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Abstract 

In the first part of the dissertation, a consistent model for the long-range part of 
the weak meson exchange currents (MEC) preserving basic symmetries of the strong 
interactions is developed within the framework of an hadronic field theory of nuclear 
structure (QHD). A model which builds the nucleon-nucleon interaction out of u, w 
and 1r meson exchange is used to describe strong interactions in a nucleus. The scalar­
pseudoscalar part of the problem coincides with the u-model. In the linear realization 
of the sigma-model one obtains spatial axial exchange currents of order (1/M) in a 
non-relativistic decomposition in nucleon mass due to w-exchange. Consistency with 
the nuclear physics phenomenology requires the use of a very large mscalan and the 
low-mass u cannot be introduced simply without breaking chiral invariance in this 
approach. A chiral transformation to the non-linear realization of the sigma-model 
is shown to be the natural way of treating the problem. PCAC is then satisfied 
identically for a one-body axial current even for a nucleon inside the nucleus. In this 
approach, the phenomenological low-mass u can be incorporated in the model as a 
chiral singlet, still necessitating no additional exchange currents of order {1/M) to 
be present. Here the first appearance of the axial MEC is in the familiar 1r-exchange 
term of order {l/M2 ) in the axial charge density. At the same time, there is now 
an additional relativistic one-body correction of order {1/M) in the spatial part of 
the weak axial current that is required to satisfy PCAC. These correction terms 
are included in a unified analysis of weak and electromagnetic processes with some 
selected light nuclei where transition densities have been previously determined from 
available electromagnetic data. 

In the second part of the dissertation, a potential use of electroweak experi­
ments with excited (J1rT) = (o+o) nuclear states in addition to the ground state with 
the same quantum numbers is discussed. Existing low momentum transfer q2 data 
on the inelastic charge form factor for the (o+O)gnd -+- (O+O)* transition in 4He are fit 
within simple nuclear models, and predictions are made for higher q2• 

X 
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Chapter 1 

Introduction 

This dissertation is composed of two parts, the second of which is published, 

included as Part II, and briefly summarized at the end of this Introduction. 

The objective of the first, and major, part of the present work is to develop a 

model including mesonic degrees of freedom into a description of weak interactions 

with nuclei in a consistent manner. There are three main reasons for pursuing this 

task. First, is the need for precise analyses of electroweak experiments with nuclear 

probes. Second, is the necessity for a detailed understanding of the nuclear structure 

in the language of the degrees of freedom relevant for the low-energy processes. Third, 

is the possibility of tying together results of more heuristic approaches, thus providing 

solid theoretical background for such calculations. 

Two major sources of theoretical uncertainties in electroweak nuclear mea­

surements are the lack of consistency in the treatment of the nuclear axial exchange 

currents involved in the interaction, and the lack of knowledge of reliable wave func­

tions for the nuclei considered [1]. Both these issues are addressed in the present 

work. 

It is well known that there exist good reasons to describe low-energy nuclear 

1 
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processes in terms of mesons and nucleons instead of quarks and gluons, which are the 

basic degrees of freedom of Quantum Chromodynam.ics (QCD) [2]. Despite the many 

successes of the underlying theory of strong interactions- QCD - it provides little help 

in calculating low energy nuclear processes which correspond to the strong coupling 

limit of the theory. For the low-energy regime of the strong interaction physics, the 

relevant degrees of freedom are hadrons: mesons and nucleons. These effective low­

energy degrees of freedom must be incorporated into any consistent theory describing 

low-energy nuclear physics processes. At the same time such a theory must, of course, 

preserve the basic symmetries of the underlying QCD. 

Semileptonic electromagnetic and weak interactions with nuclei, of interest 

here, are among such low-energy processes. For a long time, only nucleonic degrees of 

freedom had been included in the analysis of these processes, despite the knowledge 

that meson fields are present in nuclei and should influence the result. In most cases 

such calculations were at least in the right ballpark for the lowest-energy processes, 

deviating from experimental results more at larger transferred momentum. The im­

portance of considering mesonic degrees of freedom when calculating electromagnetic 

processes with nuclei was first demonstrated unequivocally by Riska and Brown (3]. 

A detailed theory of electromagnetic meson exchange currents (EXC) has been de­

veloped since then (for a review see [4-6]). It successfully accounted for discrepancies 

between the results of the nucleons-only model for the electromagnetic current and 

experiment in the medium-energy region. 

The present work is devoted to building a consistent model of weak exchange 

currents (WXC) in nuclei and to calculating their effects in some selected nuclear 

electroweak processes. It is well known that weak currents consist of vector and axial 

vector parts (7]. In accordance with the conserved vector current ( CVC) theory, the 

vector part of the weak current can be obtained by an isospin rotation of the isovector 

part of the corresponding electromagnetic current. Thus the vector part of WXC is 

2 
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derived from the isovector part of the respective EXC, which have been determined 

accurately over the last two decades. The part of the weak current that still needs to 

be modeled on firm theoretical grounds is the axial exchange current (AXC). 

There have been numerous attempts to describe the weak interaction effects 

of mesonic degrees of freedom in nuclei. They started with the work of Chemtob 

and Rho [8]. Probably the most important early treatment of the subject of AXC 

was made by Kubodera, Delorme and Rho [9], who predicted the dominant long­

range piece of the AXC, performing power counting in the inverse nucleon mass 

parameter, while utilizing current algebra techniques and an assumption of pion­

exchange dominance in the long-range effects. This work eventually lead to the "chiral 

filtering" hypothesis that states that only those degrees of freedom appear in the 

AXC whose presence is required by the Partial Conservation of the Axial Current 

(PCAC) theorem, while contributions of other fields are masked in nuclei [10]. Many 

different ideas had been developed to explain various particular results concerning 

weak interactions with nuclei [11-15]. The most interesting recent approaches to 

modeling AXC include: 1) A description of exchange currents in terms of all the 

degrees of freedom drawn from the phenomenological N-N potential [16-18]; 2) The 

hard-pion model calculations [19-21]; and 3) Application of chiral perturbation theory 

(xPT) [22-25]. 

Any model desc~ibing meson exchange currents (MEC) has to incorporate the 

following two features to become consistent with our present understanding of the 

low-energy nuclear physics: 

1) it must contain the same degrees of freedom that are necessary to explain 

other important nuclear physics results, such as the phenomenological N-N poten­

tial, nuclear excitation spectra, various nuclear scattering results, the nuclear matter 

equation of state, etc.; 

2) it has to incorporate the symmetries of the underlying theory of strong 

3 
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interactions, QCD (slightly broken chiral symmetry realized in the Goldstone mode, 

is the most important symmetry in the present context). 

The most consistent approach making the full use of the first condition is that 

of Riska. and coworkers [16, 26]. It is well known that the phenomenological N-N 

potential can be split into different components that are ascribed to 11', u, w and p 

meson exchange [27]. These effective low-energy degrees of freedom must be incor­

porated correspondingly in a. theory describing wea.k interactions with nuclei. There 

have been many calculations of corrections to nuclear processes due to these addi­

tional non-nucleonic degrees of freedom [4]. Instead of investigating separate effects of 

different mesons, Riska. and coworkers [16] ta.ke as a. basis for the model the N-N phe­

nomenological potential description that accounts for all the details of the interaction 

in terms of various meson exchanges. They write out the relativistic N-N interaction 

amplitude a.s a. combination of five Fermi invariants with arbitrary coefficients. Com­

paring the non-relativistic limit of this expression with the phenomenological N-N 

potential, they determine the corresponding momentum-dependent coefficients of the 

various terms in the relativistic amplitude. To obtain the corresponding contributions 

to the AXC, they consider relativistic two-nucleon diagrams that include, in addition 

to the potential interaction, a.n extra. axial current interaction attached to one of the 

nucleon legs of the interaction dia.gra.m. As customary, they take the non-relativistic 

limit of these diagrams, with only antinucleon components kept in the fermion prop­

agator, to represent the nuclear AXC. This treatment allows one to be certain that 

no relevant mesonic degrees of freedom have been left out. It provides a.n elegant 

explanation of several nuclear puzzles [17, 28]. Nevertheless, this approach is bound 

to be phenomenological and incomplete. First, one ha.s no means to account for the 

AXC that arise from the direct interaction of the exchanged mesons with the axial 

current. Second, this model does not incorporate chira.l symmetry, which is one of 

the most important features that must be inherited by the low-energy effective the-

4 
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aries from the underlying QCD. And third, the model does not permit a lagrangian 

formulation, which would allow utilization of the full power of modem quantum field 

theory in the problem. 

Another widely used phenomenological approach to calculating AXC is the 

"hard pion" model formulated by Ivanov and Truhlik [19]. This phenomenological 

lagrangian model was devised in an attempt to incorporate, in addition to the pion 

field, the p-meson, which is known to have some important nuclear effects, while 

preserving the correct chiral symmetry of the underlying theory of QCD. In this 

approach the formula for AXC reproduces earlier results [9] in the limit of soft pions, 

when the produced pion mass and momentum both approach zero. The AXC obtained 

in this calculation has been used to calculate the ratio of the axial-charge matrix 

element in the first-forbidden beta-decay to its impulse-approximation value [20]. 

The results are observed to be strongly dependent on the short-range correlation 

function of the nuclear wave function. The hard pion model in general has some 

drawbacks. Important w and (J' fields, which are known to contribute significantly to 

nuclear properties, have been left out in this treatment. In addition, consideration 

of the p-meson entailed inclusion of its chiral partner, a heavy A1-meson, which is of 

little importance in traditional nuclear physics. 

On the other end of the spectrum lies the xPT approach, which represents an 

attempt to find a link between the treatment of low-energy processes and the under­

lying theory of QCD. Here one performs an interaction amplitude decomposition with 

q/M and m1r /M - the transferred momentum and pion mass compared to the nucleon 

mass - as small expansion parameters. If the chiral symmetry of the underlying theory 

of QCD is preserved, then the zeroth-order term is identified unambiguously [29]. The 

lowest order effective lagrangian including nucleons was given by Weinberg [30, 31]. 

It coincides with the non-linear realization of the (]'-model (in the large scalar-meson 

mass limit). Calculation of AXC to the first loop order in xPT combined with the 

5 
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heavy-fermion formalism, ha.s been performed in (23, 24]. Chiral symmetry is the 

cornerstone of the xPT approach. This approach elucidates the relation of the low­

energy physics with the basic theory of QCD. However, it remains predominantly a 

theoretical tool. In the x PT approach one hopes to build all other known important 

low-energy phenomenological degrees of freedom from the multi-pion processes be­

yond the tree level. Calculations of MEC in this approach are complicated, and they 

do not utilize the power of the fact that the phenomenological N-N interactions can 

be expressed conveniently in the one-meson-exchange framework. 

In the present work a lagrangian-based model for the axial meson-exchange cur­

rents is built, that incorporates both important features mentioned above: it contains 

the set of mesons required to explain major nuclear physics results, and it preserves 

the basic symmetries of the theory of strong interactions - gauge and partial chiral 

invariance. This model allows one to write down chiral-invariant sets of tree diagrams 

for the electroweak processes to the lowest order in the interaction constant. Chiral 

invariance combined with the pion-pole dominance hypothesis singles out the way to 

renormalize all the axial current vertices in the full theory. The covariant weak axial 

exchange nuclear currents due to exchange of various mesons are then identified. To 

make a connection with traditional nuclear physics calculations, the non-relativistic 

reduction of these currents is performed. Resulting non-relativistic nuclear currents 

satisfy the PCAC equation in coordinate space when corresponding N-N potential 

terms calculated in the same framework are taken into account. Thus various MEC 

due to exchange of different mesons are all tied together, since they now originate from 

the same underlying theory. The present approach follows closely, and is an extension 

of, the treatment of electromagnetic MEC by Dubach, Koch and Donnelly [6]. 

The model that incorporates 71", u and w meson fields is developed here starting 

from an underlying hadronic field-theory lagrangian. It is important to include in the 

model u and w fields, as in the QHD I model of Walecka [32], because these two fields 

6 
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model the most prominent features of the N-N potential: the u-field is responsible 

for an intermediate-range attraction, while the w-meson generates the short-range 

repulsion. The QHD I model provides explanation of many important nuclear physics 

results. The u a.nd w fields play the most significant role in the treatment of nuclear 

matter, a.s well a.s finite nuclei, on the mea.n field theory (MFT) level. The QHD 

I calculations, involving extensions of MFT, that require fitting only four nuclear 

physics results (chosen usua.lly (33] to be (E/ B)n.m.' (kF)n.m.' (a4)n.m. - the binding 

energy per nucleon, density, a.nd symmetry energy of the nuclear matter, and one 

finite nucleus result: /(ii).oca), had many successes. 

-"' e .... 
' • -
~ 

0.09.-------------------..., 

0.07 
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0.05 
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4 5 

Figure 1.1: Charge density for the 160 nucleus calculated in the relativistic Ha.rtree 
analysis of finite nuclei in the QHD I model. The experimental results are explained 
very well. From Ref. (32]. 

Within this theory one can, for example, reproduce closely charge density 
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curves for closed-shell nuclei [32, 33], or account reasonably well for nuclear shell­

model single-nucleon spectra. (relativistic Hartree theory for finite nuclei) [32]. The 

quality of these results ca.n be illustrated by Figure 1.1- for the charge density of 160, 

and Figure 1.2 - for the 208Pb nucleus occupied single-particle levels, correspondingly. 

One ca.n a.lso ma.ke a. good prediction for the excitation spectrum of the closed shell 

nuclei (RPA and relativistic RPA ca.lculations) [34]. 

It is equally important to include 1r-mesons in the model, which are responsible 

for the longest range effects in the problem, because only then can one incorporate 

chiral symmetry. To tha.t end, the celebrated u-model formalism is used to describe 

the 1r- u sector of the theory. This model has the following a.ttra.ctive features. First, 

it satisfies gauge and chiral symmetries. Second, it adequately describes a. large num­

ber of meson processes. Third, it can be easily extended to incorporate the w-meson 

exchange in a gauge and chira.lly invariant fashion [2]. And finally, it allows either a 

linear (Gell-Ma.nn- Levy [35]) or a. chira.lly transformed, non-linear (Weinberg [36]), 

realization. The a--model lagrangian contains strong nonlinear couplings involving a­

and 1r fields. If the chiral scalar field is identified with the low-mass scalar field of 

ms = 550Me V required in the one-boson-exchange model of the phenomenological 

N-N potential [27], these terms would destroy the successful QHD I description of 

nuclear matter and finite nuclei. On the other hand, one can set the mass of the 

chiral scalar field very large (m~ ~ oo) [36], while preserving chira.l symmetry of the 

model. Then this scalar field decouples from the problem, and the QHD I picture 

remains va.lid. The low-mass scalar meson of QHD I is then produced as a broad 

dynamic resonance in the two pion exchange [37]. Alternatively, the low-mass scalar 

field required for modeling of the N-N potential can be introduced simply as an ef­

fective chiral scalar field in the non-linear realization of the u-model. This procedure 

will be discussed in greater detail later. 

Along with ensuring chiral symmetry of the theory, one automatically builds in 

8 
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a correct description of the pion physics- the longest range effect in the AXC problem. 

In the non-linear realization of the model, the part of the considered lagrangian 

that is responsible for the long-range physics coincides with the effective low-energy 

lagrangian of Weinberg [30]. Hence the present model can be viewed as an attempt 

to build a bridge between the traditional phenomenological approach and the xPT 

treatment of the AXC problem. 

The vector, isovector p-meson and nucleon excitations are also known to play 

an important role in the short range nuclear dynamics [27]. These degrees of freedom 

have yet to be included in the present model. Other approaches exist, which take 

them into account [4,31,38]. In this work a consistent field-theoretical model is built, 

describing only the most distinct features of the nuclear dynamics. 

The resulting chirally symmetric lagrangian model incorporating 1r, u and 

w mesons, will be referred to as the u- w model. Two realizations of the u- w 

model are studied: the linear realization with a non-derivative rr-nucleon coupling, 

and a chirally transformed, or non-linear, realization, where the rr-nucleon coupling 

contains a derivative, and all cancellations encountered in the pion-nucleon scattering 

are moved from the amplitude to the lagrangian itself. The reasons for investigating 

both models will be discussed below. 

In the present work, AXC have been calculated in both realizations of the 

u- w model. It has been explicitly demonstrated that the way one splits relativistic 

many-body effects into AXC contributions, and one-body relativistic corrections to 

the traditional nuclear axial current, is model dependent. In particular, in the linear 

realization of the u - w model, satisfaction of PCAC to order 0(1/M) in inverse 

nucleon mass requires consideration of the two-body AXC. These currents have been 

explicitly calculated and shown to restore the correct PCAC relation. In the non­

linear realization of the u- w model, PCAC is satisfied for the one-body current 

identically without introduction of any two-body currents. Indeed, it has been shown 

10 
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that there are no AXC of order 0(1/M) in this realization. However, to satisfy PCAC 

for the axial current interaction with a single nucleon to order 0(1/M2) one now has 

to include a new one-body relativistic correction of order 0(1/M) into consideration. 

The following general strategy is applied to the analysis of both the linear and 

non-linear realizations of the u - w model. A lagrangian model for the 1r and u fields 

is first formulated, and the corresponding Noether's axial current is identified. The 

vector w-meson is incorporated through the same "minimal substitution" procedure 

in both realizations of the u-model in a chirally invariant fashion. The scheme for 

identification of the corresponding AXC consists of the three major steps: 

1) The first step involves the analysis of the interaction of the axial current 

with a single nucleon (see Figure 1.3). It is well known [2] that from general symmetry 

considerations the axial current matrix element can be written in the form 

k I a, 

Figure 1.3: Full amplitude for the axial current - one nucleon interaction. 

(1.1) 
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where FA and Fp are the axial-vector and induced pseudoscalar form factors respec­

tively, which must be determined from experiment, k = p' - p is the four-momentum 

transferred to the nucleon, and a designates the isospin component of the coupled 

axial current. The matrices r: are defined in terms of hermitian isospin matrices as 

T± = !(r1 ± r2). The factor FA(O) = FA = -1.23 has been determined accurately 

from the nuclear beta-decay rates compared with the muon decay rate1 • In these 

processes the exchanged momentum is so small that the second term in the current 

matrix element (1.1), which involves Fp, can be safely neglected. To derive the value 

of Fp, additional assumptions are usually made. 

First, it is assumed that 1r-exchange dominates the interaction of the axial 

current with the nucleon in low-energy processes. This assumption works well because 

pions are so light that in the low-energy regime the pion propagator entering the 

interaction amplitude is not too far from its pole. It allows relating the pseudoscalar 

form factor Fp to the pion decay constant F1r ~ 0.92m'Jr [2]: 

(1.2) 

where g is the 7r-nucleon coupling constant and m1r is the pion mass. The 7r-pole 

dominance is a major feature of low-energy nuclear processes in general. It is going 

to be one of the key elements of the model developed here. 

