
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2005

Data broadcast scheduling: Models, algorithms, and analysis Data broadcast scheduling: Models, algorithms, and analysis

Aaron Thomas Hawkins
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Hawkins, Aaron Thomas, "Data broadcast scheduling: Models, algorithms, and analysis" (2005).
Dissertations, Theses, and Masters Projects. Paper 1539623465.
https://dx.doi.org/doi:10.21220/s2-0er6-b181

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623465&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539623465&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-0er6-b181
mailto:scholarworks@wm.edu

NOTE TO USERS

This reproduction is the best copy available.

®

UMI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DATA BROADCAST SCHEDULING: MODELS, ALGORITHMS,

AND ANALYSIS

A Dissertation

Presented to

The Faculty of the Department of Computer Science

The College of William and Mary in Virginia

In Partial Fulfillment

Of the Requirements for the Degree of

Doctor of Philosophy

by

Aaron Thomas Hawkins

2005

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPROVAL SHEET

This dissertation is submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Aaron T. Hawkins

Approved, April 2005

s i S. / f m .*1

7 / i e f i f i M - f

Weizhen Mao
Dissertation Advisor

Nikos Chrisochoides

Robert Noonan

Rex Kincaid

Jessen Havill
Denison University

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my parents for always being there, to my daughter for crying when I go to

work and smiling when I come home, and to my wife for helping me build a better life

than any man deserves.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

A cknow ledgm ents vii

List o f Tables viii

List o f F igures ix

A bstract x i

1 Introduction 2

1.1 Motivation .. 2

1.2 General Problem Description ... 5

1.3 Formal Problem D efinition.. 9

1.3.1 The Server’s System Environment ... 11

1.3.2 Request C h a ra c te ris tic s .. 13

1.3.3 The Objective F u n c tio n .. 14

1.4 The D ata Broadcasting Schedule D ia g ra m .. 15

1.5 Thesis Organization and C ontributions... 18

2 R elated W ork 19

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1 On-Line Algorithms and Competitive Analysis 19

2.2 D ata Broadcasting System Environments .. 23

3 M inim izing Total W ait Tim e: T he M ulti-C hannel C ase 29

3.1 Model D e sc r ip tio n ... 30

3.2 Algorithms .. 30

3.3 Analytical R e s u l t s ... 33

3.3.1 First Come First Served (F C F S) .. 34

3.3.2 Most Requested First (M R F) ... 37

3.3.3 General Lower Bound for c C hannels... 39

3.4 Simulation R e s u l t s ... 43

3.4.1 Simulation P a ram e te rs ... 44

3.4.2 Performance C om parisons.. 45

3.4.3 Simulation Conclusions .. 50

4 M inim izing Tw o M etrics: T he S ingle-Item C ase 53

4.1 Model D e s c r ip tio n .. 54

4.2 Algorithms .. 55

4.3 Analytical R e s u l t s ... 62

4.3.1 Competitive Ratio for the LAZY A lgo rithm .. 63

4.3.2 Competitive Ratio for the GREEDY A lgorithm 69

4.4 Simulation R e s u l t s ... 71

4.4.1 Simulation P aram e te rs ... 72

4.4.2 Performance C om parisons.. 73

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4.3 Simulation Conclusions .. 75

5 M inim izing Tw o M etrics: T he M ulti-Item C ase 77

5.1 Model D e sc r ip tio n .. 77

5.2 A lg o r ith m s 79

5.3 Analytical R e s u l t s ... 82

5.3.1 A Lower Bound for G R E E D Y .. 82

5.4 Simulation R e s u l t s 84

5.4.1 Simulation P a ram e te rs ... 85

5.4.2 Performance C om parisons.. 86

5.4.3 Simulation Conclusions ... 88

6 C onclusions and Future W ork 90

Bibliography 95

V ita 99

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENTS

The work contained in this thesis was supported by funding from the Dean’s Fellowship,
College of William and Mary; the Department of Computer Science Teaching Fellowship,
College of William and Mary; and The Virginia Space Grant, Virginia Space Grant Con
sortium.

The simulations found herein were performed using the computational resources within
the Department of Computer Science, College of William and Mary. These resources were
established by grants from Sun Microsystems, the National Science Foundation, and the
state of Virginia’s Commonwealth Technology Research Fund. Special honor is given to the
late Steve Park whose instruction, advise, and materials were invaluable in the construction
of these simulations long after his passing.

The author wishes to thank Ben Coleman, Leonidas Linardakis, and Paul Stockmeyer
for serving as a theoretical support group. The mad diagrams on white boards, equations
on napkins, and casual office conversations helped keep the creative juices flowing without
ever encountering the phrase “Why would you want to know?” .

Grateful acknowledgment is given to M arty Gilbert and Erik Nylander for technical and
mathematical support on-call away 24 hours a day. They helped alleviate the difficulties of
writing a thesis several hundred miles away from college resources.

Sincere appreciation is extended to Vanessa Godwin for making sure all the “petty
details” (such as showing up to teach class, registering for enrollment, and successfully
graduating) were addressed throughout the author’s tenure as a graduate student. The
number of timely e-mails vigilantly sent out from her account is highly correlated with the
number of deadlines tha t were met.

And much thanks goes to colleagues at Rockwell Scientific for being both the carrot
and the stick encouraging graduation. They have shown that getting one’s Ph.D. is a good
place to start your learning career.

Finally, the author wishes to thank his committee members Nikos Chrisochoides, Robert
Noonan, Rex Kincaid, and Jessen Havill for bending personal schedules in order to provide
quality feedback on the ones found herein. Their willingness to correspond remotely in
response to e-mails sent ad nauseam, to loan materials for indefinite periods of time, and
to even meet during lunch breaks when necessary made this process as painless as possible.
The utm ost gratitude is especially given to the author’s research advisor, Weizhen Mao,
whose guidance never wavered in patience, sincerity, or insight. Thanks for always asking
how I was doing before asking what I had done for the week.

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

4.1 EXAMPLE CONSTRUCTION of C l .. 59

4.2 EXAMPLE CONSTRUCTION OF C .. 60

4.3 EXAMPLE CONSTRUCTION OF T 61

4.4 INSTANCES FOR L A Z Y ... 64

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List o f Figures

1.1 AN EXAMPLE BROADCASTING S Y S T E M 6

1.2 AN EXAMPLE DATA BROADCAST SCHEDULING D IA G R A M 16

3.1 MINIMIZING TOTAL WAIT TIME W ITH FCFS FOR THE MULTI-ITEM,

MULTI-CHANNEL M O D E L ... 31

3.2 MINIMIZING TOTAL WAIT TIME W ITH MRF FOR THE MULTI-ITEM,

MULTI-CHANNEL M O D E L .. 32

3.3 MINIMIZING TOTAL WAIT TIME W ITH AN ARBITRARY ALGORITHM

A FOR THE MULTI-ITEM, MULTI-CHANNEL M O D EL............................. 33

3.4 IMPACT OF INCREASING NUMBER OF REQUESTS ON TOTAL WAIT

TIME, 10 REQUESTS PER T I C K .. 46

3.5 IMPACT OF INCREASING NUMBER OF REQUESTS ON TOTAL WAIT

TIME, 100 REQUESTS PER TICK . . . , .. 47

3.6 IMPACT OF INCREASING ARRIVAL RATE ON TOTAL WAIT TIME . 48

3.7 ALGORITHM PARAMETERS IN 3 DIMENSIONS - M R F 51

3.8 THE COMPUTATIONAL BURDEN OF TIE RESOLUTION 52

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.1 EXAMPLE SCHEDULING DIAGRAM OF L A Z Y 56

4.2 EXAMPLE SCHEDULING DIAGRAM OF G R E E D Y 57

4.3 EXAMPLE SCHEDULING DIAGRAM OF DYNAMIC PROGRAMMING

ALGORITHM .. 63

4.4 BENCHMARKING AT BETA = 1 0 ... 74

4.5 EFFECT OF INCREASING BETA ... 75

4.6 EFFECTS OF MODIFYING THE INPUT SEQUENCE 76

5.1 EXAMPLE SCHEDULING DIAGRAM OF MOST REQUESTS FIRST (MRF) 80

5.2 EXAMPLE SCHEDULING DIAGRAM OF G R E E D Y 82

5.3 BENCHMARKING AT BETA = 1 0 ... 87

5.4 EFFECT OF INCREASING BETA to 3 0 ... 88

5.5 EFFECTS OF MODELING THE INPUT S E Q U E N C E 89

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

Inherent in the field of data broadcasting is a communication problem in which a server is
to transm it a subset of data items in response to requests received from clients. The intent of
the server is to optimize metrics quantifying the quality of service the system provides. This
method of data dissemination has proved to be an efficient means of delivering information
in asymmetric environments demanding massive scalability. Of critical importance in such
a system is the algorithm used by the server to construct a schedule of item broadcasts.

Due to the real-time nature of this problem, performances of heuristics designed to
construct such schedules are heavily dependent on request instances. Thus it is challenging
to establish the quality of one algorithm over another. Though several scheduling methods
have been developed, these algorithms have been studied with a reliance on probabilistic
assumptions and little emphasis on analytical results.

In contrast, we provide a formal treatm ent of the data broadcast scheduling problem in
which analytical methods are applied, complemented by simulation experiments. Utilizing a
worst-case technique known as competitive analysis, we establish bounds on the performance
of various algorithms in the context of several different broadcast models. We describe
results in three different settings.

Minimizing the total wait time of all requests with a single channel and multiple database
items we establish the competitive ratios for two well-known algorithms, First Come First
Served (FCFS) and Most Requests First (MRF) to be equal, and provide a general lower
bound for all algorithms in this context. We describe simulation results tha t indicate the
superior performance of MRF over FCFS on average. Minimizing two conflicting metrics,
the total wait time and to tal broadcast cost, with a single channel and single database item
we develop two on-line algorithms, establish their competitive ratios, and provide an optimal
off-line algorithm used to simulate the impact of various parameters on the performance
of both on-line heuristics. Finally, we extend the previous model by including multiple
database items and establish a lower bound to a greedy algorithm for this context.

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DATA BROADCAST SCHEDULING: MODELS, ALGORITHMS,

AND ANALYSIS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

1.1 M otivation

Developments in delivery mechanisms and the rapidly growing demand for dissemination-

based applications have created environments in which the method of data broadcasting

has become increasingly popular. While technology improvements in mobile computing,

satellite broadcasting, and cable networks have provided high bandwidth infrastructures,

the amount of data tha t may be transm itted within these frameworks is much larger from

server to clients than vice versa. Consequently, asymmetric properties of these systems

prevent traditional unicasting techniques from being scalable or even usable [6, 8, 7].

At the same time, large data dissemination applications such as centralized databases,

on-line auctions, and stock tickers are characterized by massive user populations requesting

data from a centralized source. Capabilities of these services increasingly appear in non-

traditional forms as evidenced by wireless PDA use by emergency responders and internet

access for passengers on aircraft. Analogous to the infrastructures mentioned above, these

services exhibit an imbalance, typically funneling most of the data to clients rather than from

them. In addition, servers with large client bases see substantial redundancy in user requests

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 3

as many users desire the same content. Utilizing traditional techniques, a server running

massive dissemination services will transm it the same information repetitively, responding

to each client individually. This process simply does not scale and, as the number of both

clients and requests increases, the burden on the server becomes immense. In contrast, data

broadcasting is an efficient method of providing large-scale data delivery by simultaneously

satisfying the needs of multiple clients.

Thus, the asymmetry of both modern infrastructures and application demands provides

a synergistic setting for this technique tha t emphasizes data dissemination in one direction.

The broadcasting m ethod’s resulting independence from the number of users in a system

provides it with a scalability tha t has become increasingly attractive economically and

academically.

Commercial use has already been made of the technique, including the Hughes DirectPC

System, the Intel Intercast System, the Hybrid System, and the Air Media System [8].

The applicability of the broadcasting method to cable television, mobile phones, and PDA

services has come to fruition as well, with other applications forecasted [5].

Academic research in this area began in the 1980s in a series by Ammar and Wong [19]

[10] [12] and has continued to present day. Of particular interest is the study of broadcast

scheduling. Despite the advantages inherent in the broadcasting method, the bandwidth

available to a server is still limited. Given the massive scale of systems utilizing data

broadcast, the ability of a server to efficiently schedule the transmission of data to its

clients is critical.

We are thus interested in the following communication problem. A single server is given

access to a set of data items, channels over which the items may be transm itted, and requests

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 4

tha t arrive at various times for the items. At each system tick, the server must select an

item to broadcast for each available channel, thus satisfying all outstanding requests for

tha t item. The server will make these decisions through use of a single algorithm with the

goal of optimizing some metric or metrics representing the quality of service the system

provides. This problem can be differentiated into several model variations depending on

the exact nature of the broadcasting system; the number and type of channels, database

items, requests, and performance metrics are just a few parameters tha t impact the general

nature and complexity of the problem. Regardless of any specific variation, the end result

of each problem instance is the production of a schedule that describes which item has been

broadcast to clients at each opportunity.

The question of which item should be broadcast at a particular time is a decision tha t the

server must make immediately. In most real settings, a broadcasting server will not know

the incoming request sequence beforehand. Thus the server must make ad hoc choices

in determining which item to broadcast based on requests tha t have arrived. Algorithms

designed to aid the server in this context are therefore operating with incomplete information

and will provide approximate (heuristic) solutions. An algorithm tha t must perform an

immediate action in response to partial information about the entire input sequence is

known as an on-line algorithm. Of primary concern in such a setting is the evaluation of

an on-line algorithm’s effectiveness.

An ideal approach in determining the quality of an on-line algorithm is to assume a

realistic distribution of requests and proceed with an analysis of average-case performance.

However, assumptions concerning the arrival sequence of requests may require historical

data tha t is not available and does not provide any absolute measure of an algorithm’s

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 5

behavior over all possible scenarios. As an alternative method we take a comprehensive

look at the problem using worst-case analysis techniques. While pessimistic, the appeal

of this approach is the solidarity of performance measures independent from probabilistic

assumptions. In addition, there are certain kinds of systems (such as emergency, financial,

or martial) in which worst-case measures are critical. Though many algorithms have been

developed for data broadcast scheduling, the work done to date has relied primarily on

simulation or other distributional techniques to evaluate the performance of these algorithms

with little emphasis on analytical results. The primary contributions of this thesis supply

such results in a variety of contexts.

1.2 General Problem Description

Though the exact implementation of one data broadcasting system may differ from another

there are several fundamental aspects tha t can be described. As an example system, consider

Figure 1.1.

Primarily a broadcasting system will consist of a server tha t has access to a database of

items and channels over which these items are transm itted. In Figure 1.1 we see a satellite

broadcasting system in which the server is terrestrial but has access to multiple channels

over which information is transm itted to terrestrial clients. This setup closely models actual

commercial systems mentioned already, though of course many different physical implemen

tations exist. D ata items may be objects, web pages, or other information and it takes time

to transm it them over a channel. Specifically, we define a system tick as the amount of time

required to transm it an item of unit size. The number of items in the database is finite and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 6

Figure 1.1: AN EXAMPLE BROADCASTING SYSTEM

Satellite

Data Items
Broadcast
Across
Multiple
Channels

Server

Data Items 1 2 3 4 m

static and we assume these items to be unit-sized, discrete, and independent of one another.

Each channel is accessible to every client and these clients are continually monitoring

all channels for items tha t are of interest to them. In Figure 1.1, the satellite “bombards”

terrestrial clients with its broadcasts. Every time a channel finishes transm itting an item

(that is, the channel becomes available) the server will select another item to send over tha t

channel. The scheduling decision of which item to send will be based primarily on the needs

of its clients which are generating requests for particular items, though other information

may be considered.

The system will respond to a sequence of requests, and not all requests may be serviced

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 7

immediately. At the beginning of each system tick, requests tha t have arrived from clients

will be collected by the server and maintained in a queue. This queue is best conceptualized

as a two dimensional structure1. The one shown below the server in Figure 1.1 is collecting

incoming requests, depicted as filled squares, being generated by the larger, open-squared

clients. The horizontal dimension will be of length m establishing a “bin” for each distinct

item. The vertical dimension will be of dynamic length representing the number of requests

for a particular item collected in tha t item ’s bin. The length of time a request remains

in the queue is the wait time of tha t request. The server will consider (via its algorithm)

requests in queue before deciding which items to send at the beginning of the next tick.

Because each request will be in queue for at least one tick, the minimum wait time for any

request is 1. Each time an item begins broadcasting, all requests for tha t item are removed

from the queue. We can envision the bin for tha t item thus being reduced to zero length.

Any request for the item tha t arrives after the broadcast will be placed in queue and must

be satisfied by another broadcast of tha t item at a later time.

A schedule is a record of items broadcast during each tick over all ticks in the lifetime of

the system. Typically, a system will continue to run on an input sequence until the server

has satisfied every request in the sequence. Ultimately, the task of the server is to optimize

one or more metrics representing the quality of service exhibited by the resulting broadcast

schedule. To this end, each broadcast scheduling problem must supply an objective function

tha t embodies the importance of each metric. (Typically, the objective is to minimize an

1The queue structure may be simplified for many algorithms or contexts in which only the total number of
waiting requests is relevant. However, in general there may be other characteristics of requests that require
tracking them separately as is the case in the First Come First Served (FCFS) algorithm in which the arrival
time of each requests must be recorded.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 8

operational metric though an analogous maximization problem is feasible. We will restrict

our discussion to problems of minimization.) The objective function is a mathematical

definition tha t evaluates the effectiveness of a schedule in terms of the targeted metric(s).

For example, if the targeted metric is to tal wait time, then the value of the objective function

is the sum of wait times experienced by all requests. Most commonly, the server will attem pt

to minimize the total wait time of all requests as minimizing this value increases the quality

of service to the clients.

Several other metrics are also applicable and the server may be called upon to attem pt

the minimization of more than one metric. In particular we consider objective functions

in which each database item has an associated cost to broadcast tha t item. This cost is a

general reflection of any strain performing a broadcast may cause to the system and can take

many forms. The burden may be financial (paying a copyright fee per use), physical (the

energy expenditure from the battery of a PDA), or even artificial (cost imposed to represent

data priority). Minimizing this broadcast cost maximizes the quality of service to the server

itself. Thus the majority of objective functions we consider attem pt to minimize the sum

of wait times experienced by all requests while simultaneously attem pting to minimize the

sum of all broadcast costs. Objective functions of this form are particularly interesting due

to the conflicting nature of these two objectives.

