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ABSTRACT

Pax-5, a member of the Pax family of transcription factors, plays an important 

role in B cell development and differentiation. The gene produces four alternatively 

spliced variants (Pax-5a, Pax-5b, Pax-5d, and Pax-5e) including one of the most 

extensively studied regulators o f B-lymphopoiesis, the B-cell-specific activator protein 

(BSAP). BSAP is encoded by the predominant Pax-5a isoform, and while its roles are 

well defined, the regulatory functions of the remaining Pax-5 isoforms are not clearly 

understood.

The study presented here pursued two goals. First, the transactivation properties 

o f the alternative isoform Pax-5d were determined in vivo using transient transfections. 

Evidence is provided indicating that Pax-5d has a function opposite to that o f Pax-5a and 

the two isoforms may compete for binding to Pax-5 recognition sequences. The second 

goal of the project was to investigate the regulatory function of Pax-5 isoforms in resting 

and LPS-activated B cells using various B cell lines and splenic B lymphocytes. 

Experimental data demonstrates that, as mature B lymphocytes progress to the plasma 

cell stage, the ratio of different Pax-5 proteins changes possibly reflecting a shift toward a 

higher concentration o f transcriptionally inert and/or dominant-negative isoforms. Based 

on these results, the author o f this thesis hypothesizes that the alternative splice forms of 

Pax-5 differentially regulate the activity of Pax-5a/BSAP. Other means of Pax-5a 

regulation may include post-translational modifications that alter stability and 

transactivation properties o f this isoform.

In addition, this work contains a description o f several preliminary studies which 

include the following: i) development of a novel staggered transfection approach; ii) 

comparative analyses of the expression patterns of Pax-5 proteins and their DNA-binding 

activities in activated B cells from young and aged mice; iii) analyses of Pax-5 proteins in 

LPS-activated immature B cell line WEHI-231; and iv) pilot characterization of the novel 

Pax-5X species. The discussion of the results includes a model of Pax-5 regulation and 

suggestions for future investigations.
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NOTE TO THE READER

The work presented in this thesis consists of several related projects that explore 

Pax-5 activity and function. Some of the more interesting findings of these investigations 

are reported in the form of a manuscript titled Functional Analyses o f  Alternative 

Isoforms o f  the Transcription Factor Pax-5 (by Marina A. Lowen and Patty Zwollo). 

This manuscript is currently in preparation for submission and is included here as 

Chapter II. Due to the format chosen for this thesis, some of the information provided in 

the manuscript (Chapter II) may also appear in the Literature Review or General 

Discussion (Chapters I and IV, respectively). In addition, the Discussion section of the 

manuscript is less detailed than might be expected for a thesis. However, all appropriate 

considerations concerning the experimental findings of this project are addressed in detail 

in the General Discussion (Chapter IV), and the reader is encouraged to refer to that 

section for a more comprehensive examination of the results in light of the relevant 

research reported in the current literature.

Additional projects that were performed independent of the manuscript are 

presented in Preliminary Studies (Chapter III). This chapter describes on-going 

experiments and pilot studies that examine the function of Pax-5 isoforms using 

alternative approaches. Conclusions based on all the data presented in the thesis are 

incorporated into the General Discussion (Chapter IV). The collective results of all 

projects were used to construct the proposed model of Pax-5 function and regulation.

x



Function and Regulation of Alternative Isoforms of the Transcription Factor Pax-5
During B Lymphocyte Differentiation.
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CHAPTERI 

Literature Review

B lymphocytes are the major players of the humoral immune response, which is 

directed to the detection and elimination of extracellular pathogens and foreign antigens. 

The main distinguishing characteristic of cells of the B lineage is their ability to 

synthesize and secrete immunoglobulin (Ig) molecules, the antigen-specific antibodies 

present on the B cell membrane. Interaction of immunoglobulins with antigens triggers 

activation of B cells followed by their proliferation and differentiation into either 

antibody-secreting plasma (effector) cells or memory B cells (Rudin and Thompson, 

1998; Liberg and Sigvardsson, 1999).

The molecular mechanisms leading to B cell development and activation are 

complex and involve a number of highly coordinated regulatory signals that direct B 

lymphocytes through various stages of differentiation. These signals include the external 

cues provided by extracellular growth factors and cell-cell contact, and intracellular 

control executed by transcription factors which direct stage-specific gene expression 

(Reya and Grosschedl, 1998). Transcriptional regulation of B lymphopoiesis has been 

studied extensively by both molecular and genetic approaches, and a wide variety of the 

relevant transcription factors have been identified in recent years. The role of many 

transcriptional regulators has been determined through studies of mice carrying targeted
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mutations in genes encoding proteins that direct lineage- and stage-specific gene 

expression. Mutational analysis has proven invaluable tool in determining genetic targets 

and elucidating the functional hierarchy and redundancy of specific transcription factors. 

A number of current investigations focus on identifying intracellular signaling pathways 

that regulate the activity of transcription factors and their interactions with other proteins. 

Further understanding of regulatory mechanisms involved in development and 

differentiation of the B cell lineage will provide increased insight into various aspects of 

a productive immune response and help to determine a link between B cell anomalies and 

pathological states including cancer, autoimmune disorders, and immunodeficiencies.

1. Stages o f B lymphocyte development

Generation of an effector B cell is preceded by several stages of maturation as 

determined by distinctive growth factor requirements, sequential Ig gene rearrangements, 

and expression of specific sets of cell-surface markers (reviewed in Kruisbeek and Storb, 

1994; Rolink and Melchers, 1996; Reya and Grosschedl, 1998; Liberg and Sigvardsson, 

1999; Hagman et al., 2000). Progression through these stages occurs in the bone marrow 

and does not require the presence of antigen. The earliest B cell progenitors (pro-B cells) 

arise from lymphoid stem cells which originate from pluripotent hematopoietic stem cells 

committed to the lymphoid lineage (Figure 1.1). The commitment to lymphoid 

development is regulated by several transcription factors which include basic helix-loop- 

helix proteins E2A and early B cell factor (EBF), Ets family transcription factor PU .l, 

and zinc-finger containing products of the Ikaros gene (Reya and Grosschedl, 1998;
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Rudin and Thompson, 1998). The main characteristic of pro-B cells is the expression of 

a transmembrane protein tyrosine phosphatase B220 and surface antigens AA4.1 and 

CD43 (Reya and Grosschedl, 1998). The Ig genes of these progenitors remain in 

germline configuration and produce sterile transcripts from the heavy-chain (IgH) locus 

(Liberg and Sigvardsson, 1999).

Proliferation and differentiation of pro-B cells into precursor B cells (pre-B cell 

stage) is accompanied by activation of the Ig gene recombination machinery and 

rearrangements at the IgH loci, which is facilitated by the expression of recombinase 

enzymes Rag-1 and Rag-2. B cell precursors are defined by the presence of the pre-B 

cell receptor (pre-BCR) on the plasma membrane. The pre-BCR of early pre-B cells 

consists of a rearranged IgH chain associated with surrogate light chains, X5 and VpreB, 

and accessory polypeptides Iga and Ig(3. In addition to pre-BCR components, pre-B cells 

express genes which code for proteins involved in pre-BCR signaling such as the Src 

family tyrosine kinases (Blk, Lyn, Syk, and Fyn), CD 19, CD20, CD22, and CD72 (Li et 

al., 1993; Liberg and Sigvardsson, 1999). Functional pre-BCR and its signaling 

components play an important role in positive selection of pre-B cells with productive 

IgH gene rearrangement (Melchers et a l., 1995).

Positively selected pre-B cells (late pre-B cells) undergo Ig light (IgL) chain 

recombination and enter the next stage of differentiation, the immature B cell stage. 

Cells that failed to generate a functionally rearranged IgH gene will undergo 

developmental arrest followed by programmed cell death, or apoptosis (Rudin and 

Thompson, 1998; Scaffidi et al., 1999). Immature B lymphocytes possess a fully formed 

and functional B-cell receptor (BCR) represented by a membrane-bound IgM with a
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particular antigenic specificity. At this stage, the cells are negatively selected against 

self-specificity and may undergo receptor editing which rescues some of the autoreactive 

B lymphocytes through an additional round of IgL gene rearrangement (Melchers et al., 

1995; Hertz and Nemazee, 1998). After receptor editing, all the cells with an 

autoreactive IgM are eliminated by apoptosis within the bone marrow (Rudin and 

Thompson, 1998). The surviving lymphocytes differentiate into mature B cells 

characterized by the presence of antigen-specific IgM and IgD coexpressed on the 

membrane, and are capable of responding to cognate antigenic stimulation.

Mature, naive B cells emerge from the bone marrow into the circulating blood 

and lymph and enter the secondary lymphoid organs where they can either undergo 

antigen-induced activation or, in the absence of antigen, be eliminated by apoptosis 

(Kruisbeek and Storb, 1994). The mature B cell stage, as well as all subsequent stages of 

B cell development, is antigen-dependent. During the antigen-dependent phase,

differentiation of mature B lymphocytes may either be initiated by cross-linking of the B 

cell antigen receptor complex (thymus-dependent antigens), or through direct stimulation 

by certain cytokines in the presence of B cell mitogens such as bacterial 

lipopolysaccharide (LPS) (thymus-independent antigens). The signal-transduction 

pathways are quite different for each route of activation and, in many cases, are not fully 

understood. Activation of B cells by the thymus-dependent mechanism is antigen- 

specific and requires interaction with helper T cells within germinal centers that form in 

the spleen and lymph nodes in response to antigenic stimulation (Rudin and Thompson,

1998). The activation process triggers a number of important changes including Ig 

isotype class switching, antibody affinity maturation, plasma cell differentiation, and
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generation of memory B cells (Liberg and Sigvardsson, 1999; Hagman et a l., 2000). In 

contrast, mitogenic stimulation is independent of antigenic specificity of B cells and does 

not require contact with T lymphocytes. The immune response to thymus-independent 

antigens is generally weaker due to a lack of class switching and absence of long-lived 

memory cells (Hodgkin and Basten, 1995). Regardless of the type of antigen, activation 

signals always trigger a cascade of events that result in proliferation and further 

differentiation of mature B lymphocytes into plasma cells, highly differentiated effector 

cells capable of antibody secretion (Kruisbeek and Storb, 1994; Liberg and Sigvardsson,

1999).

While plasma cells have been studied extensively, the characterization of 

memory B cells remains elusive due to a limited number of well-defined membrane 

markers specific for this population and the consequent difficulties in isolation and 

purification of these cells. The differentiation pathways leading to formation o f memory 

cells are poorly understood. Some evidence suggests that generation of either plasma or 

memory B cells is influenced by extracellular signals provided by certain cytokines (e.g., 

IL-6) or receptor ligands (e.g., CD40L, OX40L) (Arpin et al., 1995; Dutton et al., 1999). 

Other findings indicate that memory B cells may arise from a different lineage than 

plasma cells (Klinman, 1997). In general, memory B lymphocytes possess a 

characteristic CD27 cell-surface marker in addition to diverse isotypes of Ig, various 

adhesion molecules, and high levels of complement receptors (Dutton et al., 1999; 

Agematsu et al., 2000). Memory B lymphocytes represent a population of long-lived 

high-affmity resting cells which, upon their re-exposure to target antigen, can
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differentiate into antibody-secreting plasma cells constituting the basis for a secondary 

immune response (Rudin and Thompson, 1998).

Figure 1.1 (see next page): Stages of normal murine B cell development. Distinct 
stages of B lymphocyte development are determined by the status of immunoglobulin 
(Ig) genes and expression of the specific sets of genes (Liberg and Sigvardsson, 1999; 
Hagman et ah, 2000). Antigen-independent differentiation of B cells from hematopoietic 
stem cells into immature B cells takes place in the bone marrow. During these stages, 
formation of a functional pre-BCR and BCR on the cell surface facilitates positive and 
negative selection of lymphocytes with productive Ig rearrangements. Activation and 
differentiation of mature B lymphocytes into plasma cells is an antigen-dependent 
process which occurs in the peripheral lymphoid organs and culminates in secretion of 
large quantities of antigen-specific antibodies (slg). Expression patterns of selected cell 
surface markers and accessory proteins, as well as several important transcription factors, 
are indicated. IgH, immunoglobulin heavy-chain loci; IgL, immunoglobulin light-chain 
loci; g-IgH(L), immunoglobulin in germline configuration; mlg, membrane-bound 
immunoglobulin molecule; slg, secreted immunoglobulin molecule.
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2. Pax-5 (BSAP) as the “master regulator” of B cell development

2.1 Pax family o f  genes.

A number o f transcription factors regulate lineage- and differentation-stage- 

specific expression of the genes involved in B lymphopoiesis (Reya and Grosschedl, 

1998; Liberg and Sigvardsson, 1999). Among these factors are the products of the Pax-5 

gene which encodes one of the most critical transcriptional regulators, the B-cell specific 

activator protein (BSAP). Pax-5 is a member of a family of genes which encode nuclear 

transcription factors involved in development, organogenesis, morphogenesis, and pattern 

formation (Strachan and Read, 1994). The Pax family consists of nine members {Pax-1 

through Pax-9) all of which share an evolu tionary  conserved N-terminal DNA-binding 

region of 128 amino acids comprising the paired domain (Walther et a l., 1991). The Pax 

genes have been classified into four paralogous groups (Figure 1.2) based on structural 

similarities within the paired domain and on the presence or absence of the centrally- 

located octamer and homeodomain motifs (Dahl et al., 1997). Genes within each 

subclass show similar patterns of expression during embryogenesis and are highly 

homologous in their paired domain sequence (Walther et al., 1991).

The Pax-2, Pax-5, and Pax-8 genes comprise a group o f closely related Pax genes 

which contain a complete octapeptide motif and a truncated homeodomain (Figure 1.2; 

Adams et al., 1992; Strachnan and Read, 1994). The paired domains within the Pax- 

2/5/8 subclass show 90-95% homology in the amino acid sequence, and, as a result, the 

three proteins recognize almost identical DNA sequences (Walther et al., 1991; Kozmik 

et al., 1993). Since the spatial and temporal expression patterns of the Pax-2, Pax-5, and 

Pax-8 genes overlap partially during early mouse development (Nornes et al., 1990;
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Classes of Pax 
genes Paired domain Octam er H om eodom ain

Class I Pax-1
Pax-9

N C

Class II Pax-2 
Pax-5 
Pax-8

N C

Class III Pax-3
Pax-7

N C

Class IV Pax-4 
Pax-6

N — C

Figure 1.2: Classes of Pax family of genes. Vertebrate Pax genes have been classified 
into four classes (I through IV) based on the presence or absence of the octamer sequence 
and homeodomain homology region. Pax-1 and Pax-9 genes have no homeodomain and 
thus belong to the same class, Class I. Genes of Class II, Pax-2, Pax-5, and Pax-8, 
contain a partial homeodomain with only one a-helix present. Pax-3 and Pax-7 form 
Class III and possess the octamer sequence and the complete homeodomain. Class IV is 
represented by Pax-4 and Pax-6 which have the complete homeodomain but lack the 
octamer. Genes within each class contain a highly homologous DNA-binding motif, the 
paired domain. The binding specificity of the paired domain varies between the classes, 
as is depicted by different patterns.
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Plachov et al., 1990; Asano and Gruss, 1992), their products may have either cooperative 

or redundant function in regulation of target genes. For example, cooperation of Pax-2 

and Pax-5 has been shown to be essential for normal midbrain and cerebellum 

development (Urbanek et a l., 1997), while Pax-2 and Pax-8 have been postulated to 

regulate the same genes in kidney cells (Kozmik et a l., 1993).

2.2 BSAP: discovery, expression patterns, and functions

The transcription factor Pax-5 was originally identified as a mammalian homolog 

o f the sea urchin tissue-specific activator protein (TSAP) which is involved in regulation 

o f late histone gene (H2A-2.2) expression in sea urchins (Barberis et al., 1990). The 

expression of the newly discovered factor was observed in cells of the B lymphoid 

lineage with the exception of terminally differentiated plasma cells. Furthermore, this 

TSAP homolog was shown to bind DNA in nuclear extracts derived from pro-B, pre-B, 

and mature B lymphocytes. As no expression or DNA-binding activity was detected in 

cells of either erythroid or T lymphoid lineages, the novel protein was named B-cell 

specific activator protein (BSAP) (Barberis et al., 1990). Further biochemical 

purification and characterization of BSAP revealed that it is encoded by the Pax-5 gene 

(Adams et al., 1992).

The earliest expression of Pax-5 is detected in the developing central nervous 

system where it is temporally and spatially regulated (Asano and Gruss, 1991; Adams et 

al., 1992). Pax-5 transcripts are also found in fetal liver and, later, in all B-lymphoid 

tissues and testis of adult mice (Adams et al., 1992). Within the B cell lineage, Pax-5 is 

expressed during early stages of B cell development, from the pro-B-cell up to the mature
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B-cell stage, but is greatly downregulated or absent in plasma cells (Barberis et al., 

1990).

Some important regulatory functions of Pax-5 were determined through the 

analysis of Pax-5-/- knockout mice (Urbanek et al., 1994). Consistent with its expression 

pattern, Pax-5 has been shown to play an essential role in B cell lymphopoiesis and 

midbrain development. Inactivation of the Pax-5 gene in mouse resulted in abnormalities 

of the posterior midbrain region and in a complete block of B cell development. 

Significantly, Pax-5-/- mutant mice failed to produce small pre-B, mature B, and plasma 

cells, although they could still generate B220+ cells indicating developmental arrest at 

the pro-B stage. The lack of Pax-5/BSAP was also correlated with alterations in the 

expression of some of its target genes, most notably the CD 19 gene which was not 

expressed in the knockout mice (Urbaneck et al., 1994; Nutt et a l 1997). The Pax-5 

mutation also inhibited VH-to-DnJn recombination and antibody production, indicating 

the involvement of this transcription factor in the regulation of expression and 

rearrangement of Ig-gene (Urbanek et al., 1994; Nutt et al., 1997). Thus, the study of 

Pax-5-/- mutant mice revealed that Pax-5 is a critical factor for progression of B cell 

differentiation beyond the pro-B stage (Figure 1.3).

In addition to its role in B-lymphopoiesis, Pax-5 has been implicated in activation 

and proliferation of B lymphocytes. Introduction of Pax-5 anti-sense oligonucleotides 

into mature B cells causes decreased BSAP expression and subsequently leads to a 

significant reduction in LPS-induced cell proliferation (Wakatsuki et al., 1994). This 

observation is in agreement with other studies of the Pax gene family which indicate that 

one of the important functions of Pax genes is initiation of cell proliferation (Dahl et al.,
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1997). Deregulation of these genes often results in cell transformation and development 

o f tumors. Thus, altered expression of Pax-5 has been detected in medulloblastomas, 

astrocytomas, and some lymphomas (Kozmik et al., 1995; Stuart et al., 1995a; Busslinger 

et al., 1996; Mahmoud et al., 1996; Krenacs et al., 1998). Furthermore, Pax-5, as well as 

Pax-2 and Pax-8, have been shown to suppress p53, a tumor suppressor gene that is 

essential for controlled cell proliferation, apoptosis, and protection against oncogenic 

transformation (Stuart et al., 1995b; Lambert et al., 1998). Based on this finding, it has 

been proposed that high levels of Pax-5 expression are required for prevention of p53- 

mediated apoptosis during early stages of B cell development when rapid cell growth is 

necessary for attainment of critical cell mass (Stuart et al., 1995b). Conversely, the 

reduced expression of Pax-5 alleviates p53 inhibition allowing for lymphocyte selection 

and further differentiation. During the final stages of B cell development, 

downregulation of Pax-5 activity is required for terminal differentiation of mature 

activated B cells into plasma cells that are capable of Ig isotype class switching and high 

antibody production (Usui et al., 1997; Cogne et al., 1994; Stuber et al., 1995).

A recent study by Nutt et al. (1999) has revealed an essential role of Pax-5 in B- 

lineage commitment during the earliest stages of B lymphopoiesis. Pax-5-/- pro-B cells 

(derived from Pax-5 knockout mice) were shown to have characteristics of a 

hematopoietic progenitor with broad lymphomyeloid developmental potential, including 

the expression of genes from different lineage-affiliated programs. Under specific in 

vitro conditions with provided growth requirements, the uncommitted progenitors can be 

induced to differentiate into distinct cell lineages such as monocytes, granulocytes and 

natural killer cells. However, reconstitution of Pax-5 activity in Pax-5-/- pro-B cells
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leads to repression of lineage-promiscuous gene expression and subsequent restriction of 

developmental plasticity in favor of the B-lymphoid lineage. Thus, during early 

differentiation events, Pax-5 simultaneously functions as an activator of B-cell specific 

genes and a repressor of inappropriate expression of other hematopoietic genes. 

Functions of Pax-5 important for B lymphocyte development and differentiation are 

summarized in Figure 1.3.

2.3 Pcix-5 target genes

Pax-5 binding sites have been identified on the promoters of several B-cell- 

specific putative target genes including CD 19, mb-1, VpreB, A5, Ig J  chain, and blk 

(reviewed in Hagman et al., 2000). In addition, Pax-5 plays an important role in 

regulation of the Ig genes: binding sites have been identified on Ig heavy chain 3 ’ C a  and 

Ig light chain k 3 ’ enhancers, Ig a  and s  germline promoters, and in multiple Ig switch 

regions. Other Pax-5 targets include thep53  tumor suppressor gene (Stuart et al., 1995b). 

genes encoding transcription factors hXBP-1 (Reimold et al., 1996), LEF-1 and N-myc 

(Nutt et al., 1998), as well as the gene encoding the cell surface protein PD-1 (Nutt et al.,

1998).

Depending on the target gene and/or developmental stage of the B cell, Pax-5 

may function as an activator, repressor or docking protein as determined by the presence 

and activity of other transcription factors. Among the positively regulated Pax-5 targets 

are genes encoding pre-BCR/BCR components and molecules associated with BCR 

signaling such as the CD19 co-stimulatory receptor (Kozmik et al., 1992), components of 

the surrogate light chain VpreB and X5 (Okabe et al., 1992; Tian et al., 1997), and protein
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Figure 1.3: Functions of Pax-5 (BSAP) in B cell differentiation (see next page). Pax- 
5 is expressed during early stages of B cell development (from pro-B to mature B), but 
greatly downregulated in plasma cells. At the earliest stages of differentiation, Pax-5 is 
thought to direct the commitment of hematopoietic lymphoid progenitors toward the B- 
lymphoid lineage by repressing lineage-promiscuous genes such as M-CSF-R. During 
antigen-independent stages of B cell development, Pax-5 regulates a number o f B-cell 
specific genes that encode pre-BCR/BCR components and proteins involved in BCR 
signaling. B cell development is blocked at the pro-B cell stage in Pax-5-/- knockout 
mice. Pax-5 has also been speculated to have a function in pro-/pre-B cell proliferation; 
however, the mechanism of this regulation is unclear. During antigen-dependent phase, 
Pax-5 is involved in activation and proliferation of mature B lymphocytes and Ig heavy 
chain class switch recombination. Downregulation of Pax-5 expression during the 
plasma stage cell results in relief of its repressor function, which is especially important 
for production and secretion of antibodies. (+), positively-regulated Pax-5 target genes; 
(-), negatively-regulated Pax-5 target genes.
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tyrosine kinase Blk (Zwollo and Desiderio, 1994). In contrast, overexpression o f Pax-5 

inhibits the expression of the Ig J-chain gene (Rinkenberger et al., 1996), while its 

downregulation activates the IgH 3’a  enhancer (Singh and Birshtein, 1993; Neurath et 

al., 1994), illustrating in both cases the repressor function of Pax-5. Pax-5 also functions 

as a repressor of PD-1 and hXBP-1 genes (Reimold et al., 1996; Nutt et al., 1998) and 

may be a key factor in inhibition of alternative lineage choices during commitment of 

hematopoietic progenitors to B lymphopoiesis (see Section Z2; Nutt et al., 1999).

As a docking protein, Pax-5 forms a complex with Ets-1 and functions as a 

recruiter in positive regulation of the mb-1 gene which encodes the Iga subunit of the 

BCR (Fitzsimmons et al., 1996). Similarly, it can interact with co-repressors of the 

Groucho family and may recruit them for inhibition of the negatively regulated Pax-5 

target genes, including the M-CSF-R gene that encodes the myeloid cytokine M-CSF 

receptor (Eberhard et al., 2000). Curiously, the transcription of some genes {mb-1, PD- 

/ ,  LEF-1) can be regulated with equal efficiency by either full-length Pax-5 protein or the 

truncated paired domain polypeptide PRD (Nutt et al., 1998). This finding is an 

indication of the recruiter function of Pax-5 and yet another piece o f evidence for the 

intricate complexity of pathways and interactions involved in B-cell-specific gene 

regulation.

