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ABSTRACT

The Order Lamniformes consists of seven families and 15 species. This 
remarkably varied morphological and ecological group of sharks includes filter feeders, 
deep-waters species, open-ocean and coastal species, as well as eight endothermic 
species.

Age and growth rates for salmon sharks (Lanina ditropis) in the eastern North 
Pacific (ENP) were estimated from seasonally formed bands in the vertebrae, and 
compared to previously published life history parameters for this species from the 
western North Pacific (WNP). von Bertalanffy growth parameter estimates from back- 
calculated length-at-age data were: L» = 210.0 cm PCL, k = 0.17 yr'1, and ^  = -2.1 years
for females, and L» = 183.9 cm PCL, k = 0.20 yr'1, and to = -2.3 years for males. Results 
from this study show that salmon sharks in the ENP achieve their maximum length at a 
faster rate, reach sexual maturity at an earlier age and achieve a greater weight-at-length 
than those in the WNP. Additionally, salmon sharks are known to be endothermic. This 
dissertation shows that adult salmon sharks maintain a specific body temperature 
independent of changes in ambient temperature through a combination of physical and 
physiological means, and essentially function as homeotherms.

Due to uncertainty in previous life history parameter estimates for sand tiger 
sharks (Carcharias taurus) in the western North Atlantic, age and growth rates were re- 
estimated based on seasonally formed bands in the vertebrae using a larger sample size. 
Additionally, captive individuals were injected with oxytetracycline (OTC), a fluorescent 
skeletal marker annually over a three-year period. The results support a hypothesis that 
this species forms one pair of growth bands annually in the vertebral centra, whereas 
previous growth rate estimates were based on the formation of two bands per year, von 
Bertalanffy growth parameter estimates from back-calculated length-at-age data were: L» 
= 308.3 cm TL, k = 0.09 y r 1, and to = -4.8 years for females, and L» = 247.5 cm TL, k = 
0.13 yr'1, and to = -4.2 years for males. The growth rate of this species is shown to be 
considerably slower than previously predicted meaning the population is more 
susceptible to fishing mortality.

Demographic analyses were conducted for salmon sharks in the ENP and WNP, 
and for sand tiger sharks with uncertainty in vital rates incorporated via Monte Carlo 
simulation. Density-dependent compensation was included in models where fishing 
mortality was imposed by increasing sub-adult survivorship from output values generated 
by a previously published “Intrinsic Rebound Potential” model. The results indicate that 
both species are extremely vulnerable to fishing mortality and that no fishery should be 
implemented for sand tiger sharks or salmon sharks in the WNP. Salmon sharks in the 
ENP were the only population examined that indicated the potential to tolerate any 
fishing mortality.

A comparison of growth completion rates and other life history parameters of 
ectothermic and endothermic sharks did not indicate that endothermic sharks achieve 
their maximum length at a faster rate than ectothermic sharks. Endothermy may, instead, 
have played an evolutionary role in maintaining growth completion rates as these species 
moved into new niches in temperate and boreal seas as global circulation developed 
during the past 60 million years.

xv
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GENERAL INTRODUCTION

The Order Lamniformes

The Order Lamniformes consists of seven families and 15 species (Compagno 

2001). This remarkably varied morphological and ecological group of sharks includes 

filter feeders (Cetorhinus maximum and Megachasma pelagios), deep-waters species 

(Odontaspis noronhai and Mitsukurina owstoni), open-ocean (Isurus paucus and 

Psuedocarcharias kamoharai) and coastal species (Carcharias taurus), as well as high 

speed predators (Isurus oxyrinchus) and the well-known white shark (Carcharodon 

carcharias). While Compagno (1973, 1990) lists a number of tooth and skeletal aspects 

defining this taxonomic group, many questions regarding the interrelationships of sharks 

in this group remain unanswered. Additionally, Naylor et al. (1997) posed a new 

hypothesis on the interrelationships of this group based on DNA sequence data. A group 

consisting of experts in systematics, meristics, morphology and genetics are currently 

working to better establish the interrelationships of these species (LJ.V.Compagno and 

S. Applegate pers. comm.).

Members of the Order Lamniformes have a “typical” shark body form with a 

fairly large mouth extending well behind the eyes. They possess two dorsal fins without 

spines and an anal fin. They have five gill slits situated on each side of the head, either 

with all five completely forward of the pectoral fins or with the last two above the 

pectoral bases. Their nostrils have no barbels, circumnariai grooves or nasoral grooves. 

Eyes are laterally or slightly dorsolaterally located on head, and lack lower nictitating
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eyelids. Members of this group possess a ring type intestinal valve. All lamniform 

species have aplacental viviparity, with unbom young being oophagous, and 

adelphophagous in at least one species (Gilmore et al. 1983, Compagno et al. 1989, 

Gilmore 1993). Males possess testis type termed ‘radial’ by Pratt (1993) that is seen in 

no other elasmobranch, except the batoid order Myliobatiformes, and females possess a 

single functional right ovary anterior to the epigonal organ and connected by a 

mesovarium to the dorsal abdomen (Gilmore 1993). Additionally, lamniform females 

appear to be incapable of sperm retention (Pratt 1993). Differential fecundity in 

lamniform sharks may be representative of their varying life history strategies.

In addition to the characters stated above, eight species in two families (Lamnidae 

and Alopiidae) of the Order Lamniformes have unique vascular systems, possessing 

counter-current heat exchangers known as retia mirabilia. The evolution of endothermy 

through this type of vascular system in elasmobranchs is convergent to that of the 

endothermic tunas (Block et al. 1993, Block and Finnerty 1994, Bernal et al. 2001). 

Interestingly, if the Naylor et al. (1997) hypothesis that the Alopiidae and Lamnidae do 

not constitute a monophyletic group is correct, then this feature (retia and elevated body 

temperatures) would also be convergent in these two elasmobranch families.

Additionally, the possession of retia in mobulid rays (Order Myliobatiformes: Family 

Mobulidae) indicates that they may have independently evolved this feature as well 

(Martin pers. comm.). However, the retial function in the mobulid rays has not been 

confirmed as elevated body temperatures have yet to be documented for this group.
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Focus and importance o f this Dissertation

This dissertation research focuses on aspects of age, growth, demographics and 

thermal biology in two species of lamniform shark: the salmon shark, Lamna ditropis 

(Family Lamnidae), and the sand tiger shark, Carcharias taurus (Family 

Odontaspididae).

Salmon sharks, Lamna ditropis

Over the past 10 years, Alaska state and federal fisheries managers have seen, and 

taken, an increased interest in salmon sharks. This growing interest is reflected in an 

increasing annual catch in the sport fishery, and an interest to open commercial fishing. 

Sharks are currently listed in the Federal Groundfish Management Plans for the Gulf of 

Alaska (GOA), Bering Sea and Aleutian Islands (BS and Al) as “other species” and are 

allowed as bycatch. They are included in the commercial bycatch Total Allowable Catch 

(TAC) for Alaska Federal waters. How much of this bycatch is salmon shark (vs. spiny 

dogfish, Squalus acanthias, and Pacific sleeper shark, Somniosus pacificus) is unknown 

(W. Bechtol pers.comm.). The North Pacific Fishery Management Council (NPFMC) is 

currently considering closure of commercial fishing for sharks in Federal waters, as the 

GOA, BS and Al Federal Management Plans do not address directed commercial fishing 

for sharks in these areas (J. DiCosimo pers.comm). Commercial fishing for sharks in 

Alaska State waters has been illegal since 1997. Sport fishing regulations in Alaska are 

two sharks per person per year, with one in possession at any time (one per day). The 

state extended the sport fishing regulations to include the exclusive economic zone (FEZ, 

to 200 miles), as the Federal Management Plans do not currently cover sport fishing.
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In Chapter 1, life history parameters for salmon sharks in the eastern North 

Pacific are presented and compared with previously reported life history parameters from 

the western North Pacific (Tanaka 1980). Age and length of sexual maturity 

comparisons, and comments on several back-calculation methods, are also made.

Chapter 2 presents the first detailed demographic analysis of salmon sharks in both the 

eastern and western North Pacific, and examines population responses to fishing 

mortality. Chapter 3 presents the first data ever obtained on salmon shark body 

temperature from free-swimming individuals, and examines the hypothesis of 

homeothermy in sharks of the Family Lamnidae proposed by Lowe and Goldman (2001).

Sand tiger sharks, Carcharias taurus

The sand tiger shark population in the western North Atlantic has been heavily 

depleted due to fishing. This has caused them to be placed under legal ‘protected’ status 

and to be placed on the endangered species candidate list (Musick et al. 2000). This 

species is also currently listed as vulnerable by the IUCN in its Red List of Threatened 

Animals. In Chapter 4 ,1 present a re-examination of the age and growth of this species. 

Branstetter and Musick (1994) reported von Bertalanffy growth parameters for sand tiger 

sharks after estimating that bi-annual bands are laid down in the vertebral centra. Having 

done so, they also stated a caveat about their uncertainty of that estimate. The 

uncertainty in life history parameters given by Branstetter and Musick (1994) along with 

the placement of this species on the endangered species candidate list, were the major 

reason for my re-examination of sand tiger age and growth. A revision of sand tiger 

shark life history parameters required new demographic analyses to be conducted; this is 

the focus of Chapter 5 of this dissertation.
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The rates of biological functions are affected by temperature (Schmidt-Nielsen 

1990). As such, the physiological ecology of any species is instrumental in 

understanding its environmental niche and may provide clues about species life history 

parameters such as growth rates and longevity. The fact that one of the species of focus 

in this dissertation is endothermic and the other ectothermic along with my great interest 

and fascination with endothermic fishes (Goldman et al. 1996, Goldman 1997, Lowe and 

Goldman 2001, Anderson and Goldman 2001), prompted me to examine the question:

Do endothermic sharks achieve their maximum size at a faster rate than ectothermic 

sharks of similar size? This question, which has not been examined by anyone to date, is 

the topic of discussion in Chapter 6.

Overall, this dissertation represents the first examination of age and growth in 

eastern North Pacific salmon sharks, the first detailed demographic analysis of the 

species, and the first examination of their physiological ecology. It also provides new life 

history parameter estimates and revised demographic estimates for the sand tiger shark. 

The demographic models used in this dissertation represent only the third and fourth 

times (see Chapters 2 and 5) that uncertainty in estimates of maximum age, age at first 

reproduction, fecundity and survivorship at age have been incorporated into demographic 

estimates of elasmobranch fishes. Monte Carlo simulations were used to incorporate this 

uncertainty into the models. This dissertation also presents a new method for 

incorporating density-dependent compensation into age structured life table models. 

Lastly, Chapter 6 provides the first inference as to whether endothermy plays a role in the 

growth rates of lamniform sharks.
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Chapter 1

Growth and maturity of salmon sharks in the eastern and western North Pacific, 

with comments on back-calculation methods
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INTRODUCTION

The salmon shark, Lamna ditropis, is a large apex predator inhabiting the coastal 

and oceanic waters of the North Pacific Ocean, most commonly ranging from 65°N 

latitude to 35°N in the west and to 30°N in the east (Strasburg 1958, Neave and Hanavan 

1960, Campagno 1984, Blagaderov 1994, Nagasawa 1998). It occurs individually and in 

large aggregations, is found in sea-surface temperatures of 5°C to 18°C, and has a depth 

distribution ranging from the surface to at least 150 m (Compagno 1984). The salmon 

shark is a highly opportunistic predator, feeding on a wide variety of prey and sharing the 

highest trophic level of the food web in boreal and temperate North Pacific waters with 

marine mammals and seabirds (Brodeur 1988, Nagasawa 1998). Adult salmon sharks 

typically range in size from 200-260 cm total length (TL) and can weigh upwards of 220 

kg (Tanaka 1980, JAMARC 1980, Nagasawa 1998). Reported lengths of 300 cm TL and 

greater with weights exceeding 450 kg are unsubstantiated.

Salmon sharks are migratory in nature. North-south migrations have been 

documented on both sides of the North Pacific with northern movements occurring in 

spring and southern movements in autumn (lino 1939, Kosugi and Tsuchisaki 1950, 

Gorbatenko and Cheblukova 1990, Balgaderov 1994, Nakano and Nagasawa 1994, 

Hulbert 2001). However, this species is present in boreal waters throughout the year 

(Goldman and Human 2002). Very little is known about trans-Pacific movements, but 

they are suspected to occur (Nakano and Nagasawa 1996, Goldman and Musick in press).

Sexual segregation is relatively common in sharks, however an extremely large

8
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sex ratio difference exists in salmon sharks across the North Pacific basin (Sano 1962, 

Nagasawa 1998, Goldman and Musick in press). The western North Pacific (WNP) is 

male dominated while the eastern North Pacific (ENP) is female dominated. Male 

dominance in the WNP and female dominance in the ENP increase with increasing 

latitude. Larger sharks range farther north than smaller individuals, and southern catches 

generally occur in deeper waters (Nagasawa 1998, Goldman and Musick unpub. data).

Shark catches in Alaska waters have been reported to be as high as those from 

Washington, Oregon and California combined (Camhi 1999), and there is concern over 

the amount of shark bycatch being taken (S. Gaichas NMFS and pers. comm.). In 1997, 

state managers closed commercial shark fishing in state waters and imposed conservative 

sport-fishing limits (1 shark per person per day, 2 per year) that legally encompass 

federal waters too. Federal managers are currently addressing elasmobranch 

management issues (Goldman 2001, Goldman and Musick in press).

With the ever-increasing importance of providing accurate, timely life history 

parameters to foster responsible management efforts, this study had two main objectives. 

The first was to estimate growth parameters and the age and length at sexual maturity of 

salmon sharks in the ENP. The second was to compare my results to those previously 

published on salmon sharks from the WNP to elucidate any existing variability in the life 

history parameters of this highly sexually segregated population.

MATERIALS AND METHODS 

Salmon shark vertebrae were obtained from numerous sources and locations 

ranging geographically from southern California to Kodiak Island (n=182). The majority 

of samples came from research cruises in the Gulf of Alaska (GOA) and Prince William
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Sound (PWS), by accompanying sport-fishing vessels on salmon shark trips in the GOA 

and PWS, and from Alaska Department of Fish and Game (ADF&G) port samplers. 

Vertebral samples collected from British Columbia to southern California came from 

incidental catches and recently beached animals (see acknowledgements for sources).

Salmon sharks were captured on research cruises using purse seines and hook and 

line gear. Precaudal, fork, and total length (PCL, FL, and TL) were measured on a 

straight line and recorded along with sex (and clasper length in males). A 20 to 25 cm 

section of vertebrae was removed from directly in front of the first dorsal fin (above the 

gills) and stored frozen. Samples provided by additional sources included at least one of 

the necessary straight-line measurements, date and location of capture or wash-up, and 

sex. I use PCL measurements throughout this Chapter to make direct comparisons with 

previously published salmon shark data from the WNP. Linear regression equations, 

based on my samples, were developed for converting PCL to FL and TL.

Vertebral samples were thawed, cleaned of excess tissue, separated into individual 

centra and stored in 70% ethyl alcohol for at least 24 h. Centra were sagittally sectioned 

through the focus and then cut again approximately 1.5 mm off-center using an Isomet 

rotary diamond saw (Buehler, 41, Lake Bluff, IL). The sections were pressed between 2 

pieces of Plexiglas (to prevent warping), air-dried for 24 h under a ventilation hood, and 

then mounted onto microscope slides. After drying, sections were polished with wet fine 

grit sand paper (320,400 and 600) to approximately 0.5 mm and air-dried. Sections were 

viewed using a binocular dissecting microscope with transmitted light.

A banding pattern was readily distinguishable in sectioned centra, with wide 

bands separated by distinct narrow opaque bands. This pattern occurred on both arms of
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the corpus calcareum and extended across the intermedialia. Each pair of wide-narrow 

bands was considered a growth cycle; the narrow bands, hereafter referred to as “rings”, 

were counted (Figure 1.1a). An angle change in the intermedialia and a ring on the 

corpus calcareum were present approximately 5 to 6 mm from the focus of each centrum 

and considered to represent a birthmark. The “pre-birth ring” reported by Nagasawa 

(1998) was present in most specimens just prior to the birthmark, but was not counted nor 

measured (Figure 1.1a)1. A distinct notch was usually present along the inside edge of 

the corpus calcareum at each ring providing an additional ageing feature, particularly in 

sections where the cut excluded the radials of the intermedialia (Figure 1.1b).

Two readers independently aged all centra two times in blind, randomized trials. 

This allowed the calculation of within-reader precision, and between-reader precision 

twice. When there was a disagreement between readers, a final age determination was 

made by the two readers viewing the centrum together. Percent agreement (PA=[No. 

agreed/No. read]* 100), and percent agreement plus or minus one year (PA +/- 1 yr) were 

calculated for length groups of 10 cm to test for precision. Additionally, Chi-square tests 

of symmetry were conducted using Bowker’s, McNemar’s, and Evans-Hoenig tests to 

determine whether differences between and within readers were systematic (biased) or 

attributable to random error (Hoenig et al. 1995, Evans and Hoenig 1998).

Centrum radius (CR) and distance to each ring were measured to the nearest 0.001 

mm as a straight line from the central focus to the outer margin of the corpus calcareum 

(Figure 1.1a) using a compound video microscope with the Optimus image analysis

1 My ageing protocol was independently developed by my co-reader and I, and later found to be identical to 
that used for salmon sharks in the WNP (H. Nakano pers. comm.).
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Figure 1.1: (a) Sagittal section of a 10 yr old salmon shark’s vertebral centrum showing 

typical banding pattern. CR=centrum radius, (b) Portion of a sagital section from a 

salmon shark vertebral centrum without intermedialia showing the distinct notching 

pattern (white arrows) that accompanied the banding pattern used to aid in assessing ages. 