Regardless of its form, the value of an objective function establishes a measure of how

well one schedule does relative to another. Obviously for a minimization problem, we desire

a schedule’s evaluation via the objective function to be as small a value as possible.

Notice tha t because the wait time for any request is at least 1, we know tha t the sum of

wait times for any possible schedule will be at least n, the number of requests in the input

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 9

sequence. Observations like this indicate tha t it is possible to make absolute statements

about an algorithm’s performance without considering the behavior of the algorithm itself.

That is, we know tha t no algorithm is capable of constructing a schedule tha t will perform

better than n in regards to minimizing to tal wait time. A comprehensive study of data

broadcast scheduling requires tha t we be able to produce two kinds of evaluations relative

to a problem: an evaluation of the best any algorithm can do and an evaluation of how well

one specific algorithm can do relative to another known algorithm.

1.3 Formal Problem Definition

The general problem description given above establishes core characteristics of D ata Broad

cast Scheduling. Here we formally define the problem with the introduction of useful nota

tion.

We are given a single server with access to a set of m distinct and unit-sized items.

The server is in contact with an unknown (and irrelevant) number of clients tha t require

these data items and will communicate their needs to the server instantaneously when they

occur (any latency in information exchange with the server is ignored). Requests for items

arrive to the server at various times and are placed into the server’s queue. Each request j

is characterized by at least two attributes: the arrival time of the request a.j and the item

requested. We assume these items to be discrete and independent of one another such that

the arrival of a request for one item yields no insight into the arrival of any other requests.

Note tha t the number of requests n is finite.

The server has c > 1 channels over which items may be broadcast to all clients simul

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 10

taneously in order to satisfy requests. These channels are dedicated (the server may use a

channel’s entire bandwidth) and perfect (no transmission errors will occur). All requests

for item i tha t arrive before the server begins broadcasting i will be satisfied (removed from

the queue) once the broadcasting of i has begun2.

A tick at time t is the interval [t, t + 1), defined as the amount of time required to

broadcast one item over a single channel. Each tick a request remains in the queue it

accumulates a unit of wait time. The total amount of wait time produced by request j is

W j . W ithout loss of generality, we assume tha t the system clock begins at time t — 0 and

advances discretely until all items have been satisfied at time t = z.

A channel may only be used to transm it one item at a time. The item tha t begins

broadcasting at time t on channel k is denoted btk- It is therefore possible tha t as many

as the number of channels c and as few as 0 items will begin broadcasting each tick. The

server incurs a cost (3 for each item broadcast (though it is possible (3 = 0).

For a given instance, the server will take its knowledge of the request sequence and

consult its scheduling method to make each broadcasting decision. The scheduling method

is an algorithm tha t will select, at every opportunity, which item should be sent on an

available channel. The history of these decisions throughout the lifetime of the system

constitutes a schedule S for the problem instance.

For each model there must be a standard by which the schedule produced for every

problem instance is evaluated. A metric is a measurement under which a schedule will be

evaluated. Though several observations may be made of a schedule, these measurements are

2The combination of perfect transmission and unit-sized items establishes that a request may be removed
from queue once broadcasting begins. The removal of either assumption would require a different definition
of request satisfaction.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 11

deemed irrelevant if not reflected in the objective function for the problem. For example,

if the objective function is designed solely for the minimization of the total wait time

experienced by all requests, then the length of the schedule itself is not an issue. A schedule

Si that minimizes the objective function but is longer than a schedule S2 which does not

is superior to S2 . If the length of the schedule is im portant, it must be included in the

objective function which may implicitly address many metrics simultaneously.

It is with the above backdrop tha t models may be established by specifying character

istics in three areas.

1.3.1 The Server’s System Environm ent

Physically the system environment consists of the server, its database, and the channels

over which the database items are transm itted. Details tha t describe the system hardware

or its operation fall under this category. Several aspects which must be addressed are:

• Server K now ledge: A parameter tha t must be established for a problem instance

is the extent to which the server has knowledge of the request sequence. A server

operating in a real-time context will have no knowledge of incoming requests beyond

what requests have already arrived. This is the on-line context. The opposite context,

off-line, may also be considered in which the server has complete knowledge of the

entire request sequence. Competitive analysis is the comparison of algorithms operat

ing in these two contexts. The limitations of server knowledge (or lack thereof) must

be specified before analysis of a problem may continue as this parameter may impact

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 12

the behavior of any algorithms used3.

• N um ber o f C hannels and Item s: The number of channels in a system refers only

to the bandwidth from server to clients (while present, bandwidth from clients to

sever is ignored). These channels are identical, though indexing may be necessary to

distinguish the utilization of one from another. The number of distinct items in the

database is static throughout the problem. Each of the items in the server database

are of unit size and are all associated with the same broadcast cost. If the broadcast

cost of items is not presented, then the cost is assumed to be zero for all items. The

number of channels and database items must be specified for each problem instance.

• Scheduling M ethod: A server will utilize an algorithm to make each scheduling

decision. This algorithm will be affected by the extent to which the server has knowl

edge of the request sequence. For example, a brute-force algorithm operating on-line

will not be able to consider requests tha t may arrive after the current system tick

whereas its off-line counterpart can. Thus the on-line or off-line nature of each algo

rithm studied within a model must be established. Strictly speaking, an algorithm

will also provide means through which a decision will be made in light of equally

attractive choices. For example, an algorithm tha t chooses to satisfy the first arriving

request (FCFS) will need to refine tha t decision if two requests arrive simultaneously

for different items. While these tie-breaking decisions are typically not the focus of

any analysis, instances do arise in which the tie-breaking method of an algorithm will

theoretica lly , there exist contexts between on-line and off-line in which the server has a limited ability
to view some of the request sequence in advance. Algorithms with this “look-ahead” knowledge are known
as semi-on-line.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 13

impact its performance.

• System Term ination: W ithout loss of generality, a system will begin with the clock

set at t = 0. Time will advance discretely in the system until termination at time

t — z. The criteria for system termination must be established for any problem

instance. Typically, the system will term inate once all requests have arrived and have

been satisfied4.

1.3.2 R equest Characteristics

From time to time, clients will send requests to the server for a particular item. These

requests are maintained in an “unsatisfied” status by the server in a queue. Each request j

will be characterized by two attributes: 1) the arrival time aj of the request and 2) the item

requested i € 1. . . m. As previously stated, all requests for item i th a t arrive before the

server begins broadcasting i will be satisfied (removed from the queue) once the broadcasting

of i has begun. A request tha t is not satisfied by the broadcast of its item at the beginning

of a tick will accumulate one unit of wait time and will continue to accumulate wait time in

this manner. A request cannot be satisfied in the same tick in which it arrived; all requests

will experience a minimum wait time of one unit.

The request sequence must be defined in full for a problem instance. Any specification

describing the nature of a request fall under this category. Note th a t these attributes

4Note that the discrete event approach, the presence and advancement of the system clock, is an important
distinction of the data broadcasting problem. Regardless of whether or not any new requests arrive during a
system tick, the server’s scheduling algorithm will make a decision to broadcast an item as long as there are
unsatisfied requests in queue. In contrast, a traditional on-line problem operating on an ordered sequence
would “skip” periods of time from one request to another; each action will have been motivated by a request.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 14

represent information not available to an on-line algorithm until the request has actually

arrived to the queue. Some common request details are:

• Arrival Tim e: Each request will arrive at a specific point relative to the system clock.

The request sequence will be ordered such tha t requests having the same arrival time

will arrive simultaneously to the server queue5.

• Item R equested and Satisfaction: Each request will be for a particular item and

will not be satisfied until tha t item is broadcast by the server. The transmission of the

item requested is a necessary (but not always sufficient) condition for the satisfaction

of the request6.

• D eadlines and Penalties: The deadline is the time by which a request must be

satisfied or forever remain unsatisfied. Unless otherwise stated, the deadline for each

request is assumed to be infinite.

1.3.3 T he O bjective Function

An objective function O B JQ is required for each model. This function represents metric(s)

under which a schedule S will be evaluated. Various algorithms used to construct a schedule

will optimize the metric(s) at differing levels of performance. For our work, we are mainly

interested in the following objective functions:

sAgain, this arrival process is distinct from traditional request sequences. Permutations to the data
broadcasting sequence will not change the problem instance as long as each request in the sequence has an
arrival time less than or equal to the arrival time of the next request in the sequence.

6Unit-sized items are broadcast in a single tick. Systems allowing multiple sizes for items, however, face
the broadcast of the item in “pieces” over multiple ticks. In such systems it is often allowable for the server
to preempt a broadcast of one item before all pieces have been transmitted. Requests for preempted items
are not satisfied in these systems until all pieces of the item have been broadcast.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 15

n
O B J (S) — ^ 2 Wj + B • (3,

l= i

where the wait time of each request j , Wj, is summed over the total number of requests n

and the total number of broadcasts B in schedule S is multiplied by the cost of broadcasting

P7-

1.4 The D ata Broadcasting Schedule Diagram

In order to describe the schedule constructed by an algorithm for a problem instance we

have developed a diagramming technique. The D ata Broadcasting Schedule Diagram (or

Schedule Diagram for short) graphically depicts the arrival and satisfaction of requests as

well as the broadcast of data items.

The diagram consists of grid tha t is m (the number of data items) tall by z (the lifetime

of the system) wide. Each row is labeled with an item from the database and each column

with a system tick. Each cell in the grid contains a value greater than 0. T hat value

represents the number of requests for the item indicated by the index labeling the row.

Those request are in queue at the time specified by the time indicated at the demarkation

of each column. A cell tha t is grayed out indicates an absence of any requests for tha t item

at the current tick. On the right side of each cell is a demarcation symbolizing any activity

tha t occurred involving the requests for the item labeling that row. A dashed line indicates

no change in the requests for tha t item. A thick solid line represents a broadcast for the

row’s item at the beginning of the column’s tick. A thin solid line indicates a change in the

7 3 is the normalized cost of broadcasting relative to a unit of wait time. Thus, a ,9 = 5 implies that
broadcasting is five times more expensive to a system than a single request waiting a single tick.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 16

Figure 1.2: AN EXAMPLE DATA BROADCAST SCHEDULING DIAGRAM

Time

3=z

1 4 4 | |
2

IligigWI j
Items -------1--------

3 j
m=4 7 1

■ i I

|A = MRF c = 2 |

number of requests waiting for the row’s item. Specific instance information such as the

algorithm used, the number of channels, and other specified parameters may be listed in a

box below the diagram itself.

Consider the following example.

In Figure 1.2 we diagram a schedule constructed by the algorithm Most Requests First

(MRF). MRF is an algorithm tha t will broadcast the item with the most outstanding re

quests. The schedule is constructed in response to a trivial input sequence for two channels.

An indication of the scheduling algorithm and the number of channels can be found in the

bottom right corner of the diagram.

The arrival sequence is as follows. At time f = 0 we see the arrival of four requests for

item 1, five requests for item 2, and seven requests for item 4. At time t = 1 we see tha t the

server broadcasts items 2 and 4. Note tha t while no additional requests arrived at t = 1 for

item 2, a request did arrive for item 4. Because this request arrived after the broadcast of

item 4, the request is queued. We also see tha t items with outstanding requests were not

broadcast due to the limiting number of channels in this system, c = 2. Because no change

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 17

occurred in the number of requests for item 1 , it is demarcated by a dashed line while two

additional requests arriving for item 3 causes the solid line to be placed on tha t row.

At t = 2 the server again broadcasts two items, 1 and 3, both of which are marked

by the thick solid line. The remaining two items, 2 and 4, experience no change and are

marked by the dashed line. Finally, at the completion of the schedule at t — 3 we see tha t

only one item, 4, is sent as there are no other outstanding requests.

The scheduling diagram also allows the objective function evaluation of a schedule to

be derived graphically. Consider again the objective function tha t incorporates total wait

time and total broadcast cost:

n

O B J (S) = J 2 w3 + B - P -
3=1

The sum of wait times experienced by all requests over the length of the schedule

E "= i wj can be determined graphically by summing the numerical values of all cells in

the diagram. In the above example, this sum is 24. The total broadcast cost B ■ f3 is graph

ically determined by counting the number of thick solid lines and multiplying tha t number

by the broadcast cost j3. Assuming fi = 5 in the above example we see the total broad

cast cost of the schedule to be 25. Visually, then, we can confirm the objective function

evaluation of this example schedule to be 49.

This diagram will be used throughout the remainder of this thesis. Its strength lies in

the ability to succinctly represent the behavior of an algorithm on a given input sequence

in a variety of models.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 18

1.5 Thesis Organization and Contributions

We organize the remainder of the thesis as follows. In Chapter 2 we provide a preliminary

background on Competitive Analysis (our primary analysis technique) and describe the two

fundamental system environments (push and pull) tha t dichotomize the field of broadcast

scheduling. Chapters 3, 4, and 5 describe our results in three different settings. In Chapter

3 we consider the popular model of minimizing the to tal wait time of all requests in the

context of a single channel and multiple database items. We establish competitive ratios

for two well-known algorithms, First Come First Served (FCFS) and Most Requests First

(MRF), and provide a general lower bound for all algorithms in this context. Chapter 4

introduces the concept of broadcast cost and considers a model in which the server attem pts

to minimize both the to tal wait time and total broadcast cost in the context of a single

channel and single database item. To our knowledge, this dual metric problem has never

been applied to the pull-based system environment. We develop two algorithms (LAZY and

GREEDY) and establish their competitive ratios. In addition, we develop an optimal off-line

algorithm for this context. Chapter 5 extends the model of Chapter 4 by including multiple

database items. W ithin this context we establish a lower bound for the GREEDY algorithm.

All three chapters provide a backdrop of simulation experiments as a complement to the

aforementioned analytical results. We conclude in Chapter 6 and describe future research

directions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

R elated Work

2.1 On-Line Algorithm s and C om petitive Analysis

In order to study the algorithms in our work we primarily employ a technique known as

competitive analysis. In this section, we review the the characteristics of on-line algorithms

and competitive analysis th a t motivated the use of this worst-case method. An interesting

difficulty arises when one begins to compare the performance of two or more sub-optimal

(heuristic) algorithms attem pting to schedule the allocation of resources to actions taken

over time. Heuristics designed to solve these problems will operate at various levels of

quality depending on the input sequence. An algorithm tha t performs quite well with one

sequence may appear to act foolishly in another situation. Thus, establishing the quality

of any particular algorithm A \ over another A 2 becomes problematic in the absence of

distributional assumptions; one can construct sequences in which the schedules produced

by A i are superior to those produced by A 2, inferior, or even equal.

The difficulty in comparison originates in the dependence of each problem on an input

sequence tha t is connected to timed events. The input sequence for the data broadcast

scheduling problem is the arrival sequence of requests. Each request arrives at the beginning

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. RELATED WORK 20

of a specific system tick with information on, among other things, the item its client needs.

Because this sequence is time-related, an algorithm cannot choose to schedule an action

until the input motivating tha t action has come to pass. In our problem, the server cannot

choose to satisfy a request tha t has not yet arrived.

Traditionally, algorithms acting on ordered sequences are divided into two broad cate

gories: on-line and off-line. An on-line algorithm is one that does not have any knowledge

of the input sequence beyond what has already occurred and must perform an action in

response to each request tha t arrives [32]. In contrast, an off-line algorithm is one tha t is

given the entire input sequence a priori. Though it cannot act on events tha t have not yet

occurred, it can act in anticipation of events it knows will come to pass. Obviously, we

expect in most instances tha t an off-line algorithm will have a distinct advantage over its

on-line counterpart.

We note tha t the traditional definition of an on-line algorithm is, strictly speaking,

slightly different from the data broadcast scheduling problem we present. In the traditional

definition, an input sequence is typically supplied one request at a time and is organized

by the order of requests [41]. However, such a categorization can be easily extended to

problems involving timed sequences. The data broadcast scheduling problem involves a

sequence of requests organized by the arrival time of each request and these arrival times

are related to the system clock embedded in the problem. Thus, at the beginning of each

system tick the on-line algorithm will be presented with zero or more requests and must

make an immediate decision based on, not necessarily one, but potentially many requests

tha t have arrived. The distinction to be made, then, is tha t any permutation in the order

of requests in a traditional input sequence would constitute a different instance whereas our

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. RELATED WORK 21

use of the input sequence allows for permutations in the order of requests with the same

arrival time without changing the instance. In either situation, the off-line algorithm is still

given the entire sequence a priori.

If the comparison of two on-line algorithms is difficult, then there are serious implications

to a discussion of an on-line algorithm’s optimality. Clearly, the optimality of an off-line

algorithm is straightforward. An optimal off-line algorithm is one tha t performs at least

as well as any other off-line algorithm for all possible instances. We can say with certainty

tha t an exhaustive search will provide such an optimal solution. However, for any on-line

algorithm we can construct a sequence for which tha t algorithm fails to perform as well

as another on-line algorithm we select. W hat, then, is the criteria to establish an on-line

algorithm as optimal?

To address this question we turn to a worst-case analysis technique known as competitive

analysis [32]. Early versions of competitive analysis grew from a combination of worst-case

assumptions, cost amortization [23], and comparison to off-line algorithms used by Bentley

and McGeoch to study the list accessing problem [16, 36]. The technique as a general

approach was advocated by Sleator and Tarjan [44], ultimately named by Karlin et. al.

[31], and formalized by Manasse et. al. [36]. Competitive analysis establishes the quality of

an on-line algorithm by comparing its performance to tha t of an optimal off-line algorithm

and taking the worst case for the same input sequence. When evaluated in this manner over

all possible sequences, a competitive ratio is derived tha t establishes a measure by which

the on-line algorithm may be evaluated. Specifically, an on-line algorithm with the smallest

competitive ratio possible is said to be optimal (in the worst case). Though pessimistic as

any worst-case analysis, the appeal to this approach is the absence of any distributional

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. RELATED WORK 22

assumptions.

Formally, for a given problem we consider an on-line algorithm A, the optimal off-line

algorithm O PT, and any instance of the problem I. We define A (I) and O P T {I) to be

objective function evaluation of the on-line and optimal off-line algorithms respectively.

Algorithm A is said to be r-competitive if for all possible finite instances I:

A (I) < R • O P T (I) + a,

where a is a constant independent of I 1. The value R is called the competitive ratio of A

in the context of the problem. Though R may depend on the parameters to the problem,

it must remain independent of the input I . An A-competitive algorithm A is therefore

guaranteed to perform within a factor R of the optimal off-line algorithm O P T , allowing

for a bit of leeway a. When a = 0 we say tha t A is strictly ^-competitive.

