blue crab predation, while bivalves and conspecifics are subject to intense predation by large juveniles and adults. Thus, food web models should incorporate trophic stages (Peters 1977, Laughlin 1982, Stoner \& Buchanan 1990, Polis 1991), gince, as this study has shown, differences in diet between juveniles and adults can be as great as those between some species (Hines 1982, Hines et al. 1990).

Appendix 1. Bottom temperature, salinity, dissolved oxygen and tow depth recorded for each river-atation-month combination in 1988.

RIVER	STATION	MONTH	$\begin{aligned} & \text { BOTTOM } \\ & \text { TEMP }\left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & \text { BOTTOM } \\ & \text { SALINITY (ppt) } \end{aligned}$	$\begin{gathered} \text { BOTTOM } \\ \mathrm{DO}(\mathrm{mg} / 1) \end{gathered}$	$\begin{aligned} & \text { DEPTH (m) } \\ & \text { (TOW } 1 / \text { TOW } 2 \text {)* } \end{aligned}$
JAMES	J13	JUNE	11.5	22.1	7.3	11.1
		JULY	26.0	18.0	6.0	12.4
		AUG	28.0	19.0	5.5	11.5
		SEPT	23.0	19.5	6.5	11.2
		OCT	20.0	20.0	8.5	13.6
	J27	JUNE	26.0	8.0	-	10.6
		JULY	25.0	7.0	3.4	7.4
		AUG	30.5	6.0	5.4	8.7
		SEPT	24.0	9.5	6.0	8.4
		OCT	20.0	13.0	8.2	6.5
YORK	Y10	JUNE	16.5	15.8	4.3	7.1
		JULY	24.9	19.0	4.5	7.6
		AUG			-	8.7
		SEPT	23.0	20.5	6.0	7.8
		OCT	--	--	--	7.6
	Y25	JUNE	19.0	12.5	4.8	8.1
		JULY	26.0	15.0	4.2	8.1
		AUG	30.0	16.0	4.8	8.1
		SEPT	23.5	23.5	6.0	7.8
		OCT	21.0	18.0	7.5	7.6
RAPP	R15	JUNE	17.2	--	3.4	17.4
		JULY	24.5	17.0	2.6	15.8
		AUG	27.5	16.0	2.4	15.2
		SEPT	24.5	18.0	3.0	13.1
		OCT	14.0	16.0	8.5	15.8
	R30		20.9	11.0	4.0	6.2
		JULY	26.0	9.0	4.0	6.2
		AUG	29.0	13.0	4.1	--
		SEPT	23.5	13.0	6.0	6.1
		OCT	12.5	13.0	8.2	6.1

* Tow depths were similar unless indicated otherwise.

Appendix 2. Bottom temperature, salinity, dissolved oxygen and tow depth recorded for each river-station-month combination in 1989.

RIVER	STATION	MONTH	$\begin{aligned} & \text { BOTTOM } \\ & \text { TEMP }\left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & \text { BOTTOM } \\ & \text { SALINITY (ppt) } \end{aligned}$	$\begin{aligned} & \text { BOTMOM } \\ & \text { DO }(\mathrm{mg} / 1) \end{aligned}$	$\begin{gathered} \text { DEPTH }(m) \\ (\text { TOW } 1 / \text { TOW } 2) \end{gathered}$
JAMES	J13	JUNE	23.0	18.0	4.6	13.1/13.7
		JULY	26.5	20.5	3.6	12.2/12.8
		AUG	--	--	-	12.2/11.6
		SEPT	24.6	21.0	5.6	13.4/13.1
		OCT	19.0	16.0	6.4	13.1
	J27	JUNE	26.0	2.0	5.0	7.5/7.3
		JUEY	29.5	1.0	4.6	8.2/7.6
		AUG	--	--	--	8.2
		SEPT	25.6	6.3	6.3	8.5
		OCT	19.0	3.5	7.2	8.8
YORK	Y10	JUNE	25.0	19.0	6.0	7.9
		JULY	27.0	18.0	3.0	8.5/8.2
		AUG	25.5	16.7	5.0	8.5/10.1
		SEPT	25.3	19.8	--	8.2/9.8
		OCT	19.0	17.0	6.3	8.2/8.8
	Y25	JUNE	26.0	10.0	6.0	8.5
		JULY	29.5	10.5	3.6	7.9
		AUG	26.0	13.3	5.4	8.5
		SEPT	,	13.3	5.	9.1/9.8
		OCT	19.5	12.5	5.8	8.5
RAPP	R15	JUNE	24.0	15.0	2.3	14.6/14.9
		JULY	27.0	13.0	3.0	14.9
		AUG	25.5	7.5	3.4	14.3
		SEPT	25.1	15.6	0.6	$15.2 / 14.3$
		OCT	19.3	15.0	6.4	14.6
	R30	JUNE	25.5	6.0	5.2	5.2/7.0
		JULY	26.0	6.0	4.0	5.5
		AUG	25.6	5.5	6.1	5.2
		SEPT	26.2	10.0	4.9	5.5/6.7
		OCT	20.0	7.0	6.2	5.5

[^0]Appendix 3. Food items occurring in the guts of blue crabs collected in 1988 and 1989. * indicates occurrence only in 1989 samples.

Appendix 4. Animals collected through benthic sampling in 1988 and 1989.

```
Polychaeta
    Goniadidae
        Glycinde solitaria
    Onuphidae
        Diopatra cuprea
    Pectinariidae
    Glyceridae
    Spionidae
    Maldanidae
    Ampharetidae
    Hesionidae
    Nereidae
    Orbiniidae
    Amphinomidae
    Terebellidae
        Loimia meduga
    Capitellidae
```

Phoronidea
Phoronis sp.
Nemertinea
Bivalvia
Macoma mitchilli
Macoma balthica
Macoma tenta
Mulinia lateralie
Tagelue sp.
Ensis directus
Anadara 6p.
Pholadidae
Other
Crustacea
Crangonidae
Crangon septembpinosa
Amphipoda
Gammaridae
Caprellidae
Ogyridae
Ogyrides limicola
Xanthidae
Isopoda
portunidae
Callinectes sapidus
Ophiuroidea

Appendix 4 (cont).

```
Gastropoda
    Mitrella lunata
    Cephalaspidea
    Pyramidellidae
    Other
Insecta
    Chironomidae (larvae)
Teleostomi
    Anchoa mitchelli
    Trinectes maculatus
    Leiostomus xanthurus
```

Anthozoa
Actiniaria
Ascidiacea
Porifera
Bryozoa

Appendix 5. Mean size (\pm standard deviation) measured as shell length in mm for the dominant bivalve species collected in the benthos upriver from July - October, 1988 and June - September, 1989.

STATION	SPECIES	MONTH	SIZE (MM SL)	
			1988	1989
J27	Macoma balthica	June	-	15.1 (6.4)
		July	15.9 (1.3)	11.8 (6.2)
		August	15.8 (4.1)	17.8 (6.7)
		September	13.1 (2.1)	12.4 (8.9)
		october	$16.6(1.5)$	12.4 (8.9)
	Macoma mitchilli	June	-	12.9 (2.4)
		July	12.5 (2.4)	9.5 (2.3)
		Auguat	12.1 (2.1)	14.4 (1.8)
		September	$9.8(3.4)$	13.8 (1.1)
Y25	Macoma balthica	June	-	15.3 (2.1)
		July	12.5 (1.9)	15.0 (2.4)
		August	9.5 (9.2)	15.7 (1.6)
				16.2 (1.6)
		Oetober	7.0 (7.4)	- ${ }^{\text {2 }}$
	Macoma mitchilli	June	-	13.0
		July	-	17.0
		August	10.0	11.5 (4.9)
		September	10.0	10.9 (1.5)
		October	10.8 (2.4)	10.9 (1.5)
R30	Macoma balthica	June	-	11.2 (4.9)
		July	11.8 (4.2)	11.7 (4.0)
		August	12.9 (3.5)	12.5 (2.0)
		September	12.3 (2.7)	13.9 (4.1)
		October	14.7 (4.5)	(4.1)
	Macoma mitchilli	June	-	
		July	13.0	13.7 (1.5)
		Auguat	11.0	9.4 (2.8)
		September	$4.4(0.9)$ $6.8(2.4)$	9.9 (2.4)

LITHERATURE CITED

Alexander, S.K., 1986. Diet of the blue crab, Callinectes gapidus Rathbun, from nearshore habitats of Galveston Island, Texas. Texas J. Sci. 38: 85-89.

Anger, K., Rogal, U., Schriever, G., Valentin, C. 1977. In-aitu investigations on the echinoderm Agteriag rubens as a predator of soft-bottom communities in the western Baltic Sea. Helgolander wiss. Meeresunters. 29: 439-459.