The 1.0 mm bar applies to both a) and b). PB = prebirth ring, B = birth ring and numbers 

indicate rings or age.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 



14

system (Media Cybernetics 1999). PCL was plotted against CR to determine the 

proportional relationship between somatic and vertebral growth.

Back-calculation is a method for describing the growth history of each individual 

sampled, and numerous variations in methodology exist (see Francis 1990 for a thorough 

review). The relationship between CR and PCL for ENP salmon sharks was investigated 

to determine the most appropriate method for back-calculating previous length-at-age. 

This is critical for obtaining accurate life history parameter estimates from the von 

Bertalanffy growth function. Four different proportions methods were used and 

compared with my sample length-at-age data. First, I used the standard Dahl-Lea direct 

proportions method (Carlander 1969):

L, = (WCRc)«CR, (1)

where Li = length at ring ‘i \  L« = length at capture, CRc = centrum radius at capture, and 

CR{ = centrum radius at ring “i \  Next, I applied two modified versions of the Dahl-Lea 

method that use parameter estimates from the specific linear and quadratic fits that 

described the PCL-CR relationship. The linear-modified Dahl-Lea method (Francis 

1990) is:

Li = Lc*[(a+bCRi)/(a+bCRc)] (2)

where ‘a’ and ‘b’ are the linear fit parameter estimates. The quadratic-modified Dahl-Lea 

method (Francis 1990) is:

Li = U-[(a+bCRi+cCRi2)/(a+bCRc+cCRc2)] (3)

where 'a’, ‘b \  and ‘c’ are the quadratic fit parameter estimates.

Ricker (1992) applauded Francis’ (1990) back-calculation review paper, but like 

Campana (1990) suggested that the point of origin of proportional back-calculations
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should be related to a biologically derived intercept (i.e., length at birth). I, therefore, 

also applied Campana’s (1990) “size-at-birth-modified” Fraser-Lee equation:

Li = Lc+[(CRi-CRc)#(Lc-LBinh)/(CRc-CRBinh)] (4)

where LBinh = length at birth and CRsim, = centrum radius at birth. (Based on Tanaka 

(1980), 62.5 cm PCX was used for LBinh.)

A relative marginal increment (RMI) analysis was used to verify the temporal 

periodicity of ring formation in the vertebrae. This is a standardized marginal increment 

analysis whereby the margin, or growth area of a centrum from the last narrow growth 

ring to the centrum edge, is divided by the width of the last fully formed growth 

increment (Branstetter and Musick 1994). Resulting RMI values were compared to the 

month of capture. Age-zero animals were not included (as they have no fully formed 

increments).

The von Bertalanffy growth function was fit to the vertebral age-at-Iength data for 

salmon sharks from the ENP with a nonlinear least squares regression algorithm (‘nls’ in 

S-Plus, Mathsoft Inc., 2000) to estimate parameters. The von Bertalanffy growth 

function is:

Lt = L»«[l -exp(-k(t-to))] (5)

where L, = length at age ‘t \  L» = asymptotic or maximum length, k = the growth 

coefficient, and to = age or time when length theoretically equals zero. Growth 

parameters were estimated for the sexes separately and combined. Because smaller size 

classes were not well represented in my female sample and my male sample size was 

small, lengths at previous ages were back-calculated from centra measurements for both 

sexes and fitted with the von Bertalanffy growth function, von Bertalanffy growth
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parameter estimates were then obtained from mean back-calculated length-at-age, and 

from a combination of back-calculated lengths-at-age and my sample data. A likelihood 

ratio test was used to determine whether differences between female and male growth 

parameters were significant or if a single set of growth parameters better described the 

data (Kimura 1980, Quinn and Deriso, 1999, Haddon 2001) (SAS Institute Inc. 1999).

The reproductive tracts of 64 female and 14 male salmon sharks were examined 

to assess their reproductive status. Females ranged in size from 71 to 209 cm PCL, and 

males ranged from 63 to 187 cm PCL. Clasper lengths were obtained from 12 of the 

males (from 91 to 187 cm PCL). Reproductive and maturity determinations follow Pratt 

(1988), Gilmore (1993), Pratt and Tanaka (1994), Hamlett (1999) and Hamlett and Koob 

(1999).

Median precaudal length-at-maturity (MPCL) was determined by first coding my 

female (n=64) and male (n=14) maturity data into binary form, with 0=immature and 

Immature. The binary data were fitted with a logistic regression model (‘GLM’ in S- 

Plus, Mathsoft Inc. 2000). The median precaudal length-at-maturity was then estimated 

as: MPCL = - a/b (a = intercept, b = slope). To estimate percent maturity by length for 

the ENP salmon shark population, the ‘a’ and ‘b’ estimates (from the ‘GLM’ model) 

were substituted into the equation; percent mature = lOO«[(e(a+b*lcngth,)/(lW a+b*length))], 

and plotted against PCL. A non-parametric bootstrap (n = 1000 replications) was 

conducted using S-Plus (Mathsoft Inc. 2000) and 95% confidence limits were obtained 

from the 2.5th and 97.5th empirical percentiles.

Sperm storage in the oviducal gland has been documented in several shark species 

(Pratt 1993). Oviducal glands were taken from 6 mature females, ranging in size from
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180 to 192 cm PCL, caught in PWS waters in late July and late August to determine the 

presence or absence of sperm. Samples were initially fixed in 10% formalin. Samples 

were extensively rinsed to remove fixative then stored in 70% ethanol. Cross-sections 

along the entire length of each gland were trimmed (Figure 1.2), dehydrated in a graded 

series of ethanol, cleared in a limonene-based solvent, infiltrated with paraffin and 

embedded in paraffin blocks. Serial sections (5 um) were prepared using a rotary 

microtome, mounted onto poly-L-lysine-coated slides, dried, deparaffinized, re-hydrated 

and stained using standard Harris hemotoxylin and eosin protocol for examining general 

cellular detail (Hinton 1990). Sections were examined for the presence of sperm using a 

compound microscope at magnifications ranging from lOOx to lOOOx.

Weights were obtained from 20 females ranging from 67.1 to 213.4 cm PCL, and 

7 males ranging from 69.5 to 187 cm PCL. The power function, W = a«Lb, was fitted to 

the data (using SigmaPlot, SPSS Inc.), where W = weight (kg) and L = length (cm PCL). 

Specimens weighed ranged geographically from southern California to Alaska. A 

likelihood ratio test was used to determine whether differences between female and male 

weight-length parameters were significant or if a single set of parameters better described 

the data (Kimura 1980, Quinn and Deriso 1999, Haddon 2001) (SAS Institute Inc. 1999).

RESULTS

Length Equations

One hundred sixty-six of the 182 salmon sharks in this study were female, 

resulting in a F:M sex ratio of 10.4/1. Although females dominated my sample, the 

following equations for converting PCL into FL and TL appear to work equally well for 

both sexes.
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Figure 1.2: Diagram of an oviducal gland showing where cross-section cuts were made 

(#’s 1,2 and 3) for histological examination.
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FL=1.0813*PCL + 6.9137 ( r  = 0.99; n = 138)

TL = 1.1529-PCL + 15.186 ( r  = 0.97; n = 133).

ENP Age-Length Composition

The mean age and length composition of ENP salmon sharks was latitude 

dependent (Table 1.1). Sharks between 0 and 7 yrs old ranging from 62.2 to 153 cm PCL 

were collected from southern California to southeast Alaska, with smaller individuals 

found in the southern part of that range. Sharks between 5 and 20 yrs old ranging from 

144.8 to 213.4 cm PCL were collected from southeast Alaska up into the Gulf of Alaska, 

Prince William Sound, and the Bering Sea.

Vertebral Analysis

Percent agreement (PA) among readers was 68.1% for the first set of blind reads 

and 72.0% for the second set, and the within-reader PA was 79.7% for reader one (the 

lead author) and 75.3% for reader two. Percent agreement +/- one yr was >95% for all 

reader comparisons. Agreement between and within reader age assessments was 100% 

until age 7 or 8, depending on the reader comparison. When grouped by 10 cm length 

increments, agreement was 100 % for sharks < 160 cm PCL, and 100 % +/- I yr for 

sharks < 180 cm PCL (Table 1.2). (PA and PA +/-1 for length groups were the same for 

both sets of between-reader comparisons — differences occurred above 160 and 180 cm 

PCL respectively.) The Bowker, McNamara, and Evans-Hoenig Chi-square tests of 

symmetry gave no indication that differences between and within readers were systematic 

rather than due to random error (X2 test, P > 0.05 in all cases).

There was a slight curvilinear relationship between centrum radius (CR) and 

shark PCL (Figure 1.3). A linear regression gave a significant fit to the data (PCL =
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Table 1.1: Mean ages and precaudal lengths (PCL) for eastern North Pacific salmon 

sharks by location. CA = California; seAK = southeast Alaska.

Females Males

AGE (yrs) CA to seAK Alaska Combined CA to seAK Alaska Combined

Mean 

Range 

PCL (cm)

0 -5

11

5-20

10

0-20

3

0-7

12

6-17

9

0-17

Mean

Range

113.5 171.9 153.7103.6 184.7 175.0

62.2- 153 144.8 - 213.4 62.2 - 213.4 63- 150.5 155.4-187 63-187

20 146 166 5 11 16
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Table 1.2: Percent agreement (PA) and PA +/- one year, from the second set of ‘reads’, 

for eastern North Pacific salmon sharks when placed into 10 cm precaudal length (PCL) 

groups.

PCL (cm) Total Read # Agree # Agree +/- 1 PA PA +/-

60-70 5 5 5 100 100

70.1 - 80 2 2 2 100 100

80.1-90 0 - - - -

90.1 -100 4 4 4 100 100

100.1-110 1 1 1 100 100

110.1 - 120 5 5 5 100 100

120.1 -130 3 3 3 100 100

130.1 - 140 1 1 1 100 100

140.1 -150 6 6 6 100 100

150.1 -160 9 9 9 100 100

160.1 -170 11 8 11 72.7 100

170.1 -180 30 22 30 73.3 100

180.1 -190 55 38 53 69.1 96.4

190.1 - 200 34 22 32 64.7 94.1

200.1-210 12 4 10 33.3 83.3

>210 4 1 3 25.0 75.0

n = 182 131 175 - -

Percent Agreed - - - 72.0 96.2
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Figure 1.3: Relationship between centrum radius and precaudal length for eastern North 

Pacific salmon sharks showing significant fits given by linear and quadratic equations 

(sexes combined, n=182). PCL = precaudal length, CR = centrum radius.
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10.553*CR + 20.964; r  = 0.90; P < 0.0001); however, a quadratic equation produced a 

slightly better fit (PCL = -63.944 + 25.189-CR-0.583-CR2; r  = 0.94; P < 0.0001) and a 

t-test showed the third parameter to be statistically significantly different from zero (t = 

10.32; d f -  181, P <0.0001). However, it was necessary to compare the mean back- 

calculated results from equations 1 through 4 with the mean sample PCL data to see if the 

slightly better statistical fit of the quadratic equation translated into better biological 

accuracy for modeling growth.

The quadratic-modified Dahl-Lea method (equation 3) most accurately 

represented the mean sample precaudal length-at-age data. It produced mean back- 

calculated lengths-at-age within 4.2 cm of mean sample lengths-at-age for female salmon 

sharks >120 cm PCL and within 8.8 cm for females <120 cm PCL (Figure 1.4a). When 

applied to males, equation 3 produced mean back-calculated lengths-at-age within 10 cm 

of mean sample lengths-at-age for sharks <120 cm PCL and >150 cm PCL. In between 

those lengths, however, the deviation from mean sample length-at-age increased to 16.5 

cm (Figure 1.4b). (The larger deviations for males are likely the result of small sample 

size.) Lee’s phenomenon did not occur in either sex using the quadratic-modified Dahl- 

Lea method (Tables 1.3 and 1.4).

Vertebral age-at-length data from 166 female salmon sharks provided von 

Bertalanffy parameters of L , = 207.4 cm PCL, k = 0.17 yr'1, and to = -2.3 years (Figure 

1.5). When the von Bertalanffy growth function was fit to the quadratic-modified Dahl- 

Lea back-calculations for females, the life history parameters were similar to those 

produced from the sample length data (Table 1.5). Vertebral age data from 16 males
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Figure 1.4: Mean deviation, from mean sampled precaudal length, of four proportional 

back-calculation methods for (a) female, and for (b) male eastern North Pacific salmon 

sharks. Data points represent mean back-calculated lengths-at-age. A point on the x-axis 

would represent zero deviation from the sample mean length-at-age.
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Figure 1.5: von Bertalanffy growth curves fitted to female and male vertebral sample 

data for eastern North Pacific salmon sharks. Estimates for parameters of the von 

Bertalanffy growth function are summarized.
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Table 1.5: von Bertalanffy growth parameters of female, male and sexes combined for 

salmon sharks in the eastern North Pacific. Numbers in parentheses are standard errors.

Females U , k to

Sample data (n=l66) 207.4 (2.5) 0.17 (0.01) -2.3 (0.2)

Back-calculations (n=1814*) 205.3 (0.9) 0.18(0.002) -2.0(0.03)

Mean back-calculation (n=2l*) 210.0(1.1) 0.17 (0.004) -2.1 (0.09)

Back-calculations w/ sample data (n=1980*) 206.0 (0.8) 0.18(0.002) -2.0(0.03)

Males
Sample data (n=16) 182.8 (3.7) 0.23 (0.03) -1.9 (0.3)

Back-calculations (n=161#) 183.9 (2.0) 0.20(0.008) -2.0 (0.1)

Back-calculations w/ sample data (n=177*) 184.2(1.9) 0.20(0.008) -2.0 (0.1)

Combined

Sample data (n=182) 204.5 (2.4) 0.18(0.01) -2.2 (0.2)

♦Not independent
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provided von Bertalanffy parameters of L» = 182.8 cm PCL, k = 0.23 y r'1, and to = -1.9 

years (Figure 1.5). Back-calculated lengths-at-age for male salmon sharks, either with or 

without sample data included, provided slightly lower k coefficients (= 0.20), but similar 

L» and to parameters (Table 1.5). Vertebral age data for the sexes combined (n=182) 

provided von Bertalanffy parameters of L- = 204.5 cm PCL, k = 0.18 yr '1, and to = -2.2 

years. A likelihood ratio test showed that separate von Bertalanffy growth models better 

describe the data for each sex than one model with the sexes combined (X2 = 29.1; df=  3; 

P<0.001).

Relative marginal increment (RMI) analysis showed that postnatal rings form 

annually between January and March. The smallest relative margins occurred in 

February and March, followed by a consistent increase in RMI with the largest relative 

margins occurring in December and January (Figure 1.6).

I assessed the reproductive status of 64 female salmon sharks and found 55 of 

them to be fully mature. Out of the 14 males examined, 11 were mature. Mature female 

reproductive tracts consisted of a well-developed right ovary (the only functional ovary in 

lamniform sharks) with various sized ova, large oviducts and oviducal glands, and 

expanded, heavily striated uteri with thickened walls. By contrast, the right ovary from 

immature female reproductive tracts was small and had no signs of developing ova, the 

oviducal gland was virtually indistinguishable from the oviduct, and the uteri were 

extremely small, thin-walled, flaccid and completely smooth. Additionally, the epigonal 

organ in mature females was large and extended Vi the length of the uteri, whereas in 

immature females it was small and generally did not extend much past the anterior end of
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Figure 1.6: Results of relative marginal increment analysis showing annuli formation 

occurs between January and March.
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the uteri. No females examined were of an ‘intermediate’ nature. Mature male 

reproductive tracts consisted of large well-developed testes, a thick epididymis leading to 

a coiled ductus deferens, rigid (fully calcified) claspers and well-developed siphon sacs. 

Immature male reproductive tracts consisted of small testes that were partially embedded 

in the epigonal organ, thin epididymis and straight ductus deferens, non-rigid claspers 

and poorly developed siphon sacs.

Median precaudal Iength-at-maturity (MPCL) for ENP female and male salmon 

sharks were 164.7 cm PCL and 124.0 cm PCL respectively (Figure 1.7). The smallest 

mature female observed was 164.0 cm PCL, and the largest immature female observed 

was 176.5 cm PCL (however, all other immature females were < 163 cm PCL). None of 

the oviducal glands sampled from mature females contained spermatozoa. The smallest 

mature male observed was 155.4 cm PCL, and the largest immature male was 91.0 cm 

PCL. Based on age estimates from vertebral sample data, ages at MPCL ranges from 6 to 

9 yrs for females and from 3 to 5 yrs for males. Ninety-five percent confidence limits 

(for percent mature) were very narrow for females < 155 cm PCL and >172.5 cm PCL 

and for males < 107.5 cm PCL and > 132.5 cm PCL. The wide vertical confidence 

intervals around my calculated estimates of MPCL (Figure 1.7) are caused by not having 

many observations for lengths around the estimated MPCL in the sample.

