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ABSTRACT

The identification of scombrid fishes (e.g. tunas, mackerels, bonitos) is difficult at
early life history stages. Molecular markers provide a means for positive identification
when diagnostic morphological characters are not present or difficult to interpret. This
project was undertaken to develop a molecular marker that could distinguish among
scombrid species at any life history stage or physical condition.

The first chapter of this thesis describes the evaluation of the mitochondrial
cytochrome ¢ oxidase subunit I (COI) gene as a molecular marker for the specific
identification of the 17 members of the family Scombridae common to the western
Atlantic Ocean. A 950 base pair region in the COI gene was sequenced from up to 20
individuals of each species, and suites of nucleotide polymorphisms that unambiguously
distinguish among these scombrid species were identified. A shorter 250 base pair
fragment of COI proved to be sufficient for species identification and was better suited
for analyzing degraded tissue samples. The utility of the COI marker was demonstrated
with the specific identification of scombrid larvae collected in the Florida Straits and
scombrid remains from the stomachs of large pelagic predators.

The second chapter of this thesis describes the application of the shorter COI
fragment to identify the scombrid larval assemblage off the Kona Coast of Hawaii, 19 to
26 September 2004. Molecular and morphological techniques were used to determine
species composition of scombrid larvae taken in 43 ichthyoplankton tows conducted in
upper surface waters (10 and 14 m), primarily at night. All 872 scombrid larvae collected
were identified to species, 29% unambiguously from morphological criteria and the
remaining 71% were identified using the short COI fragment. Yellowfin tuna and
skipjack tuna dominated the larval composition almost equally, with frequencies of 48%
and 45%, respectively, and 5% of the larvae were identified as albacore. The frequency
of albacore is higher than that reported in previous studies of scombrid larval
assemblages around the Hawaiian Islands, and indicates increased spawning in this area.
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INTRODUCTION

Scombrid background

Scombrid fishes (e.g. tunas, mackerels, bonitos) are important worldwide for their
economic and ecological value. The family Scombridae comprises 50 species of
epipelagic fishes in 15 genera (Collette et al. 2001). The diagnostic characters for the
family are an elongate and fusiform body, five to ten finlets behind the dorsal and anal
fins, and at least 2 caudal keels (Collette 2003). This family is divided into four tribes, in
order from more primitive to advanced: Scombrini, Scomberomorini, Sardini, Thunnini
(Collette and Nauen 1983). An important morphological adaptation in the Thunnini is a
countercurrent heat exchange system in the circulatory system that allows the fish to
maintain body tissue temperatures warmer than the surrounding water (Collette et al.
2001). It has been suggested that this endothermic capacity has allowed niche expansion
of the species in this tribe into cooler waters and facilitated a cosmopolitan distribution
(Collette and Nauen 1983; Block et al. 1993). Reproduction in the Scombridae occurs
via batch spawning in tropical and subtropical waters, with pelagic eggs that hatch into

planktonic larvae (Collette and Nauen 1983).



Scombrid fisheries

Many scombrid species support lucrative fisheries in the Atlantic and Indo-Pacific
oceans. Tunas (bluefin, albacore, yellowfin, bigeye, skipjack) are most commonly taken
with longline, purse seine or pole-and-line gear (NMFS 1999a; NMFS 1999b). In the
Atlantic Ocean, bluefin tuna, albacore, and bigeye tuna are currently assessed as
overfished and yellowfin tuna are considered fully fished (NMFS 1999a). In the Pacific
Ocean, bigeye tuna have been assessed as fully fished, while yellowfin tuna are regarded
as fully fished in the eastern-tropical Pacific (NMFS 1999b). Because most scombrids
are highly migratory species, international cooperation is necessary for effective
management. The Inter-American Tropical Tuna Commission (IATTC) is an
international organization responsible for management of tuna fisheries in the eastern
Pacific Ocean (east of 150W) and management for the rest of the Pacific is under the
purview of the Commission for the Conservation and Management of Highly Migratory
Fish Stocks in the Western and Central Pacific Ocean (WCPFC). Within the Atlantic
‘Ocean, the International Commission for the Conservation of Atlantic Tunas (ICCAT)
provides recommendations for the management of tunas.

Effective management of scombrid stocks requires a thorough understanding of
their biology. Recruitment can be quite variable in these species, so knowledge of the
spatial and temporal distribution of spawning, as well as those factors that affect survival
of early life history stages, is essential for proper management. Such studies require

accurate identification of eggs, larvae and juveniles.



Scombrid identification

Because of their importance, scombrids have been well studied morphologically
and specific identification at the adult level is unambiguous (Collette and Nauen 1983).
The only difficulty in 1dentification at the adult stage is with the two species of Auxis that
are usually identified only to genus level (Richards 2006). However, early life history
stages (eggs, larvae, juveniles) of this family are difficult to identify. Even though there
are identification guides for nearly all scombrid larvae (Richards 2006; Nishikawa and
Rimmer 1987), identification of this stage is difficult using morphological criteria,
especially larvae in the genus Thunnus. Many studies of larval scombrids have been
constrained by inability to identify all specimens due to damaged condition or limitations
of morphological identification criteria (Boehlert and Mundy 1994; Beckley and Leis
2000). Furthermore, identification of juvenile or adult scombrids is not possible in
situations where diagnostic morphological features are not recognizable, such as a fillet

or degraded tissues in predator stomachs.

Molecular markers

Molecular markers can provide a means for positive identification when
morphological characters are not present or difficult to interpret. Various molecular
markers (allozymes, PCR-RFLP (polymerase chain reaction/ restriction fragment length
polymorphism), multiplex assay, sequence analysis, microsatellites) have been employed
in numerous fish identification studies (Morgan 1975; Daniel and Graves 1994; Rocha-
Olivares 1998; Kirby and Reid 2001; McDowell and Graves 2002; Delghandi et al. 2003;

Hyde et al. 2005; Perez et al. 2005). While each of these molecular techniques has
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advantages and disadvantages, the advent of PCR-based methods has greatly expanded

the ease, cost-effectiveness, and amount of information yielded from molecular analyses.
PCR-RFLP analysis of an amplified gene region is practical to use, but it becomes more
difficult with increasing number of species to find unique or unambiguous fragment
patterns that will identify each species. Sequencing allows for one to distinguish among
many species because individual nucleotides are surveyed, greatly increasing genetic
resolution, and therefore the number of species-specific characters. The mitochondrial
(mtDNA) genome has been favored for molecular analyses, including sequence analysis,
because it is haploid and sequencing can be done directly. In this study, a portion of the
mitochondrial genome was sequenced for the purpose of specific identification of the 17

scombrids occurring in the western Atlantic.

