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ABSTRACT

Inherent in the field of data  broadcasting is a communication problem in which a server is 
to transm it a subset of data  items in response to requests received from clients. The intent of 
the server is to optimize metrics quantifying the quality of service the system provides. This 
method of data dissemination has proved to be an efficient means of delivering information 
in asymmetric environments demanding massive scalability. Of critical importance in such 
a system is the algorithm used by the server to construct a schedule of item broadcasts.

Due to the real-time nature of this problem, performances of heuristics designed to 
construct such schedules are heavily dependent on request instances. Thus it is challenging 
to establish the quality of one algorithm over another. Though several scheduling methods 
have been developed, these algorithms have been studied with a reliance on probabilistic 
assumptions and little emphasis on analytical results.

In contrast, we provide a formal treatm ent of the data  broadcast scheduling problem in 
which analytical methods are applied, complemented by simulation experiments. Utilizing a 
worst-case technique known as competitive analysis, we establish bounds on the performance 
of various algorithms in the context of several different broadcast models. We describe 
results in three different settings.

Minimizing the total wait time of all requests with a single channel and multiple database 
items we establish the competitive ratios for two well-known algorithms, First Come First 
Served (FCFS) and Most Requests First (MRF) to be equal, and provide a general lower 
bound for all algorithms in this context. We describe simulation results tha t indicate the 
superior performance of MRF over FCFS on average. Minimizing two conflicting metrics, 
the total wait time and to tal broadcast cost, with a single channel and single database item 
we develop two on-line algorithms, establish their competitive ratios, and provide an optimal 
off-line algorithm used to simulate the impact of various parameters on the performance 
of both on-line heuristics. Finally, we extend the previous model by including multiple 
database items and establish a lower bound to a greedy algorithm for this context.

xi
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Chapter 1

Introduction

1.1 M otivation

Developments in delivery mechanisms and the rapidly growing demand for dissemination- 

based applications have created environments in which the method of data broadcasting 

has become increasingly popular. While technology improvements in mobile computing, 

satellite broadcasting, and cable networks have provided high bandwidth infrastructures, 

the amount of data tha t may be transm itted within these frameworks is much larger from 

server to clients than vice versa. Consequently, asymmetric properties of these systems 

prevent traditional unicasting techniques from being scalable or even usable [6, 8, 7].

At the same time, large data dissemination applications such as centralized databases, 

on-line auctions, and stock tickers are characterized by massive user populations requesting 

data from a centralized source. Capabilities of these services increasingly appear in non- 

traditional forms as evidenced by wireless PDA use by emergency responders and internet 

access for passengers on aircraft. Analogous to the infrastructures mentioned above, these 

services exhibit an imbalance, typically funneling most of the data  to clients rather than from 

them. In addition, servers with large client bases see substantial redundancy in user requests

2
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CHAPTER 1. INTRODUCTION  3

as many users desire the same content. Utilizing traditional techniques, a server running 

massive dissemination services will transm it the same information repetitively, responding 

to each client individually. This process simply does not scale and, as the number of both 

clients and requests increases, the burden on the server becomes immense. In contrast, data 

broadcasting is an efficient method of providing large-scale data delivery by simultaneously 

satisfying the needs of multiple clients.

Thus, the asymmetry of both modern infrastructures and application demands provides 

a synergistic setting for this technique tha t emphasizes data dissemination in one direction. 

The broadcasting m ethod’s resulting independence from the number of users in a system 

provides it with a scalability tha t has become increasingly attractive economically and 

academically.

Commercial use has already been made of the technique, including the Hughes DirectPC 

System, the Intel Intercast System, the Hybrid System, and the Air Media System [8]. 

The applicability of the broadcasting method to cable television, mobile phones, and PDA 

services has come to fruition as well, with other applications forecasted [5].

Academic research in this area began in the 1980s in a series by Ammar and Wong [19] 

[10] [12] and has continued to present day. Of particular interest is the study of broadcast 

scheduling. Despite the advantages inherent in the broadcasting method, the bandwidth 

available to a server is still limited. Given the massive scale of systems utilizing data 

broadcast, the ability of a server to efficiently schedule the transmission of data to its 

clients is critical.

We are thus interested in the following communication problem. A single server is given 

access to a set of data items, channels over which the items may be transm itted, and requests
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CHAPTER 1. INTRODUCTION  4

tha t arrive at various times for the items. At each system tick, the server must select an 

item to broadcast for each available channel, thus satisfying all outstanding requests for 

tha t item. The server will make these decisions through use of a  single algorithm with the 

goal of optimizing some metric or metrics representing the quality of service the system 

provides. This problem can be differentiated into several model variations depending on 

the exact nature of the broadcasting system; the number and type of channels, database 

items, requests, and performance metrics are just a few parameters tha t impact the general 

nature and complexity of the problem. Regardless of any specific variation, the end result 

of each problem instance is the production of a schedule that describes which item has been 

broadcast to clients at each opportunity.

The question of which item should be broadcast at a particular time is a decision tha t the 

server must make immediately. In most real settings, a broadcasting server will not know 

the incoming request sequence beforehand. Thus the server must make ad hoc choices 

in determining which item to broadcast based on requests tha t have arrived. Algorithms 

designed to aid the server in this context are therefore operating with incomplete information 

and will provide approximate (heuristic) solutions. An algorithm tha t must perform an 

immediate action in response to partial information about the entire input sequence is 

known as an on-line algorithm. Of primary concern in such a setting is the evaluation of 

an on-line algorithm’s effectiveness.

An ideal approach in determining the quality of an on-line algorithm is to assume a 

realistic distribution of requests and proceed with an analysis of average-case performance. 

However, assumptions concerning the arrival sequence of requests may require historical 

data tha t is not available and does not provide any absolute measure of an algorithm’s
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CHAPTER 1. INTRODUCTION  5

behavior over all possible scenarios. As an alternative method we take a comprehensive 

look at the problem using worst-case analysis techniques. While pessimistic, the appeal 

of this approach is the solidarity of performance measures independent from probabilistic 

assumptions. In addition, there are certain kinds of systems (such as emergency, financial, 

or martial) in which worst-case measures are critical. Though many algorithms have been 

developed for data broadcast scheduling, the work done to date has relied primarily on 

simulation or other distributional techniques to evaluate the performance of these algorithms 

with little emphasis on analytical results. The primary contributions of this thesis supply 

such results in a variety of contexts.

1.2 General Problem  Description

Though the exact implementation of one data broadcasting system may differ from another 

there are several fundamental aspects tha t can be described. As an example system, consider 

Figure 1.1.

Primarily a broadcasting system will consist of a server tha t has access to a database of 

items and channels over which these items are transm itted. In Figure 1.1 we see a satellite 

broadcasting system in which the server is terrestrial but has access to multiple channels 

over which information is transm itted to terrestrial clients. This setup closely models actual 

commercial systems mentioned already, though of course many different physical implemen

tations exist. D ata items may be objects, web pages, or other information and it takes time 

to transm it them over a channel. Specifically, we define a system tick as the amount of time 

required to transm it an item of unit size. The number of items in the database is finite and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 1. INTRODUCTION  6

Figure 1.1: AN EXAMPLE BROADCASTING SYSTEM

Satellite

Data Items
Broadcast
Across
Multiple
Channels

Server

Data Items 1 2  3 4 m

static and we assume these items to be unit-sized, discrete, and independent of one another.

Each channel is accessible to every client and these clients are continually monitoring 

all channels for items tha t are of interest to them. In Figure 1.1, the satellite “bombards” 

terrestrial clients with its broadcasts. Every time a channel finishes transm itting an item 

(that is, the channel becomes available) the server will select another item to send over tha t 

channel. The scheduling decision of which item to send will be based primarily on the needs 

of its clients which are generating requests for particular items, though other information 

may be considered.

The system will respond to a sequence of requests, and not all requests may be serviced
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CHAPTER 1. INTRODUCTION  7

immediately. At the beginning of each system tick, requests tha t have arrived from clients 

will be collected by the server and maintained in a queue. This queue is best conceptualized 

as a two dimensional structure1. The one shown below the server in Figure 1.1 is collecting 

incoming requests, depicted as filled squares, being generated by the larger, open-squared 

clients. The horizontal dimension will be of length m  establishing a “bin” for each distinct 

item. The vertical dimension will be of dynamic length representing the number of requests 

for a particular item collected in tha t item ’s bin. The length of time a request remains 

in the queue is the wait time of tha t request. The server will consider (via its algorithm) 

requests in queue before deciding which items to send at the beginning of the next tick. 

Because each request will be in queue for at least one tick, the minimum wait time for any 

request is 1. Each time an item begins broadcasting, all requests for tha t item are removed 

from the queue. We can envision the bin for tha t item thus being reduced to zero length. 

Any request for the item tha t arrives after the broadcast will be placed in queue and must 

be satisfied by another broadcast of tha t item at a later time.

A schedule is a record of items broadcast during each tick over all ticks in the lifetime of 

the system. Typically, a system will continue to run on an input sequence until the server 

has satisfied every request in the sequence. Ultimately, the task of the server is to optimize 

one or more metrics representing the quality of service exhibited by the resulting broadcast 

schedule. To this end, each broadcast scheduling problem must supply an objective function 

tha t embodies the importance of each metric. (Typically, the objective is to minimize an

1The queue structure may be simplified for many algorithms or contexts in which only the total number of 
waiting requests is relevant. However, in general there may be other characteristics of requests that require 
tracking them separately as is the case in the First Come First Served (FCFS) algorithm in which the arrival 
time of each requests must be recorded.
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CHAPTER 1. INTRODUCTION  8

operational metric though an analogous maximization problem is feasible. We will restrict 

our discussion to problems of minimization.) The objective function is a mathematical 

definition tha t evaluates the effectiveness of a schedule in terms of the targeted metric(s). 

For example, if the targeted metric is to tal wait time, then the value of the objective function 

is the sum of wait times experienced by all requests. Most commonly, the server will attem pt 

to  minimize the total wait time of all requests as minimizing this value increases the quality 

of service to the clients.

Several other metrics are also applicable and the server may be called upon to attem pt 

the minimization of more than one metric. In particular we consider objective functions 

in which each database item has an associated cost to broadcast tha t item. This cost is a 

general reflection of any strain performing a broadcast may cause to the system and can take 

many forms. The burden may be financial (paying a copyright fee per use), physical (the 

energy expenditure from the battery of a PDA), or even artificial (cost imposed to  represent 

data priority). Minimizing this broadcast cost maximizes the quality of service to the server 

itself. Thus the majority of objective functions we consider attem pt to minimize the sum 

of wait times experienced by all requests while simultaneously attem pting to minimize the 

sum of all broadcast costs. Objective functions of this form are particularly interesting due 

to the conflicting nature of these two objectives.

Regardless of its form, the value of an objective function establishes a measure of how 

well one schedule does relative to another. Obviously for a minimization problem, we desire 

a schedule’s evaluation via the objective function to be as small a value as possible.

Notice tha t because the wait time for any request is at least 1, we know tha t the sum of 

wait times for any possible schedule will be at least n, the number of requests in the input
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CHAPTER 1. INTRODUCTION  9

sequence. Observations like this indicate tha t it is possible to make absolute statements 

about an algorithm’s performance without considering the behavior of the algorithm itself. 

That is, we know tha t no algorithm is capable of constructing a schedule tha t will perform 

better than  n  in regards to  minimizing to tal wait time. A comprehensive study of data 

broadcast scheduling requires tha t we be able to produce two kinds of evaluations relative 

to a problem: an evaluation of the best any algorithm can do and an evaluation of how well 

one specific algorithm can do relative to another known algorithm.

1.3 Formal Problem  Definition

The general problem description given above establishes core characteristics of D ata Broad

cast Scheduling. Here we formally define the problem with the introduction of useful nota

tion.

We are given a single server with access to  a set of m  distinct and unit-sized items. 

The server is in contact with an unknown (and irrelevant) number of clients tha t require 

these data items and will communicate their needs to the server instantaneously when they 

occur (any latency in information exchange with the server is ignored). Requests for items 

arrive to the server at various times and are placed into the server’s queue. Each request j  

is characterized by at least two attributes: the arrival time of the request a.j and the item 

requested. We assume these items to be discrete and independent of one another such that 

the arrival of a request for one item yields no insight into the arrival of any other requests. 

Note tha t the number of requests n  is finite.

The server has c >  1 channels over which items may be broadcast to all clients simul

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 1. INTRODUCTION  10

taneously in order to satisfy requests. These channels are dedicated (the server may use a 

channel’s entire bandwidth) and perfect (no transmission errors will occur). All requests 

for item i tha t arrive before the server begins broadcasting i will be satisfied (removed from 

the queue) once the broadcasting of i has begun2.

A tick at time t is the interval [t, t  +  1), defined as the amount of time required to 

broadcast one item over a single channel. Each tick a request remains in the queue it 

accumulates a unit of wait time. The total amount of wait time produced by request j  is 

W j .  W ithout loss of generality, we assume tha t the system clock begins at time t —  0 and 

advances discretely until all items have been satisfied at time t = z.

A channel may only be used to transm it one item at a time. The item tha t begins 

broadcasting at time t  on channel k is denoted btk- It is therefore possible tha t as many 

as the number of channels c and as few as 0 items will begin broadcasting each tick. The 

server incurs a cost (3 for each item broadcast (though it is possible (3 = 0).

For a given instance, the server will take its knowledge of the request sequence and 

consult its scheduling method to make each broadcasting decision. The scheduling method 

is an algorithm tha t will select, at every opportunity, which item should be sent on an 

available channel. The history of these decisions throughout the lifetime of the system 

constitutes a schedule S  for the problem instance.

For each model there must be a standard by which the schedule produced for every 

problem instance is evaluated. A metric is a measurement under which a schedule will be 

evaluated. Though several observations may be made of a schedule, these measurements are

2The combination of perfect transmission and unit-sized items establishes that a request may be removed 
from queue once broadcasting begins. The removal of either assumption would require a different definition 
of request satisfaction.
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CHAPTER 1. INTRODUCTION  11

deemed irrelevant if not reflected in the objective function for the problem. For example, 

if the objective function is designed solely for the minimization of the total wait time 

experienced by all requests, then the length of the schedule itself is not an issue. A schedule 

Si that minimizes the objective function but is longer than a schedule S2 which does not 

is superior to S2 . If the length of the schedule is im portant, it must be included in the 

objective function which may implicitly address many metrics simultaneously.

It is with the above backdrop tha t models may be established by specifying character

istics in three areas.

1.3.1 The Server’s System  Environm ent

Physically the system environment consists of the server, its database, and the channels 

over which the database items are transm itted. Details tha t describe the system hardware 

or its operation fall under this category. Several aspects which must be addressed are:

•  Server K now ledge: A parameter tha t must be established for a problem instance 

is the extent to which the server has knowledge of the request sequence. A server 

operating in a real-time context will have no knowledge of incoming requests beyond 

what requests have already arrived. This is the on-line context. The opposite context, 

off-line, may also be considered in which the server has complete knowledge of the 

entire request sequence. Competitive analysis is the comparison of algorithms operat

ing in these two contexts. The limitations of server knowledge (or lack thereof) must 

be specified before analysis of a problem may continue as this parameter may impact
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the behavior of any algorithms used3.

•  N um ber o f  C hannels and Item s: The number of channels in a system refers only 

to  the bandwidth from server to clients (while present, bandwidth from clients to 

sever is ignored). These channels are identical, though indexing may be necessary to 

distinguish the utilization of one from another. The number of distinct items in the 

database is static throughout the problem. Each of the items in the server database 

are of unit size and are all associated with the same broadcast cost. If the broadcast 

cost of items is not presented, then the cost is assumed to be zero for all items. The 

number of channels and database items must be specified for each problem instance.