Ap Rheinalit, T. 1986. Size gelection by the crab Liocarcinus puber feeding on mussels Mytilus edulis and on shore crabs Carcinus maenas: the importance of mechanical factors. Mar. Ecol. Prog. Ser. 29: 45-53.

Arnold, S.K. 1984. The effects of prey size, predator gize, and gediment composition on the rate of predation of the blue crab, Callinectes sapidus Rathbun, on the hard clam, Mercenaria mercenaria (Linne). J. Exp. Mar. Biol. Ecol. 80: 207-219.

Baird, D., Ulanowicz, R.E. 1989. The seasonal dynamica of the Chesapeake Bay ecosystem. Ecol. Monogr. 59: 329-364.

Blundon, J.A., Kennedy, V.S. 1982a. Mechanical and behavioral aspects of blue crab, Callinectes sapidus (Rathbun), predation on Chesapeake Bay bivalves. J. Exp. Mar. Biol. Ecol. 65: 47-65.

Blundon, J.A., Kennedy, V.S. 1982b. Refugeg for infaunal bivalves from blue crab, Callinectes gapidua (Rathbun), predation in Cheaapeake Bay. J. Exp. Mar. Biol. Ecol. 65: 67-81.

Boesch, D.F. 1973. Classification and community structure of macrobenthos in the Hampton Roads area, Virginia. Mar. Biol. 21: 226-244.

Boesch, D.F. 1977. Application of numerical classification in ecological investigations of water pollution. Spec. Sci. Rep. No. 77, Virginia Institute of Marine Science, Gloucester Pt. VA, 114 pp.

Boesch, D.F., Diaz, R.J., Virnstein, R.W. 1976. Effects of tropical storm Agnes on soft-bottom macrobenthic communities of the James and York estuaries and the lower Chesapeake Bay. Ches. Sci. 17: 246-259.

Botaford, L.W., Wickham, D.E. 1978. Behavior of age-apecific, densitydependent models and the Northern California Dungenese crab (Cancer magister) fishery. J. Fish. Res. Bd. Can. 35: 833-843.

Chatterjee, S., Price, B. 1977. Regression Analysis by Example. John Wiley 6 Sons.

Chesson, J. 1978. Measuring preference in selective predation. Ecology 59 (2): 211-215.

Chesson, J. 1983. The estimation and analygis of preference and its relationship to foraging models. Ecology 64 (5): 1297-1304.

Confer, J.L., Moore, M.V. 1987. Interpreting gelectivity indices calculated from field data or conditions of prey replacement. Can. J. Fish. Aquat. Sci. 44: 1529-1533.

Connell, J.H. 1975. Some mechanisms producing structure in natural communities: a model and evidence from field experiments. In: Cody, M.L., Diamond, J. (eds.) Ecology and evolution of communities. Belknap Press, Cambridge, Massachusetts, p. 460-490.

Darnell, R.M. 1959. Studies of the life history of the blue crab (Callinectes sapidus Rathbun) in Louisiana waters. Trans. Am. Fish. Soc. 88: 294-304.

Daviea, T., DeMoss, T. 1982. Chesapeake Bay: Introduction to an ecosystem. U.S. EPA, Chesapeake Bay Program, 33 p.

Day, R.W., Quinn, G.P. 1989. Compariaons of treatments after an analysis of variance in ecology. Ecol. Monogr. 59: 433-463.

Dayton, P.K. 1984. Processes structuring some marine communities: are they general? In: Strong, D.R. Jr., Simberloff, D., Abele, L. G., Thistle, A.B. (eds.) Ecological communities: conceptual issues and the evidence. Princeton University Press, Princeton, New Jersey, pp. 181-197.

Decho, A.W., Fleeger, J.W. 1988. Microscale dispersion of meiobenthic copepods in response to food-resource patchiness. J. Exp. Mar. Biol. Ecol. 118: 229-243.

Diaz, R.J., Schaffner, L.C. 1990. The functional role of estuarine benthos. In: Haire, M., Krome, E.C. (eds.) Perapectives on the Chesapeake Bay, 1990. Advances in estuarine sciences. Chesapeake Regearch Consortium, Glouceater Point, Virginia. Rep. No. CBR/TRS41/90, p. 25-56.

Diaz, R.J., Neubauer, R.J., Schaffner, L.C., Pihl, L., Baden, S.P. 1992. Continuous monitoring of dissolved oxygen in an estuary experiencing periodic hypoxia and the effect of hypoxia on macrobenthos and fish. Sci. Tot. Env., in press.

Eggleston, D.B. 1990a. Behavioural mechanisms underlying variable functional responses of blue crabs, Callinectes gapidus feeding on juvenile oysters, Crassostrea virginlca. J. Anlm. Ecol. 59: 613628.

Eggleston, D.B. 1990b. Foraging behavior of the blue crab, Callinectea sapidus, on juvenile oysters Crassostrea virginica: effects of prey density and size. Bull. Mar. ScI. 46: 62-82.

Eggleaton, D.B. 1990c. Functional responses of blue cxabs Callinectes sapidus Rathbun feeding on juvenile oysters Crassostrea virginica (Gmelin): effects of predator sex and size, and prey gize. J. Exp. Mar. Biol. Ecol. 143: 73-90.

Eggleston, D.B., Lipcius, R.N., Hines, A.H. 1992. Density-dependent predation by blue crabs upon infaunal clam species with contrasting distribution and abundance patterns. Mar. Ecol. Prog. Ser. In Preas.

Fairweather, P.G. 1988. Correlations of predatory whelks with intertidal prey at several scales of space and time. Mar. Ecol. Prog. Ser. 45: 237-243.

Fitz, H.C., Wiegert, R.G. 1991. Utilization of the intertidal zone of a galt marsh by the blue crab Callinectes sapidus: density, return frequency, and feeding habitㅎ. Mar. Ecol. Prog. Ser. 76: 249-260.

Fogarty, M.J., Sissenwine, M.P., Cohen, E.B. 1991. Recruitment variability and the dynamica of exploited marine populations. Trends in Evol. \& Ecol. 6: 241-246.

Fox, L.R. 1975. Cannibalism in natural populations. Ann. Rev. Ecol. Syst. 6: 87-106.

Free, C.A., Beddington, J.R., Lawton, J.H. 1977. On the inadequacy of simple models of mutual interference for parasitism and predation. J. Anim. Ecol. 46: 543-554.

Friedland, K.D., Ahrenholz, D.W., Guthrie, J.F. 1989. Influence of plankton on distribution patterns of the filter-feeder Brevoortia tyrannus (Pisces: Clupeidae). Mar. Ecol. Prog. Ser. 54: 1-11.

Hasgell, M.P. 1978. The dynamics of arthropod predator-prey sybtems. Monographs in population biology. Princeton University Press, Princeton, New Jersey.

Hassell, M.P., May, R.M. 1973. Stability in insect host-parasite models. J. Anim. Ecol. 42. 693-736.

Hassell, M.P., May, R.M. 1974. Aggregation of predators and insect parasites and its effect on stability. J. Anim. Ecol. 43: 567-594.

Hill, B.J. 1976. Natural food, foregut clearance-rate and activity of the crab Scylla serrata. Mar. Biol. 34: 109-116.

Hill, B.J. 1979. Aspects of the feeding strategy of the predatory crab Scylla serrata, Mar. Biol. 55: 209-214.

Hines, A.H. 1982. Coexistence in a kelp forest: Size, population dynamics, and resource partitioning in a guild of spider crabs (Brachyura, Majidae). Ecol. Monogr. 52: 179-198.

Hines, A.H., Comtois, K.L. 1985. Vertical diatribution of infauna in sediments of a subestuary of central Chesapeake Bay. Estuaries 8: 296-304.

Hines, A.H., Lipcius, R.N., Haddon, A.M. 1987. Population dynamics and habitat partitioning by aize, sex, and molt gtage of blue crabs (Callinectes sapidus) in a subestuary of Chegapeake Bay. Mar. Ecol. Prog. ser. 36: 55-64.

Hines, A.H., Posey, M.H., Haddon, P.J. 1989. Effects of adult suspension- and deposit-feeding bivalves on recruitment of estuarine infauna. The Veliger 32: 109-119.

Hines, A.H., Wolcott, T.G. 1990. Blue crab movement and feeding measured by ultrasonic telemetry. Bull. Mar. Sci. 46: 246 (Abs.)

Hines, A.H., Haddon, A.M., Hiechert, L.A. 1990. Guild structure and foraging impact of blue crabs and epibenthic fiah in a subestuary of Chesapeake Bay. Mar. Ecol. Prog. Ser. 67: 105-126.

Holland, A.F. 1985. Long-term variation in macrobenthos in a mesohaline region of Chesapeake Bay. Estuaries 8: 93-113.

Holland, A.F., Mountford, N.K., Mihursky, J.A. 1977. Temporal vaxiation in upper bay mesohaline benthic communities: 1 . The 9-m mud habitat. Ches. Sci. 18: 370-378.