Objectives

The first objective was to develop a molecular marker for the specific
identification of the 17 scombrids common to the western Atlantic Ocean. The ability of
the mitochondrial gene cytochrome ¢ oxidase subunit I (COI) to discriminate among
these species was evaluated by sequencing this region in up to 20 reference samples of
each of the 17 species. Degraded tissues may have fragmentary DNA, and so the shortest
section necessary to be diagnostic was determined. This marker was then applied in
situations where morphological identification of putative scombrids was problematic or
impossible, such as with early life history stages and degraded tissues in stomach
contents. The second objective was to apply this molecular marker in addition to

morphological criteria to assess the species composition of the scombrid larvae collected
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off the Kona coast of Hawaii, 19 to 26 September 2004. As many larvae as possible were

identified morphologically, and the remainder were analyzed using the COI sequence
analysis method. The species composition was compared to other studies of larval
scombrids performed in Hawaiian waters that only used morphological criteria for larval

identification.
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CHAPTER 1. Specific identification of western Atlantic Ocean scombrids using

mitochondrial DNA cytochrome ¢ oxidase subunit I (COI) gene region sequences
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INTRODUCTION

Members of the family Scombridae (tunas, skipjack tuna, mackerels, bonitos, etc.)
are important components of pelagic ecosystems, with several species supporting large
commercial and recreational fisheries throughout the world's oceans. Proper
identification of these species at all life stages and in various conditions, such as
degraded stomach contents, is essential for effective management and to better
understand early life history characteristics and ecological relationships in the pelagic
ecosystem. In addition, specific identification of processed tissues or fillets is necessary
for enforcement of fisheries management regulations.

While specific identification of adult scombrids is essentially unambiguous
(Collette and Nauen 1983), identification is problematic in situations where
morphological characters are difficult to interpret (early life history stages) or missing
(fillets, digested stomach contents). Identification of early life history stages of
scombrids has been especially challenging. Scombrid eggs are very similar in
appearance and can only be separated by pigment characters that become lost after
preservation (Richards 2006). Larvae of the genus Thunnus are particularly difficult to
identify. Specific identification of these larval stages requires clearing and staining for
vertebral precaudal/caudal count and position of the first closed hemal arch, and T.

albacares and T. obesus can only be separated by pigment presence or absence (Richards
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2006). Juvenile stages (15-60 mm SL) of Thurnnus species cannot be identified

unambiguously because the development of body pigmentation obscures diagnostic larval
characteristics, and meristic counts are broadly overlapping (Nishikawa and Rimmer
1987).

Molecular markers can provide a means for positive identification when
morphological identification is uncertain. Various molecular markers have been used to
identify fish eggs and larvae including allozymes (Morgan 1975), polymerase chain
reaction (PCR)/ restriction fragment length polymorphism (RFLP) analysis (Daniel and
Graves 1994; McDowell and Graves 2002), multiplex PCR (Rocha-Olivares 1998; Hyde
et al. 2004) and sequencing (Kirby and Reid 2001; Perez et al. 2005). Many of these
techniques have been used to identify scombrids. Allozymes have been successfully used
to discriminate between early juveniles of 7. obesus and T. albacares (Graves et al. 1988)
as well as between adult Pacific northern bluefin tuna (Thunnus thynnus orientalis) and
southern bluefin tuna (Thunnus maccoyii) (Ward et al. 1995). Several studies have used
P'CR/RFLP analysis to identify species of the scombrid tribes Thunnini and Sardini
(Chow et al. 2003) as well as eight species of the genus Thunnus (Chow and Inoue 1993).
In addition, sequencing of a mitochondrial gene region has been used to identify Thunnus
species (Bartlett and Davidson 1991; Ram et al. 1996; Quintero et al. 1998; Terol et al.
2002). While each of these techniques has advantages and disadvantages, sequencing
provides the highest level of resolution as it shows genetic differences at the nucleotide
level. While a few studies have used sequence analysis to identify scombrids, these
investigations were limited as they only distinguished between a few species, used a

region that revealed considerable intraspecific variation, had limited sample sizes, or
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encountered problems with non-specific amplification (Bartlett and Davidson 1991; Ram

et al. 1996; Quintero et al. 1998; Terol et al. 2002).

The mitochondrial genome has been preferred for analysis in many genetic
studies as it has a high number of copies per cell which facilitates PCR amplification, and
because the presence of a single allele makes it possible to sequence products directly
(Avise 1994). Many mitochondrial gene regions (cytochrome b, ND4, 16S, COI) have
been successfully used for fish identification studies (Bartlett and Davidson 1991;
McDowell and Graves 2002; Hyde et al. 2005; Lopez and Pardo 2005). These gene
regions display different levels of genetic variation as a result of different evolutionary
rates. While variation is necessary to highlight interspecific differences, too much
variation can be problematic for primer design. Because of this, the use of a conserved
region is advantageous for effective amplification across many species.

One of the most conserved protein-coding genes in mitochondrial (mt) DNA is
cytochrome ¢ oxidase subunit I (COI) (Brown 1985). COl is critical for cellular energy
production and this functional importance constrains its evolution (Rawson and Burton
2002). The high level of conservation of COI allows for the design of a unique primer
pair that successfully amplifies the same fragment across the diverse members of the
Scombridae. Previous work has taken advantage of COI for broad taxonomic studies
(eleven invertebrate phyla, Folmer et al. 1994; 11 animal phyla, Hebert et al. 2003), but
COI has also been useful to distinguish closely related genera in species identification (3
copepod genera, Bucklin et al. 1999). Because COl is informative for distinguishing
species across and within many different taxa, it is well suited for identification across a

family as diverse as the Scombridae. In this study, a molecular key is developed based



on the mitochondrial COI region for the specific identification of the 17 scombrids

present in the western Atlantic Ocean.

13
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MATERIALS AND METHODS

Tissue samples were obtained from up to 20 specimens of each of the 17
scombrid species from the western Atlantic Ocean: Acanthocybium solandri, Auxis
rochei, A. thazard, Euthynnus alletteratus, Katsuwonus pelamis, Sarda sarda, Scomber
colias, S. scombrus, Scomberomorus brasiliensis, S. cavalla, S. maculatus, S. regalis,
Thunnus alalunga, T. albacares, T. atlanticus, T. obesus and T. thynnus. All specimens
were identified based on morphological characters. Tissue samples were either stored in
DMSO buffer (Seutin et al. 1991) or frozen. Published COI sequences of A. thazard and
A. rochei (Infante et al. 2004) were used to supplement the number of samples for these
species. Collection information is provided in Table 1.

To evaluate the efficacy of COI as a marker to identify scombrids, specimens of
larval scombrids stored in ethanol were obtained from David Richardson and Robert
Cowen, Rosenstiel School of Marine and Atmospheric Science, University of Miami. In
addition, stomach content samples containing putative scombrids were collected from
blue marlin and white marlin caught in recreational fishing operations out of Cape May,
NJ, USA and La Guaira, Venezuela. Putative scombrids were removed from the marlin
stomachs dockside and rinsed with water. Either a muscle sample was removed and

placed in DMSO buffer (Seutin et al. 1991) or the whole fish was frozen until analysis.
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Total genomic DNA was extracted from adult tissues of known scombrid species

using a standard phenol/chloroform isolation protocol (modified from Sambrook and
Russell 2001). A series of extractions was performed on each sample using equilibrated
phenol, followed by phenol: chloroform: isoamyl alcohol (25:24:1) and finally
chloroform: isoamyl alcohol (24:1). Following extraction, DNA was precipitated with
ethanol. For larval fishes, one eyeball (right eyeball when available) was removed and
rinsed with distilled water. DNA was extracted from this tissue using proteinase-K and
Chelex beads (Bio-Rad Laboratories, Hercules, CA) (Estoup et al. 1996). Each larva was
photographed using a digital camera attached to a stereomicroscope via a photo tube,
capturing as much detail as possible for future morphological or meristic analysis.
Primers that amplify the COI gene region across the scombrid family were
designed using conserved regions of seven scombrid COI sequences (Auxis rochei, A.
thazard, Euthynnus alletteratus, Katsuwonus pelamis, Scomber scombrus, Thunnus
alalunga, and T. thynnus) available through GenBank (National Center for
Biotechnology Information). Two sets of primers were developed that amplify a ~950
base pair (bp) fragment (long fragment) of the COI gene and a ~250 bp fragment (short
fragment) located within the 950bp fragment:
950bp fragment: LCOI121 CTA AGC CAA CCAGGT GCCCTT CT
HCOI'1199 AAT AGT GGG AAT CAGTGT ACG A
250bp fragment: LCOI646 AAT ACAACCTTCTTCGACC

HCOI947 GTT GGA ATT GCG ATA ATC
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(The number in the primer name designates the position of the 5’ end within the COI

gene (1550bp)). All primers were ordered from Invitrogen Corporation (Carlsbad,
California).

