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ABSTRACT PAGE 
 
The diamondback terrapin (Malaclemys terrapin) is a species of turtle found 
exclusively in brackish water habitats. Terrapins are currently facing population 
threats including by-catch mortality in crab pots, predation, and habitat loss. The 
expansion of the exotic, invasive reed Phragmites australis is causing 
widespread structural and functional changes to coastal ecosystems throughout 
North America, which could negatively impact the nesting success of female 
terrapins by invading preferred nesting habitats. I examined the extent to which 
Phragmites affects nesting of a breeding population of diamondback terrapins at 
Fisherman Island National Wildlife Refuge on the eastern shore of Virginia, 
where Phragmites has recently expanded into known areas of terrapin nesting. 
With data collected from the 2015 nesting season I quantified the impacts of this 
expansion on terrapin nesting by: determining the extent to which nest incubation 
temperature is impacted by Phragmites shading, determining how Phragmites 
density impacts the risk of rhizome invasion into nests, and determining how the 
presence of Phragmites impacts predation of terrapin nests. I also examined 
landscape features to determine which factors may be associated with 
diamondback terrapin nest site use. I found that Phragmites cover greater than 
50% would decrease incubation temperatures of terrapin nests sufficiently to 
produce predominantly male hatchlings. There was no effect of Phragmites cover 
on root growth into simulated nests, but cover by other dune plant species 
explained observed trends in root growth. I did not find a significant effect of 
Phragmites on nest predator activity, but did find that Phragmites had an impact 
on terrapin nest site use on Fisherman Island. Distance from nest to nearest 
marsh and tidal creek also influenced terrapin nest site use. With crab pots and 
roadways contributing to high adult mortality every year, high nesting success will 
be highly important to maintaining and propagating this charismatic species.  
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Chapter 1: Impacts of Phragmites australis on incubating terrapin 

nests - Temperature and Root Invasion 

Introduction 

The diamondback terrapin is a specialized species of emydid turtle found 

only in brackish water habitats along the Atlantic Coast and Gulf of Mexico of the 

United States (Butler and Heinrich 2007; Feinberg and Burke 2003). Terrapins 

play an important role in the salt marsh ecosystems, acting as a top predator for 

invertebrate populations (Baldwin et al. 2005) as well as being prey for the Bald 

Eagle (Haliaeetus leucocephalus) (Butler et al. 2006). Diamondback terrapin 

populations were once large, but by the 20th century their numbers were greatly 

reduced by harvesting for the food industry (Baldwin et al. 2005). While terrapin 

meat is no longer in high demand, terrapin populations still face major threats 

including by-catch mortality in crab pots, nest predation, road mortality, and 

habitat loss (Butler and Heinrich 2007; Feinberg and Burke 2003). Due to these 

factors local terrapin populations declines are documented in states such as 

Florida and South Carolina, however terrapins are only protected by state laws in 

some parts of their range (Gibbons et al. 2001; Seigel 1993).  

Terrapins face high risk of mortality in all life stages; crab pots and 

roadways result in high death rates in adults (Grosse et al. 2014), while predation 

is the greatest threat to the egg stage (Butler et al. 2006). Mortality in crab pots is 

documented as the main cause of decline for this species, and has been 

occurring for the last 60 years (Roosenburg 2004). Crab pots selectively kill adult 

males and juvenile females, as they are the size that can easily fit into the 
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openings designed for crab capture (Coleman et al. 2014). This is a major cause 

of concern because diamondback terrapins have relatively small home ranges, 

and a high rate of juvenile—particularly female—mortality could ultimately lead to 

population collapse, as has been found in other emydid turtles (Congdon et al. 

1993). A study by Gibbons et al. (2001) documented that terrapins show high 

home range site fidelity from year to year, with a majority of terrapins recaptured 

in the same tidal creeks in consecutive years. To offset high rates of adult and 

juvenile mortality in a species with low dispersal rates, nesting success is 

imperative to support recruitment of local terrapin populations. Terrapins, like 

most turtle species, have life history traits (e.g., delayed maturity) that restrict 

their ability to adapt to a rapidly changing environment (Gibbons et al. 2001). Any 

changes, be it anthropogenic or natural, could cause dramatic changes in 

demography, and severely affect population recruitment. 

Land-use change, climate change, alien or invasive species, and pollution 

are a few of the major factors impacting biodiversity (Didham et al. 2007; Wilcove 

et al. 1998). Among them, many scientists argue that habitat loss and invasive 

species are two of the largest threats to the proliferation of native species 

(Didham et al. 2007; Wilcove et al. 1998). These two phenomena are interlinked; 

human actions and land use change disturb ecosystems in such a way that 

makes them susceptible to colonization by invasive species (Galatowitsch et al. 

1999; Zedler and Kercher 2004; Silliman and Bertness 2004). Invasive 

vegetation often further degrades ecosystems and impacts the survival of native 

species that may not be able to withstand severely modified conditions (Uddin et 
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al. 2014). In a study on reptile populations, Gibbons et al. (2000) found that 

exotic grasses degraded their native shrub habitat in Idaho, which resulted in a 

decrease of species richness by about 5% over 20 years. Invasive vegetation 

has a high probability of changing ecosystems to such an extent that native 

species cannot survive, therefore creating drastic habitat modification and 

impacting diversity. 

Invasive vegetation can severely impact wetlands when made vulnerable 

by high amounts of disturbance. Anthropogenic activities such as runoff, 

sedimentation, nutrient inputs, and drainage degrade wetlands and cause them 

be susceptible to colonization by invaders (Galatowitsch et al. 1999). Aggressive 

invaders, such as Phragmites australis (common reed, hereafter Phragmites), 

are able to thrive in areas of disturbance and displace native wetland plants 

(Silliman and Bertness 2004). Phragmites is rapidly colonizing Atlantic Coastal 

wetlands of the United States, particularly brackish wetlands (Gan et al. 2010; 

Chambers et al. 1999).  In the last 100 years Phragmites has been increasing its 

range and has become a dominant species in some terrestrial and aquatic 

ecosystems (Chambers et al.1999), including some around Chesapeake Bay. A 

study by Rice et al. (2000) of seven marshes in the Chesapeake Bay found 

greater rates of Phragmites expansion in saline marshes compared to tidal 

freshwater marshes. This prolific grass species forms dense monocultures 

mainly by rhizome spread and clonal growth. It establishes in well-drained areas 

bordering marshes and creeks, and then expands by rhizomes into the high 

marsh zone (Bart and Hartman 2003). Phragmites reproduction by clonal 
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integration has also enabled it to spread into increasingly saline habitats and 

rapidly colonize New England salt marshes (Silliman and Bertness 2004). 

Increasing habitat alteration and destruction along the Atlantic Coast enables 

Phragmites to successfully invade these ecosystems (Silliman and Bertness 

2004) and will aid in the continued expansion of its range throughout New 

England and potentially further south. Currently Phragmites distribution has been 

documented to overlap with known terrapin habitat in Deleware (Meadows 2016) 

and Virginia (Denmon 2014), and may continue to overlap in other areas 

throughout the terrapin range.  

Phragmites expansion is associated with many impacts on tidal marsh 

ecosystems, including; decreased plant diversity, altered vegetation structure, 

and modified hydrology and soil properties (Chambers et al. 1999; Bolton and 

Brooks 2010). The height and density of mature Phragmites stands enables it to 

become the dominant species by crowding out other species and reducing the 

amount of solar radiation at the soil surface, available soil nutrients, and soil 

moisture (Meyerson et al. 2000; Rice et al. 2000). These ecosystem changes 

may also directly impact the fauna that inhabit these marshes. Phragmites has 

been shown to fill in small creeks in brackish tidal marshes, impacting aquatic 

fauna by restricting movements into important feeding areas (Roman 1978). 

