
W&M ScholarWorks W&M ScholarWorks 

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 

Fall 2016 

Enhancing The Sensing Capabilities of Mobile and Embedded Enhancing The Sensing Capabilities of Mobile and Embedded 

Systems Systems 

Daniel George Graham 
College of William and Mary, dggraham@email.wm.edu 

Follow this and additional works at: https://scholarworks.wm.edu/etd 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Graham, Daniel George, "Enhancing The Sensing Capabilities of Mobile and Embedded Systems" (2016). 
Dissertations, Theses, and Masters Projects. Paper 1477067912. 
http://doi.org/10.21220/S2RP49 

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M 
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized 
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu. 

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1477067912&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1477067912&utm_medium=PDF&utm_campaign=PDFCoverPages
http://doi.org/10.21220/S2RP49
mailto:scholarworks@wm.edu


Enhancing the Sensing Capabilities of Mobile and Embedded Systems

Daniel George Graham

Williamsburg, Virginia

Bachelor of Science, University of Virginia, 2010
Masters of Engineering, University of Virginia, 2011

A Dissertation presented to the Graduate Faculty
of the College of William and Mary in Candidacy for the Degree of

Doctor of Philosophy

Department of Computer Science

The College of William and Mary
May 2016



c©Copyright by Daniel George Graham 2016





ABSTRACT

In this work, we aim to develop new sensors and sensing platforms that facilitate
the development of new mobile and embedded devices. Mobile and embedded de-
vices have become an integral part of our everyday lives and the sensing capabil-
ities of these devices have improved throughout the years. Developing new and
innovative sensors and sensing platforms will provide the building blocks for de-
veloping new sensing systems. In an effort to facilitate these innovations we have
developed two new in-air sonar sensors and a new reconfigurable sensing plat-
form. The first in-air sonar sensor is designed for ranging applications and uses
the phone’s microphone and rear speaker to generate a wide beam of sound. The
second in-air sonar sensor is an external module which uses a narrow beam of
sound for high resolution ranging. This ranging information is then combined with
orientation data from the phone’s gyroscope,magnetometer and accelerometer to
generate a two dimensional map of a space. While researching ways of enhanc-
ing the sensing capabilities of mobile and embedded devices, we found that the
process often requires developing new hardware prototypes. However, developing
hardware prototypes is time-consuming. In an effort to lower the barrier to entry
for small teams and software researchers, we have developed a new reconfigurable
sensing platform that uses a code first approach to embedded design. Instead of
designing software to run within the limited constraints of the hardware, our pro-
posed code-first approach allows software researchers to synthesize the hardware
configuration that is required to run their software.
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Chapter 1

Introduction

Mobile and embedded devices have become an integral part of our everyday lives and

the sensing capabilities of these devices have improved throughout the years. Developing

new and innovative sensors and sensing platforms will provide the building blocks for

developing new sensing systems. In this work, we explore ways of enhancing the sensing

capabilities of mobile and embedded devices, by focusing on designing new sensors and

sensing platforms. In particular we developed two in-air sonar sensors and a reconfigurable

sensing platform.

The first in-air sonar sensor is a software based sonar ranging sensor that uses the

phone’s microphone and rear speaker. The system can be decomposed into three steps:

a signal generation step, a signal capture step and a signal processing step. During the

signal generation step the system creates an encoded pulse known as a linear chirp. This

chirp is then passed to the phone’s rear speaker which oscillates and creates a pressure

wave that travels through the air until it encounters an object. Once the wave encounters

an object it is reflected. During the signal capture step the reflected wave is recorded and

converted to a vector. Once the signal has been captured it is processed in the final step

and the distance to the object is calculated by measuring the elapsed time between the

initial pulse and its reflection. Designing a software based sonar sensor for smartphones

presents a collection of unique challenges, including: concurrent management of hardware

1



buffers, real-time processing and hardware sampling limitations. These challenges and

their solutions are discussed in chapter 2.

Though sonar ranging using smartphones is interesting, it would be more interesting to

be able to generate a two dimensional map of an environment using smartphone based in-

air sonar. However, the sound beam produced by the software sonar ranging sensor is too

wide for mapping applications. To mitigate this, we developed an external sonar module

that plugs into the headphone jack of a smartphone. The readings from the module are

combined with information from the phone’s compass and gyroscope to construct a two

dimensional map of a space.

In addition to exploring ways of enchaining the sensing capabilities of mobile devices,

we also explored ways of enchaining the sensing capabilities of embedded devices. During

our exploration we found that research in embedded sensing is limited by the constraints

of the available hardware platforms, since software developers are only able to develop

software that runs within the limited constraints of the hardware. Furthermore, developing

new hardware platforms for specific sensing applications is time consuming. In this work

we attempt to address the problem by presenting a code-first approach to the design

of embedded systems. A code-first approach allows a software developer to design an

embedded system by first developing the software that the system is required to run.

Once the software has been developed an interpreter is used to generate the hardware

configuration that is required to run the application. This lowers the barrier to entry for

software developers by abstracting the underlying hardware.

The rest of this dissertation is structured as follows. Chapter 2 discusses the software

based sonar sensor. Chapter 3 discusses the design of the external sonar module. Chapter

4 discusses our proposed code-first approach to embedded design, before concluding the

work in Chapter 5.
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Chapter 2

A Software Sonar Ranging Sensor

for Smartphones

2.1 Introduction

Sensors on mobile devices have allowed developers to create innovative mobile applications.

For example, the use of GPS localization allows developers to create applications that

tailor their content based on the user’s location [60]. Other sensors such as the proximity

sensor help to improve the user’s experience by disabling the touch screen when it detects

that the user has placed the phone next to his or her ear. This prevents buttons from

accidentally being pressed during a phone call [49]. Since the release of Android 1.5,

Google has added application program interface (API) support for eight new sensors [13].

These sensors include: ambient temperature sensors, ambient pressure sensors, humidity

sensors, gravity sensors, linear acceleration sensors and gyroscopic sensors.

Developing new and innovative sensors for smartphones will help open the field to new

possibilities and fuel innovation. In particular, developing sensors that allow smartphones

to perceive depth is key. Google’s Advanced Technology and Projects Team share this

vision. They are currently working on a smartphone that uses custom hardware to perceive

depth. The project is nicknamed: “Project Tango” [3]. Engineers at NASA have also
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partnered with the Google team to attach these phones to robots that will be sent to

the international space station [5]. However, Google’s structured light sensor does not

perform well in outdoor environments, since the light from the sun interferes with the

sensor. In this chapter we explore the possibility of using sonar to provide depth sensing

capabilities in both indoor and outdoor environments and address two unique research

questions: 1) How do we design a sonar sensor for smartphones using only the phone’s

existing hardware? 2) How do environmental factors such as noise, reverberation and

temperature affect the sensor’s accuracy?.

The proposed sonar sensor uses the smartphone’s rear speaker and microphone, and

implements the sonar capabilities on a software platform. The software process is com-

prised of three major steps: 1) a signal generation step, 2) a signal capture step, and 3) a

signal processing step. During the signal generation step, the phone’s rear speaker emits

a pulse. The pulse forms a pressure wave which travels through the air until it encounters

an object, which then reflects the pulse and scatters it in multiple directions. During the

signal capture step, the microphone captures the reflected pulse, and the distance to the

object is determined by calculating the time between the pulse and its reflection.

However, factors such as noise and multipath propagation negatively affect the system’s

ability to accurately identify the reflected pulse. To address this we use a technique called

pulse compression. Pulse compression is the process of encoding the pulse with a unique

signature. This unique signature makes it easier to distinguish the pulse from external

noise [45]. The pulse is recovered by calculating the cross correlation between the noisy

signal and the pulse.

In addition to being corrupted by noise, a pulse may sometimes overlap with another

pulse. This occurs when objects close to the system begin to reflect parts of the wave

while it is still being transmitted. This limits the minimum distance at which an object

can be detected. Encoding the pulse helps to reduce this distance by allowing the filtering

process to distinguish between overlapping pulses.

The sonar sensor was evaluated using three metrics: accuracy, robustness, and real-
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time performance. The accuracy of the sonar sensor was evaluated by comparing the

distances reported by our sensor with known distances. The sensor accurately measured

distances within 12 centimeters. The robustness of the sensor was evaluated by compar-

ing the sensor’s accuracy under different noise and reverberation conditions in different

environments. Finally, the sensor’s real-time performance was evaluated by measuring

the time that it takes to process a signal and return a measurement when different opti-

mizations are applied. By using a collection of optimizations we were able to reduce the

processing time from 27 seconds to under two seconds.

In-air sonar has been extensively studied in the literature and supports a vast array

of sensing capabilities beyond simply ranging. State of the art systems can determine

the 3D positions of objects [15] and can even ascertain properties of these objects [34].

However, these techniques cannot simply be ported to smartphones. Implementing these

techniques on smartphones presents a collection of unique challenges and therefore requires

a measured and systematic approach. In this chapter we begin by exploring ranging

applications

2.2 Background

A sonar system can be decomposed into three steps. Figure 2.1 shows a simulated example

of these steps. During the first step, the system generates a pulse. This pulse travels

through the air until it encounters an object. Once the pulse encounters an object, it is

reflected by the object. These reflected waves then travel back to the system which records

the reflected pulse. The time difference between the initial pulse and the reflected pulse

is used to calculate the distance to the object. Since the speed of sound in air is known,

the distance to an object can be calculated by multiplying the time difference between the

initial pulse and the reflected pulse by the speed of sound, and dividing the result by two.

We need to divide by two because the time difference between the reflected pulse and the

initial pulse accounts for the time that it takes the wave to travel from the phone to the
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object and back.

Figure 2.1: This figure shows an overview of the process that the sonar system uses to
calculate the distance from the system to an object.

The reflected pulse will contain noise from the environment. This noise is reduced by

filtering the signal. Figure 2.2 shows the signals that are generated or recorded at each

step.

2.3 Related Work

Figure 2.2(a) shows the signal that is transmitted from the phone’s rear speaker, while

figure 2.2(b) shows the signal that is received by the phone’s microphone. In figure 2.2(b)

the received signal contains both the initial pulse and the reflected pulse, the phone’s

microphone will pick up both the transmitted signal and its reflection. This is common

in sonar systems where both the transmitter and receiver are located close to each other.

Such sonar systems are called monostatic sonar systems. In figure 2.2(b) the second pulse

represents the reflected pulse. Figure 2.2(c) shows the output of the filtering process.

The peaks in the resulting filtered signal correspond to the location of the pulse in the

original signal. The filtering process will be discussed in detail in section 2.4.4.

In figure 2.2(b) the reflected signal has a smaller amplitude than the initial pulse

because some of the energy has been lost. This is because as sound travels through free

space its energy per square meter dissipates as a fixed amount of energy gets spread over
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(c) Result of filtering process

Figure 2.2: Figure (a) shows the original pulse that was transmitted. Figure (b) shows
the signal that is received by the microphone, and Figure (c) shows the result of the fil-
tering process. These figures are illustrative and have been simulated using a sample
rate of 44.1kHz

a larger surface area. This dissipation is governed by the inverse wave square law [38].

Figure 2.1 provides a visual explanation of the inverse wave square law. As the wave moves

from location R1 to R3, its energy density decreases since the same amount of energy is

spread over a larger surface area.

As the wave travels further from the transmitter, its power density decreases. If an

object is too far away, the energy density of the wave that encounters the object may not
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be enough to generate a reflected wave that can be picked up at the receiver. Distance

is not the only factor in determining the amount of energy that is reflected. The amount

of energy that is reflected is also determined by the composition and cross section of

the object. Larger objects have larger cross sections and therefore reflect more energy,

while smaller objects have smaller cross sections and therefore reflect less energy. Because

objects with larger cross sections reflect more energy, they can be detected at larger

distances. However, objects with smaller cross sections can only be detected at smaller

distances because they reflect less energy. Another key insight for sonar systems is that

large flat surfaces act like mirrors and mostly reflect sound waves in the direction of their

surface normal. This property is known as the mirror effect.

Sonar systems attempt to accommodate for these limitations by designing special

speakers and microphones. To improve the range of sonar systems, speakers are de-

signed so that they focus the speaker’s output. The concept of focusing the speaker’s

output is known as the speaker’s gain. Focusing the speaker’s output allows sound waves

to travel further, in a specified direction. Sonar systems also attempt to improve their

range by being able to pick up weaker signals. Just as objects with large surface areas

are able to reflect more energy, microphones with large surface areas are able to receive

more energy. The concept of a microphone’s surface area is known as the microphone’s

aperture. Once the wave reaches the microphone, it is only able to pick up a subsection

of the waves energy. Sonar systems use an array of microphones to increase the receiving

surface area thus increasing the microphone’s aperture. Now that we have developed an

intuition for sonar systems, we will compare the state of the art in-air sonar systems with

our proposed system, highlighting the key differences and technological challenges that

arise when implementing a sonar system on a smartphone.

In 1968 D. Dean wrote a paper entitled “Towards an air Sonar” in which he out-

lined some of the fundamental challenges of designing in-air sonar [27]. These challenges

included acoustic mismatch and wind effects. Since Dean’s paper several in-air sonar sys-

tems, have been develop for a variety of applications. These systems include: ultrasonic
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imaging [39], ultrasonic ranging for robots [20] and SODAR (SOnic Detection And Rang-

ing) systems that measure atmospheric conditions [18]. However, all of these systems have

been implemented using custom hardware. By using custom hardware these systems are

able to address many of the challenges associated with in-air sonar systems. This is where

our system is different. The sonar sensor that we proposed does not use any custom hard-

ware and must compensate for the limitations of the commodity hardware in everyday

smartphones.