Polymerase chain reactions were performed on each known or putative scombrid
sample. Each 25uL reaction consisted of 0.25uL template DNA, 2.5uL 10X PCR Buffer
plus magnesium (QIAGEN, Inc., Valencia, CA), 0.5uL 10mM dNTP (QIAGEN), 0.25uL
forward primer (100pm/uL), 0.25uL reverse primer (100pm/uL), 0.125uL Tag DNA
polymerase (QIAGEN), 5.0uL BSA (bovine serum albumin) (Img/mL) and 16.125uL
sterile water (modified from McDowell and Graves 2002). Amplifications using Chelex
extractions contained 2.5uL DNA template. Reactions were carried out in an MJ
Research Corporation PTC-200 Peltier thermal cycler (Watertown, MA) under the
following conditions: initial denaturation at 94°C for 4 minutes, followed by 35 cycles of
94°C for 1 min., 57°C for 1 min., 72°C for 2 min., a final extension at 72°C for 5 min.,
and final hold at 4°C. Amplifications done with the LCOI 646/ HCOI 1085 primers used
an annealing temperature of 54°C, but were otherwise run using the same conditions.

Sequencing was performed on either gel-based or capillary-based automated
sequencers. For gel-based sequencing, purified PCR (using ExoSAP; USB Corporation)
products were cycle sequenced using a Thermo Sequenase Primer Cycle Sequencing Kit
(Amersham Biosciences, Piscataway, NJ) and loaded onto a Li-Cor NEN IR? 4200 global
sequencing system (Li-Cor, Lincoln, NE). The sequencing program eSeq version 2.0 was
used to read sequences and to check base calls. For capillary-based sequencing, purified
PCR products were cycle sequenced using a 1/8 dilution of the manufacturer’s (Applied

Biosystems BigDye) sequencing reaction protocol for a 5 uL reaction: 0.25 uL BigDye
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reagent, 0.875uL 5X BigDye Buffer, 0.32uL primer, 1.0uL template (10-40ng for

1000bp product), 2.55uL water. The sequencing reaction products were loaded onto an
ABI 3100 capillary sequencer (Applied Biosystems, Foster City, CA) and analyzed using
the program Sequencing Analysis 5.1.1.

Both primer pairs successfully amplified samples taken from known scombrids.
The longer fragment was used to generate information on the reference samples to
identify those sites that discriminated between species. The internal primer pair was
designed to amplify the shortest possible fragment that included informative sites. For
the “unknown” samples (larvae, stomach contents), PCR was performed using the shorter
primer pair. If the shorter primer pair generated an amplicon that differed in size from
the targeted fragment, the sample was inferred to be a non-scombrid. In cases where the
shorter primer pair did not generate a PCR product, universal COI primers (Folmer et al.
1994) were used as a positive control. If the universal primers generated an amplicon, I
concluded the sample was a non-scombrid. If the universal primers did not result in a
successful amplification, the sample was considered too degraded for analysis.

All sequences were edited using Sequencher version 4.2.2. Edited reference
sequences (long fragment) of each species were aligned using the Clustal W program in
MacVector version 7.2 to assess intraspecific variation. A consensus sequence of all
haplotypes was generated for each species and these representative sequences were
aligned to reveal informative interspecific differences using the program MEGA version
3.0 (Kumar et al. 2004). MacClade v. 4.07 (Maddison and Maddison 2005) was used to

assess variability at each base position. For unknown samples, the species identity was
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inferred by noting where the sample sequence clustered in a UPGMA tree using absolute

number of differences between the consensus sequences.

Preliminary analyses suggested either misidentification or introgression in one
sample identified as S. regalis based on morphology. To discriminate between
misidentification and introgression between S. maculatus and S. regalis, the nuclear ITS-
1 region was analyzed in four samples of each of these two species using the primers F-
ITS-1 (5°GAG GAA GTA AAA GTC GTA ACA AGG3’) and 5.8SR2 (5°GTG CGT
TCG AAR KGT CGA TGA TCA AT3’) (K. Johnson, Virginia Institute of Marine
Science, unpublished). PCR products were cloned into the pCR4-TOPO vector
(Invitrogen Corporation, Carlsbad, California) and three clones from each sample were
sequenced. This fragment was amplified and sequenced as previously described for the
long COI fragment, using the capillary sequencer. The only differences from the COI
protocol were that S5uLL of Q solution was used in the 25uL reaction and the annealing

temperature used in the PCR was 45°.
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RESULTS

Two amplicons were generated in this study, a long (945bp) and a short (264bp)
fragment of the COI gene. Within the long fragment there were 279 (30%) variable sites
and in the short fragment there were 64 (24%) variable sites. The vast majority (93.7%)
of substitutions occurred at the third codon position, while only 5.7% occurred at the first
position and 0.7% at the second position. There were no insertions or deletions within
the COI regions analyzed.

The long fragment of COI exhibited a wide range of differences between the 17
species analyzed. The number of nucleotide differences between consensus sequences of
each species ranged from 2 base changes (between T. obesus and T. albacares or T.
atlanticus) to 152 (between Scomber scombrus and Scomberomus cavalla) (Table 2).
The differences between species in the short fragment ranged from 1 base change
(between T. obesus and T. atlanticus and between S. maculatus and S. regalis) to 48
(between S. colias and A. thazard). Within species, variation of the long fragment
ranged from O in Scomberomus brasiliensis and S. regalis to 26 variable sites within
Sarda sarda. Reference samples of K. pelamis, T. albacares, T. obesus, A. rochei and A.
thazard included Atlantic and Pacific individuals, and thus the intraspecific variation

observed in these species encompassed any inter-oceanic differences.
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The positively identified samples of a species consistently grouped together in a

UPGMA tree of all COI sequences in this study. A consensus sequence was generated
for each species to serve as a representative of that species in a reference UPGMA tree
(Fig. 1). A single Scomberomorus regalis sample had a COI sequence that was more
similar to Scomberomorus maculatus. However, the ITS-1 sequence data indicated that
the anomalous sample was indeed S. regalis suggesting introgression. The COI sequence
of this sample was not included in the consensus sequence of S. regalis. The differences
between these two species in the ITS-1 region are shown in Fig. 2.

From the consensus sequences, an unambiguous molecular key was developed
that allowed identification of all 17 western Atlantic scombrids. Positions at which a
species has a consistent, unique combination of nucleotide base pairs are indicated in Fig.
3. The shorter COI fragment also provided dependable species identification as it
includes diagnostic sites. Clustering of an unidentified sample in the UPGMA tree was
the quickest method of identification, but in cases where an individual did not clearly
group with one species, discriminatory base positions were located in the unknown
sequence and compared with the molecular key for identification.