Phragmites also has a negative impact on wildlife diversity by reducing habitat 

that is important for nesting, stopover during migration, and foraging (Benoit and 

Askins 1999). Phragmites expansion and reduction of shallow aquatic breeding 

habitat was attributed as the most likely cause of Fowler’s toad (Anaxyrus 
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fowleri) population decline in Ontario marshes (Greenberg and Green 2013). The 

results of Phragmites invasion can be quite severe and have the potential to 

greatly affect the survival of a wide variety of species in a wide variety of habitats. 

Phragmites may impact diamondback terrapin nesting because of its 

ability to alter aspects of the environment imperative for nesting success, such as 

vegetation structure, soil temperature, and moisture (Bolton and Brooks 2010). 

Terrapins prefer sparsely vegetated, sandy areas above the intertidal zone to lay 

their nests (Feinberg and Burke 2003; W. M. Roosenburg 1994), and have been 

found to commonly nest in areas with less than 20% vegetation cover (Burger 

and Montevecchi 1975). Terrapins exhibit temperature dependent sex 

determination (TSD), where clutches incubated under warmer temperatures (> 

30°C) will produce females while cooler incubation temperatures (< 27°C) 

produce males (Jeyasuria et al. 1994). Laboratory studies have found the pivotal 

temperature for sex determination – the temperature that produces a 1:1 sex 

ratio – to be roughly 28.5°C (Jeyasuria et al. 1994). These temperatures are key 

during the critical sex-determining period, which is thought to occur sometime 

around the middle to last third of incubation (Burke and Calichio 2014; Mrosovsky 

and Pieau 1991). Phragmites invasion into sites could drastically reduce the 

amount of preferred sparsely vegetated nesting areas, and could shade nests to 

such an extent that incubating temperatures are reduced enough to produce 

male-dominated clutches. Most studied terrapin populations are female biased 

(Baldwin et al. 2005), so a high rate of adult female mortality coupled with male-

dominated clutches could greatly skew the ratio of a breeding population.  
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In addition to skewing the sex-ratio of a breeding population, Phragmites 

has the potential to severely reduce nesting success. Root invasion of terrapin 

nests has been documented to occur from various species, including American 

beachgrass (Ammophila breviligulata) as well as Phragmites (Bolton and Brooks 

2010; Lazell and Auger 1981). Nest invasion by roots often results in nest failure, 

either due to egg destruction or prevention of hatchling emergence (Lazell and 

Auger 1981). Phragmites has an extensive underground root system and 

rhizomes may spread up to 2 meters either horizontally or vertically (Rice et al. 

2000).  Many studies have found that most root growth happens above a depth 

of 50 cm in the soil profile (Kudo and Ito 1988; Moore et al. 2012), with a majority 

of roots growing in the spring and rhizomes growing in the summer (Engloner 

2009). This depth and timing of Phragmites root growth is of concern to terrapin 

nesting success. When female terrapins nest on sand dunes colonized by 

Phragmites, terrapin nests - which are typically dug to a depth of 15cm below the 

soil surface (Butler, Seigel, and Mealey 2006) - may experience a large risk of 

root and rhizome invasion over the nesting season. The nesting season varies 

among geographic regions (Butler, Seigel, and Mealey 2006), but encompasses 

a main portion of the spring and summer growing season during which 

Phragmites undergoes prolific root growth and could possibly destroy a large 

number of incubating nests. 

The ability of Phragmites to alter ecosystem functioning could impact 

terrapin nesting efforts and nest survival. The sandy nesting beaches imperative 

to terrapin nesting are adjacent to salt marshes at high risk of degradation from 
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invasive species colonization. Effects of habitat degradation may be further 

exacerbated by the fact that diamondback terrapins exhibit nest site fidelity, 

where females return to the same beaches to nest each season (Sheridan et al. 

2010; W. M. Roosenburg 1994). If females return to nest every year in sub-

optimal habitat, this could lead to low nesting success or skewed sex-ratios and 

could severely reduce population recruitment and persistence. It is imperative to 

study the intersection of Phragmites and terrapin nesting activity and the 

resulting changes to tidal marsh ecosystems that may influence terrapin nest 

success. The rate of Phragmites expansion may be faster than the rate at which 

terrapins may be able to adjust to subsequent habitat changes. Expansion of 

Phragmites into the terrapin range may create additional hardship for nesting 

females (Chambers et al. 1999; Bolton and Brooks 2010) but has never been 

examined directly. Loss of optimal nesting habitat may make it extremely difficult 

for terrapin populations to rebound from high rates of adult mortality, greatly 

impacting the propagation of this species (Baldwin et al. 2005).   

I examined the potential impacts on terrapin nesting ecology that could 

result from Phragmites colonization using a study site in Virginia where terrapin 

habitat and Phragmites distribution overlap. Fisherman Island National Wildlife 

Refuge on the eastern shore of Virginia is a popular nesting area for northern 

diamondback terrapins (Denmon 2014; Hackney et al. 2013). Phragmites is 

present on this refuge, and may be expanding in some sections every year 

(Leffel 2015). To achieve my project goal I addressed two research objectives:  
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Objective 1: Determine the shading regime of terrapin nests at varying 

Phragmites densities and the resulting impact on incubation temperature. I 

hypothesized that nests laid in areas with higher Phragmites canopy cover would 

experience a lower incubation temperature than nests laid in more open areas. I 

predicted that heavily shaded nests would have an incubation temperature below 

the pivotal sex-determination temperature, and would follow a regime that would 

produce mostly male hatchlings. 

Objective 2: Determine how the density of aboveground Phragmites influences 

the potential for rhizome invasion of terrapin nests. I predicted that nests laid in 

areas with high density of aboveground Phragmites would experience greater 

prevalence of root and rhizome invasion, and thus greater potential for nest 

failure.  

Methods 

Study Site: This study was completed on Fisherman Island National Wildlife 

Refuge (37°5’44.49”N, 75°57’38.17”W). Fisherman is Virginia’s southernmost 

barrier island found at the mouth of the Chesapeake Bay. This roughly 800-ha 

island is under the jurisdiction of the U.S. Fish & Wildlife Service and is part of 

the Eastern Shore of Virginia NWR (“About the Refuge” 2016). It is an area 

known to contain breeding habitat for diamondback terrapins with high rates of 

incidental observation of terrapin nesting activity (Denmon pers. com). 

Phragmites has also become established on the Refuge, and USFWS 

employees have not managed for its spread since 2011 so its expansion has 
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been unhindered for up to 5 years (Leffel pers. com). This island was selected for 

this study because of the likelihood of overlap between nesting terrapins and 

sandy dunes containing various densities of Phragmites coverage. Only areas 

known to have high concentrations of terrapin nesting were utilized for this study 

(Fig. 1), as Fisherman Island is used by many nesting bird species and access to 

all parts of the island are restricted.  

