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ABSTRACT PAGE

Helicobacter pylori colonizes the gastric mucosa of nearly half the world’s population and is 
a well documented etiologic agent of peptic ulcer disease (PUD) and a significant risk 
factor for the development of gastric cancer. The majority of H. pylori isolates that have 
been linked to peptic ulcer disease share a common genetic element known as the cag 
Pathogenicity Island (cag PAI). Recent studies comparing the genomes of more virulent 
and less virulent strains have revealed the presence of numerous pathogen-specific genes 
that may have been introduced to the more virulent, cag PAI positive H. pylori strains by 
horizontal gene transfer. In addition to the acquisition of virulence associated genes, it has 
been shown that gene loss also plays an important role in the development of numerous 
pathogens, although to date this avenue of research has been relatively unexplored in H. 
pylori. In this study, we show that HP1079 and HP1078, two genes of unknown function 
and currently lacking any orthologs in other sequenced bacterial species, exist as a co- 
varying locus with the cag PAI. In addition, we show that HP1079 has the potential to 
undergo phase variation and that HP1078 exists in two distinct allelic forms that are 
present in relatively equal frequencies in our study set of clinical isolates of H. pylori from 
North America. While a proposed role for HP1079 and HP1078 in virulence must await 
animal model studies, we hypothesize that this locus is a potentially novel virulence 
associated locus based upon its association with cag PAI positive H. pylori strains, the fact 
that it is subject to phase variable expression, and that one gene in this locus exhibits 
allelic variation. We also characterize another genetic locus, currently annotated as 
HP0937 and HP0938, and show that this locus appears to be actively undergoing genetic 
decay. The patterns of pseudogenesis are so dissimilar between isolates that we 
hypothesize that the selective pressure on the locus occurred subsequent to the 
divergence of these strains from their last common ancestor.
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INTRODUCTION

Background

Helicobacter pylorus is a spiral shaped, gram-negative, microaerophilic bacterium 

that colonizes the gastric mucosa of nearly half the world’s population. It is an etiologic 

agent of peptic ulcer disease (PUD) as well as a significant risk factor for the 

development of gastric cancer. Socio-economic status is an established indicator of H. 

pylori infection rates, and in developing countries, infection rates in adults can reach as 

high as 90% [1,2]. Because of its prevalence in the developing world and the emergence 

of antibiotic resistant strains [3], research involving the classification of novel H. pylori 

vaccine targets and a deeper understanding of this pathogen’s interaction with its human 

host is of paramount importance. In this brief overview, some basic background on the 

pathobiology associated with infection by this organism will be examined, including its 

capability of eliciting disease as well as some of the environmental stresses thought to 

play a role in its initial and continued colonization of the human gastric mucosa.

There is still considerable debate as to the mode of transmission of this bacterium. 

H. pylori has been cultured from stool samples of infected individuals and screening of 

water samples from local sources using polymerase chain reaction (PCR) methods have 

shown the presence of H. pylori DNA, suggesting at least the possibility of a fecal-oral 

route of infection [4-6]. Currently, only one group has reported success in culturing H. 

pylori from an environmental reservoir [7], Other studies indicate a potential oral-oral 

route of infection, with gastric reflux moving the bacterium into the oral cavity where it
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has the potential to be spread orally [8, 9] However, the exact mechanism of H. pylori 

transmission remains unknown.

Infection/Colonization

Despite the accumulation of a large body of research over the last twenty years, 

many of the details involving the pathogenesis of Helicobacter pylori associated disease 

remain unknown. In rhesus monkeys, the infectious dose of H. pylori required to achieve 

colonization of the stomach was determined to be 10A4 [10]. The mammalian stomach is 

generally thought of as one of the immune system’s early lines of defense against 

pathogens and the low pH associated with chemical digestion of food also provides an 

effective barrier to most bacteria. In order to survive in this relatively harsh environment, 

H. pylori colonizes the mucus layer that covers stomach cells and protects them from the 

harsh, acidic environment.

Once established in the mucus layer, the bacterium engages the host’s immune 

response, which results in the recruitment of neutrophils, macrophages, and lymphocytes 

[11-13]. The level of immune response is quite variable among infected persons and it is 

believed that numerous factors including host and pathogen genotypes determine the 

severity of this response [11, 14]. Despite this induced inflammatory response, the 

infection is rarely cleared. The recruitment of increasing numbers of immune and 

inflammatory cells to the gastric mucosa often results in severe inflammation. The 

production of auto-antibodies specific for the gastric epithelium has also been reported as 

a consequence of the H. pylori induced immune response, indicating a level of auto­

immunity is present during prolonged infections [15].
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Gastric epithelial cells, in response to this extended inflammatory response, begin 

to lose adherence to each other due to a disruption of their tight junctions, allowing 

interstitial fluid to leak out into the mucosa and providing H. pylori with essential 

nutrients. It is this long term chronic inflammation of the stomach lining that is believed 

to be the root cause of ulcer disease. Mucin, a lubricant that protects many of the body’s 

surfaces, is found at significantly reduced levels in the stomach over time in patients 

colonized with H. pylori, resulting in the inability of the stomach to neutralize free 

radicals from accumulating neutrophils [17-19]. Infected individuals have an estimated 

lifetime risk of 10-20% for the development of peptic ulcer disease, approximately 3-4 

fold higher than in non-infected subjects. H. pylori infection can be diagnosed in 90- 

100% of duodenal ulcer patients and in 60-100% of gastric ulcer patients [16]. 

Approximately 5% of infected patients have malignancies, with a clinical progression 

beginning with gastritis, proceeding through atrophic gastritis, and intestinal metaplasia, 

and finally malignancy [11].

Bacterial Genetics

Since its discovery by Barry Marshall and Robin Warren in 1983 [1], H. pylori 

has become a prominent model system for bacterial pathogenesis, especially for studying 

persistent infection. This is due in large part to it being the only bacterium currently 

classified as a class 1 carcinogen by the World Health Organization and the fact that the 

species possesses remarkable genetic diversity [20] with hundreds of unique, classified 

strains. It is widely held that nearly every clinical isolate is unique and distinct from all 

others, with the exception of those isolated from family members. It is also believed that



these different strains rarely compete with each other in host colonization, and that 

infecting strains are commonly passed from mother to child [21-23]. The substantial 

variability between any two given strains has proven to be quite useful as a tool for 

tracking human migrations as far back as 12,000 years ago by comparing divergent H  

pylori strains [24-26]. High mutation rates can lead to significant divergence of 

subclones from a primary isolate, with numerous phenotypic and genotypic differences 

[27, 28],

Despite the significant genetic variability demonstrated in numerous studies, 

estimates of the rate of genetic change vary greatly [25, 29]. Long-term studies have 

shown that while clonal variants may exist within a bacterial population, all isolates are 

generally related and derived from a common ancestor [29]. Using whole genome H. 

pylori DNA microarrays, Sala et al. demonstrated that approximately 22% of H. pylori 

genes identified in two sequenced strains of H. pylori (26695 and J99) are missing in 

other isolates [30]. This indicates the tremendous genetic variability present within this 

single bacterial species and supports the theory that microbial populations exist in the 

framework of a larger ‘ metagenome ’ where genetic elements are constantly being 

exchanged and expressed by various subpopulations. In this context, genes essential for 

survival in all environments or ‘core-genes’ are found in all strains, while genes essential 

only in specific environmental conditions are found in given subgroups of strains (Fig 1). 

Bacteria are thought to undergo rapid change as they take up, incorporate, and/or remove 

DNA from their genomes and this genetic environmental background consisting of all 

genetic material within the environment defines the metagenome.
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Virulence Determinants

In comparing the genetic profiles of various H. pylori isolates, is has been 

possible to identify certain genes that are found more frequently in isolates from patients 

who exhibit severe disease. These genes encode virulence determinants and their 

presence is thought to confer a selective benefit to pathogenic bacteria. Early studies on 

H. pylori were based on identifying virulence determinants in pathogenic strains [31, 32]. 

This continues to be an avenue worthy of pursuit [33-35] and recent studies comparing 

the genomes of pathogens and non-pathogens have revealed the presence of pathogen- 

specific genes introduced to virulent bacterial strains by horizontal gene transfer [30, 33, 

36], Horizontal gene transfer is one of the principal mechanisms for genomic variability 

in H. pylori [37] and gene acquisition is thought to be the major factor responsible for 

observed strain variation [38]. H. pylori is naturally competent, i.e. it can freely import 

and incorporate DNA from the external environment into its genome. It preferentially 

incorporates DNA with methylation patterns similar to its own, so DNA acquired from 

the environment is generally from its own genetic “heritage”. Other bacterial species do 

not take up environmental genetic material to this degree and it has been hypothesized 

that environmental stresses may stimulate competence in these species, yet the signals 

that trigger this event in vivo are currently unknown [39].

The origins of these laterally transferred genes are often difficult to determine as 

any distinguishing characteristics found within the transferred genetic material tend to 

reflect a signature of a particular lifestyle or local effect acting on the sequence rather 

then a previous genomic context [40]. Simply put, it is almost impossible to determine 

exactly where a gene obtained via horizontal gene transfer originally came from because
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A. B.

J99
Specific

26695
Specific

Figure 1. Identification of bacterial core genes through comparative genomics. A,
The first whole genome microarray comparing the Helicobacter pylori strains 26695 and 
J99 found surprising variability between the two genomes [30]. Relatively large numbers 
of strain specific genes were identified, and the function of the majority of these genes 
remains unknown. B, Genetic comparisons between the two sequenced H. pylori strains 
and its close relative Helicobacter acinonychis strain Sheeba (isolated from the stomachs 
of large felines) found similar sets of strain specific and core genes indicating the 
potential for strain variation around a defined set of genes essential in most environments 
[98]. Identifying where overlap in gene content occurs among pathogenic bacterial
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species allows attempts at correlating bacterial genetics with disease outcome and enables 

the identification of virulence determinants and potential targets for novel treatments, 

its genetic makeup was inevitably altered numerous times prior to being deposited into its 

new host genome. These alterations are thought to have been acquired largely by the 

imprecise insertion, replication, and removal of bacteriophages from bacterial genomes. 

Some postulate that these changes, whether the result of phage incorporation or not, 

directly affect the ability of a given gene to exist outside of a genomic context for 

extended periods of time. This has led researchers to suggest that selection may occur on 

genomic material existing free in the environment, such that only material of a specific 

composition can be taken up by a bacterium and that this composition may not reflect its 

ancestral, or even its most recent host genome [40].

In addition, some bacteria possess mechanisms that confer a level of control over 

gene expression of laterally transcribed genetic elements. The histone-like nucleoid 

structuring protein (H-NS) found in Salmonella has been shown to selectively silence 

sequences with GC content lower than the resident genome [41]. Regardless of origins, 

these genetic regions present in the environment represent an important resource for 

bacteria, enabling them to acquire functional gene products which would otherwise take 

long spans o f evolutionary history to produce via mutational events alone.

One characteristic of pathogenic bacteria is the presence of numerous ‘virulence 

genes’ thought to have been acquired and incorporated via horizontal gene transfer and 

homologous recombination, respectively. Sometimes complex protein systems are 

encoded in large clusters of genes, and these gene clusters are acquired en masse by 

recipient bacteria. The majority of H. pylori isolates that have been linked to peptic ulcer
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disease share a common genetic element known as a pathogenicity island (PAI) [31]. 

First coined by Hacker to describe unstable regions on the chromosome of uropathogenic 

Escherichia coli (UPEC) [42], PAI sequences generally contain numerous genes that 

bestow pathogenic capabilities on the previously benign or less virulent bacterium. 