Holland, A.F., Mountford, N. K., Hiegel, M.H., Kaumeyer, K.R., Mihursky, J.A. 1980. Influence of predation on infaunal abundance in upper Chesapeake Bay, USA. Mar. Biol. 57: 221-235.

Holland, A.F., Shaughnessy, A.T., Hiegel, M.H. 1987. Long-term variation in mesohaline Chesapeake Bay macro-benthos: spatial and temporal patterns. Estuaries 10: 227-245.

Holling, C.S. 1959. The components of predation as revealed by a study of small mammal predation of the European pine aawfly. Can. J. Entomol. 91: 293-320.

Hynes, H.B.N. 1950. The food of fresh-water sticklebacks (Gasterosteus aculeatus and Pygosteus pungitius), with a review of methods used in studies of the food of fishes. J. Anim. Ecol. 19: 36-58.

Hyslop, E.J. 1980. Stomach contents analygis - a review of methods and their application. J. Fish. Biol. 17: 411-429.

Jachowaki, R.L. 1974. Agoniatic behavior of the blue crab, Callinectes gapidug Rathbun. Behaviour 50: 232-253.

Kneib, R.T. 1982. The effects of predation by wading birds (Ardeidae) and blue crabs (Callinectes sapidus) on the population size structure of the common mumichog, Fundulus heteroclitus. Est. Coagt. Shelf Sci. 14: 159-165.

Kuo, A.Y., Neilson, B.J. 1987. Hypoxia and salinity in Virginia estuaries. Estuaries 10: 277-283.

Kuo, A.Y., Park, K., Moustafa, M.Z. 1991. Spatial and temporal variabilities of hypoxia in the Rappahannock River, Virginia. Estuaries 14: 113-121.

Kurihara, Y., Sekimoto, K., Miyata, M. 1988. Wandering behaviour of the mud-crab Helice tridens related to evasion of cannibalism. Mar. Ecol. Prog. Ser. 49: 41-50.

Laughlin, R.A. 1979. Trophic ecology and population distribution of the blue crab, Callinectes gapidus Rathbun, in the Apalachicola egtuary, Floridar USA. Ph.D. dissertation, Florida state University, Tallahassee.

Laughlin, R.A. 1982. Feeding habits of the blue crab, Callinectes sapidus Rathbun, in the Apalachicola estuary, Florida. Bull. Mar. Sci. 32: 807-822.

Lechowicz, M.J. 1982. The sampling charactexistica of electivity indices. Oecologia 52: 22-30.

Leonardsson, K. 1991. Effects of cannibalism and alternative prey on population dynamics of Saduria entomon (Isopoda). Ecology 72: 1273-1285.

Lin, J. 1989. Influence of location in a salt margh on survivorship of ribbed mussels. Mar. Ecol. Prog. Ser. 56: 105-110.

Lipcius, R.N., Hines, A.H. 1986. Variable functional responses of a marine predator in dissimilar homogeneous microhabitats. Ecology 67: 1361-1371.

Lipciug, R.N., Van Engel, W.A. 1990. Blue crab population dynamics in Chesapeake Bay: Variation in abundance (York River, 1972-1988) and stock-recruit functions. Bull. Mar. Sci. 46: 180-194.

Mansour, R.A., Lipcius, R.N. 1991. Density-dependent foraging and mutual interference in blue crabs preying upon infaunal clame. Mar. Ecol. Prog. Ser. 72: 239-246.

Martin, T.H., Wright, R.A., Crowder, L.B. 1989. Non-additive impact of blue crabs and spot on their prey assemblages. Ecology 70: 19351942.

McKelvey, R., Hankin, D., Yanosko, K., Snygg, C. 1980. Stable cycles in multistage recruitment models: an application to the Northern California Dungeness crab (Cancer magister) fishery. Can. J. Fish. Aquat. Sci. 37: 2323-2345.

Menge, B.A. 1978a. Predation intensity in a rocky intertidal community. Effect of an algal canopy, wave action and deaiccation on predator feeding rates. oecologia (Berl.) 34: 17-35.

Menge, B.A. 1978b. Predation intensity in a rocky intertidal community. Relation between predator foraging activity and environmental harshness. Oecologia (Berl.) 34: 1-16.

Menge, B.A. 1983. Components of predation intensity in the low zone of the New England rocky intertidal region. Oecologia (Berl.) 58: 141-155.

Menge, B.A., Lubchenco, J., Ashkenas, L.R. 1986a. Experimental separation of effects of consumers on gessile prey in the low zone of a rocky shore in the Bay of Panama: direct and indirect consequences of food web complexity. J. Exp. Mar. Biol. Ecol. 100: 225-269.

Menge, B.A., Lubchenco, J., Gaines, S.D., Ashkenas, L.R. 1986b. A test of the Menge-Sutherland model of community organization in a tropical rocky intertidal food web. Decologia (Berl.) 71: 75-89.

Menge, B.A., Sutherland, J.P. 1987. Community regulation: Variation in disturbance, competition, and predation in relation to environmental stress and recruitment. Am. Nat. 130: 730-757.

Menge, B.A., Olson, A.M. 1990. Role of acale and environmental factors in regulation of community structure. Trends in Evol. \& Ecol. 5: 52-57.

Murdoch, W.W., Oaten, A. 1975. Predation and population stability. In: MacFadyen, A. (ed.) Advances in ecological research, Vol. VIX. Academic Press, New York, p. 1-131.

Odum, W.E., Heald, E.J. 1972. Trophic analyses of an estuarine mangrove community. Bull. Mar. Sci. 22: 671-738.

Desterling, M.J. 1988. Manual for handing and shedding blue crabs (Callinectes gapidus). Spec. Rep. Appl. Mar. Sci. \& Ocean Eng. No. 271, 94 p.

Paine, R.T. 1966. Food web complexity and species diversity. Am. Nat. 100: 65-75.

Paine, R.T. 1980. Food webs: linkage, interaction strength and community infrastructure. J. Anim. Ecol. 49: 667-685.

Paine, R.T. 1992. Food-web analysis through field measurement of per capita interaction strength. Nature 355: 73-75.

Paul, R.K.G. 1981. Natural diet, feeding and predatory activity of the crabs Callinectes arcuatus and C. toxotes (Decapoda, Brachyura, Portunidae). Mar. Ecol. Prog. Ser. 6: 91-99.

Peery, C.A. 1989. Cannibalism experiments with the blue crab (Callinectes gapidus Rathbun): Potential effects of size and abundance. Masters Thesis, School of Marine Science, Virginia Ingtitute of Marine Science, College of William and Mary, Gloucester Point, Virginia.

Perez, O.S., Bellwood, D.R. 1988. Ontogenetic changes in the natural diet of the sandy shore crab, Matuta lunaris (Forskal) (Brachyura: Calappidae). Aust. J. Freshwater Res. 39: 193-199.

Peters, R.H. 1977. The unpredictable problems of tropho-dynamics. Env. Biol. Fish. 2: 97-101.

Peterson, C.H. 1979. Predation, competitive exclusion, and diversity in the soft-sediment communities of estuaries and lagoons. In: Livingston, R.J. (ed.) Ecological processes in coastal and marine systems. Plenum Publishing Corporation, New York, P. 233-264.

Peterson, C.H., Bradley, B.P. 1978. Estimating the diet of a sluggish predator from field observations. J. Fish. Res. Bd. Can. 35: 136141.

Platt, J.F., Methven, D.A., Burger, A.E., McLagan, R.L., Mercer, V., Creelman, E. 1989. Baleen whales and their prey in a coastal environment. Can. J. Zool. 67: 1523-1530.

Pihl, L., Baden, S.P. Diaz, R.J. 1991. Effects of periodic hypoxia on diatribution of demersal fish and crustaceans. Mar. Biol. 108: 349-360.

Pihl, L., Baden, S.P. Diaz, R.J., Schaffner, L.C. 1992. Hypoxia-induced structural changes in the diet of bottom-feeding fish and crustacea. Mar. Biol. 112: 349-361.

Polis, G.A. 1981. The evolution and dynamics of intraspecific predation. Ann. Rev. Ecol. Syst. 12: 225-251.

Polis, G.A. 1988. Exploitation competition and the evolution of interference, cannibaliam, and intraguild predation in age/aizestructured populations. In: Ebenman, B., Perseon, L. (eds.) Sizestructured populations: ecology and evolution. Springer-Verlag, Berlin, Germany, p. 185-202.

Polis, G.A. 1991. Complex trophic interactions in deserts: An empirical critique of food-web theory. Am. Nat. 138: 123-155.

Posey, M.H. 1986. Predation on a burrowing shrimp: distribution and community consequences. J. Exp. Mar. Biol. Ecol. 103: 143-161.