Determine the extent to which terrapin nest incubation temperature is 

impacted by Phragmites shading 

Experimental Design 

To evaluate potential changes in terrapin nest incubation regime due to 

Phragmites shading, I measured simulated incubation temperatures in sites with 

varying densities of Phragmites cover. I buried 15 Thermochron iButton 

temperature loggers (#DS1922L) to compare temperature regimes across 

different vegetation cover classes. Phragmites density was separated into three 

classes by percent stem density: low (0-20%), medium (21-50%), and high (51-

75%). Study plots were determined by taking a stem density measurement within 

a 1-m2 quadrat around an intended “nest” site and evaluating the percent of 

ground covered by Phragmites (Fig. 2). Two observers generated independent 

estimates that were averaged. Observers also estimated the average coverage 

of other, non-Phragmites vegetation within the study plots by the same method. I 

buried 5 temperature loggers per cover class in sites that met these vegetation 

density requirements. A sample size of 5 loggers per cover class was chosen by 



 

10 
  

considering the results of a power analysis1. I coated the temperature loggers in 

Plasti Dip to prevent water damage, and glued them to wooden paint sticks to 

remain conspicuous aboveground for collection. I buried the loggers 15-cm deep 

– the depth of an average terrapin nest (Butler et al. 2006) – and set them to 

record hourly temperature measurements. I deployed the loggers in late May 

2015 and collected them 65 days after deployment to simulate an average 

terrapin nest incubation period in Virginia (Ruzicka 2006). I downloaded the 

temperature data using OneWire Viewer (Walden 2015). 

Data Analysis: 

I performed all statistical analyses in SAS using MIXED procedures. I 

investigated the effects of week, Phragmites cover class, and the interaction of 

week and cover class on simulated terrapin nest incubation temperatures using a 

repeated measures mixed linear model. The factors of interest were week 

(repeated factor), Phragmites cover class (fixed factor), plot (random factor), and 

the dependent variable was temperature. Cover classes were denoted as 1 (0-

20%), 2 (20-50%), and 3 (50-75%). Phragmites cover was analyzed as a 

categorical variable to increase statistical power. Data loggers recorded hourly 

measurements for each sampling site, so I calculated the mean temperature per 

week (9 one week samples total) for each logger over the nesting season and 

                                                           
1Analysis performed in R. An estimate of the effect size for incubation temperature was determined from 
data obtained from Grosse et al. (2014) and considered a 3°C change in incubation temperature to be a 
relevant effect size to measure (the difference between all male and all female producing temperatures). 
The power calculated for 5 loggers in each of the 3 cover class categories with an alpha level of 0.05 was 
98%. 
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used that in the analysis. I modeled the variance and covariance structures, and 

the unstructured model had the lowest AICc value so it was used in the analysis.  

Determine how Phragmites density impacts degree of rhizome invasion 

into nests 

Experimental Design 

To evaluate prevalence of root invasion into nests due to aboveground 

density of Phragmites, I buried 21 in-growth bags in sites with varying densities 

of Phragmites, with 7 bags per each Phragmites cover class density: 0-20%, 21-

50%, 51-75%.  The in-growth bags were used as nest proxies, and should not 

have affected the growth or roots around or into the bags (Steingrobe et al. 

2001). In-growth bags consisted of a nylon mesh tube fitted over a 2-in diameter 

PVC pipe. I dug 30cm deep soil cores to determine root growth for a deeper soil 

profile, to see where terrapin nests lie on the root growth gradient. I placed the 

tube with bag in the soil core hole and then filled it with substrate (mostly sand) to 

the soil surface. The PVC pipe was carefully removed, the nylon tied off, and 

then covered over with remaining sand. I deployed in-growth bags on May 22, 

2015 and excavated them on July 26, 2015. The 65 days growth period was 

chosen to simulate an average nest incubation period. To excavate the bags, I 

used a shovel to dig a wide hole around the in-growth bag, and then used a 

trowel and scissors to carefully excavate bags and prevent roots from being 

pulled out. Bags were wrapped in plastic wrap in the field then refrigerated until 

analysis. In the lab, the root bags were sectioned into 10-cm increments to 
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examine root growth across the soil profile. I sorted roots from soil using 

tweezers and a soil sieve. I then washed the roots in tap water to remove excess 

soil particles, and dried them in a 60°C oven for 24 hours, or until dry. Dried roots 

were weighed using an analytical balance to the nearest 0.1 mg. 

Data Analysis 

I performed all statistical analyses in SAS using MIXED procedures. I 

investigated the effects of Phragmites cover class, other vegetation cover, and 

depth on root biomass in each in-growth bag. I ran an analysis of variance 

(ANOVA) on total in-growth bag root biomass (log transformed for normality) to 

determine the effects of Phragmites cover on root growth. Because roots were 

hard to distinguish as Phragmites or other vegetation, I also investigated the 

effects of other vegetation found around the in-growth bags. Other vegetation 

found at the study site included low herbaceous species, most commonly 

American beachgrass (Ammophila beviligulata) and other native species found 

on coastal marshes in Virginia. I used a linear regression analysis to determine if 

percent cover of other vegetation related with in-growth bag root biomass. I also 

ran an ANOVA analysis on root biomass (log transformed) in each 10-cm 

increment of each in-growth bag to parse out effects of Phragmites cover on root 

growth by depth. This experimental set-up involved nesting and blocking, and 

was analyzed with the in-growth bags serving as blocks that were nested in 

Phragmites cover class, with the depth intervals (0-10cm, 10-20cm, 20-30cm) 

serving as the treatments.  
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Results 

Temperature 

Diamondback terrapins nested regularly throughout the study period (May 

28-July 24) on Fisherman Island (see Chapter Two for data collection methods) 

(Fig. 3). The results of the unstructured repeated measures model showed that 

there was no interaction between week and cover class, so the interaction term 

was removed from the model. Phragmites cover class had a significant effect on 

nest temperature (F2,12 = 8.31, p<0.01). Average “nest” temperature for the whole 

65 day incubation period was the highest for cover class 1 (0-20%), and the 

lowest for cover class 3 (50-75%) (Table 1). When temperatures were examined 

on a weekly basis throughout the incubation period, “nests” in cover class 1 

consistently had the highest temperatures while nests in cover class 3 

consistently had the lowest temperatures (Fig. 3). For even the earliest nesters, 

temperatures during the sex determining period in cover class 1 (0-20%) 

remained entirely above the pivotal temperature. Cover class 2 (20-50%) had 

temperatures that were mostly above the pivotal temperature, while cover class 3 

(50-75%) was entirely below the pivotal temperature for the whole incubation 

period. There was also a significant effect of week on nest temperature (F8,7 = 

365.48, p<0.01). Average weekly temperatures were warmer at the end of the 

incubation period than the beginning for each cover class, with some variation 

throughout.  
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Roots and Rhizomes  

Phragmites cover class had no significant effect on total root growth into in-

growth bags (F2,17=0.35, p=0.71). Mean root biomass was very similar across all 

three Phragmites cover classes (Fig. 4). Analysis on the impacts of other 

vegetation yielded a significant regression equation (F1,19=19.71, p<0.01), with an 

R2 of 0.51. Other vegetation was a significant predictor of total root weight (Fig. 

5). I was not able to determine the identity of roots in the in-growth bags as they 

were all very fine and looked similar and no rhizome ingrowth was observed. The 

ANOVA for root growth by depth showed that neither Phragmites (F2,18=0.23, 

p=0.80) nor depth (F2,40=3.17, p=.0527) had a significant effect on root growth. 

There was no discernable pattern regarding root growth, depth, and Phragmites 

cover (Fig. 6). 
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Figure 1. Map of Fisherman Island National Wildlife Refuge with a cross-hatched 
polygon of the study area. Fisherman Island is located on the eastern shore of 

Virginia, at the mouth of the Chesapeake Bay. 
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Figure 2. Locations where iButton data loggers were buried on Fisherman Island 
in relation to Phragmites occurrence 

 

 

 

 

 

 

 

 



 

17 
  

Table 1. Average "nest" temperatures for the total 65-day 
incubation period (May-July 2015) for each Phragmites cover class 
 

Cover Class Percent Cover Mean Temperature 

Low 0-20 28.2°C 

Med 20-50 27.3°C 

High 50-75 25.3°C 

 

 

 

 

 

Table 2. Average "nest" temperature for each week during the 65-day 
incubation period (May-July 2015) for each Phragmites cover class 
 

  Mean Temperature by Week (°C) 

Cover Class 1 2 3 4 5 6 7 8 9 

Low 25.5 25.2 26.7 30.3 30.8 29.0 30.2 29.0 30.7 

Med 24.7 24.5 25.7 28.9 29.4 28.1 29.1 28.1 29.6 

High 22.6 23.0 23.6 26.6 27.1 25.9 26.9 26.2 27.3 
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Figure 3. Means and 95% confidence intervals of “nest” temperature 
averaged by week for each Phragmites cover class (May-July 2015). 

