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ABSTRACT PAGE 

Presented is a study of quantum entanglement from the perspective of the theory of 
quantum information dynamics. We consider pairwise entanglement and present an ana
lytical development using joint ladder operators, the sum of two single-particle fermionic 
ladder operators. This approach allows us to write down analytical representations of 
quantum algorithms and to explore quantum entanglement as it is manifested in a 
system of qubits. 

We present a topological representation of quantum logic that views entangled qubit 
spacetime histories (or qubit world lines) as a generalized braid, referred to as a super
braid. The crossing of world lines may be either classical or quantum mechanical in 
nature, and in the latter case most conveniently expressed with our analytical expres
sions for entangling quantum gates. At a quantum mechanical crossing, independent 
world lines can become entangled. We present quantum skein relations that allow com
plicated superbraids to be recursively reduced to alternate classical histories. If the 
superbraid is closed, then one can decompose the resulting superlink into an entangled 
superposition of classical links. Also, one can compute a superlink invariant, for example 
the Jones polynomial for the square root of a knot. 

We present measurement-based quantum computing based on our joint number op
erators. We take expectation values of the joint number operators to determine kinetic
level variables describing the quantum information dynamics in the qubit system at 
the mesoscopic scale. We explore the issue of reversibility in quantum maps at this 
scale using a quantum Boltzmann equation. We then present an example of quantum 
information processing using a qubit system comprised of nuclear spins. We also discuss 
quantum propositions cast in terms of joint number operators. 

We review the well known dynamical equations governing superfluidity, with a focus 
on self-consistent dynamics supporting quantum vortices in a Bose-Einstein condensate 
(BEC). Furthermore, we review the mutual vortex-vortex interaction and the consequent 
Kelvin wave instability. We derive an effective equation of motion for a Fermi condensate 
that is the basis of our qubit representation of superfluidity. 

We then present our quantum lattice gas representation of a superfluid. We explore 
aspects of our model with two qubits per point, referred to as a Q2 model, particularly 
its usefulness for carrying out practical quantum fluid simulations. We find that it 
is perhaps the simplest yet most comprehensive model of superfluid dynamics. As a 
prime application of Q2, we explore the power-law regions in the energy spectrum of a 
condensate in the low-temperature limit. We achieved the largest quantum simulations 
to date of a BEC and, for the first time, Kolmogorov scaling in superfluids, a flow regime 
heretofore only obtainably by classical turbulence models. 

Finally, we address the subject of turbulence regarding information conservation on 
the small scales (both mesoscopic and microscopic) underlying the flow dynamics on the 
large hydrodynamic (macroscopic) scale. We present a hydrodynamic-level momentum 
equation, in the form of a N avier-Stokes equation, as the basis for the energy spectrum 
of quantum turbulence at large scales. Quantum turbulence, in particular the repre
sentation of fluid eddies in terms of a coherent structure of polarized quantum vortices, 
offers a unique window into the heretofore intractable subject of energy cascades. 
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spectrum of a single axisymmetric 2D vortex multiplied by (l/27r) = 175 is shown 
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A least-square fit over the interval 2;:::: k;:::: 16 with power law EL
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6.10 Quantum vortex-antivortex magnitude (blue) for a = 0.81 compared with the 

black quantum vortex (brown). The size of the pair is 28 = 14.14.55. . . . . . . 170 

6.11 Quantum vortex-antivortex density profile (blue) for a = 0.158 compared with 

the numerical solution (brown dots) for a small grid of size L = 64. The double 

quantum vortex is indefinitely stable. . . . . . 

6.12 A slice at z = Z0 of the magnitude J p(x, y, zo) (top, upside down) and phase 

O(x, y, zo) (middle) and phase contours (bottom) of the wave function for a quan-

tum vortex quadrupole, the product of 4 quantum vortex solutions on a grid of 

size L = 160. The density p(x,y) = lrp(x,y)l 2 and so Jp(x,y,zo)---+ 1 away from 

a vortex core (in the bulk). From the phase diagram, plotted -7r::::: e(x, y, Zo)::::: 7r, 
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going around any contour in the z = Zo plane that encloses a single vori.ex sin

gularity accumulates a phase of ±27r radians. With N = 4 line vortices one can 

accommodate periodic boundary conditions in the phase. . . . . . . . . . . . . 172 

6.13 The magnitude tanh [ ~] (top) and for~= 1
1
0 and the phase Arg(.\ + ip,) 

(bottom), in two spatial dimensions on a grid of size L = 160, of the wave function 

( 6.90) which has 4 vortex solitons in a quadrupolar arrangement consistent with 

periodic boundary conditions. This is a Clebsch potential representation of Fig. 6.12.17 4 

6.14 Starting with N = 12 vortex lines on a .5123 lattice. Vortex tubes at t = 200K 

(left) show an onset of a Kelvin wave instability. Tangled vortices are observed, 

even when Hint ~ 0, at t = 3.3K (right). Remarkably, one observes many vortex 

rings mediating the vortex line-line interactions. 

6.15 Continuing with theN= 12 simulation on the 5123 lattice, at t = llK (left) is 

highly tangled but closer to a spherically symmetric configuration. This is just 

over half-way through the recurrence cycle. There are markedly different tangled 

configurations every few hundred time steps. Untangled vortices are observed 

t = 21K (right). The in.ital state recurs after a turbulent state. An ordered state 

. 176 

at t = 21K deterministically returns to the initial state untangling turbulence, a 

cascade that cycles at intervals of tp = 21K. . . . . . . . . . . . . . . . . . 177 
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6.16 Top: The time evolution of the kinetic energy (blue), quantum energy (red), 

internal energy (green), and total constant energy (black line). The total energy is 

conserved. A recurrence of tp = 20.9K time steps is determined from the envelop 

of the forward energy cascade (dashed). Bottom: Power spectrum indicates all 

frequencies are represented as IE(vW"' [v(vmax- v)]-~ (red). . ........ 178 

6.17 Kelvin waves seen as twisting of (N = 8) vortex filaments when Hint(l¢1 2
) = 

1¢1 2 (1-l¢1 2 ). In the g "' 0 limit (non-interacting particles), there is a fast Poincare 

recurrence time of tp = 2020. For g ~ 5, vortices at the first few Poincare cycles 

(t = 0, tp, 2tp, 3tp) are plotted (top to bottom). The Kelvin wave twisting in the 

vortices eventually completely breaks the fast Poincare recurrence. The highly 

tangled vortices, similar to that of Fig. 2, occurring between the Poincare periods 

are not shown. The asymmetry in the time is due to the broken symmetry of the 

initial condition. 

6.18 Power spectrum of the quantum fluid's incompressible kinetic energy (top). There 

are three regions characterized by differing power laws displayed on the vortex 

soliton spatial profile (bottom). Numerical data (clots) is from a supercomputer 

simulation of a quantum lattice gas on a 10243 grid. Kolmogorov (black), transi-

0 180 

tion (green), and core interior (reel) regimes are shown. . . . . . . . . . . . . . 182 

6.19 The incompressible kinetic energy spectra for a periodic 12-vortex set with a = 
0.02, and an initial core inner radius is approximately ~ = 10 lattice units. The 

linear regression fits for power-law k-a yield a's given in Table I. There are 3 

distinct spectral regions: (a) k-i Kolmogorov energy cascade for small k, (b) 

steep semi-classical transition region for intermediate k, and (c) k-3 quantum 

vortex spectrum for large k. The Kolmogorov cascade becomes robust for large 

grids, as seen by the insets. 

7.1 During the onset of classical turbulence, strong coupling between large and small 

scale eddies is apparent in this fully resolved flow simulation of an incompressible 

Navier-Stokes fluid. Isosurfaces of vorticity are rendered. Helicity (dot product 

0 185 

of the velocity and vorticity fields) is displayed in the red-blue color coding. . . . 192 
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7.2 Quantum vortex profiles for g = 1 in lattice units with a scale factor a= 0.02: 

(BROWN) Condenstate magnitude p(r)!. 

(BLUE) Momentum density UiJ(r)/a = p(r)uiJ(r)ja. 

(BLUE DASHED) Divergent angular velocity ViJ(r) = nj(mr). 

(BLACK) Momentum density S'[u;!u(r)]/a = p(r)S'[v;!u(r)]ja. 

(BLACK DASHED) Divergent angular velocity S'[viu(r)]. 

(RED) Kelvin waves extend to the coherence length ~ ~. 

(GREEN) Quantum transition region extends out to~ 1r ~-

7.3 Time development vortex-antivortex reconnection on a 2403 grid. Probability 

isosurfaces of IY?I 2 = I~'T + 'lftl 2 are plotted. At t = 0 (top), two independent 

vortex lines, oriented perpendicularly and sepa1·ated in space (non-intersecting 

cores). By t = 24, the vortex-pair becomes unstable, inducing traveling Kelvin 

waves along the filamentary core. At t = 48, the two vortex cores connect, 

defined as t0 . By t = 116 (bottom), the cores are disconnected along the original 

orientations and reconnected at right angles. Induced quantum Kelvin waves are 

apparent. 

7.4 (LEFT) Quantum vortex is a kink solition. The flow direction on the left of the 

center is the opposite from the direction on the right, viz., a phase shift of 1r 

radians occurs in the condensate wave function as one goes half way around a 

quantum vortex. (RIGHT) Time development of an analytical kink soliton solution 

for the velocity field u = 1 - p of Burgers equation (run for the case when the 

kinetic variables are constrained to p = a+ b = 1), shifted vertically for each time 

increment to avoid overlap. The two the kink solutions are identical. Away from 

. 206 

. 208 

the kink front, the bulk values of the respective fields are ±1. . . . . . . . . . . 210 

7.5 (a) Unperturbed vortex rendered over 160 cyclotron periods. (b) Four wave

lengths of a kelvon riding on a larger vortex core, where flcyc = Poh/mv. (c) 

"Cyclotron" orbit in cross-section view, in units where the core inner radius (co

herence length) is~= 1.0 (brown circle) and the gyration of a trapped quantum 

particle (small red circle) has a gyro-radius one quarter the core radius. The slow 

gyration displaces quantum vortex core (blue circle). (d) Quasiparticle trace for 

20 cyclotron periods where the gyration frequency is ncyc/ 40, rendered as a closed 

world line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 

7.6 Simulation of vortex and anti-vortex filaments, originally linear and oriented per

pendicularly on a 10243 grid. Time steps t = 1200flt and t = 4800llt are plotted. 

Quantum Kelvin waves are seen along the vortex filaments early in the simulation . 

At the late stages, the filaments bend, reconnect, and exchange vortex rings. 
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7. 7 Spontaneous exchange of a vortex loop mediating a force between two orthogonally

oriented and separate vortex filaments. The exchange goes in both directions. 

This image is a small section of a 10243 space computed with thousands of proces

sors. Zoom-in online to see cuts in the vorticity isosurface that are inter-processor 

boundaries. 

7.8 The evolution of quantum vortices showing the vortex bending, reconnection and 

formation of vortex loops on a 10243 grid. Shown are ray traced surfaces of 

constant number density, I'PI = 0.08I'Pimax, that enclose the nodal lines in the 

condensate. (a) The initial 12 linear vortex cores (topologically equivalent to 12 

vortex rings because of periodic boundaries). (b) At the early time t = 2.500 

large amplitude Kelvin waves have developed. (d) By t = 55000 a large number 

of reconnection events have occurred. (f) At t = 60200 the vortex tangle reduces 

to 12 small vortex rings topologically equivalent to the initial state. (i) The 
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tional substrates with a half trillion qubits and 20 trillion gates. The amount of 

computational resources needed to simulate quantum turbulence is on the order 

of 80,000 cycle times, which comprises 1018 gate operations. 
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wired." Measuring the output line deterministically yields a 1 or 0 if the function 
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QUANTUM INFORMATION DYNAMICS 



CHAPTER 1 

Overview of quantum information 

dynamics 

1.1 Introduction 

Quantum information theory is a rapidly emerging field in physics that in recent 

years has received an abundance of attention from theorists and experimentalists 

alike. The reason for its rapid development is the hope that quantum information 

theory will offer us new and profound ways to understand and exploit, for very 

practical purposes, the mysterious and vast resources contained within entangled 

quantum systems. Quantum entanglement affords the experimentalist the remark

able ability to alter (e.g. observe) the state of a quantum object that may be located 

arbitrarily far away in space from his or her nearby quantum device (e.g. measure

ment apparatus), and this peculiar ability follows when the distant quantum object 

is perfectly correlated with its counterpart object that is nearby, operated upon or 

detected by that quantum device. In this thesis, we consider the effects of quantum 

entanglement by considering quantum information dynamical systems, and thereby 

2 
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strive to unravel some of the mystery behind this important physical effect. 

Einstein, Podolsky and Rosen (EPR) discovered non-local quantum entangle

ment over three quarters of a century ago [Einstein et al., 1935]. Although their 

seminal 1935 EPR Physical Review paper, "Can quantum-mechanical description 

of physical reality be considered complete?" is the most cited physics paper ever, 

quantum entanglement remains still one of the most mysterious properties of quan

tum physics. One has to probe particles at high energies that existed a trillionth of 

a second after the creation of the universe or attempt to probe for the dark energy 

causing the acelerated cosmic expansion and dark matter to encounter comparable 

mysteries. 

Quantum communication [Bennett and Wiesner, 1992, Bennett et al., 1993] and 

superdense coding [Schumacher, 1995] are good examples of important applications 

that exploit the properties of EPR pairs for their efficient operation, and these quan

tum information protocols can be rendered as physical spacetime diagrams or equiv

alent quantum information dynamics Feynman diagrams [Cerf and Adami, 1997b]. 

Yet, the most promising application of quantum entanglement is quantum com

puting, which theoretically provides a pathway to predict solutions to otherwise 

intractable problems-efficient quantum simulation of non-perturbative many-body 

physical systems is its prime application. In a quantum computer, quantum en

tanglement is created, used, transferred, and destroyed, either with or without any 

wave function collapse. 

Quantum information theory has provided a new paradigm for understanding 

quantum entanglement. Most work has focused on quantifying and classifying static 

entangled quantum states, including detection, verification, distillation, and estima

tion [Braunstein and Caves, 1994],[Vidal, 1999],[Wong and Christensen, 2001], 

[Eisert and Briegel, 2001, Coffman et al., 2000, Horodecki and Ekert., 2002], 

[Meyer and Wallach, 2002, Lyons et al., 2008, Horodecki et al., 2005] 
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[Pezze and Smerzi, 2009]. Other classifications of entanglement use invariants or 

topological equivalence classes with respect to local unitary transformations of the 

density matrix [Grassl et al., 1998, Linden et al., 1999, Walck et al., 2005] or through 

entanglement entropy [Cerf and Adami, 1997a, Cerf and Adami, 1997b, Wootters, 1998]. 

Furthermore, the dynamics of entangled states has been investigated, but usually 

with the goal of trying to understand decoherence mechanisms [Zyczkowski et al., 2001, 

Tiersch et al., 2008, Li et al., 2009]. Yet the approach of representing quantum in

formation topologically in terms of tangled strands [Heydari, 2007, Zhang et al., 2005, 

Kauffman and Lomonaco, 2004, Asoudeh et al., 2004, Kauffman and .Jr, 2002, Dye, 2003, 

Kauffman, 2005, Yepez, 2009, Yepez, 2010], explored here, offers new insights into 

quantum entanglement. 

1.2 Quantum informational models 

Herein we will consider an archetypal quantum informational model of a system 

of quantum particles in D+ 1 dimensions. In the prototypical quantum informational 

model, quantum dynamics is represented on a space made up of an ordered collection 

of LD number of points; for example, forD = 1, the set of points {x1 , x2 , ... , xL} 

say. Information is measured in unit of bits, and fractions of bits are physically 

allowed in quantum logic. 

A basic property of a point (as represented in the model) is that it may contain 

a fixed amount of information and any two (correlated) points may contain a fixed 

amount of joint information. The simplest case, a Q2 quantum lattice gas model, 

has each point comprising two quantum bits ( qubits). Several mathematical rep

resentations of qubits are presented in Sec. 2.1-they are two-level objects, so two 

qubits encode four distinct states, Ia) say, for a = 0, 1, 2, 3, and n qubits encode 2n 

states. Each of the four states at a point in a Q2 model represents the amplitude 



for a particular configuration of particle occupancy at that point; for example, 

IO) = IOO), vo (empty or pair hole) 

ll) = IOl), vr (plus or spin-up) 
(1.1) 

12) = 110), Vt (minus or spin-down) 

13) = 111), vr 1 (double or pair) 

is a typical encoding at each point. Regarding information contained in a pair of 

qubits, the Deutsch problem is one of the earliest examples of how a quantum circuit 

can be used to efficiently extract joint information. Appendix A gives a simple 

quantum circuit demonstration of how quantum superposition is used to speedup 

the solution of the Deutsch problem for determining whether a binary function is 

balanced or constant. 

In the case of the Q2 model, one can think of one qubit storing the amplitude 

of a spin-up particle occupying some point and the other storing the amplitude of 

a spin-down particle at that point, directly associating a qubit to a container for 

a particle with a particular spin. The terms "qubit" and "particle" are sometimes 

used interchangeably, blurring the distinction between a container and its contents. 

This occurs when a qubit is identified with the spin-degree of freedom of a spin

~ particle. Yet, this identification is not the one we use in quantum information 

dynamics. Instead of thinking of a qubit as a particle per se (i.e. since it has 

no mass or charge nor an intrinsic dynamics), we suggest a fundamental definition 

of a qubit: it is a logical container allowing either zero or one fermion to occupy 

a point, and the type of Fermi particle represented at that point depends on the 

number of qubits per point and the choice of encoding. The Pauli exclusion principle 

derives directly from the qubit representation of a point of space and otherwise is 

not intrinsic to the encoded particles per se. This is in contradistinction with the 

common practice of attributing the exclusion property (or the associated short

range repulsive exchange force) to the chiral matter itself and not to the space that 
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contains the chiral matter. 

Furthermore, the Bose-Einstein or Fermi-Dirac quantum statistics of the system 

of particles represented in the qubit system derive from how the points are stitched 

together, so to speak. Two points are neigbhors because their respective qubits 

are coupled, viz., one qubit from a point is coupled to a qubit from another point 

by a quantum gate. It is the quantum gate that connects two points together 

and that gives rise to the quantum statistics of the modeled system of quantum 

particles. Thus, the quantum statistics of the modeled fermions are not intrinsic to 

the particles per se. Again, this is in contradistinction with the common practice 

of attributing the quantum statistics of a system of particles to particles themselves 

and not to the space that contains them. 

With regards to coupling a pair of qubits (which need not reside at the same 

point), let us denote the first qubit by lqa) and the second one by lq,6 ). A quantum 

gate is supposed to represent the most basic of informational transformations that 

can occur. Denoting the combined state of two qubits by lqaq,a), every quantum 

gate is generated by a hermitian operator, Na,a say, for example as follows 

(1.2) 

where ( is a real parameter called the gate angle. A thorough presentation of 

quantum gates is given in Chapter 2 where we introduce a powerful analytical 

technique--Chapter 2 is the foundational chapter upon which all the subsequent 

ones depend. 1 It is the behavior of a large collection of quantum gates that is the 

subject of this work, yet for now let us begin by considering a small number of them. 

There are two archetypal cases of interest: 

1. N~,a = N a,B, and 

1 For example, the Bogoliubov quasi particles and their governing equations of motion are derived 
in Chapter 5 and their representation in terms of mode entangled quantum states is treated in 
Sec. 5.4, which is devoted to the superfl.uid dynamics of a Fermi condensate. 
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2. N~f3 = Naf3 but N:Xf3 =/= Naf3· 

A quantum gate ei(Na/3 is the fundamental logical construct for building up 

more general quantum dynamics over a field of qubits. For example, four qubits 

could be coupled together by three quantum gates as follows 

(1.3) 

The composite unitary transformation 

(1.4) 

is an example of a quantum circuit. Information is weaved together according to 

some particular sequence of quantum gates. That is, in quantum information theory, 

one specifies the quantum gate configuration comprising a quantum circuit (e.g. first 

ei(N-yo then ei(Na-y and then ei(Na/3 on the right-hand side of 1.4), and one does not 

specify the generator of the transformation (e.g. Naf3'Yo on the left-hand side of 

1.4). For large qubit systems, Naf3'Yo is hard to analtyically determine because the 

respective quantum gates do not in general commute with one another. This is one 

of the features that makes the quantum circuit representation of quantum dynamics 

so powerful-a quantity that is analytically difficult (and in fact intractable for large 

qubit systems) is represented in a direct unitary way that is practical for quantum 

simulation purposes. 

1.2.1 Quantum circuits: pathways for information flow 

The quantum informational approach of specifying quantum dynamics, which 

is originally due to Feynman [Feynman, 1960, Feynman, 1982], is a rather new ap

proach in the history of physics. Traditionally, one uses a Hamiltonian (in condensed 

matter physics) or a Lagrangian (in high-energy physics) to specify the quantum 
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dynamics of a system of particles, a practice that dates back to the earliest for-

mulation of quantum field theory in the first half of the 20th century and that in 

turn follows in the tradition of Lagrangian and Hamiltonian classical mechanics of 

many-body classical dynamics in the late 18th and early 19th centuries. 

In the quantum informational approach of specifying quantum dynamics, one 

uses wiring diagrams to represent quantum circuits schematically, somewhat similar 

to well known electrical wiring diagrams. With the advent of topological quan-

tum computing and quantum algorithms for computing knot invariants such as the 

Jones polynomial, it is fitting to use diagrammatic conventions from knot theory. 

Yet, there are no well established conventions for diagrammatically representing 

quantum circuits in this context, at least as far as I know. The diagrams I will use 

are intended to help make the presentation clearer by graphically representing var-

ious concepts, albeit they are otherwise cumbersome to use to specify complicated 

quantum algorithms that do not have a regular pattern of interconnections. 2 

One usually weaves a braid out of a number of pliable strands of string. In 

the context of a quantum circuit, the strands that comprise a braid are thought of 

as quantum wires, i.e. directed pathways for the transfer of quantum information. 

A quantum wire carries the quantum state of a single particle that in general is 

entangled with the quantum information "flowing" in the other quantum wires of 

the circuit. So a wire induces a directed world-line trajectory in spacetime of a 

particle encoded on that wire and correlated with the other qubit states in the 

modeled system. 

In our wiring diagram, the intersection of any two wires represents a quantum 

gate operation. Letting 11;0) _ lqaqf3q7 qs), the time-histories of individual qubit 

2 Although quantum algorithm protocols are specified using operator notation, it is often help
ful to also keep in mind the equivalent wiring diagram. Exploiting symmetries in the quantum 
circuit diagram helps to improve the quantum algorithm, e.g. giving it a high-order numerical 
convergence when used for modeling many-body dynamics. This was the case for the Q2 model in 
3+ 1 dimensions used for simulating a quantum gas, for example. 

file:///qaQ13Q1Q5
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states coupling via the three quantum gates in the above example circuit can be 

represented as the following sub-circuits 

(1.5a) 

(1.5b) 

(1.5c) 

In Chapter 3, we will "zoom in" on an intersection point, so to speak, to describe its 

behavior in more detail; viewed at high resolution, the world lines do not actually 

ever intersect3
. Yet, it is sufficient to consider the low-resolution diagrams such as 

(1.5) to make a number of preliminary observations. In (1.5b) the wires connecting 

jqa) to jq~) and jq-y) to jq~) each cross jq,13). Such crossings are classical braids, either 

a negative ( -1) crossing X or a positive ( + 1) crossing X . When using a quantum 

circuit model of a fermionic system of particles, the final "scattering" outcome of 

two qubit states (encoded in jq~) with jq~) in this example) depends on the state 

of all preceding qubits (jq,13) in this example) but does not depend on any qubits 

that follow (jq8) in this example). In practice (and without loss of generality), 

every quantum gate operation should be thought of as a local operation and any 

intermediate strand in the way needs to be appropriately braided so as to make the 

3This is a principle well known in quantum field theory, for example where one may use the 
(low resolution) Fermi theory of beta decay versus the (higher resolution) Glashow-Salam-Weinberg 
theory of the weak interaction with intermediate gauge matter. 
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quantum gate strictly local. And it does not matter whether one chooses to cross 

over or under an intermediate strand so long as the braid itself is represented by 

a local quantum swap gate, which is a nonentangling quantum gate that in matrix 

representation, respectively, has the form 

(" 
0 0 

l) 
. 0 1 1 

0 0 0 ±m o 
2 -2 

1 1 
-2 2 

0 0 ±1 0 
= e o 0 0 

SWAP±= 
0 ±1 0 

(1.6) 

0 0 0 -1 

This convention avoids any ambiguity in interpreting a quantum circuit diagram 

with braided wires. 

In this type of quantum circuit construction, the speed at which information 

flows from the top to the bottom, projected along the vertical, is taken to be a 

constant. Therefore, if all the wires going from the top to the bottom have equal 

lengths, viz. not as drawn in (1.5), then the speed of information moving along the 

wires would be constant too. Yet, it is not necessary to render the diagram with 

equal length strands; what is necessary is that the speed with which information 

moves in the vertical direction be constant. The most important distinction to 

make is which qubits the quantum gates act upon, and in what order. Given a 

particular quantum circuit, so long as no wires are cut and all the intersection 

points are maintained in the diagram's original ordering, the actual positioning 

of the quantum wires in the diagram can be changed; the circuit is topologically 

invariant with respect to the isotopy of the embedding space. 

So far we have discussed the shape of the wires, or their topological properties. 

Another important property of quantum wires is the direction of the flow of infor-

mation along a wire-a quantum wire behaves like an oriented strand. With time 

advancing along the vertical axis going from top to bottom, the convention we use 

renders a bit 0 (hole) moving forward in time as an upward oriented strand ( i) and 
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a bit 1 (particle) moving forward in time as a downward oriented strand ( l): 

0 1 

I = i I -1· (1. 7) 
0 1 

Consequently, a bit that reverses its motion in time necessarily complements its 

value; for example, the four flow reversal diagrams 

1 0 

v r+-1 
1 0 

0 1 

v n 
0 1 

(1.8) 

follow from (1.7). 4 Now, if you are not already familiar with the skein relation 

ltime (1.10a) 

from knot theory, you can nevertheless interpret it from a quantum informational 

viewpoint simply by applying the convention (1.7). For instance, we know that 

the A parameter here must represent the amplitude for the exchange of two bits of 

information within a quantum state 

A 
1 ... 0 ... 1. .. ) ~ 1 ... 1. .. 0 ... ), 

time 
(1.10b) 

whereas its inverse A - 1 represents the amplitude for no exchange 

A-1 
1 ... 0 ... 1 ... ) ~ 1 ... 0 ... 1. .. ). 

t1me 
(1.10c) 

Now consider the diagrammatic mirror image of (1.10a), where we also take A~ 

A - 1 , so that the skein relation becomes 

ltime (l.lla) 

4Using complement notation 0 = 1 and I= 0, we can also write (1.8) as 

1 I 
v r+-1 

1 I 
I 1 v n 

I 1' 
(1.9) 

which is akin the Feynman diagrammatic convention for fermion lines, and (complement) anti
fermion lines, used in quantum field theory to represent pair creation or destruction. 
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Here, we find another interpretation of the A parameter. Now the A-1 parameter 

necessarily represents the amplitude for the exchange of two bits of information 

within a quantum state 

A-1 
1 ... 0 ... 1 ... ) +---:---1···1. .. 0 ... ), 

time 
(l.llb) 

while its inverse A represents the amplitude for no exchange 

A 
1 ... 0 ... 1 ... ) ~ 1 ... 0 ... 1 ... ). 

tnne 
(l.llc) 

Comparing (1.10) with (1.11), if A represents the amplitude for a transition in time, 

then A-1 represent the time-reversed transition. So, for example, the skein relations 

(informational transitions) are invariant with respect to the product of a parity op-

eration and time-reversal (that is, PT = 1). Quantum mechanically entangled qubit 

world lines and tangled strands are closely related, and we explore this connection 

in Chapter 3. We find, for example, that when A is complex unimodular, its phase 

has the physical interpretation of an internal e-bit phase angle; that is, A= ei(~--Il. 

Feynrnan's 1982 conjecture 

Now, let us move on to an important conjecture originally due to Feynman 

[Feynman, 1982) regarding the existence of a universal quantum simulation that may 

be stated as follows: The dynamical properties of a system of quantum particles 

can be exactly modeled with quantum circuits. In the scaling limit, when the 

number of qubits becomes large, the long wavelength behavior of the system of 

qubits can accurately approximate a physical quantum field theory (in its low-energy 

representation). If Feynman's conjecture holds, then all non-local quantum effects, 

including those normally associated with the ordering of quantum particles whose 

dynamical operators satisfy nonabelian gauge groups, are ultimately reducible to 

a collection of the kind of archetypal quantum gates embedded at the intersection 

points within a patchwork of quantum wires. 
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There are conventional quantum gates [Barenco et al., 1995], such as the controlled

NOT quantum gate, and it has been known for a while that 2-qubit gates are com

putationally universal [DeVincenzo, 199.5, Barenco, 1995]. Quantum gates are cus

tomarily described using matrix or algebraic representations. For our purposes an 

analytical representation of quantum gates decomposed into ladder operators is most 

useful. 

Although a qubit is parameterized by two real-valued internal angles it can 

contain no more than a single bit of information. A joint information theoretic 

operator, such as an entanglement operator (or joint number operator) denoted 

Nt:w:f3(7J,~), can generate a pairwise entangled state that contains anywhere from 

zero up to one bit of entangled information, an e-bit. No.f3 = N'/x/3 is our prototypical 

joint informational operator. Like a qubit, an e-bit is also parameterized by two 

real-valued angles, which are a gate angle ( (herein the variable {) is most often 

used as a gate angle) and an internal phase angle ~· The gate angle ( in (1.2) 

parameterizes the strength of the e-bit, whereby the e-bit's content ranges from 0 

to 1 bit of shared information as ( goes from 0 to 1r /2. 

Bennett et al., in the context of quantum teleportation [Bennett and Wiesner, 1992, 

Bennett et al., 1993], have explored how a system of e-bits with entanglement < 1 

can be concentrated into an informationally equivalent system of fewer maximally 

entangled e-bits [Bennett et al., 1996]. To quantify the amount of entanglement in 

a partly entangled pure state of a bipartite qubit state, say between the ath and 

,8th qubits, one determines the partial traces of density matrix 

Po. Trf3iqo.qf3) (qo.qf3i 

Tro. lqo.q/3) (qo.qf3i· 

(1.12a) 

(1.12b) 

Reduced density matrices were proposed by Yang as a means to quantify long-range 

order in superconductors [Yang, 1962]. If the entangled states are shared between 
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spatially remote locations, one qubit by Alice and the other by Bob say, then the 

von Neumann entropy is determined by either party [Schumacher, 1995] 

E = - Trpa log2 Pa = - Trp13log2 P/3· (1.13) 

An e-bit is a bi-directional shared informational resource indeed. Now, let us return 

to our small quantum circuits. 

To make a composite quantum circuit, we simply "solder'' together the respec-

tive output and input leads of the sub-circuits, e.g. (1.4) becomes 

(1.14) 

Now let us consider a quantum circuit with closed-loop feedback. Such a circuit is 

fashioned by connecting, with a quantum wire, each output qubit to the respective 

input qubit. For example, with 4 qubits this is 

(1.15) 



Closing (1.14) gives rspace 
extra 

dimension 

(1.16) 

We refer to this kind of link of quantum wires as an informational substrate. 

It is a network of closed quantum wires on which entangled information cyclically 

flows. It is convenient to use an internal extra dimension that is orthogonal to the 

spatial dimensions represented by the ordered qubit field. In Fig. 1.16 this extra 

dimension is the vertical direction. The dynamics of this type of qubit system can 

be specified analytically by the following map 

(1.17) 

A basic construct in the model, as mentioned above, is that all bits of information 

move with constant unit speed in the extra dimension. That is, the time it takes 

for a bit of information to complete one full cycle in the extra substrate dimension 

is a characteristic unit of time, D.t say, and this time is independent of the pathway 

the bit takes. 

As mentioned earlier, when the number of qubits lqa),lqp), lq1,), lqs) ... becomes 

large, analytically calculating the eigenvalues and eigenvectors of Nap78 .. becomes 

intractable in general. For a system with Q qubits, there are 2Q eigenvalues. An 

interesting case is when these invariants derive only from the regular structure of 

the substrate, viz., for quantum algorithms where the only free input parameters 

are a very small number of local gate angles (an important class of quantum algo

rithmic models we shall discuss later on). Similarly, a link with Q strands has 2Q 
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knot invariants, of which the Jones polynomial and the Alexander polynomial are 

examples. 

If NafJ-y8 ... represents the Hamiltonian of a physical system of interest, then one 

wants to know at least the smallest eigenvalue and its corresponding eigenstate, the 

ground state of the system. There is a branch of quantum information theory entirely 

dedicated to this task due to Farhi et al. [Farhi et al., 2000, Childs et al., 2001, 

Steffen et al., 2003]. The method is called adiabatic quantum computing. It has 

been proven that an adiabatic quantum computer is universal, although in the worst 

case some quantum algorithms may suffer slowing down [Aharonov et al., 2008]. 

The universality proof by Kempe, Kitaev, and Regev follows from showing that the 

2-local Hamiltonian problem is quantum Merlin-Arthur complete (QMA-complete) 

[Kempe et al., 2006] 5 . 

There are a number of premises in the adiabatic approach to quantum com-

puting: ( 1) the Hamiltonian of interest has a free part and an interaction part 

with a scalar coupling strength and solutions are known to the free part of the 

Hamiltonian; (2) the ground state of the free Hamiltonian can be accurately pre-

pared on the quantum computer; (3) the quantum gates within the quantum circuit 

that represent the Hamiltonian can be tuned while the circuit is running (i.e. con-

trolled time-dependence) so that the initial zero coupling strength of the interaction 

Hamiltonian can be slowly ramped up over the course of the quantum computation 

gradually activating the nonlinear interaction (i.e. consistent with the quantum 

adiabatic theorem); ( 4) the time to ramp up to the full interaction is not too long; 

and (5) errors that occur along the way can be corrected as they occur. 

If there is a gap between the ground state and all other higher spectral en-

ergy levels, at the end of the quantum computation, the system resides in the 

5The QMA complexity class is the quantum analog of the classical NP (non-polynomial) com
plexity class. 
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ground state of the perturbed system. The time it takes to ramp up the cou

pling strength to the desired (nonperturbative) value scales as a polynomial of the 

inverse of the gap energy [Schaller et al., 2006]. After running for this amount of 

time, one uses a quantum algorithm for phase estimation due to Abrams and Lloyd 

to measure the ground state energy eigenvalue and eigenvector of the qubit system 

[Abrams and Lloyd, 1999]. The probability of obtaining the correct ground state en

ergy is equal to I(1Fadiab.l11exact)l 2
, which in the case of a flawless adiabatic quantum 

computation is 1. Of course a long adiabatic quantum computational cycle would 

be subject to many errors, so error-correction has been worked out by Jordan, Farhi, 

and Shor to stabilize the developing ground states against independent qubit errors 

[Jordan et al., 2006]. The pathway in time from the initial Hamiltonian to the de

sired one may vary, with the final eigenstate invariant with respect to topological 

changes in the pathway so long as any unwanted excitations do not exceed the gap 

energy. 

1.2.2 Quantum lattice gas 

In the scaling limit as the number of qubits become large, one can use quantum 

circuits with closed-loop feedback as an analog simulator, e.g. a qubit system can 

represent the dynamical behavior of another quantum system. Here the resolution 

of the spatial dimensions becomes large while the resolution in the extra dimension, 

as shown in (1.16), remains fixed and is rather low. This is because the size of the 

extra dimension is determined only by the quantum algorithm, which has a regular 

repeated structure of quantum gates. 

For practical implementation reasons, one is basically forced to consider quan

tum circuit configurations like this where the quantum gates couple qubits within 

a local neighbor of relatively small size compared to the overall size of the circuit. 
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The size of the regularly repeating local structure of quantum gates depends on 

the numerical accuracy one requires-a larger stencil covering a greater number of 

qubits is required to achieve better numerical convergence. The size of the local 

neighborhood is exactly the characteristic size of the extra dimension that we first 

encountered in (1.16). 

For simulations of 1 + 1 dimensional quantum dynamics, the substrate tends to 

look like a long narrow tube, or a torus for the case of periodic spatial boundary 

conditions as shown in the top of Fig. 1.1. The collection of bits that flow within the 

substrate behaves like a gas on a lattice. Such a quantum circuit with closed-loop 

feedback is called a quantum lattice gas. 

It is one of the earliest quantum algorithms devised [Riazanov, 1958, Feynman, 1946, 

Feynman and Hibbs, 1965, 't Hooft, 1988, 't Hooft, 1997, Yepez, 1996d, Yepez, 1996c, 

Bialynicki-Birula, 1994, Benioff, 1996, Meyer, 1997, Boghosian and Taylor, 1998a]. 

If the local gate structure (i.e. quantum algorithmic protocol) is chosen appropri

ately, then the flow of quantum information can emulate, in the long wavelength 

limit, a quantum wave function governed by an equation of motion such as the Weyl, 

Dirac, or Schroedinger wave equation [Yepez, 2007]. A time history of a quantum 

lattice gas emulating a quantum wave packet of a massive, nonrelativistic, charge

neutral, spinless, scalar quantum particle in 1 + 1 dimensions is shown in the bottom 

of Fig. 1.1. The algorithmic protocol is 16 gates deep and is based on a JswAP 

gate; more details about this particular algorithm is given in Ref. [Yepez, 2007], in

cluding a derivation of the Schroedinger wave equation as the effective field theory 

in the long wavelength limit. A derivation for the simplest version of the quantum 

algorithm for 3+1 dimensional simulations is given in Sec. 6.3.1. The ylswAP gate 

when applied twice results in a swap operation. So the )SWAP is like the swap 



19 

operation but it only goes "half way" so to speak. In matrix form it is 

'(: 0 0 

1) 
1 1 

1 0 0 0 t- 2 -2 
2 0 1 1 -2 2 

0 ~+4 1 i 0 
JswAP = 2-2 = e o 0 0 (1.18) 

1 i ~+~ 0 2 2 0 

0 0 0 

That squaring (1.18) yields a SWAP gate is easily verified. 6 The smallest time step 

t = 1 is the unit of time it takes for the bits to flow once around the small dimension 

of the toroidal substrate. 

A quantum gate, along with the quantum wires leading to and from it, can 

be thought of as the essence of a "scattering pathway" for two particles; and even 

though a gate scatters only 2 bits many qubits can be affected. If the two incoming 

qubits are independent, the outgoing qubits are are entangled by action of the gate. 

Also, if the incoming qubits are entangled, it is possible they become separated (i.e. 

unentangled) by the action of the gate. 

1.3 Organization 

Our basic approach, presented in Chapter 2, focuses on pairwise entanglement 

and uses an analytical development based on two types of fundamental joint ladder 

operators, each type the sum of two single-particle fermionic ladder operators. As 

6For ~ as a boolean number with value either 0 or 1 (i.e. ~ 2 = ~), it is easy to see that 

v1- 2~ = 1 + (i -1)~, 

which is the positive root. Similarly, (1.18) is generated by N = N 2
• To see this, do the Taylor 

expansion 

1 ? 1 3 
1 + zN + -(zN)- + -(zN) + · · · 

2! 3! 
1+(e2 -1)N, 

from which SWAP= ei1rN = l - 2N follows. In turn the positive root of this is 

VSWAP = ei!.fN = V1- 2N = 1 + (i- 1)N. 

(1.19) 

(1.20) 

(1.21) 
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FIG. 1.1: (Top) An example of a simple closed-loop quantum circuit (informational 
substrate of a Q2 model) representing a space of size L = 64 by using a field of 128 
qubits (total of 1024 quantum gates). (Bottom) Time history (measured in cycle time) 
of a modeled wave packet, with initial width L/10, of a massive scalar particle. The 
analytical solution of the linear Schroedinger wave equation (curve) and the prediction 
(dots) from the Q2 model agree. The spatial resolution is 64 points. [For simulation 
details see [Yepez and Boghosian, 2002].] 
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one would expect, joint number operators are constructed as a product of a joint 

creation and a joint destruction operator. These joint number operators (generators 

of entangling quantum gates) are used in a number of ways to analyze quantum en-

tanglement in quantum systems. There are two ladder operators, a raising operator 

a1 and a lowering operator aa, that act on one qubit Jqa)· Representations of qubits 

and these singleton operators are given in Sections 2.1 and 2.2, respectively. There 

are four joint ladder operators that act on two qubits Jqa) and Jq/3), for a =f. (3, and 

these are 

(1.22a) 

(1.22b) 

where~ is a real-valued angle that parametrizes an e-bit's internal phase. In general, 

there are 2n joint ladder operators that act on n different qubits. 

In Chapter 3 we present our a topological representation of quantum logic 

(outlined above) that views entangled qubit spacetime histories (or qubit world lines) 

as a generalized braid, referred to as a superbraid [Yepez, 2010]. The crossing of 

world lines may be either classical or quantum mechanical in nature, and in the latter 

case most conveniently expressed with analytical expressions for entangling quantum 

gates using (1.22a). At a quantum mechanical crossing, independent world lines 

become entangled and this process may be depicted by curvy lines representing the 

spacetime histories of qubits. Using our convention whereby the time axis is oriented 

vertically (advancing from top to bottom with two qubit entering the top legs of 

each diagram and existing from the bottom legs) and the space axis is horizontal, a 

quantum mechanical crossing is 

qubit world lines 
in a superbraid: 

crossed 

(1.23a) 

quantum gate uncrossed 
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ford= -A2-A-2
. For ez-1 = A-2d, (1.23a) reduces to AH =X= A- 1 ::::::: +A)(, 

which is a classical braid. Remarkably, the entangling gate operation (1.23a) is the 

fundamental (information-theoretic) mechanism underlying quantum vortex recon-

nection occurring within a quantum gas 

r~ 
;....: 

~' quantum vortices ' (1.23b) 
in a superfluid: ·~ 

crossed reconnection uncrossed 
t=O t = 48 t = 116 

If we move the last term in (1.23a) over to the left-hand side, then the quantum 

gate is more readily seen as a superposition of the classical alternatives >==; and 

) ( . We use the ordering of diagrams in (1.23a) to match the time evolution in 

(1.23b). The condensate in (1.23b) is represented by a large collection of qubits 

locally evolving according to (1.23a). This connection between the quantum gate 

scale and the scale of topological defects is basically why (1.23a) (the basis of a 

quantum lattice gas) can be used to faithfully simulate mutually interacting quan

tum vortices. As a side note, on the right-hand side of (1.23b), the remnant Kelvin 

waves due to Bogoliubov quasiparticle excitations in the vortex core are easily seen 

(the emitted phonons are not rendered). For applications to future quantum com-

puting, we suggest a candidate role for controlled quantum vortices ( qubits) and 

mutual vortex-vortex interactions (entangling quantum gates) in spinor superfluids 

regarding quantum information processing, topologically protected quantum mem

ories (with effectively infinite T2 decoherence time) and superbraids as entangling 

quantum gates [Yepez, 2010]. 

Pure quantum logic is strictly unitary whereas, in general, braiding is a nonuni-

tary operation. The quantum skein relation (1.23a) reduces to a classical skein rela-

tion when ez = A_4ei1r, as mentioned above. In experimental (real-world) systems, 

the quantum dynamics occuring within the system is not strictly unitary because 
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one must necessarily consider the effects of decoherence which causes long-range 

entanglement to become progressively localized in space over time and projective 

(Von Neumann) measurement which causes localization by destroying entangle

ment in the system via wave function collapse. With these practical constraints 

in mind, we have pioneered measurement-based quantum computing using entan-

gled clusters [Yepez, 1998, Yepez, 1999b, Yepez, 2001a, Yepez, 2007, Yepez, 2001c, 

Yepez, 2001b, Yepez, 2002b, Berman et al., 2002a], and in Chapter 4 we provide 

a brief review of our progress over the past decade. We take expectation values 

of these joint number operators to determine kinetic-level variables that describe 

the quantum information dynamics in the qubit system at the mesoscopic scale 

[Yepez, 2001a]. We explore the issue of reversibility in quantum maps at this scale 

(associated with a quantum Boltzmann equation [Yepez, 2006]). We then present 

a pioneering experimental result in quantum information processing, testing the 

predicted behavior (at the large scale) of a qubit system comprised of nuclear 

spins [Pravia et al., 2002, Pravia et al., 2003, Chen et al., 2006]. To explain why 

measurement-based quantum computing is efficient, consider a quantum lattice gas 

model with Q per point where the number of encoded particles at that point is 

N=2 (number of incoming particles scattering at a point). In this case, we need 

only consider zero-momentum pair states. Hence, the entangled cluster state (in 

momentum-space) has the form 

I entangled cluster state) = ~ ( k \_k + IE. C. I 

k' 

I +···+ 
-k' 

-k" <--4--+ k'} 
(1.24) 

where the right-hand side is a quantum superposition of over the equivalence class 

(E.C.) of configurations of two-body configurations with the same momentum and 

energy [Yepez, 1996a, Boghosian et al., 1997, Yepez, 1999b, Yepez, 1999a, Yepez, 2007]. 
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The entangled cluster state (1.24) is generated by a local interaction Hamiltonian H' 

[Yepez, 2007]. The Hilbert space is partitioned into E.C. blocks with equal numbers 

of particles, total momentum, and total kinetic energy since H' commutes with the 

total number and momentum operators and conserves energy. The number of terms, 

/E.C./, that appear on the right-hand side of (1.24) depends on the value of Q and 

is straightforward to calculate using a generating function method [Yepez, 2007]. If 

one performs a measurement of a single qubit (say encoding momentum state k) 

within the entangled cluster and obtains the output /1), then one knows conclusively 

that the entire cluster has collapsed into a unique classical state. That is, in our 

N = 2 example, the qubit encoding -k necessarily has also collapsed and so a subse-

quent measurement of this qubit's state deterministically yields /1) since the qubits 

were paired. The property of quantum entanglement allows one to compute an out-

going configuration from a scattering event by wave function collapse induced by 

measurement of an entangled qubit. 7 The characteristic feature of a measurement-

based quantum lattice gas model is that the entangled cluster states are local to each 

point in the system. It turns out that this feature is also characteristic of the Bose-

Einstein condensate (BEC) phase of low-temperature superfluids. The quantum 

state of the superfluid is fully separated over all the points of the system. Hence, a 

localized quantum lattice gas is a representative model of a BEC, where instead of 

by projective measurement, quantum state localization occurs unitarily by indepen-

dent phase rotations locally generated by V'i:mc[lf?(x)] = {t/lf?(x)/2
- ~/lf?(x)l 4 at every 

spacetime point x in the system, where rp is the complex scalar condensate field, {l 

is the chemical potential, and g is the coupling strength of the nonlinear Hartree 

interaction. 
7In general, in a quantum lattice gas simulation, the number of particles per point is N E [0, Q], 

where N is the sum of the particles that participated in the local collision plus the spectator 
particles that did not participate in the collision, so one needs to measure Q /2 number of qubits 
to ensure an entangled qubit is measured to guarantee that the cluster state is collapsed into a 
unique classical state (fully separated over all the qubits). 
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As a prelude to presenting our quantum lattice gas model of a BEC, we treat 

the theory of superfluidity of dynamical Bose and Fermi condensates in Chapters 5. 

We first review effective field theories governing Bose condensate dynamics, and 

review the subject of nodal topological defects in the Bose condensate, which are 

filamentary quantum vortices. Their mutual interaction leads to the Kelvin wave 

instability. We then present a derivation of the nonrelativistic effective field theory 

of a Fermi condensate and derive its governing equation of motion 

(1.2.5) 

where 1jJ is a spinor field and J-L is the chemical potential. The ansatz is that local 

Hartree potential VH(p) is a nonlinear function of the condensate number density p. 

In Chapter 6, we present a quantum lattice gas representation of the dynamics 

of a superfluid condensate governed as lowest order by the Gross-Pitaevskii equation 

(1.26) 

where <p represents a field of Cooper pairs, its value at each point being a sum 

of the amplitudes of 1/J, in (1.25), at that point. This quantum lattice gas rep-

resentation explores some aspects of the Q2 model, particularly its usefulness for 

carrying out practical computational quantum fluid dynamics simulations. We find 

that it is perhaps the simplest yet most comprehensive expression of the quantum 

dynamics that occurs within a nonlinear superfluid with a scalar condensate field 

[Yepez, 1996b, Vahala et al., 2004, Yepez et al., 2009b]. As an application of Q2, 

we explore the power-law regions in the kinetic energy spectrum of the condensate. 

We have been able to achieve the largest quantum simulations to date of a BEC 

(on massively parallel supercomputers) and have explored for the first time Kol-

mogorov scaling in superfluids, a flow regime heretofore only obtainably by classical 

turbulence models [Yepez et al., 2009c]. 
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In Chapter 7, we provide some final remarks on the subject of turbulence in 

regard to the information conservation on the small scales (both mesoscopic and mi-

croscopic) underlying the flow dynamics on the large hydrodynamic (macroscopic) 

scale [Boghosian et al., 2001, Boghosian et al., 2003, Boghosian et al., 2004a] 

[Keating et al., 2007]. To make the connection between classical turbulence and 

quantum turbulence, we derive the hydrodynamic-level moment equation which 

have the exact form of a viscous N avier-Stokes equation (effective viscous dissipa-

tion occurs even in an ultracold quantum gas or low-temperature superfluid because 

of vortex instabilities that couple to acoustic waves). These viscous fluid equa-

tions, originally derived by Harvey [Harvey, 1966] for the hydrodynamic variables p 

(number density or quantum probability density) and v (flow velocity or quantum 

probability current), are 

OtP + 8J (pvJ) 

8t(mpvi) +OJ (mpvivJ) 

where the viscous stress tensor is 

0 

the velocity field supporting shear within a quantum vortex is 

h V.JP w----, 
m.JP 

and the shear viscosity is the fundamental quantity 

hp 
1] = -. 

4 

(1.27a) 

(1.27b) 

(1.27c) 

(1.27d) 

(1.28) 

The set of equations (1.27) provide a basis for the k-513 Kolmogorov kinetic energy 

spectrum in quantum turbulence at large scales. Quantum turbulence in superfluids, 

in particular the representation of fluid eddies in terms of a coherent structure 

of polarized quantum vortices, offers a unique window into the heretofore nearly 

intractable subject matter of kinetic energy cascades. 



CHAPTER 2 

Quantum logic in analytical form 

2.1 Introduction 

Let us begin by introducing some notation: 

1 state (called "minus" on the Bloch sphere) 

11) = ( ~) the alternate symbol is !-) 

0 state (called "plus" on the Bloch sphere) 

!O) = G) the alternate symbol is I+). 