2.4 Pax-5 protein functional domains

The main distinguishing characteristic of the Pax family of transcription factors 

is the paired domain. Mutational analysis of Pax-5 and its DNA recognition sequences 

revealed that this 128-amino acid DNA-binding motif has a bipartite structure with



18

distinct amino- and carboxy-terminal domains that bind to half-sites in adjacent major 

grooves o f the DNA helix (Czerny et al., 1993). This structure has been confirmed by X- 

ray crystallographic analysis of the paired domain-DNA complex, which has also 

demonstrated that each subdomain is composed of a helix-turn-helix m otif resembling the 

structure o f the homeodomain (Xu et al., 1995). For different members of the Pax 

family, the specificity of DNA-binding is achieved through recognition of differential 

target sequences as well as through cooperation between the paired domain and the 

homeodomain (Jun and Desplan, 1996). Those Pax proteins that contain a full 

homeodomain (i.e., Pax-3, Pax-4, Pax-6, and Pax-7) have the ability to utilize that region 

in different combinations with either one or both paired subdomains for differential 

binding of DNA sequences (Jun and Desplan, 1996). In contrast, DNA-binding of the 

proteins without a complete homeodomain, such as the members o f Pax-2/5/8 subfamily, 

has to rely entirely on both subdomains of the paired motif (Czerny et al., 1993; Epstein 

et al., 1994; Xu et al., 1995).

Despite the differences in binding mechanisms and subclass-specific preferences 

for binding certain sets of nucleotides, consensus sequences for the Pax proteins show an 

unusual amount of degeneracy. For example, medium- or low-affinity binding sites for 

Pax-5/BSAP occur every 1-2 kb in the mouse genome; however, the only sites that have 

functional relevance are those found in the vicinity of B cell-specific genes (Busslinger 

and Urbanek, 1995). Furthermore, none of the naturally occurring Pax-5 binding sites 

conform completely to the consensus recognition sequence (Czerny et al., 1993; 

Busslinger and Urbanek, 1995). Therefore, to ensure regulation of specific genes and to
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enhance DNA-sequence specificity, the Pax transcription factors must engage in 

additional interactions with various partner proteins (Hagman et al., 2000).

The transactivation function of Pax-5 is regulated by the C-terminal regulatory 

module comprised of Ser/Thr/Pro-rich transactivation domain (aa 304-358) and the 

adjacent repressor sequence (aa 358-391) (Dorfler and Busslinger, 1996). The inhibitory 

domain has been proposed to function as a DNA context-specific “switch” that 

determines whether Pax-5 acts as an activator or a repressor of transcription of a 

particular gene (Dorfler and Busslinger, 1996). Interestingly, similar negative regulatory 

domains appear to be common in inducible transcription factors that are activated by 

intracellular signaling events. Although a connection between transcriptional activation 

and signal transduction has not been found for Pax-5, it is conceivable that such a link 

could have an important function in regulation of gene transcription during B cell 

activation.

To date, the exact mechanism of differential regulation of Pax-5 target genes 

remains unclear. It has been established that regulation of many Pax-5 target genes 

requires recruitment and cooperative interactions with partner-proteins (Fitzsimmons et 

al., 1996; Eberhard et al., 2000). Alternatively, transcription of some positively regulated 

genes might be initiated through the direct contact between the basal transcription 

machinery and Pax-5 functional domains other than the C-terminal regulatory module 

(Dorfler and Busslinger, 1996). The homeodomain homology motif (aa 229-251) and 

the octamer sequence (aa 179-186) are the likely candidates for such interactions, as both 

have been shown to be involved in complex formation with other proteins. For example, 

the partial homeodomain can bind the TATA-binding (TBP) and the retinoblastoma (Rb)
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proteins (Eberhard and Busslinger, 1999). Incidentally, the Rb protein is known to 

repress activity of several transcription factors by either inhibiting their interaction with 

the basal transcription machinery or by promoting the formation of inactive chromatin 

(Weintraub et a l., 1995; Luo et al., 1998). The octamer sequence is involved in 

interaction of Pax-5 with Groucho proteins which repress Pax-5 transcriptional activity 

(Eberhard et a l., 2000). In addition, the presence of the octapeptide m otif has been 

shown to attenuate transactivation function of Pax-2 and several other Pax proteins 

(Lechner and Dressier, 1996).

2.5 Pax-5 iso forms

The Pax-5 gene produces four alternatively spliced variants: Pax-Sa, Pax-5b, 

Pax-5d, and Pax-5e (Figure 1.4; Zwollo et al., 1997). The full length Pax-5 is known as 

the B cell-specific transcription factor BSAP, and corresponds to the Pax-5a isoform. 

Alternative isoforms of the Pax-5 gene include transcripts with incomplete DNA-binding 

domains (Pax-5b and Pax-5e), and the variants in which a region containing the 

homeodomain and the C-terminal regulatory module (aa 203-391) has been replaced with 

the novel sequence (Pax-5d and Pax-5e). It has been shown that only the Pax-5a and 

Pax-5d isoforms can interact with the Pax-5 binding site (Zwollo et al., 1997). Due to the 

deletions in the paired domain, Pax-5b and Pax-5e are unable to bind to DNA and must 

regulate their target genes by indirect mechanisms or via interactions with other factors. 

At the present, the function of the novel sequence (aa 203-244) is unknown, but has been 

hypothesized to have an inhibitory role in regulation of transcription (Anspach et al., 

submitted).
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The four Pax-5 isoforms exhibit different levels and patterns of expression 

throughout B-cell development and may vary in their function and transactivation 

properties. In agreement with previous findings, the levels of Pax-5a appear to be high 

during all stages of B cell development except the plasma cell stage. Pax-5d levels are 

low in B cell lines, but easily detectable in resting splenic B cells (Anspach et a l., 

submitted). Normal resting B cells, as well as early B cell lines, contain very low levels 

o f Pax-5e and Pax-5b protein. Curiously, Pax-5b levels increase during the late stages of 

B cell development and the protein remains detectable even in the plasma cell line 

(Zwollo et al., 1997); however, the significance of this is unclear. The relative levels of 

alternative Pax-5 transcripts have been estimated by screening X phage libraries 

containing spleen or B cell cDNA from the mature B cell line A20/2J (Zwollo et al., 

1997). In 45 Pax-5-containing clones isolated from the spleen library, 35 represented 

isoform Pax-5a (78%), seven clones were Pax-5d (15.6%), two were Pax-5b (4.4%), and 

one was identified as Pax-5e (2%) (Zwollo et al., 1997). It is not unlikely that relative 

levels of Pax-5 isoforms vary depending on the developmental stage or activation status 

o f B cells.

In addition to alternative splicing, each Pax-5 transcript can produce proteins 

from one of two available translational start sites: a proximal ATG codon (at nucleotide 

1) and a distal ATG codon (at nucleotide 325) (Figure 1.4; Zwollo et al., 1997). Use of 

the proximal ATG codon generates isoforms Pax-5a and Pax-5d from the corresponding 

transcripts. Translation initiation from the distal codon on either Pax-5a or Pax-5b 

transcripts produces a 41-kD protein with a partial DNA-binding domain. Likewise, the 

Pax-5e isoform can arise from either Pax-5d or Pax-5e transcript with translation starting
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at the distal ATG start site. While both Pax-5b and Pax-5e have the proximal ATG 

codon, translation from that start site creates a termination codon at nucleotide 245 

resulting in the expression of a short 3.2-kD (27 aa), peptide (Zwollo et al., 1997). The 

presence of two alternative start sites on the Pax-5 transcripts suggests that a single 

transcript can give rise to two different proteins. The mechanism controlling the switch 

from one start codon to another may have an important role in regulation of differential 

expression of Pax-5 isoforms.

3. Regulation of transcription factors

3.1 Combinatorial gene regulation

Complex molecular pathways involved in B cell development and function 

require cooperation o f multiple transcription factors or “combinatorial regulation” of the 

associated genes (Ernst and Smale, 1995). The diverse patterns of regulation are 

generated by unique combinations and spatial arrangements of these factors at the 

promoter and enhancer regions of each specific gene (Chen, 1999). For temporally- and 

spatially-regulated gene expression, it is essential for a cell to have a particular set of 

factors present at each stage of the development and differentiation. Hence, the 

expression and activity of any given factor is tightly regulated by distinct signal 

transduction pathways in a stage-specific manner.

Four levels o f regulation determine the concentration and activity o f transcription 

factors: transcriptional, post-transcriptional, translational, and post-translational

(Calkhoven and Geert, 1996). At the level of transcription, the frequency o f initiation of 

transcription and the rate of RNA synthesis determine the expression levels of
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transcription factors. At the post-transcriptional level, mRNA stability, transport, and, 

most importantly, RNA processing events regulate the amount and diversity of the 

synthesized proteins. At the translational level, the function and availability of a 

transcription factor can be affected by selection of alternative start-sites, rate o f protein 

synthesis, and by specifics of nuclear transfer associated with that factor. Finally, protein 

function and activity can be controlled post-translationally by structural modifications 

and specific interactions with other proteins. In addition, one of the critical factors for 

the function o f transcription factors is their stability. Protein stability can be regulated at 

any of the mentioned regulatory levels, its changes often induced by various extracellular 

signals (Pahl and Baeuerle, 1996). Regulatory events occurring at the post- 

transcriptional and post-translational levels are especially interesting for the work 

presented in this thesis and will be discussed in more detail in the following sections.

3.2 Post-transcriptional control: alternative RNA splicing

Alternative RNA splicing allows generation of families of transcription factors 

with diverse and distinct properties (Foulkes and Sassone-Corsi, 1992; Lopez, 1995; 

Calkhoven and Geert, 1996). Originating from a single gene, alternative mRNA variants 

may generate polypeptides which differ in their functions, translation efficiency, DNA- 

binding activity, ability to engage in protein-protein interactions, and stability (Lopez, 

1996). The expression levels of alternative isoforms and their proportions are frequently 

regulated according to developmental stage, tissue specificity, or cell polarity (Lopez, 

1996). For example, six alternatively spliced isoforms of Pax-8 gene are temporally and 

spatially regulated during early mouse development (Kozmik et al., 1993). Although
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production of alternative isoforms has been reported for a number o f transcription factors, 

the biological consequences and advantages of this phenomenon are not clearly 

understood in many cases.

Alterations in a DNA-binding domain may result in synthesis of proteins that 

control distinct sets of genes, as a result of a differential capacity for target sequence 

binding and recognition. These type of functional variations can be achieved either by 

truncation o f the entire DNA-interaction region, or by generation of isoforms with a 

different number of DNA-binding domains, different spacing between the motifs, or with 

variable specificity. For example, alternative insertion of additional amino acid residues 

affects the paired domains of Pax-6, Pax-3, and Pax-7, resulting in generation of isoforms 

with various DNA-binding potentials and specificities (Kozmik et al., 1997; Vogan et a l.,

1996). Ikaros, a gene implicated in the control of B- and T-lymphopoiesis, produces 

eight alternatively spliced isoforms which differ in the number of the N-terminal zinc 

fingers (Georgopoulos et al., 1997). With at least three zinc fingers required for 

sequence-specific, high-affinity DNA-binding, only three Ikaros proteins (Ik-1, Ik-2, and 

Ik-3) contribute directly to transcriptional regulation of their target genes; others are 

transcriptionally inert.

The most common strategy for the production of activator and repressor isoforms 

from the same gene involves alterations within the transactivation domain or its complete 

removal (Foulkes and Sassone-Corsi, 1992). If such isoforms possess identical DNA- 

binding domains and have similar binding affinities for target sequences, they can 

compete for DNA binding. This provides a mechanism for differential regulation that 

depends on the relative concentration of the competing isoforms. The same holds true for
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activators of different strengths. For example, Pax-4 and Pax-6 recognize similar 

sequences and may compete for binding in tissues with overlapping expression 

(Kalousova et al., 1999). However, because Pax-4 is a weaker activator than Pax-6 

(Kalousova et al., 1999), it may actually function as a Pax-6 inhibitor.

Isoforms lacking DNA-binding and/or transactivating domains may exert their 

inhibitory function by sequestering other factors into inactive complexes (Lopez, 1996). 

For example, non-DNA-binding Ikaros proteins can play a dominant-negative role in 

transcription by forming transcriptionally inert heterodimers with active DNA-binding 

isoforms (Georgopoulos et al., 1997). Alternatively, the inhibitor-isoforms that contain 

functional protein interaction motifs can inhibit transcription by binding accessory and 

partner-proteins which are necessary for combinatorial gene regulation.

3.3 Post-translational control: structural protein modifications

Post-translational level of control involves structural modifications which affect 

the activity and functions of transcription factors. These modifications may include 

(de)phosphorylation, acetylation, glycosylation, formation of disulfide bonds (redox 

potential), or any other alterations which may induce conformational changes in a 

protein. Through exposing, masking, or remodeling a particular functional domain, post- 

translational modifications may determine the DNA-binding activity and transactivation 

function o f a transcription factor, as well as its nuclear localization, stability, and 

association with other proteins (Calkhoven and Geert, 1996). Compared to the 

transcriptional level of control, regulation at the protein level is faster and more readily 

reversible. Such functional flexibility is important for a great number of transcription
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factors which participate in signal-transduction cascades, including NF-kB, c-Jun, p53 

(Calkhoven and Geert, 1996). In that context, post-translational modifications provide a 

sensitive mechanism for a quick and efficient response to specific signaling pathways that 

lead to activation or inhibition of particular target genes.

Phosphorylation is one of the most common means of functional regulation which 

affects a wide variety of cellular proteins, including nuclear transcription factors. Easily 

reversible and abundant, phosphorylation frequently occurs as a step in signal 

transduction cascades triggered by environmental stress and stimulation of cell-surface 

receptors (Hunter and Karin, 1992; Calkhoven and Geert, 1996). For instance, multi-site 

phosphorylation is a major mechanism regulating the activity o f p53 in response to 

various extracellular stimuli (Meek, 1998). This modification can modulate a number of 

the protein’s functions ranging from DNA-binding and transactivation properties to its 

stability and ability to interact with other factors (Lambert et al., 1998; Meek, 1998; 

Steegenga et al., 1996). Another example is phosphorylation of c-Jun which is triggered 

by mitogenic stimulation and stress. The phosphorylation sites of c-Jun are located in the 

transactivation domain, and their modification results in increased transactivation 

potential of this transcription factor (Calkhoven and Geert, 1996).

Modification of transcription factors via formation of disulfide bonds has not been 

studied as extensively as protein phosphorylation. However, several recent studies 

indicate that modification of redox state is an important mechanism of regulation of 

transcription factors. Redox regulation occurs through reduction/oxidation of specific 

cysteine residues and formation of disulfide bonds in different functional domains of a 

protein (Tell et al., 2000). The process is mediated by reducing enzymes, such as
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thioredoxin and Ref-1, and is often triggered by oxidative stress (Hirota et al., 1997; 

Hirota et al., 1999). Frequently, modification of protein redox state is involved in 

regulation o f DNA binding activity and, as a rule, reduced forms of transcription factors 

are required for efficient binding to DNA sequences. For example, activity of NF-kB 

(Schreck et al., 1991; Hirota et al., 1999), AP-1 (Abate et al., 1990; Hirota et al., 1997), 

HIF-like factor (HLF) (Lando et al., 2000), and Pax-2/5/8 proteins (Tell et al., 1998) 

depends upon reduced state of their DNA-binding domain. Interestingly, hypoxia- 

inducible factor l a  (H IF-la), which is closely related to the HLF, does not require the 

presence of reducing enzymes for its DNA-binding; however, its transactivation domain 

is subject to redox control by Ref-1 (Lando et al., 2000). Another facet of redox 

regulation involves formation of an intermolecular disulfide bond in E2A homodimers 

(Benezra, 1994), which play an important regulatory role in B lymphocyte development 

(Murre et al., 1989). In monomeric form, the protein has a very low DNA binding 

activity, although it can still efficiently heterodimerize with its partner-proteins (Benezra, 

1994). Thus, only E2A homodimers can bind to DNA. That interaction is stabilized by a 

disulfide link between two E2A proteins (Benezra, 1994), and has recently been shown to 

be regulated by redox-active proteins (Markus and Benezra, 1999).

Glycosylation has long been considered a modification that occurs exclusively on 

extracellular or lumenal proteins. Recently, however, it has become clear that 

glycoproteins can also be found in the nucleus (reviewed in Haltiwanger et al., 1997; 

Comer and Hart, 2000). The best characterized and the most abundant type of 

glycosylation affecting transcription factors is glycosylation by O-linked N- 

acetylglucosamine (O-GlcNAc) (Haltiwanger et al., 1997). This modification involves
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addition of a single monosaccharide residue, 0-GlcNAc, to the side-chain hydroxyl 

groups o f serine and/or threonine. The enzymes responsible for the addition and removal 

o f O-GlcNAc moieties to proteins have been identified (Haltiwanger et al., 1990; Dong 

and Hart, 1994). A uridine diphospho-A-acetylglucosamine:polypeptide p-AL 

acetylglucosaminyltransferase (0-GlcNAc transferase) is a soluble enzyme with a strong 

preference for peptides containing a proline residue (Haltiwanger et al., 1997). O- 

GlcNAc transferase has been found in both cytoplasm and nucleus (Haltiwanger et al., 

1992; Kreppel et al., 1997; Akimoto et al., 1999), and its gene was cloned from rat, C. 

elegans and human (Kreppel et al, 1997; Lubas et al., 1997). A cytosolic and nuclear p- 

A^-acetylglucosaminidase with selectivity toward O-linked GlcNAc has also been 

identified and purified (Dong and Hart, 1994).

About fifty different cytoplasmic and nuclear proteins are known to be modified 

by O-glycosylation (Haltiwanger et al., 1997). These include transcription factors Spl 

and Apl (Jackson and Tjian, 1988), the tumor suppressor protein p53 (Shaw et al., 1996), 

nuclear pore complex proteins (Holt et al., 1987), c-Myc (Chou et al., 1995), and various 

cytoskeletal proteins (for references see Haltiwanger et al., 1997). The levels of 

glycosylation may vary for different proteins and during specific signaling events, which 

indicates that this modification is dynamic and reversible (Comer and Hart, 2000). O- 

glycosylation has been hypothesized to play a role in regulation of such processes as cell 

activation and cell division (Kearse and Hart, 1991; Chou and Omary, 1993), 

transcriptional regulation (Jackson and Tjian, 1988; Kelly et al., 1993; Chou et al., 1995), 

and protein synthesis (Datta et al., 1989).
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While a strict consensus sequence has not been discerned for O-GlcNAc- 

modified proteins, most glycosylated sites contain a proline residue amino-terminal to the 

modified serine or threonine (Haltiwanger et al., 1997). These sites are remarkably 

similar to sites phosphorylated by mitogen-activated and other proline-directed kinases 

(Kemp and Pearson, 1990). In fact, most O-glycosylated proteins are also extensively 

regulated by phosphorylation, which appears to compete with O-GlcNAc for sites on 

such proteins (Haltiwanger et al., 1997; Comer and Hart, 2000). The interrelation 

between O-GlcNAc-glycosylation and phosphorylation is complex, and the two 

modifications are probably differentially regulated through distinct signaling pathways, 

adding infinite diversity to protein function.

4. Significance and goals of the presented research

4.1 Functional significance o f  Pax-5 iso forms

The Pax-5 gene plays a central role in B cell development, activation and 

differentiation. The gene generates at least four alternatively spliced isoforms which 

have been identified based on the presence of the intact DNA-binding domain and the C- 

terminal transactivation domain (Zwollo et al., 1997). The Pax-5a isoform, known as B 

cell-specific activator protein (BSAP), is the most extensively studied product encoded 

by the Pax-5 gene, and its transactivation function has been investigated on a number of 

B cell-specific genes (Hagman et al., 2000). However, the functions and regulatory roles 

o f other Pax-5 isoforms are yet to be determined.

Among the Pax-5 proteins, Pax-5a and Pax-5d are of special interest. These two 

isoforms are the most abundant in mature B cells and both have an intact DNA-binding
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domain that enables them to interact with Pax-5-specific DNA-binding sites. The two 

isoforms, however, differ dramatically in the composition of their C-terminus. In 

contrast to Pax-5a, Pax-5d does not have transactivation, repression, or partial 

homeodomain homology regions, but possesses the novel sequence instead (Zwollo et a l.,

1997). Although the regulatory role of the novel sequence is not yet known, it is likely to 

confer a dominant-negative function to Pax-5d isoform. Thus, it is possible that Pax-5a 

and Pax-5d not only compete for binding, but also have opposing effects on transcription. 

Consequently, the relative levels of these two isoforms may determine the expression of 

Pax-5 target genes. Furthermore, it can be speculated that the ratio of the two proteins 

might change as B lymphocytes progress through the differentiation stages during their 

development and activation. Such a change may serve as a sensitive switch that 

determines a rapid activation or repression of particular genes during each stage o f B cell 

differentiation.

While only Pax-5a and Pax-5d can affect transcription through direct promoter- 

enhancer binding, it is cannot be excluded that Pax-5b and Pax-5e isoforms may also 

participate in gene regulation (see Figure 1.4). Both isoforms possess the octamer 

sequence implicated in protein-protein interactions and regulation of the transactivation 

function (see Section 2 .4 ). Furthermore, Pax-5b contains the homeodomain and the 

transactivation domain, which have also been shown to play a role in protein-protein 

interactions (Eberhard et al., 2000). The presence of three functional domains capable of 

diverse protein-protein interactions indicates that this isoform may participate in gene 

regulation as a co-repressor, co-activator, or an inhibitor which sequesters subunits of 

transcriptionally active complexes. The same model can be applied to the Pax-5e isoform
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in which the homeodomain and transactivation region are replaced with the novel 

sequence. Hence, while having no DNA-binding activity, the Pax-5b and Pax-5e 

isoforms may retain a capacity for protein-protein interactions, which would allow them 

to function as dominant-negative variants of Pax-5a and Pax-5d.

Previous studies have shown that the DNA-binding activity o f Pax proteins is 

subject to redox regulation due to the presence of three conserved cysteine residues (Cys 

37, Cys 49, and Cys 109) within the paired domain (Tell et al., 1998; Tell et al., 2000). 

The presence of the two additional cysteine residues in the novel sequence of Pax-5d and 

Pax-5e presents interesting possibilities for formation of inter- and intra-molecular 

disulfide bonds within individual proteins and between different isoforms of the Pax-5 

family. These may include generation of Pax-5d/Pax-5e homo- and heterodimers, 

regulation of the novel sequence function via redox-regulated protein folding, as well as 

formation of transcriptionally-inert complexes between DNA-binding and non-binding 

isoforms. If such interactions indeed occur, various reducing/oxidizing factors, such as 

Ref-1, thioredoxin, or reactive oxygen species, may not only affect DNA-binding activity 

o f the paired domain, but may also play a key role in the control of transactivation 

properties of Pax-5 proteins.

4.2 Research project: major goals

The study presented here pursued two goals. First, the transactivation properties 

o f the Pax-5d isoform were determined in vivo using a transient transfection system. 

Evidence is provided indicating that Pax-5d has a function opposite to that o f Pax-5a, and 

that the two isoforms may compete for binding to Pax-5 recognition sequences. The ratio



33

of Pax-5a to Pax-5d was, therefore, hypothesized to determine the transcription levels of 

Pax-5 target genes.

The second goal of this project was to investigate the expression patterns o f Pax-5 

proteins in resting and LPS-activated B cells. The ratio of Pax-5 isoforms was analyzed 

in activated and non-activated B cell lines and splenic B lymphocytes. In addition, the 

DNA-binding activities of Pax-5a and Pax-5d isoforms were assessed in resting and 

activated normal B cells. The experimental data suggests that activation signals induce a 

change in the ratio of different Pax-5 proteins and may trigger specific post-translational 

modifications of the predominant Pax-5a isoform.

4.3 Preliminary studies

In the context of the described research, preliminary investigations were 

conducted that included identification of concentration requirements for the proposed 

Pax-5a/Pax-5d binding competition, LPS-activation of B lymphocytes isolated from aged 

mice, activation of the immature B cell line W EHI-231, and initial characterization of the 

novel Pax-5X species. These investigations were designed to provide clarification and/or 

additional support for the observations of the project described in the previous section. 

More specifically, the goals o f preliminary studies included: a) development of the 

“staggered” transfection approach for functional studies of Pax-5 proteins; b) 

comparative analysis of the expression patterns of Pax-5 proteins in young and aged B 

lymphocytes activated by mitogenic stimulation; c) determination of the ratio o f Pax-5 

proteins in LPS-activated B cell line WEHI-231; and d) demonstration o f a link between 

Pax-5e isoform and the novel Pax-5X species.
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Summary of specific research aims

1. Determination o f  transactivation properties o f isoform Pax-5 cl. Functional 

aspects o f  Pax-5a and Pax-5d DNA-binding competition. Non-lymphoid cell 

lines, NIH 3T3 and COS-1, were transiently co-transfected with different 

combinations of the Pax-5a and/or Pax-5d effector constructs and an artificial 

promoter reporter construct that contained three high-affinity Pax-5 DNA-binding 

site from the murine CD 19 promoter. The transactivating effect of individual 

isoforms or their combinations was estimated based on the expression of a 

chloramphenicol acetyltransferase (CAT) reporter gene.