• Scheduling M ethod: A server will utilize an algorithm to make each scheduling 

decision. This algorithm will be affected by the extent to which the server has knowl

edge of the request sequence. For example, a brute-force algorithm operating on-line 

will not be able to consider requests tha t may arrive after the current system tick 

whereas its off-line counterpart can. Thus the on-line or off-line nature of each algo

rithm  studied within a model must be established. Strictly speaking, an algorithm 

will also provide means through which a decision will be made in light of equally 

attractive choices. For example, an algorithm tha t chooses to satisfy the first arriving 

request (FCFS) will need to refine tha t decision if two requests arrive simultaneously 

for different items. While these tie-breaking decisions are typically not the focus of 

any analysis, instances do arise in which the tie-breaking method of an algorithm will

theoretica lly , there exist contexts between on-line and off-line in which the server has a limited ability 
to view some of the request sequence in advance. Algorithms with this “look-ahead” knowledge are known 
as semi-on-line.
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impact its performance.

• System  Term ination: W ithout loss of generality, a system will begin with the clock 

set at t = 0. Time will advance discretely in the system until termination at time 

t  — z. The criteria for system termination must be established for any problem 

instance. Typically, the system will term inate once all requests have arrived and have 

been satisfied4.

1.3.2 R equest Characteristics

From time to time, clients will send requests to the server for a particular item. These 

requests are maintained in an “unsatisfied” status by the server in a queue. Each request j  

will be characterized by two attributes: 1) the arrival time aj of the request and 2) the item 

requested i € 1. . .  m. As previously stated, all requests for item i th a t arrive before the 

server begins broadcasting i will be satisfied (removed from the queue) once the broadcasting 

of i has begun. A request tha t is not satisfied by the broadcast of its item at the beginning 

of a tick will accumulate one unit of wait time and will continue to accumulate wait time in 

this manner. A request cannot be satisfied in the same tick in which it arrived; all requests 

will experience a minimum wait time of one unit.

The request sequence must be defined in full for a problem instance. Any specification 

describing the nature of a request fall under this category. Note th a t these attributes

4Note that the discrete event approach, the presence and advancement of the system clock, is an important 
distinction of the data broadcasting problem. Regardless of whether or not any new requests arrive during a 
system tick, the server’s scheduling algorithm will make a decision to broadcast an item as long as there are 
unsatisfied requests in queue. In contrast, a traditional on-line problem operating on an ordered sequence 
would “skip” periods of time from one request to another; each action will have been motivated by a request.
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represent information not available to an on-line algorithm until the request has actually 

arrived to the queue. Some common request details are:

• Arrival Tim e: Each request will arrive at a specific point relative to the system clock. 

The request sequence will be ordered such tha t requests having the same arrival time 

will arrive simultaneously to the server queue5.

• Item  R equested  and Satisfaction: Each request will be for a particular item and 

will not be satisfied until tha t item is broadcast by the server. The transmission of the 

item requested is a necessary (but not always sufficient) condition for the satisfaction 

of the request6.

•  D eadlines and Penalties: The deadline is the time by which a request must be 

satisfied or forever remain unsatisfied. Unless otherwise stated, the deadline for each 

request is assumed to be infinite.

1.3.3 T he O bjective Function

An objective function O B JQ  is required for each model. This function represents metric(s) 

under which a schedule S  will be evaluated. Various algorithms used to  construct a schedule 

will optimize the metric(s) at differing levels of performance. For our work, we are mainly 

interested in the following objective functions:

sAgain, this arrival process is distinct from traditional request sequences. Permutations to the data 
broadcasting sequence will not change the problem instance as long as each request in the sequence has an 
arrival time less than or equal to the arrival time of the next request in the sequence.

6Unit-sized items are broadcast in a single tick. Systems allowing multiple sizes for items, however, face 
the broadcast of the item in “pieces” over multiple ticks. In such systems it is often allowable for the server 
to preempt a broadcast of one item before all pieces have been transmitted. Requests for preempted items 
are not satisfied in these systems until all pieces of the item have been broadcast.
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n
O B J (S )  — ^ 2  Wj + B  • (3, 

l= i

where the wait time of each request j ,  Wj, is summed over the total number of requests n 

and the total number of broadcasts B  in schedule S  is multiplied by the cost of broadcasting

P7-

1.4 The D ata Broadcasting Schedule Diagram

In order to describe the schedule constructed by an algorithm for a problem instance we 

have developed a  diagramming technique. The D ata Broadcasting Schedule Diagram (or 

Schedule Diagram for short) graphically depicts the arrival and satisfaction of requests as 

well as the broadcast of data items.

The diagram consists of grid tha t is m  (the number of data items) tall by z (the lifetime 

of the system) wide. Each row is labeled with an item from the database and each column 

with a system tick. Each cell in the grid contains a value greater than 0. T hat value 

represents the number of requests for the item indicated by the index labeling the row. 

Those request are in queue at the time specified by the time indicated at the demarkation 

of each column. A cell tha t is grayed out indicates an absence of any requests for tha t item 

at the current tick. On the right side of each cell is a demarcation symbolizing any activity 

tha t occurred involving the requests for the item labeling that row. A dashed line indicates 

no change in the requests for tha t item. A thick solid line represents a broadcast for the 

row’s item at the beginning of the column’s tick. A thin solid line indicates a change in the

7 3  is the normalized cost of broadcasting relative to a unit of wait time. Thus, a ,9 =  5 implies that 
broadcasting is five times more expensive to a system than a single request waiting a single tick.
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Figure 1.2: AN EXAMPLE DATA BROADCAST SCHEDULING DIAGRAM
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number of requests waiting for the row’s item. Specific instance information such as the 

algorithm used, the number of channels, and other specified parameters may be listed in a 

box below the diagram itself.

Consider the following example.

In Figure 1.2 we diagram a schedule constructed by the algorithm Most Requests First 

(MRF). MRF is an algorithm tha t will broadcast the item with the most outstanding re

quests. The schedule is constructed in response to  a trivial input sequence for two channels. 

An indication of the scheduling algorithm and the number of channels can be found in the 

bottom right corner of the diagram.

The arrival sequence is as follows. At time f =  0 we see the arrival of four requests for 

item 1, five requests for item 2, and seven requests for item 4. At time t  = 1 we see tha t the 

server broadcasts items 2 and 4. Note tha t while no additional requests arrived at t  =  1 for 

item 2, a request did arrive for item 4. Because this request arrived after the broadcast of 

item 4, the request is queued. We also see tha t items with outstanding requests were not 

broadcast due to the limiting number of channels in this system, c =  2. Because no change
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occurred in the number of requests for item 1 , it is demarcated by a dashed line while two 

additional requests arriving for item 3 causes the solid line to be placed on tha t row.

At t =  2  the server again broadcasts two items, 1 and 3, both of which are marked 

by the thick solid line. The remaining two items, 2 and 4, experience no change and are 

marked by the dashed line. Finally, at the completion of the schedule at t — 3 we see tha t 

only one item, 4, is sent as there are no other outstanding requests.

The scheduling diagram also allows the objective function evaluation of a schedule to 

be derived graphically. Consider again the objective function tha t incorporates total wait 

time and total broadcast cost:

n

O B J (S )  =  J 2 w3 + B - P -
3=1

The sum of wait times experienced by all requests over the length of the schedule 

E "= i wj  can be determined graphically by summing the numerical values of all cells in 

the diagram. In the above example, this sum is 24. The total broadcast cost B  ■ f3 is graph

ically determined by counting the number of thick solid lines and multiplying tha t number 

by the broadcast cost j3. Assuming fi = 5 in the above example we see the total broad

cast cost of the schedule to be 25. Visually, then, we can confirm the objective function 

evaluation of this example schedule to be 49.

This diagram will be used throughout the remainder of this thesis. Its strength lies in 

the ability to succinctly represent the behavior of an algorithm on a given input sequence 

in a variety of models.
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1.5 Thesis Organization and Contributions

We organize the remainder of the thesis as follows. In Chapter 2 we provide a preliminary 

background on Competitive Analysis (our primary analysis technique) and describe the two 

fundamental system environments (push and pull) tha t dichotomize the field of broadcast 

scheduling. Chapters 3, 4, and 5 describe our results in three different settings. In Chapter 

3 we consider the popular model of minimizing the to tal wait time of all requests in the 

context of a single channel and multiple database items. We establish competitive ratios 

for two well-known algorithms, First Come First Served (FCFS) and Most Requests First 

(MRF), and provide a  general lower bound for all algorithms in this context. Chapter 4 

introduces the concept of broadcast cost and considers a model in which the server attem pts 

to minimize both the to tal wait time and total broadcast cost in the context of a single 

channel and single database item. To our knowledge, this dual metric problem has never 

been applied to the pull-based system environment. We develop two algorithms (LAZY and 

GREEDY) and establish their competitive ratios. In addition, we develop an optimal off-line 

algorithm for this context. Chapter 5 extends the model of Chapter 4 by including multiple 

database items. W ithin this context we establish a lower bound for the GREEDY algorithm. 

All three chapters provide a backdrop of simulation experiments as a complement to the 

aforementioned analytical results. We conclude in Chapter 6  and describe future research 

directions.
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Chapter 2

R elated Work

2.1 On-Line Algorithm s and C om petitive Analysis

In order to study the algorithms in our work we primarily employ a technique known as 

competitive analysis. In this section, we review the the characteristics of on-line algorithms 

and competitive analysis th a t motivated the use of this worst-case method. An interesting 

difficulty arises when one begins to compare the performance of two or more sub-optimal 

(heuristic) algorithms attem pting to schedule the allocation of resources to actions taken 

over time. Heuristics designed to solve these problems will operate at various levels of 

quality depending on the input sequence. An algorithm tha t performs quite well with one 

sequence may appear to act foolishly in another situation. Thus, establishing the quality 

of any particular algorithm A \  over another A 2 becomes problematic in the absence of 

distributional assumptions; one can construct sequences in which the schedules produced 

by A i  are superior to those produced by A 2, inferior, or even equal.

The difficulty in comparison originates in the dependence of each problem on an input 

sequence tha t is connected to timed events. The input sequence for the data broadcast 

scheduling problem is the arrival sequence of requests. Each request arrives at the beginning

19
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of a specific system tick with information on, among other things, the item its client needs. 

Because this sequence is time-related, an algorithm cannot choose to schedule an action 

until the input motivating tha t action has come to pass. In our problem, the server cannot 

choose to satisfy a request tha t has not yet arrived.

Traditionally, algorithms acting on ordered sequences are divided into two broad cate

gories: on-line and off-line. An on-line algorithm is one that does not have any knowledge 

of the input sequence beyond what has already occurred and must perform an action in 

response to each request tha t arrives [32]. In contrast, an off-line algorithm is one tha t is 

given the entire input sequence a priori. Though it cannot act on events tha t have not yet 

occurred, it can act in anticipation of events it knows will come to  pass. Obviously, we 

expect in most instances tha t an off-line algorithm will have a distinct advantage over its 

on-line counterpart.

We note tha t the traditional definition of an on-line algorithm is, strictly speaking, 

slightly different from the data  broadcast scheduling problem we present. In the traditional 

definition, an input sequence is typically supplied one request at a time and is organized 

by the order of requests [41]. However, such a categorization can be easily extended to 

problems involving timed sequences. The data broadcast scheduling problem involves a 

sequence of requests organized by the arrival time of each request and these arrival times 

are related to the system clock embedded in the problem. Thus, at the beginning of each 

system tick the on-line algorithm will be presented with zero or more requests and must 

make an immediate decision based on, not necessarily one, but potentially many requests 

tha t have arrived. The distinction to be made, then, is tha t any permutation in the order 

of requests in a traditional input sequence would constitute a different instance whereas our
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use of the input sequence allows for permutations in the order of requests with the same 

arrival time without changing the instance. In either situation, the off-line algorithm is still 

given the entire sequence a priori.

If the comparison of two on-line algorithms is difficult, then there are serious implications 

to a discussion of an on-line algorithm’s optimality. Clearly, the optimality of an off-line 

algorithm is straightforward. An optimal off-line algorithm is one tha t performs at least 

as well as any other off-line algorithm for all possible instances. We can say with certainty 

tha t an exhaustive search will provide such an optimal solution. However, for any on-line 

algorithm we can construct a sequence for which tha t algorithm fails to  perform as well 

as another on-line algorithm we select. W hat, then, is the criteria to establish an on-line 

algorithm as optimal?

To address this question we turn  to a worst-case analysis technique known as competitive 

analysis [32]. Early versions of competitive analysis grew from a combination of worst-case 

assumptions, cost amortization [23], and comparison to off-line algorithms used by Bentley 

and McGeoch to  study the list accessing problem [16, 36]. The technique as a general 

approach was advocated by Sleator and Tarjan [44], ultimately named by Karlin et. al. 

[31], and formalized by Manasse et. al. [36]. Competitive analysis establishes the quality of 

an on-line algorithm by comparing its performance to tha t of an optimal off-line algorithm 

and taking the worst case for the same input sequence. When evaluated in this manner over 

all possible sequences, a competitive ratio is derived tha t establishes a measure by which 

the on-line algorithm may be evaluated. Specifically, an on-line algorithm with the smallest 

competitive ratio possible is said to be optimal (in the worst case). Though pessimistic as 

any worst-case analysis, the appeal to this approach is the absence of any distributional
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assumptions.

Formally, for a  given problem we consider an on-line algorithm A, the optimal off-line 

algorithm O PT,  and any instance of the problem I. We define A (I)  and O P T  {I) to be 

objective function evaluation of the on-line and optimal off-line algorithms respectively. 

Algorithm A  is said to  be r-competitive if for all possible finite instances I:

A (I) < R  • O P T (I)  +  a,

where a  is a  constant independent of I 1. The value R  is called the competitive ratio of A  

in the context of the problem. Though R  may depend on the parameters to the problem, 

it must remain independent of the input I .  An A-competitive algorithm A  is therefore 

guaranteed to  perform within a factor R  of the optimal off-line algorithm O P T , allowing 

for a bit of leeway a. When a  =  0 we say tha t A  is strictly ^-competitive.

An intuitive way of viewing the use of competitive analysis is to relate the technique to 

a game between an on-line player and a “malicious” , all-knowing adversary [17]. The on

line player is attem pting to solve the problem in question by running an on-line algorithm 

on an instance the adversary provides. The adversary is malicious in tha t its intent is to 

maximize the competitive ratio. This involves making the on-line algorithm perform as 

poorly as possible while simultaneously favoring the performance of the off-line algorithm. 

The technique is worst-case because the adversary has the advantage of knowing exactly 

how the on-line algorithm behaves and will therefore be able to construct the worst possible 

instance2.

xMore specifically, the competitive ratio R  is defined to be the infimum over the set of all values R.
2This discussion is for deterministic algorithms only. There are more exotic variations of competitive
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Often, the approach to establishing a competitive ratio for any particular algorithm is 

to provide a bound of th a t algorithm’s performance relative to  the optimal from above and 

below. A proof tha t the upper bound and lower bound are equal will establish a  tight ratio. 

A general bound is one in which the algorithm used in the proof remains arbitrary with 

no assumptions about its behavior. As such, the ratio obtained will hold for all possible 

algorithms in the context of the problem. General bounds are naturally more difficult to 

provide. A general lower bound is typically derived through use of an adversary argument; 

one needs only to establish an example instance tha t produces the lower bound. Proving a 

meaningful general upper bound is considerably more difficult since it involves proving that 

the competitive ratio is no larger than r for all possible instances and all possible on-line 

algorithms [32].

While its roots grew from combinatorial optimization, competitive analysis has been 

applied to a wide variety of problems in several fields, not all of them theoretically fo

cused. Many financial or martial problems for example are inherently on-line and favor the 

pessimistic nature of competitive analysis.