Weight-length relationships for female and male salmon sharks I sampled in the 

ENP were W = 8.2xl0-°5-L“759 ( f  = 0.99) and W = S^xlO ^-L 3383 (r2 = 0.99) 

respectively, and 4.4xlO'05»L2 875 (r2 = 0.99) for the sexes combined (Figure 1.8). A 

likelihood ratio test showed that separate equations for each sex better describe the data 

than a single equation for the sexes combined (X2 = 12.1; d f -  3; P <0.01).
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Figure 1.7: Percent mature vs. precaudal length curves for eastern North Pacific female 

(heavy lines) and male (light lines) salmon sharks, with 95 % confidence bands on 

percent mature. Diamond and circle show estimates of median precaudal length at 

maturity (MPCL) for females and males respectively. Confidence bands are 2.5th and 

97.5th empirical percentiles obtained by bootstrapping.
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Figure 1.8: Weight-to-precaudal length relationship for eastern North Pacific salmon 

sharks. W = weight (kg); PCL = precaudal length (cm).
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DISCUSSION

A high degree of variability exists in the periodicity of ring and growth band 

formation within and among taxonomic groups of elasmobranch fishes, and much of the 

variation observed in several lamniform sharks has not yet been explained (Branstetter 

1990, Branstetter and Musick 1994, Wintner and Cliff 1999). For example, Cailliet et al. 

(1983) stated that shortfin mako sharks from the Pacific appear to have annual ring 

formation while Pratt and Casey (1983) stated that Atlantic specimens appeared to 

produce two rings per year. However, a new technique using bomb radiocarbon to 

validate ages in long-lived sharks was applied to a single shortfin mako and indicated that 

they form a single ring annually (Campana et al. 2002).

Tanaka (1980) and Nagasawa (1998) state that salmon sharks produce one ring 

per year, but a RMI analysis does not appear to have been conducted. The RMI analysis 

verifies an annual periodicity of banding patterns for salmon sharks ranging from 73 cm 

to 213.4 cm PCL encompassing ages 1 to 20 for females and ages 1 to 17 for males. The 

major period of growth occurs from May through November, slowing some as January 

approaches (Figure 1.6). A brief cessation, or extreme slowing, of growth (ring 

formation) occurs between January and March, with growth increasing again in April- 

May. While we were able to examine specimens from every month of the year, 

additional samples from December through April would enhance RMI precision.

Vertebral growth significantly increased with somatic growth (Figure 1.3) which, 

along with the reliability of the RMI analysis (Figure 1.6), demonstrates vertebral growth 

patterns are a reliable indicator of age in salmon sharks. Precision was high between and 

within readers with limited differences (Table 1.2) that were attributable to random error.
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These results provided a high degree of confidence in the accuracy and precision of the 

age assessments (from sample data) used in the von Bertalanffy growth model, and hence 

in the resulting life history parameter estimates.

The error associated with back-calculated length vs. the actual length at a given 

age has been a focal point of papers by Campana (1990), Francis (1990) and Ricker 

(1992) and prompted my evaluation of several proportional back-calculation methods. 

There was a statistically valid reason for using the quadratic-modified Dahl-Lea 

(equation 3) over the linear-modified Dahl-Lea (equation 2) (see results), however, the 

only way to cross-compare all four back-calculation methods in a biologically 

meaningful way was to apply all of them to the vertebral sample data. Both modified 

Dahl-Lea equations were more accurate in representing the mean sample length-at-age 

data than the standard Dahl-Lea or the size-at-birth-modified Fraser-Lee equations 

(Figures 1.4a and b). However, the quadratic-modified Dahl-Lea was the best predictor 

of prior length-at-age. While these back-calculation results are, of course, dependent on 

the assumption that growth has not significantly changed over time, and are applicable 

only to salmon sharks, they demonstrate the importance of choosing the appropriate 

method to minimize error, which results in a greater ability to accurately model growth. 

Even greater confidence could be had if animals collected in the past were available as 

this would enable a direct comparison of size-at-age then and now to be made to verify 

that growth has not changed.

The similar von Bertalanffy growth parameter estimates generated from the 

female sample data, back-calculated data and the combination of the two indicate that 

sample size was sufficiently large and encompassed the known size range of the species.
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von Bertalanffy parameters for males would be improved with a larger sample size that 

would be expected to reduce the difference between values of ‘k’ from sample and back- 

calculated data (Table 1.3). More samples would probably have little influence on L» 

and to for either sex since salmon sharks close to maximum size were examined in this 

study. It is possible that the discrepancy between male and female sample sizes may 

have influenced the outcome of the likelihood ratio test. However, with the differences in 

observed maximum length (and L.) between the sexes and the small standard errors 

associated with the male von Bertalanffy estimates (Table 1.5), it is unlikely that an 

increased male sample size would alter the test result.

My results show that salmon sharks in the ENP attain their maximum size at a 

faster rate (k) than those from the WNP (Table 1.6). I was unable to test the statistical 

significance of these differences as neither Tanaka (1980) nor Nagasawa (1998) provided 

point estimates and standard error values for WNP data. There were, however, 

significant resultant biological differences present. Both female and male salmon sharks 

reach first age at sexual maturity upwards of 2 years earlier in the ENP than in the WNP. 

Female salmon sharks in the WNP mature between 8 and 10 years of age (Tanaka 1980, 

Nagasawa 1998). Based on reproductive tracts examined, we found that female salmon 

sharks in the ENP reach sexual maturity between ages 6 and 9. Although age at first 

maturity was earlier in the ENP, length at maturity appears to be similar, 160-180 cm 

PCL in the WNP, and a MPCL = 164.7 cm PCL in the ENP (Figure 1.7). Male salmon 

sharks in the WNP mature at approximately 5 years of age and 140 cm PCL (Tanaka 

1980, Nagasawa 1998). From my small sample size, the logistic method enabled me to
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Table 1.6: Growth parameters for salmon sharks in the eastern and western North 

Pacific.

______________ Eastern North Pacific________Western North Pacific

Females

I  207.4 203.8

K 0.17 0.14

to -2.3 -3.9

Males

U , 182.8 180.0

K 0.23 0.17

to -1.9 -3.6
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estimate that male salmon sharks in the ENP mature between the ages of 3 and 5, and 

MPCL = 124.0 cm PCL (Figure 1.7). Clasper lengths did not enhance the ability to 

determine length at sexual maturity in males because males around the calculated MPCL 

were not sampled. Although the MPCL for males indicates a smaller length at maturity, 

my confidence in the accuracy of the male MPCL estimate (due to sample size) is low 

(Figure 1.7).

The lack of spermatozoa in any of the oviducal gland samples analyzed is not 

surprising considering no lamniform shark examined to date has shown evidence of 

sperm storage (Pratt 1993). However, specimens I examined were specifically chosen 

from the time period of late July through late August when mating may be taking place 

(Goldman and Human 2002). A larger sample size taken through that time period and 

extending through September might better resolve the question regarding the suspected 

residence time of sperm in the oviducal gland of lamniform sharks, which is probably 

only a few days that are timed with actual mating activity (Pratt 1993). The large number 

of eggs produced to feed oophagous young (Gilmore 1993, Gilmore et al. 1983, Worms 

1977) is thought to “flush” any stored sperm out of the oviducal gland (Pratt 1993).

In the WNP, salmon sharks are bom in the spring of the year with pups ranging in 

length from 60 to 70 cm PCL (Tanaka 1980, JAMARC 1980, Nagasawa 1998). Litter 

size in the WNP is up to S pups, with a ratio of male to female of 2.2:1 (Tanaka 1980). 

My data support a similar timing for pupping and for length at birth in the ENP, but no 

pregnant females were taken during the course of my research so information on litter 

size and pup sex ratio is not available for the ENP.
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Nagasawa (1998) characterized salmon shark growth through age ten as follows; 

after birth, “they grow to between 90 and 105 cm PCL by the next spring...subsequent 

annual growth is 10-15 cm per year up to age-4 fish”. He additionally stated that females 

and males attain an average length of 173 cm PCL and 163 cm PCL, respectively, by age 

10. My data indicate that the average growth (cm per year) for salmon sharks in the ENP 

is very similar to those in the WNP through age 4. By age 5, ENP females are growing at 

a considerably faster rate than WNP females, reaching an average of 185.4 cm PCL by 

age 10 (Table 1.7). Male salmon sharks in the ENP appear to begin outgrowing their 

WNP counterparts by age 4 (Table 1.7). Salmon shark longevity appears to be similar in 

the ENP and WNP. Maximum observed age for females in my study was 20 vs. 17 in the 

WNP (Tanaka 1980); however, maximum observed age for males was only 17, vs. 25 for 

the WNP. My small sample size of male salmon sharks probably prevented me from 

attaining samples at or near maximum age.

Salmon sharks in the ENP and WNP attain the same maximum length (about 

215cm PCL for females and about 190 cm PCL for males). However, WNP salmon 

sharks take longer to reach a given length than those in the ENP (Table 1.7). Differences 

also exist between ENP males and females; the weights for the same length animals are 

considerably different except at male maximum length, which appears to be equivalent to 

the same size females (Figure 1.8). My data indicate that the weight-at-length differences 

between ENP and WNP salmon sharks begin at approximately 110 cm PCL for females, 

and at 140 cm PCL for males (Figure 1.9a and b). While a greater sample size would 

enhance precision and may alter the equations presented here to some degree, the data
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Table 1.7: Mean precaudal length-at-age of salmon sharks in the eastern and western 

North Pacific. Ranges (or individual lengths for some males) are given for sharks from 

this study.
_____________ FEMALES__________________  MALES_____________________

WNP* ENP ENP WNP* EN P
Age mean PCL mean PCL range mean Individual or range

0 62.5 65.9 6 2 .2 -7 1 .1 62.5 63.0
1 97.5 92.1 73.0 - 105.0 97 >5 91.0
2 110.0 115.3 112.0- 119.0 110.0 -
3 122.5 123.3 118 .0 -128 .0 122.5 118.0
4 135.0 134.0 128.0 - 140.0 135.0 145.0
5 141.3 147.3 144.0 - 153.0 139.7 -
6 147.7 158.1 149.7 -164.0 144.3 155.4 - 157.0
7 154.0 164.1 145.9 - 183.0 149.0 150.5
8 160.3 175.7 164.0 - 185.4 153.7 163.0
9 166.7 178.4 164.0 - 192.0 158.3 -
10 173.0 185.4 168.0 - 198.0 163.0 -
11 177.4 187.0 173.0 - 200.0 164.2 164.0 - 176.0
12 181.8 186.7 180.0 - 193.0 165.3 187.0
13 186.2 190.8 159.0 - 213.0 166.5 176.0
14 190.6 192.9 183.0 - 208.0 167.6 177.0
15 195.0 196.7 175.0-207.1 168.8 -
16 199.4 200.1 193.0 - 208.3 169.9 176.0 - 182.0
17 203.8 208.3 2 0 3 .0 -2 1 3 .4 171.1 187.0
18 - - - 172.2 -
19 - - - 173.4 -
20 - 205.1 200.0 - 210.2 174.5 -
21 - - - 175.7 -
22 - - - 176.8 -
23 - - - 178.0 -
24 - - - 179.1 -
25 _ . 180.3 _

*Mean length-at-age for WNP calculated from information in Nagasawa (1998). Linf was used 
as mean length at age 17 for females and as mean length at age 25 for males.
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Figure 1.9: Comparison of weight-length relationships of eastern and western North 

Pacific salmon sharks, (a) females, and (b) males. (Western North Pacific data from 

Tanaka (1980) and Nagasawa (1998).)
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show that weight-at-length is particularly greater for adult salmon sharks in the ENP than 

in the WNP. As with the von Bertalanffy growth models, it is possible that the 

discrepancy between female and male sample sizes may have influenced the outcome of 

the likelihood ratio test. However, the sample size discrepancy is not as large and 

standard errors were small for both sexes, so it is unlikely that an increased male sample 

size would alter the test result.

While season and size at birth appear to be similar for salmon sharks in the ENP 

and WNP, the locations where females pup are different. A salmon shark pupping and 

nursery ground exists along the transitional boundary of the subarctic and central Pacific 

currents (Nakano and Nagasawa 1996). My data suggest that a second pupping and 

nursery ground exists, ranging from southeast Alaska to the northern end of Baja 

California, Mexico, with central California being the most common area for ages zero 

and one (see Table 1). Ages zero through 5 were only caught between southern 

California to southeast Alaska, and ages 5 and above were only caught in Alaska waters. 

The latitudinal size segregation observed in the ENP indicates that pregnant females may 

move south along the California coast to give birth in the spring.

The high degree of sexual segregation across the Pacific Basin (Nagasawa 1998, 

Goldman and Musick in press), along with the age and length dependent latitudinal 

distribution are important factors in pursuing responsible management and conservation 

of this species. While latitudinal migrations and movements are documented in this 

species (lino 1939, Kosugi and Tsuchisaki 1950, Tanaka 1980, Balgaderov 1994, Nakano 

and Nagasawa 1994, Hulbert 2001), they are still poorly understood. Similarly, while 

trans-Pacific movements have been inferred from fisheries bycatch data (Goldman and
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Musick in press), there has yet to be documentation of individuals moving across the 

North Pacific. However, the degree of the sexual segregation by itself (in regards to 

finding a mate) would seem to indicate that movements across the Pacific are likely.

Another critical element for successful management of salmon sharks is stock 

structure, which is not well understood at this time, however a population genetics study 

is currently underway. Current information from the western and central North Pacific 

implies that salmon sharks constitute a single stock, but there is no current information 

for the Japan Sea or the eastern North Pacific (Sano 1962, Tanaka 1980, Blagaderov 

1994, Nagasawa 1998). New technologies such as archival and pop-up satellite 

transmitters should provide documentation of movements and migrations and key 

information as to whether regional or international conservation and management plans 

are needed.

Stock structure may be an important factor in the differential growth rates 

between ENP and WNP salmon sharks. However, ecological differences between the 

ENP and WNP could also be responsible for the observed differences. Young salmon 

sharks appear to move from temperate waters of the U.S. west coast into the Alaska Gyre 

and the Gulf of Alaska as they approach adulthood, which is when their growth rate 

begins to exceed that of their WNP counterparts. These waters are extremely productive 

— some of the most productive in the world. Food resources and availability may be the 

key factor in growth rate, age-at-maturity and weight-at-length differences observed 

between ENP and WNP salmon sharks.

Lamniform sharks possess fairly high growth rates (k) relative to other sharks, 

particularly for sharks that grow to a large size (Musick 1999). Salmon sharks are among
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a small group of lamniform sharks that are endothermic (Smith and Rhodes 1983, 

Anderson and Goldman 2001, also see Chapter 3 of this dissertation). This uncommon 

physiological trait, combined with the salmon sharks diet that includes many lipid-rich 

species, may be an influencing factor in the growth rate of this species. With current 

research on mako, white, and thresher shark age and growth, we may soon leam whether 

endothermy plays a role in the growth rates of lamniform sharks. Chapter 6 of this 

dissertation presents the first written discussion on this topic.
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Chapter 2

Demography of salmon sharks in the eastern and western North Pacific

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



INTRODUCTION

In Chapter 1,1 presented the results of my study on salmon shark age and growth 

in the eastern North Pacific (ENP) and compared them to previously published life 

history parameters in the western North Pacific (WNP) (Tanaka 1980, Nagasawa 1998). 

While possessing a moderately fast growth completion rate (k) for an elasmobranch (0.17 

yr*1 for females, 0.20 yr*1 for males), salmon sharks appear to have a very low fecundity 

and are relatively slow to mature and, as such, may be extremely vulnerable to fishing 

mortality. In addition to the fact that no stock assessments have been conducted on this 

species, the differential growth rates between salmon sharks in the ENP and WNP along 

with our lack of knowledge of trans-Pacific migrations and stock structure compound 

management issues.

The majority of previous demographic analyses on elasmobranch fishes have used

deterministic life-tables (or Leslie matrix models) to calculate intrinsic rates of

population increase and other vital rate parameters to estimate their ‘potential’ for

exploitation. Incorporating the effect of uncertainty in vital rates into demographic

analyses is a relatively new and extremely useful approach in fisheries ecology, yet so far

only two published studies have incorporated uncertainty or known variation in

elasmobranch vital rates (Cortes 1999, 2002). In a recent paper by Mollet and Cailliet

(2002), comparing the demography of four elasmobranch species using different

modeling approaches, they stated that a “flaw” in their study was the “lack of confidence

bands for our population growth estimates” which can be generated by incorporating
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uncertainty with Monte Carlo simulation. They strongly recommended that Monte Carlo 

“uncertainty analysis” be carried out. This is important because model input parameters 

such as survivorship are difficult (at best) to obtain for elasmobranchs, and because 

gaining a better understanding of how life histories and population dynamics respond to 

exploitation (with uncertainty included) would benefit fishery managers.

Cortes (2002) showed that uncertainty could be incorporated into life-table 

analysis via Monte Carlo simulation to generate population growth rates (X and r) and 

other population statistics with confidence bands. His results, from 38 shark species, 

show that these types of life-tables produce “nearly identical results” to pre-breeding 

census, age-structured Leslie matrix models (which he also presented). I used this life- 

table approach in modeling the demography of salmon sharks in the ENP and WNP.