An intuitive way of viewing the use of competitive analysis is to relate the technique to

a game between an on-line player and a “malicious” , all-knowing adversary [17]. The on

line player is attem pting to solve the problem in question by running an on-line algorithm

on an instance the adversary provides. The adversary is malicious in tha t its intent is to

maximize the competitive ratio. This involves making the on-line algorithm perform as

poorly as possible while simultaneously favoring the performance of the off-line algorithm.

The technique is worst-case because the adversary has the advantage of knowing exactly

how the on-line algorithm behaves and will therefore be able to construct the worst possible

instance2.

xMore specifically, the competitive ratio R is defined to be the infimum over the set of all values R.
2This discussion is for deterministic algorithms only. There are more exotic variations of competitive

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. RELATED WORK 23

Often, the approach to establishing a competitive ratio for any particular algorithm is

to provide a bound of th a t algorithm’s performance relative to the optimal from above and

below. A proof tha t the upper bound and lower bound are equal will establish a tight ratio.

A general bound is one in which the algorithm used in the proof remains arbitrary with

no assumptions about its behavior. As such, the ratio obtained will hold for all possible

algorithms in the context of the problem. General bounds are naturally more difficult to

provide. A general lower bound is typically derived through use of an adversary argument;

one needs only to establish an example instance tha t produces the lower bound. Proving a

meaningful general upper bound is considerably more difficult since it involves proving that

the competitive ratio is no larger than r for all possible instances and all possible on-line

algorithms [32].

While its roots grew from combinatorial optimization, competitive analysis has been

applied to a wide variety of problems in several fields, not all of them theoretically fo

cused. Many financial or martial problems for example are inherently on-line and favor the

pessimistic nature of competitive analysis.

2.2 D ata Broadcasting System Environments

Some of the earliest research to address the problem of data broadcast scheduling is a series

of works by Ammar and Wong [10] [11] [19] [48] from the 1980s. They study various aspects

of the Teletext3 system and present heuristics in which schedules are constructed a priori

analysis in which the adversary is limited in its knowledge and abilities such as the diffuse adversary of
Koutsoupias and Papadimitriou [35]. Other variations such as loose competitive analysis developed by
Young [50, 49, 51, 52], or the use of randomized algorithms [35, 52, 40] have also been proposed.

3Developed in the 1970s, TELETEXT is a one-way system for transmission of text and graphics via
broadcasting or cable for display on a television set. While some teletext systems axe still in use they have

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. RELATED WORK 24

based upon assumed arrival rates. Among their contributions are the derivation of a lower

bound on the average waiting time for users of a Teletext system and the establishment of

optimal schedule characteristics when arrival distributions are known (or assumed).

The concept of Broadcast Disks, introduced by Aksoy and Franklin et al. [3] [2] [4] [14]

generalizes the problem to an arbitrary number of channels using a shared communication

medium for information distribution in asynchronous settings. Their work addresses both

interactive and non-interactive systems, with the key problem in all settings being the

scheduling of data transmission. In addition to the heuristics of Ammar and Wong [10]

[19] a few well-known algorithms for the problem have been studied more recently through

simulation by Aksoy and Franklin [8] [7] [2]. These include: First Come First Served

(FCFS) tha t broadcasts items in the order they are requested, Most Requests First (MRF)

tha t broadcasts the current “most popular” item, and Longest Wait First (LWF) tha t

sends the item with the largest cumulative wait time over all requests for tha t item. These

algorithms are all somewhat naive though experimental results in the above studies indicate

tha t LWF performs quite well in the minimization of total wait time. The decision overhead

of LWF, however, prohibits its practical implementation motivating the development of an

approximation to LWF by Ulusoy in [45] and the development of a non-naive and adaptive

algorithm called RxW by Aksoy and Franklin [8] [7] [6]. RxW algorithm has parameters

tha t may be adjusted for performance tha t is better than its naive counterparts under

various scenarios4 including a trade-off between a focus on average and worst case wait

time5. The performance evaluation of RxW, as in most of the evaluations performed in the

largely been replaced by interactive videotext systems, computer-based interactive systems, of which the
Internet is an aggregate example.

4 RxW has proved to be applicable to scheduling issues in the supportive field of data staging [9].
5Despite the superior performance of R x W it can also be expensive to implement, a problem addressed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. RELATED WORK 25

above research, was carried out through simulation experiments.

In contrast, Kalyanasundaram and K. Pruhs et. al. [30] [29] [42] present an entirely

analytical study of the algorithms mentioned above using a worst-case technique known as

resource augmentation analysis. In this approach, the performance of an on-line algorithm

with a certain amount of resources is compared to an off-line algorithm with fewer resources.

While analytically similar to the worst-case analysis we employ (competitive analysis), the

work differs from our research in the comparison of an on-line algorithm with more channels

to an off-line algorithm with fewer channels, while we compare algorithms operating with

the same resources available. They also make no consideration of broadcast costs. True

competitive analysis, while suggested by Goldberg et. al.[22], was not undertaken until Mao

[37] and later by Hawkins and Mao [27].

The differing characteristics of broadcasting in asymmetric environments are discussed at

length by Aksoy et. al. in [6]. Fundamentally, there are two settings in which broadcasting

is done, dichotomized by the use of client requests and referred to either as “pull” or “push” .

The pull-based version of the problem is the classic setting in which clients communicate

their requests explicitly to the server. The model, as we have described it, is pull-based

and we operate exclusively within this framework. The terminology derives from the event-

driven nature of a server in a pull-based system. The clients, by asking the server for

specific information, will “pull” tha t information to them. In the absence of requests the

server typically will not disseminate items at all.

In contrast, push-based broadcasting involves clients tha t do not, for whatever reason,

communicate requests explicitly to the server. As such, the server must rely on historic

by Goldberg et. al. in [22],

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. RELATED WORK 26

data, distributional assumptions, or predictive methods to anticipate what those requests

may be. Push methods rely heavily on stochastic models and periodic schedules made a

priori. There are implementation advantages and disadvantages to both the pull and push

based models tha t are worth noting.

Like the early Teletext system, some environments are inherently push-based6. This

version is common in mobile computing, especially in settings in which there is no bandwidth

at all from clients to server. If communication is possible in both directions, however, the

extent to which one setting is favored over the other will be impacted heavily by the cost of

communicating with the server and by the longevity of items in the database. A pull-based

system will require a significant amount of client-to-server communication and its database

will be virtually static; the clients must know the exact content of the database to make

explicit requests. Updates to database content are possible but will incur a high cost of

periodic client polling. Push-based systems avoid both concerns. No communication with

the server is done at all and clients need not know the database content. Because the server

is “pushing” unsolicited information out to its clients without feedback however, there is a

risk of wasting resources on irrelevant items. In addition, it is possible tha t a client never

receives the data it requires. Thus, the effectiveness of a push-based system will depend on

how accurately the server anticipates the “hidden” needs of its clients. This anticipation

is studied predominantly through stochastics by assuming (most commonly) a Poisson or

Zipf distribution of client requests.

Vaidya and Hameed have proposed several algorithms used to construct push-based

6Although teletext may appear to the viewer to be interactive, it is not. When one punches in an item
number on a teletext decoder, the machine simply waits for that page to be broadcast, captures it, and
displays it on the television set. No request is sent out from the machine to the information server.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. RELATED WORK 27

schedules. In [38, 46, 25, 26] their work considers the development of algorithms with

the intent of minimizing wait time, perhaps the most commonly utilized metric. Several

model variations are considered including environments involving multiple channels and

transmission errors. The performance of the algorithms is evaluated under these differing

assumptions using simulation and some analysis. Jiang and Vaidya consider the minimiza

tion of response time variance in [28] as an alternative metric. Again, algorithms are both

developed and analyzed using a combination of simulation and time complexity analysis.

Additionally, some of these algorithms can be adapted to the pull-based version of the

problem. Other interesting metrics such as minimizing server response time [47], minimiz

ing operation costs [13], and minimizing the maximum response time [15] have also been

proposed.

Considering yet another metric in the push-based model, Bar-Noy et. al. [13] and

Kenyon, Schabanel, and Young [34] present efficient schemes for minimizing schedule cost.

Interestingly, this metric is actually the combination of response time and the cost incurred

by a server for item transmission. The concept inspired our development of objective

functions with multiple minimization criteria discussed in Chapters 4 and 5. Kenyon and

Schabanel continue with this metric in the context of a database with non-uniform item

sizes [33] and Schabanel singly in the context of preemption [43].

The complexity7 of the push-based data broadcast problem has been well-studied. In

[13], Bar-Noy et. al. establish the NP-hardness of the push-based model in the context

of minimizing response time and broadcast cost. Schabanel continues to define the NP-

hardness of the problem when it is expanded to include non-uniform item sizes and pre

7For a complete treatment of NP-hardness see Garey and Johnson [21].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. RELATED WORK 28

emption of broadcasts. Only recently has the complexity of the pull-based model been

established. In [20], Erlebach and Hall provide an NP-hardness proof for the broadcast

scheduling problem in the context of minimizing wait time with unit-sized items and any

number of channels, the model we address in Chapter 3.

Potentially, a pull-based system is able to achieve a better performance than a push-

based one, at the cost of additional bandwidth from clients to server. While early broadcast

ing research tended to focus on push-based systems, the increasing availability of bandwidth

from clients to server has recently fueled increasing interest in pull-based models. In addi

tion, hybrid architectures tha t utilize characteristics of both push and pull-based systems

have been suggested by Acharya et. al [1], Oh et. al. [39], and Guo et. al. [24], Despite the

continuing appearance of research in this field we see tha t studies through experimentation

are the more populous approach.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

M inim izing Total W ait Time: The

M ulti-Channel Case

We now consider the D ata Broadcast Scheduling Problem in which the single goal of the

server is to maximize the quality of service the system provides to its clients. In this chapter

we present both analytical and simulation results regarding algorithms tha t attem pt to

optimize this metric by producing a schedule tha t will minimize the total wait time of all

requests. Though this is the most common optimization function found in the field, the use

of competitive analysis to study this model was not employed until Mao [37] whose work

we extend from its original single channel restriction1. This chapter first formally defines

the model and then proceeds to describe the analytical and simulation results of two on-line

algorithms obtained within its context.

1A significant portion of this chapter is published in Hawkins and Mao[27]

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MINIMIZING TOTAL WAIT TIME: THE MULTI-CHANNEL CASE 30

3.1 M odel Description

Building upon the general problem definition established in Section 1.3, we are given a server

with access to a database of m unit-sized items and c channels over which the items may be

transm itted. A sequence of requests is also given where each request arrives for some item.

It is possible, therefore, th a t the server will make as many as c decisions concerning which

items should be broadcast at the beginning of each system tick. In order to maximize the

quality of service the system provides to its clients, the server will attem pt to minimize the

wait time experienced by all requests. That is, an evaluation of the schedule S produced in

this model will be determined by the objective function

n
O B J(S) =

• ? ' = !

where the wait time of each request j , Wj, is summed over the total number of requests n.

3.2 Algorithms

We consider two well-known on-line algorithms the server may employ to minimize the

above objective function, First Come First Served (FCFS) and Most Requests First (MRF).

Though these algorithms are somewhat naive, we show their performance in the worst case

to be as good as any algorithm can hope to achieve.

First Come First Served (FCFS) selects for broadcast the item tha t will satisfy the

request with the earliest arrival time. In a sense, this algorithm attem pts to prevent request

starvation and, in so doing, minimize the number of requests with very long wait times.

When several requests all have the earliest arrival time, a tie-breaking mechanism must be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MINIMIZING TOTAL W AIT TIME: THE MULTI-CHANNEL CASE 31

Figure 3.1: MINIMIZING TOTAL WAIT TIME WITH FCFS FOR THE MULTI-ITEM, MULTI
CHANNEL MODEL

Time

c - 2 using FCFS

specified. As an example, consider a trivial system with c — 2 and rn — 4 employing FCFS

as its scheduling algorithm. Figure 3.1 displays the resulting schedule when this system is

faced with the following requests sequence. At t — 0 requests arrive for all items: three

requests for item 1, 4 requests for item 2, five requests for item 3, and four requests for item

4. FCFS, having four equally good candidates, will choose the first two items for broadcast.

At t = 1 only the first three items see additional requests: two requests arrive for item

1, five requests for item 2, and two requests for item 3. Because two items still contain

requests arrived from last tick, FCFS will select items 3 and 4 for broadcast. Finally, at

t — 2 the last requests, one for item 1 and five for item 4, arrive. Not having addressed

the requests arrived from the previous tick, FCFS selects items 1 and 2 for broadcast. We

see tha t FCFS is somewhat behind and must use one additional tick after all requests have

arrived to broadcast item 4 one last time. From the diagram we can compute the objective

function evaluation of this schedule by summing all requests left unsatisfied each tick. We

see tha t FCFS has produced a schedule with a total wait time of 50 for this instance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MINIMIZING TOTAL W AIT TIME: THE MULTI-CHANNEL CASE 32

Figure 3 .2 : MINIMIZING TOTAL WAIT TIME WITH MRF FOR THE MULTI-ITEM, MULTI
CHANNEL MODEL

Time
0 1 2 3 4

3 5 1 1

4
5 ■ ■

5 2 2

4 4 9
c - 2 using MRF

As a different technique, Most Requests First (MRF) selects for broadcast the item

having the largest number of unsatisfied requests currently in queue. This algorithm takes

a more direct approach to minimizing the objective function by attem pting to minimize the

wait time for as many requests as possible each tick. While, in general, we would expect

this strategy to be superior to tha t of FCFS, the relative weakness of any on-line algorithm

means this superiority cannot be guaranteed. Consider the performance of MRF when

applied to the same example system and input instance given to FCFS above. The schedule

produced by MRF on this instance is shown in Figure 3.2. At the first opportunity MRF

selects item 3 for broadcast as it has the largest number of requests waiting, and item 2

since it is the lower index of the two items having the second largest number of waiting

requests. MRF will continue to select for broadcast as many as two items with the largest

number of requests at each opportunity until all requests are satisfied. It can be seen tha t

the schedule produced by MRF for this instance has a total wait time of 45.

It should be noted that neither FCFS nor MRF have constructed the best schedule

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MINIMIZING TOTAL W AIT TIME: THE MULTI-CHANNEL CASE 33

Figure 3.3: MINIMIZING TOTAL WAIT TIME WITH AN ARBITRARY ALGORITHM A FOR
THE MULTI-ITEM, MULTI-CHANNEL MODEL

Time

1

L)
3 5

2 3 4

H "
(Z> 0
s 2

4 9
Hi
~ 3 5 2

4
u m 5

c = 2 using arbitrary Algorithm A

possible for the given instance. Consider tha t some on-line algorithm A could provide a

superior solution with total wait time of 44 as shown in Figure 3.3. We know tha t a brute

force algorithm operating offline with knowledge of the input sequence in advance would

also construct this schedule.

3.3 A nalytical Results

As stated earlier, the wait time experienced by any request j for a unit-sized item is Wj > 1.

Thus the minimum total wait time of any schedule independent of the number of channels

or the scheduling algorithm is at least n. In this section we provide competitive ratios for

FCFS and MRF and a general lower bound for all algorithms minimizing total wait t ime

for the multi-channel, multi-item context.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. MINIMIZING TOTAL W A IT TIME: THE MULTI-CHANNEL CASE 34

3 .3 .1 F ir s t C o m e F ir s t S erved (F C F S)

We define E y= i W j(FC FS) to be the total wait time of the schedule given by FCFS for

any instance. Likewise, Y^j= iwj(O P T) is the total wait time of the optimal solution for

the same instance.

Theorem 3.1 E y = i W j(FC FS) < E j= i wj(O P T) , where d = m in(c,m).

Proof: As already stated, Y^j=iwj(O P T) > n. Let d = min(c,m). We wish to show

w>j < for 1, . . . n in the FCFS solution to derive

j r Wj(F C F S) < ^ n < ^ j ^ Wj{OPT).
3=1 j=l

Case 1. m < c: If the number of items is less than or equal to the number of channels,

then it is possible to broadcast all items each tick. T hat is, all requests are satisfied with

the minimum wait time of 1 and the total wait time of the solution provided by FCFS

is equal to tha t of the optimal solution. Since m < c then d = min(e, m) = m and

E £= i wj(F C F S) = E } U W jipP T).

Case 2. m > c: For contradiction, assume there exists some request j for item i\ with

wj > That is, the request arrives at time ctj and is satisfied at time a,j + Wj. Since

wj > f , we know th a t item is not broadcast between a,j + 1 and aj + . Thus, there

remain m — 1 items to be broadcast during the [ticks between a.j + 1 and cij + ,

[aj + 1, a,j + 2) , . . . , [a,- + +1) . We see tha t none of the c channels are idle during this

period, else item i\ would have been selected for broadcasting. It then follows tha t there

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MINIMIZING TOTAL W AIT TIME: THE MULTI-CHANNEL CASE 35

have been a total of c • items broadcast during this period. Given tha t m > c we

know c — min(c, to) = c, resulting in c ■ \™] > m items broadcast out of m - 1 items.

By the pigeonhole principle, at least one item, say *2 , among the m — 1 items must have

been broadcast more than once during the interval. This is in contradiction to the FCFS

algorithm; request j arriving at a,j requires item i\ to be selected for broadcast at least once

before item i 2 is selected a second time. We conclude tha t all requests have wait times no

larger than ™ in any FCFS solution. ■

T h eo re m 3.2 There is at least an instance for which Y^j=i W j(FC FS) = f f 1 wj(O P T),

where d = min(c, m).