Yersiniae pestis, for example, contains at least fifteen PAIs encoding everything from 

adhesin proteins and Type II/TII secretion systems, to an antibiotic resistance mechanism 

[43]. These PAIs generally differ greatly from the rest of the bacterial genome in their G 

+ C content, indicating they most likely are the result of horizontal gene transfer events. 

Due to the beneficial genes often carried on PAIs, the acquisition of genetic material in 

this manner has the potential to increase bacterial fitness, open up novel environmental 

niches for the bacterium, as well as increase pathogenicity [44-47].

Numerous genes are thought to aid Helicobacter pylori in its pathogenic lifestyle. 

Without these gene products, H  pylori is less capable of colonization and causing 

disease. The identification of these ‘virulence determinants’ is of enormous importance. 

Besides allowing us to more closely examine the exact interactions between the 

bacterium and their human hosts, these determinants allow us to design screens for the 

presence of these organisms in human patients, provide novel targets for potential 

treatments, as well as allow us to categorize the more dangerous bacterial isolates from 

the more commensal ones and treat patients accordingly. What follows is a list of some 

of the better characterized virulence factors of Helicobacter pylori. They are listed here 

to better familiarize the reader with the mechanisms of pathogenesis employed by H. 

pylori as well to demonstrate trends and common features that act as clues in the 

characterization of virulence factors in general.



Urease

One of the major obstacles to any bacterium attempting to colonize the GI tract is 

the strong acidic environment of the stomach. While other pathogens simply pass 

through the stomach on their way to the intestine, H. pylori proceeds to take up residence, 

making prolonged exposure to acid an environmental hurdle. It has been previously 

established that to limit the exposure to stomach acid, H. pylori actually colonizes the 

mucus layer of the stomach, essentially using the same protective coating the body uses 

to protect its own epithelial cells from the harsh pH of the stomach lumen. To further 

reduce the acidity of its environment, H. pylori uses the enzyme urease, which converts 

urea in the stomach into the basic compounds ammonia and bicarbonate, which act to 

buffer the pH of the periplasm and the area around the bacterium [48]. Urease makes up 

as much as 10% of the total protein content of a bacterium [49, 50], hinting at its relative 

importance. H. pylori strains containing mutated or deleted urease genes have proven 

incapable of gastric colonization in numerous model organisms [48, 51-53] and attempts 

to use urease as a vaccine candidate have given mixed results [50, 54, 55]. The ammonia 

produced by H. pylori ’s urease is also thought to have carcinogenic qualities [56, 57] and 

hypochloridia, a deficiency in the level of hydrochloric acid in the stomach, is a common 

symptom in H. pylori positive individuals [58-61].

Motility

It has been shown that H. pylori is incapable of colonization without functional 

flagella [62-64] indicating an absolute requirement for motility during infection. It is 

thought that despite its urease activity, H. pylori is only capable of surviving outside of



the mucus layer for a limited amount of time and that chemotaxis provides H. pylori a 

way to continually move away from higher acidity [65]. H. pylori is capable of 

discerning pH gradients in the stomach by using a chemotaxis receptor TlpB (encoded by 

the H. pylori gene HP0103) which enables it to continually move away from higher 

acidity, effectively keeping it closer to the stomach cells despite the high turnover rate of 

the gastric mucosa [64]. Thus motility and chemotaxis allow H. pylori to survive in the 

harsh and rapidly changing environment of the human stomach.

Because motility is required for the existence of H  pylori in its human host, this 

provides the host’s immune system with an important target for mounting an immune 

response sufficient to potentially clear the infection. However, H  pylori’s remarkable 

genetic diversity allows it to very rapidly change its outer surface markers that may come 

into contact with the host’s immune system. These ‘genetically plastic’ regions allow for 

H. pylori to present a broad array of surface associated molecules to the immune system, 

potentially allowing a proportion of the bacterial population to evade detection [66, 67]. 

Flagellin, the major component of bacterial flagella, has such variable regions in its C- 

terminal D2-D3 domains that are exposed to the environment, while it’s N-terminal D0- 

D1 domains that are buried within the flagella and essential for motility are highly 

conserved [68].

It is also noteworthy that flagella in H. pylori are completely sheathed in the 

bacterium’s outer membrane [69, 70], effectively hiding the core subunits o f the flagella 

from detection by the immune system through methods that will be discussed later. 

Flagellar sheaths are relatively rare phenomena, and have been characterized in the 

bacteria Bacillus brevis, Bdellovibrio bacteriovorus, Pseudomonas stizolobii, Vibrio
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cholera and a few other Vibrio species [71-76]. It was previously reported that Vibrio 

cholera's flagellar sheath was composed of a single protein and that lipopolysaccharide 

was almost entirely absent from the region [76]. Early studies of H  py lo ri’s flagellar 

sheath concluded that it was comprised of mostly protein [77] and that a single protein, 

characterized as ElpaA, appeared to be localized specifically to the sheath itself [78, 79], 

However, upon further membrane characterization and electron microscopic imaging, it 

was accepted that the sheath is in fact comprised of a lipid bilayer, supporting a few 

earlier reports [80]. It was also noted that there may be distinct protein profiles between 

the sheath and the rest of the outer membrane [81, 82], though the protein HpaA does not 

appear to associate solely with the sheath region in all bacterial isolates [83]. Regardless 

of its composition, the sheath’s predominant role is thought to be to protect the flagella 

from the acidic environment of the stomach. The existence of the flagellar sheath 

prevents interaction of the flagellin proteins with the host’s defenses and only when 

damaged or when shed are flagella capable of interacting with the immune system, 

effectively announcing to the body the presence of a pathogen.

Despite being sheathed in the bacterial membrane and the large variation that 

exists in bacterial flagellin, the immune system still uses it as a target. The human innate 

immune system makes use of transmembrane proteins called Toll-Like Receptors (TLRs) 

to recognize pathogens and trigger an immune response [84-87]. Over time, these 

proteins have evolved to target regions that are essential to pathogens and thus are highly 

conserved. For example, TLR2 binds to peptidoglycan [88, 89], TLR4 binds to 

lipopolysaccharide [90], and TLR9 recognizes bacterial CpG DNA [91], TLR5 

recognizes bacterial flagellin [92], specifically the conserved N-terminal D0-D1 domain
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that is essential for motility [68, 93]. Despite the highly conserved nature of this region, 

a and s Proteobacteria appear to be different in at least three amino acid positions thought 

to be necessary for TLR5 binding [68]. In this way, these pathogens appear to have 

evolved to evade the host’s innate immune response without loosing their ability to 

remain motile, while most other flagellated bacteria are recognized by and bind to TLR5. 

This illustrates a perfect example of the co-evolution of bacterium and host in the context 

of a single locus over evolutionary time.

Lipopolysaccharide (LPS)

Another major target for the immune system during a bacterial infection is 

lipopolysaccharide (LPS) [90, 94]. LPS is a major component of a gram-negative 

bacteria’s outer membrane, contributing to the bacteria’s structural integrity as well as 

providing a barrier against the immune system. A number of antimicrobial peptides 

recognize bacterial LPS and upon binding they induce an innate immune response [95, 

96]. As mentioned above, the primary activator of the host response to LPS is TLR4 

[90]. In many cases, the immune response resulting from the presence of LPS (often 

referred to as endotoxin) is so severe, that a dysregulated immune response to infection 

develops, known as sepsis, which can be life threatening. Studies are currently underway 

to develop molecular inhibitors of LPS, specifically targeting its ability to induce 

monocyte activation [97]. Currently, extensive filtration procedures are required to 

remove any contaminating LPS from reagents used during surgery or treatment of 

patients in order to remove the risk of accidentally inducing severe inflammation.
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Because the host’s immune response to LPS is so robust, many pathogenic 

bacteria modify their LPS in order to avoid this detection. H. pylori is a well studied 

example, as it can mimic the Lewis Blood Group (LBG) antigens presented on the O side 

chain of its LPS [98, 99]. Lewis Blood Group antigens are commonly associated with 

host monocytes, macrophages, granulocytes, and gastric epithelial cells. They are 

important for low-affmity adhesion to host gastric epithelial cells as well as in 

phagocytosis [100, 101]. It has been widely speculated that H. pylori uses this key 

feature of host cells to evade the immune system [98, 102]. The genes responsible for the 

creation of these bacterial LBG antigens are present throughout the genome, and many of 

them undergo phase variation [103]. The variation generated in the bacterial population, 

whether resulting from phase variation or other mechanisms [104] results in the 

production of a wide array of differing LPS profiles within a given population. This is 

believed to be a ‘fine-tuning’ of the bacterium’s defenses, further enhancing the evasion 

of the immune response [103, 105-107].

In addition, H. pylori has modified the lipid A portion of its LPS compared to 

other bacteria. Lipid A is the ‘hydrophobic anchor’ of the LPS, and is the biological 

initiator of septic shock [108]. The modification of the lipid A portion of H. pylori’s LPS 

results in reduced immunoreactivity by as much as 1000 times compared to the lipid A of 

other bacterial species [109-111].

cag Pathogenicity Island

In H. pylori, the major pathogenicity island (PAI) currently believed to be the best 

indicator of high virulence is known as the cag Pathogenicity Island [112, 113]. The 140
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kDa product of the terminal gene in this PAI, Cag A, is injected into host cells where it 

activates MAP kinase cascades that in turn lead to the activation of growth factors and 

alteration of epithelial gene expression, which resulting in cytoskeletal rearrangements 

[114]. Strains possessing the cag PAI are considered more virulent than isolates that lack 

the PAI. cag PAI-positive isolates elicit a much stronger mucosal inflammatory response 

[115, 116]. Other genes of the cag PAI encode structural proteins used in the 

translocation of Cag A and possibly other proteins into the host’s epithelial cells via a type 

IV secretion system. Numerous studies have identified loci apparently in linkage 

disequilibrium with cagA, potentially indicating that they may be important virulence 

determinants for H. pylori [33, 117-119]. It is worth noting that despite the cag 

Pathogenicity Island being generally accepted as a major virulence determinant of H. 

pylori, cases exist in which strains lacking this PAI have resulted in severe clinical 

outcomes [114].

Vacuolating Cytotoxin (VacA)

vac A, encoding a vacuolating cytotoxin (Vac A) is present and secreted in all 

strains of Helicobacter pylori and encodes a single protein that is active in roughly 50% 

of identified strains [32]. It is secreted into the extracellular space by way of an 

autotransporter mechanism, during which the amino-terminal signal sequence and 

carboxy-terminal domain are cleaved from the 140-kDa protein [120], The remaining 

mature 88-kDa protein, while not required for growth under laboratory conditions, acts as 

a cytotoxin. It’s secretion results in the formation of vacuoles within the host cells in 

vitro and causes pores to form in the outer membrane of host cells in vivo, which may
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subsequently release nutrients and cations from the gastric mucosa. Although present in 

all bacterial strains, vacA contains two variable domains that result in three distinct 

genotypes. The 5’ terminal signal domain (S region) of the peptide encodes the secretion 

signal portion of the peptide and the mid-portion (M region) encodes the host cell- 

binding domain. Each can exist as two major subtypes, si or s2 and m l or m2, 

respectively. This gives rise to three different allelic types, with the s l/m l allele 

possessing the greatest vacuolating activity in vitro, the sl/m2 type having reduced 

activity, and the s2/m2 type having no activity [121]. In this manner, the s l/m l allelic 

variant is associated with more severe disease in its human host [122].

babA

Helicobacter pylori outer membrane proteins (Hops) are thought to play critical 

roles in the bacterium’s interaction with host cells. Among the most scrutinized of these 

is BabA (HopS). The BabA protein facilitates the binding of H. pylori to the Lewis B 

Blood Group antigen found on the glycoproteins of host gastric epithelial cells [123].