Elasticity (proportional sensitivity) analysis is becoming a standard tool in 

demographic analysis (Heppell et al. 2000a). Elasticity is a perturbation measure that 

quantifies the proportional change in population growth rate as a function of a 

proportional change in other vital rates such as survival, fecundity or growth (Heppell 

1998, Heppell et al. 1999, De Kroon et al. 2000). Elasticity analysis from single, 

deterministic approaches can lead to inappropriate management decisions (Heppell 

2000a, Cortes 2002). As such, I calculated elasticities (with uncertainty incorporated via 

Monte Carlo simulation) in my models in order to more accurately gauge the relative 

importance of proportional changes in fertility, juvenile survival and adult survival on the 

intrinsic rate of population increase (r, where r  = Ink, X = finite population growth rate) 

(Heppell 1998, Heppell et al. 2000b, De Kroon et al 2000, Caswell 2001).
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Density-dependent compensation is a standard concept in ecology and fisheries 

biology (Kiebbs 1985, Holden 1974 and 1977). Potential compensatory mechanisms in 

fishes include: increased survivorship in pups, juveniles and adults, an increase in 

fecundity or size at birth, an increase in growth rate leading to earlier age at maturity, 

decreasing (shortening) reproductive periodicity and immigration of animals from other 

areas. In sharks, a decrease in the reproductive periodicity may be possible in some 

species, but there is no evidence to support its occurrence, and no species has been shown 

to increase its fecundity due to exploitation. Sminkey and Musick (1995) found an 

increase in juvenile sandbar shark (Carcharhinus plumbeus) growth rate after heavy 

exploitation, but this was not accompanied by a change in age at maturity. Cortes and 

Parsons (1996) proposed an increase in offspring size for the bonnethead shark (Sphyma 

tiburo) as a possible compensatory mechanism in that species. There are no available 

data on salmon shark immigration and emigration between the ENP and WNP, so no 

inferences can be made about this type of compensation. The best evidence points 

towards an increase in the survivorship of pups and juveniles (Walker 1992,Walker 1998, 

Hoenig and Gruber 1990, Musick et al. 1993).

Direct evidence of increased survivorship in pups and juveniles due to 

exploitation has been obtained for lemon sharks (Negaprion brevirostris) < 53 cm PCL 

(Gruber et al. 2001). The survival rate of young of the year (YOY) and juvenile lemon 

sharks was made from a mark-depletion experiment and were negatively correlated with 

estimated initial abundance, demonstrating density-dependent survival rates in that 

species. The results of Gruber et al (2001) also support the assumption that first year 

survival can be adequately determined through life-table (or Leslie matrix) methods.
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A shortcoming of life-table models is that they assume density-independence, so I 

consequently incorporated density-dependent compensation in the present model when 

imposing fishing mortality. I increased survivorship of YOY and juvenile age classes (up 

to age at first reproduction) based on output from the ‘intrinsic rebound potential' model 

of Au and Smith (1997, also see Smith et al. 1998), which provides a prediction of the net 

increase in sub-adult survivorship ( \a ) at a given level of F along with a prediction of 

the ‘intrinsic rebound potential’ (r at maximum sustainable yield = rUSY) of a species.

Demographic analyses are often used for management and conservation purposes. 

As such, it is important that biologists be able to more accurately describe the variability 

in estimates of vital rates in marine populations. Incorporating uncertainty into modeling 

techniques adds one more tool for biologists to use to provide fishery managers the 

ability to make responsible decisions. The goals of this part of my dissertation research 

were to: 1) provide the first estimates of demographic parameters for salmon sharks, 2) 

investigate the ‘commercial fishing potential’ of this species, 3) provide results that 

could be used for comparative purposes with other recent demographic studies on sharks 

(e.g. Cortes 2002, Smith et al. 1998), and 4) see if the Au and Smith (1997) model would 

adequately predict the necessary compensation to keep population parameter estimtates 

stable (i.e. attempt to ‘connect’ the life-table and intrinsic rebound potential models in a 

manner that would lead to biologically reasonable conclusions).

MATERIALS AND METHODS

The Life-table Model

I used age-structured life-tables based on a yearly time step and a 2-year 

reproductive cycle (applied to only females) to model the demography of salmon sharks
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in the ENP and WNP. Monte Carlo simulation (n = 5,000) was used to incorporate 

uncertainty in demographic parameters and generate population growth rates (X and r), 

generation time ( A), net reproductive rate ( R0 ), reproductive value (vx), stable age

distribution (cx), fertility, juvenile and adult elasticity, mean life expectancy, and

population doubling or halving time. Due to differences in salmon shark life history 

parameter estimates and weight-at-length relationships (see Chapter 1) between the ENP 

and WNP, separate demographic models were run for each area. I use the term 

“population” throughout this Chapter when referring to each area. This is not meant to 

infer that they are distinct populations or sub-populations (as this has not been 

demonstrated), but rather to distinguish between areas and models. Salmon shark life 

history parameters used for the ENP models are from Chapter 1, and those used for the 

WNP models are from Tanaka (1980) and Nagasawa (1998).

To include uncertainty in parameter estimates, I established probability 

distributions for maximum age ( Q) ), age at first reproduction ( a ), fecundity (mx = 

number of female pups per female per year) and survivorship at age (Sx). The maximum 

age of salmon sharks appears to be very similar in the ENP and WNP (Chapter 1), so 20 

to 30 years of age was used for both areas and was represented by a linearly decreasing 

distribution scaled to a total relative probability of 1 (Figure 2.1a). Female salmon shark 

age at first maturity has been estimated at 6 to 9 years in the ENP (Chapter 1) and 8 to 10 

years in the WNP (Tanaka 1980, Nagasawa 1998). Age at first reproduction is required 

for the model, hence 7 to 10 years of age was used for the ENP, and 9 to 11 years was 

used for the WNP. With no available information to specify any given age at first
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reproduction as the “most likely”, uniform probability distributions were used for this 

parameter (Figure 2.1b).

Salmon sharks are thought to mate in late summer and early fall and have roughly 

a 9-month gestation period (Tanaka 1980, Goldman and Human 2002). The functional 

ovary in all mature females I examined (n = 55) in late summer and early fall in Prince 

William Sound, Alaska, appeared to be in a resting stage with small ovarian follicles (or 

in a postpartum condition). This suggests that salmon sharks, like several of the other 

lamniform sharks, possess a 2-year reproductive cycle.

Litter size of WNP salmon sharks has been reported to be between three and five, 

with a sex ratio at birth of 2.2 males per female (Tanaka 1980). (Males are also the 

dominant sex in the WNP, whereas females are the dominant sex in the ENP -  see 

Chapter 1). There are no data on the litter size of ENP salmon sharks or the sex ratio of 

litters. However, females on both sides of the Pacific reach similar maximum lengths, 

therefore I assumed total fecundity (number of sharks per litter) to be the same. I did not, 

however, assume the same sex ratio for ENP salmon sharks. With no data available on 

the sex ratio of ENP salmon shark litters, I chose to use a 1:1 ratio. A 1:1 ratio tends to 

be more common in vertebrates, and ENP salmon sharks pup in a different location than 

those in the WNP (Goldman and Musick in press, also see Chapter 1) giving less reason 

to assume the same sex ratio amongst litters. I represented total fecundity for the ENP 

and WNP as normal distributions ranging between three and five with a standard 

deviation set arbitrarily at 30% of the mean, and used the minimum and maximum 

reported litter size to bound the distribution. This decision was in accordance with
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Figure 2.1: (a) Probability distribution for longevity used in model simulations for ENP 

and WNP salmon sharks; (b) Probability distribution for age at first reproduction for 

salmon sharks in the eastern North Pacific (distribution for western North Pacific was 

also uniform, but ranged from 9 to 11).
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Cortes’ (2002) observations that the standard deviation of the mean litter size in 

elasmobranch fishes generally ranged between 20 and 40% and, as such, he used a 

standard deviation of 30% when the value was not reported in the literature. Female- 

specific fecundity (mx; number of females per female per year) was obtained by dividing 

the total number of offspring in a litter by the reproductive cycle in years accounting for 

the sex ratio of litters. For the ENP, this meant simply dividing by 4 (2-year cycle x 2 

offspring per female = 4) to obtain the number of females per female per year, whereas 

for WNP it meant dividing by 6.4 to account for the 2.2:1 sex ratio of pups in a litter.

There are several methods available for estimating natural mortality (M), and 

hence survivorship in the absence of fishing (S = e M). I estimated the probability of 

annual survival at the beginning of each age using the following six life-history methods 

following Cortes (2002) (see Appendix 1 for equations): 1) Hoenig (1983), 2) Pauly 

(1980), 3) Chen and Watanabe (1989), 4) Peterson and Wroblewski (1984), and 5 and 6) 

Jensen (1996). Although method 4 uses dry weight, wet weight seems to yield more 

realistic estimates of survival for sharks (Cortes 2002 and pers. comm.).

I used a relatively cautious approach when setting probability distributions for 

survivorship. I used the lowest and highest values from the six methods as lower and 

upper bounds for setting survivorship probability distributions. The first five age classes 

(ages 0 to 4; < 1.5 m PCL) were represented by uniform distributions (Figure 2.2a), as 

there are no data that would give reason to suspect that one estimate is more realistic than 

another. For salmon sharks ages five to 30 (> 1.5 m PCL), I assumed that survivorship 

would more likely be at the higher end of the distribution rather than the lower end 

because of their larger size, so I used a linearly ascending distribution scaled to a total
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relative probability of 1 (Figure 2.2b), with the highest estimate of survivorship twice as 

likely to occur in model simulations as the lowest.

Annual population growth rates (X=er) were obtained by iteratively solving the 

discrete form of the Lotka-Euler equation (Goodman, 1982, Roff 1982):

1 = X  e~rxlxmx
x= l

where lx is the probability of an individual being alive at the beginning of age x  , mx is the

number of female offspring produced annually by a female at age .r, and co is maximum

age. Generation time ( A ) was calculated as 

_  co
A = £  e~rxxlxmx 

x=l

which is the mean age of the parents of the offspring produced by a population at the 

stable age distribution (Caswell 2001).

The reproductive value distribution (v*) was obtained through

K*-l) Qi
— r r  •

Ml*
X  J = x

where v0 is the reproductive value at birth (which is equal to one), and j  denotes all the 

ages a female will pass through from x  to co (Goodman 1982, Ebert 1999, Cortes 2002).
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Figure 2.2: Examples of survivorship distributions for (a) age-zero and (b) age Eve 

salmon sharks. Values shown are for the eastern North Pacific models.
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The stable age distribution (cx) was obtained through

X  ~  01
l e  n ix
JT=l

The reproductive value and stable age distribution columns were used to calculate 

elasticities following Caswell (2001) and Cortes (2002) as

a- v* w*i j

where a,y is the element corresponding to row i of column j  (survivorship), v,- is the value 

of row i in the reproductive value column (vx), wj is the value of row j  in the stable age 

distribution column (cx), and ( w, v) is the scalar product of row elements in the w (c*)

and v (vx) distributions. I calculated elasticities for age zero survival (fertility), juvenile 

survival and adult survival by summation of elasticity elements across relevant age 

classes, which may present viable management options.

The mean life expectancy was obtained by

1X
L ife  E x p e c ta n c y  &  .- H I  Px)

x = 0

where Px  is the mean survivorship of the probability distribution for age x  (Lawless 

1982).

The net reproductive rate (R0 ) was obtained by

at
I'.

x=Q
xmx
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Population halving (r = -■— ) and doubling ( t 7 =-^-=-) times were calculated
r * r

from the mean instantaneous rate of population growth (r) from model simulations.

The uncertainty in demographic traits (age specific survival and fecundity, age at

first reproduction and maximum age) was randomly selected from each trait’s probability

distribution during Monte Carlo simulation. Ninety-five percent confidence intervals for

each parameter were obtained from the 2.5th and 97.5th percentiles.

Density-Dependent Compensation

The above model is a density-independent model. To allow for density-dependent 

compensation (for a given level of F) due to the changes in mortality of fished ages, I 

used the predicted net increase in sub-adult survivorship from Au and Smith’s (1997 -  

also see Smith et al. 1998) ‘intrinsic rebound potential’ model. This model provides, as 

output, a prediction of the net increase in pre-adult survivorship needed for a population 

to ‘rebound’ back to stationary equilibrium (r = 0) when a given level of F is imposed 

(and assumes r  = 0 before F begins and that Z [= Af+ F] is sustainable).

The Au and Smith (1997) model solves for ‘r ’ using a variant of the Lotka-Euler 

equation (See Au and Smith 1997 or Smith et al. 1998 for details of converting the Lotka- 

Euler equation given above to):

e -(M  +r) + ,a  b e -(ra )  (1_ g-(M+r)(<U-o + 1), = ,

where 1^= the net increase in sub-adult survivorship (from age 0 to age at first 

reproduction, a ) ,  and b = fecundity (females per female per year). Setting r  = 0,
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changing M  to the total level of mortality Z with \a  =  \a z  and solving for \a , the 

solution to the above equation is:

1_

where \a z  = the predicted net increase in sub-adult survivorship at a given level of Z.

I used Monte Carlo simulation (n = 5,000) to incorporate uncertainty in 

demographic parameters and generate estimates of \a . I then evenly distributed the net 

increase in \a , between when F = 0 and when a given level of F was present, amongst 

the sub-adult age classes in the life-table model and ran Monte Carlo simulations with F 

and the \a  ‘factor’ included. The method of calculating the amount of increased

survivorship for each age class and evenly distributing it ( \a ) among sub-adults is given

in Appendix 2. Survivorship was accordingly increased (compensation included) for 

ages zero through six in the ENP life-table model and for ages zero through eight in the 

WNP life-table model.

All simulations (life-table and intrinsic rebound potential) were implemented with 

Microsoft Excel spreadsheet software equipped with proprietary add-in risk assessment 

software (Crystal Ball, Decisioneering Inc., Denver, CO) and Microsoft Visual Basic for 

Application macros.

Fishing Mortality Scenarios

I examined the effect of fishing mortality (F) on salmon sharks in the ENP and 

WNP considering only scenarios that would be the most likely to occur if a sizeable 

commercial fishery began in either area. I started models that incorporated fishing
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mortality at F = 0.025 and increased F in steps of 0.025, stopping when the population 

could no longer remain at a stable or near-stable equilibrium (i.e. when compensation 

predicted by the Au and Smith (1997) model would no longer keep population parameter 

estimates stable).

Eastern North Pacific

Salmon sharks are taken in U.S. waters (particularly Alaska) as bycatch in trawl, 

gillnet, and seine fisheries, but this bycatch has been poorly documented (Camhi, 1999). 

There is currently no directed commercial fishery for salmon sharks in the ENP, but a 

small recreational fishery exists along Alaska’s central coastline (the Gulf of Alaska, 

GOA, and in Prince William Sound, PWS). If commercial fishing began for salmon 

sharks in the ENP it would be in the central GOA and in PWS where large aggregations 

are commonly found, particularly during the summer months. Salmon sharks younger 

than five years of age have not been taken from GOA or PWS waters (Chapter 1), as 

small salmon sharks (< 5 years of age) range between northern Baja, Mexico, and 

southeast Alaska. Additionally, small salmon sharks are not commonly taken as bycatch 

in other fisheries, so it is unlikely that a fishery could be developed for them. The large 

overlap in length-at-age (see Chapter 1, Table 7) along with the fact that the purse seines 

and surface long-lines would probably be the primary gear of a fishery, makes it highly 

unlikely that a size-selective fishery could be developed in Alaska waters. Therefore, the 

fishing scenarios I used for the ENP included ages 5 to 30.

Western North Pacific

Japanese commercial salmon shark catch between 1952 and 1965 was reported at 

110.4 thousand metric tons (mt), with a high of 40.1 thousand mt in 1954, but more
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recent landing data are unavailable (Compagno 1990). Salmon sharks were commonly 

caught in gillnets set for salmon (Oncorhynchus) and flying squid (Ommastrephes) 

primarily by Canadian, Japanese and Russian fisheries, with smaller interests from 

Taiwanese and North Korean fisheries (Blagoderov 1994, McKinnell and Waddell 1993, 

Nakano and Nagasawa 1996, Robinson and Jamieson 1984). Currently, a small directed 

fishery occurs each summer off Japan taking between 1,000 and 3,000 individuals (H. 

Nakano pers. comm.), but the bycatch from other fisheries may still be quite large. 

Goldman and Human (2002) estimated the Japanese flying squid fishery catches over 

105,000 salmon sharks each year.

Salmon sharks taken as bycatch in the WNP generally range between 70 cm and 

190 cm PCL (Nakano and Nagasawa 1994, Nakano and Nagasawa 1996, McKinnell and 

Seki 1998), but larger adults are also taken and are the major catch in the current directed 

fishery. As such, the main fishing scenario I used for the WNP included F at all ages.

For comparative purposes, I also ran four additional scenarios for WNP salmon sharks:

1) F0.025 began at age five, 2) the sex ratio of pups per litter was 1:1 (instead of 2.2:1 

male dominated) with F = 0, 3) the sex ratio of pups per litter was 1:1 and F0.025 

included all ages, 4) the sex ratio of pups per liner was 1:1 and F0.025 began at age 5.

RESULTS

Instantaneous natural mortality rate estimates from the six methods used ranged 

from 0.255 to 0.091 for salmon sharks in the ENP and from 0.209 to 0.097 for the WNP. 

Minimum and maximum age-specific survivorships ( Px ) are given in Tables 2.1 and 2.2. 

The Hoeing (1983) method predicts the average natural mortality for the whole
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Table 2.1: Minimum and maximum survivorship estimates for salmon sharks in the 

eastern North Pacific used in life-table model simulations. Double dashed line is where 

fishing mortality begins. Density-dependent compensation included for all age classes 

before single dashed line.

