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ABSTRACT

This thesis considers localized spontaneous pulse formation in nonlinear, dis­
sipative systems that are far from equilibrium and which exhibit bistability. It is 
shown that such pulses can form in systems that are dominated by the combined 
effects of: 1) a saturable amplifying or gain region, 2 ) a saturable absorbing or loss 
region, and 3) cavity effects. Analysis is based upon novel models for both an iner- 
tialess material in which the absorber responds instantaneously and inertial material 
in which there is temporal delay in the response. Additionally, we include the situa­
tion where the material does not fully relax between pulses, i.e. memory effects. The 
results are shown to be generic but direct application is made to pulse formation 
and stability as observed and exploited in a colliding pulse mode-locked (CPM) dye 
laser in which the saturable gain and absorber are spatially localized. Bifurcation 
from a steady, pulsing state to one of several possible other states (laser dropout 
phenomena) is observed to occur in these systems and will also be addressed. Key 
results arising from the inclusion of memory effects are as follows: the existence of 
highly degenerate bifurcation scenarios, implying hysteresis-like behavior in drop­
out/drop-in transitions; damped period-two oscillations; and much lower frequency 
damped oscillations—reminiscent of breathing modes.
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CHAPTER 1 

Introduction

This dissertation introduces new phenomenological models that describe the 

global dynamics associated with spontaneous pulse formation in bistable systems. 

Such pulse formation is routinely found to occur in optical systems. In particular, the 

type of pulse formation considered here is a passive consequence of the combined 

effects of a non-linear (saturable) amplifying material and a saturable absorber 

coupled together within an optical cavity. Optical pulses arise because of a self­

selection and locking of a subset of neighboring cavity modes brought about by 

the nonlinearity of the materials. This phenomena is referred to as passive mode 

locking and has been the subject of great interest for several years (see [1, 2]). The 

global effect of mode locking is the transformation of the system state from one 

characterized by stochastic undulation of the numerous cavity modes to a highly 

ordered state characterized by steady-state pulsation. As such, the pulses resulting 

from this type of pulse formation constitute self-organized nonlinear structures that 

are sometimes referred to as autosolitons or solitons in the literature [3, 4, 5, 6 , 7].

The models developed in this thesis are generic to systems possessing the above 

ingredients but particular focus will be on the formation and dynamics of optical 

pulses found in colliding pulse mode locked dye (CPM) lasers of the type regularly 

used by the Physics Department of The College of William &; Mary. It is well known 

that CPM lasers undergo sudden changes of state where the pulsation either ceases 

altogether {i.e., no lasing occurs) or the laser operates in a continuous-wave (CW) 

mode. This cessation of lasing is often referred to as laser drop-out; Figure (1.1)

2
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Time Drop-out
Figure 1.1: CPM laser time series containing drop-out.

reveals data in which such an event occurred as recorded from William k  Mary’s 

CPM laser. These systems are also known to spontaneously resume lasing as well; 

a phenomena we will refer to as laser drop-in. It is a key result of this work that the 

models predict the existence of an asymmetry or hysteresis between the dynamics of 

pulse formation and pulse cessation and that this prediction has been experimentally 

confirmed. Additionally, the models predict the existence of a high frequency period 

two oscillation, as well as slower breather modes, but these phenomena have not been 

experimentally observed to date.

Although the physics of CPM lasers is a mature field, the efforts thus far typ­

ically have adopted a first principles approach that has produced high fidelity but 

computationally complex models [1, 8 , 9]. Consequently, these models are difficult 

or impossible to utilize in real-time control algorithms. In contrast, the long term 

goal of this modeling effort is to provide computationally efficient control laws that 

reproduce the global dynamics of the system to an adequate level of fidelity. It is 

anticipated that such control-laws can then be used for real-time time-series anal­

ysis, affording the potential for forecasting pending state changes or what we shall
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call bifurcation prediction. It is, as it where, this middle ground in modeling that 

constitutes this effort’s uniqueness. Consequently, a phenomenological approach 

has been adopted here in that experimental results have been heavily relied upon in 

guiding the model development. We show in this work that the dual requirements of 

computational efficiency and physical fidelity are satisfied by models in which only 

the combined effects of the following physical ingredients are included:

1 . a saturable amplifying medium {gain)-,

2 . a saturable absorbing medium {loss)-,

3. cavity effects.

The inclusion of more complex physical phenomena, such as dispersion, finite gain 

bandwidth, and the well known nonlinear Kerr or self-phase modulation, would 

indeed increase fidelity with regard to information on pulse shape but at a cost 

of computational efficiency; thus, for the purpose of control, we initially model 

amplitude dynamics and defer such model enhancements to future efforts.

Another key result of the work presented in this thesis is an increased under­

standing of the role of pulse-to-pulse memory effects—defined here as incomplete 

relaxation in the gain and/or loss material between pulses. That is, after the passage 

of a pulse through the material, there remains a residual population of the excited 

or ground states within the amplifying or absorbing material, respectively, which 

couples to the subsequent pulse. We emphasize that this incomplete relaxation is 

to be distinguished from the so called slow media models found in the optics litera­

ture. In these latter models, it is assumed that relaxation times of the materials are 

long when compared with the pulse width (hence slow)—but the absorber and gain 

are assumed to completely relax back to their initial state between pulses [1 , 10]. 

The inclusion of memory effect as defined in this thesis, results in the following 

predictions:
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1 . slow amplitude breathing oscillations that occur after a change of state;

2 . the existence of highly degenerate bifurcation scenarios, leading to hysteresis in 

the drop-out/drop-in cycles.

The breathing state listed above is predicted by the models to occur within phys­

ically realizable regimes in the parameter space; the highly degenerate bifurcation 

scenarios lead to the prediction of hysteresis-like behavior when the system tran­

sitions between drop-out and drop-in state changes and the reverse. Of the above 

predictions, 2. has been empirically observed in the CPM laser presently in use in 

the Physics Department at The College of William & Mary [11].

Of course, the addition of pulse-to-pulse memory effects necessarily increases the 

complexity of the model class. W ithout memory, the global dynamics on amplitude 

(and therefore intensity) is faithfully captured using simple nonlinear mappings that 

are discrete in time. When memory is included however, the resulting nonlinear 

model becomes a continuous (high-dimensional) integro-delay equation involving 

the pulse’s integrated intensity—or the fluence—thereby introducing the notion of 

saturation integrals. As is fully discussed below, in some cases we are able to take 

advantage of the inherent stiffness of these saturation integrals and transform the 

integro-delay equation back into a discrete map. However, instead of amplitude or 

intensity serving as the dependent variables as in the maps without memory, the 

new map describes the dynamics of the saturation integrals and the fluence.

The analytical techniques adopted in this thesis are of course dictated by the 

mathematical characteristics inherent in the governing equations. In particular, the 

governing equations for our models exhibit the following important features:

1. Nonlinearity; since the full saturability of the materials is included.

2. Feedback and temporal delay; arising from the coupling effects of the cavity.
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3. Stiffness; there exists multiple time scales over which the pulse dynamics occur.

The multiplicity of time scales listed above arises from the inclusion of memory 

since material relaxation times are comparable to the cavity round-trip time but are 

approximately five orders of magnitude greater then the pulse width.

The general methods and techniques of dynamical systems theory have been 

adopted to analyze the models and arrive at the results. Accordingly, the methodol­

ogy of analysis consists of ascertaining steady-state solutions of the models {i.e., the 

fixed points) and then varying system parameters to reveal the subsequent dynam­

ics. Since the fixed points correspond to points in the parameter space where the 

system exhibits steady state behavior (both stable and unstable), the establishing 

of any change in the value or number of these fixed points as a result of param­

eter variation constitutes the most basic characterization of the system dynamics. 

In particular, a coalescence or disappearance of the fixed points {i.e., a topologi­

cal change in the attractors of the system) is called a bifurcation and indicates a 

dramatic change in the dynamical state of the system. Additionally, the parameter 

dependences for which such bifurcations occur, provides a direct opportunity for 

empirical verification of the models.

In optical systems where the key ingredients of saturable gain, absorber and 

cavity effects are found, the saturable media may be either spatially localized—as in 

the CPM lasers considered here—or spatially distributed in the form of crystals or 

optical fibers [12, 1,8]. A model for such a distributed system that is related to our 

maps on amplitude and intensity has recently been proposed by Malomed et. al. [4]. 

However, in addition to the difference of Malomed’s model possessing an extended 

absorber, it is further distinguished from our models in that Malomed examines 

transverse mode structure whereas our models describe one-dimensional longitudinal 

dynamics on pulse amplitudes and intensities. The increased complexity of our
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models with the inclusion of memory presents sufficient challenge; restriction to 

one-dimension keeps the analysis tractable.

The methodology adopted in this work is heuristic as well as phenomenolog­

ical and has been inspired by that of Haus [13]; but unlike Haus’ treatment, we 

do not perform a small amplitude expansion on the saturable nonlinearities inher­

ent in the material. Instead, we retain the full saturable forms for both absorber 

and amplifier. Moreover, as mentioned above, we also include pulse-to-pulse mem­

ory effects in a novel fashion. Further differences will be discussed as the model 

is fully developed below. Theoretical support and justification for our models is 

also achieved by a detailed derivation of their mathematical form from a two-level 

Maxwell-Bloch model. However, it should be kept in mind that the Maxwell-Bloch 

treatment is also phenomenological. We believe the methodology adopted here, 7e, 

the development of a model that includes the complexities associated with pulse-to- 

pulse memory effects—and yet is simple enough to allow complete analysis—is our 

primary contribution.

The outline of the thesis is as follows: We begin Section 2 by expounding upon 

some of the ideas introduced above and separate the models into three distinct 

classes according to the material’s response to the presence and passage of a pulse. 

We introduce the central notion of transfer factors to capture these responses and 

present the generic mathematical structure of the models by utilizing the transfer 

factors to form input-output relationships. Such a relationship is established first 

for each of the individual components of the physical system—an approach similar to 

that of New and Wilhelmi [8 , 1]—with the full model then constructed by coupling 

the elements together in an optical cavity to form a closed loop. This introduces the 

important ingredients of feedback and delay into the model. Section 3 derives the the 

transfer factors used in the fast map models from the Maxwell-Bloch equations for 

two atomic level materials. In Section 4, we then introduce our discrete maps on the
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dynamical variables of amplitude and intensity for the simplest of the three model 

classes involving an inertia-less or fast absorber that posses no memory. This class 

of material response assumes that the atomic inversion levels are instantaneously 

created in response to the presence of a pulse and that they completely relax before 

the arrival of the next pulse. Sections 4.2 and 4.3 present the bifurcation analysis 

of these fast maps. We then introduce an inertial material that is still memoryless 

in Section 5 with subsequent analysis in sections 5.1 and 5.2, where we derive the 

result that bistable systems with slow media generate pulse trains spontaneously. 

To our knowledge, this result is new. In Section 6 , we address memory effects first 

in a heuristic manor by low-pass filtering the saturation dynamics. This converts 

the discrete fast map of the initerialess material into a high dimensional integro- 

delay equation involving saturation integrals. Section 6.1 recovers a low-dimensional 

discrete map by taking advantage of the multiple time scales inherent in the system. 

This results in the final model that describes the dynamics of the saturation integrals 

and the integrated energy density (the fiuence). Bifurcation analysis of this new 

system is performed in Section 6.2. Finally, summary and conclusions are drawn 

in Section 7 and derivation from first principles of the Maxwell-Bloch equations in 

provided in the Appendix. Also provided in the Appendix are the MATLAB codes 

used to generate the bifurcation plots and the stable and unstable manifolds.
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CHAPTER 2 

Model Development

As mentioned in the Introduction, we adopt a phenomenological approach by 

developing our models in close contact with observations made on a CPM laser 

presently in operation in the Physics Department of The College of William & Mary. 

The configuration and components of this laser are depicted schematically in Figure 

(2.1), which shows the laser configured in a ring-type geometry. The complete list 

of components found in this laser include localized regions of saturable gain and 

saturable loss provided by organic dye jets, and an array of prisms to correct for 

group velocity dispersion (GVD). Inversion in the gain jet is maintained by pumping 

the gain with a separate laser external to the system.

As further discussed below, CPM lasers derive their name from the well known 

fact that they optimize their output by superposing counter propagating pulses in 

the saturable absorber. However, since many quantitative aspects of the CPM 

dynamics are already present in the single unidirectional pulse mode, we restrict 

ourselves in this thesis to the single-pulse case. Focusing upon a single pulse also 

allows the key modeling issues to be identified more easily and, as will become 

evident, the single-pulse model possesses rich dynamical structure on its own accord. 