The babA gene exists as two distinct allelic types (babAl and babA2) with babA 2 being 

the only one believed capable of encoding a functional adhesion protein. Comparative 

studies have found high correlations between the presence of cagA, the vac A si allele, 

and the functional babA allele, making it a correlating virulence marker [124], It has also 

been shown that sequence variation in babA exists between strains, potentially due to 

differing selective pressures for adhesion between hosts and even within a single host 

over a period o f time [125]. These differences indicate the potential for a larger genetic 

family of BabA alleles whose altered makeup may be the result of close interaction with
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varying host immune systems [126]. Surprisingly however, knockout studies have shown 

that the absence of babA does not prevent adhesion of H. pylori to gastric epithelial cells 

[127].

BabA has also been found to be metastable and is thought to respond to the 

degree of immune response by the host [128]. The genetic mechanism that allows for 

this degree of sensitivity is known as phase variation, and allows for multiple 

subpopulations of bacteria to exist simultaneously whose only differences are varying 

numbers of nucleotide repeats resulting in frame shifting in the open reading frames.

This results in the phase variable gene being turned ‘o ff  while in the rest of the 

population the gene is turned ‘on’. In this manner, bacteria are capable of rapidly 

changing their phenotype within a population simply by adding or deleting a single base 

pair or dinucleotide within the coding sequences. These are often homopolymeric (eg. 

poly A) or dinucleotide repeats (eg. poly CT). Examples of such phase variation can 

found in numerous genes encoding adhesion proteins {sabA, sabB, hopZ, oipA).

The Outer Membrane Protein Adhesin, SabA

The gene sabA encodes a sialyl Lewis x (sLex)-binding adhesion, facilitating H. 

pylori binging to host membrane glycolipids [127]. It is hypothesized that this binding 

brings the bacterium into more intimate contact with the host cell then does BabA, 

however, the adherence is thought to be much less stable. This locus is known to 

undergo phase variation due to the presence of an ON/OFF frame-shift mutation, due to a 

homo-pyrimidine dinucleotide tract, giving rise to subpopulations. The local 

environment selects for the SabA expressing or non-SabA expressing population. Phase
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variation of sabA may allow a varying degree of interaction between the host’s immune 

response and the bacterium.

Additional studies looking more directly at the effects o f the presence of SabA on 

the immune response have shown SabA to be an important virulence factor for the 

pathogenesis of H. pylori infection. SabA expression has been linked to the non-opsonic 

activation of human neutrophils in response to a bacterial infection resulting in the 

induction of oxidative metabolism and production of oxygen species that can damage the 

gastric epithelium [129]. SabA has been shown to be the key molecule in the activation 

of human neutrophils and has been shown to be required for phagocytic induction by 

neutrophils as well [130]. Taken together, these results linking SabA directly with 

immune system activation have led researchers to classify SabA as a major virulence 

determinant.

oipA

oipA encodes a pro-inflammatory, outer-membrane protein. The gene is found in 

all strains of H. pylori, however, its expression is regulated by phase variation, allowing 

bacterial populations consisting of bacteria that both express and fail to express this 

protein. Functional OipA appears to also be correlated with cagA status, however, little 

is known about its potential role in colonization and/or virulence other then that it elicits 

an inflammatory response by inducing IL-8 synthesis [131]. It has been shown that full 

activation of the IL-8 promoter is only achieved when both the cag PAI and OipA are 

present [131]. It has also been linked to the secretion of RANTES, a CC chemokine 

involved in the homing of classical lymphoid cells such as T cells and monocytes during
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H. pylori infection [132], It is thought to play a role in binding host cells, but no binding 

receptor has been established to date [133]. Studies have found that OipA -positive strains 

are found more often in patients with duodenal ulcers then in gastritis patients [134].

ice A

iceA is a novel gene found only in H. pylori. It is induced by contact with 

epithelial cells and it exists as one of two distinct alleles, iceAl and iceA2. The presence 

of the iceAl allele is highly correlated with peptic ulceration as well as increased 

induction of IL-8 [135]. Both iceAl and iceA2 were expressed in vivo by respective H. 

pylori strains in gastric biopsies. To date, little else is known about this gene or its 

product other then it appears to correlate with disease outcome in infected individuals.

dupA

dupA is a novel gene found to be associated with duodenal ulceration in patients. 

This gene is found in H  pylori’ s “plasticity zone” (PZ), an area of the genome known for 

its variable gene content. The PZ accounts for roughly half of all of the strain-specific 

genes in any given isolate [136]. While very little is known about dupA’s functional 

characteristics, it has been shown to correlate with a reduced risk for gastric atrophy and 

cancer, despite it also correlating with duodenal ulceration [137].

Gene Shuffling

Many known virulence determinants among pathogens facilitate host immune 

evasion. One method of immune evasion occurs at a genetic level and involves the
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ability of a bacterium to rearrange its genome by means of DNA repeats and gene 

paralogs that can simultaneously alter the expression of disease-associated genes [39].

An example of this can be found in the bacteria Neisseria gonorrhoeae and Neisseria 

meningitidis. Repeat-mediated rearrangements cause genes encoding cell surface 

proteins to translocate to alternate sites on the chromosome. This positions ‘silent genes’ 

next to potential ‘on switches’ that causes their eventual transcriptional activation [39]. 

This gene shuffling has a direct effect on the proteins encoded, with an end result of each 

new bacterial generation presenting a new appearance to a host’s immune system, 

making it harder for previous antibodies to identify the ever-changing bacterium [39].

Biofilms

A characteristic of many other persistent infections caused by other bacterial 

pathogens is the formation of an extracellular polysaccharide matrix, which acts as a 

semi-rigid structure for containing bacterial communities. Many bacterial species are 

capable of existing in two different phases, a planktonic phase in which a single 

bacterium exists autonomously or in a larger, communal construct made up of complex 

connections between numerous bacteria, potentially of numerous species. These three 

dimensional structures called biofilms are often found in the environment, usually 

involving dense communities of various bacterial species on water surfaces or at 

interfaces with rocks, glass, and other sediments. In the case of pathogenic bacteria, 

biofilms derived from monocultures are found to form in vivo in numerous bacterial 

species [138-141] and are generally associated with persistent bacterial infection. They 

have been shown to aid bacteria in both evading the immune system [142] and decreasing
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bacterial susceptibility to antibiotics [138, 143] thereby allowing the genes encoding 

biofilm biogenesis to be labeled bacterial virulence determinants.

H. pylori has been shown to form biofilms in vitro, [144, 145] and studies have 

concluded that under low-shear stress conditions, H. pylori suspended in only water are 

capable of adherence to various materials at a wide range of temperatures while 

maintaining culturability for at least 6 hours [146] indicating a potential role for biofilm 

formation in H. pylon 's  brief existence in the environment. The potential for formation 

of biofilms in the gastric mucosa has been cited [147], however, there remains little 

evidence to date that biofilms have a role during infection. Whether or not these biofilms 

definitively occur in vivo as well as whether they are involved in colonization, virulence, 

or immune evasion is currently unknown.

Each of the virulence factors described above may grant H. pylori a more efficient 

means of effectively colonizing the human stomach as well as causing significant disease. 

They bestow upon the bacterium a number of favorable capabilities, such as facilitating 

the successful evasion of the host immune system, allowing the bacterium to adhere to 

target epithelial cells, and eliciting inflammation sufficient to provide the bacterium with 

nutrients from host cells. Phase variation plays an important role in a number of the 

virulence determinants described, while allelic variation among bacterial strains provides 

an example of the co-evolution and highly dynamic interaction between bacterial 

pathogens and their hosts over evolutionary time.

Evolutionary Genomics

Horizontal gene transfer is hypothesized to play a major role in the acquisition of 

bacterial virulence determinants [148], however, DNA uptake is seldom beneficial to the
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bacterium [149, 150]. Understanding how bacteria sort through an almost infinite 

amount of DNA in the environment is very important if we are to attempt to understand 

the root causes of bacterial pathogenesis. The environmental pressures involved in 

microbial evolution are important and warrant a thorough investigation.

Despite the fact that bacteria take up foreign DNA from the environment, 

bacterial genomes do not appear to grow larger over time [151] and isolates tend to 

remain relatively close in genome size [152, 153]. Additionally, unlike most eukaryotic 

organisms, prokaryote genomes generally consist largely of protein encoding or structural 

DNA [151]. It is currently believed that approximately 90% of a typical bacterial 

genome consists of protein-encoding sequence [151]. In order for bacteria to maintain 

relatively small, streamlined genomes consisting predominantly of protein-encoding 

DNA while simultaneously incorporating foreign DNA into their chromosomes, the rate 

of DNA influx must be balanced by the rate of DNA deletion [151].

Gene Rem oval: Black Holes

Despite the importance of horizontal gene transfer in H. pylori, other studies in 

other bacterial models have found it to be of limited importance in bacteria as a whole. 

These researchers cite gene loss and gene duplication as occurring much more frequently 

in bacterial genomes then horizontal gene transfer [154], In bacteria that have acquired 

PAIs and subsequently express a more pathogenic phenotype, genes previously beneficial 

to a bacterium while existing in a benign association with its host, may no longer be 

under functional constraints or may possibly be inhibitory to the novel pathogenic 

lifestyle. The concept of selective loss of genes that inhibit pathogenesis has been shown

21



to occur in other bacterial models [155, 156]. A paradigm for this model is illustrated by 

Shigella flexneri, a virulent bacterium closely related to the commensal and pathogenic 

isolates of Escherichia coli [157, 158]. Studies have shown that lysine decarboxylase 

(LDC) activity is present in 90% of E. coli strains, but absent in all Shigella species 

[157]. When the gene for LDC (cadA) in E. coli was introduced into Shigella flexneri, 

virulence was attenuated [157]. The same study revealed a large deletion in the cadA 

region of Shigella species, revealing that bacteria evolve to become pathogens not only 

by acquiring virulence genes, but also by eliminating genes via deletions [157].

Similarly, a deletion in an arabinose assimilation operon has been demonstrated in 

Burkholderiapseudomallei to increase virulence [159]. It has recently been suggested 

that in some bacterial genera, gene loss rather then gene acquisition plays the dominant 

role in the evolution of pathogenesis [160].

Gene Rem oval: Bacteriophages

Bacteria have always existed in the presence of harmful genetic elements, and 

have evolved mechanisms by which they can defend themselves. Transposons and 

bacteriophages continue to be a constant danger to bacteria. Genetic parasites have the 

capacity to lysogenize the host bacterium’s genome and induce their lytic cycles at a 

much later time. Until they enter their lytic phase, the phages multiply as a function of 

host bacterial replication. Upon activation o f the phage’s lytic cycle, the bacterium is 

killed. All descendants of the first lysogenized bacterium carry the risk of being killed by 

lytic phage. As a result of genetic parasitism, in bacteria, natural selection appears to 

favor high deletion rates in non-functional, foreign DNA [151]. This is countered,
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however, by the substantial diversity seen in studied environmental isolates indicating a 

complex process of gene turnover and genomic uptake by bacterial hosts [161]. The 

presence of bacteriophage in the environment potentially increases bacterial diversity, 

essentially checking competitive dominants by ‘killing the winner’ and introducing a 

selection for acquiring phage-defense mechanisms [162]. Those bacterial species that 

would normally dominate under non-phage conditions or that are briefly dominant due to 

a beneficial gene encoded by a phage, are often at a selective, long-term disadvantage, 

and it is the bacteria that can effectively defend against phage that survive over 

evolutionary time.