In the Bloch sphere representation (discussed below), the alternate symbols I+) 

and !-) are used to denote logical states. 1 A qubit is the fundamental quantum 

state representing the smallest unit of quantum information containing one bit of 

classical information accessible by measurement. A qubit is a mathematical object 

(an abstraction of a two-state quantum object) with a "one" state and a "zero" 

1The names "up" and "down," and the respective symbols jl) and ll), are reserved for spin-~ 
particles, encoded using 2 qubits. 
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state: 

(2.1) 

where o: and f] are complex numbers. These complex numbers are called amplitudes. 

The basis states are orthonormal 

(OIO) 

(Oil) 

(Ill) = 1 

(110) = 0. 

(2.2a) 

(2.2b) 

In general, the qubit lq) in (2.1) is said to be in a superposition state of the two 

logical basis states IO) and II). If o: and f] are complex, it would seem that a qubit 

should have four free real-valued parameters (two magnitudes and two phases): 

(2.3) 

Yet, for a qubit to contain only one classical bit of information, a qubit needs to be 

unimodular (normalized to unity) 

0: * 0: + (J* f] = 1. (2.4) 

Hence it lives on the complex unit circle, depicted on the top of Fig. 2.1. (2.4) 

constrains the value of the magnitudes, so we can write a qubit as 

(2.5) 

where 0 ~ f ~ 1 and where an irrelevant overall phase is factored out. So, as 

required, the length (or norm) of the qubit is an invariant quantity 

(2.6) 

Why is an overall phase irrelevant for a single qubit? The quantum property of 

measurement follows from identifying the moduli squared of the amplitudes as oc-

cupation probabilities f and 1 - f for the qubit to occupy its logical states 11) and 



IO), respectively, as follows: 

f 

1-f 
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(2.7) 

(2.8) 

There are only two relevant free parameters to specify the state of a qubit, but upon 

measurement, the qubit originally in the superposition state (2.5) is found to occupy 

only one of its logical states 

lq) m~me { 
11), with probability j, 

(2.9) 

IO), with probability 1 - f. 

Thus, upon a single measurement, lq) is found to be in either the state IO) or 11), an 

outcome that is said to be specified by a single classical bit E {0, 1 }. Thus in actual 

experiments, the occupation probability f equals the frequency of occurrence of the 

result 1 obtained from many repeated measurements. So, a qubit is embodied by a 

physical object that contains one bit of information that also nonlinearly couples to 

a measuring device (a projection operator), through which that bit of information 

is extracted according to (2.9). 

Time-dependent qubits states 

The state lq(t)) of a time-dependent qubit, as a two-energy level quantum 

mechanical entity, is governed by the Schroedinger wave equation 

(2.10) 

with n = 1. The time-dependent qubit is just like the spin-degree of freedom of a 

spin-1/2 particle in a uniform background magnetic field. The energy eigenvalues 

are ±w, and the energy eigenstates are 

IO)- (:) 11) = G), (2.11) 
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where IO) is the ground state and II) is the excited state of the qubit, say. In terms 

of the angular frequency w (e.g. Rabi frequency), the time-dependent qubit state is 

(2.I2) 

where the complex probability amplitudes satisfy IAol 2 + IA1 I2 = I since the qubit 

resides on the complex circle in Hilbert space (or the Bloch sphere in spin space). 

Now, we can explicitly write out qubit basis states of the Bloch sphere with 

u = (sine cos <p, sine sin <p, cos B) as 

l+)u 

(2.I3a) 

1-)u 
e '£. e ·'£. 

=- sin-e-2 210) +cos -e2 21I). 
2 2 

(2.I3b) 

One can write 2-spinor basis states, ~(i) and ~(1) say, in terms of qubit states 

~(i) 

~(1) 

e e . 
cos -10) + sin-e2'PII), 

2 2 

. (-e-i'P sin !!.) -i'£ I ) 2 e 2 - = 
cos!!. 

2 

e . e 
- sin-e-2'PIO) +cos -II). 

2 2 

2.1.1 Qubit representations 

(2.I4a) 

(2.I4b) 

The space of all possible orientations of lq) on the complex unit circle is called 

its Hilbert space. In the logical basis, the two degrees of freedom of the qubit are 



31 

11) I+> 

f3 ---------- I q) 
I 

1-> 
FIG. 2.1: A qubit in Hilbert space in its SU(2) representation (left), and the same qubit 
on the Bloch sphere in its 0(3) representation (right). SU(2) and 0(3) are homomorphic. 

often expressed as two angles 0 and <p, where f = sin2 (~). So without any loss of 

generality the Hilbert space representation of a qubit (2.1) can be written as 

lq) =cos(~) IO) +sin(~) ei~l1). (2.15) 

These angles have a well known geometrical interpretation as Euler angles. 

SU(2) and 0(3) representations 

For a geometrical interpretation of a qubit, consider a three-dimensional space 

with "unit vectors" ax, ay, and O"z chosen as an orthonormal basis. In quantum 

information theory, one sometimes represents each basis element by a 2 x 2 matrix, 

a traceless hermitian generator of two-dimensional special unitary group, SU(2). To 

do so, one defines the symmetric product (dot product) as 

(2.16a) 

Furthermore, one defines the anti-symmetric product (cross product) as 

(2.16b) 
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Note that the centered dot symbol on the right-hand side of (2.16) denotes matrix 

multiplication. Thus, a basis that is orthonormal satisfies the following conditions 

1, for i = j (normal), 
(2.17a) 

0, otherwise (orthogonal), 

and 

0, fori= j, 
(2.17b) 

CJk, for cyclic indices. 

A fundamental matrix representation that satisfies (2.17) is the well known Pauli 

basis 

- (0 -i) (J2- , 
i 0 

(J3 = (1 0). 
0 -1 

(2.18) 

The Pauli matrices (2.18) satisfy the orthonormality conditions (2.17) which is just 

the structure equation for the SU(2) group 

where si Sft- and the structure constant Eijk is the anti-symmetric Levi-Civita 

symbol. 

Now we can express the qubit (2.15) in vector form (i.e. with three real com-

ponents) as follows: 

q = (sin B cos <p, sin B sin <p, cos B). (2.19) 

(2.19) is a representation of a qubit on the Bloch sphere where B is the elevation 

angle and <p is the azimuthal angle. In this representation, depicted on the right

hand side of Fig. 2.1, the qubit is considered as a vector element of the three

dimensional orthogonal group, 0(3). Defining the Pauli spin vector (which has 

matrix components) 

(2.20) 



a qubit can also be expressed in matrix form 

q·iJ 

sin 8 COS <p CT1 +sin 8 sin <p CT2 +COS 8 CT3 

(2.18) 

( 

cos e e -i<p sin e) 
et<p sine - cos e 
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(2.21a) 

(2.21b) 

(2.21c) 

In this representation, the qubit is considered as an element of the SU(2) group. 

In quantum information, usually 2 x 2 unitary matrices are considered single-qubit 

quantum gates, but such matrices can themselves represent qubits too. Table 2.1 

gives a summary of the three common qubit representations 

Representations 
Hilbert space lq) 
0(3) group q 

SU(2) group lv1q 

TABLE 2.1: Qubit representations. 

2.2 Singleton ladder operators 

There are two basic operators from which all other quantum operator are con

structed. These operators are (: :) and (: ~) , which by matrix multiplication 

(0 0) (1 0) 0 0 generate 0 1 
and 0 0 . A one m each slot-what could be s1mpler? Each of 

these four operators carries physical significance. They are named for their function. 

Raising ladder operator: 

(2.22a) 
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Lowering ladder operator: 

a = G :) = ~ ( CJ 1 + iCJ 2) . (2.22b) 

1 number (particle) operator: 

n=G ~)=ata=~(l-CJ3). (2.22c) 

0 number (hole) operator: 

h = n = (: :) =a at=~ (1 + CJ3). (2.22d) 

Operating on logical states, the singleton ladder operators give 

atlo) ll) Raise 0 to 1 (2.23a) 

atll) G) Exclusion of 1 's (2.23b) 

aiO) G) Exclusion of O's (2.23c) 

all) IO) Lower 1 to 0, (2.23d) 

where the state (:) is called oblivion. Furthermore, operating on the logical states, 

the singleton number operators give 

niO) G) 
nil) ll) 

hiO) IO) 

hll) G) 
From the simple identity 

Exclusion of O's 

Counts l's 

Counts O's 

Exclusion of 1 's. 

(2.24a) 

(2.24b) 

(2.24c) 

(2.24d) 

(2.25) 

follows the anticommutation relation algebraically expressing the local exclusion 

principle 

(2.26) 
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operation individual joint perpendicular joint parallel 

create at at = _L (at - e-i~at) t - 1 ( -i~ t:) 
0: 0:~ y2 0: ~ ao:~ - V2 ao: - e a~ 

destroy ao: - 1 ( i~ ) _1(t i~) O.o:fJ - V2 O.o: - e afJ ao:fJ - V2 ao: - e a13 

number no: = a1ao: no:~ = a~6 ao:~ no:~ = a~~ao:~ 
hole ho: = aaa1 ho:~ = ao:~a~~ fJo:~ = ao:~a~~ 
entangle eb.o:~ = no:r3 + (.6.- l)no:n~ Cb.o:~ = no:,a + (.6.- l)ho:nf3 

create a'} = eiifno.f3a!e-iilnaf3 
0: 0: 

a'_t = eWnaf3a! e-iiJnaf3 
0: 0: 

destroy a' 
0: 

= ei'l3na(3 ao:e-i1Jna{3 a' 
0: 

= ei1Jno{3 ao:e-il'Jtla(3 

number n' = a't a' 
0: 0: 0: 

n' = a't a' 
0: 0: 0: 

hole h' =a' ad 'o: 0: 0: 
f)' = a' a't 

0: 0: 0: 

entangle Nb.o:f3 = n~ + (.6.- l)no:n~ ~b.o:~ = n~ + (.6.- l)ho:nr3 

gate u b.o:~ = eiiJe6.a(3 11/).o:p = eiiJC6,a(3 

gate Y±o:~ = ei8N6.a(3 y~o:/3 = eiem6.af3 

TABLE 2.2: Summary of individual operators acting on a qubit and joint operators 
acting on a qubit pair in the second-quantized representation. 

Finally, The observable number "1" (our fundamental unit of information) is im-

plicitly defined as the eigenvalue of n: 

nil)= G :) G)= 1G) = lll). (2.27) 

The singleton number operator is the simplest representation of a polarizer. 

2.3 Joint ladder operators 

Let us consider entangling two fermionic quantum bits, say, lqo:) and lq~), in 

a system comprised of Q .2:: 2 qubits and where the integers a and (3 E [1, Q] are 

not equal, a =/=- (3. Pair creation and pair annihilation operators (herein generically 

referred to as joint ladder operators) act on a qubit pair [Yepez, 2001a, Yepez, 2010]. 

There are two distinct types of such joint ladder operators, defined in terms of the 

individual fermionic ladder operators a1 and ao:, that act on a state I· .. qo: ... q~ ... ) 
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with a pair of qubits located at positions a and /3: 

(2.28a) 

(2.28b) 

So we denote a pair by grouping together two integers (a/3). Let us consider a second 

pair (a' /3') that is specified with respect to the first pair in the following way: if 

a= a' then f3 = f3', and if a-=/= a' then f3 -=f. f3'. That is, if a= a' then the pairs are 

identical, and if a -=f. a' then the pairs are nonoverlapping.2 Since the qubit creation 

operator al and annihilation operator aa satisfy the anticommutation relations 

similar anticommutation relations follows for the joint ladder operators: 

{ a:13 , aa'i3' t} = 0; 

{a:13 , aa'i3't} = 0. 

(2.29) 

(2.30a) 

(2.30b) 

In (2.30) the Boolean Kronecker delta on the right-hand side of the annihilation/ creation 

anticommutator could also have been written as Oaa' = Of3f3' = 6aa'Oi3!3' because of 

the pairing condition we imposed: either (a/3) = (a' /3') or (a/3) -=/= (a' /3'). 

In turn, the two joint number operators are 

(2.31a) 

(2.31b) 

where the individual qubit number and hole operators arena = alaa and ha aaal, 

respectively. The joint number operators are both idempotent3 , n?x13 = na/3 and 

2 As mentioned above, a pair (o:j]) is constructed on the condition o: of- j]. Thus, if the pairs 
(o:j]) and (o:' j]') are nonoverlapping, then we are assured that their indices satisfy o: of- j]' and 
j3 #- o:'. 

3Later in this chapter we will encounter a tri-idernpotent entanglement number operator, 1)1~!3 = 
IJlap· However, for now to make the presentation simpler, we will not deal with this case. 



n;;p = na,/3· Finally, one finds entanglement number operators 

37 

(2.32a) 

(2.32b) 

where ~ is a Boolean variable, 0 for the commuting case and 1 for the anti-

commuting (fermionic) case. The entanglement number operators (2.32) are idem-

potent as well. The reason for the appearance of the term (~- l)nanp in (2.32a) 

follows from the fact that the quantum mode entanglement number operator is 

idempotent; Appendix B.l presents a derivation that leads to the occurrence of this 

term when we require e~a,/3 = eD.a,/3· By a similar line of reasoning, (~ - l)han;J 

appears in (2.32b). 

The shorthand convention where two subscripts attached to a large quan-

tum state specify the locations of two qubits of interest in that state lqq')ap _ 

I ... qa ... q~ ... ) is convenient here. This convention is useful since the joint oper

ators act strictly on a qubit pair, regardless of the pair's location within the larger 

system of Q qubits. In the a,B-subspace, let us denote the singlet substate as 

(2.33a) 

and the triplet substates as 

I<I>!)a,B = ~ (101) + 110)) 
v2 a,/3 

The quantum substates (2.33) constitute the set of pairwise entangled Bell states in 

the a,B subspace that is a 22 dimensional slice of the full Hilbert space of dimension 

2Q. For added specificity, the symbols ..l and II are applied as superscripts on 

the Bell states. The convention used here is that a ket lqq')a13 will be said to be 

perpendicular with respect to its constituent qubits lq)a and lq') ,13 when q =I q' 

and parallel when q = q'. Example perpendicular and parallel two-qubit states are 
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ll) II) 

110/a/3 : C)lo) GIO) 
j_ 

ll) ll) 

IOO)a/3 : GIO) GIO) II 

ath qubit f-Jth qubit 

FIG. 2.2: Example of perpendicular and parallel two-qubit substates. The perpendicular 
substate 110) (top pair) and the parallel substate IOO) (bottom pair) are depicted with 
qubits as unit vectors on the complex circle. 

depicted in Fig. 2.2. Continuing with this convention, it is natural to define the 

following pairwise entangled quantum states 

(2.34a) 

(2.34b) 

by introducing a real-valued angle ~' which is physically interpreted as the internal 

phase of an entangled bit (e-bit). The four Bell states (2.33) are just special cases 

of (2.34) for angles ~ = 1r and~ = 0. Applying the entanglement operators to the 

perpendicular and parallel pairwise entangled states, one finds some rather simple 

relations4
: 

e~ I <I> _!_Ja/3 

e~ I \II _1_) ap 

e~ I \l111 la/3 = ~Ill) 

e~ I<I>11) ap = l\l111) · 

(2.35a) 

(2.35b) 

I<I> _1_) is an eigenket of e~ and l\l111) is an eigenket of e~. In the ~ = 0 case, the 

pairwise entangled states (2.34) are the eigenkets of the entanglement operators: 

I 
if. ) (2.35a) I if._)_) eo '±' _!_ a/3 '±' 

(2.35b) 

eol\llllla/3 = 0 

eoi<I> _!_lap = 0. 

(2.36a) 

(2.36b) 

4 As a matter of notational shorthand, in (2.35) the af] indices are dropped as subscripts from 
the entanglement operators and are also dropped on the right-hand side of an equation since 
avoiding redundancy in this way does not introduce any ambiguity. 
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That is, for the 6. = 0 case, I<P 1_) and 1\]Jn) are eigenkets of ec,., with eigenvalues 1 

and 0, respectively. Also, I<P 1_) and I \]Jill are both eigenkets of ec,., with eigenvalues 

0 and 1, respectively. As a special case of (2.36), the Bell states are the eigenvectors 

of e~ and e~ for the particular internal e-bit angles + = 1r and - = 0, respectively. 

2.4 Analytical quantum logic 

Let us pursue an analytical approach to quantum computation based on second-

quantized operators that is useful for numerical implementations. We will construct 

universal two-qubit quantum gates that can create (or destroy) pairwise entangle

ment between previously independent (or correlated) qubits. The basic approach 

associates entangling quantum gates with the unitary transformations generated by 

(2.31) 

U = ei1J et;.oc/3 
o:(J-

ll = ei{) Ct;.uf! 
a(J-

"{} 
1 + ( e~ - 1 )ec.o:(J (2.37a) 

(2.37b) 

We may distinguish between two fundamentally different types of classical opera-

tions, 101) +-+ 110) and IOO) +-+Ill). The former operation is a swap and the latter is 

pair creation/destruction. Equation set (2.37) is the quantum mechanical general

ization of these perpendicular (swapping) and parallel (pairing) operations. U and 

ll behave as quantum phase gates when acting on the perpendicular and parallel 

entangled states: 

(2.38) 

A general class of joint operators can be found by using the joint number 

operators (2.31) to affect a similarity transformation of all the other joint operators 
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/01) 

(1_ "'"')' ,-•~ VIOl )o" "
1
'·''

1 
}, (110) - I OJ)) ~ }, (101) + 110)) ~ v''wap 101) 

/10) = swap /01) 

/00) 

(II cose)' e -• hiOO) "" " 1
"·''

1 
}, (Ill) + IOO)) ~ }, (I 00) - Ill)) ~ .;p;;;;:t IOO) 

/11) = pairt /00) 

FIG. 2.3: Example of perpendicular and parallel entangling gates for the case when 
~ = ~· The initial perpendicular substate /10) is rotated by e-i%U through the angle{) 

(top) and the parallel substate /11) similarly rotated by e-i%U (bottom). These qubit
pair states are depicted as unit vectors on a circle for the cases: {) = 0, ~, 1r, 

3;. 

defined above. That is, for some operator 0, the generalization of 0 is obtained 

by either 0' ( '13) = ewn"'(3 Oe-i19na(3 or D' ( '13) _ ei19na(3 Oe-i19na(3. Thus, a similarity 

transformation of the number operators na and nf3 yields 

n~ ( '13' ~) eii) nc;,f3nae -iiJ nc;,(3 (2.39a) 

cos2 
( ~) na + sin2 

( ~) nf3 + i s~n '13 ( ei~a~af3 - e-i~abaa) (2.39b) 

n~('!J, ~) eii) nc;,(3 n{3e -iiJ nc;,(3 (2.39c) 

sin2 
( ~) na + cos2 

( ~) nf3 - i s~n '13 ( ei~a~af3 - e-i~abaa) (2.39d) 

and 

n~('!J,~) eii) Tic;,(3 nae -i19 nc;,(3 (2.39e) 

cos2 
( ~) na + sin2 

( ~) hf3 + is~ '13 ( e-i~a~ab + ei~aaaf3) (2.39f) 

n~('!J, ~) ei19 n"'f3n{3e-i19 naf3 (2.39g) 

sin2 (~) ha + cos2 
( ~) nf3 + is~ '13 ( e-i~a~ab + ei~aaaf3) . (2.39h) 

Thus, the joint number operators (2.39) continuously rotate starting from n~(O, ~) = 

n~(O, ~) = na and n~(O, ~) = n~(O, ~) = nf3 to the number and hole operators 
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to 1r. They are also idempotent. That information is conserved by this similarity 

transformation is seen by the conservation laws that follow directly from (2.39) 

n~('/9,~) + n~('O,~) = na + nf3 

n~ ( '!9, ~) - n~ ('!9, ~) = na - nf3, 

(2.40a) 

(2.40b) 

where (2.40a) is bit number conservation and (2.40b) is number velocity conserva-

tion. The left-hand side counts the information in its quantum mechanical (en tan-

gled) form whereas the right-hand side counts information in its classical (separable) 

form. In any case, the total information content in the aj3 subspace is conserved. 

Conservation of perpendicular entanglement is related to particle number (mass) 

conversation whereas conservation of parallel entanglement is related to number ve-

locity (momentum) conservation. In a quantum informational system comprising a 

large number of qubits, the microscopic conservation laws (2.40) give rise to effective 

nonlinear equations of motion at the macroscopic scale. 5 

We may also construct generalized joint ladder operators: 

a' 
Q 

(2.41a) 

(2.41b) 

After some algebraic manipulation, these can be expressed explicitly just in terms 

of the original ladder operators 

(2.42a) 

(2.42b) 

5 As a concrete illustration of this principle, the pairs of joint number operators (2.39b) 
and (2.39d), obeying the microscopic conservation law (2.40a), served as the basis of the 
first experimental demonstration of measurement-based (type-H) quantum computation used 
to numerically predict the time-dependent solutions of a nonlinear hydrodynamic equation 
[Chen et al., 2006, Yepez, 2006]. 
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and 

(2.42c) 

(2.42d) 

The product of the joint ladder operators (2.42), 

n' = a'ta' a a a' (2.43) 

yields the joint number operators (2.39), as expected. Noting that nanf3 is invariant 

under the similarity transformation, we can also write a generalization of (2.32) as 

(2.44a) 

Equation set (2.44) are e-bit number operators where the rotation angle{) determines 

the extent of pairwise entanglement in the o;J-subspace. The entanglement number 

operators (2.44) satisfy N'i.af3 = N D.af3 and 91~af3 = 91t:;.af3, so they are idempotent 

and tri-idempotent (but not an involution), respectively. 6 We may also associate 

entangling quantum logic gates with the unitary transformations generated by (2.44) 

(2.45a) 

(2.45b) 

where 8a is a real-valued gate angle. We can physically interpret the entanglement 

operators (2.44) as Hamiltonians by introducing a triangle relationE~=£;+ l6.al 2
, 

6 Actually, it is the 6. = 0 parallel operator that a tri-idempotent m~a/3 = SJlt:.a/3 whereas the 

fermionic parallel operator is simply idempotent SJtia~~ = mla/3· 
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where we define three real-valued quantities: the pairing energy Ea, the single parti-

cle kinetic energy £0, and the gap energy magnitude I ~a j. The names of these quan-

tities, and their respective symbols, are taken from the theory of superconductivity. 

Letting the rotation angle in (2.44) be qubit dependent, {) _,. {)a, the triangle rela

tion relates this angle to the energies as follows: cos {)a = ~ and sin {)a= 1~:1. We 

will need the half-angle identities: cos2 ~ = ~ ( 1 + ~) and sin2 19
2<> = ~ ( 1 - i:) . 

Finally, taking the gap function to be complex, we are free to choose to write it 

as ~a = l~al'ie-i~. In the new energy variables, and setting the Boolean variable 

~ (not to be confused with the gap function) equal to 1 (for the case of fermionic 

entangling gates), we can rewrite (2.44) as 

(2.46a) 

(2.46b) 

where in the last term we made use of the anticommutation relation aaaf3 = -af3aa 

for o: -=/= (3. Now if we multiply through by the pair energy Ea and sum over all 

pairings, denoted as (o:/3) (in the situation where there are no unpaired qubits), 

then the energy-weighted sums over the entanglement operators (2.46) are 

(2.47a) 

(2.47b) 

These are total energy operators, respectively counting perpendicular and parallel 

pairwise entanglement, of the qubit system. 7 

7We recognize (2.47) from condensed matter theories of strongly correlated fermions: (A) Hamil
tonian (2.47a) has the form of the single-band Hubbard Hamiltonian in the tight-binding limit 
[Hubbard, 1963] with 6.~/2 serving as the hopping parameter with just a self-energy Ea, and 
(B) Hamiltonian (2.47b) has the form of the BCS Hamiltonian in the theory of superconductivity 
[ Schrieffer, 1988]. 



CHAPTER 3 

Superbraids of entangled qubit 

world lines 

3.1 Introduction 

In topological quantum computing [Zanardi and Lloyd, 2003, Nayak et al., 2008], 

a quantum gate operation derives from braiding quasiparticles, for example, two 

Majoranna zero-energy vortices made of entangled Cooper-pair states in a p + ip 

superconductor where the vortex-vortex phase interaction has a non-Abelian SU(2) 

gauge group [Ivanov, 2001, Tewari et al., 2007]. Dynamically braiding such quan

tum vortices (point defects in a planar cross section of the condensate) induces phase 

shifts in the quantum fluid's multiconnected wave function. Local nonlinear interac

tions between deflects (vortex-vortex straining) is otherwise neglected; that is, the 

separation distance o of the zero-mode vortices is much greater then the vortex core 

size, which scales as the coherence length ~ « o in quantum fluids. The braiding 

occurs adiabatically so the quantum fluid remains in local equilibrium and the num

ber of deflects ( qubits) remains fi.xed. For implementations, the usual question is 

44 
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how can quantum logic gates, and in turn quantum algorithms, be represented by 

braiding deflects, quasiparticles with a non-Abelian gauge group. 

This chapter addresses the related fundamental question about the relationship 

between quantum entanglement, tangled strands, quantum logic, and quantum in

formation theory [Heydari, 2007, Zhang et al., 2005, Kauffman and Lomonaco, 2004, 

Asoudeh et al., 2004, Kauffman and Jr, 2002, Dye, 2003, Kauffman, 2005]. How 

can a quantum logic gate, and in turn a quantum algorithm, be decomposed into 

a linear combination (entangled superposition) of classical braid operators? The 

goal is to comprehend and categorize quantum information topologically. This is 

done by first viewing a quantum gate as a braid of two qubit spacetime histories 

or world lines. Qubit-qubit interaction associated with a quantum gate is rendered 

as a tree-level scattering diagram, a form of ribbon graph. A quantum algorithm 

may be represented as a weave of such graphs, a superbraid of qubit world lines. 

Finally, one closes a superbraid to form a superlink. In fact, quantum lattice gas 

algorithms, for example, those employed for the simulation of superfiuids themselves 

[Yepez et al., 2009c], are a good superlink archetype; hence the shared nomencla

ture. 

With this technology we can calculate superlink invariants. In principle, each 

quantum circuit has its own unique invariant (associated with a Laurent polyno

mial); for example two competing quantum circuit implementations of a particular 

algorithm can be judged equivalent, irrespective of circuit schemes and the placement 

of gates and wires. If two quantum algorithms, first- and second-order accurate, are 

topologically equivalent, then the simpler one can be used for analytical predictions 

of their common effective theory while the latter can be used for faster simulations 

with fewer resources. 

In short, presented is a quantum generalization of the Temperley-Lieb algebra 

TLQ and Artin braid group BQ: a superbraid and its closure, a superlink, is formed 



46 

out of the world lines of Q qubits (strands) undergoing dynamics generated by 

quantum gates. Furthermore, the superbraid representation of quantum dynamics 

works naturally for fermionic quantum simulations. There exists a classical limit 

where the generalized Temperley-Lieb algebra and the superbraid group, defined 

later in this chapter, reduce to the usual Temperley-Lieb algebra and braid group. 

There also exists a purely quantum mechanical limit where superbraids reduce to 

conservative quantum logic operators. Thus, the superbraid is the progenitor of the 

braid operator and quantum gate operator. 

This chapter is organized as follows. A condensed review of knot theory suffi

cient to define the Jones polynomial and a condensed review of qubit ladder opera

tors sufficient to define quantum logic operators and superbraid operators are given 

in Sec. 3.2. A diagrammatic representation of quantum logic, a hybrid between the 

usual quantum circuit diagrams and Feynman diagrams, is given in Sec. 3.3. A 

generalization of the Temperley-Lieb algebra (that includes fermionic particle dy

namics) is presented in Sec. 3.4. The superbraid group relations are given in terms 

of this generalized algebra in Sec. 3.5, whereby the superbl·aid operator is cast in 

three different mathematical forms. The first (exponential form) illustrates how a 

superbraid is an amalgamation of a classical braid operator and a quantum gate. 

The second (knot theory form) illustrates the very close connection to the well

known classical braid operator. The third (product form) illustrates the physics of 

pairwise quantum entanglement as the braiding of two qubit world lines through 

a particular quantum gate Euler angle. Novel quantum skein relations are given 

in Sec. 3.6 and calculations of superlink invariants, for example for the square-root 

knots introduced here, are given in Sec. 3.7. Thus, using the superbraid formalism, 

quantum knots such as the square-root of unknot or the square-root of the trefoil 

knot are well-defined topological objects and each have their own knot invariant. 

Finally, a brief summary and some final remarks are given in Sec. 3.8. 
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3.2 Links, ladders, and logic 

Classical braid operators (nearest-neighbor permutations), represented in terms 

of Temperley-Lieb algebra [Temperley and Lieb, 1971], were originally discovered in 

six-vertex Potts models and statistical mechanical treatments of two-dimensional 

lattice systems [Ba:>...'ter, 1982, Levy, 1990]. The quantum algorithm to compute the 

Jones polynomial [Aharonov et al., 2006, Kauffman and Samuel J. Lomonaco, 2007] 

employs unitary gate operators that are mapped to unitary representations of the 

braid group, this is, generated by Hermitian representations of the Temperley-Lieb 

algebra. To prepare for our presentation of superbraids as a topological represen

tation of the quantum logic underlying quantum information dynamics, let us first 

briefly mention some basics of knot theory and some basic quantum gate technology 

using qubit ladder operators. 

A link comprising Q strands, denoted by L, say, is the closure of a braid. The 

Jones polynomial VL(A) is an invariant of L [Jones, 198.5], where A is a complex 

parameter associated with the link whose physical interpretation will be presented 

later in this chapter. VL(A) is a Laurent series in A. The Jones polynomial is defined 

for a link embedded in three space-an oriented link. One projects L onto a plane. 

In the projected image, in general crossing of strands occurs but is disambiguated 

by its sign ±1; that is, one assigns overcrossings the sign of +1 and undercrossings 

-1. The writhe w(L) is sum of the signs of all the crossings, that is, the net sign of 

a link's planar projection. The Jones polynomial is computed as follows 

(3.1) 

where KL(A) is the Kauffman bracket of the link. KL(A) is determined from a 

planar projection of L, for example, using the skein relations below. In the simplest 
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case of an unknotted link (or unknot), the Kauffman bracket is 

Q= Ko(A) = d = -A2- A-2. (3.2) 

The Kauffman bracket of a disjoint union of n unknots has the value dn, for example, 

KL(A) for a link with crossings can be computed recursively using a skein 

relation that equates it to the weighted sum of two links, each with one less crossing: 

X=A~ 

X =A)( 

(3.3a) 

(3.3b) 

where A and its inverse are the weighting factors. As an example, let us recursively 

apply (3.3) to prove an intuitively obvious link identity c::x::xJ=Q . One reduces 

the relevant braid as follows 

rr 
(3.3a) 

(3.3b) 

(3.3b) 

(3.2) 

(3.2) 

A :::::X+ A-1 )CX 

A2:::J( + :::::::::::::+ A-l)CX 

A2 :::JC +::::::::::::: + )Q( + A-2)C::: 

A2 :::JC +::::::::::::: + d)C + A-2)C::: 

:::::::+(d+A2+A-2))( 

(3.4a) 

(3.4b) 

(3.4c) 

(3.4d) 

(3.4e) 

(3.4f) 

A quantum gate represents the qubit-qubit coupling that occurs at the crossing 

of world lines of a pair of qubits, say lqa) and lq,,) in a system of Q qubits. Every 

quantum gate is generated by a Hermitian operator, Ea'Y say, and whose action on 

the quantum state may be expressed as 

I )I_ i(Ea-yl ) ... qa ... q'Y . . . - e ... qa ... q'Y . . . ' (3.5) 
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where ( is a real parameter. The archetypal case considered here is E'/;_
1 

= Ecx7 ; the 

generator is idempotent. 

Suppose the system of qubits is employed to model the quantum dynamics of 

fermions or bosons. Is there an analytical form of the generator Ecx7 that allows one 

to easily distinguish between the two cases? It is natural to begin by treating Fermi 

statistics. With the logical one state of a qubit 11) = G), notice that (} z 11) = -11), 

so one can count the number of preceding bits that contribute to the overall phase 

shift due to fermionic bit exchange involving the ')th qubit with tensor product 

operator, (}~7- 1 1'1') = (-1)N"I4'). The phase factor is determined by the number of 

bit crossings N7 = I:Z:i nk in the state l'l,b) and where the Boolean number variables 

are nk E [0, 1]. Hence, an annihilation operator is decomposed into a tensor product 

known as the Jordan- \Nigner transformation [Jordan and Wigner, 1928] 

(3.6) 

for integer ryE [1, Q] and here the singleton operator is a= H(}x + i(}y), where (}i 

fori= x, y, z are the Pauli matrices. See page 17 of Ref. [Fetter and Walecka, 1971] 

for a typical way of determining NT The destruction (lowering) operator (3.6) and 

its transpose, the creation (raising) operator a~ = a~, satisfy the anticommutation 

relations 

(3.7) 

The Hermitian generator of a quantum gate can be analytically expressed in 

terms of qubit creation and annihilation operators. A novel generator that is mani-

festly Hermitian is the following: 

E d-1[ A2 A-2 b.crr = - fi ncx - n, 

-A a~a-1 -A - 1 a~acx + d (,0.- 1 )ncxn7 J, 
(3.8) 



50 

where d = -A2 - A-2 is real. The parameter L.}. is Boolean, and it allows one to 

select between Fermi anticommuting (L.}. = 1) or commuting (L.}. = 0) statistics of 

the modeled quantum particles. The operator generated by Et:.a-y is 

(3.9) 

which is a unitary quantum state interchange for the case when z is pure imaginary. 

That is, (3.9) is a conservative quantum logic gate for z = 'i(,. For the case when z 

is complex, (3.9) is proportional to a superbraid operator. 

The coefficients in (3.8) can be parametrized by a real angle '13: Et:.a-y = Et:.a1 ('13) 

with 

A2 =_cos '13 + 1 
sin '13 

and d = -A2
- A-2 = 2csc'l3. Then, (3.8) takes the form 

(3.10) 

(3.11a) 

Let us take a moment to explain the origin of (3.11a). The perpendicular joint 

entanglement operator (2.44b) that we derived in Sec. 2.4 is 

We have the freedom to choose A = -ieit;, and thus we recovered the mathematical 

form of (3.11a) for Et:.a!3(A) = Nt:.ap[rJ(A), ((A)]. Remember that Et:.af3(A) is a 

hermitian generator of the Temperley-Lieb algebra. Since the braiding operation it 

generates may be nonunitary for certain values of A, it should be distinguished from 

a hermitian generator of entanglement for those particular values of A. 
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3.3 Diagrammatic quantum logic 

The state evolution (3.5) by the quantum logic gate (3.9) can be understood as 

scattering between two qubits 

lqa) lq-y) 

~H (3.12a) 

lq~) lq;) 

lqa) lq-y) 

~H (3.12b) 

lq~) lq;) 

where the "gauge field" that couples the external qubit world lines is represented 

by an internal double wavy line (or ribbon). The external lines either overcross or 

undercross and are assigned + 1 and -1 multiplying the action, that is, ±(£.::,. This 

sign disambiguates between a quantum gate and its adjoint, respectively, as shown 

in (3.12a) and (3.12b). Let us denote a qubit graphically lqa) - tla I +da l, with 

complex amplitudes constrained by conservation of probability lual 2 + ldal 2 = 1. 

Starting, for example, with a separable input state l1,b) = lqa) lql'), a scattering 

diagram is a quantum superposition of four oriented graphs: 

lqa) lq-y) H +~ H = 'UaUJ' + + Uadl' t~ 
(3.13) 

Each oriented scattering graph can be reduced to a quantum superposition of clas-

sical graphs, or just a single classical graph, as the case may be. There are four 

quantum skein relations representing dynamics generated by (3.8): 

H =) < 

H
H 
H 

-A2 -~4-2ei() ~ + A- 1 (e~( -1) X 
-A2ei~- A-2 ) ( + "4 (ei:- 1) X 

(3.14a) 

(3.14b) 

(3.14c) 

(3.14d) 
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These are the quantum analog of (3.3). Adjoint quantum skein relations are ob

tained simply by taking ( -+ -( in the amplitudes in the diagrams in (3.14). All 

superbraids can be reduced to a quantum superposition of classical braids. The 

closure of a superbraid forms a superlink. Hence, a superlink can be reduced to a 

quantum superposition of classical links and, consequently, for each superlink one 

can compute an associated invariant, for example a superposition of Jones polyno-

mials. An example calculation of such invariants is presented in Sec. 3. 7. 

In the context of quantum information dynamics, a physical interpretation of 

the parameter A can be rendered as follows. If the strands in L are considered closed 

spacetime histories of Q qubits (e.g. qubit states evolving in a quantum circuit 

with closed-loop feedback), then the left-hand-side of (3.14) represents a trajectory 

configuration within a piece of the superlink where entanglement is generated by a 

qubit-qubit coupling that occurs at a quantum-gate (i.e. generalized crossing point). 

For the one-body cases (3.14b) and (3.14c), the right-hand side represents classical 

alternatives in quantum superposition: d- 1 ei~ ( -A2 e=Fi%- A -2e±i~) is the amplitude 

for no interaction (nonswapping of qubit states) whereas the amplitude of a SWAP 

interaction (interchanging of qubit states) goes as d-1A=F1 (ei(- 1). 

As a first example of reducing a superbraid, let us recursively apply (3.14) to 

prove an obvious evolution identity: the composition of a quantum gate with its 

adjoint is the identity operator, that is, uut = 1. For simplicity, let us start with 

jqa) =i and jq-y) =L so the initially oriented superbraid is reduced to a superposition 

of classical braids as follows: 

(3.14b) 
(3.15) 



53 

(3.14b)t 

(3.14c)t 

-A'-dA-'•'' -A'-:--,,-" ~ ~ + -A'-:-','' A-' (•:''- 1) ~+A-' I~' 1) ~ 

A4+A-:2+2cos( J (- ~~1 (A2+A-2ei<)(e-i( -1) X- Ad~l (A2e-i( +A-2)(ei( -1) ~ 

(e-i( -1) (ei( -1) X) 
+ d2 >-< 

(3.4) 

It is easy to verify that the same result occurs for inputs lqo:) =l and lq'Y) =j. 

Furthermore, the identity trivially follows for lqo:) =i and lq'Y) =i and for lqo:) =l 

and lq-y) =l since .6. is Boolean. 

3.4 Generalization of TLQ(d) 

With adjacent indices, for example, "!=a+ 1 in (3.9), we need write the first 

index only (i.e. suppress the second indice), ED.o:- ED.o:,o:+1 . Using this compressed 

notation, (3.8) satisfies the following generalized Temperley-Lieb algebra 

a=l,2, ... ,Q-1, 

To help understand this algebra, we may write (3.16b) as follows 

(3.16a) 

(3.16b) 

(3.16c) 

(3.17a) 

(3.17b) 
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where Xa,a+l and Ya,a+l are introduced solely for the purpose of separating (3.16b) 

into two equations. For (3.17) to be equivalent to (3.16b ), one must demonstrate that 

Xa,a+l = Ya,a+l· Inserting (3.8) into the left-hand side of (3.17), after considerable 

ladder operator algebra, one finds that the difference of the right-hand side of (3.17) 

is 

(3.18) 

vanishing for Boolean .6.. 1 Thus, (3.16b) follows from (3.8). 

As one finds that X and Y are proportional to .6., a remarkable reduction of 

(3.16) occurs for the .6. = 0 case: 

c c c (3E) d-2 c0~ '-'Oa'-'Oa±l'-'Oa 0, ~ 

a=1,2, ... ,Q-1 (3.19a) 

(3.19b) 

(3.19c) 

This is the Temperley-Lieb algebra over a system of Q qubits (TLQ)· Thus, entan-

gled world lines of commuting particles generated by £0a are isomorphic to links 

generated by Eoa· So (3.16) is a generalization of TLQ. We now consider the gener-

alized braid that it generates: a superbraid. 

1The full expressions are the following: 

Xa,o+l b. [ ( e2·i~a~ao+2 - e-Zi~a~+2aa) no: - iA -Z ( ei~a~aa+l - e-i~a~+l aa) na+2 

iA2 (e;~a~+ 1 aa+2- e-i€a~+2aa+l) na + A 4b..nana+l + A-4 na+lna+2 + nana+2 

+ (A4 + A-4 )(b.. -1)(b.. + 1 + A4b..)] 

Ya,a+l b. [ ( e2·i€a~aa+2 - e- 2i€a~+2aa) no: - iA - 2 
( ei€a~aa+l - e-i~a~+l aa) na+2 

iA2 
( ei~a~+l aa+2 - e-i€a~+2aa+l) no:+ A4 nanO'+l +A - 4 .6. na+lnC\'+2 + nana+2 

+ (A4 + A- 4 )(b..- 1) (b.+ A4 (b.. + 1))]. 
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3.5 Superbraid group 

A general superbraid operator is an amalgamation of both a classical braid 

operator and a quantum gate 

bs = A e;;El!.a{3 
,C:,.a(3 - .1-1 ' (3.20) 

where A and z are complex parameters. Equation (3.20) can be applied to any two 

qubits, a and (3, in a system of qubits (-i.e. we do not impose a restriction to the 

adjacency case when (3 = a+ 1 nor do we necessarily impose a restriction to unitary 

evolution). Equation (3.20) can be written in several different ways, each way useful 

in its own right. 

Letting z = 'i( + ln T, the super braid operator has the following exponential 

form 

(3.21) 

where A= T-~ (and soT= A-4 ). The superbraid operator can be written linearly 

in its generator 

(3.22) 

Thus, the superbraid operator and its inverse can be expressed in knot theory form 

(3.23a) 

(3.23b) 

A nontrivial classical limit of quantum logic gates represented as (3.9) occurs at 

( = 1r (swAP operator). Consequently, the superbraid operator in product form is 

(3.24a) 

(3.24b) 
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where b6.af3 = T-i e(lnT+i1r)£,e,."13 is the conventional braid operator. Equation (3.24b) 

is useful for comprehending the physical behavior of the superbraid operator. It 

classically braids world lines a and j3 and quantum mechanically entangles these 

world lines according to the deficit angle ( - 1r. 

The superbraid group is defined by 

for Ia - /31 > 1 

for 1 ::; a < Q, 

(3.25a) 

(3.25b) 

where ry is a constant that depends on the representation. For (3.8), we have ry = 

In the classical limit ( = n, the superbraid operator reduces to the classical 

braid operator, ba = b~(n, T), and (3.25) reduces to the Artin braid group, 

(3.26a) 

(3.26b) 

Equation (3.26) follows from Eq. (3.25) because ry = 0 for ( = 1r. Also, in this 

classical limit, Eq. (3.22) reduces to the braid operator 

(3.27) 

for a = 1, 2, ... , Q -1 (and technically the standard braid operator when j3 = a+ 1). 

After some ladder operator manipulations using (3.8), one finds that 

(3.28) 

where na = alaa· Since ~ is Boolean, the right-hand side vanishes, and this is just 

(3.26b). 



3.6 Quantum skein relations 

The skein relations (3.3) for directed strands are 

X 
X 

A) (+A-1>< 
A- 1)(+A>;:. 
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(3.29a) 

(3.29b) 

The writhe of a braid, +1 for (3.29a) and -1 for (3.29b), is determined by applying 

the right-hand rule at the crossing point (viz., considering the strands as vectors), 

rotating the strand above toward the one below with the axis of rotation either out 

of the plane ( + 1) or into the plane ( -1 ). By inserting (3.29) into (3.14), one arrives 

at a remarkably simple form of the quantum skein relations: 

H 
H 
H 
H 

(3.29b) 

(3.29a) 

; ( 
\; I (ei(- 1) ~ 
I ~ + d (""")r 

-\ I ( ei( - 1) \.____;,( 
I \ + d ,......., 

) ( + ( ei( - 1) ~ ) ( . 

(3.30a) 

(3.30b) 

(3.30c) 

(3.30d) 

Equation (3.30) is most useful for reducing a closed quantum circuit into a super-

position of oriented links. The relations in the one-body sector can be written as 

AH (3~b) AJ ( +A-l[A2(ez;l)J>< 

A-lH (3.30c)t rl) (+A [ A-2 (e-zd -1)] >< 
(3.31a) 

(3.31b) 

for the case of a complex rotation angle (i.e., i(---+ z) and where we have multiplied 

through by A and A - 1 , respectively, and taking the adjoint of the latter relation. 

Now with ez = A-4 ei( and A-4 = T, we arrive at 

AJ ( +A-1(1;:i:T)>< 
A-l) (+A ( -e

1
-:; T) ><' 

(3.32a) 

(3.32b) 
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the diagrammatic representation of the superbraid operators (3.23). Thus, we have 

the correspondence 
a (3 

b~o:(3 <'----+ A H ' (3.33) 

which is just (3.20) in graphical form. The superbraid operator (3.33) is unitary 

when A= .ijl, in which case it reduces to a conservative quantum logic gate. 2 

3. 7 Super link invariants 

Let us begin by writing the conservative quantum logic gate (3.9) graphically 

(3.34) 

where we choose to use the complex time parameter z. Now w number of successive 

superbraids is 

tJ H 
H 

=) ( (3.35) 

where the right-hand side follows from (3.34) by taking z --+ wz. Letting (b) = 
d-1 KL(A), where L is the closure of b, the Markov trace closure of (3.35), here 

denoted with angled brackets, is 

(3.36a) 

(3.36b) 

2Since flipping over a braid preserves the writhe of its crossing, we may flip over each diagram 
in (3.32) to have yet another way to specify operative quantum skein relations. Using this specifi
cation, if we take ( = 7f, then the flipped-over quantum skein relations just reduce to the classical 
skein relations (3.29). 
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Multiplying through by Aw, we then have the trace closure of w-superbraids: 

(3.37) 

In the classical limit ( = 1r and ez = -A - 4 , then (3.37) becomes a standard w braid: 

(3.33) Aw (d- d-1) + d-1 ( -A-3t 

(-A3 )-wd- 1 [1 + (-A4)w(d2 -1)]. 

The Jones polynomial is VL(A) (~) ( -A3)-w (bw), so 

(3.38a) 

(3.38b) 

(3.39) 

For example, considering classical links formed from the closure of two strands 

braided an integer number of times with w = 0, 1, 2, 3, 4, 5 ... , (3.39) gives 

voo(A) -A-2- A2 (3.40a) 

Vw (A) -A3 (3.40b) 

Vu-.JJ (A) -A-4- A4 (3.40c) 

Vu-J.JJ (A) A-'- A-3- A5 (3.40d) 

Vu-JJ.JJ (A) -A-10 + A-6 _ A-2 _ A6 (3.40e) 

Vu-JJJ.JJ (A) A 13 - A 9 + A 5 - A -1 - A' (3.40f) 

Equation (3.40b) is the Jones polynomial invariant for the unknot, (3.40c) for the 

Hopf link, (3.40d) for the trefoil knot, and so forth, and these Laurent polynomials 

are well known. 

Yet the formula (3.39) follows from the quantum logic gate relation (3.36), 

where w is a time scaling factor. Since time is a continuous variable in quantum 

logic, we are free to take w to be a real-valued parameter whereby the formula for 
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the invariant Jones polynomial remains physically well defined. Thus, for example, 

we can evaluate (3.39) for half-integer 111, and calculate Jones polynomial invariants 

for quantum links that are "halfway" between classical links, which is to say in equal 

superposition of two classical links. For quantum links formed from the closure of 

two strands braided an half-integer number of times with w = ~' ~' ~' ~ ... , (3.39) 

then gives 

V y'(i)(A) 

V c:-=-(A) 
vu..r...IJ 

-i- A-2 - A2 - A6 

A-~(A-2 + A2 ) 

iA - 3 - A -l - A 3 - A 7 

A-~ (A-2 + A2 ) 

-1-iA-6 -A4 -A8 

3 A-2 (A-2 + A2 ) 

iA-9 - A- A5 - A9 

A-~(A-2 + A2 ) 

(3.41a) 

(3.41b) 

(3.41c) 

(3.41d) 

Equation (3.41a) is the superlink invariant for the square root of the unknot 

(Vw), (3.41b) for the square root of the trefoil knot (v'u..r...IJ ), and so forth. 

The square root of unknot and trefoil knots are examples of quantum knots, a special 

class of superlinks. 

3.8 Conclusion 

Einstein, Podolsky and Rosen discovered nonlocal quantum entanglement over 

three quarters of a century ago [Einstein et al., 1935]. Although this inscrutable 

seminal result is the most cited one in the physics literature, quantum entanglement 

still remains one of the most mysterious properties of quantum physics. Here we 

have strived to unravel some of the mystery behind this important physical effect 

by rendering quantum entanglement geometrically as tangles of the most basic of 

strands: quantum informational spacetime trajectories (or qubit world lines). The 
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advantage of this approach is that it allows us to represent quantum entangled 

states in terms of intuitive constructs borrowed from the mathematics developed to 

understand knots. 

In knot theory, the most fundamental construct is braiding (or crossing) two 

adjacent strands. In quantum information theory, a fundamental construct is en-

tangling two qubits.3 In general, the braiding operation is nonunitary whereas an 

entangling operation (2-qubit universal quantum gate) is manifestly unitary. Yet, 

these two operations are not entirely unrelated-they are in fact special aspects of 

a general operation, termed a superbraid. The superbraid covers both nonunitary 

and unitary fundamental physical operations. It both braids qubit world lines and 

entangles the qubits and in this way mathematically disambiguates these most basic 

physical processes. 

Analytical defining relations for a superbraid operator were presented, as was 

the algebra for its generator. For Q number of qubits, the generator of a superbraid 

was found to be a Hermitian operator that is a generalization of the usual generators 

in knot theory satisfying the Temperley-Lieb algebra, TLQ(d). The generalization 

presented here handles both the anticommuting (ll = 1) and the commuting (ll = 0) 

cases of quantum information dynamics; the quantum particles (whose motion de-

fines the quantum informational strands) can obey either Fermi statistics or not. In 

the ll = 0 case, the operative generators are the usual ones that satisfy TLQ(d) and 

they serve as a Hermitian representation. Our generalization of TLQ (d) was actually 

needed to handle the case of entangled fermionic world lines. These generators, and 

in tum their respective superbraid operators, are analytically expressed in terms of 

3 Quantum computing algorithms can be specified in terms of entangling quantum gates that act 
only between adjacent qubits-two-qubit entangling gate operations between nonadjacent qubits 
(customarily used in specifying quantum algorithms in the quantum computing literature) can 
each be represented as a sequence of two-qubit gates operations acting on adjacent qubit pairs. 
Thus, local braid and quantum gate operations are both universal operations in their respective 
contexts. 
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the qubit ladder operators: qubit anticommuting creation and destruction operators 

and number operators. 