Age
X

F=0
Survivorship (S) 

Minimum Maximum

F=0.025 starting at 5 
a=l .013 up to age 7 

Survivorship (S) 
Minimum Maximum

F=0.05 starting at 5 
a=1.026 up to age 7 

Survivorship (S) 
Minimum Maximum

0 0.775 0.870 0.785 0.881 0.795 0.893
1 0.775 0.870 0.785 0.881 0.795 0.901
2 0.775 0.870 0.785 0.881 0.795 0.909
3 0.775 0.878 0.785 0.889 0.795 0.913*
4 0.775 0.886 0.785 0.897 0.795 0.913**
5 0.775 0.892 0.765 0.881 0.756 0.870
6 0.775 0.896 0.765 0.885 0.756 0.874
7 0.775 0.899 0.756 0.877 0.737 0.855
8 0.775 0.902 0.756 0.880 0.737 0.858
9 0.775 0.904 0.756 0.882 0.737 0.860
10 0.775 0.906 0.756 0.883 0.737 0.861
11 0.775 0.907 0.756 0.885 0.737 0.863
12 0.775 0.908 0.756 0.886 0.737 0.864
13 0.775 0.909 0.756 0.886 0.737 0.865
14 0.775 0.910 0.756 0.887 0.737 0.865
15 0.775 0.910 0.756 0.888 0.737 0.866
16 0.775 0.911 0.756 0.888 0.737 0.866
17 0.775 0.911 0.756 0.889 0.737 0.867
18 0.775 0.912 0.756 0.889 0.737 0.867
19 0.775 0.912 0.756 0.889 0.737 0.867
20 0.775 0.912 0.756 0.890 0.737 0.868
21 0.775 0.912 0.756 0.890 0.737 0.868
22 0.775 0.913 0.756 0.890 0.737 0.868
23 0.775 0.913 0.756 0.890 0.737 0.868
24 0.775 0.913 0.756 0.890 0.737 0.868
25 0.775 0.913 0.756 0.890 0.737 0.868
26 0.775 0.913 0.756 0.890 0.737 0.868
27 0.775 0.913 0.756 0.891 0.737 0.869
28 0.775 0.913 0.756 0.891 0.737 0.869
29 0.775 0.913 0.756 0.891 0.737 0.869
30 0.775 0.913 0.756 0.891 0.737 0.869

‘Calculated value = 0.9151 “ Calculated value = 0.9192
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Table 2.2: Minimum and maximum survivorship estimates for salmon sharks in the 

western North Pacific used in life-table model simulations. Double dashed line is where 

fishing mortality begins. Density-dependent compensation included for all age classes 

before single dashed line.

F=0
Age Survivorship (S) 

x Minimum Maximum

F=0.025 starting at 0 
a=1.011 up to age 9 

Survivorship (S) 
Minimum Maximum

F=0.025 starting at 5 
a=1.011 up to age 9 

Survivorship (S) 
Minimum Maximum

0 0.811 0.870 0.800"= " 0 .8 5 8 0.820 0.880
1 0.811 0.870 0.800 0.858 0.820 0.880
2 0.811 0.870 0.800 0.858 0.820 0.880
3 0.811 0.875 0.800 0.862 0.820 0.885
4 0.811 0.881 0.800 0.868 0.820 __ 0.891
5 0.811 0.885 0.800 0.872 0.800 0~872"
6 0.811 0.889 0.800 0.876 0.800 0.876
7 0.811 0.892 0.800 0.880 0.800 0.880
8 0.811 0.895 0.800 0.882 0.800 0.882
9 0.811 0.897 0.791 0.874 0.791 0.874
10 0.811 0.898 0.791 0.876 0.791 0.876
11 0.811 0.900 0.791 0.878 0.791 0.878
12 0.811 0.901 0.791 0.879 0.791 0.879
13 0.811 0.902 0.791 0.880 0.791 0.880
14 0.811 0.903 0.791 0.881 0.791 0.881
15 0.811 0.904 0.791 0.881 0.791 0.881
16 0.811 0.904 0.791 0.882 0.791 0.882
17 0.811 0.905 0.791 0.882 0.791 0.882
18 0.811 0.905 0.791 0.883 0.791 0.883
19 0.811 0.906 0.791 0.883 0.791 0.883
20 0.811 0.906 0.791 0.884 0.791 0.884
21 0.811 0.906 0.791 0.884 0.791 0.884
22 0.811 0.907 0.791 0.884 0.791 0.884
23 0.811 0.907 0.791 0.884 0.791 0.884
24 0.811 0.907 0.791 0.885 0.791 0.885
25 0.811 0.907 0.791 0.885 0.791 0.885
26 0.811 0.907 0.791 0.885 0.791 0.885
27 0.811 0.908 0.791 0.885 0.791 0.885
28 0.811 0.908 0.791 0.885 0.791 0.885
29 0.811 0.908 0.791 0.885 0.791 0.885
30 0.811 0.908 0.791 0.885 0.791 0.885

"Survivorship does not change when you have mx=1:1**
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population (relative to co) and, as such, consistently provided the highest survivorship 

values for ages zero through two in all models. The Peterson and Wroblewski (1984) 

method, which is weight-length based, consistently produced the highest survivorship 

values for ages three through 30 in all models. For ENP salmon sharks, the Jensen ‘k’

(1996) method produced the lowest estimates of survivorship, while the Hoeing (1983) 

method produced the lowest survivorship estimates for the WNP population.

The results of initial life-table model simulations (with F = 0) indicate that the 

salmon shark population in the ENP is slowly increasing at a rate of almost 1.2 % per 

year with a doubling time of 59.2 years (Table 2.3). In contrast, the results for the WNP 

population indicate it is decreasing at a rate of just over 2 % per year with a halving time 

of 29.6 years. While the mean results of the models indicate the ENP population is 

growing, the 95 % confidence bands show the variability (from uncertainty) of parameter 

inputs and indicate that under the conditions used in the model, this range might be as 

high as 4.1 % per year or that the population could be slightly decreasing at a rate of 1.5 

% per year (Table 2.3). Confidence bands for V  in the WNP indicate that this 

population may be decreasing between 0.65 % and 3.8 % per year (Table 2.3). 

Deterministic estimates of V  conducted with the Solver minimization function in 

Microsoft Excel show that age at first reproduction accounted for a greater amount of 

variation in V  than maximum age (Table 2.4). Mean generation time and life 

expectancy were slightly higher for the WNP population (Table 2.3). Summed elasticites 

were highest for juvenile survival (followed by adult survival and fertility) indicating that 

an increase in their mortality would have the largest effect on population growth rates
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Table 23: Estimates of eastern and western North Pacific (ENP and WNP) salmon shark 

demographic parameters and elasticities (population growth rates, X and r, generation

times, A ; net reproductive rate, Ro).

F (starts at age)
ENP X r A Ro

Mean Life 
Expectancy

0 1.012 (0.985-1.042) 0.0117 ([-0.0151J-0.0412) 13.1 (11.4-15.0) 1.2 (0.8-1.6) 5.9 (S.4-6.5)

0.025 (5) 1.003 (0.975-1.035) 0.0033 ([-0.02511-0.0342) 12.9(11.2-14.7) 1.0 (0.7-1.5) 5.4 (4.9-5.8)

0.05 (5) 0.995 (0.966-1.029) -0.0047 ([-0.00521-0.0282) 12.6(10.9-14.4) 0.9 (0.6-1.4) 4.9 (4.6-S.3)

WNP
0 0.977 (0.962-0.994) -0.0234 ([-0.0385]-[-0.0065D 14.9 (13.0-16.7) 0.7 (0.6-0.9) 6.6 (6.1-7.0)

0.025 (0) 0.959 (0.945-0.975) -0.0416 ([-0.0568H-0.0255D 14.8 (12.9-16.5) 0.5 (0.4-0.7) 5.7 (5.4-6.1)

0.025 (5) 0.967 (0.952-0.984) -0.0331 ([-0.488H0.0161D 14.7 (12.8-16.3) 0.6 (0.4-0.8) 5.9 (5.5-6.2)

WNP if mx= l: 1
0 1.009 (0.992-1.027) 0.0088 ([-0.00841-0.0271) 14.5 (12.5-16.0) l . l  (0.9-1.5) 6.6 (6.1-7.0)

0.025 (0) 0.991 (0.975-1.009) -0.0093 ([-0.02581-0.0091) 14.4(12.5-15.9) 0.9 (0.7-1.1) 5.7 (5.4-6.1)

0.025 (5) 1.000** (0.982-1.020) -0.0005 ([-0.1791-0.195) 14.3(12.4-15.7) 1.0* (0.8-1.3) 5.9 (5.5-6.2)
• •  =  0.9995 * = 0.997

_______________________ Elasticities_______________________ Population
ENP____________ Fertility________________Juvenile______________ Adult______doubling time

0 7.1 (6.2-8.1) 56.8 (53.4-60.2) 36.1 (33.1-39.1) 59.2

0.025 (5) 7.3 (6.4-8.2) 57.7 (54.4-61.0) 35.0 (32.0-38.0) 210.0

0.05 (5) 7.4 (6.S-8.3) 58.6 (55.3-61.8) 34.0 (31.1-36.9) -147.5

WNP
0 6.3 (5.6-7.1) 59.3 (56.3-62.3) 34.4(31.3-37.7) -29.6

0.025 (0) 6.3 (S.7-7.2) 59.6 (56.7-62.5) 34.1 (31.0-37.3) -16.7

0.025 (5) 6.4 (5.8-7.3) 60.0 (57.1-62.8) 33.6 (30.7-36.7) -20.9

WNP if  ̂ = 1 :1
0 6.5 (5.9-7.4) 60.9 (58.2-63.5) 32.6 (29.9-35.6) 78.8

0.025 (0) 6.5 (5.9-7.4) 61.2 (58.5-63.9) 32.3 (29.5-35.1) -74.5

0.025 (5) 6.6 (5.9-7.4) 61.6(59.0-64.1) 31.8 (29.2-34.5) -1.386.6
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Table 2.4: Influence of maximum age and age at first reproduction on the intrinsic rate of 

population growth for salmon sharks in the eastern and western North Pacific (ENP and 

WNP) with F = 0. Sex ratio of pups per litter used in ENP model = 1:1. Parentheses 

indicate sex ratio of pups per litter used in WNP models.

Age at first reproduction ( a )

Maximum age (co) 7 8 9 10 11

ENP 20 0.0432 0.0239 0.0072 -0.0076 -

25 0.0467 0.0286 0.0134 0.0003 -

30 0.0478 0.0302 0.0157 0.0032 -

WNP (2.2:1) 20 - - -0.013 -0.025 -0.037

25 - - -0.005 -0.015 -0.025

30 - - -0.001 -0.011 -0.020

WNP (1:1) 20 - - 0.024 0.009 -0.005

25 - - 0.030 0.017 0.005

30 - - 0.032 0.020 0.009
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in both populations (Table 2.3).

The predicted stable age distributions in the ENP and WNP were dominated by 

the first six age classes (Figure 2.3). The young-of-the-year comprised approximately 21 

% of the ENP population and 15 % of the WNP population with the next five age classes 

comprising another 58 % of the ENP population and 52 % of the WNP population. The 

older age classes appear to contribute slightly more to the stable age distribution in the 

WNP than in the ENP. An examination of the stable age distributions when F was 

imposed showed minimal changes in the predicted stable age distributions (for both 

populations). In reality, however, whenever there is exploitation, the age distribution is 

likely to have shifted from stability.

Fishing for salmon sharks in the ENP

The Au and Smith (1997) model predicted that a 1.3 % increase in the 

survivorship of each sub-adult age class would compensate for an F = 0.025 (Table 2.5). 

Results from the life-table simulation indicated that while a fishery at F0.02S may be 

sustainable in the ENP, the predicted compensation was not sufficient to keep V  at the 

pre-fishing level (Table 2.3). Along with the decrease in the population growth rate, 

there was a decrease in generation time, the net reproductive rate and mean life 

expectancy (Table 2.3). The predicted population doubling time increased dramatically, 

however, from 59.2 years (when F = 0) to 210 years (Table 2.3). Fishing at F0.025 brought 

about subtle, but predictable, changes in elasticities. The importance of juvenile survival 

to the population growth rate increased the most, while a slight increase was seen in 

fertility elasticity and adult survival elasticity decreased slightly (Table 2.3).
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Figure 2.3: Predicted female stable age distribution for salmon sharks in the eastern and 

western North Pacific (ENP and WNP) with no fishing mortality.
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Table 2.5: Sub-adult survivorship compensation values from Monte Carlo simulations of 

the Au and Smith (1997) density-dependent model for estimating the ‘intrinsic rebound 

potential’ of fish populations. F = fishing mortality, \a  = net increase in sub-adult 

survivorship, rp = “intrinsic rebound potential” (predicted intrinsic rate of population 

increase in response to F), \a  ratio = predicted proportional difference in sub-adult 

survivorship between different levels of F, a = predicted proportional increase in 

survivorship per sub-adult age class.

F la rF \a  ratio a

ENP 0.00 0.1695 0.00 - -

0.025 0.1857 0.008 1.096 1.013

0.05 0.2035 0.015 1.201 1.026

WNP 0.00 0.2551 0.00 - -

0.025 0.2827 0.007 1.108 1.011
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The value for increased sub-adult survivorship (a) from the Au and Smith (1997) 

model doubled when F was doubled to 0.05 (Table 2.5). Results from the subsequent 

life-table model, not surprisingly, follow the same trend as when F0.025 was applied. 

However, unlike F0.025. F o.os resulted in a negative population growth rate with declines in 

all estimated parameters, and a population halving time of 147.4 years (Table 2.3). The 

trend in changes in elasticities continued with juvenile survival elasticity further 

increasing in its importance relative to population growth.

Fishing for salmon sharks in the WNP

The Au and Smith (1997) model predicted that a 1.1 % increase in the 

survivorship of each sub-adult age class would compensate for an F = 0.025 (Table 2.5). 

Results from the life-table simulation indicated that the predicted compensation was not 

enough to keep the WNP population from further decline with a fishery at F0.025. and the 

halving time increased from 29.6 to 16.7 years. As with the ENP population, all 

population statistics declined, juvenile survival elasticity increased slightly while adult 

survival elasticity slightly decreased and fertility elasticity remained the same (Table 

2.3).

WNP - Additional Scenario Ml (Fo.crzs begins at age 5)

This life-table model was run to see if the combination of decreased mortality 

(due to a lack of F) at ages zero through four along with the predicted increase in sub­

adult survivorship could compensate for a fishery at Fo.o2s- As suspected, population 

statistics did not decline by as much as when all ages are fished, however the 

compensation was still not enough to keep the population from further decline relative to 

when F = 0 (Table 2.3). Trends in elasticities were again similar to other model
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predictions with juvenile survival elasticity gaining in its importance relative to the 

population growth rate, adult survival elasticity decreasing slightly and fertility elasticity 

increasing slightly.

WNP - Additional Scenario #2 (1:1 sex ratio for pups per litter and F = 0)

Changing the fecundity (number of females per female per year) does not change 

the compensation value generated by the Au and Smith (1997) model. While their model 

does have a function (b) that can be used to increase fecundity, I chose to be consistent in 

my use of their model and incorporated the change in fecundity into the life-table model.

Results from the life-table simulation were very similar to those for the ENP 

when F = 0 (Table 2.3). Under these conditions of fecundity, the model indicates that the 

WNP population would be slowly increasing at approximately 0.9 % per year with a 

longer generation time and population doubling time than in the ENP. Mean life 

expectancy under these conditions was, as expected, the same as when fecundity was 

2.2:1 (male dominated). Elasticity values were, again, consistent in showing the 

importance of juvenile survival to the population growth rate (Table 2.3).

WNP - Additional Scenario #3 (1:1 sex ratio for pups per litter and F0.025 begins at age 0) 

The results of this model simulation indicate that, on average, these conditions 

would cause population growth rate to decline at almost 1 % per year (Table 2.3). The 

predicted compensation was not enough to keep population statistics from decreasing. 

This scenario caused an increase in juvenile survival elasticity while adult survival 

elasticity slightly decreased and fertility elasticity remained the same (Table 2.3). Along 

with the decline in population statistics, this scenario also caused the population doubling 

time to become a population halving time of 74.5 years.
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WNP - Additional Scenario #4(1:1 sex ratio fo r  pups per litter and F0.02s begins at age 5) 

Results from this life-table simulation indicated that while a fishery at F0.025 may 

be sustainable in the WNP, the predicted compensation was not quite enough to keep ‘r’ 

at the pre-fishing level (Table 2.3). Along with the decrease in the population growth 

rate (relative to F = 0), there was a slight decrease in generation time, net reproductive 

rate and mean life expectancy (Table 2.3). The predicted population halving time under 

these conditions would be 1,386.6 years (Table 2.3).

DISCUSSION

Salmon shark population status

Demographic analysis is a useful tool in evaluating potential population changes 

under various conditions of fishing mortality (Caughley 1977, Hoenig and Gruber 1990), 

and continuing advances in modeling vital rates of long-lived fishes are beginning to 

provide us with more insight into their productivity.

The results of my demographic analyses indicate that salmon sharks are extremely 

vulnerable to fishing mortality. In the ENP, indications are that the population is fairly 

stable, growing at a nominal rate of about 1.2 % per year on average. The best-case 

scenario for a fishery in the ENP would be to keep F at a level below 0.025, as even that 

level fishing mortality could push population parameter estimates below levels of 

stability (Table 2.3). Fo.os is clearly not sustainable according to my results.

The large aggregations of salmon sharks seen each summer in Alaska have been 

documented for over 40 years (Paust and Smith 1989, S. Meyer pers. comm.), however, 

some believe that salmon sharks are dramatically increasing in number (Gallucci et al. 

2002a, 2002b). This appears to be completely anecdotal as no stock assessments of
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salmon sharks have been conducted in Alaska or the ENP, and there are no historical data 

on abundance from which to make such claims. It is highly unlikely that the density of 

salmon sharks in one or two fjords in Prince William Sound, Alaska, is a reliable (or 

reasonable) gauge of the overall salmon shark abundance in Alaska or the ENP. Bycatch 

of salmon sharks in Alaska state waters (from research surveys and NMFS Observer 

Program data) has been estimated to be relatively consistent over the past 10-12 years 

(Goldman 2001), however many discards-at-sea are not reported by commercial fishers. 