Despite the potential advantages that might be gained from acquiring genetic 

material from bacteriophages, incorporated foreign DNA principally presents a danger to 

a bacterium unless the viral mechanism for propagation is removed. Examples of viral 

inactivation exist [36] but it is probable that gene loss via deletion in bacteria is 

predominantly driven by the presence of such genetic parasites. In the past, many 

believed simply that the accumulation of point mutations over time was enough to deal 

with dangerous parasitic DNA. Nostoc punctiforme, for example, has one of the largest 

microbial genomes identified and sequencing analysis indicates the presence of close to 

150 Open Reading Frames (ORFs) that closely resemble tranposases in various stages of 

genetic decay [163]. Point mutations were thought to have eventually caused phages or 

transposable elements to ‘get stuck’ in the bacterial genome by preventing them from 

excising from the chromosome and in the case of phages, completing their lytic cycle. 

However, current studies in other bacterial models have concluded that the accumulation
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of point mutations is an ineffective method of eliminating genetic parasites before they 

have the opportunity to kill their hosts.

It has been noted that few point mutations, in a single step, could eliminate all the 

mechanisms by which a prophage can kill a bacterium [151]. Pseudogenes in numerous 

bacterial genomes were recently compared, demonstrating that each genome contains a 

unique set of pseudogenes, indicating that pseudogene formation and subsequent deletion 

are relatively rapid processes [164]. Studies using comparative genomic approaches 

(microarrays) have found variability in genomic content in various bacteria to be largely 

due to prophages [165]. This is in stark contrast to the bacterium Helicobacter pylori, 

where tremendous genetic diversity exists despite the apparent absence of bacteriophage 

[164]. Only one H. pylori bacteriophage has been characterized (HP1), and the induction 

of a purely lytic propagation cycle required the supernate of another (supposed) lysogenic 

H. pylori strain [166]. Aside from this single report, the bacterium H. pylori appears to 

lack any phage particles or even remnants of bacteriophages.

Numerous phages, upon entering their lytic cycle, excise from a genome bringing 

with them a portion o f bacterial DNA. If this DNA, now part o f the viral genome, 

contains a gene that may be of benefit to subsequent host bacteria, a level of selection 

may exist in which the bacteria infected with the phage may have an advantage over 

other bacteria in a given environmental context. Even though many phages have been 

shown to carry PAIs beneficial to bacteria, these benefits are short-lived if the prophage 

ultimately destroys the bacterium [151]. Non-functional genes are therefore believed to 

be removed quickly from a bacterial genome and many large non-coding sequences may 

represent DNA in the final stages of this degenerative process [167]. The rate at which
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psuedogenes are removed from a bacterial genome differs greatly among microbes, 

however, it is currently believed that the presence of pseudogenes in a bacterial genome 

may indicate a relatively recent evolutionary event in the history of the bacterium [151]. 

In terms of genetic variability, this constant removal of foreign material from the genome 

results in traumatic change occurring continuously in bacterial genomes.

It is now widely believed that chromosomal deletions are the major bacterial 

mechanism in for eliminating dangerous, non-functional, or ‘superfluous’ DNA. In 

bacteria, essential genes have been shown to be more evolutionarily conserved than 

nonessential genes over both microevolutionary and macroevolutionary time scales [168]. 

Originally, deletions were thought to only prevent bacterial chromosomes from getting 

too large and cumbersome. It was believed that superfluous ‘junk’ DNA would place a 

burden on bacteria, slowing down their replication time while providing no benefit to the 

microbes at all. Since that time, however, evidence has accumulated countering this 

hypothesis. Genomic sizes among bacteria vary greatly, and this variation does not 

necessarily correlate with replication time. Some rapidly growing bacteria such as 

Escherichia coli have large chromosomes and many slow growing bacteria such as 

Borrelia burgdorferi have small chromosomes [151]. The argument that slower 

replication of large chromosomes is driving evolution of gene loss is now being carefully 

questioned. It is believed by some researchers that the cost of replicating even 

‘significant’ amounts of extra DNA is paltry considering the huge ‘energy budget’ of the 

cell. The current belief among many microbiologists is that “high deletion rates are 

maintained not because the compact chromosomes that result are beneficial, but because 

the DNA that is removed is potentially detrimental” [151].
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As mentioned previously, deletion events are believed to be the major mechanism 

for eliminating dangerous/non-functional DNA in bacteria. Whole-genome microarray 

studies o f such pathogens as Mycobatcerium tuberculosis have concluded that single­

nucleotide polymorphisms are very rare and that deletional events are important sources 

of genomic variation, more so even then horizontal gene transfer [20]. Significant studies 

in regard to pseudogene decay have been conducted in Rickettsia prowazekii and seem to 

contradict these previous findings. R. prowazekim  is a unique bacterium in that 

approximately 24% of its genome consists of non-coding DNA: a relatively high 

percentage for bacteria [167]. This apparent contradiction is thought to be a result of the 

microbe’s environment. Evolutionary selection for deletional events is believed to vary 

given the specific selective pressures acting on the microbe. It has been largely accepted 

that inactivated genetic material within most bacterial genomes deteriorates 

spontaneously due to a mutation bias for deletion events. It is postulated that genetic 

elements provide such a threat that bacteria maintain high genomic deletion rates despite 

the increased risk of deleting a gene essential to their survival.

Environmental conditions also play a role in the evolution o f a bacterial species.

It is well established that environmental conditions have the potential to affect the 

bacterium’s ‘encounter-rate’ with transposable elements. While phages themselves are 

found almost universally in the environment [169, 170], evidence exists that certain 

microbes may be less influenced by genetic parasites upon adoption of a pathogenic 

lifestyle. It has been reported that upon acquisition of a new host, an emerging bacterial 

pathogen undergoes large changes in its genome [171]. These changes may often include 

the accumulation of large numbers of mobile genetic elements, recombination with these
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elements, pseudogene formation and subsequent deletions in the genome [171-173]. It is 

hypothesized that bacteria require many more genes to survive in the environment then 

they do within a host organism [174]. This is due to the presence of a larger variety of 

threats from numerous sources in the environment as compared with those presented by a 

single host [174], but also due to ephemeral nutrition sources in addition to more variable 

conditions then a bacterium would be exposed to within a host. A trend is becoming 

apparent among pathogens that they lose large amounts of DNA during the initiation of 

stable host colonization. Over longer periods of time the presence of extraneous genetic 

material as well as genetic parasites obtained from the external environment dissipates. It 

was long held that bacteria in general do not harbor many pseudogenes, though more 

recent studies of bacterial genomes have determined that perhaps many more 

pseudogenes exist in bacterial genomes then was once previously believed [171, 173]. It 

is thought that pseudogenes are removed by the same mechanisms that target 

bacteriophages, and that both genetic elements undergo similar selection [172].

Intracellular microbes may live a rather sheltered lifestyle in an environment 

relatively free of bacteriophages compared with other environments. Without the threat 

of these genetic parasites, it has been postulated that lower genome deletion rates may be 

selected for and that more ‘junk’ DNA will be allowed to accumulate [151, 167]. In 

comparison, environmental bacteria exist in a perpetual sea of genetic parasites, such as 

insertion elements, transposons, and bacteriophage [175], and there is likely strong 

selection for removal of foreign DNA under these conditions [176]. H. pylori, while not 

an obligate intracellular pathogen, does live in a unique environment, arguably free of 

genomic parasites as illustrated from the simple fact that its genome is completely free of
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phage encoding DNA. Because the threat of genomic parasitism is reduced, H. pylori 

may tolerate foreign DNA to a greater degree then other free-living bacteria. Whether 

this relatively sterile environment plays a role in the establishment of the large degree of 

variability seen between any two given isolates of H. pylori remains to be determined.

While genomic uptake of DNA may play a major role in acquisition of pathogenic 

characteristics in H. pylori, DNA deletion is likely to remove dangerous phage elements 

as well as superfluous DNA that either is detrimental to a more pathogenic lifestyle or 

simply no longer subject to positive selection because it no longer encodes a functional 

product. In either case, the removal of this potentially dangerous DNA is thought to be 

quite rapid and the presence of non-functional genes or remnant viral DNA is thought to 

be evidence of a relatively recent evolutionary event.

Project Introduction

Novel Virulence Determinants

Previous work in our lab involved genomic comparisons of H. pylori strains 

containing the cag Pathogenicity Island (cag PAI) with those that lacked the cag PAI.

We utilized DNA macroarrays containing 1,681 known H. pylori ORFs present in the 

genomes of the two cag PAI-positive sequenced strains of H. pylori (26695 and J99)

[33]. In the five cag PAI-negative strains used in this study, DNA failed to hybridize 

with 27 genes in addition to genes that comprise the cag PAI. Two of the genes that did 

not hybridize are HP 1079 (jhp0348) and HP 1078 (jhp0347) (as annotated in the 

sequenced H. pylori strains 26695 and J99). Both of these genes are currently classified
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as genes of unknown function, and both are thought to express hypothetical proteins. 

Neither of these genes have an ortholog in any other bacterial species to date, though 

HP 1079 does contain a highly conserved m otif seen in numerous bacterial ATP 

hydrolyzing enzymes. The presence of both HP1079 and HP1078 is strongly associated 

with the presence of the cag PAI, suggesting a potential role in virulence (Fig. 2b).

Gene specific screening for the presence of HP 1078 has proven difficult using PCR 

techniques due to the significant variability present throughout the gene between bacterial 

orthologs in the sequenced strains of H. pylori [33], However, ‘empty site’ PCR analysis 

of this region using primers to amplify sequences intervening HP 1080 and HP 1077 

(,nixA) yielded amplicons of sufficient size to contain both HP1079 and HP1078 from 

most cag PAI-positive isolates while much smaller amplicons resulted from most isolates 

lacking the cag PAI [33]. It was also noted that only large (~2kb) or small (~500bp) 

amplicons resulted, indicating that both genes are seemingly coupled, spatially in the 

genome and possibly in function as well (Fig. 2a). The presence of both genes might 

indicate a single insertion/deletion event in the evolutionary history of the bacterium. 

While the sequenced orthologs of HP 1079 appear quite similar, HP 1078 appears much 

more variable when comparing strains 26695 and J99 suggesting either a lack of 

functional constraints on the gene product or that multiple allelic forms exist as an 

adaptation to different host environments.
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Figure 2. Analysis of the HP1078-HP1079 locus in H. pylori clinical isolates. A,

Arrangement of the genes in the variable locus containing HP1079 and HP1078 are 

shown for two sequenced strains of H. pylori, 26695 and J99 (both cag PAI-positive). 

Black triangles represent locations of empty-site primers (5’

GCGGCG ATT AT GGAGCGGATTT G3 ’ and 5’ CGC AT GCTTT GCCCCT AGC AT G 3’) 

designed to amplify sequences found between the highly conserved genes HP1077 (nixA) 

and HP1080. Orthologous genes are represented by similar fill patterns and designated 

by the annotations of either Tomb et al. [136] for strain 26695 or Aim et al.[ 178] for 

strain J99. The annotated lengths of each open reading frame are shown in parentheses 

below the gene designation. Although HP1078 of strain 26695 and jhp0347  of strain J99 

are located in orthologous positions, the deduced amino acid sequences are only 41% 

identical and 47% similar (data not shown). B, Inward facing primers designed to anneal 

within the highly conserved genes HP1077 and HP1080 (see Fig. 2 A) were used to 

amplify intervening sequences from 9 representative H. pylori cag PAI-positive isolates 

(lanes 2-10) and 10 representative cag PAI-negative isolates (lanes 11-20). 1. 1 kb 

ladder, 2. 26695, 3. J99, 4. 92-25, 5. B125a, 6. B185 7. B186, 8. 87-33, 9. 84-183,10. 