2.2 D ata Broadcasting System  Environments

Some of the earliest research to address the problem of data broadcast scheduling is a series 

of works by Ammar and Wong [10] [11] [19] [48] from the 1980s. They study various aspects 

of the Teletext3  system and present heuristics in which schedules are constructed a priori

analysis in which the adversary is limited in its knowledge and abilities such as the diffuse adversary of 
Koutsoupias and Papadimitriou [35]. Other variations such as loose competitive analysis developed by 
Young [50, 49, 51, 52], or the use of randomized algorithms [35, 52, 40] have also been proposed.

3Developed in the 1970s, TELETEXT is a one-way system for transmission of text and graphics via 
broadcasting or cable for display on a television set. While some teletext systems axe still in use they have
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based upon assumed arrival rates. Among their contributions are the derivation of a lower 

bound on the average waiting time for users of a Teletext system and the establishment of 

optimal schedule characteristics when arrival distributions are known (or assumed).

The concept of Broadcast Disks, introduced by Aksoy and Franklin et al. [3] [2] [4] [14]

generalizes the problem to  an arbitrary number of channels using a shared communication

medium for information distribution in asynchronous settings. Their work addresses both

interactive and non-interactive systems, with the key problem in all settings being the

scheduling of data transmission. In addition to the heuristics of Ammar and Wong [10]

[19] a few well-known algorithms for the problem have been studied more recently through

simulation by Aksoy and Franklin [8 ] [7] [2]. These include: First Come First Served

(FCFS) tha t broadcasts items in the order they are requested, Most Requests First (MRF)

tha t broadcasts the current “most popular” item, and Longest Wait First (LWF) tha t

sends the item with the largest cumulative wait time over all requests for tha t item. These

algorithms are all somewhat naive though experimental results in the above studies indicate

tha t LWF performs quite well in the minimization of total wait time. The decision overhead

of LWF, however, prohibits its practical implementation motivating the development of an

approximation to LWF by Ulusoy in [45] and the development of a non-naive and adaptive

algorithm called RxW by Aksoy and Franklin [8 ] [7] [6 ]. RxW algorithm has parameters

tha t may be adjusted for performance tha t is better than its naive counterparts under

various scenarios4  including a trade-off between a focus on average and worst case wait

time5. The performance evaluation of RxW, as in most of the evaluations performed in the

largely been replaced by interactive videotext systems, computer-based interactive systems, of which the 
Internet is an aggregate example.

4 RxW has proved to be applicable to scheduling issues in the supportive field of data staging [9].
5Despite the superior performance of R x W  it can also be expensive to implement, a problem addressed
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above research, was carried out through simulation experiments.

In contrast, Kalyanasundaram and K. Pruhs et. al. [30] [29] [42] present an entirely 

analytical study of the algorithms mentioned above using a worst-case technique known as 

resource augmentation analysis. In this approach, the performance of an on-line algorithm 

with a certain amount of resources is compared to an off-line algorithm with fewer resources. 

While analytically similar to the worst-case analysis we employ (competitive analysis), the 

work differs from our research in the comparison of an on-line algorithm with more channels 

to an off-line algorithm with fewer channels, while we compare algorithms operating with 

the same resources available. They also make no consideration of broadcast costs. True 

competitive analysis, while suggested by Goldberg et. al.[22], was not undertaken until Mao 

[37] and later by Hawkins and Mao [27].

The differing characteristics of broadcasting in asymmetric environments are discussed at 

length by Aksoy et. al. in [6 ]. Fundamentally, there are two settings in which broadcasting 

is done, dichotomized by the use of client requests and referred to either as “pull” or “push” . 

The pull-based version of the problem is the classic setting in which clients communicate 

their requests explicitly to the server. The model, as we have described it, is pull-based 

and we operate exclusively within this framework. The terminology derives from the event- 

driven nature of a server in a pull-based system. The clients, by asking the server for 

specific information, will “pull” tha t information to them. In the absence of requests the 

server typically will not disseminate items at all.

In contrast, push-based broadcasting involves clients tha t do not, for whatever reason, 

communicate requests explicitly to the server. As such, the server must rely on historic

by Goldberg et. al. in [22],
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data, distributional assumptions, or predictive methods to anticipate what those requests 

may be. Push methods rely heavily on stochastic models and periodic schedules made a 

priori. There are implementation advantages and disadvantages to both the pull and push 

based models tha t are worth noting.

Like the early Teletext system, some environments are inherently push-based6. This 

version is common in mobile computing, especially in settings in which there is no bandwidth 

at all from clients to server. If communication is possible in both directions, however, the 

extent to which one setting is favored over the other will be impacted heavily by the cost of 

communicating with the server and by the longevity of items in the database. A pull-based 

system will require a significant amount of client-to-server communication and its database 

will be virtually static; the clients must know the exact content of the database to make 

explicit requests. Updates to database content are possible but will incur a high cost of 

periodic client polling. Push-based systems avoid both concerns. No communication with 

the server is done at all and clients need not know the database content. Because the server 

is “pushing” unsolicited information out to its clients without feedback however, there is a 

risk of wasting resources on irrelevant items. In addition, it is possible tha t a client never 

receives the data it requires. Thus, the effectiveness of a push-based system will depend on 

how accurately the server anticipates the “hidden” needs of its clients. This anticipation 

is studied predominantly through stochastics by assuming (most commonly) a Poisson or 

Zipf distribution of client requests.

Vaidya and Hameed have proposed several algorithms used to construct push-based

6Although teletext may appear to the viewer to be interactive, it is not. When one punches in an item  
number on a teletext decoder, the machine simply waits for that page to be broadcast, captures it, and 
displays it on the television set. No request is sent out from the machine to the information server.
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schedules. In [38, 46, 25, 26] their work considers the development of algorithms with 

the intent of minimizing wait time, perhaps the most commonly utilized metric. Several 

model variations are considered including environments involving multiple channels and 

transmission errors. The performance of the algorithms is evaluated under these differing 

assumptions using simulation and some analysis. Jiang and Vaidya consider the minimiza

tion of response time variance in [28] as an alternative metric. Again, algorithms are both 

developed and analyzed using a combination of simulation and time complexity analysis. 

Additionally, some of these algorithms can be adapted to the pull-based version of the 

problem. Other interesting metrics such as minimizing server response time [47], minimiz

ing operation costs [13], and minimizing the maximum response time [15] have also been 

proposed.

Considering yet another metric in the push-based model, Bar-Noy et. al. [13] and 

Kenyon, Schabanel, and Young [34] present efficient schemes for minimizing schedule cost. 

Interestingly, this metric is actually the combination of response time and the cost incurred 

by a server for item transmission. The concept inspired our development of objective 

functions with multiple minimization criteria discussed in Chapters 4 and 5. Kenyon and 

Schabanel continue with this metric in the context of a database with non-uniform item 

sizes [33] and Schabanel singly in the context of preemption [43].

The complexity7  of the push-based data broadcast problem has been well-studied. In 

[13], Bar-Noy et. al. establish the NP-hardness of the push-based model in the context 

of minimizing response time and broadcast cost. Schabanel continues to define the NP- 

hardness of the problem when it is expanded to include non-uniform item sizes and pre

7For a complete treatment of NP-hardness see Garey and Johnson [21].
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emption of broadcasts. Only recently has the complexity of the pull-based model been 

established. In [20], Erlebach and Hall provide an NP-hardness proof for the broadcast 

scheduling problem in the context of minimizing wait time with unit-sized items and any 

number of channels, the model we address in Chapter 3.

Potentially, a pull-based system is able to  achieve a better performance than a push- 

based one, at the cost of additional bandwidth from clients to server. While early broadcast

ing research tended to focus on push-based systems, the increasing availability of bandwidth 

from clients to  server has recently fueled increasing interest in pull-based models. In addi

tion, hybrid architectures tha t utilize characteristics of both push and pull-based systems 

have been suggested by Acharya et. al [1], Oh et. al. [39], and Guo et. al. [24], Despite the 

continuing appearance of research in this field we see tha t studies through experimentation 

are the more populous approach.
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Chapter 3

M inim izing Total W ait Time: The

M ulti-Channel Case

We now consider the D ata Broadcast Scheduling Problem in which the single goal of the 

server is to maximize the quality of service the system provides to its clients. In this chapter 

we present both analytical and simulation results regarding algorithms tha t attem pt to 

optimize this metric by producing a schedule tha t will minimize the total wait time of all 

requests. Though this is the most common optimization function found in the field, the use 

of competitive analysis to study this model was not employed until Mao [37] whose work 

we extend from its original single channel restriction1. This chapter first formally defines 

the model and then proceeds to describe the analytical and simulation results of two on-line 

algorithms obtained within its context.

1A significant portion of this chapter is published in Hawkins and Mao[27]
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3.1 M odel Description

Building upon the general problem definition established in Section 1.3, we are given a server 

with access to a database of m  unit-sized items and c channels over which the items may be 

transm itted. A sequence of requests is also given where each request arrives for some item. 

It is possible, therefore, th a t the server will make as many as c decisions concerning which 

items should be broadcast at the beginning of each system tick. In order to maximize the 

quality of service the system provides to its clients, the server will attem pt to minimize the 

wait time experienced by all requests. That is, an evaluation of the schedule S  produced in 

this model will be determined by the objective function

n
O B J(S )  =

• ? ' = !

where the wait time of each request j ,  Wj, is summed over the total number of requests n.

3.2 Algorithms

We consider two well-known on-line algorithms the server may employ to minimize the 

above objective function, First Come First Served (FCFS) and Most Requests First (MRF). 

Though these algorithms are somewhat naive, we show their performance in the worst case 

to be as good as any algorithm can hope to achieve.

First Come First Served (FCFS) selects for broadcast the item tha t will satisfy the 

request with the earliest arrival time. In a sense, this algorithm attem pts to prevent request 

starvation and, in so doing, minimize the number of requests with very long wait times. 

When several requests all have the earliest arrival time, a tie-breaking mechanism must be
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Figure 3.1: MINIMIZING TOTAL WAIT TIME WITH FCFS FOR THE MULTI-ITEM, MULTI
CHANNEL MODEL

Time

c -  2 using FCFS

specified. As an example, consider a trivial system with c — 2 and rn — 4 employing FCFS 

as its scheduling algorithm. Figure 3.1 displays the resulting schedule when this system is 

faced with the following requests sequence. At t — 0 requests arrive for all items: three 

requests for item 1, 4 requests for item 2, five requests for item 3, and four requests for item 

4. FCFS, having four equally good candidates, will choose the first two items for broadcast. 

At t =  1 only the first three items see additional requests: two requests arrive for item 

1, five requests for item 2, and two requests for item 3. Because two items still contain 

requests arrived from last tick, FCFS will select items 3 and 4 for broadcast. Finally, at 

t  — 2 the last requests, one for item 1  and five for item 4, arrive. Not having addressed 

the requests arrived from the previous tick, FCFS selects items 1 and 2  for broadcast. We 

see tha t FCFS is somewhat behind and must use one additional tick after all requests have 

arrived to broadcast item 4 one last time. From the diagram we can compute the objective 

function evaluation of this schedule by summing all requests left unsatisfied each tick. We 

see tha t FCFS has produced a schedule with a total wait time of 50 for this instance.
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Figure 3 .2 : MINIMIZING TOTAL WAIT TIME WITH MRF FOR THE MULTI-ITEM, MULTI
CHANNEL MODEL
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As a different technique, Most Requests First (MRF) selects for broadcast the item 

having the largest number of unsatisfied requests currently in queue. This algorithm takes 

a more direct approach to minimizing the objective function by attem pting to minimize the 

wait time for as many requests as possible each tick. While, in general, we would expect 

this strategy to be superior to tha t of FCFS, the relative weakness of any on-line algorithm 

means this superiority cannot be guaranteed. Consider the performance of MRF when 

applied to the same example system and input instance given to FCFS above. The schedule 

produced by MRF on this instance is shown in Figure 3.2. At the first opportunity MRF 

selects item 3 for broadcast as it has the largest number of requests waiting, and item 2 

since it is the lower index of the two items having the second largest number of waiting 

requests. MRF will continue to select for broadcast as many as two items with the largest 

number of requests at each opportunity until all requests are satisfied. It can be seen tha t 

the schedule produced by MRF for this instance has a total wait time of 45.

It should be noted that neither FCFS nor MRF have constructed the best schedule
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Figure 3.3: MINIMIZING TOTAL WAIT TIME WITH AN ARBITRARY ALGORITHM A FOR 
THE MULTI-ITEM, MULTI-CHANNEL MODEL
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possible for the given instance. Consider tha t some on-line algorithm A  could provide a 

superior solution with total wait time of 44 as shown in Figure 3.3. We know tha t a brute 

force algorithm operating offline with knowledge of the input sequence in advance would 

also construct this schedule.

3.3 A nalytical Results

As stated earlier, the wait time experienced by any request j  for a unit-sized item is Wj > 1. 

Thus the minimum total wait time of any schedule independent of the number of channels 

or the scheduling algorithm is at least n. In this section we provide competitive ratios for 

FCFS and MRF and a general lower bound for all algorithms minimizing total wait t ime 

for the multi-channel, multi-item context.
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3 .3 .1  F ir s t C o m e  F ir s t  S erved  (F C F S )

We define E y= i W j(FC FS)  to be the total wait time of the schedule given by FCFS for 

any instance. Likewise, Y^j= iwj(O P T )  is the total wait time of the optimal solution for 

the same instance.

Theorem  3.1 E y = i W j(FC FS) < E j= i  wj(O P T ) ,  where d =  m in(c,m ).

Proof: As already stated, Y^j=iwj(O P T ) > n. Let d =  min(c,m). We wish to show 

w>j < for 1, . . .  n  in the FCFS solution to derive

j r Wj(F C F S) < ^ n <  ^ j ^ Wj{OPT ).
3=1 j=l

Case 1. m  < c: If the number of items is less than or equal to the number of channels, 

then it is possible to  broadcast all items each tick. T hat is, all requests are satisfied with 

the minimum wait time of 1 and the total wait time of the solution provided by FCFS 

is equal to tha t of the optimal solution. Since m  < c then d = min(e, m) =  m  and

E £= i wj(F C F S )  =  E } U  W jipP T).

Case 2. m  > c: For contradiction, assume there exists some request j  for item i\ with 

wj > That is, the request arrives at time ctj and is satisfied at time a,j + Wj. Since 

wj > f ,  we know th a t item is not broadcast between a,j +  1 and aj +  . Thus, there

remain m  — 1 items to  be broadcast during the [ ticks between a.j +  1 and cij +  ,

[aj +  1, a,j +  2 ) , . . . ,  [a,- +  +1) .  We see tha t none of the c channels are idle during this

period, else item i\  would have been selected for broadcasting. It then follows tha t there
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have been a total of c • items broadcast during this period. Given tha t m  > c we 

know c — min(c, to) =  c, resulting in c ■ \™] > m  items broadcast out of m  -  1 items. 

By the pigeonhole principle, at least one item, say *2 , among the m  — 1 items must have 

been broadcast more than once during the interval. This is in contradiction to the FCFS 

algorithm; request j  arriving at a,j requires item i\  to be selected for broadcast at least once 

before item i 2 is selected a second time. We conclude tha t all requests have wait times no 

larger than ™ in any FCFS solution. ■

T h eo re m  3.2 There is at least an instance for which Y^j=i W j(FC FS)  =  f f  1 wj(O P T ),

where d =  min(c, m ).