2. Analyses o f  Pax-5 proteins in LPS-activated mature B lymphocytes. Mature 

resting B cells were isolated from spleens of young mice and activated by 

treatment with bacterial lipopolysaccharide (LPS). Nuclear extracts isolated from 

resting and activated B cells were assayed for Pax-5 proteins' levels and 

expression patterns using Western blot analysis. DNA-binding activity o f Pax-5a 

and Pax-5d proteins was determined in nuclear extracts of resting and LPS- 

activated primary B lymphocytes using electrophoretic mobility shift assay 

(EMSA).

3. Analyses o f  Pax-5 proteins in B cell lines. The protein levels, expression 

patterns, and the ratio of Pax-5 isoforms were analyzed in B cell lines 

representing different stages of B cell differentiation using Western blot analysis.
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The immature B cell line WEHI-231 was activated by either surface IgM cross- 

linking or through mitogenic stimulation. Nuclear extracts from activated and 

non-activated cells were assayed for expression patterns and DNA-binding 

activity of the Pax-5 isoforms using Western blot analyses and EMSA.

4. Analyses o f  the Pax-5 proteins in LPS-activated B  lymphocytes isolated fro m  

aged mice. Mature resting B cells were isolated from spleens of aged mice and 

activated by treatment with LPS. Nuclear extracts isolated from resting and 

activated B cells were assayed for Pax-5 proteins’ levels, expression patterns, and 

DNA-binding activity using Western blot analysis and EMSA. The results were 

compared with data obtained for young mice (Aim 2).

5. Development o f  a “staggered” transfection system. A novel transient co

transfection approach was used for detailed examination of Pax-5a/Pax-5d DNA- 

binding competition requirements.

6. Characterization o f  the novel Pax-5x species. Non-lymphoid cell line NIH 3T3 

was transiently transfected with Pax-5e and Pax-5d expression constructs. 

Nuclear extracts from the transfected cells were analyzed by Western blot to 

determine the nature of the Pax-5X band.
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Chapter II 

Functional Analyses of Alternative Isoforms of the 
Trancription Factor Pax-5.

Marina Lowen and Patty Zwollo
The College of William and Mary, Williamsburg, VA 23187 

Manuscript in preparation

ABSTRACT

The Pax-5 gene plays a central role in B cell development, activation and 

differentiation. At least four different isoforms have been identified. Isoform Pax-5a, 

known as B cell-specific activator protein (BSAP), is the most extensively studied gene 

product and its regulatory functions have been investigated for a number of B cell- 

specific genes. However, potential functions for other Pax-5 isoforms have not yet been 

reported. In the studies described here, we demonstrate that Pax-5d has a function 

opposite to that of Pax-5a and, hence, acts as a transcriptional inhibitor o f a basal 

promoter CAT construct containing three Pax-5 binding sites. Furthermore, Pax-5d 

represses activity o f Pax-5 a when the two isoforms are expressed simultaneously, 

suggesting that the ratio of Pax-5 a and Pax-5d protein in the nucleus modulates 

transcriptional activation of target genes. Comparison of resting and LPS-activated 

mature B lymphocytes as well as B cell lines representing various stages o f B cell 

differentiation, revealed the presence of an unidentified Pax-5 species, Pax-5X, during the 

late stages of activation. The Pax-5a/Pax-5x ratio decreases as mature B cells become
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activated, and we hypothesize that the Pax-5X species acts as a repressor o f Pax-5a 

activity. Moreover, LPS-activation induces post-translational modifications at the C- 

terminus of Pax-5a affecting the C-terminal repressor domain. Together, our 

observations suggest that during activation and differentiation of B lymphocytes, Pax-5a 

function changes, and this is accomplished through post-translational mechanisms as well 

as through upregulation of the repressor isoforms.

INTRODUCTION

B lymphocytes are the major players of the humoral immune system and are 

essential to the detection and elimination of pathogens. Their main distinguishing 

characteristic is the ability to synthesize and secrete specific immunoglobulin (Ig) 

molecules in response to pathogens. Activation of mature B cells in vitro may either be 

induced by antibody cross-linking of the B cell antigen receptor complex, or through 

stimulation by specific cytokines and/or B cell mitogens such as bacterial 

lipopolysaccharide (LPS). Activation signals trigger a cascade of events that result in 

proliferation, further differentiation of mature B lymphocytes into plasma cells, and Ig 

secretion (Reya and Grosschedl, 1998).

Spatial and temporal gene expression of B cell-specific transcription factors 

largely determines the maturation and activation pathways in a B cell, and is a tightly 

regulated process. Gene expression of transcription factors can be controlled at multiple 

levels including transcription initiation, alternative RNA splicing, mRNA stability, and 

translation efficiency (Calkhoven and Geert, 1996). In addition, activity of transcription



factors can be regulated at the post-translational level and may involve phosphorylation, 

acetylation, proteolysis, and/or regulation of the redox state (Hunter and Karin, 1992; 

Pahl and Baeuerle, 1996; Calkhoven and Geert, 1996). Post-translational modifications 

may regulate the DNA-binding activity and transactivation function of a transcription 

factor, as well as its nuclear localization, stability, and association with other proteins 

(Calkhoven and Geert, 1996). Modifications o f already-expressed transcription factors 

provide a sensitive and efficient mechanism, allowing for rapid responses to specific 

signaling pathways during cell differentiation or activation.

A number of transcription factors have now been identified as essential for B cell 

development and activation (reviewed in Reya and Grosschedl, 1998; Liberg and 

Sigvardsson, 1999). Among these factors are the products encoded by the Pax-5 gene 

which include one o f the most critical transcription regulators, the B-cell specific 

activator protein (BSAP). Pax-5 is a member o f a family of genes involved in 

development, morphogenesis, and pattern formation (Strachan and Read, 1994; Stuart 

and Gruss, 1995). The Pax family consists of nine members {Pax-1 through Pax-9) all of 

which share an evolutionarily conserved N-terminal DNA-binding region comprising the 

paired domain (Walther et a l., 1991). The family of Pax proteins is divided into four 

subclasses based on the presence or absence of specific domains (Adams et a l., 1992).

Pax-5 expression is first detected in the developing central nervous system 

(Adams et a l., 1992; Asano and Gruss, 1991). After birth and throughout life, Pax-5 

transcripts are found in cells of the B-lymphoid lineage and in adult testis of the mouse 

(Adams et a l., 1992). Inactivation o f the Pax-5 gene in mouse results in a complete block 

o f B cell development at the pro-B cell stage, revealing the essential role of this gene in
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early B cell lymphopoiesis (Urbanek et al., 1994). Within the B cell lineage, Pax-5 is 

expressed during early stages of B cell development up to the mature B-cell, but is 

greatly downregulated or absent in plasma cells (Barberis et al., 1990).

Pax-5 binding sites have been identified on the promoters of a number o f B-cell- 

specific genes (reviewed in Hagman et al., 2000). Among the positively regulated Pax-5 

targets are genes encoding the CD 19 co-stimulatory receptor (Kozmik et al., 1992) and 

the protein tyrosine kinase Blk (Zwollo and Desiderio, 1994). Pax-5 functions as a 

repressor for the immunoglobulin J  chain and the Ig 3’a  enhancer (Rinkenberger et al., 

1996; Singh and Birshtein, 1993; Neurath et al., 1994). In addition to its role in B- 

lymphopoiesis, Pax-5 has been implicated in activation and proliferation of B 

lymphocytes since its decreased expression resulted in reduced numbers o f cells post

activation (Wakatsuki et al., 1994). However, terminal differentiation o f mature 

activated B cells into plasma cells that are capable o f Ig isotype class switching and high 

antibody production may require downregulation of Pax-5 activity (Usui et al., 1997; 

Cogne et al., 1994; Stuber et al., 1995).

The Pax-5 gene produces four isoforms as a result of alternative splicing: Pax-5a 

(full length Pax-5 or BSAP), Pax-5b, Pax-5d, and Pax-5e (Zwollo et al., 1997) (Figure

II. 1). Of those, only Pax-5a and Pax-5d isoforms are expressed at readily detectable 

levels in resting B cells, although the levels of Pax-5d transcripts are lower than those of 

Pax-5a (Anspach et al., submitted). Both Pax-5a and Pax-5d, but not Pax-5b or 5e, have 

an intact DNA-binding domain, enabling them to interact with and compete for Pax-5- 

binding sites on DNA in vitro (Figure 1; Zwollo et al., 1997). However, in contrast to
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Pax-5a, Pax-5d does not possess transactivation, repression, or partial homeodomain 

homology regions at the C-terminus. The region encoded by exons six through ten is 

replaced in isoform Pax-5d with a 42 amino-acid novel sequence (Zwollo et al., 1997). 

The role of this sequence is unknown, but it is likely to confer a dominant negative 

function to Pax-5d protein. Isoform Pax-5e has only a partial DNA binding domain, 

lacks exons 6 through 10, and shares the same novel C-terminal sequence as Pax-5d 

(Figure II. 1). Based on the DNA binding abilities and expression pattern of Pax-5a and 

5d, we hypothesize that the two isoforms compete for binding and have opposite effects 

on transcription of target genes in vivo. Consequently, the relative levels o f these two 

isoforms in the nucleus may regulate expression of target genes.

Although a number of studies have shown clear functional significance o f isoform 

Pax-5a (BSAP) (Zwollo et al., 1998; Kozmik et al., 1992; Fitzsimmons et al., 1996), no 

work has yet characterized the function of isoform Pax-5d. Thus the first goal of our 

studies was to determine the transactivation properties of Pax-5d. Here we show, using a 

transient transfection system, that Pax-5d has a function opposite to that o f Pax-5a. 

These results are in agreement with the hypothesis that the ratio of Pax-5a to Pax-5d 

affects transcription of Pax-5 target genes.

Our second goal was to investigate the regulatory function of Pax-5a and Pax-5d 

isoforms in LPS-activated, normal B cells. Our experimental data suggest that LPS- 

activation signals induce significant changes at the protein, but not RNA, level of both 

isoforms. Unexpectedly, we found that LPS activation resulted in a loss o f Pax-5d 

protein concomitant with a dramatic increase in the levels of a novel species Pax-5x 

during the late stages of activation. Finally, comparison of resting and LPS-activated B
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lymphocytes revealed the induction of a slower migrating Pax-5a species which differed 

in the structure o f the C-terminus. We hypothesize that activation of B-cells triggers 

post-translational protein modification(s) that allow stabilization of Pax-5a and prevent 

the removal of the C-terminal repressor domain.

In summary, data presented here suggest that during B cell activation, the 

transcriptional activity of Pax-5a may be regulated through sensitive post-translational 

mechanisms that either inhibit Pax-5a function directly, and/ or through upregulation of 

the repressor isoform(s).

MATERIALS AND METHODS

Cell Lines. Murine B-lymphoid cell lines KEFTL-1-(pro-B), HAFTL-1 (pro-B), 

PD31 (pre-B), 70Z/3 (pre-B), A20/2J (mature B), B17.10 (mature), and C H I2 (pre- 

secretor B) were gifts from Dr. Steve Desiderio (The Johns Hopkins University School of 

Medicine, MD). WEHI-231 (immature B), 2PK3 (mature B), and Sp2/0 (plasma cell) 

cell lines were purchased through ATCC. Cells were grown in RPMI-1640 medium 

supplemented with 10% fetal bovine serum (Bio-Whitaker, Inc.), 2 mM glutamine, 50 

units/ml penicillin, 50 pg/ml streptomycin, and 50 mM P-mercaptoethanol. The COS-1 

cell line (ATCC), a transformed African green monkey kidney cell line, was maintained 

in DMEM medium containing 10% fetal bovine serum, 2 mM glutamine, 50 units/ml 

penicillin, and 50 pg/ml streptomycin. NIH 3T3 (ATCC), an embryonic mouse fibroblast 

cell line, was grown in DMEM medium supplemented with 10% calf serum (Gibco BRL 

Life Technology), 2 mM glutamine, 50 units/ml penicillin, and 50 pg/ml streptomycin.
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DNA Constructs. The construction of the p(-191)b//:CAT2mE reporter construct 

has been described elsewhere (Zwollo and Desiderio, 1994). This construct contains the 

murine blk promoter (nucleotides —191 to +134) that drives expression of the 

chloramphenicol acetyltransferase (CAT) coding region, and two copies of the intronic Ig 

pE downstream of CAT. The y42(3i)AS-CAT reporter construct was created using the 

py42CassI CAT reporter (Wallin et al., 1998) (Figure II.2A). Expression o f CAT is 

driven by the truncated rat y-fibrinogen promoter (-54 to +36), which includes a TATA 

box and a single Sp-1 binding site. Three copies of the high-affmity Pax-5 binding site 

from the CD19 promoter (5’-CAGACACCCATGGTTGAGTGCCCTCCAG-3’) were 

inserted into the polylinker upstream of the y42-fibrinogen promoter. Recombinant 

constructs were sequenced to determine copy number and orientation of Pax-5 binding 

sites. The effector constructs pcDNA5a and pcDNA5d were made by cloning the full- 

length cDNA sequences of either Pax-5a or Pax-5d isoform into Notl restriction sites of 

the expression vector pcDNA3 (Invitrogen). The pcDNA3 construct was used as a 

negative control effector construct, and the HBIICAT construct (Zwollo and Desiderio, 

1994) was used as a control for transfection efficiency.

Transient Transfections and Chloramphenicol Acetyltransferase Assay. 

Transient transfections of A20/2J, PD31, and 703/Z B cell lines were performed by either 

the DEAE-dextran (Grosschedl and Baltimore, 1985) or SuperFect (Qiagen) method. 

Non-lymphoid cell lines COS-1 and NIH 3T3 were transfected using 

LipofectAMINE.Plus (Gibco BRL) according to the manufacturer’s protocols. For B- 

lymphoid cell lines, 1X106 (SuperFect) or 2X107 (DEAE-dextran) cells in logarithmic 

growth phase were transfected with 3-5 pg of total plasmid DNA. Non-lymphoid cell
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lines were transfected with 1-6 jag of total plasmid DNA. Cell extracts were prepared 43- 

48 hr after transfection and assayed for CAT activity as described previously (Lansford et 

al., 1992). Briefly, cell extracts containing the same amount of total protein were 

combined (in a 150 pi volume) with the reaction mixture containing 470 mM Tris, pH 

8.0, 3.3 nM 14C-chloramphenicol (Amersham Pharmacia Biotech), and 0.5 mM acetyl 

CoA (Sigma). Following 5-8 hr incubation at 37°C, the samples were extracted with 500 

pi ethyl acetate and the organic phase was collected and concentrated on a vacuum 

centrifuge (SpeedVac® Plus, Savant). The reaction products were chromatographically 

separated on a silica gel plate (EM Science) using a chlorophorm-methanol (95:5) 

mixture. The plate was exposed to a Kodak X-OMAT-AR film for 2-10 days. The 

obtained data were quantified using an NIH Image software analysis program 

(www:http://rsb. ihfo.nih.gov/nih-image/). The relative CAT conversion was

determined by calculating the ratio of values for acetylated and uncetylated 

chloramphenicol as follows: %CAT conversion=[Acetylated-Mock]/[(Acetylated-

Mock)+(Unacetylated-Mock)], where “Mock” is the activity of the mock (transfection 

without DNA) transfection. The values were normalized to the maximum value of 

relative CAT conversion within each experiment set at 100%. Protein concentration of 

cell lysates was determined by the Bradford assay (Bio Rad Laboratories).

Isolation o f  Cell Fractions and Activation o f  Sm all Resting B  Cells. Splenic B 

cells were obtained from 3-6 months old BALB/c mice (bred at The College of William 

and Mary). Teased spleen suspensions from BALB/c mice were collected through a 40 

pm nylon cell strainer in complete RPMI-1640 medium supplemented as described 

above, washed and re-suspended in Hank’s balanced salt solution. Small resting B cells

http://rsb
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(SRBs) were isolated from a 70% Percoll gradient (Amersham Pharmacia Biotech) 

according to the manufacturer’s instructions and re-suspended in complete RPMI-1640 

medium at lx l0 7 cells per ml. The 70% Percoll layer contained approximately 25% T 

cells; however, the complement lysis purification step was omitted due to possibility of 

partial activation of B cells by reactions with anti-Thy.l, anti-CD4, and anti-CD8

« • 7(Zwollo, unpublished observations). Approximately 10 cells from the obtained

population were processed immediately to obtain nuclear extracts (as described below). 

The remainder of the population was activated by culturing in complete RPMI-1640 

medium (supplemented as above) in the presence of 20 pg/ml bacterial 

lipopolysaccharide (LPS) (Sigma) for the required period.

Nuclear Extract Preparation. Cells were collected at specified times and 

processed for nuclear extracts as described elsewhere (Wallin et al., 1999). Briefly, 106- 

107 cells were treated with lysis buffer (200 pi) containing 10 mM HEPES, pH 7.9, 10 

mM KC1, 0.1 mM EDTA, pH 8.0, and 0.4% Nonidet P40. Following 15 min incubation, 

the cytoplasmic fractions were collected, and the nuclear pellet was resuspended in 100 

pi extraction buffer (20 mM Hepes, pH 7.9, 0.4 M NaCl, 1 mM EDTA, pH 8.0) and 

incubated with agitation for 15 min. Nuclear extract aliquots (10 pi) were collected and 

stored at -80°C. All buffers contained the following mixture of protease inhibitors: 0.5 

nM phenylmethylsulphonyl fluoride, 0.5 mM dithiothreitol, aprotinin (10 units/ml), 

leupeptin (5 mg/ml), and pepstatin A (5 mg/ml). Procedures for nuclear extract 

preparation were carried out on ice in a cold room at 6°C. Total protein concentrations 

were determined by the Bradford assay (Bio-Rad Laboratories) according to the 

supplier’s recommendations.
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RNA Isolation and RNase Protection Assay. Total cellular RNA was isolated 

from Percoll-purifled SRBs or LPS-activated B cells using an RNeasy mini kit (Qiagen) 

according to the manufacturer’s instructions. Anti-sense radiolabeled probes were 

prepared as described (Zwollo et al., 1997). Briefly, the plasmid pBS-10.1, containing 

the complete Pax-5d sequence, was linearized using the restriction enzyme BsrFl and 

transcribed using T7 RNA polymerase in the presence of [a-j2P]-CTP (800 Ci/mmol). 

The resulting anti-sense Pax-5 riboprobe 10.1 contained exons 4 and 5 (nts 447-607) plus 

the novel sequence of Pax-5d (nts 608-735), and was used for detection of the Pax-5a 

and Pax-5d transcripts. A (3-tubulin-specific probe was similarly synthesized from the 

Bam Hl-linearized form of the plasmid p// 5, which contains nucleotides 170-263 of the 

murine P-tubulin gene. RNase protection assays were performed as described (Zwollo et 

al., 1997). For each sample, the RNA probe (5x10' cpm) was annealed to 1-5 pg o f total 

cellular RNA for 5 hr at 55°C. After digestion with RNAse A (40 pg/ml) and RNAse T1 

(2 pg/ml) for 30 min at 15°C, proteinase K and sodium dodecyl sulfate were added to 150 

pg/ml and 1%, respectively, and the reactions were incubated for additional 15 min at 

37°C. Products were extracted with phenol/chloroform, precipitated with ethanol in the 

presence of 10 pg of tRNA, and resuspended in sample buffer containing 80% 

formamide. Products were fractionated by electrophoresis on a 5% polyacrylamide gel 

containing 7M urea and detected by autoradiography. Radioactive RNA size markers 

were prepared using linearized pBluescript vectors and T3 and T7 RNA polymerases, 

which resulted in labeled RNA transcripts ranging in size form 50 to 291 nucleotides.
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To obtain an optimal internal control, the riboprobe 10.1 and a p-tubulin-specific probe 

were incubated simultaneously with each RNA sample.

Western Blot Analysis. Nuclear extracts and cytoplasmic fractions from SRBs, 

LPS-activated B cells, or cell lines were separated on 12% denaturing SDS- 

polyacrylamide gels and electrophoretically transferred onto nitrocellulose filters 

(Schleicher and Schuell) as described previously (Zwollo et a l., 1998). Antibody probing 

was performed as described previously (Zwollo et al., 1998). Filters were first incubated 

with 1 hr in blocking solution (5% milk in PBS), followed by a 1-2 hr incubation with a 

primary antibody in blocking solution (Table I). Next, filters were incubated for 1 hr 

with a horseradish peroxidase-conjugated secondary antibody in blocking solution (see 

next section). Filters were developed with an enhanced chemiluminescence kit (ECL, 

Amersham Pharmacia Biotech), and bands visualized on Eastman Kodak X-OMAT-AR 

film. The density of Pax-5a and Pax-5d bands was quantified using an NIH Image 

software analysis program fwww:http://rsb.ihfo.nih.gov/nih-image/).

Anti-Pax Antibodies. Information about isotype-specific Pax-5 antibodies used 

in this study is summarized in Table I. Pax-5d/Pax-5e-specific mouse monoclonal 

antibody 6G11, recognizing the C-terminal “novel” sequence, was generated in our lab 

(Anspach et al., submitted). 6G11 supernatants were used at a 1:30 dilution and detected 

with a horseradish peroxidase-conjugated goat-anti-mouse IgG secondary antibody 

(Zymed). ED-1 antiserum (Zwollo et a l., 1998) was used at a 1:2000 dilution. Pax-5/N- 

19 and Pax-5/C-20 were used at a 1:400 dilution and detected with a horseradish 

peroxidase-conjugated rabbit anti-goat IgG (Zymed). OC-1 was used at 1:1000. Rabbit 

polyclonal antiserum to the transcription factor TFIID (Santa Cruz Biotechnology) was

http://rsb.ihfo.nih.gov/nih-image/
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used at a dilution 1:200. The ED-1, OC-1, and anti-TFIID antibodies were detected with 

a horseradish peroxidase-conjugated donkey-anti-rabbit IgG secondary antibody 

(Amersham Pharmacia Biotech).

Table 1: List of antibodies used in the protein studies.

Antibody Type Source or 
Reference

Specificity Recognized
Proteins

anti-TFIID Rabbit
polyclonal

Santa Cruz 
Biotechnology

N-terminal 
domain o f  TFIID 
(TBP) p36

TFIID (TBP) p36

ED-1 Rabbit
polyclonal

Zwollo et al., 
1998

Paired domain 
aa 13-159

Pax-5a, Pax-5b, 
Pax-5d, Pax-5e

6G11 Mouse
monoclonal

Anspach et al., 
submitted

Novel sequence 
aa 218-235

Pax-5d, Pax-5e

N-19 Goat polyclonal Santa Cruz 
Biotechnology

N-terminal 
domain o f Pax-5 
aa 2-20

Pax-5 a, Pax-5 d

C-20 Goat polyclonal Santa Cruz 
Biotechnology

C-terminal 
domain o f Pax-5 
aa 370-391

Pax-5a, Pax-5b

OC-1 Rabbit
polyclonal

Zwollo et al., 
1997

Homeodomain 
homology region 
aa 234-255

Pax-5a, Pax-5b

Electrophoretic Mobility Sh ift Assays. Standard binding assays were carried out 

for 20 min at 30°C in 10-15 pi reactions containing 60 mM KC1, 12 mM HEPES, pH 7.9, 

4 mM Tris-Cl, pH 7.9, 1 mM EDTA, 1 mM DTT, 30 ng of BSA, 12% glycerol, 1 pg of 

nuclear extract, 2-4 fmol of P-labeled DNA probe, and 2 pg poly(dl-dC) (Zwollo and 

Desiderio, 1994). The double-stranded oligonucleotide CD19/BSAP probe (5’- 

CAGACACCCATGGTTGAGTGCCCTCCAG-3 ’) was labeled with [32P]cc-dCTP as
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described previously (Zwollo and Desiderio, 1994). The ratio of nuclear extract to 

poly(dhdC) (in pg) was kept constant at 1:2 in all experiments. In antibody 

supershift/competition EMSAs, nuclear extracts were pre-incubated in the presence of 1 

pi o f antibody without the probe for 10 min at 30°C. Products were separated by 

electrophoresis on 5% non-denaturing polyacrylamide gel in buffer containing 33 mM 

Tris-HCl, 33 mM boric acid, and 0.74 mM EDTA. Gels were dried and exposed to 

Eastman Kodak X-OMAT-AR film.

In  vitro Transcription and Translation o f  Pax-5 Isofornts. The plasmids 

(pBluescript) containing the isoform Pax-5a (pBS.1.2) or Pax-5d (pBS.10.1) were 

transcribed in sense direction with T3 or T7 RNA polymerase respectively, as described 

previously (Zwollo et al., 1997). Translation was carried out using rabbit reticulocyte 

lysate (TnT; Promega) according to the manufacturer's directions.

RESULTS

Functional analysis of Pax-5d in vivo.