B105, 11. J190, 12. B211 ,13. Tx30a, 14. 86-313,15. B80, 16. 92-28, 17. B166a, 18. 92- 

24, 19. J262, 20. B141.
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In the current study, we sought to determine the degree of variation at the 

HP 1079/HP 1078 locus between cag PAI-positive and cag PAI-negative H. pylori strains. 

While our previous study had demonstrated HP 1079 is highly associated with the 

presence of the cag PAI, we now present evidence that this gene is subject to phase 

variation based upon a poly adenosine tract. This gene was not previously recognized as 

a contingency gene under the control of phase variation. Additionally, the high level of 

sequence divergence between the sequenced orthologs of HP 1078, including the absence 

of a consensus ribosome binding sequence of the J99 ortholog, led us to speculate a 

process of gene decay was occurring at this locus. However, when we examined the 

locus for potential genetic decay by sequencing the region using bacterial genomic DNA 

obtained from isolates collected six years after the initial isolates were collected (strain 

J99), we observed almost no genetic variability between isolates. In addition, our results 

show that HP 1078 exists in two distinct allelic forms that are present in relatively equal 

frequency in our study sample of 73 North American clinical isolates of H. pylori. While 

a proposed role for HP 1079/HP 1078 in virulence awaits animal model studies, this locus 

is a potentially novel virulence associated locus based upon its association with cag PAI- 

positive H. pylori strains as well as the fact that it is subject to phase variable expression 

and the presence o f allelic variants.
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Bacterial Pseudogene Analysis

HP0938 (jhp0873) and HP0937 (jhp0872) are also classified as genes of unknown 

function, and have since been re-classified as pseudogenes [177]. They exist in nearly all 

H. pylori strains [30] regardless of cag PAI status. Using BLAST searches we found a 

single open reading frame (ORF) in several other microbes that shared homology with 

both of these genes, indicating that the full-length gene product may no longer exist in H  

pylori. The function o f the protein may potentially remain if the two pseudogenes work 

together as a dimer, however, this seems unlikely given the significant differences 

between the H. pylori strains examined, 26695 and J99. The HP0938/0937 locus in H. 

pylori strain 26695 strain appears to have a 322 bp deletion relative to the orthologous 

J99 locus. And the gene pair in strain J99 has a premature stop codon, resulting in the 

truncation of the ancestral gene. Given these observations, we hypothesize that two 

independent inactivation events have occurred within this conserved hypothetical protein- 

encoding gene. Potentially, this could be the result of strong evolutionary selection 

against this gene product in H. pylori. It could be argued that this gene product may have 

been detrimental to a pathogenic lifestyle and therefore was selected against in all H. 

pylori isolates observed. Alternatively, if the gene product was neutral, mutations in the 

gene would be entirely neutral and not reflect positive selection to eliminate protein 

function.

In this study, we attempted indirectly to ascertain whether this proposed full- 

length ancestral gene product was detrimental to a pathogenic lifestyle in H. pylori. The 

use of H. pylori as a model organism for this study is convenient given that, to date, no 

phage remnants and very few pseudogenes have been characterized in H. pylori, making
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it a novel model system for examining bacterial pseudogenesis. In comparing cag PAI- 

positive and cag PAI-negative isolates, the genomic data always demonstrated the 

presence of more then one protein-encoding gene in the region between the two highly 

conserved adjacent genes, yckJ  (HP0939) and proP  (HP0936). This supports the 

hypothesis that the presence of multiple pseudogenes at this locus was not driven by 

selection for virulence in H  pylori. It is worth noting, however, that in each of the 

subsequent strains examined, the ancestral gene appears to be not only inactivated, but 

also inactivated in novel and unrelated ways. It is tempting to speculate that some change 

in the environment in which H. pylori lives has resulted in selection against a full-length 

gene product, and this selection has been applied universally in unrelated strains. This 

led us to speculate that rather then pathogenesis, this ancestral gene product may hinder 

initial colonization or survival in the gastric environment. We attempted to re-introduce a 

full-length “functional” ancestral gene into H. pylori to determine if the presence of the 

product significantly affected colonization/survivability. Unfortunately, we have been 

unsuccessful in this approach to date as the methodology for this task has proven 

somewhat unreliable. However, we did further analyze the region using a collection of 

clinical isolates of H. pylori to determine how widespread the existence of this ancestral 

gene’s genetic decay was and whether any isolates shared an evolutionary history for this 

region.

34



METHODOLOGY

Bacterial Culture and Strains Used

Helicobacter pylori strains were cultivated on Trypicase Soy Agar II plates with 5% 

sheep blood (BBL) at 37°C and 5% CO2 . Genomic DNA was isolated by harvesting 24 

hour blood agar plate cultures of Helicobacter pylori in 0.9% NaCl. Cells were then 

lysed using sodium dodecyl sulfate (SDS) at a final concentration of 0.5% and the 

genomic DNA was extracted with cetyltrimethylammonium bromide/sodium chloride 

(CTAB/NaCl) [178]. Escherichia coli were grown in Luria-Bertani (LB) broth or agar 

with appropriate antibiotic (100 pg/mL ampicillin). 74 North American isolates of H. 

pylori were used in this study (41 cag PAI positive and 33 cag PAI negative), of which 

18 were from African-American patients. In addition, 10 African isolates (8 cag PAI 

positive and 2 cag PAI negative) were also used.

Molecular Techniques

Polymerase chain reactions were carried out at a total volume of 50 ul, containing IX 

Mg2+-Free Buffer (Promega), 2 mM M gC f (Promega), 0.8 mM dNTP mix (0.2 mM of 

each nucleotide), 400 ng of each oligonucleotide, 100 ng of template DNA, and 2 units of 

Taq DNA polymerase (Promega). Thermal cycling (Perkin Elmer GeneAmp 2400) 

conditions included a hot-start o f 5 minutes at 94°C followed by 30 amplification cycles 

and a final extension of 7 minutes at 72°C. Amplification cycles consisted of 

denaturation for 30 seconds at 94°C, annealing for 30 seconds at 3°C below the lowest 

oligonucleotide melting temperature, and extension at 72°C for one minute per kilobase
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of expected amplicon. All oligonucleotides used in this study can be found in Table 1. 

Oligonucleotide primers used to amplify HP1080-HP1077 were HP1080ES, and 

HP1077ES. Oligonucleotide primers used to amplify the two proposed allelic types of 

HP1078 were HP1078 A-Fwd, HP1078 A-Rev., HP1078 B-Fwd, and HP1078 B-Rev. 

PCR amplicons were cloned using the pGEM®-T Easy vector system and T4 DNA ligase 

(Promega). Plasmid DNA was purified using Qiagen Miniprep spin columns (Qiagen). 

Restriction digests were preformed via standard protocols [179].

Cloning

All plasmid constructs were created using the pGEM-T Easy vector system (Promega). 

Restriction enzymes were used to remove ~300bp of sequence from HP 1079 and insert a 

Chloramphenicol Resistance Cassette (Cat). Oligonucleotide primers used to verify the 

mutant plasmid were HP1079F(mut), and HP1079R(mut).

Sequencing.

DNA sequencing reactions were performed using the Big Dye V3.1 system (Applied 

Biosystems). The reactions consisted of 2 pi of Big Dye Terminator Mix, IX Big Dye 

Sequencing Buffer, 100 ng DNA, and 200-400 ng oligonucleotide in a total volume of 20 

pi. Inserts in pGEM®-T Easy-based plasmids were sequenced with both SP6 and T7 

vector primers (Promega), or with sequencing primers specific for the amplified region. 

The conditions for sequencing cycles consisted of a 5 minute hot start at 94°C followed 

by 30 cycles of 45 seconds at 94°C, 30 seconds at 50°C, and one minute at 60°C. Dye 

Terminator Removal spin columns (Edge Biosystems) were used to purify sequencing
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reactions, which were then dried via Speed Vac for between 30 and 45 minutes. 

Sequencing reactions were resolved using an ABI 3100 Avant Genetic Analyzer 

sequencer (Applied Biosystems). Analyses of sequencing results were analyzed with 

Sequencing Analysis 5.1.1 (Applied Biosystems) and MacVector 7.0 (Oxford Molecular) 

software.
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R egion A m plified Primer Designation Primer sequence

1079-1078 region HP1080ES
HP1077ES

1078 - Allelle A 1078 A-Fwd
1078 A-Rev

1078 - Allele B 1078 B-Fwd
1078 B-Rev

1079 Cat insertion site HP1079F(mut)
HP1079R(mut)

0938-0937 region HP0939ES
HP0936ES

5 ’-CGCCCAAAGCCATTCAAGAGGTGG-3 ’
5 ’ -CC AT AGGCGTTTTTGCCTTGTT GGGTG AG-3 ’

5 ’ -GCTT G AAATTG AAAAAT ACGAT AAAAC AC-3' 
5 ’ -MTTTGTRTCCC AYKTGTATTGG AAA-3'

5’-ACCAAGAAAGCG ATGC AGG-3 ’
5 ’ -GCCCTAG AAAATTTTTAAGGGG-3 ’

5’ -CACCAACAGCTATTTCACGC-3’
5’ -CTCATAGTCTTTATCCGC-3 ’

5' -AAAAGCGAACGCCAGCTATG-3'
5’ -GGGCTAAGCGTGTTTGGGAA-3'

Pseudogene repair HP0938R 
HP0938R Mut 
HP0938F Mut 
HP0938F 
intrgnc j99 
stpcodnfix 
smalmut j99

5’ -CACAGCGACGCCTTGACAAATCC-3'
5’ -TGGTCTTGCCCCATGTTTGAAAAGCC-3'
5' -ACATGGGGCAAGACCAGGTGCTAAAAAC-3'
5' -CCTAACGCTTATGAAGAGAAGCG-3'
5 '-pGTTT AAT GAT AAAAAAGATCTAAT AACCC ACTTTTT-3' 
5' - pCTTTT C AAAC AT GGGGC AAG ACC AGGT GCT AA-31 
5' - pAAAAAGATAGAATAACCCGGGTTTTGAACGCTAA-3’

Knockin repair jhp874F
jhp874R

5' -TCGCACAGCAAAAAGCGAACGCC-3' 
5’ -TAAGCCCCATGCTATCCACGCC-3'

Table 1. Oligonucleotide primers used in the genetic analysis and knockout/knockin 
studies.
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Allelic and Phase Variation in a cag Pathogenicity Island (PAI) 
Covarying Locus in Helicobacter pylori

RESULTS

HP1080-1077(«dg4) Empty Site Analysis. PCR analysis was performed using 37 H. 

pylori isolates (18 cag PAI-positive and 19 cag PAI-negative) using primers based upon 

open reading frames flanking the HP1079/HP1078 locus. These genes (HP1080 and 

nixA) were previously demonstrated to be present in the vast majority of H. pylori 

isolates, regardless of cag PAI status [33]. This procedure distinguished isolates 

possessing an ‘empty-site’ (a 500 bp amplicon indicating the absence of HP1079/1078 

between the HP 1080 and nixA genes) from isolates possessing the HP 1079/1078 pair ( ~ 

2,400 bp amplicon). Large amplicons (~2.4kbp) were generated from 14 of 18 (77%) 

cag PAI-positive strains but only 2 of 19 (11%) cag PAI-negative strains. The smaller, 

empty-site sequences (~500bp) were amplified from only 1 of 18 (6%) cag PAI-positive 

strains but from 16 of 19 (84%) cag PAI-negative strains. A sampling of these results are 

presented in Figure 2b.