Second, use is made of one consequence of the basic chiral symmetry of the 

underlying QCD, which is most important for consideration of the axial current: the 

partially conserved axial current (PCAC) hypothesis. For on-mass-shell particles it 

can be expressed in the form 

(1.3) 

Preservation of PCAC for the single-nucleon current is known to provide connection 

1This result includes the Cabibo angle factor cos Be= 0.97. 
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of FA to F1r in the Goldberger-Treiman relation: 

(1.4) 

This formula produces the following relation between the axial and pseudoscalar form 

factors: 

(1.5) 

Analysis of the lowest order diagrams for the axial current interaction with a 

single nucleon in the u- w model (see Figure 1.4) allows one to derive a formula for 

the one-body axial current. The amplitude considered here represents also a building 

block entering the amplitudes for more complicated processes that involve a larger 

number of initial and final particles. PCAC must be satisfied in each order in the 

interaction constant for an on-mass-shell nucleon (for any nucleon in the non-linear 

u- w-model) because partial chiral symmetry is one of the underlying symmetries of 

the full theory. As was mentioned before, the single-nucleon - axial-current vertex 

is renormalized in the full theory by FA. When going from the tree approximation 

to the full theory here, the correct 1r-pole structure is kept, as is required in the low­

energy effective theory of strong interactions [29]. Then to preserve PCAC for the 

full amplitude, the 1r - axial-current vertex has to be renormalized by FA as well. 

The one-body axial current is identified from the interaction amplitude accord­

ing to the formula 

.:r.<-J:> (1) I"'V --

1
- iM<-J:> (1) 

~ - 2M ~ 
(1.6) 

The invariant amplitude M/i is defined below in Equations (1.9) and (1.10) through 

the scattering matrix S /i· 

To obtain the traditional single-nucleon axial current, a non-relativistic reduc­

tion of the axial current is performed, keeping only the lowest-order terms in inverse 

13 
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X • • 
I<, a. 
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p 

Figure 1.4: Lowest-order amplitude for the axial-current - one-nucleon interaction. 

nucleon mass. Then, the one-body axial current operator in coordinate space is de­

termined. This step involves switching to operator language that allows one to deal 

subsequently with the full many-body nuclear problem. It is assumed here that the 

many-body problem can be treated by considering one single-pair interaction at a 

time. One also implicitly assumes that an extension of results derived for the on­

mass-shell particles, away from the mass shell, does not introduce significant error. 

It is then checked whether the one-body axial current satisfies PCAC in a nucleus to 

order 0(1/M) as an operator equation by itself, or if the PCAC enforcement requires 

consideration of axial two-body currents: 

i (Hnucl 1 Ps(1)] + 'V · Js(1)~ O(m,..) (1.7) 

Here Hnucl is the nuclear hamiltonian calculated in the same q - w lagrangian model. 

Different conclusions concerning the necessity of the two-body axial currents are 

drawn in the two different realizations of the q - w model. 

2) The second step involves the analysis of pion production by the axial current 

on a nucleon (see Figure 1.5). First, the correct set of the lowest order (O(g)) diagrams 

for the amplitude is identified, insisting that this amplitude for the on-mass-shell 

14 
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p• ••• 13 
.·:fq 

k,a 

Figure 1.5: Full amplitude for pion production by the axial current on a single nucleon. 

pion and nucleon should satisfy PCAC. This tree-levelrr-production amplitude will 

enter as a block into some diagrams for the coupling of the axial current to the two­

nucleon system. Going to the full theory, the correct pion-pole structure is preserved 

again, while forcing the full amplitude to satisfy PCAC. This requires now all axial 

current vertices of the theory to be renormalized by the same FA. Consideration of rr­

production provides also an additional test of the correctness of the formula obtained, 

since the low-energy limit of the amplitude can be checked against existing results. In 

both realization of the u- w model, the threshold amplitude for soft-pion production 

by the axial current satisfies the same low-energy theorem (see Chapter 2): 

(1.8) 

The formula obtained in the present work differs from the customary one, derived with 

the help of current algebra techniques, by an extra factor of FA2 (see Chapter 2). The 

difference originates from the way one takes into account the multi-pion processes, 

which are of higher order in the xPT small parameters, in the effective low-energy 

theory. In the current algebra approach, the commutator is calculated for the lowest 

tree-order currents [39]. In the present treatment the correct pion-pole structure and 
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PCAC for the full amplitude are preserved at each step of the calculation, i.e. the 

correct Goldberger-Treiman relation of Equation (1.4) is used. This forces one to 

renormalize each axial current vertex by FA, thus introducing a factor Fl to the 

formulae for the 7r-production amplitude, as well as to the result for the AXC (see 

step 3). 

The scattering amplitude T/i in the previous formula is defined in terms of the 

scattering matrix S /i by 

(1.9) 

where P1 and Pi are the sums of all final and initial momenta, correspondingly. The 

invariant scattering amplitude M/i is defined, in turn, by 

- M,, T,, = 112 
(2t:l ... 2t:'l ... ) 

(1.10) 

where fi and t:'i denote energies of each intitial and final particle participating in the 

process. 

3) The final, third step involves consideration of the coupling of the axial 

current to the two-nucleon system (see Figure 1.6). Again, PCAC is used to determine 

the correct set of diagrams for the interaction amplitude to the lowest order in the 

interaction constant. Keeping only antinucleonic parts of the fermion propagators in 

the amplitude, the two-body axial meson exchange currents are identified according 

to the formula 

1 
iM<±>(2) 

(2M)2 ~~ 
(1.11) 

Then one carries out the non-relativistic reduction of the current to the lowest 

order in 1/M to obtain the correction to the axial nuclear current in a customary 

form. Transition to the full theory is performed now by simple multiplication of all 

axial current vertices by FA. This procedure ensures that the rr-pole dominance and 
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PCAC are preserved in the full theory. The AXC obtained are compared with results 

of other work. The correction terms calculated are then incorporated in a unified 

analysis of some semileptonic electroweak processes for a few selected nuclei. 

p' 
1 

p~ 

k ,a, 

Figure 1.6: Full amplitude for the axial current - two-nucleons interaction. 

Now, specific results obtained in the present work can be briefly discussed. 

The analysis is started by considering the linear realization of the u - w model, 

which serves mainly a pedagogical purpose, demonstrating the necessity and actual 

presence of AXC of order 0(1/M) in the present model. The corrections to the one­

body axial current obtained in the non-linear realization are used in the analysis of 

actual semileptonic weak processes. 

In the linear realization of the u - w model one obtains the familiar one-body 

axial current in coordinate space [2]. One piece of this current does not commute with 

the nuclear hamiltonian to order 0(1/M), thus not satisfying PCAC to this order: 

,o~±)(x) =FA L~l T±(j) u(j)· [p~)' o3(x- x;)l 
sym 

(1.12) 

It is most easy to see in the momentum space representation of the current that a 
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combination of all other terms satisfies PCAC through order 0(1/M). No specific 

form for a wave function is involved in this proof, thus the corresponding operators 

in coordinate space satisfy PCAC as well. The commutator of ,O~:I::)(x) with the 

nuclear hamiltonian does not vanish because of the derivative term in the axial charge 

operator, which fails to commute with nuclear potentials arising from the inclusion 

of mesons in the hamiltonian. The presence of the isoscalar (due to u-exchange and, 

after including w meson, due tow-exchange) potentials, which are of order 0(1) in 

inverse nucleon mass, breaks PCAC for the one-body axial current to order 0(1/M): 

[ 
4 

4(:1::)] [ .. (:!::)] ( 1 ) 0( 2) ( 1 Hnucl, Ps ~ Yo- + V"' , Ps = 0 M # m"' + 0 M2 ) 
(1.13) 

Partially conserved chiral symmetry is the most important symmetry which any low­

energy effective hadronic theory should satisfy. It must hold in the present many-body 

problem. To preserve PCAC of the theory, consideration of corresponding two-body 

spatial axial currents of order 0(1/M) is necessary in the linear realization of the 

u -w model. 

Meson exchange currents of order 0(1/M) are explicitly calculated in this 

work for the linear realization of the u-model, and it is shown that the single-nucleon 

axial current indeed satisfies PCAC to order 0(1/M) as an operator equation in 

coordinate space upon inclusion of these AXC in the problem. This is consistent with 

the observation of (9] that the one-pion exchange effects will not describe the space 

components of the axial current. 

At the same time, the well-known formula for the meson-exchange axial charge 

operator of order 0(1/M2 ) due to the 1r-exchange (9, 17] is reproduced up to the factor 

Fl discussed above in step 2, inherited from the 11'-production amplitude: 
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where 

An extra. factor of Fl ~ 1.5 present in the formulae of this work, enhances the AXC 

contributions by about fifty percent. This enhancement ha.s the order of magnitude 

to which the presence of the AXC ha.s been tested in nuclei [40]. 

The non-linear realization of the u - w model is much better suited for the 

description of low-energy nuclear physics because here the soft-pion limit is built into 

the model explicitly, and no cancellations of large quantities occur in the amplitudes. 

Now the amplitude for the axial-current - single-nucleon interaction explicitly satis­

fies PCAC because of a projection operator that can be pulled in front of the matrix 

element: 

'Mer( ) Tc:r ( kl"k" ) (p') 11 ( ) t ~-' 1 = 2 g~-'" - k2 _ m; u 1 'Ys'Y u P1 (1.15) 

projector 

The PCAC equation for the single-nucleon axial current is satisfied to order 

0(1/M) identically without requiring introduction of any two-body axial currents. 

Indeed, explicit calculation shows that there are now no AXC of order 0(1/M) in 

this model. However, the very same PCAC argument requires now consideration of 

a new relativistic correction to a. single-nucleon axial current of order 0(1/M): 

(±) k u. p 
oA (1) ~-FA T:f: k2 + m; ko 2M (1.16) 

where P = p + p' and m'll' is the pion mass. The corresponding operator in coordinate 

space will be discussed in detail in Chapter 4. Since PCAC is taken to be one of the 

cornerstones of the effective theory, one ha.s to include systema.tica.lly the effects of 

this correction in the calculation of a.ll weak processes. 

In addition, the same formula. (1.14) for the axial exchange charge of order 

0(1/M2 ) due to the rr-exchange is obtained in this realization of the u- w model. 
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These are the two corrections to the traditional nuclear one-body axial current that 

are included in the analysis of weak processes in the present work. 

When calculating the weak interaction operators matrix elements, one has to 

use some specific wave functions for the nuclear states involved. The lack of reliable 

nuclear wave functions is the second major source of uncertainty in the analysis of 

nuclear weak processes. It is the key element of the present strategy, to treat the 

nuclear wave function part of all the electroweak nuclear matrix elements consistently. 

In order to eliminate the nuclear wave function uncertainties from the problem, the 

unified analysis of electroweak nuclear processes is performed in this work within 

the shell-model framework. The nuclear wave function is parameterized in terms of 

the shell-model single-particle levels, and corresponding parameters are determined 

from available electromagnetic data2 • Following the results of Donnelly and Walecka 

(41], use is made here of the low-q2 experimental data to determine the single-body 

densities for the nucleus under consideration, which is parameterized in terms of the 

shell-model single-nucleon state contributions: 

(1.17) 

with numerical coefficients 

(1.18) 

The electromagnetic current is assumed here to be a one-body operator3
• 

A simple harmonic oscillator basis is used for the single-nucleon orbits in this 

work. First, some reasonable truncation of the number of shells important for the 

considered processes is performed. Then the corresponding coefficients .,pli, as well 

2 Electromagnetic exchange currents have been calculated in this approach by Dubach, Koch and 
Donnelly in [6]. 

3The two-body currents introduce only small corrections in the low-q2 regime, which is important 
for weak processes considered. 
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a.s the oscillator parameter of the radial eigenfunctions, are calculated in the "model 

independent way" by fitting available low-q2 electromagnetic experimental results. 

Those coefficients are used to compute the weak rates under consideration. 

The present procedure eliminates to a large extent nuclear structure uncer­

tainties from the analysis of weak rates and cross sections. Thus one no longer needs 

to use phenomenological N-N potentials for calculation of a nuclear wave function. 

Here, instead of these phenomenological potentials, the u - w model containing a set 

of meson fields that reproduces qualitatively the most important features of the N-N 

potential, and, in the MFT framework, adequately describes many nuclear spectra, 

is used. 

As applications, corrections to the one-body axial currents obtained in this 

work, have been included in the analysis of the three charge-changing semileptonic 

weak process: 

1) ,a--decay: A(N, Z) -t A*(N -1, Z + 1) + e- + ve 
2) IL--capture: IL- + A(N -1, Z + 1) -t A*(N, Z) + v" 

3) antineutrino scattering: ;;, + A*(N- 1, Z + 1) -t A(N, Z) + [+ 

for two light nuclear systems. These systems are the 3H-3He isospin doublet, and the 

6He-6Li neighboring nuclei. The objective here is to see how large the contributions 

to the specified semileptonic weak processes from the corrections (1.14) and (1.16) 

are, compared to the traditional one-body axial currents. 

Corrections to the one-body vector part of the weak currents can be obtained 

from the electromagnetic exchange currents through the isospin rotation. They will 

not be included in the present analysis4 • The prime goal of the present treatment is 

4The processes considered in this work: muon capture, nuclear beta. decay and charge-changing 
neutrino scattering- are predominantly Gamow-Teller transitions for the nuclear systems considered. 
Selection rules determine that contributions from the vector part of the weak current are suppressed 
in these processes by extra powers of the ratio of the transferred momentum to nucleon mass. 
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to estimate effects of the corrections to the "canonical" axial one-body currents [2]. 
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Ground state ( J1rT) - (~ + ~) isodoublet of the A=3 
system 

1 + 1 
-- --
2 2 

Figure 1. 7: The 3H - 3He isodoublet ground states. 

The 3 H - 3He system depicted in Figure 1. 7 consists of the most simple nu­

clei featuring the weak processes of interest here. Very accurate calculations of the 

wave functions for these three-body nuclear systems from first principles exist (42]. 

However, the objective of the present analysis is to estimate the scale of the effects 

due to the calculated corrections. For this purpose it is sufficient to implement the 

most straightforward description of the involved wave functions in terms of the single­

particle shell-model states. As a model for the ground states of the isodoublet, the 

(ls!.)-1 hole state in the filled (ls!) shell is used. The only parameter of the model, 
2 2 

b08c = 1.59 fm, is determined by fitting the elastic electromagnetic form factors in 

the low transferred momentum region [41]. Figure 1.8 shows that the simple model 

adopted for the description of the ground states, models well the electromagnetic 

form factors in the low-q2 region, which is of prime interest for the treatment of 

the weak processes considered here. The data for the form factors has been taken 

from (43-45]. Results for the semileptonic weak rates for the 3 H +-t3He transitions 

23 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

with the corrections to the one-body axial current included, are compared to the pre­

vious calculations with no exchange currents or relativistic corrections present [41]. 

Within the assumed model for the isodoublet ground state there is no contribu­

tion to any of the weak processes considered from the one-body relativistic correction 

to the axial current. This happens because only the reduced matrix elements of 

operators between the ls-states are required in the calculation. The only non-zero 

multipoles of the relativistic correction are expressed through the !hM1 operator de­

fined in [46], but 

(ls II n~ Ills) = o (1.19) 

For calculating effects of the AXC on this system, one can consider the ground 

state of the isodoublet as a (ls1)3 state. Then the two-body AXC contribution to the 
2 

weak ground state processes with this isodoublet can be analyzed with the help of 

the fractional parentage coefficients reduction of the three-body matrix element to the 

combination of the two-body matrix elements (47,48] (see Appendix C for details). 

Within the present model of the AXC, only p~(2)- pseudoscalar, isovector- operator 

has to be considered to order 0(1/M2 ). Only Coulomb multipoles of this operator 

are non-zero. Due to the angular momentum selection rules, the two-body matrix 

elements vanish for J > 1. The M8 operator is prohibited by parity conservation 

arguments. Thus there are only two terms left, with the Mf1 (2) operator in them. 

However, these matrix elements cancel each other for the AXC operator considered. 

Thus the three-body matrix elements of the AXC vanish to order 0(1/M2 ). There 

are no effects of the AXC on the processes involving transitions between the ground 

states in the 3 H-3 He isodoublet in this model whatsoever. 

These results justify the close agreement of the previous one-body calculations 

[7,41,49] with experimental results, at least as far as the dominant axial vector current 
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Figure 1.8: Elastic electron scattering form factors for the A=3 system: bo6c = 1.59fm 
is obtained. From Ref. [41]. 
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contributions are concerned (see Table 1.1). w,. designates the muon capture rate, 

statisticaly averaged over different hyperfine states of the muonic atom. 

exper. !-body +relativ. +pion 
theory correction X current 

{3 -decay: 
wp(10 ·!:I sec "1 ) 1. 79±0.0075 1.84 1.84 1.84 
p. -capture: 
w,. (sec-1

) 1505±466 1534 1534 1534 

Table 1.1: 3H-3He weak transition rates. 
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(1+0)++(0+1) transitions in A=6 system 

3.562 MeV 

6L· 3 I 

Figure 1.9: The 6He - 6Li nuclei lowest energy levels. 

The second system investigated here consists of the A=6 neighboring nuclei 

(see Figure 1.9): the 6 Het+ 6 Li transitions are considered. The following three facts 

make this system interesting for the present analysis: 

1) These are non-trivial nuclei. It would be a daunting task to calculate the 

required wave functions from first principles. 

2) There are high precision electromagnetic data available for these nuclei. 

3) This is the simplest system where one can now expect to see some nontrivial 

effects of the derived corrections to the one-body axial currents. 

The following model for the A=6 nucleus is assumed here: an inert core (closed 

ls-shell) + ~wo valence nucleons producing the wave function of the form: 

11+o) 

1 o+1) 

- Al(lp~il+o) + Bl(lp~lp!.)I+o) + Cl(lp!.)2 I+o) 
2 2 2 2 

- Dl(lp~)2 o+1) + El(lpt)2 o+1) (1.20) 

Again the simple harmonic oscillator basis is used for parameterizing the nuclear 
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Figure 1.10: Elastic electron scattering form factors for 6Li. From Ref. [41]. 
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wave function. This model works well for description of electromagnetic processes 

with the system. Parameters of the model are determined through simultaneously 

fitting the magnetic dipole and electric quadrupole moments of the 6Li ground state, 

as well as the elastic and inelastic magnetic form factors, calculated in terms of the 

model wave function of (1.20). For instance, the elastic magnetic form factor is 

(1.21) 

where y = (I q I bo6c/2)2 and ae, /3e are certain constants. The result for the inelastic 

form factor differs from (1.21) only by different values of the constants involved (see 

Figure 1.10). The best set of the simultaneous values of the parameters is given in 

Table 1.2 [52]: 

A B c D E bo.,c(fm.) 
0.810 -0.581 0.084 0.80 0.60 2.03 

±0.001 ±0.001 ±0.002 ±0.03 ±0.04 ±0.02 

Table 1.2: Parameters of the wave function. 