P ro o f: Consider the following instance with n =  x m  for some x  and m  > c (We do not 

illustrate the trivial case when m  <  c). W ithout loss of generality, take c,m  such tha t 

c\m. Assume tha t for request j  the arrival time is aj =  0 for the first m requests and the 

requested items axe 1, . . .  m  respectively. For each successive request j  = he +  y + rn where 

y — 1 , . . .  c and k = 0 , . . .  the arrival time is aj = k + 1  and the requested item

is (kc +  y + m) — m  ■ kc+v+m . The FCFS algorithm gives a schedule tha t selects items 

in a circular order of 1 , 2 , ,m  and broadcasts them in groups of c until all n  requests 

are satisfied. Thus the FCFS algorithm creates a schedule in which for each item there is 

exactly one request waiting at any time t  : 1 < t < (^-jr2 ) • After time t =  ( no more 

requests will arrive and m  — c requests will remain to be satisfied. These remaining requests 

will be satisfied in additional ticks. That is, the schedule produced by FCFS will be 

completed at the end of tick t =  ( » )  +  ^=£. = n=c = Specifically, the c items

broadcast at time t  = 0  are 60 1  =  1 , . . . ,  b()c -- c where btc is the index of the item broadcast
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for y =  1 , . . . ,  c and 1  < t < t = IL̂ £

Considering the total wait time of this schedule, we notice th a t the wait time of each of

satisfy the last of the initial m  requests, requests m  +  1 , . . . ,  m  + c will each experience a 

wait of Wj = By the time the m  + c request is satisfied, requests m +  c +  l , . . . , m T 2 c  

will also have experienced a wait time of ™. The total wait time of satisfying the remaining 

n — m  requests is then (n — m) ™. We now have the total wait time of the schedule produced

The optimal schedule will produce unit wait time for most requests. Specifically, the 

first c requests satisfied will experience Wj — 1. The optimal schedule is then constructed 

such tha t the wait time experienced by each request arriving after the m th request has a 

wait time of Wj — 1. The total wait time for all but the first m requests is then n — m. 

Of the first m requests to arrive, the first c requests will experience a wait of 1 , tha t is 

Wj = 1 for j  — 1 . . .  c. The second c requests will experience a wait of 2, tha t is Wj =  2 for

j  = c + 1 . . .  2c and so on. Thus the total wait time for the initial m  requests is Yljc=i c3- 

Therefore, the total wait time accumulated by the optimal schedule is

at time t on channel c. For t > 0 the items broadcast at time t are bty = t c + y - m -

the first c requests is wj =  1. The next c requests experience 2 units of wait time and so
m

on. Thus the total wait time of the first m requests is J2j=l c3- Because it takes ™ ticks to

by FCFS:

W j(FC FS) = J 2 c3 + (n ~  m )
n m

c

m
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J 2  Wj(OPT) = J 2 c j  + ( n - m )  = — +  (n -  m).
j = 1 j=i

Thus, for fixed m, c and arbitrarily large n, the ratio of E j= i  W j(FC FS)  over Y^j=\{OPT) 

approaches ■

3 .3 .2  M o st R e q u e ste d  F ir s t (M R F )

We define J 2 j - i  W j(M RF)  to be the total wait time of the schedule given by MRF for any 

instance. Likewise, E j= i  wj {OPT)  is the total wait time of the optimal solution for the 

same instance.

T h e o re m  3.3 £ " = i  Wj(M R F )  <  f  Wj(O P T ) .

P ro o f: Case 1. m  < c: If the number of items is less than or equal to the number of 

channels, then it is possible to broadcast all items each tick. T hat is, all requests will be 

satisfied with the minimum wait time of 1 and the total wait time of the solution provided 

by M R F  will be equal to tha t of the optimal solution. Since m  < c then d =  min(c, m) =  m  

and E "= i wj (M R F )  =  £ ”=i Wj(OPT).

Case 2. m  > c: Let A t be the number of requests arriving at t. Let B tk be the 

number of requests satisfied by the broadcast at t  on the fcth channel, which is for item 

btk for k — 1 , . . . ,  c. Let Wt be the number of requests still waiting at t. Let 2  be the last 

broadcast tick in the MRF schedule. We note tha t W z =  0,A Z — 0, B zk — 0 for all k, and 

E t= iO fe = i Btk) — E t=o M  =  n. Since MRF always chooses the item requested most, B tk
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is at least as large as the number of requests for any item other than item btk,Vk. Thus 

the average number of requests satisfied by an item broadcast at time t, |  YH=i Btk is also 

at least as large as the number of requests for each of the m  — c items waiting but not 

broadcast at time t. So Y?k= 1 Btk >  Wt. We have

X> s ( i > )  < ( l > )  =
t= 1 t=1 \k= 1 /  t=1 \fe=l /

Consider the total wait time ]Cj=i w.i (M R F ).  Aq is the amount of wait time accumulated 

during [0,1). W\  -f A \  is the amount of wait time accumulated during [1 ,2). W 2 +  A 2 is the 

amount of wait time accumulated during [2 ,3). And finally, Wz- \  + A z - 1 is the amount of 

wait time accumulated during [z — 1 , z). So we have

W j(M RF)  =  A0 +  (Wx +  A x) +  (W2 +  A 2) +  • • • +  (Wz- X + A g- X)
3 = 1

z - l  z - l

=
t= 0  t=i

(m — c) 
< n +  - -n  

c 
_  m n  

c

Together with Wj (OPT) > n  for the optimal algorithm, we get

E U wj(MRF)  ̂f E U wi(°BT).

T h e o re m  3.4 There is at least one instance for which ]Cy=i 'tVj(MRF) =  ^  Y ^j- i(O P T )
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P ro o f: We see tha t the same instance used for the earlier FCFS proof can be used to  yield 

the same result for the MRF algorithm. Note th a t when MRF is applied to tha t instance, 

every broadcast decision k =  1 , . . .  c is made breaking an (m — k)-way tie in favor of the 

item requested by the earliest arriving request. ■

3 .3 .3  G en era l L ow er B o u n d  for c C h a n n e ls

In this section we will prove tha t no on-line algorithm for broadcast scheduling with c 

channels and m  unit-sized items has a competitive ratio better than where d is the 

minimum between the number of channels c and the number of items m.

T h eo re m  3.5 For any on-line algorithm for  broadcast scheduling with c channels and m  

unit-sized items, its competitive ratio is at least where d = min(c, m).

P roof: We use an adversary argument and assume tha t the input instance is provided by 

the adversary. The arbitrary scheduling algorithm we consider is on-line-, it has no knowl

edge of the request sequence except for the requests tha t have already arrived by the time 

each scheduling decision must be made. Because of this limitation, the adversary is able to 

wait until the algorithm has made its scheduling decisions each broadcast tick before decid

ing what items to request for the upcoming tick. The adversary has complete knowledge 

of the inner workings of the algorithm and will seek to provide the most challenging input 

instance.

The adversary initially makes m  requests with arrival times of aj =  0 and one request 

for each item. The on-line algorithm will select some or all of these items to broadcast at 

time t =  1 depending on the number of channels c relative to the size of m. We refer to the
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item broadcast at time t  on channel c as btc• Thus, the algorithm will select d = min(c, m) 

items to broadcast each tick, and on the first tick this will be items &n, &1 2 , • • •, bid- For each 

successive broadcast tick the adversary will generate d requests, a request for each item that 

was just broadcast. Specifically, requests m + d (t  — l)  + l, m + d ( t  — l) + 2 , . . .  , m + d (t  — l) + d 

arrive at time t requesting items bti,b t2 , - - - ,b td respectively, for t  = 1 , 2 , . . . ,  ( IL̂ 22) • This 

creates a schedule in which for each item there is exactly one request waiting at any time 

t : 1 < t < After time t  =  (—j - )  no more requests will arrive and m — d requests

will remain to be satisfied. These remaining requests will be satisfied in additional

ticks. That is, the schedule will be completed at the end of time t =  Let

A  denote the on-line algorithm. Considering the total wait time of the schedule, we notice 

tha t the total wait time of all requests for each item is + 1  up until arrivals discontinue. 

The m  — d requests remaining to be satisfied will experience additional wait time over the 

required ticks needed to complete the schedule. We see tha t the total wait time for

all remaining requests is Yhi= 1 (m ~ ^0- Summing up we have:

J=i

r m —d i
m  /  \  i d 1

£ ( !Li r +1) + £ < • » - * >
7 = 1   ̂ '  1=1

m (d + n - m )  ^
=     +  ^  ( j n - d l )

d

m (d + n — m ) 
d

m(d + n — m) 
d

1=1

+  (m — d) +  (m — 2d) +  • • • + m
m  — d

d

+  m
m  — d 

d
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We now argue th a t for the same input instance there exists an optimal schedule in which 

Wj = 1 for most requests. In the trivial case of c > m  the optimal schedule is equivalent 

to the on-line schedule. If c < m  then we must closely observe the input provided by the 

adversary. Because the adversary will always generate requests to replace requests tha t have 

just been satisfied by the on-line algorithm, we note tha t the on-line algorithm is never able 

to satisfy more than one request per item broadcast. In contrast, there exists a schedule 

constructed with knowledge of the future in which an item is selected to be broadcast at 

the tick in which most of the most immediate requests for tha t item have already arrived.

For instance, assume c — 1 and two requests j i , j 2  arrive at time t  — 0 for different 

items. Say also tha t we are given the knowledge tha t at time t  =  1 another request j 3  will 

arrive such tha t the item requested by j \  is the same item requested by j’3 . We see it is 

more efficient to broadcast item 2  at time t =  1  and item 1  at time t  — 2  rather than vice 

versa as this minimizes the sum of the wait times experienced by all three requests j i ,  j 2 ,jz-

It is with this motivation tha t the optimal schedule is constructed. An algorithm with 

complete knowledge of the input generated by the adversary will choose to satisfy a request 

for an item such tha t the difference between the current time and the arrival time of the 

next request for item tha t item is maximized. (The distance is assumed to be infinity if a 

request is never followed by a request for the same item.) In this way, requests generated 

by the adversary will tend to be for the same items as other requests already arrived thus 

decreasing the number of unique items requested.

Let O P T  denote the algorithm by which the optimal schedule is created. Consider tha t 

at time t  — 1 O P T  knows tha t m  unique requests have arrived at t — 0 and d additional 

requests will arrive at t  = 1. Based on the above selection strategy O P T  will choose d items
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to broadcast at time t  =  1. If any of these items correspond to those items to be requested 

at time t = 1, then necessarily it must be true tha t m  < 2d. In this case it is obvious tha t 

all requests arriving before or a t t = 2 will be satisfied at the end of t = 2, otherwise each 

item broadcast will not be requested a t t =  1 and the number of unique requests at t =  2 

will be m  — d. T hat is, in contrast to the on-line schedule in which there was a request 

for every item throughout the beginning of the schedule, the optimal schedule has already 

eliminated up to d unique requests each tick. By continuing this method of broadcasting, 

the optimal schedule is able to  quickly satisfy all the initial requests tha t have arrived at 

or before time p j ] .

From time |"^] and beyond we know tha t the adversary generates at most d requests 

per tick. Thus all remaining requests in the schedule will be satisfied after one time unit of 

minimum waiting.

The total wait time of all requests in the schedule may be calculated in two parts: the 

amount of wait time of all requests before time and the amount of wait time of all 

requests after.

Before time [ we see tha t d requests must wait 1 time unit each before being satisfied 

at time t = 1. From time t  — 2 to time [ ^ J ,  each satisfied request will either have just

I — Iarrived or will have been waiting since time t = 0 described by J2i=2 -f 1) Likewise, 

those requests satisfied at time p j ]  will either have just arrived, for a total wait among 

those requests of d [*j] — m, or will have been waiting since time t =  0 for a total wait of

The d requests per tick arriving after time p j ]  will be satisfied after one time unit of 

minimum waiting. Recalling there are ticks required to complete a schedule, this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3. MINIMIZING TOTAL W AIT TIME: THE MULTI-CHANNEL CASE 43

results in d ■ ( f 2̂ ]  — P j] )  total wait time among these requests.

Considering all n requests we have:

^ w j i O P T )  = 
j=i

LfJ
+  d -F ^  ' d(l -f- 1) +  d 

1=2

d-
n  — d — m  

d
m
~d

m
1

+ m

Therefore, for a fixed rn, d and an arbitrarily large n, the ratio of ]C"=1 Wj{A) over 

J2j=i Wj{OPT) is a  bound tha t approaches

m(d+n—m) 
lim  i  =

n—+oo d I"n dd m~\ d

Since algorithm A  is arbitrary throughout the proof, such a lower bound holds for all 

on-line algorithms for broadcast scheduling with c channels and unit-sized items. Note as 

well tha t this result indicates the competitive optimality of the earlier algorithms FCFS 

and MRF. ■

3.4 Simulation Results

The results in the previous section indicate tha t FCFS and MRF show the same worst-case 

behavior as measured by the competitive ratio. The relative frequency of such scenarios 

in practice, however, depends on the properties of the request sequences these algorithms 

actually face. In the average case, we do expect MRF to outperform FCFS in most real 

scenarios since MRF locally minimizes the objective function.
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3.4.1 Sim ulation Param eters

In order to  develop a feel for the behavior of each algorithm, we develop a discrete-event 

simulation to model the effects of various input sequence properties on the performance of 

FCFS and MRF. The parameters to the simulation are the properties of the input sequence 

that are of interest. For example, we may look at how each algorithm is affected as we 

increase the rate at which requests arrive or the number of requests arriving.

Each replication (simulated instance) consists of stochastically generating an arrival 

sequence, simulating the server’s scheduling decisions according to  the algorithm under 

study, and collecting data  to compute the sum of wait times statistic. Because the terminal 

condition is specified by the number of processed requests, the terminal time (makespan) will 

vary from instance to instance. Large numbers of replications are used for each parameter 

change to ensure tha t the behavior observed is not dependent on any one run, i.e. are 

generated at 95% confidence.

In the absence of motivation for any other distribution, the arrival rate of requests 

is generated through use of a discrete version of the Exponential distribution. This rate 

measures the number of requests arriving per tick. Requests will stop arriving after the 

specified n  requests have been generated. Each request is for an item drawn from a discrete 

version of the Uniform distribution. Thus, given tha t there are requests left to arrive, each 

tick will see the generation of a number of new requests tha t is, on average, equal to the 

arrival rate all of which will be for a specific item i with probability T .

All the following results are obtained from simulation runs in which all items are unit

sized. Note tha t in terms of implementation the scheduling algorithm must be run for each
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channel each system tick. Furthermore, because situations arise in which the scheduling 

algorithm generates a tie (more than on item is selected as the best item to send), these 

situations are resolved by running a second algorithm on the contending items. For instance, 

if four items appear to be equally good choices under FCFS then MRF will be used to 

determine which of those four to broadcast (the item with the largest number of requests). 

Should the m atter still be unresolved after applying the second algorithm, priority is given 

to  the smallest item index. Resolving ties is a non-trivial m atter in terms of real-time 

algorithm complexity as is discussed later.

Due to the NP-Hardness of the problem in this model, note tha t the optimal schedule 

for each instance is never computed. The performance of each algorithm must therefore be 

studied based on a strict report of total wait time.

3.4.2 Perform ance Comparisons

Perhaps the most straightforward property of an input sequence is the sheer volume of 

requests it throws a t a scheduling algorithm. For a given number of channels, a static 

number of distinct items, and an arrival rate it is obvious from Figures 3.4 and 3.5 that 

increasing the number of requests necessarily increases the sum of the wait times. Figures 

3.4 and 3.5 compare, between the two algorithms, the effects of increasing the number of 

requests on the sum of wait times for a static arrival rate of 10 and 100 respectively. The 

number of data items is static at 100. Each point in the plot is derived from the mean of 

1000 iterations and, as such 95% confidence intervals are too small to display. Note tha t as 

a tie breaker, each algorithm uses the other. T hat is, FCFS uses MRF to determine which 

request to  satisfy in cast of a tie and vice versa.
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Figure 3.4: IMPACT OF INCREASING NUMBER OF REQUESTS ON TOTAL WAIT TIME, 
10 REQUESTS PER TICK
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In addition, we observe tha t though MRF outperforms FCFS as expected, the difference 

in performance decreases as the arrival rate increases. The reason for this trend is intuitive. 