Given the present goal of understanding the global dynamics associated with pulse 

formation as opposed to effects upon pulse shape, the requirement of modeling 

simplicity suggests that we initially focus upon the combined iterated effects of 

the saturable gain and saturable absorber alone. As we show in Section 5, the 

effects of these two ingredients alone for slow media, when combined within a cavity,

9
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GVD Correction

Gain Jet

Pump

Absorber Jet

Figure 2.1; Schematic of CPM laser.

are sufficient to initiate pulse formation. Questions regarding pulse shape clearly 

require the inclusion of dispersion, finite gain bandwidth and self-phase modulation 

{e.g., the Kerr effect), but these questions are postponed to future efforts. We 

also postpone the treatment of transverse dynamics and the influence of noise. As 

will be discussed, these simplifications are justifiable for systems exhibiting multiple 

time scales and where global information is all that is required to ascertain if pulse 

formation occurs. Indeed, for real-time control, pulse-to-pulse observations are at 

least highly desirable, and may be necessary. Additionally, at the high repitition 

rates found in CPM lasers, a single global quantity—such as the integrated intensity 

or fluence—is all that is readily accessible to measurement.

The development of our models capitalizes upon the multiple dynamical time 

scales inherent in the CPM laser. These temporal scales are notionally depicted 

in Figure (2 .2 ). They include the period of the carrier signal that is on the order 

of 1 0 “ "̂̂ s; the pulse width on the order of A t  ~  10“ ^̂ s; and the cavity round 

trip time that is given by r  = L/c, where L is the path length and c the speed
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X

10~s

7A-

-14
10 s

Figure 2.2: Relevant time scales (not to scale)

of light. For the laser under consideration here, r  ~  10“®s. Additionally—and 

key in the consideration of memory effects—the dynamical time scales associated 

with population of the absorbing and amplifying material are observed to also be 

on the order of the round-trip time. For our purposes of developing control laws 

that govern pulse-to-pulse dynamics, these time scales further suggest that we focus 

upon the dynamics of the amplitude of the envelope function of the electric-field 

thus, defining the direction of propagation to be along the z-axis in a Cartesian 

coordinate system, we write the complex electric-field with a fixed polarization e as

E (2;, t) = '^{z, t) exp (i {kz — ujt)) e +  c.c.. (2 .1)

In (2.1), io is 27t times the carrier frequency and k =  27t/A where here A is the carrier 

wavelength; c.c. denotes complex conjugation.

The modeling approach adopted here entails developing input-output relations 

to characterize the presumably weak effects of the absorber and gain upon the 

pulse after a single pass. Toward this end, we account for these material effects by
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introducing saturable transfer factors denoted by fgj{-) for each of the two materials. 

These transfer factors relate the amplitude of the pulse as it emerges from the 

material, to that of the pulse just prior to its entry, and should depend 

upon the energy (or equivalently, the square of the modulus of the amplitude) of the 

pulse in such a way so as to insure saturability. Consequently, we write the generic 

form of the input-output relations as

(2 .2)

The situation is graphically depicted in Figure(2.3); note that fg,i{\'^\^) might be a 

functional {i.e., involve the history of not just its instantaneous value).

One can think of these transfer factors as playing an analogous role to transfer 

functions as found in linear signal theory. In particular, from linear theory, the 

generic form of an input-output relationship is the convolution

^ °“*(t) = /i(t) * r ^ ( t )  =  / h{f)<if^^{t-f)df ,  (2.3)
J —OO

where the kernel h{^) contains the material’s effects upon the pulse for ^ <t .  Thus, 

Fourier transforming (2.3) produces the familiar transfer function

M .)  =  (2.4)
^»n(^)

where h indicates Fourier transform of h{t), etc..

The particular forms of the transfer factors for our models were initially intro­

duced in a heuristic manner. However, theoretical support is provided in the fol­

lowing section of the thesis by deriving the transfer factors from the semi-classical,

two-level (atomic) Maxwell-Bloch equations. These well-known equations model 

the interaction of light with m atter and are themselves derived from a more funda­

mental description in the Appendix.
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Figure 2.3: Transfer factors

As mentioned above, we focus here upon the dynamics associated with a uni­

directional single pulse. Nevertheless, in anticipation of including a second counter- 

propagating pulse in the future, we introduce cavity effects by arranging the gain 

and loss media within the cavity as shown in Figure (2.4). Mode locking (pulse 

formation) occurs within such an arrangement when the system self-selects a group 

of cavity modes out of the numerous modes that constitute the initially stochastic 

non-lasing cavity state. A pulse forms when a particular noise spike has sufficient 

energy in its leading edge to saturate the absorbing material, thereby rendering 

the absorber transparent to the remainder of the fledgling pulse. This then allows 

the selected mode to enter the gain material where it undergoes amplification by 

stimulated emission and depletes the inverted levels. As a consequence of this de­

pletion, the neighboring modes are inhibited from experiencing further gain. Figure 

(2.5) graphically illustrates this process for a pulse moving to the right where blue 

signifies low intensities that occur at the leading and trailing edges due to the sat­

urable absorber and gain, respectively. This process repeats itself until the evolving 

pulse achieves a steady state—characterized for our purposes by a constant ampli­
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Free
PropogationLoss

Gain

Figure 2.4: Cavity arrangement (not to scale) for uni-directional pulse.

tude spike. For the colliding pulse mode-locked laser, the simultaneous formation 

of a counter-propagating pulse occurs in an identical fashion; but in this multi­

ple pulse mode, the absorption is ultimately reduced by the superposition of both 

pulses within the absorbing material. Such superposition minimizes loss per pulse; 

thereby enhancing pulse growth. Colliding pulse mode-locked lasers derive their 

name from this effect. Additionally, the configuration displayed in Figure (2.4) also 

affords maximal time for the gain material to recover between pulses via the external 

optical pump.

We incorporate these cavity effects by considering the amplitude of the signal’s 

envelope function at the four entry and exit locations bracketing the absorber and 

the gain, indicated by € {1,2,3,4} in Figure (2.4). The dye jets within

the cavity possess thicknesses on the order of tens of microns. Therefore, recalling 

that the cavity length is on the order of meters, we can ignore the time spent by the 

pulse within the dyes. While this time is negligible here, this simplification needs to 

be reconsidered for extended media; e.g., in solid state lasers or fibers. Between the
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Absorber

Time
Figure 2.5: Pulse formation via mode-locking.

material regions, the pulse amplitude is assumed to propagate freely in the cavity 

without dispersion. W ith the choice of these cavity positions, can now be

considered a discrete function of space when evaluated at these points.

In addition to coupling the effects of the gain and loss media, the cavity arrange­

ment in Figure (2.4) also introduces feedback and temporal delay into the system. 

We incorporate these latter features into our models in the following manner: first 

we choose as our origin the position where the pulse first enters the absorber or 

loss, labeled as in Figure (2.4) and denote the round-trip time to be r  in

arbitrary temporal units. With this choice of origin, it is deduced from the figure 

that a counter-clockwise pulse experiences free propagation for r / 4  and 3 r / 4  units 

(annotated as free propagation in the figure). Then, since we ignore the time the 

pulse spends inside the material, we relate the exiting pulse to the entering pulse for 

each material using equation (2 .2 ) with the appropriate transfer factor as follows:

loss transfer ^ ( 2 ,t) =  /( ( |^ |^ (1 , t)) ^ ( 1 , t),

free propagation ^(3 , t - I - r / 4 )  =  ^ ( 2 , t ) ,
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gain transfer ^(4 , t + r /4 )  =  (|^p (3 , t +  r /4 ))  ^(3 , t +  r /4 ) ,

free propagation => ^(1 , t +  r) =  4^(4, t + r /4 ) .  (2.5)

We then iterate, relating the envelope function of a pulse at the (n + l) ’th  round-trip 

to that at the n’th by an appropriately combined transfer factor to be fully discussed 

below.

The above relations introduce a temporal lag equal to the round trip time r  into 

the map for each iteration n; thus, we denote ^ ( l , r )  and ^ ( l , 2 r)

etc.. To couple the material effects for a single circuit, the two single-element 

transfer factors are mathematically composed to form a composite transfer factor, 

/(•) =  (/gO/;)(•), that acts upon a single pulse once per round trip. Due to the small 

gain/loss per pass (for the CPM laser this change is measured to be on the order of 

a few percent), we note that {fg o fi)(-) (/; o fg)(-). Consequently, denoting the

system’s parameters by A, we arrive at a single circuit map on amplitude: ^ ( l , t  +  

T) =  /( | 'Pp;A)'J '( l ,();or.

4.“+i =  F ( | * “ |''';A), (2.6)

where

F(^r";A) = /d ^ " |^ A )^ f” . (2.7)

Initial data ^°(t) is assumed given. Since we are neglecting linear dispersion and 

self phase modulation (SPM), we observe in passing that the dynamics of the phase 

of 0, is trivial; i.e., 0""̂  ̂ =  0". Additional effects upon the phase result from 

the inclusion of noise. However, as mentioned in the introduction, we leave such 

non-trivial effects as a topic for future work.

In the next section, we derive the transfer factors that define the fast maps on 

amplitude and intensity for inertialess material from the Maxwell-Bloch equations.
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This assumption of instantaneous response serves to simplify the underlying concepts 

and analyses and introduces necessary notations and ideas derived from nonlinear 

system and bifurcation theory. We also discuss the limitations of this class of models 

before moving on to inertial materials defining slow maps possessing pulse-to-pulse 

memory effects.
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CHAPTER 3 

Derivation of the Input-Output Models

In this section we motivate the transfer factors for fast materials by relating 

them to the atomic occupation levels within the materials. To this end, we utilize the 

well known Maxwell-Bloch equations that describe the (quantum) dynamics of the 

density matrix elements associated with energy level transitions that are stimulated 

by the presence of a pulse within the material. Following Newell [9], we refer to the 

occupation densities as inversion numbers.

The Maxwell-Bloch equations constitute a semi-classical approach to modeling 

the interaction of light with m atter in that the density matrix elements of statis­

tical quantum mechanics are related to the macroscopic polarization field variable 

associated with the materials as shown in the Appendix (see equation (8.18)). The 

polarization then couples to the cavity field through the classical Maxwell’s equa­

tions. We define a fast medium to be the case where the material is considered 

inertialess in that it responds instantaneously to the presence of a pulse. This as­

sumption permits one to adiabatically eliminate the polarization and population 

density fields of the media by slaving them to the radiation field as discussed below. 

The result is a Lorentzian functional form for the population density analogous to 

the gain and loss transfer functions introduced heuristically in Section 4. Under the 

additional assumption of small effects per pass, it is shown here that the Maxwell- 

Bloch equations produce the input-output relation of the form examined through 

this thesis (see equation (2 .6 )).

Derivation of the Maxwell-Bloch equations from more basic principles is pro-

18
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vided in the Appendix. Hence, for the purposes of this section, we begin by writing 

the equations down in the notation of Newell and Maloney [9] with the exception 

that we substitute ^ ( r ,  t) for their A{r,t)  to represent the unidirectional, singly 

polarized radiation field envelope function. The full Maxwell-Bloch model for a two 

atomic level system is

+ (3.1)
c 2lu c zCqC

?2
dtN = -711AAT +  -  -  ^A *), (3.2)

■ 2
dtA =  - 712A -  i {0J12 -  w) A -I- (3-3)

where, A N  = {N ~ Ng), i — p is the magnitude of the dipole matrix element 

and K = a/eg. is the (finite) conductivity of the material, R  is the reflectivity 

of the mirrors, c is the group velocity in the material, €„ is the permittivity and 

L is the length between mirrors. Following Newell, o;i2 =  o;i — ^ 2  is taken to be 

positive; i.e., the energy level of atomic level 1 is greater than level 2. The inversion

number N  is an occupation density defined by equation (8.26) in the Appendix as

=  ^a(P22—Pii) and has the units of inverse volume. Thus, A  < 0 an amplifying 

medium and TV > 0 => an absorber. 711 Ao is the constant pump rate providing the 

inversion for an amplifier and equals 0 for an absorber. Finally, as defined in the 

Appendix, 711 and 712 represent homogeneous broadening rates for the population 

inversion and polarization fields, respectively. For the goals of the present analysis, 

we can ignore the linear losses associated with the material as well as transverse 

effects {i.e., ^ ( r ,  t) —>■ ^ (z ,t)) ;  we also neglect cavity detuning. Consequently we 

set K, — =  {u} \ 2  — a;) =  0 in the above equations.

The decay rate for the polarization field, 712, is known to be three orders of 

magnitnde faster than that of the population density 711 ([1, see table on page 31]). 