These parameters are used in the corresponding nuclear wave functions to 

calculate the weak current matrix elements for the A=6 system. Details of these 

calculations are presented in Chapter 5. 

For the consideration of the tw<rbody operators, the proper description of 

the wave function at small interparticle separations becomes an important issue. To 

estimate effects of the incorrect behavior of the simple harmonic oscillator basis wave 

functions at short distances, a phenomenological correlation function g(r) has been 

introduced in the calculation, following Dubach [6], in the following way: 

(1.22) 
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Only the s-sta.te relative wave functions must be modified by this correlation function. 

The function g( r) wa.s chosen to have the form: 

g(r) = C(NA) [1- exp(- ~)] (1.23) 

where d = 0.84fm ha.s been determined from a. fit to the nuclear matter properties (6], 

and the C(NA) coefficient is introduced to preserve the normalization of the s-state 

wave function. This ad hoc correlation function forces the wave functions to vanish 

at short distances, mocking up the presence of the repulsive core. Calculations of 

the weak rates have been performed with and without this correlation function to 

see how significant is the error made when using the simple harmonic oscillator wave 

functions for the single-nucleon states. 

The semileptonic weak rates in Table 1.3 have been calculated for the 

(O+l)-H-(1 +o) transitions in 6He-6Li system, upon performing the numerical evalua­

tion of the weak current multi pole matrix elements with the wave function coefficients 

and the correlation function obtained above. 

exper. 1-body +relativ. +pion with corr. Total Diff 
theory correction X current function (%) 

{3 -decay: 
wp (sec-1

) 0.8647 0.876 0.872 0.869 0.869 0.865 -1.3 
±0.003 

p. -capture: 
w"'(sec-l )I:S 1600~~g 1381 1381 1386 1385 1385 0.2 
w:=112( sec-1) 3843 3843 3865 3860 3860 0.4 
w~=312 ( sec-1) 150.2 150.2 137.1 140.3 140.3 -6.6 

Table 1.3: Weak rates for the (0+1)~(1+0) transitions in the 6He-6 Li system. 

Here the F superscript, a. quantum number of the F = J + S operator, distin­

guishes the p.-capture processes occuring from different hyperfine states of the muonic 
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atom. Thew~ corresponds to the statistically averaged 1-'-capture rate. 

Effects of the calculated corrections in the weak processes are seen to be small. 

In the first column of the table available experimental results are provided. The 

second column shows the traditional results of the wea.k rates calculations, where only 

the single-nucleon axial currents have been included [41,49,52]. The third and fourth 

columns of the table display the separate influences on the weak rates of the relativistic 

correction (1.16) and pion exchange cha.rge (1.14), correspondingly. The fifth column 

shows the latter result with a correlation function included in the analysis. The next 

column shows the cumulative rates with both considered corrections included, while 

the last column expresses the effect due to both calculated corrections combined, in 

the percent fraction of the one-body result. The largest effect due to the corrections 

is predicted for the muon-capture rate from the hyperfine F = 3/2 state (-6.6%). 

The total effect for the beta-decay rate is small, but it is interesting that the one­

body relativistic correction obtained in this work, produces here an effect of about 

the same size with the one from the pion axial exchange charge. Consideration of 

the phenomenological correlation function corrects the result for the axial exchange 

charge contribution by at most 20%, as was expected. In general, the smallness of 

the calculated effects serve as a justification of the success of the previous analysis of 

weak processes in terms of the one-body currents [41, 49, 52]. 

One arrives at the same conclusion upon consideration of the results for the 

charge-changing antineutrino cross section in the process 

Ve +6 Li -+6 He(g.s.) + e+ 

A prediction for the differential scattering cross section with the obtained corrections 

to the one-body effects included in the analysis, is shown in Figure 1.11. This result 

does not differ noticeably, up to high transferred momentum, from the curve obtained 

in the one-body analysis, again justifying the applicability of the previous one-body 
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analysis. 

The second part of this dissertation is devoted to investigation of electrowea.k 

processes involving (o+o) excitations in nuclei. It is based on the corresponding work 

presented in (55]. This work is discussed in detail in Part II. A short summary of the 

results obtained in this work is presented in the next para.gra.ph. 

Within the Standard Model, strong isospin inva.riance and the nuclear domain 

of u, d quarks and their antiquarks, the formula. for the parity violating asymmetry 

in electron scattering is derived, and the neutrino scattering cross section is directly 

related to the electron scattering cross section, for inelastic co+o)gnd -+ co+o)• nuclear 

transitions (assuming pure quantum numbers for both states). With the inclusion 

of strange quarks, the asymmetry measures a. new nuclear matrix element of the 

strangeness current, if the inelastic charge form factor for tha.t transition is large 

enough for performing the experiment. The ground and first excited states of 4He 

have (JTr = o+, T = 0); thus the analysis is applicable to future CEBAF experiments 

on parity violation, as well as possible neutrino scattering experiments on this nucleus. 

Existing low momentum transfer q2 data on the inelastic charge form factor for the 

(O+O)gnd -+ (O+O)* transition in 4He (which show it growing relative to the elastic 

one) are fit within simple nuclear models, and predictions are made for higher q2 • A 

more quantitative analysis for 4He is significantly complicated by the fa.ct that the 

considered excited state lies just a.bove the break-up threshold. It is desirable to 

first ha.ve an experimental measurement of this form factor to higher q2
, using the 

predicted magnitude as a. guide. 
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Figure 1.11: Charge-changing antineutrino scattering cross section on 6 Li. The linear­
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Part I 

A consistent hadronic model of 

weak meson exchange currents in 

nuclei 
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Chapter 2 

Linear realization of the a - w 

model 

As was outlined in the introduction, the objective of this work is to build a 

consistent (j-W model involving three mesons: 1r, (j and w, that would describe most 

of conventional nuclear physics results while preserving the basic symmetries of the 

underlying Q CD, and then to calculate AXC in the framework of this model. One can 

start the analysis by considering the "linear realization" of the (j-model with 1r and (j 

fields entering in the combination (j-ir·Tr'"fs (with no other mesons included at first). 

There are some known drawbacks to this model: it does not incorporate explicitly the 

correct soft-pion limit of the theory because of the non-derivative character of the 1r-N 

coupling used. In addition, fine cancellations of large quantities in the amplitudes 

are required for reproduction of the experimental results. The non-linear realization 

of the (j- w model, which is free of these problems, is a natural framework for the 

analysis of the present problem. It will be utilized in the next chapter for calculating 

corrections to the traditional one-body axial currents, which are used later in the 

actual analysis of weak rates. Nevertheless, the linear realization of the model allows 
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one to obtain an additional insight into the MEC problem and to set certain checks 

on the intermediate results, which will be helpful for analysis of the non-linear model. 

Here Noether's axial current of the theory can be identified easily for future use in 

the non-linear model, and the low-energy theorem for pion production by the axial 

current on a nucleon derived. Still more important, the need for the AXC of order 

0(1/M) for the satisfaction of PCAC as an operator equation, and the actual presence 

of these AXC in the linear model are demonstrated. In the linear realization of the 

cr-model the 1r-N coupling has a pseudoscalar character, and the nucleon mass M 

appears in the inves~igated lagrangian as a result of spontaneous chiral symmetry 

breaking, in the form of a vacuum expectation value of the scalar field. 

The model is developed starting with the following chirally symmetric la­

grangian [2] 

Cu - 1fi (i~ + g(cr- i15r · i)] t/J + ~(8"cr 8"cr + 8"i · 8"i)- V(i2 + cr2
) 

where V(i2 + cr2
) = ~((cr2 + i 2

)- v 2t (2.1) 

where g is the 1r-N interaction constant, while A > 0, and v > 0 are some arbitrary 

parameters. The symmetry is realized in the Goldstone mode: the ground state is 

not symmetric under the chiral transformation. Addition to the potential of a small 

chiral-symmetry breaking term 

r - M 2 
aVcsb =- m11' CT 

g 
(2.2) 

singles out the correct vacuum state, bringing the theory in line with the observation 

that the vacuum must have a definite parity. The coefficient on the right hand side 

of equation (2.2) has been included in anticipation of the identification of the nucleon 

mass M in the world with the spontaneously broken chiral symmetry. When one 

redefines the scalar field to describe excitations of a new scalar field ¢ built over the 
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proper ground state 

M 
(7' =--+<I> 

g 
(2.3) 

one obtains the following u-modellagrangian density for the linear representation of 

the model: 

In this lagrangian the constants ,\ and v have been reabsorbed into the mass param­

eters of the fields m. and m'll'. 

One can identify m'll' = 139 MeV as the mass of the pion, the particle playing the 

most important role in low-energy strong interaction physics. Correct identification of 

the mass of the scalar field m. is known to be more problematic. It might be tempting 

to put this mass equal to the mass (about 550 MeV) of a scalar field required in the 

phenomenological N-N potential. However, this is not consistent with the traditional 

nuclear physics results obtained in the QHD I model of Walecka [32]. The strong 

non-linear coupling terms in the last line of the lagrangian (2.4) would then destroy 

successful nuclear physics applications calculated in the MFT limit of QHD I. To 

reconcile results obtained in the two models, one has to take the u-model scalar field 

mass to be very large. As discussed in the next Chapter, such an isoscalar field 

then decouples from the problem, and results of QHD I get rescued. The low-mass 

scalar field of QHD I (entering also the phenomenological N-N potential) is then 

produced dynamically as a (broad) resonance in the isoscalar channel of the two-pion 

exchange [37]. It is not clear, however, how to include such a dynamic u-field in 

the analysis of the AXC problem. A better phenomenological way of including an 

additional low-mass scalar field in the model as a chiral singlet can be achieved in the 

non-linear realization of the u - w model discussed in the next chapter. 
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Figure 2.1: Strong interaction vertices relevant for the present calculation in the linear 
realization of the U' - w model. 

The limit of a very large mass scalar field of the U'-model will be considered in 

most of the present work. Nevertheless, one can imagine for a moment considering 

the o--model with a low-mass scalar field as a purely phenomenological model of the 

AXC, with no recourse to any other nuclear physics results. To take this possibility 

into acount, one can treat m 5 as an arbitrary mass parameter for a while, taking the 

required large-scalar-mass limit only at the final stage of the calculations. 

The strong interaction vertices relevant for the future calculation of AXC are 

depicted in Figure 2.1. As is well known [2], Noether's theorem allows writing down 

the axial current corresponding to the lagrangian (2.4): 

- Ta M 
A Qjl = 7/J-rs-r~'-t/J - rrcr fY'<P + 4J 81'rrQ - - 8~'rra 

2 g 

This current satisfies the PCAC theorem 

a A >. M 2-
.\ =-m rr g tr 

(2.5) 

(2.6) 

The axial current vertices are shown in Figure 2.2. Now both, strong interac­

tion and axial-current, sets of vertices of the theory have been identified in terms of 
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Figure 2.2: Axial current vertices in the linear realization of the u - w model. 

just three parameters: the pion-nucleon interaction constant g, the pion mass m1r 

and the scalar field mass m.s. Note that thew-meson can also be easily incorporated 

in the present model in a chirally-invariant fashion by introducing a chiral-singlet 

Lorentz-vector field V~, changing the partial derivative in the first term in the la­

grangian (2.4) to 

(2.7) 

and adding kinetic and mass terms for thew-field to the lagrangian: 

N 

i gvy~ 

Figure 2.3: Nucleon - vector-meson vertex in the linear u- w model. 
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{2.8) 

Here 9v is the w-meson-N coupling constant, and F~v = a~vv- avv~. In QHD I 

the vector meson parameters are taken to be 

2 

gv ~ 10.8 and mv = 782MeV 
4rr 

An additional Feynman vertex due to the included w-meson, of interest in the problem 

investigated, is shown in Figure 2.3. It should be noted that the presence of this 

additional field in the lagrangian does not change the form of Noether's axial current. 

In the present treatment, the first non-trivial contribution of the w-meson will be to 

the axial current interaction with the two-nucleon system. The resulting model is 

referred to as the linear representation of the rr - w model. 

Following the general analysis framework, first some familiar results are repro­

duced, corrections to which will be derived later. The lowest order (O(g0
)) amplitude 

for the interaction of the axial current with a single nucleon can be read off Figure 1.4 

and is given by the expression: 

Ta ( k~ ) iM0~( 1) = -:) ii(p')-y5 1" +2M l·
2 

_ 2 u(p) 
- • m~ 

(2.9) 

where k~ is the four-momentum transferred to the nucleon. This amplitude satisfies 

PCAC for an on-mass-shell nucleon. Note that use of Dirac equation for an on-mass­

shell nucleon is explicitly involved in deriving the PCAC result here. Thus PCAC 

will not be satisfied as an operator equation for the corresponding one-body current 

operator alone in coordinate space. 

As was outlined in the introduction, when making transition to the full many­

body nuclear problem, one assumes the 1r-pole dominance and satisfaction of the 

correct Goldberger-Treiman relation ( 1.4) for the on-mass-shell nucleon. Then the 

rr- axial-current vertex should be renormalized by the same FA as the nucleon-axial­

current vertex. The one-body axial current in momentum space is identified then at 
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low energies from the interaction amplitude iM0~( 1) in accordance with the formula 

(1.6). 

When one considers the non-relativistic limit of the amplitude, assuming all 

momenta in the problem to be small compared to the nucleon mass M, the familiar 

one-body axial current [2] is obtained in momentum space: 

JJ±)o(l) = FAT±[~~~+ k2 ~om; a. kl 
J1±>(1) = FAr± [a + k 2 ~m; a. kj (2.10) 

where P = p+p' and k is the momentum transferred to the nucleon (see Figure 1.4). 

For the currents (2.10) one obtains, of course, the well-known coordinate space 

axial current operators [2], corrections to which will be calculated in this work. These 

coordinate space current operators are provided below for ease of future reference: 

jJ±lO(x) = p~± 1 (x) + p~;l(x) (2.11) 

j~±l(x) = A_(±l(x) + 'V6~;l(x) (2.12) 

where 

p~±)(x) - FA f_ T±(j) O'(j)· [P~l, 03(x- x;)l (2.13) 
1=I sym 

A 

A(±) (x) = FA L T±(j) ii(j) <53(x- xi) (2.14) 
i=I 

¢~!>(x) 1 v.A_(±l(x) (2.15) - k2 -mi 

P~!>(x) - 1 [ A A(±) ] i Hnucl, ¢ps (x) (2.16) 

with Hnucl standing for the full nonrelativistic nuclear hamiltonian calculated in the 

framework of the same hadronic a - w model developed here. 

41 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

It is easy to see in the momentum space representation of the current that a 

combination of all the terms in {2.11) except the first one satisfies PCAC through 

order 0{1/M)l. Thus one needs only to check whether p~±)(x) satisfies PCAC to 

the same order in M. In fact, its commutator with the nuclear hamiltonian does not 

vanish because of a derivative term in the axial charge operator, which does not 

commute with potentials arising due to exchange of various mesons. The presence 

of the isoscalar potentials (due to a--exchange and, after including w-meson, due to 

w-exchange), which are of order 0(1) in inverse nucleon mass, breaks PCAC for the 

one-body axial current to order 0(1/M): 

(2.17) 

However, partially conserved chiral symmetry is the most important symmetry to 

be satisfied by any low-energy effective hadronic theory [29]. It must hold in the 

present many-body problem. Hence, consideration of corresponding two-body axial 

currents of order 0(1/M), required to preserve PCAC in the theory, is necessary in 

the present model. These axial MEC are indeed present in the linear realization 

of the u- w model. They will be calculated explicitly below and shown to rescue 

the PCAC relation in coordinate space (see Appendix A). Two-body exchange axial 

current operators, which must represent the most significant correction to the one­

body operators, will be the focus of the present work. Three-body effects are omited, 

following the standard nuclear physi~s arguments that they are negligible [5]. 

Next, one has to write down the amplitude for rr-production by the axial current 

on a nucleon to the lowest order in the interaction constant (O(g)). The relevant 

1 It is sufficient here to consider the momentum space relation because one does not need to use 
any specific form for the wave function to obtain this result. 
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Figure 2.4: Lowest order amplitude for pion production by the axial current on a 
single nucleon in the linear realization of the u - w model. 

diagrams are shown in Figure 2.4. They correspond to the amplitude: 

. _( ') [ rl3ra -1 ( ')M k~ ) 
z g u Pt 2 ( p~ + {) + M ')',. + - k2 - m; 

+ T
0

T/3 (-'"'( + ?M k,_. ) -1 
2 I' - k2 - m.; (PI- d) + M 

+ u •) 2 2) ll >/3o ( k ) l ([2 _ m~) --q~ + k,.. - (m, - m"' 1.:2 _ m; u(pt) (2.18) 

Again, the rr-production amplitude satisfies PCAC for the on-mass-shell pion 

and nucleon. This fact adds to the confidence that all the diagrams contributing to 

the considered order in the interaction constant has been included in the analysis. 

Consideration of PCAC for the amplitude in the full many-body problem, while pre­

serving rr-pole dominance and the Goldberger-Treiman relation, forces one now to 

renormalize all axial current vertices by the same FA. For soft-pion production at the 
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threshold one obtains the following result: 

T a{J 1 Ma{J "F 9 r"' r 
~ ~ 2M "' ~ Z A M f.a(J-y ·2 u~o (2.19) 

where 9 = g'tr is the pion-nucleon interaction constant. Definitions of various am­

plitudes in terms of scattering S-matrix have been provided in Equations (1.9) and 

(1.10). 

Comparing this formula with the result of Kubodera, Delorme and Rho [9] 

(2.20) 

(2.21) 

obtained using the current algebra approach, one can see that the two results coincide 

except for an extra Fl factor in the amplitude derived in the present work. This 

discrepancy originates from the different techniques used for calculating the result. 2 

The fact that the correct form of the Goldberger-Treiman relation, with FA present 

in it, has been used throughout the present calculation, leads one to believe that 

an extra Fl factor should be actually present in the expression for the 1r-production 

amplitude. This extra factor will be inherited as well in the formulae for the AXC 

derived below. The numerical difference between the two results is about 50% - the 

order of magnitude to which corrections due to the presence of the AXC effects have 

been tested in nuclei so far. 