The earliest occurrence of a smartphone based ranging sensor in the literature occurred

in 2007 when Peng et al. proposed an acoustic ranging system for smartphones [63].

This ranging sensor allowed two smartphones to determine the distance between them by

sending a collection of beeps. The sensor was accurate to within centimeters. The sensor

is a software sensor and only uses the front speaker and microphone on the phone. Our

sensor is different from the sensor in [63] because it allows smartphones to determine the

distance from the phone to any arbitrary object in the environment.

In 2012, researchers at Carnegie Mellon University proposed a location sensor that

allowed users to identify their specific location within a building [50]. The system proposed

by the researchers used a collection of ultrasonic chirps that were emitted from a collection

of speakers in a room. A smartphone would then listen for these chirps and use this

information to locate a person in a room. The phone was able to do this by using the

chirps from the speakers to triangulate itself. For example, if the smartphone is closer to

one speaker than another it will receive that speaker’s chirp before it receives the chirp

from another speaker. Since the locations of the speakers are known and the interval of

the chirps are also known, the phone is able to use the chirps to triangulate its location.

Our system is different from this one, since it attempts to determine the location of the

smartphone relative to another object.

Other researchers have also implemented in-air sonar systems on other unconventional

systems. For example, researchers at Northwestern University have implemented a sonar

system on a laptop [72]. Other researchers have also uploaded code to Matlab central that
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implements a sonar system on a laptop by using Matlab’s data acquisition framework [17].

The closest sensor to the proposed sensor is an iphone application called sonar ruler [24].

The application measures distances using a series of clicks. The application does not filter

the signal and requires the user to visually distinguish the pulse from the noise. Our

sensor is different from the sonar ruler application because our sensor filters the signal

and does not require the user to manually inspect the raw signal. Removing the need

for user input allows the proposed sensor to be abstracted using an API. Being able to

abstract the sensor using an API is important because it allows the sensor to be easily

used by other applications.

2.4 Design

The system is comprised of three major components: 1) a signal generation component,

2) a signal capture component and 3) a signal processing component. Figure 2.3 shows

an overview of these components. The signal generation component is responsible for

generating the encoded pulse. This component is comprised of two sub-components: a

pulse/chirp generation component and a windowing component. The second component

is the signal capture component. The signal capture component records the signal that is

reflected from the object. The third component is the signal processing component. The

signal processing component filters the signal and calculates the time between the initial

pulse and its reflection. This component is comprised of two sub-components. The first

component is the filtering component and the second sub-component is the peak detection

component. We discuss each component in detail in the following sections.

2.4.1 Generating the Signal

The signal generation process is comprised of two subprocesses. The first subprocess

generates an encoded pulse, while the second subprocess shapes the encoded pulse. We
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Figure 2.3: The figure shows an overview of the sonar system’s architecture.

discuss each part of the process in a separate subsection. We begin by discussing the pulse

encoding process which is also called pulse compression.

2.4.1.1 Pulse Compression

Pulse compression makes it easier to recover a pulse by encoding the pulse with a unique

signature. The pulse can be encoded using amplitude modulation or frequency modulation.

Amplitude modulation is the process of encoding a wave by increasing or decreasing the

amplitude of sections of the wave, while frequency modulation is the process of varying the

frequency of different sections of the wave. The state of the art pulse compression approach

uses frequency modulation to create an encoded pulse, since frequency modulation is less

susceptible to noise [25]. The encoded pulse is known as a linear chirp. A linear chirp is a

signal whose frequency increases linearly from a starting frequency to an ending frequency.

Figure 2.4(a) shows an image of the linear chirp in the time and frequency domain.

The signal was sampled at 44.1kHz, so each sample index represents 0.227µs. The signal
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starts at a low frequency and progresses to a higher frequency. Now that we have discussed

the intuition behind a linear chirp, we will look at how the signal is generated. A linear

chirp can be expressed as a sinusoidal function. Equation 2.1 describes how the amplitude

of a linear chirp signal varies with time. The value f0 represents the initial frequency while

the value k represents chirp rate (how quickly the frequency increases) and φo represents

the phase of the pulse. The chirp rate can be determined using equation 2.2.

x(t) = sin

[
φ0 + 2π

(
f0 ∗ t+

k

2
∗ t2
)]

(2.1)

In equation 2.2 the values f0 and f1 represent the starting and ending frequencies,

respectively. The value t1 represents the duration of the pulse.

k =
f1 − f0
t1

(2.2)

f0 4kHz
f1 8kHz
t1 0.01s
φ0 0
Sample Rate 44.1kHz

Table 2.1: Chirp properties table

Equation 2.1 represents the continuous time representation of a linear chirp. However,

the signal must be discretized before it can be played by the phone’s speaker. The signal

is discretized by sampling equation 2.1 at specific time intervals. The time intervals are

determined based on the sample rate and the pulse duration. In our implementation,

a linear chirp was generated using the parameters shown in table 2.1. Though we have

selected a linear chirp with these properties it is important to note that other linear chirps

can be used with different frequencies and sweep times.

Now that we have discussed how the encoded pulse is generated, we will discuss how

the pulse is shaped in the next section. This process of shaping the pulse is known as

windowing.
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(a) Unwindowed linear chirp time and frequency domain sampled at
44.1kHz
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(b) Unwindowed linear chirp autocorrelation showing sidelobes
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(c) Windowed linear chirp time and frequency domain sampled at 44.1kHz
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(d) Windowed linear chirp autocorrelation showing no sidelobes

Figure 2.4: These figures show the time and frequency domain representation for the
windowed and unwindowed linear chirp
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2.4.1.2 Windowing the Pulse

The windowing process is the second subprocess of the signal generating process. The

windowing subprocess shapes the pulse by passing it through a window. Shaping the

pulse improves the pulse’s signal to noise ratio by improving the peak to side lobe ratio.

This becomes clearer when we compare the autocorrelated representation of the win-

dowed signal in figure 2.4(d) with the unwindowed signal in figure 2.4(b). Notice that

the autocorrelated representation of the windowed signal does not contain the additional

peaks/sidelobes that are in the autocorrelated representation of the unwindowed signal.

The signal in figure 2.4(c) was windowed using a hanning window [55]. The pulse is

shaped by multiplying it by a hanning window of the same length. The hanning window

is described by equation 2.3. In equation 2.3, N represents the number of samples in the

window and n represents the index of a sample. Since the pulse is 0.01s and the sample

rate is 44.1kHz, the window has a length of 441 samples. The discretized pulse is shaped

by performing an element-wise multiplication between the discretized pulse vector and the

discretized hanning window. Finally, the discretized shaped pulse is sent to the speaker’s

buffer to be transmitted.

H[n] = 0.5 ∗ (1− cos(2 ∗ π ∗ n
N − 1

)) (2.3)

2.4.2 Capturing the Signal

Once the system has transmitted the pulse, the next step is capturing the pulse’s reflection.

The signal capture component is responsible for capturing the signal’s reflection. How-

ever, accurately capturing the signal possess two unique challenges. The first challenge

is working with the constraints of the phone’s sampling rate and the second challenge is

concurrently managing the hardware’s microphone and speaker buffers.
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2.4.2.1 Sampling Constraints and Hardware Requirements

The range of frequencies that can be recovered by the phone is limited by the maximum

sampling rate and frequency response of the hardware. This is because in order to recover

a wave we must sample at more than twice the wave’s frequency. This means that the

frequencies that can be contained in the linear chirp are limited by the sampling rate of

the microphone and speaker. The microphone and speaker on the nexus 4 has a maximum

sampling rate of 44.1kHz. This means that without the use of compressive sensing tech-

niques it is only possible to generate and record a maximum frequency of 22, 050Hz, since

Nyquist sampling theorem states that we must sample at twice the frequency of signal

that we are attempting to recover. To ensure that we remain within the sample range of

most phones, we use a linear chirp that ranges from 4kHz to 8kHz. Limiting the frequency

range of the linear chirp allows us to address the sampling constraints of the hardware. In

addition to the sampling constraints of the hardware, the phone’s speaker and microphone

have frequency response constraints. This means that they are only able to generate and

receive a limited range of frequencies. This frequency response depends heavily on the

make and model of the microphone and speaker, which can vary drastically among devices.

To mitigate this we select a frequency range for the chirp that is slightly above the range

of the human voice. So most smartphone microphones and speakers should be able to

transmit and receive the pulse.

2.4.2.2 The Concurrency Problem

State of the art sonar systems have the ability to concurrently manage the microphone

and speaker buffers. Synchronizing the buffers is important for sonar systems because

ideally the system would start recording immediately after it has finished sending the

pulse. Starting the recording immediately after the pulse is transmitted provides a baseline

for calculating the time difference between when the initial pulse was sent and when the

reflected pulse was received. If the buffers are not well managed, the recording may contain
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the initial pulse, and the time index of the reflected pulse will not accurately represent the

time between the initial pulse and the reflected pulse. The android operating system does

not allow for real-time concurrent management of the microphone and speaker buffers so

synchronizing them is challenging. This means that we must find a way to accurately

calculate the time between the initial pulse and reflected pulse without managing the

buffers in real-time.

We solve the concurrency problem by starting the recording before the pulse is trans-

mitted. Starting the recording before transmitting the pulse allows us to record the initial

pulse as well as the reflected pulse. We can then calculate the distance by calculating

the time between the first pulse and the second pulse, since we have recorded both. This

solution works because the proposed sonar system is monostatic which means that both

the microphone and the speaker are located on the same device.

2.4.3 Processing the Signal

Now that we have explained how the sonar system generates a pulse and captures its

reflection, we can discuss how the captured signal is processed. The process of analyzing

the signal is comprised of two subprocesses. The first process is the filtering process. The

signal is filtered by calculating the cross correlation between the known signal and the

noisy signal. The result of the filtering process is passed to the peak detection process,

which detects the peaks in the output and calculates the distance between each peak. The

distance between peaks is used to calculate the distance between an object and the sonar

system.

2.4.4 Frequency Domain Optimization

The cross-correlation process works by checking each section of the noisy signal for the

presence of the known signal. Each section of the noisy signal is checked by calculating the

sum of the element-wise multiplication between the known signature and the signal. Equa-
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tion 2.4 describes this process. The ? notation represents the cross-correlation operation

and, the value f
′

represents the complex conjugate of f .

(f ? g)[n] =
∞∑

m=−∞
f

′
[m]g[n+m] (2.4)

Calculating the cross-correlation of the signal can be computationally expensive. This

is because, the algorithm that is normally used to calculate the cross-correlation of two

signals has an algorithmic complexity of O(n2) (Assuming that both signals (f and g)

have the same length). However, it is possible to optimize the algorithm by performing

the computation in the frequency domain.

Equation 2.5 shows how to compute the cross-correlation of two signals in the fre-

quency domain. The F is the mathematical notation for the Fourier transform, and F−1

represents the inverse Fourier transform.

(f ? g) = F−1[F [f ]
′ ·F [g]] (2.5)

Matches are represented by large peaks in the output of the filtering process. Higher

peaks represent better matches. Figure 2.5(a) shows a noisy signal which contains the

initial pulse and its reflection while figure 2.5(b) shows the output of the filtering process.

Notice that the output of the filtering process contains two prominent peaks. These peaks

correspond to both the initial pulse and its reflection.

Computing the correlation in the frequency domain allows for faster computation since

the algorithm has a lower algorithmic complexity O(nlog(n)). The process can be further

optimized since the Fourier transform of the known signal has to be computed only once.

Reducing the number of samples will also result in faster computation times.

Now that we have discussed the filtering process we can discuss the process that is

used to detect the peaks in the filter’s output.
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(b) Filtered signal
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

1

2

3

4

5

6
x 10

10

Distance (m)

A
b
s
o
lu

te
 V

a
lu

e
 o

f 
th

e
 C

ro
s
s
−

c
o
rr

e
la

ti
o
n

 

 

Absolute Value of Cross−correlation

Threshold 1x10
10

Threshold 2x10
10

Threshold 3x10
10

Peak Corresponding to Reverberation

Best Region For Threshold Values

Correct Peak At approximately 1.44 meters

(d) Threshold selection

Figure 2.5: Figure (a) shows the noisy signal that was captured at approximately 2.5
meters from the wall. Figure (b) shows the filtered signal. Figure (c) shows the result of
applying the envelope detection algorithm. Figure (d) shows the detection threshold val-
ues applied to another sample taken at 1.5 meters. A Nexus 4 smartphone was used to
collect these readings by measuring the distance to an outdoor wall on a college campus.
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2.4.5 Peak Detection and Reverberation

Performing peak detection on the cross-correlation function is difficult, since the resulting

function is jagged and contains several small peaks. To mitigate this we calculate the

envelope of the cross correlation by calculating the analytic signal of the frequency domain

multiplication of the pulse and the received signal. The analytic signal is calculated by

setting the negative frequencies to zero and doubling the positive frequencies. Once the

analytic signal has been calculated the absolute value of the inverse Fourier transform is

calculated to determine the final envelope. Figure 2.5(c) shows an example of the envelope.

The output of the filtering process is a collection of peaks. The sonar system needs

to automatically detect these peaks and calculate the distance between them. In an ideal

case the signal would only contain as many peaks as there are objects in the wave’s path

and a simple peak detection algorithm could be applied. However, factors such as noise

cause the filtered signal to contain other peaks.

To account for the noise in the filtered signal, we propose a new peak detection al-

gorithm that selects the most prominent peaks. By only considering peaks above a fixed

threshold it is possible to remove the number of peaks that correspond to noise. This

threshold can be determined empirically. We define a peak as a point which is higher than

its adjacent points.

