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ABSTRACT 

 

Coastal inundation initiated via storm surge by hurricanes and nor’easters along 

the U.S. East Coast is a substantial threat to residential properties, community 

infrastructure, and human life. During and after the storm, compounding with heavy 

precipitation and upland drainage, inundation can be caused by the combination of storm 

surge and river-induced inland flooding in various locations throughout the coastal plain. 

Thus, coastal inundation can be expanded from the open coast upstream into the 

tributaries of the New York Bay including the Hudson and East River systems. Given the 

cross-disciplinary nature of the dynamics (encompassing hydraulics, oceanography, and 

hydrology), and the complexity of the atmospheric forcing, a numerical model is the 

optimal approach for a comprehensive study of the hydrodynamics of coastal inundation.  

This study will utilize the large-scale parallel SELFE model to simulate the storm 

surge and inundation caused by 2012 Hurricane Sandy utilizing different forecast wind 

and pressure fields. The large-scale numerical model made use of multiple inputs for 

atmospheric forcing and spatially covered a large domain area to account for large-scale 

oceanographic processes and output accurate model simulation of water levels. In a 

simultaneous effort, a street-level sub-grid inundation model coupled with Lidar-derived 

topography (UnTRIM
2
) was employed to simulate localized flooding events in the New 

York Harbor.  

Sub-grid modeling is a novel method by which water level elevations are 

efficiently calculated on a coarse computational grid, with discretized bathymetric depths 

and topographic heights stored on a sub-grid nested within each base grid cell, capable of 

addressing local friction parameters without resorting to solve the full set of equations. 

Sub-grid technology essentially allows velocity to be rationally and efficiently 

determined at the sub-grid level. This salient feature enables coastal flooding to be 

addressed in a single cross-scale model from the ocean to the upstream river channel 

without overly refining the grid resolution. To this end, high-resolution Digital Elevation 

Models (DEMs) were developed utilizing GIS from Lidar-derived topography for 

incorporation into a sub-grid model, for research into the plethora of practical research 

applications related to urban inundation in New York City. 

SELFE large-scale storm tide simulations were successfully conducted for 2012 

Hurricane Sandy using both the North American Regional Reanalysis (NARR), and the 

Regional Atmospheric Modeling System (RAMS) atmospheric hindcast model results as 

atmospheric inputs. Overall statistics using the 24km resolution NARR inputs observed 

an average R
2
 value of 0.8994, a relative error of 11.77%, and a root-mean-squared error 

of 32.69cm for 10 NOAA observation stations. The 4km RAMS inputs performed 

noticeably better at all 10 stations with aggregate statistics yielding an average R
2
 value 

of 0.9402, a relative error of 4.08%, and a root-mean-squared error of 19.22 cm. Since 

the RAMS atmospheric inputs possessed a higher spatial and temporal resolution than the 

NARR inputs for air pressure and wind speed, it was concluded that generally superior 

storm tide predictions could be expected from utilizing more reliable or better resolution 

atmospheric forecast products.      
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UnTRIM
2
 results were obtained via sub-grid simulation of 2012 Hurricane Sandy 

in the New York Harbor with high-resolution topography and building heights embedded 

in the model sub-grid for New York City. Model performance was assessed via 

comparison with various verified field measurements: (1) Temporal comparison of 

NOAA and USGS permanent water level gauges, (2) USGS rapid deployment water level 

gauges, along with a spatial inundation comparison using (3) USGS-collected high water 

marks, (4) FEMA-collected data regarding inundated schools, (5) calculated area and 

distance differentials using FEMA’s maximum extent of inundation map, and (6) known 

locations of inundated subway entrances. Temporal results verified the effectiveness of 

the sub-grid model’s wetting and drying scheme via seven over land rapid deployment 

gauges installed and collected by the USGS with a mean R
2
 of 0.9568, a relative error of 

3.83%, and a root-mean-squared error of 18.15cm.  

Spatial verification of the inundation depths predicted by the UnTRIM
2
 model 

were addressed by comparison with 73 high water mark measurements collected by the 

USGS and by 80 FEMA-reported water level thicknesses at inundated schools throughout 

the sub-grid domain separated by state. Average statistics for the 73 USGS-recorded high 

water marks for New York and New Jersey were: 0.120±0.085m and 0.347±0.256m for 

root-mean-squared error ± standard deviation, respectively. The larger differences and 

errors reported in the point to point comparisons for New Jersey relative to New York 

were largely due to the lack building representation in the sub-grid DEM for the New 

Jersey side of the Hudson River, and was a significant indication that the representation 

of buildings as a physical impediment to fluid flow is critical to urban inundation 

modeling.  

A maximum difference threshold was imposed for distance and area comparisons 

with FEMA’s Hurricane Sandy flood map using the average distance differential rounded 

to 40m. This was done to minimize the impact of missing or added infrastructure such as 

highway overpasses along with Lidar-derived data limitations of physical impediments to 

fluid flow not accounted for in the model’s DEM. The difference in the absolute mean 

distance between the maximum extent predicted by the street-level sub-grid model and 

the FEMA maximum inundation observation was 21.207m or  4 sub-grid pixels at 5m 

resolution for the entire sub-grid domain. The final area comparison resulted in an 

85.17% area (49,253,687m
2
) spatial match, with 7.57% area (4,376,726m

2
) representing 

model over-prediction, and under-prediction area accounting for 7.27% (4,202,376m
2
), 

with differences being attributed to lack of building representation in the FEMA 

maximum inundation map. Additionally, the implementation of the FEMA’s spatial flood 

map data as a “bathtub” model derivative product of USGS interpolated high water marks 

and elevation data without regard for strong water current velocities or estuarine 

circulation can also account for regions with significant discrepancies.  

 

Keywords:  Storm Surge, Inundation, Sub-Grid, New York City, New York Harbor, 

Jersey City, Conveyance Approach, Unstructured Grids, UnTRIM, SELFE, Lidar, Lidar-

Derived Topography 
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CHAPTER 1: Introduction 

1.1 Literature Review 

A storm surge is an aperiodically anomalous rise of sea level accompanied by a 

tropical or extratropical storm system, wherein surge height is the distinction between the 

observed sea level and the forecasted water level (NWS, 2009). Several distinct processes 

can potentially alter the water level in tidal regions; the pressure effect, the wind effect, 

the Coriolis Effect, the wave effect, and the rainfall effect (Harris, 1963). Coastal 

inundation initiated via storm surge along the U.S. East Coast is a substantial threat to 

residential properties, community infrastructure, and human life. Furthermore, prolonged 

inundation from heavy precipitation and upland drainage during and after a storm has 

passed can significantly increase coastal flood damage. There are additional implications 

for inundated coastal habitats, as a major flood event can dramatically alter the regular 

function of an ecosystem. In order to mitigate loss of human life and damage to coastal 

properties, several numerical models have been developed to provide an early warning 

system for storm surge and inundation events in various coastal study areas (Blumberg 

and Mellor, 1987; Flather et al., 1991; Leuttich et al., 1992; Jelesnianski et al., 1992; 

Westerink et al., 1994; Zhang et al., 2008; Casulli and Stelling, 2011; Arumala, 2012).  

The storm surge model currently employed in forecast and hindcast efforts by the 

U.S. government is the Seas, Lakes, and Overland Surge from Hurricane (SLOSH) 

model. SLOSH was developed by the National Oceanic and Atmospheric Administration 

(NOAA) (Jelesnianski et al., 1992), and effectively separates the U.S. East and Gulf 

Coasts into 30+ overlapping basins with polar, elliptical, or hyperbolic shapes to produce 
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grids for modeling overland flooding (Glahn et al., 2009). Furthermore, for a structured 

grid model like SLOSH to provide adequate coverage over a large domain area and 

maintain fine-resolution near the coast without sacrificing computational efficiency, a 

polar, elliptical, or hyperbolic grid with gradually spatially varying cell size is typically 

utilized to represent an expansive model domain with some limitations (Zhang, K. et al., 

2008). This permits the model grid to cover a sizable basin extending from inland areas 

potentially inundated via storm surge events, to the deeper waters of the open ocean 

hundreds of kilometers from the shore. Due to geometric shape limitations of structured 

grid cells, structured grid models typically prove to be inadequate in their representation 

of complex shoreline geometry and deep shipping channels present in major waterways 

(especially in the Chesapeake Bay). Likewise, the intransigent size limitations associated 

with structured grids usually hampers their capability to cover a satisfactorily large 

enough model domain to account for the remote wind effect (Blain et al., 1994; Shen and 

Gong, 2009).  

The Advanced Circulation (ADCIRC) model is a second-generation storm surge 

model that makes use of a continuous Galerkin finite element numerical scheme, and a 

generalized wave continuity equation to provide a dampened solution free of noise 

(Westerink et al., 1994). ADCIRC uses an unstructured grid to resolve complex shoreline 

geometry and accurately represent the bathymetry of shallow water, and currently uses a 

large domain grid complete with an offshore boundary at approximately 1800 km from 

the Chesapeake Bay entrance at 60ºW longitude. This large domain grid has been utilized 

by ADCIRC, the Finite Volume Community Ocean Model (FVCOM), and the Semi-

Implicit Eulerian-Lagrangian Finite Element model (SELFE) as part of the Southeastern 
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Universities Research Association coastal inundation modeling initiative as a testbed for 

modeling success (Luettich, 2011). This grid covers the entire the U.S. Atlantic Coast and 

Gulf of Mexico to surmount some of the shortcomings of most structured grid models 

like the Regional Ocean Modeling System (ROMS) and SLOSH. With this perceived 

advantage over structured grid models, ADCIRC has helped established successes for 

unstructured grid models on varying topics relevant in the field of physical 

oceanography, ranging from large-scale tide and storm surge modeling to inundation 

simulation (Blain et al., 1994; Westerink et al., 1994; Shen and Gong, 2009).  

This study will make use of a robust semi-implicit finite difference/finite volume 

model for three dimensional flows, UnTRIM
2
 (Unstructured Tidal Residual Intertidal 

Mudflat Model, Version 2). UnTRIM
2
 has been formulated and proven on unstructured 

orthogonal grids (Casulli and Zanolli, 1998, 2002, 2005; Casulli, 1999; Casulli and 

Walters, 2000), and in recent years, the model has been shown to tremendously improve 

its formulation to inherently account for infinitesimally detailed sub-grid elevation 

features without substantially increasing computational effort. These advancements in 

UnTRIM
2
 make it ideal for modeling inundation, which involves virtual representation of 

water flooding beyond complex geometric shorelines with many unique spatial features 

that can be greatly enhanced with improved resolution without the detriment of increased 

computing time (Casulli and Stelling, 2011).  

Modeling in the mid-Atlantic Bight has been successfully performed previously 

with the serial version of SELFE (Cho, 2009). To expand upon this success, this study 

will make use of the MPI parallel version 3.1 of SELFE to capitalize on the additional 

computing power provided to process a large domain cast on a spherical coordinate 
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system. These features being of paramount importance for a large-scale super-regional 

model, the entire model domain covers the U.S. Atlantic coastline from 23°N to 47°N 

(Figure 1.1). This expansive curvilinear large domain grid covers from the Florida Keys 

to Nova Scotia out into the Atlantic Ocean to 62°W, and increases the likelihood of 

properly modeling the effects of an approaching tropical storm system.  

Cho’s (2009) dissertation focused upon 2003 Hurricane Isabel and 1999 

Hurricane Floyd and baroclinic responses in the Chesapeake Bay as a result of these two 

tropical storm systems. Recently, 2011 Hurricane Irene followed a path similar to 1999 

Hurricane Floyd across the Chesapeake Bay from the Southwest to Northeast across the 

Virginia Eastern Shore with congruent strength and intensity (Masters, 2011). The 

similarities in the two storm systems are scientifically important, as 2011 Hurricane Irene 

did substantially more flood damage than did 1999 Hurricane Floyd, making 2011 

Hurricane Irene important for study within the scope of a large-scale storm surge model 

(Rugaber and Wagner, 2011; Walsh, 2011). 

Recently, there has been a renewed interest for improving accuracy and reliability 

of storm surge and inundation models. This is attributed primarily to the severe damage 

left in the wake of 2012 Hurricane Sandy on the U.S. East Coast. In the dissertation by 

Teng (2012), considerable focus was placed on the incorporation of a Wind Wave Model 

into the 3-D hydrodynamic model, SELFE, to accurately model the forerunner of 2008 

Hurricane Ike in the Gulf of Mexico. Additional focus on storm surge in scientific studies 

is also due in part to the potential increase in the strength and frequency of hurricanes 

associated with sea level rise concomitant with global climate change. This effort will 

provide physical oceanographers, government decision makers, and the general public 
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alike, with a better understanding of physical processes while advancing the operational 

capabilities for improving real-time prediction systems (Blain et al., 1994; Wang et al., 

2005; Bernier and Thompson, 2006; Li et al., 2006; Kohut et al., 2006; Shen et al., 2006; 

Gong et al., 2007, 2009; Shen, 2009; Cho, 2009; Xu et al., 2010).  

 

Figure 1.1. Large-scale storm tide model grid stretching from the Florida Keys to Nova 

Scotia including detailed bathymetry in the New York Harbor and adjacent river systems.  
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Not only is there uncertainty associated with climatic regime changes in the 

foreseeable future, there is considerable uncertainty in forecasting wind and pressure 

fields used to force storm surge models. Temporally, increasing length of a forecast 

period likewise raises the uncertainty associated with the predicted wind for that time 

span. Spatially, all coastal regions heavily influenced by a passing storm surge must be 

covered in the model grid. Conceivably, the large-scale model grid shown in Figure 1.1 

with detailed bathymetry in the New York Harbor and Long Island Sound could be used 

to model 2012 Hurricane Sandy. The grid envelops the U.S. East Coast from 23°N to 

42°N including high-resolution topography for select areas of interest prone to 

inundation, and detailed bathymetry in the Hudson and East Rivers, the Long Island 

Sound, New York Bay, and Raritan Bay.  

A successful method for improving the accuracy and reliability of storm surge 

inundation models has been to augment the resolution of the model domain using Light 

Detection And Ranging (LiDAR or Lidar). This technology is a quick and effective 

method to collect topographic data accurate to within a couple of centimeters in vertical 

resolution to populate a Digital Elevation Model (DEM) (Cobby et al., 2001). The use of 

Lidar data to prepare a high-resolution DEM to interpolate onto a model grid is of 

paramount importance in the interest of increasing model resolution for improved 

accuracy and reliability of hydrodynamic model results. The use of Lidar in unstructured 

model grids has already seen some successes in modeling inundation with close to 30m 

resolution using the Eulerian-Lagrangian CIRCulation (ELCIRC) model, the predecessor 

to the SELFE model (Shen, 2009; Gao, 2011). In the thesis by Shen (2009), ELCIRC was 

used to research the induced wave effect in association with 2006 Hurricane Ernesto. 
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Gao’s thesis (2011) utilized a similar unstructured ELCIRC model grid with incorporated 

Lidar topography in the Hampton Roads region of Virginia in the central U.S. East Coast, 

to investigate the important roles played by the remote wind versus local wind effects on 

water level fluctuations in relation to efficient operational forecast modeling during 

Nor’easter Nor’Ida in November 2009. It was demonstrated in this study that Ekman 

transport is a key mechanism affecting the magnitude of storm surge inside the 

Chesapeake Bay during a long duration of continuous wind forcing (Gao, 2011). Taking 

this process a step further, inundation modeling using Lidar data could be further 

improved using a sub-grid modeling technique for improved resolution down to 5m grid 

resolution with nominal cost to computation time. Thus, the sub-grid modeling method 

using Lidar data is potentially ideal for improving real-time prediction in finite regions. 

When water from Hurricane Sandy’s storm surge floods into New York City, it 

will encounter complicated and unique developed land surfaces characterized by a wide 

range of features ranging from waterfront berms, streets, railroads, parks, highways, 

subway stations, bridges, to a variety building types. High-resolution hydrodynamic 

models can be used as a tool to evaluate the impact of these local features into the 

prediction of maximum storm surge extents in an ultra-urban environment. Even with 

ample computing resources available today, it is still insufficient to model all complex 

topographic features at the individual building scale or at street-level resolution. Recent 

research demonstrates that, provided Lidar data of topographic heights and sufficient 

bathymetric water depths, both of which can be collected with very high resolution, it has 

been recognized that the availability of detailed bathymetric data within a coarse grid 

model can be used to further improve model accuracy (Casulli, 2009; Loftis et al., 2013).  
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Currently, the highest-resolution DEM freely available along the U.S. East Coast 

is located within the region of the New York Harbor, comprised of a 1m resolution DEM 

derived from Lidar data with an average point spacing of 0.5m. This study aims to 

improve upon previous storm surge studies by incorporating Lidar topographic data into a 

sub-grid model capable of 5m resolution to resolve complicated geometry neglected by 

grid size limitations of the previous storm surge modeling efforts. As the highest grid 

resolution recorded from the previously discussed modeling efforts was 1 arc sec (≈30m 

resolution), sub-grid scalability (down to 5m resolution) is critical for correctly modeling 

the maximum extent of inundation in storm surge scenarios.  

Visualization of inundation results is a valuable asset in illustrating the potential 

devastation associated with modeled or forecasted events, and has proven to be an 

accurate method of both representing and assessing damages in hindcast models. 

Moreover, flood warnings issued by various government authorities can sometimes be 

confusing or misinterpreted by the general public. An accurate inundation extent map 

superposed on orthophotographs and satellite imagery is proposed to draw attention to 

key societal and economic outcomes from flooding. In the interest of successfully 

conveying inundation model results to both scientific audiences and the general public 

most effectively, a Google Earth/Maps visualization using Keyhole Markup Language 

(KML) will be produced. 

1.2 The Impact of 2012 Hurricane Sandy 

Hurricane Sandy was the second-costliest hurricane on record (after 2005 

Hurricane Katrina) to make landfall in the United States. While only a Category 1 storm 
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on the Saffir-Simpson scale when it made landfall in Atlantic City, NJ, Hurricane Sandy 

was directly responsible for 73 deaths, and amounted to more than $65 billion dollars in 

assessed damages in the United States (NOAA NCDC, 2013; Smith and Katz, 2013). 

Hurricane Sandy reached peak strength on October 25
th

 as a Category 3 storm offshore of 

Cuba in the Caribbean Sea. On October 28
th

, while it was a Category 2 hurricane east of 

the Atlantic shelf break, the storm measured a wind swath of 1,100 miles (1,800 km) in 

diameter, making it (spatially) the largest Atlantic hurricane in recorded history (Gutner, 

2012). Along the path of the storm across seven countries, a total of 286 people died with 

total international damage estimates surpassing $68 billion dollars (Smith and Katz, 

2013). Hurricane Sandy directly impacted 24 states, including all coastal states across the 

U.S. eastern seaboard, with the most severe damage accounted for in New Jersey and 

New York (NOAA Service Assessment, 2012; NOAA NCDC, 2013).  

Hurricane Sandy is distinguished as a unique Atlantic tropical storm system, 

given that it did not track along the typical path of hurricanes back out to sea following 

the Gulf Stream current between the U.S. East Coast and the Atlantic Shelf break (NOAA 

Service Assessment, 2012). Given the presence of a formidable cold front approaching 

from the west across the United States mainland, it was initially forecasted that Hurricane 

Sandy would be pushed back out to sea by the advancing front (Blake et al., 2013). 

However, the front weakened as it crossed the Appalachian Mountain Range, and the far-

reaching effects of Sandy’s winds could be felt more than 900km from the eye of the 

storm (Gutner, 2012). Early on October 29th, Hurricane Sandy abruptly veered westward 

towards the New York/New Jersey coast resulting in the heaviest storm surge impacts in 

the region of the New York Harbor and New York Bight (Blake et al., 2013, Smith and 
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Katz, 2013). The path of Hurricane Sandy was correctly predicted by the European 

Centre for Medium-Range Weather Forecasts (ECMWF) on October 23rd, nearly eight 

days prior to making landfall in the United States on October 29th at 22:00 GMT in 

Atlantic City (Vergano, 2012). The ECMWF forecast came four days before to the 

National Weather Service and National Hurricane Center confirmation of the hurricane 

predicted path with their own GFS wind forecast products on Oct. 27th (NOAA NCDC, 

2013).  

The New York Harbor resides at the confluence of the Hudson and East River 

systems where they empty into the New York Bay, forming one of the largest natural 

harbors in the world. The New York Harbor is a historically significant region with a 

variety of commercial and ecological resources, with management of the Port of New 

York and New Jersey being shared in a cooperative effort by the two different state 

governments (NOAA Service Assessment, 2012).  

Sandy’s storm surge hit the New York Harbor on October 29th, with dual storm 

surges approaching from the south through the New York Bay and from the east 

propagating via the Long Island Sound. New York City, NY, along with Jersey City, NJ, 

and Hoboken, NJ, were heavily impacted by the effect of the storm surge bottlenecking 

up the Hudson River and East River systems, with the storm surge flooding streets, 

tunnels, and subway lines; effectively cutting electrical power, as sub-surface electrical 

infrastructure became flooded via transit tunnels throughout the city. An estimated 66 

million gallons of flood waters were pumped from the city’s subway channels in the 

weeks after the storm had passed (MTA, 2012; PBS NOVA, 2012). The storm surge had 

also had lasting effects on surface infrastructure due to the flood damage inflicted upon 
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an electrical transformer at a ConEdison power substation, still in operation during the 

storm. The transformer exploded, as more than 3m of water height from the East River 

flooded over and around the facility’s 10ft. tall containment wall, leaving more than 

250,000 residences in lower Manhattan Island without power for nearly a week after 

Sandy had passed (PBS NOVA, 2012). Damage to infrastructure during Hurricane Sandy 

prompted ConEdison to stop power distribution from many other high-voltage lines as a 

preventative measure on Tuesday, October 30
th

, around Brooklyn and Staten Island 

servicing the New York Bay area after the passage of the storm as a precaution. This 

action left more than 160,000 homes and businesses without electrical power in these 

areas of New York City, with a total of more than 6 million people without power across 

the Northeastern U.S. (AP, 2012; USDOE, 2012). Given the valuable infrastructure to 

sustain the high population density in the surrounding New York City (8,336,697 

residents, 27,550/sq mi (10,640/km
2
)), and Jersey City (254,441 residents, 16,736.6/sq mi 

(6,462.0/km
2
)), the Greater New York metropolitan area Harbor is a critically important 

region to protect (United States Census Bureau, 2012).  

The primary effort of this dissertation will be to use 2012 Hurricane Sandy as a 

key case study to address the challenges associated with modeling large-scale storm tide 

processes such as storm surge and tide interaction and their associated impacts on 

inundation extents. Additionally, the inclusion of new technology utilizing sub-grid 

modeling coupled with high-resolution Lidar-derived topography, and the inclusion of 

complex building infrastructure to simulate the inundation observed in the ultra-urban 

environment around New York City and Jersey City in the New York Harbor region will 

provide for a detailed local analysis for 2012 Hurricane Sandy.  
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1.3 Scope of Study 

Numerous storm surge models have been developed and applied along the U.S. 

East Coast, and they vary upon grid type (structured/unstructured) or upon the numerical 

schemes used (implicit, semi-implicit, explicit), with examples including SLOSH, 

ADCIRC, FVCOM, and others noted in the literature review (Jelesnianski, et al., 1992; 

Westerink et al., 1994; Zhang et al., 2008). This study will use SELFE, a semi-implicit 

finite element model using an Eulerian-Lagrangian scheme which is not restricted by the 

Courant Friedrichs-Lewy stability criterion, and thus permits the use of larger model time 

steps and robust computations (Zhang and Baptista, 2008). The Global 2-D mode of 

SELFE uses a spherical coordinate system, which will be applied for the simulation of 

2012 Hurricane Sandy in a large-scale simulation covering entire U.S. Eastern Seaboard 

using hindcast atmospheric inputs. The goal of the large-scale approach is to ensure that 

storm tide driven by the hurricane from the ocean is accurately simulated in the major 

estuaries and waterways near the coast, with model results being evaluated for accuracy 

by verified NOAA tidal gauge observations.  

In a simultaneous effort, a highly-resolved, sub-grid inundation model (Casulli 

and Stelling, 2011), will make use of Lidar-derived DEMs specifically produced for the 

New York City metropolitan area to address the extent, timing, and depth of inundation at 

the street-level during Hurricane Sandy. Given the variety of densely-compacted multi-

scale topographic features included in an ultra-urban setting, a coarse grid cannot be 

efficiently scaled to incorporate all the unique objects, features, and scales. Thus, an 

efficient and plausible approach is to sub-divide the various scales and dimensions of 

buildings and streets down to the smallest basic unit of the sub-grid cell. Resolving 
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multiple features at the sub-grid scale permits calculation of form drag posed by those 

features and skin friction as the shallow surge propagates through the city streets during a 

flooding event. Furthermore, by utilizing a non-linear solver and the conveyance 

formulation for calculating the flow resistance, it effectively improves model accuracy to 

the street-level scale without the high computational cost of simulation on a fully-fledged 

high-resolution grid. 

A multi-faceted approach will be used to address spatial verification of the 

inundation extent predicted by the street-level inundation model. These methods will 

include: point-to-point comparisons to validate flood water depth, along with multiple 

distance comparisons between FEMA’s maximum flood extent map, and modeled street-

level inundation results, and separate area comparisons along the New York and New 

Jersey banks of the Hudson River, the East River, and the Harlem River. Additionally, a 

suite of observations from NOAA tide gauges and USGS overland rapid-deployment 

gauges will be used to validate modeled results for timing and flood heights (NOAA 

Tides and Currents, 2012; McCallum et al., 2013).  

1.4  Research Objectives, Assumptions, and Hypotheses 

The primary objective is to develop an effective storm tide and inundation 

numerical model for predicting coastal inundation through the simulation of storm tide 

using a large-scale ocean model along the U.S. East Coast, and concomitantly, the 

inundation extent, timing, and depth at the street-level resolution for the Greater New 

York City area.  
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Specific research objectives addressed include:  

1. Developing a large-scale storm tide model to address storm tide along with broad-

scale ocean processes such as Ekman transport, to ensure that storm tide driven by 

Hurricane Sandy from the ocean is accurately simulated in the estuaries and 

waterways of the mid-Atlantic Bight, where the model results can be assessed by 

NOAA tide gauge measurements.  

2. Addressing the localized inundation in the New York Harbor region at the street-

level (5m resolution) using a sub-grid model with high-resolution topography 

measurements derived from Lidar instrumentation to accurately represent multi-

scale topographic features, such as buildings with various scales and dimensions, 

where timing, depth, and extent of the inundation will be validated via USGS-

collected field-verified measurements.  

3. Evaluating the capability of sub-grid modeling, which uses a non-linear solver 

and the conveyance formula to improve model accuracy down to the street-level 

scale without the high computational costs of simulation on a fully-fledged high-

resolution grid. 

4. Producing visualization products using Google Earth to illustrate flooding extents 

predicted by the street-level inundation model to both scientific audiences and the 

general public.  

The assumptions presumed by this study include:  

1. A two-dimensional vertically-averaged model with pressure being hydrostatic, is 

a good approximation for the full three-dimensional hydrodynamic equations. 
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2. Wind and pressure fields obtained from prominent atmospheric model outputs are 

reasonably accurate as the forcing functions for driving water level hindcast.  

3. The Lidar topography data with QA/QC can be imported into the sub-grid mesh 

to resolve buildings and the streets in the ultra-urban environment of metropolitan 

New York City.  

The specific research hypotheses that will be addressed in this study include:  

1. For the large scale storm tide model, the application of harmonic tidal constituents 

to force the water level at the open boundary condition,  1500km from the U.S. 

mid-Atlantic Bight, is far enough (into the ocean) that there will be minimal 

interference by the hurricane system.   

2. The partial wetting and drying sub-grid inundation scheme, in the present form, is 

sufficient to model an ultra-urban landscape containing a wide range of spatial 

scales, and the results can be verified upon comparison with field-verified 

observation data.  

Specifically, the event of Hurricane Sandy provided a testbed for:   

a. Ultra-urban settings include a variety of densely-compacted multiple-scale 

topographic features, with various scales and dimensions including: 

waterfront berms, streets, railroads, parks, highways, bridges, buildings of 

different shapes and sizes, etc. 

b. The USGS field observation program collected and verified field 

observations during Hurricane Sandy using rapid-deployment gauges to 

record water level, and high water marks (after the storm) were surveyed 

and meticulously recorded. Both data sets are valuable data sets which can 
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serve as useful tools for validation of inundation timing and depth from 

rapid-deployment water level gauges and inundation area and depth in the 

forms of reported high water marks. 

3. Sub-grid modeling with a non-linear solver operated under the friction-dominated 

conveyance formula is a reasonable approach to the simulation of street-level 

inundation.  

1.5 Chapter Outline  

With the scope of work, research objectives, assumptions, and hypotheses in 

mind, the dissertation is divided into seven chapters. The detailed contents of each 

chapter are outlined as follows: 

Chapter 2: The methodology associated with the large-scale storm tide model, SELFE, 

and a detailed description of the grid, atmospheric forcing, and boundary 

conditions used for the 2012 Hurricane Sandy forecast effort are introduced. 

Chapter 3: Tidal calibration and storm tide simulation results using atmospheric hindcast 

forcing for the large-scale storm tide model, SELFE, will be presented for 

2012 Hurricane Sandy.  

Chapter 4: The street-level sub-grid inundation model coupled with Lidar-derived 

topography in UnTRIM
2
, and a detailed description of the setup of the 

boundary conditions will be described. The overland friction specification, 

and atmospheric forcing used for the setup of 2012 Hurricane Sandy in the 

New York Harbor will also be reviewed. 
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Chapter 5: Description of geospatial analysis methods used for pre- and post- processing 

of the observations and model results including Google Earth visualizations 

and animations are revealed. 

Chapter 6: Presentation of temporal and spatial results for the street-level sub-grid 

inundation model, UnTRIM
2
, and sensitivity tests for 2012 Hurricane Sandy 

in New York City, and around the New York Harbor is covered.  

