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ABSTRACT

Salt marshes vary greatly in their abilities to serve as sources or sinks of dissolved 
inorganic nitrogen (DIN), dissolved organic nitrogen (DON), and dissolved organic carbon 
(DOC) to overlying tidal water. To gain a better understanding of the processes and 
conditions which regulate these exchanges, seasonal daytime measurements of DIN and 
DOC exchanges between vegetated salt marsh sediments and tidal water were performed in 
a short-form Spartina altemiflora Loisel salt marsh located at Phillips Creek on the Eastern 
Shore of Virginia.

Phillips Creek, a Long-Term Ecological Research (LTER) site, is located in close 
proximity to regularly farmed agricultural fields and pine forests. Exchanges of DEN and 
DOC between the salt marsh and tidal water were measured by isolating small areas of the 
vegetated sediments using in situ benthic chambers. DIN (NH4 +, NO2 -, and NO3 -) 
concentrations, dissolved oxygen, water temperature, and water column chlorophyll a 
within the chambers were measured. In addition, above-ground S. altemiflora biomass 
and sediment chlorophyll a were measured at the study site. DIN concentrations in the 
adjacent creek water were measured over diurnal tidal cycles to better understand the tidal 
creek nutrient dynamics.

Although data were highly variable, sediments in the short-form S. altemiflora salt 
marsh at Phillips Creek appeared to be an annual sink for DOC. No significant differences 
in DOC exchange rates were measured between the fall, winter, and spring. DOC data 
were unavailable for the summer months. This area of the salt marsh also imported DIN 
from the flooding tidal water during all seasons except late winter when little net exchange 
was measured. It is believed that the observed uptake of DIN is a result of assimilation by 
marsh macrophytes and sediment microalgae, as well as immobilization by microbial 
communities on and within the salt marsh sediments. Greatest uptake of NfLf- occurred in 
the summer and fall when NH4 + concentrations in the tidal water and above-ground S. 
altemiflora biomass were at their highest. Greatest NO3 - uptake occurred in the early 
spring when NO3 - concentration in the tidal water and sediment microalgal biomass were at 
their highest.

While the vegetated salt marsh appeared to be an annual sink for DIN, at least 
during daylight conditions, the tidal creek appeared to be a source of DIN to surrounding 
salt marshes and adjacent waters. Although not addressed in this study, advected 
porewater from the creek bank and bottom are likely sources of the NELc to the ebbing 
creek water. NO3 - concentrations in the creek water were found to be inversely related to 
salinity which suggests that dilution from a fresh water source occurred. Since Phillips 
Creek has no other permanent fresh water connections with the uplands other than runoff 
from storm events, and since no samplings occurred after storm events, it is suggested that 
ground water, enriched with fertilizer-derived NO3 -, was the primary source of NO 3 - to the 
ebbing creek water. Although some NO3 - was released into Phillips Creek, the short-form 
S. altemiflora salt marsh appeared to be a substantial “filter” and a crucial sink for NO3 - .
As a result of these exchange studies, the sink or source nature of this salt marsh may not 
only be controlled by biological processes, but also by the physical nature of the upland 
fluxes.

xi



INTRODUCTION

Salt marshes have long been considered among the most productive ecosystems in 

the world. In addition, salt marshes appear to support secondary production by providing 

nutrients and physical habitat to a highly diversified biological community (Turner 1977, 

Lewis and Peters 1984, Turner 1988, Turner and Boesch 1988, Sismour 1994). Teal 

(1962) and Odum and de la Cruz (1967) first suggested that organic matter and nutrients 

exported by salt marsh ecosystems sustain, in part, the productivity in adjacent coastal and 

estuarine water. This idea, known as the “outwelling hypothesis”, inspired great interest 

and curiosity among the ecological community (Nixon 1980). While the outwelling 

hypothesis supported the conservationists movement to preserve our wetlands, it was not 

until the 1970’s that the hypothesis was put to a rigorous test (Axelrad 1974, Moore 1974, 

Axelrad et al. 1976, Valiela et al. 1978, Haines 1979, Lee 1979, Valiela and Teal 1979, 

Nixon 1980).

More recent exchange studies (Wolaver et al. 1983, Jordan et al. 1983, Chalmers et 

al. 1985, Whiting et al. 1985, Childers and Day 1988, Wolaver and Spurrier 1988, 

Wolaver et al. 1988, Boto and Wellington 1988, Spurrier and Kjerfve 1988, Keizer et al. 

1989, Roman and Daiber 1989, Scudlark and Church 1989, Whiting et al. 1989, Childers 

and Day 1990, Chambers et al. 1992, Chambers 1992, Childers et al. 1993a) indicate that 

when salt marshes export nutrients and organic matter, those exports are of small 

magnitude. It remains highly uncertain to what degree estuarine and coastal systems are 

influenced by adjacent tidal marshes.

2
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It is clear that salt marshes often behave as dissolved nutrient and particulate filters. 

Because salt marshes are nitrogen limited during some seasons (Day et al. 1989), they have 

the capability to process excess anthropogenic inputs of organic and inorganic matter ( e.g. 

atmospheric deposition, fertilizers, sewage) and act as sinks for these inputs. In addition, 

recent evidence suggests that the most significant source of ammonium (NH4 +) to the tidal

marsh ecosystem is that which is provided by the recycling of material within the marsh 

(Bowden 1986, Anderson et al. in preparation).

An estimated 50% of the United States population lives within the coastal zone. As 

a result, coastal wetlands are particularly susceptible to human impact. Filling of wetlands 

for development, construction, ditching, and disposal of toxins have been common 

practices over the centuries . In retrospect, these practices have proved detrimental, both 

ecologically and economically, to a highly integrated set of ecosystems (Marinucci 1982).

It has been a long standing paradigm that salt marshes import dissolved, oxidized 

forms of inorganic nitrogen, and export particulate nitrogen and dissolved, reduced forms 

of inorganic and organic nitrogen, as well as particulate and dissolved organic carbon 

(Gallagher et al. 1976, Valiela et al. 1978, Nixon 1980). Numerous studies that have been 

conducted to examine the exchanges that occur between salt marshes and tidal waters do 

not clearly support this paradigm. Most exchange studies have utilized techniques (e.g. 

mass balance studies, flume techniques, hydrodynamic studies) which consider the 

ecosystem as a whole, by integrating different marsh components (e.g. vegetated salt 

marshes, mud flats, creek banks, creek bottoms, oyster reefs). Such large-scale studies 

provide information on the net exports and imports of salt marsh systems and their relative 

importance to surrounding ecosystems; however, they fail to address the underlying 

mechanisms controlling exchange processes. The objective of this thesis was to measure 

exchanges at smaller temporal and spatial scales using benthic chambers. By measuring 

fluxes in this manner, a more precise understanding of sediment-water column exchanges



4

of dissolved nitrogen and carbon pools could be obtained prior to utilization and 

transformation by the water column microbial community or before physical mechanisms 

(e.g. tidal mixing, dilution) altered the flux signal. At the present time, few data exist 

where the dissolved organic fluxes in a salt marsh have been examined in such a manner. 

Another unique aspect of this study is that exchange measurements were performed in 

conjunction with determinations of various microbial, macrophyte, and microalgal process 

rates (Anderson et al. in preparation) so that exchange rates could better be explained.

BACKGROUND INFORM ATIO N

Salt marshes are intertidal ecosystems found in coastal and estuarine areas 

throughout the world. Although regularly influenced by tidal water, complete inundation 

may not occur on a daily basis due to differences in marsh elevation and irregular tidal 

amplitude. Few species of vascular plants are able to withstand the stress induced by 

regular flooding of highly saline water. Spartina altemiflora Loisel is the dominant plant 

found within salt marshes along the Atlantic and Gulf coasts and often exhibits specific 

zonation patterns (Chalmers 1982). A tall form of S. altemiflora is usually located along 

the more frequently inundated and better drained creek bank, while a shorter form is found 

situated inshore at higher elevations (Day et al. 1989).

Estimates of salt marsh primary productivity vary greatly among different marshes, 

as well as within the same marsh (Day et al. 1989). Net primary productivity for the 

dominant grasses found in salt marsh communities range from 160-1500 g C m- 2  yr-f 

Below-ground production of grasses can be considerably higher than above-ground 

production with below ground estimates ranging from 220-2000 g C m- 2  yr-i (Schubauer 

and Hopkinson 1984, Dame and Kenny 1986, Blum 1993, Howarth 1993 ). Benthic 

microalgae found on the surface of the marsh may produce another 80-235 g C m- 2  y r 1
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(Pomeroy et al. 1981, Howarth 1993, Pinckney and Zingmark 1993), which for some 

areas accounts for approximately 25% of the salt marsh’s total net primary productivity 

(Teal 1962). Chemoautotrophic sulphur-oxidizing bacteria can also be an important 

primary producer in some marshes, contributing as much as 275-500 g C m- 2  yr-i 

(Howarth 1993).

Salt marshes appear to act as nitrogen transformers (Nixon 1980). Possible 

anthropogenic sources of nitrogen to salt marshes include atmospheric deposition, 

fertilizers, and sewage. Nitrogen-fixation, sediment deposition, and tidal waters are natural 

sources of nitrogen to the salt marsh. While there are a number of possible sources of 

nitrogen to the salt marsh, losses of nitrogen from the system occur primarily through 

denitrification and tidal exchange (Valiela and Teal 1979). It has been suggested that in 

general, salt marshes import dissolved, oxidized forms of inorganic nitrogen, and export 

dissolved, reduced forms of inorganic nitrogen, as well as dissolved organic carbon and 

nitrogen (Gallagher et al. 1976, Valiela et al. 1978, Nixon 1980, Howes and Goehringer 

1994). Transformation of materials within salt marshes, however, may vary due to 

biological, chemical, and physical parameters, as well as due to seasonal differences, 

geomorphology, hydrology, tidal amplitude, storm events, and anthropogenic inputs 

(Valiela et al. 1978, Odum et al. 1979, Wolaver et al. 1983, Chalmers et al. 1985,

Wolaver et al. 1988, Childers and Day 1990)

In some instances S. altemiflora has been found to be a major factor regulating the 

dissolved nitrogen and carbon pools found within the salt marsh. S. altemiflora has been 

demonstrated to release dissolved organic carbon (DOC) and dissolved organic nitrogen 

(DON) when submerged, suggesting tidal amplitude and inundation are important elements 

in the export of DON, DOC, and dissolved inorganic nitrogen (DIN)(Gallagher et al. 1976, 

Rice and Tenore 1981, Turner 1993). Seasonal trends of leachate loss have been observed 

in a Louisiana salt marsh with peak loss rates occurring in the summer and at higher
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salinities (Turner 1993). Hines (1989) found that in a New England salt marsh, sulfate 

reduction within sediments was stimulated during the active growing season of S. 

altemiflora , and suggested that DOC released from roots fueled this process. 

Decomposition of S. altemiflora has been shown to contribute to the DOC pool in a 

Georgia salt marsh system both directly and indirectly (Moran and Hodson 1990). 

Lignocellulose-derived DOC was estimated to be responsible for approximately 44% of the 

existing DOC pool. Lignocellulose contains both labile and refractory DOC constituents, 

where labile DOC is an important and rapidly utilized carbon source for microorganisms. 

