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"If one examines the traditional 'core' methods of fisheries stock 
assessment, ... , it is shocking to realize that all these methods assume that we 
have learned nothing from any previous experience in fisheries except 
perhaps that the natural mortality rate is likely to be 0.2." 

HILBORN, R., & LIERMANN, M. 1998. Standing on the shoulders of 
giants: learning from experience in fisheries. Reviews in Fish Biology 
and Fisheries, 8, 273-283. 

"The current approach of merely assuming natural mortality to be a constant 
driven by unknown sources is not likely to be very informative." 

CoNOVER, D. 2000. Darwinian fishery science. Marine Ecology 
Progress Series, 208, 303-307. 

"Stock assessments offer great potentials-if they are rooted m correct 
assumptions." 

CRONIN, L. E. 1998. Reactions to the blue crab symposium. Journal of 
Shellfish Research, 17, 587. 
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ABSTRACT 

The blue crab Callinectes sapidus supports one of the most important fisheries in the 
Chesapeake Bay and is the leading contributor to blue crab landings in the United States. 
Assessment and management of blue crab stocks has been hampered by a lack of estimates 
of natural mortality rates, a key parameter in assessment models. In Chapter 2, we demon
strate that the approach used for estimating natural mortality that had been used in past 
assessments was flawed, and provide justification for a superior alternative. In Chapter 3, 
we synthesize our current understanding of natural mortality rates in adult blue crab and 
provide a suite of estimates for the Chesapeake Bay stock. Our estimates were used in 
the 2005 assessment for this stock, and the methods and estimates can provide guidance 
for assessments of the same or other species. In addition to estimates of natural mortality 
for adult blue crab, the short turnover time in the stock makes it necessary to consider 
changes in natural mortality rates with size or age. Current assessment models use an 
annual time step, which smooths over the changes in natural mortality that occur during 
ontogeny. Some crabs reach an exploitable size within the first year of life, and smaller 
crabs are expected to have higher natural mortality rates. In addition, natural mortality is 
known to vary seasonally, being highest in Chesapeake Bay during the summer months when 
predators are most abundant and crabs are molting frequently. To include size-dependent 
mortality in more realistic population dynamics models, we estimated mortality rates of 
juvenile crabs through field experiments (Chapter 4). In 2005 and 2006, we estimated mor
tality rates of seven cohorts of hatchery-reared juveniles in two tidal marsh creeks along the 
York River, Virginia during the summer and fall. Juvenile mortality rates were orders of 
magnitude higher than current estimates of adult mortality rates and were highest in the 
summer. Our results reinforce concerns about the adequacy of current assessment models 
and provide estimates of mortality that can be used to guide future work. 

David Allen Hewitt 

School of Marine Science 
The College of William and Mary in Virginia 

Romuald N. Lipcius 
Professor of Marine Science 
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Chapter 1 

Blue Crab in Chesapeake Bay: Life History and 

Fisheries Management 

Blue crab life history 

The blue crab Callinectes sapidus (Rathbun 1896; Decapoda: Brachyura: Portunidae) is 

the most widely distributed of the 15 or 16 species in the genus Callinectes, a genus of 

swimming crabs with its center of origin in the Atlantic neotropics (Williams 1974; Millikin 

& Williams 1984; Williams 2007). On the Atlantic coast, the blue crab has been reported 

from as far south as southern South America and as far north as Nova Scotia, Canada 

(Williams 1974). The blue crab has also been introduced elsewhere in the North Altantic 

and North Pacific Oceans and the Mediterranean and Black Seas (Millikin & Williams 

1984). 

The blue crab is an adaptable coastal species and its life history in Chesapeake Bay differs 

in some respects from its life history in lower latitudes (Tagatz 1968a; Hines 2007). Although 

blue crabs are tolerant of water temperatures as low as 0-3°C (Tagatz 1969; Williams 1974; 

Norse 1977), and can even continue to molt at temperatures as low as 3°C (Tagatz 1968b), 

individuals in temperate latitudes typically grow little and may enter a state of torpor in 

the winter when temperatures drop below about goc (Archambault et al. 1990; Smith & 

Chang 2007). During such periods crabs often aggregate and bury in muddy sediments in 
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Chapter 1 Blue Crab in Chesapeake Bay: Life History and Fisl1eriQs Management 

deeper water (Jensen et al. 2005; Jensen & Miller 2005), but quickly become active again 

when water temperatures rise above about 9°C (Van Heukelem & Sulkin 1990). Juveniles 

and adults are more tolerant of temperature extremes in higher salinities (Tagatz 1969; 

Van Heukelem & Sulkin 1990), which may explain the greater incidence of winter mortality 

in the colder, less saline northern portions of Chesapeake Bay (Uphoff 1998; Sharov et al. 

2003; Rome et al. 2005; Bauer 2006). 

Blue crabs are tolerant of extreme salinities (Tagatz 1968a; Williams 1974; Guerin & 

Stickle 1992), but certain periods of their life history appear to be evolutionarily adapted 

to specific salinity ranges. In Chesapeake Bay, males and females mate primarily in the 

spring and summer in the shallow, low salinity areas of creeks and rivers (Van Engel1958). 

Inseminated females throughout the Bay migrate to more saline areas near the mouth of the 

estuary to develop broods, or sponges (Van Engel 1958; Turner et al. 2003; Aguilar et al. 

2005). Females that mate later in a given year may delay migration and spawning until the 

following spring (Van Engel 1958; Jivoff et al. 2007). Male blue crabs tend to remain in 

shallow, less saline regions of tributaries, sometimes as far upstream as tidal freshwater areas 

(Van Engel1958; Hines et al. 1987). Differences in osmoregulatory capabilities between male 

and female blue crabs (Tan & Van Engel 1966) may in part explain female preferences for 

higher salinity regions of estuaries (Tagatz 1968a; Hines et al. 1987). 

Whereas males continue to grow and molt after they reach sexual maturity and can mate 

more than once, female blue crabs and females of other Portunid species mate at the same 

time that they undergo their last molt and become sexually mature (Van Engel 1958). 

Females can spawn more than once using the sperm transferred from their only mating 

and can produce millions of eggs (Van Engel 1958; Tagatz 1968a). Fecundity is limited by 

and related to size (Hines 1982; Prager et al. 1990), and reproductive output declines with 

subsequent spawns (Hines et al. 2003). The eggs are carried attached to the abdomen and 

develop over a period of about two weeks, changing color from orange to black as the yolk 

is absorbed and the eyes develop (Sandoz & Rogers 1944). 
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Mated females presumably seek out higher salinities for brood production because higher 

salinities are required for successful hatching and larval development (Sandoz & Rogers 

1944; Costlow 1967). Based on the preponderance of the laboratory and field evidence, 

Norse (1977) suggested that the poleward limits of the distribution of blue crab and other 

Callinectes species were not limited by cold winter water temperatures, but rather by sum-

mer temperatures below 20°C that are insufficient for egg hatching and larval molting and 

survival. Egg hatching in Chesapeake Bay occurs mostly during the warmer months of 

the late spring and summer near the mouth of the estuary or in the shallow coastal ocean 

(Sandifer 1973; McConaugha et al. 1983), and may occur in two peaks (Van Engel 1958; 

Jones et al. 1990). Larvae (zoeae) are transported out into the open water on the conti

nental shelf (Tagatz 1968a; Sulkin et al. 1980; Provenzano et al. 1983), where development 

proceeds through seven (rarely eight; Sandoz & Rogers 1944; Costlow & Bookhout 1959; 

Costlow 1965) zoeal stages prior to metamorphosis into postlarvae (megalopa1) (Costlow & 

Bookhout 1959; Williams 1965). 

Development from hatching to postlarvae takes one to two months and appears to be 

fastest at salinities between 21 and 28 ppt and water temperatures between 19 and 29°C 

(Sandoz & Rogers 1944; Costlow & Bookhout 1959; Smith & Chang 2007). Field collections 

have shown that larvae and postlarvae are most.abundant in salinities and temperatures 

consistent with ranges shown to be optimal for survival, growth, and development in the 

laboratory (in the lower Chesapeake Bay - Sandifer (1973) and Olmi (1995); in other 

estuaries - Tagatz 1968a and others reviewed in Sandifer 1973). However, salinity and 

temperature are correlated with other factors that affect larval and postlarval distribution 

(Olmi 1995), and some collections have indicated that larval and postlarval survival and 

development are more flexible than laboratory studies have shown (Van Engel 1987; van 

Montfrans et al. 1995). 

Po~tlarvae rely on advective transport to return to estuaries. Larval and postlarval dis-

1Based on the summary in Kennedy (2007), I use the term megalopa to refer to the postlarval stage in 
both singular and plural forms. 
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persal from, retention in, and reinvasion of estuaries has received more research attention 

than any other aspect of blue crab population dynamics. In Chesapeake Bay, postlarval 

recruitment occurs primarily between August and November (van Montfrans et al. 1990; 

Olmi 1995; van Montfrans et al. 1995). River discharge, tidal range, the effects of winds on 

surface currents, lunar phase, and vertical migrations of megalopae all appear to play sub

stantial and related roles in the processes leading to postlarval recruitment (McConaugha 

et al. 1983; Johnson et al. 1984; Johnson 1985; Goodrich et al. 1989; Johnson & Hester 

1989; Johnson & Hess 1990; Boylan & Wenner 1993; Epifanio 1995; Johnson 1995; Olmi 

1995; Perry et al. 1995; Rabalais et al. 1995; Morgan et al. 1996; Garvine et al. 1997; Roman 

& Boicourt 1999; Etherington & Eggleston 2000; Hasek & Rabalais 2001; Etherington & 

Eggleston 2003; Perry et al. 2003; Forward et al. 2004b). As a result, postlarval abundance 

is highly episodic and variable within and among years and sites (Meuse & Wenner 1989; 

Olmi et al. 1990; van Montfrans et al. 1990; Boylan & Wenner 1993; Olmi 1995; Perry et al. 

1995; Rabalais et al. 1995; van Montfrans et al. 1995; Morgan et al. 1996; Pardieck et al. 

1999; Hasek & Rabalais 2001; Perry et al. 2003; Spitzer et al. 2003; Forward et al. 2004b). 

Postlarvae may or may not actively select settlement habitats (Pardieck et al. 1999; Orth 

& van Montfrans 1987, 1990; van Montfrans et al. 1995; Morgan et al. 1996; van Montfrans 

et al. 2003), but they are typically most abundant in protective structured habitats in the 

lower regions of estuaries and tributaries, such as areas of submerged aquatic vegetation 

(SAV; Orth & van Montfrans 1987; Pile et al. 1996; Etherington & Eggleston 2000; Orth 

& van Montfrans 2002) or inundated emergent salt marsh vegetation (Morgan et al. 1996). 

The postlarval stage lasts about a week in the laboratory (Costlow & Bookhout 1959), and 

postlarvae metamorphose into first stage juvenile crabs soon after settlement (Lipcius et al. 

1990; Metcalf & Lipcius 1992; Morgan et al. 1996). 

Juvenile crabs redistribute throughout tributary creeks and rivers and are often a numer

ically dominant component of the benthic assemblage in shallow areas of estuaries through

out their range. Structured habitats like SAV and emergent salt marsh vegetation have 
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commonly been accepted as the most important nursery areas for postlarval and small ju

venile blue crabs (Heck & Thoman 1984; Williams et al. 1990; Perkins-Visser et al. 1996; 

Beck et al. 2001; Heck et al. 2003; Minello et al. 2003; Lipcius et al. 2005). However, 

ontogenetic changes in habitat use for small juvenile blue crabs are not well understood, 

particularly as they relate to density-dependence and emigration ( Orth & van Montfrans 

1987; Williams et al. 1990; Pile et al. 1996; Moksnes et al. 1997; Ryer et al. 1997; Pardieck 

et al. 1999; Etherington & Eggleston 2000; Heck et al. 2001; Etherington & Eggleston 2003; 

Etherington et al. 2003; Spitzer et al. 2003; Reyns & Eggleston 2004; Rakocinski & McCall 

2005; Lipcius et al. 2007). Such habitat changes are likely influenced by numerous inter

active factors operating at multiple spatial scales. In general, habitat changes are difficult 

to detect and measure accurately, and inferences about processes may not transfer among 

estuaries. In the lower Chesapeake Bay, high variability in the magnitude of recruitment 

and rapid changes in distribution and abundance may make it impossible to determine such 

changes in habitat use in all but the most temporally and spatially comprehensive sampling 

(e.g., Etherington & Eggleston 2000, 2003). 

Regardless of the relative importance of various estuarine habitats, structured habitats 

like SAV provide protection from predators for the smallest blue crabs and also for larger 

crabs during molting (Ryer et al. 1990, 1997). Unfortunately, structured habitats are being 

degraded throughout Chesapeake Bay and other estuaries ( Orth & Moore 1983; Minello & 

Rozas 2002; Stockhausen & Lipcius 2003; Lipcius et al. 2005; Orth et al. 2006; Rozas et al. 

2007). Unstructured habitats, such as the muddy, detrital areas along marshes and the 

lower reaches of tidal creeks, are also important as molting and foraging areas for juvenile 

and adult crabs (Tagatz 1968a; Hines et al. 1987; Mense & Wenner 1989; Williams et al. 

1990; Wilson et al. 1990; Etherington & Eggleston 2000; Minello et al. 2003; Rakocinski 

et al. 2003; Spitzer et al. 2003; King et al. 2005; Lipcius et al. 2005; Rakocinski & McCall 

2005; Seitz et al. 2005). 

Blue crabs are omnivorous (Williams 1965; Tagatz 1968a; Mansour 1992), and although 
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growth rates of blue crabs are rapid and highly variable (Tagatz 1968a,b; Ju et al. 2001), 

overall growth rates do not appear to be strongly affected by salinity (Tagatz 1968b; Cadman 

& Weinstein 1988; Guerin & Stickle 1997; Smith & Chang 2007). Once metamorphosis into 

the first crab stage occurs, individuals may undergo 18 or more molts before reaching 

maturity (Newcombe et al. 1949; Van Engel 1958). Individuals in Chesapeake Bay can 

develop from hatching to a size that makes them available to the commercial fishery (about 

75 nun, or 3 inches) within their first year of life, though on average it takes somewhat 

longer (Williams 1965; Hines et al. 1987; Van Engel 1987; Smith & Chang 2007). 

Fisheries and management in Chesapeake Bay 

The blue crab is woven into the culture and economy of the Chesapeake Bay region more 

intimately than perhaps any other aquatic species (Warner 1976). The blue crab has sup

ported an important commercial fishery in the Bay since the late 1800s, but the nature of 

the fisheries changed considerably in the late 1930s, in large part because of the introduction 

of the commercial crab pot (Van Engel 1962; Rothschild et al. 1981; Cronin 1998; Rugolo 

et al. 1998a; Van Engel 1999). Once consistent records were kept, commercial harvest of 

blue crab in Chesapeake Bay varied in a periodic fashion from the 1920s through the 1970s 

(Hurt et al. 1979), occasionally leading to disastrous forecasts in the periods of low abun

dance (Van Engel 1987; Rugolo et al. 1998a). Similar to observations for Dungeness crab 

on the west coast of the US (Higgins et al. 1997b), harvest tended to swing up and down 

over periods of a decade or more, but the factors responsible for the periodicity were elusive 

(Van Engel1987). Peak harvests occurred around 1950 and during the mid 1960s, and these 

peaks remain the largest harvests on record (Miller et al. 2005; CBSAC 2007). More recent 

harvest and abundance monitoring indicate that periodic fluctuations continued through 

the 1980s. 

Unfortunately, the blue crab population has experienced a serious decline in abundance 

that appears to have begun in the early 1990s, breaking the periodic cycle (Lipcius & 
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Stockhausen 2002; Jensen & Miller 2005; Miller et al. 2005; CBSAC 2007). A zooplankton 

survey indicated a decline in larval abundance and postlarval recruitment that began around 

1991, which may have triggered the overall decline (Lipcius & Stockhausen 2002). Fishery

independent monitoring indicates that recent population size may be as little as 50% of 

the abundance observed in the early 1990s. Specific indices of spawning stock abundance 

in Virginia show more dramatic declines than other indices of population size (Lipcius & 

Stockhausen 2002; Miller et al. 2005; CBSAC 2007). Similar discrepancies between indices 

of overall abundance and spawning stock size have been noted in other blue crab populations 

(Kahn et al. 1998). 

Reflecting this low abundance, recent commercial harvests have been the lowest on record 

since reporting began in 1945 (Figure 1.1; Miller et al. 2005; CBSAC 2007). Although 

the population appears to be stable at its current lowered abundance, high exploitation is 

probably preventing the population from rebounding to former abundances. Key life history 

features of the blue crab indicate that the population should rebound, and has rebounded 

in the past, given appropriate controls of effort in the fisheries (Van Engel 1987; Miller 

et al. 2005; Chapter 3). Despite the reduced recruitment and abundance, the blue crab 

fishery remains consistently one of the highest value fisheries in the Bay and is the leading 

contributor to the total U.S. landings of blue crab (Fogarty & Lipcius 2007; NMFS 2007). 

A pattern of large fluctuations in abundance followed by a rapid decline, like that observed 

for the blue crab stock in Chesapeake Bay, has been observed for other fish and crustacean 

stocks. Prager et al. (1990) noted that the blue crab shares many life history features with 

fish stocks that have undergone similar sharp declines following intense exploitation. Such 

a pattern was also demonstrated for a number of king crab stocks in the eastern Bering 

Sea, and Otto (1986) attributed the stock declines to environmental effects on recruitment 

and increases in natural mortality. Large increases in natural mortality in king crab stocks 

have at times appeared to be linked to outbreaks of nemertean brood symbionts that cause 

serious egg mortality (Kuris et al. 1991). Disease has been suggested as a major influence 
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Figure 1.1: History of commercial landings of blue crab in Chesapeake Bay, 1945-2006 (data from 
CBSAC 2007). 

on blue crab mortality (Noga et al. 1998), especially given continuing degradation of water 

quality, but no comprehensive assessment of blue crab diseases in Chesapeake Bay has been 

undertaken. 

More generally, Jamieson (1986) described the history and management of a variety of 

invertebrate fisheries in British Columbia and made a number of observations that are 

particularly applicable to blue crab in Chesapeake Bay: 

1. Stocks changed rapidly from an apparently stable state to a depleted state, and often 

the change was not clearly recognized until it was over. He suggested that such rapid 

changes should be expected when the relationship between stock and recruitment is 

uncertain and exploitation is intense, and that they would be least detectable when 

fisheries do not capture juvenile stages (i.e., no early warning system). 

2. Initial reactive management struggled because advice and information were needed 

about species for which little biological information was available, and scientists study-

ing the species were not adequately trained to respond to the needs of management. 
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The scientists studying these local populations were trained as "pure" ecologists and 

were not equipped to answer questions about population dynamics and the eflects of 

fishing. 

3. Collection of accurate catch and effort data took a low priority and was complicated by 

widespread and diffuse landings, a consequence of the artisanal nature of the fisheries. 

A number of the fisheries for blue crab capture juveniles, such as the scrape fishery in 

seagrass beds and other collections for soft crab operations. However, no system was in place 

to officially monitor catches of juvenile crabs and the decline in recruitment that occurred 

in the early 1990s caught management agencies off guard. Furthermore, the impending 

decline may have been impossible to detect even with a monitoring program in place due 

to the rapid nature of the decline. Recruitment fell by more than 50% over a period of only 

one to two years (Lipcius & Stockhausen 2002; CBSAC 2007). 

Management reaction to the decline was complicated by a debate over whether an actual 

decline had occurred or whether it was merely a low phase in the abundance cycles that had 

been observed previously. Collection of data on catches was obfuscated by reporting system 

changes and by the artisanal nature of the fisheries; a complex network of watermen, dealers, 

and processors collected and distributed blue crab products to market. The development 

of a comprehensive data collection system for the commercial fisheries remains a goal of 

management agencies today (Miller et al. 2005; CBSAC 2007). As a result, little reliable 

fishery-dependent data was av--dilable to assess population dynamics and the causes of the 

decline; the first Baywide assessment of the stock was not completed until1997 (Rugolo et al. 

1997). Similar struggles to assess and manage blue crab stocks have occurred throughout 

the Gulf of Mexico (Guillory et al. 1998). 