The region intervening HP 1080 and nixA was sequenced from two cag PAI- 

positive strains that yielded large amplicons (isolates B105 and J166), one cag PAI- 

positive strain that yielded a small empty-site sequence (isolate B125), one cag PAI- 

negative strain that yielded a large amplicon (isolate B177), and one cag PAI-negative 

strain that yielded a small empty-site sequence (isolate 92-28). Sequencing was carried 

out using the cloned PCR products as templates and both strands were sequenced. The

39



large empty site sequences from the cag PAI-positive isolates contained two complete 

open reading frames. The amplicon generated from the cag PAI-negative isolate 

possessed HP 1079 as a mutant pseudogene. BLAST results indicated strong homology 

between each of these ORFs and their corresponding genes (HP 1079 and HP 1078) found 

in both sequenced H. pylori strains (26695, J99). The small empty site sequences were 

found to contain no protein encoding sequences in the short intervening region separating 

the genes HP 1080 and nixA.

We compared sequenced regions intervening HP 1080 and nixA in 26695, J99, 

B105, and J166 at the nucleotide and predicted amino acid level. While HP 1079 is quite 

well-conserved among these four cag PAI-positive strains, HP 1078 demonstrated 

significant diversity between strains. An order of relationship was determined in which 

HP 1078 alleles in strains 26695 and B105 appear highly similar at the predicted aa level 

and the HP 1078 orthologs in J99 and J166 appear to be quite similar. This suggested the 

possibility of at least two distinct allelic variants of this cag co-varying locus. Taken 

together with our empty-site PCR data, these findings indicates that large empty site 

sequences, found predominantly in cag PAI-positive strains, contain both the HP 1079 

and HP 1078 loci, and that significant sequence variation exists among HP 1078 alleles.

HP1079 and HP1078 are stable over six years within a single host. Because of the 

significant alteration in nucleotide sequence around the 5’ end of the HP 1078 ortholog in 

strain J99 (annotated as jhp0347 in the J99 database [180]) including the apparent 

absence of a ribosome binding site, we entertained the possibility that this was a non-
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10 20 30
J99 HPT0 7 8  (Astra-Zeneca) M C I I F D A D I K K E N Q E S D A G F D N K L K H I R E K
C3 HP 1078 M C I I F D A D I K K E N Q E S D A G F D N K L K H I R § K
C6 HP 1078 M C I I F D A D I K K E N Q E s D A G F D N K L K H I R E K
CIO HP!078 M C I I F D A D I K K E N Q E s D A G F D N K L K H I R E K

M C I I F D A D  I K K E N Q E S D A G F D N K L K H  I R E K

40 50 60
J99 HP!07 8 (Astra-Zeneca) F K E K G T D F P K E Q I F L F P N N Q D D G D L E T L L L
C3 HP 1078 F K E K G T D F P K E Q I F L F P N N Q D D G D L E T L L L
C6 HP 1078 F K E K G T D F P K E Q I F L F P N N Q D D G D L E T L L L
CIO HP1078 F K E K G T D F P K E Q I F L F P N N Q D D G D L E T L L L

F K E K G T D F P K E Q I F L F P N N Q D D G D L E T L L L

70 80 90
J99 HP!078 (Astra-Zeneca) E I A K H D E F L K C F E G Y L E C I K S K E H Y K P I K N
C3 HP 1078 E I A K H D E F L K C F E G Y L E C I K S K E H Y K P I K N
C6 HP 1078 E I A K H D E F L K c F E G Y L E C I K S K E H Y K P I K N
CIO HP1078 E I A K H D E F L K c F E G Y L E C I K S K E H Y K P I K N

E I A K H D E F L K c F E G Y L E C I K S K E H Y K P I K N

100 110 120
J99 HP 1078 (Astra-Zeneca) I R K N M L Y A Y L E A L G L E N L T K T N I D V F D s K G
C3 HP 1078 I R K N M L Y A Y L E A L G L E N L T K T N I D V F D S K G
C6 HP 1078 I R K N M L Y A Y L E A L G L E N L T K T N I D V F D s K G
CIO HP!078 I R K N M L Y A Y L E A L G L E N L T K T N I D V F D s K G

I R K N M L Y A Y L E A L G L E N L T K T N I D V F D s K G

130 140 150
J99 HP 1078 (Astra-Zeneca) K I K S R Y E E N Y K K L T E E V I D F S S N S L I P L K N
C3 HP 1078 K I K s R Y E E N Y K K L T E E V I D F S s N S L I P L K N
C6 HP 1078 K I K s R Y E E N Y K K L T E E V I D F S s N S L I P L K N
CIO HP1078 K I K s R Y E E N Y K K L T E E V I D F s s N s L I P L K N

K I K s R Y E E N Y K K L T E E V I D F s s N s L I P L K N

160 170 180
J99 HP 1078 (Astra-Zeneca) F L G Q F A E N K Q K T N P K I F |
C3 HP 1078 F L G Q F A E N K Q K T N P K I F
C6 HP 1078 F L G Q F A E N K Q K T N P K I F
CIO HP!078 F L G Q F A E N K Q K T N P K I f |

F L G Q F A E N K Q K T N P K I F . .

Figure 3. HP 1078 is genetically stable over six years within a single host. The

predicted amino acid sequences encoded by HP 1078 from the initially characterized 

clinical isolate J99 and three re-isolates (C3, C6, and CIO) recovered from the corpus 

biopsy of the original patient six years later. Only a single, non-synonymous mutation 

was observed in one of the re-isolates.
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functional ortholog in strain J99. To begin to address this possibility, we performed PCR 

and sequencing analysis on the HP1080-/ftxH intervening sequence from three re-isolates 

of J99 (c3, c6, clO), recovered from corpus biopsy material from the original host 

approximately six years after the original isolation of strain J99 [28]. Of the three re- 

isolates, only a single non-synonymous mutation resulting in a predicted amino acid 

change occurred in HP 1078 in one of the three re-isolates compared to the same ORF in 

the original J99 sequence (Fig. 3). Examination of the sequence of HP1079 revealed few 

mutations, all of which were synonymous mutations thus having no affect on the 

resulting predicted amino acid sequence. Although only six years after isolation of the 

original H. pylori strain J99, these data may suggest that both genes at this locus may 

remain under selective pressure due to constraints upon the gene products.

HP1079 is a phase variable gene. Comparative analysis was conducted for both 

the HP1079 and HP1078 orthologs from the cag PAI-positive isolates B105, B140, B258, 

and J166, which were determined during the current study, as well as the orthologs from 

26695 and J99. In addition, the unusual strain, B177, which is one of the few cag PAI- 

negative isolates in our study to possess the HP 1079/1078 orthologs was examined. All 

sequenced orthologs of HP 1079 appear to share the same start codon and all are highly 

homologous with each other at the nucleotide level. Overall, HP 1079 was found to lack 

much variation between strains with two notable exceptions. The first significant genetic 

variation is found approximately 403bp downstream of the start codon of HP 1079 (Fig. 

4). A poly-A track exists here and in four of the strains sequenced, the length of this
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Figure 4. The cagA covarying gene HP 1079 is phase variable. Nucleotide sequences 

of an internal portion of HP 1079 orthologs of six different cag PAI-positive H. pylori 

isolates are shown (B258, B140, 26695, B105, J99 and J166). This region encodes from 

the highly conserved lysinem to lysineiso. The full-length HP1079 alleles in strains 

26695 and J99 encode gene products of 370 and 381 amino acids, respectively. The poly 

adenosine region showing phase variation is indicated with an asterisk and the deletion of 

a single nucleotide within this region in strains B258 and B140 are indicated by dashes.
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homo-polymeric repeat numbers eight while in strains B140 and B258, this repetitive 

tract exists as seven adenine nucleotides (Fig. 4). The resulting frame shift in strains 

B258 and B140 causes the formation of an in-frame stop codon resulting in a predicted 

truncated gene product for HP 1079.

Similarly, another, smaller, poly-A tract exists approximately 855bp downstream 

of the HP 1079 start codon. In this instance, the poly-A region is five bases long in four 

isolates while in the fifth isolate (isolate B177) six adenines are present (data not shown). 

An in-frame stop codon exists 15 base pairs downstream of this sixth adenine in B 177 

while the remaining strains continue from 270bp to 300bp downstream before 

encountering a stop codon. The presence of this apparent slip-strand mispairing event 

leading to a frame-shift mutation in two cag PAI-positive isolates of the seven strains for 

which we have sequence data at this locus indicates that this particular locus is phase 

variable. The apparent divergence seen in the poly-A track in isolate B177 may simply 

indicate that the gene is no longer functionally relevant in a cag PAI-negative 

background, thereby allowing mutation without the presence of negative selection.

HP1078 allelic variation can be divided into two types. A collection of 36 North 

American H. pylori clinical isolates, with records containing patient backgrounds and cag 

PAI status [181] were used in our blind study. Based upon our demonstrated sequence 

diversity in HP 1078 among isolates sequenced in the earlier part of this study, we 

performed PCR analysis on these 36 H. pylori isolates (23 cag PAI-positive and 13 cag 

PAI-negative) using primers whose design was based upon consensus HP 1078 sequences 

found in strains 26695 and B105 (designated allele A) and in strains J99 and J166
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Figure 5. The cag PAI covarying gene HP1078 exists as two major allelic variants.

The predicted amino acid sequences encoded by HP1078 from four cag PAI-positive H. 

pylori strains, 26695, B105, J99, and J166 are shown. Helicobacter pylori strains 26695 

and B105 possess the allelic variant designated type A while strains J99 and J166 possess 

type B alleles. Allele specific oligonucleotides (Table 1) were designed to differentiate 

isolates containing either of these alleles. Arrows ending with solid circles and the letter 

A indicate the approximate portion of the predicted gene product encoded by the binding 

oligonucleotide sequence for HP 1078 allele A and likewise arrows ending with open 

circles and the letter B indicate the approximate binding for HP 1078 allele B specific 

oligonucleotides. Note that the allele B “specific” reverse oligonucleotide is, in fact, not 

specific for allele B. The specificity of this amplicon in typing PCR relies upon the 

allelic specificity of the HP 1078 allele B forward primer.