Chapter 7: Discussion of large-scale (SELFE) and sub-grid (UnTRIM2) model results 

including suggested methods and additional results obtained by addressing 

specific discrepancies between model prediction data and observations. Final 

conclusions of the dissertation are also presented at the end the chapter. 
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CHAPTER 2: Large-Scale Storm Tide Model Methodology 

2.1  SELFE Model Description 

SELFE is the Semi-implicit Eulerian-Lagrangian Finite Element model developed 

by Zhang and Baptista (2008). This study will utilize the parallel SELFE model to 

simulate the storm surge and inundation caused by hurricanes such as 2012 Hurricane 

Sandy in both forecasting and hindcast efforts. The model will serve as a broad scaling-

resolution storm surge model with the application of being a practical choice for use in 

simulating large-scale to small-scale phenomena.  

2.1.1  Governing Equations 

The SELFE model is governed by the 3-Dimensional shallow-water equations 

with the Boussinesq approximation, along with associated transport equations for salinity 

and temperature. The equations are solved for free surface elevation, water velocities, 

salinity, and temperature of the water, in a Cartesian coordinate system as specified in 

Zhang and Baptista’s model description (2008): 

  

  

  

  

  

   

(2-1) 

(2-2) 

(2-3) 

(2-4) 

(2-5) 

(2-6) 
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where:  

t : time [s];  

x, y, z : Cartesian coordinates [m];  

η(x, y, t) : free surface elevation [m];  

∇ : horizontal gradient [m-1];  

 ⃗  : Cartesian horizontal water velocity components (u, v) [m s-1];  

w : vertical velocity [m s-1];  

h(x, y) : bathymetric depth [m];  

f : Coriolis parameter [s-1];  

g : acceleration of gravity [m s-2];  

φ : tidal potential [m];  

α : effective Earth elasticity factor [0.69];  

ρ(x, y, t) : water density [kg m-3] ;  

ρ0 : reference water density [kg m-3] ;  

PA(x, y, t) : atmospheric pressure at the free surface [N m-2];  

S : salinity of the water [PSU];  

T : temperature of the water (℃); 

ν : vertical eddy viscosity [m2 s-1];  

μ : horizontal eddy viscosity [m2 s-1];  

κ : vertical eddy diffusivity for salt and heat [m2 s-1];  

  : rate of absorption of solar radiation [W m-1] ;  

Cp : specific heat of water [J kg-1 K-1 ].  

 

The differential equation system for Equations (2-1) to (2-5) is closed with respect 

to: the hydrostatic approximation (2-6), the equation of state, describing water density as 

a function of salinity and temperature, and definition of the tidal potential and the 

Coriolis Effect (Zhang et al., 2004). Furthermore, the system is closed via 

parameterizations for both horizontal and vertical mixing through the turbulence closure 

equations, and applicable initial and boundary conditions. The numerical algorithm 
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utilized in SELFE is explained at length in Zhang and Baptista (2008). Central features of 

SELFE include a differential equation system that the model solves using a semi-implicit 

methodology complete with finite-element and finite-volume schemes. SELFE uses the 

Eulerian-Lagrangian method to appropriately handle advection in the momentum 

equations. Advection terms in the transport equations are addressed using one of three 

different schemes including the default Eulerian-Lagrangian method described above, the 

total variation diminishing scheme, and the finite-volume upwind method. The horizontal 

grid structure is comprised of unstructured triangular grids, within which the 

orthogonality of the horizontal grid is not necessary (as in SELFE’s predecessor, 

ELCIRC) since finite-element discretization is used. The vertical grid structure for 

SELFE permits the use of hybridized vertical coordinates including both terrain-

following S-coordinate and rigid depth-specific Z-coordinate layers (Figure 2.1).  

The SELFE model commences solving the barotropic pressure gradient term in 

the momentum equation with a semi-implicit schematization with the baroclinic pressure 

gradient term being solved for explicitly. Owing to the hydrostatic approximation, 

vertical velocity components are solved from Equation (2-1) upon ascertaining horizontal 

velocity components. The continuity equation discretized in the finite-element framework 

is solved in the weak form of a Galerkin-weighted residual statement. In the SELFE 

model, linear shape functions are utilized as weighted functions such that the linear shape 

functions used for the elevations are weighted functions wherein the two components of 

the horizontal velocity are solved from the momentum equation independently from one 

another upon determining the elevations.  
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Upon solving for elevation at all nodes, SELFE solves the momentum equation 

(2-3) along each vertical column at the center of each element side. A semi-implicit 

Galerkin finite-element method is used, with the pressure gradient and the vertical 

viscosity terms being handled implicitly with all other terms treated explicitly. Once all 

velocities at every element side are determined, the velocity at each node is computed by 

a weighted average of all surrounding sides evaluated by proper interpolation in the 

vertical. The velocity at each node is computed within each element from the three sides 

using a linear shape function as an averaging technique and is kept discontinuous 

between elements. This methodology encourages parasitic oscillations, so a Shapiro filter 

is built into the model code as a smoothing function to suppress the static measurements 

(Shapiro, 1970).  

A finite-volume approach is applied to a typical prism, to solve for vertical 

velocity, as depicted in Figure 2.1, because it serves as a diagnostic variable for local 

volume conservation when a steep slope is present in the model grid bathymetry (Zhang 

et al., 2004). In this case, vertical velocity is solved from the bottom to the surface, in 

conjunction with the bottom boundary condition. The closure error between the 

calculated w at the free surface and the surface kinematic boundary condition is an 

indication of the local volume conservation error (Luettich et al., 2002). Since the 

primitive formulation of the continuity equation is solved in the model, infinitesimal error 

is associated with this closure methodology.  

Recently, newer versions of SELFE (> v3.1) have a spherical coordinate option 

which is based on the work by Comblen et al. (2009). Various 3-D Cartesian frames are 

used to solve the equations in their original form. Since the distances are all measured in 
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the physical space, a very fine-resolution grid is achievable with these coordinates, and 

thus can be utilized to optimally simulate the entire East Coast by using this coordinate 

system for storm surge inundation research. Also, the new Global SELFE model has a 

barotropic two-dimensional mode which solves the depth-integrated barotropic shallow-

water equations in spherical coordinates utilizing a finite-element solution: 

 

                        

 
 

where U is the depth-integrated current in the x-direction, and V is the depth-integrated 

current in the y-direction, τs,winds is surface stress due to winds, and τs,waves is surface stress 

due to waves, with τb representing bottom stress. The formulations in the 2-D version 

utilize the 2-D shallow water equations for momentum in the x- (Equation 2-7) and y-  

(Equation 2-8) directions, and continuity (Equation 2-9). The X and Y represent additional 

terms not included, such as horizontal viscosity and wave-induced radiation stress. These 

terms can be treated explicitly, thus do not influence the stability condition.  

 

Figure 2.1. SELFE model vertical grid and hybridized coordinate system. A schematic 

representation of the terrain-following S-levels on top of the Z-levels in a vertical field of 

view (A). A vertical transect view of the discretized domain with bottom cells in red (B), 

and the basic computational unit of a triangular model grid element as a prism with 

uneven/non-parallel top and bottom faces (C) (adapted from Zhang and Baptista, 2008).   

(2-7) 

(2-8) 

(2-9) 

A B C 
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2.1.2  Initial and Boundary Conditions 

The governing equations necessitate the initial condition (t=0) to be specified for 

unknown variables in each SELFE model simulation. These include initial values for 

water level elevation, water velocities, salinity, and temperature at a minimum. For 

example, initial conditions for salinity and temperature are parameterized via ‘salt.ic’ and 

‘temp.ic’ initial condition input files with values at each grid node, respectively. 

Inclusion of additional parameters and/or tracers requires providing initial conditions for 

each parameter and/or tracer added. Given that only the barotropic mode of SELFE is 

utilized for storm tide simulations, the standard initial condition applied is the zero 

motion condition with a model “spin up” beginning at a date sufficiently prior to the 

storm event to account for tidal resonance in regions with relatively complex shoreline 

geometry. Tidal elevation is specified at the open boundary utilizing the ‘bctides.in’ input 

file by means of a hyperbolic ramp-up function called in the model’s ‘param.in’ input file 

when tidal potential forcing is specified to be used. A hyperbolic tangent function is 

utilized to simulate the tide given a series of harmonic constituents with a typical duration 

of 1 to 2 days for a large domain such as those used in modeling 2012 Hurricane Sandy.     

2.1.2.1 Surface Boundary Conditions 

At the water’s surface, the SELFE model imposes a balance between the internal 

Reynolds stress and the applied shear stress: 

),(,0 WyWxmv
z

v

z

u
K  
















   at   RHz  (2-10) 
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Essential to modeling storm surge, the surface wind stress over the water at the 

air-sea interface may be approached using a variety of methods including 

parameterization of spatially and/or temporally varying surface shear stresses. A 

frequently used method for addressing the surface boundary condition involves utilizing a 

bulk aerodynamic algorithm to account for ocean surface fluxes under variable conditions 

of stability of the atmosphere (Zeng et al., 1998). This method is used when forcing 

SELFE using outputs obtained from an atmospheric model to drive storm surge 

simulations (Equation 2-11). Surface stresses may be evaluated utilizing: 

),(),( yxDsaWyWx WWWC   

where:  

a : air density [kg/m
3
];  

DsC : wind drag coefficient; 

),,( tyxW : wind velocity at 10m above the sea surface [m/s];  



W  : wind magnitude with components of east-west ( xW ) and north-south yW [m/s];   

The drag coefficient DsC
 
is often empirically ascertained via curve-fitting utilizing 

observation measurements. In Garratt’s (1977) formula (Equation 2-12), the equation 

related to DsC
 
is in the form of a linear function:  



Cd  (a bW )10
3  

where a=0.75 and b=0.067 has been empirically ascertained from research literature as 

standard values for a and b are proposed by various preeminent authors in recent history 

as atmospheric and hydrodynamic research advances (Equation 2-13). The upper limit of 

the formula, 33 m/s, is based upon NOAA’s Hurricane Research Division’s notorious 

(2-11) 

(2-12) 
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study regarding direct measurements of overwater hurricane wind speeds in Powell et al. 

(2003).  The lower limit of Equation (2-13), 4 m/s, is based upon the research performed 

by Donelan et al. (2004). For moderately strong winds, this formulation allows the degree 

of the momentum being transferred through the air-sea interface to increase with 

proportional growth in wind speed. DsC
 
remains constant outside this range: 

 
31075.0 DsC   if  



W  4m /s 

  310067.075.0  WCDs
  if       4m/s 



 W  33m/s 

 
31064.2 DsC   if    Wsm /33  

 

2.1.2.2 Bottom Boundary Conditions 

The 3-Dimensional SELFE model is bounded at the bathymetric bottom surface.  

At the bottom boundary, the model maintains the balance between the frictional stress 

and internal Reynolds stress via Equation (2-14): 

b

mvbyxb
z
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u
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 ,),( 0    at  hHz R   

with bottom stress, ),( byxb  , defined as: 

2 2( , ) ( , )bx by a Db b b b bC u v u v     

where ,b bu v  are bottom velocities, and 
DbC is the bottom drag coefficient. Precise 

parameterization of 
DbC is necessary to effectively simulate bottom frictional stress, and 

site-specific calibration is often warranted, given that 
DbC

 
is not uniform everywhere, but 

(2-13) 

(2-14) 

(2-15) 
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instead is spatially and temporally varying. In lieu of using a constant 
DbC throughout the 

entire domain, the logarithmic law is applied to calculate a spatially varying 
DbC

 
by 

specifying the local bottom roughness at each node (Equation 2-15). Spatially varying 

bottom friction requires a fine-scale discretization of the bottom bathymetry in the model 

grid to obtain reasonable approximations for
DbC . The 2-dimensional Global SELFE 

model driven via forecasted winds and tides uses a 2-D depth-averaged long wave 

formulation in conjunction with Manning’s formula to calculate    : 

       
   

 
 

 ⁄
  

where n is the Manning coefficient. Manning’s coefficient, n, is an empirically derived 

coefficient, with a higher values representing increased friction. It has a standard value of 

0.025 (Henderson, 1966), and depends upon many factors including sinuosity and bottom 

roughness to yield typical values for     between 0.001 and 0.003 (Equation 2-16). In 

estuaries, n varies greatly along the distance of the river, and can even vary within a small 

area of the river channel exhibiting different stages of flow. Due to the modeling 

emphasis in this study and the lack of direct site or field surveys, noted values for n other 

than the standard 0.025 are used from prominent papers studying the areas of interest to 

this study, and adjusted for optimal simulation results during tidal calibration.   

2.1.2.3 Open Boundary Conditions 

Tidal simulations using the SELFE model can make use of the traditional 

Dirichlet boundary condition at the grid’s open boundary, for which water level elevation 

may be specified to a time series of specified known values. This open boundary forcing 

(2-16) 
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methodology is less useful in large scale simulations, and conversely more convenient in 

estuaries where there are ample tidal recording stations available for comparison and 

minimal external influences to the movement of water volume.  

For the large domain SELFE grid, values for the water elevation specified at the 

open boundary were calculated utilizing eight dominant tidal constituents obtained from  

Le Provost's FES95.2 global model (Le Provost et al., 1998). Upon completion of tidal 

simulation over the large domain, time-series water level data may be extracted at model 

grid nodes near stations of interest for comparison.  

2.1.3  Coriolis Force and Parameters for Tidal Potential  

The Earth’s rotation is represented through the Coriolis acceleration in the 

momentum equations (Equations 2-3, 2-7, and 2-8). In 3-Dimensional space, the Coriolis 

acceleration, ac, is: 
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When vertical velocity, w, is much smaller than the horizontal components u and v, the 

expression in Equation (2-17) may be approximated using the Coriolis parameter (f): 



















0

fu

f

ac



 

where f = 2Ω sin(Φ), and Ω is the angular rotation velocity of the Earth (7.29 x 10
-5

rads
-1

). 

It is also assumed that the vertical Coriolis acceleration can be neglected with respect to 

(2-17) 

(2-18) 
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gravity g in Equation (2-18). To minimize coordinate translation inconsistencies when 

addressing Cartesian coordinates in a large domain, SELFE uses a -plane approximation 

for f : 

 f = fC + βC (y – yC) 

where subscript C represents the mid-latitude of the domain and 



  is the local derivative 

of the Coriolis factor f  in (2-19). The Global SELFE model makes use of the f-plane 

approximation is used when the horizontal domain is not > 100km, instead of the -plane 

approximation, where the Coriolis parameter f may be presumed to be constant at its 

value at the center of the grid (for the grids simulating 2012 Hurricane Sandy, this is  

  37 N Latitude). To simulate large-scale tide, the tidal potential function defined in 

Reid (1990) given in the next Chapter (Equation 3-1), was utilized as a harmonic forcing 

for the SELFE model. 

2.1.4  Wetting and Drying Scheme  

A robust representation of wetting and drying is maintained in the SELFE model 

via inclusion of formulations similar to those in the standard UnTRIM model noted in 

Chapter 4 (Casulli and Cheng, 1992; Casulli and Zanolli, 1998). This robust approach to 

wetting and drying algorithms allows for accurate inundation simulation near the 

coastline with careful consideration for recording of indices. Once all unknowns have 

been calculated at the model time step n+1, free-surface indices are updated with newly-

computed elevation values. Elements are considered dry if     < 0.0001, if not, then 

grid elements are considered to be wet. In the Global SELFE 2-D mode, when only one 

vertical layer is specified, this methodology is reduced to a semi-implicit scheme for 

(2-19) 
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solving the corresponding two-dimensional shallow water equations (Equations 2-7 to 2-

9). The resulting 2-D or 3-D wetting and drying algorithms in SELFE have been 

demonstrated to be efficient and accurate, while conserving mass. As such, the SELFE 

model, building upon the successes of its predecessors, has been documented to 

appropriately simulate flooding and drying in tidal flats and near-shore areas (Cho, 2009; 

Gong et al., 2009; Cho et al., 2012; Teng, 2012).     

2.2  Model Setup and Configuration for 2012 Hurricane Sandy  

2.2.1  Model Domain and Grid  

The modeling effort for 2012 Hurricane Sandy will utilize a large-scale model 

grid developed for this study. The grid includes detailed resolution along the U.S. 

Northeast Atlantic coastline around where Hurricane Sandy made landfall. The new grid 

resolves many oceanic canyons and trenches along the Atlantic shelf break and includes 

detailed bathymetry of the Long Island Sound and Hudson River along with numerous 

embayments along the Northeastern U.S. coastline. The grid is comprised of 207,996 

nodes and 392,013 elements, and extends from the U.S. shoreline out into the Atlantic 

Ocean to 62°W longitude (Figure 1.1). The grid features a curvilinear open boundary 

stretching from Key West, Florida, to Nova Scotia in Canada. This larger domain extent 

is necessary to completely include the large size of Hurricane Sandy’s substantial wind 

influence of 1800km, given its unique track (Gutner, 2012). Spatial resolution scales 

from ≈50km at the grid’s open boundary at Bermuda to ≈50m in the Hudson River near 

New York Harbor. The model grid includes 134 open boundary nodes where elevation 

forcing can be applied from the open ocean to capture tropical events making landfall 
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along the U.S. East Coast, the Caribbean Islands, and coastal Canada adjacent to the 

Atlantic Ocean. Additionally, there are four boundary nodes with a prescribed flux 

boundary condition near Wappingers Falls, 115.9km (72.0 miles) north of The Battery at 

the southern tip of Manhattan Island.  

The grid makes use of a spatially varying Manning coefficient for bottom friction 

with a value of n=0.010 in the Hudson River, New York Harbor, and Raritan Bay, with 

n=0.045 along the relatively narrow and shallow channels of the East and Hudson Rivers, 

with a standard Manning coefficient for bottom friction of n=0.025 everywhere else in 

the domain. In Blumberg et al., a bottom drag coefficient of CD=0.06 was utilized in the 

ECOM model to account for the higher friction conditions imposed in these narrow and 

shallow regions within the New York Harbor region for a successful tidal calibration 

(1999). The SELFE model grid resolution is 2-3 cells across for some areas of the East 

and Harlem Rivers, accounting for an appropriate conversion of Blumberg et al.’s CD for 

these areas to a Manning coefficient of n=0.045 necessary to appropriately model the 

phase for a successful tidal calibration and storm surge using the Global SELFE 2-D 

Manning formulation for bottom friction (Manning, 1891; Blumberg et al., 1999). 

In the interest of faster computational speed and forecast urgency, the 2-D 

barotropic mode assuming vertically averaged horizontal velocities will be utilized for 

the Hurricane Sandy forecasting effort. Simulations for Hurricane Sandy were performed 

via the parallel SELFE model using 64 nodes of the total available 72 dual-processors 

(Dell SC1435 chipset) available on the Typhoon sub-cluster of the SciClone heterogeneous 

high-performance computing platform at The College of William and Mary in 2013.    
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2.2.2  External Forcing and DEM Development  

2.2.2.1 Atmospheric Forcing  

Atmospheric pressure and wind fields were collected at 32km resolution for the 

NOAA’s North American Mesoscale (NAM) model, and 24km resolution for NOAA’s 

North American Regional Reanalysis (NARR) model as a reanalysis of the NAM wind 

product with some corrections to wind speed and direction within the formulation. Both 

NOAA atmospheric model products have a 3-hour forecast time interval. Additionally, 

4km resolution atmospheric pressure and wind fields were obtained from the proprietary 

Regional Atmospheric Modeling System (RAMS) from an independent firm, 

WeatherFlow Inc., with a 1-hour temporal resolution (Figure 2.2).  

Atmospheric model data outputs were retrieved and processed into NetCDF files 

for use with the ‘sflux’ input format (part of the utility library available at: http://www. 

stccmop.org/CORIE/modeling/selfe/utilities.html) compatible with the SELFE model 

located at Concurrently, tides were generated for the ‘bctides.in’ input file assuming a 

start time of 00:00 GMT on October 27, 2012, for the NAM & NARR wind simulations 

and a start time of 00:00 GMT on October 24, 2012, for the RAMS model wind product 

simulations. Start times for tidal inputs were selected based upon the earliest 

corresponding atmospheric product availability from their respective data sources.  

http://www.stccmop.org/CORIE/modeling/selfe/utilities.html
http://www.stccmop.org/CORIE/modeling/selfe/utilities.html
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Figure 2.2. Weatherflow RAMS wind field shown in xmvis6, obtained from model 

output of wind velocities at grid nodes on October 29, 2012, at 23:00 GMT, with an 

approximate wind velocity of 25 m/s moving westward near Atlantic City, NJ.  

 

2.2.2.2 Freshwater River Inflow  

Hourly discharge data were obtained from the nearest USGS station to the 

Hudson River flux boundary of the grid, shown in Figure 1.1, near Wappingers Falls, 

adjacent to the Hudson River at Latitude 41°39'11"N, Longitude 73°52'21"W (Station 

#01646500). The hourly discharge data were converted from cubic feet/second to cubic 

meters/second and interpolated to a 5-minute time step to be prescribed as a flux 

boundary condition in the model input to apply to the four boundary nodes spanning the 

width of the Hudson River near Wappingers Falls. Discharge inputs were set to the time 

range of the model, from 00:00 GMT on October 17, 2012, and ending at 00:00 GMT on 

November 4, 2012.   

- 10 m/s 
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2.2.2.3 Tidal Open Boundary Forcing 

Tides are forced along the 134 nodes comprising the Atlantic open-ocean 

boundary utilizing eight dominant astronomical tidal constituents. Four semidiurnal 

constituents (M2, N2, S2, and K2) were used with four diurnal constituents (O1, P1, K1, and 

Q1) obtained via SMS 8.0 within the model control module for tidal forcing by the 

FES95.2 global model formulation for harmonic tides (Le Provost et al., 1998). Relevant 

tidal potential functions were forced within the model domain for each of the 134 

boundary nodes using amplitude and phase calculated via the ‘SELFE tidal utility 

package for the U.S. East Coast (c/o Dr. Ed Myers)’.  

Periods, tidal potential constants, and Earth elasticity factors, which reduce the 

magnitude of the tidal potential forcing due to the Earth’s tides are accounted for in the 

SELFE model’s ‘bctides.in’ input file in a way which accounts for the nodal factor and 

equilibrium argument for boundary and interior domain forcing tidal constituents, based 

upon initiation time of the simulation. In the concerted forecasting effort for 2012 

Hurricane Sandy, tides were generated for the ‘bctides.in’ input file assuming a start time 

of 00:00 GMT on October 27, 2012, for the NAM and NARR wind simulations and a 

start time of 00:00 GMT on October 24, 2012, for the RAMS model wind product 

simulations. Start times for tidal inputs were selected based upon corresponding wind 

product availability from their respective data sources.  
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2.2.2.4 Pre-Processing Development of DEM 

Open-ocean and shelf bathymetric depths in this mesh were interpolated from 

NOAA's bathymetric sounding database, the Digital Nautical Charts database, and 

ETOPO1 1-minute gridded bathymetry world database (NOAA NGDC, 1999) (Table 

2.1). Shelf contour data produced through the use of NOAA’s Coastal Relief Model 

allowed for detailed resolution along the many shelf canyons within the Sargasso Sea in 

the Atlantic Northeast. Within the New York Harbor, detailed bathymetry extends 

beyond Yonkers, NY, up the Hudson River, throughout the New York Bay and Raritan 

Bay, and everywhere along the East River, Harlem River, and the Kill van Kull. Select 

low-elevation locations around the New York Harbor, Raritan Bay, and Atlantic City 

were included in the grid for the purposes of inundation using elevation DEMs retrieved 

from the USGS National Elevation Dataset.  All SELFE grid nodes were referenced to an 

elevation interpolated from the DEM with the atmospheric inputs, open boundary, and 

flux boundary conditions specified from the previous section.  

Table 2.1. Data sources and resolutions for represented topography and bathymetry for 

the grid used in the 2012 Hurricane Sandy modeling effort . 

 Bathymetry Data Resolution Area 

Bathymetry NOAA Global Relief Model (ETOPO1) 1 arc min (≈1800m) Atlantic Shelf/Ocean 

NOAA Coastal Relief Model 3 arc sec (≈90m) Coastal Region & 

Chesapeake Bay 

NOAA Bathymetric Survey Data 1/3 arc sec (≈10m) New York Harbor & 

Estuaries, Long Island 

Sound, Raritan Bay, and 

New York Bay  

Topography USGS National Elevation Dataset 1/3 arc sec (≈10m) Low-elevation areas around 

New York Harbor, Raritan 

Bay, and Atlantic City 
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2.2.3  Observation Data Compiled during 2012 Hurricane Sandy  

Verified observation data from 10 NOAA tide gauges along the Atlantic Coast 

including 3 within the Long Island Sound were utilized for comparison with model 

results for Hurricane Sandy. Binary model results were combined and post-processed 

utilizing the SELFE ‘stations.in’ input file with specified node numbers of the model grid 

corresponding to the location of related tide gauges. All tidal prediction and observation 

data were collected from their respective data sources at hourly and 6-minute intervals in 

meters relative to MSL from October 1, 2012, at 00:00 GMT through November 30, 

2012, at 00:00 GMT for tidal calibration purposes and storm surge comparison with 

observation data using the statistical measures outlined in Appendix A. The peak at The 

Battery in the densely populated region of southern Manhattan notably reached heights 

greater than 3.5m (Figure 2.3). The tidal stations include: 4 Atlantic coastal stations, 3 in 

the Long Island Sound, and 3 around New York Bay and Raritan Bay; these stations are 

shown in Figure 2.4. 

 

Figure 2.3. Hurricane Sandy water level observed at The Battery on the southern tip of 

Manhattan Island, NY, shown peaking at 3.501m (11.469ft.) at 01:24 GMT on Tuesday, 

October 30, 2012 (NOAA Tides and Currents, 2012). 
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Figure 2.4. Map of U.S. Mid-Atlantic coast with SELFE model grid superposed in white 

with the locations of 10 NOAA water level observation stations in red. 
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CHAPTER 3: Large-Scale Storm Tide Model Results 

3.1 Tidal Calibration and Harmonic Analysis Results 

To ensure that the SELFE model properly simulated the long-period wave 

propagation inside the New York Bay and Long Island Sound, a tidal calibration and 

harmonic analysis was conducted. The Global SELFE 2-D model was run without 

salinity and surface wind forcing, using only tidal sinusoidal motion at the curvilinear 

open boundary. Eight harmonic tidal constituents were utilized along the 134 nodes at the 

open boundary to force the astronomical tide in the Atlantic Ocean. Four semidiurnal 

constituents (M2, N2, S2, and K2) and four diurnal constituents (O1, P1, K1, and Q1) were 

obtained via SMS 8.0 via the FES95.2 global model formulation for harmonic tides 

(LeProvost, et al., 1998), and were specified to calculate the water level at each element 

of the open boundary based upon the following tidal formulation (Equation 3-1): 

 (     )   ∑   (   )  (  )    [   (    )    (  )    (   )]  (3-1) 

where the amplitude (of constituent i) is   , the frequency is   , and the tidal phase is   . 

The nodal factor is provided by    and the equilibrium argument via   . Between these 

terms, only the tidal frequency is an absolute constant for a given constituent, as the 

amplitudes and phases are spatially variable, yet temporally constant values. Conversely, 

nodal factors and equilibrium arguments are spatially constant, but temporally variable 

values, and are critically important to synchronize the SELFE model outputs with NOAA 

observation data (Equation 3-1). The tidal simulation spanned 90 days and commenced 

on 09/01/2012 at 00:00 GMT through 11/30/2012 at 00:00 GMT. The tidal calibration 
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made use of a 3-day spin up prior to the recording of numerical results via a hyperbolic 

tangent ramp-up function.  

The standard Manning coefficient of n=0.025 was used to calculate the bottom 

friction for most of the areas within the domain with the following exceptions: (1) 

n=0.010 was used in the Hudson River, New York Harbor, and Raritan Bay, and (2) 

n=0.045 in the East River up to its junction with the Hudson River. These values were 

consistent with Blumberg et al.’s 1999 study in the New York Bight using the ECOM 

model. Additionally, factors which may reduce the tidal potential forcing due to the 

Earth’s tide were also accounted for via nodal factor and equilibrium arguments in the 

‘bctides.in’ input file. Locations of the selected NOAA tidal gauge stations used for tidal 

verification of the model are displayed on the map in Figure 2.4, with time series results 

for the month of September shown in Figures 3.1A-E and related statistics in Table 3.1. 

 

Table 3.1. Statistical evaluation SELFE modeled tide and NOAA predicted tide for the 10 

selected tide gauges. 

 

Station R
2
 Relative Error (%) RMS Error (cm) 

Montauk, NY 0.9674 4.47 7.24 

New Haven, CT 0.9915 0.61 7.44 

Bridgeport, CT 0.9834 1.19 11.07 

Kings Point, NY 0.9868 1.16 13.60 

The Battery, NY 0.9692 1.71 9.13 

Bergen Point, NY 0.9650 2.89 12.63 

Sandy Hook, NJ 0.9809 1.52 9.46 

Atlantic City, NJ 0.9915 1.57 8.04 

Lewes, DE 0.9612 2.50 10.34 

Duck, NC 0.9905 2.35 8.24 

Mean Value 0.9787 2.00 9.72 
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Table 3.2A. Comparison of tidal amplitudes in meters relative to MSL for 4 major semidiurnal tidal constituents (top) and 4 diurnal 

tidal constituents (bottom) between SELFE modeled tide and NOAA predicted tide at 10 tide gauges along the U.S. East Coast. 