The history of management for the blue crab stock in Chesapeake Bay is typical of 

traditional, inshore invertebrate fisheries. Such fisheries often expand with an increasing 

human population in coastal areas that favors local and regional seafood products (Ru

golo et al. 1998a). Management reacts to perceived increases in exploitation with simple, 
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"untested" regulations that seem appropriate as modest controls (Jamieson 1986; Van En

gel 1987; Cronin 1998; Perry et al. 1998). As increasing exploitation shows stronger effects 

on populations, more and more stringent regulations are added as logistics and stakeholder 

acceptability allow. This reactive style of management was typical of most early commercial 

fisheries in the United States, and was common for fisheries in the Chesapeake Bay. Unfor

tunately, this style of management leads to a disjunct web of restrictions and regulations 

that are difficult to enforce, and the eff'ectiveness of individual management measures is 

impossible to assess. 

The fisheries for blue crab in Chesapeake Bay were regulated to some degree as early as 

1900, but the earliest fluctuations in landings appeared to be affected more by environmental 

factors than regulations (Van Engel 1999). Over time, various regulations were developed 

in Maryland and Virginia to control effort and conserve the stock in the face of rising 

exploitation. Current and pa.st regulations for the blue crab fisheries in Chesapeake Bay 

include: 

• effort and gear restrictions, such as seasonal closures, limits on the time of day when 

crabbing is permitted, limits on the number of pots, and specified configurations for 

pots, scrapes, trotlines, dredges, and pounds; 

• size and catch limits, including minimum sizes and bushel (pot fishery) and barrel 

(dredge fishery) limits; and 

• restrictions specifically designed to protect the female spawning stock, including spawn

ing area closures and limits on possession of sponge crabs (egg-bearing females). 

Despite the imposition of so many regulations, and perhaps because of it, management 

agencies struggle to determine whether specific regulations are having the desired effect and 

find it difficult to confidently develop stock rebuilding plans. 

As an example, the sanctuary implemented to protect the female spawning stock in 

Virginia (Van Engel 1958; Seitz et al. 2001) appears to protect females that make it to 
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the spawning grounds (Lambert et al. 2006a), but estimates of spawning stock abundance 

have shown no recovery. Lack of recovery indicates that the protection must be extended 

to females prior to their migration to the spawning grounds. As noted by Orensanz et al. 

(1998) for crustacean stocks in Alaska, "... the loss of reproductive contribution by a 

given female is the same whether she is harvested before or during the spawning season. 

While frequently implemented in fisheries worldwide (and often well accepted by fishermen), 

spawning season closures do not have the intended effect and are unlikely to cin:umvent the 

risk of recruitment overfishing." 

Meanwhile, the blue crab stock in Chesapeake Bay has not been restored to historically 

higher abundances. The resilient nature of blue crab populations provides hope that the 

population can rebound, but management jurisdictions will need to define goals for the 

fishery and develop a more comprehensive management plan in cooperation with stake

holders (CBSAC 2007). In many ways the situation has changed little since the early 

1980s (Rothschild et al. 1981). A particular difficulty, given the lack of organization among 

independent-minded watermen, will be the identification of both ecological and economic 

objectives that are acceptable to a majority of resource users (Johnson et al. 1998). 

Once goals and objectives are defined, management will proceed most effectively if scien

tific advice can be provided in the context of alternative strategies. Ideally, the consequences 

of alternative management strategies can be evaluated by condensing existing knowledge 

through modeling (Hilborn & Walters 1992; Holt 1998; Walters & Martell 2004). Similar to 

many fisheries throughout the world, management strategies for the Chesapeake Bay blue 

crab will need to focus on reducing fishing capacity and providing appropriate incentives 

to watermen to maintain healthy stocks (Guillory et al. 1998; Rugolo et al. 1998a; Paolisso 

2002; Pauly et al. 2002; Hilborn et al. 2005; Hilborn 2007a,b ). Rights-based, limited entry 

systems of management have been highly successful in many fisheries worldwide. A limited 

entry scheme has !Jeen implemented for the winter dredge blue crab fishery in Virginia and 

should be considered for other blue crab fisheries as well. Such schemes have already been 

12 



Chapter 1 Blue Crab in Chesapeake Bay: Life History and Fisheries Management 

discussed in Alabama, Georgia, North Carolina, and Delaware (Cole 1998; Evans 1998; 

Heath 1998; Henry & McKenna 1998; Johnson et al. 1998). Assessment models for blue 

crab have thus far provided traditional stock assessment advice concerning the effects of 

fisheries on yield, but have not incorporated any form of decision or risk analysis to guide 

policy development. Such advances will require more detailed definition of objectives and 

better coordination in data collection among the various Bay jurisdictions and institutions. 

Progress will also depend on continued investment in stock assessment, which is relatively 

young for blue crab and other crustaceans (Smith & Addison 2003). 

Stock assessment and estimation of natural mortality 

In stock assessments, scientists synthesize existing data and develop models to understand 

the dynamics of gains and losses in the stock or population of interest. The goal of an 

assessment is to make quantitative predictions about the reaction of the stock to manage

ment actions (Hilborn & Walters 1992), which are designed to control the losses from the 

population that are caused by humans - the exploitation rate, or fishing mortality rate. 

Essentially, stock assessments are intended to provide guidance about how much biomass 

or how many individuals can be harvested from a stock, in addition to natural losses, that 

will be balanced by natural gains through recruitment. Ideally, the harvest is estimated 

accurately and precisely and can be maintained through management, leading to a sustain

able fishery and a stock that remains a relevant, functioning component of its ecosystem. 

Of course, biological assessment is only one part of the management process and ultimate 

decisions about harvest levels must incorporate social, political, and economic concerns; 

these are especially formidable challenges for blue crab management (Johnson et al. 1998; 

Paolisso 2002). 

Stock assessment of invertebrate resources is often complicated by a lack of clear prior

ities and objectives for research that feeds into the assessment process. Research studies 

are often focused on biological and ecological questions at relatively small scales, and data 
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collection at scales relevant to stock assessments is lacking (Incze et al. 2003). At a min

imum, assessments typically require measures of relative stock abundance and estimates 

of the amount of catch extracted from the stock with known levels of effort. One of the 

most serious limitations of stock assessment for blue crab in Chesapeake Bay is the lack 

of coordinated collection of data on the amount of effort expended in the various fisheries 

(CBSAC 2007), a difficulty shared with other blue crab stocks (Guillory et al. 1998). 

Assessments account for the gains to populations through births or immigration from 

outside areas, and losses from the population through deaths or emigration from the area of 

interest. Immigration and emigration in fish and wildlife populations often occur because of 

ontogenetic changes in habitat requirements or as a result of the territoriality of conspecifics. 

However, fishery stock assessments are typically conducted at spatial scales specified to 

define the population by boundaries across which little migration is anticipated to take 

place. Genetic analyses are now commonly used for stock delineation, but direct sampling 

should be used to verify genetic conclusions (Tringali et al. 2008). Specification of spatial 

scales to align with the definition of a unit stock is a common approach to simplify modeling, 

and such an approach is used for blue crab assessment in Chesapeake Bay (Miller et al. 2005). 

If immigration and emigration can safely be ignored, assessments need only to account for 

the gains to the population through births (spawning and subsequent recruitment) and the 

kisses from the population through deaths (mortality). In most fisheries it is ecologically 

and economically prudent to take animals from the population only after a certain amount 

of growth has occurred. Assessments usually focus on the population of animals that are 

larger than the minimum size at which they are taken by the fishery; animals above this 

size are considered recruits in the context of the fishery and the assessment. Thus, the 

gains of interest in assessment models are the number of recruits to the exploited popula

tion. Dynamics that occur prior to recruitment are ignored except for their effects that are 

manifested in the number of recruits. 

Mortality is modeled as a process of exponential loss from the population (Figure 1.2), 
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Figure 1.2: Mortality as a process of exponential loss. 

and the rate of loss is one of the key parameters to be estimated by an assessment model. 

In fisheries stock assessments, mortality is acwunted for in two components: the rate of 

natural mortality (M) and the rate of fishing mortality (F). Most models use an instanta-

neous rates formulation for mortality, wherein instantaneous rates (I M) are directly related 

to proportional annual mortality (PM) asP M = 1- e-IM (Figure 1.3). Natural mortality 

is caused by senescence (old age), predation, disease, and other natural or anthropogenic 

effects on environmental quality. Fishing mortality is prescribed to include only the mor-

tality caused by the direct removal of animals by the fishery. Unless specifically accounted 

for, incidental mortality, including direct or indirect mortality associated with bycatch and 

discarding, is included in natural mortality. 

Mortality is modeled as an additive process, such that the total mortality rate for the 

population (Z) is the sum of M and F. Assessment models are used to estimate the rate 

at which animals are killed by the fishery, F, and to provide guidance about what amount 

of fishing mortality the stock can support. Because mortality is an additive process, M 

has direct effects on model predictions about F. Generally, stocks with higher Mare more 
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Figure 1.3: Relationship between instantaneous rate of mortality used in assessment models and 
the proportional annual mortality of animals in the stock. The solid line shows the 
relationship between the two measures of mortality and the dashed line shows the 1:1 
line for reference. For values of M above about 0.4, the instantaneous rate exceeds the 
proportional mortality. 

productive and can support more intense removal rates. 

Management targets and strategies for rebuilding depressed stocks are highly dependent 

on the rate of natural mortality that is assumed in assessment models. Clark (1999) found 

that for stocks with relatively small M ( < 0.3), the fishing mortality target could be double 

what it should be if M is overestimated by as little as 0.1. Such changes in recommended 

targets for F can make the difference between continuing depression of the stock and re-

cruitment failure and a successful management scheme that leads to rebuilding. For red 

king crab in Alaska, Zheng et al. (1997a) evaluated strategies to rebuild the stock after ape-

riod of overfishing given considerable uncertainty about M. They investigated management 

scenarios with low and high values of M (low = 0.2-0.3, high = 0.4-0.6), and found that 

the time it would take for the stock to achieve an abundance considered "rebuilt" nearly 

doubled with the higher M. Thus, what appear to be small changes in estimates of M can 

lead to large differences in predictions about stock dynamics. 
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Figure 1.4: Pope (1975) suggested that the estimation of M was little better than guesswork. 

Review of estimates of M in crustaceans 

The estimation of natural mortality has been a major concern for stock assessments for many 

years. In 1975, recognizing the general difficulty in estimating M, John Pope suggested 

that the common value for M of 0.2 was a result of little more than guesswork (Pope 1975; 

Figure 1.4). New and better methods are developed all the time, but the estimation of M 

remains a substantial challenge to fisheries stock assessment (Quinn & Deriso 1999). 

Direct estimates of M for crustaceans are few and far between (Addison 1997; Caddy 

1986b; Fogarty & Murawski 1986). In particular, the discontinuous nature of crustacean 

growth poses two primary difficulties for the estimation of natural mortality: 

1. growth through molting eliminates retained hard parts that could be used for ageing 

and age-based growth analyses; and 

2. external tags are lost during molting, which complicates or eliminates the application 

of tagging studies to estimate mortality rates. 

Even in cases where tags can be applied, such as for adult blue crabs, relying on reported 

17 



Chapter 1 Blue Crab in Chesapeake Bay: Life History and Fisheries Management 

catches of tagged animals from a fishery to estimate the longevity in the absence of fishing 

is dubious. Due to a lack of guidance from other published studies, estimates of M for 

crustacean stock assessments are often hased on indirect approaches developed for fish 

stock assessment (see Chapter 3). 

Some trends in natural mortality rates across taxa are expected based on simple life 

history theory that addresses the trade-offs between mortality on the one hand and growth 

and reproduction on the other. For example, animals that are smaller in size, have higher 

fecundity, live relatively shorter lives, and grow faster tend to have higher natural mortality 

rates. Characteristic crustacean species would include shrimp and small crabs. At the 

other end of the scale are animals that live longer, grow slower, and have larger maximum 

sizes, like clawed lobsters and large crabs. The idea behind the indirect methods is to 

make predictions about M for a new stock with certain life history characters based on 

the empirical relationship between those characters and .M for stocks in which M has been 

estimated. 

Some direct estimates of M are available for stocks of commercially important shrimp, 

crab, and lobster species (Table 1.1). A variety of direct estimation methods have been 

applied to crustacean stocks, including tagging studies, length-frequency analysis, and esti

mation of M as a parameter in a population dynamics model. Probably the most reliable 

direct methods for estimating Mare tagging studies, and a great deal of work has been done 

in developing models to analyze tagging data to estimate mortality rates. Tagging studies 

have been used to estimate M for some crustaceans for which tag retention is high or can be 

estimated. Mortality rates for shrimp are usually very high, and large numbers of tags are 

needed to generate sufficient numbers of tag returns. Xiao & McShane (2000) estimated M 

to be around 1.2 for western king prawn based on returns from an initial deployment of over 

40,000 tags. Siddeek (1991) used a number of smaller experiments, each with about 1,000 

tags, and estimated M to be 2.4 for grooved tiger prawn. Xu et al. (1995a) were able to 

estimate M in the absence of a tagging study by taking advantage of a fishery closure. By 
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Table 1.1: A compilation of direct estimates of M for some exploited crustacean stocks. 

Species M Number tagged Study 

Western king prawn 1.12- 1.24 > 40,000 Xiao & McShane (2000) 
Penaeus latisulcatus 

Grooved tiger prawn 2.40 ca. 2,000 Siddeek (1991) 
Penaeus semisulcatus 

Green tiger prawn 2.80- 5.30 NA Xu et al. (1995a) 
Penaeus semis'ulcatus 

Red king crab 0.54-0.70 ca. 10,000 Siddeek et al. (2002) 
Paralithodes camtschaticus 

Blue king crab 0.19 > 2,700 Siddeek et al. (2002) 
Paralithodes platypus 

Golden king crab 0.38-0.57 ca. 10,000 Siddeek et al. (2002) 
Lithodes aequispinus 

Southern rock lobster 0.12 > 5,000 Frusher & Hoenig (2003) 
Jasus edwardsii 

estimating Z during a period when fishing was not occurring (Z = M), they estimated M 

to be 2.9-5.3 for green tiger prawn. 

Natural mortality rates are typically lower for larger species like crabs and lobsters. 

Siddeek et al. (2002) estimated M for three king crab species in Alaska based on tagging 

experiments. The estimates ranged from 0.2 to 0. 7, but they noted that the results were 

uncertain ( 95% confidence intervals all included zero). Using tag return data from about 

5,000 tagged southern rock lobsters in Australia, Frusher & Hoenig (2003) estimated M to 

be 0.12, which is similar to other values that are used for lobster assessments for this and 

other species. Overall, estimates of M for crustaceans vary widely, from as little as 5% 

mortality per year for some lobster species to 99% per year for shrimp. Estimates for crab 

species appear to be intermediate between these two extremes, but animal size appears to 

be a strong determinant of natural mortality rate. 
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Problem statement and objectives 

Natural mortality rates for crustaceans are poorly understood, but are central to population 

dynamics models used to make predictions about fisheries and stock sustainability. In this 

dissertation, I examine methods for estimating natural mortality, with specific application 

to blue crab and the effects of M estimates on fishery assessment and management. In 

Chapter 2, I demonstrate that a method for estimating M based on lifespan, which has 

been used often in blue crab assessments, requires an unnecessary but strong assumption 

and should be replaced by an alternative method when longevity is used to estimate M. 

This work grew out of the 2005 stock assessment update for Chesapeake Bay blue crab, 

but has already seen application in assessments of other stocks and species. The approach 

discussed in Chapter 2 relies on estimates of longevity, and longevity is not well understood 

for blue crab. In Chapter 3, I present a more comprehensive approach to estimating natural 

mortality rates for adult blue crabs in Chesapeake Bay, and provide direct and indirect 

estimates of M that do not rely solely on lifespan. Finally, in Chapter 4 I report on 

field experiments designed to estimate mortality rates of small juvenile blue crabs in the 

York River, Virginia, and discuss the implications of size-dependent mortality for stock 

assessment and management. 
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Chapter 2 

Comparison of Two Approaches for Estimating 

Natural Mortality Based on Longevity1 

Introduction 

Vetter (1988) noted that her review of the estimation of the instantaneous natural mortality 

rate (M) was initiated by a discussion among colleagues that identified Mas the single most 

important but least well-estimated parameter in fishery models. Although much has been 

accomplished in the intervening years, M remains one of the most difficult parameters to 

estimate in fishery stock assessments. A number of novel approaches using tagging and 

telemetry data provide promise for making reliable direct estimates of M for a given stock 

(Hearn et al. 1998; Frusher & Hoenig 2001; Hightower et al. 2001; Latour et al. 2003; Pollock 

et al. 2004). However, such methods are often impracticable and fishery scientists must 

approximate M by using estimates made for other stocks of the same or similar species or 

by predicting M from features of the species' life history (Beverton & Holt 1959; Beverton 

1963; Alverson & Carney 1975; Pauly 1980; Hoenig 1983; Peterson & Wroblewski 1984; 

Roff 1984; Gunderson & Dygert 1988; Chen & Watanabe 1989; Charnov 1993; Jensen 1996; 

Lorenzen 1996). 

1Published in April 2005 and reproduced here without change, except for the addendum: HEWITT, D. A., 
and .J. M. HOENIG. 2005. Fishery Bulletin, 103, 433-437. [Contribution 2637 of the Virginia Institute 
of Marine Science, The College of William and Mary, Gloucester Point, VA 23062] 
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We are concerned with two approaches for predicting M based solely on the longevity 

of the members of a stock - an approach that can be used when data are not available to 

make direct estimates of the parameter. One is a linear regression model (Hoenig 1983) and 

the other is a simple rule-of-thumb approach. Hoenig (1983) found that M was inversely 

correlated with longevity across a wide variety of taxa and recommended use of the following 

predictive equation relating the maximum age observed in the stock (tmax) toM: 

ln ( M) = 1.44- 0.982 * ln (tmax). (2.1) 

The rule-of-thumb approach consists of determining the value of M such that 100 (P)% of 

the animals in the stock survive to the age tmax; thus, 

A -ln (P) 
M= . 

tmax 
(2.2) 

The challenge in this approach is determining an appropriate value for the proportion P. 

The rule-of-thumb approach has the potential to be used widely because it is presented in 

Quinn & Deriso (1999) and stock assessment manuals of the Food and Agriculture Organi

zation of the United Nations (FAO; Sparre & Venema 1998; Cadima 2003). The approach 

has recently been used extensively, in the specific form M::::::: 3/tmax, in work related to stock 

assessments for blue crab ( Callinectes sapidus). In this note, we 1) show that the regression 

model and the rule-of-thumb approach can be compared directly; 2) illustrate the difference 

in the estimates of M generated by the two approaches; 3) discuss the origins and current 

use of the rule-of-thumb approach; and 4) recommend that the regression model be used 

instead of the rule-of-thumb approach. 
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Methods 

With the rule-of-thumb approach, the fraction of a population that survives to a given age 

is used to estimate M. This approach is equivalent to a quantile estimator (Bury 1975). 

Suppose the fraction surviving to age t is described by the negative exponential function 

(2.3) 

where Z is the total instantaneous mortality rate. The quantile estimator is of the form 

(2.4) 

where Tp is the age at which 100 (P)% of the population remains. In the case where 

P = 0.05, the estimator, based on data from a sample of the population, is 

0.05 = e- Zto.os, (2.5) 

where 5% of the animals in the sample are older than age to.05· 

To estimate M, an empirical approach is usually taken where to.os is replaced with tmax: 

0.05 = e-Mtmax, (2.6) 

where tmax is either the oldest age observed in the stock or the oldest age found in the 

literature for the species of interest. When age composition data are used from an exploited 

stock, Equation 2.6 will provide an estimate of M only if fishing mortality is reasonably close 

to zero (M >=::: Z) or if there is a refuge where older animals can accumulate. If exploitation 

affects all animals in the stock, Equation 2.6 is unlikely to provide a reliable estimate of M. 
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The rule of thumb for approximating M follows directly from Equation 2.6: 

- ln (0.05) 

M 

M * tmax 

2.996 3 
tmax :::::: tmax. 

(2.7) 

Most importantly, note that the use of 0.05 or any other proportion in the equations is 

arbitrary because we have no reason to believe that tma:r pertains to any particular quantile. 