Scombrid larvae from the Florida Straits in the western Atlantic Ocean were used
to test the efficacy of this marker. These individuals were sufficiently large (4.5-12 mm)
to be identified morphologically to genus; however, some were damaged, making
specific identification based on morphological characters difficult if not impossible.
Fifty-two scombrid larvae were identified based on DNA sequence and, when possible,
using morphological characters following Richards (2006) and Nishikawa and Rimmer

(1987). From these guides, the most useful morphological characters were: forebrain
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pigment and ventral pigment spot in K. pelamis, lower jaw pigmentation in E.

alletteratus, and lateral tail pigmentation in A. thazard. Morphological identification to
species level was possible for 18 larvae, and in each case, morphological assignment
supported genetic identification. The remaining 34 unknown larvae were identified to
species solely by noting their placement with known samples in a UPGMA tree (Fig. 4).
To test the efficacy of the marker on degraded tissues, the short fragment was
amplified from putative scombrids found in billfish stomach contents. The shorter
fragment of COI was analyzed in the stomach contents as these tissues are generally
deteriorated and therefore the DNA may also be degraded. When the sequences of these
COI fragments were aligned to the known reference samples, nine samples clustered with
Auxis rochei in the UPGMA tree (Fig. 5). Two samples from billfish stomach caught in
Hawaii did not cluster with any of the scombrid species. The search engine Basic Local
Alignment Search Tool (BLAST) (National Center for Biotechnology Information) was
used to find the closest match between these samples and species in GenBank (National
Center for Biotechnology Information). One sample shared 84% identity with the COI
gene of Myripristis berndti (blotcheye soldierfish) and the other sample had 83% identity

with the COI gene of Hoplostethus japonicus (flintperch).
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DISCUSSION

Both the long and short COI fragments met the two requirements of a good
molecular marker for scombrid identification: consistent interspecific differences and
minimal intraspecific variation. Fixed differences between species in the long COI
fragment range from 2 to 152 base pair differences. The short fragment is also sufficient
for specific identification as it contains diagnostic differences.

This molecular key was developed to unambiguously identify all scombrids
occurring in the western Atlantic Ocean, several of which have a circumtropical
distribution. To evaluate the applicability of the marker outside the Atlantic, several
Pacific conspecifics of some of the circumglobal species covered in this study were
sequenced to identify any inter-ocean basin intraspecific differences. Previous studies
have shown evidence of inter-oceanic differences in bigeye tuna and albacore based on
other gene regions (Chow and Ushiama 1995; Alvarado Bremer et al. 1998; Chow et al.
2000). The diagnostic sites still allowed for unambiguous identification of circumglobal
species between ocean basins which is not unexpected given the high level of
conservation in COIL. The success of this marker in other ocean basins suggests that its
utility may easily be extended to other scombrid species that occur elsewhere.

While the COI region has proven to be effective for species identification of

scombrids, like other molecular markers it has limitations. Sequencing has drawbacks
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including limitations imposed by cost and time, but this technology is being improved

upon continually, making it quite an attractive high resolution technique for species
identification. An alternative method using PCR/RFLP analysis of an amplified gene
region (Chow and Inoue 1993; Daniel and Graves 1994; McDowell and Graves 2002;
Chow et al. 2003) is practical, but it becomes more difficult with increasing number of
species to find unique or unambiguous fragment patterns that will distinguish each
species. Similarly, a multiplex assay increases speed and decreases cost of analysis, but
requires the design of many species-specific primers which would be challenging given
the number of species in this study.

Another concern with using only a mitochondrial marker is the possibility that
introgression may lead to the misidentification of samples. Mitochondrial introgression
has been previously reported in scombrids. The mitochondrial genome of the albacore,
Thunnus alalunga, has introgressed onto the Pacific bluefin tuna Thunnus orientalis
genetic background within the Pacific at a high frequency (98%) (Chow and Kishino
1995) and at a low frequency (5%; 6.8%) in the eastern Atlantic/ Mediterranean in
Atlantic bluefin tuna 7. thynnus (Vinas et al. 2003; Carlsson et al. 2004). Additionally,
mitochondrial introgression has also been reported in the genus Scomberomorus.
Banford et al. (1999) posited that the S. regalis mitochondrial genome has introgressed
into S. maculatus. In the present study, one S. regalis sample clustered with S.
maculatus, suggesting either misidentification or introgression. Results of this study
indicate that introgression may be bidirectional, as the observed introgression is in the
opposite direction as that seen in the study by Banford et al. (1999). Clearly there is a

need for further analysis, including more S. regalis samples to adequately resolve this
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issue. Until then, a nuclear marker should be employed in addition to the COI marker to

verify species identity of any putative S. regalis or S. maculatus samples.

The demonstrated ability of this key to provide species identifications of scombrid
larvae and scombrid remains in stomach contents indicates its potential for use in
population studies, forensic analyses and early life history investigations. This marker
has numerous applications, from verifying that samples are indeed the correct species in
population studies employing analysis of nuclear microsatellite loci, to providing species
level identification of fillets that are being sold illegally, which is critical for management
enforcement (Lopez and Pardo 2005). In cases where morphological identification is not
possible, a molecular key provides a reliable means of unambiguously identifying

scombrid species.
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Figure 1. UPGMA tree based on absolute number of nucleotide differences between
reference sequences. Each species group is a consensus sequence of all haplotypes of

that given species. Species abbreviations are given in Table 1.
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Figure 2. ITS-1 sequence alignment of Scomberomorus maculatus and S. regalis
showing interspecific nucleotide differences. Insertions and deletions are shown between
species by dash marks. Sequence names with the letters A, B, or C denote cloned PCR
product and the other sequences are direct sequence of PCR product.
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Figure 3. Molecular key of interspecific differences in the shorter COI fragment between
consensus sequences. The sites that are useful in distinguishing very closely related
species (i.e. Thunnus albacares/ T. obesus, T. atlanticus/ T. obesus and Scomberomorus
regalis/ Sc. maculatus) have an asterisk and are bolded. Species abbreviations are given

in Table 1.
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Figure 4. UPGMA tree including consensus sequences and a select number of unknown
larval scombrid samples from Florida clustering with their respective species. Unknown
samples are designated by a FL prefix.
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Figure 5. UPGMA tree of consensus reference sequences and unknown billfish stomach
content samples. Unknown samples are denoted by a number with a SC prefix. Five of
the nine stomach content samples analyzed are shown here. All nine samples cluster with
A. rochei.
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CHAPTER 2. Specific identification of scombrid larvae collected off the Kona coast of

Hawaii using COI sequence analysis
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INTRODUCTION

Members of the family Scombridae (tunas, skipjack tuna, mackerels, etc.) are
important components of pelagic ecosystems, with several species supporting large
commercial and recreational fisheries throughout the world's oceans. Bigeye tuna
(Thunnus obesus), yellowfin tuna (7. albacares), albacore (7. alalunga) and skipjack tuna
(Katsuwonus pelamis) are important components of pelagic fisheries that operate in
Hawaii’s exclusive economic zone (Boggs and Ito 1993; Xi and Boggs 1996). Little is
known about the distribution, abundance, ecology and behavior of early life history
stages of these species around Hawaii, but it is this early period that is crucial to
understanding survival and recruitment to fishable stocks (Sund et al. 1981).