Algorithm 2.1: Peak Detection Algorithm

Input: array, threshold
Output: PeakArray
for i=0; i<array.length; i++ do

if array[i] > array[i-1] and array[i] > array[i+1] then
if array[i] ≥ threshold then

PeakArray.add(i);
end

end

end

We propose a peak detection algorithm for detecting the peaks in the cross-correlation

result. The threshold that we chose for the Nexus 4 was 22 ∗ 109. This threshold provides
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the best trade-off between accuracy and range. We selected this threshold empirically

by taking 10 samples in a room at different distances. We then selected the detection

threshold that resulted in the least number of peaks above the line. The height of a peak

is a reflection of the quality of the received signal. The last peak corresponds to the object

that is the furthest from the smartphone, while the first peak represents the object that

is closest to the phone. Figure 2.5(d) shows the threshold superimposed on the filtered

signal. Furthermore, figure 2.6 shows the error in meters verse the threshold that was

selected.
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Figure 2.6: The figure shows the error in meters vs. the threshold value. These read-
ings were collected using a Nexus 4 smartphone.

We have considered a collection of approaches for determining the threshold including

other functions that are more complex than the proposed linear one. However, since

the height of the correlation peak also depends on the sensitivity of the microphone the

user needs to be able to calibrate the device by adjusting the threshold. A simple linear

function makes this calibration process easier. Figure 2.8(a) shows the user interface slider

that is used to adjust this threshold.

2.4.6 Increasing the minimum detection range

The minimum distance at which a sonar system can identify an object is limited. If objects

are too close to the system they will reflect parts of the linear chirp while other parts are

still being transmitted. This is because the linear chirp is not transmitted instantly but

rather over a period of 10ms.
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Consider the example shown in figure 2.7(a). This figure shows an illustration of the

signal that is received when a pulse is reflected from an object at 0.41m, overlaps with

the initial pulse. Notice that it is not possible to visually distinguish the initial pulse

from its reflection. This is because as the first linear chirp is generated it begins to travel

through the air until it encounters an object at 0.41 meters, 2.5ms later. The object will

then reflect the waves and the reflected waves will arrive at the system 5ms later. This is

problematic since the system is recording both the pulse and the reflection. The reflected

signals will interfere with the signal that is being generated since the generated signal has

a duration of 10ms. This means that the sonar system cannot detect objects within a

1.65 meter radius.

There are two ways to decrease the minimum distance at which an object can be

detected. The first method is to reduce the duration of the pulse. Reducing the duration

of the pulse reduces the amount of time that subsequent reflections have to overlap with

the pulse. However, reducing the duration of the pulse increases the signal to noise ratio.

The second method is pulse compression.

Pulse compression allows the cross-correlation process to identify pulses even when

they overlap without increasing the signal to noise ratio. Figure 2.7(b) shows the signal

that results from two overlapping pulses and the output of the filtering process. The

two peaks correspond to the correct location of the pulses. Notice that even-though the

pulses overlapped the filtering process was able to recover two distinct peaks, because they

were encoded. The only thing that limits the minimum distance now is the width of the

autocorrelation peak.

2.4.7 Temperature’s Impact on the Speed of Sound

Environmental factors such as temperature, pressure and humidity affect the speed of

sound in air. Because these factors affect the speed of sound in air, they also affect the

accuracy of a sonar system. The factor that has the most significant impact is tempera-

ture [78] [54]. In this section, we show how the ambient temperature can significantly affect
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(b) Cross-correlation result

Figure 2.7: The figures show an example of how pulse compression helps reduce the
minimum distance at which objects can be detected. Figure (a) shows the combination
of the two pulses that are received by the microphone. The first pulse is a linear chirp
4kHz to 8kHz with a sweep time of 10ms while the second pulse has the same param-
eters but is attenuated by a factor of 0.4. Figure (b) shows the result of the filtering
process. All signals shown in this figure were sampled at a rate of 44.1kHz.

the accuracy of a sonar system. We also propose a method for increasing the system’s

accuracy by using the phone’s temperature sensor to estimate the air’s temperature.

Equation 2.6 from [9] describes the relationship between the speed of sound and the

air’s temperature. Where Tc represents the air temperature and v(Tc) represents the speed

of sound as a function of air temperature.

v(Tc) ≈ 331.4 + 0.6 ∗ Tc (2.6)

From equation 2.6 we can see that underestimating the temperature will result in a

speed of sound that is slower than its actual speed. Underestimating the speed of sound

will cause objects to appear further away than they actually are, while overestimating the

temperature will overestimate the speed of sound thus causing objects to appear closer

than they actually are.
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(a) Application screenshot (b) The experimental
setup

Figure 2.8: Figure (a) shows a screen shot of the sonar sensor application running on
the Nexus 4. Figure (b) shows the experimental setup that was used in the evaluation

2.4.8 smartphone Application

Figure 2.8(a) shows a screen shot of the sonar application. The top graph shows the raw

signal that was captured by the microphone. The number in the top left shows the distance

in meters. The number below it shows the distance in feet. The graph at the bottom shows

the absolute value of the filtered signal.The highest peak represents the initial pulse while

the second highest peak represents the reflected pulse. The x-axis in both the top and

bottom graphs represent the sample index. The graphs have been designed so that the user

is able to zoom in the graphs by pinching the display. Subsequent readings are overlaid on

the original graph. This allows the user to easily validate the peaks. The horizontal line

in the bottom graph represents the detection threshold. Only peaks above this threshold

are considered by the peak detection algorithm. The slide bar on the top left is used to

adjust the threshold and the value in the box next to it displays the value of the detection

threshold. New measurements are taken by pressing the “Measure Distance” button. If

the output of the filtering process does not contain peaks above the threshold, the system

will report a measurement of zero. The application will also display a message to the screen

that asks the user to take another measurement. Since graphs for each measurement are

overlaid on each other, the user may reset the display by simply rotating the phone.

To obtain a good reading the user must not cover the phone’s microphone or rear
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speaker. If the user covers the phone’s rear speaker, the sound from the rear speaker will be

muffled and the chirp signal will be suppressed. If the user covers the phone’s microphone,

the reflected pulse will not be received. It is also important to calibrate sensor by adjusting

the threshold as previously described. The source code and application package(APK) file

for this application is available on github 1

2.5 Performance Evaluation

We evaluate the sonar system using three metrics: accuracy, robustness and real-time

performance. We evaluate the accuracy of the system by measuring known distances under

different temperature and reverberation conditions. The accuracy of the system is then

determined by comparing the known values to the measured values. All measurements

that are reported in this section were collected using a Nexus 4 smartphone

2.5.1 Evaluating the Impact of Temperature and Reverberation

In this subsection we explain the process that we used to concurrently measure the sonar

system’s accuracy and robustness. We measure the sonar sensor’s accuracy by using

it to measure known distances. Ten measurements were taken at distances between 1

and 4 meters. This range was divided into 0.5 meter increments: 1.0, 1.5, 2.0, 2.5,

3.0, 3.5, 4. To ensure that the measurements were taken in the same position every

time, the phone was placed on a tripod. The tripod was placed at a height of 1.53

meters. It is important to note that stability is not a requirement. The phone does not

need to be held perfectly still to obtain a reading. However, since we are evaluating the

accuracy of the sonar system, we wanted to ensure that the readings were taken at the

same distance every time. Figure 2.8(b) shows a picture of the phone on the tripod. We

also evaluated the sensor’s accuracy in different environments. In particular, we examined

the sensor’s performance in environments that were expected to have different levels of

1http://researcher111.github.io/SonarSimple
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reverberation and ambient noise. It is well known that reverberation affects the accuracy

of sonar systems [14]. Reverberation occurs when a reflected signal is scattered in multiple

directions and reflects off other objects in the environment. Some signals may arrive at the

receiver later since they have taken a longer path. The signal processing component at the

receiver must decide among these multiple reflections. We evaluate the sensor’s robustness

by repeating the measurement process above for environments that are expected to have

different levels of reverberation and ambient noise. Figure 2.9 shows a picture of each of

these environments.

Figure 3.9(c) shows the results of the outdoor measurements. The y-axis represents

the measured distance, while the x-axis represents the known distance. The dotted line

represents a perfect match between measured distances and the known distances. Ideally

the sensor’s readings should perfectly match this line. The bars represent the standard

deviation of the measurements. Each point on the graph represents the average of the

10 readings. The solid black lines represent the readings that were taken using 330m/s

as the speed of sound. The green lines represent the readings that were taken using the

temperature adjusted speed of sound. Notice that most of the non-temperature adjusted

readings are slightly below the ideal line. This is because the speed of sound is temper-

ature dependent. Sound travels at 330m/s at −1oC, however it travels faster at higher

temperatures for example 343.6m/s at 21oC. Since the system is assuming that sound

waves are traveling slower than they actually are, the system under estimates the distance.

Some smartphones have temperature sensors. These sensors can be used to improve the

accuracy of the system.

The outdoor environment is expected to have the least reverberation, since it is an

open environment in which other reflecting surfaces are far away. Ten measurements were

taken at fixed distances between 1 and 4 meters. Once the ten measurements have been

taken, the tripod is moved to the next 0.5 meter increment. The process is repeated until

measurements have been taken at all seven distances, for a total of 70 readings. When the

measurements were taken, there was low ambient noise, light foot traffic and conversation.

25



(a) Outdoor (b) Large room

(c) Small room

Figure 2.9: These figures show pictures of all three environments. Figure (a) shows the
outdoor environment. Figure (b) shows the large carpeted indoor classroom and figure
(c) shows the small indoor room 3.2m by 3.1m.

The second environment is a large indoor carpeted classroom. This environment is

expected to have more reverberation than the outdoor environment, since it contains

several chairs and tables. For this experiment the tripod is set up facing a wall in the

classroom. The measurement process is repeated until all 10 measurements were obtained

for all seven distances. The measurements were plotted in a similar fashion to the outdoor

results. Figure 2.10(b) shows a plot of these results. Notice the indoor measurements

underestimate the ideal line even more than the outdoor environment. This is because

the classroom is warmer than the outdoor environment and therefore the sound waves are

traveling faster. Notice that the measurement at 1.5 meters has a high standard deviation.

This is due to the effects of reverberation. The indoor classroom also contained ambient

noise such as the rumbling of the air conditioning unit.

The final environment is a small indoor room that is not carpeted. The room is 3.2

meters by 3.1 meters and has a ceiling that is 2.9 meters high. All the walls in the
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(c) Small room

Figure 2.10: These figures show the measurements that were taken in all three envi-
ronments. Figure (a) shows the results for the outdoor environment. Figure (b) shows
the results for the large carpeted indoor classroom and figure (c) shows the results for
the small indoor room 3.2m by 3.1m.

room are solid brick. This room is expected to have the highest level of reverberation.

Since the room is small and contains tables and chairs, the sound waves are expected to
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bounce off multiple objects thus resulting in a high level of reverberation and interference.

Figure 2.10(c) shows the results for the experiments performed in the room. Notice the

high standard deviation. This is expected since the room is expected to have a high degree

of reverberation. The standard deviation is larger at smaller distances in the small room

because as the phone is placed closer to the wall the reverberation effects are greater, due

to the proximity of the neighboring walls. The room also contains ambient noise from the

air conditioning unit.

The results in Figure 2.10 lead us to conclude that this system works well in envi-

ronments that have low reverberation such as outdoor environments and large rooms but

does not work well in areas that have high reverberation such as small rooms.

2.5.2 Evaluating the Detection of multiple Objects

In this experiment, we use the sonar sensor to detect the distance from the phone to three

walls that form the sides of a wheel chair ramp. Figure 2.11 shows a picture of the walls.

The output of the filtering process is shown in figure 2.12(a). Notice that, there are four

main peaks. The first peak corresponds to the initial pulse while the second, third and

fourth peaks correspond to the first, second and third walls, respectively. Each Wall is

approximately 1.7 meters apart. The phone was placed 1.7 meters in front of the first

wall so that the distances from the phone to each wall would be 1.7, 3.4 and 5.1 meters

respectively. In figure 2.12(a) each peak is labeled with the distance it represents. It is

important to note that this is a single sample and averaging the additional samples will

increase accuracy as previously shown.

The experiment was repeated but this time the phone was placed at an oblique angle

to the wall, figure 2.12(b) shows the result of the experiment. Notice that the system does

not detect the walls when the readings are taken at an oblique angle (approximately 140o)

to the wall. This is because of the mirror effect. Since large planar surfaces reflect sound

in the direction of their surface normal, the reflected sound does not get reflected back to

the phone, hereby preventing the walls from being detected.
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Figure 2.11: This figure shows a picture of three the wall that form the sides of the
wheel chair ramp
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(b) Oblique angle to the wall

Figure 2.12: Figure (a) shows the output of the filtering process when the readings
were taken directly facing the wall. Figure (b) shows the output of the filtering process
when the readings were taken at an oblique angle to the wall. The horizontal line rep-
resents a detection threshold of 2 ∗ 1010. These readings underestimate the target since
they are not temperature adjusted, the speed of sound is assumed to be 330 m/s

2.5.3 Evaluating Real-time Performance and System Usage

In this subsection we evaluate the real-time performance of the sonar sensor. In particular

we focus on the time that it takes to obtain a reading. The most computationally expensive

part of processing a signal is calculating the cross-correlation between the captured signal
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and the known pulse. In this section we discuss three optimizations and evaluate how

each optimization affects the system’s real-time performance.

We focus on three optimization strategies: Opt 1) Performing the cross-correlation

calculation in the frequency domain. Opt 2) Caching the frequency domain representation

of the pulse. Opt 3) Only processing a subsection of the signal. Figure 2.13 summarizes

the result of our experiments.
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Figure 2.13: The figure shows the amount of time that it takes to obtain a single sonar
reading. No Opt represents not optimizations. Opt 1 represents the Frequency domain
optimization, Opt 2 represents caching the FFT of the pulse and Opt 3 represents limit-
ing the number of samples

Calculating the cross-correlation in the time domain is computationally expensive and

has an algorithmic complexity ofO(n2). It takes an average of 27 seconds to return a result.