Consequently, we can simplify the Maxwell-Bloch system by slaving the polarization
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field variable to the inversion number. Mathematically, this allows the temporal 

derivative in (3.3) to be ignored and results in the algebraic relation:

tP'
A =  i ^ ^ N .  (3.4)

ni\2

This result defines class B  lasers. For fast media, the population density can also be 

slaved to the radiation field in equation (3.2) to define class A  lasers. Under these 

assumptions, the temporal derivative in (3.2) can be set to zero so that

N  = N o -  ('F*A -  ^^A*), (3.5)
ti'yn

where (•)* denotes complex conjugation. Thus, combining equations (3.4) and 

(3.5)—with N  E IR—results in an inversion function that is Lorentzian in its de­

pendence upon the intensity:

NN  = ......................... . (3.6)

This result will be utilized in the transfer factor for the gain map later defined in 

(4.2). From (3.6), we see that the saturation coefficient a (introduced in (4.2)) is 

related to the physical parameters inherent in the Maxwell-Bloch model by

^ ~  ^^712711 ’

Returning to class B lasers, inserting (3.4) into (3.2) results in a two dimensional 

system [6]:

c
|2dtN = ' y i iN o - ' y u N  + C2\WN-,  (3.9)
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1

t

Figure 3.1: Inversion number plots for a narrow Gaussian pulse for class A and B lasers. 
Solutions for (3.9) for (7 1 1 , 0 2 ) =  (1,1) and (7 1 1 , 0 2 ) =  (0.5,1) are given in blue and green, 
respectively; the solution for (3.11), with a =  1, is in red.

where, ci =  p^ujI2 ef,ch^i2 with physical units of area and C2 =  —4p^/^^7 i2 having 

units of l/{Fiel(Ptime).  For a narrow Gaussian pulse shape,

=
1^*1 (3.10)

V2TrAF

Figure (3.1) depicts the numerical solution of equation (3.9) for a class B laser at 

z — 0. Also shown in Figure (3.1) for comparison is the Lorentzian saturability 

curve associated with a class A laser having a slow absorber for the same Gaussian 

pulse shape of the form

iV[|Wp] = (3.11)
1 +  aS g [ \^ \ ‘̂ ] { z , t ) '

In (3.11), the material response is not instantaneous and is accounted for heuristi­

cally by the saturation integral, S'3 [|^^p](2:, t), defined later by equation (5.1) (com­

pare to (3.6)). As the figure reveals, the similarity between the two curves suggests
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(outer)

(n+l)T(n-l)X nx

Figure 3.2: Inner and outer regions of the pulse train.

a robustness of the field dynamics to the form of the population density. This will 

be discussed in Section 6 .

3.1 The Transfer Maps 

In this section we provide a formal solution of the 2-d system describing the 

dynamics of a class B laser defined in the previous section by taking advantage of the 

multiple time scales inherent in the system. When a pulse is present, the material 

responds on a time scale dictated by the pulse width At\  however, after the passage 

of a pulse, the inversion number N  in (3.9) relaxes back to its equilibrium value 

on the much longer time scale (see Figure (3.2)). Such multiple time scales 

therefore suggest a singular perturbative approach as follows [14];

First we analyze the system away from the pulse to obtain the outer solution 

by letting ^  0 in (3.8) and (3.9). In this limit, N  —>■ Nq, the pump equilibrium—

suggesting we scale both N  to this constant N  = N/Ng  and the independent variable 

t to the relaxation rate i  =  j n t .  The natnral spatial scale for the system is the length
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of the material r], thus 5 =  z/?y. Applying these scalings and suppressing explicit 

reference to the spatial dependence, the dimensionless outer equation that describes 

the dynamics of the material’s response in the absence of the pulse becomes

(t) =  1 -  {i) ; (3.12)

where, a tilde denotes a dimensionless quantity. In physical units, the solution of

(3.12) is

N^°\t)  = (iV(«) (tW) -  1) +  1. (3.13)

where, t̂ ô  is the temporal boundary layer where the outer solution is to be matched

to the inner solution (determined below) and ^ constant of integration

that is also determined by the matching conditions.

To find the inner solution when the pulse is present, we maintain the spatial 

scaling as above, but now rescale time to the pulse width t =  t//Si. In this limit, 

the dependent field variables are rescaled to their maximum or saturation values 

W =  ^/|\l/satl and N  =  N!\Nsat\- With these new scalings, the dimensionless inner 

equations are

d^ + ^ d t j ^ { z , t )  = - c i N  ^  { z , r ) ^ { z , t } ,  (3.14)

diN {z, t) = cNo -  cN {z, i ) - C 2 ^  " {z, t) N  {z, t ) ; (3.15)

where, Ci =  CiLNgat, C2 =  C2 /St\'^sat\^, and e =  A tyn; 5 is a dimensionless group 

speed that can be set to 1 with the appropriate choice of coordinate system and 

No = No/Nsat < 1. In this limit, the nonlinear term on the right hand side of (3.15) 

~  0 { l )  while the first two terms are 0{i)  <C 1. Thus, the inner equation is found
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by ignoring the linear terms resulting in the inner solution for the inversion number 

(in physical units)

iV« (z, t) = {z, exp (^-C2 dt' ^   ̂{z, t ' ) ^ . (3.16)

In (3.16), to^ denotes the temporal boundary for the inner solution and 

is a constant of integration determined by the matching conditions. To match the 

inner and outer solutions, we introduce a time tb = V r A t  such that A t  < tb < r. 

Thus the matching condition is formally found by evaluating {z, to  ̂ = tb) =

N^^){z,t^°^ =tb).

3.2 The Input-O utput Relationship 

In this section we derive the input-output relationship for having solved the

inner equation (3.15) for N  by adopting a normal perturbative approach. We chose 

the amplifying medium and therefore write Ci =  —g in (3.14). Using the method of 

characteristics to transform (3.14) to an ODE, we integrate along a ray in space-time 

that we parametrized by a  as graphically depicted in Figure (3.3). The dynamical 

equation takes the form

^ 5 ^  =  ,t)»  (s; „). (3.17)

We denote Sq and Si to be the lower and upper limits of integration, respectively, 

and note that {sq, cr} label the initial event corresponding to when and where the 

pulse enters the material, and {si,cr} signifies the final space-time event when and 

where it leaves. Integration along a particular ray thereby produces

§(s;cr) =  ^(so;cr) +  (/ /  ds'iV [|l^p](s';a)^(s'). (3.18)
Sn
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time: t

space: z

Figure 3.3: Characteristic curves for Maxwell-Bloch equation for the radiation field. Note 
that cr is a ray label while s is a parameter along the ray.

Incorporating the fact that both the absorber and gain only effect the pulse by 

a few percent in a single pass (recall g ^  1 — 2%), we perform a regular perturbation 

analysis in g as follows [14]: Suppressing explicit reference to a for notational clarity, 

and expanding to leading order in (3.17) has the perturbative solution

^ { s ) ^ ' ^ o { s )  + g^i{s).  (3.19)

Thus, inserting this leading-order solution into equation (3.18) produces

^ o { s ) + g ^ i { a ) ^ ^ { s o )  + g f  ds'N[\'^o + 9 ^ i \ W ) i M ^ )  + 9 ^ (3-20)
Js=0

The functional in the above integrand is further expanded to leading order, which 

upon equating terms according to powers of g, results in the following system (note 

that W(so) =  constant):

/ :  ^o(s) =  ^(so),

g^: ^i(s) =  (s-So)iV[|^oP]^o(so).

(3.21)

(3.22)
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time: t

space: z

Figure 3.4: Boundary conditions for Maxwell-Bloch equation for the radiation field.

Equation (3.21) captures the free propagation of a pulse and (3.22) describes the first 

order perturbation of the pulse due to the dynamics associated with the inversion 

number N.  Choosing z=0 to be a fiducial point where the pulse enters the jet 

implies (so,o-) =  (0,tjn). The point where the pulse emerges from the material is 

then (si,cr) =  (l,tout) as shown in Figure (3.4). Thus, (s — sq) =  1 in equation 

(3.22). Equation (3.19) consequently gives the perturbed solution

(3.23)

which is the generic input-output relations we desire. Using either the Lorentzian 

saturation curve for a fast absorber defined by (3.6) or for a slow absorber defined 

by (3.11) for the fnnctional produces the maps on amplitude (and intensity)

to be analyzed in this thesis. In particular, the fast map on amplitude, or the gain 

map, is

1 + 9 ^(o ,u„). (3.24)
1 +  a |^ |2(0 ,ij„).

Similar arguments lead to an identical loss map on amplitude with g —I and a b
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where the saturation constant b is likewise related to physical parameters inherent 

in the Maxwell-Bloch model as in (3.7). The resulting loss maps are therefore
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CHAPTER 4 

1-D Fast Maps

In this section, we adopt a heuristic approach (originally motivated by Hans 

[13]) in developing the one-dimensional discrete maps on pulse amplitude and in­

tensity derived in Section 3.2 above. We focus here on class A lasers in that we 

consider the materials as inertialess and assume small single-pass material effects. 

Furthermore, the material is considered to instantaneously and completely relax af­

ter the passage of a pulse (i.e., no memory effects). We refer to these models as fast 

maps without memory.

To begin, we assume an exponential transfer factor of the form

/ ( | y | ^ c . , C 2 ) = e x p ( - .̂ ^ V - - ) ,  (4.1)

where ci and C2 are positive definite physical parameters whose values characterize 

the type of material as discussed in Chapter 3. For an amplifier ci =  +g is the 

linear amplification factor and describes the linear gain] for linear loss, Ci =  —I. 

The saturability parameters C2 ^  a and C2 ^  b control the relative saturation rates 

of the amplifier or an absorber, respectively. For the CPM laser in use at William 

& Mary, g is measured to be on the order of 10"^, justifying the small gain per 

pass assumption and allowing expansion of (4.1) to leading order in g. To account 

for non-saturable losses due to scattering from material surfaces, mirrors, prisms, 

etc., we must introduce an additional loss parameter R  < 1 into the transfer factor 

defined by (4.1). In this work, R  is taken to be ~  0.98 based on measured values.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



29

Hence, with these definitions and assumptions, the transfer factor for the gain is 

explicitly given as

+  (4.2)

When (4.2) is substituted into (2.6), the result is a one-dimensional map on 

pulse amplitude

= r ( i  + r— tt - T ? )  (4-3)V l - h a |^ " P y   ̂ ’

Equation (4.3) is the gain map defined in 3.24 and is recognized to be the discrete 

analogue of the laser equation [1, see equation (2.11)]. From equation (4.3), it 

is deduced that the map is dynamically stable when the magnitude of the transfer 

factor is less than or equal to one and unstable when it is greater than one. Referring 

to Figure (4.1), which plots against unstable states result when the the 

slope at the fixed point is greater than one, and stable states occur when the slope is 

less than one. For the special case where the transfer factor is unity, the amplitude 

does not change upon further iteration—signifying that the fixed point has neutral 

stability. The amplitude values under steady state conditions are the fixed points of 

the system and lie at intersections with the identity map as denoted in the figure. 

Consequently, simple analysis of (4.3) reveals that at threshold (W =  0) the gain 

map has a slope equal to i?(l + g). This is, therefore, the stability condition for the 

origin that imposes a constraint upon the values of the linear gain and reflective loss 

parameters, ĝ  R. Thus, a necessary condition for lasing is

R{l + g ) > l .  (4.4)

Further analysis of the gain map reveals the key role of saturability. The effects 

of saturation are clearly depicted in Figure (4.1) for the case of an unstable origin.
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n+l
Identity Map

Fixed Points

Threshold
('P=0 )

Figure 4.1: Fixed points for gain map.

It is seen in the figure, that as the amplitude grows, the saturability of the material 

causes the map to intersect the identity map at two points as it asymptotically 

approaches R  < I; i.e., there is an appearance of two more fixed points in addition 

to the origin. However, unlike the origin, these new fixed points are stable. This 

scenario would not occur in the case of a stable origin.

In conclusion, analysis of (4.3) reveals that—when the system becomes unstable 

at threshold (i.e., / ( ^  =  0 ) > 1 where /(•) is the transfer factor), the system 

produces additional stable fixed points for which in ±  pairs at non­

zero amplitudes. This production of fixed points constitutes a topological change 

in the system’s phase space relative to when the threshold is stable and thereby 

provides our first example of a bifurcation. The appearance and characterization 

{i.e., stable or unstable) of such fixed points forms the method of analysis employed 

throughout this thesis. For the CPM laser, the physical interpretation of the fixed 

points associated with the gain map for an unstable origin is that they represent
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stable continuous wave (CW) lasing.

For the absorber map, we follow the same procedure but now set ci = —I and 

C2 =  6 in equation (4.1). For the CPM laser, I has also been measured to be on 

the order of a few percent. Thus, expanding the exponential to leading order in /, 

produces the loss transfer factor:

(^-5)

When substituted into equation (2.6), the resulting loss map is seen to be equation 

(3.25)

^"+1 =  1 -  , (4.6)

Equation (4.6) is plotted in Figure(4.2) where it is seen that a single stable fixed 

point exists at the origin where the slope is equal to —I. Furthermore, the amplitude

asymptotes to a curve having constant slope below the identity map as shown in

the figure. Thus, the nonlinear effect of saturation implies that at large amplitudes 

(or intensities), the absorber becomes bleached—rendering it nearly transparent.

To model the combined effects of both the absorber and the gain for a single 

pass, we form the composite transfer factor by composing (4.2) and (4.5),

f w  = W i m - ,  (4-7)

which, when substituted into (2 .6 ), produces the composite map:

2
^ ....................................  . . .

X 1 1 - ^ I  (4.8)

The parameter space is thus seen to be A =  {a, b,g, I, R}, i.e., X E R̂'5
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n+l
Identity Map

1 -1

Figure 4.2; Loss map.

Bifurcation analysis of equation (4.8) similar to that presented for the gain and 

absorber maps just discussed (the full methodology is discussed below) has shown 

that we can simplify the composite map without significantly affecting the global 

dynamics for physically interesting parameter regions by expanding (4.8) to leading 

order in g,l\ i.e., by neglecting terms of 0{gl, This is consistent with the

expansion of the individual exponential transfer maps to the same order. The result 

is an additive transfer factor that, when inserted into (2 .6 ), produces an additive 

map on amplitude:

9 I , f4 9i
l +  a| »̂*|2 l +  6|^«|2j ■ ^

The nonlinearity in equation (4.9) is strikingly similar to that of the continuous

model proposed by Malomed et al. for pulse propagation in optical waveguides [4].