P ro o f: Consider the following instance with n = x m for some x and m > c (We do not

illustrate the trivial case when m < c). W ithout loss of generality, take c,m such tha t

c\m. Assume tha t for request j the arrival time is aj = 0 for the first m requests and the

requested items axe 1, . . . m respectively. For each successive request j = he + y + rn where

y — 1 , . . . c and k = 0 , . . . the arrival time is aj = k + 1 and the requested item

is (kc + y + m) — m ■ kc+v+m . The FCFS algorithm gives a schedule tha t selects items

in a circular order of 1 , 2 , ,m and broadcasts them in groups of c until all n requests

are satisfied. Thus the FCFS algorithm creates a schedule in which for each item there is

exactly one request waiting at any time t : 1 < t < (^-jr2) • After time t = (no more

requests will arrive and m — c requests will remain to be satisfied. These remaining requests

will be satisfied in additional ticks. That is, the schedule produced by FCFS will be

completed at the end of tick t = (») + ^=£. = n=c = Specifically, the c items

broadcast at time t = 0 are 60 1 = 1 , . . . , b()c -- c where btc is the index of the item broadcast

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MINIMIZING TOTAL WAIT TIME: THE MULTI-CHANNEL CASE 36

for y = 1 , . . . , c and 1 < t < t = IL̂ £

Considering the total wait time of this schedule, we notice th a t the wait time of each of

satisfy the last of the initial m requests, requests m + 1 , . . . , m + c will each experience a

wait of Wj = By the time the m + c request is satisfied, requests m + c + l , . . . , m T 2 c

will also have experienced a wait time of ™. The total wait time of satisfying the remaining

n — m requests is then (n — m) ™. We now have the total wait time of the schedule produced

The optimal schedule will produce unit wait time for most requests. Specifically, the

first c requests satisfied will experience Wj — 1. The optimal schedule is then constructed

such tha t the wait time experienced by each request arriving after the m th request has a

wait time of Wj — 1. The total wait time for all but the first m requests is then n — m.

Of the first m requests to arrive, the first c requests will experience a wait of 1 , tha t is

Wj = 1 for j — 1 . . . c. The second c requests will experience a wait of 2, tha t is Wj = 2 for

j = c + 1 . . . 2c and so on. Thus the total wait time for the initial m requests is Yljc=i c3-

Therefore, the total wait time accumulated by the optimal schedule is

at time t on channel c. For t > 0 the items broadcast at time t are bty = t c + y - m -

the first c requests is wj = 1. The next c requests experience 2 units of wait time and so
m

on. Thus the total wait time of the first m requests is J2j=l c3- Because it takes ™ ticks to

by FCFS:

W j(FC FS) = J 2 c3 + (n ~ m)
n m

c

m

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MINIMIZING TOTAL W AIT TIME: THE MULTI-CHANNEL CASE 37

J 2 Wj(OPT) = J 2 c j + (n - m) = — + (n - m).
j = 1 j=i

Thus, for fixed m, c and arbitrarily large n, the ratio of E j= i W j(FC FS) over Y^j=\{OPT)

approaches ■

3 .3 .2 M o st R e q u e ste d F ir s t (M R F)

We define J 2 j - i W j(M RF) to be the total wait time of the schedule given by MRF for any

instance. Likewise, E j= i wj {OPT) is the total wait time of the optimal solution for the

same instance.

T h e o re m 3.3 £ " = i Wj(M R F) < f Wj(O P T) .

P ro o f: Case 1. m < c: If the number of items is less than or equal to the number of

channels, then it is possible to broadcast all items each tick. T hat is, all requests will be

satisfied with the minimum wait time of 1 and the total wait time of the solution provided

by M R F will be equal to tha t of the optimal solution. Since m < c then d = min(c, m) = m

and E "= i wj (M R F) = £ ”=i Wj(OPT).

Case 2. m > c: Let A t be the number of requests arriving at t. Let B tk be the

number of requests satisfied by the broadcast at t on the fcth channel, which is for item

btk for k — 1 , . . . , c. Let Wt be the number of requests still waiting at t. Let 2 be the last

broadcast tick in the MRF schedule. We note tha t W z = 0,A Z — 0, B zk — 0 for all k, and

E t= iO fe = i Btk) — E t=o M = n. Since MRF always chooses the item requested most, B tk

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MINIMIZING TOTAL W AIT TIME: THE MULTI-CHANNEL CASE 38

is at least as large as the number of requests for any item other than item btk,Vk. Thus

the average number of requests satisfied by an item broadcast at time t, | YH=i Btk is also

at least as large as the number of requests for each of the m — c items waiting but not

broadcast at time t. So Y?k= 1 Btk > Wt. We have

X> s (i >) < (l >) =
t= 1 t=1 \k= 1 / t=1 \fe=l /

Consider the total wait time]Cj=i w.i (M R F). Aq is the amount of wait time accumulated

during [0,1). W\ -f A \ is the amount of wait time accumulated during [1 ,2). W 2 + A 2 is the

amount of wait time accumulated during [2 ,3). And finally, Wz- \ + A z - 1 is the amount of

wait time accumulated during [z — 1 , z). So we have

W j(M RF) = A0 + (Wx + A x) + (W2 + A 2) + • • • + (Wz- X + A g- X)
3 = 1

z - l z - l

=
t= 0 t=i

(m — c)
< n + - -n

c
_ m n

c

Together with Wj (OPT) > n for the optimal algorithm, we get

E U wj(MRF) ̂f E U wi(°BT).

T h e o re m 3.4 There is at least one instance for which]Cy=i 'tVj(MRF) = ^ Y ^j- i(O P T)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MINIMIZING TOTAL W AIT TIME: THE MULTI-CHANNEL CASE 39

P ro o f: We see tha t the same instance used for the earlier FCFS proof can be used to yield

the same result for the MRF algorithm. Note th a t when MRF is applied to tha t instance,

every broadcast decision k = 1 , . . . c is made breaking an (m — k)-way tie in favor of the

item requested by the earliest arriving request. ■

3 .3 .3 G en era l L ow er B o u n d for c C h a n n e ls

In this section we will prove tha t no on-line algorithm for broadcast scheduling with c

channels and m unit-sized items has a competitive ratio better than where d is the

minimum between the number of channels c and the number of items m.

T h eo re m 3.5 For any on-line algorithm for broadcast scheduling with c channels and m

unit-sized items, its competitive ratio is at least where d = min(c, m).

P roof: We use an adversary argument and assume tha t the input instance is provided by

the adversary. The arbitrary scheduling algorithm we consider is on-line-, it has no knowl

edge of the request sequence except for the requests tha t have already arrived by the time

each scheduling decision must be made. Because of this limitation, the adversary is able to

wait until the algorithm has made its scheduling decisions each broadcast tick before decid

ing what items to request for the upcoming tick. The adversary has complete knowledge

of the inner workings of the algorithm and will seek to provide the most challenging input

instance.

The adversary initially makes m requests with arrival times of aj = 0 and one request

for each item. The on-line algorithm will select some or all of these items to broadcast at

time t = 1 depending on the number of channels c relative to the size of m. We refer to the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MINIMIZING TOTAL W AIT TIME: THE MULTI-CHANNEL CASE 40

item broadcast at time t on channel c as btc• Thus, the algorithm will select d = min(c, m)

items to broadcast each tick, and on the first tick this will be items &n, &1 2 , • • •, bid- For each

successive broadcast tick the adversary will generate d requests, a request for each item that

was just broadcast. Specifically, requests m + d (t — l) + l, m + d (t — l) + 2 , . . . , m + d (t — l) + d

arrive at time t requesting items bti,b t2 , - - - ,b td respectively, for t = 1 , 2 , . . . , (IL̂ 22) • This

creates a schedule in which for each item there is exactly one request waiting at any time

t : 1 < t < After time t = (—j -) no more requests will arrive and m — d requests

will remain to be satisfied. These remaining requests will be satisfied in additional

ticks. That is, the schedule will be completed at the end of time t = Let

A denote the on-line algorithm. Considering the total wait time of the schedule, we notice

tha t the total wait time of all requests for each item is + 1 up until arrivals discontinue.

The m — d requests remaining to be satisfied will experience additional wait time over the

required ticks needed to complete the schedule. We see tha t the total wait time for

all remaining requests is Yhi= 1 (m ~ ^0- Summing up we have:

J=i

r m —d i
m / \ i d 1

£ (!Li r +1) + £ < • » - * >
7 = 1 ̂ ' 1=1

m (d + n - m) ^
= + ^ (j n - d l)

d

m (d + n — m)
d

m(d + n — m)
d

1=1

+ (m — d) + (m — 2d) + • • • + m
m — d

d

+ m
m — d

d

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MINIMIZING TOTAL W AIT TIME: THE MULTI-CHANNEL CASE 41

We now argue th a t for the same input instance there exists an optimal schedule in which

Wj = 1 for most requests. In the trivial case of c > m the optimal schedule is equivalent

to the on-line schedule. If c < m then we must closely observe the input provided by the

adversary. Because the adversary will always generate requests to replace requests tha t have

just been satisfied by the on-line algorithm, we note tha t the on-line algorithm is never able

to satisfy more than one request per item broadcast. In contrast, there exists a schedule

constructed with knowledge of the future in which an item is selected to be broadcast at

the tick in which most of the most immediate requests for tha t item have already arrived.

For instance, assume c — 1 and two requests j i , j 2 arrive at time t — 0 for different

items. Say also tha t we are given the knowledge tha t at time t = 1 another request j 3 will

arrive such tha t the item requested by j \ is the same item requested by j’3 . We see it is

more efficient to broadcast item 2 at time t = 1 and item 1 at time t — 2 rather than vice

versa as this minimizes the sum of the wait times experienced by all three requests j i , j 2 ,jz-

It is with this motivation tha t the optimal schedule is constructed. An algorithm with

complete knowledge of the input generated by the adversary will choose to satisfy a request

for an item such tha t the difference between the current time and the arrival time of the

next request for item tha t item is maximized. (The distance is assumed to be infinity if a

request is never followed by a request for the same item.) In this way, requests generated

by the adversary will tend to be for the same items as other requests already arrived thus

decreasing the number of unique items requested.

Let O P T denote the algorithm by which the optimal schedule is created. Consider tha t

at time t — 1 O P T knows tha t m unique requests have arrived at t — 0 and d additional

requests will arrive at t = 1. Based on the above selection strategy O P T will choose d items

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MINIMIZING TOTAL W AIT TIME: THE MULTI-CHANNEL CASE 42

to broadcast at time t = 1. If any of these items correspond to those items to be requested

at time t = 1, then necessarily it must be true tha t m < 2d. In this case it is obvious tha t

all requests arriving before or a t t = 2 will be satisfied at the end of t = 2, otherwise each

item broadcast will not be requested a t t = 1 and the number of unique requests at t = 2

will be m — d. T hat is, in contrast to the on-line schedule in which there was a request

for every item throughout the beginning of the schedule, the optimal schedule has already

eliminated up to d unique requests each tick. By continuing this method of broadcasting,

the optimal schedule is able to quickly satisfy all the initial requests tha t have arrived at

or before time p j] .

From time |"^] and beyond we know tha t the adversary generates at most d requests

per tick. Thus all remaining requests in the schedule will be satisfied after one time unit of

minimum waiting.

The total wait time of all requests in the schedule may be calculated in two parts: the

amount of wait time of all requests before time and the amount of wait time of all

requests after.

Before time [we see tha t d requests must wait 1 time unit each before being satisfied

at time t = 1. From time t — 2 to time [^ J , each satisfied request will either have just

I — Iarrived or will have been waiting since time t = 0 described by J2i=2 -f 1) Likewise,

those requests satisfied at time p j] will either have just arrived, for a total wait among

those requests of d [*j] — m, or will have been waiting since time t = 0 for a total wait of

The d requests per tick arriving after time p j] will be satisfied after one time unit of

minimum waiting. Recalling there are ticks required to complete a schedule, this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MINIMIZING TOTAL W AIT TIME: THE MULTI-CHANNEL CASE 43

results in d ■ (f 2̂] — P j]) total wait time among these requests.

Considering all n requests we have:

^ w j i O P T) =
j=i

LfJ
+ d -F ^ ' d(l -f- 1) + d

1=2

d-
n — d — m

d
m
~d

m
1

+ m

Therefore, for a fixed rn, d and an arbitrarily large n, the ratio of]C"=1 Wj{A) over

J2j=i Wj{OPT) is a bound tha t approaches

m(d+n—m)
lim i =

n—+oo d I"n dd m~\ d

Since algorithm A is arbitrary throughout the proof, such a lower bound holds for all

on-line algorithms for broadcast scheduling with c channels and unit-sized items. Note as

well tha t this result indicates the competitive optimality of the earlier algorithms FCFS

and MRF. ■

3.4 Simulation Results

The results in the previous section indicate tha t FCFS and MRF show the same worst-case

behavior as measured by the competitive ratio. The relative frequency of such scenarios

in practice, however, depends on the properties of the request sequences these algorithms

actually face. In the average case, we do expect MRF to outperform FCFS in most real

scenarios since MRF locally minimizes the objective function.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MINIMIZING TOTAL W AIT TIME: THE MULTI-CHANNEL CASE 44

3.4.1 Sim ulation Param eters

In order to develop a feel for the behavior of each algorithm, we develop a discrete-event

simulation to model the effects of various input sequence properties on the performance of

FCFS and MRF. The parameters to the simulation are the properties of the input sequence

that are of interest. For example, we may look at how each algorithm is affected as we

increase the rate at which requests arrive or the number of requests arriving.

Each replication (simulated instance) consists of stochastically generating an arrival

sequence, simulating the server’s scheduling decisions according to the algorithm under

study, and collecting data to compute the sum of wait times statistic. Because the terminal

condition is specified by the number of processed requests, the terminal time (makespan) will

vary from instance to instance. Large numbers of replications are used for each parameter

change to ensure tha t the behavior observed is not dependent on any one run, i.e. are

generated at 95% confidence.

In the absence of motivation for any other distribution, the arrival rate of requests

is generated through use of a discrete version of the Exponential distribution. This rate

measures the number of requests arriving per tick. Requests will stop arriving after the

specified n requests have been generated. Each request is for an item drawn from a discrete

version of the Uniform distribution. Thus, given tha t there are requests left to arrive, each

tick will see the generation of a number of new requests tha t is, on average, equal to the

arrival rate all of which will be for a specific item i with probability T .

All the following results are obtained from simulation runs in which all items are unit

sized. Note tha t in terms of implementation the scheduling algorithm must be run for each

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MINIMIZING TOTAL W AIT TIME: THE MULTI-CHANNEL CASE 45

channel each system tick. Furthermore, because situations arise in which the scheduling

algorithm generates a tie (more than on item is selected as the best item to send), these

situations are resolved by running a second algorithm on the contending items. For instance,

if four items appear to be equally good choices under FCFS then MRF will be used to

determine which of those four to broadcast (the item with the largest number of requests).

Should the m atter still be unresolved after applying the second algorithm, priority is given

to the smallest item index. Resolving ties is a non-trivial m atter in terms of real-time

algorithm complexity as is discussed later.

Due to the NP-Hardness of the problem in this model, note tha t the optimal schedule

for each instance is never computed. The performance of each algorithm must therefore be

studied based on a strict report of total wait time.

3.4.2 Perform ance Comparisons

Perhaps the most straightforward property of an input sequence is the sheer volume of

requests it throws a t a scheduling algorithm. For a given number of channels, a static

number of distinct items, and an arrival rate it is obvious from Figures 3.4 and 3.5 that

increasing the number of requests necessarily increases the sum of the wait times. Figures

3.4 and 3.5 compare, between the two algorithms, the effects of increasing the number of

requests on the sum of wait times for a static arrival rate of 10 and 100 respectively. The

number of data items is static at 100. Each point in the plot is derived from the mean of

1000 iterations and, as such 95% confidence intervals are too small to display. Note tha t as

a tie breaker, each algorithm uses the other. T hat is, FCFS uses MRF to determine which

request to satisfy in cast of a tie and vice versa.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MINIMIZING TOTAL W AIT TIME: THE MULTI-CHANNEL CASE 46

Figure 3.4: IMPACT OF INCREASING NUMBER OF REQUESTS ON TOTAL WAIT TIME,
10 REQUESTS PER TICK

120000

100000

80000

I
| 60000
S |2

40000

20000

0
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

number of requests

In addition, we observe tha t though MRF outperforms FCFS as expected, the difference

in performance decreases as the arrival rate increases. The reason for this trend is intuitive.

MRF targets the most popular items when broadcasting and thus will generally satisfy

more requests at low arrival rates than FCFS which will happily satisfy a single request

tha t arrived earlier rather than 10 requests for the same item tha t arrived later. However,

as the arrival rate increases to extremely large values, the number of requests for any item

is so large tha t FCFS will satisfy a number of requests regardless of what item it selects,

diminishing the advantage of MRF. This behavior is consistent with the analytical results

described in the previous section.

In order to illustrate the dimensionality of param eter interaction, consider the point in

the above figures where the number of requests has reached 200. If, at tha t point, we hold

the number of requests constant at 200 and consider the effect on both figures of altering

the arrival rate we generate Figure 3.6. Figure 3.6 compares, between the two algorithms

2 Channels with unit-sized items and an arrival rate of 10 requests per tick

Algorithm used:
MRF FCF̂

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MINIMIZING TOTAL W AIT TIME: THE MULTI-CHANNEL CASE 47

Figure 3.5: IMPACT OF INCREASING NUMBER OF REQUESTS ON TOTAL WAIT TIME,
100 REQUESTS PER TICK

2 Channels with unit-sized items and an arrival rate of 100 requests per tick

Algorithm used:
MRF

FCFS
120000

I
1
S

40000

20000

0 1000 1500 2000 2500 3000 3500 4000 4500 5000
number of requests

FCFS and MRF, the effects of increasing request arrival rate on the sum of wait times for

200 requests, 2 channels, and 50 items. Each point in the plot is derived from the mean of

1000 iterations and, as such 95% confidence intervals are too small to display. Note tha t

as a tie breaker, each algorithm uses the other, i.e. FCFS uses MRF to determine which

request to satisfy in case of a tie.

We see from Figure 3.6 tha t increasing the arrival rate results in a narrowing of perfor

mance difference between the two algorithms. T hat is, as a system approaches saturation

the advantages of MRF over FCFS diminish.

In Figure 3.6, it is assumed tha t the number of distinct items is constant as the arrival

rate increases. Intuitively we also expect tha t increasing the number of distinct items will

cause the sum of wait times to increase.

As the requests coming in are more distributed across a larger number of items, each

item broadcast on a channel will satisfy fewer requests. In fact, the impact of increasing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. MINIMIZING TOTAL W A IT TIME: THE MULTI-CHANNEL CASE 48

Figure 3.6: IMPACT OF INCREASING ARRIVAL RATE ON TOTAL WAIT TIME

2 Channels with unit-sized items

Algorithm used: ..mrjf
4500

4000

3 2500

2000

1000

0 5 10 15 20 25 30 35 40
Average number of Requests per Tick

the number of distinct items is significantly larger than tha t of increasing the arrival rate.