However, calculating the cross-correlation in the frequency domain has an algorithmic

complexity of O(nlog(n)). Performing the calculation in the frequency domain reduces

that average time from 27.01 seconds to 9.33 seconds. This is equivalent to a 290%

reduction in the amount of time that it takes to return a reading. However, it still takes

over 9.33 seconds to return a result. Ideally we would like to get the response time to under

2 seconds. In an effort to reduce the time we introduced the second optimization Opt 2.

This optimization reduces the processing time by caching the Fast Fourier transform of the

pulse. Since the transform of the known pulse does not change, we only have to calculate

its transform once. This reduces the average processing time by 2.68 seconds resulting in

an average processing time to 6.65 seconds. However, this is still above the ideal value of

2 seconds. We further optimize the process by limiting the number of samples that we
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consider to 2048. This does not affect the accuracy of the system but it does limit the

system’s range to approximately 4 meters. Limiting the number of samples reduces the

processing time to 1.62 seconds. This is 0.38 seconds below the ideal processing time of 2

seconds.

2.6 Conclusion

The proposed sonar sensor is comprised of three components: a signal generation compo-

nent, a signal capture component and a signal processing component. Designing a sonar

system for smartphones presented two unique challenges: 1) concurrently managing the

buffers and 2) achieving real-time performance. We addressed the concurrency problem

by starting the recording before transmitting the pulse. This allowed us to capture the

pulse along with its reflected pulses. Doing this allowed us to determine the index of

the pulse and reflections by filtering the signal. We addressed the real-time performance

problem by reducing the algorithmic complexity of the filtering process from O(n2) to a

O(nlog(n)) by performing the cross-correlation calculation in the frequency domain.

Finally, we evaluated our sonar sensor using three metrics: accuracy, robustness, and

efficiency. We found that the system was able to accurately measure distances within 12

centimeters. We evaluated the robustness of the sensor by using it to measure distances

in environments with different levels of reverberation. We concluded that the system

works well in environments that have low reverberation such as outdoor environments and

large rooms but does not work well in areas that have high reverberation such as small

rooms. In the future, we plan to investigate strategies for improving the sonar sensor’s

accuracy in environments with high reverberation. We also evaluated the system’s real-

time performance. We found that by performing three optimizations we were able to

reduce the computation from 27 seconds to under 2 seconds. In the future we will be

releasing the sonar application on the android market. This will allow us to test the

sensor’s performance on different hardware platforms
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Chapter 3

A SONAR Ranging Attachment

for 2D Mapping

3.1 Introduction

Smartphones have allowed companies to replace custom embedded solutions with more

cost effective smartphone attachments. For example, Honeywell’s Point-of-Sale (POS)

attachment has allowed vendors to replace expensive, custom handhelds with standard

smartphones and relatively cheap hardware attachments [1]. Recently, there has been

emerging interest in developing attachments that provide depth sensing capabilities. Al-

lowing smartphones to sense depth, opens mobile computing research to a variety of

interesting possibilities.

In this paper, we attempt to solve the problem of providing depth sensing capabilities

to smartphones by designing an external SONAR attachment. Ideally, we would like

to leverage existing research by using in-air SONAR modules from the area of robotics.

However, there are currently no hardware or software interfaces that allow us to connect

existing sensors to a smartphone. Thus, in an effort to leverage existing sonar modules,

we have designed a hardware and software interface that allows us to connect an existing

SONAR sensor (like the LV-MaxSonar-EZ 1), to a smartphone.
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(a) Rear view (b) Front view

Figure 3.1: Figure (a) is a picture of the 3.3V battery, the modulator circuit, and the
male 3.5mm male headphone jack adapter. Figure (b) is a picture of the transducer
module.

Currently, there are three possible approaches for connecting an external attachment

to a smartphone: bluetooth, the micro USB port, and the headphone jack. Connecting

the attachment using a bluetooth connection allows the attachment to remain physically

untethered from the smartphone but increases the energy consumption and cost of the

attachment. Connecting the attachment using a USB connection allows the external

attachment to be powered by the smartphone. However, since not all modern phones

directly support the USB standard (e.g. the Apple iPhone), these USB attachments will

only be compatible with a subset of attachments.

Current systems which utilize the headphone jack have been designed to interface with

external modules by simply reading analog values from the sensor. However, if the sensor

produces a logic level signal, the analog to digital converter (ADC) on a typical smartphone

is unsuited from reading the signal. This presents a challenge, since the SONAR sensor we

use is a digital sensor, and therefore encodes its information using logic level signals [4]. We

address the smartphone’s limitations by proposing a hybrid hardware/software modulator

that converts these logic level signals into modulated continuous wave (MCW) signals,

which are similar to the modulation strategy that was used by Samuel Morse when he

developed Morse code telegraphy [66]. These signals can be read by the smartphone. When

thinking about how MCW modulation works in the proposed context, it is important to

consider the symbol space. Morse code has a symbol space of size two: a long beep and a
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short beep. Intuitively, it is possible to think of the proposed scheme as having a symbol

space of n, where n represents the resolution with which the pulse is measured. Our

proposed modulator is a key component in the design of our external attachment, since it

is what makes communication between the attachment and the phone possible.

Our external SONAR attachment is comprised of an ultrasonic transducer, a micro-

controller, a modulator, and a standard “coin cell” battery. The ultrasonic transducer is

responsible for generating the ultrasonic signal, which travels through the air until it is

reflected by a nearby surface. The reflected wave is then captured by the transducer. Once

the signal has been captured, the microcontroller calculates the distance to the object by

examining the time delay between the initial signal and its reflection. Once the distance

has been determined, the microcontroller generates a pulse-width modulated signal whose

length is directly related to the measured distance. This signal is then fed to the modula-

tor, which converts the pulse-width modulated signal into a continuous wave modulated

(MCW) signal, which is sent to the smart device through the headphone jack. The device

can read these signals and decodes them, in software, to receive the distance information.

Once the distance is decoded, the next step is to determine the direction of the received

wave. This is done using the phone’s gyroscope, accelerometer, and magnetometer to de-

termine the phone’s current orientation. By taking a collection of repeated measurements

it is possible to construct a simple two dimensional map of the space.

In this paper, we make the following contributions:

• We design and build an in-air SONAR module that can be paired with commodity

smartphones;

• We propose the use of a hybrid hardware/software modulator for communicating

between the external module and the smartphone, via a standard 3.5mm headphone

jack;

• We propose, implement, and evaluate a linear time algorithm for demodulating the
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MCW signal.

• We build a prototype of our system and evaluate its performance, showing precision

on the order of inches;

• We propose and implement an approach for combining the range and directional

information to generate a two dimensional map of a space.

3.2 Related Work

In 2010, researchers at the University of Michigan explored a way of connecting external

devices to smartphones via the headphone jack, called hijack [46]. A unique aspect of their

design was that they harvested energy from the headphone jack to power the microcon-

troller which was responsible for processing sensor data and performing modulation tasks.

They also proposed using a frequency shift key encoding scheme to communicate with

the phone over the headphone jack, where it was demodulated using software installed

on the phone. Several external mobile attachments has been developed using the hijack

platform [59] [74] [41]. However, it is also possible to design a modulator that does not

require the use of a processor. Such a modulator, would provide the software application

on the phone with control of carrier frequency and with it, the baud rate. The modula-

tor in this paper uses a hybrid hardware/software approach to modulate the signal and

does not require the a microcontroller. Since the modulator design does not include a

microcontroller there is also no need to implement any firmware. The proposed hybrid

hardware/software modulator is comprised of a collection of simple analog components

which are used to modulate a carrier supplied by the smartphone.

Project tango, by Google’s advance technology and applications group, integrates a

3D depth sensing camera into a smartphone. Hereby providing the smartphone with the

ability to generate three dimensional maps of space [7]. The inclusion of this sensor in

smartphones has opened a collection of new accessibility applications, including indoor
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navigation and obstacle detection. Developing depth sensing sensors for smartphones

will help advance the field of assistive technologies. Researchers have also explored ways

of providing depth sensing capabilities without the use of specialized hardware, instead

choosing to implement software based SONAR ranging sensor solutions [32]. These sen-

sors use a collection of chirps to determine the distance from the sensor to an object in

space. However, these software based sensors are limited by the hardware constraints of

the phone, since microphones and speakers are located at different locations on different

phones. Creating external sensors will help mitigate this constraint and facilitate the

development of assistive technologies such as SONAR canes. Though SONAR based navi-

gation devices such as SONAR canes [31] already exist, providing attachments for devices

that are already carried by the visually impaired will replace custom embedded solutions.

3.3 Design Section

The system is comprised of three major components: 1) an external SONAR module; 2) a

commodity smartphone; and 3) the software application running on the phone. Figure 3.2

shows a diagram of the system’s architecture. The external SONAR module is designed

to use a collection of ultrasonic chirps to measure the distance to an object. Once the

distance has been measured, the external module generates a modulated analog signal with

the encoded information, and transmits it to the phone’s hardware, through the headphone

jack. The smartphone receives the signal and converts it to a digital vector using its own,

on-board analog to digital converter (ADC). In addition to sampling and converting the

signal, the smartphone is also responsible for tracking the phone’s orientation and, by

extension, the attachment’s orientation, using its own internal gyroscope, accelerometer

and magnetometer. The range and direction information is then combined by a software

application to generate a direction vector. This vector represents the distance and direction

of the item or surface, which reflected the original ultrasonic signal. These distance vectors

can then be combined to generate a two dimensional map of a space.
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Figure 3.2: Shows a system diagram of the proposed SONAR system, which is com-
prised of: 1) an external SONAR module; 2) a commodity smartphone; and 3) the soft-
ware application running on the phone.

3.3.1 External Attachment

There are currently no commercial, off the shelf (COTS) interfaces that allow us to connect

a SONAR sensor to a smartphone. Since, there are no existing interfaces or drivers, we

have designed and built a headphone jack interface and designed a MCW modulation

scheme, that allows us to connect an existing SONAR module to a smartphone. In this

section we describe the hardware that comprises the headphone jack interface, and the

SONAR transducer module.

The external module hardware, (shown in Fig. 3.1) is comprised of three major com-

ponents: a transducer module (the LV-MaxSonar-Ez 1), a modulator circuit, and a 3.5mm

male headphone jack adapter [4]. The transducer module contains a microcontroller and

an ultrasonic transducer. The transducer module is responsible for generating the ultra-

sonic chirps, and calculating the distance of the object by measuring the elapsed time

between the chirps. This distance is encoded as a pulse-width modulated signal where

each 147µs represents one inch. This signal is a logic level signal, and it cannot be de-

coded by the phone if it is directly fed to the phone’s headphone jack. Figure 3.3 shows

the signal that is decoded by the phone’s ADC when the pulse width modulated signal

is fed directly to the phone. Notice that it is difficult to determine the width of the

pulse. We suspect that this poor reconstruction may be due to the fact that the phone’s

ADC is proceeded by AC coupling. However, we cannot confirm this because the phone’s
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hardware is proprietary.

0 5 10 15 20 25 30 35 40 45 50 55 60
−4

−3

−2

−1

0

1

2

3

4
x 10

4

Time (ms)

A
m

p
lit

u
d
e

Figure 3.3: Shows the signal that is reconstructed when the pulse width modulated
signal is fed directly to the phone.

The modulator, is responsible for transforming the pulse-width modulated signals from

the transducer module into an alternating current (AC) signal that the phone can decode.

This is done by designing a circuit that generates a modulated continuous wave from the

pulse-width modulated signal. The modulated continuous wave is then fed to the phone

via its headphone jack.

3.3.1.1 Modulator

The modulator takes two inputs, a carrier and the pulse-width modulated signal, and

produces a modulated continuous wave (MCW). It is possible to generate the carrier using

a hardware oscillator, such as a crystal oscillator, which uses the mechanical vibrations of a

piezoelectric crystal to generate a periodic signal. Crystal oscillators are commonly used in

radios to generate the carrier frequency [56]. However, including this hardware increases

the size and cost of the platform. Instead, we implement the oscillator in software by

leveraging the functionality of the phone’s digital to analog converter (DAC) to generate

the carrier. Once the carrier has been generated, it is fed to the modulator through the

headphone jack. Figure 3.5 shows the signals that are involved in the modulation process.

It is important to select the correct frequency for the carrier. Selecting a carrier

frequency that is too high may prevent the ADC from converting the signal, since the

ADC may not support the sampling rate that is required. Selecting a carrier frequency

that is too low may not provide enough resolution to accurately decode the length of the

38



signal. The datasheet of the transducer module indicates that the pulse width modulated

signal has a resolution of 147µs, where each 147µs corresponds to one inch [4]. Ideally,

we would like to design the carrier so that each peak in the carrier corresponds to a single

inch as well. This means that we would need to create a 6.8kHz carrier. However, the

frequency of this carrier is too high for the analog to digital converter (ADC) on the phone

to accurately recover the peaks in the signal. To mitigate this, we selected a frequency

of 3.4 kHz. This is half the original, which means each peak corresponds to two inches.

However it is possible to get a resolution of an inch at this frequency by also counting

troughs, since each trough represents half the distance between two peaks.

Figure 3.4: Shows a circuit schematic of the modulation circuit. RC is the label for
the received carrier. PW is the label for the pulse-width modulated signal. MIC is the
label for the output of the modulator that is connected to the microphone input on the
phone.