We show in the present study that this arbitrary rule of thumb for approximating M is 

unnecessary, as an empirical method (Hoenig 1983) provides an analogous estimate based 

on a substantial data set. Equation 2.1 is based on the same model as that in Equation 2.3 

and was developed from a regression of ln (M) on ln (tmax) from data on 134 stocks of 79 

species of fish, mollusks, and cetaceans. It can be shown to be of the same form as the 

rule-of-thumb approach as follows: 

Results 

e0.982*ln( tmax) 

4.22 
(tmax)0.982 

4.22 
(2.8) 

We substituted 1.0 for 0.982 in Equation 2.8 to allow the development of a simple, approx-

imate rule of thumb for direct comparison with 3/trnax· As a result, this rule of thumb 

strictly applies only to the case where trnax = 1. Estimates from the regression estimator in 

Equation 2.1 are always greater than estimates from Equation 2.8 for trnax > 1, although 

tho diffownce iR uRually Rn.J.all (Figure 2.1). 
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Figure 2.1: The absolute and percent difference between estimates of M from the regression esti
mator (RE) and the approximate rule of thumb, 4.22/tmax (RT). 
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Figure 2.2: The absolute and percent difference between estimA.tes of M from the regression esti
mator (RE) and 3/tmax (3M). 

Estimates from the regression estimator are typically 40 - 50% greater than estimates 

from 3/tmax (Figure 2.2). For example, if a maximum age of eight years is used for blue 

crab in Chesapeake Bay (Rugolo et al. 1998b ), 3/tmax gives an estimate for M of 0.375/yr 

and the regression estimator gives 0.548/yr. 

Perhaps the most significant result is the finding that rearrangement of the regression 

model yields an estimate of an appropriate value for Pin Equation 2.2. The value of 4.22 

in Equation 2.8 approximately corresponds to -ln (0.015), indicating that the average 

longevity for stocks in the data set used by Hoenig (1983) is the age at which about 1.5% 

of the stock remains alive (versus 5% in 3/tmax)· 
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Discussion 

Development of the rule-of-thumb approach 

The rule-of-thumb approach appears to have arisen independently in four different places. 

Cadima (2003) supported the approach by citing the early work of Tanaka (1960). Sparre 

& Venema (1998) based their presentation on the work of Alagaraja (1984), who provided 

the mathematics of a method that Sekharan (1975) used without description. Interestingly, 

Shepherd & Breen (1992) rearranged Equation 2.3 to obtain the rule of thumb based on 

the results of Hoenig (1983). This latter presentation is provided in Quinn & Deriso (1999). 

In all of these cases, the proportion of animals surviving to tma.x is assumed to be some 

arbitrarily small value, typically 1% or 5%. 

The development and use of the specific form 3/tmax in blue crab work occurred altogether 

separately. Its use began with an assessment for the Chesapeake Bay stock, in which Rugolo 

et al. (1998b) used an estimate of M based on "the ICES [International Council for the 

Exploration of the Sea] convention; that is, 5% survivorship at maximum age following 

negative exponential depletion.'' The approach is more explicitly defined in their original 

document (Rugolo et al. 2 ) as M = (3/maximumage). The report also states that "this 

convention . . . is widely used for many east coast finfish stocks (NMFS [National Marine 

Fisheries Service]/NEFSC [Northeast Fisheries Science Center], ASMFC [Atlantic States 

Marine Fisheries Commission]).'' Following its introduction by Rugolo et al. (Rugolo et 

al. 2 ; Rugolo et al. 1998b), the 3/tmax approach has been used in nearly all blue crab stock 

assessment work conducted on the east coast of the United States (Miller and Houde3 ; 

2 Rugolo, L., K. Knotts, A. Lange, V. Crecco, M. Terceiro, C. Bonzek, C. Stagg, R. O'Reilly, and D. 
Vaughan. 1997. Stock assessment of Chesapeake Bay blue crab ( Callinectes sapidus), 267 p. Report of 
the Technical Subcommittee of the Chesapeake Bay Stock Assessment Committee of the National Marine 
Fisheries Service, NOAA (National Oceanic and Atmospheric Administration). NOAA Chesapeake Bay 
Office, 410 Severn Avenue, Suite 107, Annapolis, MD 21403. 

3 Mi!ler, T. J., and E. D. Houde. 1999. Blue crab target setting, 167 p. Final report to the Living Resources 
Subcommittee of the Chesapeake Bay Program. University of Maryland Center for Environmental Sci
ence (UMCES) Technical Series No. TS-177-99. Chesapeake Bay Program, U.S. EPA (Environmental 
Protection Agency), 410 Severn Avenue, Annapolis, MD 21403. 
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Miller 2001; Murphy et al. 4; Helser et al. 2002; Kahn5). 

The references used by Rugolo et al. (1998b) in support of what they termed the "ICES 

convention" (Anthony6 ; Vetter 1988) do not mention the 3/trnax approach. Rather than 

advocating a method for determining M, Anthony6 called for standardization of the range 

of ages to include in the calculation of yield-per-recruit for a stock; this range of ages was 

termed the stock's "fishable life span." He proposed that the fishable life span should be 

defined such that the oldest age would be that at which 5% or less of the initial recruits 

survived. The use of Anthony's standard to approximate M makes the assumption that 

the fishable life span of an exploited stock is the same as the longevity of the members 

of the stock in an unexploited condition. It is unlikely that this assumption will be met 

unless the fishery is at an early stage in its development because fishing may alter the age 

structure of the stock (Hilborn & Walters 1992). We note that although a limited number 

of scientists involved with ICES have used 3/tmax in a general way, the method has not been 

adopted as a convention within ICES (O'Brien7). Furthermore, we did not find evidence 

that the approach is currently in common use in stock assessments on the east coast of the 

United States, with the exception of those for blue crab. Nonetheless, the rule-of-thumb 

approach certainly has the potential to be used widely, given its repeated presentation in 

fishery literature and its accumulated momentum in blue crab work. 

4 Murphy, M. D., C. A. Meyer, and A. L. McMillen-Jackson. 2001. A stock assessment for blue crab, 
Callinectes sapidus, in Florida waters, 56 p. FMRI (Florida Marine Research Institute) Inhouse Report 
Series IHR 2001-008. Florida Fish and Wildlife Conservation Commission, FMRI, 100 Eighth Avenue 
SE, St. Petersburg, FL 33701. 

5 Kahn, D. M. 2003. Stock assessment of Delaware Bay blue crab ( Callinectes sapidus) for 2003, 52 p. 
Delaware Department of Natural Resources and Environmental Control, Division of Fish and Wildlife, 
P.O. Box 330, Little Creek, DE 19961. 

6 Anthony, V. C. 1982. The calculation of Fo.I: a plea for standardization, 16 p. Northwest Atlantic 
Fisheries Organization (NAFO) Serial Document N557, SCR 82/VI/64. NAFO Secretariat, P.O. Box 
638, Dartmouth, Nova Scotia B2Y 3Y9, Canada. 

7 O'Brien, C. M. 2004. Personal communication. Chair of ICES Working Group on Methods of Fish Stock 
Assessments and ICES Resource Management Committee. CEFAS (Centre for Environment, Fisheries 
and Aquaculture Science) Lowestoft Laboratory, Pakefield Road, Lowestoft, Suffolk NR33 OHT, England. 
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Recommendations 

The power of empirical relationships for predicting natural mortality can be rather limited 

(Vetter 1988; Pascual & Iribarne 1993), and the uncertainty associated with parameter esti

mates should be taken into account whenever possible (Patterson et al. 2001). FUrthermore, 

methods for directly estimating M are likely to be preferable to making predictions based 

on life history features. Nonetheless, such estimates may be needed when available data 

are inadequate for making a direct estimate. Given the results of our comparison, we rec

ommend that the regression estimator be used instead of the rule-of-thumb approach when 

longevity is used to predict M. The regression estimator is based on a least squares fit to 

an extensive data set and thus matches experience better than a rule-of-thumb approach 

based on an arbitrary constant. 

We recommend that use of the 3/tmax rule of thumb be abandoned, despite it being 

entrenched in blue crab literature. For a species like blue crab, for which tmax is less 

than 10 years, the differences in the estimates of M from the regression estimator and 3/tmax 

are not trivial ("' 45% ). Although the regression estimator was based on data for fish, mol

lusks, and cetaceans (Hoenig 1983) and may not be applicable to other exploited taxa, such 

as crustaceans, the model had a good fit to the data across widely disparate taxa. Finally, 

estimates of M for blue crab based on longevity are controversial because of continued diffi

culty in determining an appropriate tmax· In the absence of data to directly estimate M for 

this species, we suggest that the most prudent course of action is a review and comparison 

of other methods for predicting M. 
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Addendum 

In this paper, we stated that the 3/tmax approach for estimating M was not in common use 

in assessments on the east coast, save for those of blue crab stocks. Our conclusion was based 

on our search of the literature and personal communications with stock assessment experts 

with whom we were familiar. Since the publication of this paper we have been contacted 

by various individuals that were aware of instances where 3/tmax was being used. At least 

three of those individuals referred to assessments on the east coast, and in combination they 

mentioned the use of 3/tmax in at least six separate assessments. The 3/tmax approach may 

be in wider use than we realized. 
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Chapter 3 

Direct and Indirect Estimates of Nat ural 

Mortality for Chesapeake Bay Blue Crab1 

Abstract 

Analyses of the population dynamics of blue crab Callinectes sapid us have been complicated 

by a lack of estimates of the instantaneous natural mortality rate (M). We developed the 

first direct estimates of Jl1 for this species by solving Baranov's catch equation for M 

given estimates of annual survival rate and exploitation rate. Annual survival rates were 

estimated from a tagging study on adult female blue crabs in Chesapeake Bay, and female-

specific exploitation rates for the same stock were estimated by comparing commercial 

catches with abundances estimated from a dredge survey. We also used eight published 

methods based on life history parameters to calculate indirect estimates of M for blue 

crab. Direct estimates of M for adult females in Chesapeake Bay for the years 2002- 2004 

ranged from 0.42 to 0.87 per year and averaged 0.71 per year. Indirect estimates of M varied 

considerably depending on life history parameter inputs and the method used. All eight 

methods yielded values forM between 0.99 and 1.08 per year, and six of the eight methods 

yielded values between 0.82 and 1.35 per year. Our results indicate that natural mortality 

1 Published in .June 2007 and reproduced here without change: HEWITT, D. A., D. M. LAMBERT, J. 
M. HOENIG, R. N. LIPCIUS, D. B. BUNNELL, and T. J. MILLER. 2007. Transactions of the American 
Fisheries Society, 136, 1030-1040. [Contribution 2816 of the Virginia Institute of Marine Science, College 
of William and Mary] 
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of blue crab is higher than previously believed, and we consider M values between 0. 7 and 

1.1 per year to be reasonable for the exploitable stock in Chesapeake Bay. Remaining 

uncertainty about M makes it necessary to evaluate a range of estimates in assessment 

models. 

Introduction 

The estimation of natural mortality rates is one of the most difficult and most critical 

elements of many fishery stock assessments. The natural mortality rate is a key determinant 

of the potential productivity of a stock and thus the amount of exploitation a stock can 

sustain. In general, assuming that natural mortality and harvest mortality are additive, 

stocks with higher natural mortality rates are more productive and are able to sustain 

higher rates of exploitation. Lacking evidence to the contrary, most stock assessments 

assume that natural mortality is constant through time as well as across the sizes or ages 

of the exploited animals. Thus, a single estimate of the instantaneous natural mortality 

rate (AI) is presumed to apply to the entire exploitable stock. 

The values used for M in assessment models can have substantial effects on model results, 

biological conclusions, and management recommendations. For a simple age-structured 

model, Clark (1999) found that stock abundance and target harvest rates could be severely 

overestimated when M was overestimated by as little as 0.1 per year or less, especially 

when fishing mortality was low (F < 0.3 per year). Similarly, harvest policies for U.S. 

West Coast groundfish based on a catch-at-age model were sensitive to changes in M of 

less than 0.05 per year (Williams 2002). Using a length-structured model for red king 

crab Paralithodes camtschaticus in Bristol Bay, Alaska, Zheng et al. (1997a,b) found that 

stock rebuilding and long-term harvest strategies were highly sensitive to changes in M 

of 0.2- 0.3 per year. These and other results indicate that it is desirable to have precise 

knowledge about M for assessment purposes. 

Unfortunately, estimates of Mused in stock assessment models are often uncertain, partly 
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because it is difficult and expensive to estimate the parameter. In practice, values of M 

for use in stock assessments are obtained by two types of methods, which we refer to as 

direct and indirect. Direct methods involve estimating M from data pertaining solely to 

the species or stock of interest. Direct methods include field studies designed to estimate 

mortality rates as well as studies that estimate M as a parameter within a population 

dynamics model. Indirect methods involve making an analogy among species or stocks. If a 

stock of interest has life history traits that are similar to those of another group of species or 

stocks for which M has been estimated, then it is presumed that M for the stock of interest 

is close to M for the group. For example, species with similar longevity have similar M 

values, so longevity can be used to predict M (Hoenig 1983). With direct methods, the 

reliability of the estimate of M depends only on how reliably the parameters have been 

estimated for the stock of interest. For indirect methods, the reliability of the estimate 

of M depends on three things: (1) the variability of M among species or stocks with the 

same life history traits, (2) how well M and the life history traits have been estimated for 

the species or stocks used to estimate the relationship between M and the life history traits, 

and (3) how well the life history traits have been estimated for the stock of interest. 

Perhaps the most feasible and reliable direct methods for estimating mortality rates are 

telemetry and tagging studies that can assign fates to tagged individuals; these methods 

have been used successfully to estimate M for some fish stocks (Hampton 2000; Hightower 

et al. 2001; Latour et al. 2001; Heupel & Simpfendorfer 2002; Pollock et al. 2004; Waters 

et al. 2005; Leigh et al. 2006). It is more difficult to use tagging or telemetry methods to 

estimate 111 for crustaceans, largely because crustaceans grow by molting and may shed 

external tags along with the old carapace during ecdysis. Tag shedding generally limits the 

time period and portion of the stock that can be used to estimate mortality rates. Nonethe

less, a few studies have used tagging experiments to estimate mortality rates (including M) 

for exploited stocks of shrimp (Siddeek 1991; Xiao & McShane 2000), crabs (Siddeek et al. 

2002 and references therein), and lobsters (Frusher & Hoenig 2003). Recently, Lambert 
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et al. (2006b) took advantage of the fact that female blue crabs Callinectes sapidus undergo 

a terminal molt at maturity to estimate survival rates for adult females in Chesapeake Bay 

with tag return data. 

Natural mortality rates have been estimated directly for exploited crustacean stocks in 

several other ways. Xu et al. (1995a,b) took advantage of fishing season closures to es

timate M for the green tiger prawn Penaeus semisulcatus in Kuwait based on relative 

abundance data from research surveys. Wang (1999) and Wang & Ellis (2005) estimated M 

for P. semisulcatus in Australia with catch and effort data from a commercial fishery or 

length frequency data from research surveys. Fu & Quinn (2000) estimated Mas a parame

ter within a length-based population dynamics model for northern shrimp Pandalus borealis 

in Kachemak Bay, Alaska. Zheng et al. (1995a,b) reviewed published estimates of M for 

red king crab and also estimated it as a parameter within a_ length-based population model. 

Similarly, Siddeek et al. (2002) estimated M within length-based and age-based population 

models for red king crab and golden king crab Lithodes aequispinus. 

Studies of exploited lobster stocks have estimated !vi by both direct and indirect methods. 

Morgan (1977) estimated M for western rock lobster Panulirus cygnus in Australia by some 

direct methods with variable success. Annala (1977) presented some direct estimates for 

southern rock lobster Jas·us edwardsii in New Zealand, and Thomas (1973) and Anthony 

(1980) reviewed both direct and indirect estimates of M for American lobster Homarus 

americanus. Additional studies of lobsters (Sheehy et al. 1999; French McKay et al. 2003) 

and other exploited crustaceans (Gabche & Hockey 1995) have used indirect methods to 

predict M based on the correlation between mortality and other life history parameters. 

This indirect approach is also common to fish stock assessments (Vetter 1988; Quinn & 

Deriso 1999). 

34 



Chapter 3 Direct and Indirect Estimates of Natural Mortality for Chesapeake Bay Blue Crab 

Blue crab natural mortality and stock assessment 

The blue crab supports major commercial fisheries along the U.S. East Coast south of 

Connecticut and in all of the states along the Gulf of Mexico. In 2002, blue crab landings 

constituted approximately 7% of the global landings of true crabs, and U.S. landings have 

dominated the global catch of blue crab (Fogarty & Lipcius 2007). The commercial fishery 

for blue crab in the Chesapeake Bay is the leading contributor to the U.S. landings and 

is one of the most economically important fisheries in the bay. Landings from Chesapeake 

Bay peaked in 1966 at over 47,000 metric tons but have fallen to all-time lows in the last 

decade. Landings have averaged less than 25,000 metric tons since 2000 (Miller et al. 2005). 

The decline in landings coincides with a sustained decline in population abundance, which 

is partly attributable to overfishing (Lipcius & Stockhausen 2002; Bunnell & Miller 2005; 

Miller et al. 2005). 

The estimation of M has been a vexing problem for analyses of blue crab stock dynamics 

(Hewitt and Hoenig 2005 [Chapter 2]). No direct estimates of M exist for blue crab, and 

assessments have relied on an indirect approach for estimating M based on longevity. The 

first formal assessment of the blue crab fishery in Chesapeake Bay (Rugolo et al. 1998b) 

introduced an approach for estimating M based on the presumed longevity of the species 

in an unexploited condition. Rugolo et al. (1998b) used a value for longevity of 8 years and 

estimated M to be 0.375 per year, noting that the longevity value was selected in part to 

provide a risk-averse assessment (lower M). The approach that they used to estimate M 

was subsequently employed in other blue crab stock assessments conducted on the U.S. East 

Coast. Hewitt and Hoenig (2005) [Chapter 2] discussed the history and mechanics of this 

method and recommended that it be abandoned. 

The use of longevity to estimate M for blue crab has been controversial, primarily be

cause of the uncertainty about longevity for this species. Rugolo et al. (1998b) based their 

use of 8 years on a single tag return from an unpublished tagging study, but there was 

considerable disagreement among scientists, managers, and commercial fishermen about 
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whether blue crabs could live to age 8. Longevity values ranging from 3 to 8 years have 

been proposed for blue crab, but there is little evidence in support of any specific value. 

Aging of blue crab is difficult because individuals lack retained hard parts that may contain 

indications of age. Analysis of extractable lipofuscins has provided a means to age blue 

crabs but with only moderate precision and over a limited age range (Ju et al. 1999, 2001). 

An application of this technique to samples of blue crabs from Chesapeake Bay indicated 

that crabs older than age 2 were a minor portion of the stock but that several individuals 

may have been age 3 or older (Ju et al. 2003). Other evidence about blue crab longevity 

has come from fishery-dependent tag returns in tagging studies. Despite the potential for 

error in the interpretation of individual tag returns, studies from North Carolina, Florida, 

and Chesapeake Bay have all indicated that blue crabs in exploited stocks may live to age 4 

(Fischler 1965; Tagatz 1968a; Lambert et al. 2006b). Thus, the best available evidence 

suggests that blue crabs in exploited stocks can live for at least 4 years. 

In support of efforts to improve scientific advice to fishery managers and to resolve some 

of the uncertainty about blue crab natural mortality rates, we developed and compared 

direct and indirect estimates of M for the blue crab stock in Chesapeake Bay. 

Methods 

We used two approaches to estimate M for blue crab: (I) direct estimation based on 

independent estimates of annual survival rate (S) and exploitation rate (u), and (2) indirect 

estimation based on life history parameters. Whereas the indirect estimates reflect the entire 

life history of the animal and thus apply to the entire stock, the direct estimates are based 

on the results of Lambert et al. (2006b) and apply only to the adult female portion of the 

stock. 
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Direct estimates 

We used Brownie tag return models (Brownie et al. 1985) to estimate S of adult female 

blue crabs for 2002, 2003, and 2004 based on a tagging study in Chesapeake Bay. Complete 

details of the tagging study and the estimation of S are provided by Lambert et al. (2006b ); 

we used S estimates ( s) based on tagging conducted in the winter. Model selection criteria 

indicated that the most parsimonious model was one that included a survival rate that 

was constant across years. However, the difference between that model and a model with 

separate annual estimates of survival was small (change in the quasi-likelihood Akaike's 

information criterion [~QAIC] = 3.82); thus, we used separate annual estimates to obtain 

three estimates of M. 