Without a stock assessment there is no way to know whether the total bycatch is 

sustainable. Additionally, the current sport fishery in Alaska is very small, catching 

between 200 and 500 individuals per summer (S. Meyer and C. Stock pers. comm.), and 

probably has little to no impact on the population.

My results for salmon sharks in the WNP indicate that this population is declining 

at just over 2 % per year (Table 2.3). These results, obviously, suggest that no fishery 

should be implemented at this time. There may be several reasons for this outcome. We 

do not know the fishing mortality that that population has been exposed to over the past 

50-60 years. However, with the elimination of open ocean driftnet fishing and the 

cessation of the Japanese open ocean salmon fishery, it is likely that there is less salmon 

shark bycatch in the open North Pacific. (This could also be a factor in my population 

growth estimate for the ENP, depending on immigration and emigration between areas). 

The life history parameters I used for the WNP model were published over 20 years ago 

and my generation time estimate for this population was 14.9 years. As such, my model 

outcome may not reflect the current population status of salmon sharks in the WNP, and
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the population could be rebounding if other density-compensatory factors are at play, 

such as an increased growth rate (and potentially an earlier age at first reproduction).

Another aspect of the WNP model that is certainly partly responsible for the 

outcome is the fecundity estimate I used. Tanaka (1980) stated that the sex ratio of pups 

in a WNP litter is 2.2:1, male dominated. However, if the sex ratio of litters were 1:1 

(additional scenarios 2,3, and 4), the WNP population would currently be slowly 

increasing, similar to the ENP population (Table 2.3)1. These conditions could 

potentially allow for a small fishing mortality, but my results indicate that at F0.025 age at 

entry should be five years or older (Table 2.3). The later the age of entry, the better the 

population would be able to maintain itself according to the predictions from elasticity 

analysis. Considering that a wide size and age range of salmon sharks is taken in the 

WNP, this could prove difficult to accomplish. As with the ENP population, no stock 

assessments have been conducted in the WNP, so implementing a fishery before one is 

conducted could lead to poor decisions and stock collapse. It seems unlikely that the 

small commercial fishery off Japan (1,000 to 3,000 sharks per year) would have a large 

impact on the population, but this is unknown.

Model simulation assumptions and limitations

Monte Carlo simulation was used because this probabilistic approach allows the 

inclusion of a range of values that reflect the uncertainty in estimates of demographic 

traits (maximum age, age at first reproduction, fecundity and age-specific survivorship).

I used distributions for these traits that I thought would reasonably approximate the

1 A model was run for the ENP population with m* = 2.2:1 male dominated (F = 0). The results were 
similar to those for the WNP under the same conditions (i.e. decreasing population status).
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biology of salmon sharks. I also thought my estimate for reproductive periodicity, and 

the sex ratio of pups (in the ENP) were biologically realistic for this species. Further 

research on salmon shark reproductive biology may enable modification of the statistical 

distributions used to describe the demographic traits of salmon sharks.

Salmon sharks on both sides of the Pacific have been exploited to varying degrees 

(either through bycatch or directed fishing), which may have violated the assumption of a 

stable age distribution. If exploitation rates were consistent over the years, however, it is 

less likely that the assumption of a stable age distribution was violated.

Overall, the statistical distributions I used to describe survivorship seemed 

reasonable, although the lower bounds used may not be realistic for larger individuals 

(Tables 2.1 and 2.2). I dealt with this by setting the distributions for sharks greater than 

1.5 m as shown in Figure 2.2b, instead of discarding the lowest estimate as was done by 

Cortes (2002). By doing so, I felt I used a slightly more cautious approach. Cortes 

(2002) assigned a higher probability to estimates of natural mortality obtained from the 

Peterson and Wroblewski (1984) method since its results are based on empirical, rather 

than estimated, parameters. In this study, the Peterson and Wroblewski (1984) method 

provided the highest estimates in all model scenarios for sharks above three years of age. 

The manner in which my survivorship probability distributions were set for sharks five 

years of age and greater, gave the highest estimated survivorship value twice the 

probability of occurring in model simulations relative to the lowest value (Figure 2.2b). 

Since young animals are likely to have lower survivorship than older animals and are 

potentially the most difficult to estimate natural mortality for, I felt it was a more 

conservative approach to use uniform distributions for ages zero through four (< 1.5 m).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



86

Density-independent models assume invariability in vital rates over time. While 

we know that vital rates do vary over time, it is extremely difficult to collect and continue 

to update the biological information required for most shark species. In his examination 

of the demography of 38 shark species, Cortes (2002) felt that the life-table models he 

used were “robust” to deviations of the assumptions of traditional density-independent 

population and fisheries models (e.g. invariance of vital rates over time).

Elasticities and density-dependent compensation

Elasticity analysis for sharks has shown that population growth rates are generally 

much more sensitive to perturbations of juvenile and adult survival than to the survival of 

age-zero individuals or fecundity (Heppel et al. 1999, Cortes 2002). This is a more 

typical pattern for long-lived animals in general whether marine or terrestrial (Heppell et 

al. 1999, Hepell et al. 2000b, Cortes 2000), and suggests that the protection of age-zero 

animals would be insufficient to aid in the recovery of declining shark populations. 

Therefore, management efforts need to focus on juvenile and adult portions of the 

population to effectively aid in the recovery of shark species. While in some cases 

examined, juvenile and adult sharks appear to be equally susceptible to increased 

mortality (Cortes 2002), my results for salmon sharks indicate that juveniles would be the 

most important stage, followed by adults, on which to focus management to focus in both 

the ENP and WNP (Table 2.3). Cortes (2002) produced an elasticity continuum for 38 

shark species, which corresponds with the well know r-K continuum (Musick 1999). My 

elasticity calculations for salmon sharks place them near the middle of that continuum.

Elasticity analysis provides useful insight into the effects of decreasing the 

survival of one or more ages or stages of a population. However, increases in fecundity
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or a change in the age at first reproduction could offset the effect of reduced survival of 

adult ages. The ultimate benefit of elasticity analysis is in its predictive ability - one does 

not have to wait for a population response (or lack of one) to understand the potential 

effects of increased mortality on particular ages or groups of ages in the population. This 

is critical as recovery times of shark populations are likely to be long due to their general 

life-history characteristics.

Heppell et al. (1999) and Cortes (2002) evaluated the potential for density- 

dependent compensation by calculating the ratios of mean adult survival elasticity to 

mean fertility elasticity and of mean juvenile survival elasticity to mean fertility 

elasticity. For example, a ratio of juvenile survival to fertility elasticities of 2.0 indicates 

that a 10 % decrease in juvenile survival would have to be compensated for by a 20 % 

increase in fertility to return to its original r. They deemed that the required 

compensatory response was not possible if its magnitude exceeded the biological limits 

of age zero survival (= 1) or fecundity of a given population. Using salmon sharks in the 

ENP as an example, the ratio of mean adult survival elasticity to mean fertility elasticity 

was 5.1, and the ratio of mean juvenile survival elasticity to mean fertility elasticity was 

8.2. The adult survival to fertility ratio might be feasible for salmon sharks - a 51 % 

increase in fecundity would be required, taking the maximum known pups per litter from 

five to 7.5 (or the mean of four to around six pups per litter), but more information needs 

to be obtained on salmon shark litter size to know if this is indeed possible. The juvenile 

survival to fertility ratio, however, vastly exceeds the potential for this species (i.e. an 82 

% increase in survivorship of age-zero individuals is simply not possible). Similar results 

occur with the elasticity values for the WNP population.
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My inclusion of density-dependent compensation in life-table model simulations 

where fishing mortality was imposed by using the \a  (net increase in sub-adult

survivorship) value generated by the Au and Smith (1997) model, provided reasonable 

results. The amount of predicted compensation in sub-adult survivorship was not 

sufficient to keep population growth rates stable when F was imposed, which may be a 

result of using the rebound potential model in this manner, or due to the biological 

parameter inputs for salmon sharks used in my models. Additionally, \a  predictions 

may have fallen short of keeping population parameter estimates stable due to 

assumptions of that model (e.g. it assumes r -  0 and Z is sustainable). Future 

investigation of the use of the intrinsic rebound potential model in the manner presented 

here should focus on this aspect. If the I a  predictions are correct, this would mean that

salmon sharks possess an extremely low ‘rebound potential’ and may be even more 

susceptible to exploitation than predicted here. It appears that ‘connecting’ the life-table 

models used by Cortes (2002) and the intrinsic rebound potential model of Au and Smith

(1997) is useful and should be applied to other elasmobranch species to better evaluate 

the performance of the method. Initial indications (from this study) are that this could 

become a useful tool for future modeling of elasmobranch demographics.

Conclusion

The use of Monte Carlo simulation does not eliminate the need for further data 

gathering or sensitivity tests (Cortes 2002). Important additional data to gather to 

enhance predictive power of the models and elasticity analysis used herein include better 

information on fecundity, litter size, sex ratio of pups and longevity. The ability to obtain
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refined estimates of natural mortality (Af) would be useful for model simulations; 

possibly through increasing the precision of the weight-length relationship (e.g. n = 20 

for my females length-weight relationship in Chapter I) or tag-recapture data. However, 

empirical data is needed on the current level of F (both directed fishing and from 

bycatch) and catch per unit effort time series data on trends in abundance in order to test 

the hypotheses generated by the model. Much of the information required to enhance the 

demographic modeling of salmon sharks will be difficult to gather, but the pursuit of 

better data is a necessity if we are to better model the demography of all elasmobranch 

fishes.

The present demographic analysis has provided information useful for better 

understanding the life history strategy of salmon sharks and in giving fishery managers 

an idea of the population sensitivity of salmon sharks to fishing mortality.

Elasmobranchs tend to have low productivities relative to other marine fishes (Musick 

1999), however there is a wide range among species. My estimates of salmon shark vital 

rates fell in the middle of the continuum Cortes (2002) generated for vital rates of 38 

other species. This research has shown that salmon sharks are likely to be extremely 

sensitive to fishing mortality. Models should be used to generate testable hypotheses, not 

give conclusion regarding demographic questions. As such, a stock assessment of the 

ENP and WNP populations should be a mandatory pre-requisite to the institution of any 

directed fishery for salmon sharks in the ENP and WNP or another collapsing shark 

population will likely be the result.
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Homeothermy in adult salmon sharks
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INTRODUCTION

The salmon shark, Lamna ditropis (Family Lamnidae), occurs in the boreal and 

cool temperate coastal and oceanic waters of the North Pacific Ocean (Strasburg 1958, 

Campagno 1984, Blagaderov 1994, Nakano and Nagasawa 1994). It is a large apex 

predator that can reach 260 cm total length (TL) and weigh 220 kg (Tanaka 1980, 

Goldman and Musick in press).

As with all other lamnids, salmon sharks are known to be endothermic based on 

their possession of vascular counter-current heat exchangers (retia mirabilia) that allow 

the retention of heat created by their own oxidative metabolism (Hochachka et al. 1978, 

Carey et al. 1985, Fudge & Stevens 1996, Bernal et al. 2001a). The first descriptions of 

retia in lamnid sharks were by Eschricht & Muller (1835a and b), and Bume (1923) 

provided a detailed description of the retia in the porbeagle shark, Lamna nasus (as 

Lamna comubicd). Retia in salmon sharks are located in the cranium near the eyes 

(orbital retia), in locomotor musculature (lateral cutaneous retia), and viscera 

(suprahepatic and kidney retia). Temperature probe data (from moribund and recently 

dead animals) has shown temperature elevations of 15.6 °C over sea surface temperature 

(Smith and Rhodes 1983, Anderson and Goldman 2001).

Due to the inevitable linkage of aerobic heat production and heat loss via the gills

and body surface, the steady state body temperature (Tb) of most fishes is virtually

identical to ambient water temperature (TJ (Brill et al. 1994). However, lamnid sharks

(Family Lamnidae) and tunas (Family Scombridae, tribe Thunnini) show a convergent
91
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evolution in their capacity to conserve metabolic heat thereby maintaining a steady state 

Tb > Ta (Brill et al. 1994, Bernal et al. 2001a). Perhaps the major (and most intriguing) 

physiological questions surrounding fishes that have elevated body temperatures are: Are 

they able to control rates of heat gain and heat loss? And, if so, to what degree?

Studies with captive juvenile mako sharks (Isurus oxyrinchus) and several species 

of tunas have demonstrated that these fishes regulate rates of heat transfer with the 

environment (Neill et al. 1976, Dewar et al. 1994, Bernal et al. 2001b). Free-swimming 

juvenile bigeye (Thunnus obesus) and bluefin tunas (Thunnus thynnus) have also been 

shown to possess this ability (Holland et al. 1992, Holland and Sibert 1994, Kitagawa et 

al. 2001). However, when subjected to changes in Ta, small mako sharks and tunas (even 

large bluefin) are unable to defend a specific body temperature (Carey and Lawson 1973, 

Brill et al. 1994, Bernal et al. 2001b, Block et al. 2001). At a given Ta, small mako 

sharks and tunas all possess an equilibrium body temperature (Te) that is several degrees 

above Ta. Rapid changes in Ta result in a shift in Tb, and ultimately a new Te. Their 

excess body temperature (Tx, where T* = Te - T J  before and after changes in Ta is, 

however, generally maintained within a fairly narrow range (i.e., Tx is constant with 

respect to T J  (Neill and Stevens 1974). Alternatively, data from adult lamnid sharks has 

shown that their Tx is not constant with respect to Ta (Carey et al 1981, Goldman 1997, 

Lowe and Goldman 2001).

Although they possess elevated body temperatures (Carey et al. 1985, Lowe and 

Goldman 2001), the capacity of free-swimming lamnid sharks to regulate rates of heat
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gain and loss has not been demonstrated. This is due to a number of factors including 

their size, logistical difficulties in studying them, and the serendipity involved in 

obtaining Held data that can serve as a surrogate for a laboratory experiment. I present 

results from 47.7 hours of stomach temperature telemetry data obtained from four free- 

swimming salmon sharks, and data from a 'control’ experiment with a dead salmon shark 

which was necessary in order to examine the rate of heat loss. Herein, I provide evidence 

that adult salmon sharks regulate rates of heat gain and loss in order to defend a specific 

body temperature, and that this is achieved through a combination of physiological 

thermoregulation and thermal inertia. I examine my data relative to the physiological 

ecology of salmon sharks and address the ‘homeothermy hypothesis’ presented by Lowe 

and Goldman (2001).

MATERIALS AND METHODS

Stomach temperature data were obtained via acoustic telemetry from four free- 

swimming salmon sharks in Prince William Sound, Alaska, during July 1999 and July 

and August 2000. Sharks #land #4 were tracked in the ‘Port Gravina’ fjord (60°40.0’ N; 

146°20.0' W). Sharks #2 and #3 were tracked near Windy Bay on the north side of 

Hawkins Island (60°34.5’ N; 145°59.8' W). Length was measured and sex determined at 

time of capture (shark #1), or by repeated observations of the shark from a small tracking 

vessel and using underwater videos obtained when the transmitter was fed to the 

individual (shark #2). Based on the high degree of sexual segregation in this species and 

documented lengths in Alaska waters, it is highly likely that sharks #3 and #4 were also 

female and approximately 180 cm precaudal length (PCL), the mean PCL of salmon 

sharks in Alaska (Goldman and Musick in press).
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Acoustic transmitters were manufactured by VEMCO Ltd. (Halifax, Nova Scotia, 

Canada - model V22-TP) and by Sonotronics (Tucson AZ -  model CHP-87-LT). 

Transmitters operated at frequencies of 34.0,42.5 or 50.0 kHz . VEMCO transmitters 

were ‘multiplexed’ possessing both a thermistor and depth sensor with ranges of 0-30 °C 

and 0-200 m respectively. They had a life of 9-10 days, and a range of approximately 1 

km at the study sites (based on manufacturers estimates and a single range test). 

Sonotronics transmitters possessed thermistors, with a range of 0-30 °C. They had a life 

of approximately 60 days and were audible from about one-half the distance of the 

VEMCO transminers.

Manufacturers made initial temperature calibrations on all transmitters. 

Temperature calibrations were verified in a digital readout water bath, using a Fluke K/J 

51 thermometer as a backup. These two devices were always within 0.1 °C of each other. 

Transmitter readings were always within 0.2 °C of the manufacturer’s calibrations. The 

accuracy (and precision) of the two VEMCO transmitter calibrations were verified a final 

time as they were regurgitated after 28.3 and 22.4 hours by sharks # 2 and #4 

respectively. (Water temperature readings at the depth where transmitters settled on the 

bottom were identical to temperature calibrations made in the lab).

Transmitters were fed to sharks by catching them in a purse seine and inserting 

the transmitter in a herring bait into the stomach via a small PVC tube (shark #1) or by 

lowering the transmitter in a bait into the water column via rod and reel for a shark to 

consume (sharks # 2,3, and 4). Sharks #1 and #3 were fed Sonotronics temperature 

transmitters. Sharks #2 and #4 were fed multiplex (temperature and depth) VEMCO
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transmitters allowing swimming depth data to be obtained. No swimming depth data 

were obtained from shark #3.

Immediately upon ingestion of a transmitter, sharks were monitored using a 

directional hydrophone (Dukane Corporation, St. Charles, Illinois, model N30A5A with 

an analog to digital converter from Ultrasonic Telemetry Systems, Brea, California, or a 

VEMCO model VR-10 with VR-60 receiver). Three tracks were conducted from small 

(approximately 3 m) skiffs while one was conducted from the Alaska Department of Fish 

and Game’s (17.7 m) R/V Montague. A member of the tracking crew constantly 

monitored the acoustic signal, and data values were recorded every 5 minutes. Each 

telemetered shark was tracked until the signal was permanently lost or until the 

transmitter was regurgitated.