With the technology presented, one can topologically classify closed-loop quan

tum circuits with various schemes for quantum wires crossed (braided) at some 

locations and coupled together at some locations via quantum logic gates, for exam

ple, a sequence of braid operations (particle motion) and quantum gate operations 

(particle-particle interactions) that specify the local dynamics of a quantum lattice 

gas used for a computational physics application. The closure of a sequence of su

perbraids is called a superlink. We have demonstrated how a superlink invariant 

may be computed, for example, as a generalized Jones polynomial invariant. Invari

ants were calculated for two-stranded superlinks, and extending this to Q strands 

is straightforward. The approach is to reduce a superbraid with n crossings to a 

simpler superbraid with n - 1 crossings by applying a quantum skein relation, a 

straightforward generalization of the skein relations of knot theory. The quantum 

skein relations are summarized as follows. 

The A parameter commonly used in the classical skein relation of knot theory, 

X =A ) ( +A-1X, a version of (3.29a) that is flipped over, may be understood 

in the context of quantum information processing as representing the two alterna

tives for the exchange of a pair of bits for configurations with one bit up (logical 

zero) and the other bit down (logical one). The diagrammatic convention has in

formation flowing from top to bottom, entering in the top leads of the diagram and 

exiting from the bottom leads. So if the initial state is I ... j l ... ) , then the final-

state alternatives are: (a) no interaction (identity operation) 1 ... j l ... ) or (b) an 

exchange interaction (classical swap) / ... 1 j ... ) . The parameter A is the amplitude 

for the identity transition I· .. i l ... ) =? I· .. i l ... ) , whereas A -l represents the 

amplitude for the exchange transition I ... i 1 ... ) =? I ... 1 i ... ) . Since the braid 

operator conserves bit number and A is an amplitude, we generalized the classical 
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skein relation by allowing the interaction alternative (b) to represent a conservative 

quantum mechanical exchange-one defined by a bit-conserving two-qubit entan-

gling gate operation. This resulted in the following quantum skein relation for a 

superbraid operator: 

where d = -A 2 - A - 2 . Thus, a classical point occurs for any value of z that causes 

the quantity in the square bracket to become unity, ez - 1 = A-2 d. That is, a 

super braid reduces to a braid when ez = -A - 4 = A - 4 ei1r. 

In the case when ez = ei(A-4 and A is complex unimodular, the phase of 

A physically acts as an internal e-bit phase angle; that is, A = ei(~--Il as de-

termined by (3.11). In (3.24b) we wrote the superbraid operator as the product 

of a braid and conservative quantum gate. It braids two qubit world lines and 

entangles them according to the deficit angle .6.( = ( - (o I- 0, where ( is the 

real-valued time (related to the imaginary part of z) parametrizing the operation 

and (o = n is the classical point. Entangled qubit world lines and tangled strands 

are related through their respective skein relations sharing a common A parame-

ter. The approach of representing quantum information topologically in terms of 

tangled strands [Heydari, 2007, Zhang et al., 2005, Kauffman and Lomonaco, 2004, 

Asoudeh et al., 2004, Kauffman and Jr, 2002, Dye, 2003, Kauffman, 2005, Yepez, 2009, 

Yepez, 2010], and that we have explored here, offers insights about quantum entan-

glement as the quantum skein relation just mentioned, for purely imaginary z, is an 

entangling conservative quantum gate. 

The aforementioned considerations naturally lead to some relevant further out-

looks, for example the observability of quantum knots such as the square root of a 

knot, which of course has no classical counterpart. Just how the square root of a 

knot may be physically realized in an experimental setup is not presently known for 
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certain, but according to Cell-Mann's totalitarian principle it should be experimen-

tally compulsory as a physical phenomenon. Here is one possibility: a superbraid 

could exist within a Bose-Einstein condensate (BEC) superfluid as a superposition 

of quantum vortex loops. Furthermore, such vortex loops could represent a topo-

logically protected qubit, and entangled states of such qubits could exist within a 

spinor BEC.4 In a BEC, all the vorticity in the flow is pinned to filamentary topo-

logical defects in the phase of the condensate, that is, quantum vortices with integer 

winding numbers [Fetter and Svidzinsky, 2001]. We explore nonlinear superfluid 

condensates in Chapters 5 and 6. In a spinor BEC with two or more components in 

the condensate, each component may have its own quantum vortices. In the dilute 

vortex limit for each component, these quantum vortices act like strands that may 

be braided and entangled as the spinor superfluid flow evolves in time. 

Consider a configuration of quantum vortices in a superfiuid comprising two 

unlinked closed loops 00.5 Since nearby quantum vortex segments spontaneously 

undergo reconnection, one would expect that oo =?- w =?- oo and so on. 6 To form 

a qubit, one could identify the logical states with the two basic quantum vortex 

configurations: IO) = loo) and ll) _ lm ). So a topologically protected qubit 

(superbraided qubit) could be represented as a superposition of quantum vortex 

solitons 

lq) =a loo) + b lw ), (3.42) 

with amplitudes constrained by lal 2+lbl2 = 1. 7 These amplitudes are time-dependent 

4Spinor BECs have been realized in a confined cold spinor atomic BEC with several hyperfine 
states [Stamper-Kuru et al., 1998, Ho, 1998]. 

5The vorticity points along a quantum vortex line, so these act like directed strands. For sim
plicity, we omit arrow labels. Furthermore, these loops are not necessarily coplanar, for example, 
with the first loop in the plane of the paper, the second one could be rotated about the a..xis along 
its horizontal diameter, and perpendicularly oriented after a 90° rotation. 

6Here we tacitly assume the quantum vortices are contained in a trapping field, representing a 
container of genus two, so these mutually interacting quantum vortices cannot undergo a Kelvin 
cascade emitting phonons that escape into the bulk. That is, we assume they are constrained to 
interact only in the vicinity of the neighboring vortex, the reconnection region. 

7The square root of unknot Vw is realized in this qubit when a= b = 1/ v'2, or 45° polarization 
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quantities, like the amplitudes of a half-integer spin precessing about a uniform mag-

netic field, but in this case the effective Rabi frequency is set by the inverse of two 

reconnection times. 

In a two-component BEC, a topologically protected (perpendicular) pairwise 

entangled state could be formed by coupling two superbraided qubits 

l?,i;) = ?,bal loo, CIJ) + 1,&10 lw , oo). (3.43) 

Allowing for spatial overlap of the quantum vortices in each component, the two

qubit quantum vortex configuration loo, CIJ) could have its two-loop configuration oo 

simultaneously occupy the same location as its unknot quantum vortex configuration 

CIJ in the spinor superfluid's second component. So, loo, CIJ) might physically occur 

as 00 (overlapped). If the quantum vortex solitons can be spatially correlated in this 

way, then the quantum particles comprising the condensate can become physically 

entangled across their respective vortex cores, and in turn so too the vortex solitons 

themselves-a physical pathway whereby linkage may be related to entanglement. 8 

Superbraid solitons such as (3.42) could store topologically protected qubits, 

and superlinks such as (3.43) could process topologically protected e-bits. If many 

superbraided qubits were coupled together to realize controllable quantum logic op-

erations, then topological quantum computation may be directly achievable within 

spinor superfluids. This offers us a potential alternative to exotic non-Abelian vor-

tices (Fibonacci anyons) recently proposed for thin-film superconductor-based topo-

logical quantum information processing. 

Finally, since a superbraid is a nonunitary operation for certain values of the 

complex time parameter z, this particular feature might be akin to other behaviors of 

in the logical basis. 
8This is allowed so long as the separation 8 between the component vortices is much less than 

the coherence length ~· This particular condition 8 « ~ for interspinor superflow with quantum 
vortex solitons of unit winding number is different than the requirement ~ « 8 in topological 
quantum computing with quantum logic represented in terms of braided zero-mode vortices in a 
p + ip superconductor (as discussed in the Introduction of this chapter). 
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quantum systems in the real world. Quantum dynamics is effectively nonunitary be

cause of decoherence (loss of phase coherency between previously correlated qubits) 

as well as the nonunitarity of projective measurement (collapse of qubit states onto a 

logical basis). So, the behavior of the nonunitary dynamics of super braids may have 

a potential connection to measurement-based quantum computation. We establish 

a framework for measurement-based quantum computation in our next chapter. 



CHAPTER 4 

Measurement-based quantum 

computing 

4.1 Introduction 

Measurement provides a pathway for exploiting for practical purposes the non

linearities associated with wave function collapse. There are different quantum infor

mational representations of quantum computation including the standard quantum 

circuit model and adiabatic quantum computing. Additionally, quantum lattice 

gas models that use measurement to boost the usefulness of qubit representation 

for physical simulation [Yepez, 1998, Yepez, 1999b, Yepez, 2001c] serve as a general 

representation of quantum computation. Such lattice-based qubit representations 

have been used to model a number of physical systems [Yepez, 200la, Yepez, 2001b, 

Yepez and Boghosian, 2000, Berman et al., 2002b, Vahala et al., 2003b] 

[Vahala et al., 2003a, Yepez and Havel, 2004, Yepez et al., 200.5b]. Measurement

based (type-II) quantum computational models were the first examples of "one-way" 

quantum computing relying on a parallel array of locally entangled cluster states, 

67 
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an antecedent to cluster-based quantum computation [Gross and Eisert, 2007] 

[den Nest et al., 2006, Childs et al., 2005, Aliferis and Leung, 2004] and also to dis

tributed quantum computing architectures and quantum multicomputers 

[Meter and Nemoto, 2008, Meter et al., 2009]. Type-II quantum computation has 

been applied to the simulation of the Ising model [Cole et al., 2004] and to the ex

perimental implementation, for example, of Grover's search algorithm in a one-way 

setup using the polarization state of photons [Walther et al., 2005]. 

It is useful to quantify how information, particularly joint information, is gen

erated, transfered, and extracted from a large quantum computer during engineered 

quantum dynamical evolution and measurement processes, respectively. The re

lationships between nonlocal quantum entanglement and nonlocal quantum mea

surement are somewhat mysterious [Bandyopadhyay et al., 2008], so it is useful to 

have a toolset of operators to explore these relationships. Presented here is an an

alytical prescription for doing precisely this, with a focus on fundamental pairwise 

entanglement. Furthermore, here our focus is on analytically predicting the behav

ior of the entangled qubit system at the mesoscopic scale and macroscopic scale. 

At the mesoscopic scale, the resulting governing equation of motion is a quantum 

Boltzmann equation for kinetic-level (probability) variables. At the macroscopic 

scale, the resulting equations of motion are nonlinear and dissipative hydrodynamic 

equations. 

4.2 Quantum measurement 

4.2.1 Occupation probabilities via measurment 

Our first goal is to understand quantum measurement in the context of two 

entangled qubits among a field of qubits. Suppose that two qubits lqa) and lq,s) in 
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a many-body quantum system are initialized such that 

(4.1) 

in the initially separable state l'lj!) - lqaq,s), where na and n/3 are the respective 

number operators for these qubits. Consider the following unitary evolution 

(4.2) 

where Ua/3 is an entangling quantum gate given by (2.37a) and generated by a joint 

number operator. Let us denote the measurement outputs as 

(4.3) 

Remarkably, using the joint number operators (2.39b), we can directly write the 

measurement outputs as matrix elements of the initial state 

(4.4) 

Since the l'lj!') ket is entangled, a measurement that determines the value of a' (yield

ing one classical bit) likewise determines b'. Also, the conservation of the probabil

ities a and b is ensured by (2.40a), the defining property of conservative quantum 

logic. Let us now consider a process of extracting a single bit upon measurement, 

which necessarily gives 

a'+ b' =a+ b. (4.5) 

This is a statement about information conservation in quantum measurement that 

is the mesoscopic representation of (2.40a). 
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4.2.2 Quantum maps 

A projective map, associated with quantum measurement of qubits a and (3, 

going from Hilbert space to kinetic space is 

(4.6) 

Oppositely, a tensor product operation is an injective map from kinetic space to 

Hilbert space, associated with the initial preparation of independent qubits: 

I: (4.7) 

The quantum evolution that entails state preparation, an entangling operation, and 

quantum measurement can be seen as a kinetic space transformation of probabilities 

[Yepez, 2001c] (::) = PU!lr(:), which can be written as the map C: 

(4.8) 

where the joint entanglement operators are 

(4.9) 

are determined by similarity transformation as usual and where we consider the 

special case when U ll acts on a pair of qubits 1 and 2 as an example of (2.37a) for 

half angles ~ = ~ and {} = ~. This U ll is an antisymmetric square root of swap gate 

0 

0 

0 

(i- l)ll + 1 

(4.10) 

We choose this special case to simplify the subsequent derivation. Entanglement 

drives the mesoscopic quantum dynamics, leading to a governing quantum Boltz-

mann equation at this scale. Can we invert this map to retrieve the incoming 
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probabilities (a, b) only from the outgoing ones (a', b')? Inverting ( 4.8) is not pos

sible, because the map (i.e. unitary gate ( 4.10) plus one measurement) induces an 

irreversible transition between kinetic space points. Yet, it is informative to see 

exactly where the inversion breaks down. 

The first step towards this end is to write ( 4.8) explicitly in terms of the kinetic 

space variables [Yepez, 2006]. The map Cis: 

(
a) ___.. (a') = (~ + J(a- a

2
)(b- b2)) ' 

b b' ~ - J (a - a2) ( b - b2) 
(4.11) 

where p =a+ b is the number density. We will define the number velocity as 

follows: 

(4.12) 

The number density and number velocity are joint conjugate variables to the output 

variables. That number density and number velocity are the fundamental conserved 

quantities in quantum information dynamics is evidenced by the derivation leading 

to (2.40) that we obtained in our investigation of the basic perpendicular and parallel 

forms of pairwise entanglement. Squaring (4.12) gives v4

2 = (a- a2 )(b- b2
) = 

ab(1-p)+(ab)2. The quantity ab satisfies the quadratic eq. (ab) 2-(p-1)ab- v4

2 = 0, 

with the single physical solution 

p - 1 + J (p - 1 )2 + v 2 
ab = :.__ __ __,_:.___:.__ __ 

2 
(4.13) 

We had to take the positive root because ab ;::: 0. Finally, writing the number density 

as p = a + (~), we can solve for the input value a in terms of the known output 

quantities p and (ab). We have another quadratic equation a2 - pa + (ab) = 0, 

which has solution pairs 

p ± Jp2 - 4(ab) 
a,b = 

2 

p =F J p2 - 4( ab) 
or b, a= 

2 
. (4.14) 
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To disambiguate the possible orderings, we need one additional classical bit. Re-

markably, we have found the bit that was lost upon measurement. It is associated 

with the ordering of (a, b). Thus, the map ( 4.11) is irreversible, as we had antici-

pated. 

0.0 

1.0 
0.0 

0.5 
b 

1.0 

0.0 

1.~.0 0.5 
b' 

1.0 

FIG. 4.1: Information preserving map C and c-1, both acting on a sphere S2 of con
figurations. (Left) The incoming preimage c-1 [{a',b'}] = {a,b} and c = c', with 
{a', b', c'} E S 2

, is topologically a torus with four cusps. (Right) The outgoing im
age {a', b'} = C[ {a, b}] and c' = c, with {a, b, c} E S2 , is topologically a doubly pinched 
sphere. 

It is possible to generalize ( 4.11) so this bit of ordering is not lost. We can 

encode the ordering of the input (a, b) in the output (a', b'). This is accomplished 

by generalizing (4.11) with the following nonlinear reversible map C: 

(
a) --t (a') = <T~(b-a) (~- J(a- a2)(b- b2)) ' 
b b' ~+J(a-a2)(b-b2 ) 

(4.15) 

where the unit step function is 8(x) = 1, for x 2:: 0, and 8(x) = 0, for x < 0, and 

where the Pauli matrix is (]"X = G D. Here is the inverse map c-1
: 

(
a') --t (a) = (]" ~(b' -a') (p + J p2 - 4( ab )) ' 

b' b 2 p - v p2 - 4( ab) 
(4.16) 

which has the property c-1C = 1. The quantity (ab) is computed from (a', b') 

according to (4.13), since p = a'+ b' and v = a'- b'. The maps C and c-1 are 
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topologically expressed in Fig. 4.1 as a one-to-one mapping between distinct closed 

two-dimensional surfaces 

c- 1 c 
torus with cusps +---- sphere ---* doubly pinched sphere. 

The unit step 8(b-a) = 0,1 encodes a single bit. (4.15) is a measurement-based 

(type II) quantum map [Yepez, 2001c] that conserves and localizes information but 

is otherwise indistinguishable from coherent evolution followed by state demolition. 

The term localize denotes an intrinsic information-conserving class of wave function 

collapse without uncertainty in the ordering of the kinetic variables. The distinction 

between ordinary projective measurement and e.A'traordinary reversible localization 

is quantified by the transference of one bit-a rather peculiar nonlinear quantum op-

eration that induces state demolition while conserving all kinetic-space information 

in the quantum state. 

4.2.3 Kinetic and hydrodynamic equations 

Let us encode (4.15) with a nonlinear quantum operator, say r, which induces 

state demolition while conserving all kinetic-space information in the quantum state. 

(4.15) is a two-step process in Hilbert space 

I~') Uaf3lqaqf3) entangling operation 

r af31~') disentangling operation, 

or combined into one quantum transformation 

(4.17a) 

(4.17b) 

(4.18) 

Although reversible (i.e. r-1 r = 1 modulo the kinetic space variables), r is not 

a unitary operator in Hilbert space (i.e. r- 1 =/:- rt). Analytically, we define r as 
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a projection from Hilbert to kinetic space that is a function of 1'¢) followed by an 

injection back to Hilbert space: 

(4.19) 

Then, we can also write (4.15) in kinetic space as 

(4.20) 

Measurement-based Q2 model 

Finally, we consider a quantum lattice gas with two qubits per point, writing 

(4.15) as coupled time-dependent equations 

(
a(t + T)- a(t)) = (-D[a(t), b(t)]) ' 

b(t + T)- b(t) D[a(t), b(t)] 
(4.21) 

where D[a, b] _ ~(b- a)+ ( -1)8 (b-a) J a(1 - a)b(1 -b) is a collision function in ki

netic space1 and Tis a relaxation time for the probabilities to equilibrate aeq(t+T) = 

aeq(t) and beq(t+T) = bcq(t), consistent with the equilibrium condition D[acq, beq] = 0. 

With f = (!+,f-) = (a, b), the operative mesoscopic Boltzmann '}-{-function is 

[Yepez, 2006] 

1-{ = - L [fs ln(')'sfs) + (1- fs) ln(1- fs)], 
s=± 

1 For arbitrary gate angle {), the basic kinetic-level collision equations are 

a' 

b' 

a cos2 % + bsin2 % + sin(fJ)yl(a- a2 )(b- b2 ) 

asin2 ~ + bcos2 ~- sin(fJ)yl(a- a2 )(b- b2 ), 2 2 . 

(4.24) 

(4.22a) 

(4.22b) 

which are the expectation values of the microscopic joint number operators (2.39) with respect to 
the initial tensor product state (vall)+ .J[=ajO)) ® (Vbll) + /f=l)jO)) and the collision function 
is 

{) 
D[a, b] = (b- a) sin2 

2 + sin(fJ)yla(l- a)b(l- b). ( 4.23) 
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where 1'+ = vla2 + 1 +a, '1'- = __!_ = vla2 + 1- a, and a= cot'!9cos~. When Q is 
I+ 

large (even), partition the system into qubit pairs such that each pair is associated 

with a point on lz?. After ( 4.21) acts on each pair, let the particles hop to neighboring 

points (stream). The effective collide-localize-stream dynamics of the Q2 quantum 

gas is described by the linearized quantum Boltzmann equation 

f(t+bt,x+cot) -f(t,x) = (4.25) 

The second moment of ( 4. 25), for p ~ 1 (near half-filling), yields the following 

low-energy effective field theory [Yepez, 2002c] 

(4.26) 

with viscosity v = ~ cot2 '!9 8It2 • With ll = ca(1- p), (4.26) is the Burgers equation. 

With a density (qubit pair) per direction ca(1- Pi) ---t 1li, in d+1 dimensions we 

get 

(4.27) 

a realistic effective equation of motion for turbulent fluids [Yepez, 2007]. 

A time history of the dynamical evolution of the number density fields is plot-

ted in Figure 4.2. The analytical solution of the Burgers equation is obtained by 

application of the Cole-Hopf transformation 2 

where 
00 

2v 81/J 
P = Pa + --:1 -8 , 

C'<f! X 

'l/J _ 10 (z) + 2 2:) -1Yloor(e/21 Ie(z)Fe(2Kfx + vet)e-11et, 

€=1 

(4.28) 

(4.29) 

2 It is possible to add an external noise term into the right-hand side of the Burgers equation 
of the form 81J~~,o. The potential field h(x, t) is defined as follows: &h~~.t) = u(x, t). Then h(x, t) 
satisfies the Kardar-Parisi-Zhang equation [Kardar et al., 1986]. 
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FIG. 4.2: Development of a shock front in the flow field 'U(x, t) after the system is 
initialized with a sinusoidal profile on a L = 256 site lattice for four different viscosities: 
(A) v = 8, (B) v = 2, (C) v =~,(D) v = l2 , where the viscosity is in lattice units 0It2

• 

The curves are shifted vertically one from the other by t::..p = ~ to avoid overlapping. 
Agreement between the numerical data (solid curves) and the analytical solution (dashed 
curves) is excellent. The shock fronts of the analytical solutions are slightly wider than 
the shock fronts of the numerical simulations which have much sharper edges. This is 
because these plotted analytical solutions are slightly over-damped to help stabilize the 
series solution (4.29), so the quantum model data is a more accurate approximation 
of the time-dependent solution to the Burgers equation. [For simulation details see 
[Yepez, 2006].] 
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where z = ~, f-L£ _ v(21r£') 2
, ll£ = cs(1 - Pa)(27rt'), the Jp_'s are modified Bessel 

functions, and the function Fp_ denotes the sine or cosine function when £' is odd or 

even, respectively, 

( -1 )£ + 1 ( -1 y - 1 
FR.(x) = 

2 
cos(x)-

2 
sin(x). ( 4.30) 

To match the numerical simulations, the parameters in the analytical solution ( 4.29) 

were set to c = Lc8 = 256 cot '!9~~ and z; = ~ cot2 '!9 8.ft2 • Also in ( 4.29) the size of 

the system is set to unit length, that is, 0 ~ x ~ 1. The agreement between the 

numerical prediction and the analytical solution is excellent for all cases, as shown 

in Figure 4.2. 

Reverse cascade 

150 100 z 
c •••• 50 
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. '1.5 
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-wst==~:::::=~,_--~__._.,~ 
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600 

FIG. 4.3: Simulation of the time-reversed Burgers eq. with a shock at t = 0. (Top) 1t 
function (4.24) increases under time reversal. (Bottom) Time advances right to left as 
the pulse evolves (amplitude of p grows) towards a sinusoid at t = 512 iterations of the 
inverse map c- 1 . 

Decoherence is sufficient to explain macroscopic dissipation. Yet, in its purest 

form, quantum dynamics conserve information. Thus we should be able to model 

decoherence were the loss of microscopic phase information is retained in some other 

form within the qubit system. We have shown that one possibility is to have de-

coherence modeled as a succession of projections of the state of pairs of entangled 

particles whereby the lost degrees of freedom in the Hilbert space amplitudes are 
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precisely gained in the orderings of the degrees of freedom in the affected values of 

the kinetic variables (probabilities) following the projection. Joint information is 

transfered, not absolutely lost. A simple measurement archetype was offered: one 

joint bit extracted from the destruction of pairwise entanglement is inserted in the 

ordering of two affected kinetic variables. This has direct application to reversible 

simulations of quantum processes driven by the quantum Boltzmann equation, even 

when the collision hierachy is cutoff to only handle local entanglement. The rel

evant application is to the quantum computation of nonlinear physical dynamics, 

viz., mesoscopic quantum simulation that respects detailed-balance and Onsager 

reciprocity relations. 

To demonstrate information conservation in the quantum algorithm, the state 

of the qubit system can be evolved in reverse. In Fig. 4.3, disentanglement causes 

restoration of the initial profile. ( 4.26) evolves backward in time with negative 

entropy increasing. 

4.3 NMR experimental implementation 

A measurement-based Q2 model is initialized, in the nuclear magnetic reso

nance (NMR) case, by encoding the particles' occupation probabilities as a spin

magnetization profile. NMR is used as a proof-of-concept but any available quan

tum computing technology (superconductive electronics, quantum dots, etc.) could 

equally well be used as a demonstration of the quantum lattice gas model of quan

tum computation. To handle the one-dimensional Burgers equation, it is sufficient 

to use two qubits (two spin-~ nuclei) per point, where each encodes a single real 

valued occupation probability. A room-temperature solution of isotropically-labeled 

chloroform (1 3CHCh) was chosen for implementing the experiments, where the hy

drogen and the labeled carbon nucleus served as qubits 1 and 2, respectively. The 
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TABLE 4.1: Three different pictures at a single point 

NMR Spectroscopy Quantum computing Quantum Boltzmann eq. 
Spin-~ nuclei Qubit Particle's local state 

proton, carbon isotope C 13 lq) = aiO) + ,611) fl.a, e.a 
Molecule containing above nuclei, such a.s Local Hilbert space Site of lattice 

chloroform, alanine 2 qubits, 3 qubits z 
dibromoproprionic acid, transcrotonic acid 4 qubits, 7 qubits 

Parcel of liquid One-way quantum computer Site of super lattice 
~ 1018 molecules regular network of gates z at the mesoscopic scale 

Relaxation Memory reset State demolition 

!?thermal = 1 + c(a! +an lq)--+ e-f3E; 11) + e-f3Et IO) 
Pseudo pure state Ket Distribution function 

!?thermal R!2."V 1 + cl'!f;)('l/•1 1'1/1) 1'1/J(z, t)) --+ ®~=1 lqa(z, t)) 
lqa) = ffal1) + v'1- faiO) 

Spin-spin interaction + RF pulse sequence Logic gate On-site collision function 
. H;nt"-t . "Y(fl.t)( 1 2)Ll.t · "Y(L). )( 1 2)Ll.t e -t rt -~wx ax+ux -twy' t. uy+o-y (; = e-i(axay-ayax)Ll.tjli. Oa(z,t) 

Measurement of free induction decay Ensemble measurement. Occupation probability 
Tr[e(t)na] fa(Z, t) 

Gradient Resonant frequency shift Streaming 
\lB k--+ k + l:!,k f(z) --+ f(z + ea) 

Magnetic Resonance Imaging Array of quantum processors Discrete Lattice 
Molecular independence Tensor product wavefunction Mesoscopic ensemble 

lw) = ®.;:~ 1 1'1/J(x)) (only local entanglement) 
Homogeneously Applied RF Tensor Product Operator parallel computation 

6 = ®.;:-1 (; on-site collisions 

difference of the gyromagnetic ratio of two spins generates widely spaced resonant 

frequencies that allows us to address each spin independently. 

A lattice of quantum information processors are related to the ensemble sample 

by creating a correspondence between lattice sites and spatially dependent positions 

in the sample. A linear magnetic field gradient is used to generate distinct spatially-

dependent resonant frequencies that we can distinguish and modulate by a shaped 

RF pulse. In this way, the magnetic field gradient allows the entire spin ensemble 

to be sliced into a lattice of smaller and individually addressable subensembles. 

The lattice initialization starts by transforming thermal equilibrium states into 

pseudopure states [Pravia et al., 1999]. The equilibrium state is highly mixed and 

the two nuclear spins have unequal magnetizations. Thus, equalization of the magne-

tizations is required prior to creating the pseudopure state. The dynamical evolution 

is caused by a collision operator (a unitary operation), measurement (a nonunitary 
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operation), and streaming (an orthogonal operation) according to the quantum lat-

tice gas algorithm. Some details of the correspondence between NMR spectroscopy, 

quantum computing, and the quantum lattice Boltzmann equation pictures of the 

method are presented in Table 4.1. This is an example of how the quantum lattice 

gas model can be implemented with a particular quantum information processing 

technology. The NMR example uses ensembles to boost the signal-to-noise ratio, 

but other quantum technologies that do not rely on ensembles can also be used. A 

promising candidate quantum information technology that is a very direct represen-

tation of the quantum lattice gas model of quantum computation are ultracold Fermi 

quantum gases trapped and controlled within optical lattices. These are discussed 

in Chapter 6. 

4.3.1 Realizing a Jswap gate using carbon-13 and hydrogen 

nuclei 

To model a Jswap gate emulating qubit state scattering, all the points locally 

evolve according to the Schrodinger wave equation with the unitary transformation: 

(4.31) 

The effective 2-spin Hamiltonian (averaged dipolar interaction of the spins' magnetic 

moments for a freely rotating molecule) is 

(4.32) 

where the resonant frequencies of the hydrogen and carbon-13 nuclei are wH = 

300MHz and we = 75MHz, respectively, and where the spin-coupling resonant fre

quency is much smaller, Jjn =214Hz. The interaction part of the NMR Hamilto

nian, accounting for independently shaped radio frequency (RF) pulses B 1 ( t) and 



B 2 (t) along the transverse x and fJ directions, has the general form 

Hint(t) n{HB1x(t)O"~ + n{HB1y(t)O": 

+ n{cB2x(t)O";: + h1cB2y(t)O"~, 

81 

(4.33) 

where the gyromagnetic ratio for the proton /H is 2.67522212 x 108 rad sec1Tesla - 1 

and for the carbon-13 nucleus/cis 6.728286 x 107 rad sec-1Tesla-1
. 

In the double rotating frame, only the ]-coupling term in ( 4.32) remains, and 

the resulting collision operator that is applied to all the lattice sites independently 

iv/ (n~z)) = <ii1/J(n~z)), (4.34) 

for all n, has the form 

( 4.35) 

This is the effective unitary evolution operator that is "programmed" by decompos-

ing it into a sequence of external RF pulses modifying the natural spin-spin scalar 

coupling. 

The effective components of the unitary collision gate determine the form of the 

macroscopic effective field theory and the value of its transport coefficients (particu-

larly, the coefficient of the dissipative shear viscosity term in the case of the Burgers 

equation). The collision operator for the Burgers equation is 

( 4.36) 

where the Euler angle {) is determined by the physical values of the spin coupling 

energy, the delay time, and Planck's constant as follows: 

{) JTdeiay. 

n (4.37) 

The product operators in the exponent commute with each other, resulting in 

(4.38) 
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Both terms can be expanded as natural scalar Hamiltonian couplings sandwiched 

with the appropriate single rotations, resulting in 

(4.39) 

which has the form of (4.35). There are many ways to encode the collision operator; 

the pulse sequence (4.39) is one such example. 

In our test, we will set the shear viscosity to v = ~, in lattice units where 

.6.z = .6.t = 1. We then choose {) = 1r /3.289. Since the resonate spin coupling 

angular frequency is WHc = J /fi = 214Hz for our spectrometer setup, according to 

( 4.37) we use the following delay time in the experiment, Tdelay = 4.46 msecs, to 

produce the desired viscosity. 

The exponential terms of single spin rotations are implemented by 1r /2 and 1r /4 

pulses. The exponents of terms with (}: (}Cj represent the natural internal Hamilto

nian evolutions with time period n/21. Here, the evolution of the internal Hamil-

tonian is ignored while the RF pulse is applied. This approximation leads to a 

systematic error that will accumulate during the course of the computation. In gen-

eral, these errors are easy to avoid, but since one purpose of the investigation was 

to explore the sensitivity to accumulated errors, we did not correct it. The collision 

operator follows the encoding (state preparation step), and it is implemented with-

out magnetic field gradients to ensure that all of the sites in the sample undergo the 

same transformation. 

The experimental number densities are over-plotted in Figure 4.4 with the exact 

analytical solutions. Eight successive time steps of the Q2 model were implemented 

on 16 points. An improvement of our present experimental approach using collision 

operators with modulated phases is observed. The agreement of the data to the 

analytical solutions is encouraging. 
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FIG. 4.4: The experimental data are plotted together with the analytical solutions for 8 
time steps on a lattice of 16 parallel two-qubit QIPs. Viscosity: v = i ~t2

• Experimental 
NMR data (dots) versus analytical solution (curves). Randomizing the error terms in the 
collision operator has improved the experimental results dramatically. [For simulation 
details see [Chen et al., 2006].] 
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4.4 Quantum propositions 

It is possible to identify entangled states using either classical propositions or 

quantum propositions [Brukner and Zeilinger, 1999]. Here we consider the latter as 

a final point regarding the formalism of quantum measurement as represented by 

entangling joint number operators (2.44) for the commuting case~= 0. These joint 

number operators in their analytical representation are 

(4.40a) 

(4.40b) 

which follow from (2.44) for {) = 1r /2 and ~ = ±1r /2. Let us consider a three qubit 

example. The matrix representations of ( 4.40) in this case are the following: 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 ±.! 0 2 2 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 ±.! 2 2 

0 0 1 0 ±l 0 0 0 0 0 0 0 0 0 0 0 2 2 

N0_ 0 0 0 ! 0 ±l 0 0 
rytt2 = 

0 0 0 0 0 0 0 0 2 

0 0 ±l 0 l 0 0 0 0 0 0 0 0 0 0 0 2 2 

0 0 0 ±l 0 1 0 0 0 0 0 0 0 0 0 0 2 2 

0 0 0 0 0 0 0 0 ±l 0 0 0 0 0 1 0 2 2 

0 0 0 0 0 0 0 0 0 ±l 0 0 0 0 0 1 
2 2 

(4.41a) 
0 0 0 0 0 0 0 0 1 0 0 ±l 0 0 0 0 2 2 

0 1 ±l 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 

0 ±l 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 

Nf3 0 0 0 0 0 0 0 0 
ryt~3 = 

±1. 0 0 1 0 0 0 0 2 2 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 ±1. 2 2 

0 0 0 0 0 1 ±l 0 0 0 0 0 0 0 0 0 2 2 

0 0 0 0 0 ±l 1 0 0 0 0 0 0 0 0 0 
2 2 

0 0 0 0 0 0 0 0 0 0 0 0 ±l 0 0 1 
2 2 

(4.41b) 

The eigenvalues of the sum of two joint operators are equivalent to the true (1) 

or false (0) value of a proposition. For Q = 3, the ma.ximally entangled states are 
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the following: 

<I>o ~ (1ll1) + IOOO)) (4.42a) 

<I>l ~ (lllO) + 1001)) (4.42b) 

<I>2 ~ (1101) + 1010)) ( 4.42c) 

<I>3 ~ (1100) +lOll)) (4.42d) 

<I>4 ~ (11ll) -jOOO)) ( 4.42e) 

<I>5 ~ (lllO)- 1001)) (4.42f) 

<I>6 ~ (1101)- 1010)) ( 4.42g) 

<I>7 = ~ (1100) -lOll)). (4.42h) 

This is a complete set of orthonormal states. Suppose we let \II denote one of the 

maximally entangled states in ( 4.42). We can determine which particular state 

of the set ( 4.42) that \II equals by posing three propositions. One rather simple 

question we may ask is whether or not the logical value of the first qubit equals 

the logical value of the second qubit. Such a proposition is written as (q1 = q2 ), 

where the parenthesis around the expression denotes its logical Boolean value. A 

similar proposition we may employ is (q2 = q3 ). Finally, a more subtle proposition 

is whether the state \II is asymmetric under complementation of bits. We write 

this proposition as ( q1 q2q3 =1- q1 q2q3 ), a proposition that is always true for classi

cal bits but not necessarily so for qubits.3 Tracing over the last qubit, we may 

equivalently write this proposition as (q1q2 =1- q1q2 ). Altogether, our three example 

propositions interrogate all the qubits and consequently partition the set (4.42) as 

shown in Fig. 4.5. These example propositions can be represented by the following 

3The bit complement of a string of classical bits is always different than the original string. 
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combinations of joint number operators (4.40) as follows: 

(wiN;;+ SJ1121w) -t (q1Q2 # q1q2) 

(wlsnt2 + sn12lw) -t (ql = q2) 

(wlsnt3 + sn231w) -t (q2 = q3). 

(4.43a) 

(4.43b) 

( 4.43c) 

These are shown in Table 4.2 for the entangled states ( 4.42) and represent one choice 

of joint operators to disambiguate the entangled states.4 The joint operator (4.43a) 

is tri-idemponent while the other two operators are idempotent. 

(symmetric under complementation) (antisymmetric under complementation) 

(q1 = qz) 
(qz = q3) I+++)+ 1- --) I+++) -I---) 

(qz -:1 q3) I++-)+ 1-- +) I++-) -I--+) 
-----------------+----------- q1 = qz dividing line 

1+-+)-1-+-) 

(qz = q3) I+--)+ 1- ++) I + --) - I - ++) 

FIG. 4.5: Logical partitioning of the Q = 3 maximally entangled states using three propo
sitions. The entangled states on the left-hand and right-hand sides are disambiguated by 
symmetry under the complement of qubits q1q2 following a partial trace of the density 
matrix over qubit q3, for example. 

Casting a proposition such as ( 4.43a) with a joint number operator determines a 

classically multivalued property in one measurement-in this case, the asymmetry 

of the entangled state cannot be determined with one classical observation. In a 

system of size Q, there are only Q classical number operators while there are 2Q 

4If one prefers to use a three qubit joint number operators, then one can directly implement the 
proposition (q1q2q3 -:1 q1q2q3) with the joint operator ((N0, + IJ112)(a3 + a1}) instead of (4.43a) to 
determine whether an entangled state is asymmetric under complementation of bits. In this case, 
one uses the ± phase of the matrix element as the logical propositional value. 
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joint operators. 5 In general, using entanglement number operators in lieu of usual 

number operators offers more ways to express a particular propositional value. This 

is the basis of the remarkable efficiency of quantum versus classical computation 

[Deutsch and Jozsa, 1992a]. Pathways faster than the classical pathways are the 

interesting ones of course. 

ENTANGLED STATE PROPOSITIONS VALUES 

\N12 + SJtd (1Jti2 + 1)112) (1Jt:j3 + 1)123) 
( Q1 Q2 i= Q1 qz) (q1 = qz) (qz = q3) 

I+++)+ I---) 0 1 1 011 = 3 
1++-)+1--+) 0 1 0 010 = 2 
1+-+)+1-+-) 0 0 0 000 = 0 
1+--)+1-++) 0 0 1 001 = 1 
I+++) -I---) 1 1 1 111 = 7 
1++-)-1--+) 1 1 0 110=6 
I + -+) - I - +-) 1 0 0 100 = 4 
1+--)-1-++) 1 0 1 101 = 5 

TABLE 4.2: Eight maximally entangled states in a Q = 3 system. Fock state ordering 
is lq1q2q3 ), with the 1st qubit on the left and the last on the right. The propositions are 
cast in terms of joint operators to identify each entangled state. 

4.5 Conclusion 

We considered the effect of perpendicular pairwise entanglement at the meso-

scopic level. Employing entanglement operators (joint number operators) made the 

5There Q component ladder operators per joint operator and each component ladder operator 
could be a lowering or raising type. Thus, the exponential number of joint ladder operators are 

a1 + az + · · · + aQ-1 + aQ 

a 1 + az + · · · + aQ-1 + ak 

t a 1 + az + · · · + aQ_1 + aQ 

file:///q1q2Q3
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analysis quite straightforward. We considered quantum measurement and tracked 

down where exactly information loss occurs in measurement-based quantum com

puting. We demonstrated that lost information can indeed be recovered even in 

a measurement-based quantum algorithm. Our test case was the type-II quantum 

algorithm for the hydrodynamic-level Burgers equation, a simple model of fluid tur

bulence with shocks. We also reviewed NMR-based quantum information processing 

and presented an experimental demonstration using this particular measurement

based quantum algorithm. Finally, as a concrete example of the utility of our joint 

number operators, we gave their matrix representation in the case of Q = 3 and 

demonstrated how quantum propositions can be reduced to combinations of joint 

number operators. Thus quantum propositions provide an efficient pathway to ob

tain in one observation a way to discover the value of a joint property of a system 

that would otherwise take many classical propositions. This is because an entangled 

quantum state can contain joint information in a way that represents a multifaceted 

classical configuration. This is a generalization of the example given in Appendix A 

where a two-qubit state represents a two-sided coin and entanglement offers an effi

cient route to solve the Deutsch problem~in one observation determining whether 

the coin is fair or not. This is possible when the measurement process can be reduced 

to a single joint number operator. 



CHAPTER 5 

Superfluidity in the 

low-temperature limit 

5.1 lntrod uction 

Feynman proposed that the superfluid turbulent state consists of a tangle of 

quantized vortices [Feynman, 1955]. He also correctly predicted the existence of 

quantized vortex lines as the source of vorticity flows in He II1
, and predicted quan-

tized vortex rings. His conjectures, which have been proven to be correct, launched 

an extremely active theoretical investigation of low-temperature physics that goes on 

until this day. This investigation has witnessed a more recent revolution driven by 

the experimental realization of Bose-Einstein condensates (BECs) in cold atomic va-

pors. Condensed matter theory of BEC superfluidity and Bardeen-Cooper-Schrieffer 

(BSC) superconductivity, and the interplay of their mutual crossover, is presently 

being sorted out, elucidating the role of quantum entanglement in the many-body 

dynamics underlying quantum fluids. Finally, the great mysteries underlying quan-

1Cf. Landau conjectured superfluid vorticity derived from vortex sheets, now known to be 
unstable. 
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tum turbulence are being unraveled, presently one of the most prominent and ac-

tively pursued areas in low-temperature physics. 

The isotope of Helium, 4He, with atomic mass of four, behaves as a quantum 

liquid at low temperatures. The 4 He atom has integer spin and is a bosonic particle. 

The boiling point of 4He occurs at 4.2°K and below this temperature 4He is a normal 

viscous liquid. Yet at still lower temperatures, unlike other liquids, 4He does not 

freeze into a spatially organized solid phase. The interatomic force between 4He 

particles is weak enough to allow 4 He to remain in the liquid phase at low enough 

temperatures where quantum effects can dominate and give rise to an exotic state 

of matter. An order-disorder phase separation does occur at 2.18°K, the so-called 

A-point, but remarkably, it is a second-order phase transition in momentum space. 

This ordered phased in momentum space is called Helium II, the superfluid phase. 

The hydrodynamic properties of Helium II are facinating, particularly the prop-

erty of flow through narrow capillaries without any frictional resistance or quantum 

barrier tunneling manifested at macroscopic scales. Helium II behaves as a coupled 

two fluid system, where one fluid is a normal viscous fluid and the other is a super-

fluid. The underlying microscopic picture for its two fluid behavior is the following. 

Since Helium II is comprised of 4He bosons, at zero temperature these particles can 

all occupy the same ground state energy level2 . This state of matter is a BEC. At 

finite temperatures below the A-point, thermal excitations are created, depleting 

the BEC, yet a macroscopic number of the 4He particles remain in the condensate. 

In Helium II there are two types of thermal excitations: long wavelength phonons 

and shorter wavelength rotons. These excitations are quasiparticles, and away from 

the A-point, are weakly interacting. They have an effective mass and transport 

2Even at zero temperature some virtual states at higher energies are occupied because some 
exclusion is created by nonlocal interactions, known as depletion of the condensate. These higher 
energy virtual states should not be confused with the higher energy states corresponding to thermal 
excitations. 
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momentum diffusively. As a collective system, the thermal excitations behave as a 

viscous fluid accounting for any convection and kinematic shear in Helium II. So the 

normal viscous part of Helium II is a gas of quasiparticles, while the superfluid part 

of Helium II is a BEC that only transports momentum coherently. 

Experimentalists long ago observed that viscosity exists even below the A-point 

for the transition to Helium II. The two-fluid model is one of the most well known 

attempts to understand viscous quantum fluid flow. This hydrodynamic coupled

fluid picture has Landau's two-fluid equations modeling the nonlinear flow and in

teraction between the inviscid superfluid intermixed with a normal viscous fluid 

[Landau, 1941b]. The superfluid part of the quantum flow is comprised of the mo

tion of quantized vortices experiencing a Magnus force [Kopnin and Salomaa, 1991]. 

Many nonclassical phenomena are correctly captured by this two-fluid model that 

incorporates mutual friction between the superfluid and normal fluid components. 

The most famous of these are superfluid turbulence driven by thermal counterflow, 

the quantum fountain effect, leaking of Helium II through a membrane (i.e. inviscid 

superfluid capillary flow), and quantum tunneling through a gravitational poten

tial (i.e. creeping superflow up and over the walls of a shallow cup containing the 

quantum fluid). A review of two-fluid theory of Tisza and Landau for the Helium 

II phase of liquid 4 He is given in Appendix C.l. 

Recently, it has been observed that at very low temperatures< 100 mK thermal 

excitations are unimportant in Helium II and effectively the normal fluid component 

therefore vanishes in the bulk. Thus, Landau's mutual frictional process no longer 

operates as a source of dissipation in the bulk region of the quantum fluid in the low

temperature limit so only the superfluid component remains. Yet, at these ultracold 

temperatures, dissipation has been observed [Walmsley et al., 2007]. That is, even 

a pure superfluid component of Helium II behaves dissipatively. 

The recent discovery of BECs of atomic alkali gases provides a new way to 
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explore pristine superfluid behavior. The dissipation mentioned mentioned above 

occurs in ultracold atomic vapor BECs too, at high wave number (i.e. scales below 

the healing length ;S 1nm in atomic BECs). We explore this phenomenon and 

understand it as the consequence of nonlinear Kelvin wave cascade dynamics and 

Kelvin mode coupling to phonon modes that escape into the bulk of the condensate. 

5.1.1 Organization 

This chapter is organized in two parts. We provide a comprehensive review 

of the superfluid dynamics, starting in Sec. 5.2 with a survey of superfluid theory 

and then in Sec. 5.3 a treatment of the subject of topological singularities in the 

condensate. 

We begin the formal development in this chapter, in Sec. 5.2.1, with the many

body bosonic Hamiltonian in the grand canonical ensemble, and then derive the 

Gross-Pitaevskii (GP) equation in Sec. 5.2.2 using the theory of a nonrelativis

tic Lagrangian of a complex scalar condensate with a local self-consistent Hartree 

potential. Next, in Sec. 5.2.3, we consider quasiparticle excitations above the con

densate and derive the Bogoliubov equations governing quasiparticle excitations in 

the superfluid. In Sec. 5.2.4, we generalize the ensemble representation of Bohm to 

handle the case of a nonlinear local interaction and then, in turn, in Sec. 5.2.5 write 

the average energy in a quantum fluid in terms ofthree components: (1) classical ki

netic energy, (2) quantum kinetic energy, and (3) internal energy. This sets the stage 

for us to revisit the question of writing the nonlinear Schroedinger (NLS) equation 

in terms of a fluid equation, which we do later on in Chapter 7. The Kolomogorov 

power-law associated with turbulent flow follows immediately from the fact that at 

the hydrodynamic scale the effective governing momentum equations of a super

fluid is a viscous Navier-Stokes equation, a result that depends on a straightforward 
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thermodynamical argument. 

Then, we move on to addressing the subject of quantum vortices in a super-

fluid. In Sec. 5.3.1, we solve the time-independent GP equation for a single rec-

tilinear quantum vortex. Here, we present a rigorous definition of the coherence 

length in a superfluid. Then, in Sec. 5.3.2, we review Fetter's treatment of two mu-

tually interacting quantum vortices. Like vortices orbit each other and their mutual 

interaction leads to the Kelvin wave instability. In Sec. 5.3.3, we present the Frenet-

Serret formulation, or vortex filament model, of the dynamical motion of a quantum 

vortex, which is the basis of the Schwarz vortex filament model of superfiuidity in 

the local induction approximation. Finally, in Sec. 5.4, we consider the dynamics 

of a Fermi condensate. In Sec. 5.4.1, we present a derivation of a model 2-spinor 

equation of motion for a Fermi superfiuid. Then, in Sec. 5.4.2, we revisit the subject 

of Bogoliubov quasiparticle excitations in the context of the Fermi condensate. 

5.2 Theory of superfluids 

5.2.1 Grand canonical, many-body Hamiltonian 

A quantum gas of Bose particles of mass m may be treated in the low-temperature 

limit as a many-body quantum system undergoing strictly local scattering. The in-

teraction potential, in units of energy, is modeled as a delta function 

V ( r - r') = g o<3 l ( r - r'), (5.1) 

where g is a real-valued coupling strength parameter with units of energy times vol-

ume. The grand canonical, many-particle Hamiltonian is [Fetter and Walecka, 1971] 

K = J d3rrj}(r)(Ho- p,)rp(r) 

+ ~ J d3rcpt(r)<Pt(r)<P(r)</)(r), 
(5.2) 
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where <Pt(r) and <[>(r) are the field operators that create and destroy, respectively, 

a particle at spatial point r, Ho is the free particle Hamiltonian, and tt is the 

chemical potential. Equation (5.2) is the Hamiltonian associated with rp4 theory 

in the nonrelativistic limit. The total number of particles in the grand canonical 

ensemble is 

(5.3) 

In the low-temperature superfluid phase of the condensed matter system described 

by (5.2), most of the particles comprise the Bose-Einstein condensate and a few of the 

particles comprise the Bogoliubov quasiparticles. So, if the number of condensate 

particles is No say, then the number of uncondensed particles is N - No. The 

Bogoliubov approximation holds when N - No « No so the field operator may be 

decomposed as 

<P(r) = rp(r) + ¢(r), (5.4) 

where the quasiparticle field operator ¢( r) is the small fluctuation of the field oper

ator <[>( r) about the condensate background rp( r), which is an effective classical field 

with normalization No = J d3r lrp(r)l 2
. In this approximation, the BEC field rp(r) 

is the operative vacuum; that is, rp( r) is the zero-quasiparticle state upon which the 

ladder operators J;t(r) and ¢(r) act. 