It is important to note that the dynamics described by (4.9) are extremely stiff, with
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the single-pass transfer factor differing from the identity map by only 1 0 ~  ̂ over 

the entire operating range of amplitudes. However, although nonlinear effects are 

weak per pass, they have dramatic cumulative effects on the asymptotic behavior.

The form of equation (4.9) suggests tha t—in the absence of noise—we can scale 

the amplitude by an arbitrary constant, k; i.e., ^  and absorb k into a and b. 

By choosing this constant to be \/a , we can affect a reduction in the dimension of 

the parameter space such that, A =  {9,g,l,R}-, i.e., X G R^, where 6 involves the 

ratio b/a. For plotting purposes, we form the relation b/a =  tan^  to capture the 

entire range, {b/a) € [0,+oo], for a finite range of ^ € [0, 7t / 2]. Dropping tildes, we 

consequently arrive at:

^  I  J J 9------------------ 1--------- 1\ 1 +  |^"|2 l  +  tan0l4^^pj (4.10)

As will be discussed later, in a CPM dye laser, the ratio determining 6 can be 

experimentally controlled by adjusting the beam diameters focused upon the dyes; 

and the parameter g is readily manipulated by increasing the pumping power of the 

argon laser. The loss parameters {/?,/}, are not easily manipulated experimentally— 

but are not expected to vary much for a given experimental run {I changes as the 

dye ages, but is otherwise constant).

4.1 ID Map on Intensity 

In this section we introduce the map on pulse intensity. However, we present 

here only a brief discussion of its associated dynamics in order to introduce the 

key concept of bistability and to introduce the methodology adopted in forthcoming 

detailed analysis. Defining the intensity of the pulse as

r  = (4.11)
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Figure 4.3: Intensity maps (not to scale).

we arrive at a discrete map on pulse intensity of the form: =  / ( / ”) / ” =

by taking the modulus squared of both sides of (4.10) and keeping only terms of 

0{g,l)  . The new parameter values in this map are found to be simply related to 

the original parameters by: 6 ^  6, g ^  2g  ̂ I i->- 21 and FF. The result is the 

following map on intensity:

j r n + l 21
(4.12)

+  /"  1 +  tan ei^

As in the gain map, the dynamics associated with the pulse intensity is ascer­

tained by finding and characterizing the fixed points of (4.12). Prom (4.12), the 

fixed point equation for the intensity map is seen to have the form

( /( / )  -  1)/ =  0. (4.13)

This equation reduces to a simple cubic polynomial in I  whose zeros (one of which
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is seen to be at threshold, /  =  0) define the fixed points. Factoring out the origin 

leaves a quadratic equation whose zeros determine the remaining two fixed points. 

Since on physical grounds intensities are positive definite, the map is limited to the 

three possibilities displayed in Figure (4.3). (The plots in Figure (4.3) are meant 

for notional purposes only and are not to scale due to the stiffness inherent in the 

map). In the plots, the zeros of equation (4.13) are mapped to the intercept points 

on the identity map. As in the gain map plotted in Figure(4.1), Figure(4.3-A) 

shows that if the origin is unstable, only a single stable fixed point is possible. 

However, referring to Figure(4.3-C), it is seen that when the origin is stable, an 

unstable and another stable fixed point is possible. Under these conditions, the 

system exhibits the phenomena of bistability[\b]. As we’ll see, bistability is essential 

for pulse formation.

In the following sections, we analyze both the 1-D map on amplitude (4.10) 

and the intensity map (4.12) introduced in this section. We adopt this strategy 

since the intensity map offers a substantial simplification in the mathematics as 

compared to the map on amplitude but retains the global dynamical behavior of 

the latter. However, the map on amplitude is important to the future addition of 

physical effects that impact phase dynamics. Consequently, we shift between the 

two maps as required for continuity of discussion.

4.2 ID Map Bifurcation Analysis

In this section, we begin with the map on amplitude defined by equation (4.9). 

The methodology follows that outlined above for the map on intensity; i.e., the fixed 

points are first determined as functions in the parameter space and then bifurcation 

scenarios are established.

Changing notation so that 'F =  a; represents a constant real amplitude, the 

fixed point equation associated with (4.10) is again a rational function of the form:
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{ f { x - X ) - l ) x  = 0; (4.14)

where it is recalled that the parameter vector A G IRf, and the transfer function /(•) 

is defined in (4.10). Upon clearing out the denominators and factoring out the root 

at threshold, the result is a quintic polynomial in x  of the form:

x{e^x'^ + ê x"̂  + €i) — 0,

=^xP^{x) = 0; (4.15)

where, P4 {x) is the quartic remainder in x  and Cj =  ej(A) are parameter-dependent 

coefficients defined as

65 =  tan0 (i? — 1),

63 =  i?[(l —/ ) - f t an0( l  4-5')] — (tan0 + 1),

Ci =  R { l  — l + g) — l. (4-16)

Equation (4.15) is quadratic in x'  ̂ with the discriminant defined by

Since the discriminant is an implicit function of the parameter set, the locus of 

parameter values {Aj} for which A(Aj) =  0 therefore defines a surface in the pa­

rameter space whose dimension is typically equal to one less than the number of 

parameters; i.e., 3. Since this surface contains multiple branches upon which the 

roots of equation (4.15) are degenerate, it both identifies (experimentally verifiable) 

parameter sets for which bifurcations occur and separates the parameter space into 

dynamically distinct regions. We refer to this surface as the critical surface.
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Higher 
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0/10

Figure 4.4: Critical surfaces for fixed point equation (4.15).

One of the branches of the critical surface is given by

(4.18)

This equation plays the same role as equation (4.4) for the gain map. Consequently, 

we designate this branch as the gain cap, since given values for {R, 1} (recall these 

parameters can be considered as constants for a given experimental run) (4.18) 

implies the existence of a critical value of the gain g, for which the origin bifurcates 

from a stable point to an unstable one. Fixing R  to 0.98, and using physically 

realistic ranges for {9, g, I}, we therefore generate the full critical surface as displayed 

in Figure (4.4). This figure was generated using Maple’s 3-d implicit plot function 

on equation (4.17). In the figure, the 9 axis has been arbitrarily scaled by a factor 

of 10 for visual clarity and G denotes the gain cap; the surface D will be discussed 

momentarily.

As mentioned in Section 4 (see Figure (4.3A)), when the region above the
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gain cap has a single, stable fixed point, this can be interpreted as a continuous- 

wave mode of lasing; accordingly, this region is denoted by C.W. in Figure (4.4). 

Imaginary amplitudes occur for parameter values enclosed within the folded surface 

D, as well as to the right of D and below the gain cap; thus, these regions are 

interpreted to be non-physical and designated N.P. in Figure (4.4). To the left of 

surface D, and below the gain-cap, there exists a region labeled P.F.—indicating 

pulse formation. It is within this region that the system exhibits bistability; i.e., 

the origin is stable and a second stable fixed point appears (see Figure (4.3C)).

Figure (4.4) displays the full physical range oi 9 — (0, tt/2) with 6 > tt/2 

h/a < 0. However, since on physical grounds both a and b are positive constants this 

region of the model is non-physical. Our model predicts that the amplitude of the 

fixed point increases in magnitude as 0  - >  t t / 2 ; this agrees with both experiment and 

other models [1]. Also noted in the figure is a tangential intersection that occurs 

between two branches of the critical surface {i.e., the gain cap and the surface 

labeled D). This intersection is a one-dimensional curve representing a family of 

parameter values for which higher co-dimensional bifurcations occur [16]. As is more 

fully discussed below, such increased co-dimensionality has important dynamical 

consequences in terms of the stability of a system when parameter values lie on or 

near this curve. It is noted that, Malomed et. al. [4] have also observed higher 

co-dimensional bifurcation scenarios in their work.

Figures (4.5) and (4.6) display plots of the map for the two, co-dimension-1 

bifurcation scenarios associated with the G (gain cap) and D branch, respectively 

(also see Figures (4.3A) through (4.3C)). Normally, one plots F (^ )  vs. but due 

to the extreme stiffness of these maps mentioned earlier, we plot F{ ^ )  — 4̂  along 

the vertical axis to clearly show variation (recall, F{'^) — ^  10~^). Consequently,

negative values of F(^^) — denote regions where the amplitude is decreasing upon 

iteration and positive values indicate the converse; the zeros of F (^ )  — are the
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Figure 4.5; Pitchfork bifurcation: R  =  0.98, I — 0.04 and 6 — 1.33.

fixed points.

Figure (4.5) illustrates a pitchfork bifurcation by showing curves for three dif­

ferent values of the gain parameter g (delineated in the figure by the annotation, 

a, b, c); the remaining parameters were set to R  = 0.98, I — 0.04 and 9 =  1.33. The 

domain for the plots was selected so that the pitchfork nature of the bifurcation 

can be readily seen. The pair of stable fixed points located further from the origin 

(that survive the bifurcation) are also not displayed for clarity. When g is below 

its critical value, the system is located within the pulse formation (P.F.) region of 

Figure (4.4). The sequence c —>■ 6 —)■ c of Figure (4.5) corresponds to moving from 

the P.F region of Figure (4.4) upwards through the gain cap G into the C.W. region.

Figure (4.6) shows plots for three different values of 9 with R  =  0.98, I =  0.05, 

g = 0.06. Only positive valued amplitudes are displayed. Bistability (implying pulse 

formation) is clearly seen for curve c. When the value of 9 equals its critical value. 

Figure (4.6) shows the two fixed points become degenerate; the system resides on the 

D surface of Figure (4.4). Further decrease of 9 results in the loss of bistability, but
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F ('F)-'F

Figure 4.6: Saddle-node bifurcation: R  =  0.98, I =  0.05 and g =  0.06.

the origin remains stable. This is therefore recognized as a saddle-node bifurcation. 

The sequence c b a corresponds to moving in Figure (4.4) from the P.P. region 

to the right, passing through the critical surface and into the region marked D.

4.3 Co-dimension Two Unfolding 

We now discuss the higher co-dimension bifurcation discovered in the fast maps 

and generalize the discussion by introducing a generic map that consists of unspec­

ified saturable functions. As will be shown, the only requirement placed upon these 

functions is that they be monotonic. The key result of this generalization is that 

we can now consider pulse formation in a completely general framework affording 

application of our models to other physical systems than the CPM laser.

We relate the generic map to the CPM models by utilizing the map on intensity 

defined by equation (4.12). Accordingly, it is important to note that the higher co­

dimension tangency found in (4.12) occurs where the pitchfork and saddle node 

coalesce. This implies that all of the fixed points are in the immediate vicinity of 

the origin allowing a Taylor series expansion of the nonlinearity about this root.
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1 a(ax)

1 X

Figure 4.7: Generic saturation functions.

Thus we have

F(a;) =  f {x) x  = (/(O) +  f '{0)x + f"{0)x^/2)x  +  0{x'^). (4.19)

Since this is the map on intensity, we have a; ~  ~  |^ p ,  making (4.19) 5th order in

the amplitude. Note that if we truncate the expansion at a lower order, we lose the 

phenomenon of interest: the merging of all 5 roots. Away from the line of tangency 

in Figure (4.4), the Taylor expansion becomes invalid and we must retain the full 

saturable nonlinearity.

Introducing monotonically decreasing, bounded saturation functions that pos­

sess parametric dependencies of the form: a{ax), a{bx) {e.g. for Lorentzian func­

tions, a{ax) = 1 / ( 1  +  ax)), and stipulating b > a so that the absorber saturates 

faster than the gain (see Figure (4.7)), we form a generic transfer factor of the form

f {x)  =  (1 -t- 2ga{ax) — 2la{bx)). (4.20)

Because of the construction of (4.20), certain parameter regimes imply the ex-
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Figure 4.8: Generic transfer factor and fixed point equation.

istence of an amplifying subdomain over which f {x)  > 1 as depicted in Figure 

(4.8A). Thus, the dynamics generated by a map utilizing equation (4.20) in this 

region of the parameter space will exhibit bistability. As mentioned above, higher 

co-dimensionality occurs in our system when the pitchfork and saddle-node bifur­

cations occur together (the tangential intersection of the branches in Figure (4.4)); 

this requires f {x)  to be at least quadratic in x  to produce the requisite cubic (in 

a:) fixed point equation G{x) =  ( f{x)  — l )x  =  0. Consequently, by expanding the 

generic transfer factor in equation (4.20) to second order, the generic fixed point 

equation becomes:

G{x) =  (caa;̂  ■+• t2X -f ei)a: =  0 ; (4.21)

ei =  R^{l + 2 g ~ 2 l ) ~ l , (4.22)

C2 =  R^a'{0){ag — bl), (4.23)

C3 = R^a"{0){a^g — b^l). (4.24)
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Pitchfork 
(gain cap; e = 0)Co-dimension 2

Saddle-node

Figure 4.9: Generic bifurcation diagram depicting the high-dimensional bifurcation point 
for the generic map.