Fungi associated with S . altemiflora have also been shown to contribute to the 

degradation of DOC, but minimally when compared to bacteria (Benner et al. 1984, Benner 

et al. 1986). Research conducted in the Duplin River (Sapelo Island, Georgia) suggests 

that the labile DOC pool is regulated and controlled by planktonic microbial populations 

(Pomeroy et al. 1981). Upon assimilation by microorganisms, DOC and particulate 

organic carbon (POC) is made available as biomass to higher trophic levels (Gallagher et al. 

1976, Moran and Hodson 1989, Moran and Hodson 1994). Perhaps as important, 

microbial populations play important roles in nutrient regeneration and the biogeochemical 

cycling of sulfur, manganese, iron, and nitrogen (Ducklow et al. 1986). Moran and 

Hodson (1994) demonstrated that some microorganisms can udlize refractory DOC 

elements as well, although more slowly and less efficiently than labile DOC. It is 

suggested that because of the longer turnover times, refractory DOC components are more 

likely to be available for export to the ocean than are labile components.

Numerous approaches have been utilized to examine exchanges and transformations 

which occur between salt marshes and their surrounding ecosystems. The approaches have 

included mass balance studies, flume techniques, hydrodynamic studies, and benthic 

chamber experiments. A wide variety of marshes differing in salinity, geographical 

location, geological age, tidal regime, and elevation have been studied and shown to exhibit
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diverse behavior relative to both the magnitude and net direction (import/export) of 

exchange. Table 1 is a summary of many of the exchange studies referred to in the 

following discussions.

The mass balance approach integrates the exchanges of all systems and 

components. This strategy often involves multiple experimental methods, including flume 

and hydrodynamic studies, and measures such processes as atmospheric deposition, 

groundwater, freshwater stream input, nitrogen fixation, denitrification, and exchanges 

that occur between sediments, vegetation, mud flats, oyster reefs, and tidal creek waters 

(Valiela et al. 1978, Valiela and Teal 1979, Wolaver et al. 1988, Dame et al. 1991).

Material inputs to the system are compared to outputs from the system and a balance or 

imbalance of material exchanged is determined. Mass balance models, however, are 

usually based on standing stocks of nutrients within a system and do not focus on their 

rates of turnover times. Process rates, many of which are extremely difficult to measure, 

are rarely considered but can be an important factor in the exchange dynamics of a salt 

marsh system.

The marsh flume technique has been used in many studies of marsh-tidal creek 

exchanges over the last fifteen years and include the work of Lee 1979, Wolaver et al.

1983, Jordan et al. 1983, Chalmers et al. 1985, Spurrier and Kjerfve 1988, Childers and 

Day 1988, Wolaver and Spurrier 1988, Whiting et al. 1989, Childers and Day 1990, Dame 

et al. 1991, Childers 1993b. The marsh flume consists of two parallel fiberglass walls 

which are inserted into the marsh surface. The walls extend from the tidal creek, through 

the different zones of the marsh, and often into the uplands (Childers 1993a). The flume 

acts to channelize tidal water and prevent its lateral movement. Water is sampled 

periodically, usually from one end of the flume, over the course of the tidal cycle. It is 

assumed that any water leaving the flume on an ebbing tide is the same water that entered 

the flume. Material



Table 1: Summary of annual NFLf*", NO2 ', NCV, total DIN, DON, and DOC exchanges
for studies cited in thesis. “E” indicates export of constituent from salt marsh, “I” 
indicates import of constituent by the salt marsh, and “0 ” indicates no exchange.
^ re a t  Sippewissett, MA from Valiela et al. (1978) and Valiela and Teal (1979); 
bWare Creek and cCarter Creek, VA from Axelrad et al. (1976); dCarter Creek, 
VA from Wolaver (1983); eNorth Inlet, SC from Whiting et al. (1985) and 
Whiting et al. (1987); fNorth Inlet, SC from Wolaver and Spurrier (1988), 
Spurrier and Kjerfve (1988), and Whiting et al. (1989); gNorth Inlet, SC from 
Wolaver et al. (1988); hSapelo Island, GA from Haines (1979); ‘Sapelo Island 
from Chalmers et al. (1985); ^Cumberland Island, GA from Childers et al.
(1993); kBarataria Basin and ^ourleague Bay, LA from Childers and Day 
(1990); mGreat Marsh, DE from Scudlark and Church (1989); nBay of Fundy, 
Canada from Keizer et al. (1989); °Phillips Creek, VA from Chambers et al. 
(1992); PChickahominy River, VA from Chambers (1992).
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Marsh
Exchange
Technique

U sed
Total
DIN

n h 4+ n o 2* n o 3- DON DOC

aGreat 
Sippewissett3  MA

Mass
Balance E E E E

bWare Creek 
VA Hydrodynamic E I I E E

cCarter Creek 
VA Hydrodynamic I I I E E

dCarter Creek 
VA Flume I E I I

eNorth Inlet 
SC Hydrodynamic E E

fNorth Inlet 
SC Flume I I E 0

gNorth Inlet 
SC

Mass
Balance 0 0 E

hSapelo Island 
GA

Offshore
Sampling 0 E

'Sapelo Island 
GA Flume 0

•^Cumberland Island 
GA Flume I I 0

^arataria  Basin 
LA Flume E E E E E

^ourleague Bay 
LA Flume I E I

mGreat Marsh 
DE

Benthic 
Chambers/ 
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exchanges are calculated based on the integrated volumetric exchanges of tidal water and 

material concentrations through the flume. Flume studies are extremely useful when 

measuring exchanges for the salt marsh ecosystem as a whole; however, they fail to isolate 

any one component (e.g. vegetated salt marsh, mud flat).

Hydrodynamic studies involve intensive sampling of water from transects that are 

established across a creek or inlet (Whiting et al. 1985, Wolaver et al. 1988, Boto and 

Wellington 1988, Roman and Daiber 1989). In brief, throughout diurnal tidal cycles, 

current velocity, water depths, and nutrient concentrations are measured at numerous points 

along the transect. An instantaneous profile of nutrient flux at each point is calculated by 

multiplying concentration by velocity. Profiles are then integrated over the cross-sectional 

area of the creek and added together to estimate the instantaneous exchange of water and 

nutrients across the transect (Axelrad et al. 1976, Whiting et al. 1985). Estimations of 

exchanges using the hydrodynamic approach can be problematic in that often the volume of 

water measured entering the tidal creek does not equal that leaving the creek.

Valiela et al. (1979) used a mass balance approach to measure the nitrogen budget 

of the Great Sippewissett Marsh, Massachusetts, USA. The Great Sippewissett Marsh is 

unusual in that ground water is a major source of nitrogen to the salt marsh. In addition to 

ground water, rainwater and nitrogen-fixation were found to be sources of DIN and DON 

to the salt marsh, and appeared to provide more than enough to support the demands of 

marsh primary producers. During the summer, utilization by marsh primary producers 

resulted in an import of nutrients to the marsh. On an annual basis, however, tidal 

exchange was shown to export DIN and DON. Nutrient concentrations in the overlying 

marsh water were correlated with concentrations in the adjacent coastal water, suggesting 

that the salt marsh was a possible source of nutrients to the coastal water. In addition to the 

net export of nutrients from the salt marsh tidal water, another major loss of nitrogen from 

the system occurred due to high rates of denitrification. High concentrations of NO3 -
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provided by ground water were probably responsible for the high rates of denitrification 

measured at this system. Valiela and Teal suggested that the Great Sippewissett Marsh was 

in steady state, and the outputs of nitrogen balanced the gains.

To address salt marsh exchange characteristics in the Chesapeake Bay, USA, 

Axelrad and Moore (Axelrad 1974, Moore 1974, Axelrad et al. 1976) utilized a 

hydrodynamic approach to compare nitrogen and carbon fluxes in two subestuaries of the 

York River. On an annual basis Ware Creek (7 ppt) and Carter Creek (12 ppt) both 

imported nitrite (NO2 -) and nitrate (NO3 -). Annually, exports of ammonium (NH4 +),

DON, and DOC were measured. Although Carter Creek showed a net export of NH4 +, 

the salt marsh did import this constituent in the spring. Carter Creek imported particulate 

nitrogen (PN) while Ware Creek exported PN. When considering all nitrogen constituents 

together, there was a significant annual export of nitrogen from the two salt marsh 

ecosystems. Wolaver et al. (1983) conducted a flume experiment in the Carter Creek 

vegetated salt marsh which showed an uptake of DIN, DON and PN during tidal 

inundation with definite seasonal trends for each constituent. During late spring and early 

fall, tidal water was enriched with NH4 + as a result of increased agricultural activity and

runoff from adjacent fields. Greater uptake of NPLf- by the marsh also coincided with

water column NfLf- enrichment. Release of NFL** to tidal water occurred in late summer

at which time water column concentrations of this constituent were low. This marsh was

able to remove large amounts of DIN from the tidal water, especially when concentrations

of DIN were high. This demonstrated the marsh’s ability to act as a sink for surplus

inorganic nitrogen. In this particular case, during inundation, this marsh did not appear to
*

be a source of organic matter and nutrients to the adjacent estuary.

In contrast, flume studies conducted by Jordan et al. (1983) in two brackish 

marshes (0-22 ppt) in the Rhode River of the Chesapeake Bay exhibited export of DON 

and NO3 - and import of organic particulates and NH4 +. They hypothesized that the
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primary role of the salt marsh was to transform particulates into dissolved nutrients which 

could readily be utilized by the adjacent mudflat. Welsh (1980) also suggested that a 

northeastern salt marsh located in Long Island Sound, USA, was the source of nutrients 

for adjacent mudflats which were shown to remove nutrients from the tidal water.

The salt marsh ecosystem at North Inlet, South Carolina, USA has been studied 

extensively. In a hydrodynamic study of nitrogen exchange between the euhaline salt 

marsh and the coastal ocean, a series of tidal creeks showed consistent export of DIN 

(Whiting et al. 1987, Whiting et al. 1989). Concentrations of DIN increased during the 

ebb flow. Peak NH4 + export occurred in the summer, whereas peak NCb- + NO3 - export

occurred in the fall and winter. Dame et al. (1991) found that oyster reefs were a 

significant source of the DIN that was observed to leave the creek on the ebbing tide.

Flume studies examining nitrogen and carbon exchanges between a vegetated salt 

marsh and the adjacent tidal creek were also performed at North Inlet (Spurrier and Kjerfve 

1988, Wolaver and Spurrier 1988, Whiting et al. 1989). During tidal inundation the salt 

marsh imported DIN and PN and exported DON. Import of DOC was noted, although 

insignificant. There was, however, a net export of nitrogen from the system which was 

attributed to DON. Seasonal patterns of uptake and release of DIN were exhibited and 

appeared dependent on nutrient concentrations in the flooding tidal water. Rain events 

during marsh surface exposure caused an increase in the export of PN to the tidal creek. 

Although seasonal variations were observed, this system appeared to act as a sink for POC 

and by means of runoff and seepage during low tide exposure, a source for DOC.

Annually, however, carbon exchange between the vegetated marsh and the tidal creek 

appeared to be insignificant. A mass balance study, where exchanges between water 

column, vegetated salt marsh, oyster reefs, freshwater streams, ground water and rain were 

integrated, displayed insignificant DIN exchange and an annual export of DON (Wolaver et 

al. 1988).
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The salt marshes of Sapelo Island, Georgia, USA have been the focus of many 

studies since the mid 1950’s (Wiegert et al. 1981). Among the studies, nutrient dynamics 

and material exchanges have been examined using flumes, mass balance, and 

hydrodynamic approaches. Haines (1979) compared nutrient concentrations between tidal 

water within salt marshes and offshore waters and suggested that there was no net 

movement of DIN between the systems. She suggested a net import of PN and a net 

export of DON. Based on flume studies in the Duplin River salt marshes, Chalmers et al. 