MRF targets the most popular items when broadcasting and thus will generally satisfy 

more requests at low arrival rates than FCFS which will happily satisfy a single request 

tha t arrived earlier rather than 10 requests for the same item tha t arrived later. However, 

as the arrival rate increases to extremely large values, the number of requests for any item 

is so large tha t FCFS will satisfy a number of requests regardless of what item it selects, 

diminishing the advantage of MRF. This behavior is consistent with the analytical results 

described in the previous section.

In order to illustrate the dimensionality of param eter interaction, consider the point in 

the above figures where the number of requests has reached 200. If, at tha t point, we hold 

the number of requests constant at 200 and consider the effect on both figures of altering 

the arrival rate we generate Figure 3.6. Figure 3.6 compares, between the two algorithms

2 Channels with unit-sized items and an arrival rate of 10 requests per tick

Algorithm used: 
MRF FCF̂
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Figure 3.5: IMPACT OF INCREASING NUMBER OF REQUESTS ON TOTAL WAIT TIME, 
100 REQUESTS PER TICK
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FCFS and MRF, the effects of increasing request arrival rate on the sum of wait times for 

200 requests, 2 channels, and 50 items. Each point in the plot is derived from the mean of 

1000 iterations and, as such 95% confidence intervals are too small to display. Note tha t 

as a tie breaker, each algorithm uses the other, i.e. FCFS uses MRF to determine which 

request to satisfy in case of a tie.

We see from Figure 3.6 tha t increasing the arrival rate results in a narrowing of perfor

mance difference between the two algorithms. T hat is, as a system approaches saturation 

the advantages of MRF over FCFS diminish.

In Figure 3.6, it is assumed tha t the number of distinct items is constant as the arrival 

rate increases. Intuitively we also expect tha t increasing the number of distinct items will 

cause the sum of wait times to increase.

As the requests coming in are more distributed across a larger number of items, each 

item broadcast on a channel will satisfy fewer requests. In fact, the impact of increasing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CH APTER 3. MINIMIZING TOTAL W A IT  TIME: THE MULTI-CHANNEL CASE  48 

Figure 3.6: IMPACT OF INCREASING ARRIVAL RATE ON TOTAL WAIT TIME

2 Channels with unit-sized items

Algorithm used:  ..mrjf
4500

4000

3  2500

2000

1000

0 5 10 15 20 25 30 35 40
Average number of Requests per Tick

the number of distinct items is significantly larger than tha t of increasing the arrival rate. 

Asymptotically, increasing the arrival rate does nothing more than add requests for items 

tha t already needed to be sent. That is, assuming no more arrivals, the difference in 100 

requests for all items and 200 requests for all items is irrelevant in tha t m  broadcasts will 

complete either schedule and the wait time experienced by each requests is not remarkable. 

However, the difference between 1 request for each of 100 items as opposed to 200 items is 

extreme in tha t the last item satisfied has experienced a wait time an order of magnitude 

longer than the first request satisfied. The plots in Figures 3.7 show these trends. For any 

given arrival rate, the increase in the number of data items is seen to increase the sum of 

wait times noticeable. In contrast, for a given number of items, an increase in the arrival 

rate is less apparent. We observe tha t the effect of increasing the number of items is more 

pronounced for MRF than for FCFS as is to be expected. This is another indication that 

the number of distinct items m  is a significant factor in the analytical performance between
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the two algorithms.

As stated earlier in this section, each scheduling algorithm can encounter situations in 

which multiple items are equal candidates to be selected for broadcasting. This occurs when 

an algorithm produces more candidates than the number of channels. T hat is, if the FCFS 

algorithm finds 6 items with requests tha t arrived at the same earliest time and there are 6 

channels then all items will be broadcast. However, if 7 candidates are found then a decision 

must be made as to which 6 of the 7 will be sent requiring another algorithm to be used as 

a “tie breaker” . The running of this second algorithm will slow the real-time performance 

of the on-line algorithm (and impact the simulation complexity).

The following plots indicate tha t a tie breaking algorithm must be used increasingly as 

the arrival rate increases and as the number of distinct items increases. We notice tha t when 

the number of data items is sufficiently large, a tie breaking algorithm is consulted with 

virtually every decision. From the perspective of algorithm design, these results indicate 

tha t the issue of how a tie will be resolved computationally is an area tha t can greatly affect 

the performance of these two algorithms in particular.

The plots in Figure 3.8 measure the effects of increasing request arrival rate and in

creasing number of items on the sum of percentage of decisions tha t must use a tie-breaking 

algorithm. For instance, if there are 2 channels and the original algorithm produces 4 items 

of equal importance, the tie-breaking algorithm must be used twice, once for each decision. 

Note tha t 2 items of equal importance for 2 channels is no tie a t all. As a tie breaker, 

each algorithm uses the other. FCFS uses MRF to determine which request to broadcast 

in case of a tie. If the second algorithm produces yet more ties, the item to be broadcast 

is determined by smallest data item index first. Each vertex in the plot is a point derived
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from the mean of 1000 iterations and, as such 95% confidence intervals are too small to 

display.

3.4.3 Sim ulation Conclusions

Though FCFS and MRF have equal competitive ratios, simulation results indicate tha t 

MRF outperforms FCFS on average. The performance gain of MRF over FCFS diminishes, 

however, as the number of requests, arrival rate, and number of data items increases. These 

observations agree with performance measures found in the literature and complement our 

analytical results. The NP-Hardness of the problem combined with the complexity burden 

of tie breaking, even with naive algorithms, establishes the simulation of this model as 

computationally intensive.
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Figure 3.7: ALGORITHM PARAMETERS IN 3 DIMENSIONS - MRF
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Figure 3.8: THE COMPUTATIONAL BURDEN OF TIE RESOLUTION
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Chapter 4

M inim izing Two M etrics: The 

Single-Item  Case

We now consider the D ata Broadcast Scheduling Problem in which the server attem pts to 

maximize the quality of service as perceived by both clients and server. Client quality of 

service depends upon the speed at which their requests are satisfied and server quality of 

service is based upon the cost of satisfying those requests. Thus, the server will attem pt 

to minimize two metrics: total wait time and total broadcast cost. As such, the server’s 

two goals are said to be conflicting in tha t increasing the number of broadcasts will tend to 

reduce client wait time as it increases server cost and vice versa. In this chapter we present 

both analytical and simulation results regarding algorithms tha t attem pt to optimize both 

metrics simultaneously. While the introduction of broadcast cost has been applied to push- 

based broadcast scheduling [33, 34, 43], an original contribution of our work is to apply 

this metric to the pull-based model. This chapter first formally defines the model and then 

proceeds to describe the analytical and simulation results of two online algorithms obtained 

within its context.

53
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4.1 M odel Description

Creating a special case of the general problem definition established in Section 1.3, we are 

given a server with access to a single unit-sized data item and a single channel over which 

the item may be transm itted. A sequence of requests is also given where each request arrives 

for that item. Due to the presence of a single item only, such an input sequence can be 

succinctly described as a sequence of pairs where each pair describes the arrival time a,j of a 

group of requests. T hat is, (ax, n\), (a2 , ) , . . . ,  (a*,,rife) describes an input sequence where

a-j is the arrival time of the ;/th group of requests and is the number of requests that

arrived at tha t time. Note tha t n i  h =  n, where k is the total number of groups

arriving and n is the total number of requests. At the beginning of each system tick, the 

server must decide whether or not to broadcast the item. T hat is, the server may refrain 

from broadcasting the item (referred to as “waiting”) even when requests are in queue. 

This is in contrast to models, such as the one described in Chapter 3, in which the server 

attem pts only the minimization of total wait time. Unlike those models, it makes sense 

for a server with a broadcast cost metric to sometimes wait even with requests in queue 

when the cost of waiting is smaller than the cost of broadcasting. In order to maximize the 

quality of service this system provides to its clients and itself, the server will attem pt to 

minimize the total cost of a schedule S  determined by the objective function

n
O B J(S )  = J 2 wi + B -&

3=1

where the wait time of each request j ,  w j , is summed over the total number of requests 

n and the total number of broadcasts B  in schedule S  is multiplied by the cost of single
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broadcasting (31.

4.2 Algorithm s

In this chapter we consider two online algorithms the server may employ to minimize the 

above objective function, a naive algorithm we will call LAZY and a more sophisticated 

algorithm we will call GREEDY. We also present a polynomial-time offline algorithm based 

upon the dynamic programming technique tha t is shown to be optimal.

The online algorithm LAZY always broadcasts immediately after the arrival of a request 

group. Its name derives from the fact tha t it never considers other factors affecting the 

quality of a schedule, such as the broadcast cost.

As an example, consider a /3 =  5 and an input sequence (0, 5), (1, 5), (2,1), (4,1), (5,8), 

(7,5), (8,2). LAZY constructs the schedule in Figure 4.1 with a total wait time of 27, a 

total broadcast cost of 35, and a total schedule cost of 62.

Designing a smarter online approach than tha t above, the GREEDY algorithm attem pts 

to make a good broadcasting decision by considering both the broadcast cost (3 and the 

amount of accumulated wait time of all unsatisfied requests. T hat is, it compares the amount 

of wait time unsatisfied requests have accumulated while in queue to the cost of satisfying 

them. If (3 is large in comparison to this total accumulated wait time, the algorithm may 

choose to  wait until such a time as the cost of broadcasting is more warranted.

More specifically, let t be the time at which GREEDY must make a decision to wait or 

broadcast at the next time t  +  1. Let P  be the number of pending (unsatisfied) requests

1 Because broadcast cost and wait time are measured in different units, some weighted measure between 
the two is desired. Thus the objective function might be written as a(5Zj=i wi)  + B  ■ f t . However, for 
simplicity fi' can be normalized to /3, the relative cost of broadcasting relative to a unit of wait time.
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Figure 4.1: EXAMPLE SCHEDULING DIAGRAM OF LAZY

Time

0 1 2 3 4 5 6 7 8 9
5 5 1 1 8 5 2

c = 1 using LAZY

tha t have arrived up to time t, inclusively, since the last broadcast was made and let Q be 

the accumulated wait time of all P  pending requests at time t  +  1. The pseudocode for 

GREEDY is given below.

GREEDY O nline Algorithm  
S in g le  broadcast c o s t:  b e ta
Input r eq u est sequence: ( a [ l ] , n [ l ] ) ,  ( a [k ] ,n [k ] )

t  = a [ l ]
P = nCl]
Q = n [ l ]  
do

i f  b e ta  <= Q 
th en  broadcast a t t+1  

Q = 0 
P = 0 

e l s e  w ait a t t+1  
Q = Q + P 

t  = t  + 1
i f  t  == a [ i ]  fo r  some i  
th en  Q = Q + n [ i ]

P = P + n [ i ]
U n til  a l l  r e q u e sts  have a rr iv ed  and have been s a t i s f i e d
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Figure 4.2: EXAMPLE SCHEDULING DIAGRAM OF GREEDY

Time
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c = 1 using GREEDY

Using the same input examined with the LAZY algorithm above with (3 = 5 and the in

put sequence (0,5), (1,5), (2,1), (4,1), (5,8), (7,5), (8,2), GREEDY constructs the schedule 

in Figure 4.2 with a total wait time of 35, a to tal broadcast cost of 25, and a total schedule 

cost of 60.

Though more sophisticated than the LAZY algorithm, GREEDY does not always pro

vide an optimal solution. An optimal solution can always be found, however, through use 

of an offline dynamic programming algorithm. Given a broadcast cost (3 and an input se

quence of (ai,rai), (a2 ,n 2 (a*,,rife), consider th a t a schedule satisfying all requests in 

this sequence is making a binary decision to wait or broadcast at each opportunity. Note as 

well, tha t a broadcasting opportunity appears only after the arrival of requests. W ithout 

arrivals in a previous tick, a server tha t has decided to  wait should continue to do so (else 

the decision to wait was in error). In a sense, the dynamic programming algorithm checks 

all possible ways a server could satisfy the sequence of requests and chooses the schedule 

tha t minimizes the objective function. The construction of this algorithm follows.

Via the methodology of dynamic programming, we begin with the definition of a function
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tha t returns the optimal solution for a partial input sequence. Let C ( i , j ) be the minimum 

cost (total wait time plus total broadcast cost) of all schedules for the request sequence 

(aj, rij),. . . ,  (aj, rij), for 1 <  i < j  <  k. (Here we use the indices’s i, j ,  k, I apart from their 

previous associations.) Thus, (7(1, k) provides the minimum cost for the original request 

sequence ( a i , n i ) , . . . ,  («fc, n^). Function C (i , j )  can be defined recursively as follows:

rii + (3 if i =  j

min{(7i(f, j) ,  mini<i<j{C(i, I) +  C{1 +  l , j ) } }  if i < j

where C \( i , j )  = X)/=i n l(aj  +  1 — ai) +  P, which is the cost of the schedule tha t broadcasts 

only once at Uj + 1  to satisfy all requests in (aj, n , ) , . . . ,  (aj,rij). T hat is, C\ establishes the 

cost of broadcasting a single time at the end of a given interval. Note tha t the computation 

of C (i, j)  for i < j  defined above considers two possibilities: one is to broadcast only once 

incurring the cost of C i( i , j )  and the other is to broadcast at least twice, at time o,/ +  1 

and at time aj +  1, with I to be determined by calculating the minimum incurred cost 

min i<icj{C(i,l) + C(l +  1, j)} .

The pseudocode for our algorithm is given below. Two k  x k  tables are used in the 

algorithm: table Cl[i,j]  to store C \ (*, j )  and table C[i,j) to store C (i,j) .

Optimal O ff lin e  A lgorithm  
S in g le  broadcast c o s t:  b e ta
Input req u est sequence: ( a [ l ] , n [ l ] ) ,  . . . ,  (a [k ] ,n [k ] )

//C o n str u c t io n  of th e  Cl t a b le  by th e  d e f in i t io n  o f th e  Cl fu n c tio n  
fo r  i  from 1 to  k 

fo r  j from i  to  k 
C lC i,j ]  = b eta  
fo r  1 from i  to  j
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Table 4.1: EXAMPLE CONSTRUCTION of Cl

i,j 1 2 3 4 5 6 7
1 10 20 31 54 74 119 146
2 * 10 16 29 44 79 101
3 * * 6 9 19 44 61
4 * * * 6 15 38 54
5 * * * * 13 34 49
6 * * * * * 10 17
7 * * * * * * 7

Cl [ i , j ]  = Cl [ i ,  j ]  + n [ l ]  * ( a [ j ] + l - a [ l ] )
//C o n str u c t io n  o f th e  C ta b le  by th e  dynamic programming method 
fo r  i  from 1 to  k 

C [ i , i ]  = Cl [ i , i ]  
fo r  j from 2 to  k

fo r  i  from j - 1  to  1
temp_min = +i n f i n i t y  
fo r  1 from i  to  j

tempjmin = min {temp_min, C [ i , l ]  + C [ l+ l , j ] >
C [ i , j ]  = min { C l [ i , j ] ,  temp_min> 

retu rn  C [l,k ]

The time complexity of the above algorithm is 0 ( k 3). This algorithm only returns the 

cost of the optimal broadcast schedule. As shown later in this section, however, it can be 

modified to give the actual broadcast schedule without heavily impacting this complexity.

Consider the same input sequence used in the examples of Lazy and Greedy. Given f3 — 

5 and an input sequence (0,5), (1,5), (2,1), (4,1), (5, 8), (7, 5), (8,2), the above algorithm 

produces Tables 4.1 and 4.2.