The general behavior required of G{x) to exhibit bistability is graphically depicted 

in Figure (4.8C) where it is observed that a stable origin implies G'(0) < 0; or 

equivalently, ei < 0 in equation (4.22) as expected; thus, ei =  0 is our gain cap. 

Let’s assume the origin is stable. Since f {x)  is parabolic and /(O) < 1 , then for 

bistability, we require /'(O) >  0. Global stability requires f {x)  to be concave down, 

or f"{0) < 0. /'(O) > 0 implies 62 > 0, giving cr'(O) < 0 in equation (4.23). The 

physical requirement for two positive, real valued roots (for G(x) = 0) implies £3 < 0 

since f {x)  must be concave down at a: =  0. Finally, from the fact that {g/l) ~  1 

with fe >  a by assumption, we deduce from equation (4.24) that o-"(0) > 0.

Since the co-dimension two bifurcations occur at points in the parameter space 

where there is full degeneracy among the roots, the locus of points for which the 

discriminant of the quadratic in (4.21) vanishes define the bifurcation values; i.e., 

the parabola in parameter space defined by
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A =  -  4e3Ci =  0. (4.25)

Figure (4.9) is a schematic representation of the generic bifurcation diagram de­

picting a slice through the two-dimensional critical surface; i.e., the (e2,€i) plane. 

Taking the magnitudes of cr'(O) and <7 "(0 ) to be one, a supercritical pitchfork bifur­

cation occurs at the origin when ci becomes positive as indicated in Figure (4.9); the 

saddle-node bifurcation surface is parabolic. In this coordinate system, the origin 

defines the point at which a co-dimension two bifurcation occurs; i.e., this is where 

the tangential intersection of the two branches of the critical surface occurs.

To compare our map with the generic scenarios, we expand (4.15) to cubic 

order and transform to a coordinate system defined by the Taylor coefficients of the 

expansion (the truncated model). Figure (4.10) reveals critical surfaces for both this 

truncated model and the generic map associated with equation (4.8) for a section 

of parameter space that is consistent with the bistability requirements discussed 

above. Note that Figure (4.9) is a slice through Figure (4.10) for a particular 63. 

The gain cap is also displayed in Figure(4.10) and constitutes the (cai^s) plane. 

As the figure reveals, the truncated fast map exhibits a folded surface that is fully 

contained by the critical surface of the generic map. Consequently, the truncation 

of the generic map to cubic order captures the qualitative behavior of the higher co- 

dimensional bifurcation at threshold—though it predicts a smaller operating range 

for pulse formation.

This section concludes discussion on the inertialess models. While these fast 

maps have served to illuminate the dynamics in terms of amplitude stability, they 

have presumed the existence of a pulse as a consequence of an unstable origin (recall 

Figure (4.1). They do not provide information on pulse formation. This limitation 

is a consequence of the lack of coupling between the temporal points which therefore

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



45

Gain Cap

V Generic 
Map

Additive 
Map

Figure 4.10: Critical surfaces for the generic transfer factor (gray-scale) and the full map 
truncated to cubic order (multi-colored. The gain cap (red) is also included.

evolve separately from each other, resulting in boxcar-like wave forms. To couple the 

neighboring points, one can include differential information or memory effects via 

integration over the pulse’s history. The former has been thoroughly investigated by 

others (see for example [10, 1]) while we turn to the latter in the following sections.
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CHAPTER 5 

Slow Saturation Dynamics

In many systems the absorber and gain recovery times are on the order of the 

pulse round-trip time; hence, the need to consider pulse-to-pulse memory effects in 

theses systems is apparent. Physical examples of such residual phenomena include 

lingering inversion densities in optical systems and bump-on-tail energetic particle 

distributions in confined plasmas. To account for these effects phenomenologically, 

we introduce the saturation integrals:

S,, i{t)=  r  K , , i { t , t ' )m ' )? d t ' -  (5.1)
J —00

where, Kg^i{t,t') represents response kernels for the gain and loss, respectively. A 

theoretical justification of this approach was given in Chapter 3.

The kernels Kg î should be thought of as filters. The stationarity of the system 

parameters requires that Kg î depend only on the difference {t — t'). We assume, on 

physical grounds, that Kg î are weighted toward the recent past and decay to zero 

as t' —¥ — oo. There are three distinct classes of response kernels for t > t' that we 

deal with separately:

A) =  S(t -  (');

B ) K g ,  =  0 (1 ) for (( -  C) =  0 (A i)  and K , j  =  0 for (t -  t') =  0 (r );

C) Kgj = 0 { \ )  for (t — t') =  0 {A t )  and Kg î — 0 { \ )  for {t — t') — 0 { t )  and 

/-oo ^ 9 ,lit -  t') =  =  const. < oo.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



47

A is the class of fast maps already discussed. Class B consists of slow media, 

but the media has fully recovered between pulses. Class C consists of systems with 

pulse-to-pulse interactions. When these saturation integrals are inserted into the 

transfer factor of an input-output relation, the result is an infinite dimensional, 

integro-delay equation that describes the dynamics of a self-coupled pulse; i.e., a 

map that now entails coupling of neighboring temporal points. Henceforth, we refer 

to this new map as the slow medium map:

4(« +  T )  =  / [ | * f l  («)«(«), (5.2)

To make the problem well-posed, initial data must be given for —oo < t  <  r .  

A single iteration of (5.2) generates t  <  t  < 2r, e t c . .  It is to be noted that 

our use of the word slow differs from its use in the optics literature; there, a slow 

absorber refers to the medium’s response as compared to the pulse width while we 

imply pulse-to-pulse memory effects. In equation (5.2), /[•] denotes the functional:

In the following section we begin by discussing the evolution of pulse shape for 

slow or inertial media—but in the absence of pulse-to-pulse memory effects, i.e. 

class B above. We then heuristically introduce memory by directly substituting the 

saturation integrals into the fast map (4.9). The main conclusion of this approach 

is that there is a minor shift in the parameter values for which pulse formation 

occurs—but the major bifurcation scenarios of the fast and slow maps {i.e., saddle- 

node and pitchfork) remain qualitatively the same. We end with a more rigorous 

approach by taking advantage of the inherent singular nature of the system found 

in the widely separate temporal scales to reduce the oo-dimensional integral-delay 

equation to a low dimensional {e.g., 3 or 5) map.
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5.1 Fixed Points of the Slow Medium Map 

Combining (5.2) and (5.3) explicitly reveals the slow medium map to be an 

integro-delay equation:

Following the procedures for analyzing maps and flows, we gain insight into the 

dynamics of (5.4) by considering fixed points and periodic orbits and their stability.

Fixed points: We require '^{t) = =  constant. This is true if =  0,

trivially. But, we also have (using the condition dt'Kg^i{t — If) = Kĝ i),

^o = R ‘" ( l  + z ^0- (5.5)\  l +  aKg^l 1 +  bni^lJ

Therefore, ^  0 implies

^  1 + aKg-^l ~  l  + bni<fl) ^

Defining a' = aKg, b' =  bni, we recover the original fixed point equation of the fast 

map (4.9). Thus, Figure (4.4) still defines the critical surface for (5.4) but with 

tan0'=K/ iKnd/Kg. We note that this is a CW solution.

Periodic orbits: Here we investigate the existence and nature of periodic orbits; 

i.e., for a ’period-one’ orbit, ^ ( t  + t ) =  ^ ( t)  for all —oo < t < oo. A period-two 

orbit would satisfy ^ ( t+ 2 r )  =  ^ ( t) , etc. for period-n. We note that the periodicity 

condition

implies ^ ( t)  =  0, or ^1 +  i^aSg(t) ~  i+bSi{t)) ~  possible to show that

solutions under these conditions will consist of 5-like pulse trains. More precisely.
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|Wp(t) =  S{t-r iT) ,  (5.8)
n=—OO

with ^{t)  an infinite train of half-densities (distributions whose square is a 5- 

function). In the next section, we consider the specific example for Sgj{t) provided 

by the Maxwell-Bloch model of Chapter 3.

5.2 Stability of the Pulse Train 

To address stability of the pulse trains, while continuing to ignore memory ef­

fects, we set the response kernels in (5.1) to unity, but assume the media completely 

relax between pulses (class B above). Based upon the phenomenon of mode-locking 

discussed in the Introduction, the net effect of the amplifying and absorbing media 

is a reduction of the pulse width. Recall that mode-locking is a consequence of a 

saturable absorber preferentially removing the leading edge of a pulse, while a sat­

urable gain preferentially amplifies the pulse peak—effectively removing the trailing 

edge of the pulse (see Figure (2.5)). Hence, without dispersive or nonlinear self­

phase modulation effects to balance this narrowing (such as GVD or nonlinear-Kerr 

in optics), any initial pulse shape is therefore expected to asymptotically collapse 

into a delta function. As a consequence, it is anticipated that pulse formation will 

result in a delta-like pulse.

We can construct a pulse train solution to (5.4) by writing the intensity in 

terms of functions ^*(t), such that : I{t) = |^P (t)  =

These functions are of finite support with the width of each |0*P(t) assumed to be 

much less than the round trip time. Thus the integrated intensity for a single pulse 

becomes;

$ ,(t) =  f  (5.9)
J  — OO

In the optics literature, equation (5.9) is known as the jiuence. Due to the finite
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m
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max

t

Figure 5.1: Localized intensity function and fiuence.

support of 4>{t), the fiuence evaluates to a maximum when integrated across 

the pulse as depicted in Figure (5.1). Since difiFerentiating the fiuence recovers 

the intensity, I{t), we can define a functional map on intensity of the form,

(5.10)
dt dt

where /(•) again is the transfer factor accounting for material efllects upon the 

fiuence. Equation (5.10) explicitly describes the dynamics of the temporal evolution 

of the pulse shape. Furthermore, equation (5.10) implies a differential relation on 

fiuence, =  /  ($") which—after integrating over the limits $ ” (—oo) =  0

and $"(+oo) =  ^max—produces a discrete map on maximum fiuence:

Jo

For example, equation (5.4) is squared to give (to 0{g^, l ‘̂ ,gl)),

2 g 2 1

+  aSg{ t )  l  +  bSi{ t )

(5.11)

(5.12)
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Introducing a round trip index n, we find from (5.11) for class B lasers =

 (5.13)
I 1 I /-i.\ 1 I Zv/T\ti./J .\  I J-i. '  •'dt V l  +  a$"'(t) l +  6 $ " (t) / dt

Iterating from initial data thereby produces

^  ^ ( n / ( ^ ' « ) ) ) ^ .

By introducing the mapping function, f { ^ ' )d ^ ' ,  these results can

be recast as,

d ^  /^n / x\
' W  =

^  = (*)))))■ (5.16)

We interpret this result as follows: Starting with an arbitrary pulse shape, |^ °p (t), 

integrate to find Now, for each value of t, separately iterate n-times

giving the function of time tF^{^^{t)). Differentiating over time t gives d^'^/dt = 

|^ "P (t). We now consider the asymptotic behavior of (ie ., as n oo) for

th e  three cases a lready sketched  ou t in F igure (4 .3 ), w here we can  v iew  th e  figures 

as graphs of .F($) vs. $ . The three cases are as follows:

A) Unstable origin: For any $  > 0, JF"(<F) —)• as n —>• oo, where is the unique 

stable fixed point .^($s) =  Therefore, $"(t) evolves to a step function with
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Figure 5.2; Delta collapse.

the step located at the earliest time when is non-zero. We note that if

is a step, then =  d^'^/dt  is 5-Iike. However, any spontaneous

emission would contribute a non-zero value occurring at arbitrarily earlier 

times so that—even with a memory kernel of the form Kg^i{t — t')—the pulse 

would be unstable to noise.

B)  Stable behavior: Since F ($ )  < $  for all $  > 0, we have > 0 as n —> oo.

Hence, any initial decays to zero.