(1985) reported no significant exchange of DOC. They hypothesized that although DOC 

and POC were exported down the river, the bulk of this material was resuspended during 

flood tide and deposited back onto the marsh. During low tide drainage and rainstorms, 

however, they reported that salt marshes appeared to be significant sources of DOC. 

Childers et al. (1993b) chose three sites differing in geologic age, sediment characteristics, 

topography, and elevation to conduct a series of flume experiments in the Cumberland 

Island estuary of Georgia. The geologically youngest salt marsh, which also corresponded 

to the lowest in elevation, displayed greater DEN and DOC uptake than the older salt 

marshes, although DOC import was not statistically significant. These younger marshes 

exported material when inundated for unusually long periods of time.

Few studies exist for marsh-water column nutrient exchanges in the microtidal 

environments of Gulf Coast salt marshes. Childers and Day (1990) used a modified flume 

technique to measure tidal exchanges between brackish and saline, deteriorating/erosional 

salt marshes and water. The deteriorating, subsiding Louisiana salt marshes were shown 

to export DON, DIN, and DOC. They suggested that DIN export may be attributed to 

erosion, whereby nitrogen that had accumulated during the marsh’s developmental stages 

was being released. In an accreting, younger, coastal, brackish marsh system seasonal 

differences in DIN import and export were observed. The marsh acted as a sink for DIN in 

the spring when DEN concentrations in tidal water were highest and exported DEN in the
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summer and fall when tidal water concentrations were low and decomposition rates were 

high. Unlike the deteriorating salt marsh, this marsh imported DOC.

Nutrient exchange studies employing benthic chambers have been used more 

typically in subtidal environments (Nowicki and Nixon 1985, Teague et al. 1988, Rizzo 

1990). Few chamber studies have been conducted in the intertidal areas of salt marshes 

(Keizer et al. 1989, Scudlark and Church 1989, Chambers 1992, Chambers et al. 1992). 

Areas of sediment and tidal creek water are isolated by placing chambers into the marsh 

surface. By sampling nutrient concentrations of water (or other constituents of interest) 

over a given period of time, a direct measure of the exchange of material between sediments 

and overlying water can be determined.

In Great Marsh bordering on Delaware Bay, USA, Scudlark and Church (1989) 

used direct exchange measurements obtained from chambers and compared them to the 

potential diffusive flux of nutrients out of the sediments. They found no significant 

exchange of DIN and hypothesized that nutrients were rapidly processed in surface 

sediments which enabled the salt marsh to maintain high levels of productivity. In contrast, 

in the macrotidal environment of the Cumberland Basin in the Bay of Fundy, Keizer et al. 

(1989) used benthic chambers and measured uptake of NO3 - by the salt marsh during all 

seasons except late fall. Chambers (1992) used a fluctuating water level chamber in a tidal 

freshwater marsh located on the Chickahominy River, Virginia, USA and determined that 

NH 4 + uptake was greater in the vegetated marsh than in the unvegetated marsh and noted a

high degree of heterogeneity in exchange processes. Chambers et al. (1992) utilized the 

same fluctuating water level chambers in salt marshes on the Eastern Shore of Virginia, 

USA and concluded that the salt marsh was a source of NfLf- to tidal waters when

overlying water concentrations were low.

Both small temporal changes (e.g tidal inundation, diel light effects) and large 

temporal changes (e.g. seasons) influence the transformation of organic material and



14

nutrients within the salt marsh. Tidal creek water is the major pathway by which materials 

are exchanged between the marsh and surrounding ecosystems. Most of the exchange 

studies considered above treated the ecosystem as a whole by integrating different marsh 

components. Benthic chamber experiments, as those cited above, may assist in interpreting 

the processes responsible for dissolved nitrogen and carbon fluxes that may not be apparent 

in large-scale experiments.

This thesis will describe a study of DEN and DOC exchanges between a short-form 

S. altemiflora salt marsh and tidal water. Bimonthly studies were performed using benthic 

chambers deployed on the surface of the vegetated salt marsh. The exchanges between salt 

marsh and tidal water will be described and related to processes which occur both in the salt 

marsh sediments and the adjacent tidal creek.

HYPOTHESES AND OBJECTIVES

A seasonal study of DIN and DOC exchanges between a short-form S. altemiflora 

salt marsh and tidal creek water was conducted on the Eastern Shore of Virginia (Phillips 

Creek), using in situ benthic chambers which isolated small areas of the salt marsh. The 

hypotheses tested were:

(1) On an annual basis, the Phillips Creek vegetated salt m arsh  will 

im port DIN from  the creek w ater and will exhibit seasonal and constituent 

(N O 2 " 9 NO 3 -, and NH 4 +) varia tions in m agnitude.

Because nitrogen is limiting in most salt marsh ecosystems (Day et al. 1989) an 

annual import of DIN is expected. DIN will be imported by the vegetated salt marsh during 

times of high DIN concentration within the tidal water and low concentrations in salt marsh
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sediments (late winter and early spring) which will, in part, correspond to agricultural 

activity, runoff, and ground water inputs. Import will also occur during the summer 

growing season when primary producers (e.g. S. altemiflora, benthic microalgae, and 

microbial populations) utilize DIN directly as a nutrient source. NH4 + release is expected 

in the late summer and fall due to senescence and degradation of vegetation, as well as 

lower concentrations of NH4 + in the water column. Benthic microalgal populations have 

been found to be more extensive on the vegetated marsh in the winter than in the summer 

(Pomeroy et al. 1981), suggesting their presence on the marsh surface will most likely 

utilize available DIN throughout the winter and little, if any export of DIN will be 

observed. a

(2 ) On an annual basis, the Phillips Creek vegetated salt marsh will 

export DOC to the creek water and will exhibit seasonal variations in 

m agnitude.

Greatest export of DOC will be during the growing season (spring and summer) 

when S. altemiflora suffers leachate loss and also again during the fall as a result of 

macrophyte decomposition. Although the more labile DOC components are likely to be 

rapidly consumed by microorganisms, especially during the warmer months (Pomeroy and 

Imberger 1981), recalcitrant organics will be available for export. By measuring exchanges 

at smaller temporal and spatial scales through the use of the benthic chamber technique, it is 

anticipated that DOC flux signals will be measured prior to utilization and/or 

transformation.

The primary objectives of this investigation were to:

(1 ) Measure the seasonal variability of dissolved nutrient exchanges
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(DIN and DOC) between the vegetated salt marsh and tidal waters.

(2 ) Determine seasonal DIN concentrations in the tidal creek adjacent to 

the salt marsh over diurnal tidal cycles.

While the emphasis of this study was on the exchanges that occur exclusively 

between the vegetated salt marsh and the tidal creek, other systems including mud flats, 

creek bottoms, and oyster reefs, come in contact with the tidal creek water and can have 

major impacts on material exchange as well.

METHODS AND MATERIALS 

Study Site

Phillips Creek, on the Eastern Shore of Virginia (Figures 1 and 2), was chosen for 

study because of its location at the Virginia Coast Reserve/Long-Term Ecological Research 

(LTER) site. As an LTER site, the Phillips Creek marsh afforded the opportunity to take 

advantage of ongoing studies and monitoring efforts that were being conducted by 

numerous research programs (e.g. Virginia Institute of Marine Science, University of 

Virginia, East Carolina University, Old Dominion University).

Phillips Creek (37° 26’ 38.49” N, 75° 52’ 04.99” W) is a mainland marsh which is 

part of an extensive lagoonal ecosystem consisting of oyster reefs, mud flats, vegetated 

marsh, and complex creek systems. It is considered to be a geomorphologically young 

marsh, consisting of a relict sand ridge that was flooded by rising sea level within the last 

200 years (Oertel personal communication). The marsh is located in close proximity to 

regularly farmed agricultural fields and pine forests. Sediments are loamy in texture with



Figure 1: The Virginia Coast Reserve LTER
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Figure 2: Location of Phillips Creek study site
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organic matter concentrations varying from 5 to 19% to a depth of 30 cm (Barr 1989,

Blum, 1993). The dominant plant species at the study site is S. altemiflora Loisel. The 

tall-form of S. altemiflora occurs within 1-2 m of the creek bank with a short-form located 

inshore.

Exchange studies were conducted along a 30 m transect in the interior of the salt 

marsh which consisted of short-form S. altemiflora. (mean length of 44.9 cm at the end of 

the growing season). There appeared to be little variation in elevation along this expanse of 

salt marsh which allowed for a uniform movement of tidal water across the marsh surface. 

To minimize disturbance of the salt marsh surface during set-up and sampling, permanent 

boardwalks were constructed and placed within the marsh.

M aterials and Experim ental Design - Exchange Studies

Seven in situ chamber exchange experiments were conducted (Table 2): March

1994, May 1994, July 1994, September 1994, December 1994, February 1995, and April

1995. Experiments occurred bimonthly except for the month of November 1994 when 

severe weather conditions caused delays in sampling. The November experiment was 

postponed until December, and the bimonthly sampling regime continued thereafter.

Cham ber Description. Benthic chambers 0.61 m in height were constructed 

from 30.48 cm diameter (I.D.), 6.35 mm (wall), clear acrylic tubing (Figure 3). Chambers 

were bevelled at the bottom to ease installation and minimize disturbance of the sediment 

surface. Two, 2.54 cm diameter holes were drilled into each chamber on opposite sides, 

10.16 cm from the bottom, so that after deployment, tidal water could rise and fall within 

the chambers. Although the study transect flooded regularly, complete inundation did not 

occur during tides of extremely low amplitude (neap tides, wind induced ebbing, etc.). In 

order to conduct all studies under similar tidal conditions, experiments were performed



20

Table 2: Sample dates and seasons for salt marsh and
tidal creek exchange studies

Sam ple Date Season
March 14- 15, 1994 Winter/Spring
May 25 - 26, 1994 Spring
July 13 - 14, 1994 Summer

September 18-19, 1994 Summer/Fall
December 6 -7 , 1994 Fall
February 1 -2 , 1995 Winter
April 17-18, 1995 Spring
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during tides of highest amplitude (i.e. at or near spring tides) and were conducted during 

the latter part of the daylight flooding tide (generally between 1000 and 1400 hours).

Field Sampling Protocol. One week prior to the sampling date, five benthic 

chambers were installed approximately 1.5 m apart along a transect of a short-form S. 

altemiflora to allow for acclimation. Similar numbers of shoots were included within each 

chamber. Placement of chambers was marked so that they could be deployed in the exact 

location for each of the seven experiments. Chambers were pushed into the salt marsh 

sediment until the drilled holes were flush with the sediment surface. The five replicate 

chamber designations were Cl - C5 and hereinafter referred to as “sediment chambers”.

One day prior to the start of each experiment, the inside of each sediment chamber 

was cleaned using a sponge and deionized water to remove any surface films. Sediment 

chambers were allowed to flood one last time with creek water before the experiment was 

initiated.

On the rising tide of the following day, four chambers with fixed bottoms, but 

otherwise identical to the sediment chambers, were placed on the marsh surface along the 

same transect as the others. These four chambers represented the water column and their 

purpose was to monitor the contribution of water column processes to the nutrient 

dynamics on the flooded salt marsh. Replicate chamber designations were Bl - B4 and 

hereinafter are referred to as “water column chambers”.