Exploitation rate is calculated as C/N, where Cis the total catch during the year and N 

is the abundance at the start of the year. Female-specific u estimates (u) for Chesapeake 

Bay were calculated by methods described in Sharov et al. (2003) based on annual estimates 

of baywide abundance of exploitable female blue crabs ( N) and annual baywide commer

ciallandings of female blue crabs ( 6). Abundance was estimated from a stratified random 

dredge survey conducted during the winter and timed to coincide with the period in which 

blue crabs in northern, temperate latitudes cease molting and bury themselves in the sedi-

ment (Sharov et al. 2003; Smith & Chang 2007). Adult female blue crabs are concentrated 

in deeper waters in the southern portions of the bay during the winter (Jensen et al. 2005), 

but the dredge survey covers the entire bay. The catch per unit area was estimated for crabs 

that were of legal size or were going to reach legal size during the year. Absolute abun-

dance of crabs per unit area was calculated by dividing the catch per unit area estimates 

by an estimate of gear efficiency (Sharov et al. 2003). Total baywide abundance was then 

calculated by expanding the overall mean density to the entire area of the bay (9,812 km2). 

Sex-specific estimates of u were calculated by separating abundance estimates and landings 

by sex. The hard-shell crab sector of the fishery reports the catches of males and females 

separately, but the soft-shell and peeler crab sectors do not. We assumed a 1:1 sex ratio 
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for landings reported by the soft-shell and peeler crab sectors based on fishery-dependent 

monitoring by the Maryland Department of Natural Resources (Fegley et al. 2006). 

We used the independent estimates of S and u in a rearrangement of Baranov's catch 

equation (Ricker 1975) to solve forM. The catch equation is applicable to fisheries like the 

Chesapeake Bay blue crab fishery, in which fishing mortality and natural mortality operate 

concurrently (Type 2 in Ricker's terminology): 

C = NFAjZ, (3.1) 

where C and N are as defined above, F is the instantaneous fishing mortality rate per year, 

Z is the instantaneous total mortality rate per year, A is the total annual mortality rate 

(1- S; Sis equal to e-z, where e is the base of natural logarithms), and Z equals M +F. 

Given that u is equal to C IN, the equation can be rearranged to solve for F as ( uZ) I A. 

By subtraction, M is equal to Z- [(uZ) jA]. 

Annala (1977) used this general approach for the southern rock lobster, and Kahn & 

Helser (2005) employed it in an assessment of the blue crab stock in Delaware Bay. Similar 

to Lambert et al. (2006b), Annala (1977) estimated Z from tag returns obtained from a 

commercial fishery. He cakulated M by the approach presented here but concluded that 

the approach substantially overestimated M because of tagging effects, such as tagging

related mortality and tag loss. Lambert et al. (2006b) indicated that their study did not 

violate any of the assumptions of the Brownie models, which include these potential biases; 

we therefore believe the approach is appropriate for our situation. Kahn & Helser (2005) 

did not use data from a tagging study; rather, they used relative abundance data from a 

research survey and a catch-survey model to estimate u and Z. 
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Indirect estimates 

We selected eight published indirect methods that are commonly used in fishery stock 

assessments to obtain ranges of M estimates for blue crab (Table 3.1). Most of the methods 

were developed primarily for fish and included little data on invertebrates. We recognize 

the uncertainty associated with using indirect methods that have been derived from data 

on many species to predict M for a single species (Vetter 1988; Pascual & Iribarne 1993). 

The use of multiple methods may reduce the bias imposed by any one method. 

The indirect methods rely on parameters that are commonly measured in biological stud

ies, including average age at maturity (tm), longevity (tmax), body size, and the parameters 

of the von Bertalanffy growth model (Brody growth coefficient [K] and asymptotic maxi

mum size in length [L00 ] or weight [W00 ]). For blue crabs, the carapace width (CW; mm) 

between the points of the lateral spines was substituted for length (thus, CW00 = L00 ). 

Although considerable research has been conducted into models that account for the dis

continuous nature of crustacean growth (reviewed in Smith & Chang 2007), the simpler von 

Bertalanffy model has been used in many studies of blue crab stocks and provides a reason

able approximation (Bunnell & Miller 2005). Estimates of blue crab life history parameters 

drawn from the literature and unpublished data were selected to represent the Chesapeake 

Bay stock (Table 3.1). Whenever possible, we used empirically derived parameter estimates 

as opposed to estimates based on model inference. For example, we used a range of pub

lished estimates for the von Bertalanffy growth model parameters but only included those 

derived from field data. Two of the indirect methods required estimates of tmax, for which 

we used a range of 4 - 6 years. 
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Table 3.1: Indirect methods used to estimate natural mortality rates (1\I) for blue crab. Descriptions of the methods and sources of 
input parameter estimates are discussed in the text. 

Method 

1 

2 

3 

4 

5 

6 

7 

8 

Source(s) 

Charnov & Berrigan 

(1990), Charnov 

(1993), Jensen (1996) 

Charnov (1993), 

Jensen ( 1996) 

Alverson & Carney 

(1975) 

Hoenig (1983) 

Pauly (1980) 

Pauly (1980) 

Roff (1984) 

Lorenzen (1996) 

Equation a 

JI.I = X(tm 

M=X*K 

M = 3K I ( e0.38Kt=ax - 1) 

J\.1 = el.44-0.982log,(tmax) 

logwM = -0.0066 - 0.279logw ( CW oo) + 
0.6543logwK + 0.4634logloT 

logwM = -0.2107- 0.0824logw (Woo)+ 

0.6757logwK + 0.4627logwT 

M = 3K/ (eKtm -1) 

M = 3.oow-o.2ss 

Input parameter 

estimates 

tm = LOO- 1.67, 

X= 1.65-2.20 

K = 0.47- 1.09, 

X = 1.50- 1.65 

[( = 0.47- 1.09, 

tmax = 4-6 

tmax = 4-6 

[( = 0.47- 1.09, 

CW"" = 17.6- 23.5, 

T = 16.5 

[( = 0.47- 1.09, 

Woo= 231-464, 

T = 16.5 

K = 0.47- 1.09, 

tm = 1.00 - 1.67 

w = 25.0- 450.0 

M range 

0.99-2.20 

0.71 - 1.80 

0.30-1.35 

0.73-1.08 

0.91- 1.72 

0.82-1.52 

0.63-2.35 

0.52- 1.19 

atm = age at maturity (years); X = a constant taken from the given sources; K = von Bertalanffy growth coefficient (per year); tmax = longevity (years); 

Clroo =asymptotic maximum carapace width (em) from the von Bertalanffy growth model; T =grand annual mean of water temperature ec) recorded at 
the Virginia Institute of Marine Science (Gloucester Point), 1990- 2003; ~V 00 = asymptotic maximum weight (g) from the von Bertabmffy growth model; 

W = wet weight (g). 
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Methods 1 and 2 (Table 3.1), based on simple empirical relationships between M and 

the parameters tm and K, are built on the work of Beverton & Holt (1959) and Bever

ton (1963, 1992). Charnov (1993) extended this work and compiled data showing that 

certain relationships among life history parameters were generally stable within broad tax

onomic boundaries. He reasoned that the relationships probably arose from evolutionary 

tradeoffs. Jensen (1996) derived the same relationships directly from theory, showing that 

they resulted from a tradeoff between mortality and reproduction when a species evolved 

to maximize its lifetime fecundity. Jensen (1996) estimated values for the relationships 

that were somewhat different than those determined by Charnov (1993). We used a range 

of 1.00- 1.67 years as input parameter estimates for trr, based on Van Engel (1958) and 

Lippson (1973). Charnov (1993) used the data compiled by Pauly (1980), which was also 

used to develop methods 5 and 6 (Table 3.1). 

Method 3 is taken from Alverson & Carney (1975), in which a theoretical model was 

developed to predict the age at which a cohort of fish would maximize its collective biomass 

if growth followed a von Bertalanffy model. They also included an empirical regression 

model based on 63 fish species to relate tmax to the age at which the cohort would maximize 

its biomass. The first model includes a term for l'vf, and the two models can be combined 

and rearranged to solve forM given estimates of K and tmax· 

Method 4, from Hoenig (1983), is a simple linear regression of loge (Z) against loge (trnax). 

The data showed that Z was inversely related to tmax· Because the 134 stocks in the data 

set were either unexploited or lightly exploited, Z approximates M. Although this method 

relies solely on an estimate of trnax, we used it because it was based on an extensive data 

set of diverse taxa, including fish, cetaceans, and mollusks. 

Methods 5 and 6, multiple linear regressions developed by Pauly (1980), are two of the 

most common methods used in stock assessments to predict M. The regressions were 

based on 175 stocks of freshwater and marine fish species. Each of the regression equations 

relates M to parameter estimates from the von Bertalanffy growth model and the average 
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temperature of the water in which the stock lives. Separate equations are used for growth 

models fit to length and weight data. Charnov (1993) and Jensen (1996) showed that 

temperature added little to the predictive capability of the regressions, but we used them 

in their original form. We converted CW00 (mm) to Woo (g) using the following allometric 

equation (Miller et al. 2005): 

w = o.ooo842 * cw2
.4

22
. (3.2) 

Method 7 is taken from Roff (1984), who explored theoretically the evidence that life 

history parameters were consistently correlated among teleost fishes. In part of his inves

tigation (elaborated on by Jensen 1996), Roff (1984) assumed that evolution had shaped 

life history parameters to maximize lifetime fecundity through tradeoffs among growth, re

production, and survival. He determined that the optimal tm could be estimated from its 

relationship with I< and M. Similar to method 3, the model can be rearranged to solve 

for M given estimates of I< and tm. Roff (1984) showed that this model had reasonable 

predictive capability when tested with data from 30 stocks, most of which were taken from 

Ni (1978). In addition, the predictive capability was similar to that of the length-based re

gression of Pauly (1980) when tested with a subset of 17 stocks. Interestingly, the equation 

Roff (1984) developed was the same as that used by Alverson & Carney (1975) to solve for 

the age at which a cohort would maximize its biomass, implying that the optimal tm is the 

same as the age at which a cohort maximizes its biomass. 

Lastly, method 8, taken from Lorenzen (1996), predicts M based on its inverse relationship 

with body size. This method allows M to vary among individuals; however, we used it 

with a range of sizes for exploitable blue crabs (> 76 mm CW) to produce a range of M 

estimates in a way similar to the other methods. Peterson & Wroblewski (1984) concluded 

that mortality due to predation in pelagic marine ecosystems was a power function of body 

weight. Lorenzen (1996) related estimates of M to wet body weight for a large and diverse 
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data set for fishes of all sizes in natural ecosystems (lakes, rivers, marine systems) and 

also found that M was a power function of body weight. The relationship did not differ 

statistically among ecosystems or latitudinal zones. We used the Lorenzen (1996) equation 

estimated for all natural ecosystems combined and provided a range of blue crab weights 

by converting carapace widths using equation 3.2. 

Results 

Direct estimates 

Survival rates of adult female blue crabs in Chesapeake Bay were exceptionally low but 

consistent. We estimated S to be 0.091 in 2002, 0.097 in 2003, and 0.069 in 2004 (Table 3.2). 

The 95% confidence intervals for S are wide because a variance inflation factor was used to 

adjust the standard errors of the estimates. The adjustment was necessary because two long

term recaptures of tagged crabs caused the model to fit poorly; these long-term recaptures 

are possible but unlikely given the S estimates. The standard errors for S were much lower 

when these recaptures were excluded. For example, the 95% confidence interval for the 

estimate in 2002 was 0.017- 0.160 without the two long-term recaptures. However, there 

was no reason to exclude these recaptures, so they were included in the analysis (Lambert 

et al. 2006b ). The adjusted confidence intervals may overstate the uncertainty inS. Female

specific u calculated from the dredge survey abundances and commercial landings of female 

blue crabs varied from 0.578 to 0. 7 48, reflecting intense fishing pressure. Solving Baranov's 

catch equation for M with S and u yielded M estimates ranging from 0.423 per year in 2002 

to 0.871 per year in 2004 (mean= 0.711 per year). The estimate for 2002 was about 50% 

of the 2003 and 2004 estimates. 
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Table 3.2: Annual estimates of survival rate (S) and exploitation rate (u) and resulting estimates 
of instantaneous fishing (F) and natural (M) mortality rates (per year) for adult female 
blue crabs in Chesapeake Bay. The estimates of S are based on the tagging study 
described by Lambert et al. (2006b). The 95% confidence intervals (Cis) for S arc given 
in parentheses. 

Year S (95% CI) u F M 

2002 0.091 (0.011 - 0.475) 0.748 1.974 0.423 
2003 0.097 (0.028- 0.291) 0.578 1.493 0.840 
2004 0.069 (0.022- 0.196) 0.628 1.803 0.871 

Indirect estimates 

The indirect methods collectively provided a broad range of M estimates (0.30- 2.35 per 

year; Table 3.1). The lowest estimates were given by method 3 with tmax of 6 years 

and I< of 1.09 per year. The range of estimates from this method was wider than that 

from method 4, which only used tmax· Methods 1 and 2 produced similar ranges of values 

and included among the highest estimates (only method 7 gave higher estimates). Meth-

ods 5 and 6 produced similar ranges of estimates, roughly in the middle of the collective 

range. Estimates from method 8, based on weight, were similar to those from method 3 and 

were nearly identical to estimates based on the more theoretical approach of Peterson & 

Wroblewski (1984). Although we did not include their approach in Table 3.1, it would add 

weight to M estimates in the range of 0.5 - 1.2 per year. The collective range of the M es-

timates was extensive, but all eight methods yielded values between 0.99 and 1.08 per year, 

and six method~ gave estimates between 0.82 and 1.35 per year (Figure 3.1). 

Discussion 

The direct estimates of M for adult female blue crabs in Chesapeake Bay represent the first 

direct estimates for this species that are applicable at the scale of a stock assessment. The 

direct estimates for 2003 (0.84 per year) and 2004 (0.87 per year) are close to the region 
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Figure 3.1: Number of indirect estimation methods in Table 3.1 (out of eight possible methods) 
that yielded given values (x-a.xis) of instantaneous natural mortality rate (M) for blue 
crab. The direct estimates of M for adult females in Chesapeake Bay from our study 
(2002- 2004) are indicated by diamonds. The vertical dashed line indicates the M 
value (0.375 per year) used by Rugolo et al. (1998b). 

45 



Chapter 3 Direct and Indirect Estimates of Natural Mortality for Chesapeake Bay Blue Crab 

of central tendency given by the indirect methods (0.99- 1.08 per year). Collectively, the 

direct and indirect estimates indicate that values between 0.7 and 1.1 per year are reasonable 

estimates of M for the exploitable stock of blue crab in Chesapeake Bay. Estimates at the 

upper end of this range are further supported by the results from the catch-multiple-survey 

assessment model of Miller et al. (2005), in which process error and the sum of the squared 

residuals were minimized at M values between 1.00 and 1.25 per year. We suggest that 

stock assessments for blue crab consider a range of reasonable M values to account for 

remaining uncertainty about the parameter. 

Overall, our results indicate that M for the blue crab in Chesapeake Bay, though still 

uncertain, is higher than previously assumed. The estimate of 0.375 per year used by 

Rugolo et al. (1998b) does not appear to be credible. Only one indirect method (Alverson 

& Carney 1975) produced values as low as 0.375 per year and only when extreme values for 

life history parameters were used (high K, high tmax)· None of the direct estimates were 

as low as 0.375 per year. In addition, with an M of 0.375 per year, the catch-multiple

survey assessment model failed to adequately fit the time series of u observed in the fishery 

(Miller et al. 2005). From an evolutionary perspective, higher natural mortality rates are 

consistent with other blue crab life history features, such as fast growth, early maturity, 

and a relatively short life span (Adams 1980; Gunderson & Dygert 1988). 

Changing the estimate of M for blue crab from 0.375 per year to 0.7- 1.1 per year 

reflects a significant shift in our understanding of the population dynamics of this species. 

The higher estimates imply that the exploitable stock is composed primarily of one or two 

year-classes, which is consistent with the findings of Ju et al. (2003). As a result, the 

age structure of the stock and the ability of the stock to support the fisheries are heavily 

dependent on the magnitude of annual recruitment. 

We recognize several potential concerns with estimating M by using S from the tagging 

study together· with the female-specific ft. First, unlike S, ft did not account for recreational 

removals. However, the recreational removals of blue crabs in Chesapeake Bay are believed 
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to be less than 10% of the commercial harvest (Ashford & Jones 2003). Second, the tagging 

study included only adult females that had undergone their terminal molt, whereas il was 

calculated for all females that were of legal size or would become legal size during the year. 

A portion of the exploitable females would not have undergone their terminal molt (Bunnell 

& Miller 2005). Finally, the periods to which S and il applied were not exactly matched. 

The S applied to an annual period beginning in October or November (Lambert et al. 

2006b), whereas il applied to calendar years. Overall, we expect that the small difference 

in timing of the two estimates introduced little error into the estimates of M. 

The range of M estimates based on the indirect methods (0.30 - 2.35 per year) is 

considerably wider than ranges generated by similar but smaller sets of indirect meth

ods applied to fish stocks (Gunderson et al. 2003; Bacheler et al. 2005; Fischer et al. 

2005). One reason for this is the relatively short life span of blue crab; that is, M varies 

considerably with small changes in parameters such as tmax and tm for short-lived ani

mals. For example, Simpfendorfer ( 1999b) applied five indirect methods to a small, short

lived shark species (maximum age = 6- 7 years) and produced a range of M estimates 

from 0.60 to 1.65 per year. In contrast, Simpfendorfer (1999a) and Heupel & Simpfendorfer 

(2002) used suites of indirect methods for larger, longer-lived species and found that esti

mates of M varied among methods by less than 0.25 per year. Another reason for the wide 

range of M estimates for blue crab is the variability in estimates of the von Bertalanffy 

growth model parameters, which are used in five of the eight methods. The range of esti

mates we used for K and CW 00 accurately reflects the high variability in blue crab growth 

rates ( J u et al. 2001). 

Uncertainty appears to be a persistent feature of our understanding of natural mortality 

in crab stocks. In a study of red king crab, blue king crab P. platypus, and golden king 

crab, Siddeek et al. (2002) obtained point estimates of M ranging from 0.19 to 0.70 per year 

depending on the species and sex. They used a jackknife procedure to determine the preci

sion of the estimates, and all of the 95% confidence intervals included zero. The confidence 
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intervals spanned ranges of values that were 2. 7 - 4.3 times the point estimates. They 

also concluded that some of the point estimates were unreasonable considering the life ex

pectancy of the animals. Similarly, Zheng (2003) concluded that a study of M for snow crab 

Chionoecetes opilio in the Bering Sea did little to resolve the large uncertainty about M for 

this species. 

Some of what appears to be uncertainty in our estimates of M for blue crab may actually 

be true variability in M. Ecological studies of blue crabs offer strong evidence that natural 

mortality rates vary considerably with respect to a variety of factors such as sex, size, 

habitat, and season (Heck & Wilson 1987; Lipcius et al. 2005). However, it is difficult to 

apply the findings of such small-scale ecological studies at the scale of stock assessments; 

a good example is provided by Incze et al. (2003) for the American lobster. Nonetheless, 

tlw suggestion to specifically include variability in M in assessment models continues to be 

repeated in the literature, often in connection with evidence demonstrating such variability 

(Gulland 1987; Vetter 1988; Fu & Quinn 2000; Hampton 2000; Tanasichuk 2000). 

Studies of some exploited crustacean stocks have revealed various sources of variability 

in M and have included such variability in population dynamics models. Xiao & McShane 

(2000) found that M varied with size or between sexes for the western king prawn Penaeus 

latisulcatus, but size and sex were confounded such that it was unclear which factor was. 

the important one. Year-specific estimates of M for northern shrimp in Kachemak Bay, 

Alaska, showed an increasing trend through time, which may have resulted from increasing 

predation pressure from groundfish (Fu & Quinn 2000). Based on a review of previously 

published estimates, Zheng et al. (1995a) concluded that M was lower for intermediate-size 

red king crabs than it was for smaller and larger crabs and that M varied substantially 

over time. Thus, they included effects of sex, size, and year on M for red king crab in a 

population dynamics model. Concerns about over-parameterization of the modelled them 

to develop a more parsimonious version that removed the size dependence in M, but results 

were similar (Zheng et al. 1995b ). Siddeek et al. (2002) estimated M separately for male 
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and female king crabs, but attempts to estimate M by year were unsuccessful. Studies 

that attempt to estimate M within a population dynamics model may be hampered by the 

common problem of M being confounded with other model parameters (Schnute & Richards 

1995; Clark 1999; Wang 1999; Fu & Quinn 2000). Such a problem was at least partly to 

blame for the inconclusive results of Zheng (2003). 