The composition of scombrid larvae in the central Pacific, particularly around
Hawaii, has been described as being dominated by T. albacares, K. pelamis, and Auxis
spp (frigate and bullet tuna) (Strasburg 1960; Miller 1979; Boehlert and Mundy 1994).
The other scombrid larvae that could be encountered around Hawaii are: albacore, bigeye
tuna, Acanthocybium solandri (wahoo), Euthynnus affinis (kawakawa), Sarda orientalis,
and Scomber australasicus (Collette and Nauen 1983). Boehlert and Mundy (1994)
found and identified only a few albacore, bigeye tuna, wahoo, and kawakawa larvae out
of hundreds collected in their surveys. While the incidence of mature adult albacore,

wahoo and bigeye tuna would indicate that spawning could occur in this area, there have
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been few confirmed collections of the larvae of these species. An examination of

albacore gonads collected within 20 miles of the Hawaiian Islands suggests that some
spawning has occurred during the summer in the vicinity of the islands (Otsu and Uchida
1959). An analysis of bigeye tuna adult gonads suggests that spawning occurs well
offshore, to the southwest of the island of Hawaii (Nikaido et al. 1991), but the presence
of larvae, especially smaller sizes, would be a more direct means to show that spawning
has occurred in the region (Prince et al. 2005).

Larval tuna are found in abundance near land masses, especially tropical and
subtropical islands (Boehlert and Mundy 1994). Gilmartin and Revelante (1974)
hypothesize that nutrient-rich waters near the Hawaiian Islands contribute most to
favorable conditions for spawning and larval survival. Additionally, physical
oceanographic features such as eddies may act to retain larvae near the islands in waters
that are favorable for growth and survival (Boehlert and Mundy 1993; Seki et al. 2002).
Most studies of near shore abundance of scombrid larvae around Hawaii have taken place
around Oahu (Higgins 1970; Miller 1979; Boehlert and Mundy 1994) and few studies of
larval scombrids have been conducted specifically off the Kona coast of the big island of
Hawaii. The studies off Oahu showed a high concentration of scombrid larvae close to
land on the leeward side of the island. These observations and the finding that the Kona
coast may be a “hot spot” for billfish spawning (Hyde et al. 2005) suggest that this area
may also be an ideal spawning area for scombrids.

Proper identification of young stages is essential to better understand early life
history characteristics of each species. While identification of scombrid adults is

unambiguous (Collette and Nauen 1983), specific identification of early life history
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stages is problematic as many morphological characters are difficult to interpret.
Scombrid eggs are very similar in appearance and can only be separated by pigment
characters that become lost after preservation (Richards 2006). Larvae of the genus
Thunnus are especially challenging to identify. Specific identification requires clearing
and staining to determine the position of the first closed hemal arch for vertebral
precaudal/caudal count, but yellowfin tuna and bigeye tuna can only be separated by the
presence or absence of certain pigment characters (Richards 2006). For example, it is not
possible to separate larvae of yellowfin tuna from albacore prior to the appearance of
black pigment cells at the tip of the lower jaw in yellowfin tuna at 4.5 mm SL
(Matsumoto et al. 1971). Juvenile stages (15-60 mm SL) of Thunnus species cannot
reasonably be identified because the development of body pigmentation obscures
diagnostic larval characteristics, and meristic counts are broadly overlapping (Nishikawa
and Rimmer 1987).

Previous work on scombrid larval distribution has been limited by dependence
upon morphological identification. These types of analyses typically have many larvae
that cannot be identified to species level because they are too small to have developed
distinguishing characteristics, or are too disfigured (Strasburg 1960; Leis et al. 1991;
Beckley and Leis 2000). Only half of the 227 Thunnus larvae that Boehlert and Mundy
(1994) collected in their September surveys were large enough to be identified to species
and the remainder had to be classified as Thunnus spp. Also, bullet and frigate tuna
larvae generally have not been distinguished, and are listed as Auxis spp. (Higgins 1970;

Boehlert and Mundy 1994). To fully utilize information from all scombrid larvae, a more
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reliable method of identification is necessary to accurately describe the early life history
characteristics of these species.

Molecular markers can provide a means for positive identification when
morphological identification is uncertain or impossible (Morgan 1975; Bartlett and
Davidson 1991; Ram et al. 1996; McDowell and Graves 2002; Perez et al. 2005).
Previously, I developed a method for the identification of all scombrids occurring in the
western Atlantic Ocean that utilizes sequence information from the COI gene region (Ch.
1). That study demonstrated that the marker may be applied to those species with
circumtropical distribution as well. When morphological identification is limited because
of a damaged sample or morphological characters are ambiguous, this molecular marker
provides a means for unambiguous identification. In this study, the COI molecular
marker was used in concert with morphological identification to describe species

composition of scombrid larvae taken off the leeward coast of Hawaii in September 2004.



48

MATERIALS & METHODS

SAMPLE COLLECTION

Ichthyoplankton sampling was conducted off the Kona coast of Hawaii (Fig. 1)
aboard NOAA R/V Oscar Elton Sette, 19 to 26 September 2004, using a 1.8 m Isaacs-
Kidd Trawl with 0.5 mm mesh. A total of 43 tows was examined, each taken at 2.5 knots
for 1 hour. Of'these, 31 tows were performed at night, 27 of which were taken at 10 m
and the other 4 tows were taken at 14 m depth. The nine preliminary daytime collections
were stepped oblique tows at various two step intervals of 14 m/ 10 m, 8 m/ 14 m, 30 m/
20 m, and 20 m/ 10 m. One tow was taken at 20 m and another was just below the
surface (<1 m) in the early morning. Total collections spanned a distance of 80 km along
the leeward coast over 2 days and subsequently 5 nights. Tows were carried out in all
directions in an area from 1-16 km offshore. Bottom depth averaged 2000 m.
Temperature of the top 50 m layer was at least 27.5°C and the wind speed during
sampling was very light, never exceeding 10 knots.

Plankton samples were preserved in 95% ethanol and putative scombrid larvae

were removed. Each sorted larva was given a unique identifying number and was stored
in 95% ethanol and analyzed individually. Each larva was photographed using a digital

camera attached to a stereoscope via a photo tube capturing as much detail as possible for
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future morphological or meristic analysis. Total length was taken using a ruler and

approximated to the nearest 0.5 mm.

APPLICATION OF MARKER TO IDENTIFY SPECIES

The morphological criteria of Nishikawa and Rimmer (1987) and Richards (2006)
were used to identify as many scombrids as possible. The morphological characters used
from these guides were: forebrain pigment and ventral pigment spot in K. pelamis, lower
jaw pigmentation in Euthynnus, lateral tail pigmentation in A. thazard, and A. solandri
are unique, especially the snout length, and are not confused with any other larvae. Well
preserved larvae of K. pelamis (skipjack tuna), £. affinis (kawakawa), 4. solandri
(wahoo), and at some sizes, Auxis spp. (frigate and bullet tuna), were distinguished
following the aforementioned identification criteria. Larval Thunnus are generally
problematic and were distinguished following the COI (cytochrome ¢ oxidase I) sequence
analysis method developed previously (Ch. 1). This molecular identification method was
also used for larvae that could not be identified because of damage or questionable
morphological characters.