The transactivation function of isoform Pax-5a had previously been investigated 

in our lab using the blk promoter as the target sequence (Zwollo et a l., 1998). However, 

the regulatory role of Pax-5d is not yet understood. To determine the transactivation 

properties of isoform Pax-5d in vivo, we initially used a blkCAT reporter construct (- 

191blkCAT2mE) that contains 325 nt of blk promoter sequence driving expression of the 

CAT reporter gene (Zwollo and Desiderio, 1994). The expression o f the blk gene is 

similar to that of Pax-5 in cells of the B-lymphoid lineage and has been shown to be 

positively regulated by Pax-5a (Dymecky et al., 1992; Zwollo and Desiderio, 1994).
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Transient co-transfections with DEAE-dextran were performed in the B cell lines 

A20/2J, 70Z/3 and PD31, and the non-lymphoid cell line COS-1, using the blkCAT  

reporter construct and different combinations of Pax-5a and Pax-5d effector constructs, 

pcDNA5a and pcDNASd, respectively. Due to low transfection efficiency in B cell lines 

combined with low activity of the blk promoter (Zwollo and Desiderio, 1994), we were 

unable to determine reliable quantitative differences between experimental samples. As 

an alternative approach, we created an artificial promoter containing high affinity Pax-5 

DNA binding sites. Dorfler and Busslinger (1996) had previously used an artificial 

promoter system containing three Pax-5 binding sites 5’ of the TATA box of the p-globin 

gene, and showed that this provides an excellent system for assessment o f Pax-5 

regulatory activity. Three copies of a double-stranded oligonucleotide containing the 

Pax-5 DNA binding site from the murine CD 19 promoter were cloned in sense or anti

sense orientation upstream of the TATA element of the truncated rat y42-f!brinogen 

promoter driving expression of the CAT gene. Both sense and anti-sense reporters gave 

similar promoter activities and the anti-sense construct, named y42(3i)AS-CAT, was used 

in all subsequent experiments (Figure II.2A).

To verify that the reporter construct y42(3i)AS-CAT was expressed in the 

presence, but not absence, of endogenous Pax-5 protein, transfections were performed in 

the mature B cell line A20/2J and the plasma cell line SP2/0. As expected, CAT 

expression was detected in the Pax-5 positive A20/2J line, but not in the Pax-5 negative 

SP2/0 line (result not shown). Because of low transfection efficiencies in B cell lines, 

subsequent analysis was carried out in two highly transfectable, non-lymphoid cell lines,
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Pax-5 Pax-5 Pax-5
TATA

CAT

-54 +36
y-fibrinogen promoter

y42(3i)AS-CAT

Figure II.2A: The y42(3i)AS-CAT reporter construct. The y42(3i)AS-CAT 
reporter construct used for transient transfections contains three copies of the 
high-affmity Pax-5 binding site form the murine CD 19 promoter (Kozmik et al
1992) inserted in anti-sense orientation upstream of the TATA element of the rat 
y-fibrinogen promoter driving the expression of the CAT  gene.
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COS-1 and NIH 3T3. In all experiments, a pcDNA3 vector without insert was used as a 

negative control and was also added to some of the samples to maintain equal amounts of 

transfected DNA per sample. The HBIICAT construct, which drives high and ubiquitous 

CAT expression, was used to evaluate transfection efficiency within each experiment 

(Zwollo and Desiderio, 1994).

Co-transfections of y42(3i)AS-CAT with the effector constructs expressing Pax- 

5a or Pax-5d were first performed in NIH 3T3 cells. The reporter gene was expressed at 

high levels in the presence, but not absence, of Pax-5a (Figure II.2B) confirming a 

positive transactivating function of this isoform in the regulation of an artificial promoter 

construct. In contrast, isoform Pax-5d was unable to activate the reporter gene, yielding 

only basal levels of transcription that were similar to those produced in the presence of 

the control plasmid pcDNA3 (Figure II.2B).

Next, we used the COS-1 cell line to further assess Pax-5d function. COS-1 cells 

do not express Pax-5, but since they are derived from kidney cells, they express the 

closely related Pax-8 protein. Both Pax-5 and Pax-8 belong to the same subclass of Pax 

proteins and both recognize the Pax-5 DNA binding sequence from the human CD 19 

promoter (Walther et al., 1991; Kozmik et al., 1993). We first confirmed the presence of 

Pax-8 in COS-1 cells by EMSA using the CD19/BSAP probe and a variety of anti-Pax 

antibodies (Table I). We were able to show that the upper protein-DNA complex, which 

was expected to contain Pax-8 , was absent in the presence of anti-paired domain 

antiserum Ed-1, and reduced using the OC-1 antiserum (Figure II.2C). The latter is due 

to partial sequence homology within this region between Pax-5 and Pax-8 (Kozmik et al.,

1993). In contrast, two Pax-5-specific antibodies, Pax-5/N-19 and Pax-5/C-20, were
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Figure II.2B: Activation of the reporter gene by exogenous Pax-5. The
y42(3i)AS-CAT reporter construct (lpg) was transiently co-transfected 
with various effector constructs (2pg) into NIH 3T3 cell line, as indicated. 
HBIICAT construct was used to evaluate transfection efficiency. The 
pcDNA3 expression vector was used as a negative control. Percent 
conversion of unacetylated to acetylated chloramphenicol was normalized 
to the value for HBIICAT transfection set at 100%. This chart represents 
a single experiment with 3 pg of total transfected DNA.
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Pax-8-
specific
complexes

Figure II.2C: EMSA of nuclear extracts from non-lymphoid cell line COS-1.
COS-1 nuclear extracts (1 pg) were assayed for the presence of Pax-8 protein by 

EMSA using the CD19/BSAP probe. Prior to assay, the samples were pre
incubated with antibodies directed against various regions of Pax-5 (see Table I). 
Lane 1: ivt Pax-5a ( lp l lysate) and ivt Pax-5d (2 pi lysate); lane 2: COS-1 nuclear 
extract; lane 3: COS-l+ED-1 (anti-paired domain antibody); lane 4: COS-l+OC-1 
(homeodomain-specific antibody); lane 5: COS-l+N-19 (Pax-5 N-terminus-specific 
antibody); lane 6 : COS-l+C-20 (Pax-5 C-terminus-specific antibody), ivt, in vitro 
translated protein.
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unable to remove the complex. Together, the data provided the necessary evidence to 

confirm that COS-1 cells express Pax-8 .

Because of the similarities in specificity of Pax-5 and Pax-8 , the COS-1 cell line 

provided a useful tool for examination of inhibitory and/or competition functions of 

isoform Pax-5d. First, endogenous Pax-8 was able to transactivate CAT reporter 

expression in COS-1 cells in the absence of Pax-5 effector constructs (Figure II.3A, 

pcDNA alone). Second, when increasing amounts of the Pax-5d effector construct were 

co-transfected, a dose-dependent decrease in CAT activity was observed (Figure II.3A). 

Addition of increasing amounts of pcDNA5d DNA correlated with the increase in the 

levels of expressed Pax-5d proteins, as determined by Western blot analysis of the 

transfected samples (Figure II.3C). In contrast, adding increasing amounts of Pax-5a did 

not have a significant effect on promoter activity, possibly because endogenous Pax-8 

already has a saturating transactivating effect on the reporter (result not shown).

To confirm an activating role for Pax-5a, the y42(3i)AS-CAT construct was co

transfected with increasing amounts of Pax-5a construct in the NIH 3T3 cell line, and this 

resulted in increased CAT activity (Figure II.3B). In this system, increasing amounts of 

the transfected DNA also correlated with an increase in the levels of corresponding 

proteins (result not shown). Together, these results show that isoform Pax-5d, but not 

Pax-5a, is able to suppress activity of a Pax-5 sensitive promoter.
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Figure II.3A: Pax-5a and Pax-5d have opposite effect on transcription: 
Pax-5d inhibits transcription of the reporter gene. The y42(3i)AS-CAT 
reporter construct (0.5 pg) was transiently co-transfected with various 
concentrations of the pcDNA5d effector construct into COS-1 cell line. The 
concentrations of the pcDNA5d construct (in pg) are designated at bottom 
o f the chart. In each experiment, a pcDNA3 vector without insert was used 
as a negative control and added to maintain equal amounts of transfected 
DNA in each sample. Error bars show the mean ± S.E. (n=3). Percent CAT 
conversion was determined as described in “Materials and Methods” and 
normalized to the maximum percent conversion value within each 
experiment.



57

110
100

90

C 80 _o
2  70a>
^  60 
O
o  50 t-

<  40O

20

10

p c D N A 3 0.01 0.05 0.1

Transfection in 

NIH 3T3 cells

pcDNA5a(ug)

Figure II.3B: Pax-5a and Pax-5d have opposite effect on transcription: 
Pax-5a activates transcription of the reporter gene. The y42(3i)AS-CAT 
reporter construct (0.5 pg) was transiently co-transfected with various 
concentrations of the pcDNA5a effector construct into NIH 3T3 cell line.
In each experiment, a pcDNA3 vector without insert was used as a negative 
control and added to maintain equal amounts of transfected DNA in each 
sample. The concentrations of the pcDNA5a construct (in pg) are 
designated at bottom of the chart. Error bars show the mean ± S.E. (77=5 ). 
Percent CAT conversion was determined as described in “Materials and 
Methods” and normalized to the maximum percent conversion value within 
each experiment.
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Figure II.3C and II.3D: Correlation between the amount of 
transfected DNA and expression of Pax-5 proteins. Nuclear extracts 
from COS-1 and NIH 3T3 transfected samples were analyzed by Western 
blot using the paired domain-specific antibody ED-1. The blot were 
simultaneously probed with anti-TFIID serum to monitor the total amount 
of loaded protein. Positions of Pax-5 isoforms are indicated. (C) The 
increasing amounts of Pax-5d expression construct (indicated above the 
lanes) were transiently transfected into a non-lymphoid cell line, COS-1. 
The nature of the species detected at 35.4 kD is unknown, but may be 
related to Pax-5x protein discussed later in text. (D) NIH 3T3 cell line was 
transiently transfected with different amounts of either Pax-5a or Pax-5d 
expression construct (indicated above the lanes).
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In earlier EMSA studies, we were able to show that in vitro translated forms of 

Pax-5a and 5d have a similar affinity for Pax-5 DNA binding sites on the blk promoter 

(Zwollo et al., 1997). Based on the inhibitory effect of Pax-5d on promoter activity 

(Figure II.3A), we next sought to investigate whether Pax-5d competes directly for 

binding with Pax-5 a. To test this, the reporter construct y42(3i)AS-CAT was transiently 

co-transfected with various ratios of pcDNA5a and pcDNA5d into NIH 3T3 cells, as 

shown in Figure II.3E. This experiment showed that Pax-5d suppresses Pax-5a- 

dependent activity of the reporter. However, at least 20 times the amount of pcDNA5d 

DNA was needed, as compared to pcDNA5a DNA, to detect significant decreases in Pax- 

5a activity (Figure II.3E). This suggested either that Pax-5d protein was present at much 

lower levels than Pax-5a, or that Pax-5a had a much higher affinity for Pax-5 binding 

sites in this artificial promoter system, as compared to Pax-5 d. Interestingly, Western 

blot analysis of nuclear extracts from NIH 3T3 cells transfected with the same amounts of 

either Pax-5a or Pax-5d expression constructs showed that the Pax-5d construct generates 

less protein per pg DNA transfected as compared to Pax-5a (Figure II.3D). The exact 

cause of this phenomenon is unknown at this time; but such a discrepancy in the amount 

o f produced protein may reflect the differences in either transcriptional/translational 

efficiencies or protein stabilities of the two Pax-5 isoforms. It is also possible that Pax-5d 

needs a B cell specific factor that modulates its DNA binding affinity, which is absent in 

NIH 3T3 cells. Western blot analysis of cytoplasmic extracts isolated from the 

transfected samples revealed no Pax-5-specific bands, excluding the possibility that Pax- 

5d protein is retained in the cytoplasm.
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Figure II.3E: Pax-5a and Pax-5d compete for DNA binding.
The y42(3i)AS-CAT reporter construct was transiently co-transfected 
into NIH 3T3 cells with the pcDNA5a and pcDNA5d effector 
constructs mixed in various ratios. In each experiment, a pcDNA3 
vector without insert was used as a negative control and added to 
maintain equal amounts of transfected DNA in each sample. The Pax- 
5a/Pax-5d ratios are indicated at the bottom of the chart. Error bars 
indicate the mean ± S.E. with the number o f replicates (n) indicated 
below each bar. Percent CAT conversion was determined as 
described in “Materials and Methods” and normalized to the 
maximum percent conversion value within each experiment.
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In summary, our functional assays demonstrate that Pax-5d can suppress activity 

o f an artificial promoter containing Pax-5 binding sites, and this effect is opposite to the 

observed Pax-5a activation on the same promoter. In addition, we show that, when Pax- 

5d is co-expressed with Pax-5a, it can suppress activity of Pax-5a in a dose-dependent 

manner. Thus, the ratio of Pax-5a to Pax-5d in the nucleus may provide a mechanism for 

regulation of expression of Pax-5 target genes.

LPS-activation of mature B cells affects the ratio of Pax-5 proteins.

Our transfection studies suggested that the Pax-5a/Pax-5d ratio may regulate Pax- 

5a function. This was investigated by activating mature B cells with bacterial 

lipopolysaccharide (LPS) and measuring Pax-5a and 5d levels before and after activation. 

Nuclear extracts and total cellular RNA were prepared from samples collected before and 

at various times after LPS treatment and analyzed using Western blot analyses and 

RNAse protection assays.

First, we determined if LPS activation induced a shift in transcript levels of 

isoforms Pax-5a and Pax-5d. The antisense Pax-5 riboprobe 10.1 (Zwollo et al., 1997) 

was used to detect isoform Pax-5a as well as the novel sequence o f isoform Pax-5d. 

Probe design and expected protected RNA fragments are indicated in Figure II.4A. 

Riboprobe 10.1 detects exons 4 (partial) and 5 plus the novel sequence (nucleotides 447- 

735) of Pax-5d, resulting in a 288-nucleotide protected Pax-5d specific fragment. The 

probe detects Pax-5a transcripts as a 160-nucleotide fragment corresponding to part of 

exon 4 and exon 5 in the absence of the novel sequence (Figure II.4A). A control tubulin 

(pp) riboprobe was used for monitoring overall levels and quality of RNA.
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pBS-10.1 I--------------------------- 1------^ ----- 1--------------1------------- [ Pax-5d template
exon 4 exon 5 novel

104 (T3)

riboprobe 10.1-------- |----------------------------------- 1-------— | 392 nts

Expected ----------------------------------- 288 nts (5d or 5e)
bands:

160 nts (5 a or 5b)

Figure II.4A: Overview of the plasmid template pBS-10.1 (Pax-5d), 
riboprobe 10.1, and expected protected regions on Pax-5a and Pax-5d 
mRNA, as used in the RNAse protection assay. See “Materials and 
Methods” for details. The position of the novel sequence unique to Pax- 
5d and Pax-5e (nts 607-735) is indicated.
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Figure II.4B: RNAse protection assay on total RNA from small resting and 
LPS-activated B lymphocytes. Small resting B cells (SRBs) were activated 
with bacterial lipopolysaccharide (LPS) for specified periods of time, as 
indicated, and analyzed for levels of Pax-5 a and Pax-5d RNA using the 10.1 
probe (see Figure II.4A). The 288 nt band corresponds to Pax-5 transcripts 
which contain sequence from exon 5 as well as the novel sequence, i.e. Pax-5d. 
The 160 nt band corresponds to the Pax-5a transcripts which share exon 5 but 
not the novel sequence. Sizes of protected fragments are indicated on the left 
(nts). t, tRNA used as a negative control. The internal control RNA probe 
ppTOO detects a 94 nt |3-tubulin transcript.
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SRBs were activated with LPS and samples were collected at day 0, 1, 2, 4 

(Figure II.4B), 7, 8 , and 9 after stimulation (results not shown). From RNAse protection 

assay data, it appears that there was no significant increase in the overall levels of Pax-5a 

and Pax-5d transcripts. Interestingly, the ratio of the 288 (Pax-5a) to 160 (Pax-5d) 

protected bands remained unchanged for the entire nine days after LPS activation, and 

this ratio was comparable to that in resting B cells (Figure II.4B, lane 2). In addition, no 

new bands were seen in activated samples. This indicated that mitogenic stimulation of 

B cells by LPS did not induce changes at the level of alternative Pax-5 splicing.

Next, we determined whether activation of B cells by LPS changes the protein 

levels of Pax-5a and Pax-5d in the nucleus. Western blot analyses of nuclear and 

cytoplasmic extracts were performed using anti-Pax-5 antibodies ED-1 or 6G11. The 

polyclonal antiserum ED-1 is specific for the paired domain and detects all four Pax-5 

isoforms (Table I). 6G11 is a monoclonal antibody that recognizes a C-terminal

sequence unique to Pax-5d (Table I; Anspach et al., submitted). We used in vitro 

translated Pax-5 a and Pax-5 d as controls and monitored total nuclear protein levels by 

probing the filters simultaneously with an antibody that detects the basal transcription 

factor TFIID. As expected, no Pax-5 bands were detected in cytoplasmic fractions from 

either resting or activated B lymphocytes.

Results from Western blot analyses showed that nuclear Pax-5a protein levels 

increased as B cells proliferated in response to LPS activation, peaking at day three and 

four after stimulation, as shown in Figure II.5A. After day four, Pax-5a levels decreased 

and by day six had returned to levels similar to those of resting B cells (day 0). 

Interestingly, nuclear extracts from SRBs appeared to contain two bands in Pax-5a
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position, which we named 5a. 1 and 5a.2. The estimated size difference of these bands is 

~ 2.5 kD, which corresponds to approximately 20 amino acids. In contrast, only the Pax- 

5a. 1 band was present in late activated B cells. This observation was confirmed when 

samples were subjected to extended SDS-PAGE separation in the presence of high levels 

(4%) of SDS (Figure II.5B). Further comparison of Pax-5 protein patterns between 

resting and activated B cell samples revealed that resting B cell nuclear extracts displayed 

an extensive banding pattern of lower molecular weight species (<50 kD), as shown in 

Figure II.5A (Lane 3). This is likely the result of protein degradation, as it does not 

correlate with the patterns of existing splice variants of Pax-5. The number of 

degradation bands decreased with time in activated samples. By day two, the fragments 

were almost undetectable (Figure II.5A). The observed change in banding pattern 

indicates that Pax-5a protein may become stabilized upon LPS activation. It should be 

noted that levels of TFIID were undetectably low in the late-activation samples (day 6 - 

day 8 ). The underlying cause and significance of this phenomenon are unclear.

Using the anti-Pax-5d antibody 6G11 (Figure II.5C, lower panel), we 

unexpectedly discovered that levels of the full-length Pax-5d protein were undetectable in 

activated B cells. Instead, the novel sequence-specific 6G11 detected a new, yet 

unidentified band at 27 kD. The new species, which we termed Pax-5X, occurred at very 

low levels in nuclear extracts from resting B cells (day 0) and during the first 2 days (48 

hrs) of LPS treatment (Figure II.5C, Lane 2-4). However, starting at day four after LPS 

stimulation, we observed a dramatic increase in the intensity of the Pax-5X band (Figure 

II.5C, Lane 4-6). The nature of the Pax-5X species is unknown at this time. It may 

represent either an N-terminal degradation product of Pax-5d or isoform Pax-5e
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Figure II.5: Detection of Pax-5 proteins in resting and LPS-activated B cells 
using the anti-paired domain serum ED-1. Nuclear extracts from SRBs and LPS- 
activated B lymphocytes were analyzed by Western blot using the anti-paird domain 
serum ED-1. Days of LPS treatment are indicated. (A) Nuclear extracts from resting 
(Day 0) B cells are characterized by extensive degradation. Pax-5 protein is stabilized in 
activated samples where 5a. 1 is a predominant species. (B) Distinct 5a. 1 and 5a.2 bands 
are clearly visible in a sample from partially activated B cells (Day 1) after an extended 
electrophoresis in 4% SDS (see text). Anti-TFIID antibody was used to monitor the 
amount o f total protein in the samples. The positions of Pax-5a.l, Pax-5a.2, Pax-5d and 
TFIID are indicated on the left. Molecular weight markers in kilodaltons are indicated 
on the right, ivt, in vtro translated protein.
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Figure II.5C: Detection of Pax-5 proteins in resting and LPS-activated B 
cells using the novel sequence-specific antibody 6G11. Nuclear extracts 
from SRBs and LPS-activated B lymphocytes were analyzed by Western blot 
using 6G 11 antibody which recognizes the novel sequence present on Pax-5d 
and Pax-5e. Days of LPS treatment are indicated above each lane. The blot was 
probed with anti-TFIID antibody to assess the levels of total protein in the 
samples. The positions of Pax-5d and Pax-5X species are indicated on the right.

ivt Pax-5d, in vitro translated Pax-5d.
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Figure II.5D: Assessment of the Pax-5a to Pax-5X ratio in 
nuclear extracts from resting and LPS-activated B cells.
Nuclear extracts from resting and activated B cells were 
analyzed by Western blot. Pax-5a and Pax-5X proteins were 
detected using ED-1 and 6G11 antibodies respectively. The 
Pax-5a/Pax-5x (indicated at the left) and Pax-5x/Pax-5a 
(indicated on the right) ratios were determined using the values 
of Pax-5a and Pax-5X band density obtained as described in 
“Materials and Methods”. The calculated ratios refer to the 
intensity of the corresponding bands measured on two 
independent blots, and not to the molar ratio of the two proteins 
in the samples. Days of LPS-treatment are indicated on the 
bottom of the chart. Error bars show the mean ± S.E. with the 
number of replicates (n) indicated below the chart. No 
measurements were available for days 1 and 4 of LPS activation.
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(although the band runs much higher in the gel then would be expected for the 19 kD 

Pax-5e protein). This is not a degradation product of Pax-5a, as it contains the novel 

sequence unique to Pax-5d and 5e.

We were unable to use the ED-1 antiserum to determine relative amounts of Pax - 

5a, Pax-5d and Pax-5X proteins, due to the presence of three strong bands in the region 

around 35-25 kD in nuclear extracts from resting B cells (Figure II.5A), which made it 

impossible to differentiate between Pax-5a degradation products and other Pax-5 

proteins. Furthermore, ED-1 did not recognize the Pax-5X band efficiently, unless greater 

amounts of total nuclear protein were loaded on the gel (not shown). This might be an 

indication of an incomplete paired domain, such as the one present in Pax-5e isoform.

In summary, LPS induced a dramatic upregulation of Pax-5X protein levels 

concomitant with a corresponding drop in Pax-5a.2 levels. This resulted in a 15.6 (+/- 

3.6) fold decrease in the ratio of Pax-5a to Pax-5X protein after resting B cells were 

activated with LPS (Figure II.5D). It should be noted that the ratio o f Pax-5a to Pax-5X 

was calculated based on the relative intensities of the corresponding bands (“see 

“Materials and Methods”), and does not refer to the molar ratios of the two proteins in 

samples. The molar ratios could not be estimated because Pax-5a and Pax-5X protein 

species were detected using two different antibodies with unknown affinities, which 

made it impossible to determine the precise stoichiometry of antibody binding.

Presence of specific Pax-5 protein species in B cell lines.

Our observation that LPS induced a shift in the Pax-5a/ Pax-5X ratio in primary B 

lymphocytes led us to further examine this phenomenon in B cell lines representing
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Figure II.6B: The Pax-5a/Pax-5x ratio changes during B 
cell differentiation. Pax-5a and Pax-5X nuclear protein levels 
were analyzed by Western blot using nuclear extracts of B- 
lymphoid cell lines representing different stages of B cell 
differentiation. Pax-5a and Pax-5X proteins were detected 
using ED-1 and 6G11 antibodies, respectively. The Pax- 
5a/Pax-5x (indicated on the left) and Pax-5x/Pax-5a (indicated 
on the right) ratios were calculated using relative intensities of 
the corresponding bands, which were determined by image 
analysis (“Materials and Methods”). n= l. KEFTL-1, 
HAFTL-1- pro-B cell stage; WEHI-231- immature B cell 
stage; B17.10, 2PK3- mature B cell stage; C H I2- pre-secretor 
(activated) B cell.
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various stages of late B cell differentiation. Previous studies had already shown that the 

transcript levels o f Pax-5a and Pax-5d remain unchanged during B cell development until 

both isoforms cease to be expressed in plasma cells (Zwollo et al., 1997). Relative levels 

of Pax-5a.l, Pax-5a.2, Pax-5d, and Pax-5X proteins were determined in nuclear extracts 

from pro-B, immature B, mature B, pre-secretor B, and plasma cell lines using ED-1 and 

6G 11 antibodies (Figure II.6A).