Inserting (5.4) into (5.2), we have 

where 

~ ~ ~ 

J{ = I<o + J{int1 

J d3r rp*(Ho- J-L)rp + J d3r rp*(Ho- p)¢ 

+ J d3r¢t(Ho-J-L)rp+ J d3r¢;t(H0 -Jt)¢ 

(5.5) 

(5.6a) 

(5.6b) 



and 

Kint ~ J d3r ( cp*2 + 2cp* ;jyt + ;jyt (/yt) ( cp2 + 2cp(/y + (/y(/y) 

~! d3rcp*lcpl2cp+g J d3rcp*lcpl2¢+~j d3r(/ycp*2(f 

+ ~! d3r¢tlcpl2cp+2g J d3r¢tlcpl2¢+g J d3r(/ytcp*(/y(/y 

+ ~! d3r(ftcp2(/yt +g J d3r(ft;jytcp¢+~j d3r(/yt;jyt¢¢. 
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(5.6c) 

(5.6d) 

Then inserting (5.6) into (5.5) and collecting like terms, and arranging them in 

ascending order from quadratic to cubic to quartic products, the grand canonical 

Hamiltonian becomes 

K J d3rcp* (Ho- f-t + glcpl2) i{J 

+ J d3r cp* (Ho - f-t + glcpl2) (f + J d3r ;jyt ( Ho - f-t + glcpl2) i{J 

+ J d3r ;jyt (Ho - 1-" + 2glcpl2) (f + ~ J d3r ( ;jyt cp2(/yt + (f cp*2(f) 

+ g j d3r(ft (cp*(/y + ;jytcp) ¢ 

+ ~! d3r (¢t;jyt¢(/y-cp*cp*cpcp). (5.7) 

The quasiparticle vacuum satisfies the steady-state NLS equation 

(5.8) 

so the first three terms in (5.7) vanish, and we have the Bogoliubov Hamilton for a 

BEC superfiuid 

KB j d3r ¢t ( Ho - J-L + 2glcpn ¢ 

+ ~ j d3r (¢tcp2(/yt + (/ycp*2¢) + ... , (5.9) 

retaining terms only up to second order in the fluctuation of the condensate. So-

lutions of (5.9) has been given by Fetter, for example in the case of a spherical 

trapping potential [Fetter, 1996]. 
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5.2.2 Condensate dynamics 

The time-dependent theory for a nonrelativistic condensate in the zero-temperature 

limit in free space is 

(5.10) 

where rp(x) is a complex scalar field for the Bose-Einstein condensate, l/H is a local 

self-consistent Hartree potential. Minimizing the action A= J d4x £NR(t) leads to 

the Euler-Lagrange equation 

\7 . ( a LBEC ) _ a LBEC = 0 
a(Vrp*) arp* ' 

(.5.11a) 

and, for l/H = lfH(Irpl 2
), this is the NLS equation 

(5.11b) 

where the "internal potential energy" is 

(5.12) 

In the case when l/H(Irpl 2
) = ~glrpl 2 , where g is the real-valued coupling strength of 

the nonlinear interaction, (5.1lb) is the GP equation [Gross, 1963, Pitaevskii, 1961] 

(5.13) 

and here we neglect the trapping potential. This captures a number of types of 

vortex physics (vortex nucleation, emission and absorption of vortex rings, vortex-

line reconnection) as well as the interplay between quantum Kelvin waves (kelvon 

modes) riding on the vortices and sound waves (phonon modes) that escape into the 

bulk region of the quantum fluid. 
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5.2.3 Bogoliubov equations 

Let us now we consider quasiparticle excitations that reside on a quantum 

vortex in a BEC superfluid [Bogoliubov, 1947]. Let us write the nonlinear interaction 

with a chemical potential as Hint= gl<pl 2
- p, where the condensate wave function is 

normalized to j'i in the bulk (i.e. Hint rv 0 in the bulk). The dynamical field of a 

quantum vortex (or collection of quantum vortices) acts like a vacuum background 

configuration, 'Pv ( x) say, a nonuniform hydrodynamic condensate configuration on 

which there exists a spectrum of small fluctuations, the Bogoliubov quasiparticle 

excitations. 

With lu(x)i2 + lv(x)l2 = 1, a constraint on the amplitudes, the bosonic scalar 

wave function is 

<p(x, t) = 'Pv(x, t) + s(u(x)e-iwt- v*(x)eiwt) + .... (5.14) 

Inserting (5.14) into (5.13) then gives 

hwt:[u(x)e-iwt + v*(x)ei";t] = (5.15) 

(- 2~: 'V2 + g I'PI 2
- P) ['Pv(x, t) + c-(u(x)e-iwt- v*(x)eiwt)], 

where the nonlinear interaction is 

(5.16) 

where we made use of the fact that l'ul 2 + lvl2 = 1. Calculating all the cross-

terms associated with a first-order Bogoliubov excitation s(u(x)e-iwt- v*(x)eiwt), 
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the NLS equation is explicitly 

n2 . . 
--\72 [tte-zwt _ v*eZWt] 

2m 
11w[ ue -iwt + v* eiwt] 

+ e-iwt [ -g<p~V + (2gl<f'vl2- f.1 + gc:2)·u] 

+ eiwt [g<p~·u*- (2gl<f'vl2- f.1 + gE2)v*] 

(5.17) 

where we have not included any other high-order nonlinear effects arising from 

second-order fluctuations beyond Bogoliubov quasiparticle excitations. The relevant 

part of the NLS equation are the zeroth order terms 

+ e-iwt [ -g<p~v + (2gl<f'vl2- J1 + gE2)u] 

+ eiwt [g<p~·u*- (2gl<f'vl2- f.1 + gE2)v*] + .... 

Finally, since the positive and negative frequency solutions are separable at zeroth 

order, the relevant effective field theory is basically two coupled equations 

nwu 

-hwv r *2 
~V - g<pv 'U + · · · , 

(5.18a) 

(5.18b) 

where .C _ - 2:\7
2 + 2gl<f'vl 2 - p.. The set of coupled nonlinear equations (.5.18) 

are known as the Bogoliubov equations, which are related to the Bogoliubov-de 

Gennes equations in the theory of superconductivity [de Gennes, 1966, Fetter, 2009]. 

The factor 6.v = g<p:2 plays the role of the gap function in the BCS theory of 

superconductivity. 
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5.2.4 Ensemble representation 

Now with the Madelung transformation rp = yiP eiS/n [Madelung, 1927], the 

BEC Lagrangian density (5.10) can be written in terms of the conjugate fluid vari

ables (the action Sand number density p) as follows 

[
(V'S)2 n,2 (\7p)2 T ] 

£sEc= -pats- p 2m + 2m 2P -11 + "H(p) · (5.19) 

The Madelung transformation is given in Appendix C.2. The quantity in square 

brackets is identified with a Hamiltonian energy functional. Balun originally made 

this identification while considering quantum flow in a spatially-dependent linear 

external potential Y(x) [Bohm, 1952]. Here we consider quantum flow with a non

linear internal potential energy3 

(5.20) 

So, a pseudo-classical BEC energy functional may be written as 

(\75)2 fi2 (V'p)2 
HBEC = 

2 
+ -

2 
-
2 

+ Eint(p), 
m m p 

(5.21) 

and the dynamics can be expressed in the form of classical Hamilton equations 

as 
at 
ap 
at 

6(pflBEC) 
6p 

6(pflBEc) 
55 

The resulting equations of motion are 

as 
at 
ap 
at 

(V'S)2 + v~ + nD(p) 
2m 
1 ( . --\7. p\75), 
m 

(5.22a) 

(5.22b) 

(.5.23a) 

(5.23b) 

where the quantum mechanical kinetic energy term in (5.11b) contributes the Bohm 

potential 

(5.24) 

3In the BEC literature, the external potential V ( x) is referred to as the trapping potential, and 
we do not include this here since we treat superfiuidity in free space. 
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The Hamilton equations (5.22) are just the real part (Hamilton-Jacobi equation) and 

imaginary part (continuity equation), respectively, of the NLS equation (5.11b). 

5.2.5 Average energy 

The average energy is calculated as a statistical volume integral E = J d3 x p HBEc, 

with p taken as the effective probability distribution 

E (5;;1) Jd3 · [(VS)2 
.!!._ (Vp) 2 

E ( )] xp 2 + ') 2 + mt p . m ~m p 
(5.25) 

E is a conserved quantity. Here the first two contributing time-dependent energy 

terms derive from the kinetic part of the BEC Lagrangian - 2~1Vcpl 2 and the last 

time-dependent interaction term derives from the Hartree potential VH = ~glcpl 2 cp 

(neglecting the constant energy shift clue to the chemical potential). The result is 

- -cl y=;qu -
ETOT = Ekin(t) + Ekin(t) + Eint(t), (5.26) 

where 

-=el 
Ekin (t) J d3

x p(x) [~mv(x)2] = ; J d3
x IJPvl

2
, 

(5.27a) 

y=;qu ( Ekin t) J d3x p(x) [ ll.' (" p(x) )'] = !!?_ J d'x IV v'PI', 
2m 2p(x) 2m 

(5.27b) 

Eint(t) - J d3
x p(x) [~gp(x)] = ~ J cPx IPI

2
, (5.27c) 

where in (5.27a) we made use of the de Broglie relation mv = V S. 

By defining a complex vector field strength [Nore et al., 1997a] 

n rp*Vrp n ·{J¥P F= ~-1-1 = ~VJP+·z. 2 v, 
v2m rp v2m 

(.5.28) 

the total kinetic energy may be written as the square of the field strength, Ekin = 

-=el - J 3 '~[ ]2 Ekin - d X :S F ' y=;qu J 3 [ ]2 Ekin = d xRF . (.5.29) 
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The Fourier transform and its inverse transform are 

](k) (5.30a) 

f(x) (5.30b) 

Since J d3xe-ik·m = (27r) 3 £5(3l(k), Parseval's theorem for length preservation of a 

function in its Fourier basis representations directly follows 

(5.31) 

Using (5.31), we can rewrite (5.29) as 

(5.32a) 

and 

Jtiu (.5.~a) J d3k If d3 -ik·m ~[F]I2 
km (21r)3 xe (5.32b) 

To help physically interpret the complex field strength, let us define the quantum 

velocity field 

v u = -i f2 F (s;;s) v - in V .JP. 
q V ;;;:p m .JP (.5.33) 

Then, since 

Jv ul2 = (VS)2 + (__!!__ Vp)2, 
q m 2m p 

(5.34) 

we may rewrite (5.25) as 

- J 3 [1 2 ] E = d X P 2mJvquJ + Eint(P) , (5.35) 

which corresponds to the fact that the classical and quantum average energy com-

ponents in (5.29) are both kinetic energy terms. The form of (5.35) was originally 

obtained by Harvey [Harvey, 1966]. 
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5.3 Quantum vortices 

5.3.1 Single quantum vortex 

To determine a steady-state (or background) solution of the black quantum 

vortex in a superfiuid, with a condensate wave function denoted by <pv, one solves 

(5.8) for when Ho = -;~ \72
, which is the time-independent GP equation 

(5.36) 

where the healing length is[,= n/ ..j2iii:ji. A solution for the background condensate 

wave function of a single rectilinear quantum vortex (with vorticity along z) is found 

by separation of variables in polar coordinates. Inserting I.Pv ( r, {}, z) = ¢v ( r) Zv ( z) ein{) 

into (5.36) with gf f-l = e gives the following equations with a separation constant 

k~: 

(5.37a) 

(5.37b) 

where a - r,-2 - k~. Equation (5.37a) admits sinusoidal solutions and (6.76) can 

be solved for any integer winding number n. For the simplest n = 1 case, the Pade 

approximant 

llar2 (12 + ar2 ) 
¢v(r) = Va 

384 + ar2 (128 + llar2 ) 
(5.38) 

solves (5.36) with errors at 0 [(ryla) 7] (see Sec. 6.4 and Appendix D.l). Notice that 

¢v(r) ---+ yla and r---+ oo, and thus the nonlinear term in (6.76) vanishes in the bulk. 

The rectilinear quantum vortex solution of (5.13) is 

(.5.39) 

fi2k2 

with a parabolic dispersion relation nw
11 

= 2~1 • For a vortex line along the z-

direction in cylindrical coordinates with unit winding number, the irrotational part 
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of the superfluid velocity has a divergent (perpendicular) part characteristic of in-

viscid flow and an advective (parallel) part characteristic of rigid translation 

li v - -v ('19 ± k 11 z) m 
(5.40a) 

!!_ (J ~) rJ ± nk11 (z~) z 
m r a'/9 Tn OZ 

(5.40b) 

_!!__J ± likll Zo 
mr m. 

(5.40c) 

This is a real velocity field, and from this we see that the circulation is quantized 

f [2
1r ( li ) h 

K, _ dl 0 v = Jo rdrJ mr = m 0 

(5.41) 

From Stokes' theorem, we have 

(5042) 

For a rectilinear £-directed quantum vortex, the real part of the vorticity is pinned 

at the vortex center 

(5043) 

For a vortex filament of any shape, say a curve C, the velocity field in general may 

be written as 

v(r) = _!!__ 1 ds' x (r- s'), 
2m Jc lr- s'l 3 

(5044) 

where ds' is the differential length along the vortex filament, s' is the parametrization 

of C, r is the field point, and ds' is the differential line element at the vortex center 

and parallel to the vorticity [Schwarz, 1985]0 The Biot-Savart formula (5.44) reduces 

to v = J li/ ( mr) for the case of an infinite rectilinear quantum vortex positioned 

along the center of a cylindrical coordinate system with s' = z, ds' = dz z, and 

ds' X (f- s') = J dz lzl/ir- s'lo 

file:///r-sT
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FIG. 5.1: Radial profiles for a differential length dl of a linear quantum vortex (with 
winding number n = 1 and scale factor a= 0.02) residing in a condensate (with nonlinear 
coupling g = 1) plotted versus radial distance r from the vortex center in lattice units: 
(BROWN) Magnitude of radial amplitude ¢(r). 
(BLUE) Angular momentum number density ¢(r?viJ(r)/a. 
(THICK BLUE) Amplitude-weighted angular velocity ¢( r )viJ ( r) / fo. 
(BLUE DASHED) Divergent angular velocity ViJ(r) = n/(mr). 
(RED) k- 3 spectra occurs within one coherence length, r :S ~· 
(RED-GREEN) Quantum transition range is ~ ~ r ~ 1r ~· 
(GREEN) k- 513 spectra occurs for r;::; 1r~. 

The average classical kinetic energy per unit length L of a single linear quantum 

vortex is 

£ -=1 I 
Ekin L (5.45a) 

(5.Ea) J d3
x ( ) mv~ yPv r -

2
- (5.45b) 

21rrdr Pv ( r) - 19 1rb mv2 

0 2 
(5.45c) 

mpo 21rrdr _!!_ 
irb v2 

Tc 2 
(5.45d) 

(5~c) hp 1Tb (5.45e) --
0 

drv19 
2 Tc 

Poh21rb dr 

47fm Tc T 
(5.45f) 

2 
K,o 1 rb (5.45g) mpo- og-, 
47r rc 

where /'\, 0 = h/m is the quantum of circulation and Po is the constant background 

number density of the condensate, rb is regularizing parameter associated with the 
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size of the vessel containing a single quantum vortex or the mean intervortex distance 

for a system of many quantum vortices, and rc is an effective cutoff parameter to the 

divergent angular velocity field. Notice that rc is chosen so that the integral (5.45d), 

with a cutoff that avoids the singularity at the origin, is equivalent to the original 

nonsingular integral (5.45c) with no cutoff. Therefore, rc is technically not the 

usual cutoff parameter per se because the original integral is nonsingular-instead, 

r c should be understood as merely a matching parameter useful for replacing a 

nonsingular but difficult integrand with an analytically simpler one to determine 

the line energy. All the expressions of the average classical kinetic energy per unit 

length in (5.45) are equivalent, rigorously equal in value without any approximations. 

That such a value of rc exists can be seen from examining in Fig. 5.2 

0 0.020 
I 

-~ I 
I 

~ >.O.D15 
I 
I 
I 
\ 

e!l 
15 

\ 
\ 

~ 0.010 I\, 
1 I d', _____ 
~ 0.005 

~· 
~ --

~ B ~ 

:> 
< 0.0000 

20 30 40 
r (lattice units) 1f~ 

FIG. 5.2: Average classical kinetic energy areal density computed in two ways in terms 
of the areal regions A, B, and C: (1) £ = A+ B and (2) £ = B + C. The latter 
method uses an effective cutoff parameter r c determined by the constraint that A = C. 
This cutoff approximately equals the coherence length, r c ~ ~. The dashed blue curve 
is (27rr )mp0 v~/2 ex v19 (the large radial-distance envelop) and the solid blue curve is the 
physical classical kinetic energy areal density, (27rr)pv(r)mv~/2. 

5.3.2 Two interacting quantum vortices 

We now consider the interaction of two initially rectilinear quantum vortices 

in a superfiuid, originally treated by Fetter [Fetter, 1967]. We take the initial (sin-
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gle vortex) equilibrium states to be parallel linear filaments with an arc length 

parametrization given by the following vectors 

R (o)- (r ., ) 1 - 1,-"'1 (5.46) 

The consequent defonned state to due the mutual interaction of the vortices is 

parametrized by 

(5.47) 

where u 1 and u 2 are treated as small amplitude perturbations in the radial directions 

with respect to the initial unperturbed filamentary lines. Each vortex filament is a 

stretched helix, approximating a nearly straight line parallel to the .Z-axis. 

The first step is to calculate the fluctuation in position of a vortex element 

at the first vortex due to the presence of the second vortex. The fluid velocity at 

the first vortex located at R 1 caused by the second vortex at R 2 is given by the 

Biot-Savart law (5.44) 

(5.48) 

where r;, 0 = h/m is the quantum of circulation. The differential arc length is 

(5.49) 

fori = 1, 2 denoting the vortices. Then, according to (5.48), the fluctuation of the 

position of the vortex element originally at Rio) is 

(.5.50a) 

(

A duo) ( A ) 

(s~7) r;, 0 J dz? z + ~ x r12 + ZZ12 + U12 

4 - I A 13 ' 1r r12 + zz12 + U12 

(5.50b) 
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where r 12 - r 1-r2 , z 12 = z 1 -z2, and U12 = u 1 -u2 . Also, defining Ri~) = r 12+zz12 

3 F40) 
and making use of the Taylor expansion (o) 

1 
. = -for- - u1 ~~J 2 + · · · we can 

IRJ.2 +u12l 3 IRJ.2 1
3 IRJ.2 1

5 

write a leading order expansion of the position fluctuation (velocity of the first vortex 

element at z1 due to the presence of the second vortex) 

(5.50c) 

(5.50d) 

Making the analogy to the mutual inductance of two line currents, the Neumann 

formula can be used to calculate the interaction energy of two vortices 

(5.51) 

The next step is to develop an expansion for the interaction energy. This is accom-

plished as follows 

(5.52a) 

(5.52b) 

where the cross-terms vanish because, in the reference frame at the original center of 

the unperturbed ith vortex line along z, the motion of the perturbed filament is in 

the polar direction ~/I!~; I ~ ±J. Employing Taylor's theorem, the denominator 

d d d d 1 _ 1 r12·U12 3(r12-Ul2)
2 

(u12) 2 

is expan e to secon or er II4~)+ud - IF4~ll - IF4~JI 3 + 21 F4~l 1 .s - 21 F4~ll3 + · · · 
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so in turn the interaction energy expansion becomes 

(5.52c) 

(5.52d) 

where in (5.52d) the term obtained by integrated by parts was rewritten as- dd ---io-J = 
Zl IR12 I 

'£40) 
z· (o) 2 = z<~~ . Hence, it is straightforward to calculate the variation of the mutual 
IR12 1

3 IR12 1
3 

interaction energy with respect to a fluctuation at z1 of the center of the first vortex 

line 

(5.53) 

Comparing this result with the previous result (5.50d) yields the useful relation 

(.5.54) 

The mutual interaction energy part of the condensate energy arising from a per

turbed quantum vortex of length L = :fc v' dz2 + du2 is primarily due to its bend-

ing, assuming a sufficient separation distance exists between the vortices so that 



vortex-vortex straining has no low-order effect. Therefore, we have 

Inserting this result into (5.54), yields 
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(5.55a) 

(5.55b) 

(5.55c) 

(5.55d) 

(5.55e) 

(5.56) 

We now proceed, with a geometrical perspective, to examine this relationship in 

more detail. 

5.3.3 Frenet-Serret formulas 

The Frenet-Serret formulas of multivariable calculus concerning the geometry 

of curves describe the kinematic properties of a particle at position R moving along 

a continuous and differentiable curve C (the particle's trajectory or world line) em

bedded in three-dimensional Euclidean space IR3 

di 
K,il, 

ds 
(5.57a) 

dn 
-K,t + Tb 

ds 
(5.57b) 

db 
-Tn, 

ds 
(5.57c) 
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where s is the arc length parameter along C, i is the unit tangent to C at the 

point R, n is the unit normal perpendicular to i at R, b is the unit bi-normal 

perpendicular to both i and n, and K, is the curvature and T is the torsion of C at 

R. Remarkably, it is possible to derive the Gross-Pitaevskii equation directly from 

(5.57) where the magnitude of the condensate's complex scalar field is related to the 

curvature of C, lrpl = .jP ex: K,, and its phase is related to the torsion integrated along 

C, arg( cp) = J ds T. This is known as the Hasimoto transformation [Hasimoto, 1972], 

which is reviewed in Appendix C.3. Given a fixed curve C, one constructs a local 

Frenet-Serret frame as follows 

t 
R'(s) 

(5.58a) 
IR'(s)l 

n 
i'(s) 

(5 .. 58b) 
lt'(s)l 

b i x n, (5.58c) 

where the prime indicates differentiation with respect to s. So n points along the 

direction of the derivative of i with respect to the arc length parameter of the curve 

and equating (.5.57a) with (5.58b), the curvature is 

K, = li' ( s) 1- (5.59) 

Therefore, the unit vectors £, n, and b serve as an orthogonal coordinate system 

centered at R, a local reference frame that moves with the particle. For example, 

specifying the points in IR3 with the cylindrical coordinates (r, iJ, z), if C is a helix 



with its axis along r = 0 

R(s) = 

(t cos kz, t sin kz, 0)+(0, 0, ~kz) 

{ 0+0(~) u(kz) + 
0 sz - 0 ( ~) t « ~ 

~ « t, 

with kz = s I ../t2 + ~ 2 ' then the Frenet-Serret frame is 

r.?HZ ~{.?-o(~) ~ « t, 
t 

../t2 + ~2 z + 0 ( ~) t « ~· 

n -r 

-~.?+tZ ~ {Z+O(~) fJ « t, 
b 

../t2 + [J2 -t9 + 0 (~~) t « f), 

and the local curvature and torsion of C are 

fJ « t, 

fJ « t, 

t « fJ. 
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(5.60a) 

(5.60b) 

(5.60c) 

(5.61a) 

(5.61b) 

(5.61c) 

(5.62a) 

(5.62b) 

In the limit ~ « t, the curve is a compressed helix where each cycle approximates a 

circle with curvature 1/t. In the opposite limit fJ » t, the curve is a stretched helix 

where each cycle approximates a line with torsion 1/(J. 

We may reconsider the case of a perturbation to a rectilinear quantum vortex: 

a quantum vortex supporting a small amplitude circularly-polarized plane Kelvin 

wave counterrotating in a sense opposite to the vorticity direction of the unperturbed 
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vortex line. The approach to tackling this problem is based on the Frenet-Serret 

formulas (5.57). In the limit of small curvature, the perturbed quantum vortex 

approximates a stretched helix. Hence, the local frame defined by (5.58), which we 

may choose to fix at z1 centered on the first quantum vortex, is 

t 

n 

b 

where the arc length is parametrized by s ~ z1 . 

(5.63a) 

(5.63b) 

(5.63c) 

The mutual interaction of the vortices causes them to bend into the filamentary 

shape of a rotating helix. This type of perturbation is known as a circularly polarized 

Kelvin wave. Equation (5.56) may be rewritten as 

. (.5.58a) £ U
1 

11 
u = ---xu 

rnpKo Ju'l 
(5.64) 

In a parametrization whereby Ju'l = 1, (5.64) is known as the local induction approx

imation (LIA) pioneered by Schwarz as the basis of quantum turbulence simulations 

[Schwarz, 1985, Schwarz, 1988]. 

Since the second derivative of the radial perturbation of the quantum vortex 

center is 

(5.65) 

(5.56) takes the form of an undamped Bloch equation 

(5.66) 

The radial displacement u 1 behaves like the magnetization vector of a nuclear spin 

precessing about a background magnetic field along 82 ~ z. Thus, two segments 

of the mutually interacting quantum vortices behave like coupled nuclear spins. In 
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fact, from the Frenet-Serret formulation, we know that 82 is proportional to the first 

derivative u~ = dJt2 v 2 , which is proportional to the velocity of the quantum vortex 

that, as mentioned in the discussion of the Biot-Savart law (5.44), is the analog of 

the magnetic field. Now 

~ u~ dt v 2 1 v2 
82 = -- = --- ~ ----

lu~l ds2lu~l k(Ji2 kr2 
(5.67) 

du1 ( z1) (5.49) ( ) 
dt = I ul zl x v2, (5.68) 

where 

(5.69) 

is the analog of the geomagnetic ratio. 

The helix rotates in time as a sinusoidal perturbation u 1 rv t 1 ei(kz-wt), so (5.56) 

may be written as 

£(k)k2 ~ 
--'--'--Z x u1 (z1). 
mpK.o 

Then writing u 1 = (x, y), we have 

. £(k)k2 

tw(x, y) = ( -y, x), 
mpK.o 

or in matrix form 

(_~~0 ;:0 )(:) (:) 

(5.70) 

(5.71) 

(5.72) 

The solution follows by setting the determinant to zero, which yields the Kelvin 

wave dispersion relation 

mpK.o 
(5.73a) 

(5.45g) K. 0 k2 1 
--log-

47r Tck' 
(5.73b) 

for Tb = 1/k. 
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5.4 Fermi condensate dynamics 

Superfiuidity and superconductivity are closely related phenomena 

[Giorgini et al., 2008]. The connection between these phenomena is elucidated in 

the superfiuid transition that occurs in chiral matter, such as in fermionic Helium-3 

atoms below 2.5 mK. Fermi condensates have been recently realized in ultracold 

atoms in 2003, for example a condensate of molecular bosons made of 4°K atom 

pairs. Remarkably, an exotic Fermi condensate, called quark a condensate, also 

occurs in high-energy chiral matter described by quantum chromodynamics. 

5.4.1 BEC Lagrangian from an effective fermionic Lagrangian 

The simplest effective fermionic Lagrangian density for a Dirac particle in a 

many-body system of identical quantum particles is taken to be 

(5.74a) 

where ·lj; is a 4-spinor and where X is the effective wavelength (i.e. over 2n) of the 

particle (with broken chiral symmetry) due to a nonlinear interaction (that need 

not be specified at the moment) with the rest of the many-body system. 4 The value 

4As an example fermionic model consider one with a nonlinear 4-point interaction, the well 
known Nambu-Jona-Lasinio (NJL) model of the superfluid phase of a Fermi gas at low temperature 
[Nambu and Jona-Lasinio, 1961] 

(5.74b) 

where here A is the nonlinear coupling constant (not the effective wavelength). The NJL interaction 
Lagrangian density is local, a four-point vertex 

~ [ CIF?/')2- (7/},51/1)2] 

A (1/Jl 1/JR) ( 1/J~ 1/JL) 

A (1/J~r1/JRr 1/'~r1/JLi + 1/Jh1fJRT 1/1~11/JLl 
+ 1/;~11/JR1 1/'~ i 1/'L T + 1/;~11/;Rl ·lj;~l1/JL1) 

A 2.: 1/J~b 1/JRb 1/1~b'1/'Lb'. 
bb' 

(5.74c) 

(5.74d) 

(5.74e) 

(5.74f) 
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of A accounts for all particle-particle interactions and thus determines the effective 

mass of the quantum particle. In the chiral representation, the components of the 

Dirac matrices 'YJ.L = ( 1°, 1) are 

1° = ax® 1 (5. 75) 

In flat space the Minkowski metric tensor 7JJ.Lv is diag(1, -1, -1, -1). Then with 

aJL = ( ~ %t, V'), the Lagrangian density is 

(5.76) 

The anticommutation relations of the Dirac matrices, { IJL, 'Yv} = 2 77J.Lv, follows from 

the anticommutivity of the Pauli matrices 

Consequently, we have 

[-1°(14- i.\1· V')j2 

(
5

.
75

) [-ax® 1 - ·i.A. az ®a. Y'] 2 

(5.77) 
[(ax® 1? + (i.A. az ®a. V') 2

] 

(ax® 1)2
. [1 ® 1 + (.A.ay ®a. V') 2

] 

(ax®1) 2
• [1®1+a;®(.A.5·Y'?] 

(a;® 1) . [ 1 ® 1 + 1 ® (.A.a. V') 2
] 

a;® [1+(.A.a·V')2
] 

a;® 1 (1 + .A.2V'2), 

since (a · V') 2 = 1 V'2 . Taking the square root of both sides we have 

(5.77) 

(5.78a) 

(5. 78b) 

(5.78c) 

(5. 78d) 

(5.78e) 

(5. 78f) 

(5.78g) 

(5.79) 
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where we select the positive root for consistency (as we will see below). In general, 

we would be free to take -1'0 (14 - iVy· \7) = ±T 01 V1 + ;\2\72 , where T must be a 

unimodular matrix, i.e. T 2 = 1. A unimodular matrix could be expressed as a linear 

combination of Pauli matrices T =a ax+ bay+ caz provided a2 + b2 + c2 = 1. Yet, 

in (5. 79) we took the special case a = 1 and b = c = 0; so we choose T = ax. (In 

the vacuum state, if we do not distinguish between the left- and right-handed spinor 

components, then T =ax is an appropriate choice. If we want to distinguish the left-

and right-handed spinor components as time-reversed partners, then T = az is the 

appropriate choice.) Since the Dirac 4-spinor comprises a pair of chiral 2-spinors, 

'1/J = ( ::) , and each chiral 2-spinor in turn comprises a pair of spin-~ amplitudes, 

'1/JL,R = ('ljJL,Rl), the Lagrangian density (5. 76) becomes 
'ljJL,RT 

.CD (
5

.
79

) ~c'I/Jt(i!i14Bct+ax®1V1+li2 V'2)'1/J (5.80a) 

~ (w1 wn [iA (~ :) a"'+ (1v1 :A'~' 1J1 :A'~')] (::) 
(5.80b) 

n L [i'I/J1Bt'I/Js+*'I/J1V1+Ji2
\72

'1/Js]' (5.80c) 
S=L,R 

where R L and L R. We perform a small-parameter ( E:) expansion of the 

quantum field 

'1/J = '1/J(O) + '1/J(l) + 'I/J(2) + ... , (5.81) 

where '1/J(o) is the mean-field 4-spinor wave function, '1/J(l) ,....., E: is the first-order fluc

tuation from the mean, 'ljJ(2) ,....., c2 is the second-order fluctuation, and so forth. 

Similarly, the effective wavelength of the quantum particle can be written is the 

deviation from equilibrium as follows 

(5.82) 
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where the constant Ao _ n~c is the reduced Compton wavelength of the Dirac particle 

(i.e. Ao is set by the bare mass m of the quantum particle) and 5A is the deviation. In 

the nonrelativistic limit, diffusive ordering applies, so the time and space derivatives 

respectively scale as follows 

V'lj;(O) f"V E. (5.83) 

In turn, retaining only the lowest order terms of the geometric series we have 

c ;OC:~:) (5.84a) 
A 

~ ( 1- 5A + 5A2 + 0 0 0) 
Ao Ao A~ 

(5.84b) 

~ [ 1- b"A ( 1- b"A + b"A
2 

+ 0 0 0)] 
Ao Ao Ao A~ 

(5.84c) 

;0 [~-~~ c:~:)l (5.84cl) 

~(1- 5A) 
Ao A 

(5.84e) 

and furthermore retaining only the second-order fluctuations in the square root term 

we have 

. I 2 2 A~ 2 v 1 + A V = 1 + -V + .... 
2 

(5.85) 

Hence, multiplying (5.84e) and (5.85) and keeping only the lowest order derivative 

term gives 

- 1 +A V 2 = - 1 + - V - - + · · · . c V 2 c ( A~ 2 5A) 
A Ao 2 A 

(5.86) 

In the nonrelativistic limit, the Lagrangian density (5.80c) thus reduces to 

r (5_.86) "' [ t nAoC t 2 !t.c t ( 5A) ] ) 
"-'NR - s~R in·lf.'s 0{~1s + T'lj;s fJx V V's + Ao ·~'s 1- X rJxV's , (5.87 

At this point, one identifies the local Hartree potential as 

(5.88) 
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whose explicit functional dependence on p is not determined from the derivation 

leading up to (5.87). One alternative is to assume that the ordering of the fluctua-

tions in the density 

p = p(O) + p(l) + p(2) + ... (5.89) 

is exponential in the expansion parameter b.\. Thus, we can make an ansatz like the 

following 

(5.90) 

Then the explicit p-dependence of the Hartree potential can be determined 

v;() 2 1 P 2P 2 
H p = 1nc og - = 1nc - - me + ... 

Po Po 
(.5.91) 

In turn, the Lagrangian density becomes 

(5.92) 

Now the equation of motion for the 2-spinor field 'l/Js is governed by the Euler-

Lagrange equation 

(5.93) 

which leads to the following equation of motion 

(5.94) 

for s =Lor s =Rand where we define the nonlinear potential as 

(5.95) 

Our current definition of liD is identical to the earlier definition (5.12), just shifted 

by the rest energy. Equation (5.94) is the effective field theory of the quantum 

lattice-gas Q2 model in the nonrelativistic limit, which we treat in Chapter 6. 
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The 2-spinor field is 1/Js = ( 4'st) and one may obtain a complex scalar bosonic 
41sj 

field, <p8 , by summing together the pair of chiral fermion modes 

(5.96) 

Thus, adding together the component equations of (5.94), we have an effective equa-

tion of motion for the condensate 

(5.97) 

which are two identical equations of motion of superfluid dynamics for <pL and 

'PR· This is a spinor BEC. We have performed quantum simulations of (5.97) 

[Yepez et al., 2010], but hereafter we will consider one component of the spinor BEC. 

We can now write down the effective Lagrangian density for the single-component 

superfluid's complex scalar quantum field-the nonrelativistic Lagrangian density 

is 

[ 
n_.2 ? •) ( )] 

<p* 'ifi.Ot +2m v- +me- VH p <p 

·iti.<p*at<p- n_.z (V<p*) · V<p + mc2<p*<p- <p*VH(p) <p. 
2m 

(5.98a) 

(5.98b) 

That is, we have just derived (5.10) with the chemical potential JL = m.e, the BEC 

Langrangian density that we used as our starting point in studying condensate 

dynamics of superfluids. The Euler-Lagrange equation is 

v. ( [).f:BEC ) _ OLBEC = O 
a(v <p*) a<p* ' 

(5.99) 

and this yields the following NLS equation of motion 

(5.100) 

where the BEC Hamiltonian is 

n_.2 2 . ) 
hBEC = --V + nJJ(p . 2m · 

(5.101) 
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Now with <.p = JP eiS/fi, we have 

(
1'\lp .'\JS) 

'\l <.p = 2 p + ·~----,; <.p, (5.102) 

and in turn 

(.5.103a) 

and 

(5.103b) 

where we can drop the second term on the right-hand side because it is a surface 

term that vanishes when we integrate to obtain the action, i.e. J d4 x if] OtP = 0. 

Then inserting (5.103) into (5.98b) gives the nonrelativistic Lagrangian density in 

terms of the conjugate fluid variables 

£BEe = -pOtS- p +- _.!!_ - p [VH(p)- mc2
]. (5.104) 

[
('\JS)2 fi2 ('\l )

2
] 

2m 2m 2p 

So, we have derived (5.19). The quantity that plays the role of the potential energy 

density is p VH (p). The condensate action is 

SBEc = J d4
x .CBEc, (5.105) 

and the equations of motion from varying the action 88f:c = 0 and 88fffc = 0 are, 

respectively 

'\J . ( 0 .CBEC ) _ 0 LBEC 0 
8('\lp) 8p 

(5.106a) 

'\l . ( :~~)) _ f)~;c = 0. (5.106b) 

n2 
V'

2
v'P d b l bl With VB = - 2m v'P and in the phase an num er c ensity conjugate varia es, 

(5.106) are 

as ('\l S)2 

8t 
+VB+ !iD(p) 

2m 

(5.107a) 

8p 1 ( . (5.107b) - --'\l· p'\JS), 
8t m 
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which are identical to Bohm's form of the Hamiltonian equations [Bohm, 1952]; that 

is,(5.106) are equivalent to the Hamilton equations (5.22). 

5.4.2 Fermi condensate excitations 

In the condensed phase of an ultracold Fermi quantum gas, quasiparticles form 

and act like a gaseous system of "classical" particles riding above the condensate 

field. At the hydrodynamic scale, this quasiparticle gas behaves like a normal vis

cous fluid. The superfluid component, or condensate field, is strictly comprised of 

Cooper pairs (or momentum-anticorrelated pairs of Fermi particles) in the antisym

metric quantum state. At the hydrodynamic scale, the condensate behaves like a 

zero viscosity irrotational fluid. This is a well known microscopic explanation of 

what traditionally had been called the normal component in the two-fluid model 

of superfluidity due to Tisza and Landau in the 1930's and 40's (see Appendi.x C.l 

for a review of the original hydrodynamic model of superfluidity) and that we pre

viously discussed. Here we consider the Fermi condensate ground state and these 

excitations riding above ground state. In particular, we consider a pathway for 

transforming Cooper pairs into Bogoliubov quasiparticle modes. Cooper pairs are 

parallel pairwise entangled states whereas the Bogoliubov quasiparticles are perpen

dicular pairwise entangled states. With the toolset we have developed thus far, we 

can learn much about the interplay between these fundamental types of entangled 

states. 

Fermi condensate ground state 

The Cooper pair state has the parallel form l'lf11) = ~(Ill)- eif. IOO)) and the 

Bogoliubov quasiparticle state has the perpendicularform I<I> _1) = ~ (101) - eif. 110)). 

Let us write the completely empty vacuum as lvac) = 0(a,6) IOO)a,e, and a half-filled 
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classical (entanglement-free) configuration as lh-f) - ®(a,B) l10)a,B· The Fermi con

densate ground state may then be analytically specified using the parallel joint 

ladder operators (2.42) 

lrl)n- (II a' a) lh-f). (5.108) 
(a,B) 

We began from the half-filled classical configuration because a' a is the sum of a 

destruction and a creation operator and thus preserves half-filling. That is, inserting 

half-filled configuration into (5.108), we have 

I (2.42c) IV\ ifu ( {)a I ) . i~ . ·Ba I ) ) rl)ll = \61 e 2 cos 2 00 a,B- 'le- sm 2 11 a,B . 

(a,B) 
(5.109) 

The second-quantization technology of the joint ladder operators allowed us to write 

down the exact ground states of H11 in a most expedient way. And to go further, 

let us define the complex coefficients 1l.a = ei~ cos ~, and Va - -iei( 
19

2"' -~) sin~. 

Then, (5.109) may be expressed directly as a tensor product of qubit ladder operators 

(5.110) 

This intuitive result is our first application of the quantum informational represen-

tation to predict an analytical form for a pairwise entangled ground state. 

Another route to obtain an analytical expression of the Fermi condensate ground 

state is to unitarily generating it through entangling gate rotations acting on the 

vacuum. The appropriate entangling gate is VPAIRt, as depicted on the bottom of 

Fig. 2.3. So, we may use (2.37b) to affect the needed rotation. Hence, the Fermi 

condensate ground state may be analytically specified as 

lrl)ll = [II ei'Oaelaf3 J lvac). 
(a,B) 

(5.111) 

Inserting the vacuum configuration into (5.111), and after algebraic manipulation, 
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one again recovers (5.109).5 Finally, we may insert the entanglement number oper-

ators (2.32b), which for ~ = 1 is just (2.31b), into the representations (5.111) to 

obtain the Fermi condensate ground state 

[IT e-~l?.,e-i~alab J lvac). 

(a) 

(5.113) 

This represents the quantum state of the superfluid component in the two-fluid 

model without a normal fluid component. 

Bogoliubov quasiparticle excitations from Cooper pairs 

A Cooper pair IWII) can be readily transformed into a Bogoliubov quasiparticle 

I<I> 1_), and vice versa, as follows: 

(5.114) 

where R is an involution R2 = 1 (both hermitian Rt = R and unitary Rt = R-1 
). 

A qubit ladder operator representation of R is 

(5.115) 

which is manifestly hermitian and in turn unitary since R; = aaa1 + a1aa = 1.6 

Note that Ra acting on the ladder operators yields 

(5.116a) 

(5.116b) 

5This route leads one to alternatively express JS1
11

) directly using local products of qubit ladder 
operators 

JS1)11 = [II ( Ua + Va a~ab) J Jvac), (5.112) 
(a{3) 

going from (5.110) to (5.112) by making use of the anticommutation relations for the qubit ladder 
operators: a1JOO)o:{3 = -aaa1J10) = J01) and -a1J10)o:f3 = alabJOO) = Jll). It is not obvious that 
the representation (5.112) of the ground state, which is commonly used in the literature, arises 
directly from a unitary transformation of the vacuum. Yet, we know that its does because the 
entangling gate specification (5.111). The product form (5.112) is well known in the theory of 
superconductivity [Schrieffer, 1988]. 

6Its unitarity follows by the Euler identity, ei-yR =cos')'+ iRsin')', that implies R = -ieirrR/Z 

for 'Y = 1r /2. 
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Similar relations hold for this similarity transformation of the joint ladder operators 

(2.42). Since Ra IOO)a,6 = 110), a product of R's maps the vacuum into the half-filled 

configuration: 

[II RaJ lvac) = lh-f). (5.117) 
(a,6) 

A similarity transformation from a perpendicular 0 1_ to its parallel counterpart D11 

is 

or D
11 

= R01_R. (5.118) 

Therefore, if all the Cooper pairs were to transition to Bogoliubov quasiparticles, 

the resulting fully excited state IOh can be determined directly from IO)H: 

IO)_i = [II Ra] 10)11 
(a,6) 

(.
5
.
112

) [ II Ra ( Ua + Va ala1) J lvac) 
(a,6) 

[ II Ra ( Ua + Va ala1) R~ J lvac) 
(a,6) 

[ II Ra (ua + Va ala1) RaJ [ II Ra] lvac) 
(a,6) (a,6) 

(.5.117) [II Ra ( UaRa - Va alRaa1) J lh-f) 
(a ,B) 

(5.116) [II ( Ua - Va aaab) ] lh-f) · 
(a,6) 

(5.119a) 

(5.119b) 

(5.119c) 

(5.119d) 

(5.119e) 

(5.119f) 

This represents the quantum state of the normal fluid component in the two-fluid 

model without a superfluid component, as every Cooper pair has been converted 

into a Bogoliubov quasiparticle. A finite-temperature superfluid is partially excited, 

over a subset of the pairs in the system, and thus constitutes an intermediary state 

between (5.113) and (5.119f). 



125 

Two-qubit representation 

The dynamical field of a quantum vortex (or collection of quantum vortices) 

acts like a vacuum background configuration and its 2-spinor field has the balanced 

form is the entangled quantum state 

(5.112) 
l11\(x)) = 1L8 (x)IOO) + Vs(x)lll). (5.120) 

The Cooper pair (5.120) has the form it does because this is an eigenket of the 

y'PAIR local quantum informational interaction, and we discuss in more detail in 

Sec. 6.3.2. Such an eigenket is a local equilibrium configuration with a pair at each 

point in the system. In the ground state, all the pairs (5.120) are identical. This 

is the BEC limit of a Fermi condensate where the Cooper pairs behave as a tightly 

bound Bose molecules. 

The hydrodynamic condensate l.fJv ( x) may break down giving rise to a spectrum 

of small fluctuations, the Bogoliubov quasiparticle excitations. The Bogoliubov 

quasiparticle state is a locally entangled particle-hole pair excitation of the form 

(5.121) 

where lunl 2 + lvnl 2 = 1 is a constraint on the amplitudes. Notice that the Bogoli

ubov quasiparticle state (5.121) resides in the zero-quantum subspace (one-body 

sector) of the local Hilbert space of the two qubits at a point. (From the form of 

(5.120) and (5.121), you can see why a two qubit per point model is sufficient for 

representing both Cooper pairs and the spectrum of Bogoliubov quasiparticles in a 

Fermi condensate.) In spinor form, adding the quasiparticle (5.121) to the vacuum 

(5.120), we have 

1/Jo(x) Us(x) 0 

·1/J( X) 
'1/.'r(x) 0 Un(::v)e-iwt 

(5.122a) + 
'1/.'1 (x) 0 -v;;_ (a: )eiwt 

1/Jn (x) Vs(x) 0 

·1/Jv(x) + 1/1qp (x). (5.122b) 
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Since the bosonic wave function <p of the superfiuid may be determined from the 

trace of the chiral 4-spinor field 'i.e. <p _ Tr( 14 ?j;) the bosonic scalar wave function 

is 

(5.123) 

This is the form we used in Sec. 5.2.3. 

In summary, as the ground state formed of a fermionic condensate of entangled 

particle-particle zero-momentum pairs ('i.e. Cooper pairs), one is equally likely to 

find a pair of particles rotating clockwise and counterclockwise with respect to a 

chosen axis in position-space. The ground state has net zero angular momentum as 

well as net zero linear momentum. The condition of vanishing angular momentum 

follows from the fact that the entangled particle-particle state (localized ink-space) 

has both a spin configuration of hh and a flipped spin configuration of 1211 . Thus, 

the quantum state of a Cooper pair, which must be an antisymmetrized Fermi state, 

may be written as 

,T, ( j 1 ) _ "'"""' [ ik·(r1-r2) j 1 _ -ik-(r1-r2) j 1 J '±'Cooper T1 1, T2 2 - ~ Vk e 1 2 e 2 1 · (5.124) 
k 

This Fermi state is nonlocalized in position space (since the position-space repre-

sentation is the Fourier transform of a zero-momentum pair in momentum-space). 

The form of (5.124) derives from a rather simple k-space number representation of a 

Cooper pair state, a parallel entangled state, l11cooper) = Jz (100) - Ill)) k,-k· The 

Cooper pair, comprising two particles and two holes, has an expectation value of just 

a single particle: (Wcooperlnl + ndWcooper) = 1. Thus, without violating number con-

servation, it can transition to a perpendicular state, I<I>sogoliubov) = Jz (110)- 101)) , 
k,-k 

that also has an expectation value of one particle: (11sogoliubovln1 +n2IWsogoliubov) = 1. 
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Kelvin waves from gyrating Bogoliubov excitations 

Consider a heuristic rendering of a quasiparticle (with net angular momentum) 

in position-space 

(5.125a) 

rn1 nrhl 
+--- - k -------+ k 

where the right-goer nrhl (red) and the left-goer hrnl (blue) of a Bogoliubov ex-

citation rotate and counterrotate, respectively, about a common axis. The axis of 

rotation is the center of a quantum vortex with rotation frequency n and particle 

gyration frequencies -w (red) and +w (blue) for (w » 0) and with the particle 

gyration radius greater than the vortex core size~- If we consider the same param

eters as (5.125a), but with a much slower longitudinal velocity down the axis of the 

quantum vortex, then an emergent Kelvin wave structure becomes evident: 

(5.125b) 



CHAPTER 6 

Quantum lattice gas 

representation of condensates 

6.1 Introduction 

The first cold atomic vapor BEC was realized by Cornell and Wieman at NIST 

[Anderson et al., 1995] and Ketterle at MIT [Davis et al., 1995, Mewes et al., 1996]. 

BEC's are a great help in getting to the bottom of the issue regarding quantum 

vortex dynamics leading to quantum turbulence, and vice versa the observation of 

vortices in a condensate also helps the experimentalist establish the fact the BEC 

state was indeed created in their particular setup. The first cold atomic vapor 

BEC was a rubidium 87Rb gas cooled to 170 nK, and it has no normal component 

at all. It comprised a macroscopic number of integer spin particles in effectively 

a zero temperture ground state. A whole class of BECs have been realized with 

ultracold dilute atomic vapors (e.g. alkali-metal gases 87Rb, 7Li, 23 Na) with low 

critical temperatures in the range of 0.1-1 mK. 

Rarefied atom vapors (dilute alkali gas) are laser-cooled in a magneto-optical 
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particle traps and trapped in optical lattices (with typically 106 to 107 atoms of 

87Rb, 7Li, or 23Na atoms) 1 These cold atomic systems are called quantum gases. 

Non-trapped BECs are a pure realization of an inviscid superfluid. When the cold 

atoms are confined to spatial nodes of an optical three-dimensional lattice as de-

picted in Fig. 6.1, these atomic quantum gases become quantum lattice gases. In 

the way of further conceptual simplification, we may consider a quantum lattice gas 

comprised of bits on a lattice that hop between points and that interact quantum 

mechanically. Atoms placed in an optical lattice, or the minimal equivalent of bits 

placed in a qubit lattice, may used for quantum simulation of strongly correlated 

condensed matter systems. This scheme constitutes a practical program of analog 

quantum computation for physical modeling [Yepez, 2002a]. 

(a) 

{b) 

FIG. 6.1: Optical lattices: (a) Two- and (b) three-dimensional optical lattice poten
tials formed by superimposing two or three orthogonal standing waves. [Taken from 
[Bloch eta!., 2008].] 

1 Magnetically trapped alkali vapors are effectively confined in an external parabolic potential, 
for example of the asymmetric form V(x) = k r2

, where r = V"fxX 2 + "/yY2 + "fzZ2 , where the 
gamma coefficients are not necessarily equal. 
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The Gross-Pitaevskii (GP) equation [Gross, 1963, Pitaevskii, 1961] is an effec-

tive model for Bose condensate dynamics in the low temperature limit and also for a 

Fermi condensate so long as the pairs are tightly bound as discussed in Chapter 5. So 

it models the low-temperature dynamics of many types of superfluids, including the 

Helium II phase of 4 He below about 100 mK, dilute cold atomic vapor BECs, quark

matter condensates in neutron stars [Gusakov, 2007, Lindblom and Mendell, 2000, 

Andersson et al., 2002, Yoshida and Lee, 2003, Comer et al., 1999, Lin et al., 2008], 

ultracold Fermi gases [Regal et al., 2004, Giorgini et al., 2008], and the Q2 quantum 

lattice gas [Yepez et al., 2009b, Vahala et al., 2008, Yepez et al., 2009a] 

[Yepez et al., 2009c]. The GP equation that we derived in Sec. 5.2.2 is 

(6.1) 

where g is the real-valued coupling strength of the nonlinear interaction and J-l is 

the chemical potential. 

Rotating cold atom BECs form a vortex lattice analogous to that occuring in 

rotating 4He and flux-line lattices in type-II superconductors. All the rotation is 

pinned to topological defects in the phase of the condensate wave function. Ultracold 

atom BECs are useful for exploring the dynamics of mutually interacting quantum 

vortices, for example as shown in Fig. 6.2 for sodium condensates in a magnetic 

trap. 