All chambers were allowed to fill with creek water to > 12 cm in depth (height of 

water above sediment surface or bottom of water column chambers). After filling with tidal 

water, the holes were plugged with neoprene-rubber stoppers; battery operated stirrers 

(Edmund Scientific) were started and allowed to run for the duration of the experiment (2 

hours). Sampling started immediately.

Both sediment and water column chambers were sampled at 20 minute intervals 

over a two hour period (T-0 through T-6 ). Water from the creek itself was also sampled
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using the identical sampling regime. All water samples were taken in triplicate. Each 

chamber and the creek water were sampled as follows (Table 3): (1) the height of the water 

inside each chamber was measured every sampling period in order to calculate the water 

volume within the chamber; (2) dissolved oxygen (DO) and temperature were measured 

using an Orbisphere 2607 polarographic oxygen sensor; (3) water samples from each 

chamber were collected in 15 ml opaque bottles (deionized water-rinsed) for analysis of 

chlorophyll a and immediately placed on ice; (4) approximately 15 ml of water for DIN 

measurements (NO2 -, NO3 -, and NH4 -) were sampled using 30 ml acid washed syringes;

(5) water samples were immediately filter sterilized. The first 2 ml of water were filtered 

through 0.20 jim syringe filters (Gelman supor acrodiscs) and discarded. The remaining 

water was filtered into autoclaved serum bottles and stored on ice; (6 ) approximately 1 2  ml 

of water for DON and DOC measurements were sampled using sterilized 10 ml 

polypropylene/polyethylene syringes (Aldrich). The first 2 ml of water were filtered 

through 0.45 jam syringe filters (Gelman nylon acrodiscs) and discarded. The remaining 

water was filtered as two separate 5 ml aliquots into acid washed and previously combusted 

(500 °C for 5 hours) glass scintillation vials. Vials were capped with acid washed teflon 

caps. All DOC and DON samples were acidified with 12 N HC1 to a pH < 2.0 and stored 

on ice.

After the last sampling period (T-6 ) benthic chambers were removed from the 

marsh, and samples were brought back to the laboratory (Virginia Institute of Marine 

Science, Gloucester Point, Virginia) for further analyses.

L aboratory Analyses. Immediately upon return to the laboratory, water 

samples were analyzed for MLf- and water column chlorophyll a (within 5-7 hours after

sampling). NH4 + analyses were performed on the filter sterilized water samples using a

spectrophotometric methodology (Solorzano 1969). Chlorophyll a samples were analyzed 

as follows (Hayward and Webb personal communication): 5 ml of each water sample
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Table 3: Parameters sampled for each chamber for each time period. Numbers
indicate the number of replicate readings or samples taken per chamber 
per time period.

Param eters T -0 T - l T -2 T -3 T -4 T -5 T - 6

H 20  ht. 1 1 1 1 1 1 1

DO 1 1 1 1 1 1 1

H 20  tem p. 1 1 1 1 1 1 1

D IN 3 3 3 3 3 3 3
DON 3 3 3
DOC 3 3 3

H 20  chla a 3 3



25

were filtered through 25 mm Whatman glass fiber filters (GFF). Filters was placed in 

blackened test tubes containing 8  ml of an acetone/dimethyl sulfoxide (DMSO) extractant 

(45% acetone, 45% DMSO, 10% deionized water, and 1% diethylamine (DEA)) and 

allowed to extract for at least 24 hours at room temperature. Extracts were then poured into 

cuvettes and read on a Turner Designs 10-AU fluorometer and a dilution factor ( 8  ml 

extractant/5 ml sample = 1.6) was applied to readings to give concentration values in jig chi 

a l-i. Chlorophyll a concentrations were not corrected for degradation products.

The morning following the exchange study, filter sterilized samples were analyzed 

for NO 2 - and NO3 - using an Alpkem Flow Solution Autoanalyzer (Perstorp 1992). Since

in all cases NCb- concentrations were negligible, results are reported as combined NCb- +

NO3 - for data comparisons and statistical analyses. From here throughout the remainder of

this discussion, NCb- + NO3 - will be referred to as NO3 -.

For analyses of DOC, samples were sent to the Institute of Ecosystem Studies in 

Milbrook, New York and analyzed using a Shimadzu 5050 Total Organic Carbon Analyzer 

which incorporates a high-temperature catalytic oxidation (680 °C) step. Calibrations were 

performed using potassium hydrogen phthalate made with low carbon water from a Milli-Q 

system. Dissolved inorganic carbon was measured by quantifying the CO2  generated 

following phosphoric acid addition and was subtracted from total carbon to give DOC (mg- 

DOC l-i).

DON samples were sent to Florida International University in Miami, Florida for 

analysis using methodologies described by Jones and Frankovich (in review) on an Antek 

7000N nitrogen analyzer. Equipment malfunction, however, resulted in a lengthy delay in 

analyses of the samples. As a result of this delay, DON results and discussion could not be 

included in this thesis material.
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Exchange Rate Calculations for DIN, DOC, and DO (Salt Marsh).

Exchanges of NO3 -, NH4 -, DOC, and DO between the salt marsh and overlying water were

calculated as follows: ( 1 ) for both sediment and water column chambers and for each 

sample period, mean concentrations for all parameters were obtained from triplicate 

samples (with the excepdon of DO where a single reading was obtained); (2) mean 

concentrations were regressed against time; (3) the mean water column slope for the four 

water column chambers was calculated; (4) to correct for water column processes, the 

mean slope value of the water column chambers was subsequently subtracted from the 

individual slopes of each of the sediment chambers; (5) the corrected slopes were then 

multiplied by the average water volume (mean volumes over the course of the experiment) 

for the appropriate sediment chamber; (6 ) these values were converted to areal (per square 

meter) estimates by dividing them by the sediment surface area of the chambers (0.0729 

m'2)‘> (7) exchange rates of each nitrogen constituent were reported as pmol-N m- 2  h->, for 

DOC as mg-DOC m - 2  h-1, and for dissolved oxygen as mg- 0 2  m - 2  h*1; (8 ) exchange rates 

of the five sediment chambers were averaged to give the exchange rates of NO3 -, NH4 -,

DOC, DO between the vegetated salt marsh and overlying tidal water for each sample date. 

Exchange Rate Calculations for DIN, DOC, and DO (Water Column).

To determine exchanges of NO3 -, NH4 -, DOC, and DO in the water column alone,

calculations were as follows: ( 1 ) for each water column chamber and for each sample 

period, mean concentrations for all parameter were obtained from triplicate samples (with 

the exception of DO where a single reading was obtained); (2) mean concentrations were 

regressed against time; (3) slopes were then multiplied by the average water volume (mean 

volumes over the course of the experiment) for the appropriate water column correction 

chamber; (4) these values were converted to areal (per square meter) estimates by dividing 

them by the surface area of the chambers (0.0729 m-2); (5) exchange rates for each of the 

nitrogen species were reported as pmol-N m- 2  h-i, for DOC as mg-DOC m*2  h-i, and for
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DO as mg- 0 2  m- 2  h-1; (6 ) exchange rates of the four water column chambers were 

averaged to give the exchange rates of the overlying water for each sample date.

Materials and Experimental Design - Sediment Chlorophyll a

Sediment chlorophyll a concentrations were measured for each experiment in order 

to determine whether relationships existed between nutrient exchange rates and the benthic 

microalgal community.

Field Sampling Protocol. Twelve, 2.54 cm diameter sediment cores were 

taken on the day of each exchange experiment. Sediments were sampled along the same 

transect and in close proximity to the sediment chambers. Sediments were not sampled 

within chambers. Since chambers were to be placed in the same location for each of the 

seven experiments, preservation of an undisturbed sediment surface within each chamber 

was deemed necessary. Sediment cores were placed on ice and brought back to the 

laboratory for processing.

Laboratory Analyses. Upon return to the laboratory, the top 5 mm section of 

each sediment core was placed in individual glass scintillation vials, and stored in the 

freezer (-20 °C) until analyses could be performed. Sediment samples were analyzed 

according to the protocols of Lorenzen (1967) and Pinckney and Zingmark (1994). 

Chlorophyll a concentrations were not corrected for degradation products. A mean 

concentration of all twelve samples was calculated and normalized per square meter to give 

a final sediment chlorophyll a concentration in mg chi a m*2.

M aterials and Experim ental Design - Spartina altem iflora  B iom ass

Estimates of above-ground S. altemiflora biomass were obtained in order to
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determine whether relationships existed between nutrient exchange rates and above-ground 

S. altemiflora productivity. Biomass was sampled for every exchange experiment except 

March 1994 and February 1995. No living shoots were available for harvest from the salt 

marsh during these periods.

Field Sampling. A non-destructive technique similar to that of Morris and 

Haskin (1990) was used to obtain estimates of S . altemiflora above-ground biomass in 

each sediment chamber. The total number of shoots within each chamber was counted. 

Heights of ten randomly chosen shoots were measured from the sediment surface to the tip 

of the tallest leaf. In addition, 25-50 shoots were harvested along the same transect and in 

close proximity to the sediment chambers, placed on ice, and brought back to the laboratory 

for processing. Shoots were stored in the refrigerator until processed.

Laboratory Analyses. S. altemiflora shoots were lightly wiped with a paper 

towel, heights measured from the base to the tip of the longest leaf, and then individually 

placed in pre-weighed aluminum envelopes. Shoots were dried at 50 °C to a constant 

weight and weighed to obtain dry weights.

Above-ground S. altemiflora biomass per sediment chamber was estimated as 

follows: ( 1 ) a fourth order polynomial regression of individual shoot dry weight as a 

function of stem height was derived using all harvested shoots from the May 1994, July 

1994, September 1994, December 1994, and April 1995 experiments; (2) using the 

derived polynomial regression, stem heights of the ten measured shoots within each 

chamber were transformed to estimate their dry weights; (3) the ten estimated shoot dry 

weights were summed; (4) the number of shoots per sediment chamber was divided by the 

number of measured shoots (ten) and then multiplied by the summed dry weights to obtain 

grams dry weight (g DW) of above-ground S. altemiflora per sediment chamber; (5) 

values were normalized per square meter to give biomass estimates per sediment chamber 

in g DW m-2 .
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Materials and Experimental Design - Diurnal Tidal Creek Studies

In conjunction with bimonthly exchange experiments, creek water was sampled 

hourly during an entire tidal cycle. These data provided DIN concentrations entering and 

leaving the creek at the time of the exchange experiment.

Field Sampling Protocol. Approximately 24 hours before each exchange 

experiment was initiated, an automated sampler (Isco) was deployed in Phillips Creek 

adjacent to the study site. The sampler was programmed to sample creek water every hour 

for a 27 hour period. The intake for the water sampler was located just off of the creek 

bottom. Because water samples had to sit for up to 27 hours without filtration or cooling, 

upon initiation of the experiment, 0.250 fil of 12 N HC1 (to obtain a pH < 2.0) was added 

to each of the 27 sample bottles for sample preservation. A Datasonde III (Hydrolab Inc.) 

was also deployed in the tidal creek in order to monitor water depth, temperature, salinity, 

conductivity, dissolved oxygen, and pH at 15 minute intervals. When the exchange study 

ended, sampling of the creek water was terminated. Samples were brought back to the 

laboratory for DIN analyses.

Laboratory Analyses. Upon return to the laboratory, creek water samples were 

placed in the refrigerator until analyses could be performed (1-2 days). Just prior to DIN 

analyses, all samples were neutralized to a pH of 4.0 - 9.0 using 6  N NaOH. Following 

neutralization, water was filtered through 0.20 |im filters (Gelman Supor Acrodiscs).