Using Western blot analysis, we observed that the nuclear levels o f Pax-5a 

isoform do not change significantly in different B cell lines (Figure II.6A, ED -1/TFIID 

panel). In addition, the degradation pattern seen in resting B cells was absent from most 

B cell lines (except the mature B cell line 2PK3). In contrast to Pax-5a isoform, the 

nuclear levels of Pax-5X species were undetectable at the pro-B stage, but later increased 

in a stage-dependent manner (Figure II.6A, panel 6G11). Isoform Pax-5d was present at 

very low levels in pro-B cell lines (Figure II.6A, panel 6G11, lanes 1,2), and was 

undetectable during late stages of B cell development (Figure II.6A, 6G 11 panel, lanes 9- 

11). Interestingly, as in SRBs, Pax-5d and Pax-5x are expressed at the comparable levels 

in the immature and early mature B cell lines (WEHI-231 and B17.10, respectively). 

However, two highly differentiated B cell lines en route to the plasma cell stage (2PK3 

and C H I2) possess the Pax-5X, but not Pax-5d species, similar to the pattern in LPS- 

activated normal B cells. The plasma cell line Sp2/0, as expected, had no detectable 

levels of any Pax-5 proteins.

The relative intensity of the bands was quantified (see Methods), and the ratio of 

nuclear Pax-5a to Pax-5X was determined (Figure II.6 B). As in the previous experiments, 

the estimated values reflect not the molar ratios of the two proteins, but the relative
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intensity o f the corresponding bands. A significant decrease in the Pax-5a to Pax-5X ratio 

correlates with differentiation state of the cell lines, and this is in agreement with our 

LPS-activation experiments using normal B cells. The results suggest that specific Pax- 

5X protein species play an important regulatory role during B cell differentiation.

Changes in Pax-5a DNA binding after LPS activation.

Activities of transcription factors can be regulated by a variety of mechanisms. 

One common post-translational means of regulation is alteration of a factor’s DNA- 

binding activity through structural modifications of its DNA-binding domain (Steegenga 

et al., 1996; Tell et al., 1998). Hence, our next goal was to determine whether LPS- 

activation of mature B cells results in a change in DNA-binding activity of Pax-5 

proteins, using EMSA. Previous EMSA experiments using SRB nuclear extracts had 

identified the presence of two distinct, Pax-5a-like complexes, which were named 5a. 1 

and 5a.2 (Anspach et al., submitted).

Comparison of nuclear extracts from resting and LPS-activated B cells showed a 

shift in the relative amount of the 5a. 1 and 5a.2 complexes (Figure II.7A). In nuclear 

extracts from SRBs, the faster migrating species (5a.2) was a predominant band. 

Interestingly, after LPS treatment, the relative intensity of the two bands reversed, 

shifting toward the slower migrating species (5a. 1) until 5a. 1 became the predominant 

band in the late-activation samples (Figure II.7A, lanes 8-10). The EMSA results 

confirmed our earlier observation that Pax-5 a protein is more susceptible to degradation 

in SRBs, as compared to late stage LPS-activated samples. Several molecular species (all 

lower than Pax-5a) were present in nuclear extracts from SRBs and from early activated
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Figure II.7A: LPS activation induces a shift from Pax-5a.2 to 
Pax-5a.l species. Nuclear extracts (1 pg) from resting and LPS- 
activated B lymphocytes were analyzed using EMSA and 
CD19/BSAP probe. Days of LPS treatment are indicated. Pax-5a 
isoform is represented by two distinct species: Pax-5a.l and Pax- 
5a.2 (indicated). The two bands occur at different ratios in resting 
and activated B cells, with Pax-5a.l being a predominant species 
during late activation stages (Day 7-9). The faster migrating bands 
represent Pax-5-specific complexes, which include Pax-5d isoform 
and Pax-5a degradation products. Lane 1: in vitro translated Pax- 
5a (1 pi lysate); lane 2: probe alone; lanes 3-5: different samples of 
non-activated B cells (SRBs).
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Figure II.7B: Pax-5a.l and Pax-5a.2 species differ in the composition of the 
C-terminus. Nuclear extracts (1 jLLg) from resting and LPS-activated B cells were 
analyzed by EMSA using CD19/BSAP probe. Prior to the assay, the samples 
were incubated with or without C-20 (Pax-5 C-terminus-specific) and N-19 
(Pax-5 N-terminus-specific) antibodies. Supershift with C-20 antibody occurs 
only with Pax-5a.l band, whereas N-19 interacts with all Pax-5 molecules 
containing N-terminal amino acids 1-20. Supershift with N-19 is shown only for 
SRBs, but the results were identical for all samples. Lane 1: probe alone; lane 2: 
ivt Pax-5a ( lp l lysate); lane 3: ivt Pax-5d (2 pi lysate); this lane was taken from a 
longer exposure of the same gel to better define the position of Pax-5d band.
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samples (Figure II.7A, Days 0-4, lanes 3-7), but absent from the late activation stage 

(Figure II.7A, Days 7-9).

Next, nuclear extracts from resting and LPS-activated B cells were pre-incubated 

with one o f the following antibodies: ED-1, OC-1, Pax-5/N19, or Pax-5/C-20 (for 

specificities, see Table I), followed by incubation in the presence of the probe. Earlier 

studies have shown that all Pax-5 species that are capable of DNA-binding can interact 

with the paired domain-specific antibody ED-1 (Zwollo et al., 1998). Our data 

demonstrated that these species also interact with Pax-5/N-19 antibody (Figure II.7B, 

Lane 6 ). This indicated that all the DNA-protein complexes detected in SRB samples 

shared not only the paired domain sequence, but also the N-terminal 19 amino acids 

which are detected by the Pax-5/N-19 antiserum. In contrast, neither the C-terminus- 

specific Pax-5/C-20 antiserum (Figure II.7B, Lanes 5, 8 , 10) nor the partial 

homeodomain-speciflc OC-1 antiserum (result not shown) was effective in inhibiting 

formation of the lower molecular weight DNA-protein complexes. Together, these 

results suggest that all the lower molecular weight Pax-5-DNA complexes contain the C- 

terminally truncated Pax-5 proteins that possess the paired domain sequence and share an 

intact N-terminal region.

The Pax-5/C-20 antibody recognizes the 22 most C-terminal amino acids of Pax- 

5a. In supershift EMSAs, C-20 recognized and supershifted the 5a. 1 band, which 

represents the most abundant Pax-5a species in activated cells (Figure II.7B, Lanes 8 , 10, 

12, 14). Significantly, Pax-5/C-20 was unable to supershift the slightly lower migrating 

5a.2 band present in resting and early activated cells (Figure II.7B, lanes 5, 8 , 10, 12). 

Together with the results of ED-1 and Pax-5/N-19 supershift EMSAs, this observation
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suggests that 5a. 1 and 5a.2 proteins differ in structure at the C-terminus, but not the N- 

terminus. This is particularly interesting given the presence of a repressor domain within 

the last 33 amino acids o f Pax-5a (Dorfler and Busslinger, 1996). Whether the C- 

terminus o f 5a.2 is modified, thereby masking the epitope recognized by C-20, or 

whether it is absent altogether, could not be determined using this method. However, the 

results of Wetern blot analysis (Figure II.5A,B) suggested that 5a.2 may have lost the C- 

terminal region of about 20 amino acids. If the Pax-5a C-terminus is indeed absent, this 

could be either the result of specific proteolysis, or alternatively, the result of alternative 

RNA splicing. In conclusion, the presence of the C-terminal repressor sequence on Pax- 

5a. 1 appears to correlate with B cell activation.

To test the possibility that the 5a.2 protein species represents a novel, alternatively 

spliced Pax-5 variant, we performed RNase protection assays using an anti-sense 

riboprobe pBS.1.2 (Zwollo and Desiderio, 1994) that covers a region between exons 8 

and 10 of Pax-5a. Using RNA prepared from SRBs and LPS-activated B cells, we found 

no evidence for the existence of alternatively spliced isoforms that were missing either 

exon 8, 9, or 10 (data not shown). This is in agreement with earlier experiments, 

including the screening of a spleen cDNA library, which also showed no evidence for 

expression of isoforms lacking the C-terminal repressor domain coding region (Zwollo et 

al., 1997).

Lastly, the EMSA approach could not be used to assess levels of Pax-5d- and 

Pax-5x-containing complexes. We were unable to specifically identify Pax-5d protein in 

SRBs, due to Pax-5a degradation products running with similar mobility to Pax-5d on 

denaturing gels. This problem could not be resolved due to the unavailability of a
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suitable antibody. The anti-Pax-5d monoclonal 6G11 does not recognize the native form 

o f Pax-5d efficiently (Anspach et al., submitted) and, hence, could not be used for 

EMSAs. Analysis of LPS-activated samples by EMSA detected neither Pax-5d- nor Pax- 

5x-specific complexes. The absence o f Pax-5d bands is not surprising since Pax-5d 

protein was not detected in the activated samples (as determined by Western blot). The 

lack of DNA-binding activity in Pax-5X species is probably due to its incomplete paired 

domain, in agreement with the hypothesis that Pax-5X represents Pax-5e.

In summary, EMSA analysis revealed that LPS-activation of normal mature B 

cells induced post-translational changes of isoform Pax-5a. This resulted in a significant 

decrease in levels of a Pax-5a species (5a.2) in which the C-terminal repressor domain 

has been either lost or modified. Simultaneously, LPS activation correlated with an 

increase in Pax-5a species with an intact repressor domain, namely Pax-5a. 1. Post- 

translational changes of the repressor domain of Pax-5a may modulate its function in 

LPS-stimulated B lymphocytes.

DISCUSSION

In this study we analyzed the function of Pax-5d in relation to Pax-5a activity. 

Among the Pax-5 isoforms generated by alternative splicing, Pax-5a and Pax-5d present a 

special interest because they are the two most abundant isoforms in mature B cells, are 

both capable o f binding to DNA, and are dramatically different in the composition of 

their C-termini. Studies on the related Pax-8 gene had shown previously that it expresses 

at least six alternative isoforms that are developmentally expressed and display
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differential tranactivating potential (Kozmik et al., 1993). Similarly, Pax-5 isoforms may 

differ in transactivating potential as well.

Our results demonstrated that, opposite to Pax-5 a, Pax-5 d functions as a repressor 

o f transcription. The two isoforms compete for binding to Pax-5-specific sites on DNA, 

Contrary to our initial hypothesis, the ratio of Pax-5a to Pax-5d does not seem to change 

significantly during B cell differentiation due to very low protein levels of Pax-5d in 

normal B lymphocytes, as well as in different B cell lines. However, the ratio o f Pax-5a 

to Pax-5e, the novel, Pax-5e-like species, decreases dramatically during late stages o f B 

cell differentiation, suggesting an important role for the Pax-5X protein in regulation of 

transcription during B cell activation. In addition, we showed that activation signals 

induce stabilization of Pax-5a isoform leading to the retention of the C-terminal repressor 

sequence. Together, our data indicates that, in activated B lymphocytes, the 

transcriptional activity of Pax-5a (BSAP) transcription factor may be regulated through 

translational and post-translational mechanisms. The pathways involved in these 

mechanisms are directed to inhibition of Pax-5a activity, which is achieved either through 

structural modifications Pax-5 a protein or by upregulation of the alternative Pax-5 

isoform(s) with dominant-negative functions.

Pax-5d is a repressor of Pax-5a activity.

In the first set of results, we demonstrate that Pax-5d has a transactivation 

function opposite to that of Pax-5a and acts as a transcriptional suppressor. In addition to 

repressing the activity of endogenous Pax-8 in the kidney cell line COS-1 in a dose- 

dependent manner, more significantly, we also show that Pax-5d can similarly repress
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activity of Pax-5a in NIH 3T3 cells. Thus Pax-5a and Pax-5d have an opposite regulatory 

function in vivo. Together, our functional studies suggest that Pax-5d functions as a 

transcriptional repressor that regulates activity of Pax-5a and affects expression o f Pax-5 

target genes.

The observed repressor function of Pax-5d is most likely the result o f the absence 

o f a transactivating domain, although this needs further investigation. The lack of both 

the transactivating domain and the adjacent, extreme C-terminal repressor domain, which 

are present on Pax-5a, prevents interaction of Pax-5d with the basal initiation complex. 

While different at the C-terminal regions, the two isoforms share an intact paired domain 

and the octamer sequence. The latter has been shown to interact with the co-repressor 

Groucho4 although it is unclear what the functional significance of this interaction is in 

the B cell (Eberhard et al., 2000). Both the octamer motif and the partial domain are 

capable o f interacting with the Retinoblastoma protein and the TATA-box binding 

protein (Eberhard and Busslinger, 1999), but it remains to be determined whether Pax-5d 

would interact with such proteins as well, as the Pax-5 a specific partial homeodomain 

may also be necessary for this interaction (Eberhard and Busslinger, 1999). The presence 

o f two protein-protein interaction regions, identical to those found in Pax-5a isoform, 

may allow Pax-5d bind to the partner-proteins that can be involved in interactions with 

Pax-5a. The shared specificity for binding partners may result in a competition between 

Pax-5a and Pax-5d for binding not only to Pax-5 recognition sites on DNA, but also for 

certain accessory factors and partner-proteins.
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The ratio of Pax-5 proteins changes as mature B cells become activated.

Our data clearly show that regulation of Pax-5a and Pax-5d activity during B cell 

activation by LPS treatment does not occur at the transcriptional level. The ratio of Pax - 

5a/Pax-5d mRNA remains unchanged during the entire activation period of 9 days. In 

contrast, a number of changes were observed at the protein level. An initial increase in 

Pax-5a levels in nuclear extracts was observed at days 2-4 after LPS stimulation 

corresponding with active B cell proliferation, followed by a decrease to pre-LPS levels 

by day 5 or 6, as reported previously by Wakasuki et al. (1994). Contrary to our 

hypothesis about the role of the Pax-5a/Pax-5d ratio in regulation of Pax-5a function, the 

nuclear levels of Pax-5d were very low in resting B lymphocytes and undetectable in 

activated cells. However, we detected a new band at ~27 kD which represents a yet 

unidentified protein species named Pax-5X. The intensity o f Pax-5X band increases 

dramatically in nuclear extracts during the late activation stages (days 5-9), 

concomitantly with the decrease in the Pax-5a levels. Together, these changes lead to a 

significant decrease in the 5a/5x ratio as B cells become activated by LPS. The Pax-5X 

band has also been detected in nuclear extracts of various B cell lines, where its intensity 

was higher in cell lines representing late stages of differentiation. Thus, the ratio of Pax- 

5a to Pax-5X proteins decreases during activation and differentiation of B lymphocytes.

The exact nature of Pax-5X species is unknown at this time. Western blot of 

resting and activated SRBs shows that the 27 kD band can interact with the novel 

sequence-specific antibody 6G11, but is undetectable using the paired domain antiserum 

ED-1. These results indicate the presence of the novel sequence and suggest that the 

paired domain is either incomplete or absent. The fact that Pax-5X does not possess any
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detectable DNA-binding activity suggests that the Pax-5X band may represent the Pax-5e 

isoform. However, the expected size of Pax-5e is 19 kD. One possible explanation for 

the ~8 kD difference in size between Pax-5e and Pax-5X is that the band represents a 

modified form of the Pax-5e protein. Pax-5e might be modified through such post- 

translational modifications as O-glycosylation or formation of disulfide bonds. These, 

however, requires further investigation. Finally, we cannot exclude the possibility that 

Pax-5X band represents an N-terminal degradation product of Pax-5d. Identification of 

Pax-5X species is the focus of our current research.

B cell activation corresponds with an increase in Pax-5a.l protein.

The protein patterns of Pax-5a changed during the early stages of activation (days 

1-4), and this correlated with activation-induced proliferation of B cells (Wakatsuki et al.,

1994). Most strikingly, activation signals triggered an increase in the relative level of 

5a. 1 and concomitant decrease in 5a.2 molecular species. In our experiments, we have 

shown that the emergence o f a slower migrating 5a. 1 complex was due to a modification 

at the C-terminus of Pax-5a protein.

We hypothesize that specific proteases remove the C terminal sequence from Pax- 

5a. 1 in resting, but not activated/proliferating B cells. Proteases also apparently cause 

multiple degradation bands in resting B cell nuclear extracts. The observed effect is 

unlikely to be a result o f nuclear extract preparation, because all the buffers used for this 

procedure contained several protease inhibitors (see “Materials and Methods’'). 

Moreover, the identical patterns were observed in several independent experiments in 

which samples originating from different sources were used (i.e. cell lines, different



strains of mice). It is unclear how Pax-5a in activated B cells and proliferating cell lines 

is “protected” from specific proteolysis. To confirm this hypothesis, the half-life of Pax - 

5a protein has to be determined in resting and LPS-activated B cells, which can be 

achieved using pulse-chase assays.

In support of a functional role for C-terminus-initiated degradation, is the 

presence of a potent repressor domain in this region (see Figure II. 1; Doefler and 

Busslinger, 1996). Since both 5a. 1 and 5a.2 forms are present in resting B cells, but only 

the repressor-containing form is present in proliferating B cells, this may define the set of 

Pax-5 target genes during each of the two developmental stages. Nutt et al. (1998) 

showed that a subset of Pax-5 target genes, including those for which Pax-5 functions as 

a recruiter (e.g. mb-1), can be regulated by the paired domain alone. In contrast, other 

target genes require the complete Pax-5a sequence including the C-terminal 

transactivating domain (e.g. CD19). We speculate that, in resting B cells, specific C- 

terminal proteolysis generates an array of shorter Pax-5a with distinct transactivating 

activities.

Proteolysis is a common mechanism that quickly and irreversibly regulates 

transcription factor function. This means of regulation is particularly useful when cells 

need to respond rapidly to changes in their environment. Several eukaryotic transcription 

factors, including NF-kB, p53, c-Myc, and c-Jun, have been shown to be regulated by 

proteolytic events, most of which involve the ubiquitin-proteasome pathway (reviewed 

in Peters, 1994; Pahl and Baeuerle, 1996). Proteolytic degradation may occur either in 

cytoplasm (e.g., NF-kB (Thanos and Maniatis, 1995)) or in the nucleus (e.g., H IF -la
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(Salceda and Caro, 1997)), indicating that this process is mediated by the specifically 

localized proteasome systems.

The lability of many regulatory proteins is critically important under normal 

conditions. The disruption of proper steady-state levels of these proteins may have 

deleterious consequences for a cell (Treier et al., 1994). However, in some cases, protein 

stability changes drastically when cells are subjected to a stressful stimulus. Wild-type 

p53, for instance, is a short-lived nuclear transcription factor which becomes stabilized 

and activated following cellular stress or DNA damage (Pahl and Baeuerle, 1996). The 

exact mechanism of this stabilization is not clearly understood, but thought to be 

regulated by multi-site phosphorylation (Steegenga et al., 1996; Meek, 1998). Another 

example is the hypoxia-inducible factor-la  (H IF-la), a transcriptional activator complex 

involved in regulation of several hypoxia-regulated genes (Salceda and Caro, 1997). 

Under normoxic conditions, H IF -la  is continuously degraded in the nucleus by the 

ubiquitin-dependent pathway. The lack o f oxygen, or hypoxia, induces stabilization and 

accumulation of H IF -la  followed by subsequent activation of its target genes (Salceda 

and Caro, 1997). The signals triggering stabilization of the H IF -la  protein are currently 

unknown; however, some evidence suggests that redox-mediated changes might be 

involved (Salceda and Caro, 1997).

Thus, stress-induced stabilization of transcription factors is a well-documented 

phenomenon which may take place in activated B lymphocytes. It remains to be 

determined whether Pax-5a degradation, occuring in resting B cells, involves the 

ubiquitin-proteasome pathway. Further investigations are needed to identify the factors
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which contribute to susceptibility of Pax-5a to degradation, as well as to its stabilization 

during activation.

Effects of changes in Pax-5 proteins on Pax-5/BSAP target genes

The increased levels of Pax-5X induced during B cell activation may inhibit Pax- 

5a function through competition for various accessory factors, thereby aiding in down- 

regulation of certain Pax-5 target genes during this stage. One possible effect of such 

competition is the relief of Pax-5 a repressor function. Many of the genes negatively 

regulated by Pax-5a, such as J  chain and Ig heavy chain genes, are not expressed until the 

late stages of B cell differentiation (pre-secretor to mature plasma cell). Their expression 

indicates an inhibition of negative transcriptional control exerted by Pax-5 a, although 

Pax-5a is clearly still present in the nucleus during this time. Although the mechanism of 

de-repression is currently unclear, it is possible that Pax-5x plays an important role in 

attenuating Pax-5a activity during transition of B cells to the plasma cell stage.
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Chapter III

Preliminary Studies of the Activity of Pax-5 isoforms in
vivo and in vitro

The studies presented in this chapter aimed to address various aspects o f Pax-5 

function using alternative experimental approaches. These included development of a 

novel transfection system for the analysis of Pax-5a/Pax-5d competition (Section 1), 

examination o f B cell activation in aged B lymphocytes (Section 2), and activation 

studies in the immature B cell line WEHI-231 (Section 3). The experiment described in 

Section 4 is a part of an ongoing study that deals with identification of Pax-5X species.

1. Staggered Transfections

In Pax-5d, the entire transactivation domain and the homeodomain homology 

region have been replaced with a novel sequence of unknown function (Zwollo et a l., 

1997). As stated previously, the absence of an important C-terminal module may 

significantly change the activation function Pax-5 (Anspach et al., submitted). Thus, 

while the Pax-5d isoform can efficiently bind to DNA, it fails to interact with the 

transcription initiation complex and can have a dominant-negative effect on transcription. 

This hypothesis is supported by transient transfections studies presented here, which 

revealed that Pax-5d and Pax-5a isoforms have the opposite effects on the transcription of 

an artificial minimal promoter construct containing Pax-5 binding sites from the CD 19
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promoter (Chapter II). Functional studies also indicated that the two isoforms (Pax-5a 

and Pax-5d) may compete for binding to Pax-5 DNA binding sites (Chapter II). 

Intriguingly, in our competition experiments, the activity of Pax-5a was inhibited only 

when very high levels of Pax-5d expression construct were trasnsfected, and the Pax- 

5a/Pax-5d ratio (based on the amount of the transfected DNA) was less than 1/10. Three 

possibilities could explain these findings. First, Pax-5d protein may be degraded more 

rapidly than Pax-5a (at least in the chosen cell line). Second, Pax-5d may have a lower 

affinity for Pax-5 binding sites in vivo, as compared to Pax-5a. As a result, Pax-5d may 

be unable to bind to DNA in the presence of Pax-5a. Finally, it cannot be excluded that 

the two isoforms differ in the rate and efficiency of transcription and/or translation.

To rule out the possibility of differential affinity, a “staggered” transient 

transfection system was developed. In this system, the reporter construct y42(3i)AS-CAT 

was first co-transfected with the Pax-5d expression construct followed, 20-24 hr later, by 

a second transfection on the same cells with the Pax-5a expression construct alone. Cells 

were incubated for additional 20-24 hr and then processed as cell lysates (for CAT 

assays) and nuclear extracts (for Western blot analyses and EMSA) according to standard 

methods (Chapter II). A control co-transfection with HBIICAT and pcDNAS (Chapter 

II) was performed to determine the effect of “staggered” transfections on transfection 

efficiency. Additional controls included a panel of samples transfected at either first or 

second day only. These controls were designed to assess the levels of protein expression 

at 24 and 48 hr after introduction of the constructs (Figure III. 1 A).

The rationale behind this approach was based on the assumption that if the 

pcDNA5d effector construct was introduced into the system prior to Pax-5a expression,
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Figure III.1A: “Staggered” transfection method. Various combinations of
constructs were transiently co-transfected into NIH 3T3 cell line in a “staggered” 
fashion: the reporter construct y42(3i)AS-CAT was first co-transfected with the 
Pax-5d (or Pax-5a) expression construct followed, 20-24 hr later, by a second 
transfection on the same cells with the Pax-5 a (or Pax-5 d) expression construct 
alone. A pcDNA3 vector without insert was used to maintain equal amounts of 
transfected DNA. After total 48 hr of incubation, the samples were collected, and 
cell extracts were analyzed by CAT assay, Western blot, and EMSA.
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the Pax-5d isoform may have a chance to occupy the binding sites and, later, prevent 

Pax-5a from binding. It was, therefore, hypothesized that binding competition could 

occur at low Pax-5d concentrations if  this transcription factor had a sufficient time to be 

synthesized and to bind to a target site on DNA without competition from Pax-5a.

CAT assay results from the pilot experiments provided some evidence for that 

hypothesis (Figure III.IB, see “Samples”). With the Pax-5a/Pax-5d ratio of 1/5 

(according to the amount of transfected DNA), we observed a three fold decrease in the 

relative CAT conversion for samples transfected with the Pax-5d effector construct first 

followed by the Pax-5 a construct transfection on the second day, as compared to the 

sample with the reversed order of the introduced constructs (compare 55.6% for [5a+5d] 

to 18% for [5d+5a]). However, a more careful experimental design, which included 

additional controls, proved our initial results unreliable due to significant differences in 

the protein levels present in the samples after 24 and 48 hours of transfection (Figure 

III.IB, see “Controls”). For example, the CAT expression level in the Pax-5a control 

samples collected 48hr post-transfection was 10.6 fold higher than in those samples 

which were incubated only for 24hr (81.7% for [5a-day 1] vs. 7.7% for [5a-day 2]). 