Pivotal temperature shown (28.5°C). Bar plot of predated terrapin nests 
found per day. 
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Figure 4. Means and 95% confidence intervals of total root weight of in-
growth bags for each Phragmites cover class 
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Figure 5. Plot of total root weight of in-growth bags by other above-ground 

vegetation cover. 
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Figure 6. Means and 95% confidence intervals of root weight of in-growth 

bags by Phragmites cover class and by depth increment. 1=0-10cm, 
2=10-20cm, 3=20-30cm 
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Discussion 

I performed field studies to examine the potential of Phragmites to reduce 

incubating temperature of diamondback terrapin nests and increase the risk of 

rhizome and root invasion into nest chambers. I found that Phragmites cover 

from 0-50% still allowed nests to incubate at temperatures warm enough to 

produce both male and female hatchlings, whereas cover over 50% would most 

likely produce predominantly male hatchlings. This pattern was shown for the 

earliest nests laid in the spring, and would hold true for later nesters in cover 

classes 1 and 2 as ambient temperatures rise during the summer. It is 

undetermined if temperatures in cover class 3 would ever reach the pivotal 

temperature even for late nests that experience high mid-summer temperatures. I 

did not find significant differences in Phragmites root and rhizome growth among 

different aboveground cover classes, and there was not much evidence for 

Phragmites root growth into root bags at all. The changes in root weight in in-

growth bags appear due mostly to other herbaceous species found on the sandy 

nesting dunes, as I found a significant positive correlation between root weight 

and other (non-Phragmites) vegetation cover. My work suggested the risk of 

Phragmites root invasion was low for terrapin nests, but other plant species may 

contribute to minor amounts of nest predation.  

Though the effects of Phragmites on terrapin nests have never been 

studied directly, my findings are consistent with other studies concerning 

vegetation cover and reptile nest incubation. Grosse et al. (2014) found that 

diamondback terrapin nests incubated along hedgerows had average 
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temperatures below the pivotal incubation temperature (28.5°C), while nests in 

open grassy areas were much warmer. These differences were also consistent 

on a weekly basis across the incubation period. Bolton and Brooks (2010) 

documented that spiny softshell turtle (Apalone spinifera) nests shaded by 

Phragmites took over 10 days longer to incubate than unshaded nests, 

demonstrating that vegetation cover reduced nest temperatures sufficiently to 

affect development. These findings are important when considering sex-ratios 

and management of isolated populations of diamondback terrapins. Sex ratios in 

populations of diamondback terrapins seem to vary throughout the terrapin 

species range. Studies have estimated ratios to be female-dominant by 3:1 in 

Maryland (Roosenburg 1990), 5:1 in central Florida (Seigel 1984), and range 

from 9:1 to 21:1 in southern Florida (Baldwin et al. 2005), whereas Lovich and 

Gibbons (1990) found a slight male bias in South Carolina. This variability may 

be due to natural factors such as warmer ambient temperatures found in the 

south, or the fact that adult females tend to be easier to capture than males due 

to their large size. Crab pots also differentially kill male terrapins because of their 

smaller size (Baldwin et al. 2005). However, female bias seems to be common 

for populations of chelonians and crocodilians (Freedberg and Wade 2001). The 

potential consequences of Phragmites invasion on nest sites for terrapin 

populations are unknown, but could contribute to changing sex ratios and altering 

recruitment rates. If extensive Phragmites colonization of nesting sites causes a 

shift to mostly male hatchling production, it may cause some terrapin populations 

to go extinct. A model developed for a Rhode Island population of terrapins 
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showed that terrapin fecundity declines severely as mature females are 

increasingly lost to road mortality (Gilliand et al. 2014). This trend would be 

exacerbated if females were no longer being produced to replace the older 

population, and highlights the importance of female terrapin production and 

survival. 

Significant Phragmites root growth was not found in this study; however, 

root growth into turtle nest chambers is a regular occurrence across species. 

Phragmites roots have been documented to grow into and destroy nests of spiny 

softshell turtles (Apalone spinifera) in Canada (Bolton and Brooks 2010), and 

root growth was documented to be responsible for destroying 23% of nests of 

loggerhead sea turtles (Caretta caretta) during one nesting season in Florida 

(Bouchard and Bjorndal 2000). Phragmites has the capability of being a severe 

belowground threat to turtle nests because of its growth habits. Phragmites 

underground biomass experiences peak growth in the early spring and late fall 

for roots, while rhizomes grow mostly in the summer (Engloner 2009) – so this is 

a threat that is present for most of the turtle nesting season. This growth pattern 

may also explain the lack of substantial Phragmites root growth into my in-growth 

bags – they were deployed when root growth was minimal. Nests laid on the 

periphery of Phragmites stands may also be under just as much threat of 

rhizome invasion as those laid within stands, as Sokup et al. (2002) found daily 

growth rate of rhizomes to be up to 23mm/day. Turtle species whose hatchlings 

overwinter in nests may experience even greater declines due to the longer time 

spent underground and increased accessibility by plant roots. Not much is known 
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about diamondback terrapin hatchling behavior once they leave a nest, but they 

have been found to overwinter in nests (Draud et al. 2004; Muldoon and Burke 

2012) and may be more susceptible to Phragmites root invasion when in the nest 

chamber for an extended period of time. Root invasion is a threat to 

diamondback terrapin nest success, however further study will be needed to fully 

understand the specific threats due to Phragmites.  

Additional work could enhance our understanding of the relationship 

between Phragmites invasion and diamondback terrapin nesting success. 

Terrapin nests and eggs were not used in this study due to logistical constraints, 

and this may be one major limitation of this study. Burger (1976), for example, 

found a significant difference in temperature between terrapin nests and the soil 

5-cm from the nest at a study site in New Jersey. Daily mean temperatures in 

incubating nests were significantly higher than the surrounding soil. This finding 

was attributed to metabolic heat produced by the embryos. Placing temperature 

loggers in an experimental nest with terrapin eggs and taking into account 

metabolic heat could reduce the differences in incubation temperature I observed 

among Phragmites cover classes. The absence of terrapin eggs may have also 

impacted the root growth study results. Nesting turtles provide a source of 

nutrients to the nest sites they choose (through exudates or embryonic material), 

and may provide an important source of nitrogen in sand dunes where this 

nutrient is a limiting factor (Hannan et al. 2007; Stegmann et al. 1988). A study 

by Stegmann et al. (1988) found that American beachgrass (Ammophila 

breviligulata) grown in the presence of terrapin eggs grew much larger and had 
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many more branched, lateral roots than when grown without eggs. Terrapin eggs 

may be a source of nutrients for growing roots. Absence of terrapin eggs in the 

in-growth bags may not have accurately reflected the risk of root invasion for 

terrapin nests in nutrient poor sand dunes. Further study of the impacts of 

Phragmites (and vegetation) on incubating turtle nests should take this into 

account.  