C) Bistability: As we’ll see, the bistable case combines the stable behavior of case 

B to suppress early perturbations, while amplifying signals which pass a finite 

threshold. For the bistable case, vs. $  asymptotically approaches the

step function as outlined below and shown in Figure (5.2):
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lim ($) =  <

0  when 0 <  $  < 

when $  =  

when

Since ^^(t)  is monotonic in t, we need only compare to If <

then $ ” (t) —>■ 0 as n —> oo. If then, since is monotonic,

there is a unique time t = tu defined by For t  < jF"($°(t)) —> 0;

for t > tu, F ” (<F°(t)) —>• $ 5. Hence, Iimn_>oo *̂*” (0 =  ^sH{t  — t„), where H{-) is 

the Heaviside function. The presence of noise—even if i t’s effects are suppressed 

buy bringing back the low-pass filters Sĝ i — —will tend to

cause the point to ’walk’ toward progressively earlier times. This effect however, 

is much less dramatic than are the noise effects in case A. Therefore,
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CHAPTER 6 

Memory Effects: Heuristic Approach

In this section we follow a heuristic approach in including memory effects by 

directly substituting the saturation integrals (containing the slow material response 

kernels) into the saturable gain and loss terms of equation (4.9):

«-(* + r) = fi ( l  + j  ^ n5,[|4'PlW “  1 +  ftSJI'PPlW )

In optical models based on the Maxwell-Bloch equations for two-level atoms, 

it is found that the population inversion decrease exponentially with characteristic 

time scales, 7 “/ (recall that in Section 3, 7 “/ was defined to represent the homoge­

neous broadening terms for the gain and loss media, respectively [9]). Consequently 

we propose that we can write the response kernels as:

Kg,lit, t') =  Kg,i{t -  t') =  t  > t'. (6.2)

Inserting the fixed points of the train of constant power delta functions discussed 

above into the saturation integrals of equation (5.1), and performing the integration 

and the sum, produces the following, periodic saturation functions:

• (6 -3)

In the above, [-J is the floor function and the new parameter space now consists of 

A =  {R, g, I, a, b, 'jg, 7 ;, T}. Consequently, setting t =  mT,  with m  being an integer, 

and defining

54
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“ -  e ^ 9 T - r

i  .  ^eiiT _  I >

tan ^  =  (6.4)

the fixed point equation for this additive map with memory becomes:

^ ,  = r ( i ------------ L ------- + ----------L ------- (6.5)
V l + cos(0)|« ,̂|2 l + sin(e)|^'*|2;  ̂ ^

The form of the above equation is identical to that of the fast map without memory 

defined by equation (4.9). This implies the global bifurcation scenarios found in the 

fast map are maintained; possibly with new ones occurring as well.

6.1 New Dynamical Behavior Associated with Memory Effects 

In this section we consider the situation where the material relaxation times are 

on the order of the pulse round trip time but the pulse width is smaller by several 

orders of magnitude, i.e., A t  «C r . Such multiple scales are known to occur in 

optical systems when the nanosecond relaxation rates of the media are comparable 

to the cavity round-trip time and pulse widths are observed to be in the sub­

picosecond range. This assumption of multiple-time scales allows us to reduce the 

infinite-dimensional system of (5.4) and (5.3) to a 5-dimensional map via singular 

perturbation theory or two-timing.

The two-timing approach allows a formal separation of the saturation integrals 

in (5.1) into two domains corresponding to whether a pulse is present (the inner 

region) or not (the outer). This situation is graphically illustrated in Figure (6.1) 

which is Figure (3.2) reproduced here for convenience. In the inner region, the 

integrals are dominated by the temporal scale of the pulse width—allowing neglect
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(outer)

(inner)
\AtAO^i

(n+l)x(n -l)x nx

Figure 6.1: Inner and outer regions of the pulse train.

of the relaxation terms couched in the response kernels, Kgj{t,t'). Integration over 

a pulse—while neglecting media response—thereby produces the maximum fiuence 

^max defined by equation (5.9). As depicted in Figure (6.1), the outer region is 

dominated by the temporal scales associated with residual effects within the media 

as a result of the previous pulse. Formally evaluating the saturation integrals over 

these two time scales therefore produces the following scheme:

Sg{t )  = $^aa;(t) +  (previous pulses)

Si{ t )  = $^aa:(^) +  (previous pulses)

(6 .6)

(6.7)

where, a  =  and /3 =  These expressions suggest a new map on intensity

in  w hich  th e  m ax im u m  fiuence fu n ction  and  sa tu ra tio n  in tegrals are th e  new  s ta te  

variables—coupled through a new multivariate transfer factor:

f i ^ m a x  T ( xSg ,  ^ m a x  T ~
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D2 a  _|_‘̂ 9  \  gN
\  1 +  a {^m ax  +  OiSg) 1 +  {^max  +  /3Sl) J

Integration of equation (6 .8 ) therefore produces a multivariate function of the fiuence 

and saturation integrals,

p^max
^{^max + <^Sg,^rnax + PSl) = / f  + aSg, ^ '  + PSl)d^' . (6.9)

Jo

Equations (6.6)-(6.9) form a system that couples the present (n +  1)^  ̂ time step 

to the preceding and (n — 1)*̂  time steps (see Figure (6.1)). The memory of the 

gain is accounted for by a  and that of the absorber by p. These equations, and the 

scheme outlined by (6 .6 ) and (6.7), result in a low dimensional dynamical system 

now composed of maps on the saturation integrals and the fiuence:

+ + (6-10)

To facilitate analysis of (6.10), we introduce the following scales and change of 

notation: 9 =  6/a , x” =  aSg, =  65” , =  6$ ” ^̂ .̂, x^ =  a 5 ”“ \  x^ = aSp~^.

W ith these definitions, we see that x E IR?, and equations (6.9) and (6.10) become:

X i =  1 + - ; .

^ n + 1X2

^ n + 1
X 3 =  h ( x ^ , X 2 ,x':

X 4 ----  *̂ 1 ?

• ^ 5
- -  
— ^ 2  ? (6 .11)
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i W g e  A m p l i t u j d e  

i  S t a b l e  P o i n f

X3

Figure 6.2: Plot of (6.13) under bistable conditions.

where the integration of the transfer factor (6 .8 ) produces a transcendental function 

in {0:3 , x",a;"}, defined as

h{xi,  X21 x'^) =  ( X3 +  2 g6  In ( 1  + ------ ----------
\  9{1 + ax^)

2 Hn 1 +
X

(6 .12)

6 .2  Stability Analysis 

In this section, we perform a stability analysis of the dynamical system (6.11). 

Determination of the fixed points of this system, Xi, is reduced to numerically (or 

graphically) determining the roots of h^x^) —X3 , since in stead-state, h{x3 , X4 , ^ 5) -F 

h{x3 ); explicitly, the transcendental equation to solve is

— 1) 2:3 -b R^2g6 In j 1 -b X3 R^2l\n X3

Figure (6.2) is a plot of equation (6.13) for parameter values that exhibit bistability. 

In a region of parameter space that is consistent with a fast absorber with (/3 C
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Figure 6.3: 5d Saddle-Node.

1), the 5-dimensional system was found to also exhibit a saddle-node bifurcation as 

shown in Figure (6.3), where the parameter 6  is varied for fixed {R,

In addition, an exchange of stability at threshold, analogous to the pitch-fork bi­

furcation in the fast map was found to occur as well (not shown).

Linearizing about the fixed points of (6.11) results in the following Jacobian 

matrix whose eigenvalues {C*} characterize the spectrum

J( x )  =

1
B a 0

1 0

E IK

0 0 0

0 0 0

(6.14)

where,
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E(x, ;A) =  f l ^ ( l  +  2— ^ - 2 - — ^ 1  (6.15)
e{a- l )   ̂ /3 - 1

r(x j; X) = - a e ---------^ ^  (g Jg)
(D -  a )  (i f f ( a — 1 )

A(x3; A) =  /J-̂ ------ - ^ 9 ----------------------------------------- (6.17)
( i - a )  ( i - a )

The characteristic polynomial, whose roots are the eigenvalues, is thus a quintic 

function of the form

d e t { J - X l )  = P(C) (6.18)

+  (q (E -  j r )  + /?  (E -  iA)) C" +  qK

+Pa {gV +  ZA — E ) ;

where I is the 5x5 identity matrix.

Given that both g and I are on the order of a few percent for a single pass, 

we adopt a perturbative approach in solving (6.18) by first setting terms involving 

these factors to zero. As depicted in Figure (6.4), these limits result in a set of real 

valued eigenvalues { ± y ^ , ±\/)0, E}. Note that, in these limits, only E depends upon 

which fixed point the Jacobian is evaluated at; hence, under bistable conditions, we 

let E =  E 5 for the large amplitude stable point, E =  Eo for the stable origin and 

the E =  E„ for the unstable saddle. Accordingly, E* is shown in Figure (6.4) 

to be inside the unit circle as would E„ (not shown in the figure); E„ (also not 

shown) would lie just outside the unit circle. For the fixed point at the origin, 

X3 0 => T, R ' ^ { 1  + 2g — 21) which defines the gain cap, and F and A —> 0. In

the limits g,l  0, E ,̂o,« — < 1 and all terms in F and A —> 0 as well.
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Im^

1/2 ReC- a

Figure 6.4: Perturbative spectra.

ImC

period two flip slow amplitude oscilations

Re^

Figure 6.5: Spectra showing period two flip orbits and breathing oscillations.
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Figure 6.6: Phase space after the occurrence of the Hopf bifurcation.

An important consequence of the above analysis, depicted in Figure (6.5), arises 

in the degenerate situation where yjlx —>■ Eg < 1. In this limit, the root —\ f a  is seen 

to represent a weakly damped period-two oscillation (a flip), and the degeneracy 

of ^/c^ ^  Eg implies the possibility that, when g and I are reintroduced as per­

turbations, the roots can form a conjugate pair—signifying the existence of slowly 

damped oscillatory behavior. For the degenerate case where y/a —>■ E„ > 1, the 

systems undergoes a bifurcation (Hopf) that results in unstable oscillations. Figure 

(6.6) reveals the phase space of the system under these conditions for a parameter 

set {g,l ,6}  =  {0.084,0.061,80.0} but with a  ~  0.954 which corresponds to a gain 

relaxation rate that was increased in magnitude from a value of jg =  0.25 (used in 

all previous runs) to 'jg — 0.38. (Recall, a = and therefore an increase in mag­

nitude or a  corresponds to a increase in memory effects.) The unstable oscillations 

of the fiuence variable are shown in Figure (6.7) for a set of three different initial 

conditions chosen at random around the unstable node. We interpret these oscilla­

tory modes to indicate the existence of breather modes in the integrated intensity 

or fiuence variables.

We now turn our attention to the central prediction of the slow map containing
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Time Series of Fiuence For Different Initial Conditions

Iteration

Figure 6.7: Time series revealing unstable oscillations after the Hopf bifurcation.

Steady State^

Drop-out ~ T  ........ .............

\r

--HDrop-in

Pulse 1

Pulse 2

Time

Figure 6.8: Experimental time series showing drop-out and drop-in data in arbitrary 
amplitude units for two, counter-propagating pulses.
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Overshoot-

Pulse 1
Drop-out

Qh

Pulse 2

Drop-in

Time

Figure 6.9: Experimental time series showing drop-out, drop-in and overshoot phenomena.

Pulse 1

Drop-in

Time

Figure 6.10: Experimental time series for a single, uni-directional pulse.
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Pulse 1
Drop-out

Pulse 2
Drop-in

Time

Figure 6.11: Experimental time series.

memory: the existence of a type of hysteresis in the dynamical behavior of drop-out 

and drop-in events. Figures (6.8) to (6.13) are experimental time series of drop-out 

and drop-in events for different values of the pump gain as observed in the CPM 

laser at William k, Mary. These data sets will be fully discussed in Wie Yang’s 

Ph.D. dissertation in the near future [17]. It is worthy of note that the experimental 

undertaking that produced these graphs was initiated as a direct consequence of 

our model’s prediction of this asymmetry. The plots depict variations in pulse 

amplitude over time (temporal units are 10ns) for both single pulse situations and 

for the case involving two counter propagating pulses denoted as pulse 1 and pulse 

2 where applicable. Figure (6.10) shows a single, uni-directional pulse case. These 

plots attest to the rich variety of dynamics associated with pulse formation and 

cessation. Particular features to note include the substantial differences in the time 

over which drop-outs occur as compared to the times associated with drop-ins. Also 

note the occurrence of overshoot where there is a large spike in amplitude followed 

by a decrease in output as the pulse settles back to a steady state. In Figure
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I Pulse 1Drop-out

Pulse 2

'Drop-in

Time

Figure 6.12: Experimental time series showing chaotic-like instability.

(6.11) there is an unusually long time after a drop-in event over which the system 

relaxes back to its former lasing state. Figure (6.12) is particularly interesting in 

its chaotic-like attempt to stabilize after a drop-out had occurred. Finally, as seen 

most clearly in Figure (6.13), the steady-state after a drop-out-drop-in sequence 

can possess a greater average amplitude as compared to the average amplitude prior 

to drop-out; also note in Figure (6.13) that drop-in rates can even differ between 

counter-propagating pulses that exist simultaneously in the cavity as well.

The model’s prediction of this asymmetric behavior between the drop-out and 

drop-in events follows from an analysis of the phase space of the slow map (6.11). In 

particular, we show that for a critical parameter set under bistable conditions, the 

topological structure of the stable and unstable manifolds embedded in the phase 

space have their respective basin boundaries in close proximity to each other. As a 

consequence, it is postulated that the system can experience dramatic state changes 

via noise-induced hopping between the basin of the stable origin and the basin of
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Drop-in

Time
Figure 6.13: Experimental time series showing asymmetry between counter-propagating 
pulses.

the stable node. Figure (6.14) notionally illustrates these phenomenon for a three 

dimensional system discussed next.

To aid in the analysis and visualization of the stable and unstable manifolds 

for the full 5-dimensional system, we simplify by setting the saturation parameter 

for the absorber /3 =  0. This simplification reduces the 5-dimensional system to the 

following 3-dimensional reduced map

X, n + l z l1 +  ax^,

X., n + l  _ {x^  + 2 g 0 \ n ( l  +
\  8[ l  + ax^)

- 2 n n ( l + 4 )  ,

X, n + l  __
X ? . (6.19)

Thus, with this simplification, the full 5-dimensional system can be thought of as a 

perturbed version of this 3-dimensional one where memory effects in the absorber 

are ignored.