Quantum turbulence occurs m liquid Helium II and should occur in Bose-

Einstein condensates (BEC) of cold atomic vapors. Remarkably, dissipation of 

quantum turbulence in the zero temperature limit has been recently observed in 

Helium II at temperatures as low as 0.08K [Walmsley et al., 2007]. It is important 

to compare such quantum turbulent flows to classical fluid turbulence to help us 

solve one of the grand challenge problems of the millenium [Barenghi, 2008]. In this 

regard, there is a broadly acknowledged need for high resolution quantum turbulence 



a b c d e ....... 
• • • • • 

FIG. 6.2: Vortex nucleation for violent stirring in an atomic BEC. The upper row shows 
expansion images of sodium condensates after 500 ms of stirring at the quadrupole fre
quency, for different laser powers of the stirring beam. The lower row shows the resulting 
BEC after 300 ms of equilibration time. The condensate had to be severely excited to 
generate many vortices. From left to right, the laser power was increased for each sub
sequent image by a factor of two. [Taken from [Ketterle et al., 2008].] 
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simulations-we have achieved this using a unitary quantum lattice gas simulation 

of a BEC superfluid on large spatial grids up to 57603 [Yepez et al., 2009c]. 

Fundamental to superfluid turbulence is the quantum vortex: a topological 

singularity with the superfluid density exactly zero at the vortex core in the sim

plest case [Donnelly, 1991]. Furthermore, in the simplest case, all the quantum 

vortices are discrete, have the same charge (i.e. quantized circulation in multiples 

of ±27r), and the flow is in viscid. This stands in sharp constrast to classical incom

pressible fluid turbulence where the concept of a vortex tube or eddy is imprecise 

and where viscosity plays an essential role. In classical turbulence there are two 

strongly competing effects: sweeping of small scale eddies (advection) by large scale 

eddies and straining of eddies (deformation) by eddies of similar scales. Building 

on Richardson's local cascade of energy from large to smaller and smaller eddies 

till viscosity dissipates the smallest ones into heat [Richardson, 1926], Kolmogorov 

[Kolmogorov, 1941] assumed an inertial energy spectrum that depends only on the 

energy input and wave number. Assuming the energy transfer and the interacting 
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scales are purely local and sweeping is not important for energy transfer, he derived 

the inertial energy spectrum for classical incompressible turbulence: 

(6.2) 

for some constant CK where£ is the energy dissipation and k is the wave number 

magnitude. 

As discussed in our theoretical treatment of superfluidity in Chapter 5, quantum 

turbulence is envisaged to arise from dense quantum vortex tangles [Feynman, 1955] 

and this is borne out by numerical simulation too. The coherence length ~ defines 

the inner radius of a quantum vortex core while n{ approximates its outer radius. 

Since the flow outside a quantum vortex core is simple potential flow, it is thought 

that for large scales » n{ (and scales much greater than the average separation 

distance between the vortex filaments) the discrete nature of the quantum vortices 

is lost and the superfluid density is approximately constant while supporting phonon 

radiation. Large eddies can form as aggregated quantum vortices, concomitant with 

sweeping and straining (the latter important to incompressible classical turbulence), 

so large scale quantum turbulence could resemble a Kolmogorov energy cascade 

E(k) >==::;; k-~, fork« (n~)- 1 . The dissipation wave number kdiss = £~ v-~ cuts off 

the Kolmogorov energy cascade in classical turbulence--in quantum turbulence one 

For length scales on the order of the coherence length one needs to consider the 

effects of vortex reconnection-a reconnection that occurs in superfiuids without 

the need for viscous dissipation, unlike classical vortex tube reconnection. During 

the quantum vortex-vortex reconnectionjcollision and vortex self-interaction, the 

vortex lines are sharply distorted, supporting large amplitude Kelvin waves (large 

relative to the wavelength). The Kelvin wave modes couple to generate Kelvin 

waves of smaller and still smaller wavelength, emitting phonon radiation in the pro-
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cess [Barenghi, 2008]. This Kelvin wave energy cascade continues until one reaches 

the shortest operable scale, e.g. a k-space cutoff on the order of half the inverse 

the mean-free path length in Helium II or ultracold quantum gases or the grid 

scale in simulations. For the k-dependence of the Kelvin wave cascade in quan-

tum turbulence, one anticipates a power-law in the incompressible kinetic energy 

spectrum: E(k) ~ k-a, for k » ~- 1 where the exponent is here determined to 

be a = 3.00. There has been considerable effort to devise theories and methods 

[Barenghi, 2008, Kozik and Svistunov, 2004, Svistunov, 1995, Boffetta et al., 2008, 

L'vov et al., 2007, Kozik and Svistunov, 2008] to predict this exponent's value as 

well as to predict the incompressible kinetic energy spectrum in the transition re-

gion (1r0-1 .:S k .:S ~-1 between the Kolmogorov and the Kelvin wave cascade 

spectra. The simplest explanation that a = 3 derives from the Fourier transform of 

a linear quantum vortex [Nore et al., 1997a]. 

Regarding the k-5/ 3 part of the incompressible spectrum, GP equation start-

ing with a Taylor-Green (TG) profile [Nore et al., 1997b]leads to (or approaches) a 

Richardson-Kolmogorov cascade, as does the filament-model with TG [Araki et al., 2002]. 

We find clean Kolmogorov-scaling in this very large grid limit (""' 57603
). 

2 Thus, 

for sufficiently large simulations, the quantum flow in the bulk can resemble an in-

compressible fluid. From small to large grids, the tangles transition from dense and 

dilute. In the dense tangle limit, quantum turbulence is different than classical Kol

mogorov turbulence. Yet, for large grids ""' 57603 (dilute tangle "classical" limit), 

one observes a very clean k-5/ 3 line for small-k. Also, one finds a strong contribu-

tion in the large-k compressible spectrum, due to the presence of Bogoliubov-level 

fluctuations within the vortex cores. 
2In this limit, one might that the inter-vortex spacing becomes large and most of the quantum 

fluid's density is constant, l<pl 2 ~ Po. 
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6.2 Numerical modeling approaches 

Quantum turbulent studies using computational physics methods are being 

pursued vigorously, not only for their intrinsic importance for understanding super-

flows but also in the hope of shedding light on classical turbulence. There have 

been various attempts to begin with the NLS equation to model a BEC. For ex-

ample, Leadbeater and Barenghi et al. have used a semi-implicit Crank-Nicholson 

algorithm to numerically predict dynamical solutions to the dimensionless GP equa-

tion to model the collision of vortex rings and the consequent emission of sound 

[Leadbeater et al., 2001]. Kasamatsu and Tsubota use a finite difference alternat

ing direction implicit method [Kasamatsu et al., 2003] to numerical solve a modified 

GP equation 

(6.3) 

where Lz = -i(xEJy-'YOx) is the angular momentum operator and n is the frequency 

of the frame rotating about the z axis. (6.3) has an ad hoc phenomenological dis-

sipation term 'Y multiplying the time derivative and an orbital angular momentum 

term to model a turbulent BEC in a cigar shaped trap [Kasamatsu et al., 2005]. The 

method resolved emergent vortex lattice crystals (about 10 cores) in a rotating con-

densate. Yet, heretofore, the three known numerical methods that have been able 

to achieve (or approach) quantum turbulence are the vortex-filament method, the 

Fourier spectral decomposition method, and the advective real Ginzburg-Landau 

equation method. Numerical predictions of the incompressible spectral kinetic en-

ergy obtained by these three methods are briefly reviewed. 

6.2.1 Vortex-filament method 

Schwarz proposed a vortex-filament method [Schwarz, 1985, Schwarz, 1988], 

which is commonly used in numerical studies of superfluids and which accounts 
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for mutual friction. The method conserves vortex length but not energy, and it 

is an approximation of the Biot-Savart law for the vorticity field, with additional 

model reduction by the localized induction approximation (LIA) in the dilute-vortex 

limit given by (5.64). The velocity field of the superfluid v(r, t) is 

_ K 1 ds' x ( s' - r) 
v(r,t)- I 13 · 4n c s'- r 

(6.4) 

where C is a curve associated with the center of a quantum vortex in parametric 

form s = s(e, t) and s' is a point on the curve as shown in Fig. 6.3. In the vortex-

FIG. 6.3: Global and local views of a vortex filament. [Taken from [Schwarz, 1985].] 

filament model, one neglects the flow structure within the quantum vortex core. An 

example of this is the work by Barengki et al., who made an early numerical attempt 

to understand the Kelvin cascade with the Biot-Savart law (6.4), with large Kelvin 

waves coupling to smaller ones [Kivotides et al., 2001], as shown in Fig. 6.4. The 

numerically predicted velocity spectra from an extremely coarse grid of 64 3 point is 

shown in Fig. 6.5. 

Tsunehiko and Tsubota et al. used the vortex-filament method with Taylor-

Green flow to capture the Kolmogorov scaling [Araki et al., 2002]. The time evolu-

tion of the Taylor-Green flow is shown in Fig. 6.6. These types of attempts to model 

superfluid turbulence without any quantum flow structure within the core have in 
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FIG. 6.4: Vortex configurations at different times. [Taken from [Kivotides et al., 2001].] 
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FIG. 6.5: Velocity spectra before and after the reconnections. 
[Kivotides et al., 2001].] 

[Taken from 
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(a) (b) 

(c) (d) 

FIG. 6.6: Time evolution of the vortex tangle at t-0 sec (a), t=30.0 sec (b), t=50.0 sec 
(c), and t=70.0 sec (d). [Taken from [Araki et al., 2002].] 

k [1/cm] 

FIG. 6.7: The energy spectra of the tangle at t = 0 sec (dashed line), t = 30.0 sec 
(dot-dashed line), t = 50.0 sec (long-dashed !line), and t = 70.0 sec (solid line). [Taken 
from [Araki et al., 2002].] 
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the past relied on ad hoc mechanism for the filamentary reconnections. So, the main 

limitation of the Biot-Savart method (a Lagrangian representation of the superfiow 

based on the motion of line vortices as opposed to an Eulerian representation based 

on a time-dependente condensate field governed by the GP and BdG equation set) is 

not that one cannot resolve the vortex core but that the vortex-vortex interactions 

are not correctly captured. 

6.2.2 Fourier spectral decomposition method 

Kobayashi and Tsubota have used a Fourier spectral decompostion method to 

explore the Kolmogorov spectrum of superfiuid turbulence. They solve the Fourier 

transformed G P equation 

[i- 'Y(k)] 0<P~~) t) = (k2
- p)<jj(k, t) 

+ : 2 I: <P(kl, t)<P*(k2, t)<P(k- k1 + k2, t), 
kl,k2 

(6.5) 

where Vis the system volume and <P(k, t) is the spatial Fourier component of rp(x, t) 

with wave number k, obtained with a fast Fourier transform, and where 'Y(k) is an ad 

hoc dissipation factor that is applied for small scales :::; ~ [Kobayashi and Tsubota, 2006]. 

The numerical time evolution is achieved by the Runge-Kutta-Verner method. Their 

energy spectrum result is shown in Fig. 6.8. They observe Kolmogorov k- 513 scaling, 

but had to add an ad hoc dissipation term acting on scales smaller than the healing 

length [Kobayashi and Tsubota, 2005]. They introduced a wave number dependent 

dissipative term into their simulations to damp out wave numbers on the order of 

the vortex core. While this suppresses the Kelvin wave cascade on the quantum 

turbulence, it also leads to a time decay in both the total number and total energy 

EToT· To circumvent the decay in the total number, they add a time-varying chem-

ical potential in the GP equation although the total energy still decays. Most of 
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FIG. 6.8: Vorticity \7 x v(x, t) and the energy spectrum at t = 6.0. The contour in (a) is 
98% of maximum vorticity. The energy spectrum was obtained by making an ensemble 
average for 20 different initial states. The solid line refers to the Kolmogorov law. [Taken 
from [Kobayashi and Tsubota, 2005].] 

139 

their simulations were restricted to a 5123 grid and did not yield a convincing in

compressible kinetic energy spectrum of k-i for this augmented GP equation. This 

approach did not resolve the classical-quantum transition nor could it capture the 

quantum Kelvin wave cascade. 

6.2.3 Advective real Ginzburg-Landau equation method 

Nore, Abid, and Brachet used an advective real Ginzburg-Landau equation 

which revealed in a numerical simulation for the first time that superflow has an 

inertial range due to vortex reconnections [Nore et al., 1997b] as well as an NLS 

equation model. Time-stepping in the method is first-order accurate in ARG LE 

and second-order accurate in NLS equation using a Strang-type splitting. Nore uses 

a pseudospectral code to integrate ARGLE and NLS equation [Nore et al., 1997a], 

which slows down on large grids. They show how to construct a vortex array whose 

NLS equation dynamics mimics Taylor-Green flow with minimal emission of acoustic 

waves. Then they integrate to convergence the GP equation with the appropriate 
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(6.6) 

and this is equivalent to minimizing the Ginzburg-Landau functional 

F = ~ j d3x [ -I'PI 2 + ~I'PI 4 
v2~ 2 

H'lv~'- i ;;>I'J (6.7) 

The normalized macroscopic flow field ~: is treated like a local gauge field that 

adds to the BEC momentum field. Their result for the incompressible part of the 

kinetic energy spectrum is shown in Fig. 6.9. 

6.2.4 Quantum lattice gas method 

We use a quantum lattice-gas model to model a superfluid. This approach 

represents a dynamical fermionic field on an ordered array of qubits, arranged on a 

cubical lattice with two qubits per lattice point. The system of quantum particles 

can be treated in the type-II quantum computing limit, which is appropriate to a 

BEC as all the pairs of quantum particles are condensed into the same state and the 

condensate field is factored over the points of the system. The basic quantum field 

that we consider is that of a chiral massive fermion, a 2-spinor. A complex scalar 

bose field is formed by summing together the 2-spinor fermi components. A phase 

rotation of the spinor components acts as a self-steering mechanism to represent 

the nonlinear interaction in the GP equation low-temperature approximation of a 

BEC. The Q2 quantum lattice gas model is a prime example of type-II quantum 

computation [Yepez, 2001c]. This mechanism gives rise to superfluid behavior at the 

large scale arising from a nonlinear 'P4 interaction. We observe that the Q2 quantum 

lattice gas is in the same universality class as a physical quantum gas superfluid. 
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FIG. 6.9: Plot of the incompressible kinetic energy spectrum, E~in (k). The bottom curve 
(a) (circles) corresponds to timet= 0 (Taylor-Green initial condition). The spectrum 
of a single axisymmetric 2D vortex multiplied by ( l /27r) = 175 is shown as the bottom 
solid line. The top curve (b) (plusses) corresponds to time t = 5.5. A least-square fit 
over the interval 2 ~ k ~ 16 with power law E~in(k) = Ak-n gives n = 1.70 (top solid 
line). [Taken from [Nore eta!., 1997b].] 
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With the quantum lattice gas method, previously we have predicted solu

tions to a number of nonlinear classical and quantum systems. These nonlinear 

quantum lattice gas systems have emergent nonlinear effective equations of mo

tion governing dynamical behavior of the low energy and low momentum modes 

that correspond to naturally occurring quantum system. Satisfying the dual pur

poses of computational physics and quantum computation, these quantum lattice 

gas models, being strictly unitary, have proven useful for numerically predicting 

the time-dependent solutions of a wide class of effective nonlinear quantum wave 

equations that are various forms of the nonlinear Schroedinger (NLS) equation, 

including the Korteweg-de Vries equation [Vahala et al., 2003a], vector solitons, 

e.g. Manakov equations for optical solitons [Vahala et al., 2004], bright solitons 

[Yepez et al., 2005a], and dark solitons governed by the GP equation in 3+1 dimen

sions [Yepez et al., 2009b, Yepez et al., 2009a, Yepez et al., 2009c]. 

Quantum informational dynamics models, such as the Q2 quantum lattice gas 

presented here, are rather fundamental models of quantum particle dynamics. The 

nonlinear Q2 model can be taken as an ab initio model of a superfiuid, as funda

mental as the Bose-Hubbard model and the Fermi condensate superfiuid limit of the 

BCS model for example. There are a number of advantages of the Q2 model over the 

standard computational physics GP solvers and Biot-Savart law models. The GP 

equation is merely a mean-field approximation of a quantum gas in its BEC phase, 

in the long-wavelength and low-temperature limits. The Q2 quantum lattice gas 

represents more than this as it models a quantum gas of fermions by using a qubit 

field to store the state information, including particle-particle correlations. Thus 

the Q2 quantum lattice gas captures particle entanglement, including excitations 

such as Bogoliubov quasiparticles, and captures the fundamental Cooper pairing 

not explicitly treated in the GP equation. Furthermore, the spacetime resolution of 

the Q2 quantum lattice gas is so high that it can capture particularly well the rich 
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condensed matter dynamics occurring within the three-dimensional quantum vortex 

core, all the high-k Kelvin wave dynamics, and consequent nonlinear vortex-vortex 

interactions that drive quantum turbulence. 

In contrast, the Biot-Savart law vortex-filament modeling approach treats the 

entire vortex soliton structure as a single topological line defect. This is a rather 

coarse approximation since microscopically the vortex soliton is not a one-dimensional 

object at all. It has a very dynamically active core structure comprising a great deal 

of three-dimensional flow structure over the entire short wavelength range, including 

distances shorter than the healing length. 3 In summary, actual quantum gases in the 

BEC phase support vortex solitons with core structure and crucial high-k dynamics 

and particle-particle correlations not modeled by the GP equation or Biot-Savart 

solvers. The unitary Q2 quantum lattice gas conserve energy exactly and faith-

fully captures all the high-k core dynamics and core structure, including quantum 

mechanical particle-particle interaction-level crossings. Its additional advantages 

include the following: 

1. The collide operators based on two-qubit entangling gates, VPAIRt and 

ylswAP, the stream operator based on the SWAP gate, and condensate phase rota-

tion based on one-qubit gates give rise to an algorithmically local and time-explicit 

representation [Yepez, 1996c, Yepez, 1996b] that approaches pseudo-spectral accu

racy [Yepez and Boghosian, 2002] without the need for spectral decomposition. The 

quantum lattice gas representation approaches 3rd-order accuracy [Yepez, 2007]. 

2. Divergences typical in quantum field theories do not occur in quantum infor-

mation dynamics models because the lattice provides an ultraviolet cut-off, removing 

high k-modes, as well as an infrared cut-off from the finite amount of information 

3High large-k resolution is vital to capture quantum kelvons inside the vortex cores-such 
kelvons are known experimentally [Bretin et al., 2003]. The behavior of these quantum kelvons 
have been verified numerically at the Bogoliubov de Genes (BdG) level [Mizushima et al., 2003, 
Simula et al., 2008]. Remarkably, the cutoff rc < ~ is inside the core and a modified Kelvin wave 
dispersion relation gives a corrected angular frequency [Simula et al., 2008]. 
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(i.e. countable number of point and periodicity). The unitary quantum logic gate 

representation ensures the conservation of the finite information content and thus 

blocks divergences. 

3. The low-energy effective field theory of the Q2 model, which yields the GP 

equation and the BdG equations, is rather easy to derive analytically. The GP 

equation is a rather good bench mark representation at lowest order. 

4. Numerical performance of quantum lattice gas codes scales linearly with the 

number of processor elements, so such codes are ideally suited to massive parallelism 

and outperform Fourier decomposition methods on large supercomputers. 

5. Quantum information dynamics models are expressed with a local and regular 

pattern of quantum logic gates, and are thus readily available to run on future quan

tum computers and can fully exploit the exponential complexity class of quantum 

computers. Ultracold quantum gas simulations in optical lattices represent the first 

realization of the quantum lattice gas model of quantum computation-presently at 

the state-of-the-art of quantum computation by analogs. 

6.3 Q2 model 

Regarding early lattice-based algorithms, the first unitary algorithm known 

for approximating a scalar wave function on a computer is provided by the Cayley 

form of the evolution operator for the Schroedinger equation [Goldberg et al., 1967]. 

Ultimately, we shall be concerned with using unitary algorithms to model nonlinear 

dynamical systems, including those with dissipation, that are efficient quantum 

algorithms for computational physics with high-order numerical convergence (e.g. 

so they can be used to model turbulence). To explain the Q2 model, we will follow 

the historical development of the quantum algorithm and begin with the simplest 

quantum lattice gas algorithm in 3+ 1 dimensions. In Sec. 6.3.1 we present the 
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original formulation, which has the merit of being quite simple but the drawback of 

only first-order accuracy. A revised treatment of this quantum algorithm increases 

the numerical accuracy to second-order and also uses a qubit representation that 

accommodates many-body simulations [Yepez, 2007, Yepez and Boghosian, 2002]. 

Next, in Sec. 6.3.2, we revisit this quantum algorithm and present the version of the 

algorithm used in the 3+ 1 dimensional G P equation simulations presented herein. 

6.3.1 Lattice gas representation of the Schroedinger equa

tion 

Here we review the quantum lattice gas algorithm for the free Schroedinger 

equation in 3+ 1 dimensions. Our aim is to explain the framework for deriving an 

effective equation of motion starting from a given unitary evolution that is sepa

rated into a product of two fundamental operations: (1) streaming that represents 

the kinetic motion of the quantum particle and (2) collisions that represent local 

scattering events (or reversal of motion) that imparts mass to the quantum par

ticle. We begin with a spinor representation of the quantum field over a discrete 

spacetime. We will postpone, until Sec. 6.3.2, a discussion of the qubit representa

tion of the quantum field. The quantum algorithm presented here has error terms 

in the effective equation of motion that occur at O(c-)-it is a first-order accurate 

representation. This is not too practical for quantum simulation purposes because 

to reduce the numerical error by a factor of two one must likewise decrease the 

grid size by a factor of two. On a cubical grid this increases the number of points 

by 23
, which is a large (nearly an order of magnitude) increase in computational 

burden. Yet, our aim is to derive the effective equation of motion in 3+ 1 dimen

sions in the simplest way possible, so we also postpone our review of a second order 

accurate representation until 6.3.2. This representation allows us to model the non-
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linear Schroedinger equation. The following presentation in this section originally 

appeared in Ref. [Yepez, 1996b, Yepez, 1996c] for the 1+1 dimensional case and the 

streaming operator used here for the 3+ 1 dimensional case originally appeared in 

Ref. [Yepez, 2003]. 

Complex amplitudes denoted by 1/Jsc;, for s = L, R and<; =I, l, reside at each 

site of the lattice, where the position of the lattice site is specified by the vector Xi, 

fori= 1, 2, 3. At each spacetime point x = (t, x), a 4-spinor denoted W has these 

amplitudes as its components 

w(x) = 

1/Jq(x) 

1/JL;(x) 

1f'lRt(x) 

1f'lRr(x) 

(6.8) 

To describe the dynamics, let us begin with the streaming operators, which is related 

to the Lorentz group boosts, and these directly act on the chirality-spin degrees of 

freedom in (6.8). The generators (for boosts) are 

(6.9) 

where O"i are the Pauli matrices, again fori = 1, 2, 3. The stream operators expressed 

in unitary exponential form are 

(6.10) 

These stream operators preserve chirality. Note that the third generator of (6.9) is 

diagonal 

1 0 0 0 

0 -1 0 0 

0 0 -1 0 

0 0 0 1 

(6.11) 

so as a matter of algorithmic practicality, we implement all the stream operators 

strictly using (6.11). That is, the quantum algorithm for streaming along the x and 



y directions is specified by 
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(6.12) 

(6.13) 

With p = -in'\1, the basic (quantum lattice gas) stream operator acting on the 

4-spinor gives 

Y~(bx · pjn) w(x) = 

eHx·'\71/!q(x) 

e-8x·'\71/!Lj(x) 

e-8x·'\71f!Rt(x) 

eHx·'\71/JRr(x) 

(6.14) 

amounting to a shift of the amplitudes for the 4-spinor components. This is equiva-

lent to a simple permutation between the points of the space (a unitary operation) 

of the amplitudes 

Eq. (6.14) S8re w(x) = 

1/Jq (a:+ 8a:, t) 

1/!Li (a: - 8a:, t) 

1/JR! (a:- 8a:, t) 

1/!Rr (a:+ 8a:, t) 

(6.15) 

Furthermore, in any quantum computational implementation, the shift permuta-

tions (6.15) are represented in terms of an ordered sequence of qubit-qubit inter-

change gates [Yepez, 2001a]. Streaming of all the 4-spinor amplitudes along the x, 

y, and z directions on a cubical lattice is represented by the composite operator 

X 

(6.16) 

where the grid sizes are a fixed length, 6x =by= bz =d. Streaming represents the 

high-energy chiral motion [Yepez, 2003, Yepez, 2005, Yepez, 2007] by the following 

map: 

(6.17) 

Alternatively, the stream equation (6.17) can be written exactly as a grid-level 

difference equation 

\lf(x + cf!. a3@ U, t + cT) = \lf(x, t). (6.18) 
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In the low-energy scaling limit, obtained by Taylor expanding the spinor field in 

space and time under convective ordering, this in turn leads to the effective dynam-

ical equation of motion 

(6.19) 

which is just the relativistically covariant Weyl equation for a 4-spinor 

(6.20) 

written in the chiral representation where the Dirac matrices are "/ = 0"1 0 1 and 

"/ = i0"2 0 O"i, and where the unit speed of transport is c _ f/T = 1. 

Next, let us consider the unitary operator 

(6.21) 

where hgas = nwN, and where N is an idempotent hermitian operator N 2 = N that 

is dimensionless and represented by a 2 x 2 hermitian matrix. Thus, we can write 

00 

1 ( - · h /:1t) n 
00 

1 u = L' 'l nas = 1 + L' (-iw!:1tt N = 1 + J, n. n. 
n=O n=l 

(6.22) 

where J _ ( e-iwb.t - 1) N and where 1 is the 2 x 2 identity matrix. (In a quantum 

gate representation of (6.22), the gate angle is w/:1t.) We employ a unitary collision 

operator C = U 0 1 to locally scatter the incoming 4-spinor \[! ( x) to an outgoing 

4-spinor \[!' ( x): 

\[!' (X) = C \[! (X). (6.23) 

C breaks chirality and imparts mass to the Weyl particle represented by the stream 

operator. 

The quantum algorithm we consider is the combination of (6.17) and (6.23) 

\[!' = s c \[! !---+ \[!) (6.24) 
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which can be written exactly as the following grid-level transport equation4 

2 (6.22) 
'l/J(x+dO'z0u,t+cT) = 'lj;(x,t)+J01'1j;(x,t), (6.25) 

and this is an exact expression of the quantum algorithm. 5 Equation (6.25) is 

referred to as a quantum lattice gas equation of motion. The collide and 

stream based evolution (6.24) constitutes the simplest quantum lattice gas algorithm 

to model a free massive quantum particle in position-space in the long wavelength 

limit. 

Taylor expanding the left-hand side of (6.25) in space gives the associated local 

difference equation in time, to second order in E, 

J 0 1 'lj;(x, t) = '1/J(x, t + c2T)- '1/J(x, t) 

+ (ceO'z 0 u · \7 + ~ (dO"z 0 u · \7)
2

) 'lj;(x, t + c2
T) + · · · 

(6.26) 

Let us perform a perturbative expansion of the 4-spinor in the small dimensionless 

parameter ( E:) as follows: 

(6.27) 

where 1'1/J(l)l rv E:, I'I/J(2)1 rv c2 , and so forth. Inserting this into (6.26) and equat-

ing terms of similar order in E: gives the following zeroth, first, and second order 

4We are using diffusive ordering where 8t,..., c5x2 '"".s2 . 
5Equation (6.25) was written in a form akin to the lattice Boltzmann equation but with a 

complex-valued distribution instead of a real-valued probability distribution [Yepez, 1996c]. My 
original goal around 1993 was to generalize the usual kinetic transport equation to handle complex 
fields. This is the form of the quantum lattice-gas equation that I originally wrote down in 1993. 
Although (6.25) has the drawback of being only first-order accurate, it is conceptually simple. I 
added a nonlinear interaction potential in 1995 and first applied the method to modeling two-fluid 
hydrodynamics in Helium II [Yepez, 1996b]. I presented this nonlinear quantum lattice-gas model 
at the Sixth International Conference on Discrete Models for Fluid Mechanics, Boston University 
Center for Computational Science, August 1996. I originally used two-complex amplitudes per 
direction. In the derivation of the effective field theory of a quantum lattice-gas system, I used 
an analog to the lattice Boltzmann equation with a complex distribution, all the way up 1999 
[Yepez, 1999b]. A year later, in 2000, I realized that just two complex amplitudes could be used 
for all the Cartesian directions, so the quantum lattice-gas method was more economical with com
putational resources then the lattice Boltzmann method. Furthermore, because the dynamics was 
generated by a hermitian operator, the quantum algorithm was both reversible and unconditionally 
stable. 
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]@1'1/J(O)(t) 

J@ 1 '¢(1l(t) 

'1/J(O)(t + c2T)- '1/J(O)(t) 

0 

cfCJz@ CT · \7'1/J(O)(t + c2T) 

-dCJz &J CT • \7'¢(1)(t + c2
T) 

c2 
-2 (fCJz@ CT • \7) 2 '1/J(O)(t + c2

T). 
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(6.28a) 

(6.28b) 

(6.28c) 

Equation ( 6.28b) can be inverted to solve for the first order correction to the 4-spinor 

field, '¢(1
). Substituting this into (6.28c), a difference equation for '1/J(o) emerges 

'1/J(O)(t + c2T)- '1/J(O)(t) = -E2f 2CJz@ CT (J-1 @ 1) CJz@ CT: \7\7'1/J(O)(t + 2c2T) 

c2f2 
- -2-CJ; &J (u. \7)2'1/J(o)(t + c2T), 

(6.29a) 

which reduces to 

(6.29b) 

where we have expanded both the left-hand and right-hand sides and retained only 

the relevant order-~:2 terms. This further simplifies since ( u · V? = \72, an identity 

that follows from the anticommutivity of the Pauli matrices. So, we arrive at the 

effective 4-spinor equation of motion 

(6.30) 

This then separates into a pair of 2-spinor equations 

(6.31) 

one equation for each of the spin-up and spin-down components, <; =i, 1. 
6 At zeroth order the operator J does not affect ¢<0) since this is the equilibrium state (i.e. 

J ¢(0) = 0). 
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Now, we consider the equation of motion for the 2-spinor field 'lj;(o) = (1/!Lo>) 
1/J~) 

(where here, for convenience, we suppress the spin index). The application of the 

unitary collision operator U = 1 + J may cause large changes in the 2-spinor at every 

time step iteration. To avoid this, it is possible to transform to a reference frame 

where the spinor is always near local equilibrium. Denote the spinor field in this 

frame by 77 and the transformation matrix by R, so that 77 = R '1/J. The requirement 

for being in the local equilibrium frame is that the unitary collision operator in that 

frame, C' = 1 + J', be diagonal. The grid-level quantum lattice gas equation in the 

local equilibrium frame becomes 

(6.32) 

where C' is diagonalized by the similarity transformation C' = RCR- 1 . There

fore, in the local equilibrium frame, (6.30) is diagonalized, becoming a parabolic 

partial differential equation in space and time for each of its 2-spinor components, 

independent! y 

(6.33) 

Consider the following choice for the similarity transformation 7 

R = _1 (1 1) 
y'2 1 -1 . 

(6.34) 

The matrix on the right hand side of (6.33) must be diagonal, so az (J-1 + ~) az 

must be off-diagonal. There are different choices for the form of J- 1 available to 

7Note R = R- 1 and it has the property that it transforms an off-diagonal matrix into a diagonal 
matrix 



use. 8 The original choice [Yepez, 1996c] was the following: 

J-l = -~ ( 1 
2 . h z-mv 

. h) z-mv 

1 
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(6.35) 

which when inverted gives J = - 2
1i2 ( .\ 

1+ m2v2 -zmv 

. li) 
-z;v , and this in turn gives the 

unitary matrix 

-1~ (m~:2 -1 U=l+J= 1 fi2 + m2v2 i-2/i 
mv 

. 21i ) z-mv 

m~:2 - 1 
(6.36) 

Note that ::~.~ is a dimensionless real-valued number. That is, with these choices 

(6.34) and (6.36) for the similarity transformation matrix, R, and the unitary matrix, 

U, (6.30) reduces to 

. ~ (o) n2 p2 2 (o) znut1/J = ---CYx \7 1/J + · · · . 
2m TV 

In turn, in the local equilibrium frame, (6.33) becomes 

. ~ (o) n2 p2 2 (o) 
zhut'TJ = ---CYz \7 TJ + · · · , 

2m TV 

and letting TJ(o) - (:) , we have 

(6.37) 

(6.38) 

(6.39a) 

(6.39b) 

where we have taken v = £2 IT. Since TJ = R?j;, we have TJ = ~ (·1/JL + 1f;R). In (6.39), 
'lj;L -'lj;R 

the bosonic amplitude field u = ( ?j;L + ?j;R) I .J2 obeys the Schroedinger equation 

while v = ( ?j;L - ?j;R) I .J2 obeys the time-reversed Schroedinger equation. Hence, 

8 A typical choice is U = eiOax, so that J = ( c~ssfnl/ c~:~n~ 1). This has as its inverse 

J- 1 = -~cc:t 4 ic~t4). Hence, the determinative term on the right-hand side of (6.31) is 

a 3 (J-1 + ~) a 3 = ~a1 cot*· So, the gate angle B sets the particle mass, m =tan~· 
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it is possible to recover the quantum fluid equations from a quantum lattice gas 

in analogy to the recovery of the N avier-Stokes equation from a classical lattice 

gas [Yepez, 1996a, Yepez, 1999a], which was the original motivation leading to the 

discovery of this algorithm. 

The quantum algorithm (6.24) is a covariant representation of spinor dynam

ics as it leads to the relativistic wave equation for a Dirac particle [Yepez, 2003, 

Yepez, 2005, Yepez, 2007] under advective ordering where r5t rv r5x rv c. A vari

ant of this quantum algorithm (6.24), that is not relativistically covariant un

der advective ordering, was applied to the many-particle Schroedinger equation 

[Boghosian and Taylor, 1996]. Our algorithm is naturally suited for a quantum com

puter and can be implemented in terms of simple local unitary operations on a lattice 

of qubits, and we subsequently found that only two qubits per point are needed to 

model the quantum wave equation in higher dimensions [Yepez et al., 2005a]. This 

serves as a basic framework for the Q2 quantum lattice gas model. 

6.3.2 Second-order accurate representation 

We have just dealt with a first-order accurate quantum algorithm for the linear 

Schroedinger wave equation in 3+ 1 dimensions. Now we will shift gears and deal 

with the nonlinear Schroedinger wave equation. Because the nonlinear interaction 

potential is highly sensitive to small fluctuations, we will require at least second

order accuracy in our representation to keep the dynamical condensate field in local 

equilibrium everywhere (i.e. with Cooper pair states '1/Jo + '1/Jr 1 at each point). That 

is, we need consider a representation where the error terms that occur in the effective 

equation of motion are no larger than O(c2). 

The evolution operator governing the time-dependent behavior of the wave 

function in 3+ 1 dimensions is cast as a local algorithm with three steps applied in 
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a time-interleaved fashion: 

1. a classical stream operator for the point-to-point hopping 

2. a quantum collision operator for the on-site interactions 

3. a nonlinear operator for the q} self-interaction, reducing computational expense. 9 

The following presentation originally appeared in Ref. [Yepez et al., 2009b]. The 

composition of the first and second steps is necessarily quantum mechanical, yet 

it does not necessarily cause an exponential explosion of quantum entanglement 

throughout the many-body system. In fact, the condensate requires only pairwise 

entangled states localized at each point in the system, so the computational complex

ity scales in proportion to the spatial volume of the system (L3 ) times the Hilbert 

space size per point (2Q). Furthermore, restricting the dynamics to be factored 

over the points of the system does not require nonunitary operations nor collapse of 

the wave function. The condensate dynamics, and that of the quantum lattice gas 

model, is strictly unitary. 

Qubit field 

Now we treat the qubit representation of the condensate dynamics. Quantum 

fields are discretized on a cubic lattice as we did in Sec. 6.3.1. We use a representation 

where at each lattice point is a local cluster state-the simplest case has just a 

single pair of qubits per point. The excited state, denoted by logical "1," of a qubit 

I q ( Xn, t)) encodes a particle at the lattice point Xn at time t. The local ket in the 

Fock basis of the qubit pair is 

1 

1'1/J) = L '1/!qq'lqq') = '1/JoiOO) + 'I/Jrl01) + '1/!1110) + '1/Jnlll). (6.40) 
q,q'=O 

9This reduction comes about as the ¢4 nonlinear term replaces the more expensive gauge field
chiral matter coupling in a Q4 model treatment. 
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The local Fock states 101) and 110) encode the spin states li) and 11), and 

so the arrows as subscripts denote the respective amplitudes of those states. The 

local Fock states Ill) and IOO) encode the double-occupancy spin state li 1) and the 

empty state !empty). The convention used here is that the first qubit lq) encodes a 

spin- j particle while the second qubit lq') encodes a spin-1 particle. The ket (6.40) 

is encoded using the lattice gas convention where each bit represents a particle. 

Given a system with N qubits, there are 2N basis kets in the number repre

sentation. The number of kets in what is termed the p-particle sector is equal 

to the binomial coefficient ( N choose p) .10 Suppose the quantum lattice gas is 

constrained to reside in the 1-bit sector. The number of states in the 1-bit sector 

Hilbert manifold identically equals the number of qubits since (N choose 1) = N. 

That is, in the 1-bit sector of the quantum Hilbert space, there are N amplitudes, 

each a complex number. So the 1-bit sector of an N-qubit quantum computer can 

be represented exactly on a classical computer with N complex numbers. While a 

classical computer can simulate the one-body problem using N complex amplitudes, 

a quantum computer can simulate the full N-body problem using N qubits because 

of the exponential resources of its Hilbert space. This is an advantage offered by a 

quantum computer [Boghosian and Taylor, 1998b]. 

The tensor product l'll(t)) = ®~:1 i'l);(xn, t)), where L is the (linear) lattice 

size, will represent the state of our quantum fluid. Because the factored form of 

the quantum field, we can go beyond a one-body quantum simulation and still not 

saturate our available classical computer resources even for systems with very large 

L. To analytically recover the NLS equation (in our case, the GP equation for a 

superfluid), it is sufficient to employ the type-II quantum computational framework 

whereby the Hilbert space of the qubit system is a factored over the points of 

10This is the Pascal triangle identity 2:::=0 ( ~ ) = 2N . 
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the system; hence, in the Q2 model, there are four amplitudes per point, those 

enumerated in (6.40). With a system comprising L 3 entangled clusters, we need 

only a small slice of size L322 of the full Hilbert space of size 22£
3

• Using the (6.9) 

as the generator of the stream operator, the component 'lj;0(x) behaves as a left-goer 

and the component 'lj;11 (x) behaves as a right-goer, or vice versa depending on the 

sign of the gate angle (in (6.10). So, the relevant 2-component amplitude field that 

represents the dynamical ground state of a quantum fluid is 

'lj; (X) = ( 'lj;O (X) ) . 

'lj;il (x) 
(6.41) 

Finally, the condensate scalar wave function r.p is determined as the parallel entangled 

state 

(6.42) 

This, of course, captures the important effect of quantum entanglement between 

the empty and doubly occupied configurations characteristic of Cooper pairing in 

Fermi condensates. A VPAIRt entangling gate is used to keep the 2-spinor (6.41) 

in its parallel entangled state. This parallel entangled state is our local equilibrium 

configuration of the spinor amplitudes. 

Effective G P Hamiltonian 

The evolution of 'lj; is determined by 0-I 1 qubit-qubit interactions (collide), 

free motion of the amplitudes along the cubic lattice (stream), and qubit phase 

shifts to model the well known "Mexican hat" interaction potential (phase rotation). 

The qubit-qubit interaction are generated by a collision Hamiltonian He = nwax, 

where nw is the 0-I 1 coupling energy, and the collision time T corresponds to the 

quantum logic gate time, chosen such that WT = % to make the presentation in 

this section as simple as possible. Free streaming of qubit states on the lattice 
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(emulating the motion of particles in space) is generated by the stream Hamiltonian 

H (6.10) ~"""""' n . h b" o/ . . 1 . s = n L..,Jattice (J z ® c · v actmg on t e qu 1ts. c _ -u t- T IS a streammg ve oc1ty 

along lattice directions. 

Exploiting the fact that [H8 , He] =f. 0, we will use an interleaved compositional 

product of the 2-qubit quantum gates generated H8 and He whereby an effective 

Hamiltonian emerges in the scaling limit modeling the nonrelativistic free particle 

Hamiltonian H0 • Formally denoting this compositional product by the symbol o, 

the Hamiltonian Ha = Tr[Hs o He] ---> - ;~ \72 + · · ·, where in our model m = ~ 

(following from the choice WT = %) in lattice units and where the right arrow denotes 

a scaling limit. Thus Ha generates the evolution of a free scalar quantum field. 

Phase rotation, inducing nonlinear particle-particle interactions, is generated 

by Hint(lrpl 2
) = (glrpl 2

- 11) lrpl 2
, where the quantum logic gate time r' is chosen 

such that g~' ~ 1. In the low energy limit, the local evolution is effectively 

rp(t + bt, x) (6.43a) 

(6.43b) 

modeling (6.1) in the lowest order fluctuations. A derivation of HcP ,..._, Ha +Hint 

follows from the typical scaling arguments used in kinetic lattice gases. 
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quantum gates presented in Chapter 2 have the form 

·1'o A 0 0 B 4'o 

·1/Jr 0 1 0 0 '1/Jr 
Uii/4') = 

·1)! 0 0 £ 0 4'1 

'1/Jn c 0 0 D ·1/Jn 

(6.44) 

where the block of components in the dotted box is a member of SU(2), viz. 

(; :) E SU(2). Only the local 2-component field's complex amplitudes 4'o(x) 

and '1/Ju(x) are quantum mechanically entangled by the action of u
11 

in (6.44). Par

ticle motion and particle-particle interactions are faithfully emulated strictly using 

quantum logic gates of the form of (6.44). Furthermore, to describe the quantum 

lattice gas algorithm, it is sufficient to consider only the type-II quantum computing 

slice of the full quantum Hilbert space, as discussed above. In this way, the algorith-

mic treatment becomes straightforward to describe using only 2 x 2 matrices that 

represent the SU(2) subspace of (6.44). 

An early example of this type of quantum algorithmic reduction is given in 

Ref. [Yepez, 2001a]. The quantum gate dynamics conserves particle number and 

consequently the effective HGP in (6.43) commutes with the particle number opera

tor. Thus, HGP is block diagonal over then-body sectors of the Hilbert space. One 

is justified to run a simulation in any one of the n-body sectors, for 0 :::;: n :::;: 2L3
, 

which is an exact representation of all the relevant quantum dynamics in that sec-

tor, independent of the dynamics in all the other sectors. The advantage of limiting 

the simulation to the type-II quantum computing sector is that the algorithmic 

complexity scales linearly with the number of points and this sector is sufficient to 
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capture the relevant physics of a condensate, including its quasiparticle excitations. 

It is for this reason that the type-II quantum algorithm can be implemented on 

a classical supercomputer while retaining its usefulness for quantum simulation of 

superfluidity. 

We now describe the quantum algorithm by dealing with the (: =) subspace 

of the quantum logic gate operators (6.44). The SU(2) quantum operator 

(6.45) 

that acts locally at every point x by the map 

local collision : (6.46) 

The complex scalar density <p = (1, 1) · ·lj; = ·~'o + ·l/Jn is conserved by (6.46), and 

consequently the probability IV' 12 is also conserved locally. Local equilibrium (i.e. 

V' = Uc·l/J) occurs when the amplitudes are equal ('l/Jo = ·l/Jn), but in general such 

a local equilibrium is then broken if a spinor component is displaced in space by a 

vectorial amount ~x. 

swap gate 

The sequence of SWAP gates used to connect points in a Q2 model on a quan-

tum computer, when implemented on a classical supercomputer, is replaced by a 

global shift operation. This exactly preserves probability and unitarity. One admits 

only complementary displacements of the field components, induced by the stream 

operators of the form that acts on a 2-spinor 

S b.x,l (6.47a) 

St;.x -1 
' 

(6.47b) 
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where n = ~(1- O"z) and h = ~(1 + o-z)· Although the application of (6.47a) usually 

breaks local equilibrium induced by (6.46), with the appropriate boundary condi-

tions, for example periodic boundary conditions, (6.47a) is guaranteed to conserve 

the total density J d3x 'l/)(x) and in turn the total probability J d3x (l'lf'l0 (x) 12 + IV'Tl (x) 12 ). 

To construct a quantum algorithm using a combination of the operators Uc and 

St;x,a and their respective adjoints uJ and S_11x,a, for o- = 1 or -1, we restrict 

our considerations to those combinations that are close to identity. We will use the 

bar notation to mean jj = -o-. To achieve high-order accuracy, our basic approach 

begins with the interleaved operator 

(6.48) 

as the basic building block of the quantum algorithm. Since S_ 11x,aS11x,a = 1 and 

UJUc = 1, clearly this interleaved operator is close to identity. Equivalently, (6.48) 

can be written as lxa = St;x,a-UcS-!1x,aUJ, which adheres to the lattice gas form of 

(6.15) whereby the upper and lower components of a spinor stream in opposition 

clirectionsY We will need the following intermediate result, rewriting (6.48) in the 

analytically convenient form 

Let us symmetrize this interleaved operator12 

Uxa = lxalxa- (
6;,!9) sinh2 ~X. \7 [ cosh(~x · \7)- 1 + i(cosh(~x · \7) + 1)o-x 

2 

+ o-(o-z- o-y) sinh(~x · V)]. 

(6.50) 

11 Although it may not be obvious that SD.x,aUcS-D.x,crUJ: should be close to identity since 
SD.x,aB-D.x =/= 1, nevertheless this follows as it is identical to (6.48), which can be verified by 
carrying out the requisite matrix multiplications. 

12The motivation to symmetrize the interleaved operator is to ensure the lattice gas form of its 
evolution is manifestly close to identity: I~,crlxa = SD.x,aUcS-D.x,crUJ:SD.x,crUcS-D.x,aUJ:. 
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Then, to remove any dependence on spin component variable <J that appears in 

the last (odd) term, we can symmetrize one last time and thus define our quantum 

lattice gas evolution operator as 

(6.51) 

Notice that this induces unitary dynamics in one spatial dimension along 6.x. There-

fore, a suitable evolution operator to model a nonlinear quantum fluid in the three 

spatial dimensions can be constructed by a product of (6.51), one fully symmetrized 

operator for each of the orthogonal Cartesian directions 

U [O(x)] = U U U e-i<:
2
!l(x) 

gas -zyx ' (6.52) 

where E rv 1/ L, where L is the grid resolution (i.e. L is the number of grid points 

along one edge of the simulation volume). Equation (6.52) represents the three 

aspects of a type-II quantum algorithm: stream, collide, and (nonlinear) phase 

rotation. In dimensionless lattice units, note that c2 
rv 6.x2 

rv 6.t. This evolution 

operator is spatially dependent on the quantum field at a point only through local 

state reduction O(x ): 

(6.53) 

Equation (6.53) specifies the nonlinear quantum lattice gas model of a quantum gas 

on a cubical grid. 

Effective field theory 

It is a rather straightforward matter to determine the effective evolution oper-

ator that corresponds to (6.53). To illustrate the procedure, we may Taylor expand 

(6.50) in E rv l6.xl, and this leads to the following low-energy expansion: 

(6.54) 
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Therefore, we know that the fully symmetrized evolution operator (6 .. 51) is accurate 

to forth order in r:; 

(6.55) 

as the second-order terms add and the third-order error terms now must necessarily 

cancel each other when we multiply U;! by u;~. (This is why (6.51) was sym-

metrized to be independent of <J.) In turn, we know that U;:! obtained from the 

product (6.52) must have error terms no larger than O(s4), and so the quantum 

algorithm (6.53) has the following low-energy expansion: 

(6.56) 

Now with "12 ['~'(x, t + tlt)- 4'(x, t)] rv Bt'l/J(x, t), as we divide both sides of (6.56) 

by s2 , we arrive at the effective equation of motion for the quantum lattice gas 

which holds in the low energy and low momentum limits. Finally, since <p = 

~ ( 4'o + '~'n), the condensate field obeys the effective scalar field equation 

which is the nonlinear Schroedinger wave equation with rn = ~for li = 1, so long as 

ltlxl2 = tlt =E. From the order of the error term in (6.58), the Taylor expansion 

predicts the quantum algorithm is second order convergent in space. 

In summary, the low energy effective Hamiltonian that is the generator of the 

evolution, U(tlt) = e-i!'>.tHeff;n +···,is the following 

(6.59) 

for rn = 1/2 and where we have written the quantum transport coefficient as 

(6.60) 
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This is the nonlinear GP Hamiltonian on choosing n0.(x) = gi<p(xW, where g is 

the on-site interaction energy. 

6.3.3 Considerations regarding physical accuracy 

We have analytically demonstrated that the following quantum lattice gas al-

gorithm 

(
a'(m,t))- U U U _i"z(g)<p(m,t-r)IZ-.u)U U U _;,z(g)<p(m,t-r)IZ-.u)(a(•,t-r)) 

- mO yl zoe 2 zl yO ;vle 2 

(3' (m, t) (3(•, t- r) 

(6.61) 

for the 2-spinor l·~~(x)) = a(x)IOO) + ;3(x)l11) = (a(x)) has the GP equation 
(3(x) 

(6.62) 

(which we chose to consider without an external potential) as its low-energy effective 

equation of motion, where <p(x) = ((1, 1)11!,(x)) = a(x) + ;3(x) and where the deriva-

tives are resolved on a lattice of points with unit space and time cell sizes. These 

cell sizes, that we will denote as £ and T in this section, serve as the natural lattice 

units for numerical implementations. In the quantum algorithm (6.61), the symbol 

• indicates that the new value of the 2-spinor field at coordinate x and time t on 

the left-hand side of the question is evaluated over a stencil of spatial coordinates 

(centered on x) at the earlier time t - T on the right-hand side. 

All the the amplitudes at the spacetime coordinates in the inverse light cone 

terminating with its apex at the coordinate x = ( t, x) contribute to the resulting 

2-spinor at :T through quantum interference. One way to think of the algorithm 

is to have all of its stencils uniformly and simultaneously mapped over the entire 

lattice to update the 2-spinor field. That is, each point requires its own stencil and 

all the stencils are simultaneously overlapping. In this regard, quantum lattice gas 

algorithms are representations of path integrals [Yepez, 2005, Yepez, 2007]. It is 
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from the overlapping stencils that our method derives its numerical accuracy. Yet, 

the most practical way to understand the quantum lattice gas is via the configura-

tion of its informational substrate--its regular and closed-loop linkage of quantum 

wires and quantum gates-which is a concept that we introduced in Chapter 1P 

This allow us to address the physical accuracy of the quantum lattice gas model of 

quantum computation by considering the dynamics that occurs on a loal plaquette 

of the informational substrate. 