DNA was isolated, amplified, and sequenced following the short fragment COI
sequence analysis method (Ch. 1). In cases where there was no amplicon, the reaction
was repeated with both the COI primers and with universal COI primers. If there was no
amplification, then it was inferred that this sample was too degraded or not a scombrid.
All sequences were edited using Sequencher version 4.2.2. The species identity was
inferred by noting where the sample sequence clustered in a UPGMA tree constructed of

reference sequences using absolute number of differences (Ch. 1). In cases where an
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unknown sample clustered between two species, the potentially informative base
positions were located in the unknown sequence and compared to a molecular key. The
positions at which a species has a consistent, unique combination of nucleotide base pairs
are indicated in the molecular key shown in Fig. 2.

Preliminary genetic identification of a few larvae showed them grouping between
the T. albacares (yellowfin tuna) and 7. obesus (bigeye tuna) reference sequences. Only
two base position differences separate these two species in the COI fragment, and upon
referencing the molecular key, it appeared that only one of the bases was distinguishing,
and it was unclear which one. To refine the key and ascertain species identity, part of the
mitochondrial cytochrome b (cyt b) gene was sequenced in four each of known yellowfin
tuna and bigeye tuna samples to provide another reference in addition to the unknown
ambiguous larvae, from which cyt b was also sequenced. The primers used were
cytbL686 (5°TCC TTG GTT TCG TGA TCC3’) and cytbH982 (5’GGG TTC AGA ATA
GGA ATT GG3’). All PCR and sequencing of cyt b was carried out in the same manner
as for COI, with a 53°C annealing temperature.

Because introgression of albacore mtDNA into Pacific bluefin tuna (7. orientalis)
has been observed previously (Chow and Kishino 1995), the possibility exists that bluefin
tuna may be misidentified based on mtDNA characters alone. Preliminary analyses
identified 43 larvae as albacore and to address the issue of misidentification, the nuclear
ITS-1 region of these larvae was sequenced using the primers F-ITS-1 (5°’GAG GAA
GTA AAA GTC GTA ACA AGG3’) and 5.8SR2 (5’GTG CGT TCG AAR KGT CGA

TGA TCA AT3’) (K. Johnson, Virginia Institute of Marine Science, unpublished). This
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fragment was amplified and sequenced as previously described for the COI fragment,

with a 45° annealing temperature and SuL of Q solution was used in the 25uL reaction.
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RESULTS

Forty-three ichthyoplankton tows yielded a total of 872 scombrid larvae.
Scombrids were found in all collections except two daytime tows. The daytime tows
averaged 2.3 + 2.2 scombrids per tow and those taken at night averaged 24.3 & 21.2.
Morphological characters were used to identify 29% of the samples and the remaining
71% were identified using the COI marker. All scombrid larvae were amplified
successfully on the first attempt, with the exception of two of the specimens which
amplified on the second effort.

Four of the scombrid larvae grouped between bigeye and yellowfin tuna and two
of these (OES18-36, OES22-2) are shown in Fig. 3. Sequence information obtained from
the cyt b mitochondrial gene helped to clarify four of these as yellowfin tuna and one as a
bigeye tuna. In the Atlantic, site 882 discriminated yellowfin and bigeye tuna, but was
not informative in the Pacific, so only site 870 was used to discriminate between these
two species.

Preliminary analyses identified 43 albacore larvae using the COI marker. To rule
out the possibility of misidentification, a portion of the nuclear ITS-1 region was
sequenced from these larvae and from reference samples of bluefin tuna and albacore.

The albacore larvae identified using the COI marker had ITS sequences more similar to



53

the known albacore samples and consequently were confirmed as albacore. The
differences in the ITS-1 region for these two species are shown in Fig. 4.

Yellowfin and skipjack tuna larvae dominated the collections at frequencies of
48% and 45%, respectively. Yellowfin tuna were found in half the daytime tows and
were represented in all but five of the nighttime tows. Skipjack tuna were not found in
any daytime tows, but occurred in all but four nighttime tows. Albacore were found in 20
tows and comprised 5% of the scombrid larvae, while frigate tuna were found in five
tows and made up 1% of the collections. Two wahoo larvae were encountered, both were
taken in two daytime tows. Only one larva each of kawakawa and bigeye tuna were
collected and both were taken at night. The species composition of all tows is
represented in Fig. 5 and information on collections is given in Table 1.

The range of lengths and mean length (+SD) of the larvae collected of each
species were: skipjack tuna 2.5-9 mm (4.1 mm = 1.3) with one individual juvenile
skipjack tuna that measured 21 mm caught in the 50 m midwater trawl; yellowfin tuna
2.5-10 mm (5.1 mm +£1.5); albacore 3-10.5 mm (5.5 mm = 1.7); wahoo 4.5 and 9.5 mm
(7 mm = 3.5); frigate tuna 2.5-6 mm (4.3 mm =+ 1.1); bigeye tuna 4 mm; kawakawa 2.5
mm. Between the commonly encountered larvae, the lengths of skipjack tuna were
smaller on average than albacore or yellowfin tuna (p< 0.05). The length frequency
distribution of the most common species collected (yellowfin tuna, skipjack tuna, and

albacore) at all stations is presented in Fig. 6.
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DISCUSSION

The COI molecular marker allowed for unambiguous species identification of all
scombrid larvae collected off the Kona coast of Hawaii, many of which would have
remained unidentified if only morphological criteria were used. Every specimen was
discriminated to the species level, regardless of size or physical condition, a major
limitation of previous studies that relied solely upon morphological identification. For
example, previous studies were not able to distinguish past the generic level in Auxis, but
the distinction between A. thazard (frigate tuna) and A. rochei (bullet tuna) was possible
using sequence information from COIL Also, previous work has identified some larvae
only as Thunnus spp., with many tentative specific identifications based on unreliable
characteristics, such as one or two very small and hard to see ventral pigment spots which
separate intact bigeye tuna larvae from yellowfin tuna. Conversely, in this study, one
bigeye tuna larva was confidently identified using this molecular marker. Additionally,
previous studies could not discriminate albacore from yellowfin tuna below 4.5 mm SL
(Fig. 7), and in this study, 46% of the Thunnus larvae collected fell into this size range,
but were successfully distinguished using this marker.

The use of the COI marker allowed for a complete description of species diversity
of the larval assemblage collected. The diversity found in this study was greater than that

observed by Boehlert and Mundy (1994) in their surveys taken around Oahu. Almost



55
half of the Thunnus larvae they collected in September could not be identified to species.

Some of these Thunnus spp. might have been bigeye tuna, of which they reported 0 in
September, or albacore, of which they positively identified only 9 in that month.
Additionally, they could not distinguish to species for larvae of the genus Auxis, while the
COI marker used in this study allowed for specific identification of several 4. thazard
larvae.

The findings in this study suggest that the Kona coast may be an important area
for albacore, skipjack tuna and yellowfin tuna early life history stages. The Kona study
was dominated by yellowfin and skipjack tuna almost equally, with 421 and 395 larvae,
respectively, while in comparison, the September surveys of Boehlert and Mundy (1994)
were dominated by Thunnus larvae (227 out of 365 scombrid larvae). Boehlert and
Mundy encountered almost 75 Auxis spp. larvae in September, which outnumbered the 50
skipjack tuna they caught. This study only found nine frigate tuna, while encountering
almost 400 skipjack tuna. Boehlert and Mundy found Thunnus spp. and skipjack tuna
only when water temperatures were warmest, during September and June. During
sampling off Kona, the water temperature was above 27°C, and may account for
increased abundance of larval yellowfin and skipjack tuna.