Amplitude M2 S2 N2 K2 

Station Modeled NOAA Difference Modeled NOAA Difference Modeled NOAA Difference Modeled NOAA Difference 

Montauk, NY 0.300 0.305 -0.004 0.059 0.061 -0.002 0.072 0.072 0.001 0.015 0.003 0.012 

New Haven, CT 0.913 0.907 0.006 0.118 0.155 -0.037 0.172 0.170 0.002 0.084 0.117 -0.033 

Bridgeport, CT 0.938 1.006 -0.068 0.121 0.137 -0.016 0.177 0.181 -0.005 0.087 0.126 -0.039 

Kings Point, NY 1.248 1.158 0.089 0.156 0.172 -0.017 0.239 0.227 0.013 0.145 0.195 -0.050 

The Battery, NY 0.625 0.674 -0.049 0.058 0.087 -0.029 0.121 0.141 -0.020 0.024 0.063 -0.039 

Bergen Point, NY 0.635 0.753 -0.118 0.063 0.072 -0.009 0.123 0.150 -0.027 0.024 0.071 -0.047 

Sandy Hook, NJ 0.740 0.696 0.044 0.109 0.079 0.030 0.154 0.143 0.011 0.021 0.073 -0.052 

Atlantic City, NJ 0.595 0.602 -0.007 0.096 0.089 0.008 0.125 0.127 -0.002 0.012 0.049 -0.037 

Lewes, DE 0.608 0.624 -0.016 0.084 0.076 0.009 0.121 0.119 0.002 0.025 0.050 -0.025 

Duck, NC 0.504 0.498 0.006 0.081 0.068 0.012 0.107 0.103 0.004 0.005 0.024 -0.019 

Average 0.711 0.722 -0.012 0.095 0.100 -0.005 0.141 0.143 -0.002 0.044 0.077 -0.033 

Std. Deviation - - 0.058 - - 0.020 - - 0.013 - - 0.019 
 

 
 

 
 

 
 

 

 
 

 
 

 

Amplitude (cont’d) K1 O1 P1 Q1 

Station Modeled NOAA Difference Modeled NOAA Difference Modeled NOAA Difference Modeled NOAA Difference 

Montauk, NY 0.076 0.071 0.005 0.062 0.050 0.012 0.025 0.021 0.004 0.014 0.014 0.000 

New Haven, CT 0.082 0.088 -0.007 0.076 0.059 0.017 0.041 0.039 0.002 0.019 0.021 -0.002 

Bridgeport, CT 0.082 0.075 0.007 0.076 0.058 0.018 0.041 0.028 0.013 0.019 0.019 0.000 

Kings Point, NY 0.091 0.089 0.002 0.079 0.060 0.019 0.070 0.070 0.000 0.027 0.028 -0.002 

The Battery, NY 0.084 0.106 -0.022 0.055 0.044 0.011 0.044 0.014 0.030 0.018 0.014 0.004 

Bergen Point, NY 0.084 0.105 -0.020 0.055 0.045 0.010 0.040 0.010 0.029 0.017 0.014 0.003 

Sandy Hook, NJ 0.095 0.105 -0.010 0.060 0.047 0.014 0.027 0.016 0.011 0.015 0.014 0.001 

Atlantic City, NJ 0.092 0.112 -0.021 0.068 0.068 0.000 0.013 0.024 -0.012 0.012 0.012 0.000 

Lewes, DE 0.090 0.105 -0.015 0.073 0.076 -0.003 0.011 0.029 -0.019 0.013 0.014 -0.001 

Duck, NC 0.089 0.091 -0.002 0.068 0.054 0.013 0.009 0.016 -0.008 0.013 0.013 0.000 

Average 0.086 0.095 -0.008 0.067 0.056 0.011 0.032 0.027 0.005 0.017 0.016 0.000 

Std. Deviation - - 0.011 - - 0.007 - - 0.016 - - 0.002 
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Table 3.2B. Comparison of tidal phase in degrees for 4 major semidiurnal tidal constituents (top) and 4 diurnal tidal constituents 

(bottom) between SELFE modeled tide and NOAA predicted tide at 10 tide gauges along the U.S. East Coast. 

Phase M2 S2 N2 K2 

Station Modeled NOAA Difference Modeled NOAA Difference Modeled NOAA Difference Modeled NOAA Difference 

Montauk, NY 262.591 262.533 0.058 267.910 267.706 0.204 242.159 242.235 -0.076 275.504 276.944 -1.440 

New Haven, CT 108.133 108.175 -0.041 132.947 132.455 0.492 84.876 84.998 -0.122 134.571 135.079 -0.509 

Bridgeport, CT 111.331 111.430 -0.100 138.134 137.692 0.442 90.770 91.004 -0.234 138.174 138.441 -0.267 

Kings Point, NY 117.665 117.640 0.025 143.411 142.563 0.848 96.051 96.095 -0.044 145.336 145.723 -0.387 

The Battery, NY 19.185 19.240 -0.055 44.156 43.476 0.681 1.772 1.857 -0.085 45.972 45.897 0.074 

Bergen Point, NY 21.341 21.481 -0.140 52.008 51.701 0.307 6.825 7.085 -0.260 49.708 49.683 0.025 

Sandy Hook, NJ 12.214 6.013 6.201 33.169 38.876 -5.707 350.053 350.268 -0.215 32.403 33.017 -0.614 

Atlantic City, NJ 361.484 361.511 -0.028 18.131 23.909 -5.778 337.185 337.327 -0.142 19.619 20.094 -0.475 

Lewes, DE 31.373 31.555 -0.181 57.560 57.324 0.236 12.354 12.664 -0.310 54.101 54.074 0.027 

Duck, NC 364.129 364.159 -0.030 22.474 22.184 0.290 339.118 339.276 -0.159 19.127 19.437 -0.310 

Average 140.945 140.374 0.571 90.990 91.789 -0.799 156.116 156.281 -0.165 91.451 91.839 -0.387 

Standard Deviation - - 1.980 - - 2.614 - - 0.087 - - 0.442 
 

 
 

 

 
 

 
 

 

 
 

 
 

Phase (cont’d) K1 O1 P1 Q1 

Station Modeled NOAA Difference Modeled NOAA Difference Modeled NOAA Difference Modeled NOAA Difference 

Montauk, NY 108.187 108.365 -0.178 141.470 141.967 -0.497 123.069 121.607 1.462 128.999 129.090 -0.091 

New Haven, CT 194.956 195.031 -0.074 220.056 220.572 -0.516 208.057 207.142 0.915 214.304 214.604 -0.300 

Bridgeport, CT 196.545 196.619 -0.073 221.156 221.683 -0.526 208.455 207.728 0.728 209.305 209.369 -0.064 

Kings Point, NY 196.852 196.903 -0.051 222.407 222.921 -0.514 215.381 214.723 0.658 215.942 216.079 -0.137 

The Battery, NY 184.259 184.475 -0.217 177.797 177.675 0.122 187.987 186.519 1.468 194.231 194.291 -0.060 

Bergen Point, NY 187.561 187.821 -0.260 180.754 180.735 0.019 185.910 184.508 1.402 194.802 194.974 -0.172 

Sandy Hook, NJ 180.294 180.542 -0.248 173.698 173.795 -0.097 184.355 182.521 1.835 186.414 186.575 -0.161 

Atlantic City, NJ 187.798 188.199 -0.401 167.181 167.250 -0.069 183.185 180.381 2.803 171.829 171.956 -0.128 

Lewes, DE 206.495 207.033 -0.537 189.929 190.153 -0.223 203.700 201.384 2.316 186.199 186.368 -0.169 

Duck, NC 177.616 177.748 -0.131 193.877 194.230 -0.353 177.932 175.647 2.284 181.520 181.650 -0.130 

Average 182.056 182.273 -0.217 188.833 189.098 -0.265 187.803 186.216 1.587 188.355 188.496 -0.141 

Standard Deviation - - 0.155 - - 0.248 - - 0.721 - - 0.069 
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Figure 3.1A. Time series comparison of the SELFE model tidal calibration with NOAA predicted tide data during September 2012.
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Figure 3.1B. Time series comparison of the SELFE model tidal calibration with NOAA predicted tide data during September 2012.  
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Figure 3.1C. Time series comparison of the SELFE model tidal calibration with NOAA predicted tide data during September 2012. 
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Figure 3.1D. Time series comparison of the SELFE model tidal calibration with NOAA predicted tide data during September 2012.  
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Figure 3.1E. Time series comparison of the SELFE model tidal calibration with NOAA predicted tide data during September 2012. 
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A harmonic analysis was conducted in MATLAB using the public domain 

software package 'T-Tide’ (Pawlowicz et al., 2002), on tidal results from the last 90 days 

of hourly model outputs at 10 selected NOAA tide gauges along the U.S. East Coast near 

areas where Hurricane Sandy’s impact was most evident. These stations were: Montauk, 

NY, New Haven, CT, Bridgeport, CT, Kings Point, NY, The Battery, NY, Bergen Point, 

NY, Sandy Hook, NJ, Atlantic City, NJ, Lewes, DE, and Duck, NC (Figure 2.4). Tidal 

prediction data were obtained from these NOAA gauges for the same time period for 

evaluation at each station, and analyzed for 4 major tidal constituents (Table 3.2). The 

overall statistical comparison yields excellent results upon application of the friction 

parameter adjustments noted in the previous paragraph, with an R
2
 of 0.9787, a relative 

error of 2.00%, and a root-mean-squared error of 9.72cm (Table 3.2).  

Data tables of tidal amplitude and tidal phase between modeled tide and NOAA 

observed tide for the 8 major harmonic constituents that the model is driven by at the 

open boundary are presented in Table 3.2A and Table 3.2B. The SELFE model 

accurately predicts tidal propagation along the U.S. Eastern Seaboard and embayments 

within the model grid with good accuracy. In the tidal amplitude comparison, the SELFE 

model simulates the amplitude of the dominant M2 tidal constituent very well at all of the 

10 stations with a mean difference of -0.012±0.058m (Table 3.2A). Nearly all of the 10 

selected tide gauge stations showed a mean amplitude difference of less than 10% except 

for Bergen Point, NY (Figure 3.1C), where a 15.6% difference in M2 tidal amplitude was 

observed (Table 3.2A). The principal solar diurnal constituent, S2, had a mean difference 

of -0.005±0.020m between the modeled tide and NOAA observed tide. Stations 

positioned along the open coast provided a better comparison, while those located in 
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small tributaries of the Long Island Sound or in the New York Harbor were more likely 

to observe larger discrepancies in tidal amplitude. Small waterways and tributaries 

necessitate the use of higher grid resolution to resolve complex shoreline geometry and 

stark differences in bathymetry over diminutive distances, which is a particular challenge 

for very accurate water level modeling using gradually scaling resolution grids. The 

remaining principal semidiurnal constituents at the top of Table 3.2A had average 

harmonic differences of -0.002±0.013m for the N2 and -0.033± 0.019m for the K2 tidal 

constituent. As for the diurnal tidal amplitudes, the mean differences for the 10 stations of 

interest were -0.008±0.011m, 0.011±0.007m, 0.005±0.016m, and 0.000±0.002m, for K1, 

O1, P1, and Q1, respectively (Table 3.2A). 

In the tidal phase comparison, Table 3.2B displays the mean difference of tidal 

phase between modeled tide and NOAA observed tide for the principal lunar and solar 

semidiurnal constituents, M2 and S2, was 0.571±1.980° and -0.799±2.614°, respectively. 

Sandy Hook, NJ, observed a shift in M2 tide by 6.013° and in the S2 tide by -5.707°, 

accounting for much of the deviation (Figure 3.1D). The N2 constituent yielded an 

average phase difference of -0.165±0.087°, and the average difference for the K2 

constituent was -0.387±0.442°. The average phase differences for the diurnal 

constituents, K1, O1, P1, and Q1, were -0.217±0.155°, -0.265±0.248°, 1.587±0.721°, and -

0.141±0.069°, respectively (Table 3.2B). The close tidal harmonic comparison for both 

amplitude and phase suggests that the SELFE large scale model grid of the U.S. East 

Coast including the New York Harbor and Long Island Sound is sufficient when 

compared with NOAA tidal prediction data tide. Thus, the new SELFE grid developed 
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for simulating 2012 Hurricane Sandy is quite proficient at modeling the characteristics of 

long-period wave propagation along the open coast and the New York Harbor.   

3.2 Storm Tide Model Results for 2012 Hurricane Sandy 

Hurricane Sandy formed in the Caribbean Sea on October 22, 2012, and 

intensified in strength as it tracked northward. The storm’s maximum classification as a 

Category 3 Hurricane on the Saffir-Simpson scale occurred over the mid-Atlantic Bight 

just before abruptly veering to the northwest on October 28th. The unique shift in storm 

track was largely due to a large-scale wind flow pattern favoring an upper-level block 

over Greenland and a mid-level atmospheric trough coming from the U.S. Southeast. 

Consequently, Hurricane Sandy made landfall just north of Atlantic City near Brigantine, 

NJ, as a Category 1 Hurricane on October 29, 2012, at approximately 7:30 pm.  

The landfall of Hurricane Sandy brought an atypically large storm tide with 

record-setting water levels observed along the coasts of New Jersey, New York City, and 

low elevation regions of the Long Island Sound. NOAA verified water level records 

observed peak storm tide elevation at The Battery, NY, Bergen Point, NY, Sandy Hook, 

NJ, Bridgeport, CT, New Haven, CT, at 2.74, 2.90, 2.44, 1.77, 1.69m (or 9.0, 9.53, 8.01, 

5.82, 5.54ft) above mean higher-high water, respectively (NOAA Tides and Currents, 

2012). The storm tide triggered significant flooding in New York in the Hudson River 

Valley, the East River, and the western portion of the Long Island Sound, with some of 

the most catastrophic flooding being observed along Staten Island and to the south along 

the New Jersey coast. The combination of the astronomical tide and storm surge is 

indicative of a storm tide, which is inherently related to a tropical or extratropical 
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atmospheric disturbance. In regions where tidal ranges are significantly large, storm 

surge can be particularly damaging when it occurs concurrently with a high tide. The 

opposite of this scenario was observed at Kings Point, NY, at the head of the Long Island 

Sound, where the peak storm surge occurred simultaneously with a tidal trough (Figure 

3.2). The pier at Kings Point observed one of the highest storm surge heights during 

Hurricane Sandy due to its bottlenecked location at the relatively narrow mouth of the 

East River, compared to the substantially wider Long Island Sound. However, the 

observed storm tide could easily have been at least 2m higher had the storm surge 

occurred during high tide.   

Upon calibration of tidal harmonics conducted in the previous section, external 

atmospheric forcings for air pressure and wind were applied to simulate storm surge and 

inundation along the U.S. East Coast during 2012 Hurricane Sandy. Since the modeled 

water level fluctuations along the open coast and within coastal embayments depend 

heavily upon the input meteorological conditions, forecast wind and pressure fields with 

higher accuracy ideally provide better hydrodynamic model predictions. In the upcoming 

sections, a comparison of the hydrodynamic influences of two atmospheric forecast 

model products, the North American Regional Reanalysis (NARR) model, and the 

Regional Atmospheric Modeling System (RAMS). A cursory comparison of wind 

velocities in the u and v directions in m/s has been made to demonstrate the relative 

accuracy of the forecast winds’ speeds with observations recorded by NOAA’s National 

Data Buoy Center (NDBC). The NDBC observations are compared at two stations: 

44065 near the mouth of the Raritan Bay near the New York Harbor (Figure 3.3A), and 

CHLV2, near the mouth of the Chesapeake Bay (Figure 3.3B). While both forecast wind 
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fields compare reasonably well with the buoy observations (NOAA NBDC, 2012), the 

RAMS wind product has a higher temporal resolution of one hour, while the NAM wind 

field is updated every three hours. Regardless of the update frequency of the atmospheric 

forcings, the SELFE model will temporally interpolate the input data to synchronize with 

the model’s time step. However, coarser temporal resolution will be interpolated over 

longer periods of time, potentially missing high frequency shifts in wind and pressure.  

The wind velocities for the NARR and RAMS inputs were amplified by 10% to 

account for potential wave-induced mechanisms influencing water levels. Research 

related to the influence of currents and wave interaction is being worked on, but is 

beyond the scope of this dissertation. Since a wind-wave model was not utilized in these 

storm tide simulations, wind velocities were increased by 10%, which translates to an 

increase in wind stress of approximately 20% throughout the domain. The upcoming 

sections address two different atmospheric models using unique wind and pressure fields 

to drive the SELFE model in order to simulate the influence of 2012 Hurricane Sandy.  

 

Figure 3.2. Hurricane Sandy water level observed at Kings Point, NY, at the head of the 

Long Island Sound, shown peaking at 3.175m (10.416ft.) at 02:12 GMT on Tuesday, 

October 30, 2012 (NOAA Tides and Currents, 2012). 
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Figure 3.3A. Wind field comparisons for u and v wind velocities in m/s at Station 44065 

near the mouth of the Raritan Bay near the New York Harbor using verified NOAA 

atmospheric observation data in blue, and forecast wind products displayed in red for 

NAM winds on the left and RAMS winds at right (NOAA NBDC, 2012).  

NAM Winds RAMS Winds 
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Figure 3.3B. Wind field comparisons for u and v wind velocities in m/s at Station 

CHLV2 near the mouth of the Chesapeake Bay using verified NOAA atmospheric 

observation data in blue, and forecast wind products displayed in red for NAM winds on 

the left and RAMS winds on the right. Observations retrieved from NOAA NBDC, 2012. 

NAM Winds RAMS Winds 
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3.2.1 Storm Tide Simulation Results using NARR Atmospheric Forcing 

The NARR atmospheric model outputs were retrieved at 24km resolution for 

Hurricane Sandy with a 3-hour update interval. Wind and pressure data were retrieved for 

the entire region covering the large scale SELFE model grid from 10/15/2012 at 00:00 

GMT through 11/01/2012 at 00:00 GMT. Several 30-hour forecast series updating every 

6 hours were combined to prepare the model input wind and pressure fields. Uncertainty 

in forecast accuracy increases the further into the future a model attempts to predict. 

Thus, a hindcast simulation using NARR forcings is conducted for comparison to yield 

the greatest potential for accuracy.  

The storm tide results generated by the NARR wind, shown by the red lines in 

Figure 3.4A-E, demonstrate that the simulated water levels at each of the 10 NOAA 

stations were relatively accurate. Discrepancies in the model results suggested frequent 

fluctuations, especially during surge peaks when wind speed was strong, but were 

generally within 0.45m (Figure 3.4A-E & Table 3.3).  

Stations positioned along the open coast performed generally better than those 

stations positioned far upriver or well within shallow embayments. Open coast stations 

included Montauk, NY, Sandy Hook, NJ, Atlantic City, NJ, Lewes, DE, and Duck, NC, 

with R
2
 values ranging from 0.81 to 0.92. The relative error of these stations ranges from 

10.16% at Atlantic City, NJ, to 17.75% at Duck, NC, and the root-mean-squared error 

ranges from 20.82cm at Montauk, NY, to 39.66cm at Sandy Hook, NJ. It should be noted 

that the observation data record at Sandy Hook was lost during the peak observed storm 

surge after 00:00GMT on October 30, 2012 (Figure 3.4D), and data were unavailable at 
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the station in Duck, NC, after 08:00GMT on October 29, 2012 (Figure 3.4E). 

Additionally, an apparent disturbance in the observation data record at Lewes, DE, exists 

between 22:00GMT on October 29, 2012, through 04:00GMT on October 30, 2012, 

accounting for some statistical incongruity with some of the other coastal stations (Figure 

3.4E). 

New Haven and Bridgeport, CT, within the Long Island Sound, compared 

reasonably well in phase, with R
2
 values of 0.9292 and 0.9284, respectively. The 

amplitude differential is reasonably characterized with a 37.37cm and 41.64cm root-

mean-squared error, respectively. Kings Point, NY, located at the head of the Long Island 

Sound where it joins with the East River, had an R
2
 value of 0.9055, a relative error of 

9.80%, but observed the highest root-mean-squared error of 45.51cm. Dual storm surges 

converging from the Long Island Sound, shown in the station’s peak transitions in Figure 

3.4A-B, and from the New York Bay up through the East River, observed in the peaks at 

the stations in Figure 3.4C-D, can account for the relatively large storm surge peak and 

larger error observed at Kings Point, NY. Reasonable comparisons were made using the 

NARR atmospheric forcings at the Battery at the confluence of the Hudson and East 

Rivers and at Bergen Point, NY, along the Kill van Kull connecting Newark Bay with the 

New York Bay. Based upon the complete analysis of the NARR results, predictive 

capacity of the SELFE hydrodynamic model is consistent with the relative quality of the 

NARR wind product being employed. Thus, a superior storm tide prediction would be 

anticipated if a more reliable or better resolution forecast wind were utilized.    
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Table 3.3. Statistical comparison between NOAA verified water level measurements and 

the model results obtained via forcing with 24km NARR wind and pressure fields. 

Station R
2
 Relative Error (%) RMS Error (cm) 

Montauk, NY 0.8559 10.79 20.82 

New Haven, CT 0.9292 11.25 37.37 

Bridgeport, CT 0.9284 12.26 41.64 

Kings Point, NY 0.9055 9.80 45.51 

The Battery, NY 0.9305 9.13 32.08 

Bergen Point, NY 0.9532 11.86 35.81 

Sandy Hook, NJ 0.9286 12.39 39.66 

Atlantic City, NJ 0.9113 10.16 25.36 

Lewes, DE 0.8395 12.32 25.57 

Duck, NC 0.8121 17.75 23.09 

Mean Value 0.8994 11.77 32.69 
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Figure 3.4A. Storm tide model results and NOAA verified water level comparison with time series (left) and statistical results (right). 
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Figure 3.4B. Storm tide model results and NOAA verified water level comparison with time series (left) and statistical results (right). 
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Figure 3.4C. Storm tide model results and NOAA verified water level comparison with time series (left) and statistical results (right). 
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Figure 3.4D. Storm tide model results and NOAA verified water level comparison with time series (left) and statistical results (right). 
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Figure 3.4E. Storm tide model results and NOAA verified water level comparison with time series (left) and statistical results (right). 
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3.2.2 Storm Tide Simulation Results using RAMS Atmospheric Forcing 

The high-resolution winds for Hurricane Sandy were produced by an independent 

company, WeatherFlow, Inc. (http://www.weatherflow.com/) in hindcast mode. These 

atmospheric pressure and wind products are retrieved from the RAMS model output and 

used as an atmospheric input to drive the SELFE model. The wind field features coverage 

from 33.000 to 42.972˚N latitude and from 78.000 to 68.026˚W longitude with a 

resolution of 2.16 arc-seconds ( 4km resolution from north-south and ranging in 

resolution from 3.356km to 2.926km east-west).  

The duration of the wind and pressure field data provided ranged from 10/24/2012 

at 00:00 GMT through 10/31/2012 at 00:00 GMT, with a 1-hour temporal resolution. 

These atmospheric data products are a continuous hindcast simulation, being assembled 

in a similar fashion to the continuous NARR atmospheric data inputs. These are in 

contrast with the typical 30-hour forecast products updated every 3 or 6 hours. The 

product assimilates atmospheric observations from various sources, including 

Weatherflow's extensive network of meteorological stations. The SELFE model’s 

atmospheric forcing field requires a fully expanded longitude-latitude grid, specific 

variable names, time units measured in days, and a time origin in a specific format to be 

read by the model’s ‘sflux’ atmospheric input. The atmospheric data provided by 

Weatherflow were released as an interoperable NetCDF format, which can be adapted to 

the SELFE model input with minimal preprocessing effort. A short script utilizing 

NetCDF operators (such as 'ncap2', 'ncrename', and 'ncatted' from 

http://nco.sourceforge.net/ ) can augment and adjust the metadata of the Weatherflow 

product in less than 10 seconds of run time to support the SELFE model setup. 

http://www.weatherflow.com/
http://nco.sourceforge.net/
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To account for the shorter data range and partial grid coverage extent of the 

hindcast RAMS model outputs as effective atmospheric inputs, the storm tide simulation 

utilized the model’s hotstart option using the NARR atmospheric inputs to “spin-up” the 

storm tide simulation from 10/15/2012 at 00:00GMT for 9 days until 10/24/2012 at 

00:00GMT. At this time, the rapid deployment 4km RAMS model inputs were utilized 

throughout the extent of the region covered, with the NARR atmospheric data being used 

at grid nodes outside the extent of the RAMS atmospheric data coverage along the 

periphery of the grid. Combination of the two wind products is handled via the 

‘sflux9c.f90’ file to blend the two data sources and provide a complete atmospheric input 

for the entire simulation period when two atmospheric inputs are simultaneously 

specified.  

Figure 3.5A-E displays the storm tide results at the 10 stations ranging in location 

from the Long Island Sound, through the New  York Harbor, down along the Atlantic 

Coast to Duck, NC, shown in Figure 2.4, during the period from October 28, 2012, at 

00:00GMT through October 31, 2012, at 00:00GMT. Figure 3.5A displays two stations in 

near the mouth of the Long Island Sound. A comparison of the timing of the peak water 

level water level illustrates the surge propagation from Montauk, NY, at the top of Figure 

3.5A at the mouth of the Long Island Sound. As the surge propagated westward through 

the Long Island Sound toward Kings Point, NY, at the bottom of Figure 3.5B, the storm 

tide reached the peak water level elevation of 3.216m above MSL (Figure 3.2).  

It is evident that there were two storm surges converging upon New York City 

during Hurricane Sandy; one from the New Jersey coast, and the other from the Long 

Island Sound propagating westward. Figure 3.5E combines two coastal stations in 
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Delaware and North Carolina, which are positioned within the 3rd and 4th quadrants of 

the Hurricane track where the counterclockwise wind motion has been weakened after 

passing over land. As the stations just north of Atlantic City, NJ (Figure 3.5A-D), were 

experiencing the maximum storm surge setup, these stations simultaneously experienced 

a water level set down, elucidated by the model results’ response to the offshore wind 

field. It is also worth noting that the forerunner of the storm was so pronounced that it 

water levels were observed to consistently exceed the station’s mean high water in 

Montauk, NY, for several days before storm made landfall through several days after. 

SELFE model performance with the RAMS atmospheric inputs were better than 

the storm tide resulting from the NARR atmospheric forcing (Table 3.3) with a mean R
2
 

value of 0.9402, a mean relative error of 4.08%, and an overall root-mean-squared error 

of 19.22cm. The relative error was observed to be less than 7.0% for the 10 NOAA 

observation stations, except for Lewes, DE, for which there is an observation error noted 

in the previous section. Therefore, the model dependably represented the hydrodynamics 

correctly using the RAMS atmospheric inputs (Table 3.4).  

Table 3.4. Statistical comparison between the model results obtained using the 4km 

RAMS wind and pressure fields and NOAA verified water level measurements. 

Station R
2
 Relative Error (%) RMS Error (cm) 

Montauk, NY 0.8856 6.70 15.77 

New Haven, CT 0.9701 3.33 24.02 

Bridgeport, CT 0.9908 0.76 11.74 

Kings Point, NY 0.9518 2.77 26.59 

The Battery, NY 0.9741 1.55 15.16 

Bergen Point, NY 0.9471 3.17 22.04 

Sandy Hook, NJ 0.9610 2.14 15.02 

Atlantic City, NJ 0.9377 4.70 19.65 

Lewes, DE 0.8234 9.52 25.71 

Duck, NC 0.9606 6.19 16.53 

Mean Value 0.9402 4.08 19.22 
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Figure 3.5A. Storm tide model results and NOAA verified water level comparison with time series (left) and statistical results (right). 
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Figure 3.5B. Storm tide model results and NOAA verified water level comparison with time series (left) and statistical results (right). 
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Figure 3.5C. Storm tide model results and NOAA verified water level comparison with time series (left) and statistical results (right). 
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Figure 3.5D. Storm tide model results and NOAA verified water level comparison with time series (left) and statistical results (right). 
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Figure 3.5E. Storm tide model results and NOAA verified water level comparison with time series (left) and statistical results (right). 
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CHAPTER 4: Street-Level Sub-Grid Inundation Model Methodology 

4.1  UnTRIM
2
 Model Description 

The UnTRIM
2
 model is utilized in this study to simulate storm surge and 

inundation caused by hurricanes and nor’easters. The numerical algorithms of UnTRIM
2
 

are both robust, and relatively general (Casulli and Walters, 2000; Casulli and Zanolli, 

2002; Casulli, 2009; Casulli and Stelling, 2011). A detailed model description can be 

found in the above references. The model is governed by the three-dimensional shallow-

water equations with the Boussinesq approximation and the equations are solved for free 

surface elevation, water velocities, and salinity in a Cartesian coordinate system. The 

momentum equations (4-1 & 4-2) and the continuity equation (4-3) for three-dimensional 

hydrostatic flows are:  

 

 

where:  

u(x, y, z, t), υ(x, y, z, t), and w(x, y, z, t) : velocity in the x-, y-, and z-directions [m]; 

t : time [s]; 

η(x, y, t) : water surface elevation measured from the undisturbed water surface [m]; 

f : Coriolis force [s
-1

]; 

g : gravitational acceleration [m s
-2

]; 

v
h
 : coefficient of horizontal eddy viscosity [m

2
s

-1
]; 

v
v
 : coefficient of vertical eddy viscosity [m

2
s

-1
]; 

(4-1) 

 

(4-2) 

 

(4-3) 
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Coefficients for eddy viscosity can be derived from an appropriate turbulence 

closure model. Integrating the continuity equation over depth and using a kinematic 

condition at the free surface of the water yields the following free surface equation (4-4): 

 

where h(x, y) is the water depth measured from the undisturbed water surface such that 

H(x, y, t) = h(x, y) + η (x, y, t) represents the total water depth. When wetting or drying is 

expected, the differential equations (4-1 through 4-4) are defined on a time-dependent 

horizontal domain Ω(t) defined as Ω(t) = {(x, y): H(x, y, t)>0} (Casulli, 2009). The 

boundary conditions at the free surface (4-5) are specified via prescribed wind stresses: 

 

where ua and υa are the respective wind velocity components in the x- and y-directions, 

and γT is a non-negative wind stress coefficient dependent upon wind speed. At the 

sediment-water interface, the bottom friction (4-6) is specified via: 

 

where γB is a non-negative bottom friction coefficient; γB can be given by the Manning-

Chezy formulation, or via fitting to a turbulent boundary layer.  

In the UnTRIM
2
 numerical scheme, local volume conservation is assured via the 

finite volume formulation. Simultaneously, a finite volume method is utilized to 

discretize the free-surface two-dimensional equation at each polygon to guarantee local 

and global volume conservation. Transport equations are solved using the sub-cycle 

(4-4) 

(4-5) 

(4-6) 
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upwind scheme, or by using the higher-resolution flux-limiter method (Casulli and 

Zanolli, 2005). Upon solving the transport equations, mass is also conserved locally and 

globally due to the finite-difference formulation. 