Figure 3.4 shows a circuit schematic of the modulator. The modulator is designed

to turn the carrier frequency on and off. Once the pulse-width modulated signal goes

high, the transistor saturates, and the carrier is transferred to the phone. Once the pulse

width signal goes low, the transistor enters cut-off mode, and the carrier is truncated.

By switching the carrier frequency on and off as the pulse transitions from low-to-high

and high-to-low, it is possible to generate an AC signal that has approximately the same

length as the pulse width modulated signal.

3.3.2 Demodulation

The external module continuously and asynchronously transmits distance readings to the

phone, where they get stored in the phone’s audio buffer. An application running on the
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(a) 3804 kHz carrier frequency
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(b) Pulse-Width Modulated Signal
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(c) Modulated Continuous Wave Signal

Figure 3.5: Figure (a) shows the carrier frequency that is generated on the phone, (b)
shows the pulse that is generated by the transducer module, and (c) shows the modu-
lated signal which encodes the distance information. These measurements were taken
using an object that was 43 cm away from the sensor.

phone reads from this buffer in chunks of 8000 samples (equivalent to about 181ms at a

44.1kHz sample rate).

Since the external module is generating readings every 50ms, it is possible to have at

most approximately three signals in each chunk, that have not been truncated. Figure 3.6

shows a plot of the values from the signal buffer. The signals x1, x2, x3, and x4 represent

four different readings. Notice that signal x4 is truncated because of the buffer size, and

therefore its length does not reflect the correct measurement, so it must be discarded. For

a more complicated design, a producer consumer design pattern can be used to create a

continuous buffer. In the ideal case, the remaining signals, x1, x2, and x3 would be the

same length. However, we see a stabilization error in the digital signal when we try to

decode it. Since the smartphone’s hardware is proprietary, we cannot easily tell exactly

what is causing the transient response, but we think it may be due to AC coupling, since

the direct current (DC) bias is removed in the received signal. Figure 3.7 shows a zoomed

in section of one of the signals that has been reconstructed on the phone. Notice that it

takes approximately 4ms for the signal to stabilize, from the 31ms mark to 35ms. This

may be due to the transient response of the pulse-width component that is still present
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in the signal. However, it is possible to mitigate this during the demodulation process.

Since, the first and last peaks are always reconstructed correctly, and the frequency of the

carrier is known, the number of peaks in the signal can be calculated using the, known,

time between the first peak and the last peak. This approach removes any errors that are

introduced by peaks that are not correctly reconstructed in the signal.
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Figure 3.6: Shows the 8000 samples obtained from a single reading of the buffer.
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Figure 3.7: Shows a single reading from the buffer, i.e. x1 from figure 3.6.

3.3.2.1 Demodulation Algorithm

Once the signal has been modulated by the external attachment it needs to be demod-

ulated by the software on the smartphone, so that the signal can be converted back to

a distance reading. To handle this decoding process, we use a linear time demodulation

algorithm. The algorithm works by counting the number of peaks that are above a partic-

ular threshold. Recall that the frequency of the carrier was selected carefully, so that each

peak corresponds to two inches (0.051 meters). The threshold is automatically selected

by the software to be 50% of the maximum value in the buffer. Having the software au-

tomatically select the threshold will help mitigate the differences in the sound interfaces

on different devices.
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Algorithm 3.1: Calculate signal width

Input: array, threshold
Output: PeakArray
first = true; firstIndex = 0; lastIndex = 0 ; for i=0; i<array.length; i++ do

if array[i] > array[i-1] and array[i] > array[i+1]
|| array[i] < array[i-1] and array[i] < array[i+1] then

if array[i] ≥ threshold || array[i] ≤ -threshold then
peakSeen =true;
count++;
if first then

firstIndex = i;
first = false;

end
else

lastIndex = i;
end

end
if peakSeen then

hops++;
end
if hopExpire < hops then

if count > 2 then
distances.add(lastIndex - firstIndex);

end
hops = 0;
count = 0;
peakSeen = false;
first = true; firstIndex = 0; lastIndex = 0 ;

end

end

end
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3.3.3 2D Map Generation

Since we collect information on both the distance and direction of an object from the

phone, we can generate a two dimensional map of a space by taking multiple measurements

in different directions. Recall that the phone’s orientation can be determined by using its

internal magnetometer, gyroscope, and accelerometer. We map a room by rotating the

phone through a single 360◦ rotation. As a convention we define 0◦ to be North and

values increase in a clockwise direction (e.g. East is 90◦). Since the magnetometer is

noisy, the direction values are discretized into 20◦ increments [52, 69]. The application

divides the compass into eighteen sections of 20◦. A measurement taken in a given section

will associate that value with the center of that section. We can then generate a relatively

stable measurement by using the values of the phone’s pitch to help compensate for the

phone orientation.

We implemented the design on a Nexus 4 smartphone. Figure 3.8 shows a screen shot

of the application. The application shows the distance, pitch and direction values, as well

as a polar plot generated from a collection of measurements.

Figure 3.8: A screen shot of the mapping application showing the information on dis-
tance (in inches), direction (in degrees, with 0◦ at North), pitch (in degrees, with 0◦ at
horizontal, i.e. to the ground), and the resulting polar plot.

3.3.4 Possible Applications

Now that we have shown that it is possible to do depth sensing using SONAR on smart-

phones, the question naturally arises: “What can this be used for?”. We have several

ideas for possible applications of depth sensing using SONAR. The system may be used to
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Figure 3.9: Figures (a), (b), and (c) show the results for a small room, large room, and
outside. Ten measurements were taken at each distance; the error bars represent the
standard deviation of these measurements. As represents the average error for software
SONAR module and Ah the average error for the software module .

create a SONAR cane that allows people with visual impairments to navigate a space. The

system can also be used as a tool for realtors, interior designers, or engineers to quickly

get an estimate of the dimensions of the room.

3.4 Evaluation

We evaluated our system using two metrics, accuracy and spatial resolution, in a small

room, a large room, and an outdoor environment. In measuring the external SONAR

attachment’s accuracy, we compared it to our previous software based SONAR sensor [32]

and a commercial sonar measuring device called the Strait-Line Laser Tape [10]. The

external attachment achieved much lower standard deviations at each measured distance

and smaller error when compared to the software based SONAR from our previous work.

In evaluating the spatial resolution, we took a collection of measurements in differ-

ent directions to generate a polar plot of the area around the phone (as described in

section 3.3.3), and compared the plot to the actual floorplan of the room.

3.4.1 Evaluating Accuracy

We evaluated the accuracy of our external SONAR by placing it on a tripod and taking

measurements at different distances in three environments (For all tests we used the Nexus

4). At each distance, ten measurements were taken using both the external SONAR
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Figure 3.10: Figures (a), (b) and (c) show the polar values obtained by the external
SONAR module in a small room, a large room and outdoor environment, respectively.
The application divides the compass into eighteen 20 degrees sections. A measurement
taken in a given section will associate that value with the center of that section. All
measurements shows are in meters and all angles are in degrees

module and the software based SONAR module. The average value and standard deviation

of these readings were plotted against the actual distance for all three environments. The

average error for both the external module Ah and the software based SONAR application

As were calculated, excluding the break down regions, (i.e. less than one meter and more

than four meters for the software SONAR, and less than 1
2 meters for the external sonar

module.

The first environment was a small room (approximately 3.36 by 3.92 meters). Fig-

ure 3.9(a) shows the results of this experiment. For the software SONAR sensor, we see

decreased performance at values lower than one meter. When we compare the result of the

values obtained using the external SONAR attachment, we noticed that the values have

a much smaller standard deviation and are more accurate. The smaller beam of sound,

that is produced from the external sensor, helps mitigate the reverberation effects.

The second environment was a large carpeted indoor room (approximately 8.61 by 6.10

meters). Figure 3.9(b) shows the results of this experiment. The software based SONAR

module performs much better in a large indoor room, but begins to break down after 3.5
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meters. As for the attachment, as the distance increases, so does the beam width. At

5.5 meters the beam is wide enough to pick up other objects in the space, like desks and

chairs. This causes the accuracy of the sonar sensor to decrease as distance from the wall

increases.

The final environment was an outdoor area with moderate building construction noise

in the background. Figure 3.9(c) shows the results of this experiment. From these results

we can see that the external SONAR module outperforms the software based sensor.

Even though external module does sometimes underestimate the distance, it continued to

perform up to its design limit of approximately six meters. This design limit is determined

by the maximum distance of the transducer module which, from the datasheet, we know

is approximately 20 feet, or 6.1 meters. Though it is possible increase the system’s range

by purchasing a new transducer module; such modules are normally much larger and have

a large cone that surrounds the buzzer. In an effort to maintain a small, convenient form

factor, we have opted to not use a smaller transducer module.

3.4.2 Evaluating Resolution

In this subsection, we evaluate the spatial resolution of the system by generating a two

dimensional map of a space and displaying it on a polar plot. Figure 3.10(a) shows a polar

plot that was obtained by placing the smartphone on a tripod in the middle of the small

room and rotating it 360o. We then measured the room, using a compass to determine the

room’s orientation, and calculated its polar coordinates. These values were then overlaid

on the measured values in figure 3.10(a). We repeated this process for the other two

environments and plotted in the results in figures 3.10(b) and 3.10(c).

3.4.3 Sources of Error

There are two main sources of noise when generating polar plots. The first source is noise

from the gyroscope and magnetometer. The magnetometer determines the smartphone’s

direction with respect to magnetic north by sensing the earth’s magnetic field. However,
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the magnetometer is noisy and sometimes the direction is not determined correctly. We

believe that this is the reason for the distorted corners in the large room measurement.

The other source of error may be due to the fact that surfaces reflect sound at an angle

to the surface normal. This means that the system will be fairly accurate when taking

measurements of an object that is directly in-front, but as the angle from the receiver to

the object increases, the accuracy will decrease, since less energy is being reflected in the

direction of the receiver.

3.4.4 Energy Consumption

Another unique aspect of our design is that it is internally powered and does not require

power from the phone. The only energy that is consumed by the phone is the energy that is

associated with processing the information that is generated by the sensor. Since there are

several other processes on the phone, it is difficult to isolate the energy that is consumed by

only the demodulation process. The notion of harvesting energy from the phone to power

the external sensor is interesting, though we do not do it for this sensor, other researchers

and engineers have adopted this approach. For example, the highjack prototype developed

by researchers at the University of Michigan uses energy harvesting [46]. However, we did

not opt for this approach due to the additional complexity associated with implementing

it. Implementing this energy harvesting approach would include the addition of a bridge

rectifier to convert the AC signal to DC signal, and a voltage multiplier to step up the

signal to the required voltage.

3.4.5 Testing other devices

So far throughout our evaluation we have only used the Nexus 4. But the question remains,

Will this solution generalize to other devices? In an effort to answer this question, we

evaluated our interface design on six different devices. The results of these tests are

summarized in Table 3.1. We found that the interface mismatch issue existed on four of

the six devices that we tested. We also tested the mapping application on these devices,
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Device OS Mismatch App Worked App Failed

LG Nexus 4 5.1.1 X X
Samsung 5 4.4.2 X
Samsung 4 4.4.4 X

Nexus 5 5.1.1 & 4.4.3 X X
LG L90 4.4.4 X X

LG MyTouch QC 800 4.0.1 X X

Table 3.1: Compatible Devices.

and found that the application worked on two of the six devices that we tested. We are

currently searching for the hardware or software issues that may have caused the failures

in these other devices. One possible source of failure may be due to the operating system

automatically lowering the volume when the headphone jack is plugged in. This makes it

difficult to get a strong enough carrier for the modulator. Future versions of the hardware

may need to include an amplifier and buffer on the interface board.

Figure 3.11: Shows a picture of the stairwell in which the measurements where taken
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Figure 3.12: This figure shows the map that was reconstructed from the measurements
taken in the stairwell. All measurements are in meters and directions are in degrees.
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3.4.6 Testing in an irregular environment

So far we have tested the external attachment in simple environments. In this section

we evaluate the performance of the system in a stairwell. Figure 3.11 shows a picture of

the stairwell and Figure 3.12 shows the results of the map that was generated. From the

figure we notice that errors from the magnetometer cause the map to be slightly skewed.

For example, in Fig. 3.12, the points at 100◦ and 260◦. We also notice that sensor picks

up the middle of the staircase that is blocking the rear wall. We can also see that sensor

does not pick up the lower rear wall due to the narrow beam width. All of these factors

along with the irregular nature of the stairwell result in a moderate reconstruction of the

space.

3.5 Conclusion

In this paper, we proposed a design for a smartphone compatible external SONAR module

as an extension on our previous research into software based SONAR sensors for smart-

phones [32].

We designed a hybrid hardware/software modulator that allows the external attach-

ment to communicate with the phone via the headphone jack. The modulator design is

unique because it does not use a hardware oscillator to generate the carrier frequency but

instead uses the software on the phone and the phone’s DAC. The modulator encodes the

range information from the external module using a modulated continuous carrier. This

information is then decoded and combined with information from the phone’s gyroscope,

accelerometer, and magnetometer to generate a two dimensional map of the space.

A possible avenue for future research is exploring ways of improving the hybrid mod-

ulator, by using a photo relay as a switch instead of transistor. This would mitigate the

stabilization time in the buffer signal by potentially eliminating the DC bias from the

transient response of the pulse-width component.
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Chapter 4

A code first approach to designing

embedded systems

4.1 Introduction

In 1988, the chief scientist at Xerox PARC, Mark D. Weiser, coined the term ubiqui-

tous computing. He envisioned a future of ubiquitous computing that he called:“Calm

Computing”. He believed that computers should create calm by being quiet and invisible

servants that help us to be more efficient in a way that feels intuitive [76]. His vision has

inspired several new computing devices, including wearable devices.