Next, the analysis of the interaction of the axial current with the two-nucleon 

system is performed. All corresponding diagrams of the lowest order in the inter­

action constants (O(g2
) and 0(9~)) are shown in Figures 2.5 and 2.6. Amplitudes 

corresponding to both figures satisfy PCAC, as they should. At the same time, one 

notes that separate nonzero contributions coming from the first line (involving the 

2The difference lies in the method of calculation of the corrections of higher order in mll' I M and 
Q I M, which will not be discussed here. 
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Figure 2.5: Lowest order amplitude for the axial current interaction with the two­
nucleon system in the linear realization of the cr-model. 
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pion production amplitude) and the second line of Figure 2.5 have to cancel each 

other to arrive at the PCAC result. It again shows that the pion and scalar meson 

contributions have to be carefully balanced in the linear a--model calculations. They 

are separated in the non-linear realization of the model discussed in the next Chapter. 

When identifying AXC from the considered interaction amplitude according to the 

p' ' p2 
1 I 

l l ro 

I 
k, a. 

( • • • X ) 
I 

+ X-terms 

I 

pl p 
2 

Figure 2.6: Additional lowest order diagrams for the axial current interaction with 
the two-nucleon system in the u - w model. 

formula (1.11), one has to keep only anti nucleonic parts of the nucleon propagators 

in the amplitude to avoid double counting of terms [6]. 

One remembers that PCAC for the single-nucleon axial current requires the 

presence of two-body currents in the model. Actual calculation of the interaction 

amplitudes of Figures 2.5 and 2.6 in the linear u- u..• model, followed by the axial 

current identification and non-relativistic reduction, shows that there are indeed space 
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components of axial meson exchange cu1-rents of order 0{1/M) present in this model: 

{±) g
2 

1 [ u( 1) . q ( }2 + m; ) 
A (7r + u) ~ M T± }2 2 2 2 1-q- k k2 2 + ms q + m'lr + m'lr 

+k2 k 2 u(l) · q l + X- terms (2.22) 
+m11' 

0:(2) ·l 

P+m2 
tl 

+ X- terms (2.23) 

where 9v and mv are the w-N interaction constant and w-meson mass, correspond­

·ingly. The X-terms designate contributions from the set of diagrams with the two 

nucleons interchanged. 

It is shown in Appendix A that the presence of these two spatial AXC makes 

the respective operator PCAC equation in coordinate space satisfied through order 

0(1/M), when proper potentials arising from the u- and w-meson exchange are in­

cluded in the analysis. 

Corrections to the axial-charge operator are not required for satisfying the 

PCAC equation. Nevertheless, they can be explicitly calculated in the present model. 

The first non-vanishing term itl the axial-charge operator is the pion contribution of 

order 0(1/M2 ) identified from the same set of the lowest-energy diagrams in Fig­

ure 2.5: 

A~(k, q) ~- (2~ r [r(1) x r(2)t :2(~ ~1 +X- term (2.24) 

This is a familiar result [9, 17). The formula from previous work is reproduced again 

up to a factor of FA 2 (0) inherited directly from the ;;-production amplitude. 

There are also terms of order 0( 1 /M2
) in the axial charge due to the exchange of 

isoscalar (Lorentz scalar and vector) mesons. However, in view of the same interaction 

range arguments that led to the pion-pole dominance hypothesis, these contributions 

are expected to be much smaller than the main ;;-exchange charge correction (2.24). 
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Now one can return to the question of reconciling the u- w model with the 

MFT results of QHD I and take ms to be very large. Successful applications of QHD 

I are then rescued. The result for the axial current 1r-production on a nucleon still 

holds in this limit. The u-meson potential and A(±)(?r+u) of equation (2.22) vanish. 

However, the second piece A<±>(w) (2.23) of the AXC of order 0(1/M) due to the 

w-meson exchange is still present, and PCAC is satisfied with the isoscalar potential 

and AXC coming from thew-meson exchange only. 

It is useful to summarize the advantages and disadvantages of using the linear 

realization of the u- w model to describe AXC in nuclei. It is very important that 

this model preserves PCAC. This helps one to determine the correct set of diagrams 

for each of the processes considered and, when the 1r-pole dominance requirement 

and correct Goldberger-Treiman relation are incorporated in the model, to perform 

the renormalization of all axial current vertices in the full theory unequivocally. This 

renormalization of the axial-current vertices of the theory introduces an extra factor 

Fl into the results for 1r-production and AXC. The linear realization of the model 

allowed derivation of the low-energy result (2.19) for the 1r-production amplitude, as 

well as calculation of the spatial AXC (2.22) and (2.2:3) of order 0(1/M) due to the 

isoscalar mesons exchange, and the axial exchange charge correction (3.19) due to 

pion exchange. 

Among disadvantages of the present realization of the model is the fact that to 

ensure chiral invariance of the theory, sensitive cancellations of large quantities have 

to occur in the amplitudes (for example, contributions of the sets of diagrams in the 

first and second rows in Figure 2.5 have to cancel each other's non-zero contributions 

to arrive at the PCAC result). Also the soft-pion limit is not built into the theory 

because of the non-derivative character of the rr- N coupling in this model. These 

were the major considerations that brought to existance the non-linear realization 

of the u-model [36]. One additional problem that is encountered when building a 
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consistent model for calculating AXC starting from the u-model, is how to include 

the phenomenological low-mass scalar field in the model. There seems to be no easy 

way to perform this in the linear realization of the u- w model. The low-mass scalar 

field can be obtained here only as a dynamic resonance in the two-pion exchange, 

whose contribution to the two-body axial currents is not simple to calculate. All 

these difficulties motivate one to perform the transition to the non-linear realization 

of the model and to compare the results obtained in the two approaches. 
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Chapter 3 

Non-linear realization of the (5- w 

model 

Acceptance of the non-linear realization of the u - "'-' model to be the frame­

work for calculating AXC solves all the difficulties listed in the end of the previous 

chapter. This is a natural approach to the present problem. In addition, correc­

tions to the "customary" (2.10) single-body axial nuclear current, obtained in the 

non-linear model, are simpler than those calculated within the linear model. In the 

present work these corrections are included in the analysis of some semileptonic weak 

transitions in a few selected nuclei. Thew-meson is introduced in the lagrangians of 

both realizations of the u - w model through the same procedure, so one can forget 

about this meson for a moment, returning to calculating its contributions later when 

discussing axial exchange currents in the non-linear modeJl. 

The non-linear (Weinberg) realization of the u-model can be obtained in either 

one of two independent ways. In the first derivation scheme, one assumes the point 

1The w-meson does not interact with the axial current or pions directly. Hence it makes no 
contribution to the axial-current - one-nucleon interaction or pion production by the axial current 
on a nucleon to the lowest order in the interaction constant. 
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of view that chiral symmetry is not realized in a customary way which would provide 

linear relations between various fields and their commutators with the symmetry gen­

erators. Instead, chiral symmetry here implies relations between processes involving 

different number of pions [31}. In this approach one makes no recourse to the linear 

realization of the u-model, deriving the transformation laws for various fields from 

the consideration of the SU(2)L xSU(2)R symmetry group algebra. The correspond­

ing lagrangian of the model is then built out of the chiral-invariant combinations of 

fields and their derivatives. 

In the second derivation scheme [:36}, one obtains the non-linear realization 

of the u-model upon carrying out a chiral rotation of the field variables in the lin­

ear realization lagrangian (2.4) and the axial current operator (2.5). Utilization of 

the chirally transformed fields as independent particle variables ensures that the la­

grangian for the new fields does not entail sensitive cancellations in the amplitudes 

as before. The intrinsic connection between the two realizations of the u-model be­

comes very lucid in this way of derivation. All that is done here is the redefinition of 

fields and consideration of the same problem in terms of the new degrees of freedom. 

The two models are equivalent in the chiral limit m! -T 0. The consequences of this 

redefinition are, however, dramatic. 

In the present work the second method of obtaining the non-linear u-model 

lagrangian is utilized. One rewrites the meson -nucleon interaction term, introducing 

a position-dependent chiral rotation angle n = fi(x) [2} through 

(3.1) 

The quantity under the square root is chirally invariant because it is equivalent to 

an explicitly chiral-invariant combination g2 (u2 + m71' 2 ) (see equation (2.3) for the 

definition of the ¢-field). Next, one defines a new baryon field N to be 

(3.2) 
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so that 

(3.3) 

Thus, the 1r-N pseudoscalar interaction diasappears from the lagrangian. The left 

hand side of the previous equation is invariant under the chiral rotation and the 

square root is also invariant in the chiral limit. Thus the combination fil N also 

satisfies partial chiral invariance. This fact will be used later when introducing a 

phenomenological low-mass scalar field in the model as a chiral singlet. 

One more new field can be defined 

(3.4) 

and new pion 1r' and scalar </>' fields introduced as 

(3.5) 

Upon performing the transformation to the newly defined fields, the lagrangian (2.4) 

takes the form [2] 

- { ,x 1 [ 71. - ..\ - -J} £ = N i1 8..\- M + g</>' + l + f,2 1· /s f-8..\f,- 1 f · (f, x 8.xf,) N 

+ in [n 8..\if'·8..\ii'- m!rr2
] + ~ [a·'<t>'8.,</>'- m;</>2

] + (m;- m!) [F<t>'3 - iF2
<f>'

4
] 

where 

F - f- g d =- = '>M an 
ffi-rr -

[ = Fir' (3.6) 

The new fields in the lagrangian represent: N - nucleons, ii - pions, and </>' - scalar 

mesons with the same masses as in the linear realization of the u-model. This particle 

content of the theory can be identified upon setting the coupling constant F = 0. All 
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pion couplings now have at least one derivative of the rr field, so the soft-pion limit 

is built into the model explicitly. 

One can define yet another generalized scalar field x with an equation 

ms¢>' =X (3.7) 

The above u-model lagrangian is chi rally invariant (when m1r = 0) for any value of 

m,. It is possible to take the formal limit m, --7 oo. Then 

.C(N, rr', x) - fl { i-y>·a>.- M + I ~ (l [-l-rs f·B>.{- -y>. f · (( x 8>.()]} N 

+ 1 ..,., [..,., a>. _, a _,] 1 2 
- /\, I\, 7r • \ 7r - -X 2 A 2' 

where 

(3.8) 

The scalar field X decouples from the problem. There are no strong non-linear cou­

pling terms involving the scalar field left in the model. This way the u-model devel­

opment can be reconciled with the results obtained in the QHD I model. 

Nevertheless, again in this work the a- w model will be developed keeping m, 

a general parameter. The limit m, --7 oo is postponed until later in the calculation, 

prior to obtaining the final results. Some of the intermediate results derived this way 

will be used later for analyzing contribution of the phenomenological low-mass scalar 

field to the axial exchange currents. 

To the first order in the interaction constant (O(g) or O(F)) one then arrives 

at the following interaction lagrangian: 

(3.9) 
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N N N 
q. a. q.~ 1t 

---- ;>- -- - . . . ,. .. k, a. . .. > .. 
1t 1t .7 . 

i g 

1t . . . . 1t Q> .. ·· 
Q> ~-

----->----··. 
\: ."7 A q.a. .. q,p 

1 ~ 2 
·-~ 

Figure 3.1: Strong interaction vertices for the non-linear realization of the u - w 

model. 
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All the corresponding strong interaction vertices are depicted in Figure 3.1. One can 

transform also the axial Noether's current to the new fields, obtaining to the lowest 

order in the interaction constant 

(3.10) 

The second term, which is of order O(F), has been included in the current because 

the tree-diagrams for the processes considered here, which contain this term, involve 

one less rr-N vertex of order O(F). The axial current \'ertices are shown in Figure 3.2. 

Summarizing, after the chiral transformation of the lagrangian one has a different set 

of effective degrees of freedom, all the vertices have changed, and hence, there is a 

new set of diagrams for each process considered. 

* 

q, J3 

q, J3 

a 

q,a 

i 
--Q 

2 F J.l 

Figure 3.2: Lowest order axial-current vertices in the non-linear realization of the 
(j- w model. 
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Following the general analysis scheme outlined in the introduction, one first 

considers the axial current interaction with a single nucleon. The tree-level diagrams 

(which are of order O(g) in the interaction constant) have the same appearance as in 

the linear realization of the u-model (see Figure 1.4). However, since the vertices of 

the theory have changed, the interaction amplitude assumes a different form: 

(3.11) 

It is easy to see that, just as in the linear realization, PCAC is satisfied again 

for the on-mass-shell nucleon. However, in the present case one does not have to 

use the Dirac equation for demonstrating PCAC, so the symmetry is satisfied for 

the off-mass-shell nucleon as well. This fact can be illustrated by pulling out of the 

Dirac spinors in the nuclear matrix element an operator. which becomes a projection 

operator in the chirallimit m1r2 -t 0 

(3.12) 

projector 

The ·oracketeC.. operator projects out a four-vector that is ortnogonal to k~ in the 

chiral limit, thus ensuring that the interaction amplitude satisfies PCAC identically 

in this realization of the model. Hence the corresponding one-body axial current, 

identified from this amplitude according to ( 1.6), 

(3.13) 

satisfies PCAC identically by itself in momentum space. The result for the pion -

axial-current vertex renormalization by FA in the full theory is obtained here exactly 

as in the linear model before. 

When performing the non-relativistic reduction of this axial current, PCAC 

should be satisfied in each order in 1/M, and, due to the presence of the projection 

.56 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

operator in the current, all the relevant terms should come from the one-body axial 

current alone. For the axial current interaction with a free nucleon the transferred 

energy k0 is of order 0(1/M). It proves useful to consider the non-relativistic one-body 

current with the next-to-leading order relativistic correction included 

1 2 5 
~ 

j~±)O(l) [u·P k0 u·k- k5 u·Pj (3.14) = FA T± 2M + k2 - m; k2 -mi 2M 

J1±) (1) [a k - k k a. PJ (3.15) = FAT± + k2 2 (j. k2 - mi ko 2M ~ -m r. 
3 

4 6 

where P = p + p'. The terms 1 through 4 comprise the familiar non-relativistic nu­

clear one-body axial current (2]. As is well known, the combination of terms 2, :3 and 

4 satisfies PCAC to order 0( 1/~1). One can see that if the customary first term is 

included in the analysis, its contribution to the PCAC equation is of order 0(1/M2
). 

Then to facilitate PCAC satisfaction to this order, one additional relativistic correc-

tion term (term 6) must also be considered: 

a.p 
"'ko 2M + ---l.:o--~ 1 k2 a. p ( k2 ) 

1.:2 - m;. 21\1 - k2 + m; 
•) - p m;; a· 2 

k2 2 ko •),\.f = O(m,.) 
+m,. -· 

a.p 
ko--

2M 

(3.16) 

The contribution of term .S to the PCAC equation is suppressed by two extra powers 

of 1/M. This term is not needed to satisfy PCAC to the considered order in 1/M and, 

thus, can be safely neglected. 

Let us discuss in more detail the transition to the analysis of the axial current 

operators in the full many-body nuclear problem. Transformation from the momen­

tum space result for a free nucleon to the axial current operators in coordinate space 

involves one subtle point. These operators are going to be used in the analysis of 

weak processes with nuclei, rather than with free nucleons only. Some quantities in 

the momentum space current are small for on-mass-shell nucleons but, in principle, 
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can introduce a significant contribution when nuclear matrix elements of the current 

operators are considered. For instance, k0 is of order 0(1/M) for a free t.ncleon, but 

it might not be small in some nuclear processes. Since the treatment here started 

with the consideration of the axial-current - free-nucleon interaction amplit1,1de in 

momentum space, one has the freedom to include these terms in the current operator 

in coordinate space, or to leave them out. In the present work it is chosen to consider 

such terms only when their presence facilitates satisfaction of PCAC to considered or­

der in 0(1/M). Then, following the reasoning of the previous paragraph, one is forced 

to include in the analysis a new leading relativistic correction to the customary axial 

nuclear currents from (2.10), which helps preserving PCAC to order 0( l/M2 ) [2] 

k a.p 
J"A(±l(t) ~-F .. T± 1.:0 ..,_A

1 ..• f.:2 - rn 2 / H 
'It 

(3.17) 

The corresponding operator in coordinate space will be included in the analysis of 

weak processes with nuclei. It should be noted, however, that effects of this correction 

are small because k0 /2M is generally small in the weak processes. The procedure for 

calculating effects of the relativistic correction will be presented in the next chapter. 

Since PCAC holds now for any particular wave function chosen to calculate 

the matrix element, it will also hold for the one-body axial current derived in this 

model as an operator equation in coordinate space. Thus, no two-body currents are 

required by PCA C to be present in this model. 

Indeed, through a direct reduction of the interaction amplitude of the axial 

current with the two-nucleon system performed below, it has been shown explicitly 

that there are in fact no axial MEG of order 0( 1/M) present in the non-linear model. 

This result demonstrates the model-dependent character of the way one splits the 

whole many-body problem corrections to the one-body analysis into the one-body 

relativistic corrections to the customary current and lVIEC effects. One would like to 

find a model where the semileptonic weak interactions have the simplest description . 
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As the preceding analysis demonstrates, corrections to the one-body axial current 

become simple when considering the non-linear realization of the u- w model. 

1tp I<, a ~ 
~ • q ~ k,a • q • • • • • ,... . ,... • '-! • • '-! • 

X X • 

1tp q k,a 1tp 
• • <• X ( • ' • X) I • q I • y ,... 

• 
* • 
• I<, a • 
X 

Figure 3.:3: Lowest order amplitude for pion production by the axial current on a 
single nucleon in the non-linear realizatiou of the u - vJ model. 

As a second step of the investigation. one considers the axial current IT­

production on a nucleon. A set of diagrams contributing to this process at the tree 

level (to first order in the interaction constant) is presented in Figure 3.3. The corre-
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sponding amplitude has the following form 

(3.18) 

This amplitude satisfies PCAC for the on-mass-shell particles, as should be the case. 

It also reproduces the same low-energy result (2.l9) for soft-pion (m! = 0) production 

by the axial current at the threshold as has been obtained in the linear realization of 

the u-model. These two facts provide confidence that all the relevant diagrams have 

been included into the analysis. The argument for renormalization of all the axial 

current vertices by FA follows here exactly the linear u- w model reasoning. 

The final step of the general analysis scheme is to consider the interaction of 

the axial current with the two-nucleon system. All the tree-level diagrams of the 

non-linear u-moclel, contributing to this process to the first nonvanishing order in the 

interaction constant (O(g2
)), are shown in Figure :3.4. 

It is interesting to observe that the sets of diagrams in the first and the second 

rows of Figure :3.4 now satisfy PCAC separately, each by itself. Graphs including 

pion-production and those coming from the scalar meson exchange do not have to be 

considered together any more. This will allow introducing the low-mass scalar field 

in the analysis, whose contribution to the AXC calculation diagrams looks exactly 

the same as the set of digrams in the second line of Figure :3.4. 