From entry C7[l, T] it can be seen tha t the algorithm produces a schedule with a total cost 

of 56. To actually determine tha t schedule, we may modify the original algorithm to track 

the points at which broadcasts are performed. As table C  is constructed, a comparison is
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Table 4.2: EXAMPLE CONSTRUCTION OF C

i,j 1 2 3 4 5 6 7
1 10 20 26 29 39 49 56
2 * 10 16 19 29 39 46
3 * * 6 9 19 29 36
4 * * * 6 15 25 32
5 * * * * 13 23 30
6 * * * * * 10 17
7 * * * * * * 7

made for each interval (each table entry) to determine if the schedule cost will be minimized 

by single or multiple broadcasts for tha t interval. By tracking the decision made at each 

such comparison it is possible to reconstruct the optimal schedule once the final cost has 

been calculated. This process is enabled by the construction of a third table T  done in 

tandem  with the construction of table C.

Table T  is constructed as follows. At any point in the construction of table C  at which 

the optimal decision is determined to be a single broadcast within an interval,we record a 

— 1 in the corresponding entry of table T  at cell T[i,j]. If the optimal decision is instead 

determined to occur in at least two locations within the interval, we record the I value that 

marks the two intervals. The modification to  the algorithm pseudocode for constructing 

the T  table is given below.

Optimal O ff lin e  A lgorithm  
S in g le  broadcast c o s t:  b e ta
Input req u est sequence: ( a [ l ] , n [ l ] ) ,  . . . ,  (a [k ] ,n [k ] )

//C o n s tr u c t io n  of th e  Cl ta b le  by th e  d e f in i t io n  o f th e  Cl fu n c tio n  
fo r  i  from 1 to  k 

fo r  j from i  to  k 
Cl [ i , j ]  = b eta
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Table 4.3: EXAMPLE CONSTRUCTION OF T

i,j 1 2 3 4 5 6 7
1 -1 -1 0 0 0 0 0
2 * -1 -1 1 1 1 1
3 * * -1 -1 -1 4 4
4 * * * -1 -1 4 4
5 * * * * -1 4 4
6 * * * * * -1 -1
7 * * * * * * -1

fo r  1 from i  to  j
Cl [ i , j ]  = C l [ i , j ]  + n [ l ]  * ( a [ j ] + l - a [ l ]  )

/ /C o n s tr u c t io n  o f th e  C and T t a b le s  by th e  dynamic programming method 
fo r  i  from 1 to  k 

C [ i , i ]  = Cl [ i , i ]
T [ i , i ]  = -1  

fo r  j from 2 to  k 
currentL = 0 
fo r  i  from j - 1  to  1

temp_min = + in f in i t y  
fo r  1 from i  to  j

i f  temp_min > C [ i ] [1] + C [l+1] [j]  
temp_min = C [i] [1] + C[l+1] [ j ]  ; 
currentL = 1; 

i f  C l [ i ] [ j ]  > temp_min 
C [i] [ j]  = temp_min 
T [i]  [ j ]  = currentL  

e l s e
C [ i ] [ j ]  = C l [ i ] [ j ]
T [ i]  [ j]  = -1  

retu rn  C [l,k ]

For the given example input instance, Table 4.3 is generated.

Once all three tables have been constructed, a recursive construction of the schedule 

is performed. Starting with the last decision made, table entry T[l,fc], the value of each 

entry is examined. If the entry contains a —1, then a broadcast has occurred at the end of 

tha t interval. If the entry is not —1, then it is an / value and a call is made recursively to
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determine the decisions made by the two intervals ending and beginning at decision point 

I respectively. In pseudocode this procedure is below.

R econstructScheduleC T, k , a , b)

1 = T[a,b]
i f  1 == -1

b ro a d c a s t a t  b 
e ls e

R econstruc tS chedu le(T , k , a , 1)
R econstructScheduleC T, k , 1+1, b)

For the T  table established for this example, the procedure executes as follows (with 

the nested structure representing recursive calls).

ReconstructScheduleC T, 7 , 1, 7) ‘ ‘1 = 1 ’ *
R econstructScheduleC T, 7 , 1, 1) “  = -1  -> BROADCAST AT 1 ”
R econstructScheduleC T, 7 , 2 , 7) , e l  = 2 ’ ’

R econstructScheduleC T, 7 , 2, 2) ‘ ‘1 = - 1 ’ -> BROADCAST AT 2 ’ ’
R econstructScheduleC T, 7 , 3 , 7) t t l = 5 ,J

R econstructScheduleC T, 7 , 3 , 5) ' ‘ 1 = -1  -< BROADCAST AT 5 ”  
R econstructScheduleC T, 7 , 6 , 7) “ 1 = -1  -> BROADCAST AT 7 ”

This provides the schedule in Figure 4.3 with a total wait time of 36, a total broadcast 

cost of 20, and a total schedule cost of 56.

4.3 A nalytical Results

As stated earlier, the wait time experienced by any request j  for a unit-sized item is W j>  1. 

Thus the minimum total wait time of any schedule independent of the scheduling algorithm 

is at least n. T hat is, X q=i wj — X q=i I — n. The minimum broadcast cost for any 

schedule is j3 since, at the very least, a broadcast is required at the end of a schedule.
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Figure 4.3: EXAMPLE SCHEDULING DIAGRAM OF DYNAMIC PROGRAMMING ALGO
RITHM

Time

c = 1 using Dynamic Programming

Therefore, n + f3 is a lower bound to the total cost for any schedule, including the optimal 

schedule. While n  + (3 is a lower bound, it is not a tight bound. The following subsections 

address the need for a tight bound for the LAZY and GREEDY algorithms respectively.

4 .3 .1  C o m p e tit iv e  R a tio  for th e  L A Z Y  A lg o r ith m

LAZY broadcasts its item at any opportunity at which a request can be satisfied. Though 

there are n  requests in the input sequence, some of these requests may arrive at the same 

time. As such, let k  be the number of distinct arrival times (also the number of request 

groups tha t arrive) such tha t k < n .  Thus LAZY will make exactly k broadcasts and each 

request will experience unit wait time. Clearly then, for any instance (ai, n i ) , . . . ,  (a*,, n*,) 

with k arrival times, n  — Ylj=i nj  — k  requests, and the single broadcast cost of /?, the cost 

of the schedule constructed by algorithm LAZY is

C — n  +  kf3.

Here we define C  to be the total wait time plus total broadcast cost of the schedule
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Table 4.4: INSTANCES FOR LAZY

Instance Optimal cost
I- ( o i , n 1) ,(a2,n2), . . . ,  (flfc, n jt) C*
Iy. ( l , m ) , ( 2 , n 2),. , . , ( k , n k) C{
J2: (1,1), (2,1) , . . . (k, n — k  +  1) c i
Jo: (1,1), (2 ,1) , . . . ( M ) C q

given by LAZY for any instance. Likewise, C* is the total wait time plus total broadcast 

cost of the optimal solution for the same instance. We will show tha t for any instance, 

C/C* < ((3 + l)/(VW +  1/2). However, in order to establish the competitive ratio of 

LAZY, it is necessary to obtain a tighter lower bound on the cost of the optimal schedule 

for any instance with k arrival time and n requests.

L em m a 4.1 Let C* be the cost of the optimal schedule for any instance with k arrival times 

and n = nj  'requests. Let Cq be the cost of the optimal schedule for the instance with

aj =  j  and nj = 1 for  j  =  1 , . . . ,  k. Then C* > Cq + n — k.

P roo f: Given any instance I: (ai, r q ) , . . . ,  (a*,, n k) with n — Y^j=i nL  we define the fol

lowing instance variations:

We prove the lemma in three steps. In the first step we show by a series of transfor

mations applied to the schedules tha t C* > C*. In the second step we show by a series 

of transformations applied to the schedules tha t C f > C%- In the third step we show tha t 

C* =  Cq + n  — k  by observing tha t the optimal broadcast schedules are the same for in

stances h  and I q, shown in Table 4.4 while the optimal costs have a difference of n  -  k. 

Combining the three inequalities, we have our lemma. ■

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4. MINIMIZING TW O METRICS: THE SINGLE-ITEM CASE 65

Now consider Cq, the cost of the optimal schedule for request sequence Iq =  (1,1), (2,1), 

. . . ,  (&, 1) with k  arrival groups and unit inter-arrival times. The following lemma gives a 

lower bound on Cq.

Lem m a 4.2 Let Cq be the cost of the optimal schedule for request sequence Iq =  (1,1), 

(2,1), . . . ,  (k , 1). Let (3 be the single broadcast cost. Then Cq >  k(y/2j3 +  1/2).

Proof: In instance Iq = (1,1), (2 ,1 ) , . . . ,  (k, 1), the number of requests n  is equal to k, the 

number of distinct arrival times. Let I be the number of broadcast events in a schedule for 

Iq. If I is fixed, then the optimal schedule with exactly I broadcast events is to broadcast 

at time instants tha t spread out as evenly as possible in the time interval [2, k +  1]. More 

specifically, the optimal schedule which broadcasts I times will see tha t each of the first 

I — k mod I broadcast events satisfies [fc/Zj requests, accumulating (l/2)[fe/ZJ(|_A;/ZJ +  1) in 

wait time. Each of the last k  mod I broadcast events satisfies \k/V\ requests, accumulating 

(l/2)[fc/Z](|'A:/Z] -1- 1) in wait time.

Define function cost(l) to be the cost (total wait time plus total broadcast cost) of the 

optimal schedule among all schedules which broadcast exactly I times. Then we have

cost(l) =  (Z -  k  mod Z) ■ (l/2)|fc/ZJ([fc/Zj + l) + (k mod Z) • ( l /2 ) \k / l ] ( \k / l ]  +  1) +  1(3

Thus the cost of the optimal schedule, considering all possible number of broadcast events, 

is

Z • (1/2) [fc/ZJ ( [k/l\ +  1) +  1(3 +  (k mod Z) \k / l ] . (4.1)

Cn — min Icost(l)} =  m ini 
l<l<k

mm
l<l<k,k mod 1=0

mm
1 <l<k,k mod 1^0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CH APTER 4. MINIMIZING TW O  METRICS: THE SINGLE-ITEM CASE  

Consider two cases of I. First assume k mod I =  0. Then

66

cost(l) =  I ■ (1/2){k /l)(k /l  + 1) +  1(1.

Consider the corresponding continuous function f ( x )  =  x  ■ (1/2) ( k /x ) (k /x  + 1) +  x(3. By 

computing the derivative of f ( x ) ,  we find tha t the minimum of f ( x )  occurs at x — k/y/2(3 

and is k(y/2(3 + 1/2). So

K  j  , ,  A cost(1)} > “ in{/(* )}  =  k (y /2/3 +  1/2). (4.3)
l< l< k ,k  mod 1=0 Vx

Next assume k  mod I ^  0. Let k / l  =  \_k/l\ + e for some e G (0,1). Then

cost(l) =  I ■ (1 /2 )\_k/l\(\_k/l\ +  1 ) + l(3 + {k mod l)\k/l~\

= I ■ (1/2) |_Jfe//J \k / f \  +1/3 + (k mod I) [k /l]

=  [k/l]((l /2 )[k/l\  + k mod I) +  lj3

= \ k / l ] ( k - ( l / 2 ) l k / l \ )  + l(3 

= (k /l  + 1 -  e)(k -  ( l/2 )(k /l -  c)) +  1(3 

= (k2/2 ) ( l / l )  + k /2  + (l/2)le(l - e )  + 1(3.

Consider the corresponding continuous function g(x) =  (k2/2 ) ( l /x )  +  k /2  +  (l /2 )xe(l  —

e) +  x(3. By computing the derivative of g(x), we find th a t the minimum of g(x) occurs at

x  =  k/y/2(3  +  e(l — e) and is k(^/2(3 +  e(l — e) +  1/2). So

min {cost(l)\ > min{5r(x)} =  k(\/2(3 +  e(l — e) +  1/2). (4.4)
1 < l< k ,k  mod lyt0 Vx
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Combining the two cases, we have

67

Cl = min{ min {cost(l)}, min {cost(l)}} by Equation (4.2)
1 < l< k yk  mod I—0 1 < /< « ,«  mod 1^=0

> m\n{k(^/2/3 +  1/2), k(^2 (3  +  e(l -  e) +  1/2)} by Equations (4.3) and (4.4) 

=  k (y /2 f i+ l /2 ) .

Now, we are ready to prove the competitive ratio for algorithm LAZY.

T heorem  4.1 For any instance, C/C* < ((3 + l)/(y/2j3 +  1/2), where C and C* are the 

costs of the L A Z Y  schedule and of the optimal schedule (for the same instance), respectively.

P ro o f: Recall tha t for any instance C = n  k/3 and tha t by Lemmas 4.1 and 4.2 C * > 

C* + n — k > k(*/2f3 +  1/2) + n — k = n + k(y/2j3 — 1/2). Therefore,

C n + k(3
C* ~  n  +  k(\/2f3 — 1/2)

P~y/W + 1/21 +
n /k  +  \/2(3 — 1/2

til
1 +  A

(3+1

< i + since„/jt> i
-  1 +  ^ 3  - 1 /2  '  -

v ^ + 1 / 2 '

T h e o re m  4.2 There is an instance for which C/C* > ((3 +  l)/(y/2j3 +  1/2), where C and 

C* are the costs of the L A Z Y  schedule and of the optimal schedule (for the same instance), 

respectively.
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P ro o f: Consider an instance (1,1), (2 ,1) , . . .  , (k, 1), where k =  2xy  for some integers x  and 

y. Note tha t n — Ylj=i nj — k- Let [3 =  2x2. So

C = n + k(3 =  fc(l +  /?) — 2xy(l  + (3). (4.5)

According to Equations (4.2) and (4.1) in the proof of Lemma 4.2, we have C* — mini</<fc {cos 

where cost(l) — I ■ ( l /2 )[k / l \ ([ k / l \  +  1) +  1(3 +  (k modZ)[&/f|. Choose I' — kj\J2f3 =  

(2xy) /  (2x) =  y. We then have k mod I' =  k  mod y  =  2xy  mod y = 0. Therefore, 

cost{l') =  y ■ (1/2) • 2x{2x +  1) +  y • 2x2 =  yx(4x  +  1). So,

C* = mm^{cost(l)} <  cost(l') = yx(4x  +  1). (4.6)

Considering the ratio C/C*, we have

^  ~  y lf£  + l) by E(luations (4-5) and (4-6)

-  2(1 +  ^  since 0  = 2x2
4 - v/5 /2  +  1 
(3 +  1

v ^ + 1 / 2 '

The competitive ratio of LAZY is roughly proportional to sf]3. However, the ratio 

remains small when (3 is reasonably small. In particular, the ratio is bounded by 2 if (3 <  8, 

in which case the single broadcast cost weighs no more than eight times of one unit of wait 

time.
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4 .3 .2  C o m p e t it iv e  R a tio  for th e  G R E E D Y  A lg o r ith m

Next we show tha t the competitive ratio of the GREEDY algorithm is 2, by proving tha t 

2 is both the lower bound and the upper bound on the competitive ratio. In what follows, 

we call a schedule produced by algorithm GREEDY a GREEDY schedule.

T h eo re m  4.3 There is an instance for which C/C* > 2, where C and C* are the costs of 

the G REED Y schedule and of the optimal schedule (for the same instance), respectively.

Proof: Consider the request sequence with only one group of requests arriving at time 

1: ( l ,n i) .  Assume tha t j3 = I • n x for some large I. Clearly, the optimal schedule for the 

instance will broadcast at time 2. So

C* = n i  +  (3.