These wearable devices have changed the way we perceive personal computing devices.

Devices such as the Galaxy Gear [8], the Pebble [6] and the Fitbit [2] have created new

ways for us to track our health and check our mail. However, as researchers and engineers

begin to explore the potential of wearable devices, they are faced with the challenge of

developing and testing custom hardware prototypes.

As we begin to consider the question of prototyping devices by generating hardware

from code, there are two fundamental contexts in which the question should be consid-

ered. The first context is automatically generating hardware prototypes by analyzing the

code they are required to run, thereby allowing software developers with limited hardware

50



Figure 4.1: Shows the layout of the mainboard (E-unit)

experience to develop their own prototypes. The second context, is that of hardware/-

software co-design, where the experienced hardware engineer is interested in optimizing a

hardware design by utilizing information from the code that the platform is required to

run. Thanks to research done by several researchers, we know a great deal about problems

related to hardware/software co-design [73] [35] [30] [26] [28] [71].

In this paper, we consider the first context and attempt to reduce the time that it

takes to develop a hardware prototype by proposing a code-first approach to the design of

embedded systems. A code-first approach allows a software developer to begin developing

a hardware prototype by first writing the code that it will run. After the code has been

written, it can be analyzed to determine the hardware configuration that is required. Once

the configuration has been determined, a list of modules and their appropriate ports are

displayed and the system can be configured by plugging in the appropriate modules. After

the software developer has tested the code on the configured hardware prototype, he or

she can then automatically generate the design files that are required to fabricate a custom

board. This is possible because the platform is comprised of a collection of modular soft-

ware and hardware components. The hardware components consist of a main board with

several hardware modules, while the software component is a modular middleware which

consists of stateless libraries, which abstract each hardware component. This modular

abstraction creates a direct relationship between the software module and the hardware

module, thereby allowing us to synthesize a hardware configuration from a software defi-

nition. A code-first approach to designing embedded systems can be achieved by creating
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a direct mapping between a stateless modular middleware and modular hardware.

The intuition behind the board’s design is that there are a collection of interfaces (i.e.

SPI, I2C, and UART interfaces) that components normally use to interface with micro-

processors. By abstracting these interface communication protocols and directly exposing

the associated pins, it is possible to design a board that allows software developers to au-

tomatically generate the hardware configurations that are required to run their software.

Figure 4.1 shows a picture of the main board, which we call the E-unit. The E-unit

is comprised of four expansion ports. Each port is designed to be compatible with a

specific interface and therefore accommodates a particular type of module. The first port

is designed to be compatible with I2C interfaces and accommodates modules (such as an

accelerometer and gyroscope ). The second port is designed to interface with UART-based

modules (such as a Bluetooth module). The third port is designed to interface with analog

sensing modules (such as a humidity sensor or finger pulse sensor). The fourth and final

port is an SPI port that is designed to be compatible with a display module.

In the past, hardware platforms have helped to catalyze innovation [40] [65]. In 2005,

researchers at the University of California Berkeley released the Telos mote along with

the TinyOS operating system. This platform provided computer scientists with the tools

to design and evaluate new protocols for wireless sensor networks and devices. Unlike

the Telos platform, our proposed platform is reconfigurable. This means that components

can be added or removed from the platform. Reconfigurable platforms for prototyping

large-scale devices are becoming increasingly popular.

This paper makes four contributions:

• it presents a platform for prototyping wearable computing devices;

• it proposes a code-first approach to the design of embedded systems that allow

programmers to synthesize hardware configurations from software definitions;

• it presents a method for automatically generating custom schematics from a hard-

ware configuration; and
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• it presents an approach for automatically identifying port conflicts in hardware/-

software co-designs.

4.2 Related Work

Research into rapid prototyping strategies can be divided into two major categories:

fixed platform approaches and hardware/software co-design approaches. Fixed platforms

use predefined designs, while hardware/software code design approaches use co-synthesis

strategies to generate efficient hardware and software partitions.

The hardware/software co-design approaches that are the most similar to our design

can be grouped into two subcategories: 1) Interface-Based Designs and 2) Platform-Based

Designs. One of the earliest papers on Interface-Based Design by J. Rowson et al. proposed

a methodology for separating a component’s behavior from how it communicates with

other components in the system. Separating components in this way makes it easier

to formally verify the component’s behavior [67]. Since then, several researchers have

explored this interface based design paradigm [62] [61] [23]. Though our platform uses an

interface based approach that is similar to previously proposed approaches, our approach

extends the interface based paradigm beyond the verification of a single component to the

synthesis of an entire system.

The second hardware/software co-design approach is a Platform-Based Design ap-

proach. A Platform-Based approach encourages the reuse of pre-designed components

through the use of automatic mapping tools [68] [44]. These automatic mapping tools

use a layered approach to isolate and map an abstracted top layer description to a more

detailed lower layer implementation. Consider the example of a field programmable gate

array which uses a compiler to provide isolation and automatic mapping from the top layer

VHDL abstraction to the lower layer implementation of logic blocks. In our approach,

the libraries provide the abstraction for hardware/software partitions and the automatic

mapping to lower level hardware implementation is done by the automatic configuration
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generation process.

In addition to many hardware/software co-design approaches, several fixed platform

based approaches have also been proposed. Several companies and researchers have

developed platforms that allow researchers and engineers to quickly prototype and test

their new ideas. One of the earliest prototyping platforms was the phidgets platform,

which was developed in 2001 [33]. Afterwards, in 2003, Plessl et al. advocated for the

inclusion of field programmable gate arrays (FPGAs) in sensor nodes [64]. They presented

a sensor hardware architecture which coupled an fpga with a CPU. By including the fpga

and allowing the CPU to configure it, they were able to dynamically configure the chips.

Our approach does not use a reconfigurable chip. Instead, we focus on extending the

capabilities of the platform by adding and removing external modules.

The earliest occurrence of an extensible platform that we found in the literature was the

MetaCricket. [53]. The MetaCricket consisted of a main board which connected to other

devices and sensors. The board consisted of a main master controller and a supporting

slave controller. The external sensors and expansion boards connected to the master

controller while the slave controller controlled the board’s internal components. Following

the release of MetaCricket, researchers at Stanford University introduced the GoGoBoard

in 2004 [70]. The GoGoboard was a low cost programmable control and sensing board.

The GoGoBoard was designed to be used as a learning resource in developing countries.

With this goal in mind, the researchers focused on ensuring that the GoGoBoard could

be assembled in developing countries. This decision influenced the board’s design and

the components that were selected. Unlike the GoGoBoard and the MetaCricket, our

platform consists of both hardware and software components which make the process of

prototyping easier.

In 2005, researchers at UC Berkeley proposed the Telos platform along with the TinyOS

operating system [51]. The release of the reference platform and operating system sparked

innovation in sensor network research. Following the release of the Telos platform, re-

searchers at the UC Berkeley released an updated platform called the TelosB. And in
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2009, researchers at UC Berkeley [47] extended the capacity of the TelosB motes by creat-

ing two extension boards. The first extension board comprised of a triaxial accelerometer

and a biaxial gyroscope. The second extension board provided electrocardiogram (ECG),

and electrical impedance pneumography (EIP) functionality to the TelosB platform. These

expansion boards demonstrated the flexibility of the TelosB motes. However, as new com-

puting form factors emerge, such as body networks and wearable devices, researchers will

need a platform that allows them to prototype devices for these new applications. Unlike

the Telos and TelosB motes, our proposed platform can be extended using off-the-self

components instead of custom extension boards. More recently, in 2014, researchers at

the University of Florida have developed a reconfigurable RFID sensing tag [57]. The

platform provides three pins that can be used to connect sensors to the platform. The

platform also has an RFID antenna and Cortex M3 microcontroller.

Large companies have also attempted to develop reconfigurable platforms. For exam-

ple, in 2008 Shimmer began developing their wearable computing development kit [21].

The Shimmer kit was a flexible health sensing kit which consisted of a collection of prebuilt

expansion modules. Following the release of the Shimmer development kit, researchers at

Microsoft proposed the Gadgeteer platform in 2011. The Gadgeteer platform is an ex-

tensible platform that allows researchers and industry professionals to quickly prototype

hardware devices [75]. The Gadgeteer’s main board is designed to use a collection of

prebuilt modules which can be plugged into the main board. Unlike the Gadgeteer and

Shimmer platforms, our proposed platform does not require custom modules. It works

with off-the-shelf devices.

4.3 Software Design

This section is divided into two subsections. In the first subsection, we present our proposal

for a code-first approach to developing embedded systems. In the second subsection, we

discuss the design of the modular middleware architecture that is used in our reconfigurable
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platform.

4.3.1 A Code-First Approach to Embedded System Design

A code-first approach allows software developers to write an application without worrying

about configuring its resource dependencies. For example, Microsoft’s entity framework

allows software developers to abstract database models as classes [22]. Once the user

compiles the program, the framework will automatically generate the database’s structure

from the class definitions. This increases the programmer’s productivity since she does

not need to manage the database by writing SQL queries to create, update and delete

tables. Instead, the entity framework ensures that the database is compatible with the

programmer’s implementation.

A code-first approach to embedded system design allows the framework to configure

the hardware platform by analyzing the code for hardware dependencies. These depen-

dencies are then used to generate the hardware configuration that is needed to run the

application. This is possible because of the modular architecture that maps one software

module directly to one hardware component. This one-to-one mapping allows hardware

dependencies to be determined by analyzing the software dependencies. However, it is not

sufficient to only analyze software dependencies, the microcontroller may have physical

constraints that may prevent a valid software model from being executed. For example,

the software developer may include two UART libraries in their program. Though this is

a valid software model some microcontrollers such as the MPG430G2553 can only accom-

modate a single UART module without the use of resource sharing hardware. To ensure

that our approach only produces valid hardware configurations we need to verify that the

software models are compatible with our hardware platform and microcontroller. In the

following sections, we discuss the design of the modular architecture and demonstrate how

it can be used to construct the software models.
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4.3.2 Modular Middleware Architecture for Embedded Systems

Developing embedded software is tedious. The software developer needs to know what

control registers to set and what data registers to read. This means that the developer

needs to have intimate knowledge of the chip’s architecture and the board’s layout, and

therefore must spend hours reading datasheets. In an effort to reduce the burden on the

software developer, several researchers have proposed a collection of hardware abstractions

to help address this problem [36] [37]. We take a similar approach by proposing a modular

middleware architecture that allows the software developer to quickly build software for

our platform. Figure 4.2 shows an overview of the modular middleware architecture. The

middleware is comprised of a collection of libraries/software modules. Unlike previous

systems that associate modules with generic functionality [29], our middleware architecture

associates software modules directly with hardware modules. This allows the middleware

to be tailored directly to the hardware platform’s current configuration, resulting in a

smaller code size.

Figure 4.2: An overview of the middleware architecture

Each software module is responsible for abstracting the hardware configurations of
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its corresponding hardware module. In particular, each software module is responsible

for three tasks: 1) managing the appropriate hardware control and data registers, 2)

performing the calculations associated with the module, and 3) managing the system’s

power. For example, the light-sensing software module is responsible for setting the control

registers associated with controlling the MCU’s analog to digital converter (ADC) and

CPU. Since the sensing module is allowed to set the CPU’s control registers, it can disable

the CPU to save power while it is waiting for the ADC to settle on a value. Once the

ADC has settled on a value, the sensing module can wake up the CPU and perform the

necessary calculations.

All software modules are required to be stateless. This means that the libraries do

not assume that the MCU’s control or data registers are in a particular state. This is an

important requirement since memory limitations prevent us from using an operating sys-

tem to provide resource management and protection. The absence of an operating system

would be concerning if the platform was required to run multiple programs simultaneously.

However, our platform is designed for specialized embedded applications where resources

such as memory are too limited to support an operating system.

Extending the middleware is relatively easy, since it is a collection of decoupled state-

less modules. The stateless nature of these modules allows a developer to extend the

platform without impacting the other libraries. If the software developer chooses to use

these libraries in addition to controlling the registers, he or she is able to do so without

impacting the middleware since each module is stateless. Regrading the design of the

libraries, there are two seminal questions which we believe need to be addressed. The first

question is how do we partition functionality between software and hardware and how

does this affect the performance of the design? This problem of dividing the systems func-

tionality between hardware and software is known as the “partitioning problem”. Several

researchers have studied this problem and have proposed ways to achieve the fastest or

lowest cost solution [43] [77] [58] [30].

This implies that there are several partition options depending on the constraints
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of our design. So this leads us naturally to the second question. How will a software

developer with limited hardware experience choose and configure these different hardware

implementations? This is where the library abstraction proves to be extremely useful. One

advantage of creating a direct mapping between the hardware modules and the software

libraries is that new hardware/software partitions can be selected by including different

libraries. This means that a software developer can select the appropriate partition by

simply including the library that meets their performance and cost constraints, without

having any knowledge of the underlying hardware.

4.4 Configuration Generation Process

In this section, we present an example that shows how a hardware configuration can be

generated from a software definition. In particular, we go through a detailed example of

how to implement an indoor temperature sensor with an LCD using the proposed code-first

approach. The example code in figure 4.3 shows a program that was written in C using

our modular middleware architecture. The program begins by including three software

modules/libraries. The first is an LCD module which abstracts the display component.

The second module is the temperature sensing module. And the third module is the helper

module which includes helper functions. These helper functions include the board init()

function that abstracts the setup of the Watchdog Timer and the convertADC() function

that converts longs to formatted strings.