Now one recalls that in order not to destroy successful mean field theory results 

of QHD I by the large cubic and quartic terms in the lagrangian, one has to consider 

the limit of a very large scalar meson mass (m; ~ oo ). In this limit the three diagrams 
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Figure 3.4: Lowest order amplitude for the axial current interaction with the two­
nucleon system in the non-linear realization of the a--model. 
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of Figure 3.4 that include the scalar meson propagator disappear, simplifying the 

analysis. Performing 1/M power counting, one shows that the contribution of the 

last diagram in the first line is larger by an order of M2 than the contribution from 

the first two diagrams. One can note that this term also satisfies PCAC separately, 

as it should. This last diagram provides the leading pion exchange axial charge term 

of order 0(1/M2
), which has exactly the same form as the one in equation (2.24) 

in the linear realization of the u - w model. The corresponding charge operator in 

coordinate space is 

( 
I ) -r,. 

X I + -. - _e- [ eik·Xt 8(2). r + eik·X2 5-( 1). r] 
X1r X1r 

(3.19) 

where 

This is a familiar result [9, 17] again up to the same factor of F.4 
2 (0). This charge 

operator is the second correction to the one-body current anlysis of the relativistic 

many-body problem of semileptonic weak processes with nuclei that is considered in 

this work. The contribution of the investigated terms to the spatial components of 

AXC is of order 0(1/M3
) and thus can be neglected. 

Thew-meson is included in the present analysis exactly as this has been done 

in the linear realization of the u - w model. The chiral rotation performed does 

not influence thew-field, thus the w-N vertex is exactly the same as before. A set 

of diagrams for calculating the w-exchange axial current also looks the same (see 

Figure 2.6). 

And at last an additional phenomenological low-mass scalar field u' can be 

introduced in the present model as a chiral singlet. Since the N N combination is 

chi rally symmetric, the scalar-meson-nucleon interaction term of the form gq(j
1 N N 
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is also chirally invariant. Such an interaction does not upset the QHD I calculations, 

so one can assign the new scalar field the mass mer = 550 MeV and the interaction 

constant g;_/47r ~ 7.3 required in QHD I or in the phenomenological N-N potential. 

The same set of diagrams in the second line of Figure 3.4, with the new mass and 

interaction constant, represents the interaction amplitude of the axial current with 

the two-nucleon system. 

Nucleon mass power counting arguments for the diagrams involving thew and 

low-mass u meson exchange, show that their contributions to the spatial part of AXC 

start only with the terms of order O(I/M3 ). Thus no AXC of order 0{1/M) are 

present in the non-linear realization of the u- w model in accord with the conclusion 

that no axial two-body currents of that order are required by PCA C to be present in the 

model (unlike the results obtained in the linear realization of the model). There are yet 

corrections from the exchange of these mesons in the axial exchange charge of order 

O(I/M2 ). They have an isospin structure different from that of the pion-exchange 

correction. For example, the u-field axial exchange charge has the form 

(±) 1 _ g; 8(2) . P2 ') -
A0 (u) - 2kf2 l'2 + m·.z r±(-) + X terms 

<T 

(3.20) 

where P 2 = p' 2 - P2· However, these contributions will not be considered in the 

present analysis. They are argued to be negligible in the processes considered due to 

a very short range of such heavier meson exchanges, comparing to the pion exchange2 • 

In summary, two leading corrections to the traditional axial current have been 

calculated in this Chapter in the non-linear realization of the u -w model: the spatial 

one-body relativistic correction (3.17) and the two-body axial exchange charge (3.19). 

Only these two corrections will be included in the following chapters in the analysis 

of few semileptonic weak processes with some selected nuclei. 

2This is the same argument that lead to the pion-pole dominance hypothesis. These contributions 
are predicted though to play an important role in some processes in heavy nuclei [16,56). 
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Chapter 4. 

Matrix elements 

The general expressions for observed experimental quantities for the processes 

of interest here - the muon-capture and beta-decay rates, and the charge-changing 

antineutrino scattering cross section - involving transitions between discrete nuclear 

states, have been derived in [7] in terms of the matrix elements of'the various multi­

poles of the weak currents. The relevant formulae are provided in Appendix B. The 

only assumptions made in the derivation of these results are that there exists a local 

weak current density operator j,,(x) for the target, that this current is localized in 

space, and that initial and final target states have definite angular momentum and 

parity quantum numbers .rr. Target recoil effects are taken into account in these 

formulae only through the kinematic factors. 

To introduce the two corrections (the one-body relativistic correction to the 

traditional axial current, and the two-body axial exchange charge due torr-exchange), 

obtained in the previous chapter, in this general analysis of the weak nuclear semilep­

tonic processes, one has to take the isospin structure of the considered operators into 

account correctly, and also to project out the multipoles of the calculated additional 
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operator terms 

MJM(k) - J dxjJ(kx)YJM(nr)Ps(x) 

l~M(k) - ~ J dx {'V [iJ(kx )YJM(fl:r)]} · .i5(x) 

i':J:tg5 (k) _ j dx [iJ(kx) Y./~1 (nx)] · .is(x) 

Tj~(k) _ ~ J dx { 'V x [iJ(kx) Y)~ 1 (nr)]} · is(x) ( 4.1) 

First, one can carry out the calculation of the contributions due to the rela­

tivistic correction. This calculation is simple because the considered correction is a 

one-body operator, and also its isospin structure is identical to that of the traditional 

one-body axial current. The multipole projections of the one-body relativistic cor­

rection to the axial current can be identified by splitting the new contribution to the 

interaction hamiltonian matrix element into leptonic and nucleonic parts somewhat 

differently than is done usually. Consider the weak interaction hamiltonian matrix 

element 

(JIIHwlli) = - ~ fll j dx e-ik-x(fllj~,(x)lli) 
G 

= - V2 [I· J Ji(k)- lo .foJi(k)] (4.2) 

and assume the calculated relativistic correction :3.17 to he the only current contribut­

ing to this expression: 

A • G [ ko ] [ a · P] , (±l o(JIIHwllz) =- V2 k2- m;. I . -FA T± k :!.A/ =I . J"Js (k) 

(4.3) 

The new lepton term I' is different from the usual one I by an extra scalar factor 

ko 
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This factor will not influence the calculation of the lepton traces, but rather will be 

passed directly to the final results. Now the §j~±>(x) operator in coordinate space is 

easily identified to be 

(4.4) 

where p~±)(x) is the familiar one-body axial charge operator (2.13}. Upon separating 

isospin dependence and projecting multipoles of this extra axial vector current, for 

the multipole operators one obtains: 

st;~ ' 11 (~) = s.fr;,~jl(n:) _ o 
p(l) ,..2 n'Af(n:x) 

- A Al J 

( 4.5) 

(4.6} 

where K. = lkl is the absolute value of the momentum transferred to the nucleus, and 

n~M (Kx} is an operator defined in (46) 

n~M(n.x} 

MfJ(n.x} 

- A1fJ (n.x)8 · ~ \7 + -1 
[\7 Afj~J (Kx}] · 8 

q 2q 

- iJ(n:x} YflJ(f2r) 

Matrix elements of this operator in the simple harmonic oscillator basis have been 

tabulated in (46). 

Thus, only the longitudinal multipoles of the relativistic correction are non­

zero, and the whole contribution of this term to the weak axial current interactions 

can be calculated by performing the substitution 

• 5 • 5 l.:o • 
LJ M(n:) -+ Ln..r(n:) + /.:2 _ m~ o L~ M(n.) (4.7} 

in all formulae for weak rates and cross sections. This trick simplifies significantly 

calculation of the effects due to the relativistic correction. 

Next one needs to perform multipole decomposition of the two-body piOn­

exchange current, as well as decomposition of the corresponding matrix elements in 
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terms of invariant quantities. This calculation JS rather straightforward but very 

tedious. 

It is not difficult to write down the general matrix element reduction formula 

for the two-body operator obtained: 

isospin space-spin 

For calculating discrete nuclear state wave functions, their parameterization 

m terms of the combinations of the shell model single-particle states is used here. 

The coefficients of this decomposition are determined by fitting available moderate­

q2 electromagnetic experimental data. In this analysis the electromagnetic two-body 

currents (whose magnitude is smaller by an extra factor of qjM) have been neglected. 

A simple harmonic oscillator basis is used in this work for the nuclear wave 

function parameterization. It is known that this basis allows one to account well for 

the low-transferred-momentum electromagnetic properties of nuclei while utilizing 

in the model just a few lowest single-particle states, to easily include kinematical 

corrections due to the center-of-mass motion, and to perform simply the eigenstates 

transition from the individual particle coordinates to the relative and center-of-mass 

coordinates (making use of rvloshinski brackets (57]) defined by 

R 

( 4.9) 

The above mentioned coordinate substitution is important because the two-body AXC 

operators have been calculated in terms of the relatin:- and center-of-mass coordinates, 

and, in order to calculate their matrix elements, one needs to have nuclear wave 

functions expressed correspondingly in these coordinates. 
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Coulomb multipoles are the only terms appearing in this calculation, since the 

current has only the axial charge component to order 0(1/M2 ). Following [6), one 

can calculate the two-body nuclear matrix elements of the relevant two-body axial 

charge. In order to project multipoles, it is useful to first calculate matrix elements 

of the two-body axial charge operator between the two-body nuclear states. 

The isospin part of the matrix elements can be separated and calculated triv­

ially. The two-body axial exchange charge is an isovector. The isospin operator 

involved can be expressed through irreducible tensor operators: 

[r(l) x r(2))± = -ih[r(l) ::_: r(2)L±t (4.10) 

Then the reduced isospin matrix element is 

! ! 1 2 '2 

! ! = ((T;, T1) 
'2 '2 

T! Ti (4.11) 

These results are obtained using the eigenstate phase conventions and general formu-

lae from the book by Edmonds [58). 

The two-body operators calculated in the previous chapters were all expressed 

there in terms of relative and center-of-mass coordinates of the two nucleons. The 

nuclear states are considered to be built from the shell-model single-nucleon states in 

thej-j coupling scheme, obtained in the center-of-well coordinate system. To calculate 

the space-spin parts of the axial-charge matrix elements, one has to transform to the 

L-S coupling scheme and then use .Moshinski transformation brakets [57) to arrive at 

eigenfunctions in the relative and center-of-mass coordinate system. 

Now one can decompose everything in terms of irreducible tensor operators 

and combine various terms to express the matrix element (which must be invariant 

under rotations) through possible invariant constructions. This procedure is similar 
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to one used by Dubach [6] for the decomposition of the electromagnetic MEC matrix 

elements. To ensure consistency of the present approach with previous work, Dubach's 

result for the electromagnetic case has been reproduced. After that a new result, 

allowing one to calculate exchange axial charge matrix elements in a j-j coupling 

two-particle states basis, has been obtained. Upon performing a rather lengthy but 

straightforward calculation involving a number of angular momentum recouplings, 

one arrives at the following formula: 

LS, L' S' C £' llR 

{A} {8} J MJ 

X ( -l)S-C'-M1+LA+La 

l~ l~ L' 

l l S' 
2 2 

j~ j~ Jf 

lt l2 L 

~~s 
jl j2 Ji 

L' L C L~ LA L 

8' s 1 L'a La LR 

Jf Ji J L' L L' 

x { ~ S' ~ } { £' 1 J } ( l 1 L ) ( llR J ) ( L~ C LA ) ( L'a lR La ) 
s t 1 l LR L 0 0 0 0 0 0 0 0 0 0 0 0 

(4.12) 

where the summation over {A} implies summation over all the quantum numbers 
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NA, LA; NA, LA. The factor 

arises from combining the two terms contributing to the axial charge operator expres­

sion; A's are the symmetry factors required for incorporating proper antisymmetry 

and normalization of the initial and final nuclear states 

( 4.13) 

The shorthand notation [j] = J2J + 1 is utilized. The X(NA LA, NB LB; llR) factors 

are Moshiuski brakets [57], which allow transformation of the eigenfunctions from the 

center-of-well coordinates to the relative and center-of-mass coordinates. The radial 

integrals are defined as 

( 4.14) 

(4.15) 

where 

I 9 2 ( mr.) 2 a = -F4- --
· 4rr 2/v/ 

/(7·) 
( 1 ) c-r~ 

= 1+- --
Xrr Xrr 

(4.16) 

Xrr = n2rr 1. 

The radial oscillator wave functions n(:c) entering the integrals are the radial oscil­

lator eigenfunctions normalized by 

These functions are calculated with the following oscillator parameters: bR = /fbosc 

- for the integral over the center-of-mass coordinate, br = J2bosc - for the integral 
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over the relative coordinate. The integral over the the center-of-mass coordinate can 

be done in terms of the confluent hypergeometric function (7), while the integral over 

the relative coordinate will be done numerically. 

One may now observe that the axial charge matrix element is expressed in the 

form 

On the other hand, consider the irreducible tensor operator decomposition of the 

axial charge operator: 

A~(k) _ I dx e-ik·x A~(x) 

- 4rr L ( -i)JYjM(f!k) I dxjJ(kx) YJM(nx) A~(x) 
JM 

(4.18) 

Hence the Coulomb multipole operator can be rewritten as 

(4.19) 

Substituting the result ( 4.17) for the axial charge matrix element and utilising the 

relation 

one obtains 

Making use of the orthonormality of the spherical harmonics, one arrives at the fol­

lowing formula for the reduced matrix elements of the Coulomb multipoles: 

(4.21) 
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Reduction of the ma.ny-body nuclear matrix elements to the one- a.nd two­

body matrix elements can be performed by making use of the fractional parentage 

coefficients technique developed in [47]. In the present work simple models for the 

light nuclei under consideration are used for calibration of the effects of the calculated 

corrections to the axial current. In most cases it will be possible to model the nuclear 

states as having only one or two nucleons present (or absent). The application of the 

fractional parentage coefficients formalism will be actually required only once (in the 

first case). 
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Chapter 5 

N urnerical Results 

The obtained corrections to the one-body axial current operator have complex 

isospin and space-spin structure. To get a feeling for the size of these corrections, 

one needs to estimate the magnitude of effects of the calculated corrections on the 

weak nuclear processes in the some real nuclei. As applications, the corrections to 

the one-body axial current obtained in this work ha\·e been included in the analysis 

of the three semileptonic weak process: 

1) ,a--decay: A(N, Z)-+ A*(N- 1, Z + 1) + e- + ve 
2) tt--capture: tt- + A(N -1, Z + 1)-+ A•(N, Z) + v~-' 
3) antineutrino scattering: i/1 + A*(N- 1, Z + 1) -+ .4.(N, Z) + [+ 

for two light nuclear systems. These systems are the 3H-3He isospin doublet, and the 

6 He-6Li neighboring nuclei. The objective here is to estimate the size of the extra 

contributions from the corrections to the traditional one-body axial currents, written 

out in equations (1.14) and (1.16), to the specified nuclear processes. One recalls 

that the weak current consists of the vector and axial-vector parts. Corrections to 

the one-body vector part of the weak currents can be obtained from the analysis of 

the electromagnetic exchange currents by performing the isospin rotation. They will 
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not be included in the present treatment1• The prime goal of the present treatment 

is to estimate effects of the axial-vector corrections to the "canonical" axial one-body 

currents [2]. To achieve this goal, the results for weak rates and cross sections obtained 

in the one-body approach [7] have been rederived here, and then the contributions 

from the two calculated corrections (3.17) and (3.19) to the traditional one-body axial 

current have been included. 

vyben calculating the weak interaction operator matrix elements, one has to 

calculate specific wave functions for the nuclear states involved. It is the second 

key element of the present strategy to treat the nuclear wave function part of all 

the electroweak nuclear matrix elements consistently. To eliminate the nuclear wave 

function uncertainties from the problem, the unified analysis of electroweak nuclear 

processes is performed in this work within the shell-model framework. The nuclear 

wave function is parameterized in terms of the shell-model single-particle levels, and 

corresponding parameters are determined from fitting electromagnetic data2
• Fol­

lowing the results of Donnelly and Walecka [41], use is made here of these data to 

determine single-body densities for the nucleus under consideration, parameterized in 

terms of the shell-model single-nucleon state contributions3 : 

('I!JI TJMJ,TMT(q) I'I!i) = L(a I TJ.\f;.TMT(q) I !3) 1/J!~ (5.1) 
c:r,/3 

with numerical coefficients 

(5.2) 

1The processes considered in this work: muon capture, nuclear beta decay and charge-changing 
neutrino scattering- are predominantly Gamow-Teller transitions for the nuclear systems considered. 
Selection rules determine that contributions from the vector part of the weak current are suppressed 
in these processes by extra powers of the ratio of the transferred momentum to the nucleon mass. 

2 Electromagnetic exchange currents have been calculated in this approach in [6]. 
3 Electromagnetic meson exchange currents are not included in the present analysis. Their intro­

duction would produce a small correction to the obtained results, while significantly complicating 
the calculations involved. 
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A simple harmonic oscillator basis, with an oscillator parameter determined 

by fitting the low transferred momentum ( e e') scattering data, is used for the single­

nucleon orbits in this work. First, some reasonable truncation of the number of 

shells important for the considered processes is performed. Then the corresponding 

coefficients .,pli are calculated in the "model independent way" by fitting available 

experimental electromagnetic results. The low-q2 properties of the two nuclear sys­

tems considered can be fit very well by expressing them in terms of a few shell-model 

states. The low-q2 region is important also for majority of considered weak processes. 

Thus in the present work the nuclear wave function for the simple systems considered 

can be determined purely from the electromagnetic data. One does not need to use 

any specific N-N potential as must be done in, for example, TDA or RPA calcula­

tions. The obtained densities are used to compute weak rates. The present procedure 

eliminates most of the usual nuclear structure uncertainties, arising from calculating 

the nuclear wave function in some specific model, from the analysis of weak rates and 

cross sections. 

5.1 Ground state ( J7r T) 

A=3 system 

(~ +!) isodoublet of the 

The 3H-3He system depicted in Figure 5.1 consists of the most simple nuclei 

featuring the weak processes of interest here. Very accurate calculations of the wave 

function for these three-body nuclear systems from first principles exist [42]. However, 

the objective of the present analysis is to estimate the scale of the effects due to 

the calculated corrections. For this purpose it is sufficient to implement the most 

straightforward description of the wave functions involved, in terms of the single­

particle shell-model states. This approach simplifies calculations considerably. As a 
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1 + 1 
-- --
2 2 

Figure 5.1: The 3H - 3He isodoublet ground states. 

model for the ground states of the isodoublet, the three nucleons in the (1sl) shell 
2 

picture is used. When calculating contribution of the one-body operator, it can be 

also viewed even simpler as a (ls1.)-1 hole state in the filled (1s1.) shell. Isospin 
2 2 

is considered to be a good symmetry for description of the ground states of the 

investigated nuclei. The only parameter of the model, b011c = 1.59 fm, is determined 

by fitting the elastic electromagnetic form factors in the low-transferred-momentum 

region [41]. Figure 1.8 shows that the simple model adopted for the description of the 

ground states of the isodoublet, models well the elastic electromagnetic form factors 

of the two A=3 nuclei in the low-q2 region, which is of prime interest for the treatment 

of the weak processes considered here. Results for the semileptonic weak rates for 

the 3H ++3He transitions with the corrections to the one-body axial current included, 

are compared in Table 5.1 with experimental results and the previous calculations in 

the one-body approach, where no exchange currents or relativistic corrections were 

present [41]. 