Likewise, the length of incubation had an effect on the CAT activity induced by the 

HBIICAT construct (compare 100% for [HBIICAT-day 1] to 79.4% for [HBIICAT-day 

2]) and in the samples co-transfected with Pax-5a and Pax-5d simultaneously (compare 

28.5% for [5a/5d-day 1] to 7.2% for [5a/5d-day 2]). After a thorough analysis of these 

data, we concluded that the difference in CAT activity observed in the “staggered” 

samples is not based on Pax-5a/Pax-5d binding competition, but is more likely to be
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Controls- Day 1 j Controls- Day 2 ; Samples

Figure III.1B: CAT assay of staggered transfection samples. The effector 
constructs, pcDNA5a (0.1 jag) and pcDNA5d (0.5pg), were cotransfected into 
NIH 3T3 cell line in combination with the y42(3i)AS-CAT reporter construct 
(0.5jag). The effectors were introduced in a staggered fashion to assimilate a 
situation in which Pax-5d binds to DNA without competition from Pax-5a (see 
text for details). Controls included samples transfected with one or both 
constructs at either day 1 or day 2 of the experiment. Percent CAT conversion 
was determined as described in “Materials and Methods” (Chapter II) and 
normalized to the percent conversion value for “HBIICAT- d ay l” sample set at 
100%.
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determined by different concentrations of Pax-5a present in the samples at any particular 

time-point.

To confirm conclusions that were made based on the experimental data, nuclear 

extracts from the transfected samples were analyzed using Western blot and EMSA as 

described (see “Materials and Methods”, Chapter II). Pax-5a and Pax-5d protein levels 

were assessed and DNA-binding patterns determined using isoform-specific antibodies 

(ED-1 and 6G11) (Figure III.ID) and the CD19/BSAP probe (Figure III. 1C). The results 

o f these experiments do indeed indicate that, after 24 hr post-transfection, the protein 

levels of both isoforms are barely detectable (Figure III.ID), which consequently results 

in a low signal from the bound probe in EMSA (Figure III. 1C). In contrast, after 48 hr 

incubation, the protein levels are readily detectable allowing for more accurate data 

analysis.

Although Western blot analyses and EMSA were used for an assessment of the 

protein levels in the transfected samples, it is important to note that the levels of Pax-5a 

and Pax-5d in the nuclear extracts are not necessarily equivalent to those that drive the 

expression of the CAT gene measured by CAT assay (Figure III. IE). The measurements 

o f Pax-5a and Pax-5d levels obtained by Western blot for each time-point correspond 

with CAT activity at some undetermined time in the future, after transcription and 

translation of CAT protein (“delay factor”). Thus, the main complication with using the 

“staggered” transfection approach is that it is difficult to correlate the levels of Pax-5 

isoforms at a given time-point with the activity of the target promoter at that time. This 

problem can be solved by determining the currently unknown “delay factor” . This will 

involve: 1) measuring protein levels of Pax-5a and Pax-5d at several points within the
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Figure III.l (see next page): Analyses of expression levels and DNA-binding 
activities of Pax-5a and Pax-5d proteins in “staggered” transfection samples.
NIH 3T3 cell line was transfected with Pax-5a and Pax-5d expression constructs 
using the “staggered” transfection approach (see text). Control samples were used 
to determine the relative levels o f the expressed proteins after 24 (day 1) and 48 
(day 2) hr post-transfection. (C) Nuclear extracts (1 pg) from the “staggered” 
transfection samples were analyzed by EMSA using CD19/BSAP probe (see 
Chapter II, “Materials and Methods”), ivt, in vitro translated Pax-5a (1 pi lysate) 
and Pax-5d (2 pi lysate). (D) Nuclear extracts from the “staggered” transfection 
samples were analyzed by Western blot using the paired-domain-specific 
antibody ED-1. The blot was simultaneously probed with anti-TFIID antibody to 
monitor the amount of total protein in the samples. The positions of Pax-5a 
proteins and TFIID are indicated by arrows. The band at ~27 kD represents Pax- 
5X species (for more detail, see Chapter II and Section 4).
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staggered transfection time-period to establish the patterns and dynamics o f their 

expression; 2) measuring CAT activity over a time range in the samples transfected with 

each individual isoform, as well as their combinations; and, finally, 3) determining how 

long does it take from binding of Pax-5 transcription factors to the promoter of the 

y42(3i)AS-CAT DNA construct, to expression of CAT protein. In these investigations, 

assaying the system for CAT transcripts using RNAse protection assay may provide 

additional information about the dynamics of CAT transcription/translation.

In conclusion, the “staggered’" transfection approach did not provide unequivocal 

data that would help to resolve the problem of concentration disparity in Pax-5a/Pax-5d 

binding competition. It is still unclear what conditions and requirements have to be 

satisfied in order for such competition to occur. Determination and comparison of Pax-5a 

and Pax-5d protein half-lives may help in better understanding of the interactions 

between the two isoforms. Based on the results of those experiments, it might possible to 

predict whether Pax-5a/Pax-5d binding competition is physiologically relevant. 

Although the “staggered” transfections did not provide conclusive results at this time, the 

approach can be potentially developed into a useful tool for studies of protein-protein 

interactions between Pax-5 isoforms and for investigation of their cooperative effect on 

gene transcription.
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Figure III.1E: Hypothetical diagram of expression patterns of Pax-5a, Pax- 
5d, and CAT proteins in “staggered” transfection experiments. When 
pcDNA5a and y42(3i)AS-CAT constructs are co-transfected into NIH 3T3 cell 
line, expression of the CAT protein is delayed by an unknown factor which 
reflects the time necessary for transcription/translation of Pax-5a and its 
interaction with the CAT promoter. Subsequent introduction of the pcDNA5d 
construct will inhibit the expression of CAT, however this event will also be 
delayed. Consequently, the transactivating effect exerted by a combination of 
Pax-5 a and Pax-5d that is present in the system at any particular time-point (such 
as indicated by a star) can only be assessed by measurements of CAT activity at 
the later time-point. Therefore, the protein levels of Pax-5a and Pax-5d 
determined using Western blot and EMSA do not reflect the concentrations of 
these proteins effective in the regulation of the CAT promoter.
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2. LPS-activation of SRBs isolated from aged mice

Aging has been associated with profound changes in the immune system 

including elevated susceptibility to infections, increased incidence of autoimmune 

disorders, and decrease in quality of humoral immune response (Ghia et al., 2000). Age- 

associated decline of humoral immunity results from altered B lymphopoesis, reduced 

production of B cells, and an impaired antibody response. The immunoglobulins 

generated by the aging immune system often possess autoreactive properties in addition 

to their decreased diversity and low affinity (Song et al., 1997; Ghia et al., 2000). While 

no experimental evidence is available at this time, it would not be surprising if the 

dramatic changes in the characteristics of the B cell could be correlated with alterations in 

the expression or activity of transcription factors involved in development and 

differentiation of B lymphocytes. This has already been demonstrated for senescent T 

lymphocytes which display age-related decline in the expression of genes encoding such 

products as c-Fos, c-Jun, c-Myc, and c-Myb (Pieri et al., 1992; Song et a l., 1992). 

Alteration of gene transcription occurring in aged cells inevitably involves changes in the 

associated regulatory molecules. Consequently, age-related deregulation of 

hematopoietic transcription factors may have a powerful impact on the functioning and 

health of the senescent immune system.

Recent investigations in our lab have focused on identification of age-related 

changes in B cell-specific transcription factor Pax-5. Resting mature B cells of young (2- 

4 month old) and aged (18-23 month old) mice were used for comparative analyses of 

Pax-5a and Pax-5d isoforms, their expression patterns and DNA-binding activities 

(Anspach et al., submitted). It was found that, while the protein levels of the two
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isoforms remain constant in both experimental groups, the DNA-binding activity of Pax- 

5a, but not Pax-5d, is significantly reduced in aged B cells. This decline in DNA-binding 

has been shown to correspond to changes in the expression of at least two Pax-5 target 

genes, both o f which are associated with Ig genes and negatively regulated by Pax-5 

(Anspach et al., submitted). In that work, one of the proposed hypothesis stated that an 

age-associated decrease in Pax-5a DNA-binding activity may result in deregulated class 

switching and attenuated proliferative capacity of activated B lymphocytes. Thus, one of 

the projects presented here aimed to analyze mitogenically stimulated B cells obtained 

from aged mice, and investigate the effect of LPS treatment on the expression and DNA- 

binding patterns of Pax-5 proteins.

Splenic small resting B lymphocytes were obtained from six 21 month old 

BALB/c mice and cultured in LPS-containing medium as described (Chapter II). It is 

important to note that, while in these experiments the isolated B cells were pooled for 

convenience, this practice should be avoided in the future due to the potentially high 

variability in biochemical and physiological characteristics among aged animals. The 

samples of LPS-treated cells were collected at 0 (Day 0), 48 (Day 2), 96 (Day 4), 144 

(Day 6), and 192 (Day 8) hours post-stimulation, and processed for nuclear extracts, 

which were further used for Western blot analyses and EMSA. Curiously, the 

experimental cultures contained a high proportion of adherent lymphocytes which had 

not been seen in the previous studies with SRBs from young mice. This phenomenon 

could be a result of the increased proportion o f cells expressing high levels of leukocyte 

function-associated antigen-1 (LFA-1). LFA-1 belongs to the integrin family of cell 

surface molecules which have an important role in cell adhesion and are expressed at
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moderate levels on all subsets of leukocytes (Hogg and Berlin, 1995). Typically, effector 

and memory lymphocytes are characterized by elevated levels of LFA-1 expression 

which amplifies their capacity for migration into inflamed tissues (Hogg and Berlin, 

1995). Age-associated changes in lymphocyte adhesion have been reported for the 

senescent SAM-P/8 and SAM-R/1 mice, and are attributed to the increase in the relative 

number of memory cells expressing high levels of LFA-1 (Powers et al., 1992).

Western blot analysis of LPS-activated aged samples revealed no significant 

changes in either Pax-5a or Pax-5X protein levels (Figure IIF2A). This is in contrast to 

activated young SRBs in which variable levels of the two protein species were observed 

at different time-points of LPS stimulation, with the Pax-5a/Pax-5x ratio decreasing 

gradually in activated B lymphocytes (see Chapter II, Figure II.5A-D). The Pax-5a.2 

band was not clearly defined in resting aged B lymphocytes, although, similarly to young 

SRBs, these samples showed an extensive Pax-5 degradation pattern which was absent 

from the nuclear extracts of activated lymphocytes (Figure III.2A, ED-1/TFIID panel). 

In contrast to young SRBs, the Pax-5d band was not detectable at any time-point (Figure 

III.2A, 6G11 panel).

Next, nuclear extracts from LPS-activated aged SRBs were analyzed by 

electrophoretic mobility shift assay using a CD19/BSAP probe (Chapter II). Prior to the 

assay, nuclear extracts were pre-incubated without the probe with Pax-5/C-20 antibody 

(Table I) to distinguish between Pax-5a. 1 and Pax-5a.2 species identified in our earlier 

studies (Anspach et a l., submitted; Chapter II). In agreement with data on young mice 

(Anspach et a l., submitted), the nuclear extracts of aged resting B cells also had no 

detectable Pax-5a bands, indicating a dramatic decrease in the amount of Pax-5a protein



1 0 2

TFIID

ED-1/TFIID

Figure III.2A: Western blot of LPS-activated SRBs from aged mice. Nuclear 
extracts from LPS-activated aged (from 21 month old mice) B lymphocytes were 
separated on SDS-PAGE, and filters were probed with anti-paired domain serum 
ED-1 (top panel) and the novel sequence-specific antibody 6G 11 (bottom panel). 
Anti-TFIID antibody was used simultaneously with ED -1 to monitor the total 
amount of protein in the samples. The positions of Pax-5 isoforms and TFIID are 
indicated by arrows. Duration of LPS treatment in days is indicated above the lanes. 
“Day 2” sample (lane 3) was partially lost due to a defect in the gel and may not 
represent a true result for that time point.
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bound to the CD19/BSAP probe (Figure III.2B, lane 3-6). Consequently, the DNA- 

binding activity of the Pax-5d isoform could be enhanced through availability of more 

DNA binding sites. The presence of two distinct bands running close to Pax-5d position 

provides evidence for this model. However, due to the lack of a suitable Pax-5d-specific 

antibody, it cannot be excluded that these bands represent paired domain-containing Pax- 

5a degradation products which retained their DNA-binding ability. Interestingly, these 

bands disappeared after LPS treatment of B cells, similarly to the effect observed for 

young activated SRBs (Figure II.7A, Chapter II). Furthermore, the Pax-5a band emerged 

on day 4 o f LPS-activation (Figure III.2B, lane 7, 9, 11) and became progressively 

stronger by day 8. Based on its interaction with the C-terminus-specific antibody C-20, 

the observed band has been previously hypothesized to represent Pax-5a.l species which 

contain an intact C-terminal regulatory module, consisting of the transactivation domain 

and the adjacent repressor sequence. Activation-induced stabilization/modification of the 

Pax-5a C-terminal region has been reported in the experiments with SRBs from young 

mice (Chapter II), which suggests that Pax-5a.l species have an important function 

during activation and differentiation of B lymphocytes in response to mitogenic 

stimulation.

In summary, activation experiments with SRBs isolated from aged mice have 

demonstrated two important differences from young mice. Aged SRBs have no 

detectable Pax-5a.2 band, and the ratio of Pax-5a to Pax-5X proteins remains constant in 

all activated aged samples, in contrast to its dramatic decrease observed during activation 

o f SRBs from young mice. Nevertheless, the samples from both age groups show 

activation-associated stabilization of the Pax-5a isoform, with the ensuing accumulation
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Pax-5a

Pax-5d

10 11 12

Supershift  
with C-20

C-20

Figure III.2B: EMSA of LPS-activated SRBs from aged mice.
Nuclear extracts (lpg) from LPS-activated aged SRBs were analyzed by 
EMSA using CD19/BSAP probe. Some samples (lanes 4, 6, 8, 10, 12) 
were pre-incubated without the probe for 15 min at room temperature 
with Pax-5a C-terminus-specific antibody, C-20. The resulting 
supershift complex between the full length Pax-5a (see text) and C-20 is 
indicated on the right. Duration of LPS treatment in days is shown at 
the bottom. Positions of Pax-5a and Pax-5d complexes are indicated on 
the left. Lane 1: CD19/BSAP probe alone; Lane 2: in vitro translated 
Pax-5a (1 jllI lysate) and Pax-5d (2jll1 lysate).
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of the full-length Pax-5a.l protein containing the repressor sequence. The experimental 

data have also confirmed age-related reduction of Pax-5a DNA-binding activity in 

senescent non-stimulated SRBs, as well as the loss of Pax-5d DNA-binding in the 

activated samples, previously determined by aging and activation studies conducted in 

our lab. As for SRBs from young animals, the physiological significance of the observed 

events has yet to be determined. However, it is clear that, while fundamentally similar, 

the activation processes in young and aged lymphocytes display age-specific differences 

that trigger distinct patterns of Pax-5a and Pax-5d protein expression and DNA-binding. 

These differences may contribute, at least partially, to the age-related decline of humoral 

response to mitogenic challenge and affect the quality of the antibodies produced by aged 

B lymphocytes.

3. WEHI-231 activation

Western blot analysis of Pax-5 proteins in B cell lines representing various stages 

o f B cell differentiation revealed that the patterns of the alternatively spliced isoforms 

change in a stage-specific manner (see Chapter II). Furthermore, the isoform levels and 

the respective protein ratios found in the immature B (WEHI-231) and early mature B 

(B17.10) cell lines were most similar to those seen in partially activated normal B cells, 

whereas the cell lines representing later stages were comparable to activated B 

lymphocytes (Figure II.6A, Chapter II). Based on this observation, we sought to 

investigate whether activation of the immature B cell line W EHI-231 in vivo can induce 

processes similar to those occurring during activation of normal B lymphocytes. More
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specifically, this project aimed to determine whether activation of the W EHI-231 cell line 

triggers similar changes in Pax-5 isoforms, their protein levels, and DNA binding 

patterns.

WEHI-231 is a murine B cell line with the IgM+/IgD+ surface phenotype 

(Gottschalk and Quintans, 1995). Although this phenotype is typical for mature B cells, 

W EHI-231 is commonly used to study immature B lymphocytes because it shares several 

characteristics of the immature B cell stage, such as the ability to undergo apoptosis 

through pathways similar to those used in negative selection (Gottschalk and Quintans,

1995). Moreover, this cell line is frequently exploited for B cell activation studies, as 

WEHI-231 cells display unique sensitivity to antigenic stimulation. Depending on the 

source of a subline and the nature of an antigen, WEHI-231 cells may respond to 

stimulation by either undergoing growth arrest and apoptosis, or by proliferation and 

further differentiation into antibody secreting cells (Gottschalk and Quintans, 1995; Aoki 

et al., 1995). This responsiveness was utilized for activation studies in which the WEHI- 

23 1 cell line was stimulated by either IgM cross-linking or by culturing in the presence of 

bacterial lipopolysaccharide (LPS). Typically, 2-5x107 cells were either treated with 25 

mM IgM F(ab’)2 fragment for 3 min (Aoki et al., 1995), or activated by LPS as described 

(Chapter II). The cells were incubated for specified periods of time and then processed 

for nuclear extracts according to standard methods (Chapter II).

The results of Western blot analyses of activated WEHI-231 samples showed that 

the protein level of the Pax-5a isoform remains unchanged regardless o f the type of 

antigen used in the experiment (Figure III.3A; ED-1/TFIID panel). The levels of Pax-5d 

were relatively low in all samples and did not change significantly during 48 hr o f IgM
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Figure III.3A: Western blot of activated WEHI-231 samples.
W EHI-231 cells were activated by either IgM cross-linking or 
treatment with LPS. Nuclear extracts were collected at times 
indicated above the lanes, and patterns of Pax-5 proteins were 
analyzed using antibodies specific for Pax-5 functional domains. 
Paired domain-specific ED-1 can recognize all Pax-5 isoforms; the 
novel sequence-specific 6G11 detects only Pax-5d and Pax-5e. 
Anti-TFIID antibody was used to monitor the amount of total 
protein in the samples.
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cross-linking and in the first 10 hr of LPS-activation (Figure III.3A; 6G11 panel). 

Eventually, the intensity o f Pax-5d band decreased in both anti-IgM- and LPS-treated 

samples (at 72 hr and 24 hr, respectively), although the reduction was not as noticeable 

for the cross-linked samples (Figure III.3A, 6G11 panel, lanes 5, 8, 9).

Similarly to splenic B lymphocytes, WEHI-231 cells contain the unidentified Pax- 

5X species migrating at ~27 kD (compare to Figure II.5C, Chapter II). The intensity of 

the Pax-5X band increased when WEHI-231 cells were activated by either IgM cross- 

linking (at 72 hr) or LPS stimulation (at 24 hr) (Figure III.3A, 6G 11 panel). The 

observed change, though not very dramatic, is similar to the pattern seen in LPS-activated 

SRBs (compare to Figure II.5C, Chapter II), which suggests that this might be a widely 

occurring phenomenon having a functional significance during B lymphocyte activation.

Analysis o f W EHI-231 nuclear extracts by EMSA revealed the presence of three 

distinct Pax-5 complexes in non-activated cells: a slower-migrating Pax-5a band (5a. 1) 

and two faster-migrating complexes running close to Pax-5d position (Figure III.3B, lane 

3). Since, according to Western blot data, the protein levels of Pax-5d were very low in 

the experimental samples, the lower bands are likely to represent either Pax-5a 

degradation products or other Pax-5-specific complexes (rather than the Pax-5d isoform). 

In agreement with the Western blot data, analyses of nuclear extracts from WEHI-231 

activation samples by EMSA showed no significant change in Pax-5a binding pattern for 

resting and activated WEHI-231 cells (Figure III.3B). The observed Pax-5a band 

corresponded to the previously identified Pax-5a.l species, which is able to interact with 

the C-terminal-specific antibody, C-20 (supershift with C-20 is not shown) (Anspach et 

al., submitted; Chapter II).
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lysate) and Pax-5d (2pl lysate).
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In conclusion, activation of WEHI-231 cells by either IgM cross-linking or LPS 

treatment had no effect on either expression or DNA-binding patterns of the Pax-5a 

isoform. This is not surprising as Pax-5a (BSAP) has been implicated in cell 

proliferation (see Chapter I, Section 2.2), a function which is unlikely to be altered when 

a mitogen is added to a continuously dividing B cell line. In contrast, activation-induced 

changes were observed in the protein expression of the Pax-5X species, which suggested a 

functional role for this protein (or complex of proteins) in activated B lymphocytes. 

Further characterization and comparative analyses of W EHI-231 activation system may 

provide a reasonable alternative to SRBs when used for studies of B cell activation.

4. Characterization of Pax-5X species

A novel Pax-5X species was detected in nuclear extracts of B cell lines and splenic 

B cells analyzed by Western blot using the novel sequence-specific antibody 6G11 (see 

Figures II.5C, II.6A, and III.3A). Since the band was poorly detectable with ED-1 anti

paired domain serum and no Pax-5x-specific complexes were observed in nuclear extracts 

analyzed by EMSA (Figures II.5A, II.7A, and III.3A), it is likely that the novel Pax-5 

protein possesses an incomplete DNA-binding domain. It was, therefore, hypothesized 

that Pax-5X band represents Pax-5e, the novel-sequence-containing isoform with the 

truncated paired domain (Figure 1.4). However, the biggest challenge of this hypothesis 

was to explain the discrepancy between the size of the newly detected Pax-5X band (27 

kD) and the estimated size of Pax-5e isoform (19 kD).

To confirm that Pax-5X is a Pax-5e-specific band, Pax-5e expression construct was 

transiently transfected into a non-lymphoid cell line, NIH 3T3, as described (see
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“Materials and Methods”, Chapter II). Nuclear extracts from the transfected cells were 

analyzed by Western blot using Pax-5-speciflc antibodies, ED-1 and 6G11 (Table I). The 

transfected samples were compared to nuclear extracts from the immature B cell line 

W EHI-231 and from resting normal B lymphocytes (SRBs).

The novel sequence-specific antibody 6G11 detected a single band at —27 kD 

present in samples transfected with the Pax-5e expression construct (Figure III.4A; 6G11 

panel). This band corresponded with the Pax-5X species that had been previously 

observed in nuclear extracts of WEHI-231 cells and SRBs (Figure III.4A, lanes 1-3). The 

novel Pax-5X protein present in the transfected NIH 3T3 samples could also interact with 

the paired domain-specific antibody ED-1 (Figure III.4A, ED-1 panel). Interestingly, the 

intensity o f Pax-5X bands detected with ED-1 varied depending on the source of nuclear 

extracts (Pax-5e-transfected samples, WEHI-231 cells or SRBs). This could be explained 

by the differences in relative levels of Pax-5X in the assayed samples. Thus, based on the 

results of this experiment, Pax-5X can be characterized as a Pax-5 e-like species.

In addition to the Pax-5X band, nuclear extracts from Pax-5e-transfected samples 

contained two other protein species (Figure III.4A, ED-1 panel, lane 1). A fast migrating 

band at —21 kD is likely to represent Pax-5e species that have been neither modified nor 

complexed with other proteins. The nature of the second band (at -45  kD) is unclear; 

however, it is clearly Pax-5e-specific and may represent either a Pax-5e homodimer or 

extensively modified Pax-5e protein molecules. Curiously, a similar, high-running band 

was also observed in the samples of NIH 3T3 cells transfected with Pax-5d expression 

construct (Figure III.4A, ED-1 panel, lane 7). Both alternatively spliced variants, Pax-5e 

and Pax-5d, possess the novel sequence containing two cysteine residues. Although
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dimerization of either isoform has not been reported, it would not be surprising if these 

proteins could form intermolecular disulfide bonds (see Chapter I, Section 4.1). If the 45 

kD band indeed represents a Pax-5e homodimer, it is likely that the bonds that form 

between two Pax-5e monomers are highly reactive, and tend to reform during 

electrophoresis. As a result, a fraction of Pax-5e molecules remains dimerized despite 

the denaturing conditions of SDS-PAGE. If the same logic is applied to Pax-5X species, 

detection of the 27 kD band could be explained by the presence of a heteromeric complex 

of Pax-5e with some ubiquitous factor. In this case, a simple modification of the 

electrophoresis conditions (such as pre-assay treatments of the samples with certain 

reducing or denaturing agents) may help to reduce the number of observed complexes 

and promote the formation of a “true”, 19-21 kD, Pax-5e band (see Discussion for more 

details). Alternatively, the bands that run above 21 kD may represent modified forms of 

Pax-5e protein. However, since the exact function and properties of this isoform remain 

unknown at this time, it is difficult to predict accurately what types of post-translational 

modifications might affect the Pax-5e molecule.