Consistent with a limited understanding of natural mortality, previous assessments of 

blue crab stocks have not included variability in M. However, M probably varies between 

sexes, across sizes of crabs in the exploitable stock, or through time. Indeed, one of the 

indirect methods we considered in this study provided estimates of M that varied by weight, 

where M was higher for smaller animals (Lorenzen 1996). The general concordance between 

the direct estimates we obtained for adult females and the indirect estimates suggests that 

the direct estimates may also apply to males and larger immature crabs that are captured 

by the fishery. However, values of ft are higher for females than for males (Miller et al. 

2005), and more research is needed to determine whether S values for adult females are 

applicable to the rest of the stock. As for variation in M through time, our direct estimates 

of M for adult females do not have associated measures of precision, so we do not know 

whether the low value in 2002 reflects a real change in M or simply measurement error. 

In the future, blue crab stock assessments will need to use higher estimates of M and 

will need to evaluate a range of estimates to account for uncertainty about the parameter. 

Assessments may also need to account for variability in M to be realistic and provide reliable 

management advice. Given the limited direct evidence about such variability, developments 

in assessment techniques will need to proceed incrementally and be accompanied by further 

research. 
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Chapter 4 

Mortality and Emigration of Juvenile Blue Crabs 

Introduction 

The decline in abundance of the blue crab stock in Chesapeake Bay brought together the 

Virginia and Maryland management authorities and initiated a number of reactions to halt 

the decline and restore abundance (Cronin 1998; BBCAC 2001; Beem 2006). Among others, 

three major efforts involving various institutions and collaborations were funded to assist 

stock restoration: ( 1) an updated assessment of the stock to guide management decisions 

about catch, effort, and gear limits and biological reference points (Rugolo et al. 1998b; 

Miller & Houde 1999; Miller et al. 2005), (2) the protection of important habitat areas, 

including the designation of a spawning stock sanctuary in the lower Bay to protect adult 

female crabs (Lipcius et al. 2001; Seitz et al. 2001; Lipcius et al. 2003), and (3) enhancement 

of the stock through the release of hatchery-reared crabs into recruitment-limited habitats 

(Zohar et al. 2008). 

Stock assessments rely on quantitative models of blue crab stock dynamics, a key ele

ment of which is the natural mortality rate that is applied to the individuals in the stock 

(Chapters 2 and 3). The two other restoration efforts, the spawning stock sanctuary and 

the stock enhancement program, are focused on increasing the recruitment of juvenile crabs 

into the adult population. Protection of the spawning stock aims to increase the natural 

production of larvae, and ultimately recruits, whereas stock enhancement aims to short-
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circuit the larval production process and avoid the vagaties of open ocean mortality to 

increase the abundance of recruited juveniles directly. The spawning stock sanctuary has 

been studied and its implementation and effectiveness assessed elsewhere (Lipcius et al. 

2001; Seitz et al. 2001; Lipcius et al. 2003; Lambert et al. 2006a). Here I focus on the role 

of size-dependent mortality- the change in mortality rates between the juvenile stage and 

the recruited stage- as it pertains to stock assessment and enhancement. 

An important issue for stock assessment, as alluded to in Chapter 3, is whether it is 

reasonable to apply a constant natural mortality rate (M) to the entire stock for short-lived 

species like blue crab. A general understanding of the life history of blue crab and the ecology 

of Chesapeake Bay, as well as field experiments, indicate that natural mortality changes in 

various ways and that these changes need to be accounted for in population dynamics 

models. Potential sources of mortality for juvenile crabs (summarized in Van Engel 1987) 

could include predation, starvation, chronic or acute water quality stress, extreme cold 

temperatures, disease, and habitat loss. Diseases may be important in connection with 

degraded water quality in Chesapeake Bay (Kemp et al. 2005), but the study of blue crab 

diseases is relatively young and there is little evidence for a strong effect of diseases in the 

Bay (Noga et al. 1998; Shields 2003; Shields & Overstreet 2007). Habitat loss, including 

temporary losses caused by poor water quality, could force potential predators and prey 

into common habitats and increase the effects of predation. Aumann et al. (2006) found 

that, in the absence of prey limitation, hypoxia-induced starvation was low for blue crabs 

and was far outweighed by the influence of cannibalism (predation). 

Predation is probably the major component of natural mortality for blue crabs in Chesa

peake Bay. Various fishes prey on juvenile blue crabs (Van Engel1987; Moody 1994; Guillory 

& Elliot 2001; Moody 2003), and a more diverse and more abundant suite of fish predators is 

present in the Chesapeake Bay in summer (Murdy et al. 1997). However, the magnitude of 

predation on juvenile blue crabs by fishes is still poorly understood. ln contrast, large blue 

crabs are important cannibalistic predators on small crabs (Hines et al. 1990; Mansour 1992; 
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Dittel et al. 1995; Hines & Ruiz 1995; Ryer et al. 1997; Moody 2003; Spitzer et al. 2003), 

and juveniles and adults often occupy the same habitats (e.g., SAV beds and marsh-fringed 

creeks). Crabs are most vulnerable to predation during and just before and after molting 

(Ryer et al. 1997), and environmental conditions are best for rapid growth and frequent 

molting in summer. If food is not limited, small crabs (10-30 mm carapace width [CW]) 

can molt as often as once a week during the summer. Thus, changes in predation pressure 

in the Chesapeake Bay are likely to cause seasonal changes in mortality, with mortality 

being highest in summer. 

Tethering experiments are commonly used to assess relative survival or predation pres

sure, and are useful for comparing habitats or evaluating seasonal patterns of mortality. 

Good examples for blue crabs are provided by Pile et al. (1996) and Moody (1994, 2001), in 

which mortality was found to (1) decline with increasing size, (2) increase in areas without 

protective structure or cover, and (3) vary by season. Moody (2001) found that the per

centage of tethered crabs that died per day dropped from about 50% at the smallest sizes 

(11-29 mm CW) to about 20% at 50-70 mm CW. Because some crabs in the stock can grow 

from 10 to 75 mm CW in one season, and crahs can recruit to the fishery at around 75 rnm, 

the substantial change in relative survival with size is relevant to dynamics described in 

assessment models. Moody (2001) also found that mortality increased during the warmer 

months of the year, being exceptionally high for juvenile crabs in the summer. Similarly 

high mortality rates from tethering studies occur in the Gulf of Mexico (Heck et al. 2001; 

Spitzer et al. 2003). Tethering studies provide guidance on patterns in mortality rates, but 

they do not provide absolute rates to be used in population dynamics models applied at 

the scale of a stock. Among other concerns, tethered crabs suffer higher predation than 

untethered crabs (Pile et al. 1996; Stehlik & Meise 2001). 

Mortality rates of juvenile crabs are also important for assessing the effectiveness of stock 

rehuilding strategies, including stock enhancement via releases of hatchery-reared juveniles. 

The success or failure of stock enhancement programs depends on whether released juveniles 
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survive and recruit to the adult population. Furthermore, most stock enhancement pro

grams, such as the one for blue crab in Chesapeake Bay (Zohar et al. 2008), are expected to 

contribute animals to the exploitable stock in order to benefit commercial and recreational 

fisheries (Bartley & Bell 2008). 

Modern rigorous approaches to stock enhancement require the quantification of survival 

as a function of size-at-release, time of release, and release habitat to optimize release strate

gies and assess feasibility and cost-effectiveness (Blankenship & Leber 1995; Hilborn 1998; 

Leber 1999, 2002, 2004; Lorenzen 2005, 2006, 2008). Previous assessments of stock enhance

ment efforts for blue crab in Chesapeake Bay have included only relative measurements of 

survival for released crabs, primarily through tethering. Although such experiments provide 

information that can guide enhancement efforts toward the most appropriate habitats and· 

seasons for release (Hines et al. 2008; Johnson et al. 2008), they cannot determine the degree 

to which releases will ultimately contribute to the exploitable stock. Locations and times 

that are selected as "good" candidates for enhancement releases based on lower relative 

mortality from tethering trials may not be successful in terms of ultimate survival to the 

adult stock (Bartley & Bell 2008). 

The mortality estimates from Chapter 3 can be viewed as upper bounds on the mortality 

rates we would expect for juveniles, but we suspect that those estimates will substantially 

underestimate the mortality rates of small juveniles. To aid the development of modeling 

approaches and improve predictions about the success of stock enhancement efforts, we 

estimated mortality rates for juvenile crabs that would serve as recruits to the exploitable 

population. 

Methods 

We sought to estimate mortality rates for cohorts of juvenile crabs in selected tidal marsh 

creeks along the York River, Virginia in 2005 and 2006. Our strategy was to release large 

cohorts of juvenile crabs that were marked as a single batch and follow the fate of the cohorts 
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by repeatedly sampling to recover tagged individuals. Decay in the density of tagged crabs 

over time following releases was used as a measure of mortality. More direct estimation 

using wild crabs is possible for larger crabs (> 50 mm) using telemetry (Niezgoda et al. 

2002) and may be possible for small crabs using PIT tags (Adams et al. 2006), but current 

technological limits prevented us from applying these techniques in the open systems that 

blue crabs recruit to in the lower Chesapeake Bay. 

Previous tagging studies with cohorts of hatchery-reared juveniles (ca. 15-30 mm CW) in 

lower Chesapeake Bay tributaries indicated that recovery rates of tagged individuals were 

very low. In creeks and coves along the York River, ranging in size from 10 to 25 hectares 

(ha), releases of thousands of crabs often resulted in less than 100 recaptures in subsequent 

sampling with replacement. In addition, we sampled six muddy coves along the middle and 

lower York River in the spring and summer of 2005 and found rapid decay of the juvenile co

horts in coves with large initial spring densities, not accounting for emigration (Figure 4.1). 

These results suggested that 10,000 or more juvenile crabs would need to be released in 

experiments designed to make inferences about mortality based on repeated sampling after 

release. The sampling effort required to collect such large numbers of juvenile wild crabs 

for use in experiments is prohibitive, and we chose to use cohorts of hatchery-reared crabs 

from the Center of Marine Biotechnology (COMB) in Baltimore. The crabs were made 

available to us through a collaborative effort to assess the feasibility of stock enhancement 

for blue crabs in Chesapeake Bay (the Blue Crab Advanced Research Consortium; Zohar 

et al. 2008). 

Previous work by collaborators at the Smithsonian Environmental Research Center (SERC) 

has shown that behavior and relative survival of wild and hatchery-reared crabs is not sub

stantially different (summarized in Young et al. 2008). Davis et al. (2004b) showed that 

hatchery-reared crabs fed on buried clams and grew similarly to wild crabs in the labora

tory. However, a uum!Jcr of other differences were noted in morphology and behavior. Color 

differences, reduced spine length, and less frequent burying in the sediment were observed 
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Figure 4.1: Decay rates of juvenile crab densities in selected muddy coves along the York River in 
2005. 

for hatchery-reared crabs relative to wild crabs (Davis et al. 2004b, 2005b ). Furthermore, 

some combination of measured and unmeasured factors resulted in marginally lower sur

vival of hatchery-reared crabs in comparison with wild crabs in tethering trials (Davis et al. 

2004b, 2005b). A field release experiment also suggested lower survival for hatchery-reared 

crabs compared to wild crabs, but emigration was not taken into account and could have 

differentially affected the two groups (Davis et al. 2005b). Davis et al. (2005b) found that 

color differences between hatchery and wild crabs disappeared quickly when hatchery crabs 

were exposed to a natural substrate (within 1-5 days), and that color had little or no effect 

on survival in lab predation trials. Results from tethering trials in the field were equivocal. 

Lateral spines are shorter on hatchery-reared crabs than wild crabs (Davis et al. 2004b, 

2005b), so the potential exists for elevated short-term mortality in hatchery-reared crabs 

due to reduced predator defenses. Davis et al. (2004b) showed that hatchery crabs released 

into the wild developed spines as long as wild crabs after one or more molts. Furthermore, 

Davis et al. (2005b) showed that spine length increased in hatchery crabs held in the lab~ 
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ratory after exposure to predators. They suggested that increased spine length provided for 

higher survival in laboratory predation trials. However, results from laboratory trials were 

conflicting (crabs exposed to blue crabs had spine lengths equal to controls hut survival 

equal to those exposed to striped bass, with longer spines) and sample sizes were generally 

small, so it remains unclear what effect spine length has on survival in the wild. In addition, 

the the effects of conditioning on spine length are probably confounded with large natural 

variability in spine length, and conditioning of thousands of crabs is not realistic in large 

releases. 

The inclination to bury in the sediment is an important predator avoidance trait for blue 

crabs. Davis et al. (2005b) noted that hatchery crabs buried in the sediment less often than 

wild control crabs, but Davis et al. (2004b) determined that differences in burial rate were 

small and disappeared after 1-2 days of exposure to natural substrate. However, a 4-day 

exposure to natural sediment did not offset small differences in tethering or field survival 

in comparison to wild crab controls (Davis et al. 2004b). 

Overall, results have been conflicting and equivocal for whether differences in burying 

tendencies and spine length have important effects on post-release survival of hatchery

reared juvenile blue crabs, but the evidence is not strong that these are serious concerns 

(Young et al. 2008). Thus, to a first approximation, hatchery cohorts provide a means to 

estimate mortality rates of juvenile crabs that could be expected in wild recruiting cohorts. 

Collection, transport, and tagging of crabs 

Crabs were hatched and reared to early juvenile stages by the Center of Marine Biotechnol

ogy (COMB) in Baltimore, Maryland as part of a collaborative effort to assess the feasibility 

of stock enhancement for blue crabs in Chesapeake Bay (Zmora et al. 2005; Zohar et al. 

2008). Crabs were reared after hatching in fiberglass indoor tanks at COMB and then 

transferred for grow-out to concrete ponds at a recently acquired hatchery facility in Piney 

Point, MD. After the crabs reached release size, the ponds were drawn down and crabs 
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were collected with dip nets. Crabs were transferred to standard 47-95 liter coolers, which 

were kept cool by placing two large ice packs under a layer of burlap on the bottom of the 

coolers. Layers of a few hundred crabs each were placed between burlap sheets on top of 

the ice packs. The crabs were transported to VIMS by truck and immediately placed in 

flow-through seawater tanks in the Glucksman Experimental Mesocosm (GEM) Laboratory 

that were supplied with unfiltered and untreated York River water (23-31.5°C, 18-22 ppt). 

Whereas unfiltered river water may carry unwanted artifacts from the estuary, Haefner 

(1971) indicated that "natural" flow-through systems resulted in fewer molt-related com

plications in soft crab shedding operations than did recirculating systems. Air stones were 

placed in each tank to maintain acceptable dissolved oxygen levels, and salinity, dissolved 

oxygen, and temperature were recorded to assess water quality conditions. The day-night 

cycle in the laboratory was set to match the natural photoperiod. 

Crab tagging occurred as soon as possible after transport and followed the procedures 

described by van Montfrans et al. (1986) and Fitz & Wiegert (1991a), except on a much 

larger scale. Individual half-size microwire tags ( 0.5 mm long, 0.25 mm in diameter) were 

injected into the basal muscle of the left or right fifth periopod (swimming leg, backfin) of 

each crab using MARK IV Automatic Tag Injectors (Northwest Marine Technology, Shaw 

Island, Washington). The tags are cut from a continuous spool of microwire, magnetized 

for later detection, and injected through a hollow hypodermic needle. Other tagging meth

ods, such as elastomer injection, have been evaluated for juvenile blue crabs, but are not 

logistically feasible for tagging numbers as large as those used in our study (Davis et al. 

2004a). 

Groups of 500-1000 crabs were brought to the tagging station and held in aerated coolers. 

Tagged crabs were retained in the lab until all crabs were tagged and ready for release, which 

occurred within two or three days. After tagging, crabs were checked with a handheld 

wand detector to ensure that the tag was properly implanted, and a subsample of crabs was 

randomly selected from each tagged cohort for size measurements and injury assessment to 

58 



Chapter 4 Mortality and Emigration of Juvenile Blue Crabs 

characterize the released cohorts. All measurements were made with sliding jaw calipers to 

the nearest 0.1 mm CW. Once crabs were tagged, checked, and selected crabs measured, 

the group was returned to the laboratory holding tanks. 

We did not measure acute mortality from collection to arrival at the laboratory; i.e., col

lection and transport mortality. We only tagged crabs that were active and appeared to be 

in good condition upon arrival at the laboratory tagging station. We discarded dead and 

moribund crabs, as well as crabs with many missing limbs. Thus, all numbers for experi

mental releases reflect the number of crabs that were deemed to be in good condition and 

were tagged for releases. 

Tag retention, tagging-related mortality, and growth in the laboratory 

A random subset of crabs was retained in the laboratory from each of the three cohorts 

used in the 2006 field release experiments to examine retention of the microwire tags and 

to assess mortality resulting from tagging and handling. The person doing the tagging 

(the tagger) was not aware of which crabs were being selected. To the extent possible, an 

approximately equal number of crabs was drawn from each tagger. However, the number 

of taggers varied between four and eight people for the various releases, and we did not 

have laboratory space to permit a complete assessment of individual tagging proficiency. 

Past experience indicated little variation among taggers, and all persons that participated 

as taggers were trained and had prior experience. 

Once selected for the lab trials, crabs were transferred to the same flow-through tank 

system where release crabs were being held. Crabs were held in individual plastic containers 

(14 em wide, 14 em long, 10 em deep) to prevent cannibalism and injury. The containers 

had holes along all sides to permit water circulation as they floated in the tanks. 

Tagging was necessarily rapid in the large tagging sessions, and we were concerned that 

tags might not be implanted correctly. If a tag was not injected, but rather was rubbed 

from the injection needle onto the carapace, it could remain on the crab and the crab would 
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register as being tagged when checked with the wand. A tag on the carapace could then 

wash off once the cralJ was returned to a holding tank. To assess this artifact, we carefully 

rinsed each of the crabs selected for our experimental trials and checked to be sure that 

it retained the tag internally rather than on its carapace prior to placing the crab in an 

individual container. 

Experimental controls for the lab trials of mortality and tag retention should include wild 

crabs, both tagged and untagged, and hatchery crabs that were not tagged. Based on our 

experience that individually-held juvenile crabs survive well in the laboratory given proper 

feeding and water quality, as well as similar results in other studies (Tagatz 1968b; van 

Montfrans et al. 1986; Fitz & Wiegert 1991a), our primary concern was tag retention. Tag 

loss would bias estimates of mortality unless it occurred at a constant rate following tagging 

and release. 

Space limitations in the GEM Lab for the first two releases in 2006 prevented us from 

running side-by-side controls of all combinations. In the first release (June), we selected 46 

tagged hatchery-reared crabs from six taggers to assess tag retention in the laboratory. In 

the second release (11 July), we selected and monitored 41 tagged hatchery-reared crabs 

from four taggers to assess tag retention in the laboratory. Unexpected poor survival of 

laboratory-held crabs in these first two trials caused concern about the water quality condi

tions in the laboratory tanks. After an increase in available lab space, we began a trial with 

14 wild untagged crabs on 28 July to assess survival. This trial ran alongside the remaining 

portion ( 17 days) of the 11 July hatchery crab tag retention trial. Wild crabs for this trial 

were collected from seagrass beds around Aliens Island in the lower York River, and sizes 

were selected to match the sizes of hatchery cohorts. Post-collection treatment was repli

cated to the extent possible to match the transport and handling of hatchery-reared crabs. 

Crabs were collected and placed in coolers with burlap for three hours, then transferred to 

coolex·s with air stones before finally l>eing selected and placed in individual containers in 

the laboratory tanks. In the third release (August), we included all controls in the labora-
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tory trial: 16 tagged hatchery crabs, 10 tagged wild crabs, 10 untagged wild crabs, and 16 

untagged hatchery crabs. 

Crabs were checked daily or every other day. At each check, crabs were fed frozen fish 

(menhaden, mummichogs, anchovies, silversides), and all crabs received the same diet at 

each feeding. Uneaten food and molted carapaces were removed from the containers and 

the containers were thoroughly rinsed with water from the tanks. Crabs were measured, 

checked for a tag, and any molts were noted. Molts were recorded as having occurred 

on the day prior to finding evidence of a molt. For example, if a crab was checked and 

found alive and not molted on the second day after tagging, but evidence of a molt was 

found on the third day, the crab was recorded as having molted on the second day after 

tagging. Measurements of crabs that had recently molted (post-molt) were replaced by 

a measurement on the next day once the shell had fully hardened (intermolt). Post-molt 

crabs may not have fully absorbed water to achieve the full intermolt carapace width (Olmi 

& Bishop 1983; Cadman & Weinstein 1985). 