My study shows evidence of Phragmites impacting soil temperatures 

(potential nests) when present in great enough densities, but the question still 

remains whether terrapins will nest in areas with greater than 50% Phragmites 

cover. The answer is mostly likely no, because past studies have shown that 

terrapins tend to nest in relatively open, sandy areas (Roosenburg 1994). During 

the time of this study, terrapin nests were found in 25% Phragmites cover or less, 

indicating a preference to avoid stands of dense Phragmites. Increased 

Phragmites growth into terrapin nesting areas would make traveling and digging 

difficult, and would most likely exclude terrapins from those nesting areas. 

Experimental Phragmites removal from a known terrapin nesting beach in 

Delaware resulted in terrapins returning to nest at sites a few years after 

vegetation was removed (Meadows pers. com). Apparently, dense vegetation 

completely excluded the terrapins from nesting at these sites. When preferred 

open sand dunes disappear due to vegetation colonization, female terrapins 

must deviate from nest site fidelity and find new suites more suitable for nesting. 

Owing to the suspected limited plasticity in nest site selection by female 
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terrapins, management strategies to maintain suitable terrapin nesting habitat will 

be imperative to sustaining their populations.  

Managing Phragmites comes at a high cost – in time and effort, as well as 

monetarily. Effective removal strategies include herbicide application and 

prescribed burning, but regular treatments 2-3 years after an initial treatment 

must be implemented in order minimize Phragmites regrowth (Ailstock et al. 

2001; Meadows pers. com). My study results suggest that complete extirpation of 

Phragmites is not necessary to have successful terrapin nesting. On Fisherman 

Island, terrapins were found to nest in less dense stands of Phragmites and the 

results of the temperature and root study show that impacts of Phragmites on the 

fate of the nests would be minimal. As long as terrapins are still able to access 

nesting areas, they may still be able to reproduce unhindered if Phragmites 

coverage is minimal (or less than 50%). 

My study was developed to determine the potential impacts of invasive 

vegetation on the reproductive success of an estuarine turtle species with 

temperature-dependent sex determination, and to aid land managers in making 

informed decisions about habitat and wildlife conservation. When studying the 

ecology of Phragmites, there is a great dichotomy of whether or not its role in 

ecosystems is a positive or a negative one. Phragmites has been shown to 

stabilize shorelines, remove excess nutrients from soil, and even provide nesting 

habitat for some bird species (Ailstock et al. 2001; Meyerson et al. 2009). 

However there are a suite of negative consequences to Phragmites invasion, 

including reduced and degraded habitat required for nesting turtles. Ensuring 
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higher rates of nesting success will increase the diamondback terrapin’s ability to 

adapt to other environmental changes, and to rebound from high rates of adult 

mortality due to the blue crab fishery. While some Chelonian population models 

predict that juvenile or adult survivorship is the key driver behind population 

persistence (Crouse et al. 1987), increasing nesting success combined with 

strategies to reduce adult mortality will help ensure diamondback terrapin 

persistence. With anthropogenic disturbance contributing to the increase of 

Phragmites colonization (Silliman and Bertness 2004), overlap with diamondback 

terrapin habitat will increase and so must the effort in managing this invasive 

species. The effects of Phragmites are not only experienced by terrapins in 

brackish marshes; Phragmites is inhibiting reptile nesting in freshwater 

ecosystems and impacting other turtle species. We need a better understanding 

about natural sex-ratios in terrapin populations so that we can predict how shifts 

in hatchling sex determination may impact these populations. Expanding upon 

this study to make spatial models that highlight areas where existing terrapin 

populations are at high risk of negative effects from invasive Phragmites would 

be a great next step for effective management.  
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Chapter 2: Impacts of Phragmites australis on terrapin nest site use 

and nest predation 

Introduction 

In Chapter One the effects of Phragmites australis on diamondback 

terrapin nests was examined on a microhabitat scale. This Chapter will examine 

the impacts of Phragmites on a larger scale, considering how vegetation may 

impact terrapin nest site selection. Nest site selection by females is a large factor 

in determining predation risk of nesting species (Leighton et al. 2011). It can be a 

strong selector on maternal fitness due to its high influence on offspring survival 

(Spencer 2002). Vegetation structure of the habitat may determine where an 

animal is able to nest, and can also lead to uneven predation risk throughout the 

habitat (Leighton et al. 2011; Söderström et al. 1998). Plants create a three-

dimensional structure throughout the landscape which often mediates predator-

prey interactions (Pearson 2009). Exotic species invasions can change this 

landscape structure and thus alter the relationships between predator and prey. 

Pearson (2009) found that invasions of spotted knapweed (Centaurea maculosa) 

into western grasslands caused a shift in web spider community structure. 

Spotted knapweed allowed spiders to build larger webs than native vegetation, 

and thereby capture more prey. Phragmites australis, an invasive species to the 

United States, has the capacity to modify habitat features on a relatively rapid 

time scale because of its ability to colonize quickly and form dense monocultures 

(Silliman and Bertness 2004). This may cause changes that are beneficial to nest 
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predators, but detrimental to prey species that inhabit newly colonized 

Phragmites-dominant habitats. 

The vegetation structure of diamondback terrapin nesting beaches is a 

factor that can have severe impacts on nesting success through its influence on 

foraging patterns as well as detectability of prey. Raccoons (Procyon lotor) and 

fish crows (Corvus ossifragus) are among the most prevalent predators of 

diamondback terrapin nests and have the potential to severely decrease nest 

success, but these species employ different foraging strategies (Schmidt 1999).  

Raccoons forage nocturnally by smell and are particularly adept at finding 

terrapin nests; one study at Jamaica Bay National Wildlife Refuge documented 

over 90% predation of monitored nests during one nesting season (Feinberg and 

Burke 2003). Raccoons are considered the most voracious predators of terrapin 

nests, and many studies have found that their foraging behavior is mediated by 

vegetation (Barding and Nelson 2008; Newbury and Nelson 2007). The influence 

of “Edge Effects” on raccoon (and other species) predation are both supported 

and negated throughout the literature (review by Lahti 2001), but if raccoon 

foraging is influenced by edges, then it is highly likely that Phragmites 

colonization of terrapin nesting beaches could further facilitate this pattern. 

Dense Phragmites stands create a well-defined vegetation edge for raccoons to 

forage along, providing both protective cover and a delineated travel corridor. 

These features may make Phragmites-dominant habitats more likely for raccoons 

to travel through and forage within terrapin nesting beaches, and increase 

terrapin nest failure due to predation.  
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Corvid species, such as crows, are also frequent predators of terrapin 

nests, but are diurnal visual predators (Huhta et al. 1996). They use cues such 

as egg visibility or activity of nesting females in order to locate nests (Sullivan 

and Dinsmore 1990), and search by air or on foot (Sugden and Beyersbergen 

1986). Tall, dense vegetation cover can deter crows foraging on the ground, and 

conceal nests from their view. Sugden and Beyersbergen (1987) found that 

simulated duck nest survival from corvid predation was greater in sites with taller 

vegetation, and nests were found faster in sites with shorter vegetation. 

Phragmites may impede the ability of crows to locate nesting terrapins and dig up 

freshly laid nests. In contrast with raccoons, Phragmites presence in a nesting 

area may actually reduce the amount of avian predation on terrapin nests.  

Predictions of Phragmites effects on terrapin nest predation by different 

predator species might hold true if terrapins nested evenly across a habitat with 

Phragmites distributed heterogeneously across the landscape. However, if 

Phragmites limits the availability of total nesting area and restricts terrapins to 

nesting in certain areas (i.e. nesting is clumped), then predation rates may be 

higher by both raccoons and crows due to the impact of density dependence. 