Asymptotically, increasing the arrival rate does nothing more than add requests for items

tha t already needed to be sent. That is, assuming no more arrivals, the difference in 100

requests for all items and 200 requests for all items is irrelevant in tha t m broadcasts will

complete either schedule and the wait time experienced by each requests is not remarkable.

However, the difference between 1 request for each of 100 items as opposed to 200 items is

extreme in tha t the last item satisfied has experienced a wait time an order of magnitude

longer than the first request satisfied. The plots in Figures 3.7 show these trends. For any

given arrival rate, the increase in the number of data items is seen to increase the sum of

wait times noticeable. In contrast, for a given number of items, an increase in the arrival

rate is less apparent. We observe tha t the effect of increasing the number of items is more

pronounced for MRF than for FCFS as is to be expected. This is another indication that

the number of distinct items m is a significant factor in the analytical performance between

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 3. MINIMIZING TO TA L W A IT TIME: THE MULTI-CHANNEL CASE 49

the two algorithms.

As stated earlier in this section, each scheduling algorithm can encounter situations in

which multiple items are equal candidates to be selected for broadcasting. This occurs when

an algorithm produces more candidates than the number of channels. T hat is, if the FCFS

algorithm finds 6 items with requests tha t arrived at the same earliest time and there are 6

channels then all items will be broadcast. However, if 7 candidates are found then a decision

must be made as to which 6 of the 7 will be sent requiring another algorithm to be used as

a “tie breaker” . The running of this second algorithm will slow the real-time performance

of the on-line algorithm (and impact the simulation complexity).

The following plots indicate tha t a tie breaking algorithm must be used increasingly as

the arrival rate increases and as the number of distinct items increases. We notice tha t when

the number of data items is sufficiently large, a tie breaking algorithm is consulted with

virtually every decision. From the perspective of algorithm design, these results indicate

tha t the issue of how a tie will be resolved computationally is an area tha t can greatly affect

the performance of these two algorithms in particular.

The plots in Figure 3.8 measure the effects of increasing request arrival rate and in

creasing number of items on the sum of percentage of decisions tha t must use a tie-breaking

algorithm. For instance, if there are 2 channels and the original algorithm produces 4 items

of equal importance, the tie-breaking algorithm must be used twice, once for each decision.

Note tha t 2 items of equal importance for 2 channels is no tie a t all. As a tie breaker,

each algorithm uses the other. FCFS uses MRF to determine which request to broadcast

in case of a tie. If the second algorithm produces yet more ties, the item to be broadcast

is determined by smallest data item index first. Each vertex in the plot is a point derived

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MINIMIZING TOTAL W AIT TIME: THE MULTI-CHANNEL CASE 50

from the mean of 1000 iterations and, as such 95% confidence intervals are too small to

display.

3.4.3 Sim ulation Conclusions

Though FCFS and MRF have equal competitive ratios, simulation results indicate tha t

MRF outperforms FCFS on average. The performance gain of MRF over FCFS diminishes,

however, as the number of requests, arrival rate, and number of data items increases. These

observations agree with performance measures found in the literature and complement our

analytical results. The NP-Hardness of the problem combined with the complexity burden

of tie breaking, even with naive algorithms, establishes the simulation of this model as

computationally intensive.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MINIMIZING TOTAL W AIT TIME: THE MULTI-CHANNEL CASE 51

Figure 3.7: ALGORITHM PARAMETERS IN 3 DIMENSIONS - MRF

2 Channels with unit-sized items

Algorithm used:
FCFS

Total wait time

2500

100 number of requests

FCFS
2 Channels with unit-sized items

Algorithm used:
MRF -

2000

1000
500

100 number of requests
Number of items

MRF

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MINIMIZING TOTAL W AIT TIME: THE MULTI-CHANNEL CASE 52

Figure 3.8: THE COMPUTATIONAL BURDEN OF TIE RESOLUTION

2 Channels with unit-sized items

Total wait time
Algorithm used:

FCFS -

0.8
0.7

0.1

number of requests
Number of items

FCFS
2 Channels with unit-sized items

Algorithm used:
Total wait time

0.4
0.3

100
number of requests

numb items

MRF

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

M inim izing Two M etrics: The

Single-Item Case

We now consider the D ata Broadcast Scheduling Problem in which the server attem pts to

maximize the quality of service as perceived by both clients and server. Client quality of

service depends upon the speed at which their requests are satisfied and server quality of

service is based upon the cost of satisfying those requests. Thus, the server will attem pt

to minimize two metrics: total wait time and total broadcast cost. As such, the server’s

two goals are said to be conflicting in tha t increasing the number of broadcasts will tend to

reduce client wait time as it increases server cost and vice versa. In this chapter we present

both analytical and simulation results regarding algorithms tha t attem pt to optimize both

metrics simultaneously. While the introduction of broadcast cost has been applied to push-

based broadcast scheduling [33, 34, 43], an original contribution of our work is to apply

this metric to the pull-based model. This chapter first formally defines the model and then

proceeds to describe the analytical and simulation results of two online algorithms obtained

within its context.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. MINIMIZING TW O METRICS: THE SINGLE-ITEM CASE 54

4.1 M odel Description

Creating a special case of the general problem definition established in Section 1.3, we are

given a server with access to a single unit-sized data item and a single channel over which

the item may be transm itted. A sequence of requests is also given where each request arrives

for that item. Due to the presence of a single item only, such an input sequence can be

succinctly described as a sequence of pairs where each pair describes the arrival time a,j of a

group of requests. T hat is, (ax, n\), (a2 ,) , . . . , (a*,,rife) describes an input sequence where

a-j is the arrival time of the ;/th group of requests and is the number of requests that

arrived at tha t time. Note tha t n i h = n, where k is the total number of groups

arriving and n is the total number of requests. At the beginning of each system tick, the

server must decide whether or not to broadcast the item. T hat is, the server may refrain

from broadcasting the item (referred to as “waiting”) even when requests are in queue.

This is in contrast to models, such as the one described in Chapter 3, in which the server

attem pts only the minimization of total wait time. Unlike those models, it makes sense

for a server with a broadcast cost metric to sometimes wait even with requests in queue

when the cost of waiting is smaller than the cost of broadcasting. In order to maximize the

quality of service this system provides to its clients and itself, the server will attem pt to

minimize the total cost of a schedule S determined by the objective function

n
O B J(S) = J 2 wi + B -&

3=1

where the wait time of each request j , w j , is summed over the total number of requests

n and the total number of broadcasts B in schedule S is multiplied by the cost of single

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. MINIMIZING TW O METRICS: THE SINGLE-ITEM CASE 55

broadcasting (31.

4.2 Algorithm s

In this chapter we consider two online algorithms the server may employ to minimize the

above objective function, a naive algorithm we will call LAZY and a more sophisticated

algorithm we will call GREEDY. We also present a polynomial-time offline algorithm based

upon the dynamic programming technique tha t is shown to be optimal.

The online algorithm LAZY always broadcasts immediately after the arrival of a request

group. Its name derives from the fact tha t it never considers other factors affecting the

quality of a schedule, such as the broadcast cost.

As an example, consider a /3 = 5 and an input sequence (0, 5), (1, 5), (2,1), (4,1), (5,8),

(7,5), (8,2). LAZY constructs the schedule in Figure 4.1 with a total wait time of 27, a

total broadcast cost of 35, and a total schedule cost of 62.

Designing a smarter online approach than tha t above, the GREEDY algorithm attem pts

to make a good broadcasting decision by considering both the broadcast cost (3 and the

amount of accumulated wait time of all unsatisfied requests. T hat is, it compares the amount

of wait time unsatisfied requests have accumulated while in queue to the cost of satisfying

them. If (3 is large in comparison to this total accumulated wait time, the algorithm may

choose to wait until such a time as the cost of broadcasting is more warranted.

More specifically, let t be the time at which GREEDY must make a decision to wait or

broadcast at the next time t + 1. Let P be the number of pending (unsatisfied) requests

1 Because broadcast cost and wait time are measured in different units, some weighted measure between
the two is desired. Thus the objective function might be written as a(5Zj=i wi) + B ■ f t . However, for
simplicity fi' can be normalized to /3, the relative cost of broadcasting relative to a unit of wait time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. MINIMIZING TW O METRICS: THE SINGLE-ITEM CASE 56

Figure 4.1: EXAMPLE SCHEDULING DIAGRAM OF LAZY

Time

0 1 2 3 4 5 6 7 8 9
5 5 1 1 8 5 2

c = 1 using LAZY

tha t have arrived up to time t, inclusively, since the last broadcast was made and let Q be

the accumulated wait time of all P pending requests at time t + 1. The pseudocode for

GREEDY is given below.

GREEDY O nline Algorithm
S in g le broadcast c o s t: b e ta
Input r eq u est sequence: (a [l] , n [l]) , (a [k] ,n [k])

t = a [l]
P = nCl]
Q = n [l]
do

i f b e ta <= Q
th en broadcast a t t+1

Q = 0
P = 0

e l s e w ait a t t+1
Q = Q + P

t = t + 1
i f t == a [i] fo r some i
th en Q = Q + n [i]

P = P + n [i]
U n til a l l r e q u e sts have a rr iv ed and have been s a t i s f i e d

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. MINIMIZING TWO METRICS: THE SINGLE-ITEM CASE 57

Figure 4.2: EXAMPLE SCHEDULING DIAGRAM OF GREEDY

Time

0 1 2 3 4 5 6 7 8 9 10 11
| 1 5 5 i l l 2 ill j ■= 2 I 2 I 2

c = 1 using GREEDY

Using the same input examined with the LAZY algorithm above with (3 = 5 and the in

put sequence (0,5), (1,5), (2,1), (4,1), (5,8), (7,5), (8,2), GREEDY constructs the schedule

in Figure 4.2 with a total wait time of 35, a to tal broadcast cost of 25, and a total schedule

cost of 60.

Though more sophisticated than the LAZY algorithm, GREEDY does not always pro

vide an optimal solution. An optimal solution can always be found, however, through use

of an offline dynamic programming algorithm. Given a broadcast cost (3 and an input se

quence of (ai,rai), (a2 ,n 2 (a*,,rife), consider th a t a schedule satisfying all requests in

this sequence is making a binary decision to wait or broadcast at each opportunity. Note as

well, tha t a broadcasting opportunity appears only after the arrival of requests. W ithout

arrivals in a previous tick, a server tha t has decided to wait should continue to do so (else

the decision to wait was in error). In a sense, the dynamic programming algorithm checks

all possible ways a server could satisfy the sequence of requests and chooses the schedule

tha t minimizes the objective function. The construction of this algorithm follows.

Via the methodology of dynamic programming, we begin with the definition of a function

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. MINIMIZING TWO METRICS: THE SINGLE-ITEM CASE 58

tha t returns the optimal solution for a partial input sequence. Let C (i , j) be the minimum

cost (total wait time plus total broadcast cost) of all schedules for the request sequence

(aj, rij),. . . , (aj, rij), for 1 < i < j < k. (Here we use the indices’s i, j , k, I apart from their

previous associations.) Thus, (7(1, k) provides the minimum cost for the original request

sequence (a i , n i) , . . . , («fc, n^). Function C (i , j) can be defined recursively as follows:

rii + (3 if i = j

min{(7i(f, j) , mini<i<j{C(i, I) + C{1 + l , j) } } if i < j

where C \(i , j) = X)/=i n l(aj + 1 — ai) + P, which is the cost of the schedule tha t broadcasts

only once at Uj + 1 to satisfy all requests in (aj, n ,) , . . . , (aj,rij). T hat is, C\ establishes the

cost of broadcasting a single time at the end of a given interval. Note tha t the computation

of C (i, j) for i < j defined above considers two possibilities: one is to broadcast only once

incurring the cost of C i(i , j) and the other is to broadcast at least twice, at time o,/ + 1

and at time aj + 1, with I to be determined by calculating the minimum incurred cost

min i<icj{C(i,l) + C(l + 1, j)} .

The pseudocode for our algorithm is given below. Two k x k tables are used in the

algorithm: table Cl[i,j] to store C \ (*, j) and table C[i,j) to store C (i,j) .

Optimal O ff lin e A lgorithm
S in g le broadcast c o s t: b e ta
Input req u est sequence: (a [l] , n [l]) , . . . , (a [k] ,n [k])

//C o n str u c t io n of th e Cl t a b le by th e d e f in i t io n o f th e Cl fu n c tio n
fo r i from 1 to k

fo r j from i to k
C lC i,j] = b eta
fo r 1 from i to j

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. MINIMIZING TW O METRICS: THE SINGLE-ITEM CASE 59

Table 4.1: EXAMPLE CONSTRUCTION of Cl

i,j 1 2 3 4 5 6 7
1 10 20 31 54 74 119 146
2 * 10 16 29 44 79 101
3 * * 6 9 19 44 61
4 * * * 6 15 38 54
5 * * * * 13 34 49
6 * * * * * 10 17
7 * * * * * * 7

Cl [i , j] = Cl [i , j] + n [l] * (a [j] + l - a [l])
//C o n str u c t io n o f th e C ta b le by th e dynamic programming method
fo r i from 1 to k

C [i , i] = Cl [i , i]
fo r j from 2 to k

fo r i from j - 1 to 1
temp_min = +i n f i n i t y
fo r 1 from i to j

tempjmin = min {temp_min, C [i , l] + C [l+ l , j] >
C [i , j] = min { C l [i , j] , temp_min>

retu rn C [l,k]

The time complexity of the above algorithm is 0 (k 3). This algorithm only returns the

cost of the optimal broadcast schedule. As shown later in this section, however, it can be

modified to give the actual broadcast schedule without heavily impacting this complexity.

Consider the same input sequence used in the examples of Lazy and Greedy. Given f3 —

5 and an input sequence (0,5), (1,5), (2,1), (4,1), (5, 8), (7, 5), (8,2), the above algorithm

produces Tables 4.1 and 4.2.

From entry C7[l, T] it can be seen tha t the algorithm produces a schedule with a total cost

of 56. To actually determine tha t schedule, we may modify the original algorithm to track

the points at which broadcasts are performed. As table C is constructed, a comparison is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. MINIMIZING TW O METRICS: THE SINGLE-ITEM CASE 60

Table 4.2: EXAMPLE CONSTRUCTION OF C

i,j 1 2 3 4 5 6 7
1 10 20 26 29 39 49 56
2 * 10 16 19 29 39 46
3 * * 6 9 19 29 36
4 * * * 6 15 25 32
5 * * * * 13 23 30
6 * * * * * 10 17
7 * * * * * * 7

made for each interval (each table entry) to determine if the schedule cost will be minimized

by single or multiple broadcasts for tha t interval. By tracking the decision made at each

such comparison it is possible to reconstruct the optimal schedule once the final cost has

been calculated. This process is enabled by the construction of a third table T done in

tandem with the construction of table C.

Table T is constructed as follows. At any point in the construction of table C at which

the optimal decision is determined to be a single broadcast within an interval,we record a

— 1 in the corresponding entry of table T at cell T[i,j]. If the optimal decision is instead

determined to occur in at least two locations within the interval, we record the I value that

marks the two intervals. The modification to the algorithm pseudocode for constructing

the T table is given below.

Optimal O ff lin e A lgorithm
S in g le broadcast c o s t: b e ta
Input req u est sequence: (a [l] , n [l]) , . . . , (a [k] ,n [k])

//C o n s tr u c t io n of th e Cl ta b le by th e d e f in i t io n o f th e Cl fu n c tio n
fo r i from 1 to k

fo r j from i to k
Cl [i , j] = b eta

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. MINIMIZING TW O METRICS: THE SINGLE-ITEM CASE 61

Table 4.3: EXAMPLE CONSTRUCTION OF T

i,j 1 2 3 4 5 6 7
1 -1 -1 0 0 0 0 0
2 * -1 -1 1 1 1 1
3 * * -1 -1 -1 4 4
4 * * * -1 -1 4 4
5 * * * * -1 4 4
6 * * * * * -1 -1
7 * * * * * * -1

fo r 1 from i to j
Cl [i , j] = C l [i , j] + n [l] * (a [j] + l - a [l])

/ /C o n s tr u c t io n o f th e C and T t a b le s by th e dynamic programming method
fo r i from 1 to k

C [i , i] = Cl [i , i]
T [i , i] = -1

fo r j from 2 to k
currentL = 0
fo r i from j - 1 to 1

temp_min = + in f in i t y
fo r 1 from i to j

i f temp_min > C [i] [1] + C [l+1] [j]
temp_min = C [i] [1] + C[l+1] [j] ;
currentL = 1;

i f C l [i] [j] > temp_min
C [i] [j] = temp_min
T [i] [j] = currentL

e l s e
C [i] [j] = C l [i] [j]
T [i] [j] = -1

retu rn C [l,k]

For the given example input instance, Table 4.3 is generated.

Once all three tables have been constructed, a recursive construction of the schedule

is performed. Starting with the last decision made, table entry T[l,fc], the value of each

entry is examined. If the entry contains a —1, then a broadcast has occurred at the end of

tha t interval. If the entry is not —1, then it is an / value and a call is made recursively to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. MINIMIZING TW O METRICS: THE SINGLE-ITEM CASE 62

determine the decisions made by the two intervals ending and beginning at decision point

I respectively. In pseudocode this procedure is below.

R econstructScheduleC T, k , a , b)

1 = T[a,b]
i f 1 == -1

b ro a d c a s t a t b
e ls e

R econstruc tS chedu le(T , k , a , 1)
R econstructScheduleC T, k , 1+1, b)

For the T table established for this example, the procedure executes as follows (with

the nested structure representing recursive calls).

ReconstructScheduleC T, 7 , 1, 7) ‘ ‘1 = 1 ’ *
R econstructScheduleC T, 7 , 1, 1) “ = -1 -> BROADCAST AT 1 ”
R econstructScheduleC T, 7 , 2 , 7) , e l = 2 ’ ’

R econstructScheduleC T, 7 , 2, 2) ‘ ‘1 = - 1 ’ -> BROADCAST AT 2 ’ ’
R econstructScheduleC T, 7 , 3 , 7) t t l = 5 ,J

R econstructScheduleC T, 7 , 3 , 5) ' ‘ 1 = -1 -< BROADCAST AT 5 ”
R econstructScheduleC T, 7 , 6 , 7) “ 1 = -1 -> BROADCAST AT 7 ”

This provides the schedule in Figure 4.3 with a total wait time of 36, a total broadcast

cost of 20, and a total schedule cost of 56.