Mortality, tag retention, intermolt period, and growth per molt of crabs in the lab were 

examined to determine whether tagged crabs differed from untagged crabs. However, due 

to the discontinuous nature of the data, intermolt period and growth per molt are used as 

relative indicators of condition and not as definitive evidence of growth dynamics (Cadman 

& Weinstein 1985). Furthermore, we did not examine differences in growth and molting by 

gender because previous work has confirmed that juvenile males and females are similar at 

sizes less than 50 mm CW (Pullen & Trent 1970; Olmi & Bishop 1983; Cadman & Weinstein 

1985, 1988). 

For mortality assessment, crabs were assumed to have died immediately after the last 

inspection at which they were observed alive, similar to recording of molts. For example, 

if the crab was observed alive on the third day after tagging and was then observed dead 

on the fourth day after tagging, it was recorded as having lived three days after tagging. 

Because we could not check the crabs every day following tagging, this procedure was 
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used to provide consistency. If a crab was checked and alive on the third day, but then 

checked next on the the fifth day and found dead, a survival time of five days would be an 

overestimate. Our procedure can only underestimate survival, with the exception of crabs 

that were found dead the day after tagging. Because we only tagged crabs that appeared to 

be in good condition, these crabs were assumed to have survived at least one day (i.e., they 

died immediately prior to the check). 

Kaplan-Meier survival functions were computed and plotted to assess survival of animals 

in the laboratory trials. The Kaplan-Meier estimator was used because of the potential for 

right-censoring in the data (Williams et al. 2002). Some crabs were expected to survive the 

entire experimental period and their deaths would not be observed. Censoring was also used 

to handle a single case in the 11 July trial in which the crab escaped from its container after 

two days. Kaplan-Meier survival functions were estimated and plotted using the functions 

provided in the survival package in R (Venables & Ripley 2002). The estimated probability 

of surviving until time t is 

SA -II Tt- dt 
t- ---, 

Tt 
(4.1) 

where rt is the number of individuals at risk just before timet (including those censored at 

that time), dt is the number of individuals that died at timet, and the product is taken over 

the times at which deaths occurred before time t. The associated estimate of the variance 

for the Kaplan-Meier survival function is 

(4.2) 

where the sum is over the times at which deaths occurred before time t. In the absence of 

censoring, the survival function is simply one minus the empirical distribution function, or 

the observed proportional survival, and the estimated variance is obtained from the binomial 

distribution: 
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(4.3) 
n 

where n is the number of individuals included in the trial. We plotted survival curves 

and associated 95% confidence intervals for each trial. 

Experimental field releases 

We conducted four field release experiments in 2005 and three experiments in 2006. All 

experiments were conducted in two small tidal marsh coves fringed primarily with salt marsh 

cordgrass (Spartina alterniflora). The coves were embayments off of larger tributaries to the 

middle York River. In 2005, we conducted experiments in a 10 ha cove near the mouth of 

Timberneck Creek, approximately 5.6 river kilometers (rkm) upstream ofVIMS (Figure 4.2). 

In 2006, we used a 2.5 ha cove near the mouth of Aberdeen Creek, approximately 7.2 rkm 

farther upstream of Timberneck Creek (Figure 4.3). The coves are similar in depth and 

sediment characteristics, and are unvegetated and unstructured except along the margins. 

The cove in Aberdeen Creek was selected to measure emigration of tagged crabs in 2006. 

The mouth of the cove is only ca. 15 m across at high tide and is fully wadeable even at 

high tide (max depth = 1.5 m), permitting sampling with a seine across the mouth of the 

cove. 

In 2005, we used four cohorts of crabs during the summer, fall, and early winter. The 

cohorts varied in size from 3,700 to 16,000 crabs (Table 4.1), and crabs ranged in size from 

10 to ca. 40 mm CW (Figure 4.4). The average size of the crabs in a cohort was determined 

by operations at the hatchery and grow-out facilities, but all cohorts were similar in size. 

Tagged crabs were released into Timberneck cove and spread over an area sized to generate 

densities that roughly corresponded to wild densities we observed in prior sampling (Seitz 

et al. 2005, 2008; Figure 4.1). Crabs were distributed by hand from a boat as evenly as 

possible throughout the back area of the cove (Figure 4.5). Similar to Davis et al. (2005a), 

we were concerned about emigration from this relatively open cove, and so we released the 
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Figure 4.2: [Left J Location of the York River in the Chesapeake Bay. [Right] Location of the 
cove near the mouth of Timberneck Creek in the middle York River. The cove is 
approximately 5.6 river kilometers upstream of VIMS, which is located at Gloucester 
Point (bottom right of the picture). 

Table 4.1: Cohorts of hatchery-reared crabs released into Timberneck cove in 2005. 

Date released Number of crabs Number subsampled Sex ratio (M:F) 
26 July 2005 5,150 534 1.0 

9 August 2005 3,678 551 0.9 
22 September 2005 6,191 576 1.0 
7 December 2005 15,925 328 1.3 
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Figure 4.3: Location of the cove near the mouth of Aberdeen Creek in the middle York River. The 
cove is approximately 13 river kilometers upstream of VIMS. 
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Figure 4.4: Boxplots of length subsamples from the four cohorts of crabs released into Timberneck 
cove in 2005. The dark center line indicates the median and the edges of the box 
indicate the first and third quartile. 
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Figure 4.5: Areas where juvenile hatchery-reared crabs were released (orange) and sampled repeat
edly in the days and weeks following release (green). 

crabs in the back of the cove to reduce emigration rates. Blue crab postlarvae make vertical 

movements during tidally-mediated up-estuary transport (Olmi 1994; Tankersley & Forward 

1994; Forward et al. 2003), and juvenile blue crabs use similar behaviors to take advantage of 

tidal stream transport during secondary dispersal (Etherington & Eggleston 2000; Blackmon 

& Eggleston 2001; Etherington & Eggleston 2003; Reyns & Eggleston 2004; Forward et al. 

2004a, 2005). However, these behaviors are best described in association with secondary 

dispersal of crabs smaller than those used in our experiments ( < 10 mm). Nonetheless, we 

were concerned about the potential for emigration and also a flight response of hatchery 

crabs released into a novel environment. Our release strategy in Timberneck cove allowed 

us to sample repeatedly in the front and back ares of the cove to potentially capture crabs 

as they moved gradually out of the cove away from the release site. 

In 2006, we used three cohorts of crabs during summer and early fall. The same collection, 
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Table 4.2: Cohorts of hatchery-reared crabs released into Aberdeen cove in 2006. 

Date released Number of crabs Number subsampled Sex ratio (M:F) 

21 June 2006 13,489 519 0.8 
13 July 2006 12,004 745 1.0 

27 September 2006 11,721 326 1.0 

transport, and tagging procedures were used as in 2005 and previous experiments. The 

cohorts varied in size from 11,721 to 13,489 crabs (Table 4.2), and crabs ranged in size from 

10 to ca. 30 mm CW (Figure 4.6). The first cohort was slightly larger than the last two, 

but size distributions overlapped considerably. The crabs in the 2006 cohorts were slightly 

smaller than those in the 2005 cohorts. 

To assess emigration, we attempted to collect any crabs leaving the cove on ebbing tides 

following the releases. We used a 30-m bag seine with 6-mm stretch mesh pulled across 

the entire mouth of the cove. The seine was attached to a seawall on one side and pulled 

onto the marsh edge on the other. The net was retrieved to the marsh edge at 30-min 

intervals and all crabs were collected from the net, measured, and checked for a tag. We 

recorded data for wild crabs to determine "background" levels of emigration against which 

to compare hatchery crab emigration rates. We continued to reset the net and sample until 

the tide had fully receded. Given time to sort the catch, we usually obtained 3-5 samples 

over a tidal period. Sometimes the tides ebbed completely, leaving just a trickle through 

the mouth of the cove, and other times about 0.5 m of water remained in the channel. 

We estimated the decay rates of the cohorts using repeated, simple random sampling 

inside and outside the release area in the days and weeks following the crab releases. All 

sampling was conducted using a crab scrape (Figure 4. 7), a modified version of a commercial 

crab scrape used by watermen in seagrass beds. The scrape has an opening 1-m wide and 

a tickler chain was used to increase capture efficiency, especially for small crabs that were 

buried shallowly in the muddy sediment. The scrape was deployed and retrieved using an 

electric winch and was towed for a set distance of 20 m. We continued to revisit the coves 
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Figure 4.6: iloxplots of length subsamples from the four cohorts of crabs released into Aberdeen 
Creek in 2006. The dark center line indicates the median and the edges of the box 
indicate the first and third quartile. 
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Figure 4. 7: Picture of the crab scrape used to sample the coves during field release experiments. 
Scrape designed by Michael Seebo. Pictured in photo: Alison Smith. 

and sample with the scrape until two two consecutive sampling events resulted in fewer 

than two tagged crabs being captured. 

We used USGS DOQQ aerial photos in ArcGIS 9.1 (ArcMap) to digitize areas of the cove 

that were wetted continuously (except during unusual tides) and could serve as habitat for 

released juveniles. From that area we digitized a subset that was available to our sampling 

gear; i.e., had appropriate depth and was free of obstructions (e.g., Figure 4.5). Random 

points were generated from within the polygons representing the potential sampling area 

for each sampling event. In the event that two random points fell too close to each other 

to be considered independent, we discarded the point and used the next one. 

In the 2005 experiments in Timberneck cove, sampling outside of the release area was 

used to detect general movements out of the cove. Sampling inside of the release area was 

used to estimate densities of tagged crabs and decay rates of the cohort. At each sampling 

event, we scraped 10-12 random locations in the release area as well as 5-6 locations outside 
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of the release area. 

In 2006, crabs were distributed throughout the entire cove due to the small size of the 

cove, but we avoided releasing crabs within ca. 100 m of the cove mouth. At each subse

quent sampling event, we randomly sampled 10-12 locations within the polygon of potential 

sampling area in the cove. In seine sampling for emigrating crabs, we attempted to sample 

each of the first four ebbing tides that followed the releases, but weather prevented us from 

meeting that goal in all but one experiment (September). 

Counts of tagged crabs in scrape samples were used to generate swept-area estimates of 

crab densities (m- 2 ) for each sampling event, and decay rates were estimated using simple 

linear regression of ln(meandensity) against time. We assumed that catch efficiency did 

not vary among tows or among days during an experiment. We do not have good point 

estimates of efficiency for the scrape gear, hut scrape efficiency has bee shown to be low 

based on comparisons with suction sampling gear, for which gear efficiency is known to be 

relatively high. Similarly, Davis et al. (2005a) report efficiency for a similar gear used in 

similar habitats as 5.5%, although no data was presented to support the estimate. Rozas & 

Minello (1997) point out the necessity of accounting for catch efficiency and the weaknesses 

of actively towed gears like scrapes and trawls for capturing small blue crabs. However, 

because catch rates of tagged crabs are typically so low, tows of at least 20 m with an 

active gear are necessary to obtain recaptures; suction sampling and other similar methods 

are not feasible alternatives. We chose to compare relative catch rates through time and 

assumed that changes in the efficiency of the gear were responsible for a negligible amount of 

variation in the catch rates. Given the short duration of the experiments and the similarity 

in conditions and tidal stage among sampling events within a release trial, we felt this was 

reasonable. 
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Table 4.3: Ranges of water quality variables in the lab tanks during tag retention and mortality 
trials in June, July, and August 2006. 

Trial dates Dissolved oxygen ( mg/1) Salinity (ppt) Temperature (C) 

19 June - 1 July 5.5 - 6.6 20.2- 21.0 25.3- 26.0 
11 July- 14 August 4.9 - 7.2 18.4- 21.4 25.0- 31.5 
28 July - 14 August 4.9 - 7.2 18.4 - 21.4 25.0- 31.5 

15 August - 5 September 4.9 - 6.8 19.6- 22.3 23.0- 28.3 

Results 

Tag retention, tagging-related mortality, and growth in the laboratory 

Dissolved oxygen, salinity, and temperature measurements in laboratory tanks reflected 

ambient York River conditions and were always within acceptable limits for juvenile blue 

crabs (Table 4.3). In particular, dissolved oxygen levels were adequate; percent saturation 

readings always exceeded 75%. Crabs do not take up oxygen during molting, so an adequate 

supply is particularly important at times prior to and after molting (Lewis & Haefner 1976). 

In total, we monitored the fates of 113 tagged hatchery and wild crabs over the course 

of our three tag retention trials (Table 4.4). We never found a tag that had been stuck to 

the carapace and washed off during an initial check for tag retention, alleviating concerns 

about immediate tag loss due to tagger error. In addition, although sample size for assessing 

individual tagger proficiency was small, we did not observe any consistent patterns among 

taggers for tag loss or post-tagging mortality. 

Out of all the tagged crabs, we observed four losses of a tag, but many crabs did not 

survive through a molt. Tag loss would be expected to occur almost entirely at the first 

molt (van Montfrans et al. 1986; Fitz & Wiegert 199la). One tag was lost 2-3 days after 

tagging by apparently working out of the insertion puncture hole; the tag was collected 

from the inside of the container. Of the 43 crabs that molted successfully at least once, 

three lost their tag during the first molt (7%). Twenty-two tagged crabs molted a. second 

time (and some as many as four times), and no tags were lost beyond the first molt. 
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Table 4.4: Summary data on tag retention and mortality for the lab trials in 2006. In the column 
for the number of crabs, H indicates hatchery crabs and W indicates wild crabs. 

Trial dates 

19 June - 1 July 
11 July - 14 August 
28 July- 14 August 

15 August - 5 September 

Number of crabs 

46 (H) 
41 (H) 
14 (W) 

52 (32H, 20W) 

Size of crabs 
(mean, range; 

mmCW) 

10.4- 36.6 (21.2) 
11.3- 19.7 (16.4) 
10.9 - 41.7 (32.4) 
11.4- 28.5 (17.5) 

Time to 50% 
mortality (days) 

4 
7 

> 17 days 
> 21 days 

In the June trial, all46 crabs died under supervision in the lab within 10 days of tagging. 

No censoring was necessary in calculating the survival function and the plot represents 

proportional survival (Figure 4.8). Sixteen (35%) of the crabs died within one day and 

50% had died within four days, suggesting residual negative effects of rearing conditions, 

collection, transport, and tagging. This suggestion is consistent with anecdotal reports 

from the Piney Point hatchery that conditions in the ponds were atypically poor during the 

end of the rearing period. Although temperature and salinity were within typical ranges 

(ca. 15 ppt and 25°C), dissolved oxygen was well below saturation levels (55- 58%) and 

crabs were sluggish upon collection (Paul Flynn, COMB Piney Point hatchery manager, 

personal communication). 

Observations on molting suggested further evidence of residual negative effects. Of the 

11 crabs that attempted to molt, five died during or immediately after the molting process; 

four crabs never shed their old carapace. Because of the overall high mortality and the 

complications with molting, only seven crabs successfully molted at least once in the lab 

(including the one that died just after molting), and no crab molted more than once. Crab 

size did not appear to be the major factor in molting complications or mortality, as crabs 

between 12.5 and 33.6 mm CW molted successfully. 

Although sample size wa..'l small for crabs that molted at least once (7), we present data 

on growth per molt and intermolt period for completeness. The percent increase in size 

through the first molt relative to initial size ranged from 15- 30% (median = 17%), but 
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Figure 4.8: Kaplan-Meier survival function for the 46 crabs retained in the lab from the June 2006 
experimental release of hatchery-reared juveniles. Dashed lines are 95% confidence 
intervals. All of the crabs died during the trial, so no censoring is indicated and the 
solid line is simply proportional survival. 
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Figure 4.9: Kaplan-Meier survival function for the 41 crabs retained in the lab from the 11 July 
2006 experimental release of hatchery-reared juveniles. Dashed lines are 95% confidence 
intervals. The censored observation for the escaped crab is indicated with a hatch mark, 
and three other crabs were censored at 14 days. 

there was a weak effect of initial size. The four crabs less than 20 mm initial size all increased 

about 16% in size, ~whereas the crabs greater than 21 mm increased 21 - 30% in size. 

In the 11 July trial, three crabs survived in the lab far beyond when the other 38 had 

died. Most crabs perished within two weeks, and 50% of the crabs had died within seven 

days (Figure 4.9). One crab survived 31 days and two were alive when the trial was ended 

on the 33rd day. For simplicity of presentation, these three crabs as well as one crab that 

escaped its container early in the trial were right-censored in the survival function. We right-

censored the observations for the three long-lived crabs at 14 days. The poor survival in 

this trial could not be explained by poor hatchery water quality, as temperature and salinity 

were normal (13 ppt, 25-29°C) and dissolved oxygen was high (> 5.2 mg/L [median= 6.4] 

and > 70% saturation [median= 86%]) in the ponds for the week prior to collection. 

Thirteen of the crabs molted at least once, including the long-lived crabs censored in the 
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survival function, and none of the crabs died during molting. Three crabs molted both a 

second and third time, and one molted a fourth time. Molting occurred among crabs of sizes 

throughout the initial size distribution. The percent increase in size through the first molt 

relative to initial size ranged from 11- 33% (median = 23%), but there was a weak effect 

of initial size. The two crabs less than 16 mm initial size all increased less than 20% in size, 

whereas 9 of the 11 crabs greater than 16 mm increased 20 - 33% in size. All three of the 

second molts increased the size of the crab by about 24%, but the third molt varied from 

15 to 36% (median = 30%) increase in size. The fourth molt for the single crab increased 

its size by 24%. 

The small laboratory survival trial that began on 28 July provided confirmatory evidence 

that the mortality observed for hatchery-reared crabs in the laboratory was due to residual 

cffec:ts from rearing, collection, transport, and tagging. Thirteen of the 14 crabs survived 

the entire 17 day trial. One crab died on the 15th day, but appeared to have a complication 

associated with molting; the shell never hardened after more than 32 hours post-molt. The 

wild crabs were larger on average than the hatchery-reared crabs because smaller juveniles 

are not present in the lower Chesapeake Bay at this time of year (Table 4.4). Thirteen of 

the crabs molted at least once during the trial. The percent increase in size through the 

first molt relative to initial size was similar to the hatchery crabs, ranging from 16 to 30% 

(median = 24%). Sample size was small, but there did not appear to be an effect of initial 

size on percent increase in size through the first molt. Six of the crabs molted a second 

time, and the increase in size ranged from 17-30% (median= 25%). Two crabs molted a 

third time and increased 21 and 30%. The wild crabs in this trial appeared to molt more 

often than the hatchery-reared crabs in the first two trials. 

In the August trial, survival of hatchery-reared crabs was much higher than in the previous 

trials with tagged hatchery crabs. Nine of the 52 crabs died during the trial, but only one 

nab died within the first week (on day 6; Figure 4.10). The 43 remaining crabs survived 

until day 21 and were censored at that time. Of the nine crabs that died, none were untagged 
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Figure 4.10: Kaplan-Meier survival function for the 52 crabs retained in the lab from the 15 Au
gust 2006 experimental release of hatchery-reared juveniles. Dashed lines are 95% 
confidence intervals. Censored observations are indicated with hatch marks. 

wild crabs. Seven hatchery crabs died, three of which were tagged and three of which were 

not, and two wild tagged crabs died. Because so few wild crabs died, a survival function for 

hatchery crabs did not differ much from the one for all crabs combined (Figure 4.11). The 

three tagged hatchery crabs that died perished before their first molt (one died during the 

molt), whereas the other wild and hatchery crabs that died survived through at least one 

molt, and three survived through two molts (1 wild, 2 hatchery). No other crabs showed 

molting complications. Hatchery water quality was similar to conditions for the 11 July 

cohort during the week prior to collection of this cohort, although dissolved oxygen levels 

were higher. Temperature and salinity were normal (12-13 ppt, 26-29°C) and dissolved 

oxygen was high (> 6.8 mg/L [median= 7.3] and> 95% saturation [median= 100%]). 