An interesting finding in the larval assemblage collected was the number of
albacore larvae encountered. Forty-three albacore larvae (5%) were found, which is
considerably more than the nine (2.5%) found by Boehlert and Mundy in September off
Oahu. The number of albacore discovered in this study suggests that the Kona coast may
be an important area for early life history stages of this species. Not much is known

about exact spawning locations of albacore; however, they are known to spawn in the
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general vicinity of the Hawaiian Islands, with limited spawning to the east of the islands
and more frequent spawning to the west (Ueyanagi 1969; Sund et al. 1981; Nishikawa et
al. 1985). These studies report that spawning is centered around 20°N in the Pacific with
Hawaii located on the northeastern border of this range. Identifying larval habitat at the
perimeter of the spawning range is important in describing appropriate conditions for
spawning (Boehlert and Mundy 1994).

Smaller larvae are a better indicator of spawning location, as postflexion larvae of
scombroid billfish larvae actively move from spawning areas (Hyde et al. 2005). Length
frequency distributions of skipjack tuna larvae were generally smaller than those of the
albacore or yellowfin tuna larvae. I conclude that skipjack tuna larvae were hatched
nearshore and this area is an important spawning ground for that species.

In the larval surveys performed by Boehlert and Mundy (1994) taken around
Oahu in September, December, April and June, they had little representation by bigeye
tuna, wahoo and kawakawa. In this study performed off Kona in September, I also
encountered few larvae of these species. Many surveys have found lower abundance of
bigeye tuna compared to other tuna species; this may be due to interspecific behavioral
differences that cause a difference in sampling or catchability (Nishikawa et al.1985).
Also, despite the high fecundity of the cosmopolitan wahoo (Collette and Nauen 1983),
their larvae are rarely encountered (B. Mundy, pers. comm.) and only two wahoo larvae
were collected off Kona in September and 11 were taken in the Oahu study in September
and June. Additionally, only one kawakawa larva was found off Kona, which is also
rare, and agreed with Boehlert and Mundy, who only encountered five kawakawa larvae

total in December, September, and June.
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While the COI molecular marker offers many advantages for species

identification, one limitation in using only a mitochondrial marker is the possibility that
introgression may result in the misidentification of samples. Mitochondrial introgression
has been previously reported in the genus Thunnus. Historically some hybridization
events occurred between male bluefin tuna and female albacore, and the maternally
inherited albacore mitochondria were subsequently retained in backcrossing between the
hybrids and bluefin tuna (Chow and Kishino 1995). The mitochondrial genome of the
albacore has introgressed into the bluefin tuna genetic background within the Pacific at a
high frequency (98%) (Chow and Kishino 1995). Bluefin tuna are not commonly
encountered around Hawaii (Boggs and Ito 1993; NMFS 1999) and are not known to
spawn there (Nishikawa et al. 1985), so this small possibility of misidentification may not
be a great concern when using this marker in the Pacific. This possibility of introgression
was ruled out by sequencing the nuclear region ITS-1 of the 43 larvae that had been
identified as albacore using COI, and confirming their identity as albacore larvae.

The Kona coast has not been the focus of many scombrid larval studies, and the
mformation from the present study would support further investigations in this area. The
successful identification of all scombrid larvae of any size and in any damaged condition
indicates the potential of this molecular marker as a means for describing putative
spawning grounds off the Kona coast of Hawaii and elsewhere. I recommend this
approach for use in future ichthyoplankton surveys targeting scombrids, as it is especially

useful to distinguish Thunnus and Auxis early life history stages to species.
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Figure 2. Molecular key of interspecific differences in the COI fragment between
consensus sequences of each scombrid species. The sites that are useful in distinguishing
very closely related species (i.e. T. albacares/ T. obesus, T. thynnus from other Thunnus)
have an asterisk. Species abbreviations with number of reference samples represented in
each consensus sequence are: Acanthocybium solandri (ASOL) (21); Thunnus alalunga
(ALBC) (17); T. thynnus (BLFT) (18); T. obesus (BET) (18); T. albacares (YFT) (18);
Euthynnus alletteratus (EUTH) (10); Katsuwonus pelamis (SKIT) (19); Auxis rochei
(AUXR) (16); A. thazard (AUXT) (10). Note that Euthynnus alletteratus occurs in the
western Atlantic and is the congener of E. affinis that occurs in Hawaii. Since E. affinis is
the only Euthynnus that occurs around Hawaii, the EUTH reference consensus sequence
can be used to identify E. affinis.
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Figure 3. UPGMA tree constructed based upon absolute number of nucleotide
differences between consensus sequences and unknown larval specimens from Hawaii.
Unknown larvae are designated by an OES prefix. Each species group is a consensus
sequence of all haplotypes of COI of that given species. Species abbreviations are given
in Figure 2. Samples OES41-5 (bigeye), OES22-2 (yellowfin), OES18-36 (yellowfin)
were compared against the molecular key to verify species assignment. OES23-73
clusters nearest to EUTH (E. alletteratus) because it is the congener that occurs off
Hawaii, E. affinis.
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Figure 4. ITS-1 sequence alignment of Thunnus alalunga and T. thynnus samples from
the Pacific showing interspecific nucleotide differences. Insertions and deletions are
shown between species by dash marks.
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Figure 4. cont.
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Figure 5. Species composition of all tows numbered according to station number. Each
bracket denotes all tows taken in that day or throughout a night consecutively. See Table
1 for information on each tow.
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Figure 6. Length frequency distribution ofthe most common scombrid species collected:
Thunnus albacares (yft), Katsuwonus pelamis (skj), T alalunga (albc) from all scombrid
targeted tows. Skipjack tuna were on average smaller than albacore and yellowfin tuna
(p<0.05).
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CONCLUSION

The primary objective of this thesis was to develop a molecular marker to
distinguish among the 17 scombrid species occurring in the western Atlantic Ocean. The
COI sequence information obtained from this work successfully discriminated 15 of the
17 scombrid species occurring in the western Atlantic. This COI marker was found to be
reliable even though in some instances there were only a few consistent nucleotide
differences between different species. This marker worked on scombrid larvae from the
Atlantic and on putative scombrid remains in large predator stomachs. Any early life
history stage or tissue sample that belongs to the family Scombridae occurring in this
area, with the exception of Spanish mackerel (Scomberomorus maculatus) and cero (S.
regalis), can be identified using this marker.

A limitation of relying on a mtDNA marker is that misidentification could occur
when using this technique if there is mitochondrial introgression between species.
Introgression has taken place between albacore (Thunnus alalunga) and Pacific and
Atlantic bluefin tuna (7. thynnus and T. orientalis), where mtDNA of the former has
introgressed into the latter (Chow and Kishino 1995). The frequency of “albacore-like”
mtDNA bluefin tuna is low (<5%) in the Atlantic, and the “albacore-like” mtDNA
bluefin tuna is distinct from albacore, allowing specific identification of bluefin tuna with

“albacore-like” mtDNA (Carlsson et al. 2004). However, this study also demonstrated
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introgression of mtDNA between Spanish mackerel and cero, in a direction opposite to
that observed by Banford et al. (1999). Consequently, unambiguous identification of
these two species requires a nuclear marker, such as ITS-1 that was used in this study.