NH4 + samples were analyzed using the spec tropho tome trie methodology of Solorzano

(1969). NO3 - samples were analyzed on an Alpkem Flow Solution Autoanalyzer (Perstorp

1992).
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STA TISTIC A L ANALYSIS

All data were stored using Microsoft Excel (version 5.0) for the Macintosh. 

STATISTICA for Macintosh (StatSoft 1991) was used to perform all statistical analyses. 

Seasonal differences in exchange rates, nutrient concentrations, water column chlorophyll a 

concentrations, above-ground S. altemiflora biomass, and water temperature were analyzed 

using one-way analysis of variance (ANOVA) with repeated measures (StatSoft 1991, Zar 

1996). When the ANOVA was significant (p < 0.05), a Tukey’s multiple comparison test 

was used to determine seasonal differences. Sediment chlorophyll a data were analyzed 

using one-way ANOVA. When the ANOVA was significant (p < 0.05), Tukey’s test was 

performed to determine seasonal differences.

Relationships between exchange rates, nutrient concentrations, water column 

chlorophyll a concentrations, above-ground S. altemiflora biomass, and water temperature 

were investigated using a Pearson correlation matrix with associated probabilities. Where 

significant correlations existed (p < 0 . 1 0 ) multiple regression analyses and coefficients of 

determination (R2) were performed (StatSoft 1991, Zar 1996).

R ESU LTS

Table 4 displays the monthly means for air temperature, water temperature, and 

precipitation. These data were obtained from the Phillips Creek LTER meteorological 

station data base (Krovitz et al. 1994-95).

Seasonal D ifferences - Exchange Rates

Sediment Cham bers. Table 5 and Figures 4a, 5, 6 , and 7 present the NH 4 +,
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Table 4: Monthly averages for air temperature, water temperature, and
precipitation at the Phillips Creek salt marsh ecosystem. Data were 
obtained from the LTER meteorological station (Krovitz et al.
1994, 1995) at Phillips Creek unless otherwise indicated.

* = dates on which exchange experiments were conducted

** = due to malfunction of Phillips Creek equipment, data are from 
the Hogg Island meteorological station

*** = data are from exchange experiment measurements

Y ear M onth

A ir
T em peratu re

°C

h 2o
T em perature

°C
P rec ip ita tion

mm

1994 Jan 0.7 94.8
Feb 3.5 134.3

Mar* 8 . 2 14.6*** 252.3

A pr 15.7 12.9

May* 16.4 24.4*** 71.0
Ju n 24.2 6 6 . 6

Jul* 26.4 32.3*** 157.3

A ug 23.6 105.7

Sept* 20.5 21.3*** 78.5

Oct 14.7 49.9
N ov 12.5 70.1**

Dec* 7.9 16.6*** 25.1**
1995 Jan 5.1 40.0**

Feb* 2 . 1
Q * * * 41.4**

M ar 8 .0 ** 42.9**

Apr* 13.6 17.0*** 75.8**
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a) Sediment Chambers
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b) Water Column Chambers
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Figure 4:
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HHl
I
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' 400 Mar-94 May-94 Jul-94 Sep-94 Dec-94 Feb-95 Apr-95

Date

Seasonal NH4 + and NO3 - exchange rates at Phillips Creek (a) for experimental 
chambers (N=5) and (b) for water column chambers (N=4). Negative (-) 
values indicate an uptake of NH4 -*- and NO3 - and positive values indicate a 
release of NH4 + and NO3 -. Errors bars represent standard deviations.
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sediment chambers 
water column chambers
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Figure 5: Seasonal total DIN (NH4 + + NO3 -) exchange rates at Phillips Creek for
sediment chambers (N=5) and water column chambers (N=4). Negative (-) 
values indicate an uptake of total DIN and positive values indicate a release of 
total DIN. Error bars represent standard deviations
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sediment chambers 
water column chambers
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Seasonal DOC exchange rates at Phillips Creek for sediment chambers (N=5) 
and water column chambers (N=4). Negative (-) values indicate an uptake 
of DOC and positive values indicate a release of DOC. Error bars represent 
standard deviations. No data were available for Mar-94, May-94, and Jul-94.
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S i sediment chambers 
^  water column chambers

250 n
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Date

Seasonal DO exchange rates at Phillips Creek for sediment chambers (N=5) 
and water column chambers (N=4). Negative (-) values indicate an uptake of 
DO and positive values indicate a release of DO. Errors bars represent standard 
deviations. No data were available for Mar-94
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NO3 -, total DIN (NH4 + + NO3 -), DOC, and DO exchange rates between the salt marsh and

the overlying tidal water during the course of the study. Exchange rate values have been 

corrected for water column processes. Negative (-) numbers indicate uptake by the salt 

marsh, while positive numbers reflect a release by the salt marsh. All exchanges were 

significantly different (p<.01) between sample daters except for DOC (p>.06).

For NH4 + exchange, all months displayed an uptake of NH4 + by the marsh except

March 1994, when the marsh exported this constituent (38.88 jimol-NFLf*- m - 2  h-i). 

Greatest NH4 + uptake occurred during September 1994 (-310.92 jimol-NH4 + m - 2  h-i), 

when NH4 + exchange differed significantly from all other months (pc.Ol).

The salt marsh exhibited an uptake of NO3 - for all experiments. Highest NO3 - 

uptake occurred in March 1994 (-209.00 jimol-N0 3 - m- 2  h-i) when NO3 - exchange 

differed significantly from all other months (p<.0 1 ).

When NH4 + and NO3 - were added together to obtain total DIN exchange, the salt 

marsh imported DIN during all experiments. September 1994 had the highest uptake rate 

(-336.25 pmol-N m*2  h-1) and was significantly different than all other months (p<.01).

As a result of contamination problems, samples collected in March, May and July 

1994 for DOC analyses could not be used. There were no significant differences (p>.05) 

between DOC exchanges for the four months in which measurements were obtained.

Uptake of DOC by the salt marsh occurred in September, December 1994, and April 1995, 

with a possible release of DOC in February 1995.

In March 1994 the Orbisphere oxygen meter failed to operate correctly; therefore, 

DO could not be measured on this date. The salt marsh appeared to be net autotrophic for 

all months except July 1994 and April 1995.

W ater Column Chambers. Table 6  and Figures 4b, 5, 6 , and 7 summarize the 

NH4 +, NO3 -, total DIN, DOC, and DO exchange rates of the water column chambers.
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Negative (-) numbers indicate uptake by the water column, while positive numbers reflect a 

production in the water column. Significant differences between seasons were found for 

all exchanges (p<.04).

Uptake of NFLri by the water column occurred for all experiments except

September and December 1994. Highest uptake occurred in July (-132.91 p.mol-NH4 + m- 2  

h-i).

The water column was a sink for NO3 - in March, September 1994, and February 

1995, with greatest uptake in March (-35.18 |imol-NC>3 - m - 2  h-i)* NO3 - was released from 

the water column in May, July, December 1994, and April 1995. Highest release was in 

July (62.54 pmol-N 0 3 - m*2  h*1)-

Uptake of total DIN by the water column occurred for all months except September 

and December 1994. Highest release of total DIN was in September 1994 (74.64 jimol-N 

m - 2  h-1). Highest uptake of total DIN was in March 1994 (-85.46 |imol-N m - 2  h-1)-

Of the four months sampled, the water column was a sink for DOC in September 

1994 and February 1995 and a source of DOC in December 1994 and April 1995. Highest 

uptake of DOC was in February 1995 (-31.05 mg-DOC m-2 h-i) and highest release was in 

December 1994 (18.17 mg-DOC m-2 h-i).

DO exchange in the water column was significantly different between all months 

(p<.02). The water column was a source of oxygen during May, July, September 1994, 

and April 1995, with greatest release in September 1994 (193.73 mg- 0 2  m- 2  h-1). The 

water column was a sink for oxygen in December 1994 and February 1995, with greatest 

uptake in December 1994 (-31.66 mg - 0 2  m- 2  h-1)-
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Seasonal Differences - Nutrient Concentrations

Sediment Chambers. Table 7 and Figures 8 a, 9 and 10 summarize the NH4 +,

NO3 -, total DIN, and DOC concentrations present in the sediment chambers at the

beginning of each experiment (T-0). Each nutrient exhibited significant differences 

between experiments (pc.Ol).

NH4 + concentrations in the overlying water were highest in July 1994 and

September 1994 (3.91 and 3.78 JJM-NH4 +) and were statistically different than all other

months (p< .0 1 ). Lowest NH4 + concentrations were measured in December 1994 and

February 1995 (1.45 and 1.44 PM-NH4 +). Concentrations of NO3 - in the overlying water

were highest in March 1994 (6.08 1 1M-NO3 -) and this month was significantly different

than all other months (p<.01). Lowest NO3 - concentrations occurred in February and

April 1995 (0.63 and 0.57 pM NO3 -). The highest concentration of total DIN in the tidal

water was measured in March 1994 (8.14 pM-N) and this month was significantly 

different than all other months (pc.Ol). Lowest total DIN was measured in February 1995 

(2.07 pM-N).

Of the four months sampled for DOC concentration in the tidal water, only 

September 1994 was significantly different from all other months (pc.Ol). This month 

also exhibited the highest concentration of DOC (3.92 mg-DOC).

Water Column Chambers. Table 8  and Figures 8 b, 9 and 10 summarize the 

NFLf-, NO3 -, total DIN, and DOC concentrations in the water column chambers at the 

beginning of each experiment (T-0). Each nutrient exhibited significant seasonal 

differences (pc.04).

DIN concentrations in the water column chambers followed the same trends as did 

the sediment chambers. NH4 + concentration was highest in July 1994 (5.03 pM NH4 +)
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a) Sediment Chambers

Mar-94 May-94 Jul-94 Sep-94 Dec-94 Feb-95 Apr-95 

Water Column Chambers 

1 0  -i

Mar-94 May-94 Jul-94 Sep-94 Dec-94 Feb-95 Apr-95

Date
Figure 8 : Seasonal concentrations of NH4 + and NO3 - in the overlying water at Phillips

Creek for (a) sediment chambers (N=5) and (b) water column chambers 
(N=4). Values indicate concentrations at the initiation of each experiment 
(T-0). Error bars represent standard deviations.
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Seasonal total DIN concentrations in the overlying water at Phillips Creek for 
sediment chambers (N=5) and water column chambers (N=4). Values indicate 
concentrations at the initiation of each experiment (T-0). Error bars represent 
standard deviations.
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Figure 10: Seasonal DOC concentrations in the overlying water at Phillips Creek for
sediment chambers (N=5) and water column chambers (N=4). Values indicate 
concentrations at the initiation of each experiment (T-0). Error bars represent 
standard deviations. No data were available for Mar-94, May-94, and Jul-94.
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and lowest in December 1994 and February 1995 (1.43 and 1.45 jiM-NH4 +). Overlying

water NO3 - concentration was highest in March 1994 (8.48 (iM NO3 -) and lowest in

February and April 1995 (0.47 and 0.57 1 1M-NO3 -). Total DIN concentration was highest

in March 1994 (11.73 jiM-N) and lowest in February and April 1995 (1.92 and 2.28 

pM-N).

DOC concentrations in the water column ranged between 3.00 to 3.31 mg-DOC H. 

There were no significant differences between DOC concentrations for the four dates 

sampled. It should be noted that these concentration values are in agreement with those of 

(MacMillin et al. 1992) who measured tidal water DOC concentrations in Phillips Creek. 