Lines 10-19 represent the program’s running loop. In the loop the program instructs

the LCD screen to go to position (0,2) and write the string “AT”. Once this step has

completed, the program calls the tempSense module which sets the appropriate control

registers, reads the appropriate data registers and returns the result, which is then con-

verted to a string and displayed. The LCD software module supports unique characters

with special codes, for example 0x7f represents the degree o character.
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#inc lude ‘ ‘LCD. h ’ ’
#inc lude ‘ ‘ tempSense . h ’ ’
#inc lude ‘ ‘ h e l p e r s . h ’ ’

void main ( void ) {
unsigned long degree s ;
char ∗ read ing ;
b o a r d i n i t ( ) ;
LCD init ( ) ;
whi l e (1 ) {

LCD gotoXY ( 0 , 2 ) ;
LCD writeString ( ‘ ‘AT: ’ ’ ) ;
degree s = tempSense ( ) ;
LCD writeChar ( ‘ ( ’ ) ;
r ead ing = convertADC ( degrees , 1 ) ;
LCD writeString ( read ing ) ;
LCD writeChar (0 x7f ) ;
LCD writeString ( ‘ ‘C’ ’ ) ;

}
}

Figure 4.3: An example program written using the modular middleware that displays
the temperature on the LCD.

4.4.1 Introducing Mathematical Abstraction and Notation

There are currently solutions for partitioning software and hardware to create a perfor-

mance optimized design using microcontrollers [30]. However, we were unable to find any

research that addresses the problem of port conflicts that occur when implementing a

collection of partitioned designs. A port conflict occurs when two partitions are included

in the same design and require the same port. Figure 4.4 shows an intuitive example

of a port conflict between two hardware partitions. If a port conflict occurs, it is not

possible to implement the design given current hardware/software partitions. Engineers

at Texas instruments have developed a tool called pinMux that helps resolve conflicts in

complex designs [12]. However, the port requirements must be specified before the soft-

ware is written. There are also cases in which the pinMux tool is unable to find a solution

and therefore port conflicts must be manually resolved by modifying the design to more
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efficiently use the ports. In this section, we present an approach for solving this port

conflict problem by abstracting the problem as a constraint solving problem. The process

is comprised of three steps:

1. abstracting the collection of hardware/software co-design libraries as a set, which

represents the system’s configured state;

2. representing the microcontroller port limitation as a collection of constraining set

functions; and

3. applying the constraint set functions to the system set to automatically identify the

software/hardware partition libraries that create port conflicts in the design.

Figure 4.4: Shows an example of a port conflict on the UART port of the microcon-
troller reference design. BLE represents a bluetooth module.

4.4.2 Abstracting Libraries

The first step in the process of identifying port conflicts is abstracting the hardware/soft-

ware co-design libraries as a set representing the system’s state. These state abstractions

are best explained by an example. Throughout our explanation, we will use the code in

figure 4.3 to show how each abstraction applies to the specific example.

We can abstract each library as a tuple comprised of a library identifier λ and a set of

properties P where P is a subset of the defined superset P ′.

t = (λ, P = {p1, p2..pn}) (4.1)
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We define tλ as representing the library identifier of the tuple and tp as representing

the property set in the tuple. Each value pi describes a particular property of the library.

These properties are the requirements that the associated hardware partition needs to

interface with the software library. Table 4.1 shows a collection of example properties.

For example, p1 may mean that the library is a UART based library, while property p2

may mean that the component has an operating voltage of 3.3V . Consider the “LCD.h”

library from figure 4.3, it can be expressed in tuple form as: (λ3, {p3, p4}). Table 4.2 shows

a collection of example library identifiers and their associated properties.

property description

p1 UART module
p2 Sensing ADC Module
p3 3.3V power requirement
p4 display module
p5 on-board module
p6 5v power requirement

Table 4.1: An example of the superset P ′

library identifier description properties include statement

λ1 Bluetooth UART Library {p1, p3} “Bluetooth.h”
λ2 IR Sensing {p2, p3} “IRSense.h”
λ3 LCD display module {p3, p4} “LCD.h”
λ4 Temperature Sensing module {p3, p5} “tempSense.h”
λ5 GPS UART Library {p1, p3} “Bluetooth.h”

Table 4.2: An example of the superset S′

Now that we have presented an abstraction for the software libraries and their associ-

ated properties, we can use this approach to model the software system S as a collection

of tuples that are a subset of the defined superset of tuples S′.

S = {(λ1, P1), (λ2, P2)...(λn, Pn)} (4.2)
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Consider the following example code shown in figure 4.3. Now that we have defined

the supersets P ′ and S′, we can determine the system’s tuple representation by examining

the library dependencies of the program. The program may contain other libraries that

are not associated with hardware modules. By checking the libraries in the program

against a known set of libraries it is possible to extract the relevant libraries from the

program. Consider the program in figure 4.3 it has three library dependencies: “LCD.h”,

“tempSense.h” and “helpers.h”. We construct the tuple set by checking for the library in

the tuple superset S′. If the library is found we add it to the set S. For example, the

“tempSense.h” and “LCD.h” libraries are both in the superset S′ so we add them to the

subset S. However, the “helper.c” library is not in the superset S′ so we do not add it to

the subset S. This results in the following set:

S = {(λ3, {p3, p4}), (λ4, {p3, p5})} (4.3)

4.4.3 Specifying the Constraints

Now that we have abstracted the hardware/software co-design libraries as a set repre-

senting the system’s state, we need to represent the microcontroller’s port constraints, so

that they can be checked against the system’s state. Recall that a port conflict occurs

when there is a discrepancy between the system’s state and the microcontroller’s port con-

straints. For example, a program may include two libraries that have the UART property.

This means that both libraries require the use of USCI module on the microcontroller.

However, the msp430g2553 microcontroller does not have the required pins to support two

UART devices, consequently even though the software definition of the program is correct,

the hardware is unable to run it because the microcontroller does not have the required

number of ports to support the design. In order to verify that a hardware configuration

can be generated from the software model, we must show that the software model does

not violate any of the hardware constraints. Formally, we can think of these constraints
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as a set of set functions

C = {c1(S), c2(S), ..cn(S)} (4.4)

A constraint ci(S) is considered to be satisfied if it returns an empty set ci(S) = {}. If a

constraint is not satisfied, we say that it is violated. For a software model to be considered

valid it must satisfy all of the constraints in the set C. Each hardware platform will have

its own collection of constraints. For example, the proposed platform has a port constraint

for UART modules p1. The platform can only accommodate one UART module. We call

this type of constraint a uniqueness constraint.

c1(S) = {t|t ∈ S ∧ ∃t′ ∈ S : p1 ∈ tp ∧ p1 ∈ t
′
p ∧ t 6= t

′} (4.5)

Recall that a constraint is considered to be satisfied if it returns an empty set. This

empty set check, could be associated with the constraint function by having the function

simply return a Boolean. For example, equation 4.5 could have been written more simply

as shown in equation 4.6.

c1(S) = ∃!t ∈ S : p1 ∈ tp (4.6)

However, we want the constraint function to identify the violating tuples, so we express

it as shown in equation 4.5.

Another type of constraint is a universal property constraint. An example of a universal

property constraint is a power constraint, which requires all modules to meet the 3.3V

power requirement. Equation 4.7 shows an example of a universal property constraint for

the property p3.

c2(S) = {t|t ∈ S ∧ p3 6∈ tp} (4.7)

We can define the violation set V as the set of the constraints that a system S violates.

V (S,C) = {c|((c ∈ C) ∧ c(S) 6= {})} (4.8)
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We say a system S is consistent with a constraint set C if the violation set is empty.

An empty violation set means that the system set does not violate any of the hardware

constraints. This formalization is important because as the complexity of the system grows

we expect that these abstractions will form the basis for explicitly specifying constraints,

though we do not expect to supplant formal systems such as TLA [48]

Now that we have defined the concept of a constraint, let us consider it within the

context of the hardware platform. Because of the microcontroller’s architecture and the

design of the reference platform, the platform has three uniqueness constraints for prop-

erties p1, p2, p4 and one universal property constraint for property p3. Now let us consider

how these constraints can be used to check the system set from our running example,

shown in equation 4.3

To ensure that the set represents a valid software model, we must ensure that all

constraints are satisfied. First, let us consider the uniqueness constraint shown in equa-

tion 4.5. The uniqueness constraint requires that a property pi is only found in a single

tuple in the set S. In the set S, the property p4 occurs only once so the constraint is

satisfied. Since properties p1 and p2 are not in the set, their uniqueness constraints are

also satisfied. Now that we have shown that all the uniqueness constraints are satisfied,

we need to show that the universal property constraint in equation 4.7 is satisfied. The

universal property constraint requires that all tuples in S have the property pi. This con-

straint is satisfied for property p3 since all the tuples in S have the property p3. Since all

the constraints in C are satisfied, the software model is considered to be valid.

It may be difficult to grasp the purpose of the constraints in a scenario where they

are not violated. So let us consider a system where the constraints are violated. To see

how the constraints could be violated, let us extend the temperature display example to

include a GPS module and a bluetooth module. Figure 4.5 shows the code for the new

design. By following the procedure outlined, we can define a new system set S2 which

presents this new GPS and bluetooth capable system. Equation 4.9 shows definition of

the new set.
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#inc lude ‘ ‘LCD. h ’ ’
#inc lude ‘ ‘ tempSense . h ’ ’
#inc lude ‘ ‘ Bluetooth . h ’ ’
#inc lude ‘ ‘GPS. h ’ ’
#inc lude ‘ ‘ h e l p e r s . h ’ ’

void main ( void ) {
unsigned long degree s ;
char ∗ read ing ;
char ∗ gpsReading ;
b o a r d i n i t ( ) ;
LCD init ( ) ;
whi l e (1 ) {

LCD gotoXY ( 0 , 2 ) ;
LCD writeString ( ‘ ‘AT: ’ ’ ) ;
degree s = tempSense ( ) ;
LCD writeChar ( ‘ ( ’ ) ;
r ead ing = convertADC ( degrees , 1 ) ;
LCD writeString ( read ing ) ;
LCD writeChar (0 x7f ) ;
LCD writeString ( ‘ ‘C’ ’ ) ;
gpsReading = GPS getValueString ( ) ;
b luetooth . send ( read ing ) ;
b luetooth . sending ( gpsread ing ) ;

}
}

Figure 4.5: Modification of indoor temperature sensor to include GPS and Bluetooth.
For this example we assume the implementation of GPS module and it corresponding
library.

S2 = {(λ3, {p3, p4}), (λ4, {p3, p5}), (λ1, {p1, p3}), (λ5, {p1, p3})} (4.9)

Now we have a definition for the system set, we can once again apply the constraints.

Notice that this time the uniqueness constraint is violated by both the GPS module and

the bluetooth module, since the GPS module and bluetooth module both require the use

of the UART ports and there are not enough pins on the microcontroller to accommodate.

Notice also that the constraint does not simply return true or false but instead returns the
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violating tuples: {(λ1, {p1, p3}), (λ5, {p1, p3})}. These are then returned to the program-

mers as an error, notifying them of the libraries that have violated the limitation of the

reference platform. Once these violation have been identified, the programmer may select

new libraries that implement similar functionality but do not violate the port constraint

of the microcontroller. For example, the programmer may choose a GPS implementation

whose hardware/software partition uses an I2C interface instead.

4.4.4 Automating Microcontroller Selection

Currently our system is designed to be a proof of concept, but commercial alternatives

would allow engineers to select from a wide variety of microcontrollers. This means that

these constraints could be used to inform processor selection. If a particular microcon-

troller does not meet the constraints of the application, these constraints could be used

to search for a microcontroller that might be capable of running the application. In this

case, the problem becomes an optimization problem where the system is attempting to

find the best possible microcontroller whose constraints meet the requirements of a given

application. Since companies like Texas instruments currently offer over 40 different mi-

crocontrollers [11], approaches that provide automatic microcontroller selection would be

extremely useful.

4.4.5 Generating the Hardware Configuration

Now that we have validated the software model, we can begin synthesizing the hardware

configuration. The synthesis process is comprised of two steps. The first is to determine the

list of hardware modules that are needed. The second step is to determine which ports

each module plugs into. Our modular middleware architecture simplifies the first step

by providing a mapping from the software libraries to the hardware modules. Table 4.3

shows the mapping of the libraries to the hardware modules. The design of the main board

simplifies the second step by providing four unique expansion ports. Once we determine

what hardware modules are required, we can look up the associated port in table 4.4.
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library identifier hardware id mapped module

λ1 α1 Bluetooth UART module
λ2 α2 IR Sensing Module
λ3 α3 LCD Display module
λ4 α4 on-board temperature module
λ5 α5 Accelerometer Gyroscope module

Table 4.3: An example of library mappings

hardware id port id port mapping

α1 Υ1 UART Port
α2 Υ2 Sensing ADC Port
α3 Υ3 Display Port
α4 Υ4 on-board no port
α5 Υ3 Sensing ADC Port

Table 4.4: An example of the port mappings

Now let us consider the example in figure 4.3, we determined that the software model

for this code was S = {(λ3, {p3, p4}), (λ4, {p3, p5})}. Formally, we can think of the synthe-

sis process as a set function that converts the software model set S to a hardware model

set H. We define a hardware model set H as a collection of tuples,

H = (α1,Υ1), (α2,Υ4)...(αn,Υm) (4.10)

where αi represents the hardware module id and Υi is the port identifier. We perform the

first step of the synthesis process by identifying the corresponding hardware modules for

libraries λ3, λ4 which are α5, α4 respectively. Now that we know what hardware modules

we need, we can look up the corresponding ports. This results in the tuple set H =

P{(α3,Υ3), (α4,Υ4)}. From this configuration, the software developer knows to plug the

LCD module into the display port and that the temperature sensor is already a part of

the main board. The process of generating the hardware configuration from the software

model can be easily automated since it is only a collection of look-ups. Figure 4.6(a) shows

a picture of the resulting hardware configuration.
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(a) Temperature Sensor

(b) An overview of the process

Figure 4.6: Figure (a) shows a temperature sensor with LCD display. Figure (b) shows
an overview of the steps in automating the synthesis process.