We have already proved that (6.61) is second-order accurate in space. Yet, there 

exist a number of constraints on the quantum information dynamics that we have yet 

to address and that must be respected in any numerical implementation. We may 

calculate limits for local fluctuations of the condensate's phase by considering the 

local quantum information dynamics. Since the informational substrate is specified 

by the unitary interleaved operator Urea in (6.61) and this in turn depends on the 

collision, stream, and phase rotation operators in a local and regular way, all we 

need to consider are any degrees of freedom in C, S, and e-ic:
20

. 

The collision operator 

(6.63) 

has no free parameters, and the stream operators (6.47a), which we may write as 

S±re 1 = e = ±hlre·V (e±c;;.v 

' 0 
S . = e±nfre· v = (1 o ) 

±a:,-1 0 e±£:<·'17 ' (6.64) 

each have only a directional degree of freedom. That is, the displacement vector .ex 
that appears in (6.64) ha'3 a fixed length f. (often taken to be unity), so the only 

remaining degree of freedom is the direction of x. Yet, this directional degree of 

13The grid-level equation (6.61) is only formally equivalent to a finite-difference equation even 
a.s the local spatial stencil is implicitly determined by the algorithmic protocol. It is impractical 
to directly specify the local stencil as it has too many terms to explicitly write out-it has about 
~; :Y: ~ 268 points since Tj£ "' 4 for protocol (6.61). Thus, the quantum lattice gas grid-level 
equation cannot be written as a finite-difference equation in the usual sense. 
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freedom in S is constrainted by the requirement to recover the Laplacian operator 

\72 in (6.62), and is thus fixed by the algorithmic protocol (6.61). The phase rotation 

operator 

(6.65) 

has three parameters, but these are not all independent. With the chemical potential 

set to 1-L (s~b) me?, (6.65) has only its number density Po = l4?ol 2 as a degree 

of freedom. Po is set by the bit filling fraction on the lattice, specified by the 

initial conditions of the dynamical qubit system. The coupling strength g is not an 

independent degree of freedom in the model as it is constrained by the equilibrium 

relation 

(6.66) 

This relation derives from the requirement that the condensate be effectively de

scribed by the free Schroedinger equation (behaving as a single quantum particle) 

far away from any topological defect ( cp = 0 nodal line) where the potential terms on 

the right-hand side of (6.62) necessarily cancel out, or equivalently (6.65) becomes 

the identity. 

It is possible to use an arbitrary gate angle, say (, so the relevant SU(2) part 

of the .J PAIR t collision operator is 

(

cos( 
Uc(() = e-i( 

isin( 

i sin() . 

cos( 
(6.67) 

This allows us to independently adjust the value of the mass that appears in the 

effective field theory that gives rise to the Schroedinger equation as the governing 

equation of motion of the qubit system in the low-energy limit. Setting ( = 1r /4 

gives the collision operator (6.63), and in turn setting m = 1/2 in the equation 

of motion. Notice that (6.67) has eigenvector (1, 1) with unity eigenvalue. Hence, 
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the local the Cooper pair state (IOO) + I11))/J2 is an eigenket of (6.67) with unity 

eigenvalue. 14 

For numerical accuracy of the (6.61), we require that both the magnitude and 

phase of <p(x) = ¢>(x) eW(x) vary slowly over the L 3 points of the space. Using the 

Madelung transformation [Madelung, 1927] (see Appendix C.2), the velocity of the 

quantum fluid at a point is determined from the gradient of the phase 

n n ~::J.'/9 
v = -l\7'191 ~ --, 

m m £ 
(6.68) 

where we approximate the magnitude of the gradient by the ratio of the phase 

change to the spatial cell size. Then, employing the lower bound of the Heisenberg 

uncertainty principle, I::J.:;ci::J.p = h/2 (the bound defining maximally squeezed states), 

we can determine the velocity magnitude 

n 
v=----,----

4mi::J.x' 
(6.69) 

which follows from I::J.p = mi::J.v = 2mv, since the velocity change I::J.v = 2v is due 

to the reversal of velocity v in lattice gases [Yepez, 2005, Yepez, 2007]. Equating 

(6.68) and (6.69), we find 

(6.70) 

Therefore, the smallest possible change in position is one cell size, I::J.xmin = £, so we 

have the upper bound 

I::J.'!9max = l = 14.324°. (6.71a) 

The largest possible (quantum mechanically coherent) change in position is one 

healing length, I::J.x max = ~' so we have the lower bound 

1 e 2gpo 
I::J.'!9min = -

4 
C = ? ' 

"' rnc-
(6.71b) 

14The small parameter s 2 is divided out of the right-hand side of the finite-difference equation 
(6 . .56) to produce the time derivative on the left-hand side of the equation, yet E appears in (6.61), 
so we may treat it as an additional free parameter in the algorithm. We also have the freedom to 
choice the grid size, L, and the size of the quantum vortex core as well. 
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which follows from 

(6.72) 

During the course of a numerical simulation, it is necessary to check that con-

dition (6.71a) is not violated. It is not a simple task to predict ahead of time, solely 

from a knowledge of the initial conditions, whether or not (6. 71a) will be violated 

at some later time at one or more points on the lattice. A violation of the upper 

bound may occur if the quantum vortices are under resolved. Generally, so long as 

~ is sufficiently large (i.e., each quantum vortex is fully resolved on the grid), then 

the quantum lattice gas will remain near local equilibrium everywhere. A trial and 

error approach was used to find an appropriate value for ~. In a typical lattice gas 

simulation, a healing length (inner quantum vortex radius) of~~ 10 works find, so 

the lower bound in this case becomes .0..t9min ~ 1.4324°. 

The GP equation is invariant under normalization and interaction strength 

rescaling 

and 
g 

g ----,> -
2' s 

(6.73) 

where s is a real-valued scaling parameter. A conventional starting point in the 

numerical treatment is to point normalize the wave function in the bulk so that 

j<p(x, O)J 2 =Po= 1 for all x far away from a nodal line. 

6.4 Quantum vortex solution 

The following presentation originally appeared in Ref. [Yepez et al., 2009b, 

Yepez et al., 2009a, Yepez et al., 2009c]. We seek a steady state solution of the 

black quantum vortex governed by the time-independent GP equation 

(6.74) 
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A spatial rescaling parameter ..j(i is inserted so that the vortex core can be resolved 

on the substrate with a sufficient number of points so as to be consistent with the 

high-order of convergence of the quantum algorithm for which (6.74) represents a 

low-energy effective field theory in the steady state. 

With the appropriate choice of nonlinear coupling g and normalization of the 

wave function, physically the energy of a constant external potential can cancel the 

internal interaction energy in the region of bulk flow. This is the type of solution 

that we will explain here. A solution for the wave function of the quantum vortex 

is found by separation of variables in polar coordinates, as presented in Sec. 5.3.1. 

Inserting rp(r, '!9) = qJ(-r)einrJ into (6.74) with 

1 
g=

a 

then gives 

d2cp(r) 1 dcp(r) n 2 

dr2 + -;:~- r,2 cp('r) +(a- cp(r?) cp(r) = 0, 

(6.75) 

(6.76) 

which can be solved for any integer winding number n. For the simplest n = 1 case, 

we take the Pade approximant of the spatially scalable form to be 

cp(r) = 
r 2(al +a b2 r 2) 

1 + b1r2 + b2r 4 384 + ar2 (128 + llar2)' 
(6.77) 

where the solutions for the coefficients a 1 , b1 , and b21 worked out in Appendix D.1 1 

have been inserted in the right-hand side. Notice that cp(r) -? ..j(i and r -7 oo 1 and 

thus the nonlinear term in ( 6. 76) vanishes in the bulk. Rescaling ..j(i r -7 r 1 and 

denoting the scaled solution as R(r) )acp (Fa), we have 

R(r) = (6.78) 

This is equivalent to choosing a= 1 in (6.77). Thus, (6.78) is the g (6~5) 1 solution 

of the radial part of ( 6. 7 4) 

1 n 2 

R"(r) + -;R'(r)- r,
2 

R('r) + (1- R(r?) R('r) = 01 (6.79) 
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and ( 6. 78) was originally found by Berloff [Berloff, 2004]. However, the more general 

Pade approixmant (D .11) allows us to rescale the width of the quantum vortex to 

arbitrarily resolve its core on the computational grid to achieve sufficient numerical 

accuracy. 

We define bulk point normalization to be the field configuration where ( 6. 7 4) 

satisfies the free linear Schroedinger wave equation in the bulk and this occurs for 

I'PF~-+ 1/g (far away from any quantum vortex center). That is, since 

lim ¢(r) = ya, (6.80) 
T--->00 

and so we indeed satisfy the free field condition by choosing the coupling strength 

according to (6.75). So with y'rir-+ r, the equation we are numerically solving is 

(6.81) 

Thus far we have only considered a field configuration of a single quantum 

vortex over an infinite domain. Unfortunately, in a numerical simulation we are 

restricted to finite resources. Hence, we implement a field configuration in a box 

with periodic boundary conditions and with this restriction we cannot make do 

with just a single quantum vortex. We need at least two of them to enforce periodic 

boundary conditions in one space dimension and four of them to enforce periodic 

boundary conditions in two space dimensions in the phase of the cp field. 

6.4.1 Vortex-antivortex configuration (2 centers) 

We take the approximate form of the magnitude of vortex-antivortex configu-

ration to be the following 

cp(r) = yatanh [~~sin (7 va)]. (6.82) 

Expanding about r = 0 to third order, (6.82) is 

cp(r) = 2anr _ a
2
n

3
(9 ~ 8A) + ... 

3~ 81>.2 
(6.83) 
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Inserting the hyperbolic approximant (6.82) into the radial part of the steady-state 

GP equation (6.76), we have 

2 (a (n2 - 1) 1r) a21r (54,\2 + (n2
- 9) 1r2 (8,\ + 9)) r - +--~------~~~--~----~ 

3-y(\ r 81,\5/ 2 
(6.84) 

+··· =0. 

For winding number n = 1 the 1/r term vanishes. Then for the first order term to 

vanish, (6.84) gives a quadratic equation for ,\ which has the positive solution 

(6.85) 

Defining the separation distance between the two centers of the quantum vortices as 

28, we find that this distance is fixed by the spatial rescaling parameter a as follows 

,\ 
8 = 2y'a" (6.86) 

The approximation (6.82) becomes ever more accurate for a « 1 as the grid res-

1.0 

FIG. 6.10: Quantum vortex-antivortex magnitude (blue) for a= 0.81 compared with the 
black quantum vortex (brown). The size of the pair is 28 = 14.1455. 

olution is increased and the high-order terms in (6.84) vanish faster than the low 

order terms. That the double quantum vortex is a remarkable stable structure is 

demonstrated in the numerical simulation shown in Fig. 6.11. In this case, even on 

a very small grid of size L = 64, the vortex-antivortex pair's wave function initially 

set by (6.82) for a = (2£) 2 = 0.158 persists indefinitely in time with only small 
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fluctuations a couple percent of the peak, but which are barely noticeable on the 

graph. 

t=O t=2048 
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FIG. 6.11: Quantum vortex-antivortex density profile (blue) for a = 0.158 compared 
with the numerical solution (brown dots) for a small grid of size L = 64. The double 
quantum vortex is indefinitely stable. 

6.4.2 Quadrupolar configuration ( 4 centers) 

A simple initial condition that ensures periodicity is four symmetrically dis-

placed vortex line solitons (parallel to the z-axis for the time being) in product form 

<p(x, y) [1>(r ++)eie++] x [1>(r +-)e-i8+-] x [1>(r -+)e-i8-+] x [1>(r __ )eio __ ] 

(6.87a) 

(6.87b) 
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FIG. 6.12: A slice at z = Z 0 of the magnitude J p(x, y, zo) (top, upside down) and phase 
B(x, y, zo) (middle) and phase contours (bottom) of the wave function for a quantum 
vortex quadrupole, the product of 4 quantum vortex solutions on a grid of size L = 160. 
The density p(x, y) = i<p(x, y)i2 and so J p(x, y, zo)---> 1 away from a vortex core (in the 
bulk). From the phase diagram, plotted -7r::::; B(x, y, zo) ::::; 1r, going around any contour 
in the z = Z 0 plane that encloses a single vortex singularity accumulates a phase of ±27r 
radians. With N = 4 line vortices one can accommodate periodic boundary conditions 
in the phase. 
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where the radial distance from a vortex line along the z-axis is 

r++(x,y)=(x- Xo + 8? + (y- Yo+ 8) 2
, r+_(x,y)=(x- Xo + 8) 2 + (y- Yo- 8) 2 

r_+(x,y)=(x- Xo- 8) 2 + (y- Yo+ 8) 2
, r __ (x,y)=(x- Xo- 8) 2 + (y- Yo- 8) 2

. 

(6.88) 

The size of the quantum vortex quadrupole is 1281, its overall center is (xo, Yo), and 

we define its polarity to be sign(8) = ±1. The phase angles are 

Y- Yo+ 8 
{;J++(X, y) =arctan X_ Xo _ 8 

Y- Yo- 8 
(;J_+(x, y) =arctan 

8 X -X 0 + 

Y- Yo+ 8 
e+_(x, y) =arctan 8 

X- X 0 -

Y- Yo- 8 
(;J __ (x,y) =arctan 

8
. 

X -Xo-

(6.89) 

The magnitude and phase of (6.87) are plotted in Fig. 6.12 with 8 = ~ and a= 0.1 

and L = 160, demonstrating the periodicity of (6.87). We shall use such quantum 

vortex quadrupole configurations aligned along orthogonal principal lattice direction 

to represent initial conditions for numerical simulations. 

Clebsch potentials representation 

As an alternative representation of the vortex structure of the quadrupolar 

configuration (directed along the z-axis, say), we may use Clebsch potentials to 

analytically specify the condensate field in a box of size L x L x L: 

A(x, y, z) 

11(x, y, z) 

The quantum wave function is 

V2cos ( 2~x) 

V2cos ( 2~y). 

(6.90a) 

(6.90b) 

(6.91) 

with unity point normalization, lcpl 2 = 1. This wave function is plotted in Fig. 6.13. 

An offset causes the linear vortex tubes in a quadrupole to curve into vortex rings. 
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FIG. 6.13: The magnitude tanh [ ~] (top) and for~= fa and the phase Arg(-\+iJ.L) 

(bottom), in two spatial dimensions on a grid of size L = 160, of the wave function 
(6.90) which has 4 vortex solitons in a quadrupolar arrangement consistent with periodic 
boundary conditions. This is a Clebsch potential representation of Fig. 6.12. 
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6.5 Quantum simulations 

6.5.1 Poincare recurrence 

In Hamiltonian systems, the dynamics must be invertible, so it is possible to 

observe the system return arbitrarily closed to the initial conditions, and on time 

scales shorter than otherwise expected; vortex tubes untangle and reform by the 

absorption of sound waves to recover a configuration close to a configuration that 

occurred earlier in time in the flow. Recursion arising from the Hamiltonian system 

is observed in animations of the flow. This occurs in the limit of vanishing nonlinear 

interaction, g « 1, the vortex solitons completely untangle, as evidenced in Fig. 6.15 

(by t = 21K), when the internal energy in (6.92) satisfies Eint <« Ekin, Equ· Sur

prisingly in 3+ 1 dimensions, the Poincare recursion time for the G P equation ( 6.1) 

can be extremely short. 

To quantify this phenomenon, one can plot a time history of the kinetic, quan

tum and internal energy parts. In the N = 12 simulation with Hint(l¢1 2
) "' 0, the 

reverse dynamics (absorption of sound waves) clearly repeats, cycling at tp "' 21K, 

the Poincare recursion time for grid size L = 512. This recurrence time is clearly 

evidenced in the time evolution of the (rescaled) kinetic Ekin and quantum Equ 

energies plotted in Fig. 6.16. 

The Poincare recurrence theorem states that for Hamiltonian systems the solu

tion trajectory passes arbitrarily close to the initial state provided the evolution is 

followed for a sufficiently long time. While for certain maps in two spatial dimen

sions, like the Arnold Cat Map, the Poincare recurrence time can be short, for nearly 

all Hamiltonian systems the recurrence time is so long as to be effectively infinite. 

There have been some analytical hints that the NLS equation in 1 + 1 dimensions 

could have a fast Poincare€ recurrence time [Tracy et al., 1984]-but this result was 



FIG. 6.14: Starting with N = 12 vortex lines on a 5123 lattice. Vortex tubes at t = 200K 
(left) show an onset of a Kelvin wave instability. Tangled vortices are observed, even 
when Hint "' 0, at t = 3.3K (right). Remarkably, one observes many vortex rings 
mediating the vortex line-line interactions. 
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FIG. 6.15: Continuing with the N = 12 simulation on a 5123 grid, at t = llK (left) is 
highly tangled but closer to a spherically symmetric configuration. This is just over half
way through the recurrence cycle. There are markedly different tangled configurations 
every few hundred time steps. Untangled vortices are observed t = 21K (right). The 
inital state recurs after a turbulent state. An ordered state at t = 21K deterministically 
returns to the initial state untangling turbulence, cycling at intervals of tp = 21K. 
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FIG. 6.16: Top: The time evolution of the kinetic energy (blue), quantum energy (red), 
internal energy (green), and total constant energy (black line). The total energy is 
conserved. A recurrence of tp = 20.9K time steps is determined from the envelop of the 
forward energy cascade (dashed). Bottom: Power spectrum indicates all frequencies are 
represented as IE(v)i2"' [v(vmax- v)]-~ (red). 
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not expected to hold in three spatial dimensions. From a series of quantum simu

lations we see the Poincare recursion time scales as L 2
, where L is the (linear) grid 

size. This arises from the inherent diffusive ordering of fluctuations, :f;_M ~ c5x2
. 

6.5.2 Quantum Kelvin waves demarcated by Poincare re

cursion 

We examine hydrodynamic-scale breaking of the quantum-scale time-reversal 

symmetry of the free system. Hint '"" g [tp[ 2 breaks the Poincare recursion and has a 

prominent effect on the dynamics of the quantized line vortices. Yet, it remains use

ful to chart the pathway to turbulent configurations at intervals demarcated by the 

Poincare recurrence time of the free system. In the interacting GP limit, the fast re

cursion is broken by nonlinear twisting (Kelvin waves) riding on the originally linear 

vortices, Hint successively twisting the filamentary centers every recursion period; 

see Fig. 6.17. The linear vortex tubes become tangled but at the free recurrence pe

riod they do not return to their original linear configuration. Instead, they become 

twisted and this twisting increases with more and more free Poincare cycles. 

At very large times, the BEC manifests quantum turbulence, characteristic of 

nonlinear fluid behavior. In this numerical simulation, L = 160 and the smallness 

in the nonlinear interaction is set to gr' /n = 0.1. To sufficiently resolve the vortex 

core, the scale factor in the Pade approximant is set to a = 0.05. A convention of 

unity normalization is used (J [tp(x)[ 2dx3 = 1). Poincare recurrence in the g « 1 

limit occurs at tp ~ 2020, and this time period is used to sample the wave function 

configurations of the GP quantum system with g ~ 5. 



FIG. 6.17: Kelvin waves seen as twisting of (N = 8) vortex filaments when Hint(l¢12 ) = 
1¢12 (1 - 1¢[2 ). In the g ~ 0 limit (non-interacting particles), there is a fast Poincare 
recurrence time of tp = 2020. For g ;::::: 5, vortices at the first few Poincare cycles 
(t = 0, tp, 2tp, 3tp) are plotted (top to bottom). The Kelvin wave twisting in the vortices 
eventually completely breaks the fast Poincare recurrence. The highly tangled vortices, 
similar to that of Fig. 2, occurring between the Poincare periods are not shown. The 
asymmetry in the time is due to the broken symmetry of the initial condition. 
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6.5.3 Quantum turbulence 

Spectra for incompressible kinetic energy 

A Kolmogorov spectrum is observed in incompressible and quantum energies 

of the BEC superfiuid for k < 30, see Fig. 6.18. The emergence of fully developed 

quantum turbulence is plotted at time t = 27.7 K for a 1024 3 lattice starting with 

N = 12 vortex solitons (1 quadrupole per spatial direction). The measured power 

law k-1.61 (black) may suggest that the theoretical k-i Komolgorov power law 

describes the spectrum for k ;S 20, although the fit is not excellent at this small 

lattice size. A new power law k-5·
87 (green) emerges in a quantum-classical transition 

region from 30 ;S k ;S 70. After k 2:, 70, the observed power law k-3·
16 (red) 

agrees with the theoretical prediction of k-3 for a quantum vortex spectrum and 

excellently fits the data in this region. The power law fits were all computed using 

linear regression. 

The bottom plot in Fig. 6.18 shows the three power regimes in a spatial view 

by overlaying the cut-off lengths on the vortex core profile. The k-3 power law 

characterizes fluid dynamics within the vortex core itself, with an upper cut-off scale 

measured to occur at r = 8.44 (in lattice units). The k-5·87 power law occurs near the 

boundary of the vortex core, with lower and upper spatial cut-offs, 8.44 ;S r ;S 19. 71. 

The k-1.61 power law occurs on spatial scales larger than vortex core size. For very 

large wave numbers k 2:, 300 (with a cut-off of about just 2 lattice cell sizes), the 

spectrum all together drops off the chart, as expected. 

In Sec. 5.2.5, we decomposed the conserved energy of the condensate into its 

average classical kinetic energy, quantum kinetic energy, and internal energy parts: 
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FIG. 6.18: Power spectrum of the quantum fluid's incompressible kinetic energy (top). 
There are three regions characterized by differing power laws displayed on the vortex 
soliton spatial profile (bottom). Numerical data (dots) is from a supercomputer simula
tion of a quantum lattice gas on a 10243 grid. Kolmogorov (black), transition (green), 
and core interior (red) regimes are shown. 
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The classical kinetic energy is separated into its compressible and incompressible 

parts by expressing the velocity field in terms of its rotational and irrotational 

parts, v = vc +vi. The following inverse Fourier transform decomposition separates 

the compressible part of v(x) from its incompressible part: 

J d3k ik·:v [k. -(k)] k 
(2n)3 e v (6.93a) 

J d3k "k ~ 
(
2

1r)3 e' .;z: k X v(k) = v(x)- Vc(x), (6.93b) 

where v(k) is the Fourier transform of v(x). As an analytical check of (6.93), it is 

straightforward to show that vc(x) is curl-free (irrotational) and vi(x) is divergence

free (rotational): 

J d
3
k "k ~ [~ ] (

2
1r)3 e' ·:v ik X k k · v(k) = 0 (6.94a) 

J d3 k ik·:v "k [k~ - (k)] 0 (21r)3 e z · x v = . (6.94b) 

Such a decomposition procedure is routinely used-for example by Nore, Abid, and 

Brachet [Nore et al., 1997b], Kobayashi and Tsubota [Kobayashi and Tsubota, 2005], 

and by us-to isolate the incompressible part of the flow when computing the kinetic 

energy spectrum. In the literature on classical turbulence, it is the incompressible 

part of the flow, in the inertial range, that contributes to the Kolmogorov k-513 

power-law. The inertial range is demarcated by an outer scale associated with large 

anisotropic forcing and an inner scale associated with viscous dissipation. In this 

inertial range, isotropic turbulence is dominated by incompressible (rotational and 

convective) Eulerian flow. 

Computationally, to determine the kinetic energy spectrum, one first computes 

the vector field 

F- _n_ r.p*\lr.p 
-.;2m~· 

(6.95) 

Next, one separates the compressible and incompressible parts using the inverse 

Fourier transform decomposition, F (6~3 ) Fe+ pi. Then, one numerically determines 
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the right-hand side of the incompressible kinetic energy in (6.92) from pi as follows: 

(6.96) 

Most of our simulations had as initial conditions a set of 12 straight line vortices 

consisting of three groups of 4 vortices, with the group axes in the x, y and z 

directions. Because the space is periodic, these lines are topologically loops. The 

groupings by 4 was to ensure periodicity, as discussed in Sec. 6.4.2. 

On the top of Fig. 6.19 we present the incompressible kinetic energy spectrum 

spectra from our simulation of the GP equation on a 20483 grid for a = 0.02 and 

g = 3 at evolution time t = 8K and t = 20K (in lattice units). The power laws 

are determined by linear regression. Thus, within a single simulation run, we find 

that the incompressible kinetic energy spectrum has three distinct power law k-a 

regions that range from the classical turbulent regime of Kolmogorov for "large" 

scales (much greater than the individual quantized vortex cores) to the quantum 

vortex spectrum at the "small" scales (on the order of the individual quantized 

cores and smaller). There is a semi-classical region adjoining the Kolmogorov and 

quantum vortex spectra, with rich Kelvin wave dynamics. For these intermediate 

wave numbers, we observe a power-law behavior is k-a, where the exponent is 

6 ;Sa ;S 7. 

These three power-law regions are quite robust as shown in middle and bot

tom of Figs. 6.19 from simulations on larger grids: 30723 and 57603 and different 

initial conditions. In particular, the initial conditions for the 57603 grid simula

tion are chosen to have very long Poincare recurrence time. Since the GP equa

tion is Hamiltonian, Poincare recurrence exists for arbitrary initial conditions. We 

found Poincare recurrence to occur very rapidly for these simple 12-vortex systems 

(because of space limitations we shall discuss these results elsewhere). Hence to 

have very large Poincare recurrence times we chose initial conditions of the form 



!=8000, 20000 g=3 (20483
) 

"' g 
"' E g 

§ 

"' g 
"' E g 

§ 

"' g 
~ 

J 

0.1 5x 104 

2x 104 

0.001 10 15 20 
20 50 100 200 1000 

k 

!=15000, g=l.7 (30723
) 

0.1 
2000 
1500 

0.001 
20 30 50 

10 20 50 100 200 500 1000 2000 
k 

!=80000, g=l.7 (57603
) 

100 

0.01 
100 

100 150 

50 100 500 1000 
k 

FIG. 6.19: The incompressible kinetic energy spectra for a periodic 12-vortex set with 
a = 0.02, and an initial core inner radius is approximately ~ = 10 lattice units. The 
linear regression fits for power-law k-a. yield a.'s given in Table I. There are 3 distinct 
spectral regions: (a) k-~ Kolmogorov energy cascade for small k, (b) steep semi-classical 
transition region for intermediate k, and (c) k- 3 quantum vortex spectrum for large k. 
The Kolmogorov cascade becomes robust for large grids, as seen by the insets. 
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<I>= (Ili<pi) 6
• The exponent a for the spectral k-cx are given in Table 6.1, together 

with the range of k for these regions. A linear regression fit for the Kolmorogov 

range is shown in Fig. 6.19. A similar fit for the quantum vortex spectrum range 

is not shown since there is no point scatter about the regression line. The sharp 

drop-off in the spectrum at the end of the quantum vortex spectrum is due to the 

emission from very short wavelength phonons. 

TABLE 6.1: Spectral exponents found by linear regression for the 3 distinct k-a regions. 
The 1st row for 20483 grid is at timet= 8000 (upper curve in the top panel of Fig. 6.19) 
while the 2nd row for 20483grid is at t = 20000 (lower curve in the same panel of 
Fig. 6.19). The 3rd row for 30723 grid and 4th for 57603 grid correspond to the middle 
and bottom panels of Fig. 6.19, respectively. 

GRID KOLMOGOROV SEMI-CLASSICAL KELVIN WAVE 

20483 1. 73 (6 <k <30) 6.59 (60<k<140) 2.96 (250<k<600) 

20483 1.84 (6<k<30) 6.34 (60<k<140) 2.97 (250<k<600) 

30723 1.69 (7<k<45) 7.11 (120<k<200) 3.01 (220<k<1000) 

57603 1.68 (90<k<230) 7.12 (430<k<600) 3.00 (1000 <k <1650) 

6.5.4 k-space power-law subranges 

The Kolmogorov wave number kc marks the end of the k-5/ 3 inertial subrange, 

characteristic of fully-developed isotropic turbulence. It is over the inertial subrange 

where a dissipation-free Richardson cascade is operative. To determine kc, one first 

determines the spatial cutoff rc by matching the integrals as depicted in Fig. 5.2: 

i oo 1 1oo p(r) 
(21rrdr) 2 = (21rrdr) -

2 
, 

rc r o r 
(6.97) 

where r is the radial distance to the filament and one uses the Pade approximant 

( ) 
(6.77) lla2r2(12+ar2) fi h k /( ) p r = 384+ar2(128+11ar2). Then, one nds t at -c rv 1 1fTc . In the quantum 

simulation one can recover hydrodynamic fluid dynamics for small wave numbers < 

kc because the quantum vortex core size rv rc is smaller than the classical dissipation 

scale length rv 1fTc· The quantum coherence length ~ ~ rc is the physical length 
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scale associated with of the inner radius of a quantum vortex core. Within this 

scale, one can observe high-k quantum Kelvin modes, however the predominant 

wave number range for Kelvin waves is the transition region. The outer radius of 

the quantum vortex is about a factor of 1r larger than the coherence length. These 

two lengths correspond to the bends in the spectral plot of E~c;_mp ( k). 

Thus we define two wave number scales or transitional wavenumbers, kinncr 

and koutcr· The transitional wave numbers kinner and koutcr correspond to the bends 

in the spectral energy of the quantum fluid, demarcating the k-space boundaries 

between the three important cascade regions. For an L 3 grid, the transitional wave 

numbers scale as follows: 

kinncr 

.;3L 
(6.98a) ~ 

~ 

~ 2 

kc = koutcr 
.;3L 

(6.98b) ~ --~ 

2 1f~ 

The resolution limit of the calculation is set by the unit lattice size: 

(6.99) 

The prefactor of v'3 above comes from Jki + k; + k; = v'3 k. The factor of 1/2 

comes from the periodicity of the Fourier transform. kgrid is the phonon emission 

limit (lattice cutoff). This ultraviolet cutoff moves to the right with increasing grid 

size L. Expressing the critical wave numbers in terms of the grid size and the inverse 

of the coherence length allows for a physical interpretation of these characteristic 

scales. The fluid dynamics on scales » n~ is effectively classical incompressible 

viscous hydrodynamics, where the effective kinematic shear viscosity is v - n~c8 , 

where c8 is the acoustic sound speed. 
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Intracore normal fluid dynamics 

Within the core itself there exists a remarkable amount of self-similar fluidic 

activity that gives rise to a pronounced k-3 quantum subrange kq > k;nner· This sub

range is universal to quantum fluids, i.e. independent of the initial large-scale flow 

structure. The k-3 power-law is consistent with our theoretical understanding of the 

superfiow dynamics: it is due to the filamentary quantum vortices in the superfluid. 

Furthermore, in turbulent conditions, these quantum vortices support a quantum 

Kelvin wave cascade, for k ;S ke,, where the mode-mode coupling mechanism is 

kelvon-kelvon coupling, but also includes kelvon-to-phonon and photon-to-kelvon 

indirect couplings. Thus incompressible energy (in kelvon modes) can be converted 

to compressible energy (phonon modes) and vice versa as driven, for example, by 

the right-hand side of (5.17). 

6.6 Conclusion 

An ab initio quantum lattice gas model of a superfluid was presented that cap

tures the dynamical condensate vacuum governed by the GP equation as well as the 

Bogoliubov quasiparticle excitations vital to the quantum vortex dynamics. The 

method accurately captures the dynamical behavior the superfluid even in the diffi

cult case of fully developed quantum turbulence. The quantum lattice gas method 

outperforms other competing numerical methods, including finite difference, spectral 

decomposition, vortex-filament, and advective real Ginzburg-Laudau methods. 

Kolmogorov scaling of the incompressible kinetic energy spectrum should nat

urally occur at small wave number in low-temperature superfiuids because the ef

fective hydrodynamic-level equation of motion is a viscous Navier-Stokes equation. 

Thus, large-scale superfluid turbulence is akin to classical turbulence. 15 The quan-

15It has recently been observed in experimental observations of superfiuid Helium II that the 
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tum Navier-Stokes equation is derived in Chapter 7, where we address the quantum 

information theoretic underpinnings of turbulence. Interacting quantum vortices 

lead to fluid instabilities in the unitary quantum fluid that cause an energy cascade 

in the regime of small wave numbers, leading to power law behavior akin to k-i 

Kolmogorov turbulence in classical Navier-Stokes fluids. However, at larger wave 

numbers (approaching the scale of the vortex cores), the spectrum of incompressible 

kinetic energy transitions to another universal power law characteristic of quantum 

fluid flow, the quantum vortex k-3 spectrum. For weakly nonlinear BEC superflu-

ids, it is possible to observe fast Poincare recurrence where at each recurrence time, 

Kelvin waves are observed to emerge with greater amplitude at each recurrence time, 

viz., vortex solitons that are successively twisted. 

distribution of velocity in decaying quantum turbulence has strongly non-Gaussian 1/v3 power-law 
tails [Paoletti et al., 2008]. 



CHAPTER 7 

Turbulence 

7.1 Introduction 

Finding an analytical solution of a hydrodynamic field theory that represents 

turbulent flow remains the oldest and most prominent of classical grand challenge 

problems, open now for over 150 years. It has withstood theoretical attempts em-

playing advanced statistical methods and perturbation methods, borrowed from 

quantum field theory and statistical mechanics [Kraichnan, 1973].1 Here we con-

sider turbulence from the perspective of conserved information. The basic case we 

presented in Chapter 6, and continue to expound upon here, is that an analytically 

smooth momentum density field, mpv = hl¢1 2 \719, can represent classical turbulence. 

That is, at its small wave number scales, a state of quantum turbulence specified by 

the configuration of the nodal lines ( <p = q) ei-!9 = 0) represents classical turbulence. 2 

That classical turbulence emerges from a turbulent condensate at small wave num-

bers was evidenced in Sec. 6.5.3 using the kinetic energy spectrum. This rather 

1 Kraichnan began his study of turbulence while at Princeton when he and Einstein noticed 
great similarity between the classical theories of hydrodynamics and gravity. 

2Albeit, to correctly predict the configuration and interaction of the nodal lines one requires a 
microscopic quantum particle treatment. 
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remarkable situation follows from the property of a superfluid whereby its hydrody-

namic equations of motion have the form of a viscous N avier stokes equation with 

shear viscosity 17 = hpj 4. We derive the condensate Navier-Stokes hydrodynamic 

equations in Sec. 7.3.1 and show that the velocity field supporting viscous shear 

comes from a gradient of the condensate density, w = -!;; v;, and not from v (as it 

does in classical turbulence theory). The tangled configuration of quantum vortices 

in the quantum turbulent state in three-dimensional space is ultimately reducible, 

through reconnections, to a rather simple link formed from a number of quantum 

vortex rings. 

As commonly understood, the basic dilemma in turbulence is that in the macro-

scopic (hydrodynamic) limit on a many-body system, strong correlations and feed-

back mechanisms between large scale and small scale flow structures, over many 

decades of spatial separation, dominate the overall flow evolution, for example as 

shown in Fig. 7.1. The first high level model capturing the essential classical physics 

of this problem occurred in the 19th century, the incompressible N avier-Stokes equa-

tion (conservation of momentum) and continuity equation (conservation of particles) 

1 2 
Dt v + v · \7 v = --\7 P + v \7 v, 

p 
\7. v = 0, (7.1) 

where v is the flow field, P is the isotropic fluid pressure, p is the fluid (particle) 

density, v = 17/ p is the kinematic viscosity, and 17 is the viscosity quantifying shear 

dissipation, the renormalized transport coefficient for momentum diffusion. 3 The 

strong correlation between disparate scales is captured by the extremely simple non-

local convective derivative on the left-hand side of (7.1), a second order nonlinearity 

in the flow. 
3We are interested in inertial flow and topological dissipation mechanisms. The compressible 

flow equation (7.1) accommodates topological dissipation modulo bulk viscosity effects. Even 
though we consider energy-conserving flows, we leave out the heat equation and thus treat turbu
lence in a non-thermal limit. This limit, which is not to be confused with the incompressible limit, 
is appropriate to fluid flows where thermal excitations are not significant. 



FIG. 7.1: During the onset of classical turbulence, strong coupling between large and 
small scale eddies is apparent in this fully resolved flow simulation of an incompressible 
Navier-Stokes fluid. Isosurfaces of vorticity are rendered. Helicity (dot product of the 
velocity and vorticity fields) is displayed in the red-blue color coding. 
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The reason a simple and meaningful solution of classical turbulence has re

mained beyond our reach for so long is that most early turbulence modelers at

tempted to use macroscopic scale information (i.e. averages and fluctuations of 

hydrodynamic variables) to represent macroscopic turbulent flow. Unfortunately, 

following this approach only leads to imprecision in defining a classical eddy. This 

imprecision inherently leads to ambiguity in sorting through the observed flow phe

nomenology. So with any high level approach one is left with dimensional arguments 

and simplifying conjectures. The standard conjecture in turbulent fluid dynamics 

is the Richardson cascade [Richardson, 1926]. This inertial cascade is characterized 

by self-similarity in the flow dynamics (picture large eddies breaking into smaller 

eddies and so on) that occurs above the dissipation scale, below which the hydrody

namic representation supposedly breaks down. A dissipationless Richardson energy 

cascade is identified in k-space by its characteristic power-law energy spectrum for 

homogeneous isotropic incompressible turbulence, the famous universal scaling law 

k-513 predicted by Kolmogorov [Kolmogorov, 1941]. 

We proposed an entropic information-theoretic model of turbulence as a simpler 

alternative to (7.1) [Boghosian et al., 2001, Boghosian et al., 2003], 

[Boghosian et al., 2004a, Karlin and Gorban, 1998, Ansumali and Karlin, 2000], 

[Ansumali and Karlin, 2002, Chen et al., 2003]. In the entropic-informational ap

proach, one models flow dynamics in a Q-dimensional kinetic phase space by track

ing the probability distribution of particle occupations, where a particle at some 

point x moves with velocity Cq, for q = 1, 2, ... , Q. In the Boltzmann represen

tation, particle dynamics in position and momentum space space occur separately 

Jq(x) + Oq(h, ... JQ) 

eicq·kf~(k), 

(7.2a) 

(7.2b) 
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where Jq and f~ are the incoming and outgoing kinetic variables, respectively, and 

Jq(k) is the momentum-space Fourier transform of Jq(x). The convex entropy func-

tion 

H(ft, ... , !Q) = L fq ln('Yqfq), (7.2c) 
q 

has self-consistently determined positive weights /q ('2_::q /q = 1). Information con-

servation determines the collision term Dq in (7.2a) through the entropy constraint 

H(f~, ... , Jb) = H(ft, ... , JQ)· (7.2d) 

The hydrodynamic equations (7.1) are respectively replaced with moment equations 

(7.2e) 
q 

where the number density is p = I:q fq and the number current density is pv 

I:q cqfq· Equation (7.2e) are satisfied provided I:q cqDq = 0 and I:q Dq = 0. 

In turbulent flow simulations, (7.2) is an accurate model-one that has outper

formed other available methods based on (7.1). With (7.2) one can correctly resolve 

turbulent flow [Keating et al., 2007]-there is a dense tangle of vortex tubes. Tur-

bulent flow regimes are attained by letting the kinematic viscosity approach zero, 

which occurs as entropy is locally conserved according to (7.2d). A brief review of 

our entropic method is given in Appendix E.l. From a large-scale flow perspective, 

classical eddies are represented by an organized complex of vortex tubes. Repre-

senting turbulent dynamics in informational terms is the right direction to go. Yet 

one can go further and represent turbulence directly in terms of microscopic quan-

tum variables, whereby (7.2) can be recovered in the mesoscopic limit. And this 

represents an altogether new approach for modeling and understanding classical 

turbulence. In this regard, two alternatives have been investigated. The first alter-

native is an ab initio quantum informational model as a computationally efficient 

representation of (7.2), and this alternative was originally explored by the author 
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[Yepez, 1999b, Yepez, 2001c, Yepez, 2001a, Yepez, 2007].4 This approach use qubits 

to encode the local occupation probabilities, )qo:) = ~/1) + J1- fo:/0). Here the 

hydrodynamic variables are p = l..:q('l/Jinq)~) and the number current density is 

pv = l..:q cq(~)nqi·!fl). Unitary evolution of a Q number of qubits per point followed 

by state localization (say via measurment) represents 0.q in (7.2a). This quantum 

information model of classical fluid dynamics was the first measurement-based quan-

tum computing algorithm, and it is the microscopic representation of (7.2) where 

fa = (~)nq)~). The second alternative is an ab initio quantum information model 

of superfluids that uses the qubits in an altogether different way. An exposition of 

this second alternative was presented in Chapter 6-one approaches classical tur-

bulence employing the flow dynamics of a superfluid in the small-k limit. This 

approach uses Q = 2 number of qubits per point and employs unitary state local-

ization. There are now two sets of hydrodynamic variables: the superfluid density 

Ps = ('I/Jih1h2 + n1n2)·1f]) and the super current density PsVs = f!';p\1 arg cp 8 , where 

cp8 = ·!floo + ~11, as well as the norma.l fluid density Pn = (~lh1n2 + n1h2)·¢) and the 

normal current density PnVn = f!';p\1 arg 'Pn, where 'Pn = ~01 + ·!flw. Ps and Pn are 

the number densities of tightly bound Cooper pairs and Bogoliubov quasiparticles. 

Finally, in Sec. 7.3.3, we present a quantum information theoretic understanding 

of vortex reconnection and explain the localization of the quantum field. Then, in 

Sec. 7.3.4, we revisit the subject of the mutual interaction of two Kelvin waves (that 

we treated analytically in Sec .. 5.3.2) and demonstrate through quantum simulation 

the phenomenon of vortex ring (roton) emission arising from the reconnection of two 

mutually interacting quantum vortices. Effective dissipation occurs as the Kelvin 

waves couple to phonons, during such reconnection events, when the phonons escape 

into the bulk of the quantum fluid. 

4The computationally burdensome part of (7.2) is the evaluation of the collision function at any 
one point at any time. This collision function can be computed efficiently by a measurement-based 
quantum algorithm. 
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7.2 Navier-Stokes fluid 

The long wavelength hydrodynamic behavior of a many-body system of neutral 

particles can be modeled at the macroscopic scale by an effective field theory, a set 

of coupled partial differential equations. The smooth fields of mass density, p, and 

flow velocity, v, obey a mass continuity equation and a viscous Navier-Stokes fluid 

equation of motion. There is also a parabolic heat equation for the energy density, 

yet we need not consider that for our present developments. 

Because the mass increase within a region n is entirely accounted for by the 

flux of information into n through its boundary an, the hydrodynamic p and v 

fields (in the scaling limit) obey the continuity equation 

(7.3) 

which is a macroscopic scale restatement of conservation of information (bit density). 

The field equation embodying Newton's second law, for a region n expressing the 

change in the momentum density in terms of the stress applied at the boundary an, 

can be written in conservation form 

(7.4) 

a hydrodynamic scale restatement of conservation of bit flux density. Now following 

Landau and Lifshitz [Landau and Lifshitz, 1987], the momentum flux density tensor 

in Newtonian fluid can be written as5 

Ilij = Pbij + PViVj - 1] ( OiVj + ajvi - ~ akvkbij) 
(7.5) 

- (bijakvk + · · · , 

where 17 and ( are the transport coefficients for the shear viscosity and bulk vis-

cosity, respectively, and D is the number of spatial dimensions of the system. The 

5For non-divergent flow ( OjVj = 0) in the incompressible fluid limit, (7.5) is nij = PO;j + PWVj

ry(oivj + Oj'Vi)· Furthermore, the gradient of the term 'T)OiVJ in the momentum equation vanishes 
in this limit. 



197 

momentum flux density tensor may be written as Ilij = P5ij + pvivj - cr:1, where 

the viscous stress tensor is 

(7.6) 

The first two terms in (7.5) represent the ideal part of the momentum fltLX density 

tensor, which is the sum of the pressure term, P, plus the convective term, pvv, 

which is nonlinear in the velocity. 

For a normal fluid the pressure P is a function of the mass density field, p = 

p(x, t), whereas for a thermal fluid it also is a function of the temperature field, 

T = T(x, t). The pressure tensor is diagonal because the fluid is isotropic. For 

a neutral fluid composed of independently moving particles, the pressure depends 

linearly on the mass density, P = c;p, where c8 is the speed of sound in the fluid. 

In an hydrothermal system, the sound speed is temperature dependent, c8 = ~ 

(where kB is the Boltzmann constant and m is the mass of a single quasi-particle). 

In this case the pressure obeys the ideal gas law, P = nkBT, where n = pjm is 

the particle number density. For an athermal hydrodynamic system (one where 

the system is at uniform homogeneous temperture, and where heat transport is 

neglected), C8 is a constant. 

Substituting (7.5) into momentum equation (7.4), gives us the second equation 

of motion for a viscous isotropic fluid 

This is the Navier-Stokes equation. In (7.7), 17 is the shear viscosity and ( is the 

bulk viscosity. The transport coefficient for momentum diffusion, v = 17/ p, is the 

kinematic viscosity. It gives a measure for the rate of decay of local shears in the fluid 

and determines how fast a perturbed fluid will relax from an anisotropic flow profile 

at the macroscopic scale to an isotropic steady state profile. Both the shear viscosity 
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and the bulk viscosity cause damping of compressional waves in the mass density 

field. The shear viscosity alone causes damping of shear waves in the momentum 

density field. 

7.2.1 Dimensionless numbers 

Let L and T denote the characteristic length and time scales, respectively, of 

a hydrodynamic scale fluctuation. That is, L and T are quantities characterizing 

the fluid's configuration at the macroscopic scale. Examples of the characteristic 

length scale for hydrodynamic flow are the wavelength of a compressional wave in 

the mass density field, the wavelength of a shear wave in the momentum density 

field, or the diameter of a fluid eddy in a normal fluid. The mean free path is the 

average distance a particle travels between collisions. Let ,\ and T denote the mean-

free length and time, respectively, characterizing the microscopic particle collisions. 

Relevant hydrodynamic quantities are the 

• characteristic flow speed, 'tl rv ¥ 

• sound speed, C8 rv ~ 

• kinematic viscosity, v - !1 rv >.
2 

p T 

• bulk viscosity, (. 

The relevant dimensionless quantities are the 

• Knudsen number, Kn, defined as the ratio of the mean-free path to the charac-

teristic length scale (Kn _ f) 

• Strouhal number, Sh, defined as the ratio of the mean-free time to the charac-

teristic time scale ( Sh - -f) 
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• Mach number, M, defined as the ratio of the characteristic velocity to the sound 

speed (M = .!l.) 
Cs 

• fractional mass density variation, Sp 
p 

• Reynolds number, Re, defined as the ratio of the product of the characteristic 

velocity times characteristic length to the kinematic viscosity (for incompressible 

flows Re uL and compressible flows Re "' KM ) , about which we will say more 
v n 

about below. 

7.2.2 Reynolds number 

A measurement-based Q2 quantum lattice gas model in 1 + 1 dimensions has 

the effective field theory 

Otu(x, t) + uaxu(x, t) = VOxxtl(x, t) + · · · , (7.8) 

which is the Burgers equation, a rather simple model of shock formation with flow 

field v.(x, t) and kinematic viscosity v but a very useful model (historically) for 

addressing some rudimentary issues in turbulence theory. We derived this equation 

in Chapter 4 as the effective field theory of the measurement-based Q2 model. 

Multiplying (7.8) by u and integrating over all space, with periodic boundaries, 

gives a relation for energy conservation where the time rate of change of the turbulent 

" a ) ') 3 kinetic energy density Ot ( ~·) is balanced by the viscous dissipation E: = v (a~ ~ "' ~: , 

where La is the characteristic scale of the largest feature in the flow field and Ua is 

the characteristic length scale associated with the turbulent kinetic energy (or eddy 

velocity) at the large scale. 

The flow velocity, the kinematic viscosity, and the viscous dissipation quantities 

have the dimensions: [u] = !j;, [v] = Z:,, and [E] = ~~. The dissipation scale 
1 ,\ = ( ~3 ) 4 

is the smallest spatial scale where macroscopic effective field theory (7.8) 
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is physically applicable. So, the classical Kolmogorov wave number that marks the 

end of the k-513 inertial subrange is the inverse of the dissipation scale length 

(7.9) 

At wave numbers> kc, kinetic energy is ultimately dissipated for steady-state flows 

at a rate E. In classical turbulence theory, one therefore considers the smallest flow 
1 

velocity at the dissipation scale to be the dissipation-scale velocity U>. = (vE) 4 = ~-

The Reynolds number characterizing the fluid's nonlinearity is 

(7.10) 

3 

and using E = ~: to eliminate the characteristic large length scale La, we also have 

(7.11) 

Note of course that consequently the Reynolds number can alternatively be ex-
4 

pressed as a ratio of the large to small length scales: Re = ( ~o) 3 . The minimum 

Reynold's number of a superfluid is a fundamental property of the superflow, and 

it is related to the uncertainty principle [Harvey, 1966]. 

7.3 Quantum turbulence 

Quantum fluid dynamics is a topological reduction of classical fluid dynamics 

that brings to light crucial flow morphologies hidden at the classical level. Instead 

of vortex tubes disappearing at the viscous dissipation scale (the conventional view

point in turbulence theory), a remarkable classical-quantum flow transition occurs. 

Each vortex tube is represented by an organized complex of quantum vortices moving 

in concert, in the dilute quantum vortex limit [Kivotides, 2006, Alamri et al., 2008]. 

The quantum vortex (topological line defect in the phase of the complex scalar 
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quantum wave function at the microscopic scale) is the fundamental constituent of 

a classical eddy. 

With further scale reduction, eventually a small multiple of the quantum coher

ence length is reached and one encounters a remarkable flow regime approaching the 

interior of the quantum vortex core itself. Then, within the quantum vortex core, 

there exists a rich flow dynamics that encapsulates all the macroscopic circulation 

in the fluid. At this small scale, the fluid dynamics is solenoidal (rotational) and 

effectively dissipative. Solenoidal flow is characterized by local shearing in the fluid 

and for this to occur there must be nonvanishing kinematic viscosity, or diffusive 

transport of momentum. Such a shear transport coefficient does indeed exist for a 

Hamiltonian-based quantum fluid. The operative kinematic viscosity is 4~, fixed by 

the quantum particle mass and the Planck constant. It is a fundamental transport 

coefficient. Therefore, this leads one to conjecture that one way to mathematically 

specify a smooth momentum density flow field (with no singularities) for classical 

turbulence is to reduce the flow to a fundamental dynamical behavior of quantum 

vortices and quantum vortex-vortex interactions. 