The Eulerian-Lagrangian method is applied in the UnTRIM
2
 numerical scheme to 

solve the momentum equations, since this method facilitates high-accuracy discretization 

of the non-linear advection terms. The advection term is solved via the Lagrangian 

method, which is computed independently with each time step by the method of 

characteristics applied to a fixed grid domain. This combined method is especially 

efficient when applied to unstructured Cartesian grids (Casulli and Walters, 2000; Casulli 

and Zanolli, 2002). When the momentum equations are solved, this method combines the 

advantages of the Eulerian method with the Lagrangian method, via merging the ease of a 

fixed Eulerian grid with the computational strength of the Lagrangian method. The 

advantage of the Eulerian-Lagrangian method is that a sharp front of velocity (like a 

storm surge or large river discharge) is easier to trace because the system matrix becomes 

diagonal and symmetrical (Casulli and Zanolli, 2002). Additionally, this method enables 

the use of larger time steps than without the scheme, since small grid size no longer 

places as great of a constraint on the Courant number (Casulli, 1999; Casulli and Walters, 

2000; Casulli and Zanolli, 2002). 

4.2  Model Setup and Configuration for 2012 Hurricane Sandy 

4.2.1  Model Domain and Grid 

UnTRIM
2
 is an unstructured orthogonal grid model and differs from structured 

orthogonal grids (like those used with ROMS), in that orthogonal structured grids 
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exclusively consist of four-sided structured polygons. The unstructured orthogonal model 

can make use of both three and four-sided polygons. Orthogonality in an unstructured 

grid is defined by the assumption that, within every polygon, there is a center point such 

that the segment joining the centers of two adjacent polygons, and the side shared by the 

two polygons has a non-empty intersection and that they are perpendicular to one another 

(Casulli and Zanolli, 1998). Additionally, the SELFE model utilized in the large domain 

of this modeling effort is an unstructured grid model that has no requirement regarding 

the orthogonality of its grid elements. An UnTRIM
2
 horizontal computational domain 

consists of a set of non-overlapping convex three or four-sided polygons. Each polygon 

side is designated as either a side of an adjacent polygon, or as a boundary of the grid.  

More recent advancements in the UnTRIM
2
 model allow for the use of a sub-grid 

mesh embedded within each base grid element with an inherent numerical scheme 

capable of partial wetting and drying (Casulli and Stelling, 2011). UnTRIM
2
 possesses 

numerous other valuable properties including: high-order numerical accuracy, global and 

local mass conservation, and unconditional stability due to its computationally semi-

implicit scheme. Greatest numerical accuracy is achieved when a uniform grid, 

comprised of uniform quadrilaterals (like squares) or equilateral triangles, is used. For 

this reason, many of the grids developed using Lidar-derived data have been scaled to 

square grids congruent to the native resolution of the topographic data contained in the 

DEM. The sub-grid model grid utilized to model 2012 Hurricane Sandy in the New York 

Harbor region makes use of a 200m base grid with a 40x40 nested 5m sub-grid within 

each grid cell (Figure 4.1). The grid is comprised of 11,959 nodes and 11,601 elements, 

covering an area of 29 x 37km, translating to 4,496,833 sub-grid cells at 5m resolution. 
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Figure 4.1. Location map of 4 NOAA tide gauges (red), and 8 USGS rapid deployment 

water level gauges (green) near the sub-grid domain utilized in the sub-grid modeling 

effort. Stations within the 200m base grid (black) were utilized for temporal verification 

of model results, while stations outside the grid were used for water elevation boundary 

forcing in the hindcast simulation driven via observation data.    

Sandy_Hook_NJ 

Rockaway_Inlet_NY 

 
. 
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Given a square grid, the normal velocity on the faces of each polygon is 

calculated at the center point of the face and the centers of two adjacent polygons are 

equally spaced from the shared face, minimizing the associated discretization error in 

these computations. An unstructured, non-uniform grid can be utilized with a larger 

associated discretization error (Casulli and Zanolli, 1998). Discretization error will 

propagate with increased simulation time, as is typical in computational simulations. If 

not utilizing a uniformly shaped unstructured grid, discretization error can be minimized 

when the polygon size and shape gradually vary throughout the flow region of the 

domain when using a uniform square-based grid with a uniform square sub-grid as shown 

near the southern tip of Manhattan Island with buildings included in Figure 4.2. 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. Representation of the square sub-grid used for modeling Hurricane Sandy in 

New York City in UnTRIM
2
 at Manhattan Island just north of the Battery shown in 

Figure 4.1. The grid includes a uniform 200m resolution square base grid with a nested 

40 x 40 5m resolution sub-grid. Lidar data are directly imported into the square sub-grid 

elements to effectively resolve buildings and streets. Coordinates are in UTM zone 18N.  
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4.2.1.1 Description of Sub-Grid Techniques 

Sub-grid modeling is a novel method by which water level elevations on the sub-

grid level can be obtained through the combination of water levels and velocities 

efficiently calculated at the coarse computational grid, the discretized bathymetric depths, 

and local friction parameters, without utilizing the excessive computing resources 

required to solve the full set of equations. Sub-grid technology essentially allows velocity 

to be determined efficiently at the sub-grid scale. This salient feature enables coastal 

flooding to be addressed in a single cross-scale model from the ocean to upstream river 

channels without overly refining the grid resolution. To this end, high-resolution DEMs 

will be developed using GIS from Lidar-derived topography for incorporation into a sub-

grid model, for research into the plethora of practical research applications related to 

inundation.  

When water from Hurricane Sandy’s storm surge floods into New York City, it 

will encounter complex developed land surfaces characterized by a wide range of unique 

features ranging from waterfront berms, streets, railroads, parks, highways, subway 

stations, bridges, to a variety building types of different kinds. High-resolution 

hydrodynamic models are needed to appropriately consider the impact of these local 

features into the prediction of maximum storm surge extents. Even with ample computing 

resources available today, it is still insufficient to model all complex topographic features 

at the individual building scale or at street-level resolution. Recent research demonstrates 

that, provided Lidar data of topographic heights and sufficient bathymetric water depths, 

both of which can be collected with very high resolution, detailed bathymetric data within 
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a coarse grid model can be used to further improve model accuracy (Casulli, 2009; Loftis 

et al., 2013). This is the emerging consensus for the sub-grid modeling approach.  

4.2.1.2 Nonlinear Solver for Sub-Grid Applications 

The essence of sub-grid modeling is its nonlinear solver within the solution 

algorithm for the wetting and drying scheme. The primary benefit of sub-grid modeling is 

its accurate and efficient wetting and drying scheme, which is capitalized upon in this 

inundation study. Since a conventional model can only represent overland fluid flow as a 

single water level within each core computational cell, it is represented as an average 

water level across the entire region represented by that one cell, with a Boolean true or 

false value for the typical fluid dynamics parameter: ‘is_wet’. Considering an element 

located along the edge of a shoreline where parts of the cell are wet while others areas of 

the cell are dry can only average the elevation across the cell, ultimately misrepresenting 

the fluid flow and spatial extent of water flooding into land areas.  

A sub-grid, nested within base grid cells can store unique topographic and 

bathymetric terrain information at a variety of scales depending upon DEM resolution to 

sub-divide the model’s core computational grid into smaller sections to allow for better 

representation of the flow velocities and flooding extent by allowing model elements to 

display as partially-wet or partially-dry, with the Boolean true or false value for the 

‘is_wet’ parameter now applying to each sub-grid cell based upon its averaged elevation 

being negative or positive (Figure 4.3). The sub-grid helps to sub-divide the river cross-

section into smaller separate areas in a manner analogous to the mean value theorem in 

calculus to better estimate the area underneath the curve for computation (Figure 4.4). 
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Figure 4.3. Two images depicting the 200m UnTRIM
2
 model base grid near the tip of 

Manhattan at the confluence of the Hudson and East Rivers into the New York Bay 

without sub-grid refinement (top) and with 5m sub-grid refinement (bottom). The transect 

across the Hudson River bed enveloped in red is shown in Figure 4.4 detailing the sub-

grid discretization methodology. 

Base Grid Only 

With Sub-Grid 

Refinement 
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Figure 4.4. The transect across the Hudson River bed highlighted in red within Figure 4.3 

is shown at the 200m base grid resolution without sub-grid refinement (top), with 4 

subdivisions/cell for a 50m sub-grid (middle), and with 5m sub-grid refinement (bottom).  

Base Grid Only 

With 50m Sub-Grid Refinement 

With 5m Sub-Grid Refinement 
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The sub-division methodology of the sub-grid essentially separates the base grid edges 

into more manageable pieces for computation in the model to estimate the cross-sectional 

area more accurately (as depicted in Figure 4.4), and thus the volume transport.  

In Casulli’s (2009) paper, the UnTRIM
2
 sub-grid solution algorithm is referred to 

as a mildly nonlinear system for the free surface wherein the formulation for finite 

volume leads to a mildly nonlinear system for finite volume with respect to the free 

surface elevation. This nonlinear solver operates on the base grid cell sides, and is non-

linear because as volume increases the slopes of the river banks are not uniform 

(Aldrighetti and Zanolli, 2005). Since the “container” holding the fluid is a complex 

shape, and not idealized flat walls perpendicular to a flat river bottom as depicted in 

Figure 4.5A, the fluid volume increases and decreases nonlinearly with the rise and fall of 

the free surface of the water with the tide as shown in Figure 4.5B (Casulli and Zanolli, 

2012). Given the anomalous rise in the free surface of 3.5m observed at The Battery, NY, 

the storm surge causes a nonlinear increase in volume transport as the flood waters are 

not constrained by the riverbanks and freely flood into Jersey City and New York City as 

observed during Hurricane Sandy (Figure 4.5C). 

Since cross section area is not calculated using only one average value for the 

base grid edge, as in the conventional modeling approach (Figure 4.3), but using multiple 

sections to estimate cross-sectional area using the divisions specified in the sub-grid; the 

wet volume (first term of the continuity equation times area) may be more accurately 

approximated (Figure 4.4), leading to more accurate non-linear volume transport 

calculations (Figure 4.5) (Casulli, 2009; Casulli and Stelling, 2011). 
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A likewise-comparison of a base grid against a sub-grid mesh of identical 

resolution illustrates the classical modeling trade-off of favoring minimal computing time 

over accuracy (Casulli and Zanolli, 2012). Ideally, the traditional modeling approach 

would utilize a base grid only, at 5m resolution, and thus would involve minimal 

approximation but become extremely computationally expensive. For example, the sub-

grid for New York City includes 4,496,833 sub-grid cells, which would need to be 

resolved within the core computational grid in a conventional hydrodynamic model with 

a 5m grid resolution. Furthermore, the same size domain at 1m resolution would require a 

grid containing >110 million cells, thus requiring enormous computing power to simulate.  

Therefore, attempting to resolve these unique topographic and bathymetric 

differences in the conventional modeling sense is impractical. The sub-grid modeling 

approach affords substantial computational savings via solving the shallow water 

equations presented in Section 4.1 at the base computational grid while storing the 

discretized bathymetric depths and Lidar-derived topographic heights within the sub-grid 

(Casulli, 2009). Using the formulation presented in the next section, this study will 

perform sensitivity tests using various resolution base grids to verify that there is minimal 

decline in the computational accuracy in the New York Harbor during 2012 Hurricane 

Sandy when utilizing the sub-grid non-linear solver (Casulli, 2009; Casulli and Stelling, 

2011, Casulli and Zanolli, 2012). Sensitivity tests will be presented in the next chapter 

regarding resolution of the core computational base grid that will be utilized to verify the 

robustness of the partial wetting and drying scheme using over land gauges to compare 

with street-level inundation model results with and without sub-grid refinement. 
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Figure 4.5A-C. Relational depiction of a linear (A), vs. the non-linear (B and C) water 

level and volume increase observed when utilizing sub-grid techniques in New York City 

during 2012 Hurricane Sandy’s 3.5m storm surge observed at The Battery, NY.  
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4.2.1.3 Sub-Grid Model Formulation 

The concept of a sub-grid nested within a coarse computational grid was 

developed to utilize detailed bathymetric depths in order to model the spatial extent of 

wetting and drying more accurately (Casulli, 2009). Using the imbedded sub-grid within 

the coarse grid, it is possible to accurately determine the wet volume and cross-sectional 

area of a coarse grid cell, which is required using the continuity equation (4-3). The water 

levels and velocities are then computed on the coarse grid level to ensure the efficiency of 

the model in each time step (Casulli and Zanolli, 2012). The sub-grid is then utilized as 

an intermediate step to update volumes and cross-sectional areas, without the high 

computational costs of simulation on a traditional complete high-resolution grid. The sub-

grid approach can generate velocities at the sub-grid level, and thus improve calculation 

of the bottom stress (Stelling and Kerncamp, 2010). Assuming in the coarse grid model, 

that the 2-D flow is dominated by friction, this results in the pressure gradient term being 

balanced by the friction term in the momentum equation for each time step:    

  
  

  
   

  ‖ ‖

 
   (4-7)  

where g is gravity, ζ is water surface elevation, and cf is the friction parameter (4-7). 

This leads to: 

 

   √       or     
  

                 where:        √
  

  
 (4-8)  

and Ω is defined as conveyance velocity in (4-8). If we assume that the pressure gradient 

within a time step is constant, the traditional approach leads to the velocity being constant 
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within a computation cell. In the sub-grid approach, however, it will allow the velocity 

field to vary within a coarse grid cell as follows. If we assume that every sub-grid has the 

same surface size, then each sub-grid velocity will obey: 

   

   
‖  ‖

 
             (4-9)  

where j is the index for each sub-grid cell (4-9), and the sub-grid velocities can be 

determined by the coarse grid velocity, ‖ ‖, with cfj,  and hj,  according to (4-10 & 4-

11):  

 

‖  ‖

  
 

‖ ‖

 
     for all  j         ‖  ‖    

‖ ‖

 
 (4-10)  

where: 

‖ ‖   
∑   ‖  ‖
 
   

∑   
 
   

      and        
∑     
 
   

∑   
 
   

 (4-11)  

Therefore, when the sub-grid approach is adopted, it enables the model to determine 

bottom friction more accurately from the sub-grid level, which can then be integrated to 

the entire cell instead of using the average velocity to obtain the average bottom friction. 

4.2.1.4 Flow Resistance  

Determining overland friction for flow resistance in urban areas is critical to 

accurately modeling inundation for high-resolution sub-grid applications. The calculation 

of friction is important in the interest of characterizing the resistance to fluid flow. In 

typical hydrodynamic studies, the effect of friction within the river channel must be 
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calibrated and parameterized in order to accurately assess fluid movement (Henderson, 

1966; Dyer, 1986; Nitsche et al., 2012). When a storm surge brings fluid up on to land, 

the resistance to fluid movement at the bottom is significantly heightened due to skin 

friction, as the bottom boundary layer comprises a large portion of the water column, as 

the flood water depth may be only a meter or more (Christensen and Walton, 1980). 

When not utilizing a high-resolution model grid in an urban setting, a very large 

friction parameter must be specified in the model in order to account for the 

insurmountable barrier to fluid flow posed by the presence of tall buildings in New York 

City as a form of macro-roughness. Any bottom roughness on a scale much greater than 

the wavelength of the approaching wave is characterized as macro-roughness, and such 

building features lead to turbulence and scattering of the wave, which is largely 

independent of wavelength and angle of incidence (Kökpinar, 2004; Nitsche et al., 2012). 

Flow and friction around buildings in a built-environment varies by two fundamental 

measurements: the width of the buildings, and the width of the street channels to 

accommodate fluid flow between them (Wang, 1983; Wang and Christensen, 1986). 

Given that buildings vary by shape and dimension, there is a nearly infinite variety of 

building shapes observed in a coastal ultra-urban environment such as New York City; 

each with its own flow resistance regime (Figure 4.6).  

Laboratory experiments have been previously performed to determine friction 

specifications to account for the effect of form drag as fluid detours around buildings of 

various shapes and dimensions (Wang, 1983; Wang and Christensen, 1986). 

Additionally, laboratory prototypes of building configurations were constructed to 

determine that the width of the horizontal building face (facing the initial surge) divided 



85 
 

by the diagonal measurement between adjacent building corners correlates well with 

form drag of the fluid around the building (Wang, 1983). If one does not wish to resolve 

the streets between buildings, then form drag must be addressed as part of the overland 

bottom friction specification. This effort will reasonably address the substantial 

difference between the relatively small impact of bottom friction in a river channel, 

which is carved by regular fluid flow over vast time scales, and the comparatively larger 

friction over rough surfaces of a metropolitan city’s infrastructure within the context of a 

numerical model (Christensen, 1972; Wang, 1983; Wang and Christensen, 1986). 

Early numerical models neglected the influence of bottom friction on storm surge 

propagation. Ignoring the impact of friction is typically acceptable in exceedingly deep 

regions of the ocean, however, the influence of bed friction in shallow water areas and 

exceptionally shallow over land flow is not to be disregarded without consequential error. 

Thus, modern numerical models incorporate the influence of bottom friction via the 

Manning formula given in Equation (2-16) in 2-D formulations. Another method utilized 

in this laboratory scale representation of flow resistance posed by buildings utilizes the 

Darcy-Weisbach formula to calculate the bed shear stress (   ) in Equation (4-12): 

    
      

 

 
 (4-12) 

where ρ is the density of water,    is the spatially averaged velocity in the local vertical, 

and    is the friction factor. Elimination of     by way of combination of Equations (2-

16) and (4-12) demonstrate that the friction factor is a function of the local depth and 

Manning’s  , which are both directly dependent upon the relative roughness of the 



86 
 

bottom the fluid is flowing over. Therefore, spatially-varying values of the friction factor 

are utilized to obtain reasonable results in modeling shallow water flows. It should be 

noted that using the Manning formula to calculate the bottom shear stress may lead to 

errors when the apparent bottom roughness is not sufficiently small compared to the 

depth (as is the case with macro-roughness) as indicated in Christensen and Walton 

(1980).  

The influence of the friction factor may be determined for storm surges in 

unobstructed regions, which may apply to areas that are perennially wet such as the ocean 

floor and river bottoms, in addition to ephemerally wet land areas like grassy fields and 

flat, developed regions, which may become entirely inundated in storm surge scenarios. 

Given that virtually all hurricane-induced surges are within the range of hydraulically 

rough flow, a velocity profile based upon a modified version of Prandtl's mixing length 

theory suggested by Christensen (1972) was employed in a laboratory study using:  

 

  

̅̅ ̅
       (

       

 
  )  (4-13) 

where  ̅ is defined as the time-averaged velocity in the direction of flow at   distance 

from the bottom,    is the friction velocity, and   is Nikuradse's equivalent sand 

roughness (Equation 4-13). The modified version of Prandtl’s mixing length theory 

affords a profile of velocities which satisfies the no-slip condition at the bottom, while 

the classic velocity profile leads to impossible negative velocities approaching -  

(Christensen, 1972). Additionally, use in practical applications of 2-D storm surge 

models dictates that the time-averaged velocity profile be transformed to a depth-
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averaged velocity profile. This transformation assumes that the depth-averaged velocity 

ideally occurs at a distance of z = 0.368   from the bottom for the modified logarithmic 

vertical velocity profile, where d/k is >1. Using this assumption, the previous equation 

becomes: 

  

  
       (

       

 
  )  (4-14) 

The velocity profile in Equation (4-14) relates to the friction factor through substitution 

of the Darcy-Weisbach formula into the definition of the friction velocity via Equation 

(4-15): 

  

  
 (

 

  
)

 
 ⁄

 (4-15) 

Solving the above equation for    and introducing Equation (4-14), yields a general 

expression for friction factor for surges in unobstructed regions (Equation 4-16):  

   
    

[  (        
  )]

 
 (4-16) 

Bottom friction factor for storm surge applications in areas including buildings 

and other obstructions is technically complex, especially in areas of high building 

density. In terms of friction, buildings may be defined as roughness elements with 

significant heights that may protrude through the water layer as a form of macro-

roughness, or simply be comprised of rigid elements of considerable height capable of 

creating a form drag that is significantly larger than surface friction within the same area. 
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In the scenario of a current that flows over an obstructed area where the density is M per 

unit area, the mean diameter of the obstruction in the projected plane (normal to the flow) 

is D, and the mean drag coefficient is CD. The equation below assumes steady or 

partially-steady flow within the range of rough flow to represent head loss (ΔH) per unit 

weight of fluid over a bed length of L: 

       
  

 

  
 
 

 
    

  
 

  
 
 

 
 (   )         

  
 

  
 
 

 
  (4-17) 

where R is the hydraulic radius, and ε is the fraction of total area occupied by 

obstructions. An equivalent friction factor,     may be defined to consider the effects of 

form drag and skin friction simultaneously in the determination of flow resistance. A 

version of the Darcy-Weisbach equation is introduced from Equation (4-17) to yield: 

      (   )          (4-18) 

where    is given in Equation (4-16) and may be validated via experimentation. The law 

of conservation of energy dictates that the total energy head at an upstream location (1) 

must be equal to the total energy head at an analogous downstream location (2) plus the 

head loss between the two locations in the following form of the Bernoulli equation: 

       
  

  

  
    

  
  

  
    (4-19) 

Relation of recorded results of head loss from Equation (4-19) to the Darcy-Weisbach 

equation (Equation 4-12) ultimately provides Equation (4-20):  
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  (4-20) 

In Equation (4-20),      
(       )

 
, and       

(     )

 
; the equivalent friction factor 

may be determined for the roughness elements of interest (Wang and Christensen, 1986).  

4.2.2 Review of Laboratory Flume Experiment for Flow around Buildings 

This review of a laboratory flume experiment entitled “Friction in Hurricane-

Induced Flooding,” conducted at the University of Florida in 1983, serves to provide 

some insight regarding appropriate bottom friction specification for overland flooding 

around buildings like those observed in the ultra-urban environment of New York City 

(Wang, 1983). Based upon the need for a more accurate prediction of hurricane-induced 

inundation in coastal regions to address applications that help govern land use planning, 

flood insurance rate determination, and proper positioning of the construction set-back 

line, Wang (1983) developed a methodology for describing the overland friction factor 

for flow resistance in urban areas for improved parameterization of over land friction 

specification for improved numerical model results. The study utilized a laboratory flume 

to place special emphasis on the friction characteristics of buildings, which is the single 

greatest source of flow resistance in developed areas (Wang, 1983).  

4.2.2.1 Setup and Results of Laboratory Flume Experiment 

The presence of buildings in developed areas introduces a form of macro-

roughness, which is insurmountable for shallow water movement to flow over, and 

constitutes the principal roughness elements which would significantly affect the 
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apparent bottom shear stress as well as the wind shear stress during flooding caused by a 

substantial storm front or hurricane. Typically, buildings are not arranged in uniform 

patterns, but as building density increases, surface area for necessary infrastructure to 

service vehicular and foot traffic to those buildings decreases (Figure 4.6). Incidentally, 

these areas are also the path of least resistance in terms of fluid flow during storm surge 

scenarios, as roadways and sidewalks are lower elevations than the buildings surrounding 

them, and provide ideal alternate pathways for a propagating surge blocked by buildings. 

Buildings may be classified into three categories defined in Wang (1983) (Table 4.1):  

1) High-rise buildings are those which have a surface area of > 10,000ft.
2
. 

2) Medium-rise buildings are between 2,500 ft.
2
 and 10,000ft.

2
. 

3) Residential buildings are considered to be < 2,500ft.
2
.  

Table 4.1. Building dimension parameters drawn and analyzed from orthophotographs of 

Broward and Dade Counties, Florida, and modeled dimensions for a laboratory flume 

using three building classifications: high-rise, medium-rise, and residential. Nl is 

horizontal and Nd is vertical scaling; adapted from Wang and Christensen, 1986. 

 

 

Orthophotographs of  

Coastal Buildings 

Laboratory Flume  

Model (Nd = 10) 

Type of 

Buildings 

Appx. 

Dimension (m) 
Density 

Nl 

Dimension (cm) Density 

Length Width 
#/46,452 

m
2
 

#/acre 

Coverage 

Ratio 

(M) 

Length Width #/2.1 m
2
 

High- 

Rise 
69 33 7.19 0.63 0.36 174 39.4 19.1 10 

Medium-

Rise 
31 15 23.62 2.06 0.24 80 39.4 19.1 7 

Residential 19 9 68.87 6.00 0.26 48 39.4 19.1 7 
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Figure 4.6. Sketch of top view of various outlined building shapes and locations observed 

in New York City with red highlighted shoreline; drawings adapted from Wang, 1983.   
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The study by Wang (1983) observed orthophotographs of Broward and Dade 

Counties in Florida to analyze the dimensions and densities of buildings in coastal areas. 

Typical building shapes and orientations are shown in Figure 4.6 with comparable 

building configuration comparisons from New York City. Building shape A, shown in 

Figure 4.6, was observed to be the shape of the majority of buildings observed (>50% of 

all buildings surveyed) in their study, as well as in each of the boroughs of New York 

City. The laboratory experiment made use of standard concrete cinderblocks with 

dimensions of 19.1 x 39.4cm, with a height of 19.1cm, to represent buildings and placed 

them into a shallow flume using the scaling outlined in Table 4.1. The experiments are 

conducted in a flume 2.44m wide x 36.6m long, with a height of 0.81m (Wang, 1983).   

Buildings were arranged in staggered and aligned configurations to represent the 

common building arrangements observed in coastal zones. New York City has almost 

entirely aligned buildings arranged in city blocks due to its extremely high population 

density. Configurations 1-13 correspond to building densities and spacing observed with 

high-rise buildings, configurations 14-21 were used for both medium-rise and residential 

experimental scenarios (Figure 4.7A-B). Greater than 10 experiments were conducted for 

each of the 21 patterns shown in Figure 4.7A to calculate the average CD in varied 

conditions ranging from Reynolds numbers of 20,000 to 70,000 and Froude numbers of 

0.1 to 0.5 regulated via pump and sluice gate. Results obtained for medium rise building 

areas can be converted using appropriate scaling factors to use in residential areas, given 

that the two areas are presumed to possess the same relative building distributions with 

only dimensional differences. The average values of the experimental results for each of 

the 21 configurations are given in Table 4.2 and shown in Figure 4.8. 
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Figure 4.7A. Top view of 21 experimental flume cinderblock building configurations. 

High-rise configurations have dimensions of 0.87 x 2.44m, and medium-rise and 

residential building arrangements have dimensions of 2.44 x 2.44m, with fluid flow 

originating from the top flowing toward the bottom; sketches adapted from Wang, 1983. 
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Figure 4.7B. Photographs of 21 flume cinderblock building configurations (Wang, 1983). 
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Diagonal distance (Sd), measured between the buildings in adjacent transverse 

rows (from multiple row building configurations 6 - 21), was shown to be positively 

correlated with bottom friction,    , for both aligned and staggered building 

arrangements, as seen in Figure 4.7A-B. The good correlation is a result of the diagonal 

spacing, wherein magnitude affords a difference of disposition for the evenly distributed 

buildings or roughness elements. Additionally, the diagonal spacing also provides a 

relative measure of building density as determined in Table 4.1. Thus, the higher the 

density of buildings in a region, the smaller the disposition parameter, Sd/D, will be, 

resulting in greater values for drag coefficient,    . The disposition parameter of the 

staggered pattern is observed to be smaller than the aligned pattern, resulting in a larger 

drag coefficient when considering buildings with like dimensions and density (Wang, 

1983). Shen (1973) came to the same conclusion in a similar experiment evaluating the 

average drag coefficient of two cylinder patterns, aligned and staggered, within the 

context of an open channel flow regime, thus validating Wang’s (1983) experiment.  

 
Figure 4.8. Relation between drag coefficient for bottom friction (   ), and the diagonal 

disposition (Sd/D) of buildings ascertained from laboratory flume studies of high-rise (●), 

medium-rise (■), and residential (▲) building configurations; adapted from Wang, 1983. 
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Table 4.2. Statistical values from experimental flume results for bottom friction in 

regions obstructed by buildings; adapted from Wang, 1983. 
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0.0013 0.0003 23 0.788 0.163 21 

2 0.0064 0.0006 38 1.965 0.254 13 

3 0.0180 0.0030 17 3.406 0.181 5 

4 0.0460 0.0090 20 7.014 1.121 16 

5 0.1580 0.0260 16 17.813 1.298 7 

6 0.0036 0.0006 17 1.108 0.123 11 

7 0.0046 0.0011 24 0.907 0.230 25 

8 0.0090 0.0010 11 1.346 0.119 9 

9 0.0130 0.0010 8 1.597 0.189 12 

10 0.0080 0.0014 18 2.369 0.275 12 

11 0.0154 0.0029 19 2.965 0.227 8 

12 0.0230 0.0040 17 3.662 0.221 6 

13 0.0350 0.0050 14 4.315 0.389 9 

14 

M
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0.0074 0.0011 15 1.232 0.170 14 

15 0.0127 0.0030 24 2.082 0.173 8 

16 0.0117 0.0020 17 1.088 0.096 9 

17 0.0329 0.0067 20 3.040 0.114 4 

18 0.0158 0.0018 11 1.181 0.097 8 
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15 0.0211 0.0050 24 2.082 0.173 8 
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17 0.0548 0.0112 20 3.040 0.114 4 

18 0.0264 0.0030 11 0.167 0.097 8 

19 0.0747 0.0120 16 3.355 0.098 3 

20 0.0441 0.0063 14 1.586 0.089 6 

21 0.1052 0.0186 18 3.926 0.120 3 
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4.2.2.2 Application of Flume Results to Sub-Grid Model 

The model’s specified bottom friction for over land flow is verified by the results 

of this small scale laboratory experiment to ascertain flow resistance to storm surge 

induced inundation in the presence of buildings (Wang, 1983). These results were then 

scaled to average building spacing using dimensional analysis and through proper scaling 

of building disposition parameters from the laboratory experiment to average building 

spacing within the city blocks in each New York City borough. Detailed description of 

the principles of dynamic similarity relating the laboratory experimental results to that of 

the prototype scale can be found in Appendix B. Separate drag coefficient equations 

similar to those given in Figure 4.8, may be calculated for each of the three building 

classifications in New York City comparable to those measured from orthophotographs 

in Broward County and Dade County, Florida, from Wang, 1983 (Figure 4.6). 