4.4.6 Automating the Process

In this subsection, we present the system architecture that implements the proposed for-

malization. Figure 4.6(b) shows an overview of the system’s architecture. We implement

an alpha version of the system by developing an eclipse plug-in that is compatible with

Code Composure Studio [42].

The system is comprised of four stages: a parsing stage, a constraint checking stage,

a configuration generation stage, and a schematic generation stage. A key insight for im-

plementing the system is realizing that the super sets S, H and P can be represented as

relational tables. By representing the sets as relational tables, it is possible to express and
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validate the system constraints as queries against these relations. This SQL-based archi-

tecture also allows the system to be updated as new libraries and constraints are added,

since the database can be stored in a central location and queried remotely. However, be-

fore constraints can be validated using queries, the system set must be constructed. The

system set is constructed by parsing all the files in the project directory and extracting

the relevant include statements.

4.4.6.1 Parsing Step

During the parsing step the system reads all the files in the project folder and extracts

all of the libraries that are included in the system. This is done by examining the include

statements in the project files. Once all the libraries have been extracted, the libraries

that are not associated with the middleware must be removed before the system definition

can be generated. This list is filtered by querying the tables associated with the S relation.

The libraries that exist within the P relation are kept and those that do not, are discarded.

The remaining libraries represent the system set S. This system set is then represented as

an arraylist of library ids, and is encapsulated as a member of a system node class.

4.4.6.2 Constraint Checking Step

Now that the system set has been determined, the next step is validating this system

set. A valid system set is one that does not violate any of the constraints associated with

the system. Since each constraint can be expressed as a single SQL statement, it can be

further abstracted as a visitor class which operates on the system node. When a visitor

operates on the system node it returns a violation set containing all of the libraries that

violate the constraint that is associated with the visitor. This violation set is then added

to a global violation set that is associated with the system node class. Once all the visitors

have visited the system node, and if the global violation set is empty, the system set is

considered valid.
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4.4.6.3 Configuration Generation Step

Now that the system set has been validated, the next step is generating the hardware

configuration. The hardware configuration specifies which hardware modules connect to a

particular port. Recall that there is a one-to-one relationship between hardware modules

and software libraries. This direct relationship allows us to query the S and H relations

to determine the appropriate port and hardware module.

4.4.6.4 Schematic Generation Step

Once the programmer has finished testing the hardware prototype by configuring the

platform, she may want to fabricate a custom hardware prototype. However, in order to

do this she will need a custom schematic that represents her prototype. In this subsection

we explain that it is possible to automatically generate a custom schematic using the

proposed code-first approach. Schematic generation is possible because each hardware

module maps directly to a schematic block and since each hardware module directly maps

to a library, each library also maps to a schematic block.

Intuitively, this can be thought of as generating a schematic of the current hardware

configuration while removing the unnecessary sections. A hardware schematic is normally

represented using a .sch file. Fortunately, the .sch file is a xml based file. Since the

schematic for each hardware module is known, each module can be represented as a xml

block. Because of this, each block can be added as a child in the .sch xml files. Once the

schematic block is added to the schematic, it needs to be appropriately wired. Given that

the tree based hardware configuration already presents the appropriate wiring, the wiring

for a particular schematic block can be determined by examining the port associated with

the appropriate parent node. Since the connections from the ports to the modules are

fixed, the appropriate wiring can simply be added to the schematic by looking at the

wiring for the associated port.
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(a) Environmental monitor-
ing watch

(b) Step counter

(c) Infrared system (d) Android
application

Figure 4.7: Figure (a) (b) (c) show the different possible configurations of the plat-
form. Figure (d) shows a screenshot of the accompanying Android application

4.5 Evaluation

This section is divided into three subsections. In the first subsection, we evaluate the

design by building a step counter that communicates with an Android application. In the

second subsection, we evaluate the flexibility of the design by (1) prototyping a smartwatch

that was designed to monitor the user’s environmental exposure to temperature and light;

and (2) prototyping an indoor tracking module which tracks the user’s location using a

collection of landmark infrared transmitters.

4.5.1 Step Counter

To test the system on a nontrivial example, we developed a prototype step counter and

compared the results to the Fitbit. Figure 4.7(b) shows a picture of the prototype step

detector. The prototype was programmed to use a windowed peak detection algorithm [19].

We evaluated the prototype by having two participants wear the step counter for two

days between the hours of 9am to 9pm. The results of each participant are shown in
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Figure 4.8: Figure (a) shows the results of the case study, in which two participants
(Person1, Person2) wore both the prototype and a Fitbit for two days. Figure (b) shows
the results of the localization experiment. When the signal is high it indicates that the
prototype received the signal and when the signal is low it indicates that the prototype
has not received the signal. Figures (c) and (d) show graphs of the light and tempera-
ture readings collected over a 1 hour period at 10 minute intervals. During the first 50
minutes the device was placed indoors and during the final 45 minutes the device was
placed outside.

figure 4.8(a).

To accompany the wearable platform we build an Android application that is compati-

ble with the platform. Figure 4.7(d) shows a screenshot of the application. The application

displays a real-time update of the readings that it receives from the platform. The readings

are sent to the application from the module via Bluetooth. Once the Android application

receives the values, it updates the appropriate section of the interface.

4.5.2 Environment Monitoring Smart watch

We prototyped a smartwatch designed to monitor the user’s ambient temperature and light

exposure. The watch was constructed using four components: the LCD display module,

3.7 V battery pack, the Bluetooth module and the mainboard. Once the components were

placed on the mainboard, we developed software that captured the light and temperature

readings and displayed them on the LCD screen. Figure 4.7(a) shows a prototype of the
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watch. Figures 4.8(c) and 4.8(d) shows the results of the tests.

4.5.3 Infrared Indoor Localization Device

The third device that we prototyped was an indoor infrared localization device. This

wearable device localizes an individual by using unique infrared signatures from landmark

infrared devices. Each landmark device is placed in a separate room and produces a unique

infrared signal. As the user moves from room to room an infrared sensor located on the

wearable device picks up the unique infrared signature of the landmark device. Since this

infrared signature is unique to each room, this information can be used to localize the

user.

We used our platform to quickly prototype this device using the mainboard and three

modules: the infrared sensor, the Bluetooth module and the 3.7V battery. Figure 4.7(c)

shows a picture of the final prototype. This prototype is designed to fit in the user’s

shirt pocket, with the infrared sensor sitting slightly above the rim of the pocket so that

it can pick up the infrared signatures from the landmark devices. The wearable device

communicated with a smartphone using the Bluetooth module. However, if users would

like to explore a lower power option they may elect to remove the Bluetooth module and

replace the large 3.7V battery with the smaller 3.3V coin battery. Though the Bluetooth

module is compatible with the 3.3V voltage battery, the smaller 3.3V coin does not have

the capacity to sustain the Bluetooth module for long periods. So instead of using the

Bluetooth module to transmit readings to a smartphone, the software developer can record

the signature by writing the signature values to the chip’s internal flash memory. These

values can be retrieved later by connecting the platform to a PC and reading the chip’s

internal flash memory. In our evaluation, we used an infrared LED to present the landmark

devices. We tested the device by walking into the room with the landmark device for two

minutes and then walking out and waiting two minutes. The device was polled at one

minute intervals. Figure 4.8(b) shows the results of the experiment.
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System Library ID

Watch “Bluetooth.h” , “LCD.h”, “tempSense.h”, “lightSense.h”
IR system “Bluetooth.h”, “irSense.h”

Step Counter “AccelerometerRead.h” ,“Bluetooth.h”

Table 4.5: The systems and associated Libraries

Recall that constraints are fixed and are associated with the processor and do not

change based on the application.

Constraint Type Properties

Universal Property Constraint p1, p2, p4
Uniqueness Constraint p3

Table 4.6: The systems and associated libraries

4.5.4 System’s Limitations

One of the requirements of this approach is that the hardware/software partitions are

sufficiently isolated. If the components are not sufficiently isolated they can affect the

performance of the microcontroller and the other components. We tested this isolation

requirement by connecting a motor controller circuit that was not sufficiently isolated to

the E-unit. We also connected a bluetooth module that was sufficiently isolated. We

noticed failures in the bluetooth module when both components where operated at the

same time.

Another limitation of the system is the fixed power requirement. Since the ports on

the reference design only provide 3.3V, it is not possible to connect a module that has

a 5V requirement. Other researchers have proposed a custom port design that has two

power supplies: a 3.3V supply and 5V [75]. Components that connect to a reference design

simply select the appropriate power pin. Adopting this alternate design may help address

these issues, but may also increase the complexity of the schematic generation process.
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4.5.5 Considerations for a Commercial Solution

Interrupt vectors may prove problematic since the libraries are stateless and therefore

cannot rely on the state of the microcontroller’s interrupt vectors. This can be resolved by

using wait loops (spin locks) in place of interrupts. These spin locks limit the performance

of the system where real-time performance is required. However, this can be mitigated

by using a real-time operating system with appropriately partitioned hardware/software

libraries [16].

In an ideal case we would like to support a variety of operating systems and languages.

Supporting languages like python and java would make the approach more accessible to a

wider variety of developers. However, the memory limitations of the microcontroller used

in our prototype make it difficult to run an operating system and java virtual machine,

without which, it is impossible to run java byte code. Nonetheless, it is possible to use

third party C libraries with our custom middleware, as long as the libraries do not violate

the memory constraints of the chip on the prototype and operate within the constraints

of the 16 bit MCU. If the proposed approach is adopted it can be improved, and factors

such as the target operating systems and languages may be used to inform the selection

of microcontrollers.

Facilitating a commercial implementation of the schematic generation process would

require a repository of partitioned hardware/software co-design libraries that adhere to a

specific format.

The software developer may select from two options when programming the platform.

The software developer can choose to compile, load and debug the code directly from

the command line using the GCC toolchain for the MSP430 chips, or use an Integrated

Development Environment (IDE). Our preferred IDE is Code Composure Studio (CCS).

We have designed the platform so that the MCU can be programmed while the chip is still

on the board. This means that the software developer does not have to remove the chip

to program it. Instead the developer can connect the board to the in-system-programmer
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using the 2 JTAG pins in the programming port.

4.6 Conclusions

In this paper, we presented a code-first approach to designing embedded systems. The

proposed approach allows software developers to create hardware prototypes by first writ-

ing the code that the prototype is required to run. Once the code has been written, it can

be analyzed and an appropriate hardware configuration can be generated. By using library

abstractions to create a one-to-one mapping between software and hardware modules, it

is possible to determine the hardware dependencies by examining the libraries included

in the program. However, there are several challenges associated with this approach. For

example, limitations in the microcontroller’s architecture could make a given hardware

configuration infeasible, even though it is running a valid program. For example, a port

conflict may occur when two libraries, whose associated hardware modules use the same

port, are both included in a program. In this case it is not possible to generate a viable

hardware configuration because there are not enough ports to accommodate all of the

modules. To address this issue, we presented an approach for automatically identifying

port conflicts. We evaluated our design by building three prototypes: 1) a step counter,

2) an environmental monitoring smartwatch, and 3) an infrared indoor location system.
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Chapter 5

Conclusion and Future Work

In this work we proposed two new sensors and a new sensing platform for mobile and

embedded devices. The first sensor that we proposed uses the phone’s rear speaker and

microphone to implement a software based sonar sensor. We found that our implementa-

tion was accurate to within 12 centimeters and was suitable for ranging applications up

to 4 meters. We found that the sensor performed well in outdoor environments but did

not perform well in small indoor environments, due to the effects of reverberation. We

also found that though a wide beam was acceptable for ranging applications, it was not

suitable for more precise mapping applications. In an effort to create a narrow beam,

we designed an external sonar module that plugs into the headphone jack of a smart-

phone. Readings from this module were then combined with readings from the phone’s

gyroscope, magnetometer and accelerometer, and used to generate a two dimensional map

of a space. The key contribution of this work was the design of a new hybrid hardware/-

software modulator that allowed a digital sonar sensor to communicate with a smartphone

via the headphone jack. We believe that our hybrid hardware/software modulator can be

improved by replacing the transistor with a photorelay, hereby providing prefect isolation

and fast switching.

While developing these new sensors, we noticed that the ability to develop both new

hardware and software is key to extending the sensing capabilities of mobile and embedded
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devices. However, it is difficult for software developers to develop new sensing hardware.

To mitigate this, we proposed a code-first approach to the design of embedded systems.

Instead of designing software to run within the limited constraints of the hardware, our

proposed approach allows software developers to synthesize the hardware configuration

that is required to run their software. In the future, as software synthesis methods improve,

researchers will be able to specify large scale systems and develop dynamic virtual machines

and emulators, which consist of both virtualized sensors and processors. These virtual

machines will allow researchers and engineers to evaluate and test their hardware systems

entirely in software. Dynamic virtual machines will also provide a common interface for

all embedded programs regardless of the intricacies of the hardware or its configuration.

These enhancements in the synthesis and specification of embedded devices will result in

tighter development cycles and better products. We hope that as developers use our device

and sensors to prototype new ones this notion of code-first development will become a

standard for specifying systems. However, as a preliminary step, we believe that extending

the modular architecture to a real-time operating system, like FreeRTOS [16], will provide

the necessary hardware/software abstractions to allow the system to run multithreaded

programs.
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