Readshaw, J.L. 1973. The numerical responee of predators to prey density. J. Appl. Ecol. 10: 342-351.

Ropes, J.W. 1968. The feeding habits of the green crab, Carcinus maenas (L.). Fish. Bull. 67: 183-203.

Ropes, J.W. 1988. The food habits of five crab species at pettaquamscutt River, Rhode Island. Fish. Bull. 87: 197-204.

Rosenberg, R., Hellman, B., Johansson, B. 1991. Hypoxic tolerance of marine benthic fauna. Mar. Ecol. Prog. Ser. 79: 127-131.

Ryer, C.H. 1987. Temporal patterns of feeding by blue crabs (Callinectea sapidus) in a tidal-marsh creek and adjacent seagrass meadow in the lower Chesapeake Bay. Egtuaries 10: 136-140.

SAS Inst. 1985. SAS User's Guide: Statistics, Vergion 5 Edition. SAS Institute, Cary, North Carolina.

Schaffner, L.C., Diaz, R.J. 1988. Distribution and abundance of overwintering blue crabs, Callinectes sapidug, in the lower Chesapeake Bay. Estuaries 11: 68-72.

Seliger, H.H., Boggs, J.A., Biggley, W.H. 1985. Catastrophic anoxia in the Chesapeake Bay in 1984. Science 228: 70-73.

Smith, L.D. 1990a. The frequency and ecological consequencea of limb autotomy in the blue crab, Callinectes gapidus Rathbun. Ph.D. Disgertation, The University of Maryland, College Park, Maryland.

Smith, L.D. 1990b. Patterns of limb loss in the blue crab, Callinectes sapidug, and the effects of autotomy on growth. Bull. Mar. Sci. 46: 23-36.

Smith, L.D., Hines, A.H. 1991. Autotomy in blue crab (Callinectes sapidus Rathbun) populations: geographic, temporal, and ontogenetic variation. Biol. Bull. 180: 416-431.

Sokal, R.R., Rohlf, F.J. 1981. Biometry: The principles and practice of statistics in biological regearch. 2nd edition. W.H. Freeman and Company, New York.

Sponaugle, S., Lawton, P. 1990. Portunid crab predation on juvenile hard clams: effects of aubstrate type and prey density. Mar. Ecol. Prog. Ser. 67: 43-53.

Stevens, B.G., Armstrong, D.A., Cusimano, R. 1982. Feeding habits of the Dungeness crab Cancer magister as determined by the index of relative importance. Mar. Biol. 72: 135-145.

Stoner, A.W., Buchanan, B.A. 1990. Ontogeny and overlap in the diets of four tropical Callinectes species. Bull. Mar. Sci. 46: 3-12.

Summerson, H.C., Peterson, C.H. 1984. Role of predation in organizing benthic communities of a temperate-zone seagrass bed. Mar. Ecol. Prog. Ser. 15:63-77.

Szeinfeld, E.V. 1991. Cannibalism and intraguild predation in clupeoids. Mar. Ecol. Prog. Ser. 79: 17-26.

Tagatz, M.E. 1968. Biology of the blue crab, Callinecten gapidua Rathbun, in the St. Johns River, Florida. Fish. Buli. U.S. 67: 1733.

Thayer, G.W., Schaaf, W.E., Angelovic, J.W., LaCroix, M.W. 1972. Caloric measurements of some estuarine organisms. Fish. Bull. 71: 289-296.

Underwood, A.J. 1981. Techniques of analysis of variance in experimental marine biology and ecology. Oceanogr. Mar. Biol. Ann. Rev. 19: 513-605.

Vanderploeg, H.A., Scavia, D. 1979. Two electivity indicea for feeding with gpecial reference to zooplankton grazing. J. Fish. Res. Bd. Can. 36: 362-365.

Van Engel, W.A. 1987. Factors affecting the distribution and abundance of the blue crab in Chesapeake Bay. In: Majumdar, S.K., Hall, L.W., Jr., Austin, H.M. (eds.) Contaminant problems and management of living Cheaapeake Bay resources. p. 177-209.

Virnstein, R.W. 1977. The importance of predation by crabs and fishes on benthic infauna in Chesapeake Bay. Ecology 58: 1199-1217.

Virnstein, R.W. 1979. Predation on estuarine infauna: response patterns of component species. Eatuaries 2: 69-86.

Wass, M.L. 1972. A check list of the biota of lower Chesapeake Bay. Spec. Sci. Rep. No. 65, Virginia Institute of Marine Science, Gloucester Point, Virginia.

Wassenberg, T.J., Hill, B.J. 1989. Diets of four decapod crustaceans (Linuparus trigonus, Metanephrops andamanicus, M. australiensis and M. boschmai) from the continental shelf around Australia. Mar. Biol. 103: 161-167.

West, D.L., Williams, A.H. 1986. Predation by Callinectes sapidus (Rathbun) within Spartina alterniflora (Loisel) marshes. J. Exp. Mar. Biol. Ecol. 100: 75-95.

Williams, A.B. 1984. Shrimps, lobsters and crabs of the east coast of the United States. Smithsonian Institution Press, Washington, D.C.

Williams, M.J. 1981. Methods for analysis of natural diet in portunid crabs (Crustacea: Decapoda: Portunidae). J. Exp. Mar. Biol. Ecol. 52: 103-113.

Williams, M.J. 1982. Natural food and feeding in the commercial sand crab Portunus pelagicus Linnaeus, 1766 (Crustacea: Decapoda: Portunidae) in Moreton Bay, Queensland. J. Exp. Mar. Biol. Ecol. 59: 165-176.

Wolcott, T.G., Hines, A.H. 1988. Ultrasonic telemetry transmitters for behavioral studies on free-ranging blue crabs. Biotelemetry 10:285-295.

Wolcott, T.G., Hines, A.H. 1989. Uitrasonic biotelemetry of muscle activity from free-ranging marine animals: A new method for studying foraging by blue crabs (Callinectes gapidug). Biol. Bull. 176: 50-56.

Woodin, S.A. 1981. Disturbance and community structure in a shallow water sand flat. Ecology 62(4): 1052-1066.

Zar, J. H. 1984. Biostatistical Analysis. Prentice-Hall, Inc., New Jersey.

CHAPTER 2

DENSITY-DEPENDENT FORAGING AND MUTUAL INTERFERENCE IN BLUE CRABS PREYING UPON INFAUNAL CLAMS

Abstract

ABSIRACT

Predator-prey dynamies between the blue crab Callinectes sapidus and an infaunal soft-shelled clam, Macoma balthica, were examined in laboratory experiments to assess the joint effects of varying predator and prey densities upon predator foraging rates and prey survival. A full-factorial experimental design involved 2 prey densities (4 and 16 clams m^{-2}) and 3 predator densities (1, 2 and 4 crabs m^{-2}) with 6 trials per treatment combination. Blue crabs exhibited density-dependent foraging under all conditions: proportionally more clams were consumed at the higher clam density. Furthermore, at the higher crab densities mutual interference was evident in the incidence of wounds and deaths to crabs resulting from cannibalism or intraspecific aggression. Thus, the combined impact of varying crab and clam densities reaulted in (1) the maintenance of a density-dependent refuge from blue crab predation for large infaunal clams, irrespective of crab density, and (2) intraspecific aggreasion resulting in injury and mortality of blue crabs at high crab densities. The collective results indicate that both predator and prey densities must be examined experimentally for their joint impact upon predator-prey dynamica in marine systems.

DENSITY-DEPENDENT FORAGING AND INTERFERENCE IN BLUE CRABS

INTRODUCTION

In marine syatems, predation regulates community structure and varies in intensity in many rocky and soft-gediment marine benthic habitats (Connell 1975, Peterson 1979a, Paine 1980, Menge et al. 1986a,b, Hall et al. 1990). Predator-prey interactions in marine softbottom communities are particularly complex because they are dominated by guilds of generalist predators capable of switching among diverse prey (Hines et al. 1990), and because there are few communities with competitively dominant prey capable of monopolizing reaources (Peterson 1979a, Dayton 1984). Menge (1983) defined key components of predation intensity, which are fundamentally based on the effectiveness and the abundance of individual predators (i.e., functional and aggregative responses). Though a quantitative focus on these basic components and their joint effects is required to underatand marine benthic predatorprey dynamics, few, if any, studies have attempted to integrate the influence of functional and aggregative responses.

The functional reaponse deacribes a short-term behavioral phenomenon where predators increase prey consumption as prey abundance increases. (Solomon 1949, Holling 1959). This response may be linear, hyperbolic (inversely density-dependent) or sigmoid (density-dependent), each with specific effects upon predator-prey dynamics (Murdoch 1973). Analyses of functional responses have yielded useful results concerning the regulation of prey populations by predators in marine benthic systems (Boulding \& Hay 1984, Katz 1985, Lipcius \& Hines 1986, Eggleston 1990a,b, Sponaugle \& Lawton 1990).