Provided the quantum vortices are well separated (in the dilute limit the 

separation distance between any two quantum vortices is much greater than the size 

of a quantum vortex) effective classical turbulence can occur. The physics underlying 

the Richardson cascade is ultimately reduced to well-defined reconnection events 

between filamentary quantum vortices, which leads for example to the exchange of 

small-scale intermediate quantum vortex loops. That is, at any one point in time, 

the turbulent flow manifold is reduced to a complex tangle (or a self-similar nested 

series of complex tangles in the case of fully developed turbulence) of closed quantum 

vortices. The complex of quantum vortices necessarily gives rise to a momentum 

density field that is smooth and continuous everywhere (in fact, while the velocity 

field has a divergent singularity at the center of quantum vortex core, the momentum 
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density field vanishes at the center and so is analytically well defined). 

7.3.1 Condensate Navier-Stokes hydrodynamics 

Here we demonstrate that the operative hydrodynamic-level momentum equa-

tion governing the superfluid's condensate field has the precise form of a viscous 

Navier-Stokes equation. We begin by physically interpreting the nonlinear term 

hO.(p) appearing in (5.23a). When this quantity was first defined in (5.11b), we 

referred to it as the "internal potential energy" of the condensate. The irrotational 

part of the flow, the momentum field (mass times the velocity field) can be written 

as the gradient of the scalar action S = MJ as in (5.40) 

mv = VS. (7.12) 

In terms of the velocity potential <I>_ Sjm, (5.23a) is the Bernoulli equation 

1P hn(p) VB 
8t<I> + - + -- = --, 

2 m m 
(7.13) 

so we can identify hO.(p) as the enthalpy. We can employ thermodynamics to calcu

late the local pressure in the superfluid. The enthalpy equals the sum of the internal 

energy and the flow work 

or 

P(p) 

P(p) 
hn(p) = Eint(P) + -, 

p 

(5.20) 
P [nn(p)- v~(p) + ~-tl 

(5.12) 2 '( ) 
p VH p. 

(7.14) 

(7.15a) 

(7.15b) 
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We now calculate the gradient of the enthalpy 

\1(11.0.) 
(5~2) \1 [VH- f-l + pV:rJ (7.16a) 

"VVH + (V p)V:r + p\1~~ (7.16b) 

2(V p)v:r + pvv:r (7.16c) 

~ [ 2(pV p)v:r + p2vv:r J (7.16d) 

~v(p2v:r) (7.16e) 

(7.15b) "VP 
p (7.16f) 

and the gradient of the Bohm potential (using over dot notation V -----+ oi and V -----+ Oj) 

(7.17a) 

(7.17b) 

(7.17c) 

(7.17d) 

(7.17e) 

(7.17f) 

(7.17g) 

The quantity in square brackets is a second rank tensor that has the form of a 

viscous stress tensor with shear viscosity 

n.p 
TJ=- 4 . (7.18) 



The viscous stress tensor may be rewritten as follows 

where the velocity field supporting shear is defined as 

Then (7.17) becomes 

• T 1 . I 

ai"'B = --aJO"ij· 
p 
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(7.19a) 

(7.19b) 

(7.20) 

Taking the gradient of (5.23a), we can use this result for the gradient of the Bohm 

potential and the previous result for the gradient of the enthalpy to put the equations 

of motion into the form of viscous hydrodynamic fluid equations 

at(mvi) + ai (~m·v2) 
atP + aJ (pvJ) 

(7.16!) 

(7_.2o) a.p a1 0"' 
--~- + __ ~J 

p p 

0. 

(7.21a) 

(7.21b) 

The set (7.21) are viscous hydrodynamic fluid equations for the form of the Navier

Stokes and continuity equations (7.1). The left-hand side of (7.21a) can be rewritten 

as 

pat(mv) + p\7 (~mv2) = at(mpv)- (atp)mv (7.22a) 

+ mp(v · V)v + mpv x (\7 x v) 

(7.2lb) a ( ) n ( . ) = t mpv + v · mpv v (7.22b) 

+ mp(v · 'V')v + mpv x w 

(7.2lb) a ( ) n ( . ) = t mpv + v · mpvv (7.22c) 

+ mpv x w. 

According to (5.43), the vorticity is maximally large at the center of a rectilinear 

quantum vortex but vanishes everywhere else. Since the momentum density mpv 
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vanishes at the center, as shown in Fig. 7.2, the last term in (7.22c) vanishes every

where. Thus the momentum equation (7.21a) can be written as 

,:::, ( ) ,:::, ( ) (7.22c) a ,:::, 1 
Ut mpVi + Uj 7TlpV(Vj = - ip + UjO'ij, (7.23a) 

or 

(7.23b) 

where the momentum flux density tensor is 

(7.24) 

Equation (7.23b) is in standard fluid dynamics form of (7.4). The quantum hydro-

dynamic equation analog of the viscous Navier-Stokes equations have been studied 

as the basis of an inverse kinetic theory of the phase-space Schrodinger dynamical 

system [Tessarotto et al., 2007]. They have also been explored regarding a connec

tion to the noisy Burgers equation [Ribeiro and Peixoto de Faria, 2005]. Recently, 

the quantum hydrodynamic equation (7.23) has been used to make a connection 

between Brownian motion and quantum motions with respect to Cooper pair for-

mation in superconductivity [Isimori, 2010]. 

7.3.2 Quantum vortex as a soliton 

The hallmark of a quantum vortex is that the probability at a point associated 

with the condensate amplitude field vanishes at the center of the vortex core and 

asymptotes to the background density of the bulk quantum fluid. The quantum 

fluid behaves like a free fluid in the bulk region satisfying the linear Schroedinger 

equation. Within the core, the magnitude of the condenstate wave function goes to 

zero 

I'P(r)l = p(r)~ ~ y'atanh (~v'Asin JlTf) ~ lla2r 2 (12 + ar2 ) 

384 + ar2 (128 + llar2 )' (
7

.
25

) 
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where A= ;; (81r + v'243 + 647r2). If one follows a closed contour in the bulk region 

of the quantum fluid where the contour encloses a single vortex center, then the phase 

of the wave function must be quantized in units of 27rn, where the quantum vortex 

is said to have winding number n = 1, 2, 3, . . . . n > 1 vortices separate into singly 

charged quantum vortices due to Kelvin wave instabilities driven by local particle 

dynamics within the cores. 

20 30 40 
r (lattice units) 7r~ 

FIG. 7.2: Quantum vortex profiles for g = 1 in lattice units with a scale factor a= 0.02: 
(BROWN) Condenstate magnitude p(r)~. 
(BLUE) Momentum density U{J(r)/a = p(r)v19 (r)ja. 
(BLUE DASHED) Divergent angular velocity v-o(r) = fi/(mr). 
(BLACK) Momentum density ~[u~u(r)]/a = p(r)~[v~u(r)]ja. 
(BLACK DASHED) Divergent angular velocity ~[v$u(r)]. 
(RED) Kelvin waves extend to the coherence length"'~· 
(GREEN) Quantum transition region extends out to rv 1r ~· 

7.3.3 Microscopic picture of vortex reconnection 

A behavior characteristic to mutually interacting quantum vortices is vortex-

vortex reconnection. Vortex reconnections contribute to the Richardson cascade 

[Richardson, 1926], providing a pathway whereby long vortex filaments can bend, 

successively, breaking ultimately into smaller vortex loops [Tsubota et al., 2000]. 
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This reconnection process is the primary mechanism whereby a superfluid can ul

timately have an inertial subrange at small k with a classical Kolmogorov k-513 

spectrum. The bend in the particle world line is due to reconnection of the world 

lines of the participating quantum particles 

In Chapter 3, we have shown that perpendicular entangling gates "braid" the 

particle trajectory. The nonlinear interaction that is localized within the core6 

decomposes the entangled state as if there had existed only one of two classical 

trajectories. Suppose the entangling gate operation in question occurs at t0 . Then 

the relation between the time histories are 

(7.26) 

where unitary braid operator A H represents the quantum mechanical crossing 

(the fundamental reconnection) of both classical alternatives. This relationship 

connecting alternatives typifies (at the microscopic level) reconnection oftwo vortex 

solitons; it is the quantum information-theoretic representation of reconnection. An 

example of (7.26) at sufficiently large wave numbers to capture microscopic quantum 

effects cascading upward influencing the coherent flow structure of two interacting 

vortex cores is shown in Fig. 7.3. The vortex reconnection event occurs at time 

t0 = 48. 

Since there are only unitary processes occurring in the quantum fluid and all 

the time-histories of the particles are governed by a crossing relation of the form of 

(7.26), one might expect to see vortex solitons in superposition states, even at small 

wave numbers. For example, the t = 24 and the t = 116 configuration in Fig. 7.3 

could exist simultaneously in quantum superposition on the large scale. Yet, in 

quantum simulations (run in a factored Hilbert space) we only see a progression 

through time from one classical alternative to the classical other. That is, we do 

6There exists a remarka,ble the similarity between measurement and the projective nature of 
the nonlinear interaction that we discuss below and illustrate in Fig. 7.4. 



/ 
// -.:.___--J 

t = 24 <to 

t = 48 _ t0 Reconnect ion 

t = 116 > t0 Uncrossed 

FIG. 7.3: Time development vortex-antivortex reconnection on a 2403 grid. Probability 
isosurfaces of lrpl2 = 1'!/lr +'!/111 2 are plotted. At t = 0 (top), two independent vortex lines, 
oriented perpendicularly and separated in space (non-intersecting cores). By t = 24, 
the vortex-pair becomes unstable, inducing traveling Kelvin waves along the filamentary 
core. At t = 48, the two vortex cores connect, defined as t0 . By t = 116 (bottom), the 
cores are disconnected along the original orientations and reconnected at right angles. 
Induced quantum Kelvin waves are apparent. 

208 

not see a macroscopic scale superposition, the proverbial Schroedinger cat state on 

scales greater than the coherence (healing) length. 

If we plot the condensate profile through a zero of the quantum vortex, going 

from one side of the center to the other including its phase that goes from plus to 

minus, then the profile appears as a kink (instead of a black soliton) 

4?(r) ~tanh (2;~) , -1 :::; r:::; 1, (7.27) 

as shown in the left side of Fig. 7.4. This profile informs us about the "one-way" 

informational dynamics within the core. Within the core, localization of the wave 
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function occurs by the nonlinear interaction, an effectively dissipative process oper-

ating within the core that self-consisently "turns-off" in the bulk. Such localization 

of a Q2 model in the vicinity of the core allows us to map the quantum algorithm for 

the Schroedinger wave dynamics onto the measurement-based quantum algorithm 

for Burgers dynamics. The Burgers equation admits an analytical kink solution too, 

derived in Appendix E.2 and shown in the bottom of Fig. 7.4. To match (7.27) where 

<p -----t ±1 and r -----t ±oo, we can use the measurement-based quantum algorithm for 

the Burgers equation given in Sec. 4.2.3 for the case when the number density is 

bulk normalized top= a+ b = 1. Then, forb= 1- a, (4.23) reduces to a function 

of only one kinetic variable 

D(a) = 
{) 

(1 - 2a) sin2 

2 +sin( 1J)a(1 -a) (7.28a) 

{) 
sin 2 

2 + a (cos {) + sin {) - 1) - a 2 sin ( {)). (7.28b) 

Setting the occupation probability a = j<pj 2 in the measurement-based quantum 

algorithm, the resulting effective interaction potential is 

(7.29a) 

which is diffeomorphic to 

(7.29b) 

appearing in (5.10) for the Lagrangian density of the condensate. 7 

In Fig. 7.3, one expects that the alternative >< just before reconnection and 

) ( just after can be in quantum superposition only for a time shorter than the 

coherence time. This time scale corresponds to the time it takes a quasiparticle 

7The equilibrium solution away from the kink front is found from f2(a<0l) = 0, which gives 

(O) csc19( . 1 ) a = 2 cos 19 + sm 19 + v 2 - 2 esc 19 - 1 . (7.30) 
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to move away from the hole by a distance further than the healing length of the 

quantum vortex. Yet, quantum superposition (and quantum mode entanglement) 

between the quantum particle-hole pairs in the vicinity of the crossing point is 

an essential mechanism at the microscopic scale giving rise to reconnection in the 

scaling limit. 

1.0 

I 
v 

0.5 

s. 0.0 

_../ 
v -0.5 

-1.0 

-1.0 -0.5 0.0 0.5 1.0 
r 

= 

FIG. 7.4: (LEFT) Quantum vortex is a kink solition. The flow direction on the left of 
the center is the opposite from the direction on the right, viz., a phase shift of 1r radians 
occurs in the condensate wave function as one goes half way around a quantum vortex. 
(RIGHT) Time development of an analytical kink soliton solution for the velocity field 
u = 1-p of Burgers equation (run for the case when the kinetic variables are constrained 
top= a+b = 1), shifted vertically for each time increment to avoid overlap. The two the 
kink solutions are identical. Away from the kink front, the bulk values of the respective 
fields are ± 1. 

7.3.4 Quantum Kelvin waves and intermediate vortex loop 

Superfiuids have two characteristic propagating excitations: acoustic sound 

waves (phonons) and quantum Kelvin waves (kelvons). Both are fluctuations in 
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the condensate density. Although phonons propagate through the bulk region (i.e., 

outside of the quantum vortices), kelvons exist riding on the vortex core. Kelvons 

arise from the gyration of particle-hole pairs as they orbit around and along the 

vortex axis, as shown in Fig. 7.5. These fermionic particles are Bogoliubov quasi-

particles within the quantum vortex's core [Simula et al., 2008], with a gyration 

frequency much slower than the orbital "cyclotron" frequency. 

(a) (b) 

FIG. 7.5: (a) Unperturbed vortex rendered over 160 cyclotron periods. (b) Four wave
lengths of a kelvon riding on a larger vortex core, where Ocyc = Poh/mv. (c) "Cyclotron" 
orbit in cross-section view, in units where the core inner radius (coherence length) is 
~ = 1.0 (brown circle) and the gyration of a trapped quantum particle (small red circle) 
has a gyro-radius one quarter the core radius. The slow gyration displaces quantum vor
tex core (blue circle). (d) Quasiparticle trace for 20 cyclotron periods where the gyration 
frequency is ncyc/ 40, rendered as a closed world line. 

A single quantum vortex can simultaneously support many kelvons. While 

phonons are produced as radiation emitted from the quantum vortex, kelvons are 

produced by vortex-vortex interactions, including reconnection, phonon exchange, 

and small vortex ring exchange. Regarding phonon scattering, kelvons directly cou

ple to other kelvons, of both longer and shorter wavelengths (by phonon emission 

and absorption, respectively), contributing to a Kelvin wave energy cascade. They 

couple to themselves nonlinearly according to (5.17). There is no mechanism block-

ing kelvon oscillations down to scales of the vortex's radius, and smaller. 
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In the case where there is a dense tangle of quantum vortices (in a turbulence 

superfluid), it is possible for there to be indirect kelvon-kelvon coupling between dif

ferent (but adjacent) quantum vortices. 8 The growth of quantum Kelvin waves due 

to the nonlinearity in the flow leads to rich flow morphologies, including horse-shoe 

shaped distortions of the quantum vortex filament. These horse-shoe distortions 

are large amplitude helical wave pulses and they can lead to the emission of small 

vortex rings as such distortions are pinched off. 

FIG. 7.6: Simulation of vortex and anti-vortex filaments, originally linear and oriented 
perpendicularly on a 10243 grid. Time steps t = l200~t and t = 4800~t are plotted. 
Quantum Kelvin waves are seen along the vortex filaments early in the simulation. At 
the late stages, the filaments bend, reconnect, and exchange vortex rings. 

Products of quadrupolar line solitons given in Sec. 6.4.2 may be shifted and 

rotated about any direction to build up more complicated initial conditions, which 

8In the low temperature physics community, it has been conjectured that quantum Kelvin waves 
can propagate in 3-space within a superfiuid. Yet, this represents a different picture of the nature 
of the motion of such quantum Kelvin waves than presented here. Quantum Kelvin waves are 
strictly confined a filamentary core and thus propagate on some 8 1 embedding in 3-space. The 
possibility of indirect kelvon-kelvon between different filaments comprising a dense tangle should 
not be mistaken as Kelvin wave propagation in 3-space. 
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nevertheless retain periodicity. A simulation with two such orthogonal sets of vortex 

quadrupoles is shown in Fig. 7.6 (for a total of N = 8 vortex lines) on a 10243 grid. 

In this superfluid simulation, quantum Kelvin waves occur very early on as seen 

in the top panel of Fig. 7.6. The filamentary cores kink into a horseshoe shape as 

seen in the bottom panel of Fig. 7.6, and then emit closed-loop vortex solitons that 

mediate the force between the larger vortex filaments. An expanded view of an 

emitted vortex loop is shown in Fig. 7.7. 

7.4 Final remarks 

Let us treat the filamentary quantum vortex like a directed strand (with its ori

entation determined by its vorticity). A single closed strand (as part of a larger link) 

that starts out as a simple closed loop (an unknot) can form into a complicated link 

through the nonlinear vortex-vortex interaction with another strand in the link as 

well as through a self-interaction of one segment of the strand with another segment 

of the same strand. 9 If the global flow configuration has zero net angular momentum, 

then the simplest initial conditions one may consider is a quantum vortex-antivortex 

pair, topologically equivalent to an oriented link comprising two oppositely directed 

closed-loop strands. Furthermore, if periodic boundary conditions are imposed on 

the embedding space, then the simplest link one may consider is a quadrupole con-

figuration of quantum vortices (a pair of quantum vortex-antivortex pairs). That 

is, the simplest link is a quadrupolar flow configuration, comprising four closed 

quantum vortices, that has zero net angular momentum and that may be placed 

in a box with periodic boundary conditions. Letting a plus sign ( • +) denote a 

quantum vortex oriented normal to the plane of the paper, with one unit of positive 

9In knot theory, a single closed strand is said to form a knot and multiple closed strands form 
a link. 



t = 5696 t = 5746 

intermediate vortex ring 

t = 5858 t = 6000 

FIG. 7.7: Spontaneous exchange of a vortex loop mediating a force between two 
orthogonally-oriented and separate vortex filaments. The exchange goes in both di
rections. This image is a small section of a 10243 space computed with thousands of 
processors. Zoom-in online to see cuts in the vorticity isosurface that are inter-processor 
boundaries. 

214 
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circulation 2Ir and letting a minus sign ( • -) denote one unit of negative circulation 

- 27r, then an example quadrupolar vortex ( 4 quantum vortices) is 

·- •+ 
(7.31) 

•+ ·-
This is a top-down view of the analytical Chebsch potentials representation of the 

condensate field given in Sec. 6.4.2. Three quadrupolar configurations, orthogonally 

oriented along the Cartesian directions, will topologically remain as a link of closed 

strands, but the link will become successively tangled. In the simplest case, a clas

sical turbulent flow configuration is represented in a periodic space (obtained from 

a cube by gluing the opposite faces together) as a maximally tangled link compris

ing three quadrupoles (12 quantum vortices, each with integer winding number n). 

Therefore, turbulent viscous flow is topologically reducible to such a link (12 ori

ented loops, Sl, embedded the 3-space). The time evolution of the nodal lines, for 

twelve initial quantum vortex rings in a small system of size L = 1024, is shown in 

Fig. 7.8. 

Reducing a snapshot of turbulent flow to a linkage of quantum vortices allows us 

to uniquely characterize the flow topologically at the time the snapshot is taken. Yet, 

in knot theory, links are basically static objects, the multiple embedding of circles 

( SI) into three space. One considers how a link may be topologically deformed 

but one does not consider the dynamical process leading to the deformation of the 

strands in a link. In knot theory one merely imposes the restriction that the strands 

cannot be cut as they are deformed, nor can the deformation cause any strands to 

intersect one another. 

There is the physically relevant question of how hydrodynamical evolution 

causes high-Reynolds number laminar flow configurations to ultimately fold into 

turbulent ones. Does there exist a simple yet comprehensive way to understand vis

cous flow dynamics in terms of tangles of strands? There does indeed exist another 
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(a) t = 0 (b) t = 2500 (c) t = 5000 

(d) t = 55000 (e) t = 57000 (f) t = 60200 

(g) t = 61800 (h) t = 75000 (i) t = 83500 (green) and super
imposed t = 167600 (white) 

FIG. 7.8: The evolution of quantum vortices showing the vortex bending, reconnection 
and formation of vortex loops on a 10243 grid. Shown are ray traced surfaces of constant 
number density, lrpl = 0.08lrplmax, that enclose the nodal lines in the condensate. (a) 
The initial 12 linear vortex cores (topologically equivalent to 12 vortex rings because of 
periodic boundaries). (b) At the early timet= 2500 large amplitude Kelvin waves have 
developed. (d) By t = 55000 a large number of reconnection events have occurred. (f) At 
t = 60200 the vortex tangle reduces to 12 small vortex rings topologically equivalent to 
the initial state. (i) The vortex cores at t = 83600 (green) closely resembling the initial 
state, but the Poincare recurrence time occurs near t = 167600 (white). The "bulleyes" 
are the intersection of the initial vortex cores with the walls at t = 0. 
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deeper level of reduction but one must generalize knot theory to allow for the quan

tum mechanical interaction between strands, and this in turn leads to the notion 

of quantum superposition of links. In particular, this generalization allows for the 

quantum mechanical interaction of two strands and it is at such an "intersection 

point" where the fundamental physics occurs. 

Up to this point in the discussion of turbulent flow expressed in terms of strands, 

it has been the quantum vortices themselves (or topological defect lines cp = 0 

within the condensate wave function) that have been equated to strands. Yet, 

each quantum vortex is made of many quantum particles. All nonlinear vortex

vortex interactions are reducible to the level of crossing quantum particle world 

histories, and it is the tangle of these world histories that ultimately represents the 

turbulence flow topologically. The case we have pressed here is that a practical 

way to learn about superfluid dynamics (as well as classical fluid dynamics) is by 

using a quantum information theoretic model of the quantum fluid dynamics that 

gives rise to correlated quasiparticle pairs circulating around the quantum vortex 

core inherently giving rise to the quantum vortex as an emergent coherent soliton. 

The self-interaction of the quantum vortex soliton is due to the crossing intersection 

of the paths of quantum particles comprising the quantum vortex. Each crossing 

event is represented in an analytical way by .JswAP or JPAffi quantum logic gates. 

It is this quantum-gate level interaction between pairs of quantum particles in the 

model that is the basis for reconnection of a quantum vortex, allowing it to bend 

into smaller shapes. This in turn ultimately leads to the self-similarity of eddies and 

finally to the famous classical Richardson cascade observed at the large scales, and 

which is traditionally associated with classical turbulence. Therefore, a fundamental 

information-theoretic reason for classical turbulent flow structure is suggested, and 

to the best of my knowledge, for the first time. This is the first part of the turbulence 

puzzle. 
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Yet, as each quasiparticle of the quantum vortex is represented by correlated 

quantum particles, one can quantify how the flow configuration may be cast directly 

in terms of an important physical ingredient: quantum entanglement. Representa

tion of the flow in terms of the production, transference, and destruction of quantum 

entanglement allows one to arrive at an even more complete physical picture. This is 

the second part of the puzzle. Thus, the isomorphism between links in knot theory 

and the quantum entanglement of many quantum particles is helpful to comprehend 

superflows and therefore this aspect of the research program is undergoing active 

investigation [Kauffman and Lomonaco, 2004, Yepez, 2009, Yepez, 2010]. 

As a confirmation of turbulent flow behavior, the Kolmogorov inertial subrange 

for small wave numbers is observed in quantum fluid simulations on sufficiently 

large grids that can cleanly represent large scale classical behavior: thus we have 

confirmed the theoretical predication that a turbulent quantum fluid behaves like a 

turbulent classical fluid on large scales [Yepez et al., 2009c]. These cascade effects 

are demonstrated with a Q2 quantum lattice gas; see Fig. 7.9 to view an exam

ple of the morphology of tangled quantum vortices comprising a state of quantum 

turbulence in the dense vortex limit. 

In cold atomic vapor BEC experiments fully developed quantum turbulence 

has not been observed as it has in Helium II, yet the natural emergence of quantum 

vortex tangles have been recently observed in cold atom vapors. Such tangles can 

be observed in a freely expanding BEC after the trapping potential is turned off. 

Attempting to see quantum turbulence in a cold atomic vapor is presently at the 

forefront of BEC experimental work. 
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FIG. 7.9: This is a quantum lattice simulation of a BEC superfiuid in 3+1 dimensions 
spontaneously giving rise to turbulent quantum flow. Plotted are ray-traced surfaces of 
constant probability density showing the cores of tangled vortex solitons (zoom-in online 
to view the vortex tangles). The most recent quantum lattice gas simulations are run 
on DoD CRAY XT-5 supercomputers that realize informational substrates with a half 
trillion qubits and 20 trillion gates. The amount of computational resources needed to 
simulate quantum turbulence is on the order of 80,000 cycle times, which comprises 1018 

gate operations. 
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APPENDIX A 

Deutsch problem and joint 

information 

A.l Introduction 

The Deutsch problem is fundamental to understanding quantum computing as 

it is the simplest demonstration of computational efficiency derived from the prin

ciples of quantum mechanics [Deutsch and Jozsa, 1992b]. It is the first problem 

to have been solved on a quantum information processor; this was accomplished 

contemporaneously by Jones and Mosca [Jones and Mosca, 1998] and Chuang et al. 

[Chuang et al., 1998], and both experimental groups used nuclear magnetic reso

nance spectroscopy. It is like determining, with a single glance so to speak, if a 

coin is fair: balanced, heads on one side and tails on the other, or constant, heads 

on both sides or tails on both sides. According to classical intuition, such a deter

mination requires two observations. Yet, a quantum circuit allows us to make the 

determination with a single observation. This is at the crux of quantum efficiency. 

We begin by presenting a two-qubit quantum circuit for the Deutsch problem. 
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The circuit uses quantum superposition to gain a computational speedup and its 

final output comprises one qubit in a classical logical state, holding the answer to 

the problem, while the other qubit remains in a superposition state. This situa

tion is typical of quantum algorithms where superposition persists to the end of the 

calculation on some lead while the output lead of the circuit yields the correct an

swer. In the original Deutsch quantum circuit design, superposition is generated by 

Hadamard transformations on the input qubit states, which are originally separable. 

Any superposition remaining after the quantum computation decoheres by con

tact with the external environment, causing a loss of information. The external 

environment acts as an "information reservoir." Yet, it is unnecessary to invoke the 

external environment as an information sink. 

So next a quantum circuit is presented, the Deutsch circuit with one additional 

Hadamard gate acting on an output leg, that in a controlled way removes all super

position. This does not diminish quantum efficiency. This quantum circuit recasts 

the quantum circuit for the Deutsch problem as nearly a classical device, where 

the qualifier "nearly" indicates that although the device interchanges 1's and O's (a 

classical operation), it causes an overall phase change (multiplying the input quan

tum state by -1) of some of the output quantum states. This quantum circuit does 

not transfer all accessible information that could otherwise be available for mea

surement. It is the kind of circuit implemented in the nuclear magnetic resonance 

experiments mentioned above. 

The source of the quantum efficiency is seen as the capacity to flip the phase 

of a quantum state as well as permute states, something accomplished through the 

internal use of quantum superposition. Can this be achieved in a way that conserves 

information entirely within the quantum circuit? The answer is yes, all accessible 

information about the system is measurable at the end of the quantum computation. 

We will see how to do this by employing a symmetric quantum circuit containing 
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a second oracle, a dual of the original oracle. Then, with one observation following 

the action of the circuit, we can learn the value of one side of the coin or its fairness, 

but now the second output lead contains a valuable bit of information, the state of 

one side of the coin-the last bit of available information lost in the unsymmetrical 

versions of the quantum circuit. By transferring all accessible information in a way 

that is available for measurement, the state of the proverbial coin is e11..-tracted in an 

efficient and complete way. 

A.2 Statement of the Deutsch problem 

Mathematically, the Deutsch problem is equivalent to a "fair-coin" test, and 

can be stated using a binary function 

f: {0, 1}----+ {0, 1}. 

Let the domain {0, 1} encode the two sides of the coin. Let the functional value of 

f be the result of an observation of one side of the coin, with outcome heads 1 or 

tails 0. 

If f(O) = f(1) the function is constant, otherwise if f(O) =f. f(1) it is balanced. 

There are only four possible function maps: 

Case 0: f(O) = 0 !(1) = 0 constant (A.1a) 

Case 1: f(O) = 0 !(1) = 1 balanced (A.1b) 

Case 2: f(O) = 1 !(1) = 0 balanced (A.1c) 

Case 3: f(O) = 1 f(l) = 1 constant (A.1d) 

The quantum circuit for the Deutsch problem is shown in Figure A.l. Upon 

measurement, the quantum circuit's output lead tells whether f is constant or bal

anced. The inputs to the quantum circuit on the left hand side are fixed with the 
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top lead set to IO) and the bottom lead set to 11). In matrix form, these input states 

are 

(A.2) 

The quantum circuit has three stages, where each stage is represented by a unitary 

matrix: 

A Superposition (UA) 

B Oracle (UB = Uo) 

C Inverse superposition ( U c). 

IO) 

11) 
ecohere 

FIG. A.l: Quantum circuit diagram using the Deutsch oracle Uo. The input lines are 
"hardwired." Measuring the output line deterministically yields a 1 or 0 if the function 
f (:r) is balanced or constant, respectively. 

A.2.1 Superposition stage 

There are two Hadamard gates, independently acting on the two input qubits, 

and denoted by the operator symbol H with the following matrix representation: 

H = _1 (1 1) v'2 1 -1 . 
(A.3) 

The 2-qubit unitary operator for stage 1 is the following tensor product: 

1 1 -1 -1 
UA =H®H=-

2 -1 -1 
(A.4) 

1 -1 -1 1 
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Stage 1 does not cause any quantum entanglement, since the Hadamard gates act 

independently on the input qubits. 

A.2.2 Oracle stage 

Next, there is a two-qubit quantum gate that represents the Deutsch oracle. 

This is denoted Uo. The function f is applied to the bottom lead when the value 

of the qubit on the top lead is 11). That is, the oracle is controlled by the top lead. 

The symbol EB means addition modulo 2, which is binary addition. This is the 

classical gate operation called exclusive or, shown in Table A.l. The input state to 

X y xEBy 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

TABLE A.l: Classical XOR gate. 

stage 2 is the tensor product lx) IY) = lx)®ly). We leave out the 0 symbol for brevity. 

Sometimes to be even more brief, we simply write such a state as lxy). However, 

in the present situation, we should emphasize that our input state is separable with 

no quantum entanglement, and will use the notation that distinguishes each qubit 

individually. Also, this notation makes it easy to algebraically specify the action of 

Uo: 

Uolx) IY) = lx) IY EB f(x)). (A.5) 

To workout the matrix representation of the unitary operator for (A.5) we simply 

insert the qubit logical states (A.2). The unitary matrix representations of the 

Deutsch oracle for the four case are the following: 
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Case 0: 
1 0 0 0 

Uo = 
0 1 0 0 

0 0 1 0 
(A.6a) 

0 0 0 1 

Case 1: 
1 0 0 0 

Uo = 
0 1 0 0 

0 0 0 1 
(A.6b) 

0 0 1 0 

Case 2: 
0 1 0 0 

Uo = 
1 0 0 0 

0 0 1 0 
(A.6c) 

0 0 0 1 

Case 3: 
0 1 0 0 

Uo = 
1 0 0 0 

0 0 0 1 
(A.6d) 

0 0 1 0 

A.2.3 Inverse superposition stage 

As a last stage, a Hadamard gate is applied to the top lead to prepare it for 

measurement. The unitary operator for this last stage has the following form: 

1 0 1 0 

1 0 1 0 
Uc = H®l2 =-J2 1 0 -1 0 

(A.7) 

0 1 0 -1 

A.3 Unitary evolution operator 

The quantum circuit for solving the Deutsch problem can be expressed by 

multiplying together the unitary matrices for each respective stage 

(A.8) 
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Inserting the unitary matrices (A.4), (A.27) and (A.7) for the respective three stages 

into (A.8), we find the following four different resulting transformation matrices 

Case 0: 
1 0 0 

U=-1 1 -1 0 0 
(A.9a) 

v'2 0 0 1 1 

0 0 1 -1 

Case 1: 
0 0 1 

U= _1_ 1 0 0 -1 
(A.9b) 

v'2 0 1 0 

0 -1 1 0 

Case 2: 
1 0 0 -1 

U=-1 1 0 0 1 
(A.9c) 

v'2 0 -1 1 0 

0 1 0 

Case 3: 
1 -1 0 0 

U=-1 1 1 0 0 
(A.9d) 

v'2 0 0 1 -1 

0 0 

Now using (A.2), we can write down the following four tensor product states: 

IO)IO) = IO) 11) = 

0 

1 

0 

0 

11)10) = 

0 

0 

0 

11)11) = 

The output of the Deutsch quantum circuit can now be computed 

Case 0: 

1 

UIO)i1) = ~ ~1 1 1 
= v'2 (IO)IO) -10)11)) = IO) 0 J2 (IO) -11)) 

0 

0 

0 

0 
(A.10) 

constant 

(A.lla) 
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Case 1: 

0 

UIO)I1) = ~ 0 
= ~ (11)10) -11)11)) = 11) ® ~ (IO) -11)) balanced 

2 2 
-1 

(A.llb) 

Case 2: 

0 

UIO)I1) = ~ 0 1 1 
= J2 (-11)10) + 11)11)) = -11) ® J2 (IO) -11)) balanced 

-1 

(A.llc) 

Case 3: 

-1 

UIO)I1) = ~ 1 
= ~ (-IO)IO) + IO)I1)) = -10) ® ~ (IO) -11)) constant 

0 

0 

(A.lld) 

The result for the constant cases 0 and 3 are ±IO) ® ~ (IO) - 11) ), while the result for 

the balanced cases 1 and 2 are ±11) ® ~ (IO) -11)). Therefore, upon measurement 

of the first qubit, the outcome of 0 tells us f is constant and the outcome of 1 tells 

us f is balanced. 

A.4 A quantum circuit with two classical output 

bits 

In the quantum circuit for the Deutsch problem, and like all the other commonly 

used three-stage quantum circuits such as for the Deutsch-Jozsa, Bernstein-Varirani, 

and Simon algorithms, all output qubits (or qubits as the case may be) need not 

be observed. Some are left in a quantum superposition state that are allowed to 

naturally decohere. This natural process of decoherence occurs as the qubit couple 
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in an uncontrolled way to an external mode (say a photon or phonon mode) that 

escapes off to infinity. Why not avoid such uncontrolled decoherence altogether? 

It is straightforward to "upgrade" the quantum circuit for the oracle so as not 

to leave any quantum superposition remaining and instead to have the resulting 

state of the circuit be a pseudo-classical state (that is, a classical state with an 

overall phase of ±1). Figure A.2 shows the improved quantum circuit that employs 

an additional Hadamard gate placed on the bottom output lead. Yet, we shall see 

that this circuit does not conserve information. 

jO) ±jq) 

j1) j1) 

FIG. A.2: Quantum circuit diagram whose input and output states are purely classical, 
having no output lead in superposition. Measuring the top output line deterministically 
yields q = 1 or q = 0 when the function f(x) is balanced or constant, respectively. 

With this circuit, the first and third stages are identical, U3 = U1 = H ® H. 

Therefore, the unitary transformation for the oracle can be expressed as 

U = (H ® H)U0 (H ®H). 

This has the following matrix representations: 

Case 0: 

Case 1: 

1 0 0 0 

U=-1- o 1 o o 
y'2oo1o 

0 0 0 1 

1 0 0 0 

U=-1- o o 
v'2 0 0 

0 -1 

1 0 

0 -1 0 0 

(A.12) 

(A.13a) 

(A.13b) 



229 

Case 2: 
1 0 0 0 

U=-1 0 0 0 1 
(A.13c) 

y'2 0 0 1 0 

0 1 0 0 

Case 3: 
1 0 0 0 

U=-1 0 -1 0 0 
(A.13d) 

y'2 0 0 0 

0 0 0 -1 

These four transformation matrices are nearly classical permutation matrices. 

The only remaining remnants of the quantum mechanical nature of the transforma-

tion are the negative components. The consequence of these are that the resulting 

state of the quantum circuit may have an overall 180 degree phase shift from a pure 

classical state. The phase shift is necessary to uniquely distinguish the four possible 

mappings of f ( x). 

The output of the upgraded quantum circuit can now be computed 

Case 0: 
0 

U/0)/1) = = /0)/1) constant 
0 

(A.14a) 

0 

Case 1: 
0 

U/0)/1) = 
0 

= -/1)/1) balanced 
0 

(A.14b) 

-1 

Case 2: 
0 

U/0)/1) = 
0 

=/1)/1) balanced 
0 

(A.14c) 

1 



Case 3: 

U/0)/1) = 

0 

-1 

0 

0 

= -/0)/1) 
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constant (A.14d) 

The result for the constant cases 0 and 3 are ± IO) 11), while the result for the balanced 

cases 1 and 2 are ±11)11). Therefore, upon measurement of the first qubit, the 

outcome of 0 tells us f is constant and the outcome of 1 tells us f is balanced, just 

as before. However, now the second qubit is always in state 11), and not in internal 

superposition. Yet, since the value of the second qubit is fixed, information is still 

lost. 

A.4.1 Algebraic treatment 

We can algebraically express our quantum implementation and determine the 

output of the new circuit. For the moment, we will allow the input state to be a 

variable quantity, lx)ly). We can express (A.3) concisely as follows: 

Then using (A.15), the oracle becomes 

Ulx) IY) (H ® H)Uo(H ® H)lx)ly) 
1 1 

~(H ® H)Uo L L(-1yr+yslr)l.s). 
r=O s=O 

Using (A.5), we then have 

1 1 

Ulx) IY) = ~(H ®H) L L( -1)xr+yslr) l.s EB f(r)) 
2 r=O s=O 

1 1 1 1 

~ L L L L( -1yr+ys+ru+[sEBf(r)Jvlu)lv). 

r=O s=O u=O v=O 

(A.15) 

(A.16) 

(A.17) 

(A.18) 

(A.19) 
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Noting that addition modulo 2 is the same as regular addition when it appears in 

the exponent of minus one, ( -1)[sEBf(?·)]v = ( -1)[s+f(r)Jv, and fixing the input values 

to x = 0 and 'Y = 1, we have 

UIO)I1) = ~ "'(-l)s+ru+[s+f(r)]vlu)lv) 
4~ . (A.20) 

rs·uv 

We first expand the sum over s to obtain 

UIO)I1) = ~ L [(-1yu+f(r)v- (-1yu+[l+f(r)]v] lu)lv), (A.21) 
ruv 

where binary sums are understood. Then, we expand the sums over v and u and r, 

in turn, to obtain 

UIO) 11) ~ L(-1yu+f(r)lu)l1) 
2 

ru 

~ L [(-1)f{r)IO)I1) + (-1y+J(r)l1)11)] 
2 

r 

~ [(-1)f(O) + (-1)f(l)J IO)I1) 

+~ [(-1)f(O)- (-1)/(1)11)11)] 

Therefore, we obtain the final result 

as expected. 

UIO)I1) = {±IO)I
1
), 

±11)11), 

iff is constant: f(O) = !(1) 

iff is balanced: f(O) =f. f(1), 

(A.22a) 

(A.22b) 

(A.22c) 

(A.23) 

A.5 Quantum circuit for extracting all available 

information 

It is possible to add a fourth stage to the upgraded quantum circuit so that 

the bottom output line tells us the value of remaining bit of information about the 
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FIG. A.3: Symmetric quantum circuit diagram whose output states contain all the avail
able classical information (two bits), again with no quantum superposition on the output. 
Measuring the top output line deterministically yields q = 1 or q = 0 when the function 
f ( x) is balanced or constant, respectively. Measuring the bottom output line determinis
tically yields f(l), which corresponds to the value of one side of the coin. 

coin: the value of one side. Since we already know from the top output line whether 

the coin is constant or balanced, this last classical bit allows us to disambiguate the 

possibilities. The quantum logic component we need to add in the fourth stage is 

the dual of the Deutsch oracle. The dual of (A.5) is 

Uolx)ly) -l:r)IY EB /(x)). 

This has the following property 

UoUolx)ly) lx)IY EB j(x) EB /(x)) 

lx)ly). 

(A.24) 

(A.25) 

(A.26) 

So U oUo = Vl = 12 ® <Jx, a NOT operation on the second qubit, which is purely 

linear. To be explicit, the matrix representations are 

Case 0: 
0 1 0 0 

Uo = 
1 0 0 0 

0 0 0 1 
(A.27a) 

0 0 1 0 

Case 1: 
0 1 0 0 

Uo = 
1 0 0 0 

0 0 1 0 
(A.27b) 

0 0 0 1 



Case 2: 
1 0 0 0 

Uo = 
0 1 0 0 

0 0 0 1 

0 0 1 0 

Case 3: 
1 0 0 0 

Uo= 
0 1 0 0 

0 0 1 0 

0 0 0 1 

and the product of the dual oracle times the original is 

UoUo = 

Following (A.20), the quantum circuit 

0 1 0 0 

1 0 0 0 

0 0 0 1 

0 0 1 0 

U = Uo(H ® H)Uo(H ®H) 

can be expressed algebraically 

U/0)/1) = l I)-1)s+ru+[s+f(r)]v/u)/v EB J(u)). 
rsuv 

The final complete output is the following: 

JO) /1), f(O) = /(1), /(1) = 1 

UJ0)/1)= 
/1) /0), /(0) # /(1), /(1) = 0 

-/1)/1), f(O) # /(1), /(1) = 1 

-/0)/0), f(O) = /(1), /(1) = 0. 

A.6 Remarks on the Deutsch problem 
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(A.27c) 

(A.27d) 

(A.28) 

(A.29) 

(A.30) 

(A.31) 

If one were presented with a coin and asked to determine whether it is fair or 

not, without flipping it over to check both sides, the natural thing to do would be to 

go straight to the nearest mirror. When held up to the minor, one could then see the 
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front and back of the coin simultaneously, without having to flip it over. Of course 

the light bouncing off the front of the coin and entering the observer's eye would be 

independent of the light bouncing off the back of the coin, reflecting off the mirror, 

and entering the same eye. There is no quantum mechanical entanglement nor 

superposition here, only two independent "photons." This is classical parallelism, 

two observations at once. So, classically, two observations are needed to obtain a 

speedup. 

In contradistinction, quantum superposition offers a speedup. Superposition 

in the final output state is not what is remarkable about quantum logic, although 

operations causing quantum superposition play an essential role as an intermediate 

building blocks in the quantum circuit-in this case, to allow us to test a coin's 

fairness in one measurement. All we need in the end is an overall phase shift and 

bit-flip of the final quantum state ('i.e. an overall a multiplication of the state by 

±1 and a permutation of the states). 

The quantum circuit that we have presented in Figure A.3 illustrates the fun

damental principle that the ideal coin can be represented as a composite of two 

elementary observables, each conveyed by a bit of information: (1) the fairness of 

the coin, and (2) the value of one observed side. Quantum mechanically, we can 

learn the fairness of the coin with one observation, and we are guaranteed that 

no more than one execution of the circuit is needed to know everything about the 

coin. Therefore, a quantum circuit is more capable than a classical circuit, and 

information is conserved. 



APPENDIX B 

Quantum logic in matrix form 

B.l Representations of perpendicular quantum 

gates 

A type of quantum logic gate useful for casting quantum algorithms in various 

computational physics applications is a conservative quantum gate. It is a 2-qubit 

universal quantum gate associated with perpendicular pairwise entanglement. A 

conservative quantum gate conserves the "bit count" in the number representa

tion of the qubit system (i.e. the total spin magnetization of a spin-~ system). If 

conservative quantum gates are used to model basic qubit-qubit interactions in a 

large qubit system, then the large scale dynamics of the qubit system is ultimately 

constrained by a number continuity equation, as was mentioned earlier. 

In the most general situation, it is sufficient to consider only a block diagonal 

matrix that has a 2 x 2 sub-block, which causes entanglement and is a member of 

the special unitary group SU(2). We can neglect the overall phase factor because 

this does not affect the quantum dynamics and therefore our sub-block need not be 

a member of the more general unitary group U(2). If U is a member of SU(2), it 
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can be parameterized using three real numbers, ~, (, and iJ, as follows 

( 

eiC. cos iJ -ei( sin iJ ) (A B) 
-e-i( sin iJ -e-iC. cos iJ - C D 

(B.l) 

We can represent a general conservative quantum logical gate by the 4 x 4 

unitary matrix 

Y= 

1 0 0 0 

0 A B 0 

0 C D 0 

0 0 0 E 

(B.2) 

We choose this form for Y because we want to entangle only two of the basis states, 

/01) with /10), so as to conserve particle number, and that is why we call Y a 

conservative quantum gate. The component in the top-left corner is set to unity 

because we do not want Y to alter the vacuum state /00) in any way. However, 

we must allow the component in the bottom-right corner to be arbitrary. We will 

see that the value of this component will depend on the particle statistics, reflecting 

whether quantum logic gates are used to model quantum gases with particles obeying 

Fermi statistics or not. 

B .1.1 Ladder operator representation 

It is instructive to work out the ladder operators in the Q = 2 case, where it is 

simple to write down the matrix representation. Remarkably, all the results carry 

over to the arbitrary size qubit systems with Q 2:: 2. Consider the following five 

quadratic operators: 

0 0 0 0 

0 0 0 0 

0 1 0 0 

0 0 0 0 

0 0 0 0 

0 0 1 0 

0 0 0 0 

0 0 0 0 

(B.3) 



including the compound number operators 

0 0 0 0 

0 0 0 0 

0 0 1 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 1 

0 0 0 0 

0 1 0 0 

0 0 0 0 

0 0 0 0 
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(B.4) 

The conservative quantum gate (B.2) can be expressed in terms of the operators 

(B.3) and (B.4) given above: 

+ (D- l)n1 (1- n2) + (E- l)n1n2 (B.5) 

. ) t t 1 +(A- 1 n 2 + Ba2a1 + Ca1a2 

(B.6) 

We would like to find the Hamiltonian, H say, associated with Y. Letting z denote 

a complex parameter, we begin by parametrizing (B.6) in terms of z 

and then we solve for H. To do this, we series expand in the parameter z: 

2 . z 2 
Y(z) = 1 + zH + -H + · · · . 

2 

(B.7) 

(B.8) 

There are two cases of interest: first when the Hamiltonian is idempotent, H 2 = H, 

then (B.8) reduces to 

Y(z) = 1 + (ez- l)H, (B.9) 

and second when H 3 = H and H 4 = H 2
, then (B. 7) reduces to 

Y(z) = 1 + sinhz H + (coshz- l)H2
. (B.lO) 

These cases are worked out below. 
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H 2 = H case 

From (B.2) and (B.9), we can solve for H: 

0 0 0 0 

(B.ll) 
1 1 0 A-1 B 0 

H= --(Y-1) = --
ez - 1 ez - 1 0 C D - 1 0 

0 0 0 E-1 

Let us pick a new set of variables to simplify matters: 

A 
A-1 
ez -1 

B = __!!__ 
ez- 1 

(B.12a) 

c c D-1 
(B.12b) V=--

ez- 1 ez- 1 

L1 
E-1 

(B.12c) ez -1 

Then inserting (B.12) into (B.ll), the Hamiltonian has the simple matrix and op-

erator representation 

H= 

0 0 0 0 

0 A B 0 

0 c v 0 

0 0 0 ll. 

and from this we deduce the operator form of the idempotent Hamiltonian 

(B.13) 

(B.14) 

Next, inserting the new variables (B.12) into (B.2) and (B.6), the matrix and 

operator representations for the conservative quantum logic gate become 

Y(z) - ezH (B.15) 

1 0 0 0 

0 (ez- 1)A + 1 (ez- 1)8 0 

0 (ez- 1)Bt (ez -1)V+ 1 0 
(B.16) 

0 0 0 (ez- 1)ll. + 1 

1 + ( ez - 1) [ Ba~a1 + Ca! a2 

+ Vn1 (1 - n2) + A(1 - ni)n2 + L'ln1n2 J. (B.17) 



239 

Since the Hamiltonian must be Hermitian, H = Ht, we know that C = Bt and 

6 = 6 t, so 6 must be a real valued number. Also, since the Hamiltonian is 

idempotent, H 2 = H, we get the additional constraint equations on the components: 

which admit the solutions: 

A 

A2
- A+ IBI2 

A+'D 

1)2 -'D + IBI2 

0 

1 

0, 

t ( 1 ± yl1 - 4IBI2) 

t ( 1 =F V1 - 4IBI2) . 

(B.18) 

(B.19) 

(B.20) 

(B.21) 

(B.22) 

Then inserting (B.21) and (B.22) into (B.13) and (B.14), we can specify the idem-

potent Hamiltonian with only one free complex parameter: 

H 

0 0 0 0 

0 ~ ± ~ Jl - 4IBI 2 B 0 

0 Bt ~ 'f }Jl- 4IBI 2 0 

0 0 0 D. 

Ba~a1 + Bt ai a2 + t ( 1 =F J1 - 4IBI2) n1 (1 - n2) 

+ t ( 1 ± J1- 4IBI2) (1- n1)n2 + 6n1n 2 

Ba~a1 + Btaia2 + t ( 1 =F J1- 4IBI2) n1 

+ t ( 1 ± J1- 4IBI2) n2 + (6 -l)n(n2. 

(B.23) 

(B.24) 

(B.25) 

The associated conservative quantum logic gate can also be rewritten by inserting 



(B.21) and (B.22) into (B.15): 

0 0 

Y(z) 
o ~(e + 1) ± ~(e" -1hll- 4IBI 2 (ez- 1)B 

0 (ez -1)Bt ~(ez + 1) 'f ~(ez- 1)y'1- 4jBj2 

0 0 0 

1 + (ez- 1) [sa!a1 + stata2 

0 

0 

0 

(ez -1)~ + 1 
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(B.26) 

+~ ( 1 =F \./1- 4IBI2) n1 + ~ (1 ± J1- 4IBI2) n2 + (Ll- 1)n1n2 J .(B.27) 

A physical and useful special case occurs if we choose B = -~e-i~: 

0 0 0 0 

0 1 -~e-i< 0 
H 2 (B.28) 

0 -~eie 1 0 2 

0 0 0 ~ 

Since n 1 at a 1 and n2 = a!a2, we can rewrite the idempotent Hamiltonian as 

follows: 

Also, 

Y(z) 

H 3 = H case 

0 0 0 

0 ~(ez + 1) -~(ez- 1)e-i< 0 

0 -~ (ez - 1)ei< ~(ez + 1) 0 

0 0 0 (ez -1)~+ 1 

1 + (ez- 1) [~ (at- e-i~a!) (a1- ei~a2) 

+(Ll- 1)nl'n2 J. 