Now we apply algorithm GREEDY to the instance. Observe tha t at time t  — 1 , . . .  ,1 — 1, 

the accumulated wait time A  is tn x < f3 and th a t at time t  = I, the accumulated wait time 

A  is I ■ n i  > (3. So the algorithm will choose to  wait at time t =  1 , — 1 until time Z, 

when the algorithm will choose to broadcast to satisfy the requests. So

C  = I ■ n \  +  p.

Considering the ratio between C  and C*, we have

C I n , j- S 21 2

C* n x + (3 Z +  l J +  l

as I —► oo. ■
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T h eo re m  4.4 For any instance, C/C*  < 2, where C and C* are the costs of the GREED Y  

schedule and of the optimal schedule (for the same instance), respectively.

P roo f: For any instance ( a i , n i ) , . . . ,  (a^n*),  the GREEDY schedule can be partitioned 

into time intervals defined by broadcast times. To be specific, assume tha t in the GREEDY 

schedule the event of broadcast happens a total of I times, at times b\ , . . . ,  6 /. Let bo =  ai. 

Then the schedule can be partitioned into intervals [bo, bi), [hi, 6 2 ), • • •, [&z-i, h). For the ith  

interval [6 j_ i,& i), define Ki to  be the set of requests arriving in the interval, to be the 

number of requests in Ki, and Ai to be the accumulated wait time by requests in Ki at 

time bi. From the definition of algorithm GREEDY, we have

A i - R i < f 3 < A i .  (4.7)

Summing up the above inequalities for all * =  1 , we get

1 1 1

i=l i=l i —1

So
1 1

2 J 2 A i-
i =1 i=l

To prove tha t C/C*  < 2 ,  it suffices to prove tha t C* >  Y/\=i Ai-

For any instance, we align its optimal schedule with its GREEDY schedule. As a 

result, the optimal schedule is also partitioned into intervals by the broadcast times in the 

GREEDY schedule. For the ith  interval (6 j_i,&i] 2 in the optimal schedule, let C* be the

2 Note that the time intervals used for partitioning the GREEDY schedule are [ ) but the time intervals 
used for partitioning the optimal schedule are ( ]. This is not a typo.

c  = T A i + w <
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cost incurred in the interval, which is the broadcast cost incurred in (6i_i,&i] plus the wait 

time accumulated in (bj_i, bi). We consider two cases for the interval.

Case 1. No broadcast occurs in (6*_i, 6*] in the optimal schedule. Then C? =  Ai +  A > 

Ai, where A > 0 is nonzero only when there is not broadcast at bi-\ and there are requests 

arriving earlier than 6j_i but at or after the last broadcast time before bi-1 in the optimal 

schedule.

Case 2. There is at least one broadcast event in bi] in the optimal schedule. Then 

C* > Ri + f3 since every request arriving in will accumulate at least one unit of

wait time in and the broadcast cost incurred in the interval is at least /?. Recall

tha t Ai — Ri < (4 in Equation (4.7). So C* > Ri +  (3 > Ri + Ai — R4  =  Ai. Summing the 

inequality C* > Ai for all intervals, we get

c ’ = E c ? & ! > •
i=1 i=l

This proves the theorem. ■

4.4 Simulation Results

In order to develop a feel for the empirical behavior of each algorithm, we utilize a discrete- 

event simulation to model the effects of various input sequence properties on the performance 

of LAZY and GREEDY. Unlike models (such as tha t of Chapter 3) in which finding an opti

mal solution is NP-Hard, the model in this chapter is computationally easier to simulate due 

to the existence of the optimal offline algorithm developed in Section 4.2. The availability 

of this optimal algorithm allows a more direct comparison of online algorithm performance;
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since the optimal schedule for any instance can be computed, we can determine the extent 

to which a schedule produced GREEDY or LAZY deviates from the optimal.

For the results to follow, each replication (simulated instance) consists of stochastically 

generating an arrival sequence, simulating the server’s scheduling decisions according to 

the algorithm under study, and collecting data to compute the sum of wait times, sum of 

broadcast cost, and total schedule cost statistics. Because the terminal condition is specified 

by the number of processed requests, the terminal time (makespan) will vary from instance 

to  instance. Large numbers of replications (1000 replications for results displayed in figures) 

are used for each parameter change to ensure tha t the behavior observed is not dependent 

on any one run. Thus, replications are generated such tha t statics are reported at 95% 

confidence.

4 .4 .1  S im u la tio n  P a ra m e ters

Several parameters to the problem will affect the characteristics of the input sequence tha t 

is simulated on each algorithm for each replication: the arrival rate, the inter-arrival time, 

and the total number of requests set to arrive. In the absence of motivation for any other 

distribution, the arrival rate of requests is generated through use of a discrete version of 

the Exponential distribution. This rate measures the number of requests, or the size of the 

group of requests, arriving per tick. The inter-arrival time establishes the frequency of ticks 

tha t will see the arrival of these request groups. An average inter-arrival time of 1 means 

tha t most ticks see the arrival of requests versus larger inter-arrival times tha t translate 

into longer periods of time in which no requests arrive. Requests will stop arriving after 

the specified total number of requests have been generated.
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All the following results are obtained from simulation runs in which the single item 

is unit-sized. Note tha t in terms of implementation each scheduling algorithm must be 

consulted each system tick for a decision to wait or broadcast.

4 .4 .2  P er fo rm a n ce  C o m p a r iso n s

By using the optimal offline algorithm developed in Section 4.2, we are able to establish the 

optimal schedule for any instance. The performance of algorithms LAZY and GREEDY can 

then be measured by comparing the cost of schedules they produce to tha t of the optimal. 

Due to the naive decision making ability of the LAZY algorithm, we expect in general to see 

tha t it is inferior (it’s schedules are more costly) to GREEDY. Likewise we expect GREEDY 

to be close but not equal to the optimal solution.

Figure 4.4 illustrates the performance of the three algorithms over instances generated 

with a j3 =  10, an average inter-arrival time between groups of 1, and an average group size 

of 5 requests. As expected, GREEDY outperforms LAZY though GREEDY is not itself 

optimal.

By increasing the value of (3 to 30 (holding all other parameters static), we can further 

illustrate the weakness of the LAZY algorithm. As (3 becomes increasingly large compared 

to the number of requests waiting in queue, LAZY will blindly continue to broadcast as 

often as possible while GREEDY compensates for the change. Compare Figure 4.5 to Figure

4.4 and note tha t while GREEDY remains stable in its performance relative to optimal, the 

degradation of LAZY’s performance is significant.

While it is clear the impact of an increasing (3 is to increase the cost of schedules produced
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Figure 4.4: BENCHMARKING AT BETA -  10
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by LAZY, note tha t increasing the average inter-arrival time of arriving group will mitigate 

this effect. Intuitively, this is due to the tendency of GREEDY to wait until a justification 

to broadcast is clear. A setting in which groups of requests consistently arrive in bursts is 

ideal for an algorithm tha t never hesitates to broadcast (LAZY) but troublesome for one 

that will wait to  see if more requests will accumulate to satisfy at once. The upper graph 

of Figure 4.6 shows the impact of taking the parameters of Figure 4.4 and increasing the 

average inter-arrival time by a factor of 10. We see tha t the performance of GREEDY 

suffers while LAZY approaches optimality, a trend supported by the competitive ratio of 

LAZY for effectively small j3 values.

Finally, it can be seen tha t the performance of both algorithms is heavily dependant 

upon the size of the arriving request groups. The inherently greedy nature of both online 

algorithms allows rapid broadcasting when the number of requests becomes large. As men

tioned in the Introduction, it is this ability of data broadcasting to scale with respect to
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Figure 4.5 : EFFECT OF INCREASING BETA
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massive request loads tha t has made the technique popular. As the impact of a broadcast 

cost disappears, the single channel, single item model becomes trivially solvable online by 

broadcasting at every opportunity (something LAZY does at all times and GREEDY re

verts to when (3 is negligible. The lower graph of Figure 4.6 shows the impact of taking the 

parameters of Figure 4.4 and increasing the average group size time by a factor of 10. The 

graph of all three algorithms overlap as both the LAZY and GREEDY algorithms approach 

optimal.

4 .4 .3  S im u la tio n  C o n c lu sio n s

It is im portant to point out that most practical settings will more closely match the pa

rameter makeup of Figure 4.4 and, as such, the GREEDY algorithm remains competitively 

superior to LAZY. The remaining figures in this section illustrate, however, tha t under 

extreme parameter values both algorithms may establish near-optimal performance.

Single Item Algorithms

Total Schedule Cost Comparison
LAZY

GREEDY
DYNAMIC
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Figure 4.6: EFFECTS OF MODIFYING THE INPUT SEQUENCE
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Chapter 5

M inim izing Two M etrics: The 

M ulti-Item  Case

The model described in the previous chapter considered a version of the D ata Broadcast 

Scheduling Problem in which the server attem pts to minimize two metrics in the context 

of a single database item. We now extend tha t model to allow for a server with access to 

a database of multiple items. The resulting model described in this chapter may also be 

viewed as an extension of the problem described by Mao [37] which operated in a multi-item 

context without the second metric of broadcast cost. This chapter first formally defines the 

model and then proceeds to  describe the analytical and simulation results of an algorithm 

designed for this context.

5.1 M odel Description

As in the previous chapter we now consider a server attempting to maximize the quality 

of service as perceived by both clients and server. To this end, the server will attem pt to 

minimize two conflicting metrics of total wait time and total broadcast cost. These metrics

77
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are conflicting in tha t increasing the number of broadcasts will tend to reduce client wait 

time as it increases server cost and vice versa. The server has access to a database of 

m  items and a single channel over which the items may be transm itted. Prom time to 

time requests will arrive for these items. These requests are described by a sequence of 

triples indicating the time a t which a group of requests arrives, the number of requests 

in the group, and the item tha t will satisfy those requests. The cost of broadcasting any 

item in the database is /?. At the beginning of each system tick, the server must decide 

whether or not to broadcast an item for the next tick and, if a broadcast is to be made, 

which item should be broadcast. T hat is, ( a i ,n i ,p i) ,  {(1 2 1^ 2 , P2 ), • • ■, (<3k,nk,Pk) describes 

an input sequence where aj is the arrival time of the j th  group of requests, rij is the number 

of requests in the j th  group tha t arrived at time aj, and pj is the item requested by the 

j th  group of requests. The server may refrain from broadcasting the item (referred to as 

“waiting”) even when requests are in queue. This is in contrast to models, such as the 

one described in Chapter 3, in which the server attem pts only the minimization of total 

wait time. Unlike those models, it makes sense for a server with a broadcast cost metric 

to sometimes wait, even with requests in queue, when the cost of waiting is smaller than 

the cost of broadcasting. In order to  maximize the quality of service this system provides 

to its clients and itself, the server will attem pt to minimize the total cost of a schedule S  

determined by the objective function

n

OBJ(S) = J 2 w3 + b 'P’
3=1

where the wait time of each request j ,  Wj, is summed over the total number of requests 

n  and the total number of broadcasts B  in schedule S  is multiplied by the cost of single
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broadcasting j3l.

5.2 Algorithm s

In this chapter we consider two algorithms the server may employ to  minimize the above 

objective function, MRF and GREEDY. While GREEDY is designed for this context, MRF 

is not. We employ MRF here due to the lack of an optimal algorithm with which to compare 

the performance of GREEDY.

Most Requests First (MRF) selects for broadcast the item having the largest number 

of unsatisfied requests currently in queue. As an alternative description, the item selected 

for broadcast is the one tha t minimizes the incremental cost, in terms of wait time, to the 

schedule produced so far. Specifically, let r, be the number of requests in the wait queue for 

item i, let 6t be the item selected for broadcast at time t, and let (3 be the uniform cost of 

broadcasting an item. At each tick t  during which there is at least one request in the wait 

queue, MRF will select bt such tha t bt € 1 . . .  m , >  0, and bt minimizes the incremental 

cost ri +  (3 =  E i€ i...m r i — r f»t +  P- Because the broadcast cost is the same

for all items, the item selected for broadcast will be the item with the largest number of 

unsatisfied requests.

As an example, consider a (3 = 20 and an input sequence (0,5,1), (0,5,2), (0,1,3),

(1,1,1), (1,8,2), (1, 5,3), (2,2,1), (2,10,2), (2,8,3). MRF constructs the schedule in Figure 

5.1 with a total wait time of 74, a total broadcast cost of 100, and a total schedule cost of 

174.

1 Because broadcast cost and wait time are measured in different units, some weighted measure between 
the two is desired. Thus the objective function might be written as « (2 " = i'u;j) +  B ■ f3 '. However, for 
simplicity /?' can be normalized to ,8, the relative cost of broadcasting relative to a unit of wait time.
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Figure 5.1: EXAMPLE SCHEDULING DIAGRAM OF MOST REQUESTS FIRST (MRF)

Time 
0 1 2  3 4

5 1 3 3 3 1

5 13 10 10

I 6 14
c = 2 using MRF

Given tha t a broadcast should be made, we expect MRF to make a reasonable decision 

as to which item should be selected, however we note that MRF will always broadcast if 

there are any requests unsatisfied. T hat is, MRF naively does not consider the impact of 

broadcast cost. A smarter online approach than  tha t above is to determine if the wait time 

saved by a broadcast is worth the cost of making it. The GREEDY algorithm attem pts 

to make such a good broadcasting decision by considering both the broadcast cost (3 and 

the amount of accumulated wait time of all unsatisfied requests. I t compares the amount 

of wait time unsatisfied requests have accumulated while in queue to the cost of satisfying 

them. If 0  is large in comparison to this to tal accumulated wait time, the algorithm may 

choose to wait until such a time as the cost of broadcasting is more warranted.

More specifically, let t be the time at which GREEDY must make a decision to wait or 

broadcast at the next time t + 1. Let Pi be the number of pending (unsatisfied) requests for 

item i th a t have arrived up to time t, inclusively, since the last broadcast was made. Let 

Qi be the accumulated wait time of all Pi pending requests at time t +  1 by all Pi pending 

requests for item i. At each decision point, if the wait time accumulated by the requests 

waiting for any item is no greater than the broadcast cost, then the server will choose not

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 5. MINIMIZING TWO METRICS: THE MULTI-ITEM CASE  81

to broadcast at the next opportunity, otherwise it will broadcast tha t item requested by 

the group of requests whose accumulated wait time has exceeded the broadcast cost. The 

pseudocode for GREEDY is given below.

GREEDY O nline A lgorithm  
S in g le  broadcast c o s t : b e ta
Input req u est sequence: ( a [ 1 ] , n [ l ] [ 1 . . .m] , . . . , a [ k ] , n [ k ]  [ 1 . . .m]) 
i . e .  n [ l ] [ j ]  i s  th e  number o f req u e sts  a r r iv in g  a t a [ i ]  fo r  item  j

do
t = atl]
fo r  i  <- 1 to  m

P [ i ]  <-  n [ l ]  [ i ]  / /  # req u e sts  fo r  item  i  a t a [ l ]
Q[i] <- n[l][i] // each request accumulates 1 unit of wait time at a[i]

repeat
maxQ <- m ax{Q [i]}  
maxi <- index o f maxQ 
i f  b e ta  <= maxQ
then  broadcast item  maxi a t t+1  

Q[maxi] <- 0 
P [maxi] <- 0 
fo r  i  <- 1 to  m 

i f  i  <> maxi
Q[i] <- Q[i] + P[i] 

else wait at t+1
for i <- 1 to m

Q [i] <- Q [i] + P[i]
t  <- t+1
i f  t  = a [ j ]  fo r  some j 
then fo r  i  <- 1 to  m

Q[i] <- Q [i] + n[j] [i]
P[i] <- P[i] + n[j] [i] 

until all requests have arrived and have been satisfied

As an example, consider a /3 = 20 and an input sequence (0,5,1), (0,5,2), (0,1,3),

(1,1,1), (1,8,2), (1,5,3), (2,2,1), (2,10,2), (2,8,3). GREEDY constructs the schedule in 

Figure 5.2 with a total wait time of 111, a total broadcast cost of 60, and a total schedule
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Figure 5.2: EXAMPLE SCHEDULING DIAGRAM OF GREEDY

Time
0 1 2 3 4
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00oo

s 2 5 13 23
, 1aM 3 1 6 14 14 I

c = 2 using GREEDY

cost of 171.