Density dependent predation is the theory that predators will respond to and 

spend more time in areas where a food resource is more common than other 

areas of the landscape where food is scarce (Burke et al. 1998; Schmidt and 

Whelan 1999). Though some discrepancy exists in the literature on whether this 

pattern always holds true (Burke et al. 1998), medium-sized generalist predators 

(raccoons and crows) are more likely to exhibit this type of behavior. They have 
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relatively large home ranges that produce the opportunity to experience 

heterogeneous resource availability, and selectively spend time in areas that are 

more profitable (Schmidt and Whelan 1999). Mesocarnivores such as raccoons 

may develop search images that aid in allocating more time in these areas where 

resource availability is high (Byrne and Chamberlain 2012). Crows also have 

increased predation success with increased prey abundance because they 

generally return to sites of previous foraging success (Shields and Parnell 1986). 

Phragmites colonization of brackish marshes and nesting beaches may restrict 

the total available nesting habitat for terrapins, resulting in a high density of nests 

laid within a small area. Terrapins may experience greater nest predation by 

raccoons and crows at nesting areas spatially restricted by Phragmites due to the 

highly profitable area that has been created.  

Maternal nest site selection not only influences predator detection of 

nests, but also controls incubation regime and success for oviparous species that 

lack parental care (Brooks et al. 1991; Horrocks and Scott 1991). Site 

characteristics of turtle nests such as vegetation, slope, and elevation have been 

shown to impact embryo survival and development (Bobyn and Brooks 1994; 

Wilson 1998). Examining predated turtle nests provides an opportunity to 

determine habitat features associated with nesting preference. Past studies have 

shown that diamondback terrapins typically nest on sparsely vegetated sand 

dunes above the high tide line (Feinberg and Burke 2003; Roosenburg 1994). 

Burger and Montevecchi (1975) found that terrapins nesting in New Jersey 

preferentially nested in high dune areas: likely to prevent flooding during 
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incubation. Nest site selection impacts reproductive success and should be a 

selective force for choosing sites that maximize offspring survival for species that 

lack paternal care (Crump 1991). It is imperative to understand the habitat 

characteristics required for successful terrapin nesting to offset high rates of 

predation. 

Nest predation is considered one of the greatest threats to turtle offspring 

(Spencer and Thompson 2003), with average survivorship of terrapin eggs found 

to be roughly 1-3% (Baldwin et al. 2005). Presence of Phragmites and stand 

density in terrapin nesting sites has the potential to influence predation rates and 

to alter the species specific nature of predation. This has important conservation 

applications, as diamondback terrapin populations were in decline dating back to 

the early 20th century (Baldwin et al. 2005), and after a brief rebound are now 

thought to be declining again. Efforts to increase population recruitment are 

important for successful terrapin management. I examined predation of terrapin 

nests on a barrier island in Virginia to determine if any patterns exist in response 

to Phragmites presence which could be explained by vegetation structure 

changes. I also examined other nest site characteristics to determine if 

diamondback terrapin nesting on the eastern shore of Virginia matched and 

supported the existing literature on female nest site selection, as well as to 

provide more data on terrapin nesting activity in Virginia. To achieve my project 

goals I addressed two main research objectives: 
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Objective 1: Determine the extent to which predation of terrapin nests is 

influenced by Phragmites density. I hypothesized that Phragmites cover would 

impact the ability of predators to detect terrapin nests, and that predation 

patterns would vary with Phragmites density. If nests are laid evenly across the 

landscape in areas with and without Phragmites, I predicted that nests laid in 

areas with Phragmites present would experience less avian predation, relative to 

raccoon predation, due to reduced visibility of nesting activity for corvids. I 

predicted that there would be higher avian predation in areas without Phragmites, 

but not necessarily higher than raccoon predation. If Phragmites restricts terrapin 

movement and concentrates nesting into certain areas, then I would expect to 

see higher rates of predation by both corvids and raccoons in areas of higher 

nest density.  

Objective 2: Determine whether nest site characteristics such as presence of 

Phragmites, elevation, and distance to marsh or tidal creek, could explain the 

observed variation in terrapin nesting density. I hypothesized that terrapins would 

nest at sites with low Phragmites coverage in order to reduce shading of 

incubating nests. I also hypothesized that female terrapins would nest closer to 

marsh and tidal creeks for ease of access to nest sites. Finally, I hypothesized 

that terrapins would nest at sites with higher elevation to reduce the risk of 

flooding of incubating nests.  
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Methods 

Study Site: This study was also performed on Fisherman Island National Wildlife 

Refuge, chosen because of the high rate of diamondback terrapin nesting 

previously reported on the island, as well as relatively high rates of nest 

predation. The dominant terrapin nest predators found at this site are raccoons 

and fish crows (Denmon pers. com). Raccoon predation is also a threat to 

nesting shorebirds on the refuge, and the USFWS implements annual raccoon 

trapping to reduce predation on nests. Predator activity has been documented 

across the island, so it is likely that there will be areas of overlap of foraging 

predators, terrapin nests, and the presence and absence of Phragmites. 

Examine predation of terrapin nests – predator behavior and landscape 

variation 

Observational Study 

I collected observational data on predated terrapin nests on Fisherman 

Island over the 2015 nesting season. While an observational study on all terrapin 

nests laid and the fate of each nest would provide the most comprehensive 

information, the scope of work is much too large for this Master’s thesis. Due to 

the vast area to be covered by relatively few people and the large effort involved 

in determining if nests are successful, only predated nests were counted. I 

performed predated nest searches from late May to late July to encompass the 

majority of the terrapin nesting season. I surveyed the study area for a total of 50 

days (non-consecutive) throughout the nesting season, with nest searches taking 



 

36 
  

place between 07:00 and 14:00 each day. Nests were considered to be predated 

if fragments of egg shell were present on the sand surface and there was 

evidence of digging. Predator type was determined by the state of the egg shells: 

shells ripped apart indicated raccoon predation whereas shells with hole 

punctures indicated crow predation. I took stem density measurements within a 

1-m2 quadrat centered on a predated nest and evaluated the percent of ground 

covered by Phragmites as well as other vegetation. Once a nest was 

documented as predated it was covered up and egg fragments were removed to 

prevent double counting during subsequent surveys. Coordinates of all nests 

were taken with a handheld Trimble GPS unit. GPS points were differentially 

corrected and 90% of points had sub-meter accuracy. 

Nest Site Use 

I examined other landscape features to determine which might be 

associated with diamondback terrapin nest site use. GPS points of predated 

nests were projected into ArcMap 10.2. To determine if landscape features had 

an effect on nesting occurrence, I imported shapefiles delineating areas of marsh 

and deep water of Fisherman Island, from the National Wetlands Inventory 

database (U.S. Fish and Wildlife Service 2013). Areas of deep water were 

delineated on a rather coarse scale, so I hand-digitized tidal creeks from a 2013 

aerial image of Fisherman Island (Virginia Base Mapping Program). The “Near” 

spatial analyst tool was used to determine the shortest distance between a 

predated nest to marsh and to deep water tidal creeks. I also obtained elevation 

data from U.S. Geologic Survey National Elevation Dataset (Data available from 
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the U.S. Geological Survey). This provided raster data of elevations of most of 

the conterminous United States to a ~10m resolution. I used the “Extract Values 

to Points” tool to obtain an elevation for each predated nest. 

Data Analysis  

I performed all statistical analyses in SAS on predation data during the 

2015 nesting season2. I examined the impact of Phragmites on nest predator 

type using a chi-squared contingency test, with presence/absence of Phragmites 

as the independent variable and predator type as the dependent variable. Only 

nests for which the predator could be positively determined were used in this 

analysis. Data on terrapin nest site use were averaged across all nests to provide 

a general idea of preferred nest sites in relation to distance to marsh, distance to 

creek, elevation, presence of Phragmites, and percent of other vegetation cover. 