Transverse multipoles have been shown in the previous chapter to have no con­

tribution. from the obtained corrections to the one-body axial current. Only Coulomb 

and longitudinal multipoles of these corrections are non-zero. Selection rules origi­

nating from the symmetries of the considered system reduce the number of multipole 
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terms which are able to contribute to just a few. Angular momentum selection rules 

determine that only J = 0, 1 multipoles can contribute to the transitions between 

the J = i states. Parity conservation arguments eliminate Mg and Lg - half of the 

multipole terms remaining. Thus only the L~ multipole due to the relativistic one­

body correction to the axial current and Mf - due to axial exchange charge could 

have non-zero matrix elements in the transitions under consideration. 

Within the assumed model for the isodoublet ground state there is no contribu­

tion to any of the weak processes considered from the one-body relativistic correction 

to the axial current. This happens because the reduced matrix elements of operators 

between the Is-states only are required in the calculation: 

The only non-zero multipole of the relativistic correction L~ is expressed through the 

!11M1 operator defined in (46), but 

(Is II n; Ills} = o (5.4) 

For calculating effects of the AXC on this system, one can consider the ground 

state of the isodoublet as a (ls1)3 state. Then the two-body AXC contribution to the 
2 

weak ground state processes with this isodoublet can be analyzed with the help of 

the fractional parentage coefficients reduction of the three-body matrix element to the 

combination of the two-body matrix elements [47,48] (see Appendix C for details). 
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The objects of the form (i3 ( J7rT){Ii P ( J11Tu)] are coefficients of fractional parentage 

defined in (47]. Here these coefficients determine contributions of various possible 

two+one particle states to the resulting totally antisymm.etric three-particle state 

To simplify the analysis of the contribution of the Mf multipole due to axial 

exchange charge operator, one additional symmetry of the considered system can be 

utilized. Hermiticity of the charge and current operators and time reversal symmetry 

considerations combined, produce a general formula (obtained in [46]) for the one-body 

operator matrix elements 

<J T :: ..r ( ) :: J.·T.·) _ (-l)J+,+Jr-J;+Tr-T; (J.·T.· :: ..r ( ) :: J T ) f f .. IJT l'i. •• ' ' - ' ' •• IJT l'i. •• I I 

(5.6) 

where 

{ 

1 - for current 
'fJ = multipoles 

0 - for charge 
(5.7) 

If a similar relation were true for two-body operators between the two-body states, it 

would simplify the analysis drastically. 

There are two places where the one-body character of the operators involved 

had been used in the derivation of this formula. The first of them is the following 

relation for the isospin part of the current operator: 

(5.8) 

which is true because of the simple isospin dependence of a one-body current operator. 

It is interesting to see whether a similar relation would hold for the two-body charge 

operator (3.19) obtained. Recalling the isospin structure of this operator, one can 
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write for an isovector spherical component 

( [T(l) X T(2)]a )t = ( -iv'2 2: T(l)m1 T(2}m2 (lm1; lm2lla)) t 
m1m2 

= iv'2 2: ( -l}m1+m:a T(l)_m1 T(2)_m2 {lm1; lm2lla) (5.9) 
m1m2 

Now symmetry relations of the vector coupling coefficients from Edmonds [58] are 

used 

m1+m2 - a 

(j1m1; i2m2li3a) - ( -l}j1+i2-ja {it, -m1; i2, -m2lj3, -a) 

Then one obtains a relation 

( [T(l) X T(2)t )t = ( -lt (T(l) X T(2}ra 

which has exactly the same form as (5.8). 

(5.10) 

(5.11) 

(5.12} 

The second potential difference is in the transformation of the two-body states 

under time reversal. Recalling the transformation law of a single-body state 

(5.13) 

where Tis a time reversal operator, and constructing the proper two-body states by 

angular momentum coupling 

IJiMJ;) I: {JMJ,J'M~IJiMJ;) IJMJ) IJ'M~) 
MJMj 

one can obtain the transformation law of the two-body state. 

(5.14) 

T IJiMJJ - (-l)J+J' L (-l)MJ+Mj(JMJ,J'M~IJiMJ;) IJ,-MJ) IJ',-M~) 
MJMj 

- (-l)J+J'(-l)MJ; I: (J,-MJ,J',-M~IJiMJ;) IJMJ) IJ'M~)(5.15) 
MJMj 
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Using again a. vector coupling formula. (5.10) from Edmonds [58], one arrives at 

(5.16) 

This is again exactly the sa.me relation as the one for the single-nucleon state. Thus 

the general formula. (5.6) is still valid and can be used for the analysis of the matrix 

element of interest here (where J1 = Ji and T, = Ti)· Application of this formula 

to equation (5.5) results in exact cancellation of the two matrix elements of the 

M~ multipole.4 Thus there are no effects of the AXCs on the processes involving 

transitions between the ground states of the 3 H-3 He isodoublet in this model. 

These results serve to justify the close agreement of the weak rates calculated 

within the one-body approach, with experimental results, at least as far as the dom­

inant axial vector current contributions are concerned (see Table 5.1). 

exper. 1-body +relativ. +pion 
theory correction X current 

p--decay: 
w11{10-9 sec-1 ) 1. 79±0.0075 1.84 1.84 1.84 
p.--capture: 
wiL (sec-1

) 1505±466 1534 1534 1534 

Table 5.1: 3H-3He weak transition rates. 

5.2 (1 +o)++(O+l) transitions in the A=6 system 

The second system investigated in the present work consists of two A=6 neigh­

boring nuclei (shown in Figure 5.2): the 6He+-+- 6 Li transitions are considered. Three 

4This cancellation was first obtained by explicit calculation of the two-body matrix elements 
involved. 

80 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

3.562 MeV 

6L· 31 

Figure 5.2: The 6He - 6Li nuclei lowest energy levels. 

facts make this system interesting for the present analysis: 

1) These are non-trivial nuclei. It would be a daunting task to calculate the 

required wave functions from the first principles. 

2) There are high precision electromagnetic data available for these nuclei. 

3) This is the simplest system where one can now expect to see some nontrivial 

effects of the calculated corrections to the one-body axial currents. 

The following model for the 6Li nucleus is assumed here (after [52]): an inert 

core (closed Is-shell) + two valence nucleons producing the following general wave 

function for the ground or first excited states, correspondingly: 

- Al(lp~)2 1 +o) + Bl(lp!lP!.)l +o) + Cl(lp!.)21 +o) 
2 2 2 2 

- Dl(lp!)2 o+1) + El(lp1.)2 o+1) 
2 2 

(5.17) 

Again the simple harmonic oscillator basis is used for parameterizing the nuclear wave 

function. This model works well for a description of electromagnetic processes with 

the system. Parameters of the model are determined through simultaneous fitting 

the magnetic dipole and electric quadrupole moments of the 6Li ground state, as well 

as the elastic and inelastic magnetic form factors, calculated in terms of the model 
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wave function of (5.17). For instance, the elastic magnetic form factor is 

(5.18) 

where y = (I q I bo6c/2)2 and Cte,!3e are certain constants. The result for the inelas­

tic form factor differs from (5.18) only by diferent values of the constants involved 

(see Figure 1.10). The best set of the simultaneous values of parameters is given in 

Table 5.2 [52]: 

A B c D E bo•c(fm) 
0.810 -0.581 0.084 0.80 0.60 2.03 

±0.001 ±0.001 ±0.002 ±0.03 ±0.04 ±0.02 

Table 5.2: Parameters of the wave function. 

For the considered transition the angular momentum selection rules determine 

that only the J = 1 multipoles can contribute. Thus to estimate effects of the 

calculated corrections to the axial current, one has to calculate the matrix elements 

of the L~ operator due to the relativistic one-body correction, and the matrix elements 

of the Mf operator projected from the axial exchange charge. 

For the weak charge changing processes with the 6He-6Li system two combi­

nations of the initial and final isospins of the system are possible: (Ti = 0, T1 = 1) or 

(Ti = 1, T, = 0). In both these cases the isospin matrix element is easily calculated 

to be 

( = -2iv3 (5.19) 

In the adopted model nuclear wave functions are just linear superpositions of 

simple two-nucleon states. Thus the general formula ( 4.12) can be utilized to calcu-
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late the required matrix elements of the two-body axial exchange charge operator. 

Numerical evaluation of the required spatial matrix elements has been performed. 

For consideration of the two-body operators, proper description of the wave 

function at small interparticle separations becomes an important issue. To estimate 

effects of the incorrect behavior of the simple harmonic oscillator basis wave functions 

at short distances, a phenomenological correlation function g(r) (as in [6]) has been 

introduced in the calculation in the following way: 

(5.20) 

Only the s-state wave functions must be modified by this correlation function. The 

function is chosen to have the form: 

(5.21) 

where d = 0.84 fm has been determined from a fit to the nuclear matter properties, 

and the C(NA) coefficient is introduced to preserve the normalization of the s-state 

wave function. This ad hoc correlation function forces the wave functions to vanish 

at the short distances, mocking up the presence of the repulsive core. Calculations 

of the weak rates have been performed with and without this correlation function to 

see how significant is the error made when using the simple harmonic oscillator wave 

functions for the single-nucleon states. 

The semileptonic weak rates in Table 1.3 have been calculated for the 

(0+1)++(1 +o) transitions in 6He-6Li system, upon performing the numerical evalua­

tion of the weak current multi pole matrix elements with the wave function coefficients 

and the correlation function obtained above. 

Here the F superscript, a quantum number of the F = J + S operator, distin­

guishes JL-capture processes from different hyperfi.ne states. The w~ corresponds to 

the statistically averaged JL-capture rate. 
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exper. 1-body +relativ. +pion with corr. Total Diff 
theory correction X current function (%) 

{3--decay: 
WtJ (sec-L) 0.8647 0.876 0.872 0.869 0.869 0.865 -1.3 

±0.003 
,.,.--capture: 
w"'(sec-L)~ 1600!~8 1381 1381 1386 1385 1385 0.2 
w!=112 (sec-1) 3843 3843 3865 3860 3860 0.4 
w;=312 (sec-1) 150.2 150.2 137.1 140.3 140.3 -6.6 

Table 5.3: Weak rates for the (0+1)++(1+0) transitions in the 6He-6 Li system. 

In the first column of the table available experimental results are provided. The 

second column shows the traditional results of the weak rates calculations, where only 

the single-nucleon axial currents have been included [41,49,52]. The third and fourth 

columns of the table display the separate influences on the weak rates of the relativistic 

correction and pion exchange charge, correspondingly. The fifth column shows the 

latter result with a correlation function (5.21) included into consideration. The next 

column shows the cumulative rates with both considered corrections included, while 

the last column expresses the effect due to the corrections in the percent fraction of 

the one-body result. The largest effect due to the corrections is predicted for the 

muon-capture rate from the hyperfine F = 3/2 state (-6.6%). The total effect of 

the corrections for the beta-decay rate is small, but it is interesting that the one­

body relativistic correction obtained in this work. produces here an effect of about 

the same size with the one from the pion axial exchange charge. Consideration of 

the phenomenological correlation function corrects the result for the axial exchange 

charge contribution by at most 20%, as was expected. In general, the smallness of 

the calculated effects serve as a justification of the previous successful analysis of weak 

processes in terms of the one-body currents [41,49,52]. 
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The same conclusion is made upon consideration of the results for the charge­

changing antineutrino cross section in the process 

Ve +6 Li -+6 He(g.s.) + e+ 

A prediction for the differential scattering cross section with the obtained corrections 

to the one-body effects included in the analysis, are shown in Figure 5.3. These results 

do not differ significantly, up to high transferred momentum, from the curve obtained 

in the one-body analysis, again justifying the legitimacy of the previous one-body 

analysis. 
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Figure 5.3: Charge-changing antineutrino scattering cross section on 6Li. The linear­
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of the same results at some large q2 where effects of exchange currents are expected 
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Chapter 6 

Conclusions to Part I 

1. In the present work AXC up to order 0(1/M2 ) are calculated consistently in 

the linear and non-linear realizations of the u-w model. The u-w model is a chirally 

symmetric lagrangian model containing 71", u and w mesons, as well as nucleons, that 

provides systematic explanation of a vast number of nuclear physics results. 

2. Splitting the corrections to the traditional one-body nonrelativistic approx­

imation of the full many-body nuclear problem is explicitly shown to be a model­

dependent procedure. 

3. In the linear realization of the u- w model, AXC of order 0(1/M) due to 

the isoscalar, scalar and vector, meson exchange are shown to be required to satisfy 

PCAC. These AXC are calculated explicitly and shown to help in preserving PCAC 

in this model. 

4. In both realizations, a familiar axial exchange charge operator of order 

0(1/M2 ) due to pion exchange is reproduced, differing from the result of other work by 

an extra factor of F1 ~ 1.5. This extra factor appears in the present approach because 

the correct Goldberger-Treiman relation and pion-pole dominance are preserved at 

each step of the calculation. 
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5. In the non-linear realization of the u - w model, a new leading one-body 

relativistic correction of order 0(1/M) to the one-body axial current, required for the 

PCAC satisfaction in momentum space to order 0(1/M2), is derived. 

6. The last two corrections to the traditional nuclear one-body axial current 

are included in the analysis of the weak charge-changing semileptonic processes in 

two selected light nuclear systems. 

7. To determine the nuclear wave functions necessary for calculating matrix ele­

ments of the axial charge operators, a unified analysis of electroweak nuclear processes 

is performed in this work within the simple harmonic oscillator shell-model framework. 

The nuclear wave function is parameterized in terms of the shell-model single-particle 

levels, and the corresponding parameters are determined from the available electro­

magnetic data. This procedure eliminates most nuclear structure uncertainties from 

the analysis of weak rates and cross sections. 

8. Effects of the calculated corrections on the weak cross sections and rates are 

shown to be very small (never exceeding a few percent). In general, the smallness of 

the calculated effects serves as a justification for the success of the previous analysis 

of weak processes considered in terms of the one-body weak currents. 

9. There can be other nuclear systems where the calculated corrections would 

contribute significantly to some weak processes. It is important to find such nuclear 

systems and test carefully the obtained results. However, such a search appears to 

be a highly non-trivial endeavor due to the large number and complexity of matrix 

elements which have to be analyzed. 
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Part II 

Electroweak processes involving 

(o+o) excitations in nuclei 
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Chapter 7 

Introduction to the problem 

The simple ground state quantum numbers of (O+O)gnd nuclei are known to 

allow relations connecting various elastic electroweak processes for the same nucleus. 

Some of these relations provide new unique tools to study nuclear and nucleon struc­

ture. For example, strange quark pairs ( s, s) appear to contribute significantly to the 

properties of the nucleon (59]. So far little is known about various strange quark ma­

trix elements of the nucleon, and ways to obtain experimental information on these 

matrix elements are intensively discussed in the literature (60-64]. Parity violating 

(PV) elastic polarized electron scattering and elastic neutrino scattering experiments 

on light (Jrr = o+, T = 0) nuclei have been proposed as probes of the electric strange 

form factor of the nucleon (65]. As noted in (66], because of potential isospin mixing 

and decrease in the figure-of-merit, only 4He and 12C (and possibly 160) nuclei appear 

to be suitable targets for such experiments. Experiments aimed at determination of 

the ground state matrix element of the weak strange current from the PV asymmetry 

in elastic polarized electron scattering on 4He are planned for CEBAF (67,68]. All of 

the discussed nuclei have low-lying (O+O)"' excited states. Analysis shows that one can 

obtain results similar to the elastic case when the same electroweak processes excite 
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a. co+o)gnd nucleus to its co+o)• state. In the following discussion, inelastic processes 

will mean just such excitations. The present work has been motivated by the ques­

tions of what new issues of nuclear structure can be addressed, and whether any of 

the proposed measurements can be enhanced if, in addition to an elastic electroweak 

experiment, one measures excitation of a. co+o)• state in the sa.me nucleus. 

Chapter 8 describes in detail general relations for the cross sections of inelastic 

electron and neutrino scattering. It is shown, for example, that within the single 

nucleon picture of the nucleus the inelastic and elastic PV asymmetries are identi­

cal. Measuring the PV asymmetry in the inelastic polarized electron scattering cross 

section could enable one to extract information about a. new transition nuclear ma­

trix element of the vector strange quark current in the nucleus under consideration. 

Knowledge of the inelastic charge form factor of the nucleus for the region of interme­

diate transfered momentum q2 (here q = jq I is the absolute value of the transferred 

three-momentum) will be necessary to design such experiments. The central goal of 

the present analysis is to urge experimental investigation of how well the inelastic 

co+o)• resonance in the electron scattering can be seen at intermediate q2' and to 

provide some theoretical guidance for such experiments. 