The COI molecular marker was successfully used to identify scombrid larvae
collected off the Kona coast of Hawaii. The larval assemblage was identified completely
using the COI marker in concert with morphological criteria. Unambiguous
morphological identification was possible for 29% of the larvae, and most of these
identified morphologically were skipjack tuna larvae. Morphological identification
within the genus Thunnus was tentative, so all putative Thunnus larvae were identified
using the molecular marker.

The description of species diversity of the larval assemblage demonstrated that
the early life history stages of yellowfin tuna (7. albacares), skipjack tuna (K. pelamis)
and albacore occur off the Kona coast. An unexpected result was that many more
albacore were identified than has been found before in other areas around the Hawaiian
Islands (Boehlert and Mundy 1994). Because albacore cannot be distinguished from
yellowfin tuna below 4.5 mm, it is possible that previous studies which found larvae
smaller than this size may have underestimated the contribution of albacore larvae to
scombrid assemblages around the Hawaiian Islands. The results of this study suggest a
greater contribution of albacore larvae near the Kona coast.

The selection of the COI gene suited the overall objectives for this study, but
presented some limitations. The risk in relying on relatively few nucleotide differences
in COI to discriminate among species was realized when the molecular key was used to

identify Pacific larvae. A few inter-oceanic (intraspecific) nucleotide differences were
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observed within Thunnus species that necessitated a slight revision of the key. In this
instance, a gene with more variation may have revealed a greater number of interspecific
differences. However, high levels of variation pose problems with primer design,
efficiency of amplification, and intraspecific variation, and so this study opted for
consistent, reliable results.

While the COI molecular marker was sufficient for the objectives of this study, a
different approach may be necessary for a large scale, high-throughput study. For an
ecological scale study, an identification technique will be needed that maximizes the
number of samples that can be processed in the shortest amount of time and with minimal
cost. A microarray would be very effective to process many samples and reduce
processing time (Bell and Grassle 1998); however, this is quite expensive and has greater
chance of producing false negative results. Multiplex assays have been used for billfish
early life history stage identifications and this technique has been reported to be an
effective means of identifying “hot spots” of billfish spawning in real-time (Hyde et al.
2005). Multiplex assay is one approach that could be used to identify scombrids more
quickly, perhaps focusing only on Thunnus species so that designing multiple species-
specific primers is more tenable. A different gene with more variation than COI could be
targeted for primer development, in conjunction with the COI marker developed in this
study, to find enough species-specific primers to support a multiplex assay.

The development of a rapid molecular technique for identification of early life
history stages would provide a valuable tool for‘broad ecological studies of scombrid
early life history. A faster technique that could identify many samples, together with a

more comprehensive spatial and temporal sampling design, could provide much more
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conclusive information on scombrid spawning and recruitment success off the Kona
coast. And specifically, the occurrence of larvae onshore versus offshore and at various
depths could be related to moon phase, physical oceanographic features, season and water
temperature. In light of the results of this study, further investigation off the Kona coast
is clearly warranted, and the molecular tool developed in this project can be useful for
future studies as it can describe the complete species diversity present in assemblages of

larvae.
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APPENDIX

DESCRIPTION OF SPAWNING AREAS OF SCOMBRIDS IN THIS STUDY IN THE
ATLANTIC AND PACIFIC OCEANS

Thunnus orientalis

Pacific: Western extremity of the North Pacific Ocean, with their most eastern occurrence
near 150°E longitude (just east of Japan).

Thunnus thynnus

Atlantic: Gulf of Mexico and in the Mediterranean Sea; also known to spawn in the
Florida Strait (Richards 2006) and could potentially spawn in the mid-Atlantic
(Lutcavage et al. 1999).

Thunnus alalunga

Pacific: Anti-equatorial distribution. In North, larvae occur to from Taiwan to vicinity of
Hawaiian Islands, but not known how far the larvae are present in the central and eastern
Pacific to the east of the Hawaiian Islands.

Atlantic: Larvae found off the east coast of Brazil and few off the coast of West Africa.

In January-March, occur north of the equator.

Thunnus obesus

Pacific: Distributed widely in the equatorial area of the western, central and eastern
Pacific. Despite spawning stock size, number of larvae taken per unit volume of water is
less than other tuna species.

Atlantic: Few confirmed spawning events in western central Atlantic; occur in the
equatorial area from Caribbean Sea to the Gulf of Guinea in October-December and in
January-March, also occur in the east coast of Brazil in January-March. Richards and
Potthoff (1974) say larvae of Thunnus atlanticus closely resemble bigeye tuna, so these

reports may include blackfin tuna.
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Thunnus albacares

Spawning occurs in core areas of distribution; larval distribution in equatorial waters is
transoceanic year round with seasonal changes in larval density in subtropical waters
(Collette and Nauen 1983).

Pacific: Distributed throughout the entire width of the equatorial Pacific.

Atlantic: Many larvae present over the equatorial area from the Caribbean Sea to the Gulf

of Guinea.

Thunnus atlanticus

Atlantic: Spawning well offshore off Florida and in Gulf of Mexico (Collette and Nauen
1983).

Katsuwonus pelamis

Spawn equatorially year round and from spring to early fall in subtropical waters

(Collette and Nauen 1983).

Auxis

Spawns throughout its range (Collette and Nauen 1983).
Pacific: Distribution land-related

Atlantic: Caribbean Sea and Gulf of Guinea of West Africa

Mediterranean: spawn in the western region

Euthynnus alletteratus

Atlantic: North coast of South America including the Caribbean Sea and in the Gulf of

Guinea. Spawns in eastern and western Atlantic (Collette and Nauen 1983).

Euthynnus affinis

Pacific: Adults occur throughout Indo-Pacific, including oceanic islands with known
spawning seasons in Philippine waters, around the Seychelles, off East Africa, and off

Indonesia (Collette and Nauen 1983).
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Sarda sarda
Atlantic: Adults occur throughout Atlantic, absent from much of the Caribbean and rare
throughout western central Atlantic; larvae rarely encountered in coastal areas (Richards

2006); Spawns in the Mediterranean

Scomber colias

Atlantic: Western central Atlantic (Richards 2006).

Scomber scombrus

Atlantic: Western population spawns from Chesapeake Bay to Newfoundland; eastern
population spawns in the Mediterranean, off southern England, northern France and in

the North Sea (Collette and Nauen 1983).

Scomberomorus cavalla

Atlantic: Spawn in western Gulf of Mexico, northeastern Caribbean and northeastern

Brazil (Collette and Nauen 1983).

Scomberomorus maculatus

Atlantic: Spawn in batches in Gulf of Mexico and along east coast of the USA (Collette
and Nauen (1983).

Scomberomorus regalis

Atlantic: Life history not described extensively, but adults occur in the western central
Atlantic and larvae are described (Richards 2006); spawning takes place around Puerto

Rico (Collette and Nauen 1983).

Scomberomorus brasiliensis

Atlantic: Larvae have not been described, but adults occur along the continental shelf of
the western central Atlantic, and spawning takes place off the northern coast of South

America

Acanthocybium solandri

Cosmopolitan; fecundity believed to be high (Collette and Nauen 1983).
Pacific: Larvae rarely encountered (Mundy, pers. comm.)

Atlantic: Spawn throughout western central Atlantic, but larvae rare (Richards 2006).
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