4.3 A nalytical Results

As stated earlier, the wait time experienced by any request j for a unit-sized item is W j> 1.

Thus the minimum total wait time of any schedule independent of the scheduling algorithm

is at least n. T hat is, X q=i wj — X q=i I — n. The minimum broadcast cost for any

schedule is j3 since, at the very least, a broadcast is required at the end of a schedule.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. MINIMIZING TW O METRICS: THE SINGLE-ITEM CASE 63

Figure 4.3: EXAMPLE SCHEDULING DIAGRAM OF DYNAMIC PROGRAMMING ALGO
RITHM

Time

c = 1 using Dynamic Programming

Therefore, n + f3 is a lower bound to the total cost for any schedule, including the optimal

schedule. While n + (3 is a lower bound, it is not a tight bound. The following subsections

address the need for a tight bound for the LAZY and GREEDY algorithms respectively.

4 .3 .1 C o m p e tit iv e R a tio for th e L A Z Y A lg o r ith m

LAZY broadcasts its item at any opportunity at which a request can be satisfied. Though

there are n requests in the input sequence, some of these requests may arrive at the same

time. As such, let k be the number of distinct arrival times (also the number of request

groups tha t arrive) such tha t k < n . Thus LAZY will make exactly k broadcasts and each

request will experience unit wait time. Clearly then, for any instance (ai, n i) , . . . , (a*,, n*,)

with k arrival times, n — Ylj=i nj — k requests, and the single broadcast cost of /?, the cost

of the schedule constructed by algorithm LAZY is

C — n + kf3.

Here we define C to be the total wait time plus total broadcast cost of the schedule

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. MINIMIZING TW O METRICS: THE SINGLE-ITEM CASE 64

Table 4.4: INSTANCES FOR LAZY

Instance Optimal cost
I- (o i , n 1) ,(a2,n2), . . . , (flfc, n jt) C*
Iy. (l , m) , (2 , n 2),. , . , (k , n k) C{
J2: (1,1), (2,1) , . . . (k, n — k + 1) c i
Jo: (1,1), (2 ,1) , . . . (M) C q

given by LAZY for any instance. Likewise, C* is the total wait time plus total broadcast

cost of the optimal solution for the same instance. We will show tha t for any instance,

C/C* < ((3 + l)/(VW + 1/2). However, in order to establish the competitive ratio of

LAZY, it is necessary to obtain a tighter lower bound on the cost of the optimal schedule

for any instance with k arrival time and n requests.

L em m a 4.1 Let C* be the cost of the optimal schedule for any instance with k arrival times

and n = nj 'requests. Let Cq be the cost of the optimal schedule for the instance with

aj = j and nj = 1 for j = 1 , . . . , k. Then C* > Cq + n — k.

P roo f: Given any instance I: (ai, r q) , . . . , (a*,, n k) with n — Y^j=i nL we define the fol

lowing instance variations:

We prove the lemma in three steps. In the first step we show by a series of transfor

mations applied to the schedules tha t C* > C*. In the second step we show by a series

of transformations applied to the schedules tha t C f > C%- In the third step we show tha t

C* = Cq + n — k by observing tha t the optimal broadcast schedules are the same for in

stances h and I q, shown in Table 4.4 while the optimal costs have a difference of n - k.

Combining the three inequalities, we have our lemma. ■

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. MINIMIZING TW O METRICS: THE SINGLE-ITEM CASE 65

Now consider Cq, the cost of the optimal schedule for request sequence Iq = (1,1), (2,1),

. . . , (&, 1) with k arrival groups and unit inter-arrival times. The following lemma gives a

lower bound on Cq.

Lem m a 4.2 Let Cq be the cost of the optimal schedule for request sequence Iq = (1,1),

(2,1), . . . , (k , 1). Let (3 be the single broadcast cost. Then Cq > k(y/2j3 + 1/2).

Proof: In instance Iq = (1,1), (2 ,1) , . . . , (k, 1), the number of requests n is equal to k, the

number of distinct arrival times. Let I be the number of broadcast events in a schedule for

Iq. If I is fixed, then the optimal schedule with exactly I broadcast events is to broadcast

at time instants tha t spread out as evenly as possible in the time interval [2, k + 1]. More

specifically, the optimal schedule which broadcasts I times will see tha t each of the first

I — k mod I broadcast events satisfies [fc/Zj requests, accumulating (l/2)[fe/ZJ(|_A;/ZJ + 1) in

wait time. Each of the last k mod I broadcast events satisfies \k/V\ requests, accumulating

(l/2)[fc/Z](|'A:/Z] -1- 1) in wait time.

Define function cost(l) to be the cost (total wait time plus total broadcast cost) of the

optimal schedule among all schedules which broadcast exactly I times. Then we have

cost(l) = (Z - k mod Z) ■ (l/2)|fc/ZJ([fc/Zj + l) + (k mod Z) • (l /2) \k / l] (\k / l] + 1) + 1(3

Thus the cost of the optimal schedule, considering all possible number of broadcast events,

is

Z • (1/2) [fc/ZJ ([k/l\ + 1) + 1(3 + (k mod Z) \k / l] . (4.1)

Cn — min Icost(l)} = m ini
l<l<k

mm
l<l<k,k mod 1=0

mm
1 <l<k,k mod 1^0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 4. MINIMIZING TW O METRICS: THE SINGLE-ITEM CASE

Consider two cases of I. First assume k mod I = 0. Then

66

cost(l) = I ■ (1/2){k /l)(k /l + 1) + 1(1.

Consider the corresponding continuous function f (x) = x ■ (1/2) (k /x) (k /x + 1) + x(3. By

computing the derivative of f (x) , we find tha t the minimum of f (x) occurs at x — k/y/2(3

and is k(y/2(3 + 1/2). So

K j , , A cost(1)} > “ in{/(*)} = k (y /2/3 + 1/2). (4.3)
l< l< k ,k mod 1=0 Vx

Next assume k mod I ^ 0. Let k / l = _k/l\ + e for some e G (0,1). Then

cost(l) = I ■ (1 /2)_k/l\(_k/l\ + 1) + l(3 + {k mod l)\k/l~\

= I ■ (1/2) |_Jfe//J \k / f \ +1/3 + (k mod I) [k /l]

= [k/l]((l /2)[k/l\ + k mod I) + lj3

= \ k / l] (k - (l / 2) l k / l \) + l(3

= (k /l + 1 - e)(k - (l/2)(k /l - c)) + 1(3

= (k2/2) (l / l) + k /2 + (l/2)le(l - e) + 1(3.

Consider the corresponding continuous function g(x) = (k2/2) (l /x) + k /2 + (l /2)xe(l —

e) + x(3. By computing the derivative of g(x), we find th a t the minimum of g(x) occurs at

x = k/y/2(3 + e(l — e) and is k(^/2(3 + e(l — e) + 1/2). So

min {cost(l)\ > min{5r(x)} = k(\/2(3 + e(l — e) + 1/2). (4.4)
1 < l< k ,k mod lyt0 Vx

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 4. MINIMIZING T W O METRICS: THE SINGLE-ITEM CASE

Combining the two cases, we have

67

Cl = min{ min {cost(l)}, min {cost(l)}} by Equation (4.2)
1 < l< k yk mod I—0 1 < /< « ,« mod 1^=0

> m\n{k(^/2/3 + 1/2), k(^2 (3 + e(l - e) + 1/2)} by Equations (4.3) and (4.4)

= k (y /2 f i+ l /2) .

Now, we are ready to prove the competitive ratio for algorithm LAZY.

T heorem 4.1 For any instance, C/C* < ((3 + l)/(y/2j3 + 1/2), where C and C* are the

costs of the L A Z Y schedule and of the optimal schedule (for the same instance), respectively.

P ro o f: Recall tha t for any instance C = n k/3 and tha t by Lemmas 4.1 and 4.2 C * >

C* + n — k > k(*/2f3 + 1/2) + n — k = n + k(y/2j3 — 1/2). Therefore,

C n + k(3
C* ~ n + k(\/2f3 — 1/2)

P~y/W + 1/21 +
n /k + \/2(3 — 1/2

til
1 + A

(3+1

< i + since„/jt> i
- 1 + ^ 3 - 1 /2 ' -

v ^ + 1 / 2 '

T h e o re m 4.2 There is an instance for which C/C* > ((3 + l)/(y/2j3 + 1/2), where C and

C* are the costs of the L A Z Y schedule and of the optimal schedule (for the same instance),

respectively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. MINIMIZING TWO METRICS: THE SINGLE-ITEM CASE 68

P ro o f: Consider an instance (1,1), (2 ,1) , . . . , (k, 1), where k = 2xy for some integers x and

y. Note tha t n — Ylj=i nj — k- Let [3 = 2x2. So

C = n + k(3 = fc(l + /?) — 2xy(l + (3). (4.5)

According to Equations (4.2) and (4.1) in the proof of Lemma 4.2, we have C* — mini</<fc {cos

where cost(l) — I ■ (l /2)[k / l \ ([k / l \ + 1) + 1(3 + (k modZ)[&/f|. Choose I' — kj\J2f3 =

(2xy) / (2x) = y. We then have k mod I' = k mod y = 2xy mod y = 0. Therefore,

cost{l') = y ■ (1/2) • 2x{2x + 1) + y • 2x2 = yx(4x + 1). So,

C* = mm^{cost(l)} < cost(l') = yx(4x + 1). (4.6)

Considering the ratio C/C*, we have

^ ~ y lf£ + l) by E(luations (4-5) and (4-6)

- 2(1 + ^ since 0 = 2x2
4 - v/5 /2 + 1
(3 + 1

v ^ + 1 / 2 '

The competitive ratio of LAZY is roughly proportional to sf]3. However, the ratio

remains small when (3 is reasonably small. In particular, the ratio is bounded by 2 if (3 < 8,

in which case the single broadcast cost weighs no more than eight times of one unit of wait

time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. MINIMIZING TWO METRICS: THE SINGLE-ITEM CASE 69

4 .3 .2 C o m p e t it iv e R a tio for th e G R E E D Y A lg o r ith m

Next we show tha t the competitive ratio of the GREEDY algorithm is 2, by proving tha t

2 is both the lower bound and the upper bound on the competitive ratio. In what follows,

we call a schedule produced by algorithm GREEDY a GREEDY schedule.

T h eo re m 4.3 There is an instance for which C/C* > 2, where C and C* are the costs of

the G REED Y schedule and of the optimal schedule (for the same instance), respectively.

Proof: Consider the request sequence with only one group of requests arriving at time

1: (l ,n i) . Assume tha t j3 = I • n x for some large I. Clearly, the optimal schedule for the

instance will broadcast at time 2. So

C* = n i + (3.

Now we apply algorithm GREEDY to the instance. Observe tha t at time t — 1 , . . . ,1 — 1,

the accumulated wait time A is tn x < f3 and th a t at time t = I, the accumulated wait time

A is I ■ n i > (3. So the algorithm will choose to wait at time t = 1 , — 1 until time Z,

when the algorithm will choose to broadcast to satisfy the requests. So

C = I ■ n \ + p.

Considering the ratio between C and C*, we have

C I n , j- S 21 2

C* n x + (3 Z + l J + l

as I —► oo. ■

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. MINIMIZING TW O METRICS: THE SINGLE-ITEM CASE 70

T h eo re m 4.4 For any instance, C/C* < 2, where C and C* are the costs of the GREED Y

schedule and of the optimal schedule (for the same instance), respectively.

P roo f: For any instance (a i , n i) , . . . , (a^n*), the GREEDY schedule can be partitioned

into time intervals defined by broadcast times. To be specific, assume tha t in the GREEDY

schedule the event of broadcast happens a total of I times, at times b\ , . . . , 6 /. Let bo = ai.

Then the schedule can be partitioned into intervals [bo, bi), [hi, 6 2), • • •, [&z-i, h). For the ith

interval [6 j_ i,& i), define Ki to be the set of requests arriving in the interval, to be the

number of requests in Ki, and Ai to be the accumulated wait time by requests in Ki at

time bi. From the definition of algorithm GREEDY, we have

A i - R i < f 3 < A i . (4.7)

Summing up the above inequalities for all * = 1 , we get

1 1 1

i=l i=l i —1

So
1 1

2 J 2 A i-
i =1 i=l

To prove tha t C/C* < 2 , it suffices to prove tha t C* > Y/\=i Ai-

For any instance, we align its optimal schedule with its GREEDY schedule. As a

result, the optimal schedule is also partitioned into intervals by the broadcast times in the

GREEDY schedule. For the ith interval (6 j_i,&i] 2 in the optimal schedule, let C* be the

2 Note that the time intervals used for partitioning the GREEDY schedule are [) but the time intervals
used for partitioning the optimal schedule are (]. This is not a typo.

c = T A i + w <

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. MINIMIZING TW O METRICS: THE SINGLE-ITEM CASE 71

cost incurred in the interval, which is the broadcast cost incurred in (6i_i,&i] plus the wait

time accumulated in (bj_i, bi). We consider two cases for the interval.

Case 1. No broadcast occurs in (6*_i, 6*] in the optimal schedule. Then C? = Ai + A >

Ai, where A > 0 is nonzero only when there is not broadcast at bi-\ and there are requests

arriving earlier than 6j_i but at or after the last broadcast time before bi-1 in the optimal

schedule.

Case 2. There is at least one broadcast event in bi] in the optimal schedule. Then

C* > Ri + f3 since every request arriving in will accumulate at least one unit of

wait time in and the broadcast cost incurred in the interval is at least /?. Recall

tha t Ai — Ri < (4 in Equation (4.7). So C* > Ri + (3 > Ri + Ai — R4 = Ai. Summing the

inequality C* > Ai for all intervals, we get

c ’ = E c ? & ! > •
i=1 i=l

This proves the theorem. ■

4.4 Simulation Results

In order to develop a feel for the empirical behavior of each algorithm, we utilize a discrete-

event simulation to model the effects of various input sequence properties on the performance

of LAZY and GREEDY. Unlike models (such as tha t of Chapter 3) in which finding an opti

mal solution is NP-Hard, the model in this chapter is computationally easier to simulate due

to the existence of the optimal offline algorithm developed in Section 4.2. The availability

of this optimal algorithm allows a more direct comparison of online algorithm performance;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. MINIMIZING TW O METRICS: THE SINGLE-ITEM CASE 72

since the optimal schedule for any instance can be computed, we can determine the extent

to which a schedule produced GREEDY or LAZY deviates from the optimal.

For the results to follow, each replication (simulated instance) consists of stochastically

generating an arrival sequence, simulating the server’s scheduling decisions according to

the algorithm under study, and collecting data to compute the sum of wait times, sum of

broadcast cost, and total schedule cost statistics. Because the terminal condition is specified

by the number of processed requests, the terminal time (makespan) will vary from instance

to instance. Large numbers of replications (1000 replications for results displayed in figures)

are used for each parameter change to ensure tha t the behavior observed is not dependent

on any one run. Thus, replications are generated such tha t statics are reported at 95%

confidence.

4 .4 .1 S im u la tio n P a ra m e ters

Several parameters to the problem will affect the characteristics of the input sequence tha t

is simulated on each algorithm for each replication: the arrival rate, the inter-arrival time,

and the total number of requests set to arrive. In the absence of motivation for any other

distribution, the arrival rate of requests is generated through use of a discrete version of

the Exponential distribution. This rate measures the number of requests, or the size of the

group of requests, arriving per tick. The inter-arrival time establishes the frequency of ticks

tha t will see the arrival of these request groups. An average inter-arrival time of 1 means

tha t most ticks see the arrival of requests versus larger inter-arrival times tha t translate

into longer periods of time in which no requests arrive. Requests will stop arriving after

the specified total number of requests have been generated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. MINIMIZING TW O METRICS: THE SINGLE-ITEM CASE 73

All the following results are obtained from simulation runs in which the single item

is unit-sized. Note tha t in terms of implementation each scheduling algorithm must be

consulted each system tick for a decision to wait or broadcast.

4 .4 .2 P er fo rm a n ce C o m p a r iso n s

By using the optimal offline algorithm developed in Section 4.2, we are able to establish the

optimal schedule for any instance. The performance of algorithms LAZY and GREEDY can

then be measured by comparing the cost of schedules they produce to tha t of the optimal.

Due to the naive decision making ability of the LAZY algorithm, we expect in general to see

tha t it is inferior (it’s schedules are more costly) to GREEDY. Likewise we expect GREEDY

to be close but not equal to the optimal solution.

Figure 4.4 illustrates the performance of the three algorithms over instances generated

with a j3 = 10, an average inter-arrival time between groups of 1, and an average group size

of 5 requests. As expected, GREEDY outperforms LAZY though GREEDY is not itself

optimal.

By increasing the value of (3 to 30 (holding all other parameters static), we can further

illustrate the weakness of the LAZY algorithm. As (3 becomes increasingly large compared

to the number of requests waiting in queue, LAZY will blindly continue to broadcast as

often as possible while GREEDY compensates for the change. Compare Figure 4.5 to Figure

4.4 and note tha t while GREEDY remains stable in its performance relative to optimal, the

degradation of LAZY’s performance is significant.

While it is clear the impact of an increasing (3 is to increase the cost of schedules produced

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. MINIMIZING TWO METRICS: THE SINGLE-ITEM CASE 74

Figure 4.4: BENCHMARKING AT BETA - 10

Single Item Algorithms
------------,— -------- ,-------

1 1 ‘ Total Schedule Cost Comparison
LAZY ------ --

GP.EPOY-
DYNAMIC -------

'

'•

■ /
, »________ i________ i________ i________ i------------1------------ 1------------
10 20 30 40 50 60 70 60 90 100

Number of Arrival Groups

by LAZY, note tha t increasing the average inter-arrival time of arriving group will mitigate

this effect. Intuitively, this is due to the tendency of GREEDY to wait until a justification

to broadcast is clear. A setting in which groups of requests consistently arrive in bursts is

ideal for an algorithm tha t never hesitates to broadcast (LAZY) but troublesome for one

that will wait to see if more requests will accumulate to satisfy at once. The upper graph

of Figure 4.6 shows the impact of taking the parameters of Figure 4.4 and increasing the

average inter-arrival time by a factor of 10. We see tha t the performance of GREEDY

suffers while LAZY approaches optimality, a trend supported by the competitive ratio of

LAZY for effectively small j3 values.