In Chapter 9 the existing low transfered momentum (q2 < 2.4 fm-2
) data 

on the inelastic charge form factor of 4He is explained, and its higher q2 (up to 

10 rm-2
) behavior is predicted with the help of three simple models used for the 

4He nucleus. While the (o+o)* state is indeed the first excited state of 4He, the 

situation here is complicated by the fact that this state lies just above the break-up 

threshold. Although the (o+o)* states in 12C and 160 are distinct bound states, the 

4He nucleus is considered in this work because the PV electron scattering experiment 

will actually be done on this nucleus, and corresponding neutrino experiments are 

under consideration. The relatively crude estimates of the inelastic electron scattering 

form factor in the present work are aimed at the determination of the size of the form 
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factor prior to attempting to perform state-of-the-art calculations of the structure 

of the (o+ot excitation of the 4He nucleus. Thus the questions of the break-up 

background, radiative corrections, parity and isospin mixing, and meson exchange 

currents (MEC) contributions are set aside in the present analysis. The form factor 

is shown to be large enough to be seen in future CEBAF experiments. CEBAF will 

have luminosity and resolution sufficient to measure the inelastic charge form factor 

and PV asymmetry in the inelastic polarized electron scattering on 4He up to high 

momentum transfers q2• 

The inelastic transition is, however, estimated to play only a marginal role in 

PV experiments aimed at extracting information about the small strangeness current 

contribution because experiments of sufficient accuracy will be very difficult, and their 

interpretation complicated. 
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Chapter 8 

General Electroweak Relations 

The analysis is started by considering two inelastic electroweak processes caus­

ing a (o+O)gnd -+ (O+O)* transition of a target nucleus (assuming pure quantum 

numbers for both states): polarized electron scattering and neutrino scattering. The 

only assumptions made in the analysis are the validity of the Standard Model and 

strong isospin symmetry. Spin and isospin selection rules then allow one to derive 

simple relations between weak and electromagnetic inelastic processes with a nucleus 

in the same way as for elastic processes. The fact that isospin T=O for initial and final 

states of the target implies that only the isoscalar part of the weak neutral current can 

contribute to hadronic matrix elements. In the nuclear domain approximation, when 

a nucleus is assumed to contain only u, d quarks and their antiquarks, this implies 

that only the following term of the weak neutral current of quarks contributes (2]: 

J(o) = -2 sin2 8 J..., 
~ w ~ (8.1) 

Thus, in the nuclear domain, PV asymmetry in polarized electron scattering is inde­

pendent of the nuclear structure, and the neutrino scattering cross section is propor­

tional to the electron scattering cross section. Corresponding formulae are discussed 

below. 
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In the real world, heavy quarks of other flavors will contribute to the isoscalar 

part of the weak current. These quarks can exist as virtual q, q pairs in a nucleus. 

Only the contribution of s, :S quarks will be taken into account because quarks of 

other flavors are much heavier and their influence can be neglected. The additional 

isoscalar piece of the weak neutral current is then 

(8.2) 

The axial-vector part of this current cannot contribute to the processes considered 

here because initial and final states of the target have J1r = o+. Thus the vector part 

of the strange current can be studied by observing the contribution it makes to the 

processes discussed here. 

Let us consider the PV part of the inelastic polarized electron scattering. The 

PV asymmetry A is defined in the usual way: 

A = dut - du~ 
- dut + du~ (8.3) 

Then the same way of reasoning that was used in the case of PV in the elastic 

scattering [2] generates the result (within the one-photon-exchange approximation) 

Ainel = ( ~~Ct) sin
20w ~ (8.4) 

where ~ is defined by 

(8.5) 

Precise definition of the form factors is given in the next chapter. Here Q designates 

the absolute value of the space-like four-vector of the transferred momentum squared: 

Q2 = -q"'q"'. 

The same formula without thee factor represents asymmetry in the nuclear 

domain. Deviation of Ainel from the simple nuclear domain result measures either 
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the strange quark contribution to the nuclear transition considered, or the degree of 

strong isospin symmetry breakdown. For light nuclei, isospin symmetry holds well [66] 

and the measured deviation would come from the strange quark effects. a'F~0~(ci) 

measures directly a new nuclear matrix element of the vector strange current for all 

q2 considered. To perform an informative PV electron scattering experiment, one 

would have to measure the inelastic charge form factor at least up to q2 around which 

the figure-of-merit for the transition reaches its maximum (in reality- to still higher 

q2, so that the elastic scattering radiation tail can be separated). 

For neutrino-nucleus inelastic scattering the same argument as the one used 

for the elastic process generates the result 

( 
du ) ""' - ( G q2 ) 2 sin 40 ( du ) ee' e2 

d!ld€2 inel- v'21ra w d!ld€2 inel 
(8.6) 

where the factor e has been defined above in (8.5). Here one encounters the second 

power of the small quantity G on the right hand side, so the effect is very small. How­

ever, in principle, this relation can be used to make a model-independent prediction of 

the inelastic neutrino scattering cross section in the nuclear domain approximation1 

(the same formula with no e factor). One can use the corresponding elastic relation 

to determine neutrino flux (which is the largest source of uncertainty in neutrino 

experiments (69, 70]), and thus to predict the counting rate for the inelastic case. 

It is important to note that the above relations are true to all orders in QCD. 

If one neglects meson exchange currents (MEC), the Coulomb multipole oper­

ator becomes a one-body operator. If one further assumes both ground and excited 

(Q+Q)* states to consist of nucleons in s-states only, then the spin-orbit part of the 

Coulomb operator does not contribute to the inelastic form factor (spin-orbit correc­

tions to Ael due to 15% D-state admixture in (O+O)gnd have been estimated to be 

1This excitation is, in principle, easier to detect than the elastic scattering. The excited state 
is unstable, and one would observe two new slow charged particles in the final state p+3 H (one of 
which, 3H, experiences ,8-decay) rather than just recoiling neutral 4He in the elastic case. 
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negligible [71]). Then the nuclear structure cancels from the ratio of the form factors, 

leaving only single nucleon form factors behind: 

5F~o11(q2) ~ G~>(q2) 
F~(q2) a<T-o>c 2) 

S-1tate E q 
(8.7) 

Here GE are Sachs electric form factors. In this limit, nuclear structure does not enter 

the results for the PV asymmetry, and for the same q2 

Ainel = l 
Ae1 

(8.8) 

Deviations of the magnitude of the ratio from unity could allow one to test (in­

dependently of the nucleon strangeness issue) the validity of the nuclear picture that 

neglects MEC. In this test one compares (for a pure excited state) two experimental 

quantities rather than an experiment to a (model-dependent) impulse approximation 

calculation as is usual. If one measures elastic and inelastic asymmetries in the same 

experiment, their ratio is independent of the polarization of the electron beam. Some 

of the helicity-beam-param.eters correlations, which constitute the most important 

class of systematic errors in asymmetry measurements (72], will also be reduced in 

this ratio. 

The foregoing analysis is valid for any light (o+o) nucleus. In the rest of the 

present work, however, the 4 He nucleus will be considered, because it is a practically 

important example. Experiments to determine the ground-state nuclear matrix el­

ement of the strange current from the asymmetry in the elastic polarized electron 

scattering on that nucleus are planned for CEBAF (67, 68]. It could be possible to 

use the same equipment to measure the analogous inelastic process. The possibility 

of measuring inelastic neutrino scattering on 4He is also discussed (73]. It should 

be noted that isospin symmetry holds well for the 4 He nucleus [66]. To be able to 

make real use of the relations of this chapter between elastic and inelastic processes, 

one should measure F~1( q2) for higher momentum transfers. To make an estimate of 
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where in q2 the figure-of-merit for the PV asymmetry has a. maximum, a.nd whether it 

is reasonable to expect that the inelastic charge form factor is large enough a.t this q2 

to allow measuring the cross section, the existing low-q2 data. for 4 He is explained here 

within three simple models for the (o+o)• state. The corresponding curves for the 

inelastic form factor are projected to higher q2• Very few measurements of F~1(q2 ) 

have been performed so far [7 4]. 
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Chapter 9 

Inelastic Charge Form Factor of 

4He 

In the energy level diagram of 4He in Fig. 9.1, taken from [75], one can see that 

this nucleus actually has the ground and first excited states with the required quan­

tum numbers. The (O+O)"' excited state lies at 20.21 MeV, just above the threshold 

of the break-up into p+3H at 19.8 MeV. A discussion of the accuracy of the quantum 

numbers determination for this state is presented in [74, 76]. It is the lowest excited 

state of 4He, with the next closest resonant level (o-o) at 21.01 MeV. Thus to de­

tect excitation of the (o+O)"' level one needs energy resolution better than 0.9 MeV. 

CEBAF's Hall A detectors will have high momentum resolution of ~pfp ~ 10-4 , thus 

making detection of the first excited state possible. This state was observed as a 

narrow Breit-Wigner resonance with r ~ 240 keVin the inelastic electron scattering 

experiment in Mainz [74] (see Fig. 9.2). Radiative corrections were subtracted while 

analyzing the data, and the break-up background was separated by fitting it with a 

smooth curve. However, the inelastic charge form factor of 4He was measured in this 

experiment only up to q2 < 2.4 fm- 2 and experimental errors are large. 
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Figure 9.1: Energy levels diagram of 4 He. J1r, T quantum numbers are shown. All 
energies are in MeV. 
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Figure 9.2: Double differential cross section for 4He( e e')4He. The solid line represents 
the break-up background. The (o+o) excitation at 20.21 MeV is seen as a sharp 
resonance. Taken from [74]. 

In the analysis of the (o+o)• resonance there arise questions of how well one 

can take into account the presence of the break-up background, as well as parity 

and isospin mixing with the neighboring states and the continuum. These questions 

need to be answered for obtaining quantitative predictions for experiments with the 

(o+o)• state. At the same time, their consideration makes the analysis significantly 

more difficult. It would seem reasonable to have first an experimental result whether 

the resonance can be discerned from the background at the q2 of interest. Since 

the goal of the present work is to provide a qualitative estimate of what these q2 

are, and whether the co+o)gnd-+ (o+o)• transition can be used in future electroweak 

experiments, the above mentioned complications will not be considered here. Pure 

quantum numbers and a resonant character are assumed for the co+o)• state. Just 

one note can be made here, that an admixture of the co-o) state cannot contribute 

to the inelastic electron scattering cross section or inelastic PV asymmetry because 

each of them contains a matrix element of the EM current at least once. This current 
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has no multipole capable of connecting the (o+o) and (o-o) states. For neutrino 

scattering, however, there exists a pure axial-current term, and one still faces the 

question of parity mixing. 

Only the Coulomb multipole M~cf can contribute to excitation of the co+o)* 

level in electron scattering, so by measuring a differential cross section (with the 

break-up background subtracted) one measures the inelastic charge form factor of the 

transition. To define what exactly is meant here by the charge form factor one can 

write a fomula for the electron scattering cross section integrated over the resonance 

(with a break-up background and radiative corrections excluded): 

Here 

is a recoil factor and 

(d )
ee' 4 

(f 2 q ch22 
dn = Z CTm-=41 .Finel(q ) I r 

(o+o)rud-t(o+o)• q 

_ o 2cos2( () /2) 
CTM = 4f~sin2 (6/2) 

(9.1) 

(9.2) 

(9.3) 

is Mott cross section. The first two factors on the right hand side are chosen to 

normalize the form factor in the same formula for the elastic case to Fef(O) = 1. 

The elastic form factor of 4He has been measured up to q2 ~ 45 fm-2 [77]. 

It was parameterized well analytically in the region below q2 ~ 12 fm - 2 by the 

formula [78] 

(9.4) 

where a = 0.316 fm and b = 0.675 fm. Figure 9.3 shows the existing data on the 

elastic and inelastic form factors of "He in this region. 
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Figure 9.3: Experimental data on 4He form factors. Points with circles represent 
Fi~ei(q2 ) [74], while points with diamonds represent Ft(q2) [78]. Short-dashed line 
represents the analytical approximation of F:f(q2 ). Long-dashed and solid lines repre­
sent the s.h.o. model and the finite square well model fits to Ft( q2) correspondingly. 
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Here, an attempt is made to explain the measured low-q2 data on the inelastic 

charge form factor, and to predict its behavior at higher q2 , using the following three 

simple models of the 4He nucleus: 

• Collective model of Werntz and Uberal [79], 

and two shell models with potentials of: 

• Simple harmonic oscillator, 

• Finite square-well. 

Far more sophisticated calculations of the structure of the (o+o)• state in 4He have 

been performed [80, 81]. However, the objectives of the present investigation can be 

achieved performing the analysis within the mentioned simple models. 

9.1 Collective Model ("Breathing Mode") 

This model of the (o+o) excitation of 4 He was developed first by Werntz 

and Uberal in 1964 [79]. They approximated the 4He nucleus by a system with a 

continuous matter distribution p0(r). The first excited (o+o)• state is modeled by the 

system experiencing radial scaling oscillations ("breathing mode"). The scaling factor 

is assumed to be small and to change harmonically. This breathing mode motion is 

quantized, and position of the first excitation of the harmonic oscillator is fit to the 

measured energy of the lowest (O+O)* state of 4He. All the parameters of the model 

are now determined, and one obtains the following formula for the inelastic charge 

form factor: 

dFch(q2) 
p,ch (q2) =canst x q _e=1 ~...;.. 

mel dq 
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It seems, however, to be an oversimplification to treat 4He, consisting of just 

four nucleons, a.s a. continuous matter distribution experiencing, a.s a. whole, scaled 

oscillations. One can lea.ve an overall constant factor to be fit to the existing data. for 

.fi~1(q2 ) a.t low q2 [74]. For Fjt(q2) the analytic expression mentioned in the previous 

section is used. The data. is explained well by const=0.04 with x2 / N =0.98 if one 

excludes the first three points with the lowest q2 (see results in Fig. 9.6). One cannot 

fit all experimental points within this model. The first three points a.ctua.lly come 

from a. different experiment a.nd, keeping in mind the difficulty of the measurement, 

this fact ca.n be a. possible justification to consider the curve that fits well the rest of 

the experimental data.. This issue will be addressed in greater detail when discussing 

the finite square-well model. 

9.2 Single-Particle Models 

9.2.1 General discussion 

One can start by considering the (o+o)• state of 4He to be discrete, and apply 

here the genera.! formula for the multipole decomposition of the electron scattering 

cross section. Only the J =0 Coulomb multipole will contribute to the process inves­

tigated. The Coulomb operator is taken to be a. single-particle operator, since meson 

exchange currents are known to make only a minor contribution to electron scattering 

through the isosca.lar charge multipoles, for the intermediate q2 that are of interest 

here. Then the Coulomb monopole matrix element is decomposed in a single-particle 

basis (46] 

- ~ L:<a II M~0>(q) II b) w6~(ab) 
v2 a,b 

(9.6) 
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where 

is a single-particle Coulomb operator and 

(9.7) 

are just numerical coefficients. 

For the ground state of 4He a closed-shell configuration with all four nucle­

ons in (ls) state is assumed. Under this assumption the elastic charge form factor 

is approximated well in the region of interest by both models considered here (see 

Fig. 9.3). Thus for calculating F~(q2) one considers the filled s-shell, so w6~ = 2c5a6 

and 

(9.8) 

Let us apply selection rules to the states which the Coulomb monopole opera­

tor, as a single-particle operator, will see among those comprising the co+o)* excited 

state: 

I (ls)-1 (1p)) is ruled out by parity conservation, 

I (ls)-1 (2s)) are allowed (as well as I (ls)-1 (ns)) in general), 

I (ls)-1 (ld)) and higher l excitations are ruled out since their angular momenta 

cannot add to produce J =0. 

In models with a continuum spectrum, l = 0 states from the continuum can also 

contribute. 

For each allowed single-particle contribution to the excited state of 4 He there 

is a particle-hole transition, and for any pure particle-hole transition w6~(ab) = c5arc5b& 

in the calculation of Fj~1(q2 ). One can use any complete system of states for decom­

position of the (o+o)* state of 4He, but it would be useful to find a model in which 
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contributions of the few lowest excited states approximate well the inelastic charge 

form factor. 

While comparing form factors calculated in the shell model to experimental 

results, one has to multiply the former by a single nucleon form factor given by 

(9.9) 

and corrections due to the center-of-mass motion have to be taken into account [46] 

(see below). 

9.2.2 Simple Harmonic Oscillator Model 

There are two main reasons to start the analysis by considering a simple har­

monic oscillator potential model: 

1. The necessary matrix elements are easy to calculate in the closed form. 

2. The center-of-mass corrections to the form factor can be treated exactly. 

In this model 

(9.10) 

where 

(9.11) 

and bose is the oscillator parameter of the model. Then 

(9.12) 

Here FcM = eY/4• This is a correction subtracting the spurious effect of the center­

of-mass motion. 

The oscillator parameter is determined by fitting the experimental Fef( q2 ) for 

q2 < 10 fm-2 (see Fig. 9.3). This is about how far in q2 the simple harmonic oscillator 
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model can approximate the experimental F;f( q2), and thus how far F;f( q2) can be 

predicted in this model. The result of fitting is boac = 1.39 fm. Then for the relative 

energy of the (2s) state one obtains Eexc = 21iw ~ 43 MeV. This is about twice the 

energy of (o+o)• in 4 He. One can try to model the excited nucleus by considering it 

to consist of any number of nucleons promoted to the three lowest shell-model states 

(i.e. 1p, 2s, 1d). 

Then, in accord with the general discussion, 

(9.13) 

or upon integration of the matrix element: 

p,SM(q2) = ~y e-y 
mel J6 (9.14) 

Here a is the probability amplitude for the co+o)• state to be the I (1s )-1 , (2s)) 

excitation of the shell model. If the co+o)· state were a pure 1 (1s )-1 , (2s)) state of 

the shell model, a would be equal to 1. Fitting all experimental points excluding 

the three with the lowest q2
, one determines a= 0.18 with x2/N = 0.92. Again one 

cannot fit all the experimental points. One possible reason for that was mentioned 

in connection with the collective model, another is discussed in the next paragraph. 

The resulting curve for F~1(q2 ) is shown in Fig. 9.6. It is seen to follow closely the 

curve obtained in the "breathing mode" collective model. 

There exist reasons to take the results of the simple harmonic oscillator model 

with a grain of salt. In calculating the charge form factor, the charge density matrix 

element in the integral is weighted by the square of the radial distance r 2 , ampli­

fying the contribution of the tail of the wave function. However, all states in the 

simple harmonic oscillator potential are bound, while the (o+o)• state in 4He lies, in 

fact, above the threshold of the break-up continuum. The simple harmonic oscillator 

model makes a poor approximation of the region of large r, which is important in 
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the problem. In momentum space this corresponds to the low-q2 region, so a failure 

of an attempt to fit the first three points by a theoretical curve can be attributed to 

the shortcomings of the model chosen. To improve these results one has to consider 

the co+o)• state as a resonance, and to choose a shell-model potential that has a 

continuum spectrum. The shape of the potential that is used for small r is relatively 

unimportant. To make the formulae treatable, the model potential is chosen to have 

the shape of a finite square-well. 

9.2.3 Finite Square-Well Model 

Now the problem is reconsidered on more general grounds, taking into account 

that the final (o+o)• state is actually a resonance in the break-up continuum. The 

final nuclear state is taken to be I/) = lp2 ~t<->), which is an exact two-particle 

scattering state of p+3 H. All kinematical variables are defined in Fig. 9.4. Then one 

can follow the analysis of coincidence experiments given in [46]. The general formula 

for the coincidence cross section can be found there expressed in terms of 

(9.15) 

where W is the final energy of hadrons in the c.m. frame. 

On the other hand, from experiment it is known that the scattering is resonant 

in the (O+O)gnd -+ (o+o)• channel and can be parameterized in the Breit-Wigner form: 

After integration over the electron energy, the term in the square brackets gives the 

recoil factor and the formula (9.1) is reproduced. 