Temperature-depth profiles have been shown to provide valid estimates of Ta at 

swimming depth (Goldman 1997). Profiling the water column with a temperature-depth 

transmitter prior to, during, and-or after tracks and comparing the profile to the 

swimming depth of the shark provided estimates of Ta for sharks #2 and #4. Ambient 

water temperature and swimming depth data were obtained from shark #1 via a National 

Geographic ’Critter Cam” camera attached to its first dorsal fin. The camera came off 

(prematurely) after 2.4 hours after which sea surface temperature (SST) was used for 

comparison with stomach temperature. I compared Tb for shark #3 to Ta at 25 m, which 

was obtained from a transmitter regurgitated by shark #2.

Stomach temperature is an excellent indicator of body core temperature (Tb) 

(Goldman 1997, Lowe and Goldman 2001), and the terms are used interchangeably in
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this paper. However, the ingestion of seawater while feeding has been shown to cause a 

temporary reduction in stomach temperature that may significantly affect the statistical 

analysis of stomach temperature for use as an index of Tb (McCosker 1987, Goldman 

1997, Lowe and Goldman 2001). In addition to consuming the baited transmitters, sharks 

#2 and #3 each fed during the time period tracked. Those temperature data are reported 

here, but were not used in any calculation or statistical analysis presented. Paired t-tests 

were used to compare Tb with Ta (and estimates of Ta at swimming depth), and cross- 

correlations were calculated to see if Ta had a lag-time effect on Tb.

Heat loss (or gain) in fishes with counter-current heat exchangers is proportional to 

the difference between Te and Tb, not between Ta and Tb, because Tb > Ta (i.e., a Tx is 

present therefore Tb will not reach T J  (Brill et al. 1994, Neill et al. 1976, Neill and 

Stevens 1974). The equation describing the rate of change in body temperature is: 

dTb/dt = k(Te -  Tb) + Hp (3.1) 

where dTb/dt = rate of change of Tb with time, k is the thermal rate coefficient (°C min‘l 

°C thermal gradient l) — an empirically determined descriptor of heat transfer from the 

body to the environment, and Hp = internal heat production (°C per minute). Equation 1 

and its solution (Brill et al. 1994, Neill et al. 1976, Bemal et al. 2001b) are appropriate to 

use for tuna and small mako sharks because changes in Ta result in a new Te. However, 

equation 3.1 is unable to provide realistic estimates of k when a specific body 

temperature is defended (i.e., because Te = Tb for all observed Ta values), and is therefore 

inappropriate for my salmon shark data (see results).
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On 9 September 2001,1 conducted a control experiment in order to examine the rate 

of heat loss from the body core of an adult salmon shark (through the body surface) in 5.5 

°C water, thus allowing estimation of a minimum cooling k (no estimation of a warming 

k was made). A 187 cm PCL, 157 kg salmon shark (similar to the size of the tracked 

sharks) was caught hook and line and sacrificed using buffered MS222. To ensure no 

heart activity (i.e. no residual heat production), the shark was injected with 50 cc of 

potassium chloride via a cardiac puncture. A VEMCO V22-TP acoustic transmitter was 

inserted into the stomach to measure temperature and pressure. The shark was then 

lowered to a depth of 85 m where ambient temperature was 5.5 °C, and Tb was monitored 

for 3.92 h. The equation describing the rate of change in body temperature in the dead 

shark is:

dTb/dt = -kTb (3.2)

which when solved yields:

T b W s T b W -e ^  (3.3)

where Tb(t) = body temperature at time t, Tb(0) = initial body temperature (prior to 

change in T J, and t = time.

RESULTS

A total of 4.03 continuous hours of temperature data were obtained from shark #1 

on 25 July 1999 (Figure 3.1a). The track was terminated as the research cruise time 

ended. Stomach temperature ranged from 22.8 to 26.2 °C with a mean of 25.2 °C. 

Stomach temperature became stable 35 minutes after ingesting the transmitter (Figure 

3.1a), and a mean stomach temperature of 25.7 °C was subsequently maintained. The
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maximum difference observed between stomach and ambient temperatures was 21.2 °C 

(Table 3.1). Ambient water temperature ranged from approximately 5.0 to 15.9 °C, and 

was 12.4 °C at the shark’s mean swimming depth. Sea surface temperature during the 

time tracked was 15.0 to 15.9 °C.

Temperature data were obtained for 19.2 hours from shark #2 over a 28.3 hour 

time period on 25 and 26 July 2000 (Figure 3.1b). The track was terminated due to the 

regurgitation of the transmitter. Stomach temperature ranged from 20.1 to 26.0 °C with a 

mean of 25.0 °C. Stomach temperature became stable 56 minutes after ingesting the 

transmitter (Figure 3.1b). Aside from the reduction in stomach temperature associated 

with feeding at 2045 hours, the shark maintained a constant body temperature with a 

mean of 25.1 °C. The maximum difference observed between stomach and ambient 

temperatures was 19.5 °C (Table 3.1). Ambient water temperature ranged from 5.7 to 

14.1 °C, and was 9.2 °C at the shark’s mean swimming depth. Sea surface temperature 

during the time tracked was 13.8 to 14.1 °C.

Temperature data were obtained for 3.8 continuous hours from shark #3 on 28 

July 2000 (Figure 3.1c). The track was terminated after losing the signal and not 

relocating it during two days of searching. Stomach temperature ranged from 20.8 to

25.9 °C with a mean of 24.4 °C. Stomach temperature became stable 22 minutes after 

ingesting the transmitter (Figure 3.1c). Aside from the reduction in stomach temperature 

associated with feeding at 2100 hours, the shark maintained a constant body temperature 

with a mean of 25.4 °C. The maximum difference observed between stomach 

temperature and ambient temperature at 25 m was 17.8 °C (Table 3.1). Ambient water
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Table 3.1: Salmon shark body temperature (Tb) ranges and means (w/ standard 

deviations), ambient water temperature (Ta) ranges and means (in parentheses), and the 

maximum difference observed (Xd) between Tb and Ta. All temperatures are in °C.

Shark# Tbrange Mean Tb* Ta range Xd Hours tracked

1 22.8 - 26.2 25.7 ±0.5 <5.0-15.9(12.4) 21.2 4.03

2 20.1 -26.0 25.1 ±0.5 5.7 -14.1 (9.2) 19.5 19.2

3 20.8 - 25.9 25.4 ±0.4 8.1 - 13.9(11.0) I7.8f 3.8

4 17.4 - 25.8 25.0 ±0.5 < 5.7 -  14.9 (9.3) 19.7 20.7

♦Does not include initial rise to stable Ts or decreases and subsequent rise back to stable 

Ts due to feeding; f  = Ta at 25 m used in calculations.
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temperature at 25 m was 8.1 °C and SST was 13.9 °C.

Temperature data were obtained for 20.7 hours from shark #4 over a 22.4 hour 

time period on 30 and 31 August 2000 (Figure 3. Id). The track was terminated due to 

the regurgitation of the transmitter. Stomach temperature ranged from 17.4 to 25.8 °C 

with a mean of 24.1 °C. Stomach temperature became stable 60 minutes after the 

transmitter was ingested (Figure 3. Id), and a mean stomach temperature was 25.0 °C was 

subsequently maintained. The maximum difference observed between stomach and 

ambient temperatures was 19.7 °C (Table 3.1). Ambient temperature ranged from 5.7 to

14.9 °C, and was 9.3 °C at the shark’s mean swimming depth. Sea surface temperature 

during the time tracked was 14.8 to 15.1 °C.

Stomach temperature elevations over water temperature for all four sharks were 

considerable (max. = 2l.2°C), and mean stomach temperatures differed among the four 

individuals by only 0.7 °C. Body temperature elevations over ambient temperature, 

estimates of ambient temperature or SST were all statistically significant (paired r-tests, 

all P values < 0.0005). Changes in Ta (< 5.0 -15.9 °C) had no apparent effect on Tb — 

they were uncorrelated (maximum individual r -  0.25), and lag effects from Ta on Tb 

were not present (maximum cross-correlation value for an individual, r2 = 0.39).

The k coefficient for cooling in the control shark (equation 3.3) was 0.037 min'1. 

This value represents a minimum k when applied to a living shark because I am unable to 

include heat loss via the gills in a free-swimming salmon shark. Additionally, heat lost 

through the body wall is likely greater when the animal is alive and producing heat, than 

when the animal is dead.
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Figure 3.1: Temperature data for four salmon sharks tracked in Prince William Sound, 

Alaska, (a) = shark #1, (b) = shark #2, (c) = shark #3, and (d) = shark #4. Open circles = 

stomach temperature; solid circles = sea surface temperature (SST); solid triangles = 

ambient water temperature (or estimated ambient water temperature via temperature- 

depth profiles); solid diamonds = water temperature at 25 m. Small vertical arrows 

indicate the time when stomach temperature became stable. Vertically dashed lines 

separate days.
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DISCUSSION

All four salmon sharks maintained elevated stomach temperatures within a very 

narrow range, while measured ambient temperatures ranged from below 5.0 to 15.9 °C 

(Figure 3.2). Each individual showed an increase in stomach temperature after ingesting 

a transmitter, and two individuals showed decreases followed by similar increases after 

either consuming either a bait or a natural prey item during the course of the track 

(Figures lb and lc). These observations are virtually identical to those observed in white 

sharks and are likely caused by ingestion of small amounts of seawater with either cold 

bait and/or prey (McCosker 1987, Goldman 1997). Interestingly, white shark stomach 

temperature becomes fairly stable after 3 to 6 minutes, but then takes several hours to 

reach a stable stomach temperature (Goldman 1997) while salmon shark stomach 

temperature reached equilibrium in 22 to 60 minutes. This may be due to differences in 

heat production and conservation ability (e.g. salmon sharks possess a kidney rete, white 

sharks do not), differences in body size between the two species, temperature of the 

seawater ingested, temperature of the prey ingested or a combination of these factors.

Salmon sharks made regular vertical movements in the water column, sometimes 

exceeding 140 m. Shark #4 exhibited this behavior in a manner that enabled us to test for 

the occurrence of physiological thermoregulation. Over 30 min (beginning at 2005 hours 

-  Figure 3.1d), this shark dove from 9.6 m, where Ta was 13.2 °C, to 123.8 m where Ta 

was < 5.7 °C. The shark remained at Ta < 5.7 °C (between 56 and 124 m) for 3.3 h
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Figure 3.2: Mean body temperature with standard deviation for four salmon sharks 

tracked in Prince William Sound, Alaska. Mean (*or median) water temperatures and 

ranges are shown below body temperature data for each individual.
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during which time no decrease in Tb was observed (Figure 3.Id). In fact, instead of 

decreasing in response to the decrease in Ta, Tb actually increased slightly (from 24.8 to 

25.5 °C, mean of 25.0 °C).

In fishes with elevated Tb’s, k, HP or both may change as a function of Ta (Neill 

and Stevens 1974, Dewar et al. 1994). While tracking the salmon sharks, I found they 

maintained constant horizontal swimming speeds during rapid and long duration changes 

in Ta, indicating that Hp was relatively constant during these periods (i.e., equivalent to 

metabolic heat production). Since equation 3.1 does not provide realistic estimates of k 

when Te = Tb, I used the data from the control shark and from the free-swimming shark’s 

3.3 h excursion into cold water to investigate whether physiological thermoregulation 

was occurring or whether Tb was maintained solely due to thermal inertia (Neill and 

Stevens 1974).

Based on the control shark, the free-swimming shark’s Tb should have decreased at a 

minimum rate of 0.037 °C min'1, yet it was maintained and slightly increased during that 

time (Figure 3.3). Therefore, thermal inertia alone could not be responsible for my 

observations. My data demonstrate that adult salmon sharks can regulate heat balance by 

altering their whole-body thermal rate coefficient (k). Changes in k that are independent 

of activity indicate physiological thermoregulation (Holland et al. 1992, Dewar et al. 

1994), as does the fact that Tx was not constant with respect to Ta (Neill and Stevens 

1974).

Salmon sharks can apparently also alter routes of blood flow through vascular shunts
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Figure 3.3: Body temperature of shark #4 during 3.3 hour excursion into water < 5.7 °C 

(solid circles and line) compared to the predicted temperature loss, at k = 0.037 min'1, 

based on the control shark (dashed line).
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(Carey et al. 1981, Bernal et al. 2002a). This would provide a mechanism for regulating 

rates of heat gain and loss. A hepatic sinus bypasses the suprahepatic rete (at the 

forefront of the liver). The anatomy of the sinus suggests that it can be opened and 

closed in the living animal, thereby regulating the amount of heat retained within the 

system. Additionally, cool blood from the dorsal aorta flows around the suprahepatic 

rete into the viscera (Carey et al. 1981, Bemal et al. 2002a).

An animal that is able to maintain an elevated and uniform body temperature that 

is regulated independent of changes in ambient temperature is defined as a homeotherm 

(Hickman et al. 1984). Telemetered temperature data on free-swimming lamnid sharks 

led Lowe and Goldman (2001) to hypothesize that adult mako and white sharks may be 

homeotherms. My data demonstrate that adult salmon sharks essentially function as 

homeotherms, in a way analogous to mammals, through a combination of thermal inertia 

and physiological thermoregulation. The thermal buffer to the environment created by 

the combination of physical and physiological thermoregulation is probably the 

underlying factor in the evolutionary niche expansion of salmon sharks into boreal waters 

and allows them to range throughout the water column in search of prey.

Circadian cycles of body temperature are an additional feature of homeotherms. 

My data do not indicate the presence of a circadian body temperature cycle, which is 

present in birds and mammals, but more diel tracking data may reveal such a cycle.

Based on temperature measurements, known geographical distribution and a small 

amount of comparative anatomical data from the viscera and musculature of lamnid 

sharks, Carey et al. (1985) predicted that salmon sharks should rank atop this 

endothermic family in their “ability to maintain an elevated temperature”. Telemetered
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stomach temperature data from shortfin mako, white, and salmon sharks strongly support 

this ranking. Whereas white sharks possess a slightly higher mean body temperature than 

other lamnids, the maximum reported elevation of stomach temperature over ambient 

water temperature is 8.0 °C for shortfin mako sharks (Carey et al. 1981), 14.3 °C for 

white sharks (Goldman 1997), and 21.2 °C for salmon sharks (this study).

The data presented here support the homeothermy hypothesis of Lowe and 

Goldman (2001). However, all of the telemetered Tb’s reported from free-swimming 

lamnid sharks to date have been obtained from adult specimens. It is important to obtain 

similar data from across size classes, particularly small individuals, in order to examine 

possible ontogenetic changes in thermoregulatory ability and changes in thermal inertia, 

and thereby define the limits of homeothermy in lamnid sharks. The relationship 

between body size, heat production, and heat loss in these sharks is almost certainly a key 

component in addressing and answering these questions.
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Chapter 4

A re-examination of the age and growth of sand tiger sharks 

in the western North Atlantic
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INTRODUCTION

The sand tiger shark, Carcharias taurus, is a large coastal species that inhabits 

subtropical and temperate waters of the Atlantic, Indian and western Pacific Oceans, as 

well as the Mediterranean Sea (Gilmore et al. 1983, Compagno 1984, Pollard et al. 1996). 

This is a slow moving species, most frequently swimming near or at the bottom (usually 

around 30-60 m, but as deep as 191 m). However they are also found swimming in the 

mid-water and near the surface (Compagno 1984). They are often found in aggregations 

while migrating, feeding, and mating, as well as during courtship and pupping 

(Compagno 1984, Gilmore 1993). Sand tiger sharks feed on a wide variety of teleost 

fishes as well as smaller elasmobranchs and invertebrates such as squids, crabs and 

lobsters (Compagno 1984, Gelsleichter et al. 1999).

Seasonal movements of sand tiger sharks are well known in the western North 

Atlantic. They migrate north along the coast each spring from Florida to as far as the 

Gulf of Maine, and return south in the fall (Bigelow and Schroeder 19S3, Gilmore et al. 

1983, Musick et al. 1993). Juvenile sand tiger sharks occupy summer nurseries typically 

ranges from North Carolina to Cape Cod, MA, and in winter they occur from North 

Carolina to northern Florida (Gilmore et al. 1983, Gilmore 1993). Mating occurs in 

relatively shallow waters from February to April off Florida’s east coast and in April and 

May off North Carolina, while parturition takes place off Florida and in the northern Gulf 

of Mexico between December and March (Gilmore et al. 1983, Gilmore 1993).
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Adult female sand tiger sharks typically range in size from 270-290 cm total 

length (TL), but can reach a maximum size of 318 cm TL (Springer 1939). They mature 

between 220 cm and 230 cm TL (Gilmore et al. 1983). Adult males can reach 257 cm 

TL, but are generally less than 250 cm TL (Compagno 1984) and mature between 190 cm 

and 195 cm TL (Gilmore et al. 1983). The maximum length of this species does not 

seem to vary with differences in geographic location (Bass et al. 1975, Branstetter and 

Musick 1994).

The reproductive mode for sand tiger sharks is aplacental viviparity and includes 

both adelphophagous and oophagous stages (Springer 1948, Bass et al. 1975, Gilmore et 

al. 1983). Seven different nutritional phases have been shown to occur during embryonic 

growth (Gilmore et al. 1983, Gilmore 1993). Adelphophagy results in a maximum 

fecundity of two pups per litter that range from 95-105 cm TL, which does not appear to 

vary geographically (Gilmore et al. 1983, Branstetter and Musick 1994, Last and Stevens 

1994). Whereas gestation and embryonic growth are well documented in sand tiger 

sharks, their reproductive periodicity has been a source of some contention. Gilmore 

(1993) stated that sand tiger sharks reproduce annually in the western North Atlantic, and 

Gordon (1983) believed they may mate annually in Australian waters. Alternatively,

Cliff (1989), and Branstetter and Musick (1994) presented evidence supporting a two- 

year reproductive cycle for sand tiger sharks in South African waters and the western 

North Atlantic, respectively. Successful captive reproduction over the past 10 years lends 

strong support to a two-year reproductive cycle hypothesis (Henningsen et al, in review).