The Jacobian associated with (6.19) is
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Drop-in
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Origin

Figure 6.14: Suggestive phase portrait for linearized system with /3 =  0 depicting hysteresis 
in drop-out and drop-in phenomena.

J  =

0  ̂ q;

0 j22{x2,X3-X) j2z{X2,Xz,X)

1 0 0

(6 .20)

where

322{X2,X^,X) =  + j

32z{x2,x^-,X) =

21
+  ^  +  OiX̂  1 -j- X2 /

2E?gax2
(l ^  +  CtfCs) (1 -|- QfXs)

In the limiting case examined above where g,l  0, the Jacobian becomes

0 I a

0 0

1 0 0

which, when transformed into its diagonal form gives

(6 .21)

(6 .22)

(6.23)
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R “̂ 0 0

Diag{J)  = 0 y/a 0 (6.24)

0 0 - y / a

Thus, the eigenvalues of J  in this limit are seen to be y/a, —\/a }  and the

eigenvectors are found to be

V2iV^)  =  (a/«,0, 1),

Vsi-y /a)  -  ( - V « ,0 ,1). (6.25)

Notice that when R? =  y/a, the eigenvectors V\ and V2 become degenerate. When 

this occurs, the Jacobian matrix will not be diagonalizable and what is called a 

Takens-Bogdanov bifurcation occurs. Accordingly, under these conditions, the non­

linear response to perturbations is expected to be very different than for systems that 

are diagonalizable [18, 19]. Detailed analysis of these scenarios and the associated 

dynamical ramifications for the CPM laser are presently in progress.

Figure (6.15) displays trajectories in the phase space that exhibit the period-two 

fast oscillations (flip orbits) discussed above for five different sets of initial conditions 

that lie on the basin of attraction for the unstable manifold. Each initial condition 

is delineated in the figure by a separate color and the location of the saddle-node for 

this parameter set is shown as a red asterisk. At the time of this writing, this high 

frequency oscillation has not yet been unambiguously detected in the CPM laser at 

William & Mary. For clarity in the following graphs, we henceforth only display 

every other point along a trajectory in the phase-space to remove the period-two 

flip orbit. Figure (6.16) was generated under the same conditions as Figure (6.15)
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Figure 6.15: Phase portrait around saddle showing period-two oscillations.

and shows the effects of this strategy.

Figures (6.17) and (6.18) display samplings of the saddle’s stable manifold in 

blue and the unstable manifold in red for the positive quadrant of the phase space. 

As in the notional graph of Figure (6.14), the large amplitude stable fixed point 

and the stable origin are marked by blue asterisks and the saddle point is indicated 

by a red asterisk. The figures reveal different orientations of the manifolds formed 

from a set of 700 initial conditions for the stable manifold and 10 for the unstable. 

These initial conditions are chosen in a pseudo-random manner from a normally 

distributed epsilon-ball of values centered around the saddle node (see Section 8.2 

in the Appendix for further discussion on the technique used to sample the stable 

manifold as well as generate the initial conditions). Figure (6.19) is a cartoon of 

the immediate neighborhood surrounding the intersection of the manifolds drawn 

to illustrate the non-transverse nature of the intersection (see [20, 16]), i.e., the 

cusp-like topology surrounding the unstable saddle. This cartoon is based upon 

many numerical results involving various configurations of initial conditions and is
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Figure 6.16: Same trajectories as Figure (6.15) but with period-two oscillations removed.

Figure 6.17: Numerical phase portrait for reduced system (6.19) under bistable conditions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



72

Figure 6.18: Rotated view of Figure (6.17).

exemplified by Figure (6.20). In Figure (6.20), the green asterisk marks the location 

of the saddle.

Figure (6.21) displays a set of time series for the fiuence variable in the 3- 

dimensional reduced system. Each color in the plot represents a different initial 

condition randomly chosen from the surrounding neighborhood of the saddle. Also 

displayed in the figure are the large amplitude stable point and the unstable saddle. 

As the figure shows, all of the trajectories approach the stable points monotonically. 

Figure (6.22) shows time series plots for the saturation integral of the reduced sys­

tem. For this variable, the initial conditions were such that the trajectories flow ini­

tially towards the unstable saddle before wandering off to the stable points. Figures 

(6.23) and (6.24) reveal the phase space and time series just before the saddle-node 

bifurcation occurs, respectively. In Figure (6.23), the near degeneracy of the fixed 

points and the reduced transversality of the manifolds (cusp-like topology of the 

stable manifold) are evident.

To explore the trans-critical bifurcation in the reduced system, the value for 

the gain parameter was increased to a value just before the stable origin and the
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Figure 6.19: Cartoon of manifold intersection.

Figure 6.20: Magnified view of numerical sampling around manifold intersection.
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Figure 6.21: Time series (6.19) for fluence.
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Figure 6.22: Time series (6.19) for saturation integral.
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Figure 6.23: Phase portrait just before saddle-node bifurcation.
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Figure 6.24: Time series just before saddle-node bifurcation.
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Figure 6.25: Trans-critical bifurcation fixed point equation.

unstable saddle become degenerate. The transcendental function to determine the 

fixed point X2 is shown in Figure (6.25) under these conditions. Figure (6.26) and 

(6.27) reveal different views of the stable and unstable manifolds where the increase 

in transversality as compared to the bistable case is evident.

In summary, it has been shown that under bistable conditions, the topological 

structure of the manifolds exhibits a diminished transversality of intersection be­

tween the stable and unstable manifolds. Accordingly, it is postulated that—with 

the addition of noise—the state trajectories associated with drop-outs proceed along 

very different paths in the phase space as compared to those representing pulse for­

mation or drop-ins. This asymmetry in dynamics is the primary prediction of the 

models presented in this thesis.
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Figure 6.26: Phase space just before trans-critical bifurcation.

Figure 6.27: Rotated view of Figure (6.26).
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Figure 6.28: Third view of Figure (6.26).
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CH APTER 7 

Conclusions

In this dissertation, we have developed phenomenological models to aid in un­

derstanding the spontaneous formation of pulses and their subsequent dynamics for 

systems in which there exists regions of saturable gain and absorption—as typified 

in colliding pulse mode-locked dye lasers. In particular, we modeled unidirectional 

pulse formation and stability in systems exhibiting bistability and feedback leading 

to memory effects. Key results of this work are as follows:

1. Improved understanding of the interplay between bistability and spontaneous 

pulse formation in slow media;

2. A new method for incorporating pulse-to-pulse memory effects, leading to the 

development of low-dimensional maps incorporating the effect;

3. The discovery of highly degenerate bifurcations in these maps that suggest a 

large diflference between drop-out and drop-in dynamics, which has since been 

observed;

4. Model based prediction of breather modes yet to be observed.

Future extensions of this research could include incorporation of dispersion, 

finite gain bandwidth, and the Kerr effect; all of which contribute to the pulse 

shape. Noise effects should also be considered.

79
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CHAPTER 8 

Appendix

8.1 Light and Matter 

In this section, we derive from first principles the raw Maxwell-Bloch equa­

tions. These equations model the interaction of light and m atter and result from 

the coupling of the time dependent Schrodinger equation with the field equations 

of Maxwell. Treatment of the radiation field as a classical observable is justified by 

the large photon fiux densities present in the types of optical systems we consider 

here (see [1]).

We begin with the time dependent Schrodinger Equation,

i W ( r , t ) - ^ ( r ) $ ( r , t ) ;  (8.1)

where H{r) denotes the spatially dependent Hamiltonian and $(r,t) represents the 

state eigenfunction describing the atomic system for a single atom. Adopting a 

perturbative approach, we define the perturbative Hamiltonian

H {r) = Ho + SU{T), (8.2)

with 5U{r) describing the perturbed potential energy operator. For electronic 

transitions, the unperturbed Hamiltonian H q contains a Coulomb interaction term 

{—kq^/r), where k is the Coulomb constant and r  is the distance from the nucleus. 

Thus, Ho satisfies

Ho^i — (^* )̂

80
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where the {4>i\ form a complete orthonormal basis satisfying f  d̂ r(f) (̂/)j = In 

the presence of an electric field E (r ,t) , the perturbed Hamiltonian is derived from 

the classical identity

AU  = qA V  = q J  E -d r .  (8.4)

Since the field is approximately constant over atomic scale, we can take E (r, t) ^

E{t). Under this approximation, the perturbation potential becomes

5U ~  —gE • r. (8.5)

Given {(pi}, the linearity of (8.1) implies that the general solution for a single 

atom is of the form

(8 .6 )

In (8 .6 ), aj{t) denotes the time-dependent complex probability amplitude associated 

with the occupation of the j t h  atomic state. Note that if H  = Hg, then aj{t) =  

0^(0 ) eicp{iujjt).

For an ensemble of N identical atoms indexed by a, (8 .6 ) becomes

^ “ (r,t) =  ^ a “ (t)0j(r). (8.7)

Introducing the density matrix of quantum statistical mechanics, defined by its 

matrix elements

P m n { t )  =  ( ^ ) ) *  <  W   ̂ ( 8-8)

a
the ensemble average associated with a physical observable A  is calculated in the 

usual way; i.e.
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(^) =  Tr{pA)  (8.9)

^ ] Pmn-^nm  

a

(8 .10)

where, Anm =  /  4>*nA4>md̂ 'J'- For laser cavities consisting of coherent photons, the 

probability amplitudes defined by equation (8 .6 ) characterize pure states] imply­

ing that the only non-zero terms in (8 .8 ) lie along the diagonal. Combining (8.1) 

through (8 .8 ) results in a master equation governing the population dynamics of the 

many-body system:

ih^dtaj{t)(f)j{T) = Y^aj{t)ujjh(l)j{r) -  qE{t) • r ^ a j ( t ) 0 j ( r ) .  (8.11)

From (8.11) we can now derive the raw Maxwell-Bloch equations that describe 

the dynamics of the occupation probabilities encoded by elements of the density 

matrix (8 .8 ). Denoting the dipole transition matrix as

Pki =  q J  0fc(r)r0j(r)dr, (8.12)

we multiply (8 .1 1) through by and integrate over the spatial variable r to

arrive at

dtak{t) = -icokOkit) -I- (8.13)

and its complex conjugate

dta*f.{t) =  iwkaKt) -  ^E (t) - ^ a ; { t ) p k i .  (8.14)
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(Note that p  is Hermitian, i.e. =  p̂ *;;..) To cast the problem in terms of the 

density matrix, we invoke the identity dtPjh{t) =  dtaj{t)a\{t) +  aj{t)dta*j{t)). Thus, 

multiplying equations (8.13) and (8.14) by al and Ofe, respectively, and using this 

identity, we arrive at the raw Maxwell-Bloch equations:

N

dtpjk =  - i  -  Wfc) Pjk +  ^E (t)  • ^  {T»jiPik -  VikPji) (8.15)
1=1

To reduce the number of degrees of freedom of (8.15) to a manageable size, 

we retain only the terms that are in resonance with the material frequencies; e.g. 

those associated with electronic, vibrational and rotational transitions. Addition­

ally, we invoke the rotating wave approximation [1] which ignores rapidly oscillating 

terms. However, due to the presence of weak (non-linear) coupling among the de­

grees of freedom, there exists many off-resonant terms that are neglected in the 

above simplifications that in fact have a cumulative effect upon the mode dynamics 

of the system. This effect is referred to as homogeneous broadening and results in a 

dissipation of energy from the resonant modes analogous to the presence of a heat 

bath in thermodynamics. To account for this loss in the modeling equations, decay 

terms of the form —̂ ijPij are introduced. By so doing, we arrive at the reduced 

Maxwell-Bloch equations

N'

dtpjk =  -  iljk + i^jk) Pjk +  ^E (t) • ^  {ptjipik -  VHkPji) ; (8.16)
/=!

where ujij =  Uj—uJk is the detuning and the upper index N' is the number of resonant 

terms retained.

Prom  M axw ell’s eq u ations, th e  m acroscop ic sy stem  variables co n sistin g  o f  th e  

laser cavity field E  and material’s responding polarization field P  are governed by

V"E -  -  V(V • E) =  (8.17)
C‘‘  Cq C ^
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where c and eg represent the speed of light in vacuum and the permittivity of free 

space, respectively. Defining the atomic number density Ua to denote the number 

of interacting atoms, equations (8.16) and (8.17) are coupled through the quantum 

expectation of the polarization prescribed by equation (8.9)

P  =  naTr{pp) = U a'^P jkPkj,  (8.18)

and together constitute the reduced Maxwell-Bloch equations modeling the inter­

action of light with matter.

To arrive at the Maxwell-Bloch system (3.1), we consider the field variables 

E  and P  as divergence free, ie .V  • E  =  0, wavepackets possessing bandwidths Slo

about a central carrier mode (ko,o;o) subject to the constraint e =  Suj/ ujq <C 1 .