Application of these equations requires knowledge of building density and 

building classification. This information may be calculated for New York City utilizing 

GIS tools on the building layer embedded within the sub-grid model. Considering that 

most of the buildings in New York City are aligned in configuration to maximize 

transportation efficiency, and that virtually all of the buildings along the water or within 

the flood risk area fall into the classification of high-rise buildings in the ultra-urban 

metropolis; the following method was utilized to calculate building density for each of 

the boroughs in New York City in the interest of applying a spatially-varying over land 

friction coefficient,    ,. This     will be specified in the sub-grid model’s 2-D 

formulation using Manning’s formula with a spatially varying bottom roughness, n 

(Table 4.3) by way of a similarity solution described in Appendix B. 
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Table 4.3. Spatial analysis results for building density and average diagonal building 

disposition within each New York City borough. 

# Borough 
200x200m 

Cells 

Total Cell Area 

(m
2
) 

Building Area 

(m
2
) 

Coverage 

Ratio (M) 
CDb n 

1 Manhattan 1198 47,920,000.00 19,410,903.63 0.4051 0.2813 0.0978 

2 Brooklyn 1271 50,840,000.00 16,159,370.29 0.3178 0.2595 0.0938 

3 Queens 1535 61,400,000.00 18,432,395.83 0.3002 0.2551 0.0931 

4 Bronx 1101 44,040,000.00 10,685,412.81 0.2426 0.2407 0.0905 

5 Staten Island 402 16,080,000.00 3,635,814.19 0.2261 0.2365 0.0896 

 

Using GIS tools, the building areas were retrieved from the vector dataset. 

Subsequently, the feature to polygon tool was utilized to convert the contour lines to 

polygons for each building. The resulting polygons were intersected with the exported 

base grid cell layer to divide up building data extracted from the building contours into 

200m x 200m cells to calculate friction parameters for each base grid cell based upon 

unique building density calculations for each grid cell. Interior terrestrial base grid cells 

(not including grid cells containing portions of the river) were selected as a representative 

sample of building density within each 200m x200m base grid square for each of the 

boroughs within the sub-grid domain. Table 4.3 includes spatial analysis results for 

building density and analogous measures of CDb with translated values for Manning n 

using Wang’s suggested CDb for high rise buildings in an aligned configuration:     

              (1983). Overland values for Manning n are spatially varying by 

building density within each New York City borough according to Table 4.3. Building 
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density ratios calculated from the 200x200m base grid cells for each borough were 

converted to 1x1m scale to yield CDb values ranging from 0.2365 in Staten Island to 

0.2813 in Manhattan. These values translate to Manning n values via Equation (2-16) for 

a range from 0.0896 in Staten Island to 0.0978 in Manhattan (Table 4.3). Standard 

Manning n values of 0.020 in the Hudson River, and 0.030 in the East River and Harlem 

River to represent bottom drag within the New York Harbor. Both of these values are 

reasonably close to the average Manning n value of 0.025 for clean and straight river 

channels (Henderson, 1966). In review, provided the use of high-resolution Lidar-derived 

topography data and extremely accurate vector building data, streets between buildings 

may be sufficiently resolved within the model sub-grid to intrinsically account for the 

form drag posed by the storm surge flow around building obstacles. The arrangement and 

configuration of buildings along with the disposition between rows of buildings along the 

water’s edge vary greatly by shape and size, as noted in Figure 4.6 (Wang, 1983). Each of 

these building shapes would need to be uniquely accounted for in the model’s friction 

specification if their shape is not resolved within the model grid. This is a task that is 

either impossible or highly impractical due to computational demand when using the 

conventional modeling approach. While the inland metropolitan area surrounding New 

York City is generally structured in a block system to maximize utility for the urban 

population, buildings adjacent to the water’s edge often have unique shapes, being 

designed to maximize the number of rooms with a view of the adjacent body of water 

(Figure 4.6). Each of the buildings varies by shape and dimension, and thus has their own 

unique form drag. This unique form drag is in addition to the friction posed by the ground 

surface, both of which must be accounted for in the model’s friction parameterization if 
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the model grid does not sufficiently resolve buildings. Thus, the sub-grid model 

effectively resolves the streets using high-resolution topography to utilize a more 

universal friction specification.  

4.2.3  External Model Forcings 

4.2.3.1 Atmospheric Forcing 

Atmospheric data for the observation simulation of 2012 Hurricane Sandy in the 

New York Harbor region were collected in units of m/s from NOAA atmospheric 

observation data at Bergen Point, New York (NOAA Station # 8519483). Atmospheric 

observations were subsequently pre-processed and prepared as uniform wind and 

pressure inputs throughout the small-scale domain. U and V velocities were extracted and 

wind fields were interpolated to 6-minute time steps, commencing on October 01, 2012, 

at 00:00 GMT, and ending November 04, 2012, at 00:00 GMT. Atmospheric pressure 

was converted from mbars to Pascals, and prescribed as a uniform atmospheric pressure 

input throughout the domain in similar fashion to the prescribed wind inputs.  

4.2.3.2 Freshwater River Inflow 

Hourly freshwater flows for the Hudson River were obtained from the United 

States Geological Survey (USGS) and specified as a flux boundary condition. These data 

were applied uniformly as a forcing along the sides of 9 elements along the northern 

boundary of the model domain near Wappingers Falls (Station #01372500). The model 

input has been adjusted by 30 minutes to account for the considerable distance from the 

station to the edge of the sub-grid domain.  
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4.2.3.3 Tidal Open Boundary Forcing 

Tides are forced via three open boundaries: one to the south, one in the west, and 

one in the east. The southern open boundary in the sub-grid domain is located at the 

mouth of the New York Bay into the Raritan Bay leading to the Atlantic Ocean. The open 

boundary to the west is where the Kill van Kull connects the Newark Bay to New York 

Bay. The third open boundary lies to the east and connects the East River to the Long 

Island Sound.  In the simulation driven via observation data, the southern boundary is 

forced using observation data from USGS Rockaway Inlet (Station #1311875), the west 

boundary uses NOAA Bergen Point (Station #8519483), and the east boundary is forced 

using water level data from NOAA Kings Point (Station #8516945) shown in Figure 4.1. 

The forcing data from Rockaway Inlet has been converted from NGVD29 to and delayed 

by 12 minutes to account for its distance from the southern boundary of the grid at Coney 

Island, south of the Verrazano Narrows.  
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CHAPTER 5: Geospatial Data Analysis 

5.1 Pre-Processing Development of DEM 

The setup and design of the model DEM to be used with the New York City sub-

grid includes multiple topography and bathymetry sources with the addition of buildings 

for the metropolitan area of New York City (Table 5.1). The DEM was primarily 

configured in GIS ArcInfo v.10.1. The multiple topography datasets collected from the 

USGS National Elevation Dataset were mosaicked as rasters (1/3 arc sec or  10m 

resolution or better). The mosaic map operation made use of 32-bit float pixel type to 

preserve a significant number of digits (at least down to mm scale) for both positive and 

negative value elevations to produce a single geotiff of all USGS data called 

‘DEM_Hudsonb.tif’. According to the metadata, the primary data source for the USGS 

data were derived from final return Lidar point cloud data and preprocessed by the USGS 

to remove objects of the built environment such as city infrastructure and buildings.  

Table 5.1. Data sources and resolutions for representing topography and bathymetry  

for the sub-grid with Lidar-derived topography. 

 Data Source Resolution Area 

Bathymetry NOAA Coastal Relief Model 3 arc sec (≈90m) Coastal Regions 

NOAA Bathymetric Survey Data 1/3 arc sec (≈10m) Hudson River, East River, 

Kill van Kull, Raritan 

Bay, and New York Bay  

Topography USGS National Elevation Dataset 

 

1/3 arc sec (≈10m) Low-elevation areas 

around the New York 

Harbor and  Raritan Bay 

USGS National Elevation Dataset 

 

1/9 arc sec (≈3m) Select areas of  

New York City 

Open NYC Building Inventory 

 

0.1m New York City Buildings 
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The resulting raster was projected to NAD83 UTM18N, the desired geographic 

projection, and retitled ‘DEM_Hudsonb_utm18n.tif’. A polygon shapefile was drawn 

around the area of interest for inclusion in the sub-grid model domain to crop the DEM to 

include the areas of the Hudson River south to Coney Island and north to Yonkers to 

include the confluence of the Harlem River with the Hudson River. The shapefile is also 

bounded in the west by the NOAA-operated gauge at Bergen Point along the Kill van 

Kull, and east to where the Long Island Sound meets the East River near the NOAA 

gauge at Kings Point via the ArcGIS editor to produce ‘NY_SG_croputm18n 

proj3HarRvr.shp’. Using this mask polygon, the extract by mask function from the GIS 

Spatial Analyst toolbox was utilized to crop out the area of interest from the large DEM 

and crop out the water areas using a combined shoreline layer of New York and New 

Jersey to create the ‘DEM_NYC_2HarRvr2_5m.tif’ dataset (New Jersey Shoreline, 2008; 

New York City Shoreline, 2012).  

Finally, the cropped DEM was resampled to 10m resolution 

‘DEM_NYC_2HarRvr2_5m.tif’, and 5m resolution ‘HarRvr2_5m.tif’ to minimize the 

interpolation impact within the grid generation software platform when building the sub-

grid. In the NAD83 UTM Zone 18N projection, the output cell sizes should be 9.09m and 

4.54m, for 10m and 5m resolutions, respectively. The topographic geotiffs were 

converted to ANSI ASCII format for compatible use with the grid generation software 

‘A_DEM_HarRvr2_5m.asc’. 

Coastal relief data were downloaded as an ArcInfo ASCII file at 90m resolution 

from NOAA’s National Geophysical Data Center and imported into ArcGIS as the base 

bathymetry DEM: ‘DEM_bathy_2HarRvr2’. Higher resolution ( 10m) NOAA digital 
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bathymetric survey data were collected where available and assimilated into the 

bathymetry DEM via the merge function while assuring elevation symmetry along the 

seams. The following digital data surveys were collected from NOAA (NOAA NOS, 

2006): H11600 collected in 2006 along the New York Bay and Verrazano Narrows in the 

south central area of the sub-grid domain, H11353 collected in 2004 along the East River, 

and H11395 gathered in 2006 along the Hudson River adjacent to Manhattan Island. The 

merged bathymetry data were then reprojected to NAD83 UTM18N and resampled to 

10m and 5m resolution in similar format with the merged topography DEM to produce 

‘DEM_bathy_2HarRvr2_10m2.asc’, and ‘DEM_bathy_2HarRvr2_5m2.asc’, 

respectively. The geotiffs were converted to ANSI ASCII format to yield: 

‘B_DEM_bathy_2HarRvr2_5m2.asc’.  

Vector building footprints and building heights were obtained from the GIS 

repository of New York City, via the NYC DOITT database, last updated in 2013 (New 

York City Buildings, 2013). The five boroughs of New York City were merged from five 

vector datasets into one to form ‘NYC_Buildings.shp’. The resulting shapefile of 

building polygons was reprojected to use the same geographic projection used for the 

topographic and bathymetric DEM: NAD83 UTM18N ‘NY_Buildings_utm18nproj.shp’. 

Using the building footprints layer as a mask polygon, use the extract by mask function in 

the GIS Spatial Analyst toolbox to create a template geotiff raster of buildings at the 

highest re-sampled resolution using the building heights field as the elevation above MSL 

to create: ‘HarRvr2_5m_bldg.tif’. The geotiff output for the building layer DEM was 

exported via ANSI ASCII format for compatible use with Janet, the sub-grid generation 

software: ‘C_DEM_HarRvr2_5m_bldg.asc’. 
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Within Janet v.2.9.36, the polygon shapefiles were imported to be the template for 

the sub-grid boundary using ‘NY_SG_croputm18nproj3HarRvr.shp’. The polygon editor 

was utilized to copy the imported boundary polygon to the polygon mask layer for use in 

building the model boundary. The command to “build regular quad grids” was used to 

specify an appropriate base grid cell size (200m was used for New York City), setting 

model depths to be stored at the edges of each cell in the UnTRIM
2
 grid. The base grid 

cell size should be selected unique to each domain to provide at least two base grid cells 

across the channel of each domain; this grid allows for, on average, approximately 7-8 

base grid cells across the Hudson River, 3-4 across most parts of the East River, and 1-2 

across the narrow straits of the Harlem River.  

Once the regular quadrilateral grid cells have been built, the topography, 

bathymetry, and building ASCII DEMs were imported into the grid editor. Boundary 

polygons were subsequently generated for the grid using the previously imported polygon 

in the polygon mask layer. To complete creation of the land boundary, the system editor 

was used to edit the boundary markers to set the grid boundary marking the edges 

completely outside of all mask polygons, and then manually unselecting water boundaries 

along the south, west, and east as open boundaries, and setting the north boundary along 

the Hudson River as a flux boundary condition.  

The bathymetry layer ‘B_DEM_bathy_2HarRvr2_5m2.asc’ was then merged with 

the topography layer ‘A_DEM_HarRvr2_5m.asc’, to fill in a complete grid with 

topography and bathymetry. The buildings in layer: ‘C_DEM_HarRvr2_5m_bldg.asc’, 

which had been preprocessed out from the original Lidar point cloud data prior to being 

uploaded as geotiffs to the USGS Seamless Map Server were overwritten back on top of 
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the merged topography and bathymetry DEM to account for the natural impediment to 

inundation posed by buildings in the final DEM. Given that the building density is 

extremely high in New York City, with many of the buildings being exceedingly tall or 

skyscrapers, using raw Lidar point cloud data would fail to sufficiently resolve streets. 

Finally, the sub-grid was generated with the specification of 40 divisions along 

each base grid cell edge to produce a 5m resolution sub-grid. The combined 5m 

resolution DEM was subsequently “interpolated” at its native resolution onto the 5m 

resolution model sub-grid via the digital terrain model module using the natural neighbor 

(Sibson) interpolation method. The combined topography, bathymetry, and buildings 

layer were saved as an .xyz point file with 5m spacing, and the sub-grid mesh was saved 

as a model grid file compatible with UnTRIM
2 

for use in modeling inundation caused by 

Hurricane Sandy in an urban environment:  ‘NY_bldg_5msg200mbg.grd’. 

5.2  Observation Data Compiled during 2012 Hurricane Sandy  

Making observations during a hurricane is both physically and technically 

challenging. Throughout 2012 Hurricane Sandy, six categories of observation data 

survived and were assembled from various resources for comparative statistical analysis 

using the metrics described in Appendix A. Results were obtained via sub-grid simulation 

of the New York Harbor to address 2012 Hurricane Sandy. Model performance was 

assessed by statistical comparison with a variety of verified field measurements and 

calculated flood extents from various agencies. 
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The observation dataset utilized to validate the sub-grid model’s predicted flood periods 

and maximum inundation extents includes: 

1) 5 tidal records from 1 USGS and 4 NOAA permanent tide gauges (Figure 4.1), 

providing both astronomical tide predictions and water level observations, with 

the calculated difference between these two products being the storm tide  

 

2) 7 overland USGS-recorded rapid deployment gauges installed prior to the event 

and retrieved post-Hurricane Sandy within the sub-grid domain (Figure 4.1) 

 

3) 73 USGS-collected non-wave-affected high water mark measurements within the 

New York Harbor sub-grid model domain (Figure 5.1) 

 

4) 80 FEMA-reported inundated school locations indicating water level thickness at 

specific sites throughout the sub-grid domain (Figure 5.2) 

 

5) 1 FEMA maximum extent of inundation map based upon interpolation of the 

USGS’s high water marks and the best available elevation dataset (Figure 5.3) 

 

6) 12 MTA subway stations recorded as flooding from the street (Figure 5.4). 
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Figure 5.1. Location map of 73 non-wave affected USGS-recorded high water mark sites 

(blue) within the sub-grid domain utilized for spatial verification of model results. High 

water mark sites were used to verify the maximum spatial extent of inundation via 

vertical height measurements above the NAVD88 reference datum.  
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Figure 5.2. Location map of 80 FEMA-reported inundated school sites ( ) within yellow

the sub-grid domain utilized for spatial verification of model results. High water marks 

recorded at critical infrastructure sites are utilized to verify the maximum spatial extent of 

inundation using vertical height measurements relative to the ground surface.   
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Figure 5.3. Maximum extent of inundation map for areas of New York and New Jersey 

within the sub-grid of the New York Harbor used for comparison against model results. 

Produced by FEMA via interpolation of the USGS’s high water marks and the best 

available elevation dataset (FEMA MOTF, 2013).  
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Figure 5.4. Location map of 12 MTA Subway Entrances inundated ( ) within the white

sub-grid domain utilized for spatial verification of model results. These sites are included 

as areas where substantial evidence exists that flood waters breeched the entrance to the 

subway system and other critical infrastructure. The labeled sites were used to verify the 

maximum horizontal spatial extent of inundation. Subway data from Romalewski, 2010.   
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5.3 GIS Post-Processing and Visualization of Model Results  

Creation of a flooding visualization for 2012 Hurricane Sandy in the New York 

Harbor requires substantial interoperability through GIS-compatible formats, including 

conversion from UnTRIM
2
 unstructured grid element data for water elevations and 

velocities. Upon conclusion of an UnTRIM
2
 model simulation, combined elevation and 

velocity results are passed to a python script ‘untrim2gtiff.py’ provided with a copy of 

the model grid and Geospatial Data Abstraction Libraries (GDAL) for translation of 

elevations and velocities to a set of geotiffs. One geotiff is produced for each specified 

model output time step, with resolutions at the scale of the base grid for water elevations 

and velocities at cell center points throughout the domain.  The results of this operation 

are subsequently passed to a Linux shell script ‘00_inundationcalcs_nyc.sh’, relating the 

base grid elevations to the topography and bathymetry data of the sub-grid using the open 

source GIS tool, GRASS, command: r.mapcalc(), resulting in two new sets of geotiff 

rasters: (1) water elevation data (meters above NAVD88), and (2) water thickness data 

(m), both at the resolution of the sub-grid (5x5m pixels).  

Once both outputs are complete, the script surveys each sub-grid pixel of the 

output rasters across all time steps to export the maximum recorded value for inundation 

into ‘elevmax.tif’ for maximum predicted water elevation, and ‘thickmax.tif’ for 

maximum predicted inundation thickness. The ‘elevmax.tif’ product was used to assess 

the model maximum water elevation extent against USGS high water mark data (also 

measured relative to NAVD88), and the ‘thickmax.tif’ geotiff was utilized for 

comparison with FEMA’s inundated schools dataset (measured relative to the local 

ground surface).  
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5.3.1  Distance Differential Assessment Methodology  

5.3.1.1 Ideal Test Case for GIS Distance Calculation Methods  

A point was selected at Liberty Island within the New York Harbor with two 

buffers at specified radii of 200m and 300m. The resulting buffer polygons were 

converted to lines using the polygon to line tool and the construct points toolset in the 

editor toolset was used to create points at regular 1m intervals along the 200m buffer line 

to create 1256 points. Finally, the near function was utilized to create a table of distances 

and angles from each of the constructed regular interval points along the 200m buffer to 

the 300m buffer line.  

Given this ideal test scenario, each of the resulting distances should ascertain that 

the ‘near’ distance function properly selects the shortest distance to the 300m buffer. 

Since this case uses concentric circles, the radial difference should be 100m for all points 

with the shortest line being drawn at an angle perpendicular to the tangential 

circumference of the circle (Figure 5.5). Results confirm the mean distance between the 

two circular polylines is 100.0m with a standard deviation of 0.0m (Table 5.2).  

Table 5.2. Location for four points selected for ideal test circle for distance comparison 

shown in Figure 5.5. Data table includes values for the GIS point ID, shape type (point), 

distance (m), UTM zone 18N coordinates for the corresponding closest position on the 

300m outer circle, and the angle of the distance line calculated relative to 0° at due east.  
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Figure 5.5. Ideal test case for distance measurements showing two concentric circles with 

radii of 200m (in blue) and 300m (in red). The blue circle is comprised of 1256 points 

evenly spaced 1m apart, with the nearest distances from each blue point to the outer red 

circle and resulting angles calculated relative to 0° at due east outputting to a GIS table.  

 

5.3.1.2 GIS Distance Calculation Methodology  

Creation of an inundation map for 2012 Hurricane Sandy in the New York Harbor 

requires substantial interoperability through GIS-compatible formats, including 

conversion from UnTRIM
2
 unstructured grid element data for water elevations and 
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velocities. Upon conclusion of an UnTRIM
2
 model simulation, combined elevation and 

velocity results are passed to a python script, ‘untrim2gtiff.py’, provided with a copy of 

the model grid and GeoDat Abstraction Libraries (GDAL) for translation of elevations 

and velocities to a set of geotiffs. One geotiff is produced for each specified model output 

time step, with resolutions at the scale of the base grid for water elevations and velocities 

at cell center points throughout the domain.  The results of this operation are 

subsequently passed to a Linux shell script ‘00_inundationcalcs_nyc.sh’, relating the base 

grid elevations to the topography and bathymetry data of the sub-grid using the open 

source GIS tool, GRASS, command: r.mapcalc(), resulting in an output geotiff raster for 

water thickness (measured height from the ground surface to the water’s elevation) data 

in meters above NAVD88 at the resolution of the sub-grid (5x5m pixels).  

Once the geotiff outputs are complete, the ‘00_inundationcalcs_nyc.sh’ script 

surveys each sub-grid pixel of the output raster across all time steps to export the 

maximum recorded value for inundation into one ‘thickmax.tif’ for maximum predicted 

inundation water thickness. A copy of this layer was converted from a geotiff raster to a 

polyline shapefile, extracting and saving the outermost inundation line as ‘thickmax_line’ 

for use in distance comparisons. The ‘thickmax_line’ shapefile and ‘thickmax.tif’ geotiff 

were subsequently utilized in statistical distance and area comparisons against an 

inundation map distributed by the FEMA Modeling Task Force (FEMA MOTF, 2013). 

The maximum extent of inundation map product is created from storm surge 

sensor data, and field-verified high water mark data collected by the USGS post-

Hurricane Sandy (McCallum et al., 2012). These data products are subsequently utilized 

to interpolate a water surface elevation, then subtracted from the best available DEM to 
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create an inundation grid and surge boundary utilizing a GIS bathtub model for each state 

substantially affected by the storm. In this sub-grid model comparison, the final released 

datasets for the 3m-New Jersey and 1m-New York City products released on February 

14, 2013, were utilized for spatial comparison with model results (FEMA MOTF, 2013). 

The initial distance measurement methodology utilizes the 3m-New Jersey and 

1m-New York City clipped data polygons as a mask for inundated areas. In the distance 

assessment, the outermost inundation extents were interpreted to be the maximum extent 

of inundation, so as to ignore impediments to flow like buildings. The FEMA maximum 

inundation extent line was converted from a line to a series of points with 5m regular 

point spacing (similar to the sub-grid resolution) along the line via the construct points 

toolset within the ArcGIS10.1 editor. Subsequently, the near/distance calculation feature 

utilized the standard distance formula to export a table containing shortest distance 

calculations to the model predicted maximum inundation line for each of the nearly 

100,000 5m-spaced points along the FEMA maximum inundation line (Figure 5.6).    

The second distance assessment utilizes streets perpendicular to the shore, 

shoreline shape files for New York City and the State of New Jersey were obtained, 

clipped with the sub-grid domain boundary, and merged into a single shoreline dataset 

(New Jersey Shoreline, 2008; New York City Shoreline, 2012). Shorelines cropped by 

the open boundaries created by river entrances to the New York Harbor from the north, 

south, west, and east, were joined to seam the gaps to produce a single contiguous 

shoreline to be utilized for the distance comparison. Finally, the shoreline was converted 

to a polygon feature using the line to polygon tool for later use in the area comparison for 

use as a mask layer to remove overwater areas in the observation data and model results.  
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Figure 5.6. Distance measurement map displaying the observed maximum extent of 

inundation reported by FEMA, separated by color into four regions by river system and 

state. Numbers and arrows illustrate the direction and order of distance measurements 

corresponding with the distance table results presented in the next chapter.   
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5.3.2  Area Difference Comparison Evaluation Process  

In preparation for performing an exhaustive area comparison between the FEMA 

maximum inundation data and the UnTRIM
2
 maximum inundation map, both polygon 

layers were collected and clipped using the shoreline and building layer to remove over-

water areas and buildings from both datasets such that only flooded land area is assessed 

in the comparison. The resulting polygon layers were converted to 5m resolution rasters, 

and subsequently mosaicked with a raster of the entire region, assigning a default data 

value for non-inundated sub-grid cell pixels. Notably, without this critical step, the 

following raster math ‘mapcalc’ function will only assess the difference of regions shared 

by both the FEMA inundation raster and the UnTRIM
2
 spatial maximum, consequently 

ignoring the differences (under-predicting and over-predicting regions) between the two 

rasters due to no-data values. The model result raster is subtracted from the FEMA 

inundation raster using the difference tool to produce a difference map with the following 

value table (Table 5.3). 

Finally, the resulting difference raster is converted to polygons, without 

smoothing or otherwise simplifying the polygons, to make use of ArcGIS’s area 

calculation toolset. The total areas are calculated for each polygon and aggregated in a 

table to provide relevant statistics for total area (m
2
) and percent area (%) of 

matching/intersecting agreement between the FEMA observation data and the model 

prediction along with errors where the model over-predicted and under-predicted the 

recorded data. After assessing the total difference areas, the New York Harbor region was 

separated by river system to address areas analogous to the distance comparison and 

focus on locations where the model performed well and investigate areas where it did not.  
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Table 5.3. Value table for two rasters containing model predicted and FEMA observed 

area of maximum flooding. The difference map for model prediction - FEMA 

observation yields four field values in the resulting difference map: 2-1=1 (match),  

2-3=-1 (over-predict), 3-1=2 (under-predict), and 3-3=0 (no flooding). 
 

Raster Name  Legend ID Value ID 

Model Maximum Inundation Model Flooded Region 2 

  No Result 3 

FEMA Maximum Inundation FEMA Flooded Region 1 

  No Result 3 

 

5.4  Google Earth Visualization and Time-Aware Layer Animations 

Sub-grid hydrodynamic modeling has the potential to provide quick, high-

resolution information about inundation layer thickness and extent, with porting 

capabilities for time-aware inundation layers. Prior to prominent use of GIS in emergency 

management applications, the information basis for decisions was limited to the work 

experience and instinct of individual emergency managers (Post et al., 2005). GIS 

tremendously expands upon the available resources emergency managers can consider 

upon evaluating an impending storm system (Garcia et al., 2012; ESRI, 2012). While 

static maps improve situational awareness, printed paper maps and static images lack 

interactive capabilities of time-aware layers, and suffer from latency issues. Time-aware 

layers are noted to have a plethora of applicable uses for disaster management, including 

improved situational awareness, enhanced ability to make informed decisions regarding 

evacuations, transportation, and critical facilities closures (ESRI, 2012).  

To increase the accessibility of our model results to other scientists, policy-

makers, and the general public, all geotiffs are converted to geo-referenced ‘.png’ 

(Portable Network Graphic) images for use with visualization in Google Earth and other 
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preeminent online platforms. This option renders the geo-referenced inundation data with 

GDAL tool: gdaldem, provided a start date and time (2012-10-27 at 00:00 GMT for 2012 

Hurricane Sandy forecast), for 200 iterations of hourly results, creating 6430x8138 pixel 

‘.png’ images at 5m resolution. Utilizing a tree structure of self-referencing Google 

(Keyhole Markup Language) ‘.kml’ files with pointers to ‘.png’ images at various stored 

resolutions, high-resolution images are broken into tiles at seven different zoom levels 

using the GDAL tool: ‘gdal2tiles.py’, the script’s map-tiling algorithm (Figure 5.7).  

  

Figure 5.7. Map-tile pyramid example zoomed in on Brooklyn and Southern Manhattan 

showing 3 zoom levels in the image resolution pyramid: 1 coarse resolution image, 4 

less-coarse images, and 16 finer, detailed resolution images for a population of 21 total 

image tiles (modified tree from Garcia et al., 2012). 
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Figure 5.8. Example of UnTRIM
2
 model predicted maximum extent of inundation in 

three prominent online formats, Google Earth (Top) 

http://web.vims.edu/physical/3DECM/SandyNY/SandyNYMaximums.kmz, Google 

Maps (Middle) http://web.vims.edu/physical/3DECM/SandyNY/googlemaps.html, and  

Open Layers (Bottom) http://web.vims.edu/physical/3DECM/SandyNY/openlayers.html. 

http://web.vims.edu/physical/3DECM/SandyNY/SandyNYMaximums.kmz
http://web.vims.edu/physical/3DECM/SandyNY/googlemaps.html
http://web.vims.edu/physical/3DECM/SandyNY/openlayers.html
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As illustrated in Figure 5.7, as a region is focused upon by zooming in, higher-

resolution ‘.png’ images are loaded from the ‘.kml’ code, with pixel densities ranging 

from 300m/pixel - 2.4 m/pixel in resolution, proportional to the altitude of the viewer 

above the globe in Google Earth. With ≈15,000 images per hourly timestamp, over 3 

million images would be produced for the full eight day forecast simulation, thus a 

shortened inundation animation near the peak of the storm surge is most practical. 

Finally, time-aware metadata is written into a Google Earth KML document to enable 

time-aware, zoom-able animations in a variety of platforms, including: ESRI’s ArcGIS, 

Google Earth, Google Maps, and Open Layers (Figure 5.8).  

In summary, these post-processing procedures rasterize the UnTRIM
2
 model’s 

base grid data, combine them with the high-resolution topography and bathymetry stored 

in the sub-grid, and convert them into usable GIS and Google Earth spatial formats, 

where the utility of the model predictions may be capitalized upon for statistical spatial 

comparison and conveniently published in accessible places and formats.  
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CHAPTER 6: Sub-Grid Inundation Model Comparison with Observation Data 

6.1  Water Level Time Series Temporal Comparison  

Of the observation data compiled during 2012 Hurricane Sandy, five tidal records 

assembled from one USGS and four NOAA permanent tide gauges were utilized as a 

standard for temporal comparison (Table 6.1A). Additionally, seven overland rapid 

deployment gauges installed and collected by the USGS were utilized as a benchmark for 

validating the success of the sub-grid inundation prediction in this section (Table 6.1B). 