In total, the erabs in this trial molted more than hatchery crabs from previous trials -

49 (94%) of the crabs molted successfully at least once, 43 molted a second time, and six 
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Figure 4.11: Kaplan-Meier survival function for the 32 hatchery crabs retained in the lab from the 
15 August 2006 experimental release of hatchery-reared juveniles. Dashed lines arc 
95% confidence intervals. Censored observations are indicated with hatch marks. 
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molted a third time. We compared molting and growth between hatchery and wild crabs. 

For the 29 hatchery crabs that molted at least once, the percent increase in size through 

the first molt relative to initial size ranged from 5 to 34% (median = 28%), and there was 

no apparent effect of initial size (Figure 4.12). The only crab that increased in size less 

than 20% (the 5%) was 15.5 mm CW initially; it molted two more times and did not die 

during the trial. For the 20 wild crabs that molted at least once, the percent increase in 

size through the first molt relative to initial size ranged from 18- 38% (median= 25%), 

but there appeared to be an effect of initial· size (Figure 4.13). Twenty-five hatchery crabs 

molted a second time, and the percent increase in size through the second molt ranged from 

18-29% (median= 23%), and there was no effect of initial size. Eighteen wild crabs molted 

a second time, and the percent increase in size ranged from 13- 29% (median= 22%), and 

there was also no effect of initial size. Two hatchery crabs molted a third time and size 

increased 19 and 24%. Four wild crabs molted a third time and size increased from 16-24% 

(median= 21%). 

Because of the discontinuous data on molting, intermolt period is difficult to interpret for 

the first molts. In the June trial, all but one of the seven crabs that attempted to molt did 

so on the first or second day following tagging; the remaining crab attempted to molt on the 

sixth day. In the 11 July trial, all 13 of the first molts occurred within the first three days 

of the trial. In the 28 July trial, 6 of 13 wild crabs first molted within 1-2 days of tagging. 

Lastly, in the August trial, 38 of 49 first molts occurred within 1-3 days of the start of the 

trial. It appears that molting is accelerated by being placed in a protected container in 

the laboratory, as it is unlikely that so many crabs were coincidentally ready to molt just 

before being retained. Especially for hatchery crabs reared in high density amongst other 

cannibalistic conspecifics, molting may very well be delayed to avoid potential cannibalism. 

The same may be true for juvenile crabs collected from seagrass beds, where densities are 

high and cannibalism is an important component of mortality. Intermolt periods of second 

molts may he more representative of differences between hatchery and wild crabs. The 
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Figure 4.12: Percent increase in size through the first molt relative to initial size for hakhery crabs 
that molted at least once in the August 15 lab trial. 
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Figure 4.13: Percent increase in size through the first molt relative to initial size for wild crabs 
that molted at least once in the August 15 lab trial. 
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three hatchery crabs from the 11 July trial that molted did so in 4-7 days after their first 

molt, and wild crabs in the 28 July trial molted a second time within 3 to 14 days of the 

first. Similarly, hatchery crabs from the 15 August. trial molted a second time within 4-12 

days (median= 7), almost identical to the wild crabs. 

The three laboratory trials with hatchery-reared crabs provided conflicting results for 

survival, but similar results for tag retention and growth. Tag retention was high and 

growth was similar for hatchery crabs in comparison to wild crabs. Survival of hatchery 

crabs in the first two trials were considerably lower than for the August trial and were lower 

in comparison to wild crabs. Whereas mortality through the first week was negligible for 

wild crabs and hatchery crabs in the August trial, in both earlier trials 50% or more of the 

hatchery crabs died within the first week. 

Experimental field releases 

In 2005, we tracked the fate of four cohorts of hatchery-reared juvenile crabs released into 

Timberneck cove. Crabs did not appear to emigrate from the release area. In the first 

release in July, we found only three recaptured crabs outside of the release in 75 scrape 

tows following the release (Figure 4.14). Even fewer crabs were captured outside of the 

release area in the other three releases. Overall, it was rare to capture a tagged crab 

outside of the release area, even when crabs persisted for months as during our December 

release. This generally agrees with sampling from previous years following releases into 

other coves along the York River, where it was rare to capture a tagged crab anywhere but 

in the immediate area of release, even in coves that were over 25 ha in size. 

Weather conditions prevented sampling on numerous occasions, but five or more sampling 

events were obtained following each release. Recapture rates of tagged crabs were low in 

all experiments. Tagged crabs from the cohorts released in summer and early fall persisted 

for only a few weeks, whereas crabs released in December persisted for over two months 

(Figure 4.15). Under the assumption that no tagged crabs emigrated from the release area, 
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Figure 4.14: Emigration from the cove in Timberneck creek appeared low in the July 2005 release. 
The number labels are the number of tagged crabs captured in a given scrape tow, 
and the ones of interest here are the red circles - the ones that left the release area. 
Recapture numbers are low in this release because only ca. 4,000 crabs were released. 
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Figure 4.15: Decay rates of juvenile hatchery-reared crabs in Timberneck cove after experimental 
releases in 2005. Note the change in scales, especially along the x-axis. The time 
period over which sampling occurred depended on how long we were able to continue 
detecting tagged crabs, so the appearance of the slopes alone is misleading. 

the decay in the densities of tagged crabs can be used as an estimate of mortality. Overall, 

decay rates were extremely high, on the order of 3 to 10% per day. 

Decay rates showed a seasonal pattern, being highest in the summer periods and dropping 

in December. The December release was unusual in that there was a warm spell in late 

January, and it appears that lower mortality occurred prior to that rise in temperature. 

The first six data points appear to describe a different· pattern than that suggested after 

including the mid-February sampling (Figure 4.15). In sampling during the warm spell, 

crabs were active and aggregated in the deepest channel of the creek. Crabs may have 

been aggregated in higher densities during the cold period and thus more susceptible to 

cannibalism once water temperatures and activity of conspecifics increased. 
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Figure 4.16: Emigration rates of wild and hatchery-reared crabs from Aberdeen cove following the 
release in June 2006. 

We tracked the fate of three cohorts of juvenile crabs released into Aberdeen cove in 

the summer and fall of 2006. In the two summer experiments (June and July), almost all 

emigration by hatchery-reared crabs occurred on the first ebb tide following release (Fig

ures 4.16 and 4.17), indicating an initial flight response. The second release was conducted 

during the day in an attempt to minimize emigration, but a flight response still occurred. 

Wild crab emigration rates were lower overall and always low during the day, but did appear 

to increase in association with the releases on the first night after release. The total number 

of hatchery crabs emigrating from the cove was small relative to the number released. 

The first experiment (June) was hampered by frequent storms after the release. As a 

result, the second sampling was not possible until five days after the release, and substantial 

loss of tagged crabs had already occurred by that point (Figure 4.18). Only two of the 

sampling events following this release recovered more than two tagged crabs, indicating 

that the cohort had been reduced below detectable levels in less than a week. We cannot 

put much stake in the mortality estimates from this release, but mortality was high. 
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Figure 4.17: Emigration rates of wild and hatchery-reared crabs from Aberdeen cove following the 
release in July 2006. 
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Figure 4.18: Decay rate of a cohort of juvenile hatchery-reared crabs in Aberdeen cove after an 
experimental release on 21 June 2006. 
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Figure 4.19: Decay rate of a cohort of juvenile hatchery-reared crabs in Aberdeen cove after an 
experimental release on 13 July 2006. 

Sampling was more consistent for the second experiment (July), but the decay of the 

cohort of tagged crabs was again rapid. Only two sampling events following the release 

recovered more than two tagged crabs, indicating that mortality was high and the cohort 

was reduced below detectable levels in only four days (Figure 4.19). 

Released crabs did not appear to exhibit a flight response following the fall release · 

(September) ~nd emigrated from the cove in approximately equal numbers to the wild 

crabs (Figure 4.20). A large pulse of both hatchery and wild crabs emigrated from the cove 

following a passing storm event on the second night after release. We began sampling as 

soon as was safe following the storm and recovered nearly as many crabs emigrating from 

the cove as we recovered in the first sampling following summer releases. 

The decay in the numbers of recaptured tagged crabs showed high mortality after the 

September release (Figure 4.21). Although mortality was lower than in the summer releases, 

the cohort was reduced below detectable levels within two weeks. 
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Figure 4.20: Emigration rates of wild and hatchery-reared crabs from Aberdeen cove following the 
release in September 2006. 
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Figure 4.21: Decay rate of a cohort of juvenile hatchery-reared crabs in Aberdeen cove after an 
experimental release on 27 September 2006. 
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Discussion 

Tag retention, tagging-related mortality, and growth in the laboratory 

In the laboratory trials, tag retention was high (> 90%), tag loss occurred only at the 

first molt, and growth was unaffected by tagging. Our results are essentially identical to 

previous work using microwire tags with juvenile blue crabs (van Montfrans et al. 1986; Fitz 

& Wiegert 199la). van Montfrans et al. (1986) tagged 27 juvenile crabs between 21 and 

39 mm CW and held them in the laboratory individually to assess tag retention, growth, 

and mortality. Despite their small sample size, tag retention was high. Of the 25 crabs 

that molted at least once during the 51 day trial, 22 (88%) retained the tag through the 

first molt. The three crabs that lost their tag had been injected improperly, and the tag 

had penetrated the endoskeleton and been shed along with the old carapace. All crabs that 

retained the tag through the first molt and then molted a second time (8) retained the 

tag through the second molt. In comparison to 30 untagged control crabs, van Montfrans 

et al. (1986) concluded that mortality related to tagging was very low and that growth was 

mostly unaffected by tagging. More control crabs molted a second time than tagged crabs, 

but the experiment was terminated before all crabs might have been expected to molt a 

second time. 

In a longer and more substantial trial, Fitz & Wiegert (199la) tagged 56 juvenile blue 

crabs that ranged in size from 29 to 67 mm CW as measured between the bases of the lateral 

spines. Because the sizes do not include spine length, the crabs used in their study were 

substantially larger than those used by van Montfrans et al. (1986) and those used in this 

study. The crabs were evaluated in the lab for 80 days and 83% of the crabs molted at least 

twice. They found no effects oftagging on growth in comparison with 56 control untagged 

crabs. In addition, only one of the 55 crabs (2%) lost its tag during the first molt, and no 

crabs that molted additional times lost the tag through subsequent molts. In our trials, 

percent increases in size through molts were similar between hatchery and wild crabs, and 
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intermolt periods for second and later molts were not different between hatchery and wild 

crabs. However, growth and survival were lower for the two early cohorts in 2005 (June and 

July) in comparison to the August cohort when hatchery conditions were improved. 

In other laboratory studies, pre-molt size has been an important predictor of the per

molt size increase juvenile blue crabs (Cadman & Weinstein 1988; Guerin & Stickle 1997). 

However, studies have shown conflicting directions of the effect depending on which measure 

of size is used. Cadman & Weinstein (1988) found that per-molt increase in volumetric 

body size increased with pre-molt size, whereas Guerin & Stickle (1997) found that per

molt increase in wet weight and carapace width declined with increasing pre-molt size. Size 

increases for crabs in our study did not show either of these patterns relative to initial size, 

except in one case for wild crabs. 

Growth rates of hatchery and wild crabs in our study compared well with findings from 

other studies. Intermolt period and growth rate were not affected by salinity in our study 

because of the narrow range observed in our tanks (Tagatz 1968b; Cadman & Weinstein 

1988; Guerin & Stickle 1997). Tagatz 1968b, Leffier (1972), and Cadman & Weinstein (1988) 

found that intermolt period decreased and growth rate increased at higher temperatures 

(23-30°C). Temperature ranges during our trials were similar, which may explain a lack of 

differences in growth among trials. Crabs in our study tended to have intermolt periods 

much less than those reported by Cadman & Weinstein (1988) for crabs at 30°C, but were 

in line with the low ends of ranges reported by Newcombe et al. (1949), Van Engel (1958), 

Tagatz (1968b), and Fitz & Wiegert (1991a). 

Survival of hatchery-reared crabs in the first two laboratory trials was considerably lower 

than for the August trial and lower than survival of wild crabs. Whereas mortality through 

the first week was negligible for wild crabs and hatchery crabs in the August trial, in 

both earlier trials 50% or more of the hatchery crabs died within the first week. Because 

procedures for collection, transport, and tagging of the crabs were essentially identical for all 

three cohorts, and because of the high survival of wild crabs in the holding tanks, we assume 
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that survival of the first two cohorts was reduced by some aspect of hatchery operations 

during the rearing period. Survival of juvenile crabs in the laboratory under salinities like 

those in our tanks has been shown to be high in other studies (Tagatz 1968b; Fitz & Wiegert 

1991a). Water quality conditions at the hatchery for the first cohort were atypically poor 

and appear to be the cause in that trial. Conditions were much better for the second cohort, 

but dissolved oxygen was somewhat lower than for the third cohort (minimum= 6.8 mg/1 

(95% saturation] vs. minimum = 5.2 mg/1 (70% saturation]). It seems unlikely that the 

difference in dissolved oxygen was the culprit in the July cohort, but the collection process 

may have driven dissolved oxygen to critical levels. Collection of the crabs with dip nets 

stirs up feces and uneaten food on the bottom of the ponds, which may cause water quality 

to deteriorate rapidly. 

Lacking any other explanation for the difference between the July and August cohorts, 

it appears that survival of collected crabs is dependent on excellent water quality in ponds 

prior to collection. Although no controlled trials were run in 2005, we did not observe 

unusual mortality in crabs that were retained for other laboratory experiments or during 

the holding process for cohorts in 2005. In all respects, cohorts obtained in 2005 appeared 

to be similar to cohorts in previous years (2003 and 2004), with high survival and good 

condition after initial culling for dead and moribund crabs. Grow-out operations for the 

juvenile crabs were moved from COMB to the Piney Point facility in 2004, so all cohorts we 

used were reared in similar ways. Pond maintenance and condition during grow-o1.1t must 

be monitored and kept in excellent condition. 

Collectively, our study and the studies of van Montfrans et al. (1986) and Fitz & Wiegert 

(1991a) indicate that healthy crabs of initial size between 10 and ca. 70 mm CW can be 

successfully marked with microwire tags without negative effects on growth, molting, and 

survival. Our study extends previous findings by demonstrating effectiveness in very small 

juveniles ( < 20 nun CW). Davis et al. (2004a) also evaluated microwire tags in small juvenile 

blue crabs ( < 25 mm CW) and found similarly high retention rates over periods of up to 48 
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days, and little effect on growth and survival from tagging. However, assessments were made 

by sampling groups of crabs rather than by monitoring individual fates, and small sample 

sizes and confounding factors (e.g., cannibalism in assessing survival) hampered inferences. 

Lastly, Okamoto (1999) conducted microwire tagging trials with another portunid, the blue 

swimming crab, Portunus trituberculatus. After 20 days in the laboratory there were no 

differences in growth or survival between tagged and untagged crabs as small as 10 mm CW. 

Tag retention was similarly high (usually > 80%), but appeared to be lower for the smallest 

crabs (ca. 8 mm CW). At sizes greater than 10 mm CW, tag retention rates were similar to 

those obtained in our and other studies with blue crabs. Sharp et al. (2000) found similar 

results for 96 second stage juvenile spiny lobsters, Panulirus aryus, tagged with microwire. 

Tag retention was 96%, with almost all tag loss at the first molt, and no effects on growth 

or survival compared to control lobsters. 

Emigration 

The separate measurement of emigration and mortality will remain a difficult task in studies 

of the dynamics of juvenile crab cohorts. Based on recapture locations of tagged crabs in 

Timberneck cove in 2005, it appeared that the released crabs were staying mostly within the 

release area. This was consistent with the results of sampling following release experiments 

in the initial years of the stock enhancement feasibility investigation, and also sampling from 

similar studies in upper Chesapeake Bay coves (Davis et al. 2005a). In those experiments, 

the majority of recaptures occurred close to the point of release, even when releases were 

conducted in larger creeks. However, the substantial emigration from Aberdeen cove during 

the experiments in 2006 leads us to believe that emigration at this small of a scale may be 

an ali-or-nothing event. Such intrapopulation structuring with regard to dispersal has been 

noted for other species under threat of predation, splitting the population into "movers'' and 

stayers" (Fraser et al. 2001). Crabs that leave the area- the "movers"- may take advantage 

of ebbing tides and leave quickly and go undetected in subsequent sampling, whereas crabs 
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that remain- the "stayers"- appear to remain within a relatively small home range. 

Our sampling in Timberneck probably underestimated the losses of crabs due to emigra

tion because we did not sample outside of the cove. However, sampling for emigrating crabs 

at the mouth of Timberneck cove in a way that covers any significant portion of the water 

column was not possible. Furthermore, recapture rates from our sampling were rather low 

in an area where it was known that thousands of crabs were released, so recaptures in a 

wider local region would almost certainly be negligible. We released almost 16,000 crabs in 

December of 2005, but sampling events sometimes only accounted for a total of 20 tagged 

crabs. The low number of recaptures also reinforced prior experience that indicating that 

it would be impossible to collect enough wild crabs to perform these experiments. 

An alternative approach to estimating emigration rates would be to use neuston nets at 

the mouths of coves that sample a known area or volume of the water column. Assuming 

that crabs are emigrating in a known pattern (e.g., near the surface, in the channel) would 

allow the correction of numbers to emigration rates for the whole cove. We consider this 

approach impractical based on supplemental net sampling that we conducted alongside trials 

in Aberdeen cove in 2006. We sampled with two sets of neuston nets placed at the mouth of 

the cove inside of the seine on most sampling events. The nets were constructed from 4-mm 

stretch mesh seine netting and measured 30 em tall by 100 em wide. Nets were fished at the 

surface and anchored to the sediment, and were located in the center of the ebbing flow to 

the extent possible. Given the small width of the mouth of the cove, we covered a sizeable 

proportion of the total cross-sectional area of the cove mouth, probably more than could 

be expected elsewhere without a much greater effort. The nets typically captured very few 

crabs and the catch rates in the nets were not closely correlated with catches in the seine. 

Thus, it did not appear that the nets were catching a similarly consistent proportion of the 

emigrating crabs. 

Emigration sampling in Aberdeen cove during 2006 indicated a potential flight response 

in hatchery-reared juvenile crabs. Strong pulses of emigration occurred on the first ebb 
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tide following the release in both summer experiments. The notion that this emigration 

represents a flight response was iudicatcd by the strong emigration during the daytime 

ebb tide in July; water column transport is typically strongest during the night when 

visual predators are less effective (Blackmon & Eggleston 2001; Etherington et al. 2003; 

Reyns & Eggleston 2004). Furthermore, emigration of wild crabs, though much smaller 

in magnitude, was consistently highest at night and essentially negligible during the day. 

In both summer experiments, wild crab emigration appeared appeared to increase from 

baseline levels following release. A possible mechanism for this behavior is an avoidance 

of increased competition for resources, given the similar size ranges of wild and hatchery 

crabs. However, the relative influence of density-dependence in influencing dispersal in 

juvenile blue crabs is not clear (Perkins-Visser et al. 1996; Pile et al. 1996; Moksnes et al. 

1997; Blackmon & Eggleston 2001; Etherington et al. 2003; Reyns & Eggleston 2004). The 

contribution of emigration to the decay rates we observed was not great, which contrasts 

strongly with the approximately equal contributions of emigration and mortality to decay 

rates in very small seagrass patches (Etherington et al. 2003). 

Hydrodynamic differences between the two coves may play a role in emigration rates of 

released crabs. Timberneck cove is an open system that rises and falls gradually with the 

tides, whereas Aberdeen cove has a small inlet and stronger water velocities during tidal 

exchange. Crustaceans are sensitive to changes in the currents passing over their tactile 

hairs, such that the stronger pull of water leaving the cove may trigger more small crabs to 

rise into the water column and emigrate from coves like Aberdeen (Forward et al. 2004a, 

2005). Etherington & Eggleston (2000, 2003) showed that wind-induced secondary dispersal 

was common among small juveniles in the North Carolina estuaries, and could occur on very 

short time scales. Pile et al. (1996) also hinted at a role for strong wind events in connection 

with dispersal of early life stages, and noted a major movement of juveniles from one shore to 

the other near the mouth of the York River just after a storm event. These observations are 

in accordance with laboratory and field observations in seagrass by Blackmon & Eggleston 

94 



Chapter 4 Mortality and Emigration of Juvenile Blue Crabs 

(2001) indicating an important role of active planktonic dispersal in juvenile blue crabs less 

than 10 mm CW. Rates of dispersal were highest with increased current speeds, providing 

a link between strong wind events or tides and secondary dispersal. However, Reyns & 

Eggleston (2004) found that secondary dispersal could be important at night in the absence 

of strong wind events, but was triggered by strong winds during the day. All previous 

research on secondary dispersal in blue crabs has focused on individuals smaller than those 

used in our study. The relatively low background emigration rates of wild crabs that we 

measured indicate that secondary dispersal is probably relatively unimportant for the sizes 

of crabs we used. 