Finally, it can be seen tha t the performance of both algorithms is heavily dependant

upon the size of the arriving request groups. The inherently greedy nature of both online

algorithms allows rapid broadcasting when the number of requests becomes large. As men

tioned in the Introduction, it is this ability of data broadcasting to scale with respect to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. MINIMIZING TWO METRICS: THE SINGLE-ITEM CASE 75

Figure 4.5 : EFFECT OF INCREASING BETA

4000

3500

3000

^ 2500

J5
3| 2000

S
g 1500

1000

500

0
0 10 20 30 40 50 60 70 80 90 100

Number of Arrival Groups

massive request loads tha t has made the technique popular. As the impact of a broadcast

cost disappears, the single channel, single item model becomes trivially solvable online by

broadcasting at every opportunity (something LAZY does at all times and GREEDY re

verts to when (3 is negligible. The lower graph of Figure 4.6 shows the impact of taking the

parameters of Figure 4.4 and increasing the average group size time by a factor of 10. The

graph of all three algorithms overlap as both the LAZY and GREEDY algorithms approach

optimal.

4 .4 .3 S im u la tio n C o n c lu sio n s

It is im portant to point out that most practical settings will more closely match the pa

rameter makeup of Figure 4.4 and, as such, the GREEDY algorithm remains competitively

superior to LAZY. The remaining figures in this section illustrate, however, tha t under

extreme parameter values both algorithms may establish near-optimal performance.

Single Item Algorithms

Total Schedule Cost Comparison
LAZY

GREEDY
DYNAMIC

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. MINIMIZING TWO METRICS: THE SINGLE-ITEM CASE

Figure 4.6: EFFECTS OF MODIFYING THE INPUT SEQUENCE

Single Item Algorithms

Total Schedule Cost Comparison
LAZY

GREEDY
DYNAMIC

3
jCo

10 20 30 800 40 SO 60 70 90 100
Number of Arrival Groups

INCREASING AVERAGE INTERARRIVAL TIME
Single Item Algorithms

5000

i 1 ri i i i ------- ■■
Total Schedule Cost Comparison

LAZY --------
GREEDY -----

DYNAMIC

4000

■..............i

\
\

\

3000

X
X

x

2000 X

s '
X

X

1000

Xs '
s '

s '

n

X '

i i i i i i i > i
0 10 20 30 40 50 60 70 80 90 100

Number of Arrival Groups

INCREASING AVERAGE GROUP SIZE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

M inim izing Two M etrics: The

M ulti-Item Case

The model described in the previous chapter considered a version of the D ata Broadcast

Scheduling Problem in which the server attem pts to minimize two metrics in the context

of a single database item. We now extend tha t model to allow for a server with access to

a database of multiple items. The resulting model described in this chapter may also be

viewed as an extension of the problem described by Mao [37] which operated in a multi-item

context without the second metric of broadcast cost. This chapter first formally defines the

model and then proceeds to describe the analytical and simulation results of an algorithm

designed for this context.

5.1 M odel Description

As in the previous chapter we now consider a server attempting to maximize the quality

of service as perceived by both clients and server. To this end, the server will attem pt to

minimize two conflicting metrics of total wait time and total broadcast cost. These metrics

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MINIMIZING TW O METRICS: THE MULTI-ITEM CASE 78

are conflicting in tha t increasing the number of broadcasts will tend to reduce client wait

time as it increases server cost and vice versa. The server has access to a database of

m items and a single channel over which the items may be transm itted. Prom time to

time requests will arrive for these items. These requests are described by a sequence of

triples indicating the time a t which a group of requests arrives, the number of requests

in the group, and the item tha t will satisfy those requests. The cost of broadcasting any

item in the database is /?. At the beginning of each system tick, the server must decide

whether or not to broadcast an item for the next tick and, if a broadcast is to be made,

which item should be broadcast. T hat is, (a i ,n i ,p i) , {(1 2 1^ 2 , P2), • • ■, (<3k,nk,Pk) describes

an input sequence where aj is the arrival time of the j th group of requests, rij is the number

of requests in the j th group tha t arrived at time aj, and pj is the item requested by the

j th group of requests. The server may refrain from broadcasting the item (referred to as

“waiting”) even when requests are in queue. This is in contrast to models, such as the

one described in Chapter 3, in which the server attem pts only the minimization of total

wait time. Unlike those models, it makes sense for a server with a broadcast cost metric

to sometimes wait, even with requests in queue, when the cost of waiting is smaller than

the cost of broadcasting. In order to maximize the quality of service this system provides

to its clients and itself, the server will attem pt to minimize the total cost of a schedule S

determined by the objective function

n

OBJ(S) = J 2 w3 + b 'P’
3=1

where the wait time of each request j , Wj, is summed over the total number of requests

n and the total number of broadcasts B in schedule S is multiplied by the cost of single

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MINIMIZING TW O METRICS: THE MULTI-ITEM CASE 79

broadcasting j3l.

5.2 Algorithm s

In this chapter we consider two algorithms the server may employ to minimize the above

objective function, MRF and GREEDY. While GREEDY is designed for this context, MRF

is not. We employ MRF here due to the lack of an optimal algorithm with which to compare

the performance of GREEDY.

Most Requests First (MRF) selects for broadcast the item having the largest number

of unsatisfied requests currently in queue. As an alternative description, the item selected

for broadcast is the one tha t minimizes the incremental cost, in terms of wait time, to the

schedule produced so far. Specifically, let r, be the number of requests in the wait queue for

item i, let 6t be the item selected for broadcast at time t, and let (3 be the uniform cost of

broadcasting an item. At each tick t during which there is at least one request in the wait

queue, MRF will select bt such tha t bt € 1 . . . m , > 0, and bt minimizes the incremental

cost ri + (3 = E i€ i...m r i — r f»t + P- Because the broadcast cost is the same

for all items, the item selected for broadcast will be the item with the largest number of

unsatisfied requests.

As an example, consider a (3 = 20 and an input sequence (0,5,1), (0,5,2), (0,1,3),

(1,1,1), (1,8,2), (1, 5,3), (2,2,1), (2,10,2), (2,8,3). MRF constructs the schedule in Figure

5.1 with a total wait time of 74, a total broadcast cost of 100, and a total schedule cost of

174.

1 Because broadcast cost and wait time are measured in different units, some weighted measure between
the two is desired. Thus the objective function might be written as « (2 " = i'u;j) + B ■ f3 '. However, for
simplicity /?' can be normalized to ,8, the relative cost of broadcasting relative to a unit of wait time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MINIMIZING TWO METRICS: THE MULTI-ITEM CASE 80

Figure 5.1: EXAMPLE SCHEDULING DIAGRAM OF MOST REQUESTS FIRST (MRF)

Time
0 1 2 3 4

5 1 3 3 3 1

5 13 10 10

I 6 14
c = 2 using MRF

Given tha t a broadcast should be made, we expect MRF to make a reasonable decision

as to which item should be selected, however we note that MRF will always broadcast if

there are any requests unsatisfied. T hat is, MRF naively does not consider the impact of

broadcast cost. A smarter online approach than tha t above is to determine if the wait time

saved by a broadcast is worth the cost of making it. The GREEDY algorithm attem pts

to make such a good broadcasting decision by considering both the broadcast cost (3 and

the amount of accumulated wait time of all unsatisfied requests. I t compares the amount

of wait time unsatisfied requests have accumulated while in queue to the cost of satisfying

them. If 0 is large in comparison to this to tal accumulated wait time, the algorithm may

choose to wait until such a time as the cost of broadcasting is more warranted.

More specifically, let t be the time at which GREEDY must make a decision to wait or

broadcast at the next time t + 1. Let Pi be the number of pending (unsatisfied) requests for

item i th a t have arrived up to time t, inclusively, since the last broadcast was made. Let

Qi be the accumulated wait time of all Pi pending requests at time t + 1 by all Pi pending

requests for item i. At each decision point, if the wait time accumulated by the requests

waiting for any item is no greater than the broadcast cost, then the server will choose not

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MINIMIZING TWO METRICS: THE MULTI-ITEM CASE 81

to broadcast at the next opportunity, otherwise it will broadcast tha t item requested by

the group of requests whose accumulated wait time has exceeded the broadcast cost. The

pseudocode for GREEDY is given below.

GREEDY O nline A lgorithm
S in g le broadcast c o s t : b e ta
Input req u est sequence: (a [1] , n [l] [1 . . .m] , . . . , a [k] , n [k] [1 . . .m])
i . e . n [l] [j] i s th e number o f req u e sts a r r iv in g a t a [i] fo r item j

do
t = atl]
fo r i <- 1 to m

P [i] <- n [l] [i] / / # req u e sts fo r item i a t a [l]
Q[i] <- n[l][i] // each request accumulates 1 unit of wait time at a[i]

repeat
maxQ <- m ax{Q [i]}
maxi <- index o f maxQ
i f b e ta <= maxQ
then broadcast item maxi a t t+1

Q[maxi] <- 0
P [maxi] <- 0
fo r i <- 1 to m

i f i <> maxi
Q[i] <- Q[i] + P[i]

else wait at t+1
for i <- 1 to m

Q [i] <- Q [i] + P[i]
t <- t+1
i f t = a [j] fo r some j
then fo r i <- 1 to m

Q[i] <- Q [i] + n[j] [i]
P[i] <- P[i] + n[j] [i]

until all requests have arrived and have been satisfied

As an example, consider a /3 = 20 and an input sequence (0,5,1), (0,5,2), (0,1,3),

(1,1,1), (1,8,2), (1,5,3), (2,2,1), (2,10,2), (2,8,3). GREEDY constructs the schedule in

Figure 5.2 with a total wait time of 111, a total broadcast cost of 60, and a total schedule

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MINIMIZING TW O METRICS: THE MULTI-ITEM CASE 82

Figure 5.2: EXAMPLE SCHEDULING DIAGRAM OF GREEDY

Time
0 1 2 3 4

1 5 6 8

00oo

s 2 5 13 23
, 1aM 3 1 6 14 14 I

c = 2 using GREEDY

cost of 171.

5.3 Analytical Results

5.3.1 A Lower Bound for G R EED Y

T h eo re m 5.1 For any instance let C be the total cost o f the schedule produced by M RF

and C* be the total cost of the optimal schedule. T h e n ,C < 2C*.

P roo f: We prove the lower bound by establishing tha t there is at least one instance for

which the total wait time of the schedule produced by GREEDY is equal to 2 times that

of the O PT schedule.

We construct this instance as follows. At time t — 0 all n requests will arrive, di

vided evenly among the m items. T hat is, let n \ = ^ resulting in the arrival sequence

(0, n i, 1) , . . . , (0, rq , to). This instance causes GREEDY to wait needlessly where a more

optimal solution would begin broadcasting items immediately.

Greedy will choose not to broadcast any item until the accumulated wait time of all

requests for some item has exceeded (3. It is clear, then, tha t GREEDY will desire to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MINIMIZING TW O METRICS: THE MULTI-ITEM CASE 83

broadcast all items at the same point in time, say t = I. Due to the limitations of the single

channel, however, GREEDY will not be able to satisfy all requests until m ticks later. More

formally, let I be the tick a t which the first broadcast is made. This means tha t m sets of rq

requests have waited for the previous I — 1 ticks. Thus, a total wait time of m(l — l)n i has

accrued before a broadcast is made. The group of requests satisfied by the first broadcast

will incur one additional tick of waiting, the group satisfied by the second broadcast will

incur two additional ticks of waiting and so on. As such, ln i+ 2 n H \-mn\ = ^m (rn+ l)n i

total wait time will accrue after the broadcasting of items has begun. Clearly m broadcasts

will be needed resulting in a total broadcast cost of m/3. The total cost of the schedule

produced by GREEDY in this instance is then

C = ^m (m + l)n i + m (l — l)n i + m/3.

In contrast to the behavior of GREEDY above, the OPT schedule begins broadcasting

immediately, satisfying a group of requests each tick. T hat is, the schedule produced by

OPT eliminates the I ticks GREEDY waiting before its first broadcast resulting in a schedule

tha t satisfies all requests within m ticks for a cost of

1
C* = -m (m + l)n i + m(3.

z

W ithout loss of generality, assume m = | . From the costs of each schedule described

above the ratio of GREEDY over OPT is then

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MINIMIZING TW O METRICS: THE MULTI-ITEM CASE 84

C_
C*

^m (m + 1) + m{l — l)n i + m/3
\m (m + 1) + m(3

\m (m + 1) | + m (l — 1)^ + m/3

^m (m + 1) j + m/3
m (m + 1)(3 + 2 m (l — 1)(3 + 2 m/3l

1 +

1 +

1 +

m (m + 1)(3 + 2 m(3l
2 m{l — 1)/3

m (m + 1)(3 + 2 m/3l
2(1- 1)

(m + 1) + 2Z
2 1 - 2

21 + 771 + 1

As I —*■ oo, meaning tha t (3 has become arbitrarily large, the above ratio approaches 2.

■

5.4 Simulation Results

In order to develop a feel for the empirical behavior of each algorithm, we utilize a discrete-

event simulation to model the effects of various input sequence properties on the performance

of MRF and GREEDY. Unlike the model of the previous chapter in which finding an optimal

solution was polynomial, the model in this chapter is computationally more strenuous. For

arbitrarily large instances of the problem it is time-consuming to determine the extent to

which a schedule produced by MRF or GREEDY deviates from the optimal. As such, we

compare the performance of each algorithm strictly to the other.

For the results to follow, each replication (simulated instance) consists of stochastically

generating an arrival sequence, simulating the server’s scheduling decisions according to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MINIMIZING TW O METRICS: THE MULTI-ITEM CASE 85

the algorithm under study, and collecting data to compute the sum of wait times, sum of

broadcast cost, and total schedule cost statistics. Because the terminal condition is specified

by the number of processed requests, the terminal time (makespan) will vary from instance

to instance. Large numbers of replications (1000 replications for results displayed in figures)

are used for each parameter change to ensure tha t the behavior observed is not dependent

on any one run. Thus, replications are generated such that statics are reported at 95%

confidence.

5 .4 .1 S im u la tio n P a ra m e ters

Several parameters to the problem will affect the characteristics of the input sequence that

is simulated on each algorithm for each replication: the arrival rate, the inter-arrival time,

and the total number of requests set to arrive. In the absence of motivation for any other

distribution, the arrival rate of requests is generated through use of a discrete version of

the Exponential distribution. This rate measures the number of requests, or the size of the

group of requests, arriving per tick. The inter-arrival time establishes the frequency of ticks

tha t will see the arrival of these request groups. An average inter-arrival time of 1 means

tha t most ticks see the arrival of requests versus larger inter-arrival times tha t translate

into longer periods of time in which no requests arrive. Requests will stop arriving after

the specified total number of requests have been generated.

All the following results are obtained from simulation runs in which the three items in

the database are unit-sized. Note tha t in terms of implementation each scheduling algorithm

must be consulted each system tick for a decision to wait or broadcast.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MINIMIZING TWO METRICS: THE MULTI-ITEM CASE 86

5 .4 .2 P er fo rm a n ce C om p a r iso n s

Due to the fact tha t MRF does not consider broadcast cost in its decision making, we expect

in general to see tha t it is inferior (it’s schedules are more costly) to GREEDY within

contexts where the broadcast cost plays a large role. MRF does aggressively minimize

wait time, however, whereas GREEDY is more careful to avoid unnecessary broadcast cost.

When the value of j3 is relatively small and there are many requests in queue, it can be seen

tha t MRF performs quite well, since any unnecessary broadcasts are not remarkably harmful

to the overall schedule cost. When (3 is small, GREEDY may also become too reactive -

accumulating wait time in an attem pt to avoid the minimal penalty of broadcasting too

readily.

Figure 5.3 illustrates the performance of the two algorithms over instances generated

with 3: 8 = 10, an average inter-arrival time between groups of 1, and an average group size

of 5 requests. While the algorithms do show comparable performance, it is clear tha t MRF

outperforms GREEDY under this set of parameters.

As stated earlier, however, the strength of GREEDY (and the weakness of MRF) lies in

its ability to compensate for broadcast costs tha t are large enough to warrant waiting for

a more justifiable time to broadcast an item. By increasing the value of (3 to 30 (holding

all other parameters static), we can illustrate the weakness of MRF in adapting to large

broadcast costs. As (3 becomes increasingly large compared to the number of requests wait

ing in queue, MRF will blindly continue to broadcast as often as possible while GREEDY

compensates for the change. Compare Figure 5.4 to Figure 5.3 and note tha t GREEDY

now outperforms MRF.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MINIMIZING TWO METRICS: THE MULTI-ITEM CASE 87

Figure 5.3: BENCHMARKING AT BETA = 10

Multi Item Algorithms

Total Schedule Cost Comparison
MRF

GREEDY4500

8 3000
©
3

to

I

500

40 too0 10 50 60 70 80 9020 30
Number of Arrival Groups

While it is clear the impact of an increasing (3 is to diminish the effectiveness of MRF,

note tha t increasing the average inter-arrival time of arriving groups will likewise mitigate

the effectiveness of GREEDY. Intuitively, this is due to the tendency of GREEDY to wait

until a justification to broadcast is clear. A setting in which groups of requests consis

tently arrive in bursts is ideal for an algorithm tha t never hesitates to broadcast (MRF)

but troublesome for one th a t will wait to see if more requests will accumulate to satisfy at

once. The top graph of Figure 5.5 shows the impact of taking the parameters of Figure

5.3 and increasing the average inter-arrival time by a factor of 10. We see tha t the perfor

mance of GREEDY suffers while MRF continues to perform well, a trend supported by the

competitive ratio of MRF for effectively small (3 values.

Finally, it can be seen tha t the performance of both algorithms relative to each other is

largely independent of the size of the arriving request groups when beta is relatively small.

For MRF, the sheer size of each group is not as im portant as the size of each group with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MINIMIZING TWO METRICS: THE MULTI-ITEM CASE 88

Figure 5. 4: EFFECT OF INCREASING BETA to 30

Multi Item Algorithms
8000

Total Schedule Cost Comparison
MRF —

GREEDY
7000

6000

g 5000

£
3
~ 4000I
(0a£ 3000

2000

80 900 10 40 50 80 70 10020 30
Number of Arrival Groups

respect to the others and for GREEDY large group sizes are relevant only in comparison to

13. As mentioned in Chapter 1, it is this ability of data broadcasting to scale with respect

to massive request loads tha t has made the technique popular. The bottom graph of Figure

5.5 was created using the same parameters as those of Figure 5.3. Note tha t while the scale

of total schedule cost is much larger in the bottom graph of Figure 5.5 , the performance

of both algorithms relative to each other is steadily analogous to tha t 5.3.