6.1.1  NOAA and USGS Permanent Water Level Gauges  

Four of the five permanent water level gauges were utilized to drive the model at 

three of the open boundaries. Model outputs near the boundary confirmed that the water 

elevation data is a near perfect match (>99% match) for each of these stations verifying 

correct forcing at the boundaries (Table 6.1A). The one permanent installation not 

adjacent to any model boundary reported a significant match of the storm surge height 

near the center of the grid near the Battery, NY, (Figure 6.1A) with an R
2
 of 0.9932, a 

relative error of 0.47%, and a root-mean-squared error of 7.15cm (Table 6.1A). Stations 

at the model’s east and west boundaries at Kings Point, NY, and Bergen Point, NY, 

compared well in Figure 6.1B. Due to the loss of the tidal record after the peak of the 

storm surge at Sandy Hook, NJ, the southern sub-grid boundary was forced using the 

complete record from the nearby USGS gauge at Rockaway Inlet, NY (Figure 6.1C).   
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Table 6.1A. Statistical comparison between the model result and verified permanent water level gauges.  

 

Station R
2
 Relative Error (%) RMS Error (cm) 

The Battery, NY 0.9932 0.47 7.15 

Kings Point, NY 0.9947 0.31 7.81 

Bergen Point, NY 0.9930 0.61 8.32 

Rockaway Inlet, NY 0.9904 0.64 8.28 

Sandy Hook, NJ 0.9830 1.63 12.83 

Mean Value 0.9909 0.73 8.88 

 

 

 
 

Figure 6.1A. Time series comparison between the water levels predicted by the model and verified USGS and NOAA measurements.   
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Figure 6.1B. Time series comparison between the water levels predicted by the model and verified NOAA measurements. 
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Figure 6.1C. Time series comparison between the water levels predicted by the model and verified NOAA measurements.
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6.1.2  USGS Rapid Deployment Water Level Gauges  

One of the most straight-forward methods for verification of model results is the 

use of time series water level observations for a fixed-point comparison. The USGS has 

expended considerable effort to deploy a comprehensive temporary monitoring network 

of instruments (Table 6.2) to measure water-levels along the U.S. Atlantic Coast during 

Hurricane Sandy (McCallum et al., 2013). Seven of these rapid deployment gauges were 

identified within the extent of the sub-grid domain and were subsequently used for 

assessment of the model’s accuracy for predicting storm surge over land. Inundation 

comparisons indicated successful comparisons for each of the temporary gauges installed 

by the USGS prior to the storm’s arrival with a mean R
2
 of 0.9568, a relative error of 

3.83%, and a root-mean-squared error of 18.15cm (Table 6.1B).  

Each of the installed gauges recorded data in high-frequency 30-second intervals 

except for USGS 404810735538063, which recorded data in 6-minute intervals similarly 

to the permanent gauges noted in the previous section (McCallum et al., 2013). Two 

stations positioned south of the Verrazano Narrows between the New York Bay and 

Raritan Bay were heavily impacted by wave interaction, which was reflected in the high- 

frequency 30-second observation data shown in Figure 6.2. The remaining stations were 

relatively unaffected by high-frequency wave interaction, thus the high-frequency 

observation data were decimated to the 6-minute model time step for even comparison of 

measurements, plotting, and statistics (Figure 6.3A-D and Table 6.1B).  

Two gauges remain permanently wet throughout their deployment period, USGS 

404810735538063 shown in Figure 6.3B (bottom), and SSS-NY-QUE-001WL in Figure 
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6.3C (top). The data record for USGS 404810735538063 on Randall’s Island at the 

junction of the Harlem and East Rivers was lost just prior to the peak of the storm surge, 

leading to a smaller collection of data points for optimal statistical comparison with an R
2
 

of 0.9538, the highest relative error at 6.07%, and a root-mean-squared error of 21.40cm 

(Table 6.1A). The observations recorded from SSS-NY-QUE-001WL at Worlds Fair 

Marina in Queens made use of the conventional non-vented pressure transducer sensor, 

but in an elongated PVC pipe, allowing for complete measurements of the surge trough 

amplitude even below -1m relative to NAVD88, which the model moderately under-

predicted with an R
2
 of 0.9355, a relative error of 4.41%, and a root-mean-squared error 

of 26.95cm (Table 6.1B).  

In all comparisons, it can be observed that the model-simulated results are quite 

consistent with the measured data both in terms of timing and amplitude. As noted in 

Figure 6.3A, Figure 6.3B (top), Figure 6.3C (bottom), and Figure 6.3D, the overland 

gauge is set at a fixed height which can become dry when the water falls below its 

anchored monitoring position. For each of the five gauges where this observation applies, 

the model consistently matches the observed water level as it increases and decreases 

with the tide, passing directly through nearly all of the points where the gauge data stops 

as the water falls below its datum for measurement and then re-appears. This is another 

indication of effective performance for the sub-grid model’s numerical wetting and 

drying scheme, and that it was quite accurate in its transition between wet to dry status. 

Given the record, it is evident that the inundation is co-oscillating with the tidal cycle and 

the model captured the timing and the depth of the water quite accurately (Table 6.1B). 
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Table 6.1B. Statistical comparison between the model result and temporary USGS  

rapid deployment water level gauges.  

Station R
2
 Relative Error (%) RMS Error (cm) 

SSS-NY-KIN-001WL 0.9842 2.78 15.39 

SSS-NY-RIC-001WL 0.9286 4.18 19.56 

SSS-NY-KIN-003WL 0.9848 1.79 11.93 

USGS 404810735538063 0.9538 6.07 21.40 

SSS-NY-QUE-001WL 0.9355 4.41 26.95 

SSS-NY-QUE-004WL 0.9556 4.50 18.86 

SSS-NY-NEW-001WL 0.9554 3.05 12.99 

Mean Value 0.9568 3.83 18.15 
 

 

 
 

 

 

 

Figure 6.2. Sub-grid model comparisons for 2 wave-affected high-frequency (30-second 

measurements) USGS observation stations near the mouth of the New York Bay. 
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Figure 6.3A. Sub-grid model comparison of inundation water levels with overland USGS rapid deployment gauge observation data. 
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Figure 6.3B. Sub-grid model comparison of inundation water levels with overland USGS rapid deployment gauge observation data. 
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Figure 6.3C. Sub-grid model comparison of inundation water levels with overland USGS rapid deployment gauge observation data. 



133 
 

 

Figure 6.3D. Sub-grid model comparison of inundation water levels with overland USGS rapid deployment gauge observation data. 

Table 6.2. Description of USGS temporary rapid deployment gauges with location, data range, peak water level and time. 

# Station Name 
Latitude 

(˚N) 

Longitude 

(˚W) 
Location Deployment Data Range (GMT) Peak WL (m) Peak Time (GMT) 

1 SSS-NY-KIN-001WL 40.58 -74.01 
Lower New York Bay at 

Sea Gate 
10/28/2012 6:00 - 11/1/2012 15:30 4.06 10/29/2013 12:23:30 AM 

2 SSS-NY-RIC-001WL 40.59 -74.06 
Lower New York Bay at 

South Beach 
10/28/2012 6:00 - 11/1/2012 15:30 4.58 10/29/2013 12:23:30 AM 

3 SSS-NY-KIN-003WL 40.68 -73.99 
Gowanus Canal at 

Gowanus 
10/28/2012 15:20 - 11/3/2012 16:50 3.38 10/30/2013 1:04:30 AM 

4 USGS 404810735538063 40.80 -73.93 
Harlem River at 

Randall's Island 
10/27/2012 0:30 - 10/29/2012  23:45 No Peak No Peak 

5 SSS-NY-QUE-001WL 40.76 -73.86 
Flushing Bay at Worlds 

Fair Marina 
10/28/2012 6:00 - 11/3/2012 23:30 3.15 10/30/2013 2:06:30 AM 

6 SSS-NY-QUE-004WL 40.80 -73.83 
Long Island Sound at 

Whitestone 
10/28/2012 6:00 - 11/3/2012 23:30 3.22 10/30/2013 2:06:00 AM 

7 SSS-NY-NEW-001WL 40.88 -73.93 
Harlem River at Inwood 

Hill Park 
10/28/2012 6:00 - 11/1/2012 18:20 2.90 10/30/2013 2:07:30 AM 
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6.2 Inundation Spatial Comparison  

Verification of the spatial extent and depth of flood waters within the New York 

Harbor sub-grid domain was assessed via comparison of model predicted results with a 

variety of verified-field measurements from various agencies. First, 73 USGS-collected 

non-wave-affected high water mark measurements within the New York Harbor were 

collected for comparison with water level elevation above NAVD88 in meters (Table 

6.3A-C). Second, 80 FEMA-collected inundated school locations where flood waters left 

visible moisture marks indicating water level thickness (measured from the ground to the 

water marks) at specific sites throughout the sub-grid domain (Table 6.4A-C). Third, a 

variety of distance and area coverage calculations are utilized to compare model results 

with FEMA’s maximum extent of inundation map, which was based upon interpolation 

of the USGS’s high water marks and the best available elevation data. 

6.2.1  USGS High Water Marks  

The USGS surveyed 653 independent high water mark locations in the aftermath 

of Hurricane Sandy ranging from Virginia to Massachusetts. These marks, noted as water 

stains or debris markings such as dirt or seed lines were used as a benchmark for model 

comparison considering the maximum extent of inundation. The measurements were 

typically made along sides of buildings or lamp posts, or via debris lines washed ashore 

near the ground, and were surveyed relative to NAVD88, with a plurality of 

measurements collected in New York and New Jersey where the impacts of the storm 

were the most heavily pronounced. Within the extent of the sub-grid model domain, there 

were 62 non-wave affected high water mark observation sites for the New York City 
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Harbor , and 11 non-wave affected marks in the State of New Jersey for comparison. A 

high water mark was considered to be an independent measurement location if separated 

by more than 1,000 feet from neighboring high water marks (McCallum et al., 2013).  

The model comparisons for high water marks were separated by state and by 

county, which was a reasonable method for grouping relatively adjacent model results. 

However, statistics were not computed by county, since the gerrymandered municipal 

boundaries have minimal impact on the extent of inundation from a hydrodynamic 

standpoint (Table 6.3A). Most of the high water marks were measured on Manhattan 

Island (or New York County, abbreviated as NEW in Table 6.3A), with a range in 

difference between the observed high water mark and maximum water level height 

reported at that same location by the model ranging from 0.0168 to 0.2639m. Most of the 

other water marks were collected in Queens (abbreviated as QUE) ranging from 0.0710 

to 0.2970m in difference, or in Brooklyn (or Kings County, abbreviated as KIN) ranging 

in difference from 0.0258 to 0.2788m. The remaining two boroughs surveyed had 3 

measurements from the Bronx (abbreviated as BRO) ranging from 0.1187 to 0.2000m, 

and from 2 measurements from Staten Island (or Richmond County, abbreviated as RIC) 

ranging from 0.2271 to 0.2971m, with larger differences than the other areas likely due to 

the proximally close position to the mouth of the New York Bay with some small wave 

effect noted at these stations (Table 6.3A).  

A few high water marks in this area of Staten Island and its analogous position 

across the Bay on Coney Island near the wave-affected rapid deployment gauges plotted 

in Figure 6.2 were noted by in the USGS report to be heavily affected by waves. These 

high water marks were not included in the statistical comparison due to the model not 
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addressing wind-wave interaction, and due to the relative uncertainty of water mark 

measurements accurately representing the average flood height for prolonged periods in 

areas frequently buffeted by waves. 

In the state of New Jersey, a majority of the 12 high water marks were recorded in 

Hudson County (abbreviated as HUD in Table 6.3B). The 10 high water marks had a 

large range in difference from 0.1261 to 0.5290m. The differences in the remaining 2 

measurements collected from Bergen County (abbreviated as BER) were also large, with 

values of 0.5406 and 0.5577m. The large differences were anticipated due to the lack of 

freely available building height data for the New Jersey side of the Hudson River being 

represented in the model’s DEM. Subsequently, without the building presence in the grid, 

the modeled flooding extent was greatly exaggerated in places beyond which would have 

been buffered by high building densities such as in Jersey City, Hoboken, and areas of 

Bayonne (Table 6.3B).  

Aggregated statistics for New York presented in Table 6.3C suggest a very 

favorable comparison with a  ̅ of -0.0004m indicating no strong leaning towards over-

prediction or under-prediction of high water marks by the model. The  ̅ of 0.2150m 

reported for New Jersey suggests that the model tended to over-predict recorded high 

water marks by 21.5cm on average. The | ̅  was 0.112m for New York and greater than 

3x that calculated for New Jersey at 0.364m. The smaller ranges described previously in 

the high water marks for the different boroughs of New York City logically led to a 

relatively small σ of 0.085m and an RMSE of 0.120m when compared to σ in New Jersey 

at 0.256m and an RMSE of 0.347m. The difference of 0.227m is a significant indication 

that the inclusion of buildings in the model DEM is critical to urban inundation modeling. 
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Table 6.3A. Sub-grid model vertical spatial comparison with 62 non-wave affected 

USGS-collected high water mark observation sites for the New York City Harbor in 

meters above NAVD88 for the State of New York. High water mark site IDs and 

latitude/longitude site measurements adapted from: McCallum et al., 2013: 

http://pubs.usgs.gov/of/2013/1043/ . 

# HWM Site ID Latitude Longitude 
Model Result 

(m) 

High Water Mark 

(m) 

Difference 

(m) 

1 HWM-NY-BRO-807 40.8047 -73.9023 3.3610 3.2339 0.1271 

2 HWM-NY-BRO-809 40.8154 -73.8386 3.3740 3.2553 0.1187 

3 HWM-NY-BRO-810 40.8092 -73.8037 3.3760 3.1760 0.2000 

4 HWM-NY-KIN-001 40.6408 -74.0356 3.2050 3.4503 0.2453 

5 HWM-NY-KIN-002 40.7164 -73.9249 3.4420 3.3254 0.1166 

6 HWM-NY-KIN-504 40.7040 -73.9905 3.3420 3.4473 0.1053 

7 HWM-NY-KIN-510 40.7189 -73.9652 3.3790 3.4260 0.0470 

8 HWM-NY-KIN-511 40.6688 -74.0096 3.2720 3.4260 0.1540 

9 HWM-NY-KIN-604 40.7040 -73.9894 3.3420 3.3467 0.0047 

10 HWM-NY-KIN-605 40.7040 -73.9894 3.3420 3.3162 0.0258 

11 HWM-NY-KIN-724 40.6652 -74.0127 3.2720 3.4351 0.1631 

12 HWM-NY-KIN-725 40.6754 -73.9910 3.2750 2.9962 0.2788 

13 HWM-NY-KIN-900 40.6673 -74.0000 3.2730 3.3498 0.0768 

14 HWM-NY-KIN-901 40.6611 -74.0056 3.2730 3.4077 0.1347 

15 HWM-NY-KIN-902 40.6558 -74.0162 3.2630 3.5022 0.2392 

16 HWM-NY-NEW-001 40.7776 -73.9425 3.3950 3.1791 0.2159 

17 HWM-NY-NEW-004 40.7631 -74.0005 3.3890 3.1547 0.2343 

18 HWM-NY-NEW-005 40.7401 -73.9733 3.3990 3.2949 0.1041 

19 HWM-NY-NEW-008 40.6904 -74.0469 3.2960 3.4412 0.1452 

20 HWM-NY-NEW-009 40.6897 -74.0439 3.2940 3.4656 0.1716 

21 HWM-NY-NEW-010 40.6991 -74.0399 3.3050 3.3863 0.0813 

22 HWM-NY-NEW-011 40.6994 -74.0387 3.3100 3.3833 0.0733 

23 HWM-NY-NEW-012 40.6909 -74.0125 3.3140 3.3498 0.0358 

24 HWM-NY-NEW-013 40.6853 -74.0249 3.2980 3.4199 0.1219 

25 HWM-NY-NEW-100 40.7011 -74.0156 3.3170 3.5204 0.2034 

26 HWM-NY-NEW-101 40.7011 -74.0150 3.3110 3.4656 0.1546 

27 HWM-NY-NEW-102 40.7044 -74.0169 3.3180 3.0541 0.2639 

28 HWM-NY-NEW-103 40.7044 -74.0167 3.3180 3.3498 0.0318 

29 HWM-NY-NEW-104 40.7031 -74.0069 3.3230 3.4412 0.1182 

30 HWM-NY-NEW-105 40.7050 -74.0067 3.3260 3.3741 0.0481 

31 HWM-NY-NEW-106 40.7050 -74.0067 3.3260 3.3985 0.0725 

32 HWM-NY-NEW-107 40.7050 -74.0064 3.3260 3.4229 0.0969 

33 HWM-NY-NEW-108 40.7078 -74.0039 3.3300 3.3741 0.0441 

34 HWM-NY-NEW-109 40.7078 -74.0011 3.3330 3.3650 0.0320 

35 HWM-NY-NEW-110 40.7078 -74.0022 3.3330 3.3894 0.0564 

36 HWM-NY-NEW-111 40.7078 -74.0022 3.3330 3.3680 0.0350 

37 HWM-NY-NEW-112 40.7097 -73.9953 3.3420 3.3985 0.0565 

http://pubs.usgs.gov/of/2013/1043/
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38 HWM-NY-NEW-113 40.7108 -73.9781 3.3590 3.4077 0.0487 

39 HWM-NY-NEW-114 40.7108 -73.9781 3.3590 3.3101 0.0489 

40 HWM-NY-NEW-115 40.7108 -73.9781 3.3590 3.3101 0.0489 

41 HWM-NY-NEW-116 40.7111 -73.9772 3.3590 3.3132 0.0458 

42 HWM-NY-NEW-117 40.7111 -73.9772 3.3590 3.3132 0.0458 

43 HWM-NY-NEW-118 40.7111 -73.9772 3.3590 3.3406 0.0184 

44 HWM-NY-NEW-119 40.7111 -73.9772 3.3590 3.3284 0.0306 

45 HWM-NY-NEW-120 40.7164 -74.0161 3.3330 3.3162 0.0168 

46 HWM-NY-NEW-121 40.7164 -74.0167 3.3330 3.3132 0.0198 

47 HWM-NY-NEW-122 40.7181 -74.0147 3.3410 3.4534 0.1124 

48 HWM-NY-NEW-123 40.7183 -74.0150 3.3370 3.3680 0.0310 

49 HWM-NY-NEW-124 40.7169 -74.0119 3.3400 3.3071 0.0329 

50 HWM-NY-NEW-125 40.7169 -74.0125 3.3400 3.2187 0.1213 

51 HWM-NY-NEW-128 40.7208 -74.0114 3.3420 3.2888 0.0532 

52 HWM-NY-NEW-806 40.7966 -73.9155 3.3570 3.3924 0.0354 

53 HWM-NY-NEW-981 40.8006 -73.9265 3.3920 3.1425 0.2495 

54 HWM-NY-QUE-001 40.7156 -73.9206 3.4420 3.3162 0.1258 

55 HWM-NY-QUE-503 40.7928 -73.8493 3.3730 3.0846 0.2884 

56 HWM-NY-QUE-505 40.7417 -73.9590 3.4050 3.2675 0.1375 

57 HWM-NY-QUE-506 40.7723 -73.9360 3.4040 3.3315 0.0725 

58 HWM-NY-QUE-509 40.7862 -73.9153 3.3680 3.1852 0.1828 

59 HWM-NY-QUE-520 40.7964 -73.8290 3.3750 3.3040 0.0710 

60 HWM-NY-QUE-603 40.7597 -73.8486 3.3720 3.1943 0.1777 

61 HWM-NY-RIC-722 40.6468 -74.0895 3.2600 3.5570 0.2970 

62 HWM-NY-RIC-723 40.6412 -74.1359 3.2690 3.4961 0.2271 

 

Table 6.3B. Sub-grid model vertical spatial comparison in meters with 11 non-wave 

affected USGS-collected high water mark observation sites for the New York City 

Harbor in meters above NAVD88 for the State of New Jersey. 

# HWM Site ID Latitude Longitude 
Model Result 

(m) 

High Water Mark 

(m) 

Difference 

(m) 

1 HWM-NJ-BER-415 40.8428 -73.9662 3.4350 2.8773 0.5577 

2 HWM-NJ-BER-423 40.8161 -73.9785 3.4240 2.8834 0.5406 

3 HWM-NJ-HUD-001 40.7588 -74.0289 3.3850 2.8590 0.5260 

4 HWM-NJ-HUD-002 40.7588 -74.0289 3.3850 2.8560 0.5290 

5 HWM-NJ-HUD-003 40.7588 -74.0289 3.3850 2.8590 0.5260 

6 HWM-NJ-HUD-004 40.7590 -74.0297 3.3850 3.6546 0.2696 

7 HWM-NJ-HUD-005 40.7590 -74.0297 3.3850 3.6546 0.2696 

8 HWM-NJ-HUD-006 40.7590 -74.0297 3.3850 3.6606 0.2756 

9 HWM-NJ-HUD-007 40.7619 -74.0234 3.3850 3.1516 0.2334 

10 HWM-NJ-HUD-109 40.7165 -74.0336 3.3280 3.1821 0.1459 

11 HWM-NJ-HUD-110 40.7356 -74.0285 3.3570 3.2309 0.1261 
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Table 6.3C. Statistics table including metrics for mean difference ( ̅), absolute mean 

difference (| ̅|), standard deviation (σ), and root-mean-squared error (RMSE) for the high 

water mark comparison with model-predicted peak water levels for New York and New 

Jersey in the New York City Harbor. 

Data Location 
 

|   | σ RMSE 

HWM New York -0.0004 0.112 0.085 0.12 

HWM New Jersey 0.215 0.364 0.256 0.347 

 

6.2.2  FEMA Inundated Schools  

Inundation attributed to 2012 Hurricane Sandy affected a variety of types of 

critical infrastructure in New York and New Jersey. The FEMA inundated schools data 

set is a homeland infrastructure geospatial data inventory of 295 schools flooded during 

Hurricane Sandy assembled by National Geospatial-Intelligence Agency in partnership 

with the Department of Homeland Security in 2012. Data for public and private schools 

in New York were provided by the New York State Department of Education in New 

York City only. New Jersey public and private schools were furnished via the New Jersey 

Department of Education with the data being available as a GIS shape file with source: 

http://184.72.33.183/GISData/MOTF/Hurricane%20Sandy/InundatedSchools_Depth.zip. 

Within the study area of the sub-grid domain surrounding the New York Harbor, 

80 schools were flooded with recorded water heights reported by FEMA in the aftermath 

of Hurricane Sandy. The assessments provide general information regarding flood height 

relative to the ground surface at each school location. These flood heights were compared 

with the model’s output for maximum water thickness (calculated as the difference 

between the free surface of the flood waters and the topographic ground surface), and 

http://184.72.33.183/GISData/MOTF/Hurricane%20Sandy/InundatedSchools_Depth.zip
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assembled as an additional method for spatial point-to-point comparison for New York in 

Table 6.4A and New Jersey in Table 6.4B.  

Within New York City, most of the inundated schools were located in Manhattan 

and Brooklyn. The worst flooding was observed at schools neighboring Coney Island 

Creek along the more coastal areas of New York City. Statistical measures for New York 

City are reasonably favorable with a  ̅ of 0.0332m, implying no leaning towards over-

prediction or under-prediction of inundated schools by the model (Table 6.4C). The  ̅ of 

0.3483m reported for New Jersey suggests that the model tended to over-predict recorded 

high water marks by 34.8cm on average. The | ̅  was 0.2769m for New York, compared 

to 0.4227m calculated for New Jersey. The standard deviations in the two data sets were 

about equal with 0.3304m for schools in New York and 0.3328m in the model 

comparison against flood heights at schools in New Jersey (Table 6.4C).  

The impact of waves impacted FEMA’s inundated schools dataset due to its 

relation to the USGS high water marks, while the sub-grid model results do not. Thus, 

regions with higher wave influence may have exaggerated water levels in the FEMA 

dataset, around the Southern New York Bay and Staten Island, extending the range of the 

calculated differences between the sub-grid model and the inundated schools for New 

York (Table 6.4A). The RMSE for the 60 schools in New York City within the sub-grid 

domain was 0.3293m. Upon comparison with the RMSE of 0.4760m for the 20 schools in 

New Jersey, the point-to-point evaluation with the New Jersey schools led to 0.1467m 

more RMSE. As with the other point-to-point comparisons using the USGS high water 

marks, the RMSE difference of 0.1467m more error in New Jersey is likely attributed to 

the lack of freely available building data for inclusion in the model’s DEM. 
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Table 6.4A. Sub-grid model vertical spatial comparison with 60 FEMA-reported flood 

heights in meters above the ground at inundated schools within the New York City 

Harbor for the State of New York. Inundated school information, latitude/longitude, and 

flood heights adapted from (FEMA MOTF, 2013). 

# Inundated School Site ID Latitude Longitude 
Model Result 

(m) 

Flood Height 

(m) 

Difference 

(m) 

1 Abraham Lincoln High School 40.5824 -73.9681 0.8166 0.4923 0.3243 

2 Academy Of Environmental 

Science Secondary School 
40.7852 -73.9423 0.8412 0.8877 -0.0466 

3 Archimedes Academy For 

Math, Science And 

Technology 

40.8152 -73.8561 0.8238 1.4349 -0.6111 

4 Bard High School Early 

College 
40.7183 -73.9761 1.1858 1.5796 -0.3938 

5 Battery Park City School 40.7062 -74.0177 2.5644 2.8154 -0.2510 

6 Bronx Mathematics 

Preparatory School 
40.8152 -73.8561 0.8238 1.4349 -0.6111 

7 Coalition School For Social 

Change 
40.7989 -73.9334 0.6988 1.1482 -0.4494 

8 CUNY Borough Of Manhattan 

Community College 
40.7188 -74.0118 1.3489 0.8126 0.5363 

9 Expeditionary Learning 

School For Community Leader 
40.5938 -73.9860 0.7845 0.5673 0.2172 

10 Frederick Douglass Academy 40.8240 -73.9358 1.6064 1.4853 0.1211 

11 Harlem Village Academy 

Leadership 
40.7992 -73.9337 0.7538 1.0969 -0.3431 

12 Herbert H Lehman High 

School 
40.8401 -73.8392 0.8949 0.3963 0.4986 

13 High School Of Sports 

Management 
40.5938 -73.9861 0.7896 0.5673 0.2223 

14 International High School At 

Lafayette 
40.5945 -73.9862 0.7896 0.5672 0.2224 

15 Is 174 Eugene T Maleska 40.8151 -73.8561 0.8238 1.4349 -0.6111 

16 Is 289 40.7170 -74.0139 2.0012 2.1895 -0.1883 

17 Is 303 Herbert S Eisenberg 40.5824 -73.9725 0.8615 0.6794 0.1820 
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18 Isaac Newton MS For Science 40.7941 -73.9331 0.6189 0.7578 -0.1389 

19 John Dewey High School 40.5877 -73.9816 0.7860 0.2319 0.5541 

20 John V Lindsay Wildcat 

Academy Charter School 
40.7052 -74.0161 1.2919 1.4333 -0.1415 

21 King's Academy 40.8051 -73.9344 0.4670 0.2609 0.2061 

22 Kingsborough Early College 

School 
40.5945 -73.9862 0.7896 0.5672 0.2224 

23 Lafayette High School 40.5938 -73.9861 0.7896 0.5673 0.2223 

24 Life Academy High School 

For Film And Music 
40.5938 -73.9860 0.7845 0.5673 0.2172 

25 Life Sciences Secondary 

School 
40.7833 -73.9459 0.5617 0.2617 0.3000 

26 Lincoln Technical Institute 40.7841 -73.8289 0.4107 1.0383 -0.6276 

27 Manhattan Center For Science 

& Mathematics 
40.7941 -73.9331 0.6210 0.7578 -0.1368 

28 Most Precious Blood School 40.5906 -73.9872 0.8437 0.7678 0.0759 

29 Mount Carmel-Holy Rosary 

School 
40.7974 -73.9318 0.4678 0.4562 0.0116 

30 MS 224 Manhattan East 40.7852 -73.9423 0.8412 0.8877 -0.0466 

31 MS 45/Stars Prep Academy 40.7992 -73.9337 0.7538 1.0969 -0.3431 

32 New York Center For Autism 

Charter School 
40.7856 -73.9410 2.1529 2.0057 0.1472 

33 Pave Academy Charter School 40.6772 -74.0117 0.8702 0.7566 0.1136 

34 Promise Christian Academy 40.7699 -73.8390 0.4737 0.6414 -0.1677 

35 PS 102 Jacques Cartier 40.7949 -73.9383 0.4249 0.1675 0.2574 

36 PS 112 Jose Celso Barbosa 40.7965 -73.9301 1.0888 1.2366 -0.1477 

37 PS 126 Jacob August Riis 40.7105 -73.9970 0.4167 0.2440 0.1727 

38 PS 146 Ann M Short 40.7895 -73.9389 1.4440 1.6655 -0.2215 

39 PS 15 Patrick F Daly 40.6771 -74.0118 0.8620 0.7566 0.1055 

40 PS 188 Michael E Berdy 40.5768 -74.0005 0.9212 0.8634 0.0578 
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41 PS 188 The Island School 40.7197 -73.9775 0.6381 0.2287 0.4094 

42 PS 200 The James McCune 

Smith School 
40.8244 -73.9366 0.5660 0.9383 -0.3723 

43 PS 206 Jose Celso Barbosa 40.7970 -73.9303 0.9220 0.8365 0.0855 

44 PS 212 Lady Deborah Moody 40.5875 -73.9856 0.7136 0.4513 0.2623 

45 PS 34 Franklin D Roosevelt 40.7262 -73.9750 0.8947 0.4628 0.4319 

46 PS 46 Arthur Tappan 40.8317 -73.9362 0.6378 0.0171 0.6207 

47 PS 50 Vito Marcantonio 40.7856 -73.9410 2.6070 2.0057 0.6013 

48 PS 52 John C Thompson 40.5824 -74.0883 1.0239 1.0109 0.0130 

49 PS 721 Brooklyn Occupational 

Training 
40.5877 -73.9816 0.6757 0.2319 0.4438 

50 PS 78 40.7442 -73.9565 0.9679 0.9794 -0.0115 

51 PS 90 Edna Cohen 40.5783 -73.9800 4.2535 4.6107 -0.3573 

52 PS M094 40.7197 -73.9775 0.6381 0.2287 0.4094 

53 Rachel Carson High School 

For Coastal Studies 
40.5823 -73.9719 0.7867 0.6639 0.1228 

54 Renaissance High School For 

Musical Theater And Tech 
40.8401 -73.8393 1.0190 0.3963 0.6227 

55 Renaissance School Of The 

Arts 
40.7852 -73.9423 0.8412 1.0769 -0.2358 

56 River East Elementary 40.7970 -73.9303 0.9220 0.8365 0.0855 

57 Smiles Around Us Academy 40.5910 -74.0670 0.9235 1.1537 -0.2302 

58 South Brooklyn Community 

High School 
40.6778 -74.0141 0.8419 0.6355 0.2064 

59 Stuyvesant High School 40.7178 -74.0138 2.6070 2.8913 -0.2844 

60 Urban Peace Academy 40.7992 -73.9337 0.7538 1.0969 -0.3431 
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Table 6.4B. Sub-grid model vertical spatial comparison with 20 FEMA-reported flood 

heights in meters above the ground at inundated schools within the New York Harbor for 

the State of New Jersey. Flood heights adapted from FEMA MOTF, 2013. 