Accordingly, we write the general solution to (8.17) to leading order in e as

E  =  ^'(r, t) exp {i (ko • r  — ujat) c.c.) e -I- 0(e),  (8.19)

P  =  A(r, t) exp (i (ko • r  — uiot) -I- c.c.) e -t- 0{e). (8.20)

For singly polarized and unidirectional waves, e =  (0,1,0) and k =  (0 ,0 ,a;/^:), 

respectively; Thus, the above wavepacket solutions become

E (r, t) =  y, t) exp 2; — -f c.c.j e, (8-21)

P (r, t) =  ^A(a;, y, t) exp 2; — -h c.c.j e; (8.22)

After insertion of these waveforms into (8.17), we assume that the envelopes are

slowly varying function of both space and time. This assumption implies 9" ~

d(e"), where (  G { x ,y ,z , t } .  Hence, to leading order in e, we can set the second 

order temporal derivatives to zero. Additionally, the assumption of singly polarized
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polarization allows the first order temporal derivative of A(a;, t) to also be set to 

zero to produce

y, t )  = ^ d l ^ ( x ,  y, t )  +  V, t ) .  (8.23)

Following Newell, we finally introduce a loss term —(K/c)'^{z^t) to characterize the 

linear system loss and thereby arrive at the Maxwell-Bloch field equation

(dz +  - d t ) ^ { z , t )  = i ~ d l ^ { z , t )  -  - ' ^ ( z , t )  + (8.24)
C 2uj C  I C o C

This is equation (3.1).

To arrive at equations (3.2) and (3.3), we assume two-level atoms and relate 

the macroscopic polarization field variable to the quantum observables via (8.18)

P  =  «a (Pl2Pl2 +  P21P21) • (8.25)

Furthermore, we follow Newell and define the inversion density N{z, t) in terms of

the difference between the transition elements

N{t) =  na{p22 -  pii). (8.26)

Taking the direction of the dipole moments to be parallel to the electric field, we

restrict p  to be real and p i2 =  P 21 =  pe. Thus from (8.22) and (8.25) we identify

riaPPu =  A{x, y, t)e*( = . (8.27)

The reduced Bloch equation (8.16) therefore gives

zEj)
d tp l2  =  —(712 +  *Wi2)pi2 H J^{p2 2 ~  Pll)- (8.28)
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Combining equations (8.26), (8.27), (8.28) and recalling ^  =  Eexp{—i{{u>/c)z—ujt)), 

we arrive at

• 2

dfA = —(712 +  i(uji2 — ^))A  +  (8.29)
n

This is equation (3.3).

To derive the Maxwell-Bloch equation for the inversion density we utilize the 

reduced Maxwell-Bloch equation twice to arrive at

iE
dtpii — —7nPii +  IT  (P12P21 “  P21P12) , (8.30)n

iE
dtp2 2 — —722P22 +  (P21P12 ~  P12P21) • (8.31)

Thus, taking p2i =  P12 7 n  =  722, the difference between (8.31) and (8.30) gives

2?, Ĵ T)
d t { p 2 2  — P l l )  =  —711 ( P 2 2  ~  P l l )  H ^ ( p i 2  — P l 2 ) -  (8.32)

Invoking (8.26) and noting =  Eexp [i {{ui/c) z — out)) thereby produces the final

Maxwell-Bloch equation

2i
dtN  = -7 n iV  -b ^ (^ * A  -  ^A*). (8.33)

Finally, introducing a source term 7nA^o fo account for the external pump that

maintains the inversion in the gain results in

dtN  =  -7ii(AT -  No) -b f  (^*A -  TA*). (8.34)

This is equation (3.2).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



87

8.2 Map on Integrals and Fluence Code

This section lists the MATLAB code used to generate the stable and unstable 

manifolds in the phase space of the reduced map on the the saturation integrals 

and fluence (6.19) discussed in Section 6.2. The code calls the function transSd.m  

(provided in Section 8.2.1 below) to numerically determine the roots to the fixed 

point equation for a given parameter set [g, I, 0 ,7 )̂ as discussed in the thesis. The 

code is initialized by iterating on e-balls of either normally or uniformly distributed 

random initial conditions centered on the fixed point of interest. There is one e- 

ball for each manifold with the radii set by the code variables eps-unstable and 

eps-stable. To determine the unstable manifold, the map is simply iterated forward 

in time; to sample the unstable manifold, the inverse map was first determined and

then iterated forward. As a consequence, the unstable manifold of this inverse map

is the stable manifold for the original forward map.

The code also calculates the eigenvalues of the Jacobian for each parameter set 

as well as the condition numbers for each eignenvalue.

7,SL0W_MAP_3D.M 3-D laser map on fluence and sat. integralsO.

% Produces stable and unstable maifolds in the

% phase space.

% --------Code Variables

% r = refletive losses

°/o  rg,rl = gain and loss rates

% tau = round-trip time

% theta = b/a (ratio of stauration parameters)

°/o Ms = number of initial conditions for stable manifold 

% Mu = number of initial conditions for unstable manifold
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% eps_stable = distcince from fixed point for initial 

% conditions for stable manifold

% eps.unstable = distance from fixed point; unstable manifold 

% iter = iterations for unstable manifold (forward map)

% The stable manifold loops are controled by stability

% conditons.

% select.rt = unstable fixed point seed for x3 in 

% transendental equation

% xfp = fixed point vector 

% e = numerical error in fixed points

% ================ Matlab Options

clear

format compact

% ================= Parameters ==============================

global rs theta g 1 alpha % —  Needed for Sdtrans.m

% ********* Computational (control) Parameters **************

Ms=500; %---  stable manifold.

Mu=50; % --  unstable manifold.

eps_stable=le-3; 

eps_unstable=le-l; 

iter=500;

% ********** Model Parameters *******************************
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7. NOTES; Interactive Option: To in-put parameters, remove 

% comment symbol on "while" statement and its

% associated "end" statement below as well as the

% "select_rt" initialization and parameter variables;

% input statments including select_rt are located below.

7.select_rt=0;

7 o W h ile  select_rt == 0

7o in=input(’Enter [g,l,theta] vector: ’)

7o g=in(l); l=in(2); theta=in(3);

% NOTES: For default values that provide bistability,

7o comment-out dist(...), theta, g, 1 and

7o select_rt here.

disp(’Defaults parameters are, [theta,g,l]=[50.0,0.06,0.062];...

root seed = 1.5’) 

theta=50.;g=0.06;1=0.062;

select_rt=l.5; 7. —  Unstable fixed point seed for x3 in

7» transendental eqn. for these defaults.

7o Fixed Physical Parameters

r=0.98;rs=r"2;rg=.25; rl=l; tau=1.25; 

alpha=exp(-rg*tau);

7o Parameter Dependant Constants

aminl=alpha-l; taminl=theta*amini; 

cx4=l/taminl; denl=l-cx4;
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% Fixed Points (from Roots_5d.m)

% -------  Plot code for transendental function on x3 to

7, obtain reasonable root seed for fzero

n=l;

for x3=0:.01:15 

trans_fpe(n)=r“2*(x3+ 2*(g*theta*log(l+x3/(theta*(l-... 

alpha*x3*cx4)) -l*log(l+x3)))-x3;

t(n)=x3;

n=n+l;

end

plot(t,trans_fpe), xlabel(’x3’), ylabel(’h ( x 3 ) •

t itle('3D Trans endent al Funct ion’), gr id on,

7, —  Interactive option for seed determinatin code ending.

7« select_rt=input(’Enter initial guest from plot above. If 

7 o  not 0, enter 0: ’);

7.end

7 . Numerically determine roots of transendental fixed

7o point eqn. to form fixed point vector: xfp using

7o seed "select_rt".

x2fp=fzero(’trans_3d’,select_rt);

x3fp=-x2fp/taminl;

xlfp=x3fp;

dispC’Fixed points: ’), xfp=[xlfp x2fp x3fp],
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% ----  Errors in fixed points

el=xlfp-(x2fp/theta+alpha*x3fp);

hl=l+x2fp/(theta*(l+alpha*x3fp)); 

h2=l+x2fp;

e2=x2fp-rs*(x2fp+2*g*theta*log(hl)-2*l*log(h2)); 

e3=x3fp-xlfp;

disp(’Nuraericall errors in fixed points: ’), e=[el,e2,e3],

% Initial conditions

y. Stocastically distributed initial value matrix, xO,

% is set here; rows are perturbations about the unstable

% fixed point with each column containing a different

y, initial state of the 3-tuple, xfp.

y. NOTES: size (xfp, 2)= # colmns in xfp vextor 

y, randn(N,M) gives a normally distributed NxM matrix

% rand(N,M) gives a uniform.

y, Normalized

a = -1; b = 1; % —  Range for stocastic variables 

rmatrix_u=a+(b-a)*rand(size(xfp,2),Mu) 

nru=rmatrix_u/max(max(abs(rmatrix_u))) 

rmatrix_s=a+(b-a)*rand(size(xfp,2),Ms) 

nrs=rmatrix_s/max(max(abs(rmatrix_s))) 

xOu=xfp’ *ones(1,Mu)+eps_unstable*nru; 

xOs=xfp'*ones(l,Ms)+eps_stable*nrs;

n=l;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



92

% ====== Foward Map Iteration: Unstable Manifold ===========

for m=l:Mu %   Initial condition loop

xl(l,m)=xOu(l,m) ; x2(l,m)=x0u(2,m); x3(l,in)=x0u(3,m);

for n=l:iter %   Iteration loop

xl(n+1,m)=x2(n,m)/theta+alpha*x3(n,m); 

hl=l+x2(n,m)/(theta*(l+alpha*x3(n,m))); 

h2=l+x2(n,m);

x2(n+1,m)=rs*(x2(n,m)+2*g*theta*log(hi)-2*l*log(h2)); 

x3(n+i,m)=xl(n,m); 

end 

end

% ====== Inverse Map Iteration: Stable Mcinifold ===========

cl=theta*rs; % --  Pareuneter Dependant Constants

diff= -.99;

for m=l:Ms % --  Initial condition loop

ixl(l,m)=xOs(l,in); ix2(l,m)=x0s(2,m); ix3(l,m)=x0s(3,m);. .

ix3(2,m)=x0s(3,m); 

for n=l:iter

if diff > -1 & ixl(n,m) >=0 & ix2(n,m) >= 0 & ix3(n,m) 

>=0 & ixl(n,m) < max(max(x2)) 

diff=(ixl(n,m)-ix2(n,m)/cl); 

ihl=l+ix2(n,m)/(cl*(l+diff)); 

f2=2*(g*theta*log(ihl)-l*log(l+ix2(n,m)/rs)); 

ixl(n+l,m)=ix3(n,in); 

ix2(n+l,m)=ix2(n,m)/rs - f2;

ix3(n+l,m)=(1/alpha)*(ixl(n,m)+(f2-ix2(n,m))/cl);
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else

break

end

end

end

Graphics

az=77;el=36;

figure 7. Initial ball: Unstable Manifold

plots(xlfp,x2fp,x3fp,’rp',’MarkerSize’,25), 

hold on,

plot3(x0u(l,:),x0u(2,:),x0u(3,:),^r.’), view(77,el),... 

xlabel(’xl’), ylabel(’x2’), zlabeK’x3').. • 

title(’Initial Conditions: Unstable Manifold’), grid on,

figure 7o Initial ball: Stable Manifold

plots(xlfp,x2fp,x3fp,’rp’,’MarkerSize’,25), 

hold on,

plotS(xOs(l,:), x0s(2,:), x0s(3,:),’b.’), xlabeK’xl’),... 

ylabel(’x2’), zlabel(’xS’), title(’Initial...

Conditins: Stable Manifold’), grid on, view(az,el)

figure 7. Phase space: Unstable Manifold

plots(xlfp,x2fp,x3fp,’rp’,’MarkerSize’,25), 

hold on,

plots(xl,x2,xS,’.’), xlabel(’xl’), ylabel(’x2’),...
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zlabel(’x 3 0 , grid on, title('Unstable Manifold'), 

view(az,el)

figure % --- Phase space: Stable Manifold

plots(xlfp,x2fp,x3fp,'rp','MarkerSize',25), view(az,el) 

hold on,

plots(ixl,ix2,ix3,'.' ), xlabel('xl'), ylabel('x2'),... 

zlabel('xS'), grid on, titleC'Stable Manifold')

figure % —  Phase space: Complete Manifold

plots(xlfp,x2fp,x3fp,'gp','MarkerSize',25),view(az,el)

hold on

plotS(ixl,ix2,ixS,'b.' ), 

hold on,

plots(xl,x2,xS,'r.' ), xlabel('xl'), ylabel('x2'),...

zlabel('xS'), grid on, title('Complete Manifold'), 

view(az,el)

disp('Nous finison')

8.2.1 Fixed point MATLAB function 

This MATLAB routine is called by slow-mapSd.m  and is passed to MATLAB’s 

fzero function to determine the zeros of equation (6.13).

\°/oTRANS_SD Function script for the transcendental fixed point equation 

\ ° / o  for the linearized Sd-map on fluence and saturation integrals.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



95

function x3=trans(x) 

global rs theta g 1 alpha 

x4=l/(theta*(alpha-1));

x3=rs*(x+ 2*(g*theta*log(l+x/(theta*(l-alpha*x*x4)))-... 

l*log(l+x)))-x;
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