46



10 30
26695 HP1078 M A D K E I L I F V E G P s D K V F L E V Y L Y F L E R F P
B105 HP1078 M A D K E I L I F V E G P s D K V F L E V Y L Y F L E D L P
J99 HP1078
J166 HP1078

M A D K E I L I F V E G P s D K V F L E V Y L Y F L E P

40 © - H ►
po

26695 HP1078 I K N F K V Q N V D G K D N L S K R L L E I E K Y D K T L. I
B105 HP1078 I K N F K V K D V K G K D N L S K R L L E I E K Y D K T L I
J99 HP1078 M C I
J166 HP1078 M C I

I K N F K V V G K D N L s K R I. L E I E K Y D K I

(B> H ► 90
26695 HP1078 I F D A D K D Y E S N K K E I L K I V S E s
B105 HP1078 V F D A D N Y K S N K K E I L T V V S K T
J99 HP1078 I F D A D I K K E N Q E S D A G F D N K L K H I R E K F K E
J166 HP1078 I F D A D I K E E N Q E S D A G F D N K L K H I R K E F K E

I F D A D E N Q E S D A G F N K K

100 120
26695 HP1078 K Q T I S E - E Q I F L F P N N Q D D G D L E T L L L K I A
B105 HP1078 K Q T I S E - E Q I F L F P N N Q D D G D L E T L L L K I A
J99 HP1078 K G T D F P K E Q I F L F P N N Q D D G D L E T L L L E I A
J166 HP1078 K G I D F P K E 0 I F L F P N N 0 D D G D L E T L L L E I A

K T K E Q I F L F P N N Q D D G D L E T L L L I A

130 150
26695 HP1078 N H K E F I N C F E S Y L D C I K K K E H Y K P I K N I R K
B105 HP1078 K H D E F L K C F E G Y L E C I K S K E H Y K P I K N I R K
J99 HP1078 K H D E F L K c F E G Y L E c I K S K E H Y K P I K N I R K
J166 HP1078 R H D E F L K c F E R Y L E c I K N K E H Y K P I K D I R K

H D E F L K c F E Y L E c I K K E H Y K P I K N I R K

160 180
26695 HP1078 S K W Y A Y L E A L G L E K F F 0 Y T W D T K K K N N K K K
B105 HP1078 N M L Y A Y L E L F E L E K F F Q Y K W D T N N K K N E E K
J99 HP1078 N M L Y A Y L E A L G L E N L T K
J166 HP1078 N M L Y A Y L E A L G L E N L T K

N M L Y A Y L E A L G L E K F F Q Y w D T K N K

26695 HP1078 L I I D D
B105 HP1078 I T I D D
J99 HP1078 T N I D V
J166 HP1078 T I I D V

I D
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J99 HP1078 
J166 HP1078

190
K D - - G D E I E I K D
K - - - G K .  .  . I K E
F D S K G K .  .  . 1 K S
F D S K G K .  .  . I K E

D S K G K E  I E I K

210
Y K G D Y E E L - K K V
H K E E Y E K L - K E V

Y E E N Y K K L T E E V
H Q E E Y E K L - K E V

E Y E K L T K E V

L D L N S K S L I P L K N F L G Q F A E N N 0 K T N P K I F
I D F N s N s L I P L K D F L G Q F A K N
I D F S s N s L I P L K N F L G Q F A E N K Q K T N P K I F
I D F N s N s L I P L K N F L G Q F A E N N Q K T N P K I F
I D F N S N S L  I P L K N F  L G Q F A E N N Q K T N  P K  I F
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(designated allele B) (Fig. 5). We hypothesized that our previous inability to consistently 

amplify HP 1078 sequences from a variety of H. pylori isolates [33] was due to allelic 

variation at this locus. In the current study, HP 1078 sequences (either allele A or B) were 

amplified from 22 of 36 (61%) of these North American isolates (Fig. 6). Empty-site 

PCR was conducted on these same 36 strains for the HP1080-m'xH region as described 

previously. Large empty site sequences were found in 25 of 36 (69%) isolates and the 

presence of an allele of HP 1078 largely corresponded with the presence of the cag PAI 

(Fig. 2b).

In our HP 1078 PCR analysis, we expanded our data set to include an additional 

strain collection used previously in the lab in characterizing the presence or absence of 

HP 1079 and HP 1078 by comparing the resulting sizes of the HP1080-z?z'xH amplicon, as 

discussed previously. When combined with the data from our ‘blind strain’ collection, 

we found that only 3 of 51 (6%) cag PAI-positive isolates that contained the ~2.4kb 

HP1080-z?zxH PCR amplicon failed to yield an HP 1078 specific amplicon with either set 

of allele specific oligonucleotides. These were isolates B140, B256, and B329. This 

locus from isolates B140 and B256 was sequenced and found to possess alleles of 

HP 1078, however, minor sequence variations could be found to explain the failure of the 

polymerase chain reaction in these cases. These alleles are minor variants of HP 1078 

allele type A and do not rise to a level representing a third HP 1078 allelic type. Our set 

of allele specific HP 1078 oligonucleotides was successful at amplifying HP 1078 

sequences from 48 of 51 (94%) isolates yielding a large HP1080-z?zxH empty site 

amplicon (data not shown). We found no isolate from which we could generate a 

HP 1078 amplicon with both sets of allele specific oligonucleotides (Fig. 6). We
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Figure 6. Allelic variation in HP1078 among clinical isolates. HP 1078 allelic typing 

PCR was performed on a collection of 36 H. pylori isolates [181]. 19 of the 23 cag PAI- 

positive isolates (83%) possessed one of the two possible alleles of HP1078, but only 

three of 13 cag PAI-negative isolates (23%) possessed one of the two alleles. Nine of 23 

cag PAI-positive isolates (39%) possessed HP1078 allele A while 10 of 23 of these 

isolates (43%) possess allele type B. None of the H. pylori isolates generated amplicons 

with both primer pairs.
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cagA positive 
n=23

HP1078 allele type 
A (26695-type).

6 7 1 2 1 3  16

cagA negative 
n=13

'urk ☆  ☆  ☆ ☆ ☆☆ ★ ☆ ☆  ★ ☆ ★ ★
HP1078 allele type 
B (J99-type).
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conclude that in the H. pylori isolate cohort examined, the variability seen could be 

characterized by the presence of two distinct allelic forms of HP 1078.

Comparative sequence analysis o f the HP 1078 locus from the seven H. pylori 

isolates was conducted. Strong homology appears to exist between three of these strains 

(26695, B105, and B140) and between another three of these isolates (J99, J166, and 

B177). The remaining strain, B258, contains a stop codon approximately 360 bp 

downstream of its start codon, while the HP 1078 ORF from each o f the remaining strains 

continues for approximately another 360 bp. The sequence immediately following the 

premature stop codon in B258 remains highly similar to the 3' ends of HP1078 alleles A 

and B in 26695 and J99. It is interesting to note that the cag PAI-positive isolate B258 

appears to have both an inactivated HP 1079 and an inactivated HP 1078 as well. It is 

tempting to speculate that this could indicate that the loss of one gene product might 

render the other gene dispensable due to a possible cooperative action of the two gene 

products. Immediately after the apparent gene-inactivating mutation in HP 1078 in isolate 

B258, the sequence runs through the HP1078 stop codon found in 26695 and into nixA. 

This may be interpreted as further evidence of the loss of function in HP 1078 in this 

isolate. Taken together, our data indicates that HP1078 is subject to allelic variation 

among isolates and that variation appears to be defined by two major allelic types that we 

designate HP 1078A and HP1078B.

HP1078 allelic variation across racial demographics. Of the 22 isolates from North 

American patients possessing HP1078, 44% (14/22) possess allele type A while 56% 

(18/22) possess allele type B (Table 2). Among the 16 isolates from African-American
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North American African

cagA+
(n=39)

cagA-
(n=33)

cagA+
(n=8)

cagA-
(n=2)

HP 1078 
(either allele) 32 (82%) 6(18% ) 8 (100%) 1 (50%)

Allele A * 
Allele B **

14 (44%) 
18 (56%)

2 (33%) 
4 (67%)

1 (12%) 
7 (88%)

1 (100%) 
0 (0%)

* - # (%) o f hp 1078 positive isolates possessing Allele type A (26695-like)
** - # (%) o f hp 1078 positive isolates possessing Allele type B (J99-like)

Table 2. Distribution of HP1078 Alleles. Strains are broken down by their geographic 
location as well as their potential virulence as determined by the presence o f the cag 
Pathogenicity Island.
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patients demonstrated to possess HP 1078, 44% (7/16) were of allelic type A and 56% 

(9/16) of allelic type B compared to 50% allelic type A and 50% allelic type B seen in 

Caucasians. We also screened 10 isolates from patients from continental Africa (8 cag 

PAI-positives, 2 cag PAI-negatives), and found that 9 contained either an A or B allelic 

type of HP1078. Of the cag PAI-positive isolates, 7 (88%) typed positive for allele B 

while only 1 (22%) typed positive for allele A. Of the cag PAI-negative isolates, 1(50%) 

typed positive for allele A, and the remaining cag PAI-negative isolate did not appear to 

possess either HP 1078 allelic type in our assays, suggesting the presence of even more 

allelic types. Thus data appears to show no substantial evidence for the predominance of 

one allelic type over the other when comparing isolates from North American Caucasians 

and African Americans (Fig. 7). It does, however, hint at a possible predominance of the 

B allele type in South African populations. Larger numbers of isolates from sub-Saharan 

Africans will be necessary to give this suggestion greater credence.
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Figure 7. HP1078 allelic variation across racial demographics. 89% (16/18) isolates 

from African Americans possess an allele of H P1078 (44% allele A and 56% allele B). 

33% (6/18) isolates from Caucasians possess an allele of HP1078 (50% allele A and 50% 

allele B) however, 83% of isolates from African-Americans were cag PAI-positive while 

44% of those from Caucasians were cag PAI-positive.
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Identification and Analysis of a Genetic Locus Undergoing 
Genetic Decay Simultaneously in Divergent Strains of

Helicobacter pylori

RESULTS

HP0938-0937 locus shows evidence of extensive genetic decay. Homology screens 

conducted via BLAST searches closely matched the H. pylori strain 26695 genes HP0938 

and HP0937 with portions of a single open reading frame (ORF) found in numerous other 

bacterial species. PCR analysis of the hypothesized pseudogenes HP0937/HP0938 was 

carried out on two cag PAI-negative strains (194a and J68) and two cag PAI-positive 

strains (B238 and J166). Primers HP0939 ES and HP0936 ES were used to amplify the 

sequence intervening the conserved genesproP  (HP0936) andycAT (HP0939).

Amplicons (~2kbp) were generated and cloned into pGEM T Easy and both strains 

sequenced. Sequences were then compared with each other as well as with 26695 and 

J99 sequences using Mac Vector sequence analysis software.

The resulting annotation of all orthologs of HP0937 and HP0938 are shown in 

Figure 8. The proposed ancestral gene that appears to still remain intact in the bacteria 

Campylobacter jejuni and Bacteroides thetaiotaomicron (closely and distantly related to 

H. pylori, respectively) is also shown for comparison. Comparison of these sequences 

suggest that HP0937 and HP0938 share significant sequence homology with many other 

bacterial species, however, the homologous sequences exist as a single gene of unknown 

function in all other species possessing the homolog. This suggests that HP0937 and 

HP0938 are, in fact, pseudogenes in Helicobacter pylori. Variation can be seen among 

these isolates in regard to the appearance of stop codons in this region, as well as a 322bp
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deletion in the 26695 sequence, indicating that the genesis of this potential pseudogene 

was unique in each strain examined. We hypothesize that selection against this ‘gene’ 

developed relatively

recently. Alternatively, the simple absence of a functional constraint upon the gene 

product may have allowed this accumulation of mutations. The fact that their apparent 

patterns of pseudogenesis are so dissimilar indicates that the selective pressure occurred 

subsequent to the divergance of these strains from their last common ancestor. However, 

despite this, the sequence for each isolate is relatively well conserved over the 3’ half of 

the locus, possibly suggesting that this sequence still may have a functional protein 

associated with it, despite the apparent loss of its 5’ coding sequence.

We hypothesized that the function of the original gene product may have proven 

detrimental to H. pylori due to a change of host environments or the acquisition of 

virulence determinants that brought about a more pathogenic lifestyle. This has been 

shown to be the case in numerous bacteria, the best known being a deletional event 

characterized in cadA in Shigella [157]. Helicobacter acinonychis, a Helicobacter 

thought to have derived from H. pylori and found in the stomachs of large cats, shows 

severe degradation of its vacA gene [182]. Neisseria meningitidis and Neisseria 

gonorrhoeae both contain the locus containing the porin encoding porA gene, however, 

only N. meningitidis expresses the protein, due to the fact that N. gonorrhoeae strains 

contain multiple frameshift mutations at this locus including mutations in the promoter 

element that effectively prevent transcription from occuring [183]. In the current study, 

we demonstrated both cag PAI-positive and cag PAI-
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Figure 8. Com parative Analysis of HP0938-O937 and its proposed ancestral 

homolog. The locus is shown here in four cag-PAl positive H. pylori strains and two 

cag-PAI negative H. pylori strains. Boxed regions indicate open reading frames 

predicted by the presence of start and stop codons, while lines indicate sequence between 

the ORFs. The homologous regions in Bacteroides thetaiotaomicron and Campylobacter 

jejuni represent the proposed ancestral gene. Despite the apparent genetic degradation in 

all H. pylori strains examined, there remains a large amount of conservation on the 3 ’ end 

of this locus, indicating a potential selective purpose for its continuing presence in the 

genome.
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negative H. pylori isolates contain early stop codons compared with the hypothetical, 

full-length, ancestral homolog present in numerous other bacteria. This contradicts our 

earlier hypothesis that the original function of the ancestral gene product was eliminated 

due to an incompatibility with a more virulent lifestyle. It does, however leave open the 

possibility that, rather than virulence, optimal colonization of the host stomach may have 

brought to bear the selective pressure that resulted in the strain-specific pseudogene 

remnants of the ancestral gene.