5.3 Analytical Results

5.3.1 A Lower Bound for G R EED Y

T h eo re m  5.1 For any instance let C be the total cost o f the schedule produced by M RF  

and C* be the total cost of the optimal schedule. T h e n ,C  < 2C*.

P roo f: We prove the lower bound by establishing tha t there is at least one instance for 

which the total wait time of the schedule produced by GREEDY is equal to 2 times that 

of the O PT schedule.

We construct this instance as follows. At time t  — 0 all n requests will arrive, di

vided evenly among the m  items. T hat is, let n \ =  ^  resulting in the arrival sequence 

(0, n i, 1 ) , . . . ,  (0, rq , to). This instance causes GREEDY to wait needlessly where a more 

optimal solution would begin broadcasting items immediately.

Greedy will choose not to broadcast any item until the accumulated wait time of all 

requests for some item has exceeded (3. It is clear, then, tha t GREEDY will desire to
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broadcast all items at the same point in time, say t  = I. Due to the limitations of the single 

channel, however, GREEDY will not be able to satisfy all requests until m  ticks later. More 

formally, let I be the tick a t which the first broadcast is made. This means tha t m  sets of rq 

requests have waited for the previous I — 1 ticks. Thus, a total wait time of m(l — l)n i has 

accrued before a broadcast is made. The group of requests satisfied by the first broadcast 

will incur one additional tick of waiting, the group satisfied by the second broadcast will

incur two additional ticks of waiting and so on. As such, ln i+ 2 n H  \-mn\ =  ^m (rn+ l)n i

total wait time will accrue after the broadcasting of items has begun. Clearly m  broadcasts 

will be needed resulting in a total broadcast cost of m/3. The total cost of the schedule 

produced by GREEDY in this instance is then

C  =  ^m (m  +  l)n i +  m (l — l)n i  +  m/3.

In contrast to the behavior of GREEDY above, the OPT schedule begins broadcasting 

immediately, satisfying a group of requests each tick. T hat is, the schedule produced by 

OPT eliminates the I ticks GREEDY waiting before its first broadcast resulting in a schedule 

tha t satisfies all requests within m  ticks for a cost of

1
C* =  -m (m  +  l)n i +  m(3. 

z

W ithout loss of generality, assume m  =  | .  From the costs of each schedule described 

above the ratio of GREEDY over OPT is then
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C_
C*

^m (m  +  1) +  m{l — l)n i +  m/3 
\m (m  +  1) +  m(3 

\m (m  +  1 ) |  +  m (l — 1)^ +  m/3 

^m (m  +  1) j  +  m/3 
m (m  +  1)(3 +  2 m (l — 1 )(3 +  2 m/3l

1 +

1 +

1 +

m (m  +  1 )(3 +  2 m(3l 
2 m{l — 1 )/3 

m (m  +  1 )(3 +  2 m/3l 
2(1-  1)

(m  +  1) +  2Z 
2 1 - 2  

21 +  771 +  1

As I —*■ oo, meaning tha t (3 has become arbitrarily large, the above ratio approaches 2.

■

5.4 Simulation Results

In order to develop a feel for the empirical behavior of each algorithm, we utilize a discrete- 

event simulation to model the effects of various input sequence properties on the performance 

of MRF and GREEDY. Unlike the model of the previous chapter in which finding an optimal 

solution was polynomial, the model in this chapter is computationally more strenuous. For 

arbitrarily large instances of the problem it is time-consuming to determine the extent to 

which a schedule produced by MRF or GREEDY deviates from the optimal. As such, we 

compare the performance of each algorithm strictly to the other.

For the results to follow, each replication (simulated instance) consists of stochastically 

generating an arrival sequence, simulating the server’s scheduling decisions according to
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the algorithm under study, and collecting data to compute the sum of wait times, sum of 

broadcast cost, and total schedule cost statistics. Because the terminal condition is specified 

by the number of processed requests, the terminal time (makespan) will vary from instance 

to instance. Large numbers of replications (1000 replications for results displayed in figures) 

are used for each parameter change to ensure tha t the behavior observed is not dependent 

on any one run. Thus, replications are generated such that statics are reported at 95% 

confidence.

5 .4 .1  S im u la tio n  P a ra m e ters

Several parameters to the problem will affect the characteristics of the input sequence that 

is simulated on each algorithm for each replication: the arrival rate, the inter-arrival time, 

and the total number of requests set to arrive. In the absence of motivation for any other 

distribution, the arrival rate of requests is generated through use of a discrete version of 

the Exponential distribution. This rate measures the number of requests, or the size of the 

group of requests, arriving per tick. The inter-arrival time establishes the frequency of ticks 

tha t will see the arrival of these request groups. An average inter-arrival time of 1 means 

tha t most ticks see the arrival of requests versus larger inter-arrival times tha t translate 

into longer periods of time in which no requests arrive. Requests will stop arriving after 

the specified total number of requests have been generated.

All the following results are obtained from simulation runs in which the three items in 

the database are unit-sized. Note tha t in terms of implementation each scheduling algorithm 

must be consulted each system tick for a decision to wait or broadcast.
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5 .4 .2  P er fo rm a n ce  C om p a r iso n s

Due to the fact tha t MRF does not consider broadcast cost in its decision making, we expect 

in general to see tha t it is inferior (it’s schedules are more costly) to GREEDY within 

contexts where the broadcast cost plays a large role. MRF does aggressively minimize 

wait time, however, whereas GREEDY is more careful to avoid unnecessary broadcast cost. 

When the value of j3 is relatively small and there are many requests in queue, it can be seen 

tha t MRF performs quite well, since any unnecessary broadcasts are not remarkably harmful 

to the overall schedule cost. When (3 is small, GREEDY may also become too reactive - 

accumulating wait time in an attem pt to avoid the minimal penalty of broadcasting too 

readily.

Figure 5.3 illustrates the performance of the two algorithms over instances generated 

with 3: 8  =  10, an average inter-arrival time between groups of 1, and an average group size 

of 5 requests. While the algorithms do show comparable performance, it is clear tha t MRF 

outperforms GREEDY under this set of parameters.

As stated earlier, however, the strength of GREEDY (and the weakness of MRF) lies in 

its ability to compensate for broadcast costs tha t are large enough to warrant waiting for 

a more justifiable time to broadcast an item. By increasing the value of (3 to 30 (holding 

all other parameters static), we can illustrate the weakness of MRF in adapting to large 

broadcast costs. As (3 becomes increasingly large compared to the number of requests wait

ing in queue, MRF will blindly continue to broadcast as often as possible while GREEDY 

compensates for the change. Compare Figure 5.4 to Figure 5.3 and note tha t GREEDY 

now outperforms MRF.
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Figure 5.3: BENCHMARKING AT BETA = 10
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While it is clear the impact of an increasing (3 is to  diminish the effectiveness of MRF, 

note tha t increasing the average inter-arrival time of arriving groups will likewise mitigate 

the effectiveness of GREEDY. Intuitively, this is due to the tendency of GREEDY to wait 

until a justification to broadcast is clear. A setting in which groups of requests consis

tently arrive in bursts is ideal for an algorithm tha t never hesitates to broadcast (MRF) 

but troublesome for one th a t will wait to see if more requests will accumulate to satisfy at 

once. The top graph of Figure 5.5 shows the impact of taking the parameters of Figure

5.3 and increasing the average inter-arrival time by a factor of 10. We see tha t the perfor

mance of GREEDY suffers while MRF continues to perform well, a trend supported by the 

competitive ratio of MRF for effectively small (3 values.

Finally, it can be seen tha t the performance of both algorithms relative to each other is 

largely independent of the size of the arriving request groups when beta is relatively small. 

For MRF, the sheer size of each group is not as im portant as the size of each group with
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Figure 5. 4: EFFECT OF INCREASING BETA to 30
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respect to  the others and for GREEDY large group sizes are relevant only in comparison to 

13. As mentioned in Chapter 1, it is this ability of data  broadcasting to scale with respect 

to massive request loads tha t has made the technique popular. The bottom graph of Figure

5.5 was created using the same parameters as those of Figure 5.3. Note tha t while the scale 

of total schedule cost is much larger in the bottom graph of Figure 5.5 , the performance 

of both algorithms relative to each other is steadily analogous to tha t 5.3.

5 .4 .3  S im u la tio n  C o n c lu sio n s

While a quick glance a t the figures above would seem to show more instances in which MRF 

outperforms GREEDY, it is im portant to note tha t the settings in which MRF did excel 

were those minimizing the impact of the broadcast cost. In most real settings, the use of 

a broadcast cost will naturally imply tha t the cost is non-trivial. As such, the superior 

performance of GREEDY over MRF when broadcast costs are large should be emphasized.
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Figure 5.5: EFFECTS OF MODELING THE INPUT SEQUENCE
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Chapter 6

Conclusions and Future Work

In this thesis we have contributed results to three different models of the data  broadcast 

scheduling problem. In data broadcasting, a server with access to a set of items attem pts to 

satisfy data  requests from its clients by efficiently broadcasting those items. The question 

of what item to send at each opportunity is addressed by a scheduling algorithm whose 

performance is of critical concern. In order to evaluate the performance of an algorithm in 

a given instance, the schedule constructed is measured by an objective function representing 

the quality of service provided by the system to its clients and, at times, to itself. While 

most of the work done to date relies on stochastic assumptions to analyze these scheduling 

algorithms, we employ a worst-case technique known as competitive analysis. The signifi

cance of our approach is tha t it provides solid measures of performance over all instances 

in contrast to those based on historical distributions tha t may not be accurate or available. 

As broadcasting systems may attem pt to optimize various aspects of performance, a spe

cific broadcasting model will be distinguished by differing objective functions, and thus by 

differing characteristics of metric optimization, number of database items, and number of 

broadcast channels. In this thesis we have addressed three such models :

1. In Chapter 3 we have described the data broadcast scheduling problem in which

90
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a server attem pts to minimize the total wait time of all requests in the context of a 

single channel and multiple database items. This model is of interest because it is well- 

known in the field and represents the most commonly used metric in broadcasting. 

In this context, we have established competitive ratios for the on-line algorithms 

First Come First Served (FCFS) and Most Requests First (MRF). Like the model 

in which they are found, these two algorithms are well-utilized benchmarks. We 

have also provided a general lower bound for all algorithms in this context. These 

contributions establish tha t both FCFS and MRF have a performance in the worst- 

case tha t is as good as any algorithm can hope to achieve. At the same time we have 

described simulation experiments tha t compare the performance of MRF to FCFS 

using assumptions of exponential arrival rate and equally likely item distributions. 

These experiments indicate tha t MRF is superior to FCFS on average, despite their 

equal competitive ratios in the worst-case.

2. In Chapter 4 we have introduced a model that, to our knowledge, has never appeared 

in the pull-based1 version of data  broadcasting. We consider a server with the goal of 

minimizing both the total wait time and total broadcast cost in the context of a single 

channel and single database item. Broadcast cost is a useful metric tha t measures the 

“drain” of broadcasting on the system itself. This metric is desirable because it is 

highly versatile and can be used to represent many features of relatively new systems 

(such as the battery drain in mobile devices). I t ’s inclusion in this model is also of 

interest because the objective function is then one composed of two conflicting met

1 As discussed in Chapter 2, pull-based broadcasting, in which the server is explicitly aware of client 
requests, contrasts with push-based broadcasting, in which the server assumes the requests follow some 
distribution.
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rics. We have described two algorithms (LAZY and GREEDY) specifically developed 

for this model and established their competitive ratios. In addition, we have devel

oped an optimal off-line algorithm for this context which has been used to simulate 

the performance of the two on-line algorithms using assumptions of exponential ar

rival rate and equally likely item distributions. These simulations indicate tha t while 

both algorithms may achieve near optimal performance under certain circumstances, 

GREEDY is competitive superior to  LAZY under more realistic settings.

3. In Chapter 5 we have extended the model from Chapter 4 to minimize both the total 

wait time and total broadcast cost in the context of a single channel and multiple 

database items. This extension pushes the model toward greater applicability and 

complexity. We have established a lower bound to the GREEDY algorithm. Again, 

the use of broadcast cost in this pull-based context is new to the field. For lack of an 

optimal algorithm in this context, we have compared the performance of the GREEDY 

algorithm to tha t of MRF. We have described simulation experiments using assump

tions of exponential arrival rate and equally likely item distributions tha t compare the 

performance of MRF to GREEDY. While MRF does outperform GREEDY in many 

settings, those settings minimize the impact of the broadcast cost. In instances where 

broadcast cost is significant we have shown the GREEDY algorithm is superior on 

average.

In addition to the analytical results above we have accompanied the analysis in each 

chapter by scheduling diagrams and simulation experiments tha t provide a backdrop for the 

competitive ratios supplied. It should be noted tha t the graphical depiction of the pull-based
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model we have engendered is an original tool w ith the potential to greatly enhance pull-based 

model discussions and there are several general reasons we have incorporated simulation 

results other than those mentioned specifically above. First, while we emphasize worst-case 

performance it is im portant to note tha t this measure is not meant to supersede average case 

analysis but to complement it (or provide some measure when no average case assumptions 

are reliable). In terms of algorithm design, our contributions have established how well 

these above algorithms perform in worst-case scenarios, and it is useful to see examples 

of how tha t performance compares to what a server might see on average. Secondly, the 

models incorporating broadcast cost have not been studied in the pull-based version of the 

problem and thus have no previous simulations with which to compare their performance. 

Thirdly, other than the model of Chapter 4 tha t we have shown to be solvable in polynomial 

time, the other models deal with scheduling problems tha t are NP-Hard (See Chapter 2 for 

discussion). As such, it is computationally infeasible to  provide direct comparisons of an 

algorithm to the optimal and we employ simulation to provide some relative comparison of 

the algorithms in question to each other. This computational intractability has implications 

for how data broadcasting models of additional complexity will be pursued in the future.

On tha t note we can envision several directions worthy of additional pursuit. These 

areas of future work fall broadly under the two categories model extensions and empirical 

research.

While the push-based community has studied an array of metrics and system character

istics, many of these model extensions have not yet been exhausted analytically within the 

pull-based system environment. From the perspective of the system environment, the use of 

multi-sized database items [42] [15] introduces interesting questions of allowing the server to
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preempt the transmission of an item before its completion as well provides the challenge of 

creating algorithms capable of dealing with this additional option. The concept of request 

satisfaction would need to be redefined as the start of a broadcast would no longer be a 

sufficient condition of satisfaction. W ith respect to request characteristics the application 

of non-infinite deadlines with penalties would add an interesting model variation. A new 

definition of system termination would need to be established to provide for requests tha t 

remain forever unsatisfied.

The increasing complexity of these models will test the limits of the worst-case analysis 

techniques we employ and simple simulation analysis may not be able to construct optimal 

schedules for empirical studies of real-world size. As discussed in Chapter 2, the NP- 

hardness of several models has already been established and there is reason to believe more 

complicated model extensions will also fall into the category of NP-hard. Thus, as seen in 

Chapter 3, it becomes computationally infeasible to  compare the performance of heuristics 

to optimal solutions when instance sizes are large and the optimal solutions are exponential 

calculations. For settings in which optimal solutions are required for performance measures, 

it is likely tha t techniques enabling more efficient searches in combinatorial spaces (such 

as constraint processing discussed at length by Dechter [18]) will need to be applied to the 

data broadcast scheduling problem.
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