Temporary emigration from the sampling area could occur if small crabs use the fringing 

marsh as habitat during high tides. Juvenile and adult blue crabs and other macrofauna 

commonly use fringing Spar-tina alternifiora stands as cover and foraging habitat in marshes 

along the Gulf of Mexico (Zimmerman & Minello 1984; Thomas et al. 1990; Rozas & Reed 

1993; Rozas & Zimmerman 2000; Minello & Rozas 2002; Rozas et al. 2007). However, 

Mense & Wenner (1989) found little evidence for use of the emergent vegetated habitat 

surrounding marsh creeks in South Carolina by crabs as small as those in our study. Other 

studies in North Carolina (Rozas & Hackney 1984), Georgia (Fitz & Wiegert 199lb), and 

Virginia (Varnell & Havens 1995) have documented consistent use of the intertidal marsh 

area by blue crabs in systems smaller than ours ( < ca. 1 ha), but did not directly assess 

use of the surrounding area covered with emergent vegetation. Fitz & Wiegert (1991b) 

concluded that crabs may not have been using that portion of the intertidal zone based on 

comparisons of catches between tidal amplitudes. Yozzo & Smith (1998) reported pit trap 

catches from within the actual vegetation of two salt marshes on the Eastern Shore of VA 

near N assawaddox. Although pit trap catches are dubious as estimates of abundance, in 

almost 200 pit trap collections in each of two years the two sites yielded only 26 and 57 

crabs combined (crab sizes were not reported). Use of the marsh surface appeared to be far 

less for blue crabs than for daggerblade grass shrimp and mummichogs. 
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Differences between marshes in the Gulf of Mexico and the mid-Atlantic coast may be due 

to differeuc..:es in physiography that limit accessibility (Rozas & Reed 1993). In our c..:oves, the 

tides rarely inundated the upper marsh and never to any measurable depth, thus limiting 

accessibility and protection from predators. Based on the general lack of tidal inundation 

(Thomas et al. 1990), the balance of evidence from other studies in similar Atlantic coast 

systems (partly reviewed in Orth & van Montfrans 1990), and our own experience searching 

the marsh surface during this study, we consider it unlikely that a large number of crabs 

were in the marsh itself and unavailable for capture. 

Mortality in experimental cohorts of hatchery-reared juveniles 

Decay rates of released cohorts in Timberneck Creek were very high, ranging from 3 to 10% 

per day, and decay rates in Aberdeen Creek were even higher (20- 75% per day). The 

field experiments were short (ca. 2 weeks) because of the high decay rates, hut showed 

a seasonal pattern in line with expectations based on predation pressure. Unmeasured 

emigration from Timberneck cove may bias our estimates of mortality high in 2005. Due 

to the high laboratory mortality· of hatchery-reared crabs in the summer 2006 experiments, 

those mortality rates are also questionable; as much as 50% of the mortality could have 

been caused by chronic effects of poor rearing conditions. 

To the extent that the decay rates we measured can be considered mortality rates for 

juvenile crabs, the mortality rates we measured are orders of magnitude higher than current 

low estimates of adult natural mortality (Chapter 3). The magnitude of mortality rates we 

measured is striking, but our results differ strongly from results of c..:ornparable studies with 

hatchery-reared blue crabs in similar habitats in upper Chesapeake Bay (Davis et al. 2005a; 

Johnson et al. 2008). Released crabs in those habitats can persist in release areas for over 

a year and recapture rates are far higher than they were in our study. High mortality rates 

more similar to those measured in our study have been reported from other areas outside 

of the Chesapeake Bay. Rakocinski et al. (2003) determined that mortality and emigration 
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combined accounted for decay rates of about 15% per day in cohorts of recruiting small 

( < 15 mm) juvenile blue crabs in soft sediment habitats in Mississippi Sound. Heck et al. 

(2001), and later Spitzer et al. (2003), reported that juvenile densities in nursery habitats 

in Mobile Bay were rarely correlated with postlarval supply and settlement, consistent 

with strong density-dependence, and that even large settlement events were reduced to 

''background" juvenile densities within days or weeks. They also reported findings from 

tethering trials- high, often> 80%, mortality in all habitats -leading them to conclude that 

predation was decoupling postlarval supply from juvenile abundances. With slightly smaller 

juveniles ( < 10 mm CW) in seagrass, Etherington et al. (2003) found that proportional 

mortality was as high as 65% per six hour period. For mud crabs (Scylla paramamosain) 

20-60 mm CW, LeVay et al. (2007) found mortality rates on the order of 60% per month. 

Lipcius et al. 2005, 2007 proposed a revised conceptual model for ontogenetic changes in 

habitat use by juvenile blue crabs. Their model posits that unstructured habitats such as 

marsh-fringed creeks and coves serve as secondary nurseries for larger juveniles that have 

departed the primary nurseries (e.g., seagrass beds) after growing to approximately 25 mm 

CW. Our results indicate that the value of unstructured habitats may be limited, particu

larly as primary nurseries, without some form of structure that can provide protection from 

predators. Habitat enhancement at relatively large spatial scales may increase the value of 

these unstructured habitats. Although the mortality in these habitats may depend on the 

availability of alternative prey (Seitz et al. 2005), cannibalism is likely a major culprit of 

the high mortality. In addition, although we did not use the seine collections to estimate 

predator abundances in Aberdeen cove, predation pressure appears to be high based on 

the large number of fishes we collected. Moreover, trawl sampling in the middle and up

per reaches of the York River indicates that predatory fish abundance is high, which could 

increase predation substantially on young juveniles in unstructured habitats. 

Uncertainty remains a strong feature of field estimates of natural mortality for small 

juvenile blue crahs. The repeated sampling approach that we used allowed more definitive 
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measurement of decay rates than in previous studies, but emigration and hatchery-related 

artifacts confounded inferences about absolute rates of mortality for wild crabs. 

Alternative methods for estimating mortality 

Despite the short time period involved, our experiments required an enormous amount of 

field and lab effort. Transport, care, and tagging of the hatchery-reared crabs required the 

full time efforts of at least six people for three or more days prior to the field releases. During 

and after release, sampling events required four or five people for about eight hours at a time 

as often as twice in a 24-hr period. Such experiments are probably not feasible for routine 

monitoring of the success of releases for stock enhancement efforts. Ideally, experiments to 

assess stock enhancement efforts need to be carried out in a number of different areas and 

at different seasons of the year. Both coves that we used for experiments were relatively 

small ( < 10 ha) and thus not representative of the majority of marsh-fringed creeks and 

coves in the lower Chesapeake Bay. We were forced to restrict our experiments to small 

areas in order to recover tagged crabs after release. If we had used larger areas, as has been 

done in the past, the recapture rates would have been far too low to produce meaningful 

results. The compounded effort required for an approach like ours in multiple places at 

multiple times would be unrealistic. 

Other methods of estimating mortality, such as capture-recapture, may provide more 

robust estimates of mortality but would suffer some of the same limitations as our approach. 

For example, studies would need to be restricted to relatively small areas in order to obtain 

recaptures. If transmitters can be developed for small crabs, telemetry may be the best 

approach (Niezgoda et aL 2002), but current technology limits transmitter application to 

large juveniles (ca. 60 mm CW or larger). Davis et al. (2004b) used ultrasonic telemetry 

to track seven wild and six hatchery-reared crabs in a creek in the upper Chesapeake Bay. 

The crabs were ca. 65 mm in CW and only one (a hatchery-reared crab) left the 5.5-ha 

cove in the first two weeks after release. However, the crab only strayed ca. 100m from the 
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cove and remained in the immediate area. 

Use of PIT tags in capture-recapture analyses has been tested for fish on small scales 

similar to our situation in Aberdeen cove (Adams et al. 2006). However, the entrance to 

Aberdeen cove is over twice the width and depth of the location tested by Adams et al. 

(2006), so we would need a considerably larger antenna array. In addition, Aberdeen cove 

has a unique combination of depth and mouth morphology compared to other tidal creeks in 

the area, so the applicability of such a system is probably limited by cost and technological 

limits in most places. An additional problem is that PIT tags and other tags are currently 

not available in sizes that would permit use with the smaller crabs used in our study. Even 

for the larger crabs, smaller PIT tags have lower power output and thus reduced detection 

range, such that a large antenna array would be needed to confidently detect animals moving 

past the array. Such a system would obviously not he feasible in an area with boat traffic. 

Regardless of the external tag used, it would be best to hold crabs in the lab until they molt 

before applying tags, so that inferences about molt-related losses of tags could be based on 

molt-process growth models. 

For crabs in lower Chesapeake Bay habitats, whose mortality rates are extremely high 

as documented in this study, tagging and repeated subsequent sampling is probably not a 

realistic option to estimate mortality rates of the smallest crabs ( < 30 mm CW). For adult 

female crabs that have molted to maturity, tag return studies are clearly a good option for 

estimating mortality rates, including natural mortality when supplemental information on 

abundance and fishery harvest is awtilable (Chapter 3). For crabs that may continue to 

shed, internal tags such as microwire may be feasible for small-scale research studies, but 

large-scale studies that rely on tag returns would need to provide detection equipment to 

crab packing houses or distributors, and logistical constraints would be substantial. If a 

probabilistic model of molting (e.g., Smith & Chang 2007) can be incorporated into analyses 

of tag returns from male crabs or smaller female crabs that will continue to molt, it may be 

possible to estimate mortality rates for these groups with external tags such as those used by 
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Lambert et al. (2006b) based on tag return data. Telemetry-based approaches and PIT tags 

could be used for juvenile crabs greater than about 50 mm CW, but estimates from these 

studies would not apply at the scale of the stock. It may also be possible to design larger

scale, temporally intensive research sampling in ways that provide contrast to estimate 

mortality rates of recruited cohorts of crabs in subestuaries like the York River (Latour et 

al., unpublished). Such estimates could ground-truth estimates used in assessment models 

and those derived from tag returns. 

Perspectives on stock restoration efforts 

Stock enhancement 

Despite the long history of hatchery-based attempts to supplement wild populations in 

fisheries, a more rigorous, quantitative approach to stock enhancement efforts through the 

release of hatchery-reared juveniles is relatively new (Blankenship & Leber 1995; Heppell 

& Crowder 1998; Leber 1999; Lorenzen 2000; Leber 2002, 2004; Lorenzen 2005, 2006). 

Modern approaches to stock enhancement require quantitative evidence about the vari

ous factors that determine the biological value and cost-effectiveness of enhancement pro

grams. Primary considerations focus on the potential impairment of genetic fitness of wild 

stocks, management of disease and health risks to wild stocks, cost-effectiveness of releas

ing hatchery-reared animals over natural production, and monitoring survival of released 

animals (Blankenship & Leber 1995). 

The primary goals of enhancement programs intended to supplement natural stocks that 

are the subject of capture fisheries are the addition of hatchery-reared animals to the com

mercial catches and supplementation of the spawning stock. Numerous past enhancement 

efforts, particularly for mobile fish and invertebrates (Caddy & Defeo 2003), have been 

inconclusive because the survival of released animals was not monitored. When survival 

is not monitored, programs are not able to quantify the extent to which released animals 

contribute to populations and fisheries. Based on past experience, it seems clear that the 
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top priority for research prior to the development of a major enhancement program must 

be an assessment of the feasibility of contributing animals to the spawning stock or the 

commercial catch in a cost-effective manner (Lorenzen 2005, 2008). In many cases the re

quired survival rate is beyond biological and technological reality and calls into question 

the development of a. program at all (Heppell & Crowder 1998; Hilborn 1998; Wilson et al. 

1998; Leber 1999). In such cases, enhancement efforts can become a red herring that stalls 

progress on more traditional management measures. 

Stock enhancement efforts for blue crab in Chesapeake Bay have not yet attempted 

releases at a scale that would permit tracking the fate of released animals into the exploitable 

stock. Despite the progress in culture technology (Zmora et al. 2005; Zohar et al. 2008) and 

assessments of potential release strategies (Hines et al. 2008; Johnson et al. 2008), there are 

not yet robust estimates of survival to the adult stage for hatchery-reared crabs released into 

Chesapeake Bay. Davis et al. (2005a), and later Johnson et al. (2008), calculated survival 

rates for released hatchery-reared crabs in tidal marsh creeks in upper Chesapeake Bay. 

Their estimates of local survival made a number of strong assumptions about emigration, 

tag loss, and catch efficiency, but far more crabs survived than in our experiments. In 

addition, releases of hatchery-reared cohorts the size of those used in our study resulted in 

greater contribution to the wild population than we can achieve because of lower recruitment 

to upper Bay habitats. Growth rates of crabs released prior to wild recruitment in upper Bay 

habitats are exceptionally fast, with crabs growing from ca. 20 mm CW to over 100 mm CW 

in just 3.5 months. Thus, local enhancement of nursery habitats is feasible, but it remains 

to he tested whether hatchery-reared crabs can contribute to the spawning stock or fisheries. 

Mortality rates like those we observed in nursery habitats in the lower Chesapeake Bay 

appear to be too high to make simple releases of small hatchery-reared juveniles feasible as a 

stock restoration tool. Furthermore, natural recruitment would likely swamp any effects of 

releases of hatchery-reared individuals unless the releases were much larger than currently 

possible given hatchery and grow-out technology. Whether enhancement efforts are reason-
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able at all will depend on whether the stock is limited by poor recruitment and hatchery 

releases can be expected to replace natural production at a scale that ultimately supple

ments the spawning stock and fishery. In part, this assessment depends on the differences 

in mortality between wild and hatchery-reared juveniles (Davis et al. 2005a). However, in 

the context of stock-recruitment relationships, there should be convincing evidence that the 

stock is limited by recruitment and that recruitment is strongly related to spawning stock 

abundance. Lacking a strong relationship, particularly when small spawning stock sizes can 

result in large recruitment events, increases in juvenile abundance through releases can be 

swamped and ineffective. 

Lipcius & Van Engel (1990) found somewhat weak relationships between adult andre

cruit abundance using collections of crabs at two points in the York River, and later Lipcius 

& Stockhausen (2002) found relationships between spawning stock and larval and postlarval 

abundance based on sampling at larger scales. Although the relationships are character

istically noisy, they indicate that recruitment is limited at much reduced stock sizes, as is 

typical for most marine fish and invertebrate stocks. The questions remains as to whether 

releases in targeted habitats can be scaled up to a level that contributes to the spawning 

stock and is not overwhelmed by natural recruitment. 

Researchers are now able, and even obligated, to assess the size and timing of releases 

(Leber 1995), the trade-offs between larger size at release and expense of husbandry, and 

the value of habitats into which the animals are released. Unfortunately, constraints on 

hatchery and rearing operations for blue crab do not permit testing of a wide size range of 

released crabs (Zmora et al. 2005; Zohar et al. 2008). Smaller size-at-release for blue crabs 

would eliminate much rearing mortality due to cannibalism and the need to maintain such 

large numbers of crabs in a flow-through outdoor system potentially subject to episodic 

poor water quality. However, it is not clear whether the reduction in potential mortality in 

the hatchery would be offset by the increased mortality on release. 
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Stock assessment, modeling of natural mortality, and management 

Our results reinforce concerns about the realism of estimates of natural mortality rates used 

in current assessment and population models. Reduced mortality in the December experi

ment in 2005 and the September experiment in 2006 is consistent with the expectation of 

reduced mortality in the fall and winter based on predation pressure. However, extrapola

tion of any of the mortality rates that we measured would lead to virtually 100% mortality 

on an annual basis. 

If mortality rates for wild juveniles are on the order of those measured for hatchery

reared juveniles, stock assessment models that include seasonal dynamics of juvenile growth 

and mortality will be sensitive to small changes in these parameters. Given that such 

estimates are likely to remain uncertain and estimation in the field is so impractical for 

routine application, assessment models may need to include patterns rather than specific 

estimates. Patterns in mortality can be incorporated and harvest policies set that are robust 

to reasonable variation in the magnitude of mortality rates. 

In developing reference points for the Chesapeake Bay blue crab fishery, Bunnell & Miller 

(2005) attempted to incorporate an elevated rate of natural mortality for juvenile crabs 

less than 70 mm CW. The particular equation for M as a function of size was not given, 

but the results from their individual-based model indicated that so few crabs would survive 

that essentially no commercial fishery could be supported. In an exploratory matrix model, 

Miller (2001) used a probability of survival through the entire zoea/newly settled crab period 

as 0.0000012 given a background instantaneous mortality rate of 0.375 (daily probability 

of survival = 0.00102) and linear decline from zoeal survival of 0.124 per day for 40 days 

to background over 142.5 days. Improved estimates of background mortality provided in 

Chapter 3 would decrease the number of survivors in the model substantially and may lead 

to different conclusions about the effects of the fishery on population dynamics. 

Another important concern for population dynamics models is the time step used in 

modeling the population. Growth rates are extremely variable for blue crab, but some 
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crabs can reach exploitable size in one year of life. Such fast growth, coupled with a high 

population turnover rate for short-lived species like blue crab, may make it necessary to 

model population dynamics with a time step less than one year. An annual time step 

implicitly smooths out changes in ]'.,1 that occur during the first year of life, and applies the 

same M to crabs that are just entering the fishery in the current year and those that have 

survived from previous years. Although Miller (2003) used a six-month time step in an 

exploratory spatially-explicit matrix model, current assessment models include an annual 

time step (Miller et al. 2005). Assessment models with shorter time steps may be better 

able to describe changes in natural mortality rates and capture seasonal dynamics, but 

data would need to be collected at a finer temporal scale or annual data would need to be 

partitioned into shorter time periods. 

Jamieson (1986) noted a difficulty inherent to management of nearly all invertebrate 

stocks, that recruitment is highly variable and under little control by fishery regulations. 

"Objectives of management, and any assessment of management performance, 

should reflect the suggested general inability of man to influence recruitment 

magnitude for most invertebrates within historic ranges of population abun-

dance." 

Invertebrate stocks that meet these criteria represent a classic case of situations in which 

stock-recruitment relationships are potentially misleading as guides to management. For 

blue crab, the variability in average fecundity among years could be one source of recruit

ment variability (Prager et al. 1990), although the overall magnitude is probably influenced 

more by environmental and physical conditions in the open ocean during early development 

and reinvasion of the estuaries (Provenzano et al. 1983; Caddy 1986a; Van Engel 1987; 

Fogarty et al. 1991; Wahle 2003). Although far from a settled issue, current theory for blue 

crab stock dynamics maintains that recruitment to the fishery may be limited by the mag

nitude of recruitment in Atlantic coast estuaries, but is more dependent on post-settlement 

dynamics (density-dependence) in Gulf coast estuaries (van Montfrans et al. 1995; Heck 
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et al. 2001; Spitzer et al. 2003; Rakocinski & McCall 2005). Guillory et al. (1998) noted 

that management in the Gulf of Mexico should proceed under the assumption that a stock

recruitment relationship did not exist. It remains unclear whether the adult stock is more 

tightly coupled to recruitment in the Chesapeake Bay. 

Given highly variable recruitment that is under little control by management, Jamieson 

(1986) suggested that perhaps invertebrate fisheries should focus on extracting appropriate 

levels of harvest from the recruitment that is available at any one time, rather than aiming 

for long-term sustainability. Observations that Dungeness crab populations, which share 

many life history features with blue crab, swing widely in abundance as a result of the com

plex interactions of density-dependent and density-independent processes leads to caution 

in attempts to identify large-scale patterns in stock-recruitment relationships (Higgins et al. 

1997a,b). Van Engel (1987) cautioned against the use of stock-recruitment relationships in 

management of blue crab stocks, and past periodicity in the blue crab population in Chesa

peake Bay and strong environmental control on recruitment indicates that the approach 

suggested by Jamieson (1986) could be prudent and realistic for this stock. The widespread 

winter dredge survey provides a strong prediction of annual harvest based on over-winter 

abundance and may provide the basis for such a strategy (CBSAC 2007). Furthermore, if 

poor recruitment years can be identified in advance of the upcoming fishing season, as might 

be accomplished by an addition to or modification of the winter dredge survey sampling, 

management should cap catches in those years when recruitment is weak. 
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