Measurements taken by MacMillin et al. during the summer months were also similar in 

concentration (3.5 mg-DOC I*1) to those measured in the present study.

Seasonal D ifferences - A dditional M easurem ents

Sediment Chambers. Water temperature, S. ciltemiflora biomass, water column 

chlorophyll a , and sediment chlorophyll a concentrations all demonstrated significant 

seasonal variations (pc.Ol). Table 9 and Figures 11, 12, 13, and 14 summarize these data.

Water temperature was significantly different for each of the sample dates (pc.Ol). 

Highest temperature was in July 1994 (32.3 °C) while the lowest temperature was in 

February 1995 (7.0 °C).

Above-ground S. ciltemiflora biomass was sampled on all dates except March 1994 

and February 1995. No living shoots were available for harvest during these periods. S. 

altemiflora biomass was highest in September 1994 (266.36 g DW m-2) and was 

significantly different than all other months (pc.02). The least amount of measurable 

biomass was in April 1995 (50.22 g DW m-2).

As a result of equipment failure, samples taken for water column chlorophyll a were
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sediment chambers 

water column chambers
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Figure 11: Seasonal water temperatures at Phillips Creek in sediment chambers (N—5) and 
water column chambers (N=4). Error bars represent standard deviations.
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Figure 12: Estimated seasonal above-ground Spartina alterniflora biomass at the Phillips 
Creek salt marsh ecosystem. Means were calculated based on 25-50 shoots. 
No live shoots were available for harvest in Mar-94 and Feb-94. Error bars 
represent standard deviations.
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Figure 13: Seasonal water column chlorophyll a concentrations at Phillips Creek in
sediment chambers (N=5) and water column chambers (N=4). No data were 
available for Apr-95. Error bars represent standard deviations.
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Figure 14: Seasonal sediment chlorophyll a concentrations at Phillips Creek (N=10). 
Error bars represent standard deviations.
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unable to be processed for the April 1995 experiment. Water column chlorophyll a 

concentration in the sediment chambers was highest in March 1994 (16.34 jug chi a H ) and 

was significandy different than all other months (pc.Ol). December 1994 exhibited the 

least amount of chlorophyll a (7.14 pg chi a 1-1).

Sediment chlorophyll a concentration was highest in March 1994 (16.34 mg chi a 

m-2) and was significandy different (pc.05) than all other months except July (p>.90). 

Lowest concentrations of sediment chlorophyll a were in September 1994 and February 

1995 (6.92 and 6.65 mg chi a m-2).

W ater Column Chambers. Table 10 and Figures 11 and 13 summarize the 

monthly means of water temperature and water column chlorophyll a for the water column 

chambers. Both displayed significant (pc.Ol) differences between sampling dates.

Water temperature was significantly different (pc.Ol) between all months except 

December 1994 and April 1995 (p>.90). Highest water temperature was in July 1994 

(33.1 °C), while lowest was in February 1995 (7.5 °C).

March 1994 had the highest water column chlorophyll a concentration (32.51 pg 

chi a l-i) and was significandy different (pc.Ol) than all other months. Lowest 

concentration was in December 1994 (3.33 pg chi a H).

Exchange Rates - C orrelation and M ultiple Regression Analyses

Sediment Chambers. All seven experiments were combined to develop a 

correlation matrix (Table 11) for exchange rates and environmental parameters. Table 12 

summarizes the results of multiple regression analyses. Because sediment chlorophyll a 

samples could not be taken within the chambers themselves, multiple regression analyses 

as above could not be performed; however, simple linear regressions were performed 

between the various exchange rates and sediment chlorophyll a .
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NH4 + uptake was positively correlated with water temperature, concentration of 

NH4 + in the water column, and above-ground S. alterniflora biomass (multiple R2=.9746, 

.5022, and .9680 respectively; p<.07; Figures 15 a-c). NO3 - uptake was positively 

correlated with concentration of NO3 - in the water column (multiple R2=.9270; pc.001; 

Figure 16a) and sediment chlorophyll a (R2=.5201; Figure 16b). NH4 + and DOC 

concentrations in the overlying water were significantly related to DO exchange (Multiple 

R2  =.8957, and .9939 respectively; pc.001). No strong correlations were observed 

between DOC exchange and any of the environmental parameters measured.

W ater Column Chambers. Table 13 is a correlation matrix of all measurements 

performed on the water column chambers. Table 14 summarizes multiple regression 

analyses performed on the exchange rates.

Correlation and multiple regression analyses suggested a relationship between 

NH4 + uptake and water temperature, and also for NFLr1- release and water chlorophyll a ;

however, these relationships were rather weak (multiple R2=.1385; pc.08 and R2=.2951; 

pc.05 respectively). NO3 - release was positively correlated with water temperature and 

NO 3 - uptake was positively correlated with NO3 - concentration (multiple R2=.3693; pc.Ol 

and R2=.5299; pc .02 respectively). DOC uptake was related only to DOC concentration 

in the water column (R2=.6156; pc.Ol). NH4 + concentration was the only variable 

significantly related to DO release (R2=.3898; pc.Ol).

D iurnal Tidal Creek Studies

Table 15 is a summary of the ranges in salinity, NH4 + and NO3 - concentrations 

over diurnal tidal cycles for the seven tidal creek samplings at Phillips Creek. No salinity



jiM
-N

H
a) y = 40.466 + -6.6584x R2= 0.21948

-300-

-400-

-500

0 5 10 15 20 25 30 35
Temperature (°C)

57

b) y = 125.26 + -85.478x R2= 0.57748

- 100 -

- 200 -

=*. -300-

-400-

-500
0 21 3 54

fiM-NH +

y = 28.919 + -1.1448x R2= 0.80639
1 0 0 *i

- 100 -

- 200 -

-400-

-500

0 100 200 300 400 500
g DVV S. alterniflora m '2

Figure 15: Linear regression models of environmental variables which were correlated to 
NH4 + exchange rates within sediment chambers (N=5) at Phillips Creek. 
Negative (-) values indicate uptake of NH4 + by the salt marsh and positive 
values indicate a release of NH4 + from the salt marsh, a) NH4 + exchange rate 
vs. water temperature, b) NH4 + exchange rate vs. NH4 + concentration in the 
overlying water, c) NH4 + exchange rate vs. S. alterniflora above-ground 
biomass. Error bars represent standard deviations.
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Figure 16: Linear regression models of environmental parameters related to NO3 -
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values indicate uptake of NO3 -by the salt marsh, a) NO3 -exchange rate vs. 
NO3 - concentration in the overlying water; b) NO3 - exchange rate vs. 
sediment chlorophyll a concentration. Error bars represent standard deviations.
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data were available for September 1994. Salinity (8 . 6  - 24.0 psu) and NO3 - (0.72 - 57.64

PM-NO3 -) concentration displayed the greatest variations during the March 1994 tidal

cycle, which was also during a time when the greatest amount of precipitation was recorded 

(Table 3). Salinity varied the least in April 1995 (27.0 - 33.0 psu), while the least variation 

in NO3 - concentration occurred in September 1994 (1.14 - 2.58 1 1M-NO3 -). Largest

difference in NH4 + concentration over a tidal cycle was in July 1994 (0.46 - 27.87 (iM-

NH4 +) while the least difference was in March 1994 (0.00 - 2.48 jliM-NH4 +).

Figures 17a-g illustrate the changes in salinity, NH4 + and NO3 - concentrations over

tidal cycles. On all occasions measured, salinity decreased with the ebbing tide. NFU+ and

NO3 - concentrations, on the other hand, generally increased on the ebbing tide.

D IS C U S SIO N

M aterial Exchanges

DIN Exchanges. As hypothesized, the Phillips Creek vegetated salt marsh 

appeared to be a sink for DIN throughout the year. NH4 + was taken up by the marsh in the 

spring, summer, and fall, while little if any net exchange occurred in the winter. The salt 

marsh was also a sink for NO3 - during all seasons.

Phillips Creek salt marsh is a geologically young, accreting marsh. Over the past 

50 years the Phillips Creek salt marsh area is estimated to have increased by 8.2% with a 

sediment accretion rate of 0.64 cm - 2  y-i (Kastler 1983). Sea level rise at the site is 

estimated to range from 2.8-4.2 mm y-i (Oertel et al. 1989). Anderson et al. (in 

preparation) calculated that in order to keep up with this rate of sea level rise, more nitrogen 

was required to support the Phillips Creek salt marsh ecosystem than what is newly



Salinity, NH4+ concentrations, and NO3- concentrations in Phillips Creek over 
diurnal tidal cycles (Time=time of sampling; High Tide=time of high tide), 
a) March 1994; b) May 1994; c) July 1994 (incomplete salinity data set); 
d) September 1994 (no salinity data available); e) December 1994; f) 
February 1995; g) April 1995.
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c) July 1994
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deposited by fresh sediments (N% =.1743).

Phillips Creek salt marsh appears to fit the model of Vitousek and Reiners (1975) 

which predicted that geologically younger, immature ecosystems sequester nutrients. 

Geologically younger marshes examined by Childers et al. (1993b) in Georgia, Childers 

and Day (1988) in Louisiana, and Whiting et al. (1989) in South Carolina support the 

model as well, by consistently showing higher rates of DIN import in comparison to older 

marshes in comparison.

Previous exchange studies in salt marshes throughout the East and Gulf Coasts 

have also shown that most vegetated salt marshes are sinks for DIN on an annual basis. 

Unlike observations at Phillips Creek, seasonal shifts in both uptake and release were often 

observed within the same marsh (Childers 1993b, Spurrier and Kjerfve 1988, Whiting et 

al. 1989, Wolaver and Spurrier 1988, Wolaver et al. 1983). The fact that no net releases of 

DIN were observed at Phillips Creek could result either from differences in rates of 

biological processes or from experimental design. The studies cited above were all 

conducted with flumes. In general, flumes were constructed in such a manner that they 

extended from the tidal creek to the uplands. Sources of DIN contributing to the measured 

releases, may have included the uplands, mud flats, or porewater advected from creek 

banks. At the Phillips Creek salt marsh, in situ chamber measurements reflected only 

exchanges between the vegetated salt marsh and the overlying water column.

A unique aspect of this study was that exchange measurements were performed in 

conjunction with determinations of process rates by Anderson et al. (in preparation). This 

afforded the opportunity to make direct comparisons between DIN exchanges and the 

following process rates: nitrification, denitrification, mineralization, nitrogen-fixation, 

atmospheric deposition, sediment import, above-ground macrophyte uptake, sediment 

microalgal uptake, sediment burial, and microbial immobilization. Anderson et al. found 

that the autotrophic uptake by sediment microalgae and by S. altemiflora (7.15 and 27.8 g
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N m - 2  h- 1 respectively) accounted for most of the NH4 + assimilation. Microbial

immobilization was also a significant sink for NHf*- (10.29 g N m- 2  h-1), whereas coupled

nitrification /denitrification and sediment burial accounted for small amounts of NH4 +

uptake (4.07 and 3.63 g N m- 2  h-1) .