During this study, I found terrapin nesting (as identified by predated nests) to be 

clumped in two distinct areas on Fisherman Island: a high density area north of 

the highway and a low density area south of the highway. Possibilities for why 

this occurred were also explored in analysis of predated nest data and habitat 

characteristics. I performed a correlation analysis using the CORR procedure to 

determine if nest site variables were related. I then put the appropriate variables 

into a generalized linear model under a binomial distribution using the LOGISTIC 

procedure. A multivariate logistic regression was run. The binary dependent 

variable was high or low density nesting area, and the factors of interest were 

                                                           
2 Past studies have been completed in Virginia examining terrapin nesting, however neither study recorded 
information on surrounding vegetation and thus were unable to be included in statistical analyses. 
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distance to marsh, distance to tidal creek, elevation, presence/absence of 

Phragmites, and percent other vegetation cover. All predated nests were used in 

this analysis.  

Results 

Nest Predation 

A total of 259 predated nests were found during the 2015 nesting season 

(Fig. 7), with 232 (90%) nests having no Phragmites within 1-m2 of the nest and 

27 (10%) nests having Phragmites present. Raccoons depredated 170 (66%) 

nests, crows depredated 64 (25%) nests, and for 25 (9%) nests the predator was 

undetermined (no definitive shell fragments) (Fig. 8). For nests where predator 

type was determined, there was no evidence that nest predator type was 

dependent upon presence or absence of Phragmites in nest sites (χ2=0.76, 

p=0.38) (Fig. 9).  

Nest Site Use 

 On average, terrapin nests found on Fisherman Island were 34-m 

(SD=25.6) from the closest marsh (range 0-90m) (Fig. 10), 80-m (SD=27.9) from 

tidal creek (range 11-147m) (Fig. 11), and 1.9-m (SD=0.6) above sea level 

(range 0.9-4.1m) (Fig. 12). A majority of nests were free of Phragmites (90%), 

and on average had 29% (SD=19) non-Phragmites vegetation cover (range 1-

90%) (Table 3; Fig. 13). The high density area had roughly 0.024 nests/m2 of 

nestable beach habitat, and the low density area had 0.003 nests/m2. The 
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correlation analysis (Table 4) showed that no factors were highly correlated, so 

all were included in a logistic regression model.  

 Most factors fit the assumption of linearity between independent variables 

and the logit of the response, but distance to marsh and elevation required an 

ln(x+1) transformation. The data also satisfied the outlier influence assumption. 

When comparing factors between the high versus low density nesting sites, my 

generalized model was significant and fit under the binomial distribution 

(Hosmer-Lemeshow χ2=5.57, p=0.7, Likelihood Ratio p<0.01) (Table 5). Distance 

to marsh had a significant effect on location of terrapin nests (Wald χ2=10.57, 

p=<0.01) with nests in the high density area being significantly farther from the 

marsh than the low density area. Distance to tidal creek had a significant effect 

on location of terrapin nests (Wald χ2=6.09, p=0.01) with nests in the high density 

area being significantly farther from creeks than the low density area. Elevation 

did not have a significant effect on location of terrapin nests (Wald χ2=1.19, 

p=0.27). However, a graph of the means and confidence intervals show that 

confidence intervals of the high and low nesting density areas do not overlap – 

indicating that elevation influences terrapin nest site use (Fig. 12). Presence of 

Phragmites had a significant effect on location of terrapin nests (Wald χ2=22.78, 

p<0.01) with nests in the high density area having significantly less instances of 

Phragmites surrounding them than nests in the low density area (Fig. 13). I saw 

no effect of other vegetation cover on the probability of terrapins nesting in the 

high or low density area (Wald χ2=0.56, p=0.45) (Fig. 14).  
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Table 3. Averages and std. dev for all factors associated with predated 
terrapin nests found May-July 2015 

  

Dist. 
Marsh 

Dist. 
Creek Elevation Other Veg. 

Prop. w/ 
Phragmites 

Mean 33.9 m 79.9 m 1.9 m 29.2% 10% 

Std. Dev. ± 25.6 m  ± 27.9 m ± 0.6 m ± 19% N/A 

 

 

Table 4. Results of a correlation analysis, including Pearson 
Correlation Coefficients, Prob > |r| under H0: Rho=0 

  Dist. Marsh Dist. Creek Elevation Other Veg. 

Dist. 
Marsh 1.00 0.57 0.03 -0.12 

  <.0001 0.63 0.05 
Dist. 
Creek 0.57 1.00 0.02 -0.05 

 <.0001  0.78 0.43 

Elevation 0.03 0.02 1.00 0.14 

 0.63 0.78  0.03 

Other Veg. -0.12 -0.05 0.14 1.00 

  0.05 0.43 0.03   

 

 

 

Table 5. Results from the logistic regression on factors influencing terrapin 
nest site use 

Factor 

High 
Density 
(mean) 

Low 
Density 
(mean) β SE 

Wald 
χ2 

P 
value 

Effect 
Size 

Dist. Marsh 39.1 m 10.8 m 0.51 0.16 10.57 0.0011 28.3 m 

Dist. Creek 84.0 m 61.2 m 0.02 0.01 6.09 0.0136 22.8 m 

Elevation 1.96 m 1.60 m 1.45 1.33 1.19 0.2745 0.36 m 

Other Veg. 29.1% 29.6% -0.01 0.01 0.56 0.4535 0.50% 

Phragmites     1.41 0.3 22.78 <.0001   
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Figure 7. Map of locations of predated nests found during the 2015 nesting 

season. 
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Figure 8. Number of nests predated by different predator species. 

 

 

 

 



 

43 
  

Figure 9. Mosaic plot of predator type by Phragmites presence. 
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Figure 10. Distance of predated nests to nearest marsh (with means and 95% 

confidence intervals). 
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Figure 11. Distance of predated nests to nearest creek (with means and 95% 

confidence intervals). 
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Figure 12. Elevation of predated nests (with means and 95% confidence 

intervals). 
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Figure 13. Mosaic plot of Phragmites presence vs. nesting density area. 
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Figure 14. Other vegetation cover around predated nests (means and 95% 

confidence intervals). 

 

 

 

 

 

 

 

 



 

49 
  

Discussion 

I performed a field study to examine the potential impact of Phragmites on 

predator foraging and detection of terrapin nests on Fisherman Island. I did not 

find a significant shift in dominant predator species when nests were found in 

sites with or without Phragmites. Proportions of raccoon to crow predation of 

nests did not change with the presence of Phragmites as I had hypothesized. 

This could be because the vegetation structure change caused by Phragmites 

did not influence the ability of crows and raccoons to detect nests. The 

Phragmites present around some nest sites may not have been dense enough to 

impact predation. Further, because so few nests were laid in areas with 

Phragmites, I had too small of a sample size to compare with non-Phragmites 

sites. I surveyed for predated nests and not total nests laid, but I feel confident 

that my surveys for predated nests encompassed most of the terrapin nesting 

activity of the 2015 season. Raccoon predation was very high that year, and the 

USFWS had to repeat trapping mid-summer to try to remove raccoons that were 

also heavily predating shorebird nests. Raccoons are such efficient predators of 

terrapin nests (Feinberg and Burke 2003), that with their prevalence during the 

nesting season I am confident they would have found other nests in the low 

nesting density site if they were present.   

With few exceptions, most studies provide evidence for vegetation as a 

mediator of predator-prey interactions. Burger (1977) found that predated 

terrapin nests were significantly closer to vegetation than non-predated nests. 