In order to test the hypothesis that colonization and/or virulence may be affected 

by the presence of the full-length ancestral homologue of HP0938-0937, we attempted to 

restore the ancestral gene’s ability to encode a complete and functional product. H. 

pylori strain J99 provided the best chance of successfully repairing the ancestral gene, 

due to the fact that its inactivation appears to be the result of a single base pair switch, 

resulting in a premature stop codon (CAA to TAA) that interrupts the coding sequence 

approximately in the middle of the hypothetical protein.. We are currently undertaking to 

repair this single base pair using oligonucleotides that would change the single base pair 

and also introduce a novel restriction site into the intergenic region between HP0938 and 

HP0939, allowing for confirmation of our construct.
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DISCUSSION

Identifying novel genes that may be involved in virulence and host colonization is 

of great importance in the study of bacterial pathogenesis. Previously identified and 

categorized virulence determinants are quite useful for co-localization studies that use 

them as markers while searching for other potential virulence determinants, especially in 

isolates obtained from patients with known pathologies. Both the genes HP 1079 and 

HP 1078 described here appear to be in linkage disequilibrium with a major virulence 

determinant in Helicobacter pylori, the cag Pathogenicity Island {cag PAI). These two 

genes have no homologs in any known bacterial species; however HP 1079 does contain a 

highly conserved motif found widely among bacterial ATP hydrolyzing enzymes. We 

found that HP 1079 was highly conserved among H. pylori isolates. We also showed it to 

be phase variable and the adjacent ORF, HP 1078 appears to exist in at least two distinct 

allelic forms.

Regulation of gene expression throughout the colonization and infection of a 

pathogen is critically important. Phase variation provides a mechanism by which bacteria 

can produce populations containing a mixture of microbes possessing the same genes but 

expressing those genes either in the ‘on’ or ‘o ff  positions. It is beneficial to a pathogen 

to have these contingency genes in both the ‘on’ and the ‘o ff  phases in subpopulations 

simultaneously, especially in environments where the selective advantage of a 

contingency gene expression is often short-lived. Genes conferring enhanced pathogenic 

abilities to bacteria are often found to be regulated by phase variation [106, 184, 185]. A 

previous study from our lab demonstrated that HP 1079 is present significantly more 

frequently in H. pylori isolates possessing cagA (PAI). In our current study, we have
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documented a homopolymeric region in HP 1079 where phase variation occurs due to 

slip-strand mispairing. This hypermutable sequence exists as a poly-adenosine tract 

approximately 403 bp downstream of the start codon. Two of the five isolates that we 

sequenced in this study were found to have a single adenine deletion in this region 

resulting in a frame shift mutation and the subsequent introduction of an in-frame stop 

codon well before the ‘normal’ stop codon.

We originally aimed to directly examine HP1079’s potential role as a virulence 

determinant and investigate its possible involvement in host colonization and 

pathogenesis. A plasmid was constructed consisting of a truncated HP 1079 gene 

interrupted with a Chloramphenicol Acetyl Transferase (CAT) gene to determine if the 

removal of this gene in a cag PAI-positive strain is detrimental to 

colonization/pathogenesis. We introduced our plasmid to H. pylori in the hopes that 

through natural transformation, the plasmid would be taken up and due to homologous 

recombination, our HP 1079 construct would be effectively transferred to the bacterium. 

Transferring the bacteria to selection plates afterward would allow for the mutants to be 

isolated and PCR in addition to sequencing of the HP 1079 locus would confirm our 

knock out. To date, this experiment has proven unsuccessful, although efforts to obtain 

this important mutant are continuing.

HP 1079 has not previously been identified as a contingency gene. We 

hypothesize that the phase variation of HP 1079 may indicate its involvement in the 

interaction with the host. Coupled with the fact that HP 1079 exists in linkage 

disequilibrium with the cag PAI, we hypothesize that this gene product may be an 

uncharacterized factor involved in virulence. We continue to believe a mutant knockout
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for HP 1079 is achievable and that characterization of any associated phenotype with this 

mutant remains worthy of pursuit. Animal models such as Mongolian gerbils could be 

used to examine colonization and virulence effects in the knockout. In addition, placing 

HP 1079/HP 1078 genes into strains naturally lacking both HP 1079 and HP 1078 may 

allow us to examine the potential selective pressures at work within the genomes of less 

virulent strains of H. pylori.

The high degree of variability found between the two orthologs of HP 1078 in the 

completely sequenced and annotated H. pylori strains was also investigated further in this 

study. The re-isolation of H. pylori from the original host of one of the completely 

sequenced strains (J99) allowed us the opportunity to examine any possible variability 

occurring within a six-year period in this particular strain [28]. After finding virtually no 

variation between the recent H. pylori isolates and the original, sequenced strain, we 

speculated that an evolutionary pressure may be present and acting to prevent significant 

genetic change from occurring in this gene. An alternative hypothesis would be that six 

years is an insufficient period of time for the accumulation of mutations, even in a gene 

whose product has been removed from functional constraints. Our subsequent PCR 

analyses and sequencing of the HP 1079/HP 1078 locus from several other H. pylori 

clinical isolates suggested the existence of a least two major allelic forms of the HP 1078 

gene. We attempted to determine whether either of these allelic types tended to be 

present more often in strains associated with more severe peptic ulcer disease. Currently, 

our findings indicate no such link between host clinical outcomes and HP 1078 allelic 

type (data not shown).
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When comparing isolates from African-Americans with those from Caucasians, 

we did find significantly more African-Americans possessed an HP 1078 allele, however, 

this is likely due to the fact that significantly more of the isolates from African-American 

patients were cag PAI-positive (Fig. 5-6). A small pilot study comparing allelic variation 

in strains obtained from patients in continental Africa did find that 9 out of 10 strains 

tested positive for either allelic type of HP 1078 and that allelic type B seemed to be the 

dominant allelic form present in that group (Table 2). The presence of multiple allelic 

forms often indicates a selective element present in the environment. In the case of 

pathogens, multiple allelic types may indicate an adaptation that confers increased 

survivability in differing host environments. Whether allowing for better defense against 

a host’s immune response or higher binding affinity for a given cell type, allelic variation 

is often a sign of microbes adapting to their environment within their given host [105,

106, 186]. While we have currently been unable to correlate varying HP 1078 allelic types 

with a specific selective pressure, the fact that HP 1078 (as well as the adjacent HP1079) 

co-vary with the cag PAI indicates a potential role in virulence.

Understanding the various conditions and mechanisms involved in the emergence 

of bacterial pathogenesis is important if  we wish to develop novel treatments for disease. 

From an evolutionary standpoint, tracking the emergence of a pathogen from a more free- 

living bacterium can show us commonalities among pathogens that may potentially lead 

to a better understanding o f pathogenesis as a whole and the selective pressures that lead 

to the creation of more pathogenic microbes. Pseudogenes, while relatively rare in 

bacteria, can provide us with a partial snapshot of the evolutionary history of a 

developing microbe. Through careful analysis, previously protein-coding DNA can tell
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us a great deal about an emerging pathogen; its rate/method of removal of foreign DNA, 

potential changes in its developing environment, co-existence and encounters with 

bacteriophages, and much more.

HP0937 and HP0938 appear to be the remnants of a single ancestral gene that 

continues to exist today as a single gene in numerous other bacterial species. Upon 

examining this genetic region among six different H. pylori clinical isolates, the region 

appears to suffer from dramatic genetic decay. What is even more striking is that no 

apparent grouping of the six strains could be created to explain the genetic damage over 

the course of time. This indicates to us that this region began degrading in numerous, 

unrelated strains independently, as none of the ancestral genes examined appear to be 

inactivated in the same way (Fig. 7). Assuming that the initial colonization of humans by

H. pylori was a single evolutionary event, these findings indicate that this gene may have 

been inactivated only after the initial colonization of humans by H. pylori. Reasons for 

this lag in selection are not immediately apparent and further examination of this locus is 

necessary.

In order to approximate the rate of change in this pseudogene region, isolates can 

be examined over a period of time in order to identify conserved and plastic regions. An 

experimental approach similar to that carried out for the HP 1079/HP 1078 locus in J99 

isolates taken from a patient six years after the initial microbes were isolated and 

characterized to examine the degradation of this locus. Our strain selection may be 

biased as each of the H. pylori clinical isolates used in this study was from North 

America. A more robust genomic analysis of this region using numerous strains from
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distinct geographic regions would eliminate the possibility that what we have described 

here was only a localized event.

The fact that remnants o f this apparently non-functional gene remain in the 

genome may suggest that either the inactivation of this gene was a rather recent 

evolutionary event, or that some form of selection continues to act on this genetic region, 

preventing its complete removal from the genome. This may be due to the proximity of 

critical sequences such as nixA or potentially HP 1079. Unless a deletion event removes 

HP 1078 without altering a sequence under positive selection, this event would be very 

rare. It may be possible that the products of the hypothetically fragmented ORFs are 

capable of functioning as dimers/trimers and continue to have a functional role in H. 

pylori. In order to address these questions, we must first generate some basic information 

concerning the hypothetical protein(s) itself.

Our current hypothesis is that the ancestral homolog of HP0937-0938 in H. pylori 

has undergone strong selection in order to eliminate the gene product from the proteome. 

If our knockout studies show no apparent deficiency in colonization or pathogenesis, then 

it would be helpful to determine if restoring the function of this pseudogene was 

detrimental to the bacterium and under what conditions. Successfully repairing the 

premature stop codon that causes the termination of HP0938 would allow us to restore 

the gene’s functional protein. This restoration may not be that simple, however, due to 

the fact that other potential alterations in the predicted amino acid sequence may have 

accumulated and may prevent the translation of a fully functional product. In attempting 

to overcome this problem, it may be of value to replace this locus in H. pylori with a 

functional homolog from another bacterial species. Campylobacter jejuni would be a
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fitting choice, given its significant homology with Helicobacter py lo ri’s genome as a 

whole. It may also be beneficial to replace this locus with a functional homolog found in 

a free-living or commensal bacterium known to not cause disease in humans. If this gene 

is undergoing negative selection in human pathogens as a whole, then to successfully 

restore complete function, it may be necessary to acquire it from a non-pathogen.

In conclusion, we have found both HP 1079 and HP 1078 to exist in linkage 

disequilibrium with a major virulence determinant, the cag PAI, of Helicobacter pylori. 

HP 1079 is a phase variable gene and HP 1078 appears to exist in at least two allelic 

forms. We interpret these findings to suggest that these genes may play roles in virulence 

and host adaptation, respectively. In comparison, both HP0937 and HP0938 appear to 

exist in some form in all H. pylori strains sequenced in this study and their presence does 

not seem to co-vary with PAI status. It is worth noting, however, that given the apparent 

divergence observed in the genetic deterioration of this locus, the gene product that it 

originally encoded in an ancestral bacterium may be undergoing strong selection in H. 

pylori.
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