Analysis of nuclear extracts from NIH 3T3 cells transfected with Pax-5d 

expression construct provided curious clues pointing to a possible origin of Pax-5X 

species in activated normal B cells. Due to the presence of two alternative start sites, the 

Pax-5d transcript can generate either Pax-5d or Pax-5e protein, with Pax-5d being a 

predominant translation product. This phenomenon is illustrated by the presence of Pax- 

5e band in [NIH+Pax-5d] samples analyzed by Western blot using ED-1 antibody (Figure 

III.4A; ED-1 panel, lane 7). Intriguingly, [NIH+Pax-5d] nuclear extracts also contained 

the Pax-5X band. According to the results described in Chapter II, the protein levels of
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the novel Pax-5X species increase dramatically during B cell activation, concomitantly 

with a decrease in the levels of Pax-5d isoform. The absence o f  activation-induced 

changes at the RNA levels indicated that any change in the expression patterns o f Pax-5 

proteins occurs at either translational or post-translational level (see Discussion). Thus, it 

is conceivable that activation of B lymphocytes may trigger the use of an alternative 

(distal) start codon on the Pax-5d transcripts, giving a rise to Pax-5X species. This, 

however, requires further experimental prove.



115

Chapter IV 

Discussion

In the studies presented in this thesis, the functions of alternative Pax-5 isoforms 

were explored using in vivo and in vitro assays that measured the transcriptional and 

DNA-binding activities of the isoforms and determined their protein expression patterns 

in resting and activated B cells. More specifically, the described project focused on 

analyses of transactivating function of the Pax-5d isoform in relation to the activity of 

Pax-5a, determination of relative ratios of Pax-5 proteins in resting and LPS-activated B 

lymphocytes, and investigations of activation- and differentiation-stage-specific changes 

in the expression patterns and DNA-binding activities of Pax-5 isoforms occurring in 

splenic B cells from young and aged mice and in various B cell lines.

The existence o f alternatively spliced variants with different DNA-binding 

activities and variable functional domains suggests that Pax-5 isoforms may have 

different, perhaps opposing, transactivating functions and play distinct roles during 

development and differentiation of B cells. Previous studies of the related Pax-8 gene 

have shown that it generates at least six developmentally regulated isoforms that display 

differential transactivation potentials (Kozmik et al., 1993). Other investigations have 

revealed that alternative splicing affects the paired domains of Pax-8, Pax-6, Pax-3, and 

Pax-7 resulting in generation of isoforms with various DNA-binding activities and 

specificities (Kozmik et al., 1997; Vogan et al., 1996). Thus, the isoforms of Pax-5 may 

also have different transactivation properties and variable regulatory capacities, including
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the ability to interact with and sequester other factors and compete for sites on target 

genes.

4.1 Pax-5d is a repressor of Pax-5a activity

The results of the functional studies demonstrated that, in contrast to Pax-5 a, Pax- 

5d acts as an inhibitor of transcription. In addition, Pax-5d not only inhibits the activity 

o f endogenous Pax-8 in the kidney cell line COS-1, but can also repress activity of Pax- 

5a when the two isoforms are expressed simultaneously in NIH 3T3 cells. Thus, it can be 

concluded that Pax-5a and Pax-5d have opposite regulatory functions in vivo. Moreover, 

in certain circumstances, Pax-5d may function as a repressor that controls Pax-5a activity 

either through DNA-binding competition or by sequestration of accessory factors 

required for regulation of Pax-5 target genes.

Pax-5a and Pax-5d proteins share two functional domains including an intact 

paired domain and the octamer sequence; however, they differ in the composition of their 

C-termini (see Chapter I, Figure 1.4). Pax-5d lacks the homeodomain homology box and 

the entire C-terminal regulatory module consisting of the transactivation domain and 

repressor sequence. In place o f these regions, Pax-5d possesses a novel sequence of 

unknown function (Zwollo et al., 1997). The observed repressor function of Pax-5d is 

likely to be due to the absence of the transactivating domain; however, this needs to be 

examined further. The opposite transactivating potential of Pax-5a and Pax-5d coupled 

with their similar DNA-binding activities suggests a possible mechanism for regulation 

o f Pax-5a function. Since the two isoforms appear to compete for binding, the presence 

o f excess Pax-5d in a system may reduce the Pax-5a binding to its target sites on DNA.
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Consequently, the Pax-5a/Pax-5d ratio may be a key determinant of Pax-5 function in 

regulation of target genes.

Another consideration of Pax-5d function comes from the presence o f the octamer 

sequence shared by all Pax-5 proteins. This region has been shown to bind the co

repressors from the Groucho family, and that interaction has been hypothesized to inhibit 

the transcriptional activity of Pax-5a (Eberhard et al., 2000). It remains to be 

determined whether such contact can occur between the Groucho corepressors and other 

Pax-5 isoforms, including Pax-5d. However, it is conceivable that, at high enough 

concentrations, the alternative variants of the Pax-5 gene could increase Pax-5a activity 

by “absorbing” the Groucho co-repressors and, hence, preventing their interaction with 

Pax-5 a. Alternatively, interactions between Pax-5 d and various accessory proteins may 

inhibit Pax-5a-regulated gene transcription through sequestration of factors required for 

efficient transcription of target genes. Therefore, we cannot exclude the possibility that 

the observed inhibition of Pax-5a activity stems from Pax-5a/Pax-5d competition for 

binding to accessory partner-proteins rather than to Pax-5-specific DNA-sequences.

4.2 Pax-5a and Pax-5d differ in protein stability

The data from the competition experiments indicate that inhibition of Pax-5 a 

activity can only be detected when the Pax-5a/Pax-5d ratio of the transfected effector 

DNA is very low (less then 1/10). Difference in protein stabilities has been hypothesized 

to be one of the possible reasons for the disparity in concentrations of the two isoforms. 

Supporting, albeit indirect, evidence for this prediction is provided by the analysis of
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Pax-5a and Pax-5d protein levels in nuclear extracts from NIH 3T3 cells transfected with 

either Pax-5a or Pax-5d expression construct. The results of Western blot analysis 

revealed that, for equal amounts of the transfected plasmid DNA, nuclear extracts from 

the transfected samples contained approximately three times less Pax-5d than Pax-5a 

protein. However, this observation does not exclude the possibility of differences 

between the two isoforms at the level of transcription and/or translation (e.g., 

transcriptional/translational efficiency, rate of protein synthesis, etc.). Therefore, only 

direct measurements of the proteins’ half-lives can accurately determine whether the 

issue of protein stability has relevance for activity of Pax-5 isoforms.

The amino acid sequences of many rapidly degraded eukaryotic proteins contain 

one or more regions rich in proline (P), glutamic acid (E), serine (S), and threonine (T) 

(Rogers et a l., 1986). These regions, named “PEST” sequences, often represent sites of 

constitutive and signal-induced phosphorylation, which can affect the intrinsic stability of 

a protein. For example, activation-induced phosphorylation of serine and threonine 

residues within the PEST domain of IkB (the NF-kB inhibitor) has been shown to target 

this protein for degradation (Lin et al., 1996). An extensive PEST sequence has also 

been found in the p53 protein (Rogers et al., 1986). Phosphorylation of specific residues 

regulates a number of the p53 properties, from the protein’s stability and conformation 

states to its activity and interaction with other proteins (Meek, 1998). While no research 

has been done so far to demonstrate the correlation between regulatory phosphorylation 

o f p53 and the existence of the PEST domain, the link has been suggested by the 

comparative analysis of p53 with other PEST-containing proteins (Rogers et al., 1986).
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Curiously, PEST sequences are strikingly homologous to the sites of (9-GlcNAc 

glycosylation, which is one o f the most ubiquitous and abundant post-translational 

modifications found in nuclear proteins (see Chapter I, Section jLJ; Haltiwanger et al.,

1997). It has been postulated that the major regulatory function of O-glycosylation is to 

compete with phophorylation sites on proteins, thus adding another level of control to 

signal transduction cascades inside the cells (Haltiwanger et al., 1997; Comer and Hart, 

2000). It is possible that the reciprocal relation between protein phosphorylation and O- 

glycosylation has a role in regulation of protein stability. Supporting this notion is a 

study in which the total levels of O-glycosylation have been correlated with the stability 

o f the transcription factor Spl against proteasome degradation (Han and Kudlow, 1997). 

Together with earlier reports, these investigations have demonstrated that 

hypoglycosylated Spl is more susceptible to proteolytic degradation, whereas extensive 

O-glycosylation of this protein results not only in its stabilization but also in an increased 

transcriptional activity (Jackson and Tjian, 1988; Han and Kudlow, 1997).

Based on sequence analysis, isoform Pax-5a (as well as Pax-5b) contains three 

PEST consensus sequences (S/T-X-X-E/D) in a region immediately C-terminal from the 

homeobox homology domain (aa 251-306). The presence of the PEST domains may 

indicate susceptibility of Pax-5a protein to degradation. Isoform Pax-5d (and Pax-5e) has 

no such regions due to alternative splicing; however, its stability may be regulated 

through the novel sequence by mechanisms that have yet to be determined. For example, 

the novel sequence of Pax-5d contains three lysine residues. This amino acid is often 

modified by ubiquitination in proteins that are destined for degradation (Pahl and 

Baeuerle, 1996). Alternatively, PEST sequences may function as sites for O-
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glycosylation, in which case Pax-5a could be marked by a longer half-life. In contrast, 

the lack of PEST domains in Pax-5d would render this protein more susceptible to 

proteolytic degradation. Examination of the role of the PEST sequences in Pax-5 

protein stability may help to better understand pathways that regulate the processes 

occurring during B cell activation.

4.3 B cell activation induces stabilization of Pax-5a isoform

Differentiation of mature B lymphocytes into plasma cells is a complex, antigen- 

dependent process that consists of multiple steps involving B cell activation, 

proliferation, and expression of stage-specific sets of genes. In this process, the 

activation signals initiate a variety of pathways which lead to immunoglobulin isotype 

switching and antibody secretion. Previously, Pax-5 (BSAP) has been shown to control 

the switch recombination events through regulation of Ig gene rearrangement (reviewed 

in Hagman, 2000). Pax-5 also plays an important role in B cell proliferation which is 

necessary for initiation of Ig isotype class switching, somatic mutations, and formation of 

germinal centers (Wakatsuki et al., 1994; Neurath et al., 1995). However, while Pax-5 is 

an integral part of an efficient immune response, terminal differentiation of B 

lymphocytes into plasma cells and Ig secretion require downregulation of Pax-5 

expression (Usui et al., 1997; Stiiber et al., 1995).

The mechanism which downregulates the expression and activity of Pax-5 in 

activated B lymphocytes is not clearly understood. However, our experimental data 

clearly show that initial control occurs at the protein level. The ratio of Pax-5a to Pax-5d 

mRNA remains unchanged during LPS stimulation of B cells, indicating that neither rate
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of RNA synthesis nor RNA stability is affected by the activation signals and onset of 

differentiation. This finding confirms previous observations by Anderson et al. (1996) 

who reported that BSAP (Pax-5a) mRNA levels stay constant in resting and LPS- 

activated primary B lymphocytes.

In contrast, a number of changes were detected at the protein levels of Pax-5 

isoforms, when nuclear extracts from resting and activated B lymphocytes were analyzed 

by Western blot and EMSA. In the previous studies, two Pax-5a species have been 

detected in resting mature B cells, Pax-5a.l and Pax-5a.2 (Anspach et al., submitted). 

Slightly different migration rates of these species under non-denaturing conditions 

(EMSA) suggested that the representative proteins are likely to possess different 

conformations or structures. In the study reported here, evidence is provided that Pax- 

5a. 1 and Pax-5a.2 differ in the composition of the C-terminus, based on their interaction 

with Pax-5 N- and C-terminus-specific antibodies. The most likely explanation o f these 

data is that the Pax-5a.2 protein lacks the repressor sequence, whereas Pax-5a.l species 

represent a full length Pax-5a protein with the intact C-terminal regulatory module. 

Significantly, during B cell activation, the relative ratio between the two species shifts 

toward Pax-5a.l, reflecting a modification at the C-terminus, followed by an overall 

stabilization of the Pax-5a isoform in activated samples. Interestingly, the stabilization of 

Pax-5a and formation of Pax-5a.l species during B cell activation coincides with an 

increase in the relative protein levels of Pax-5a isoform in nuclear extracts of activated 

samples. That finding is in agreement with the results of a previous study in which an 

increase in BSAP/Pax-5a levels has been correlated with the time of active proliferation 

o f B cells in response to LPS-activation (Wakatsuki et al., 1994). Perhaps, this explains
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why the patterns of Pax-5a isoform do not change during activation of W EHI-231 B cell 

line: cells that divide continuously presumably should have only those Pax-5a species 

that support B cell proliferation, namely Pax-5a.l. This is also supported by the results of 

an independent experiment in which B cell lines, representing different stages o f B cell 

differentiation, were analyzed by EMSA (result not shown). That data revealed that 

nuclear extracts from all assayed samples possess Pax-5a.l only, which is in agreement 

with the suggested role of this species in B cell proliferation.

The three most 3,-terminal exons of Pax-5a has been shown to be unaffected by 

alternative splicing, thus eliminating a possibility that Pax-5a.2 band represents a novel 

Pax-5 isoform. Alternatively, 5a.2 may represent either a dephosphorylated form or a 

degradation product of 5a. 1. Site-specific phosphorylation is a common trigger of 

proteolytic degradation that plays an important role in regulation of NF-kB, p53, and a 

wide variety of nuclear and cytoplasmic proteins (Hunter and Karin, 1992). In many 

cases, phosphorylation of specific residues allows recognition of the modified protein by 

the E3 ubiquitin-protein ligase which catalyses the binding between the ubiquitin and a 

protein substrate (Pahl and Baeuerle, 1996). This mechanism has not unequivocally been 

ruled out as a factor in generation of Pax-5a.l and Pax-5a.2 molecular species, although 

the phosphatase treatment of nuclear extracts from resting B cells had no effect on either 

protein expression or DNA-binding patterns of the two Pax-5a species (data not shown). 

Another alternative is that Pax-5a.2 species is a product of degradation of the full-length 

Pax-5a protein (Pax-5a.l). It is possible that, in resting but not activated/proliferating B 

lymphocytes, specific proteases remove the C-terminal sequence of Pax-5a.l and reduce 

stability o f this protein, causing multiple degradation bands. The degradation products
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could include the Pax-5a.2 species which contain all of Pax-5a functional domains, 

except the repressor sequence. During B lymphocyte activation, the alterations in the 

cell’s environment may either specifically inactivate these proteases or, alternatively, 

promote certain protein modifications that stabilize/protect Pax-5 a. 1 from C-terminal 

degradation. The exact mechanism of these modifications is not understood at this time, 

and its elucidation may require determination of Pax-5a half-life in resting and activated 

B cells, which is the focus of our current research.

In support of a functional role for C-terminus-initiated degradation is the presence 

of a potent repressor domain in this region (see Chapter I, Figure 1.4). In the full-length 

Pax-5a protein, the C-terminal transactivation domain is flanked by a 33-amino acids 

repression sequence which has been shown to inhibit Pax-5-dependent transcription o f a 

minimal promoter in transient transfection experiments (Dorfler and Busslinger, 1996). 

Specific proteolysis of the extreme carboxy-terminal repression module may produce a 

highly active Pax-5a species with a potent transactivation function. In contrast, 

stabilization of the protein, followed by subsequent retention of the repressor sequence, 

may yield a non-truncated Pax-5a version with attenuated capacity for activation of 

transcription. It is possible that the functions of the full length Pax-5a in vivo involve 

mostly the control of cell proliferation and the maintenance of only a small subset of B 

cell-specific genes; however, this needs further investigation.

Another interesting possibility is based on the recent study which demonstrated 

that the paired domain polypeptide was in some cases sufficient for reconstitution of 

endogenous Pax-5 target gene expression in Pax-5-deficient pre-BI cells (Nutt et al., 

1998). I propose that, in resting B cells, proteolysis at the C-terminus of Pax-5a does not
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only produce species with a higher transactivating potential (such as Pax-5a.2), but also 

generates an array of truncated polypeptides that have no transactivation domain but 

contain an intact paired domain. These shorter versions of Pax-5a protein may play a 

significant role in regulating a subset of Pax-5 target genes which do not require the 

complete Pax-5a sequence, including those where Pax-5 functions as a docking protein 

(e.g. mb-1). Activation-induced stabilization of Pax-5a rapidly reduces the number of 

regulatory fragments, and, during the late stages o f LPS-activation, full-length Pax-5a 

(with the repressor domain) is the only molecular species available for transcriptional 

regulation. Consequently, the transactivating effect of Pax-5a on its target genes may be 

modified as soon as the activation signal is received, allowing for a quick change in gene 

expression. Thus, different length Pax-5a fragments may have distinct transactivation 

potentials, ranging from a weakly active protein to a potent regulator to a polypeptide 

with a recruiter capacity. In combinatorial regulation of Pax-5 target genes, a particular 

function of each fragment would likely to be determined by the specific regulatory 

sequence context.

This hypothesis could explain the expression pattern of the mb-1 gene which 

encodes a component of BCR, Ig-a molecule. The mb-1 gene is expressed during all 

stages of B lymphocytes development, but not in late activated B and plasma cells 

(Fitzsimmons et al., 1996). According to our model, the gene is positively regulated by a 

set o f truncated Pax-5a fragments in non-activated B cells. Following antigenic 

challenge, Pax-5a is stabilized and the full-length, repressor sequence-containing form of 

the protein (5a. 1) starts to accumulate in activated B lymphocytes. The stabilized Pax-5a 

is no longer able to function as a potent transcriptional activator, and transcription of the
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positively regulated mb-1 gene is inhibited (in activated B cells) and, subsequently, shut 

off (in plasma cells).

Proteolysis is a common mechanism that quickly and irreversibly regulates 

transcription factor function. This means of regulation is particularly useful when cells 

need to respond rapidly to changes in their environment. Several eukaryotic transcription 

factors, including NF-kB, p53, c-Myc, and c-Jun, have been shown to be regulated by 

proteolytic events, most of which involve the ubiquitin-proteasome pathway (reviewed 

in Peters, 1994; Pahl and Baeuerle, 1996). Proteolytic degradation may occur either in 

cytoplasm (e.g., NF-kB (Thanos and Maniatis, 1995)) or in the nucleus (e.g., H IF -la  

(Salceda and Caro, 1997)), indicating that this process is mediated by the specifically 

localized proteasome systems. The lability of many regulatory proteins is critically 

important under normal conditions, and disruption of proper steady-state levels of these 

proteins may have deleterious consequences for a cell (Treier et al., 1994). However, in 

some cases, protein stability changes drastically when cells are subjected to a stressful 

stimulus. Wild-type p53, for instance, is a short-lived nuclear transcription factor which 

becomes stabilized and activated following cellular stress or DNA damage (Pahl and 

Baeuerle, 1996). The exact mechanism of this stabilization is not clearly understood, but 

thought to be regulated by multi-site phosphorylation (Steegenga et al., 1996; Meek,

1998). Another example is the hypoxia-inducible factor-la  (H IF -la), a transcriptional 

activator complex involved in regulation of several hypoxia-regulated genes (Salceda and 

Caro, 1997). Under normoxic conditions, H IF -la  is continuously degraded in the 

nucleus by the ubiquitin-dependent pathway. The lack of oxygen, or hypoxia, induces 

stabilization and accumulation of H IF -la  followed by subsequent activation of its target
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genes (Salceda and Caro, 1997). The signals triggering stabilization of the H IF -la  

protein are currently unknown; however, some evidence suggests that redox-mediated 

changes might be involved (Salceda and Caro, 1997).

Thus, stress-induced stabilization of transcription factors is a well-documented 

phenomenon which may take place in activated B lymphocytes. It remains to be 

determined whether Pax-5a degradation, occuring in resting B cells, involves the 

ubiquitin-proteasome system. Further investigations are also needed to identify the 

factors which contribute to susceptibility of Pax-5a to degradation, as well as to its 

stabilization during activation.

4.4 The ratio of Pax-5 proteins changes after LPS stimulation

To investigate whether the suppressor activity o f Pax-5d has functional 

significance during B cell activation, relative protein levels of Pax-5a and Pax-5d 

isoforms were analyzed in mature resting and LPS-activated B cells. Contrary to the 

preliminary hypothesis about the role o f the Pax-5a/Pax-5d ratio in regulation o f Pax-5a 

function, the levels of Pax-5d were very low in resting B lymphocytes and undetectable 

in nuclear extracts o f activated cells. However, a new band was detected at ~27 kD that 

represents a yet unidentified protein species named Pax-5X. The intensity of Pax-5X band 

increases dramatically during the late activation stages concomitantly with the decrease 

in the Pax-5a levels. It is noteworthy that the Pax-5X band has also been detected in 

nuclear extracts of various B cell lines, including those from anti-IgM- and LPS- 

stimulated cells o f the WEHI-231 cell line. In agreement with the results o f SRB
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activation, the intensity of the Pax-5X band was higher in cell lines representing late 

stages of differentiation and in activated WEHI-231 cells.

The exact nature of Pax-5X species is unknown at this time. Western blot of 

resting and activated SRBs shows that the band can interact with the novel sequence- 

specific antibody 6G11, but is undetectable using the paired domain antiserum ED-1. 

These results indicate the presence of the novel sequence and suggest that the paired 

domain is either incomplete or absent in the novel species. The fact that Pax-5X does not 

possess any detectable DNA-binding activity suggests that the Pax-5X band may represent 

the Pax-5e isoform. However, the expected size of Pax-5e is 19 kD, and, while the Pax- 

5X band has been shown to be Pax-5e-specific, the reason for such a discrepancy in size 

between Pax-5e and Pax-5X remains unclear. One possible explanation is that the band 

represents a modified form of the Pax-5e protein. The configuration of the modified 

protein might be such that it prevents the efficient interaction of ED-1 with the epitopes 

in the paired domain of Pax-5e, which, coupled with the reduced size of the region, could 

result in a poor response of Pax-5X species to this antibody. Alternatively, the levels of 

the paired domain epitopes interacting with ED-1 may simply be too low in normal B 

cells. In support of this explanation is the data from WEHI-231 activation experiments. 

The levels of Pax-5 proteins are much higher in WEHI-231 cell line compared to splenic 

B lymphocytes. Although detection of the Pax-5X species by ED-1 was still poor in these 

samples, the band could be seen on overexposed films (not shown).

The patterns for the Pax-5X band were very similar in EPS-stimulated SRBs, in 

activated WEHI-231 cells, and in B cell lines representing different stages o f B cell 

differentiation (all determined using 6G11 antibody). The protein levels of Pax-5X
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species increase markedly during late stages of B cell differentiation in all experimental 

systems, suggesting a common mechanism involved in response of B lymphocytes to 

antigenic challenge and in their progression toward the plasma cell stage. Since no bands 

corresponding to Pax-5X species were observed in data from EMSAs, it can be concluded 

that these species lack either the entire DNA-binding domain or a part thereof, which is in 

agreement with the Pax-5e-specific nature of the Pax-5X protein. Consequently, Pax-5X 

cannot compete for DNA-binding with Pax-5a isoform; however, it may participate in 

protein-protein interactions that can take place within the octamer and/or the novel 

sequence regions. It is conceivable that, at high enough levels, Pax-5x may be able 

compete with other isoforms for certain co-factors such as, for example, co-repressors of 

the Groucho family implicated in regulation of Pax-5a activity (Eberhard et al., 2000). 

Thus, the increase in levels of Pax-5X observed in activated B lymphocytes provide 

additional support for the important regulatory role of Pax-5X species and suggest a 

functional significance for the Pax-5a/Pax-5x ratio during late stages o f B cell 

differentiation. Therefore, while the original model suggesting the role for the Pax- 

5a/Pax-5d ratio may be incorrect, regulation of Pax-5a activity via change in the relative 

levels of other isoforms is likely to be important, but will require more experimental 

support.

4.5 The elusive Pax-5X: speculations on the origin of a species

Identification of Pax-5X species is a focus of our current investigations. As 

discussed above (Section 4.4), the position of the band on SDS-PAGE gel (-27  kD) 

suggests that Pax-5X may represent a modified form of Pax-5e protein. Possible
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modifications that could account for an -8  kD discrepancy in size may include O- 

glycosylation or formation of disulfide bonds.

Pax-5e, which contains three cysteine residues, may be able to form homo- and 

heterodimers, as well as intramolecular disulfide bonds. In support o f this hypothesis, is 

the presence o f a higher molecular weight band (-50 kD) observed in nuclear extracts of 

NIH 3T3 cells transfected with the Pax-5e expression construct. Failure of this band to 

interact with the novel sequence-specific antibody 6G11 suggests that the novel sequence 

is either masked (as in dimmers interacting through that region) or modified (e.g., by 

internal disulfide bonds). In the latter case, Pax-5e protein could fold on itself creating a 

very compact molecule that would have a much lower rate of migration in a 

polyacrylamide gel, resulting in a slower moving band. It is possible that disulfide bonds 

forming during such interactions are highly reactive and can reform during 

electrophoresis despite the presence of p-mercaptoethanol (reducing agent) in sample 

buffer, although no precedence for this was found in the literature. To prevent the 

cysteines from participating in bond re-formation, the samples could be treated with a 

strong oxidizing agent such as performic acid, which will cause irreversible cleavage of 

existing disulfide bonds (Lou et a l., 1987). Perhaps, such stringent conditions will help 

to keep all the proteins in nuclear extracts as separate, fully denatured entities, easily 

separable and individually detectable.