The numerical response, the relationship between the number of predators and prey abundance, is a function of predator behavior (e.g., aggregative response), fecundity and survivorship patterns (Holling 1959). In the aggregative response predators may regulate prey
populations by congregating in areas of high prey density and by leaving those prey patches where the rate of prey capture falls below a threshold (Readshaw 1973). The general aggregative response is gigmoid in form, and tends to stabilize predator-prey systems (Hassell \& May 1974). Predator aggregation around high density patches can provide a partial refuge for prey in low density patches (Hassell 1978). Aggregative reaponses have been described for various marine vertebrates and invertebrates (Hill 1979, Decho \& Fleeger 1988, Fairweather 1988, Friedland et al. 1989, Piatt et al. 1989).

Predator aggregation can also enhance the foraging rates of individual predators if they are attracted to prey patches by the foraging of conspecifics, or when mutual attacks are more successful than individual attacks (Hassell \& May 1973, 1974, Anger et al. 1977). Conversely, mutual interference resulting from predator aggregation may adversely affect either a predator's searching efficiency or its feeding rate. The general interference response describes the relationship between searching efficiency or attack rate and predator density, and is curvilinear with interference becoming negligible at low predator densities (Hasaell 1978). The combination of aggregation and interference may stabilize predator-prey dynamics by providing partial refuges for prey in low density patches, and by promoting dispersal of predators from patches in which prey have been heavily exploited (Hassell 1978).

Blue crabs affect local population densities of their bivalve prey (Virnstein 1977, 1979, Peterson 1979b, Holland et al. 1980, Seed 1980, Blundon \& Kennedy 1982a,b, Arnold 1984, Lipcius o Hines 1986, Sponaugle * Lawton 1990) and play a major role in energy transfer within estuariea (Baird \& Ulanowicz 1989). However, little is known about the combined role of predator and prey densities in predator-prey interactions, especially the aggregative response and intraspecific competition or interference. The objective of this study was to quantify the combined effect of the functional, aggregative, and interference (i.e.,
intraspecific competition) responses upon prey and predator survival and predator foraging rates in a marine predator-prey system, specifically that between the blue crab Callinectes gapidus Rathbun and the infaunal clam Macoma balthica (L.), in Chesapeake Bay.

THE PREDATOR-PREY SYSTEM

The blue crab Callinectes gapidus is a large [males up to 227 mm carapace width (CW)] epibenthic omnivore occurring in various habitats along the Northwest Atlantic Ocean, Gulf of Mexico and Caribbean Sea (Williams 1984). Blue crabs serve as both prey and consumers, and are abundant and actively foraging from late spring through autumn in Chesapeake Bay, USA (Hines et al. 1987, 1990). The diet of Chesapeake Bay blue crabs consists of bivalves (predominantly Macoma balthica), crabs (both blue crabs and xanthids), fish and polychaetes, and to a lesser extent amphipods and isopods (Hines et al. 1990, this study Chapter 1).

The tellinid Macoma balthica is an infaunal, soft-shelled clam commonly occurring in muddy and muddy sand habitats along both sides of the North Atlantic (from the Arctic Sea to Georgia along the western Atlantic) and along the Pacific coast from polar regions to its southern limit in San Francisco Bay (Beukema \& Meehan 1985, Martini \& Morrison 1987). In Chesapeake Bay, M. balthica is an abundant, deep-burrowing (depth to 40 cm), deposit or suapension feeder, and occurs predominantly in mud substrates of meso-polyhaline regions (Hines a comtois 1985, Hines et al. 1989, 1990). Two settlement pulses occur: a relatively weak winter pulse and a marked spring pulse peaking in May, ceasing in June, and with populations declining rapidly in July and August primarily in association with intense blue crab predation (Holland et al. 1980, 1987, Blundon \& Kennedy 1982b, Holland 1985, Hines et al. 1989, 1990). Large adults find at least partial refuge through greater burial depth (> 10 cm) (Blundon 6 Kennedy 1982b) and through a lowdensity refuge (Eggleston et al. 1992), as observed in another softshelled infaunal clam, Mya arenaria (Lipcius \& Hines 1986). The combined effect of varying predator and prey densities upon the dynamics
of this system remains unquantified.

MATERIALS AND METHODS

This study used a full-factorial experimental design with 2 prey densities of 4 and 16 clams m^{-2} (i.e., clams tank ${ }^{-1}$) and 3 predator densities of 1,2 and 4 crabs m^{-2} (i.e., crabs tank ${ }^{-1}$). Experimental clam densities resemble low to moderate field densities (Hines et al. 1990, Eggleaton et al. 1992), while crab densities are similar to moderate and high blue crab densities (> 25 mm CS, 6.9 crabs m^{-2}) in Chesapeake Bay (Orth \& Van Montfrans 1987). Controls included both clam densities but without crabs. Experiments were conducted under natural photoperiod from mid-July through mid-October 1989 (mean water temperature $\pm \mathrm{SE}: 22.1 \pm 0.3^{\circ} \mathrm{C}$).

Six circular tanks 1.13 m in diameter ($1 \mathrm{~m}^{2}$) were filled with fine muddy sand (97.3% sand, 1.5% gilt, 1.3% clay) to a depth of 15 cm and unfiltered, ambient York River (Virginia, USA) water to a level 25 cm above the sediment surface. Blue crabs were captured in traps whereas Macoma balthica were collected by suction-dredge from local muddy and muddy sand habitats. Male intermolt crabs, 115 to 160 mm cW, were held separately, fed ad libitum with live M. balthica and mussela Geukensia demissa, and acclimated to laboratory conditions for 1 wk. M. balthica, 27 to 39 mm SL (shell length), were held in open-system tanks and also acclimated for 1 wk.

Crabs were matched for size to within 10 \% CW. All crabs were exposed to randomly chosen combinations of crab and clam densities to avoid learning specific treatment combinations (Murdoch * Oaten 1975). Crabs were checked daily; any crabs that died overnight, either from unknown causes or cannibalism, were replaced by similarly sized new crabs and treated in the same manner as their predecessors. All sizes of crabs used in this investigation were equally capable of excavating and feeding on the size classes of clams offered (Blundon \& Kennedy

1982a,b). All sizes of experimental clams bury to similar depths (Blundon \& Kennedy 1982b, Hines \& Comtois 1985), and were therefore equally available to crabs. Only crabs that fed during acclimation, and clams that exhibited a healthy siphon-withdrawal reflex were used. The experimental procedure involved introduction of clams and crabs into tanks during daylight hours (11:00 to 14:00 h). Macoma balthica were randomly buried 10 cm below the sediment gurface and allowed 48 h prior to crab introduction to acclimate to experimental conditions and bury to a natural depth (Hines \& Comtois 1985). Crabs starved for 48 h were released into the center of each tank at the start of a trial. Trials ended with removal of crabs after 72 h , and determination of clam mortality through counts of survivors and umbos of eaten clams, Between each trial, experimental tank water was replaced with ambient river water, while the sediment was vigorously aerated. Twenty-four hours prior to clam introduction, water inflow was discontinued and sediment aexation reduced.

Six trials were conducted for each combination of crab and clam density with sygtematic interspersion of each treatment combination (Underwood 1981, Hurlbert 1984). The numbers and proportions of eaten clams were analyzed as a function of clam and crab density in a 2-way fixed-factor analysis of variance (ANOVA). Prior to analyses, the raw numbers were log-transformed, while proportional mortality data were arc-sine square-root transformed to normalize the data and remove heteroscedasticity (Cochran's test; Sokal \& Rohlf 1981, Underwood 1981, spss Inc. 1988). In 3 instances, 1 trial each of a treatment combination (i.e., 3 of 36 trials) was lost due to system failure. In these cases, the mean of the treatment combination for that trial was substituted to maintain a balanced experimental design, and the error MS df was reduced accordingly before calculating F values (Underwood 1981). Means were back-transformed for graphical presentation.

Variations in proportional mortality with prey density can be used to distinguish density-dependent (i.e., relatively lower proportional
mortality at low clam density) from inversely density-dependent (i.e., relatively higher proportional mortality at low clam density) predation (Lipcius \& Hines 1986). Usually, 3 to 6 prey densities are required to determine the general shape of a functional response curve, although the type of functional response is detectable only at low to moderate prey densities. However, 2 prey densities permit gtatistical differentiation among density-independent, inversely density-dependent and densitydependent functional response curves at low to moderate prey densities (Lipcius \& Hines 1986). Other investigations (Eggleaton et al. 1992) indicated the range of M. balthica densities required to distinguish between functional response curves and described the general shape of the curve日 for the blue crab-Macoma predator-prey sygtem. Therefore, a subset of clam densities was selected from within this range for this investigation.