(B.29) 

(B.30) 

(B.31) 

There exists an alternative Hamiltonian that is not idempotent but has a similar 

property at third order, H 3 = H (but not necessarily an involution H 2 = 1), which 
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can generate a conservative quantum logic gate of the form (B.2). In this second 

case, the series expansion of the quantum gate (B.7) reduces to the form (B.lO), 

which is 

Y(z) = 1 +(cosh z- l)H2 + sinhzH. 

Our approach will be to assume the Hamiltonian still has the form (B.13) and that 

its square has a diagonal matrix form: 

0 0 0 0 

0 A B 0 

o Bt V 0 

0 0 0 .c. 

0 0 0 0 

0 A B 0 

0 Bt V o 

0 0 0 .c. 

n1(1- n2) + (1- ni)n2 + 6.n1n2 

n1 + n2 + (6.- 2)n1n2, 

0 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 .c. 

(B.32) 

(B.33) 

(B.34) 

where as in the previous case either 6. = 0 or 6. = 1. This imposes the following 

constraint equations on the components: 

which admit the solutions: 

A+V 

A 

1) 

1-IBI2 

0 

1-IBI2, 

±yfl-IBI2 

=FV1-IBI2· 

(B.35) 

(B.36) 

(B.37) 

(B.38) 

(B.39) 
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Then, the Hamiltonian has the form 

H 

0 0 

B 0 

'f ,Jl=lBl2 0 

0 

B a~a1 + Bta! a2 =r yf1 - /B/ 2 n1 (1 - n2) 

± yf1- /B/ 2 (1- nt)n2 + ~n1n2 

Ba~a1 +Bta!a2 =F yf1-/B/ 2 n 1 

± yf1 - /B/ 2 n2 + ~n1n2, 

(B.40) 

(B.41) 

(B.42) 

and hence, using (B.10), the matrix representation of the conservative quantum gate 

becomes 

T(z) 

0 0 0 

0 cosh z ± v'1=lBf2 sinh z Bsinhz 0 

0 Bt sinhz cosh z 'f ,Jl=lBl2 sinh z 0 

0 0 0 (ez - 1)6. + 1 

(B.43a) 

1 + (coshz- 1) [n1 + n2 + (~- 2)n1n2] 

+sinhz [Ba~a1 + Bt a!a2 =r yf1-/B/2n 1 ± J1-/B/ 2n2 + ~n1n2] 

(B.43b) 

+ (coshz- 1 =r yf1-/B/ 2 ) n 1 + (coshz- 1 ± yf1-/B/2 ) n 2 

+ [(ez -1)~ + 2(coshz -1)] n1n2. (B.43c) 
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A useful special case occurs for B = 'ie-i~. Then, 

H (B.44) 

(B.45) 

(B.46) 

The quantum gate has the form: 

0 0 0 

Y(z) 
0 coshz ie-·i~ sinh z 0 

0 -iei~ sinh z coshz 0 
(B.47) 

0 0 0 (ez -1)~+ 1 

(B.48) 



APPENDIX C 

Superfluidity 

C.l Tisza-Landau superfluid 

A two-fluid theory of Helium II superfluid was originally proposed by Tisza 

[Tisza, 1938, Tisza, 1947], following London's notion of a BEC-based superfiuid com

ponent [London, 1938]. Laudau developed a two-fluid theory based on phonon and 

rotan excitations [Landau, 1941a, Landau, 1941b], which for a long time has been 

the accepted theory of helium II. A recent review of the history of the discovery of 

the two-fluid theory is given by Donnelly [Donnelly, 2009]. 

Let t:(p) denote the excitation energy of Helium II as a function of the mo-

mentum of the thermal excitation measured in a frame of reference moving with 

the superfiuid. The excitation spectrum for Helium II has been verified by neutron-

scattering experiments and is nonlinear, see figure C.l. The large wavelength exci-

tations correspond to phonons and have the usual linear dispersion relation between 

energy and momentum 

(C.1) 

where cl 2391!!.. is the sound speed of density waves that propagate at con-
sec 
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0 0.5 1.5 2 

Momentum (Inverse Angstroms) 

FIG. C.l: Dispersion relation for He II. The initial slope at small k- 1 is linear in the 
phonon part of the excitation spectrum and the parabolic part of the spectrum is due to 
roton excitations. The dasked line indicates a solution of sjp = dsjdp which occurs near 
the local minumim of the curve, the band gap energy characteristic of superfluids. 
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stant temperature, first sound. At smaller wavelengths there is a local minimum in 

the excitation spectrum corresponding to rotons. Locally its dispersion relation is 

parabolic with the form 

for P A-1 
- f""V ?. fi ~ ' (C.2) 

where 

Po -1 T = 19.1nm J.lr = O.l6m4. 

Figure C.l is an interpolation going from the linear behavior for phonons at long 

wavelengths to the parbolic behavior for rotons at shorter wavelengths. Quantum 

liquids can receive energy in only discrete units causing a transition from the ground 

state to an excited state. In a fixed laboratory frame of reference, consider the 

following energy change 

(C.3) 

where Vsi is the velocity of the superfiuid and Pi is the momentum of a candidate 

quasiparticle, either a phonon or raton. To create an excitation the situation must 

be energetically favorable so that the energy change is negative, bE ::; 0, which is 



written as 
c(p) 

V 8 2:: --. 
p 

246 

(C.4) 

When the equality holds, this implies a critical condition for the superfluid flow 

speed: 

V 8 = min c(p) -I- 0. 
cr p r (C.5) 

The creation of quasiparticles is a mechanism by which Helium II can dissipate 

energy. Therefore, as long as v8 < vc., the creation of quasiparticles will be ener-

getically unfavorable and Helium II will exist as a superfluid, without any friction 

causing energy dissipation. The minimum point of a function is found by setting its 

derivative to zero. In this way the excitation energy of the Helium II from (C.5) is 

determined 

!!:_ c(p) = 0 
dp p 

E de 
p dp" 

(C.6) 

The solution of (C.6) is easily found by rendering the line whose slope, f, is tangent 
p 

to the curve of the excitation spectrum, as shown in figure C.l. Note that the 

solution lies close to the local minumim of the excitation curve, where E ~ ~- This 

is the energy gap necessary for superfluidity. 

In the incompressible fluid regime of Helium II, the coherent motion of the BEC 

is described by a wavefunction of the following form 

(C.7) 

Its evolution is governed by a Schroedinger equation where the external potential is 

the chemical potential of the Helium II quantum fluid 

(C.8) 

It is through the chemical potential that the dynamics of the normal and superfluid 

parts of the Helium II are coupled. The explicit form of JJ for Helium II is given 



247 

below. The probability current is 

(C.9) 

This implies the Helium II supercurrent density is the related to the gradient of the 

phase of the wavefunction 

·s - ·prob - of,2a s ·prob 
Ji = Tn4J.i - 'f'o i + Joi ' (C.10) 

where j;iob - jfrob(I/Jo) is the compressible part of the superfluid current density. 

The condition for conservation of probability 

(C.ll) 

then becomes the continuity equation of hydrodynamics provided the mass density 

of the superfluid is identified as the square of the amplitude Ps = 1114 ·1/J~. It follows 

that the superfluid's hydrodynamics flow velocity is 

(C.12) 

In a singly-connected region of the quantum fluid (i.e. the bulk region), the incom

pressible part of the superfluid flow velocity must be curl free since it is the gradient 

of a scalar, the phase of the wavefunction. Inserting (C.7) into the Schroedinger's 

equation for the BEC (C.8), the flow equation is expressed in terms of S and the 

real part takes the form of the Hamilton-Jacobi equation of motion 

1 2 fi2 \72 ..;p; 
-('VS) + 1-l = -ats +- . 
2m4 2m4 ..;p; (C.13) 

The last term in (C.13) vanishes in the bulk.1 Using this fact when taking the 

gradient of (C.13), gives the hydrodynamic flow equation, the Euler equation, for 

the superfluid part of Helium II in the bulk region 

a s sa s 1 a 
tV + V· J·V· = -- i/-l 1 

t J t 7n4 
(C.14) 

1 It is not essential to assume Planck's constant is small to be able to neglect this term since it 
depends only on v'Ps whose gradient is negligible in the bulk region of the quantum fluid. 
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with a hydrostatic force due to a gradient in the chemical potential2 

What is \l 11,? Consider the thermodynamics of the fluid. Let Uo, T, ~' P, V, 

and N denote the total internal energy, temperature, entropy, pressure, volume, and 

total particle number of the fluid. The Gibbs free energy is 

G = Uo - T~ + PV, (C.15) 

which implies 

dG =dUo- ~dT- Td~ + VdP + PdV. (C.16) 

Moreover, the total energy change3 

dUo = J-LdN + Td~ - PdV (C.17) 

Substituting (C.l7) into (C.l5) gives 

dG = J-LdN - ~dT + V dP. (C.18) 

Therefore, the Gibbs free energy is 

provided Nd{t = -~dT + VdP. (C.19) 

That is, the Gibbs free energy is the product of the number of 4He particles and the 

chemical potential, which is expected since the chemical potential is the amount of 

energy it takes to add a single particle to the system4 . The total density and the 

2The identity, ~ 'V( v;) = ( v8 • 'V)vs + v8 ('V x v8 ), for the calculation of the gradient is used. 
3 A change in the total energy can occur in three ways, dUo = dV + dQ + dW, by adding a 

particle to the system with an "external potential" dV = 11dN, by adding heat dQ = Td'L, or by 
the system doing work dW = -PdV. 

4It is interesting to note that the phase of the condensate wave function, S, and the total number 
of particles are cannonical conjugate variables. This is directly seen by writing the Hamiltonian, 
H, as the sum of the free energy plus the bulk kinetic energy of the superfiuid 

1 2 
H = N11 + 2Nrn4V8 • 

The classical Hamilton's equations are then 

aS aH 
at aN 

aN 
at 

aH 
aS 



total entropy per unit mass are 

Nm4 
P--

V 

so using (C.l9) the gradient of the chemical potential becomes 
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(C.20) 

(C.21) 

The two-fluid Navier-Stokes equation for Helium II must have viscous damping 

arising only from the normal flow. Furthermore, the pressure must be linear in the 

two-fluid density and this drives first sound, P = cip. The two-fluid Navier-Stokes 

equation is then 

(C.22) 

With this equation, as well as the superfluid equation, then the hydrodynamic equa-

tion for the normal fluid can be determined. The Navier-Stokes equation for the 

normal fluid has a nonideal equation of state but otherwise is quite standard in form. 

Therefore, a model of the normal fluid equation is possible with an appropriately 

chosen form for an interparticle potential force. 

C.l.l Summary of helium II hydrodynamic equations 

Mass continuity equation: 

(C.23) 

two-fluid flow equation: 

(C.24) 

the first reducing to 

8tS =- (rt + ~rn4v~) , 
which is exactly the Hamilton-Jacobi equation (C.l3), and in tllis case is the integral of Euler's 
equation. 
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Superfluid flow equation: 

(C.25) 

normal fluid flow equation with kinematic viscosity is v _ TJ/ p11 : 

!') n n ~ n 1 a p Ps aT !:12 n 
UtV· + V· u1·V· = -- i - -(5 i +vu V·, 

2 J 2 p Pn z 
(C.26) 

-o;V 

Entropy equation: 

(C.27) 

C.1.2 Linearized helium II hydrodynamics 

Consider a situation where Helium II at rest in the bulk region with constant 

background density, temperature, and entropy is subjected to a small perturbation 

so that the macroscopic dynamical variables can be E expanded. Then considering 

only first order fluctuations in these variables, the linear hydrodynamics regime is 

obtained, 

vs 
2 

EU8 

2 
(C.28a) 

vn 
2 

EU11 

2 
(C.28b) 

Ps Pso + Ef2s (C.28c) 

Pn Pno + Ef2n (C.28d) 

(5 CJo+E<; (C.28e) 

p Po+EP (C.28f) 

T To +ET. (C.28g) 
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Then neglecting damping, the linearized hydrodynamic equations for Helium II are 

the following 

-8i(Pso'Uf + Pnott7) + O(c2
) 

1 - 2 
--DiP+ croDiT + O(c ) 

Po 
1 - Pso ( 2 --DiP+ --CTo8iT + 0 E) 

Po Pno 

-cro8i(PsoU~ + Pno'tl~) + O(c2
). 

(C.29a) 

(C.29b) 

(C.29c) 

(C.29d) 

Consider a situation where Helium II is kept at a fixed temperature, so '\IT = 0. 

The fluctuating part of the two-fluid mass density is 2 = Ps + Pn and the fluctuating 

part of the two-fluid current density is ]i = PsoUi + Pnouf. So the linearized two-

fluid equation, the sum of (C.29b) and (C.29c), and the linearized mass continuity 

equation (C.29a) reduce to 

Eliminating ]i gives 

(C.30a) 

(C.30b) 

(C.31) 

Now in general the pressure is a function of density and entropy, P = P(p, cr). In 

an isothermal regime we have ( ~:)P = 0, so we can write 

(C.32) 

At constant temperature, the partial derivative of pressure with respect to density 

is the square of the speed of first sound 

(C.33) 

Under isothermal conditions this is constant, so we have 82 P = ci82 
{}, and sub-

stituting this into (C.38) gives a wave equation for density fluctuations of Helium 
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II 

(C.34) 

This is the equation of motion for a phonon excitation. 

Next, consider a situation where Helium II is kept at a fixed pressure, so V P = 

0. So the linearized superfluid equation ( C.29b) and the linearized normal fluid 

equation (C.29c) reduce to 

(C.35a) 

(C.35b) 

Subtracting these gives an equation for the fluctuating velocity difference uf- u'j 

!=! ( n s) Po !=! T Ut 'Ui - ui = --aoui . 
Pno 

(C.36) 

Here it is clear that a temperature gradient produces relative motion between the 

normal fluid and superfluid parts of Helium II. To obtain an equation for relative 

motion, insert the linearized mass continuity equation (C.29a) in the linearized 

entropy flow equation (C.29d), which becomes 

!=} ( n s) Po a 
aoUi Ui - Ui = -- t'>· 

Pso 
(C.37) 

Now we have two equations from which the relative motion ztf -u'j can be eliminated 

to give 

(C.38) 

In general the temperature is a function of density and entropy, T = T(p, a). In an 

isobaric regime, ( CZ )a = 0, so we can write 

(aT) 
BiT= oa P 8i'>· (C.39) 

Under isobaric conditions ( ~~)P is constant, so we have 

(C.40) 



253 

Denoting the speed of second sound as 

p so -,---0"-~--
Pno ( 80" / 8T) p . 

(C.41) 

we have the equation of motion for an entropy excitation 

(C.42) 

a second kind of hydrodynamic sound wave unique to Helium II. 

C.2 Madelung transformation 

It is possible to map the NLS equation (5.11b) to hydrodynamic equations. To 

do this, the Madelung transformation [Madelung, 1927] is employed 

rp(x) = ¢(x)ei1J(xl, (C.43) 

where ¢(x) and 'l?(x) are real-valued phase and magnitude fields. The first time 

derivative 

(C.44) 

and the second space derivative is 

(C.45a) 

[ C:) \ v. (:¢) -(\711)'], 

+ i [ 2 ( :¢) . \7 '!9 + \72'!9] tp (C.45b) 

[\7;¢- (\7'!9)2] rp+i [2 (:¢). \7'!9+ \72'!9] tp. 

(C.45c) 
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Then the real and imaginary parts of (5.11 b) respectively are 

(C.46a) 

(C.46b) 

We apply the gradient operator -,! 'V to the first equation, multiply the second by 

¢2 , and then rearrange terms 

Rearranging once again gives 

(C.47a) 

(C.47b) 

(C.48a) 

(C.48b) 

Taking the scalar phase S = h{) and number density p = ¢2 as conjugate variables, 

( C.46) are Bohm's equations [Bohm, 1952] 

as 
at 
ap 
at 

(VS) 2 

...:....__-'-----+VB+ MJ(p) 
2m 
1 

--\7. (p'VS), 
m 

n~ V'2,;p 
where the nonlinear potential VB = - 2m ,;pP. 

(C.49a) 

(C.49b) 

Alternatively, we may identify the conjugate variables with hydrodynamic Eu-

lerian variables, a fluid's density and velocity fields 

p(x) 

v(x) 

¢(x? 

h 
- 'V1J(x). 
m 

(C.50a) 

(C.50b) 



2.5.5 

Hence, the NLS equation is equivalent to a momentum equation (Newton's second 

law) and a number continuity equation 

Dt(mv) + V ( ~mv2) 
OtP + V · (pv) 0, 

(C . .Sla) 

(C . .Slb) 

where the quantum mechanical kinetic energy term in (.S.llb) contributes to the 

gradient of the Bohm potential 

(C. .52) 

Carrying out the differentiation, the Bohm potential has the form 

VB=_ fi2 [\72p _ ~ (Vp)2]· 
4m p 2 p 

(C. 53) 

Finally, notice that 

V [-_!f_ (Vp)2] = _!f_ [V2p- ~ (Vp)2] Vp, 
Sm p 4m p 2 p 

(C.54) 

so that we can write another form of the Bohm potential 

6 [ fi2 ('Vp)2] 

v; (C~3) 8m p 

B - 6p . (C. 55) 

We will consider flow with bulk density that is nearly constant (p = p(o) + p<1) + · · · ) . 

(C.50a), and in turn (C.52), is always finite and nearly constant in the bulk while 

supporting radiative fluctuations in p. However, the bulk flow is driven by vortex 

solitons, at whose center p(o) vanishes, so although VB can become quite large this is 

regulated by the vanishing density profile. In the end, the fluid dynamics is driven 

by ( C.52) near the core of the vortex solitons but in a stable and self-consistent way. 
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C.3 Hasimoto transformation 

Hasimoto considered a vector quantity N and a complex amplitude ·1/J defined 

along C and parametrized by the arc length 

N(s) 

<p(s) 

(C.56a) 

(C.56b) 

where E is real and E
2 = 1 and <pis a radial amplitude field (in two-dimensions) since 

the dimension of <p is inverse length, and a 1 and a 2 are a dimensionless complex 

numbers. Note that 
Ltl(/J A 

(C.57a) EN= -(n+ib) 
Lt2/'l, 

or 

A 1 "J/d n + ib = -e-z 0 ST N 
Ltl 

(C.57b) 

and 

A 1 t . J.s d 
(C.57c) n-ib= -N e2 

0 ST 

a* 1 

A 1 
Nt<p (C.57d) E(n-ib)= 

aja2"" 

Moreover, we have 

<p' 
(C.56b) (K' ) -;:+iT <p. (C. 58) 

Using the second and third Frenet-Serret formulas, the change of N with respect to 

the arc length is 

EN' ( s) (C.
56

a) Ltl E ei J; ds T ( n' + if/) 

+ia1wi.f; dsrT(n + ib) 

(5.57) 

(C~6b) _ ct1 <p £. 
Lt2 

(C.59a) 

(C.59b) 

(C.59c) 



Invoking the first Frenet-Serret formula, we have 

1dR ( 
1 

* Nt cp) 
(X2(Xll'l, 

(C .. 57d) 

~(:~ + :~:). 

2.57 

(C.60a) 

(C.60b) 

(C.60c) 

A fundamental geometrical property of a quantum vortex in the high-curvature 

limit is that its motion is directed along the bi-normal vector and with a strength 

proportional to the curvature 
• K, 0 A 

R = {3-Kb 
47r ' 

(C.61) 

where {3 is a dimensional real-valued number. Then, choosing a parametrization 

with IR'(s)l = 1, for example the helix specified by (5.60a), we have 

t 
(5.58a) R: (C.62a) 

(C~l) /'l,0 ( /A A) {3
4

1f Kb-TKn (C.62b) 

{3-K -b- rn /'l,0 
( K

1 

A ) 
47r K 

(C.62c) 

{3 ;; K 3( [ ( b + in) ( ~ + iT)] (C.62d) 

Et R[cp] 
(C. 58) 

{3 ;; K 3( [i E (n-ib) cp'] (C.62e) 

(UEd) {3 K,0 3( [ i ~t cp
1 

cp] (C.62f) 
47r a 1a2 

t (C~6) . K 0 £ ( Nl\0' \O,jN) (C.62g) z{3-- -----
47r 2 aia2 a1a2 ' 

where in the last line be made use of the fact that E
2 = 1. Regarding orthogonality 

of the Frenet-Serret basis vectors and N, we have 

(C.63) 

so we can represent the time rate-of-change of N as a linear combination of N, Nt, 

and i as follows: 

1V =AN +BNt + ci, (C.64) 
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where A, B, and C are unknown coefficients that we will now evaluate. First, we 

have 

or 

A+A* 

J¥t.N 

-
1

- (iV. Nt + J¥t. N) 
2/o:l/ 2 

1 fJ (N Nt) 
2/o:l/ 2 fJt 

0. 

(C.65a) 

(C.65b) 

(C.66) 

(C.67) 

(C.68) 

Therefore, A must be a purely imaginary coefficient, so we will choose to write it as 

A=iR, 

where R is real. NeJ~.."t, we have 

Finally, from ( C.62g) we have 

N t
:.. (C.63) . (3 K,o 0:1 t . = ~E - -<p 

47r 0:2 

and from (C.64) the last coefficient is determined 

Hence, (C.64) reduces to 

N 

c i-N 

- t·N -N·t f) (A ) :.. 
fJt 

(C.63) 

(C.71) -iE(3 K,o a1 <p'. 
47r a2 

(C.69),(C.70) 

(C.72c) . (RN (3a1 K,o 'tA) ·z, -E --<p . 
a247r 

(C.69) 

(C.70) 

(C.71) 

(C.72a) 

(C.72b) 

(C.72c) 

(C.73) 



Then, taking the derivative with respect to the arc length, we have 

(C.59c) 
(C.60c) 

'ic [R'N + RN'- c{3a
1 

r;,o (cp"i + cp't')] 
a247r 

Alternatively, we can calculate N' directly from (C.59c) 

(C~g) 

Thus, equating (C.74b) and (C.75b), the coefficients of i gives 

the coefficients of Nt match, and finally the coefficients of N gives 

R' = 

Integrating gives 
f3r;,o 1 cptcp f-L 

R = 47r la2l2 -2- + fi' 
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(C.74a) 

(C.74b) 

(C.75a) 

(C.75b) 

(C.76) 

(C.77a) 

(C.77b) 

(C.77c) 

where we judiciously chose the integration constant. Inserting (C.77c) into (C.76) 

and multiplying through by n leads to the GP equation 

(C.78a) 

(C.78b) 



260 

This is the GP equation if (3 = 1, (in the high-torsion limit s ~ z) 

(C.79) 

and 

(C.80) 

Thus g < 0 and in turn i.p is the complex scalar field of a repulsive BEC. 



APPENDIX D 

Vortex soliton 

D.l Parle approximant for a quantum vortex 

Here we work out the values of the parameters a 1 , b1 , b2 in (6.77), the Pade 

approximant for a black quantum vortex. We begin by Taylor expanding ¢(r) about 

r = 0 to 7th order 

(D.la) 

Working through each term in the GP equation, and keeping terms only to 5th 

order, the first-order derivative term is 

(D.2a) 
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Next, the second-order derivative term is 

(D.2b) 

The orbital angular momentum terms is 

n2 ¢(r) n2...;al n2 (a1b1- ab2) r n 2 (3aibi- a2b~- 2al (2al + ab1) b2) r 3 

- =- + ---~~~--~--~~------~~-
r2 r 2ylal 8a{l2 

n2 (sarbr- 3ai (4al + ab1) b2b1- a3b~ + aa1 (4al- abl) bD r 5 

+ 5/2 + .... 
16a1 

(D.2c) 

Finally, the nonlinear term is 

(D.2d) 

The sum of the two ~-order terms in (D.2) vanishes for winding number n = 1. For 

the sum of all the r-order terms to vanish 

we choose 

a 1 (a - 4b1) + 4ab2 = 
0 

yfal 

b
1 

= a(a1 + 4b2). 
4al 

The sum of all the r 3-order terms must vanish 

which upon inserting (D.4) reduces to 

(7a2 - 16al) a1 + 48 (a2 - 4al) b2 = O. 
16ylal 

(D.3) 

(D.4) 

(D.6) 



So, we choose 

b _ a1 (16a1 - 7a2
) 

2
- 48(a2 -4a1) · 

The sum of all the r 5 -order terms must vanish too 

which upon inserting (D.4) and (D.7) reduces to 

Finally, we choose 
lla2 

al = --. 
32 

Next, inserting (D.lOa) into (D.7), we have 

In turn, inserting (D.lOa) and (D.lOb) into (D.4), we have 
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(D.7) 

(D.S) 

(D.9) 

(D.lOa) 

(D. lOb) 

(D.lOc) 

Therefore, inserting (D.lO) into (6.77), we find that the Pade approximant for wind-

ing number n = 1 yields the following radial solution for a black quantum vortex 

¢(r) = 
384 + ar2 (128 + llar2 ) · 

(D.ll) 



APPENDIX E 

Entropy conserving fluid model 

E.l Entropic lattice Boltzmann method 

The basic construction of a method to simulate classical fluid hydrodynamics 

based on the entropic lattice Boltzmann equation starts with a suitable choice of a 

microscopic lattice, with finite-point group symmetry from which we can recover the 

desired macroscopic scale continuous symmetry of rotational invariance. We require 

even numbered products of the lattice vectors, within a local stencil, produce re

spectively ranked isotropic tensors. Therefore, we shall insist the following isotropic 
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lattice tensor identities hold for any acceptable model implementation: 
n 

~</>a( a) - <I>o(o:) (E.1a) 
a=l 

n 

~ </>a(o:)cai 0 (E.1b) 
a=l 

n 

~ </>a(o:)caiCaj 1>2 ( 0: )bij (E.1c) 
a=l 

n 

~ </>a(o:)caiCajCak 0 (E.1d) 
a=l 

n 

~ </>a(o:YcaiCajCakCaz 1>4(o:)(bijbkl + bikbjl + bitbjk) 
a=l 

(E.1e) 

At each point of the lattice, a minimal representation of the single-particle 

phase-space distribution function is used, severely discretized over the momentum 

space degrees of freedom and highly resolved over the positional degrees of freedom. 

In the lattice model, there are n elements of the distribution, denoted fa(i!, t) for 

a = 1, ... , n. i! is the vector coordinate of a point on the lattice and t is time, 

measured in discrete steps of flt = 1. That is, the local stencil for the numerical 

algorithm contains n points of the lattice; a is an index for a point in the stencil and 

is therefore associated with a lattice vector ~' directed from the stencil's center to 

that point. 

Equilibrium distribution 

The single-particle equilibrium occupation probabilities, J:q, are expressed in 

terms of a statistical distribution function, </>a, as follows: 

(E.2) 

Subsonic expansion of (E.2) is: 

J:q = </>a(a) + Cad3i</>~(a) + ~CaiCajf3i/3j</>~(a) + 0[;33
]. (E.3) 



Zeroth, first, and second moments: 

p 

Corrected equilibrium distribution 

Zeroth order quantities ((3 = 0) : 

p 

First order quantities ((3 rv E): 

p 

<t>;(a)f3k 

a 

a 

<I>o(a) 

0 

<I>2 (a )okz + <I>~ (a) (f3kf3z + ~
2 

okz) . 

Using (E.6b) to solve for (3 

and inserting this into (E.6a), one may solve for <!>0 
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(E.4a) 

(E.4b) 

(E.4c) 

(E.5a) 

(E.5b) 

(E.5c) 

(E.6a) 

(E.6b) 

(E.6c) 

(E.7) 

(E.8) 

Since u = fYV, substituting (E.5a) into the right-hand side of (E.S), we may identify 

the following perturbative correction (its "anti-derivative"): 

(E.9) 
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It is because l:a(E.9)=(E.8) that (E.9) is a consistent subsonic correction to the 

distribution function c~Ya(a), which is not unique. An alternative and more compli-

cated way to determine a correction formula is given in our previous paper, see Eq. 

(23) in [Boghosian et al., 2004b]. Defining the energy density factor 

(E.lO) 

(E.9) is 

(E.ll) 

Hence, inserting (E.ll) into (E.3) leads to the corrected occupation probability 

(E.12) 

As a consistency check, we can take the moments of (E.12). Second order quantities 

p <Po(a) 

where the Galilean factor is 

_ <PJ (a) <Po( a )<PJ (a) 
g = g <I>~(a) = [<I>;(a)J2 · 

The pressure tensor 

is then 

(E.13a) 

(E.13b) 

(E.13c) 

(E.14) 

(E.15) 

(E.16a) 

(E.l6b) 
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Near equilibrium distribution 

We wish to write the mesoscopic transport equation in the simplest way pos-

sible, convenient for later manipulations. We shall write all the relevant quanti-

ties as vectors in the space of the discrete momenta (irreducible Brillouin zone) 

denoted B. The principle quantities are the equilibrium occupation probability 

drift vector c - {c1 , C2, ... , c;.}, which has as its components the constant ve-

locity vectors. Unlabeled products of vectors are to be interpreted as multiplied 

component-wise, for example c f = {cd1 , C2fz, ... , c;.j2}. The dot product is de-

fined as usual, for example c · f = 'Ea cafa· It is understood that an operator 

acts on all the operands appearing to its right, so for example V' · c • = c · V'•, 

since c is constant and where the bullet symbol represents a slot for some operand. 

Consequently, V' · cf = {c1 · V'fi,C2 · 'Vfz, ... ,en· V'f2 } is a vector in B whereas 

V' c · f = 'Ea ~ V' fa is not. In this notation the macroscopic moments are 

p l·f 

c·f 

cc. f, 

where 1 - (1, 1, ... , 1) and the lattice Boltzmann equation is 

f(lx +eM, t + M) = f(lx, t) + O[f]. 

(E.17a) 

(E.17b) 

(E.17c) 

(E.18) 

With the equilibrium condition OW] = 0, we can linearize the collision function 

on the right-hand side of (E.18) about the corrected equilibrium occupations. Then 

(E.18) may be rewritten as a matrix equation using the Jacobian matri.x of the 

collision operator J _ (orO)Ir=d' where d- ip0 jn. Furthermore, we introduce the 

space and time parabolic differential operator 

L• = ( Ot + V' . J)•, (E.19) 



269 

written in terms of the current operator 

(E.20) 

Here c• act as a drift vector and c2c is a diffusive eigenvector, see (E.26) below. 

Taylor expanding the left-hand side of (E.l8) about the point (lx, t) yields the 

parabolic equation 

(E.21) 

J is an x n size matrix and the product Jf is to be interpreted as the usual matrix 

multiplication. Then, multiplying (E.21) from the left by c gives 

.Ccf = J [c(f- fc)]. (E.22) 

Note that the product cJ is not interpreted as a matrix multiplication operation, 

but instead the components of c multiply the rows of J. Hence, we have used the 

identity cJf = J[cf]. In order to find the correction to the occupation probabilities 

due to collisional diffusion, we perform a perturbative approximation starting with 

the first order contributing term from the left-hand side of (E.22) 

V' · jcf = J [c(f- fc)] (E.23) 

This implies 

(E.24) 

and in turn 

(E.25) 

where the generalized inverse of J is taken over the kinetic subspace since the hy

drodyanmic subspace is the null space of eigenvectors (conserved quantities) of J-1 

with zero eigenvalue. Our lattice is chosen so the diffusive eigen-equation 

-1 cc 1 cc 
J -=---

2 K.ry 2 
(E.26) 
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holds, whence we obtain the first order deviation of the occupation probabilities: 

(E.27) 

This implies 

(E.28) 

or component-wise this reads 

+ = f.c - _!_c ·8f.(O,l) + 0(E3) 
Ja a K az ~ a ' 

'rf 

(E.29) 

where the superscript (0, 1) denotes the contributing orders, perturbatively; only the 

zeroth and first order terms are needed since the spatial gradient of the probability 

field contributes an additional order E. Therefore, we insert the first two (lowest 

order) terms of (E.12) into (E.29) to obtain a perturbation expansion of the near

equilibrium distribution, including all terms up to order E
2

: 

(E.30) 

In vector notation, we have 

rnear = <Po ~ , 9 [<Po -~ -+-" ? -+-] ¢ + <]?~ v · c¢ + 2 <]?~ vv : cc'~-' - v- '~-' 

1 [ <Po~ '] -\7 · c ¢ + -, v · c¢ . 
Kry <]?2 

(E.31) 

Building on (E.13) we see the moments of (E.30) are the following: 

p (E.32a) 

(E.32b) 

(E.32c) 
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Navier-Stokes equation 

Dotting c into (E.21) (taking the first moment) yields 

.Cc · f = 0. (E.33) 

The right-hand side vanishes because c · n = 0 for all distributions, whether near 

or far away from equilibrium. (E.33) reduces to 

(E.34) 

or in component form 

(E.35) 
a 

Inserting (E.32c) into (E.35) and retaining terms to order E
3 yields, in the incom

pressible limit when \7 · iJ = 0, the following effective field theory: 

• 1 ( 1 1) 2 ( 4 Ot(Pvi) + gif>oVjOjVi = -ojPij + gif>2 Kry - 2 a Vi+ 0 E ). (E.36) 

Finally, dividing through by ¢(a) gives the incompressible N avier-Stokes equation 

(E.37) 

where the pressure is 

if>2 [ if>2 ] v
2 

P= -+ g--9 -, 
if>o if>o 2 

(E.38) 

and where the kinematic viscosity is 

v = if>~ (I_ - ~) . 
if>' K 2 2 17 

(E.39) 

For any model on a lattice that satisfies the isotropy conditions (E.1), we can choose 

the cPa's so that g = 1 in (E.37) to impose Galilean in variance in the nonlinear 

convective term and also so that g - !~ g = 0 in (E.38) to remove any anomalous 

velocity dependence in the pressure term. As an example, in §E.1.2 we demonstrate 

this for the n = 27 model in 3+ 1 dimensions. 
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E.l.l Entropic treatment 

BGK collisional approximation 

We take the ELBE to be the following finite-difference form of the Boltzmann 

kinetic transport equation: 

!a(x + ea!:::.t, t + !:::.t) = !a(x, t) + af] [f:q(x, t)- !a(x, t)]' (E.40) 

where the inverse relaxation time is af] rv K,71 • This form is suitable for numerical 

implementation. The right-hand side is a generalization of the Bhatnager-Gross-

Krook (BGK) collision function [Bhatnagar et al., 1954, Gross and Jackson, 1959] 

commonly used in the lattice Boltzmann equation (the Jacobian of the collision 

function is taken to be diagonal). The free parameter 0 ~ f3 ~ 1 allows us to tune 

the viscosity. For a ~ 2, the inviscid limit occurs as f3 -. 1. The effective shear 

viscosity is 

') ( 1 1) 
Veff = c;t::.t af] - 2 . (E.41) 

(E.40) requires the following steps to update the distribution functions from time t 

to time t + !:::.t: 

(a) initialization of fa using the equilibrium distribution function J:q(p, v, t); 

(b) evaluation of the collision function Oa (computing post-collision distribution f~ 

from the pre-collision distribution fa); 

(c) streaming of the distribution function information to neighboring lattice points; 

and 

(d) calculation of the mass and velocity moments at each spatial point. 

The computationally expansive step is (b), choosing the post-collision distribution 

f~(x, t) by considering the change in the local entropy Hat the point x, a sum over 
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all n entropy contributions from each of the discrete momentum directions 

n 

1i(x) = L ha[!a(x)], (E.42) 
a=l 

where ha = ha[!a] is a pre-specified function that determines the collisional dynam-

ics, and the value of the dissipative transport coefficient, the shear viscosity v, m 

the macroscopic equation of motion. 

FIG. E.l: Collisional inversion. The non-equilibrium part of distribution function is 
shown (black vectors on the left and white on the right). The curved surface is an 
isentrope and the diagonal plane is a constant mass surface. The incoming f goes to a 
point at the intersection of the constant mass and entropy surfaces (black line on left and 
white line on right view). req is shown (middle black line on left and middle white line on 
right view). req contacts a lower entropy surface. The ideal (/3 = 1) outgoing distribution 
f' = f + a..:l. (black line on left and white line on right view) goes to an antipodal point on 
the curve formed by the intersection of the constant mass and entropy surfaces. Finally 
for (3 = 0.9, the outgoing f + a(3.t:J.. (red line on both views) illustrates (3 < 1 increases 
the entropy since f does not contact the original entropy surface. 

In the inviscid limit (v = 0), the change of the local entropy 

n 

81-{ = L (ha[f~(x)]- ha[!a(x)]) (E.43) 
a=l 

vanishes at all points and at all times 81imin = 0. In the opposite limit of maximum 

dissipation (v = Zlmax), the entropy change has its maximal value, 

n 

81imax = L (ha[!Zq(x)]- ha[fa(x)]), (E.44) 
a=l 

where the equilibrium distribution f~q is found by extremizing the entropy subject to 

the constraint of mass and momentum conservation and using Lagrange multipliers 
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for the mass density and momentum density, which are moments of the single-

particle distribution: ~:=l fa {1, fa} = {p, ptl}, where ·m = 1 is the unit mass and 

Ca are the lattice vectors. 

~ [HU*)- ap- i3 · (pu)] I = o. a !a f=f;';q 
(E.45) 

n a -
ISHmax = -LIS fa a fa [ H(j*) - ap- {3. (pii)] ' 

a=l 

(E.46) 

where /Sf = f~- fa· The entropy change is along the "uphill gradient" of the en-

tropy hypersurface. Extremizing the entropy subject to energy conservation (second 

moment of the single-particle distribution) is not required in the case when we want 

to recover the Navier-Stokes equations in the incompressible limit. 

Isentropic dynamics 

A path along the entropy hypersurface with constant value, say Ho, is an isen-

tropic path. In the n-dimensional space spanned by the occupation probabilities, 

the isentropic path is defined by the set of all fa's that satisfy the equation: 

n 

(E.47) 
a=l 

Letting the incoming distribution be denoted as f and the outgoing distribution f', 

the constant entropy condition is: 

H(f) = H(f'). (E.48) 

Collision by inversion of the distribution 

The bare collision function is A. = feq -f. The constant entropy condition is 

H(f) = H(f + aA.), (E.49) 

parameterized by 0 ::; a ::; 2, and can be written as 

H[feq- A.] = H[feq +(a- 1)A.], (E.50) 
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The trivial case occurs when a = 0 (no collision). The other limiting case occurs 

when a -----+ 2 (inviscid limit). We will understand the role of a by treating this 

limiting case. Here, the incoming distribution f = feq - ~ and the outgoing distri-

bution f' = feq + ~ are exact inversions of each other in the sense that the following 

condition holds: 

(E.51) 

This represents an optimal collision mechanism to reduce momentum transport by 

inverting the non-equilibrium part of the incoming distribution to produce the out-

going distribution, while conserving entropy. This inversion shown in Fig. E.l occurs 

by an overall sign change of the non-equilibrium part of the distribution (-~ -----+ ~), 

and this represents the original mechanism that led to the conception of the entropic 

lattice Boltzmann equation a parametrizes the completeness of the inversion process 

from f to f' going from a = 0 (no inversion) up to a = 2 (perfect inversion). The 

inversion of the particle distribution is used to achieve low viscosity by preserving 

the anisotropy of the particle distribution. 

Derivation of the equilibrium function using an entropy function ap-

proach 

Here we derive the statistical distribution function starting with a classical 

entropy function. The entropy of a single particle state in the mesoscopic limit is 

the following function: 

ha (fa) = fa ln( "'afa) · (E.52) 

The equilibrium occupation probability is defined as the extrema of the entropy 

function: 

ohaUa) I = 0. 
ofa f=feq 

(E.53) 
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From (E.52), we see that 

h~(fa) = ln(Tafa) + 1 = ln (eryafa) (E.54) 

We define the inverse function as follows 

(E.55) 

from which we have 

(E. 56) 

or 

(E. 57) 

where for each distribution function there is a weight d Wa = - 1
- and where we define 

€"fa 

d to be the uniform background number density. 

Equilibrium statistical function recovered 

We extremize 1-l subject to the constraints of conserved mass and momentum. 

Therefore, (E.46) gives us 

h~(fa) -a- iJ · Ca = 0. (E.58) 

Then, using the inverse function (E.55), we obtain the result for the equilibrium 

occupation: 

(E.59) 

Here we recover to our starting point (E.2). Using (E.57) we may write this as 

(E.60) 



-. 
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FIG. E.2: Early stage in the development at t = 900 of the Kelvin-Helmholtz instability 
modeled with parameters f3 = 0.9995 and the bare viscosity is v = 8.3410-5 (using 
a= 2), on a 10242 grid (only a horizontal strip through the middle of the grid is shown). 
The 2D model uses a 9-point stencil. Vortex production occurs along the fronts of 
the braking waves (blue is counterclockwise and red is clockwise rotation). The initial 
background flow speed is U 0 = 0.51~, and the Reynolds number Re = 9.8104 . 

E.1.2 Numerical treatment 

n = 27 model in 3+ 1 dimensions 

The lattice vectors are 
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(E.61) 

which is the set 

c {(0, 0, 0), 

(0, 0, ±1), (0, ±1, 0), (±1, 0, 0), 

(±1, ±1, 0), (±1, 0, ±1), (0, ±1, ±1), 

(±1, ±1, ±1)}. (E.62) 

For each occupation probability fa is associated one element of the set, C'a, for 

a= 1, ... , n. We define a weight Wa for each occupation probability as follows: 

3 2 2 

Wa(Ca) = IT ql-lcailr ca;~cai S ca;;cai. (E.63) 
i=l 
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Normalizing the weights, La 'Wa = 1, gives the following cubic equation 

(q+r+s) 3 = 1, (E.64) 

and we take the real solution as the physical one q = 1 - r- s. Following (E.57), 

the basic approach is to write the occupation probability function in separable form 

(E.65) 

Since the weights are normalized, the zeroth moment of cPa is 

<Do(a) = F(a). (E.66) 

From (E.65) it follows that the second moment of cPa is 

(1 0 0:) (r+s)F(a) o 1 

0 0 a 

(
0 1 1) 

+ (r-s) 2 F(a) 1 o 1 , 

1 1 0 

(E.67) 

and so if we pick r = s then we recover the lattice tensor identity (E.1c) where 

(E.68) 

The fourth moment of cPa is 

(E.69) 
a 

To recover the lattice tensor identity (E.1e), the diagonal components must equal 

three, ?
1 = 3, so we must haver= -6

1
, which gives us 

-r 

(E.70) 
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and from (E. 68) we have 
1 

<l>2 (a) = 3F(a). (E.71) 

Now using (E.71), (E.70) and (E.66), the Galilean factor (E.14) is unity, 

F"" 
g= F = 1, (E.72) 

and the velocity-dependent term in (E.16a) vanishes, 

<!>2 F"" - F" 
g- -Q = = 0, 

<I>o F 
(E.73) 

provided we have F(a) = de±a. This solution is consistent with (E.57). The pressure 

is 

P=~ 
3' 

(E.74) 

and the kinematic viscosity is 

(E.75) 

The corrected equilibrium distribution is 

[ 9 ( v
2

)] rc = wde01 1 + 3v. c + 2 viJ: cc- 3 . (E.76) 

Simulation results 

2D interlacing Kevin-Helmholtz vorticity sheets are simulated on a 10242 grid 

at Re = 105 , see Figure E.2. Histograms of the grid variations of the a(x, i)-profiles 

show a significant shift from a quasi-Guassian distribution about the equilibrium 

neq = 2 and strongly shifted to large effective viscosities due to turbulence. At late 

time stages of this simulation we observed a large number of vortex pairing events. 

The most prominent was the paring of like-sign or co-rotating vortices, see the three 

stages of symmetric vortex fusion in a 2D fluid simulation shown in Figure E.3. 

This observed behavior agrees with experimental observations of vortex fusion by 

Meunier et al. [Meunier et al., 2002]. 



._,-::-;-

t=O t=SOK .. t=BOK 

t=30K t=65K t=140K' 

FIG. E.3: 3 stages of symmetric vortex fusion. 1st column (t < 50K): Vortices rotate 
around each other with approximately constant separation distance; the areal size of the 
vortices grows linearly in time because of viscous diffusion. 2nd column (50K::; t < 70K): 
Vortices reach a critical size, about 24% of the separation distance. Vortex centers then 
rapidly merge into a single core. 3rd column (t 2: 70K): Vorticity arms roll up around the 
central pattern, forming a spiral of vorticity, which subsequently spreads and is smoothed 
by diffusion. 

FIG. E.4: Streamlines plot of turbulent flow arising from the initial Kida profile. 

280 



0.001 ,-----,---,---,---,---,---,---,---, 

0.0001 

... ~ ~ 0. 9988 
s: a. ~~o. 997 e 
70 ~ ~ 0. 9952 
c 

~~0.9925 ., 
~~o 99 

10"5 

~ ~ 0. 95 

10"6 L___L___L___L..__L..__L..__L..__L..____j 

2000 4000 6000 8000 10
4 

1.2x10
4

1.4x10
4

1.6x10
4 

time 

FIG. E.5: The enstrophy (integrated mean square vorticity) decay for bare viscosities 
ranging from v = 2 x 10-4 (for /3 = 0.9988) to v = 8 x 10-3 (for /3 = 0.95) for an initial 
Kida profile. In the early stages, one sees the effects of vortex stretching with expo
nential growth in the strength of the vortex filaments. This growth in the enstrophy is 
independent of viscosity. v determines the peak in the enstrophy followed by exponential 
decay in the inertial range. Re ~ 6000 was achieved on the 5123 grid. 
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Kida flow profile [Kida and Murakami, 1987] for the initial velocity field iJ = 

( tt, v, w) is the following: 

'U(x,y,z, t = 0) = v(z,x,y, t = 0) = w(y, z,x, t = 0) 

= Uo sin ( :V: x) [cos ( ~ 3y) cos ( ~ z) - cos ( ~ y) cos ( ~ 3z)] , 

(E.77) 

where the grid points xi = 1, ... , Ni· This is a highly symmetric periodic initial 

profile. We conducted many 3D simulations initialized with the Kida-Murakami 

velocity profile for freely decaying turbulence, see Figures E.4, The enstrophy decay 

is shown in Figure E.5 for the Kida profile for a range of viscosities. 

E.2 Traveling kink in the Burgers equation 

E.2.1 Cole-Hopf Solution 

The nonlinear Burgers equation 

(E.78) 

is the effective field theory of a Q2 model with state localization. The Cole-Hopf 

solution method [Hopf, 1950, Cole, 1951] begins with the potentialS 

(E.79) 

Inserting (E. 79) into (E. 78) gives 

(E.80) 

Integrating over of the space variable gives the Kardar-Parisi-Zhang equation 

[Kardar et al., 1986]: 

(E.81) 
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The exponential variable transformation is 

or S = -2vln ·1./J. (E.82) 

The needed partial derivatives are 

(E.83a) 

(E.83b) 

(E.83c) 

The KPZ equation becomes the diffusion equation, that is inserting (E.83) into 

(E.Sl) gives 

(E.84) 

E.2.2 Inverse solution check 

Inverting the Cole-Hopf solution, inserting (E.79)-1 into (E.82a), gives 

(E.85) 

Differentiating (E.85), we have 

(E.86a) 

(E.86b) 

(E.86c) 

Inserting (E.86) into (E.84) gives 

_f dxotu + ~oxu- ·u2 = 0. 
2v 2 4v 

(E.87) 

Differentiating gives the Burgers equation 

(E.88) 
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E.2.3 Moving reference frame 

Let k denote the wave number. We write an analytical solution by a kind of 

separation of variables in the frame moving with velocity ±v of the shock front as 

follows 

'1/J(x, t) = g(t)h[k(:r ± vt)]. (E.89) 

Let z = k(x ± vt), then (E.89) into (E.84) gives 

(E.90a) 

or 

atg + az(±kv h- vk28zh) = 0. 
g h 

(E.90b) 

Now z is effectively an independent variable. Choose the separation constant to be 

Dtg 
g 

az(±kvh- vk28)t) 
h 

The exponential damping solution of (E.91a) is 

Differential equation (E.91b) gives 

This has two solutions 

Let a= ± 2~k' we have 

h(z) 

h(z) 

h( 7
)· (E~4) h z(a±v'aLl) . ~ - ·±e . 

(E.91a) 

(E.91b) 

(E.92) 

(E.93) 

(E.94a) 

(E.94b) 

(E.95) 



Its derivatives are 

(a± Ja 2 -1)h 

(2a2 ± 2a)a2 -1-1)h. 
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(E.96a) 

(E.96b) 

Inserting (E.96) into (E.93) gives zero. Therefore, we have the full solution of the 

diffusion equation in the moving reference frame, (E.92) and (E.94) ----+ (E.89): 

k(x±vt) (±..!!..+ ~) 
,/, -vk2t 2 vk V ~ -« '<p+e e (E.97) 

+"'' -vk2t k(>•~vt) ( ± :~-J )1~2 -4) 
'1-'-e e . 

Inserting (E.97) into (E.84) gives zero, so (E.97) is a solution to the diffusion equa-

tion in the moving frame of reference. 

Solving (E.85) for u gives 

(E.98) 

Inserting (E.97) into (E.98) gives 

u (E.99) 

+ Jv2 - 4 k2 v2 ( (d,:)~:L4k2 v2 - 1) . 
·11•- + e v ?/-'+ 

Inserting (E.99) into (E.78) gives zero, so (E.99) is an analytical solution of the 

Burgers equation. Let us define a new wave number 

)v2 - 4k2v2 

2v 

Then (E.99) can be written in a form similar to (E.98): 

K, [V'+e~~:(x±vt) -1/J_e-~~:(x±vt)] 
U (X t) = =j= 'V - 2 V ---=------:-..,---,------;---,------,---=-

' 1/J+e~<(x±vt) + '1/-,_e-~~:(x±vt) 

(E.100) 

(E.101) 

After some algebraic manipulation, (E.101) can be written in terms of hyperbolic 

trigonometric functions 

11.(x, t) = =j=v- 2vK, tanh K,(x ± vt) (E.102) 

(V'x -1/J-) sech2 K,(X ± vt) 
-2vK,~--~~~~----~----~--~ 

( !/Jx + 1/J-) + C!/Jx - '1/-1-) tanhK,( X ± vt) 
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When 'zf'+ = 'zf'- the solution is a moving shock with a hyperbolic tangent front shape. 

This is called as a kink solution and is known to exist in BECs [Simula et al., 2008, 

Muryshev et al., 1999, Busch and Anglin, 1998]. 
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