# Inundated School Site ID Latitude Longitude 
Model Result 

(m) 

Flood Height 

(m) 

Difference 

(m) 

1 Beacon Christian Academy 40.6606 -74.1141 1.0265 0.6970 0.3295 

2 Elysian CS Of Hoboken 40.7404 -74.0316 0.9939 0.2455 0.7484 

3 Frank R Conwell  No 3 40.7172 -74.0475 1.0528 0.6072 0.4456 

4 Hoboken Catholic Academy 40.7461 -74.0374 1.4238 1.4382 -0.0144 

5 Hoboken High 40.7475 -74.0331 1.3075 1.2346 0.0729 

6 Hola  Hoboken Dual  

Language CS 
40.7395 -74.0380 1.4228 1.7934 -0.3706 

7 James J Ferris 40.7215 -74.0534 0.9981 0.4968 0.5013 

8 Kennedy Number 9 40.7213 -74.0522 0.9961 0.4923 0.5038 

9 Learning Community CS 40.7157 -74.0450 1.1172 0.9903 0.1268 

10 Mustard Seed School 40.7421 -74.0335 1.2137 0.9603 0.2534 

11 N J Reg Day Jersey City 40.7157 -74.0621 1.0031 0.4787 0.5244 

12 Number 22 40.7137 -74.0616 0.9862 0.4784 0.5078 

13 Number 4 Middle School 40.7174 -74.0499 1.0520 0.6542 0.3978 

14 Our Lady Of Czestochowa 40.7168 -74.0418 1.1111 0.8092 0.3019 

15 Salvatore R Calabro No 4 40.7442 -74.0314 1.1150 0.6808 0.4342 

16 St Peters Preparatory School 40.7156 -74.0403 0.9811 0.3178 0.6633 

17 The Hudson School 40.7430 -74.0323 1.1787 0.9038 0.2749 

18 Thomas G Connors 40.7405 -74.0393 1.4228 1.7822 -0.3594 

19 Wallace No 6 40.7512 -74.0312 0.8778 0.0934 0.7844 

20 Waterfront Montessori 40.7124 -74.0398 0.9102 0.0709 0.8394 
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Table 6.4C. Statistics table including metrics for mean difference ( ̅), absolute mean 

difference (| ̅|), standard deviation (σ), and root-mean-squared error (RMSE) for the high 

water marks reported in FEMA’s inundated schools dataset compared with model-

predicted peak water levels for New York and New Jersey in the New York Harbor. 

Data Location 
 

|   | σ RMSE 

New York Schools 0.0332 0.2769 0.3304 0.3293 

New Jersey Schools 0.3483 0.4227 0.3328 0.4760 

 

6.2.3  FEMA Maximum Extent of Inundation Map  

Spatial area comparison with FEMA’s maximum extent of inundation map was 

two-fold. This spatial flood coverage map was based upon interpolation of the USGS’s 

field measurements including high water marks and rapid deployment gauges compared 

in the previous sections and the best available digital elevation data. The field-verified 

high water mark measurements collected in the aftermath of Hurricane Sandy were 

utilized to construct an interpolated GIS layer of water surface heights, which was 

subsequently subtracted from the best available DEM to create a water level thickness 

layer and a 0m contour for the maximum extent of inundation. These products are 

comprised of an inundation grid at 1m resolution for New York City and 3m resolution 

for New Jersey, along with a clipped surge boundary (FEMA MOTF, 2013). The 

database and GIS products produced by the USGS and FEMA were enormously valuable 

as a standard for spatial comparison with the sub-grid model results. 

These data were collected to calculate distances between the model’s predicted 

maximum flood extent and FEMA’s reported maximums (Table 6.5 and Table 6.6), and 

to compute inundation percent area match statistics for additional spatial verification of 

the model (Table 6.7). Additionally, 12 MTA subway stations with 41 subway entrances 
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recorded as flooding from the street in inundated areas directly impacted by Sandy’s 

storm surge were utilized as an additional verification method (Table 6.9). 

6.2.3.1 Distance Differential Assessment  

Maximum spatial extent of inundation is an especially critical attribute to address 

in assessing flooding risk. The precision of the maximum horizontal extent of the 

inundation depends upon the accuracy of the flux estimate and the propagation speed of 

the long wave associated with the relative variations in water level. Using the unique 

nonlinear wetting and drying solver within the UnTRIM
2
 sub-grid model, transitions 

between partially wet and dry regions are seamless and perceived to be resolved both 

accurately and naturally. Therefore, the sub-grid model with the nonlinear solver has the 

advantage of predicting the maximum extent of the inundation more accurately than 

advection-based models without an embedded sub-grid to facilitate partial wetting and 

drying of grid cells in an accurate and timely manner.  

Utilizing the global model outputs for elevation and velocities at each model time 

step via the extensive methods described in the previous chapter, geotiff images were 

concatenated into animations of the flood water movement in the New York Harbor 

during Hurricane Sandy. The animations demonstrate seamless street-level flooding 

through partially wet and partially dry base grid cells with many including tall buildings 

effectively blocking the flow of water and generating form drag as the water flows 

around the buildings and through the streets in between. The maximum water levels at 

each sub-grid cell were calculated to provide a maximum flood extent layer for spatial 

distance and area comparisons with the FEMA maximum extent of inundation layer. 
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The initial distance comparison utilizing points along the FEMA-clipped 

maximum extent of inundation line revealed a relatively favorable distance differential 

with the model-predicted maximum inundation across the sub-grid domain with an 

absolute mean distance difference of 38.43m (Table 6.5). Upon evaluation of maximum 

inundation distance by river system, the absolute mean distance indicated minimal 

difference along the Hudson River and New York Bay region with a 28.876m difference 

along the New York City Bank, and 36.9m along the lower elevation New Jersey Bank. 

The Hudson River was divided by state instead of west/east bank due to the lack of freely 

available building data for the New Jersey side for representation in the sub-grid model 

DEM (Figure 6.4). The observable difference of 8.024m between the New York bank of 

the Hudson River (buildings included) and the New Jersey side (bereft buildings) is an 

indication of the importance of resolving building infrastructure in the model sub-grid for 

accurate high-resolution inundation prediction.  

The average measured distances from the FEMA-reported maximum flood extent 

points to the model-predicted inundation along the New York bank of the Harlem River 

were 44.222m, with a 46.779m difference recorded along the East River. The horizontal 

distance differentials cover a range from 0 to 258.6m (Figure 6.5A-D). Of the four river 

systems, the East River accounts for a plurality of the point to line distances with 47,283 

points out of the total 94,844 points with 5m regular point spacing along the FEMA 

maximum inundation line. Together, the New York side (21,492 points) and the New 

Jersey bank (16,396 points) of the Hudson River account for a 32.888m absolute mean 

distance, the most favorable inundation comparison of the three river systems (Table 6.5). 
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Figure 6.4. Distance measurement map displaying the observed maximum extent of 

inundation reported by FEMA, separated by color into four regions by river system and 

state. Numbers and arrows illustrate the direction and order of distance measurements 

following along each region corresponding with Figure 6.5A-D.   
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Figure 6.5A-D. Plotted absolute distances to the model’s predicted maximum extent of 

inundation line in reference to the observed maximum extent of inundation line reported 

by FEMA. Distance measurements are separated into four regions by river system, 

including: East River (A), Harlem River (B), Hudson River on the New York side (C), 

and along the New Jersey coast (D). 

A. East River 

B. Harlem River 

C. Hudson River and New York Bay (New York) 

D. Hudson River and New York Bay (New Jersey) 
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Table 6.5. Distance difference table with calculated absolute mean distances from the 

FEMA reported maximum extent of inundation line to the sub-grid model predicted 

maximum extent line with standard deviations in meters. 

Survey Region # of Points Abs. Mean Dist. Std. Deviation 

New York 
   East River NY 47,283 46.779 58.306 

Harlem River NY 9,673 44.222 56.696 

Hudson River NY 21,492 28.876 27.017 

All New York 78,448 39.959 47.340 

    New Jersey 

   Hudson River NJ 16,396 36.900 30.376 

All New Jersey 16,396 36.900 30.376 

     All Hudson River 37,888 32.888 28.696 

Total Across Domain 94,844 38.430 38.858 

 

The second distance comparison via shoreline to FEMA observation (Figure 6.6) 

and shoreline to sub-grid model prediction (Figure 6.7) along roadways perpendicular to 

the water’s edge revealed an average distance difference of 27.67m, trending toward 

model under-prediction along 26 sampled roadways throughout the sub-grid domain 

(Table 6.6). Figures 5.11 and 5.12 indicate that the greatest inundation (>1km inundation 

from the shoreline) within the sub-grid domain coverage area was observed along the 

New Jersey Bank of the Hudson River and New York Bay, where elevation is 

geologically lower than the New York bank. Substantial inundation was also observed 

near the semi-coastal south end of the domain leading out into Raritan Bay and the 

Atlantic Ocean. Flooding distances from the shoreline were in relative agreement along 

most roadways with slightly more over-prediction observed along the East River; likely 

attributed to the dual surges converging from the Raritan Bay to the south and from the 

east propagating along the Long Island Sound (Figure 6.7, Table 6.6). Conversely, 

somewhat more frequent under-prediction was observed along the Hudson River, 

although many of these occurrences are minute differences (Figure 6.6, Table 6.6).   
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Figure 6.6. Distances measured from the shoreline to the maximum spatial extent of 

inundation reported by FEMA superposed with inundation distances in meters along 

streets perpendicular to the shoreline; distance values correspond to the model results in 

Figure 6.7 and Table 6.2.   
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Figure 6.7. Distances measured from the shoreline to the maximum spatial extent of 

inundation predicted by the sub-grid model superposed with inundation distances in 

meters along streets perpendicular to the shoreline; distance values correspond to the 

FEMA observation data in Figure 6.6 and Table 6.6. 
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Table 6.6. Measured distances along streets perpendicular to the shoreline to the maximum extent of inundation reported by FEMA, 

distances predicted by the sub-grid model, and calculated differences along streets perpendicular to the shoreline; all units in meters. 

# Roadway Borough Dist. FEMA (m) Dist. Model (m) Difference (m) Under/Over 

1 Sand Ln.  Staten Island 644.38 608.12 -36.26 Under-predict 

2 Water St. & Canal St. Staten Island 456.52 409.65 -46.87 Under-predict 

3 Ferry Terminal Dr. Staten Island 275.33 315.24 39.91 Over-predict 

4 Kissel Ave. Staten Island 708.79 672.54 -36.25 Under-predict 

5 New Hook Rd. New Jersey 2,272.11 2,254.98 -17.13 Under-predict 

6 Thomas McGovern Dr. New Jersey 1,790.69 1,452.34 -338.35 Under-predict 

7 Observer Hwy. to Train Station New Jersey 1,602.13 1,604.01 1.88 Over-predict 

8 S. Independence Way New Jersey 359.21 357.84 -1.37 Under-predict 

9 Canal St. to Broadway Manhattan 915.66 883.34 -32.32 Under-predict 

10 Battery Pl. to Broadway Manhattan 238.01 302.80 64.79 Over-predict 

11 E. 13th St. Manhattan 629.56 609.83 -19.73 Under-predict 

12 E. 110th St. Manhattan 338.10 331.54 -6.56 Under-predict 

13 W. 148th St. Manhattan 222.08 294.75 72.67 Over-predict 

14 Swinton Ave. Bronx 521.76 498.35 -23.41 Under-predict 

15 117th St. Queens 199.65 218.14 18.49 Over-predict 

16 44th St. & Meridian Rd. Queens 855.92 888.56 32.64 Over-predict 

17 102nd St. over LaGuardia Rd. Queens 722.45 740.03 17.58 Over-predict 

18 19th St. Queens 178.54 140.76 -37.78 Under-predict 

19 48th Ave. Queens 992.54 989.42 -3.12 Under-predict 

20 Greenpoint Ave. Brooklyn 968.34 872.20 -96.14 Under-predict 

21 N. 15th St. Brooklyn 329.86 285.79 -44.07 Under-predict 

22 Kent Ave. Brooklyn 786.52 617.12 -169.40 Under-predict 

23 2nd St. Brooklyn 385.17 386.08 0.91 Over-predict 

24 Bond St. Brooklyn 178.16 118.28 -59.88 Under-predict 

25 30th St. off Brooklyn-Queens Expy. Brooklyn 686.78 683.23 -3.55 Under-predict 

26 W. 8th St. Brooklyn 1,269.25 1,273.07 3.82 Over-predict 

       

  

Average 712.60 684.92 -27.67 Under-predict 

  

Std. Deviation 530.31 503.34 79.86 
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6.2.3.2 Area Difference Map Evaluation  

The spatial comparison shown in Figure 6.8 resulted in an overall 75.15% spatial 

match with 11.41% area model over-prediction and 13.44% model under-prediction 

(Table 6.7). Area comparisons along the main stem of the Hudson River performed 

reasonably well with a 78.80% match along the New York river banks, and a slightly 

lower match of 76.73% match along the New Jersey river banks. Flooded area was higher 

for the New Jersey side of the Hudson River, as the 76.73% matched inundation area 

corresponded to 17,539,367m
2
, while the 78.80% match on the New York side of the 

river represents 13,076,031m
2
 (Table 6.7). The ratio of under-prediction to over-

prediction was slightly less than 2:1 for the Hudson River with the New York bank 

having 13.76% under-prediction, representing 2,283,797m
2
, and 7.44% over-prediction 

signifying a representative area of 1,234,304m
2
. The Hudson River banks adjacent to 

New Jersey observed slightly more error than their New York counterparts with 14.86% 

under-predicting FEMA’s maximum inundation estimates, representing an area of 

2,283,797m
2
, and 8.41% over-prediction indicating a representative area of 1,922,727m

2
. 

Inundation area comparisons in along the East River observed a 71.81% match, 

and the Harlem River had a 70.34% match between the model and FEMA’s maximum 

inundation map. The under-predicted area was approximately the same as the Hudson at 

11.20% (2,211,023m
2
) and 14.49% (918,108m

2
), for the East and Harlem Rivers, 

respectively. However, the over-predicted areas were approximately double those 

observed in the Hudson River for New York and New Jersey with 17.00% (3,357,069m
2
) 

for the East River and 15.17% (961,151m
2
) for the Harlem River (Table 6.7). The 
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inundation area of the Harlem River was the smallest due to the smaller and narrower 

size of the river, and the higher frequency of over-prediction along the East River is 

attributed to the aforementioned convergence of the two storm surges from the south by 

Atlantic Coast via the Raritan Bay, and from the east through the Long Island Sound.   

Discrepancies between the model predictions and the FEMA flood map are 

attributed to DEM differences, and possibly the lack of building representation in the 

FEMA maximum inundation map (Figure 6.9). Additionally, the implementation of the 

spatial flooding observation data as a derivative “bathtub model” product of USGS-

interpolated high water marks and elevation data without regard for strong water current 

velocities or estuarine circulation could account for regions with significant 

discrepancies. Such discrepancies can be addressed in both the area and distance spatial 

comparisons to minimize the impact of DEM incongruities that are outside of control for 

the model to address. Two examples of these discrepancies are shown in Figure 6.9A-B. 

Along the New Jersey bank of the Hudson River (Figure 6.9A), two overpasses for I-78 

are accounted for in the model’s Lidar-derived DEM, but do not allow for flow of water 

through the underpass. Thus, the model under-predicts flooding along Thomas McGovern 

Drive by 338.35m (Table 6.6), and this discrepancy adversely affected the distance and 

area comparisons (Table 6.5 and Table 6.7). Similar roadway infrastructure issues with 

the DEM cause inundation along Kent Avenue in Figure 6.9B to be blocked by an 

overpass for I-278. This caused the model to under-predict flooding east of the overpass 

by 169.4m, and over-predict flooding west of the overpass. Thus, also affecting distance 

and area measurements as these infrastructures artificially obstructed fluid movement 

(Table 6.5 and Table 6.7). 
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Figure 6.8. Area comparison with FEMA maximum extent of inundation map in the New 

York Harbor region during 2012 Hurricane Sandy superposed with satellite imagery. 

Shaded areas are 5m
2
 sub-grid cells highlighted according to whether the sub-grid model 

over-predicted (red), matched (green), or under-predicted (blue) the spatial extent of 

inundation coverage reported by FEMA.   
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Table 6.7. Results of the statistical comparison for inundated areas in the New York 

Harbor region during 2012 Hurricane Sandy separated by river system and by state. 

Values are presented as surface areas (m
2
) and (% area coverage) for each of the defined 

categories: match, model under-predict, and model over-predict compared with the 

FEMA maximum inundation coverage map. 

 

Survey Region Match (%) 

Under-

Predict (%) 

Over-

Predict (%) Total 

New York             

 
East River NY 14,180,524 71.81 2,211,023 11.20 3,357,069 17.00 19,748,616 

Harlem River NY 4,457,765 70.34 918,108 14.49 961,151 15.17 6,337,024 

Hudson River NY 13,076,031 78.80 2,283,797 13.76 1,234,304 7.44 16,594,132 

All New York 31,714,320 74.31 5,412,928 12.68 5,552,524 13.01 42,679,772 

 

            

 
New Jersey             

 
Hudson River NJ 17,539,367 76.73 3,397,304 14.86 1,922,727 8.41 22,859,398 

All New Jersey 17,539,367 76.73 3,397,304 14.86 1,922,727 8.41 22,859,398 

                

All Hudson River 30,615,398 77.60 5,681,101 14.40 3,157,031 8.00 39,453,530 

Total Across Domain 49,253,687 75.15 8,810,232 13.44 7,475,251 11.41 65,539,170 

 

If we account for the average distance differential of 38.43m between the FEMA-

reported maximum flooding extents and the model-predicted maximum inundation 

extents, the impact of physical impediments for fluid flow not accounted for in the 

model’s DEM may be minimized. A new methodology could be employed to impose a 

maximum difference threshold using the average distance differential rounded to 40m. 

An adjustment of over-predicted and under-predicted flood areas would likely limit the 

impact of missing or added infrastructure along with Lidar-derived data limitations 

similar to those noted in Figure 6.9. Utilization of a statistical threshold to minimize the 

influence of physical impediments for fluid flow not accounted for in the model’s DEM 

using the average distance differential of 38.43m between the predicted and observed 

maximum flooding extents will be addressed in the next chapter.  
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Figure 6.9. Examples of discrepancies between FEMA maximum inundation extents and 

sub-grid model predicted inundation due to the presence of roadway infrastructure and 

overpasses blocking fluid movement included in the model’s Lidar-derived DEM.  

A 

B 
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6.3 Sensitivity Tests and Additional Verification 

6.3.1  Sensitivity Tests for Grid Resolution 

The sub-grid methodology has been described in detail in Chapter 4, and was 

tested at various base grid resolutions with and without the benefit of sub-grid refinement 

(Figure 6.10). These tests were performed to determine what difference, if any, is 

observed in water level predictions resulting from the approximations utilized in the sub-

grid conveyance approach. As the base grid resolution increases from 200m to 100m to 

50m, an insignificant (<5%) increase in amplitude and a slight promptitude in phase can 

be observed for water levels with 5m sub-grid refinement for a rapid deployment gauge 

along the deeply narrow Gowanus Canal in Brooklyn (Figure 6.11). With 5m sub-grid 

refinement at 200m resolution for the core computational grid, a 40x40 sub-division 

strategy yielded very comparable results with the 20x20 sub-division of the 100m base 

grid and the 10x10 nested sub-grid of the 50m base grid (Figure 6.11 and Figure 6.12).  

However, the same resolution grids bereft sub-grid refinement compare poorly 

with the overland inundation observations and with each other. Due to the lack of sub-

grid, buildings were unable to be resolved, and subsequently a threshold building height 

of 5m was imposed prior to using a low-pass filter to smooth the high-frequency building 

heights. This was done to allow for free movement of the water so inundation could be 

measured with these broadly interpolated grids without sub-grid refinement (Figure 6.10). 

When the previous simulations were repeated without 5m sub-grid refinement, the 

resulting water surface elevations were observed to be significantly more sensitive to grid 

resolution (Figure 6.13 and Figure 6.14). 
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This is a consequence of the grid coarsening without sub-grid refinement, as the 

grid elevations are averaged over a greater area with lower resolutions. The coarser grid 

meshes give way to tidal decay as the fluid propagates from the grid boundaries to remote 

shallow reaches of the New York Harbor. The impact of coarsened bathymetry in narrow 

shallow regions coupled with complex topography yields an unfavorable comparison 

without sub-grid refinement to resolve these complicated features as observed at rapid 

deployment gauges located in Brooklyn (Figure 6.13) and in Queens (Figure 6.14).  

All runs were conducted on a Dell T3500 PC Workstation with Windows 7 

Professional (64-bit edition); an Intel Xeon Quad Core X5570 Processor (2.93GHz); with 

24GB RAM running UnTRIM
2
 with grid size and run times for a ten-day simulation with 

global output of water levels and velocities summarized in Table 6.8. As indicated, 

measurable savings in computational effort can be realized by coarsening the base grid 

while maintaining detailed sub-grid resolution. As such, the 200m base grid mesh with 

nested sub-grid will be the grid utilized for the comparisons conducted in New York City. 

Without sub-grid specifications, accurate bathymetric and topographic fitting can 

only be achieved via extremely fine meshes or through the use of heavily distorted 

unstructured grids. These concessions often have the consequence of having stringent 

conditions typical of nonlinear systems that must be solved at every time interval. Since 

overly refined discretization demands a proportionally smaller time step, furthermore 

contributing to the decreased computational efficiency, it stands to reason that the sub-

grid formulation is a useful tool for geophysical fluid dynamics with promising future 

applications in high-resolution forecast modeling.  
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Figure 6.10. Depiction of three UnTRIM
2
 model grids with sub-grid refinement (left) and 

three without sub-grid specifications (right) at 200m (top), 100m (middle), and 50m 

(bottom) base grid resolution focused on the southern tip of Manhattan near the Battery. 

Magenta line in figures at right without sub-grid represents the position of the shoreline.
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Figure 6.11. Water level recorded for base grids at 200m, 100m, and 50m resolutions with embedded sub-grid at SSS-NY-KIN-003WL. 

Top plot shows 10-day simulation of 2012 Hurricane Sandy with USGS overland observation gauge; bottom plot focuses on the peak.  

With Sub-Grid Refinement 

With Sub-Grid Refinement 
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Figure 6.12. Water level recorded for base grids at 200m, 100m, and 50m resolutions with embedded sub-grid at SSS-NY-QUE-004WL. 

Top plot shows 10-day simulation of 2012 Hurricane Sandy with USGS overland observation gauge; bottom plot focuses on the peak.   

With Sub-Grid Refinement 

With Sub-Grid Refinement 
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Figure 6.13. Water level recorded for base grids at 200m, 100m, and 50m resolutions without sub-grid at SSS-NY-KIN-003WL.  

Top plot shows 10-day simulation of 2012 Hurricane Sandy with USGS overland observation gauge; bottom plot focuses on the peak.

Without Sub-Grid Refinement 

Without Sub-Grid Refinement 
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Figure 6.14. Water level recorded for base grids at 200m, 100m, and 50m resolutions without sub-grid at SSS-NY-QUE-004WL.  

Top plot shows 10-day simulation of 2012 Hurricane Sandy with USGS overland observation gauge; bottom plot focuses on the peak.

Without Sub-Grid Refinement 

Without Sub-Grid Refinement 
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Table 6.8 Scaling of model grid size and computation time for each sub-grid simulation. 

 

Grid Resolution (m) # of Points # of Sides CPU Time (min) 

50 175059 322523 3737.87 

100 45755 87168 504.16 

200 11959 23559 68.20 

 

6.2.4  MTA Inundated Subway Entrances Map  

The UnTRIM
2
 model is utilized in this study to simulate storm surge and 

inundation caused by 2012 Hurricane Sandy. While a majority of reported flooding 

during a storm is due to the hurricane’s storm surge, smaller portions of the observed 

inundation may be attributed to precipitation and diverted water to reservoirs or retention 

ponds by way of storm drains and runoff. Precipitation and percolation through the 

ground surface as additional model sources and sinks have been previously addressed in 

in sub-grid modeling efforts at VIMS for more rural settings (Loftis et al., 2013). These 

sources and sinks were not included in the modeling effort for Hurricane Sandy due to 

the minimal impact of rainfall relative to the substantial storm surge height in the Harbor, 

and the complex drainage infrastructure present in the City. Additionally, New York City 

is home to one of the most complex subterranean mass transit systems in the world. Many 

areas of the subway system throughout New York City were heavily impacted by the 

effect of the storm surge bottlenecking up the Hudson and East Rivers (Figure 6.15). 

Table 6.9 lists 38 known subway entrances flooded by Sandy’s storm surge. 
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Figure 6.15. Map of subway station entrances impacted by Hurricane Sandy’s storm 

surge along the southern tip of Manhattan, the Upper East Side (top inset), and along 

Coney Island Creek (bottom inset). Maximum storm surge extent predicted by the sub-

grid model is highlighted in blue. 
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Table 6.9. List of subway station entrances impacted by Hurricane Sandy’s storm surge arranged by location and cross street name.  

# Station Name Latitude Longitude Corner Street NS Street WE Subway Line Division Primary Route Entrance Type 

1 25th Ave 40.597889 -73.986958 NE 25th Ave 86th St West End BMT D Stair 
2 25th Ave 40.598100 -73.987279 NW 25th Ave 86th St West End BMT D Stair 

3 25th Ave 40.597751 -73.987112 SE 25th Ave 86th St West End BMT D Stair 

4 25th Ave 40.597952 -73.987442 SW 25th Ave 86th St West End BMT D Stair 

5 Ave X 40.590521 -73.974242 NW McDonald Ave Avenue X Culver IND F Stair 

6 Ave X 40.590266 -73.974051 NE McDonald Ave Avenue X Culver IND F Stair 

7 Bay 50th St 40.588022 -73.983735 SW Stillwell Ave Bay 50th St West End BMT D Stair 

8 Bay 50th St 40.588066 -73.983498 SE Stillwell Ave Bay 50th St West End BMT D Stair 

9 Bay 50th St 40.588305 -73.983791 SW Stillwell Ave Bay 50th St West End BMT D Stair 

10 Bay 50th St 40.588348 -73.983543 SE Stillwell Ave Bay 50th St West End BMT D Stair 

11 Canal St 40.720704 -74.004999 NE Lispenard St West Broadway 8 Avenue IND A Stair 

12 Canal St 40.720758 -74.005399 NW 6th Ave West Broadway 8 Avenue IND A Stair 

13 Canal St 40.721651 -74.005634 SE St. John La Laight St 8 Avenue IND A Stair 

14 Canal St 40.721967 -74.005133 NE Thompson St Canal St 8 Avenue IND A Stair 

15 Canal St 40.719870 -74.005038 NE 6th Ave Walker St 8 Avenue IND A Stair 

16 Canal St 40.722569 -74.006080 NE Canal St Varick St Broadway-7th Ave IRT 1 Stair 

17 Canal St 40.722497 -74.005994 NE Canal St Varick St Broadway-7th Ave IRT 1 Stair 

18 Canal St 40.722932 -74.006620 NW Canal St Varick St Broadway-7th Ave IRT 1 Stair 

19 Canal St 40.722878 -74.006518 NW Canal St Varick St Broadway-7th Ave IRT 1 Stair 

20 Franklin St 40.719001 -74.006675 SW West Broadway Franklin St Broadway-7th Ave IRT 1 Stair 

21 Franklin St 40.719918 -74.006620 NE Varick St North Moore St Broadway-7th Ave IRT 1 Stair 

22 Franklin St 40.718965 -74.007121 SW Varick St Franklin St Broadway-7th Ave IRT 1 Stair 

23 Franklin St 40.719251 -74.007058 NW Varick St Franklin St Broadway-7th Ave IRT 1 Stair 

24 Franklin St 40.719888 -74.006925 NW Varick St North Moore St Broadway-7th Ave IRT 1 Stair 

25 Harlem-148th St 40.824069 -73.936981 NE Adam C. Powell 
Blvd 

149th St Lenox IRT 3 Door 

26 Neptune Ave-Van Siclen 40.580576 -73.974443 NE West 6th St Neptune Ave Culver IND F Stair 

27 Neptune Ave-Van Siclen 40.580547 -73.974778 NW West 6th St Neptune Ave Culver IND F Stair 

28 Smith-9th St 40.674725 -73.997505 NE Smith St 9th St 6 Avenue IND F Door 

29 South Ferry 40.702033 -74.013149 NE State St State St Broadway-7th Ave IRT R Elevator 

30 South Ferry 40.701961 -74.013397 NW State St State St Broadway-7th Ave IRT R Escalator 

31 South Ferry 40.701313 -74.013479 SW State St State St Broadway-7th Ave IRT R Stair 

32 Stillwell Ave 40.576241 -73.981077 NE Stillwell Ave Surf Ave Brighton BMT D Stair 

33 Stillwell Ave 40.576900 -73.980846 SE Stillwell Ave Mermaid Ave Coney Island BMT D Stair 

34 Whitehall St 40.701938 -74.012588 SE Whitehall St Water St Broadway BMT R Stair 

35 Whitehall St 40.702108 -74.012642 SE Whitehall St Pearl St Broadway BMT R Stair 

36 Whitehall St 40.704015 -74.013284 SW Whitehall St Pearl St Broadway BMT R Stair 

37 Whitehall St 40.704114 -74.013000 NE Whitehall St Pearl St Broadway BMT R Stair 

38 Whitehall St 40.704096 -74.013293 NW Whitehall St Pearl St Broadway BMT R Stair 
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CHAPTER 7: Discussion and Conclusions 

7.1  Overview of Research Performed  

7.1.1  Discussion of Large-Scale Storm Tide Model Results  

 An unstructured model grid with a curvilinear open boundary was developed for 

the U.S. East Coast with detailed bathymetry in the Hudson and East Rivers, the Long 

Island Sound, Raritan Bay, and New York Bay, in the interest of modeling 2012 

Hurricane Sandy. Different atmospheric model products were used to drive storm surge 

using the parallel MPI version of the SELFE model. SELFE is an unstructured-grid 

model, designed for the effective simulation of large-scale ocean circulation over river-

to-ocean dimensional scales. The combination of a semi-implicit finite difference method 

with an Eulerian-Lagrangian advection scheme affords the model ensured stability and 

computational efficiency to process results over a large domain extent.  