Crab mortality resulting from cannibalism and intraspecific aggression was analyzed with Dunnett's multiple comparison procedure, which compares 2 or more proportions to a control proportion (Zar 1984).

RESULTS
There was 100% 日urvivorship of control clams. Proportional mortality of clams and consumption rates of blue crabs differed significantly by clam density (Fig. la,b, Table 1). Blue crabs exhibited density-dependent foraging in all treatments: proportionally more clams were consumed at the high clam density (Fig. 1b). The data for consumption rates and proportional mortality of clams as a function of crab density suggested a decreasing trend (Fig. la,b); however, the power to detect a significant crab density effect was low (a posteriori test; Zar 1984; power < 0.20) for both the numbers eaten and proportional mortality. The interaction effect between erab density and clam density was not significant (Table 1).

Consumption rates and proportional mortalities standardized by crab density (number eaten and proportional mortality divided by crab density per treatment; Fig. lc,d) differed significantly by clam density and crab density (Table 2). Again, crabs exhibited density-dependent foraging, with highest clam mortalities per crab and consumption rates per crab at the higher clam density (Fig. 1c,d). The interaction effect between clam and crab density was not significant in either case (Table 2).

Cannibalism and intraspecific aggreasion by blue crabs, as indicated by crab deaths, carapace wounds and logs of appendages, occurred in both the 2-crab and 4-crab density treatments at both clam densities. The results of other investigations (Lipcius \& Hines 1986, Martin et al. 1989, Eggleston et al. 1992) using similar crab densities and tanks indicate that the crab densities used in this investigation were not likely to result in mortality associated with adverse abiotic conditions, Furthermore, since only hard intermolt crabs were used in each trial and none of these crabs molted during the trials, it is

Figure 1. Callinectes gapidus preying on Macoma balthica. Mortality of clams as a function of crab and clam density for (A) mean number of clams eaten ($\pm \mathrm{SE}$), (B) mean proportional clam mortality (\pm SE), (C) mean number of clams eaten per crab ($\pm \mathrm{SE}$), (D) mean proportional clam mortality per crab (土 SE).

Table 1. Two-way fixed factor ANOVA of number eaten and proportional clam mortality as a function of clam and crab density. * $\mathbf{P}<0.05$, **** $P<0.001$, NS: $P>0.05$

SOURCE OF VARIATION	$\mathbf{S S}$	DF	MS	F
Number Eaten				
Clam density	9.756	1	9.756	22.13****
Crab density	0.314	2	0.157	0.36 NS
Clam X Crab interaction	0.838	2	0.419	0.95 NS
Error	11.905	27	0.441	
Proportional Mortality 0.072				
Clam density	2.072	1	2.072	6.20*
Crab density	0.167	2	0.084	0.25 NS
Clam X Crab interaction	0.360	2	0.180	0.54 NS
Error	9.028	27	0.334	

```
Table 2. Two-way fixed factor ANOVA of consumption rate and
proportional clam mortality standardized by crab density (see text) as a
function of clam and crab density. * P < 0.05, ** P < 0.01, **** P <
0.001, NS: P > 0.05
```

SOURCE OF VARIATION	SS	DF	MS	F
Number Eaten Per Crab				
Clam density	8.596	1	8.596	28.87****
Crab density	2.070	2	1.035	3.47*
Clam X Crab interaction	1.136	2	0.568	1.91 NS
Error	8.040	27	0.298	
Proportional Mortality Per Crab				
clam density	1.060	1	1.060	8.28**
Crab density	2.158	2	1.079	8.43****
Clam X Crab interaction	0.732	2	0.366	2.86 NS
Errar	3.453	27	0.128	

unlikely that any crabs were more susceptible to cannibalism than others in the same tank. Thus, it was assumed that death from causes other than cannibalism or intraspecific aggression occurred at the proportional mortality rate observed in the 1-crab treatments (0.083 crabs tank ${ }^{-1} \mathbf{7 2 h}^{-1}$; Table 3). This rate was adjusted for the number of Crabs in each tank (see Table 3), yielding 4 hypothetical proportional mortalities due to sources other than camnibalism and intraspecific aggression in the 2 -crab and 4 -crab treatments. The 4 observed proportional mortalities were then compared with these hypothetical proportional mortalities with Dunnett's multiple comparison test (zar 1984). The resulting tests showed mortality significantly higher than the hypothetical proportions in the 4-crab, 4-clam treatment, which had the lowest ratio of clam:crab abundance, but not in the remaining 3 treatments (Table 3), though these were also greater than zero.

Table 3. Mortalities of crabs as a function of crab and clam density. Hypothetical proportional mortalities were calculated for each treatment combination by multiplying erab density by 0.083 (i.e., the value derived from the 1-crab, 4-clam and 16-clam density treatments, which reflected the proportion dead due to causes other than cannibaliam or intraspecific aggression). In 2-crab trials the hypothetical proportional mortality $=0.083 \times 2=0.166$; in 4-crab triala, 0.083×4 $=0.332$. * $P<0.05$, Dunnett' \quad multiple comparison procedure for comparing proportions with a hypothetical proportion (Zar 1984). In this procedure, the observed proportions in the column 'Proportion with a dead crab' were compared with those in the column 'Hypothetical proportional mortality'. The procedure accounts for the number of comparisons. NS: $P>0.05$, Dunnett's procedure.

CLAM	CRAB	TRIALS WITH A	TOTAL	PROPORTION WITH A	HYPOTHETICAL PROPORTIONAL 	PROPORTION
DENSITY	DENSITY	DEAD CRAB	TRIALS			CANNIBALIZED
4 or 16	1	1	12	0.083	0.083	0.000
4	2	3	6	0.333 NS	0.166	0.167 NS
4	4	3	5	0.600 *	0.332	0.268 *
16	2	4	6	0.333 NS	0.166	0.167 NS
16	4	2	5	0.400 NS	0.332	0.068 NS

DISCUSSION

Blue crabs exhibited density-dependent foraging in all treatment combinations of crab and clam densities. Although the occurrence of a density-dependent functional response was not unexpected given the outcomes of previous studies (i.e., with the soft-shelled infaunal clam Mya arenaria in sand, Lipcius \& Hines 1986; with Macoma balthica in mud and sand Eggleston et al. 1992), the results were novel in that the density-dependent refuge for clams was maintained irrespective of crab density. Thus adult M. balthica obtain a refuge from blue crab predation at low densities (i.e. ca 1 to 4 clams per tank), and this refuge appears to be retained even when crab densities are high.

Furthermore, several observations atrongly auggest the existence of mutual interference and intraspecific aggression between crabs with increased predator density. Firgt, crab mortality and injury occurred at a significant rate in at least one of the crab density treatments, and may have been statistically non-significant in the other treatmenta due to low statistical power (ca 0.20). A similar result was observed by Martin et al. (1989) in enclosures of equal area as those used in this experiment, and a density of 2 crabs per enclosure (ca $1 \mathrm{~m}^{2}$). Second, the frequency with which clam densities in the 16-clam trials remained above the low-density refuge (i.e., 1 to 4 clams per tank), and thereby were not reduced substantially was noted. The data showed an increase in the number of trials remaining above the low-density refuge as crab density increased (i.e., 0 or 5 with 1 crab, 2 of 6 with 2 crabs, and 3 of 5 with 4 crabs), suggesting that mutual interference between crabs further enhanced the low-density refuge. Third, although a single blue crab could consume all experimental clams, the numbers of clams eaten decreased, though not significantly, in the 2 -crab and 4crab treatments.

Other field and laboratory gtudies also indicate that cannibalism is common in blue crabs (Darnell 1959, Tagatz 1968, Laughlin 1982, Martin et al. 1989, Peery 1989, Hines et al. 1990, this study Chapter 1). In the Apalachicola estuary, Florida, USA, Laughlin (1979) observed an inverse relationship between blue crab recruitment levels and subsequent population abundance, and suggested that high densities of juveniles may atimulate cannibalism and exploitative competition. Blue crabs constituted 11 \% of the total diet of large crabs ($>61 \mathrm{~mm} \mathrm{CW}$) in that estuary (Laughlin 1982). Cannibalism is an extreme form of interference competition, occurring in a wide variety of vertebrates and invertebrates. It is most frequent during periods of low availability of alternative prey or high predator density, and acts as a densitydependent regulator of population aize (Fox 1975, Polis 1981).