Experiments conducted by White and Howes (1994) at the Great Sippewissett 

Marsh, MA, labeled the sediment NH4 + pool with 15N early in the growing season. They

suggested that salt marsh plants and nitrifying/denitrifying bacteria compete for DIN which 

was supplied by the flooding creek water, and also suggested that significant loss of 

nitrogen to the overlying tidal water was unlikely. They observed a rapid loss of NH4 + 

from salt marsh sediments (2 0 % of that applied) which they attributed to coupled 

nitrification/denitrification, while the remaining was incorporated into plant tissue. Rate of 

loss by this pathway rapidly declined and after seven years, more than 40% of the added 

15N remained within the dead organic nitrogen pool. Of the total sinks for NH4 + calculated

and/or measured at Phillips Creek salt marsh, nitrification accounted for only 7.5% 

(Anderson et al. in preparation).

Valiela and Teal (1979) found the Great Sippewissett Marsh, a system greatly 

enriched with NO3 - from a ground water source, exhibited losses of nitrogen from the salt 

marsh system primarily through denitrification; however, loss through tidal exchange was 

similar in magnitude (6,940 and 5,350 kg N yr- 1 respectively;). Overall, it was concluded 

that the losses of nitrogen by denitrification and tidal export balanced the gains to the 

system. To the contrary, rates of denitrification at Phillips Creek were extremely low 

(Anderson et al. in preparation) and tidal water was a source of DIN to vegetated salt marsh 

sediments (Table 5; Figure 4a).

Results of this study indicate that at Phillips Creek, DIN uptake by the vegetated 

salt marsh sediments was strongly and positively related to DEN concentration in the
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overlying water column (Table 12; Figures 15b and 16a). It is suggested that microbial 

processes and assimilation by sediment microalgal and macrophytic communities created 

the observed flux of DIN into the salt marsh sediments. Although it was hypothesized that 

release of NH4 + would be observed in the summer and fall due to senescence and

degradation of vegetation, greatest uptake of NH4 + occurred in July and September 1994. 

Greatest NH4 + uptake rates corresponded to times when NH4 + concentrations in the 

overlying water and above-ground S. altemiflora biomass were at their highest (Tables 5,7, 

and 9; Figures 4a, 8 a, 12, and 15b-c). Greatest NO3 - uptake occurred in the early spring

(March 1994) when NO3 - concentration in the overlying water and sediment microalgal 

biomass were at their highest (Tables 5, 7 and 9; Figures 4a, 8 a, 14, and 16a-b). 

Observations that creek water NO3 - concentrations were inversely correlated with salinity

strongly suggest that ground water was the major source responsible for high NO3 -

concentrations in March 1994. The presence of ground water at Phillips Creek will be 

addressed more thoroughly later in the discussion. Generally, seasonal exchanges of DIN 

were at their lowest when concentrations of DIN in the overlying water were at their 

seasonal lowest (Table 5 and 7; Figures 5 and 9), when no living S. altemiflora was 

present (Figure 12), and when sediment microalgal biomass was at its lowest (Figure 14). 

The relationship between DIN exchange and DIN concentration in the overlying tidal water 

at Phillips Creek was also in agreement with numerous other salt marsh exchange studies 

(Childers and Day 1988, Childers and Day 1990, Spurrier and Kjerfve 1988, Whiting et al. 

1989, Wolaver et al. 1988, Wolaver et al. 1983). While seasonal patterns and directions of 

exchange did vary among other sites along the East and Gulf Coasts, exchanges were most 

often related to concentrations of DIN in the overlying tidal water.

In contrast to results obtained from this study, in situ chamber experiments 

conducted at Phillips Creek by Chambers et al. (1992) found the salt marsh to be a source
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of NH4 + to the overlying water during the growing season. NO3 - exchanges were not 

measured. Differences in exchange direction may be explained by two differences in 

experimental design:

1) Chambers et al. used either low nutrient seawater (1.0 fiM-NH4 +) obtained

offshore or a low nutrient synthetic seawater (2.5 1 1M-NH4 +) as the overlying water source 

within in situ chambers. The mineralization of organic matter can cause NH4 + to 

accumulate within the salt marsh sediments. As a result, a concentration gradient along 

which NH4 + moves to the surface and eventually into the overlying water column can occur

if concentrations in the overlying water are less than those in the sediments. By the 

presence of a low nutrient flood water, as in the Chambers et al. experiments, a release of 

NH4 + into the overlying water could have occurred by the means just described. In the

present study ambient marsh water, with significant concentrations of NH4 + ( 1 . 4 3  to 5.03

|iM-NH4 +), was allowed to flood the marsh sediments which may have reversed the

concentration gradient of NH4 -1- back into the sediments.

2) The accumulation of nutrients in surface films can occur during times in which 

the marsh surface is not flooded (Gallagher 1975, Keizer et al. 1989). Under normal 

flooding conditions, the initial stages of tidal inundation have been reported to “pick up” 

these concentrated reservoirs of nutrients. Chambers et al. suggested that at Phillips Creek, 

the most NH4 + release occurred during the initial stages of the flooding tidal cycle. By use

of a fluctuating water level chamber, which was designed to simulate true tidal action, 

Chambers et al. were able to sample nutrients in this initial flooding period and therefore 

were able to “catch” the concentrated pool of NTLf-. In the present study, exchange

measurements did not start until the marsh was well flooded (at least 1 2  cm.), often as 

much as a half an hour after the marsh surface was inundated. Any reservoir of 

concentrated NH4 + would have been diluted by the time samples were taken.
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DO Exchange. Since standing dead S. altemiflora and intertidal sediments have 

been observed to have substantial oxygen demands, an uptake of oxygen by the vegetated 

salt marsh is generally expected (Christian et al. 1981). DO exchanges between the Phillips 

Creek salt marsh sediments and the overlying tidal water were highly variable within and 

between sampling dates and both releases and uptakes were observed (Tables 5; Figure 7).

The observed production of DO in the water column chambers suggests that an 

autotrophic community dominates the water column of the Phillips Creek salt marsh 

ecosystem during all seasons except winter (Table 6 ; Figure 7). Despite the variability of 

the salt marsh DO exchange data, the salt marsh was a source of oxygen to the tidal water 

during the winter months (December 1994 and February 1995). It is suggested that the 

Phillips Creek salt marsh community became net autotrophic during seasons when there 

was little or no living above-ground S. altemiflora (Figures 7 and 12), thereby 

demonstrating the importance of sediment microalgal photosynthesis to the system .

DOC Exchange. It had been hypothesized that the Phillips Creek vegetated salt 

marsh would be a source of DOC to the tidal water. Although highly variable, data suggest 

that the salt marsh was, to the contrary, a sink for DOC (Table 5; Figure 6 ). No 

significant differences were measured between the fall, winter, and spring. Unfortunately, 

no conclusions can be drawn for the summer season, since data collected for analyses were 

not usable. Several flume experiments have shown similar variability with respect to DOC 

exchange. Childers et al. (1993a) measured significant import of DOC in geologically 

younger and accreting marshes in Cumberland, Georgia as did Childers and Day (1990) in 

Louisiana. Wolaver and Spurrier (1988) also found annual import of DOC in the 

geologically young Bly Creek, South Carolina salt marsh, although the import was not 

significant. Chalmers et al. (1985) measured no significant exchanges of DOC in Sapelo 

Island, Georgia although it was suggested that during rainstorms and periods of low tide
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drainage, marshes were significant sources of DOC to tidal creeks.

In the present study it was anticipated that by measuring exchanges at small 

temporal (2 hour) and spatial scales (0.0792 m-2), a release of DOC from the vegetated 

marsh sediments would be measurable before its utilization by the microbial community. 

This was not the case. Bacterial utilization of DOC derived from S. altemiflora leachates 

has been observed to occur rapidly upon introduction of DOC to bacteria (Gallagher et al. 

1976, Turner 1978, Moran and Hodson 1989). If a source of labile DOC were provided 

by the Phillips Creek vegetated salt marsh, it was likely to have been rapidly utilized before 

export out of the system. Christian et al. (1981) reported similar results in the Duplin 

River, Georgia. They measured rapid consumption of labile DOC by the bacterial 

community and found that little if any DOC produced by the marsh left the river as DOC.

O ther Considerations. Logistics did not allow night time sampling at Phillips 

Creek salt marsh. The effect of dark conditions on DIN exchange rates was beyond the 

scope of this study. However, the relationship that may occur between diel variation and 

material exchanges can have important ramifications which need to be considered.

It is expected that the benthic autotrophic community present on the salt marsh 

sediment surface has the ability to intercept and assimilate a portion of DIN that could 

potentially be released from the sediments. Autotrophic assimilation of DIN by microalgae 

is more likely to occur during the day when photosynthetically active. Nowicki and Nixon 

(1985) estimated that approximately 25% of the NH4 + released from subtidal coastal lagoon 

sediments to the overlying water column was intercepted by a benthic microfloral 

population. Rizzo (1990) reported reduced NHLri- release from autotrophic subtidal 

sediments during lighted conditions as opposed to darkened conditions. Andersen (1986) 

investigated salt marsh sediment DIN exchanges and found that under laboratory 

conditions, short term changes in temperature had significant effects on exchange rates
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on exchange rates suggesting that diel variation may be important. Anderson et al. (in 

preparation) calculated that the uptake of NH4 + by sediment microalgae in the Phillips

Creek marsh was approximately 40% of that which was taken up by the macrophyte 

community. Implications for this study are that although an annual uptake of DIN was 

observed to occur during daylight conditions, uptake of DIN may be greatly reduced or 

switch to a release during the night when sediment mircroalgae are not actively assimilating 

DIN for photosynthetic processes.

The effects of burrowing crab populations and their behaviors on material 

exchanges were also not considered in this study. From field observations, fiddler crabs 

were plentiful within vegetated sediments throughout the course of this study. Crab 

activity was much greater in the warmer months, but was not lacking in the colder months. 

Crab bioturbation has been reported to promote extensive aeration, water percolation and 

erosion in the upper 10-20 cm. of salt marsh sediments (Pomeroy and Imberger 1981) and 

is, therefore, likely to increase losses of DIN by coupled nitrifleation/denitrification within 

salt marsh sediments.

Diurnal Tidal Creek Studies

It was not the intention of this investigation to perform an intensive hydrodynamic 

study of the tidal creek exchange characteristics at the Phillips Creek site. DEN exchanges 

between the salt marsh and adjacent coastal waters, based on water volumes moving in and 

out of the creek, therefore, were not calculated. Tidal creek sampling occurred in 

conjunction with the salt marsh exchange studies in order to gain a better idea of the DIN 

concentrations and variations in concentrations that occurred throughout diumal tidal 

cycles. For most experiments, the continuous increase in DEN concentrations as water left 

the creek implies that Phillips Creek exported DIN on the ebbing tide (Figures 17a-g).
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These findings are in agreement with numerous other mass balance and hydrodynamic 

studies which have taken place in salt marsh tidal creeks (Axelrad et al. 1976, Valiela and 

Teal 1979, Whiting et al. 1985, Whiting et al. 1987, Wolaver et al. 1988, Dame et al.

1991). Export of NO3 - in creek water during ebb tide was much more clearcut in this study

than was the export of NH4 +.