Another possible modification involves O-glycosylation of Pax-5e protein. 

Addition of O-GlcNAc residues usually occurs at the sites containing a proline residue N- 

terminal to the modified serine or threonine (see Chapter I, Section 3.3). Curiously, Pax- 

56 (as well as Pax-5d) contains four P-S/T regions in its amino acid sequence. Although
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it is not known whether these regions are subject to glycosylation, it is tempting to 

speculate that the retarded migration rate of Pax-5e (at -27  kD instead of the expected 19 

kD on denaturing gels) is caused by the addition of bulky sugar moieties. Unfortunately, 

it is difficult to estimate the possible number of putative O-GlcNAc residues (MW= 0.2 

kD) based on the difference in the bands’ size (~ 8 kD) because the correlation is not 

necessarily linear. However, it might be interesting to examine the effect o f various 

deglycosylating enzymes and glycosylation inhibitors (see Future Directions) on the Pax- 

5e banding pattern. The notion of glycosylation of Pax-5 proteins is supported by the 

analyses of O-glycosylation in activated T lymphocytes. These studies demonstrated that 

mitogenic stimulation of T cells induces a rapid increase in O-GlcNAc-modified nuclear 

proteins concomitantly with the decrease in the levels of glycosylated proteins in the 

cytoplasm (Kearse and Hart, 1991).

So far, I have not considered the case in which the Pax-5x band is composed o f a 

Pax-5d degradation product. The protein would have to be degraded from the N-terminus 

(since it still can interact with 6G11 antibody), with the paired domain being affected to 

such an extent that it is no longer able to interact with either Pax-5-specific sites on DNA 

or ED-1 antibody. This possibility is the one that is difficult to address using the methods 

employed in this project (i.e., Western blot and EMSA). The N-terminus-specific 

antibody N-19 (see Chapter II, Table I) does not recognize Pax-5 proteins in their 

denatured form and, hence, could not be used for Western blot detection of Pax-5X 

species. Likewise, these species could not be analyzed by EMSA due to the lack of 

DNA-binding activity. Thus, at this time, it is virtually impossible to distinguish between 

Pax-5d N-terminal degradation products and Pax-5e isoform, unless microsequencing
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techniques are used. However, it is useful to consider the following observations. First, 

a gradual increase of Pax-5X levels in late activated SRB samples does not correspond 

with a sudden fall in the intensity of the Pax-5d band to undetectable levels immediately 

following LPS activation. Furthermore, since the RNA levels of the Pax-5a and Pax-5d 

isoforms have been shown to remain constant during B lymphocyte 

activation/development, the degradation of Pax-5d N-terminus would most likely occur at 

the protein level through specific proteolysis. In this case, it is not clear how and why the 

identical region on Pax-5a protein is protected from the proteolytic effect of proteases 

involved in the process. Lastly, the Pax-5X band was observed in nuclear extracts of NIH 

3T3 cell line transfected with Pax-5e expression construct. This result confirmed that 

the Pax-5X band is Pax-5e-specific, and is more likely to represent a post-translationally 

modified form of Pax-5e protein than a degradation product of Pax-5d.

What is the source of the Pax-5X species in activated B cell samples? Based on 

the results of RNAse protection assays, the increase in Pax-5X protein levels is not a result 

o f transcriptional changes, but a product of translational and post-translational regulation. 

The presence o f two translational start sites on the Pax-5d mRNA transcripts allows 

generation of either Pax-5d or Pax-5e from each single transcript. In fact, when non

lymphoid cell line NIH 3T3 is transfected with the Pax-5d cDNA construct, four species 

are produced: a largely predominant Pax-5d protein (at 35 kD), Pax-5X species (27 kD), 

the Pax-5e isoform (-19 kD), and an additional molecule (or protein complex) of 

unknown nature ( -  50 kD). The bands for Pax-5e and Pax-5X correspond to those seen in 

nuclear extracts from NIH 3T3 cells transfected with the Pax-5e-containing construct. 

Therefore, based on these observations, I hypothesize that, during LPS activation, B
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lymphocytes receive a signal that initiates a preferential use of the distal ATG codon on 

the Pax-5d transcripts resulting in the increased production of Pax-5e protein. In 

increased concentrations, Pax-5e may be able to bind to or sequester various factors, 

some o f which might be important for regulation of transcriptional activity of Pax-5 a 

isoform (e.g., Groucho co-repressors). Importantly, I hypothesize that isoform Pax-5d is 

unable to fulfill this role because its upregulation would result not only in sequestration 

o f accessory factors, but also in DNA-binding competition with Pax-5a. The resulting 

inhibition of Pax-5a activity might be detrimental for Pax-5a function exerted on a subset 

o f target genes in activated B cells. It is unclear whether activating stimuli have a similar 

effect on other Pax-5 isoforms. The experimental data do not show protein levels of Pax - 

5b isoform changing in a manner identical to that of Pax-5e, which suggest that the 

proposed mechanism is likely to be very specific. This, however, requires further 

investigation.

4.6 Effects of aging on B cell activation: the case of Pax-5 proteins

Currently, the experimental evidence demonstrating the effects of age on B cell 

responses to various antigens remains fragmentary. The progress in this field has been 

slow in part because it is difficult to determine whether age-related changes in B 

lymphocytes function are caused by biochemical modifications within B cells, or by 

alterations in the activity of T cells. Several studies that utilize B cell mitogens suggest 

that the magnitude of B lymphocyte function, defined by cell proliferative response, 

decreases with age (Andersson et al., 1977; Schulze et al., 1992; Powers et al., 1992). 

Although the exact mechanism of this decline is unknown, it is conceivable that Pax-5
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proliferation o f activated B lymphocytes. This hypothesis is supported by experimental 

findings which have demonstrated that reduced levels of Pax-5a expression lead to 

decreased response to LPS (Wakatsuki et al., 1994).

While no quantitative measurements o f B cell proliferation were conducted on 

either young or aged lymphocytes, the previously determined lack of Pax-5a DNA- 

binding (Anspach et al., submitted) implies that, in aged mice, the proliferative response 

to LPS stimulation can be expected to be lower than in young animals. In support of this 

prediction, a characteristic initial rise in Pax-5a protein levels, corresponding to the peak 

o f activation-induced proliferation of B lymphocytes, was not observed during activation 

o f aged B cells, suggesting an attenuated growth of LPS-activated cultures. Interestingly, 

in the studies described here, a gradual return of Pax-5a DNA-binding was observed 

during late stages of LPS activation. Specifically, the observed band represents Pax-5a.l 

species which has been correlated with the activation-induced B cell proliferation in 

young mice (Chapter II). This result confirms the functional significance of the full- 

length (i.e., Pax-5a.l) Pax-5a protein in the process of B cell activation and proliferation, 

and in the development of humoral immune response in young, as well as aged, animals.

In the discussion of Pax-5a.l and Pax-5a.2 species (Section 4.3), I proposed that 

instability o f Pax-5a isoform observed in resting B lymphocytes may have a function as a 

mechanism of generating a variety of Pax-5a proteins with distinct transactivating 

properties. The Pax-5a.2 protein was suggested to be of a particular importance, as it 

represents a highly active form of the Pax-5 transcription factor possessing all functional 

domains except the repressor sequence. In aged SRBs, the Pax-5a. 1 species were absent,
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5a.2 significantly decreased, and the overall Pax-5a degradation pattern displayed fewer 

DNA-binding fragments compared to young SRBs. Curiously, the relative levels of Pax - 

5a and Pax-5X proteins remained constant in resting and activated aged SRBs. If the Pax- 

5a/Pax-5x ratio has a functional significance in B cell differentiation, then such 

invariability in the relative proportions of the two proteins may be a sign of inadequate 

regulation and/or impaired signaling occurring during activation of aged B lymphocytes. 

Perhaps, a high concentration of the Pax-5X species in resting B cells is the reason for a 

reduction in DNA-binding activity of various Pax-5a fragments, including the important 

Pax-5a.2 protein. Moreover, constantly high levels of Pax-5X might be responsible for 

excessive sequestration o f critical accessory factors, which may result in either 

inappropriate activation of Pax-5a or unregulated competition with other Pax-5 proteins.

Age-associated decreases in DNA-binding properties have been reported for 

several transcription factors including Sp-1, NFAT, and Ap-1 (Ammendola et al., 1992; 

Pahlavani et al., 1995; Pahlavani et al., 1996). Sp-1 is a general transcription factor that 

activates a wide variety of genes and is present in all mammalian cells. Independent 

studies o f this protein have shown that its transcriptional activity in normal, non- 

senescent tissues can be regulated by post-translational modifications including O-linked 

glycosylation, phosphorylation of serine residues, and multimerization of Spl on its 

DNA-binding sites (Ammendola et al., 1992). In aged rat brain and liver tissues, Spl is 

characterized by a very low (60 fold decrease compared to young tissues) binding 

efficiency, although the expression of the Spl gene is not affected (Ammendola et al., 

1992). The observed change in DNA-binding activity was correlated with the decreased 

expression of at least one of the Spl target genes and proposed to be a result o f age-
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related defects in post-translational modifications (Ammendola et al., 1992). Another 

example is the T-cell-specific transcription factor NFAT that plays an important role in 

the regulation of IL-2 transcription. One of the T cell secreted cytokines, IL-2 provides 

important signals for T cell proliferation and antibody production and, hence, plays a 

central role in induction and development of the immune response (Arai et al., 1990). 

The production of IL-2 declines with age (Rea et al., 1996), which coincides with a 

decrease in NFAT DNA-binding (Pahlavani et al., 1995). Interestingly, the reduction of 

NFAT binding activity is also thought to be caused by age-related alterations in post- 

translational regulatory mechanisms (Pahlavani et al., 1996).

Thus, the experimental data described in this thesis, together with reports from 

other labs, support the hypothesis that aged animals display an age-associated decline of 

B cell responsiveness to mitogenic stimulation, as reflected in decreased proliferative 

capacity of B lymphocytes. This reduction in proliferative ability of activated B 

lymphocytes may be related to alterations in DNA-binding activities and relative levels of 

Pax-5 proteins. Furthermore, age-induced changes in characteristics and properties of 

Pax-5 isoforms may be triggered by altered regulatory mechanisms occurring at the 

translational and/or post-translational levels. The lack o f Pax-5a DNA-binding in resting 

B cells, coupled with the unchanging Pax-5a/Pax-5x ratio in activated B lymphocytes, 

may contribute to inhibition of genes that trigger cell division and regulate antibody 

production, ultimately leading to poor humoral immunity in senescent organisms.
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4.7 Model o f Pax-5 function

The models regarding function and regulation of the Pax-5 transcription factor 

that have been proposed in this work and by other research groups can be summarized in 

the following key points (Figure IV. 1 A):

• The Pax-5 gene generates four alternatively spliced products: Pax-5a, Pax-5b, 

Pax-5d, and Pax-5e. The four isoforms differ in DNA-binding activities and 

transactivation properties, and display distinct expression patterns during different stages 

o f B cell development and differentiation. The differentiation stage-dependent regulation 

o f Pax-5 proteins occurs at the translational and/or post-translational, but not 

transcriptional, level(s).

• The predominant isoform Pax-5a can function as an activator, a repressor, or a 

docking protein, depending on the target gene. The less abundant isoform Pax-5d is 

unable to interact with the basal initiation complex due to the absence of the 

transactivation domain, and hence functions as a repressor of transcription. Isoforms 

Pax-5b and Pax-5e lack DNA-binding activity due to incomplete DNA-binding domain, 

and thus can only function as either co-repressors or co-activators in transcriptional 

regulation, via protein-protein interaction. In addition, Pax-5b and Pax-5e may act as 

dominant-negative inhibitors of Pax-5a and Pax-5d, respectively, as they share several 

functional domains, including those that have been implicated in protein-protein 

interactions.
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Pax-5b

Symbols:

- Paired domain 
(DNA-binding)

- Octamer sequence 

a m m o  - Transactivation domain

G >

- Incomplete paired domain

Homeodomain

- Novel sequence

- Repressor sequence - Basal initiation 
complex

Figure IV.1A: Functions of alternative isoforms of the transcription 
factor Pax-5. Pax-5 isoforms have different DNA-binding and transactivating 
properties. Only isoforms Pax-5a and Pax-5d can efficiently bind to Pax-5- 
specific sequences on DNA. Due to the absence of DNA binding activity, 
Pax-5e and Pax-5b can only have a dominant-negative or co-repressor 
function. Pax-5e and Pax-5d possess a novel sequence in place o f a region 
containing the transactivation domain and homeodomain. The presence of the 
novel sequence confers a repressor function to isoform Pax-5d. In Pax-5a, the 
activity of the transactivation domain is regulated by the adjacent C-terminal 
repressor sequence. The functions of Pax-5 isoforms are shown on a 
hypothetical positively regulated Pax-5 target gene. See text for details.
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• Transactivation function of the Pax-5a isoform may be regulated by at least two 

different mechanisms: a) by other isoforms, via competition for either DNA-binding

sites or accessory factors; 

b) through post-translational modifications that increase Pax-5a 

protein stability and allow retention of the repressor sequence.

Based on these key points, I would like to propose the following model for 

regulation of Pax-5 proteins in resting and activated B lymphoctes (Figure IV.IB). In 

resting B cells, isoform Pax-5a is highly susceptible to C-terminal proteolytic 

degradation. Proteplytic degradation generates a variety of paired domain-containing 

Pax-5a fragments. These truncated polypeptides have distinct transactivation properties 

which ensure differential regulation for a wide range of Pax-5 target genes. Activity of 

some fragments may be modulated by DNA-binding competition with the Pax-5d 

isoform, which will exert an opposite effect on transcription of genes affected by such 

competition. In addition, both Pax-5d and Pax-5e may compete with Pax-5a fragments 

for a variety of yet unidentified co-factors and partner-proteins. However, since the 

levels of these two isoforms are very low in resting B cells, their effect might be either 

negligible or very specific. Pax-5e and Pax-5d may also form homo- and heterodimers 

through interactions between the novel sequences.

Activation of B lymphocytes results in a rapid stabilization of Pax-5a, followed 

by the subsequent accumulation of a full-length Pax-5 protein containing the C-terminal 

repressor sequence (5a. 1). In activated B cells, the functions of the Pax-5a isoform are 

limited to control of B cell proliferation and regulation of a small subset of target genes.
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Since DNA-binding competition with Pax-5a fragments is no longer needed, the Pax~5d 

isoform is either degraded or used to produce more Pax-5e (through alternative use of the 

proximal start site during translation). Without interfering with Pax-5a DNA-binding, 

Pax-5e sequesters certain accessory proteins or regulatory factors, inhibiting basal Pax-5a 

activity, other than that necessary for B cell proliferation and maintenance o f target 

“housekeeping” genes which are independent of B cell development. As activated B 

lymhpocytes progress to the plasma cell stage, the majority of positively regulated Pax-5 

target genes are turned off or downregulated simultaneously with the relief of Pax-5 

repressor function on its negatively regulated target genes. Finally, upregulation of Pax - 

5e isoform may have a function independent of other Pax-5 proteins, such as, for 

example, regulation of B cell apoptosis during late stages of B cell differentiation. In this 

model, the role of isoform Pax-5b is still unclear, but may involve a dominant-negative 

function during late stages of B cell activation and in the plasma cell stage.

This model needs to be refined by further experimental evidence and by 

clarification of the mechanisms involved in the proposed regulatory events. However, it 

can be used as a “template” for future investigations that will focus on a wide variety of 

pertinent issues, including the aspects suggested in the next section.
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Figure IV.1B (see next page): A model of function and regulation of Pax-5 proteins 
in resting and activated B lymhpocytes. See text for details.

Symbols:

llllp"! - Paired domain - Octamer - Incomplete paired domain

U - Novel sequence

dTTTTTD - Transactivation domain

C 3  - Homeodomain

)  - Repressor - Basal initiation complex

0 - Putative factors and accessory proteins interacting with various 

functional domains of Pax-5a, Pax-5d and Pax-5e
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4.8 Future directions.

Identification o f  Pax-5Y species. Elucidation of the nature and origin o f Pax-5X 

species will have great implications for further understanding of the activation process in 

B lymphocytes. Currently, the main focus of our research is to determine whether the 

novel Pax-5X band represents a modified form of Pax-5e protein. To solve this problem, 

we first have to optimize experimental conditions in ways that will favor detection of 

individual, fully denatured proteins. These will involve determining whether inter- and 

intramolecular disulfide bonds form in Pax-5e molecules and whether they can be re

established during electrophoresis. To address this question, nuclear extracts will be 

subjected to a wide range o f pre-assay treatments including incubations with strong 

reducing/oxidizing agents and modifying enzymes and prolonged boiling at high 

temperatures. Another important aspect of these investigations will aim to determine 

whether the Pax-5X species represent an O-glycosylated form of Pax-5e. This will be 

done through examination of effects of deglycosylating enzymes on the Pax-5e/Pax-5x 

banding patterns. Alternatively, we could use the inhibitors of glycosylation, such as 

PUGNAC (Comer and Hart, 2000), to promote hyperglycosylation of Pax-5 proteins and 

determine how this will affect their rates of migration on denaturing gels. Finally, 

monoclonal antibodies directed against 0-GlcNAc (Turner et al., 1990) may be a useful 

tool for detection of glycosylated Pax-5 proteins. In all the experiments mentioned 

above, the experimental samples will consist of nuclear extracts from activated and non

activated WEHI-231 cells, cell lines transfected with various Pax-5 DNA constructs, and, 

finally, resting and activated normal B lymphocytes.
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After the nature of the Pax-5X band has been discerned, investigations can proceed 

to either further identification of the partner protein(s) or to functional analysis of the 

Pax-5e isoform. The latter will be conducted using the approach described for the 

functional studies of Pax-5d and will involve transient co-transfections o f lymphoid or 

non-lymphoid cell lines with the Pax-5e effector construct and an artificial promoter 

reporter construct (Chapter II). These studies may also include competition experiments 

targeting the question of whether transcriptional activity of Pax-5a can be regulated by 

overexpression of the Pax-5e isoform. Identification of possible Pax-5e binding partners 

may involve co-immunoprecipitation of the Pax-5X complex using 6G11 antibody. In 

these experiments, Pax-5X species will be precipitated from nuclear extracts of activated B 

lymphocytes, and then analyzed by Western blot in order to determine what factors might 

be sequestered in this complex by Pax-5e.

Other investigations may aim to determine the role of Pax-5e in apoptosis and to 

examine the possibility of Pax-5e regulation through the use of alternative start sites on 

the Pax-5d transcript. To address the question of whether the Pax-5e isoform is involved 

in regulation of apoptosis, the Pax-5e protein will be overexpressed in a B cell line, 

followed by an assay for the expression of defined apoptotic markers. To confirm the 

hypothesis about a possible origin of Pax-5e in activated B lymphocytes (see Section 

4.5), the distal start codon of Pax-5d will be mutated by site-directed mutagenesis. The 

expression construct containing the mutant Pax-5d coding region will then be transiently 

transfected into NIH 3T3 cell line. Nuclear extracts from the transfected samples will be 

analyzed by Western blot using ED-1 antibody, and the results will be compared to the 

data obtained for the wild type Pax-5d (see Chapter III, Section 4).
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Determination o f  the role o f  the novel sequence. The function of the novel 

sequence is currently unknown. Previous research seems to indicate that this region does 

not display transactivating properties and, in fact, may confer repressor characteristics to 

Pax-5d isoform. However, at this time it is unclear whether the inhibitory function of the 

novel sequence is determined by the absence of the transactivation domain, or by the 

presence of a yet unidentified m otif with the repressor function. It will be interesting to 

investigate the properties o f truncated Pax-5d and Pax-5e mutant-proteins containing 

incomplete novel sequence. A Pax-5d mutant lacking the entire novel sequence (Pax- 

5dANS) has already been cloned in our lab, and will be used for functional studies in the 

near future. It would not be surprising if this mutant possesses functions of a weak 

activator as it is identical to a truncated Pax-5a protein with an intact paired domain. The 

transactivating properties of such fragments were discussed in detail in Section 4.3.

The presence o f two additional cysteine residues in the novel sequence presents 

unique opportunities for formation of inter- and intramolecular disulfide bonds (see 

Chapter I, Section 4.1). In this context, it will be interesting to explore the effect of 

targeted point mutations of the selected cysteines on the behavior and interactions of Pax- 

5 proteins. In the scope of these investigations, a panel of mutant Pax-5 proteins will be 

created by site-directed mutagenesis and cloned into an expression vector. The mutations 

will target either both or individual cysteine residues in the novel sequence and, possibly, 

one or two selected cysteines in the paired domain. The mutant-containing expression 

vectors can first be co-transfected into non-lymphoid cell lines to examine whether 

mutations of cysteine residues will affect the folding o f the proteins, as well as their 

DNA-binding activity, and stability. Furthermore, similar co-transfections can be
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performed in a B cell line (i.e., WEHI-231), followed by subsequent activation of the 

transfected cells. Nuclear extracts from activated and non-activated cells will then be 

analyzed to determine the levels and expression patterns of the mutant proteins. The 

results will be compared to the observations reported for normal Pax-5 isoforms.

Protein stability studies. Our previous research provides fragmentary evidence 

suggesting the important role of protein stability in the function and activity of Pax-5 

proteins. The protein stability of Pax-5a seems to be greatly affected during B cell 

activation (see Chapter II and Section 4.3), and the difference in half-lives of Pax-5a and 

Pax-5d might be a key consideration in determining experimental conditions for Pax- 

5a/Pax-5d competition studies (see Section 4.2). Thus, future studies should focus on 

determination of the isoforms’ half-lives. These investigations can be conducted using 

pulse chase assays in resting and activated normal B cells and in cell lines transfected 

with DNA constructs expressing the isoforms o f interest.

Protein stability studies may also encompass issues dealing with identification of 

mechanisms and factors regulating stability of Pax-5 proteins in resting and activated B 

lymphocytes. If my hypothesis concerning Pax-5a degradation in resting B cells is 

correct, it might be possible to stabilize this isoform by treating SRB cultures with 

specific inhibitors of the ubiquitin-proteasome system. Alternatively, the problem of 

proteolytic degradation might be addressed by looking for a correlation between the 

presence o f PEST sequences and protein half-lives. Recently, a Pax-5a mutant lacking 

PEST sequences has been created in our lab. It will be interesting to examine the effects
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of this mutation on the stability of the Pax-5a isoform, and to compare protein half-life of 

the mutant to that of normal Pax-5d protein.

Study o f  the alternative B  cell activation pathways. The conclusions and 

hypotheses presented in this thesis are based mostly on the data obtained for LPS- 

activated normal B lymphocytes. However, it cannot be excluded that the activation 

pathways occurring in B lymphocytes are antigen-specific, and may involve variable 

mechanisms of Pax-5 regulation. One of the future projects may aim to investigate Pax-5 

protein expression and DNA-binding patterns in normal SRBs stimulated by the B cell 

receptor cross-linking. In this system, simultaneous addition of a CD40 ligand alone with 

the specific cytokines (e.g. IL-4, IL-5, IL-6) may assimilate interaction of B cells with 

thymus-dependent antigens (see Chapter I, Section 1). Any differences from the patterns 

observed in this study will indicate that the model of Pax-5 protein regulation proposed 

here is accurate only for humoral response triggered by the challenge with thymus- 

independent antigens.
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Conclusions

Several major observations of this project are summarized as follows:

1. Isoform Pax-5d has a function opposite to that of Pax-5a. Activity of Pax-5a may be 

regulated by Pax-5d via competition for binding either to target sites on DNA or to 

accessory/regulatory factors.

2. The ratio o f Pax-5 proteins changes in activated B lymphocytes, reflecting a shift 

toward higher concentrations of the isoforms which may inhibit activity of Pax-5a. 

Isoform Pax-5e is likely to play an important role in regulation of Pax-5a function in 

activated B lymphocytes.

3. Activity of Pax-5a appears to be regulated at the post-translational level through 

modulation of its stability. Data suggests that Pax-5a is highly susceptible to C- 

terminal proteolytic degradation in resting B cells, but becomes stabilized in activated 

B lymphocytes.

4. The ratio of Pax-5 proteins changes during activation of the immature B cell line 

W EHI-231 in a pattern similar to that observed for mature B lymphocytes. The 

changes in ratio of Pax-5 proteins can also be correlated with the developmental stages 

of B lymphocytes (as assessed through analyses of B cell lines representing different 

stages of B cell differentiation).

5. Expression patterns and DNA-binding properties of Pax-5 proteins are altered in 

resting and activated B cells isolated from aged mice.

6. Pax-5a and Pax-5d proteins are likely to have different half-lives.
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