5 .4 .3 S im u la tio n C o n c lu sio n s

While a quick glance a t the figures above would seem to show more instances in which MRF

outperforms GREEDY, it is im portant to note tha t the settings in which MRF did excel

were those minimizing the impact of the broadcast cost. In most real settings, the use of

a broadcast cost will naturally imply tha t the cost is non-trivial. As such, the superior

performance of GREEDY over MRF when broadcast costs are large should be emphasized.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MINIMIZING TW O METRICS: THE MULTI-ITEM CASE

Figure 5.5: EFFECTS OF MODELING THE INPUT SEQUENCE

Multi Item Algorithms

Total Schedule Coat ComparisonMRF -

5000

I
i
I

4000

aZ

0 10 20 30 40 50 60 70 00 90 100
Number of Arrival Groups

INCREASING AVERAGE INTERARRIVAL TIME
Multi Item Algorithms

35000
Total Schedule Cost Comparison

MRF

a
.2

oto

0 10 20 30 40 50 60 70 00 90 100
Number of Arrival Groups

INCREASING AVERAGE GROUP SIZE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Conclusions and Future Work

In this thesis we have contributed results to three different models of the data broadcast

scheduling problem. In data broadcasting, a server with access to a set of items attem pts to

satisfy data requests from its clients by efficiently broadcasting those items. The question

of what item to send at each opportunity is addressed by a scheduling algorithm whose

performance is of critical concern. In order to evaluate the performance of an algorithm in

a given instance, the schedule constructed is measured by an objective function representing

the quality of service provided by the system to its clients and, at times, to itself. While

most of the work done to date relies on stochastic assumptions to analyze these scheduling

algorithms, we employ a worst-case technique known as competitive analysis. The signifi

cance of our approach is tha t it provides solid measures of performance over all instances

in contrast to those based on historical distributions tha t may not be accurate or available.

As broadcasting systems may attem pt to optimize various aspects of performance, a spe

cific broadcasting model will be distinguished by differing objective functions, and thus by

differing characteristics of metric optimization, number of database items, and number of

broadcast channels. In this thesis we have addressed three such models :

1. In Chapter 3 we have described the data broadcast scheduling problem in which

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 91

a server attem pts to minimize the total wait time of all requests in the context of a

single channel and multiple database items. This model is of interest because it is well-

known in the field and represents the most commonly used metric in broadcasting.

In this context, we have established competitive ratios for the on-line algorithms

First Come First Served (FCFS) and Most Requests First (MRF). Like the model

in which they are found, these two algorithms are well-utilized benchmarks. We

have also provided a general lower bound for all algorithms in this context. These

contributions establish tha t both FCFS and MRF have a performance in the worst-

case tha t is as good as any algorithm can hope to achieve. At the same time we have

described simulation experiments tha t compare the performance of MRF to FCFS

using assumptions of exponential arrival rate and equally likely item distributions.

These experiments indicate tha t MRF is superior to FCFS on average, despite their

equal competitive ratios in the worst-case.

2. In Chapter 4 we have introduced a model that, to our knowledge, has never appeared

in the pull-based1 version of data broadcasting. We consider a server with the goal of

minimizing both the total wait time and total broadcast cost in the context of a single

channel and single database item. Broadcast cost is a useful metric tha t measures the

“drain” of broadcasting on the system itself. This metric is desirable because it is

highly versatile and can be used to represent many features of relatively new systems

(such as the battery drain in mobile devices). I t ’s inclusion in this model is also of

interest because the objective function is then one composed of two conflicting met

1 As discussed in Chapter 2, pull-based broadcasting, in which the server is explicitly aware of client
requests, contrasts with push-based broadcasting, in which the server assumes the requests follow some
distribution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 92

rics. We have described two algorithms (LAZY and GREEDY) specifically developed

for this model and established their competitive ratios. In addition, we have devel

oped an optimal off-line algorithm for this context which has been used to simulate

the performance of the two on-line algorithms using assumptions of exponential ar

rival rate and equally likely item distributions. These simulations indicate tha t while

both algorithms may achieve near optimal performance under certain circumstances,

GREEDY is competitive superior to LAZY under more realistic settings.

3. In Chapter 5 we have extended the model from Chapter 4 to minimize both the total

wait time and total broadcast cost in the context of a single channel and multiple

database items. This extension pushes the model toward greater applicability and

complexity. We have established a lower bound to the GREEDY algorithm. Again,

the use of broadcast cost in this pull-based context is new to the field. For lack of an

optimal algorithm in this context, we have compared the performance of the GREEDY

algorithm to tha t of MRF. We have described simulation experiments using assump

tions of exponential arrival rate and equally likely item distributions tha t compare the

performance of MRF to GREEDY. While MRF does outperform GREEDY in many

settings, those settings minimize the impact of the broadcast cost. In instances where

broadcast cost is significant we have shown the GREEDY algorithm is superior on

average.

In addition to the analytical results above we have accompanied the analysis in each

chapter by scheduling diagrams and simulation experiments tha t provide a backdrop for the

competitive ratios supplied. It should be noted tha t the graphical depiction of the pull-based

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 93

model we have engendered is an original tool w ith the potential to greatly enhance pull-based

model discussions and there are several general reasons we have incorporated simulation

results other than those mentioned specifically above. First, while we emphasize worst-case

performance it is im portant to note tha t this measure is not meant to supersede average case

analysis but to complement it (or provide some measure when no average case assumptions

are reliable). In terms of algorithm design, our contributions have established how well

these above algorithms perform in worst-case scenarios, and it is useful to see examples

of how tha t performance compares to what a server might see on average. Secondly, the

models incorporating broadcast cost have not been studied in the pull-based version of the

problem and thus have no previous simulations with which to compare their performance.

Thirdly, other than the model of Chapter 4 tha t we have shown to be solvable in polynomial

time, the other models deal with scheduling problems tha t are NP-Hard (See Chapter 2 for

discussion). As such, it is computationally infeasible to provide direct comparisons of an

algorithm to the optimal and we employ simulation to provide some relative comparison of

the algorithms in question to each other. This computational intractability has implications

for how data broadcasting models of additional complexity will be pursued in the future.

On tha t note we can envision several directions worthy of additional pursuit. These

areas of future work fall broadly under the two categories model extensions and empirical

research.

While the push-based community has studied an array of metrics and system character

istics, many of these model extensions have not yet been exhausted analytically within the

pull-based system environment. From the perspective of the system environment, the use of

multi-sized database items [42] [15] introduces interesting questions of allowing the server to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. CONCLUSIONS AND FUTURE W ORK 94

preempt the transmission of an item before its completion as well provides the challenge of

creating algorithms capable of dealing with this additional option. The concept of request

satisfaction would need to be redefined as the start of a broadcast would no longer be a

sufficient condition of satisfaction. W ith respect to request characteristics the application

of non-infinite deadlines with penalties would add an interesting model variation. A new

definition of system termination would need to be established to provide for requests tha t

remain forever unsatisfied.

The increasing complexity of these models will test the limits of the worst-case analysis

techniques we employ and simple simulation analysis may not be able to construct optimal

schedules for empirical studies of real-world size. As discussed in Chapter 2, the NP-

hardness of several models has already been established and there is reason to believe more

complicated model extensions will also fall into the category of NP-hard. Thus, as seen in

Chapter 3, it becomes computationally infeasible to compare the performance of heuristics

to optimal solutions when instance sizes are large and the optimal solutions are exponential

calculations. For settings in which optimal solutions are required for performance measures,

it is likely tha t techniques enabling more efficient searches in combinatorial spaces (such

as constraint processing discussed at length by Dechter [18]) will need to be applied to the

data broadcast scheduling problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] S. Acharya. Balancing push and pull for data broadcast. In Proceedings AC M SIG-
MOD, Tuscon, Arizona, 1997.

[2] S. Acharya, R. A lonso , M. F ranklin , and S. Zdonik . Broadcast disks: D ata
management for asymmetric communication environments. Technical Report CS-94-43,
Brown University, Providence RI, 1994.

[3] S. Acharya, M. F ranklin , and S. Zdonik . Dissemination-based data delivery
using broadcast disks. In IEEE Personal Communications, pages 2(6):50- 60, Roma,
Italy, 1995.

[4] S. Acharya, M. F ranklin , and S. Zdonik . Dissemination-based data delivery
using broadcast disksprefetching from a broadcast disk. In Proceedings of the 12th
International Conference on Data Engineering, 1996.

[5] S. Acharya and S. M uthukrishnan . Scheduling on-demand broadcasts: new met
rics and algorithms. In Proceedings of the 4th Annual A C M /IE E E International Con
ference on Mobile COmputing and Networking (Mobicom), pages 43-54, 1999.

[6] D. A ksoy, M. A ltinel, R. B ose , U. C e tin tem el , M. F ranklin , J . Wang , and

S. ZDONIK. Research in data broadcast and dissemination. In Proceedings o f the 1st
International Conference on Advanced Multimedia Content Processing, 1998.

[7] D. A ksoy and M. F ranklin. On-demand broadcast scheduling. Technical Report
CS-TR-3859, University of Maryland, College Park MD, 1998.

[8] D. A ksoy and M. F ranklin . Scheduling for large-scale on-demand data broadcast
ing. In Proceedings o f the IEEE INFOCOM Conference, pages 651-659, 1998.

[9] D. A ksoy, M. F ranklin , and S. Zdonik . D ata staging for on-demand broadcast.
In Proceedings of the 27th VLDB Conference, pages 651-659, Roma, Italy, 2001.

[10] M. H. A mmar and J. W . W ong . Analysis of broadcast delivery in a videotext
system. In IEEE Transactions on Computers, pages 34(9):863-966, 1985.

[11] M. H. A mmar and J. W . W ong . The design of teletext broadcast cycles. In
Performance Evaluation, pages 5(4):235-242, 1985.

[12] M. H. A mmar and J . W . W ong . On the optimality of cyclic transmission in teletext
systems. In IE E E Transactions on Communications, pages 35:68-73, 1987.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 96

[13] A. B ar-N oy, R. B hatia, J. Naor, and B. Schieber. Minimizing service and
operation costs of periodic scheduling (extended abstract). In Symposium on Discrete
Algorithms, pages 11-20, 1998.

[14] A. B ar-N oy , B. Patt-Sham ir , and I. Zip e r . Broadcast disks with polynomial cost
functions. In INFOCOM (2), pages 575-584, 2000.

[15] Y. B artal and S. M uthukrishnam . Minimizing maximum response time in schedul
ing broadcasts. In Proceedings o f the Eleventh Annual AC M -SIAM Symposium on
Discrete Algorithms, pages 558-559, 2000.

[16] J. L. Bentley and C. M cG eoch . Amortized analysis of self-organizing sequential
search heuristics. Communication of the SCM, 28(4):404-411, 1985.

[17] A. B orodin and R. E l-Yaniv . Online computation and competitive analysis. Cam
bridge University Press, first printing edition, 1998.

[18] R. D e c h t er . Constraint processing. Morgan Kaufmann, first printing edition, 2003.

[19] H. D. Dykem an , M. H. A m m ar , and J. W . W ong . Scheduling algorithms for video
tex system under broadcast delivery. In Proceedings of the International Conference
on Communications, pages 1847-1851, 1986.

[20] T. E rlebach and A. H all. Np-hardness of broadcast scheduling and inapprox-
imability of single-source unsplittable min-cost flow. In Proceedings of the Thirteenth
Annual ACM -SIAM Symposium on Discrete Alqorithms, pages 194-202, San Francisco,
California, 2002.

[21] M. R. G arey and D. S. J ohnson. Computers and intractability. New York, W. H.
Freeman, twenty-first printing edition, 1979.

[22] A. V. G oldberg , H. K apla n , and R. E. Tarja n . Heaps with time, applied to
broadcast scheduling, manuscript, 1999.

[23] R. L. G raham . Bounds on multiprocessing timing anomalies. SIA M Journal of
Applied Mathematics, 17(2):416-429, 1969.

[24] Y. G uo, S. K. Das, and C. M. P in o tt i. A new hybrid broadcast scheduling algo
rithm for asymmetric communication systems: Push and pull data based on optimal
cut-off point. In Proceedings of the 4th AC M international workshop on Modeling,
analysis and simulation of wireless and mobile systems, pages 123-130. ACM Press,
2001 .

[25] S. Hameed and N . H . Vaidya. Log-time algorithms for scheduling single and multiple
channel data broadcast. In Proceedings of the Third Annual A C M /IE E E International
Conference on Mobile Computing and Networking, pages 90-99, 1997.

[26] S. Hameed and N. H. Vaidya. Efficient algorithms for scheduling data broadcast.
Wireless Networks, 5(3):183-93, 1999.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 97

[27] A. T . Hawkins and W . Mao. On multi-channel data broadcast scheduling. In
Proceedings of the 6th Joint Conference on Information Sciences (JCIS'), pages 915-
918, Research Triangle Park, North Carolina, March 2002.

[28] S. Jiang and N. H. Vaidya. Scheduling algorithms for a data broadcast system:
Minimizing variance of the response time. Technical Report T R 98-005, Texas A&M
University, College Station, TX, 1998.

[29] B. Kalyanasundaram and K. P ruhs. Speed is as powerful as clairvoyance. Journal
of the AC M (JACM), 47(4):617-643, 2000.

[30] B. Kalyanasundaram, K. P ruhs, and M. V elauthapillai. Scheduling broad
casts in wireless networks. In European Symposium on Algorithms, 2000.

[31] A. R. Karlin, M. S. Manasse, L. Rudolph, and D. D. Sleator. Competitive
snoopy aaching. Algorithmica, 3(1):79-119, 1988.

[32] R. M. KARP. On-line algorithms versus off-line algorithms: How much is it worth
to know the future? Technical Report TR-92-044, International Computer Science
Institution, 1992.

[33] C. K enyon and N. Schabanel. The data broadcast problem with non-uniform
transmission times. In SODA: AC M -SIAM Symposium on Discrete Algorithms (A
Conference on Theoretical and Experimental Analysis of Discrete Algorithms), 1999.

[34] C. Kenyon, N. Schabanel, and N. Y oung. Polynomial-time approximation
scheme for data broadcast. In AC M Symposium on Theory of Computing, pages 59-66,
2000.

[35] E. Koutsoupias and C. H. Papadimitriou. Beyond competitive analysis. In 35th
Annual Symposium on Foundations of Computer Science, pages 394-400, Santa Fe,
New Mexico, 20-22November 1994.

[36] M. S. Manasse, L. A. McGeoch, and D. D. Sleator. Competitive algorithms for
on-line problems. In Proceedings o f the Twentieth Annual A C M Symposium on Theory
of Computing, pages 322-333, Chicago, Illinois, May 1988.

[37] W . Mao . Competitive analysis of on-line algorithms for on-demand data broadcast
scheduling. In Proceedings of the International Symposium on Parallel Architectures,
Algorithms, and Networks, pages 292-296, 2000.

[38] S. Hameed N. H. Vaidya. Scheduling data broadcast in asymmetric communication.
Technical Report TR-96-022, Texas A&M University, College Station, TX, 1996.

[39] J. Oh , K. Hua , and K. P rabhakara. A new broadcasting technique for an adaptive
hybrid data delivery in wireless mobile network environment.

[40] S. P hillips and J. W estbrook. On-line algorithms: Competitive analysis and
beyond. In Algorithms and Theory of Computation Handbook, M. J. Atallah, editor,
chapter 10. CRC Press, Boca Raton, 1999.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 98

[41] M. P inedo . Scheduling theory, algorithms and systems. Prentice Hall, second edition
edition, 2001.

[42] J . Edmonds K. P ruhs. Broadcast scheduling: When fairness is fine. In Proceedings of
the Thirteenth Annual ACM -SIAM Symposium on Discrete Algorithms, pages 421-430,
2002 .

[43] N. Schabanel. The data broadcast problem with preemption. In Symposium on
Theoretical Aspects o f Computer Science, pages 181-192, 2000.

[44] D. D. Sleator and R. E. Tarjan . Amortized efficiency of list update and paging
rules. Communications of the ACM, 28(2):202-208, 1985.

[45] O. U lusoy and M. Karakaya. Evaluation of a broadcast scheduling algorithm. In
Advances in Databases and Information Systems, 5th East European Conference, pages
182-195, 2001.

[46] N. H. Vaidya and S. Hameed. D ata broadcast scheduling: on-line and off-line
algorithms. Technical Report TR96-017, Texas A&M University, College Station, TX,
29 1996.

[47] R. Gandhi S. Khuller Y. Kim Y. Wa n . Algorithms for minimizing response time in
broadcast scheduling. In Proceedings o f the Ninth Conference on Integer Programming
and Combinatorial Optimization, 2002.

[48] J. W . W ong. Broadcast delivery. In Proceedings of the IEEE, pages 1566-1577, 1988.

[49] N. Y oung. On-line caching as cache size varies. In Proceedings of the Second A n
nual AC M -SIAM Symposium on Discrete Algorithms, pages 241-250, San Francisco,
California, 28-30 January 1991.

[50] N. E. Y oung. Competitive paging and dual-guided on-line weighted caching and
matching algorithms. Technical Report 348-91, Ph. D. Thesis, Department of Com
puter Science, Princeton University, 1991.

[51] N. E. Y oung. The k-server dual and loose competitiveness for paging. Alqorithmica,
11(6):525-541, 1994.

[52] N. E. Y oung. On-line file caching. In Proceedings of the Ninth Annual ACM -SIAM
Symposium on Discrete Algorithms, pages 82-86, San Francisco, California, 25-27 Jan
uary 1998.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VITA

Aaron Thomas Hawkins

Aaron Thomas Hawkins was born in Henderson, North Carolina on November 4th,

1976 and graduated from Mountain Heritage High School in Burnsville, North Carolina

in 1999. He earned a Bachelor of Science degree in both Mathematics and Computer

Science from Mars Hill College in May 1999. He received a Master of Science degree in

Computer Science from the College of William and Mary in May, 2001, and will receive a

Doctor of Philosophy degree in Computer Science in May 2005. The author works for the

Intelligent Systems and Planning division of Rockwell Scientific in the Research Triangle,

North Carolina.

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Data broadcast scheduling: Models, algorithms, and analysis
	Recommended Citation

	tmp.1539734415.pdf.ekM9u