Habitat fragmentation and the creation of edges also impacts predation rates of 
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edge breeders, as has been seen in many studies on birds (Huhta et al. 1996) as 

well as other species. A study on hawksbill sea turtles found that nest survival 

from mongoose predation increased as nests were laid farther away from 

vegetation edges (Leighton et al. 2011). No effects of Phragmites on nest 

predation were found in my study, but my experiments were limited by the 

distribution and extent of Phragmites cover. I believe there is still great potential 

for Phragmites to influence predation of terrapin nests. The distribution of 

Phragmites throughout my study site was not arranged in a way that produced a 

leading “edge” – it was mostly scattered throughout the dunes and found in 

localized clumps. Other terrapin nesting sites along their wide coastal range 

occur where there is a clear, horizontal gradient from aquatic habitat to nesting 

beach (Meadows pers. com) and thus would allow for a more direct test of 

Phragmites effects that my study was unable to detect. It is at these sites where 

Phragmites’ ability to create an edge and thereby influence foraging behavior of 

predators, such as raccoons, may be greater. If Phragmites is dense enough it 

may also create an impenetrable barrier to terrapin movement, causing them to 

nest on the border of the vegetation. High resource abundance along a foraging 

corridor would increase the likelihood of nest predation and reduce terrapin 

nesting success. 

For further study on the relationship between Phragmites presence and 

predator behavior I would repeat this study at other sites and set up more 

structured experiments in areas with and without Phragmites. This would 

facilitate the determination of the exact proportion and rates of predation on 



 

51 
  

simulated nests. I was not able to access enough spatial area—separate from 

my observational study—to perform these studies because of USFWS 

restrictions due to nesting shorebirds on the island. I would also perform 

experiments at sites with a clear linear gradient from shore to vegetation. I 

believe more significant predation effects could be seen in this landscape type, 

and the results could be applied to other species that nest in this type of habitat, 

such as sea turtles and shorebirds. 

I used habitat data collected for predated nests to examine the factors 

influencing diamondback terrapin nest site use on Fisherman Island. I found that 

distance to marsh, tidal creek, and presence of Phragmites all had significant 

effects on terrapin nesting in the high density versus the low density areas. The 

high density nesting area was farther away from marsh and tidal creek, and on 

average higher in elevation (though not significant) than the low density nesting 

area. These findings suggest that perhaps terrapins are nesting in areas that are 

relatively safe from flooding during the incubation period, and are consistent with 

other studies on turtle species (Burger and Montevecchi 1975; Cox and Marion 

1978; Plummer 1976). Data on vegetation surrounding the nests were also 

consistent with the literature about terrapin preference for nesting in sites with 

little to no vegetation (Burger and Montevecchi 1975; Roosenburg 1996). On 

average, nests on Fisherman Island were surrounded by relatively low amounts 

of vegetation cover (29%) and terrapins used sites that were free from 

Phragmites. The use of non-Phragmites nesting areas could be because of the 

potential for negative impacts on nest development, such as shading and root 
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invasion, or due to difficulty digging in soil with high root mass. Turtle nest site 

selection in response to vegetation has been supported in many studies and 

there is evidence for maternal selection in regards to embryonic development 

and temperature dependent sex determination (Refsnider et al. 2013; Wilson 

1998). From nest site data I conclude that females are preferentially choosing 

sites that would lead to a higher probability of nest success due to a reduction in 

risk of flooding and negative vegetation effects. As has been shown to occur in 

painted turtles (Hughes and Brooks 2006), natural selection would favor 

behaviors that increase offspring survival and female fitness. My analysis 

comparing the high versus low density nesting sites to illustrate female terrapin 

nest site use on Fisherman Island provides evidence to support previous studies 

on factors influencing turtle nest site selection. 

The significant negative effect of Phragmites on terrapin nesting density 

could also be an outcome of Phragmites excluding diamondback terrapins from 

accessing potential nesting sites. The high density nesting area was relatively 

free from Phragmites, with only about 3% of predated terrapin nests having 

Phragmites present within 1-m2 of the nest, as compared to 45% in the low 

density area. The low density area also had considerably more Phragmites 

surrounding the nesting dunes than the high density area. Terrapins may not be 

able to come ashore through Phragmites-bordered sand dunes, and so are 

concentrating their nesting in one small area where upland access is not limited. 

This may explain why predation rates were so high for terrapin nests – I saw a 

large number of predated nests in one concentrated area of nesting dunes, and 
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this intense predation seems to support the density dependent predation theory. 

The behavior of raccoons and crows to return to areas of successful foraging 

with high resource abundance (Byrne and Chamberlain 2012; Shields and 

Parnell 1986) may be the reason for extremely high predation rates. It also may 

explain the return of predators to the island every year, and the need for 

additional removal efforts. However, some terrapins are still nesting in the 

Phragmites-dominated area, suggesting at least some nests are successful, or 

females have not yet adapted to the habitat change associated with invasive 

plant growth. If more nests were successful but undetected from the low-quality 

nesting area, however, then Phragmites would be beneficial for terrapin nests, 

and yield a trade-off between habitat quality and predation risk. Further study is 

needed to determine the extent of this relationship as well as the response of 

females to degraded nesting dunes. 

Phragmites not only has the potential to negatively impact terrapin 

nesting, but it can also have other negative consequences on terrapin life-history. 

By decreasing plant species diversity post-colonization, Phragmites has the 

capacity to reduce marsh habitat quality for terrapins, thus reducing time 

terrapins spend in invaded tidal marshes. Phragmites invasion has been linked to 

decreases in Spartina abundance in brackish tidal marshes (Medeiros et al. 

2013) as well as decreases in invertebrate communities (Gratton and Denno 

2006; Jivoff and Able 2003). The marsh periwinkle (Littorina irrorata) is a staple 

in the diamondback terrapin diet, as well as other crustaceans (Tucker et al. 

1995). Marsh periwinkles selectively graze on Spartina alterniflora (smooth 
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cordgrass), and have not yet been shown to successfully graze on Phragmites 

(Hendricks et al. 2011). This is most likely due to  a chemical defense that 

Phragmites produces that is unpalatable to marsh periwinkles (Hendricks et al. 

2011). Decreased numbers of marsh periwinkles and other invertebrates could 

be a major factor in terrapins utilizing Phragmites marshes and thus nesting in 

the dune areas surrounding them. A study by Butler et al. (2012) found that 

female terrapins had significantly higher levels of marsh periwinkle in their diet 

than males, and females found at nesting beaches had significantly more than 

females found in creeks. The potential Phragmites-linked reduction in abundance 

of this important food resource could also be a driver behind decreased terrapin 

nesting activity near Phragmites-colonized salt marshes. 

Invasive Phragmites was not shown to differentially impact nest predator 

behavior in this study, however there are certainly other terrapin nesting sites 

and other turtle species for which the nesting landscape includes a clear, linear 

gradient from water to beach to vegetation. In these areas it could be more likely 

to see an impact of Phragmites presence on predation rates. More conclusive 

evidence from this study shows Phragmites presence to be a major player in 

diamondback terrapin nest site use. Among many potentially important factors, 

unimpeded Phragmites colonization of tidal marshes would most likely reduce 

terrapin habitat use as well as nesting activity and/or success. With Phragmites 

presence in saltmarshes increasing around the Chesapeake Bay and other 

important terrapin nesting sites (Chambers et al. 1999; Rice et al. 2000), there 

will be an increased need for management strategies to remediate negative 
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effects to native species. As mentioned in Chapter One, it may not be necessary 

to completely eradicate Phragmites from sites to sustain successful terrapin 

nesting. Managing the landscape in a way to reduce Phragmites density and 

extreme habitat structure change to increase use and prevent setting up terrapin 

nests for failure should be sufficient for ensuring the survival of this turtle species.  
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