In Chesapeake Bay, blue crabs and their prey exhibit seasonal cycles in abundance. The blue crab population is composed of 2 yearclasses that are actively foraging in the tributaries of Chesapeake Bay from April through December (Hines et al. 1987, Lipcius \& Van Engel 1990). Therefore, the potential for intraspecific agonistic interactions leading to cannibalism is high, especially as alternative prey are depleted later in the season. Further evidence that densitydependent rates of cannibalism may regulate blue crab populations includes: density-dependent autotomy (Smith 1990), increased occurrence of crabs in blue crab stomachs in late summer when alternative (bivalve) prey availability and densities are reduced (Hines et al. 1990, this study Chapter 1), cannibalism of tethered juvenile blue crabs (Smith \& Hines 1991), the highly developed and complex intraspecific agonistic behaviors of blue crabs (Jachowski 1974), and the significant effect of previous year-classes on the stock-recruitment relationship for blue crabs in Chesapeake Bay (Lipcius \& Van Engel 1990).

The results of this study indicate that the interactive effects of prey density and predator density are also important for clam persistence in prey patches. Furthermore, these results show how the
aggregative and interference responses may affect the magnitude of predation intensity. The aggregative and interference reaponses are strongly interrelated (Hassell 1978): by congregating in patches of high prey density, the probability of interference is enhanced, which then modifies the functional and aggregative responses. Crowley \& Martin (1989) derived 2 functional responge models of interference, and applied them to data on cannibalistic functional responses of dragonfly larvae. In a distraction model a predator's attention is divided between other predators and the prey, whereas in a preemption model the predator's response to other predators takes precedence over feeding. Both models fit the data well: there was an inverse relationship between feeding rate and predator density, indicating strong interference among these cannibalistic predators (Crowley \& Martin 1989). MacLeod \& Valiela (1975) found a similar trend of decreasing prey consumption with increasing predator density for nudibranch predators. At the highegt predator density, nudibranchs spent more time in small inactive groups rather than actively searching for prey. For blue crabs, it is unclear whether agonigtic interactions lead primarily to avoidance responses (as in some starfish; Palumbi \& Freed 1988) and hence predator dispersal, or if cannibalism is the relatively more frequent response to low alternative prey availability or high conspecific population density. Behavioral studies are required to quantify the nature of the interactions between blue crabs.

A predator's combined aggregative, functional and interference response must be defined in investigations of predator-prey dynamics and community organization in marine soft-bottom benthic communities. In Chesapeake Bay, the combination of responses allows prey to persiat, deapite intense predation, by affecting the magnitude of predation in prey patches. Previous work on the blue crab-bivalve (i.e., Macoma baithica and Mya arenaria) predator-prey system in Chesapeake Bay has concentrated on the interactive effects of prey species, prey density and habitat type (e.g., sediment) on clam aurvivorship (Lipcius \& Hines

1986, Hines et al. 1990, Eggleston et al. 1992). The field and laboratory evidence accumulated thus far indicates that predator foraging and prey mortality rates vary significantly across gradients in prey availability, and the physical properties of microhabitats (Blundon \& Kennedy 1982a,b, Arnold 1984, Lipcius \& Hines 1986, West \& Williams 1986, Hines et al. 1990, Sponaugle \& Lawton 1990). The results of this study suggest differences in the magnitude of the functional response resulting from predator density, such that prey mortality and predator foraging rates may be reduced within prey patches where predators aggregate. Other studies have ghown that interference between predators is important to the outcome of interactions between predators and prey, and determines predator dispersion and prey persistence (Beddington 1975, MacLeod \& Valiela 1975, Sih 1981, Eveleigh \& Chant 1982, Ens \& Goss-Custard 1984, Palumbi \& Freed 1988). This study further indicates that predator density and interference may be important in the population dynamics of marine species, by affecting foraging rates and perhaps promoting cannibalism when alternative food resources are limited. Further field investigations are required to quantify these components of predation and determine effects on both predator and prey population dynamics, and community organization in marine systems.

LITERATURE CITED

Anger, K., Rogal, U., Schriever, G., Valentin, C. 1977. In-situ investigations on the echinoderm Asterias rubens as a predator of soft-bottom communities in the western Baltic Sea. Helgolander wiss. Meeresunters. 29: 439-459.

Arnold, S.K. 1984. The effects of prey size, predator size, and sediment composition on the rate of predation of the blue crab, Callinectes gapidus Rathbun, on the hard clam, Mercenaria mercenaria (Inne). J. Exp. Mar. Biol. Ecol. 80: 207-219.

Baird, D., Ulanowicz, R.E. 1989. The seasonal dynamics of the Chesapeake Bay ecosystem. Ecol. Monogr. 59: 329-364.

Beddington, J.R. 1975. Mutual interference between parasites or predators and its effect on searching efficiency. J. Anim. Ecol. 44: 331-340.

Beukema, J.J., Meehan, B.W. 1985. Latitudinal variation in linear growth and other shell characteristics of Macoma balthica. Mar. Biol. 90: 27-33.

Blundon, J.A., Kennedy, V.S. 1982a. Mechanical and behavioral aspects of blue crab, Callinectes sapidus (Rathbun), predation on Chegapeake Bay bivalveg. J. Exp. Mar. Biol. Ecol. 65: 47-65.

Blundon, J.A., Kennedy, V.S. 1982b. Refuges for infaunal bivalves from blue crab, Callinectes gapidus (Rathbun), predation in Chesapeake Bay. J. Exp. Mar. Biol. Ecol. 65: 67-81.

Boulding, E.G., Hay, T.K. 1984. Crab response to prey density can result in density-dependent mortality of clams. Can. J. Fish. Aquat. Sci. 41: 521-525.

Connell, J.H. 1975. Some mechanisms producing structure in natural communities: a model and evidence from field experiments. In: Cody, M.L., Diamond, J. (eds.) Ecology and evolution of communities. Belknap Press, Cambridge, Massachusetts, p. 460-490.

Crowley, P.H., Martin, E.K. 1989. Functional responses and interference within and between year classes of a dragonfly population. J. N. Am. Benthol. Soc. 8: 211-221.

Darnell, R.M. 1959. Studies of the life history of the blue crab (Callinectes sapidus Rathbun) in Louisiana waters. Trans. Am. Figh. Soc. 88: 294-304.

Dayton, P.K. 1984. Procegses structuring some marine communities: are they general? In: Strong, D.R. Jr., Simberloff, D., Abele, L.G., Thistle, A.B. (eds.) Ecological communities: conceptual isaues and the evidence. Princeton University Press, Princeton, New Jersey, p. 181-197.

Decho, A.W., Fleeger, J.W. 1988. Microscale dispersion of meiobenthic copepods in response to food-xesource patchiness. J. Exp. Mar. Biol. Ecol. 118: 229-243.

Eggleaton, D.B. 1990a. Foraging behavior of the blue crab, Callinectes sapidug, on juvenile oysters Crassostrea virginica: effects of prey density and size. Bull. Mar. Sci. 46: 62-82.

Eggleston, D.B. 1990b. Behavioural mechaniame underlying variable functional responses of blue crabs, Callinectes sapidus feeding on juvenile oysters, Crassostrea virginica. J. Anim. Ecol. 59: 613628.

Eggleston, D.B., Lipcius, R.N., Hines, A.H. 1992. Density-dependent predation by blue crabs upon infaunal clam species with contrasting distribution and abundance patterns. Mar. Ecol. Prog. Ser. In Press.

Ens, B.J., Goss-Custard, J.D. 1984. Interference among oyster catchers, Haematopus ostralegus, feeding on mussels, Mytilus edulis, on the Exe estuary. J. Anim. Ecol. 53: 217-231.

Fairweather, P.G. 1988. Correlations of predatory whelks with intertidal prey at several scales of space and time. Mar. Ecol. Prog. Ser. 45: 237-243.

Fox, L.R. 1975. Cannibalism in natural populationg. Ann. Rev. Ecol. Syat. 6: 87-106.

Friedland, K.D., Ahrenholz, D.W., Guthrie, J.F. 1989. Influence of plankton on distribution patterns of the filter-feeder Brevoortia tyrannus (Pisces: Clupeidae). Mar. Ecol. Prog. Ser. 54: 1-11.

Hall, S.J., Raffaelli, D., Robertson, M.R., Basford, D.J. 1990. The role of the predatory crab, Liocarcinus depurator, in a marine food web. J. Anim. Ecol. 59: 421-438.

Hassell, M.P. 1978. The dynamics of arthropod predator-prey systems. Monographs in population biology. Princeton University Press, Princeton, New Jersey.

Hasgell, M.P., May, R.M. 1973. Stability in insect host-parasite modela. J. Anim. Ecol. 42. 693-736.

Hassell, M.P., May, R.M. 1974. Aggregation of predators and insect parasites and its effect on stability. J. Anim. Ecol. 43: 567-594.

Hill, B.J. 1979. Aspecta of the feeding gtrategy of the predatory crab Scylla gerrata. Mar. Biol. 55: 209-214.

Hines, A.H., Comtois, K.L. 1985. Vertical distribution of infauna in gediments of a subestuary of central Chesapeake Bay. Estuaries 8: 296-304.