The SELFE model accurately predicts tidal propagation along the U.S. Eastern 

Seaboard and embayments within the model grid with good accuracy. SELFE tidal 

calibration results spanned 91 days and commenced on 09/01/2012 at 00:00 GMT 

through 11/30/2012 at 00:00 GMT. The tidal calibration resulted in an excellent overall 

statistical comparison upon application of the friction parameter adjustments noted in 

Chapter 3 in accordance with Blumberg et al. (1999). The aggregated statistics comparing 

the tidal calibration results to the predicted tide values across 10 NOAA tide gauges 

yielded an average R
2
 of 0.9787, a relative error of 2.00%, and a root-mean-squared error 

of 9.72cm (Table 3.2).  
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Harmonic analysis decomposed the tidal signal into the relative tidal amplitude 

and tidal phase between modeled tide and NOAA observed tide for the 8 major harmonic 

constituents at each NOAA station along the U.S. East Coast. In the tidal amplitude 

comparison, the SELFE model simulates the amplitude of the dominant M2 tidal 

constituent very well at all of the 10 stations with a mean difference of -0.012±0.058m 

(Table 3.2A). Nearly all of the 10 selected tide gauge stations showed a mean amplitude 

difference of less than 10% except for Bergen Point, NY (Figure 3.1C), where a 15.6% 

difference in M2 tidal amplitude was observed (Table 3.2A). The principal solar diurnal 

constituent, S2, had a mean difference of -0.005±0.020m between the modeled tide and 

NOAA observed tide (Table 3.2A). Differences in tidal phase for the principal lunar and 

solar semidiurnal constituents, M2 and S2, were 0.571±1.980° and -0.799±2.614°, 

respectively (Table 3.2B). Therefore, the SELFE grid developed for simulating 2012 

Hurricane Sandy was deemed capable of modeling the characteristics of long-period 

wave propagation along the open coast and the New York Harbor, and thus was prepared 

to effectively simulate the complex dynamics involved with a hurricane storm surge. 

Storm tide simulations were successfully conducted for 2012 Hurricane Sandy 

using the NARR and RAMS model results as atmospheric inputs. Overall statistics using 

the 24km resolution NARR inputs observed an average R
2
 value of 0.8994, a relative 

error of 11.77%, and a root-mean-squared error of 32.69cm for 10 NOAA gauges (Table 

3.3). The 4km RAMS inputs performed noticeably better than the SELFE model 

simulations driven with the NARR atmospheric inputs at all 10 stations with aggregate 

statistics yielding an average R
2
 value of 0.9402, a relative error of 4.08%, and a root-

mean-squared error of 19.22 cm (Table 3.4). Since the RAMS atmospheric inputs 
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possessed a higher spatial and temporal resolution than the NARR inputs for air pressure 

and wind speed, it was concluded that generally superior storm tide predictions could be 

expected from utilizing more reliable or better resolution atmospheric forecast products.      

7.1.2  Discussion of Street-Level Sub-Grid Inundation Model Results  

 Sensitivity tests were conducted to demonstrate the predictive capabilities of the 

sub-grid model and to determine what difference could be observed in water level 

predictions resulting from the approximations utilized in the sub-grid conveyance 

approach described in Chapter 4. As the base grid resolution increased from 200m to 

100m to 50m, an insignificant (<5%) increase in amplitude and a slight promptitude in 

phase was observed in water levels with sub-grid refinement (Figure 6.11 and Figure 

6.12). Identical base grids without sub-grid refinement proved to be significantly more 

sensitive to grid resolution (Figure 6.13 and Figure 6.14). This was largely a result of the 

grid elevations being averaged over a greater area with lower resolutions, which 

promoted tidal decay as the fluid propagated from the grid boundaries to remote shallow 

reaches of the New York Harbor. Sensitivity tests concluded that, without sub-grid 

specifications, accurate bathymetric and topographic fitting could only be effectively 

achieved by using extremely fine scale model grids or through the use of heavily 

distorted unstructured grids. 

 Street-level sub-grid model performance was assessed via comparison with the 

following verified field measurements: (1) Temporal comparison of NOAA and USGS 

permanent water level gauges, and (2) USGS rapid deployment water level gauges, along 

with a spatial inundation comparison using (3) USGS-collected high water marks, (4) 
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FEMA-collected data regarding inundated schools, (5) calculated area and distance 

differentials using FEMA’s maximum extent of inundation map, and (6) known locations 

of inundated MTA subway entrances. 

 Temporal verification of the sub-grid model results utilized time series 

observation data compiled during 2012 Hurricane Sandy. Five tidal records assembled 

from one USGS and four NOAA permanent tide gauges were utilized as a standard for 

temporal comparison (Table 6.1A). Model outputs near the boundary confirmed that the 

set of water elevation data is a near perfect match (>99% match) for each of these 

stations, verifying correct forcing at the boundaries, while the one permanent installation 

not adjacent to any model boundary near the Battery, NY, reported a favorable match of 

the storm surge height (Figure 6.1A), with an R
2
 of 0.9932, a relative error of 0.47%, and 

a root-mean-squared error of 7.15cm (Table 6.1A). Storm tide measurements verified the 

effectiveness of the sub-grid model’s wetting and drying scheme via seven overland rapid 

deployment gauges installed and collected by the USGS with a mean R
2
 of 0.9568, a 

relative error of 3.83%, and a root-mean-squared error of 18.15cm (Table 6.1B). 

Spatial verification of the inundation depths predicted by the UnTRIM
2
 model 

were addressed by comparison with 73 high water mark measurements collected by the 

USGS and by 80 FEMA-reported water level thicknesses at inundated schools throughout 

the sub-grid domain separated by state. Average statistics for the 73 USGS-recorded high 

water marks for New York and New Jersey were: -0.0004m and 0.2150m for  ̅, 0.112m 

and 0.364m for | ̅ , 0.085m and 0.256m for σ, and 0.120m and 0.347m for root-mean-

squared error, respectively (Table 6.3C). Statistical metrics for the 80 FEMA-reported 

inundated schools for New York and New Jersey were: 0.0332m and 0.3483m for  ̅, 



173 
 

0.2769m and 0.4227m for | ̅ , 0.3304m and 0.3328m for σ, and 0.3293m and 0.4760m for 

root-mean-squared error, respectively (Table 6.4C). The larger differences and errors 

reported in the point-to-point comparisons for New Jersey relative to New York were 

largely due to the lack of building representation in the sub-grid DEM for the New Jersey 

side of the Hudson River, and were a significant indication that the representation of 

buildings as a physical impediment to fluid flow is critical to urban inundation modeling. 

In addition to the previous sensitivity tests, the time series comparisons, and 

point-to-point spatial verifications of the sub-grid model’s accuracy; maximum flooding 

extent is an especially critical attribute to address in assessing flooding risk. The relative 

precision of the maximum horizontal extent of inundation is dependent upon the accuracy 

of the flux estimate and the propagation speed of the long wave in association with 

localized variations in water level. Maximum spatial extent of inundation was assessed 

using FEMA’s spatial flood coverage map assembled via interpolation of the USGS’s 

field-verified high water mark data, water level heights reported from rapid deployment 

gauges, and the best available digital elevation data. These data were collected to 

calculate distances between the model’s predicted maximum flood extent and FEMA’s 

reported flood maximums (Table 6.5), wherein the sub-grid model had an absolute mean 

distance difference of nearly 40m (38.430m) or eight 5m-resolution sub-grid pixels.  

A second distance comparison calculated differences relative to the shoreline for 

the FEMA flood coverage map (Figure 6.6), and the sub-grid model results and shoreline 

to sub-grid model prediction (Figure 6.7), along roadways perpendicular to the water’s 

edge. This alternate assessment of distance revealed a mean distance difference of 

27.67m, trending toward model under-prediction along 26 sampled roadways throughout 
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the sub-grid domain (Table 6.6). Figures 5.11 and 5.12 indicate that the greatest 

inundation (>1km from the shoreline) within the sub-grid domain coverage area was 

observed along the New Jersey Bank of the Hudson River, where elevation is 

geologically lower than the New York bank. The final spatial verification calculated a 

difference map using the key in Table 5.3 for a complete area comparison, which resulted 

in a 75.15% spatial match with 11.41% area model over-prediction and 13.44% model 

under-prediction (Figure 6.8 and Table 6.7).  

7.1.2.1 Discrepancies between Model Results and Spatial Observation Data   

A considerable number of the differences or errors calculated in the spatial 

comparisons was attributed to large, but consolidated, areas of over-prediction or under-

prediction resulting from misrepresentation of roadway overpass infrastructure due to the 

primary method for topographic data collection being final-return Lidar measurements 

(Figure 6.9). Also, DEM differences between the model sub-grid and the one used to 

build the FEMA flood map account for other discrepancies noted in the spatial 

comparison and are subsequently addressed utilizing an augmented spatial comparison 

methodology introduced with updated spatial results and statistics in the next section. 

Discrepancies between the model predictions and the FEMA flood map are 

attributed to DEM differences, and possibly the lack of building representation in the 

FEMA maximum inundation map (Figure 6.9). Additionally, the implementation of the 

spatial flooding observation data as a derivative “bathtub model” product of interpolated 

USGS high water mark measurements and elevation data without regard for strong water 

current velocities or estuarine circulation could account for regions with significant 
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discrepancies. Such discrepancies can be addressed in both the area and distance spatial 

comparisons to minimize the impact of DEM incongruities that are outside of control for 

the model to address.  

To provide a representative comparison, in the original distance comparison 

shown in Figure 6.5A-D, there were 36 total peaks representing differences greater than 

100m for the horizontal absolute mean distance evaluation. Throughout the 4 assessment 

regions covered in the distance comparison, there were 17 locations adjacent to the East 

River, comprised of 4 of these in Brooklyn, 7 in Queens, 5 in the Bronx, and 1 in 

Manhattan (Figure 6.5A). There were only 2 places along the Harlem River with distance 

dissimilarities of greater than 100m between the sub-grid model and the FEMA 

maximum extent flood map (Figure 6.5B); both of which were located near Randall’s 

Island where the Harlem River joins the East River near the rapid deployment gauge, 

USGS 404810735538063, shown in Figure 4.1.  

There were 8 such discrepancies in the Hudson River along the New York banks 

of the river, with 3 locations along the west bank bordering Staten Island, with the east 

banks accounting for 2 locations in Brooklyn, and 3 places in Manhattan (Figure 6.5C). 

Finally, there were 9 locations along the New Jersey banks of the Hudson River (Figure 

6.5D), with one notably large discrepancy covering more than 7500m of differences 

greater than 100m between the FEMA maximum flooding extent map and the flooding 

extent predicted by the sub-grid model shown in Figure 6.9A. 

Two examples of these discrepancies are shown in Figure 6.9A-B. Along the New 

Jersey bank of the Hudson River (Figure 6.9A), two overpasses for I-78 are accounted for 
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in the model’s Lidar-derived DEM, but do not allow for flow of water through the 

underpass. Thus, the model under-predicts flooding along Thomas McGovern Drive by 

338.35m (Table 6.6), and this discrepancy adversely affected the distance and area 

comparisons (Table 6.5 and Table 6.7). Similar roadway infrastructure issues with the 

DEM cause inundation along Kent Avenue in Figure 6.9B to be blocked by an overpass 

for I-278. This caused the model to under-predict flooding east of the overpass by 

169.4m, and over-predict flooding west of the overpass. Thus, also affecting distance and 

area measurements as these infrastructures artificially obstructed fluid movement (Table 

6.5 and Table 6.7). 

7.1.2.2 Revised Spatial Comparison via Augmented 40m Average Inundation  

If we account for the average distance differential of 38.43m between the FEMA-

reported maximum flooding extents and the model predicted maximum inundation 

extents, the impact of physical impediments for fluid flow not accounted for in the 

model’s DEM may be minimized. A new methodology may be employed to impose a 

maximum difference threshold using the average distance differential rounded to 40m. 

This adjustment of over-predicted and under-predicted flood areas limits the impact of 

missing or added infrastructure along with Lidar-derived data limitations like those 

underscored in Figures 6.5A-D and Figure 6.9.   

The brief methodology for the recalculation of distances and areas to account for 

DEM discrepancies utilizing a 40m area difference threshold includes:  
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1. Buffering the FEMA maximum inundation extent polyline using the approximate 

average distance difference of 40m.  

 

2. Merging the polyline buffer with a copy of the original FEMA maximum 

inundation extent to produce a new combined maximum inundation extent with 

40m tolerance.  

 

3. Extracting/clipping the UnTRIM
2
 model inundation extents using the new 

combined maximum inundation extent with 40m tolerance. Steps 1-3 cover 

matching areas which the model under-predicts the spatial observation data. 

 

4. Repeating steps 1-3 for the UnTRIM
2
 model inundation extent layer with respect 

to the FEMA maximum inundation extent layer will also include areas with over-

prediction using the new 40m threshold adjustment.  

 

5. Recalculating the geometry in the GIS attribute table to create a new table of areas 

accounting for the 40m maximum discrepancy tolerance. 

 

6. The data were exported to a spreadsheet to compute updated statistics for distance 

(Table 7.1) and area (Table 7.2).  

Implementation of a 40m distance threshold augmented the overall distance 

comparison by an average difference of 17.2m meters for an updated absolute mean 

distance of 21.207m. This reduced the absolute mean distances for each of the river 
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systems to 16.484m for the Hudson River on the New York bank, and 24.079m on the 

New Jersey side, 18.616m along the Harlem River, and a 19.907m difference between the 

FEMA observation data and model prediction along the East River. The 40m threshold 

had a limited effect on the New Jersey coast, making it the new least accurate distance 

comparison within the sub-grid domain (Table 7.1).   

The updated spatial area comparison resulted in an improved 85.17% area 

(49,253,687m
2
) match, indicating agreement between the sub-grid model prediction and 

the FEMA maximum inundation observation. Over-prediction error is adjusted to 7.57% 

area (4,376,726m
2
), with under-prediction area accounting for 7.27% (4,202,376m

2
) of 

the area attributed to error. This favorable improvement of the model prediction 

effectively limits the statistical impact of substantial DEM discrepancies on the impact of 

the model’s results as Figure 6.9 illustrates, explaining the two largest distance 

differences in Table 6.6.  

Prior to the 40m distance threshold, these errors along Thomas McGovern Drive 

in Figure 6.9A, and Kent Avenue in Figure 6.9B are observed as the tallest peaks in the 

distance plots shown in Figure 6.5D and Figure 6.5A, respectively. These errors also 

affected data shown in Figure 6.8 and Table 6.7, and are effectively rectified using the 

40m adjustment in Tables 7.1 and 7.2. 
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Table 7.1. Revised distance difference table upon applying a 40m maximum inundation 

distance threshold with differences to absolute mean distance and standard deviation 

from previous results noted in italics. All units are in meters. 

Survey Region # of Points Abs. Mean Dist. (Diff.) Std. Deviation (Diff.) 

New York 

     East River NY 47,283 19.907 26.9 12.984 45.3 

Harlem River NY 9,673 18.616 25.6 12.564 44.1 

Hudson River NY 21,492 16.484 12.4 9.840 17.2 

All New York 78,448 18.336 21.6 11.796 35.5 

      New Jersey 

     Hudson River NJ 16,396 24.079 12.8 13.048 17.3 

All New Jersey 16,396 24.079 12.8 13.048 17.3 

  

     All Hudson River 37,888 20.281 12.6 11.444 17.3 

Total Across Domain 94,844 21.207 17.2 12.422 26.4 

 

 

Table 7.2. Revised results of the statistical comparison for inundated areas in the New 

York Harbor region upon applying a 40m maximum inundation distance threshold. 

Values are presented as surface areas (m
2
) and (% area coverage) for each of the defined 

categories: match, model under-predict, and model over-predict compared with the 

FEMA maximum inundation coverage map. 

Survey Region Match (%) 

Under-

Predict (%) 

Over-

Predict (%) Total 

New York             

 East River NY 14,180,524 83.55 1,245,757 7.34 1,545,862 9.11 16,972,143 

Harlem River NY 4,457,765 83.14 383,500 7.15 520,177 9.70 5,361,442 

Hudson River NY 13,076,031 88.04 1,073,436 7.23 703,736 4.74 14,853,203 

All New York 31,714,320 85.28 2,702,693 7.27 2,769,775 7.45 37,186,788 

 
            

 New Jersey             

 Hudson River NJ 17,539,367 84.95 1,499,683 7.26 1,606,951 7.78 20,646,001 

All New Jersey 17,539,367 84.95 1,499,683 7.26 1,606,951 7.78 20,646,001 

                

All Hudson River 30,615,398 86.24 2,573,119 7.25 2,310,687 6.51 35,499,204 

Total Across Domain 49,253,687 85.17 4,202,376 7.27 4,376,726 7.57 57,832,789 
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7.2  Conclusions  

In review, the specific research hypotheses proposed in Chapter 1 were effectively 

verified in this study. Formulations for the two-dimensional long-wave equation (with 

hydrostatic assumption) for both the SELFE and UnTRIM
2
 models were exceptionally 

capable of accurately calculating the complex hydrodynamics indicative of the unsteady 

ocean conditions observed during a tropical storm event like 2012 Hurricane Sandy 

(Wang et al., 2014).  

As anticipated, the inclusion of Lidar-derived topography into the UnTRIM
2
 

model’s sub-grid via GIS significantly increased the effective resolution of the model 

grid, and was quite capable of effectively resolving buildings in New York City along 

with narrow creeks and streams classified as 2nd order and above according to Strahler’s 

definition of rivers and mathematical tree structures. Additionally, the inclusion of Lidar-

derived topographic measurements was also previously verified in a more rural setting to 

effectively resolve the dendritic small creeks of the Back River estuary at NASA Langley 

Research Center in Hampton, VA (Loftis et al., 2013).  

An additional implication of this hypothesis was addressed as vector building data 

were included in the DEM development process to best represent the flooding around 

buildings observed in the New York City ultra-urban metropolis. The lack of freely 

available building data for the New Jersey regions of the New York Harbor demonstrated 

that accurate representation of buildings should be resolved within the model grid for 

superior spatial flooding projections, as the New Jersey side of the Hudson River 

observed more pronounced deviations from the FEMA flood map derived from the 
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USGS-surveyed high water marks used to spatially validate the model (Wang et al., 

2014).  

The partial wetting and drying scheme utilized in the sub-grid model’s inundation 

algorithm was successfully verified as both accurate and robust during sensitivity tests 

and throughout the spatial comparison results for the maximum extent of flooding.  

Sensitivity tests revealed that there was minimal degradation in model results 

calculated with the benefit of sub-grid refinement as the base grid resolution increased 

from 200m to 100m to 50m, while the same model base grids without sub-grid 

refinement proved to be significantly more sensitive to grid resolution due to the grid 

elevations being averaged over a greater area with lower resolutions, inciting tidal decay. 

It was also revealed in a previous modeling effort that sub-grid modeling can replicate the 

results of a likewise-resolution true grid model in the Capital Mall area of Washington, 

DC, indicating that there is minimal loss of quantitative accuracy in the sub-grid 

approach and that it can appropriately match inundation observations (Loftis and Wang, 

2012). 

To summarize, the primary objectives successfully addressed in this dissertation were:  

1. The capabilities of a large-scale storm tide model and a high-resolution sub-grid 

inundation model were effectively demonstrated in the New York City area 

during Hurricane Sandy in 2012.   

 

2. With reasonably accurate atmospheric model forcing, it was shown that the U.S. 

East Coast storm tide model, SELFE, produced accurate water level predictions 
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upon comparison with NOAA-verified observations with moderate computing 

resources (using a semi-implicit Eulerian-Lagrangian scheme). 

 

3. This study utilized sub-grid model with a nonlinear solver in a novel approach to 

high-resolution inundation modeling by incorporating Lidar-derived topographic 

measurements and buildings directly into the sub-grid. This improved model 

accuracy to the street-level scale without the high computational costs of 

simulation on a fully-fledged high-resolution grid. 

 

4. The sub-grid model produced reasonably accurate results upon comparison with 

field-verified observations collected from various U.S. government agencies 

including the USGS, NOAA, and FEMA. 

 

5. A multi-faceted verification approach was utilized for spatial comparison with 

FEMA’s maximum inundation extents using GIS tools to calculate distance 

differentials and flood areas, yielding 21 - 38m mean difference in distance, and 

75 - 85% spatial agreement with the sub-grid model results. 

 

6. Sensitivity tests revealed that there was minimal degradation in model results 

calculated with the benefit of sub-grid refinement as the base grid resolution 

increased from 200m to 100m to 50m, while the same model base grids without 

sub-grid refinement proved to be significantly more sensitive to base grid 

resolution.  

 

7. Finally, there are potential forecast applications for large-scale SELFE model 

domains to be jointly developed and applied to model storm tide scenarios, in the 
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interest of generating an operational forecast modeling system with predictive 

capabilities for street-level inundation. This could be accomplished by exporting 

water level elevation results from SELFE simulations using forecast results 

automatically retrieved from atmospheric forecast data repositories. These water 

level elevations could be automated via script handling to autocombine and 

format the SELFE binary model results saved at key locations to be utilized as 

elevation boundary conditions to force the high-resolution street-level sub-grid 

model to produce spatial coverage maps shown in this dissertation, in less than 2 

hours after 30-hour atmospheric forecast data are updated and retrieved. 
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APPENDICES 

Appendix A. Definition of Statistical Formulas for Error Analysis 

The following statistical equations have been calculated to evaluate the accuracy of the 

sub-grid model for both tidal calibrations and storm surge simulations in this study.  

Below, x represents the water level time series data,  ̅ is x’s mean time, while subscripts 

“mod” represents the model results and “obs” are the observations.  

 

1.  The root-mean-square error (RMSE) is defined as:  

 

2. The mean relative error (RE) is defined as: 

 

3. The mean absolute relative error (ARE) is defined as: 

 

 

4.  The correlation coefficient (r) is defined as:  
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Appendix B. Dynamic Similarity to Relate Lab Flume Results to Model 

Use of the formulation of the friction factor, f’ in equation (4-16), given in 

Chapter 4, requires some understanding of the influence drag coefficient, CD, and 

building density, M. It is also unknown if the friction factor depends upon unspecified 

flow conditions such as Reynolds number. Without experimentation, it is difficult to 

know the impact of these parameters in the grand scheme of ascertaining over land 

friction in inundation scenarios. Therefore, this dissertation utilizes a laboratory flume 

experiment which analytically verified the impact of form drag and skin friction on 

shallow water overland inundation (Wang, 1983). In order to make proper use of the 

suggested bottom friction values proposed in the experiment, dimensional analysis must 

be conducted in order to guarantee correspondence between the model and prototype. 

Similarity between the model and prototype dictates that the system should be 

geometrically, kinematically, and dynamically congruent. Geometric similarity suggests 

that the ratios of relative lengths and widths be the same. Kinematic similarity implies 

that kinematic quantities in the model are similar to the prototype. Dynamic similarity 

dictates that the two systems with geometrically similar boundaries contain the same 

ratios of all forces acting on the fluid mass.  

Based upon Newton’s basic dynamic law, which states that force is equal to the 

rate of momentum, dynamic similarity is achieved when the ratio of inertial forces in the 

model and the prototype are equal to the vector sum of the forces acting on the two 

systems. These forces include, but are not limited to: gravitational forces, viscous forces, 

elastic forces, surface tension forces and phenomena related to fluid-motion. The ratios of 

these forces must be the same as indicated in Equation (A-1) below: 
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 (A-1) 

It is typically impossible to achieve exact dynamic similitude when scaling a 

laboratory experiment to reality, and thus it is essential to examine the modeled flow 

dynamics to ascertain which forces are inconsequential to the hydrodynamics of interest. 

The purpose of reducing the fluid flow to a couple of dominant forces makes the system 

easier to characterize, and helps to define the most important criteria for dynamic 

similarity between the model and the prototype. In the case of a model researching the 

impacts of hurricane storm surge on coastal inundation, elasticity and surface tension are 

virtually non-present when compared to the other forces acting on the system. Conditions 

for dynamic similarity are simplified by equating the ratio of the inertial forces to the 

ratio of gravitational or viscous forces.  

In the case of models measuring form drag in turbulent flow with high Reynolds 

numbers (i.e. inertial forces/viscous forces), viscous forces are of small consequence to 

the major forces driving the system due to turbulent fluctuations. Thus, viscous forces 

may be safely neglected in this scenario. The vertical dimension scale and horizontal 

dimension scale cannot be equal in the case of the prototype and the model ratios, since 

the flow depth would be insufficient for accurate measurements to be made. Additionally, 

the viscous forces would become critical to include in such small depths, and could no 

longer be neglected in shallow flow depths if the same fluid is used for the prototype and 

model. thus, a model with a different vertical dimension scale than horizontal dimension 

scale is used to keep the Reynolds numbers in the turbulent flow range. To simplify the 

problem of similarity, distorted models are often utilized for applications, since 
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undistorted models may simply be classified as a special case of distorted models. The 

model scale ratio is defined for the case of dynamic similarity in terms of horizontal 

length (Equation A-2), vertical depth (Equation A-3), time (Equation A-4), and force 

(Equation A-5): 
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where L is the horizontal length, the horizontal width is B, vertical depth is D, time is T, 

and all forces are labeled as F, with a subscript pertaining to their respective forcing. The 

force scale for gravity in the horizontal direction of the main flow is described via 

(Equation A-6): 
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(A-6) 

where Kgravitational is the gravity force scale, fluid density is ρ, gravitational acceleration is 

g, and bottom slope is D/L. in a the case of a unidirectional flow, the inertial force may 
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be expressed as a horizontal or virtually horizontal area which may be multiplied by 

Reynolds shear stress. Reynolds shear stress is proportional to the fluid density and the 

time-averaged value of the product of fluctuation in vertical velocity and the 

corresponding velocity fluctuation in the direction of the time-averaged flow resulting in 

an inertial force characterized by (Equation A-7): 

                 ̅̅ ̅̅ ̅̅      (A-7) 

with a scale for the inertial force (Kinertial) of (Equation A-8): 
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where L x B is length x width to yield calculations for area. To maintain dynamic 

similarity between the model and prototype, Kgravitational should be equivalent to Kinertial in 

equation (A-6), conditionally represented in the following equation (Equation A-9): 

       (
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√      

 (A-9) 

where gflume is presumed to be equal to gmodel. Froude number is commonly utilized to 

describe the ratio between gravitational and inertial forces in a system. The time scale 

given in equation (A-9) is the similarity requirement for the Froude law in the scenario of 

distorted models. The scale ratios of the drag coefficient and friction factor in distorted 
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Froude models must be determined prior to proper interpretation of experimental results. 

The drag force utilized in the flume experiment is characterized by (Equation A-10): 

                            
 

 ⁄       (A-10) 

with a drag force scale in the direction of flow described by (Equation A-11): 
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(Wang, 1983). Kdrag is required to be equal to Kgravitational to satisfy the ratio of the force 

scale in the Froude model law. Substitution of Equation (A-9) into Equation (A-11) 

demonstrates the equality between CD for the flume and the model (Equation A-12):  

       
        

 (A-12) 

The Darcy Weisbach expression of shear forces is described by Equation (A-13): 

           
  

 
     (A-13) 

where f is the general friction factor, and may be substituted for f’e, the equivalent 

friction factor, or f’, the bottom friction factor. The shear force scale is (A-14): 
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and Kshear must be equal to Kgravitational to maintain dynamic similarity. If the time scale is 

substituted from (A-9) into the necessitated inequality described in Equation (A-15):  

(
      

      
 ) (

      

      
)       
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)
 

 (
      

      
) (

      

      
)              

  (A-15) 

The scale ratio expression for friction factor is: 

      

      
 

      

        
 (A-16) 

A cursory comparison of equation (A-12) and (A-16) demonstrates that the drag 

coefficient is identical in the model and the prototype. However, the friction factor of the 

flume experiment should be modified by an inverse distortion ratio, Ndepth/Nlength (instead 

of the typical Nlength /Ndepth) in the case of a Froude-distorted model (Wang, 1983). As 

indicated in Table 4.1, the values for both Ndepth (Nd) and Nlength (Nl) are given, and this 

distortion ratio is applied to the final values given for CDb, bottom friction, and 

Manning’s n given in Table 4.3. 
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