Since the vegetated salt marsh appeared to be a significant sink for DIN, intuitively 

an export of DIN by the tidal creek would not seem likely. To explain the observed export 

of DIN out of the creek, sources of DIN must be identified. Nitrification within the creek 

water or within creek sediments could, in part, explain the high NO3 - concentrations 

observed at low tide, especially since more atmospheric oxygen is available to nitrifying 

bacteria in a low tide situation. However, it is unlikely that nitrification was the source of 

NO3 - observed leaving the tidal creek, since NH4 + concentrations within sediments were 

lowest during March 1994 (Anderson et al. in preparation). It is hypothesized that ground 

water was the source of NO3 - observed at low tide in Phillips Creek. Several other studies

have also suggested ground water as a significant source of DIN to the salt marsh (Valiela 

and Teal 1979, Wolaver et al. 1988, Dame et al. 1991). Of the five dates when data were 

available, salinities of the creek water were always inversely proportional to concentrations 

(Figures 18a-e). The concentration of NO3 - that would exist at 0.0 psu was determined

from the intercept of the regression of NO3 - vs. salinity. The values thus calculated here

(16.0 - 86.0 J1 M-NO3 -) are in the same range as creek bank well water samples that were

measured by Tapper (1995) close to the present study site. These data imply there was a 

source of fresh water to the creek. It is suggested that since Phillips Creek salt marsh has 

no other permanent fresh water connections with the uplands, other than runoff from storm 

events (no samplings for the present study occurred after storm events), the fresh water 

source must have come from ground water. There is strong evidence in support of this



Linear regression models of creek water NO3 - concentrations vs. salinity at 
Phillips Creek over diurnal tidal cycles. Little or no salinity data were available 
for the July 1994 and September 1994 experiments, a) March 1994; b) May 
1994; c) December 1994; d) February 1995; e) April 1995.
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su g g e s t io n .

E x ten siv e  research co n d u cted  at the P h illip s  C reek  site  b y  T apper (1 9 9 5 ) su g g ested  

that fertilizers applied  to  the adjacent agricultural fie ld s w ere a  sign ifican t sou rce  o f  D IN  to  

grou n d  w ater in  the P h illip s  C reek  ec o sy stem . T h ese  stu d ies d eterm ined  a  su bstantial 

ground  w ater f lo w  from  the agricultural f ie ld s  in the d irection  o f  the adjacent m arsh and  

creek . Iso to p ic  co m p o sitio n  o f  N O 3 - in  w e ll w ater sa m p les  a lo n g  the creek  b ank  sh o w e d

e v id e n c e  o f  fertilizer-derived  N O 3 -. G round w ater w e lls  p laced  a long  a transect starting in  

the agricultural fie ld , through the salt m arsh, and to the creek  bank d isp layed  a co n sid era b le  

d ecrease  in  N O 3 - concentration  from  the fie ld  to  the creek  bank (8 3 6  p M  to 65  p M ).

T apper p rop osed  that as ground w ater m o v ed  from  fie ld  to creek , d ilu tion , d en itr ifica tion , 

and u tiliza tion  by  m arsh v egeta tion  co u ld  b e resp on sib le  for the decrease in N O 3 - 

con centration .

It is a lso  im portant to note that ground w ater d ischarge rates can  ex h ib it season a l 

variations and can b e in flu en ced  b y  p recip itation  even ts (T apper 1995). A t the P h illip s  

C reek  site , ground w ater d ischarge rates m ay  b e  d irectly  related  to  ground w ater  

con trib u tions o f  N O 3 - into the tidal creek . T h e present study o b served  h igh est N O 3 *

con cen tration  and h ig h est N O 3 - uptake by  the m arsh for the M arch 1994  exp erim en t, during

a tim e o f  ab ove average rainfall (F igure 19) T h is im p lies  that an increased  d ischarge o f  

ground w ater in to  the creek  m ay h ave occurred  as a result o f  rainfall. L o w est  

con cen tra tion s o f  N O 3 - and lo w e st  N O 3 - uptake b y  the m arsh w ere m easured  the fo llo w in g  

year in  February and A pril 1995 , during a tim e o f  le ss  than average rainfall.

A lth o u g h  not as w e ll-d e fin ed  as the N O 3 - export, N H 4 + export b y  the creek  w ater  

w a s o b serv ed  on  m o st o cc a s io n s . N o  ev id e n c e  e x is ts , h o w ev er , that ground w ater w a s  th e  

sou rce o f  this N H 4 +. In fact, N H 4 + con cen tra tion s in  w e ll  w ater sam p les a lo n g  the creek  

bank, as w e ll as th ose  in the sa lt m arsh and agricultural f ie ld  w ere n eg lig ib le  (T apper
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1 9 9 5 ). It is h y p o th esized  that a d v ectio n  o f  p orew ater from  the creek  bank , and  subtidal 

a d v ectiv e  w ater flu x  from  the creek  b ottom  w ere  resp on sib le  for the exp ort o f  N H 4 + ou t o f

P h illip s  C reek. A lth o u g h  n o  data ex is ts  for th is s ite , stu d ies con d u cted  in  oth er E ast C o a st  

sa lt m arsh  sy stem s h a v e  su g g ested  that u pon  lo w  tide ex p o su re , a d v ectio n  o f  p orew ater  

rich  in  N H 4 + can  o ccu r from  the creek  bank  sed im en ts in to  the tidal creek s (W o la v er  et al.

1 9 8 3 , W o la v e r  et al. 1 9 8 4 , Jordan and C orrell 1 9 8 5 , H o w e s  and G o eh rin g er  1 9 9 4 ).  

W h itin g  and C hilders (1 9 8 9 ) estim ated  that subtidal a d v ectiv e  flu x  in a N orth  In let, S o u th  

C arolin a  m arsh creek  su pp lied  m ore than three tim es as m u ch  N H 4 + as lo w  tid e  ru n o ff from  

th e v eg e ta ted  m arsh. W h ile  porew ater ad vection  from  creek  banks and creek  b ottom s  

appeared to be a sou rce o f  N H 4 + to the tidal creek , it w a s not found  to be a s ig n ifica n t

m ean s o f  transfer o f  D IN  from  salt m arsh  sed im en ts to the adjacent creek  w ater (H o w e s  

and G oeh rin ger 1994) and m ay b e the ca se  at P h illip s C reek  as w e ll.

A n oth er interesting ob servation  m ade from  the P h illip s C reek diurnal tidal creek  

sa m p lin g  data w as that on  m ost o c c a s io n s , n igh t tim e N H 4 + con centration s w ere  h igh er

than d aytim e concentrations. T h is d ie l variation  reflects the uptake/release d yn am ics o f  the 

m arsh  and su g g ests  that uptake o f  NITf*- b y the creek  w ater and the salt m arsh m ay b e  

greatly  redu ced  and /o r  release o f  NH4+ m ay o ccu r b y  the m arsh at n ight. D ie l variation  

w a s n ot o b serv ed  fo r  N O 3 - con centration .

Assessment of in situ Chamber Design

T he u se  o f  in  situ cham bers w h ich  iso la te  sm all areas o f  the m arsh appeared to  b e  

an e ffec tiv e  m eans o f  m easuring m aterial ex ch a n g es  b etw een  the vegeta ted  salt m arsh  

sed im en ts  and the ov er ly in g  w ater co lu m n . A lth o u g h  rather ted iou s and very  w eath er  

d ep en d en t, exp er im en ts u sin g  in  situ  cham bers o ffered  near am bient co n d itio n s. U n lik e  a
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naturally flooding marsh, the same water impounded within the chambers, stayed on top of 

the marsh sediment surface for two hours, although stirring did take place. Since DEN 

uptake rates were found to be significantly related to DIN concentrations in the overlying 

water, and as there was a continuous depletion of the DIN pool within a chamber over the 

course of the experiment, uptake rates measured in the present study could be a slight 

underestimate of actual uptake rates at Phillips Creek.

Using in situ chambers to measure DOC exchanges did not prove to be as 

consistent and reliable as the DIN exchange measurements. No other studies of this nature 

have been conducted on DOC exchange dynamics, therefore no other data exists to 

compare Phillips Creek DOC exchanges with. More studies should be conducted to 

determine whether in situ measurements at smaller temporal and spatial scales are a feasible 

means of measuring DOC exchange dynamics.

To determine the effects of temporal and spatial heterogeneity on exchange rates, in 

situ chamber experiments, as those performed in this investigation, could easily be 

conducted in unvegetated areas of the salt marsh and under night conditions as well, given 

sufficient manpower and resources. Although results would have been greatly enhanced, it 

was not physically possible nor within the scope of this thesis research to perform both 

vegetated/unvegetated and day/night experiments,.

CO N C LU SIO N S

This study suggests that during tidal inundation, the Phillips Creek short-form S. 

altemiflora salt marsh is an annual sink for DIN during daytime flooding tides. The salt 

marsh exhibited uptake of both NFLc and N O 3 - during all seasons except for the latter part

of the winter when little net exchange occurred. Further studies must be conducted in order 

to determine the night time exchange dynamics of this salt marsh system. It is believed that
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the o b serv ed  uptake o f  D IN  is  a  result o f  assim ila tion  b y  m arsh m acrop hytes and sed im en t  

m icro a lg a e , as w e ll as im m o b iliza tio n  b y  m icrobia l com m u n ities on  and w ith in  the salt 

m arsh  sed im en ts .

Contrary to  w h at w a s h y p o th esized , th is area o f  the vegeta ted  salt m arsh d id  n ot 

appear to  b e a sou rce o f  D O C  to  the o v er ly in g  tidal w ater. A lth ou gh  m easurem en ts w ere  

h ig h ly  variab le and lo w  in  m agn itu de, uptake o f  D O C  w a s m easured  during the fa ll, w in ter  

and spring. It is  lik e ly  that the m icrob ia l com m u n ity  rapidly u tilized  m o st o f  the D O C  that 

w a s p rod uced  by the salt m arsh b efore  exp ort to the o v er ly in g  w ater w a s  ab le to  take p la ce .

T idal creek  nutrient d yn am ics su g g est that P h illip s C reek exp orts D IN  during a ll 

sea so n s  and th erefore, m a y  b e a so u rce  o f  D IN  to  surrounding salt m arshes and adjacent 

co a sta l w aters. It is  su g g ested  that w h ile  the short-form  S. altemiflora salt m arsh appeared  

to  b e  a s in k  for NFU+ during m o st sea so n s , porew ater ad v ectio n  ou t o f  the creek  b ank  and

subtidal a d v ectio n  w ere  the p o ss ib le  sou rces o f  NFLi* o b served  lea v in g  the m arsh creek

through  the eb b in g  creek  w ater. S in ce  N O 3 - con centration s in the creek  w ater w ere

in v erse ly  related  to sa lin ity  and the vegeta ted  salt m arsh sed im en ts w ere a sin k  for  N O 3 -

during m ost sea so n s , it is  su g g ested  that ground w ater w as the prim ary sou rce o f  N O 3 - to

the eb b in g  tidal w ater. S o m e  o f  the N O 3 - that entered the ground w ater as a result o f

fertilization  o f  the adjacent agricultural fie ld s is lik e ly  to have b een  intercepted and u tilized  

b y  the salt m arsh, w h ile  it is lik e ly  that so m e w a s assim ila ted  b y  the ground w ater m icrob ia l 

co m m u n ity . A dthough so m e  N O 3 - w a s  still re leased  in to  P h illip s C reek , the area o f  salt

m arsh  under in v estig a tio n  appeared b e a substantial “filter” and a crucia l sink  for surplus  

nitrogen . Further stu d ies on  the nature o f  ad vection  and ground w ater d ischarge in to  the  

tidal creek  w o u ld  greatly  en h an ce the understanding o f  the contribution  o f  th ese  p ro ce sses  

to  the ex ch a n g e  d y n a m ics at the P h illip s C reek salt m arsh eco sy stem .

A s  a result o f  th ese  ex ch a n g e  stud ies at P h illip s C reek, the sin k  or sou rce nature o f
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this salt marsh seems to not only be controlled by biological processes, but also by the 

physical nature of the upland fluxes.
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