Hines, A.H., Haddon, A.M., Wiechert, L.A. 1990. Guild structure and foraging impact of blue crabs and epibenthic fish in a aubestuary of Chesapeake Bay. Mar. Ecol. Prog. Ser. 67: 105-126.

Hines, A.H., Lipcius, R.N., Haddon, A.M, 1987. Population dynamics and habitat partitioning by size, sex, and molt stage of blue crabs (Callinectes gapidus) in a subestuary of Chesapeake Bay. Mar. Ecol. Prog. ser. 36: 55-64.

Hines, A.H., Posey, M.H., Haddon, P.J. 1989. Effects of adult guspension- and deposit-feeding bivalves on recruitment of estuarine infauna. The Veliger 32: 109-119.

Holland, A.F. 1985. Long-term variation in macrobenthos in a mesohaline region of Chesapeake Bay. Estuaries 8: 93-113.

Holland, A.F., Mountford, N.K., Hiegel, M.H., Kaumeyer, K.R., Mihuraky, J.A. 1980. Influence of predation on infaunal abundance in upper Chesapeake Bay, USA. Mar. Biol. 57: 221-235.

Holland, A.F., Shaughnessy, A.T., Hiegel, M.H. 1987. Long-term variation in mesohaline Chesapeake Bay macro-benthos: spatial and temporal patterns. Estuaries 10: 227-245.

Holling, C.S. 1959. The components of predation as revealed by a study of small mammal predation of the European pine gawfly. Can. J. Entomol. 91: 293-320.

Hurlbert, S. 1984. Pgeudoreplication and the design of ecological field experiments, Ecol. Monogr. 54: 187-211.

Jachowaki, R.L. 1974. Agonistic behavior of the blue crab, Callinerte日 gapidus Rathbun. Behaviour 50: 232-253.

Katz, C.H. 1985. A nonequilibrium predator-prey interaction. Ecology 66: 1426-1438.

Laughlin, R.A. 1979. Trophic ecology and population distribution of the blue crab, Callinectes gapidus Rathbun, in the Apalachicola estuary, Florida, USA. Ph.D. dissertation, Florida State University, Tallahassee.

Laughlin, R.A. 1982. Feeding habits of the blue crab, callinectes日apidus Rathbun, in the Apalachicola estuary, Florida. Bull. Mar. Sci. 32: 807-822.

Lipcius, R.N., Hines, A.H. 1986. Variable functional responses of a marine predator in dissimilar homogeneous microhabitats. Ecology 67: 1361-1371.

Lipcius, R.N., Van Engel, W.A. 1990. Blue crab population dynamice in Chesapeake Bay: Variation in abundance (York River, 1972-1988) and stock-recruit functions. Bull. Mar. Sci. 46: 180-194.

MacLeod, P., Valiela, I. 1975. The effect of density and mutual. interference by a predator: a laboratory study of predation by the nudibranch Coryphella rufibranchialis on the hydroid Tubularia larynx. Hydrobiologia 47: 339-346.

Martin, T.H., Wright, R.A., Crowder, L.B. 1989. Non-additive impact of blue crabs and spot on their prey assemblages. Ecology 70: 19351942.

Martini, I.P., Morrison, R.I.G. 1987. Regional distribution of Macoma balthica and Hydorbia minuta on the subarctic coasta of Hudeon Bay and James Bay, Ontario, Canada. Estuar. Coast. Shelf Sci. 24: 4768.

Menge, B.A. 1983. Components of predation intensity in the low zone of the New England rocky intertidal region. Oecologia (Berl.) 58: 141-155.

Menge, B.A., Lubchenco, J., Ashkenas, L.R. 1986a. Experimental separation of effects of consumers on sessile prey in the low zone of a rocky ghore in the Bay of Panama: direct and indirect consequences of food web complexity. J. Exp. Mar. Biol. Ecol. 100: 225-269.

Menge, B.A., Lubchenco, J., Gaines, S.D., Aghkenas, L.R. 1986b. A test of the Menge-Sutherland model of community organization in a tropical rocky intertidal food web. Oecologia (Berl.) 71: 75-89.
Murdoch, W.W., Oaten, A. 1975. Predation and population stability. In: MacFadyen, A. (ed.) Advances in ecological research, Vol. VIX. Academic Press, New York, p. 1-131.

Orth, R.J., Van Montfrans, J. 1987. Utilization of a seagrass meadow and tidal marsh creek by blue crabs Callinectes sapidus. I. Seasonal and annual variations in abundance with emphasis on postsettlement juveniles. Mar. Ecol. Prog. Ser. 41: 283-294.

Paine, R.T. 1980. Food webs: linkage, interaction strength and community infrastructure. J. Anim. Ecol. 49: 667-685.

Palumbi., S.R., Freed, L.A. 1988. Agonistic interactions in a keybtone predatory starfish. Ecology 69: 1624-1627.

Peery, C.A. 1989. Cannibalism experiments with the blue crab (Callinectes gapidus Rathbun): Potential effects of size and abundance. Máters Thesis, School of Marine Science, Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, Virginia.

Peterson, C.H. 1979a. Predation, competitive exclusion, and diversity in the soft-sediment communities of estuaries and lagoons. In: Livingston, R.J. (ed.) Ecological processes in coastal and marine systems. Plenum Publishing Corporation, New York, p. 233-264.

Peterson, C.H. 1979b. The importance of predation and competition in organizing the intertidal epifaunal communities of Barnegat Inlet, New Jersey. Oecologia (Berl.) 39: 1-24.

Piatt, J.F., Methven, D.A., Burger, A.E., McLagan, R.L., Mercer, V., Creelman, E. 1989. Baleen whales and their prey in a coastal environment. Can. J. Zool. 67: 1523-1530.

Polis, G.A. 1981. The evolution and dynamics of intraspecific predation. Ann. Rev. Ecol. Syat. 12: 225-251.

Readshaw, J.L. 1973. The numerical response of predators to prey density. J. Appl. Ecol. 10: 342-351.

Seed, R. 1980. Predator-prey relationships between the mud crab panopeus herbstii, the blue crab, Callinectes sapidus and the Atlantic ribbed mussel Geukensia ($=$ Modiolug) demissa. Estuar. Coast. Mar. Sci. 11: 45-458.

Sih, A. 1981. Stability, prey density and age/dependent interference in an aquatic insect predator, Notonecta hoffmánni. J. Anim. Ecol. 50: 625-636.

Smith, L.D. 1990. Patterns of limb loss in the blue crab, Callinectes sapidus, and the effects of autotomy on growth. Bull. Mar. Sci. 46: 23-36.

Smith, L.D., Hines, A.H. 1991. Autotomy in blue crab (Callinectes sapidus Rathbun) populations: geographic, temporal, and ontogenetic variation. Biol. Bul. 180: 416-431.

Sokal, R.R., Rohlf, F.J. 1981. Biometry: The principles and practice of statistics in biological research. 2nd edition. W.H. Freeman and Company, New York.

Solomon, M.E. 1949. The natural control of animal populations. J. Anim. Ecol. 18: 1-35.

Sponaugle, S., Lawton, P. 1990. Portunid crab predation on juvenile hard clams: effects of substrate type and prey density. Mar. Ecol. Prog. Ser. 67: 43-53.

SPSS Inc. 1988. SPSS-X advanced statistics guide, 2nd ed. SPSS Inc., Chicago, Illinois.

Tagatz, M.E. 1968. Biology of the blue crab, Callinectes gapidus Rathbun, in the St. Johns River, Florida. Fish. Bull. U.S. 67: 1733.

Underwood, A.J. 1981. Techniques of analysis of variance in experimental marine biology and ecology. Oceanogr. Mar. Biol. Ann. Rev. 19: 513-605.

Virnstein, R.W. 1977. The importance of predation by crabs and fishes on benthic infauna in Chesapeake Bay. Ecology 58: 1199-1217.

Virnstein, R.W. 1979. Predation on estuarine infauna: response patterns of component species. Estuaries 2: 69-86.

West, D.L., Williams, A.H. 1986. Predation by Callinectes aapidug (Rathbun) within Spartina alternifiora (Loisel) marョhes. J. Exp. Mar. Biol. Ecol. 100: 75-95.

Williams, A.B. 1984. Shrimps, lobsters and crabs of the east coast of the United States. Smithsonian Institution Press, Washington, D.C.

Zar, J.H. 1984. Biostatiatical Analysis. Prentice-Hall, Inc., New Jersey.

RANDA A. MANSOUR

Born in Raleigh, North Carolina, 7 October 1959. Graduated from Millbrook Senior High School in 1977. Earned B.S. in Zoology from the University of North Carolina at Chapel Hill in 1981. Received M.S. in Zoology from the University of Rhode Island in 1983 and M.M.A. from the University of Rhode Island in 1985. Entered doctoral program in College of William and Mary, School of Marine Science in 1985.

[^0]: * Tow depths were similar unless indicated otherwise.