The experimental formula (9.16) for the double-differential cross section can 

be deduced from the general result for the coincidence cross section if one assumes 
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p 

e 

Figure 9.4: Diagram for the break-up scattering 4He(e e'p)3He. 

that the hadronic current matrix element has the following form: 

(K.)l/2 (r)112 1 A 

; .:fc = 2rr W- WR + if/2 (0 II M~ul(q) II O)res (9.17) 

In this formula the q-dependence is separated from the W-dependence, because the 

matrix element of the Coulomb operator is evaluated at the resonant energy. However, 

one still does not know the wave functions necessary to evaluate this matrix element. 

The question is whether one can convert the general matrix element of the 

current into this form with the help of the single-particle decomposition of the J =0 

Coulomb operator, which is the only operator to contribute to .:lc in the considered 

process 

(9.18) 

where MT ~ .J E1E2 • The decomposition of Equation (9.6) is exact for any single­

particle operator in any complete single-particle basis. 

109 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

U(r) 

-------------- "l 
--------------· ~ 1=0 

0 
-------------------~-----

r 

-19.8MeV 

-------+---------------~ 

R=2.08 fm 

Figure 9.5: Potential of the finite square-well model. 
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In this work the finite square-well model potential shown in Fig. 9.5 is con­

sidered. The well parameters are adjusted to reproduce the correct single-nucleon 

binding energy in 4He. One assumes that the (O+O)gnd is a closed (1s) shell, and 

builds the (O+O)* state out of the l = 0 continuum states. The depth of the well 

U0 ( R) is determined first as a function of R by matching wave functions at the edge 

of the well. Then one determines FjM( q2 , R) and fits the experimental data on the 

elastic charge form factor up to q2 = 10 fm-2 to determineR (see Fig. 9.3). The 

valueR= 2.08 fm approximates the data on Fe'f(q2) well. Then Uo is determined to 

be U0 = 45 MeV. Coulomb interaction between p and 3H in the final state, which has 

the potential Ucoui(R) ~ 0.7 MeV at the edge of the square-well, is neglected1• 

The Coulomb monopole matrix element of the transition can then be expanded 

as 

(0; J, w I M~oul(q) I 0; i) = fooo dE M£(q, E) w1i(E, W) (9.19) 

where 

M£(q, E) = (l = 0, E I Mo(q) l1s) (9.20) 

is the single-particle matrix element and 

(9.21) 

are numerical coefficients. 

These relations are exact if the Coulomb monopole is a single-particle operator 

and if the ground state of 4He is a closed (1s) shell. One remembers that the q­

dependence should be separated from theW-dependence in order to cast the matrix 

element into the form reproducing the cross section of the Breit-Wigner type. This 

1 It is assumed here, as in the previous two models, that strong isospin is a good symmetry for 
the nuclear transition matrix element (even though it is broken by the Coulomb and mass effects in 
the decay chanels). 
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can be achieved most simply if the single-particle energy E-dependence factors from 

M&( q, E). If this separation occurs, the integral over the energy E can be calculated, 

producing a constant. The shape of the charge form factor of the transition will then 

coincide with the shape of the single-particle Coulomb monopole matrix element. 

Analysis shows that for the single-particle energies up toE~ 10 MeV and for 

momentum transfers q2 ranging from 1 to about 10 rm-2
, the E-dependence of the 

single particle matrix element can be separated, with an accuracy better than 20%, 

in the following form: 

(9.22) 

Then if one cuts off the integral over the energy in Equation (9.19) at 10 MeV, the 

following formula for the charge form factor for transferred momentum below 10 fm - 2 

is obtained 

(9.23) 

While comparing this result with the experimental Fi~1(q2 ), the c.m. correc­

tions are taken from the simple harmonic oscillator model. Fitting all the experimen­

tal data on Fi~1(q2 ), one obtains const=2.5 with x2/N =1.14. Let us consider the 

first three points of lowest q2 that troubled the first two models. Even if one forgets 

about them and fits only the remaining data, the curve that is obtained predicts 

these points to be where they actually have been measured. This fact adds to the 

confidence in the model considered. The results are presented in Fig. 9.6. 

9.2.4 Numerical results 

Figure 9.6 shows how well the inelastic charge form factor curves calculated in 

the three different models of the 4He nucleus explain experimental results at low q2
• 
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Predictions for higher q2 are also projected by these curves. The correct behavior cf 

the form factor at q2 --+- 0 is preserved in the single-particle models because the same 

potential has been used to calculate the ground and excited states of the nucleus. 

One can see that the best fit to the data is provided by the model with the finite 

square-well potential. The inelastic charge form factor predicted by this model is 

seen to be 4 to 10 times smaller than the elastic one in the region of interest around 

q2 ~ 4- 7fm-2 • 

To see how useful the (O+O)gnd --+- (Q+Q)* transition in 4 He can be in PV exper­

iments, the corresponding figure-of-merit is discussed here. The figure-of-merit :F is 

defined as [60] 

(9.24) 

It represents a contribution of the internal properties of the target and kinematics 

of the experiment to the statistical uncertainty in the PV asymmetry measurement. 

The latter can be calculated as 

aA _ [:Fxorl/2 
A 
Xo - £ b..n To 

. 
(9.25) 

where £ is the luminosity, b..n is the detector solid angle, and T0 is the running time. 

Estimates for the inelastic PV asymmetry figure-of-merit are shown in Figure 9. 7 

for B = 10°. Let us assume the highest CEBAF luminocity for the 4He target of 

.[, = 5 x 1038cm-2s-1 , b..n = 10msr (angular acceptance of CEBAF Hall A high 

resolution spectrometer), 1000 hours of running time, and a 100% polarization of the 

incident electron beam. Then a statistical error of oA/A ~ 9- 13% in measuring 

the PV asymmetry at e = 10° can be achieved in an experiment performed at the 

incident beam energy E ~ 1.7-2.2 GeV (which corresponds to q2 = 2.2-3.7 fm-2), 

where the figure-of-merit curve has its maximum, depending on the nuclear state 
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Figure 9.6: 4He inelastic charge form factor. Light and heavy dashed lines represent 
the predictions of the collective ("breathing mode") model and the s.h.o. model, 
correspondingly. Solid line is predicted by the finite square-well model. F;f( q2) of 
4 He represented by the short-dashed line is provided for comparison. 
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Figure 9.7: Figure-of-merit for the PV asymmetry measurements on 4He. The 
short-dashed line represents the elastic scattering figure-of-merit. The long-dashed 
and solid curves are predicted by the s.h.o. and finite square-well models for the 
(o+O)gnd -+ (o+o)* transition in 4He, correspondingly. 

model chosen. However, such an experiment on 4He would not be easy to interpret 

due to the complicated nuclear structure of the (o+o)• state. 
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Chapter 10 

Conclusions to Part II 

1. General relations between PV electron asymmetries and neutrino cross 

sections for inelastic (O+O)gnd --+ (O+O)* transitions in nuclei have been obtained. It is 

shown, for example, that within the single-nucleon picture of the nucleus the inelastic 

PV asymmetry is identical to that in the elastic scattering. For an isolated nuclear 

state with pure quantum numbers, deviation of this ratio from one signals the presence 

of exchange currents. 

2. The inelastic neutrino scattering cross section is predicted to be proportional 

to the inelastic electron scattering cross section. This prediction can in principle be 

tested experimentally, free of uncertainty in the neutrino flux, if the flux is determined 

from the corresponding elastic neutrino scattering experiment. 

3. The magnitude of the inelastic neutrino scattering charge form factor deter­

mines whether such experiments are feasible. The low-q2 inelastic charge form factor 

data for the (O+O)gnd --+ (o+o)• transition in 4 He has been explained within three 

simple models of the excited state. An estimate of this form factor for intermediate 

transferred momentum (for q2 from 3 to 10 fm-2) has been made. This estimate can 

serve as a zeroth-order approximation to the real situation. It is predicted that the 
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inelastic PV asymmetry can be measured with a statistical accuracy of about 9-13% 

in the favorable experimental setup considered. 

4. Knowledge of the inelastic charge form factor F~(q2) for 4 He is the key 

ingredient to all the above predictions. It is important to measure F~1(q2 ) accurately 

to higher momentum transfers. The non-resonant background is expected to increase 

with increasing q2• Can one still see the resonant (Q+Q)* peak at q2 that would 

be used for measuring the PV asymmetry? If electron scattering experiments at 

intermediate q2 give a positive answer, performing state-of-the-art calculation of the 

inelastic charge form factor with inclusion of the break-up continuum, wrong parity 

and isospin admixtures, and effects of MEC would be in order. 

5. To the extent to which radiative corrections and non-resonant background 

can be subtracted, and the wrong parity and isospin admixtures taken into account, 

measurement of the inelastic PV asymmetry provides determination of a new nuclear 

transition matrix element of the vector strange current. However, due to the complex 

structure of the excited state, and the fact that the transition form factor is much 

smaller than the elastic one, the inelastic PV experiment is significantly more difficult 

to perform and interpret. Such an experiment will not allow one to gain a better un­

derstanding of the nucleon strangeness than can be obtained from the corresponding 

elastic experiments. 
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Appendix A 

PCAC in the linear realization of 

the a- - w model 

The objective of this Appendix is to demonstrate that the obtained spatial 

two-body AXC of order 0(1/M) make PCAC satisfied in coordin:ate space to this 

order 

i [v(r), p~1H±>] + \1 · J~2)(±) = O(m!) (A.l) 

for the potentials and AXC corresponding to various exchanged mesons. The analysis 

in this Appendix is performed for one, "direct", part of the current. The analysis of 

the other part can be performed identically, by interchanging the roles of the two 

nucleons involved. 

First, consider the u-model alone. If one does not impose the limit of a very 

large scalar mass, then there are two types of spatial AXC present: one is due to the 

simple u-meson exchange, while the second originates from the diagrams involving 

the rr-production fragments. In momentum space these currents are given by the 

formulae: 
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g2 1 k ... 
- FA M T:(2) 12 2 k2 2 0'(2). k +m. +m1r 

(A.2) 

- FA Mg2 T:(2) 12 1 2 {1- q- k2 k 2 (12 + m!)} +m. +m1r 
(A.3) 

for the "sigma." and "pion" currents, accordingly. The corresponding currents in 

coordinate space are 

J~2)(:t:)(q)(xl X2 k) = M1 T:~:(2) eik·X:l k2 k 2 cr(2)·k ~(r) (A.4) 
+m11' 

where r = X1 - X2 and 

(A.5) 

(A.6) 

K 

where 

1 1 1 L! = k2
( 4 - v2

) + m;(2 - v) + m!(2" + v) (A.7) 

Consider the combination (-ik) ·J~2)(±)(1r)(x1 x2 k) in the limit m;-+ 0. Use 

(-ik) · [-2i\7r + k (~; ~ :t -1)] [ei(i+v)k·re-Lcrr] -+ 

[-i(2vk2 + m~) + 2k · r~cr] [ei(i+v)k·re-Lcrr] (A.8) 

Thus, for the last term in the current one obtains after a suitable integration by parts: 

It 

1 { ! [ -Lcrr d ( -Lcrr)] ( -ik) · K - - eik·x:z 12

1 
dv -i (2v k2 + m~) _e __ + 2i- _e__ ei{f+v)k·r 

81r - 2 Lu dv r 

2i e-L .. r ei(!+v)k·rl t} (A.9) 
r -:z 
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(A.10) 

Hence the first term equals zero [ 1 = 0. To calculate the second term use 

L~r(v = ~) - 0 
2 
1 

L~r(v = --) - m., 
2 

(A.ll) 

Then 

(A.12) 

and the equation for the pion current reduces in the limit m1r ~ 0 to 

(A.13) 

The result for the full current becomes then 

(A.l4) 

Recall that 

(A.15) 

The final result for the axial current of the u-model shows that PCAC is satisfied to 

order 0(1/M) when the relevant AXC are included in the analysis 

(A.16) 
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Now, thew-meson can be introduced in the problem. The PCAC theorem 

must be satisfied for the full u- w model at each order in 1/M. Since PCAC is 

satisfied to order 0(1/M) by the currents of the u-model alone, the same must be 

true separately for the currents originating from the w-meson exchange (with the 

corresponding nuclear potential): 

(A.17) 

The AXC due to the w-meson exchange in momentum space is 

J <2> <±>c ) _ F g~ C ) k u(2) . 1 
5 w - A M T± 2 k2 2 12 2 +m1r +mv 

(A.18) 

The corresponding current operator in coordinate space has the form 

(A.19) 

where 

(A.20) 

It is easy to calculate the commutator of the single-body axial charge p~1) {±) with the 

w-exchange potential 

(A.21) 

Then the PCAC equation (A.17) is indeed satisfied to order 0(1/M). 
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Appendix B 

General formulae for the weak 

cross sections and rates 

The results for semileptonic weak rates and cross sections for transitions be­

tween discrete nuclear states with pure quantum numbers, which are presented in 

this Appendix, are taken from the references [7] and [49]. The only additional as­

sumptions made in the derivation there are the existance of a local current density 

operator j"'(x) and sufficient localization of the target in space. 

A. Muon capture rate 

When the initial nucleus has a nonzero angular momentum Ji, the total angular 

momentum for a muon -nucleus system F = J + S can take two values F = J ± t. 
The muon capture rate between two nuclear levels from a given initial hyperfine 

state: 

wF( i --7 f) = w( i --7 f) + owF( i --7 f) (B.l) 
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where tSwp( i ~ f) satisfies identically the condition 

2)2F + l)tSwp(i ~f)= 0 (B.2) 
F 

Averaging with a statistical operator 

2F+l 
(B.3) 

over initial hyperfine states produces immediately 

~ppwp(i ~f) = wp(i ~f) (B.4) 
F 

The muon capture rate, statistically averaged over different hyperfine states, is given 

by 

CPv2 
2 47r [ ~ A A 2 

w(i ~f) - ~ I«P1slav 21i + 1 ~ I(J,IIMJ(v)- .CJ(v)IIJi)l 

+ E I(J,IIfrag(v) - 7i(v)IIJi)l
2
] n (B.s) 

J2:1 

where the neutrino energy v is determined from the energy conservation equation: 

v = m1 - fb + Ei - Er. 

I ,~,. l2 = g(Zamt)
3 

( 1 )
3 

'f'ls av 7r 1 + ml/MT (B.6) 

where m1 is the lepton mass (m~o~ = 105.7MeV), MT and Z are the target nucleus mass 

and charge, and R' is a reduction factor that accounts for the finite spatial extent of 

the nuclear charge distribution (for example, R'(6Li)= 0.95, while E(6He)- E(6Li) = 

4.021MeV). The recoil factor 'R, can be calculated for lepton capture according to 

( 
v )-1 

'R-= 1 + MT (B.7) 
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Additional contributions to different hyperfine rates are given by 

owp(i-+ f)= 

2v'2ct2v2(-l)F-Jt+! { Ji t. F } LL V(2J + 1)(2J' + 1) { Ji J JJ } 
t Ji 1 J Jl J' Ji 1 

X [ e-J' (JJ111Jel(v) -1:i8 '(v)IIJi) (JJII1J,l(v) -1j,8 '(v)IIJi). (J1J' -1IJ J'10} 

+iJ-J' (J,IIlJ(v)- MJ(v)IIJi) (JJII.CJ,(v)- MJ'(v)IIJi). (JOJ'OIJJ'10} 

+ 2V2 ReiJ-J' (JJII1J1(v)- ffa'(v)I!Ji) (JJIICJ'(v)- MJt(v)IIJi) • (J1J'OIJ J'll)] 

X l¢1sl!v n (B.B) 

B. Beta-decay rate is given by 

(]2 2 dO~; df!v 47r { ~ [ ... A 2 
dwe-fe+ - 27!"3 ke(Wo- e) de 41!" 47!" 2Ji + 1 f:o (1 + v·f3) I(JtiiMJIIJi)l 

+ (1- v·f3 + 2 v·ii ii·f3) I{JJI!.CJIIJi)l
2 

- Ci·(v + f3) 2Re (J,IICJIIJi) {JJIIMJIIJi)l.] 

+ f [c1- v·ii ii·f3) (1CJJII'tja'IIJi)l
2 + I{J,IIfJIIIJi)l

2
) 

J~l 

± q·(v- {3) 2Re (JJIIfragiiJi) (J,IITiiiJi)l*] } F(Z, e) (B.9) 

All multipole operators in this equation are evaluated at "" = lql = lk+vl, where 

q is momentum transferred to lepton. The last coefficient F(Z, e) accounts for the 

final-state Coulomb interaction. Its approximate magnitude is given by 

where 

2 

F(z ) </Jk(O)coul = 27!"7] 
'e ~ ""-(0) 2 1 'f'k e ""'~-

zZa 
7]=-

(3 

(B.10) 

with z - the electron charge, a = 1/137 - fine structure constant, and iJ = lkl/ e: - the 

electron velocity. 
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C. Neutrino ( antineutrino) charge-changing scattering cross section for the 

excitation of a discrete target state 

(
d(J') (J2 kE. 41r { ~ [ .. .. 2 
dO - 47r2 2Ji + 1 JL....J=O (1 + V·~) I(J,IIMJIIJi)l 

vfD 

+ (1- v·f3 + 2 v·ci ci·~) I(J,IIlJIIJi)l
2 

q·(v + f3) 2Re (J,IIlJIIJi) (J,IIMJIIJi)(] 

+ f (c1- v·ci ci·f3) (1(J,II7Jag11Ji)l
2 + I(J,IITiiiJi)l

2
) 

J~l 

± q·(v- {3) 2Re (J,II7JagiiJi) (J,IIfiiiJi)(] } 'R. (B.ll) 

where v = vflvl, {3 = k/E., q = q/lql. All multipole operators are evaluated at 

K. = lql, where q is momentum transferred to lepton. The recoil factor 'R. is calculated 

for the antineutrino scattering cross section according to 

(B.12) 
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Appendix C 

Reduction of a three-body matrix 

element of a two-body operator 

The objective of this Appendix is to reduce matrix elements of a two-body 

operator between the 3H-3He three-particle nuclear states to a combination of in­

dividual two-body matrix elements. One can perform this reduction, utilizing the 

general matrix element reduction formulae given in Appendix I.B of [6]. For the 

3H - 3He nuclear system 

Now consider that only (J22 T22 ) = (0 1) or (1 0) intermediate two-particle states are 

allowed due to required antisymmetry of states obtained by angular momentum and 
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isospin coupling. Then, calculating the encountered 6-j symbols, one obtains 

The axial charge exchange operator is an isovector T = 1 operator. Angular and 

parity selection rules for the ( l + l) -+ ( l + l) transition determine that only J = 1 

Coulomb multipole contribution must be considered. For this operator the first and 

the last terms in the previous equation disappear because of the Kroneker delta­

symbols involved, and the result takes the form: 
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