The sand tiger shark is fished or caught as bycatch in all areas it is found, but is of 

variable importance regionally (Compagno 1984). In the western North Atlantic, sand
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tiger sharks are exposed to several fisheries due to their highly migratory nature (Casey 

and Kohler 1990, Musick et al. 1993, Anonymous 1999). As a result, the population has 

been depleted by an estimated 80-90 % since the mid I970’s (Musick et al. 1993, Musick 

et al. 2000). Because their low fecundity makes them particularly susceptible to almost 

any fishing exploitation, bycatch still poses a realistic threat to their survival. To prevent 

further decline of sand tiger sharks in the western North Atlantic, they were put on the 

protected species list, amended to the NMFS Fishery Management Plan for Atlantic 

sharks in 1997 (NMFS 1999). They also have fully protected status in Australian waters 

and their capture in South African waters is being phased out (Pollard et al. 1996, 

Anonymous 2002). Although the western North Atlantic population may have stabilized 

since given “prohibited possession” status, recovery is not yet apparent (Musick et al 

2000).

Branstetter and Musick (1994) stated that sand tiger sharks may reach an age of 

30 to 35 years and gave the following von Bertalanffy growth parameters for in the 

western North Atlantic: L» = 323.0 cm TL, k = 0.14 yr l, and to = -2.6 yrs for females; L» 

= 301.0 cm TL, k = 0.17 y r'1, and to = -2.3 yrs for males; and L . = 321.0 cmTL, k = 0.14 

yr*1, and to = -2.6 for sexes combined. This was based on their estimation that this 

species forms two pairs of growth bands annually in the vertebral centra. They also 

stated a caveat about their uncertainty of that estimation. A re-calculation of the life 

history parameters from Branstetter and Musick’s (1994) mean back-calculated lengths- 

at-age was conducted assuming annual formation of a single pair of growth bands 

(Goldman 1998), which gave the following von Bertalanffy growth parameters: L . = 

323.0 cm TL, k = 0.07 yr*1, and to = -5.1 for females; and L» = 302.0 cm TL, k = 0.08 yr*

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



115

l, and to = -4.5 for males; and L» = 322.0 cm TL, k = 0.07 y r '1, and to = -5.2 for sexes 

combined. The difference in these life history parameter estimations, and their 

ramifications for management and conservation of this species (Musick et al. 1993, 

Musick et al. 2000), was the major reason for my re-examination of sand tiger age and 

growth. I aged 96 sand tiger sharks from bands formed seasonally in the vertebrae, and 

administered oxytetracycline (OTC) to three wild-caught sand tiger sharks that were held 

in aquaria for 2-3 yrs during which OTC was re-administered annually. I report my 

findings herein and briefly discuss the reproductive periodicity of this species.

MATERIALS AND METHODS 

Sand tiger shark vertebrae (n=96) were obtained by the Virginia Institute of 

Marine Science (VIMS) (n=55) and from the National Marine Fisheries Service (NMFS) 

Narragansett, RI, laboratory (n=41). (Some samples from each institute were tournament 

or sport caught.) Twenty-five samples (from the VIMS survey) previously used for 

analysis by Branstetter and Musick (1994) were re-examined for this study. Vertebral 

samples and weights of sand tiger sharks used in this study from the VIMS survey were 

taken between 1980 and 2001; those obtained from NMFS were taken between 1963 and 

1991. Vertebral samples were not obtained from all animals that were measured and 

weighed (over this nearly 40-year period), hence the discrepancy in sample sizes.

Sand tiger sharks taken by VIMS were measured on a straight line, and precaudal, 

fork, and total length (PCL, FL, and TL) were recorded along with sex and weight (when 

possible). A 20 to 25 cm section of vertebrae was removed from the area midway 

between the first dorsal fin and the gills, and stored frozen. Samples provided by NMFS 

included at least one of the necessary measurements and the date and location of capture.
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I use TL measurements throughout this paper in order to make direct comparisons with 

previously published data on sand tiger shark growth parameters (Branstetter and Musick 

1994). Linear regression equations based on measurements taken by VIMS and the 

NMFS lab, were developed for converting TL to FL and PCL.

Vertebral samples were thawed, cleaned of excess tissue, separated into individual 

centra and stored in 70% ethyl alcohol for at least 24 h. Centra were sagittally sectioned 

through the focus and then cut again approximately 1.S mm off-center using an Isomet 

rotary diamond saw (Buehler, 41, Lake Bluff, IL). The sections were pressed between 2 

pieces of Plexiglas (to prevent warping), air-dried for 24 h under a ventilation hood, and 

then mounted onto microscope slides. After drying, sections were polished with wet fine 

grit sand paper (320,400 and 600) to approximately 0.5 mm and air-dried. Sections were 

viewed using a binocular dissecting microscope with transmitted light.

A banding pattern was readily distinguishable in sectioned centra, with wide 

bands separated by distinct narrow opaque bands. This pattern occurred on both arms of 

the corpus calcareum and the narrow bands extended across the intermedialia. A notch 

occurring on the outside edge of the corpus calcareum accompanied the distinct narrow 

bands (Figure 4.1) providing an additional ageing feature, particularly in sections where 

the cut excluded the radials of the intermedialia. Each pair of wide-narrow bands was 

considered a growth cycle; the narrow bands, hereafter referred to as “rings”, were 

counted (Figure 4.1). An angle change in the intermedialia and a ring on the corpus 

calcareum were present approximately 6 to 7 mm from the focus of each centrum and 

considered to represent a birthmark. The “pre-birth rings” reported by Branstetter and
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Figure 4.1: Sagittal section of a 11 yr old sand tiger shark’s vertebral centrum showing 

typical banding pattern. CR=centrum radius. Arrows represent ages.
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Musick (1994) were present in most specimens, but were not counted nor measured.

Two readers independently aged all centra two times in blind, randomized trials. 

This allowed the calculation of within-reader precision, and between-reader precision 

twice. Percent agreement (PA=[No. agreed/No. read]* 100), and percent agreement plus 

or minus one year (PA +/- 1 yr) were calculated for length groups of 10 cm to test for 

precision. Additionally, Chi-square tests of symmetry were conducted using Bowker’s, 

McNemar’s, and Evans-Hoenig tests to determine whether differences between and 

within readers were systematic (biased) or attributable to random error (Hoenig et al., 

1995; Evans and Hoenig, 1998).

Centrum radius (CR) and distance to each ring were measured to the nearest 0.001 

mm as a straight line from the central focus to the outer margin of the corpus calcareum 

(Figure 4.1) using a compound video microscope with the Optimus image analysis 

system (Media Cybernetics 1999). TL was plotted against CR to determine the 

proportional relationship between somatic and vertebral growth.

Back-calculation is a method for describing the growth history of each individual 

sampled, and numerous variations in methodology exist (see Francis 1990 for a thorough 

review). The relationship between CR and TL for sand tiger sharks was investigated to 

determine the most appropriate method for back-calculating previous length-at-age. This 

is critical for obtaining accurate life history parameter estimates from the von Bertalanffy 

growth function. Three different proportions methods were used and compared with my 

sample length-at-age data. First, I used the standard Dahl-Lea direct proportions method 

(Carlander 1969):

L  =  (Lc/CRc)*CRl (1)
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where Li = length at ring ‘i’, Lc = length at capture, CR« = centrum radius at capture, and 

CRi = centrum radius at ring T . Next, I applied a modified version of the Dahl-Lea 

method that use parameter estimates from the specific linear fit that described the TL-CR 

relationship. The linear-modified Dahl-Lea method (Francis 1990) is:

Li = Lc*[(a+bCRi)/(a+bCRc)] (2)

where ‘a’ and ‘b’ are the linear fit parameter estimates.

Ricker (1992) applauded Francis’ (1990) back-calculation review paper, but like 

Campana (1990) suggested that the point of origin of proportional back-calculations 

should be related to a biologically derived intercept (i.e., length at birth). I, therefore, 

also applied Campana’s (1990) “size-at-birth-modified” Fraser-Lee equation:

Li = Lc+KCRi-CRcWLc-LBirth)/ (CRc-CRBirth)] (3)

where Leinh = length at birth and CRBinh = centrum radius at birth. (Based on Gilmore et 

al. 1983, and Branstetter and Musick 1994, 100 cm TL was used for LBinh-)

A relative marginal increment (RMI) analysis was used to verify the temporal 

periodicity of ring formation in the vertebrae. This is a standardized marginal increment 

analysis whereby the margin, or growth area of a centrum from the last narrow growth 

ring to the centrum edge, is divided by the width of the last fully formed growth 

increment (Branstetter and Musick 1994). Resulting RMI values were compared to the 

month of capture. Age-zero animals were not included (as they have no fully formed 

increments).

The von Bertalanffy growth function was fit to the vertebral age-at-length data for 

sand tiger sharks with a nonlinear least squares regression algorithm (‘nls’ in S-Plus, 

Mathsoft Inc. 2000) to estimate parameters. The von Bertalanffy growth function is:
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U  = L»«[ l-exp(-k(t-to))] (4)

where L, = length at age ‘t’, L» = asymptotic or maximum length, k = the growth 

coefficient, and to -  age or time when length theoretically equals zero. Growth 

parameters were estimated for the sexes separately and combined. Because my sample 

size was small, lengths at previous ages were back-calculated from centra measurements 

for both sexes and fitted with the von Beitalanffy growth function, von Bertalanffy 

growth parameter estimates were then obtained from mean back-calculated length-at-age, 

and from a combination of back-calculated lengths-at-age and my sample data. A 

likelihood ratio test was used to determine whether differences between female and male 

growth parameters were significant or if a single set of growth parameters better 

described the data (Kimura 1980, Quinn and Deriso 1999, Haddon 2001) (SAS Institute 

Inc. 1999).

Two male sand tiger sharks (152.5 cm and 157 cm TL) captured off of Cape May, 

NJ, USA, in 1998 for public display, were donated to this study. They were injected with 

oxytetracycline (OTC) at a dose of 25 mg/kg body weight (Tanaka 1990, Glesleichter et 

al. 1998); one was kept at Ripley’s Aquarium, Myrtle Beach, SC, and the other at New 

England Aquarium, Boston, MA. In 1999, an additional sand tiger (estimated at 164 cm 

TL) at the New England Aquarium that had a spinal deformity was offered for use in this 

study and fed OTC (that was injected into it’s food). Each individual was re­

administered (injected or fed) OTC again approximately one year later, and one 

individual was administered OTC a third time (Table 4.1). All three sharks were 

sacrificed using buffered MS222 in either December 2000 or January 2001.
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Table 4.1: Dates, aquarium, sex, lengths and method of administering oxytetracycline 

(OTC) to three sand tiger sharks, Carcharias taurus.

Shark # Date Aquarium Sex PCL FL TL OTC method

OTC-1 10/15/1998 Ripley's M 112 127 157 injected

10/15/1999 138 157 201 injected

1/18/2001 160 181 218.6 euthanized

OTC-2 10/15/1998 New England M 110 125 152.5 injected

11/4/1999 139 156 188 injected

10/7/2000 - - - fed

12/13/2000 162 180 219 euthanized

OTC-3 3/3/1999 New England M - - 164 fed

11/21/1999 - - 201 fed

10/13/2000 - - fed

12/13/2000 154 175 210 euthanized
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Weights were obtained (by VIMS and NMFS) from 102 sand tiger sharks 

between 1963 and 1991, including 55 females (95 to 272 cm TL), and 47 males (100.7 to 

259 cm TL). Data were fitted to the power equation, W = a«Lb, (using SigmaPlot, SPSS 

Inc.), where W = weight (kg) and L = length (cm TL). A likelihood ratio test was used to 

determine whether differences between female and male weight-length parameters were 

significant or if a single set of parameters better described the data (Kimura 1980, Cerrato 

1990, Quinn and Deriso 1999, Haddon 2001) (SAS Institute Inc. 1999).

RESULTS

Length Equations

Length measurements from 272 sand tiger sharks (137 female, 135 male) were 

obtained by VIMS and NMFS between 1963 and 2001. Females ranged from 95 cm TL 

to 277 cm TL, and males ranged from 98.4 cm TL to 248 cm TL. FL and PCL can be 

derived from TL by:

FL = 0.8471«TL - 0.592 (^  = 0.99; n = 138)

PCL = 0.7736-TL -  5.05 ( r  = 0.97; n = 134).

Vertebral Analysis

Percent agreement among readers (PA) was 67.7 % for the first set of blind reads 

and 75.0% for the second set, and the within-reader PA was 75.0% for reader one (the 

lead author) and 72.9% for reader two. Percent agreement +/- one yr was > 92 % for all 

reader comparisons. When grouped by 10 cm length increments, agreement for sharks < 

200 cm TL was 100 %, except for a single 1 yr disagreement in each set of readings, and 

100 % +/- 1 yr for sharks < 220 cm TL (Table 4.2). The Bowker, McNamara, and Evans-
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Table 4.2: Percent agreement (PA) and PA +/- 1 year, for both sets of readings for sand

tiger sharks, Carcharias taurus, when placed into 10 cm length (TL) groups.

First set of readings Second set of readings
Length Group (cm) Read Agree Agree +/- I PA PA +/- I Agree Agree +/- 1 PA PA +/- 1

90.1-100 7 7 7 100 100 7 7 100 100
100.1-110 7 7 7 100 100 7 7 100 100

110.1-120 7 7 7 100 100 7 7 100 100
120.1-130 7 7 7 100 100 7 7 100 100

130.1-140 I I I 100 100 I 1 100 100
140.1-150 9 9 9 100 100 9 9 100 100
150.1-160 2 I 2 50 100 2 2 100 100

160.1-170 5 5 5 100 100 4 5 80 100

170.1-180 2 2 2 100 100 2 2 100 100

180.1-190 0 0 0 - - 0 0 - -
190.1-200 4 4 4 100 100 4 4 100 100

200.1-210 5 2 5 40.0 100 2 4 40 80

210.1-220 7 3 7 42.9 100 3 7 43 100
220.1-230 7 2 5 28.6 71.4 3 6 43 86

230.1-240 9 2 7 22.2 77.8 4 8 44 89

240.1-250 7 4 7 57.1 100 4 7 57 100

250.1-260 3 0 2 0 66.7 2 3 67 100
260.1-270 4 2 4 50 100 3 3 75 75

270.1-280 3 0 1 0 33.3 1 3 33 100

n = 96 65 89 72 92

Percent Agree 67.7 92.7 75.0 95.8
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Hoenig Chi-square tests of symmetry gave no indication that differences between and 

within readers were systematic rather than due to random error (X2 test, P > 0.05 in all 

cases).

A linear regression gave a significant fit to the TL-CR data (TL = 10.753*CR + 

36.786; r  -  0.97; P < 0.0001) (Figure 4.2). However, it was important to compare the 

mean back-calculated results from equations 1 through 3 with my mean sample TL data 

to see which method provided better biological accuracy for modeling growth.

The linear-modified Dahl-Lea method (equation 2) most accurately represented 

the mean sample length-at-age data. It produced mean back-calculated lengths-at-age 

within 9.1 cm of mean sample lengths-at-age for female sand tiger sharks, except for 

lengths of approximately 195 and 250 cm TL (Figure 4.3a). When applied to males, 

equation 2 produced mean back-calculated lengths-at-age within 9.8 cm of mean sample 

lengths-at-age for sharks <195 cm TL. At greater lengths, deviation from mean sample 

length-at-age ranged from 2.7 to 15.1 cm TL (Figure 4.3b). Lee’s phenomenon was 

present with the individual back-calculated data. There was a tendency for some age 

classes (usually older ones) to underestimate the mean sample length-at-age data after the 

first few back-calculated ages (Tables 4.3 and 4.4). This is not too surprising considering 

the time frame over which samples were obtained, and the potential for sampling 

variation (i.e. where in the spinal column the vertebrae were removed). However, Lee’s 

phenomenon was not apparent in the mean back-calculation values, which were, overall, 

very similar to the mean age-at-length data.
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Figure 4.2: Relationship between centrum radius (CR) and total length (TL) for sand 

tiger sharks (n=90).
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Figure 43: Mean deviation, from mean sampled total length, of three proportional back* 

calculation methods for (a) female, and for (b) male sand tiger sharks. Data points 

represent mean back-calculated lengths-at-age. A point on the x-axis would represent 

zero deviation from the sample mean length-at-age.
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Table 4.3: Back-calculated total length (cm) of female sand tiger sharks. B = birth, n = sample size. Sample mean is the mean 

length of sharks captured at a given age. All lengths are in cm TL.

Back-calculated age
Age n B 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 14 101.6

t 1 104.7 117.3

2 2 108.0 125.4 138.5

3 3 102.3 118.0 133.5 145.7

4 4 110.9 129.5 143.6 158.1 172.2

5 1 94.5 109.5 130.8 152.7 169.0 185.7

6 0 - - - - - - -

7 2 n t i 128.3 142.4 158.3 171.4 182.6 192.7 203.3

8 0 - - - - - - - - -

9 0 - - - - - - - - - -

10 1 80.2 99.5 117.0 131.0 146.3 159.6 175.6 187.0 199.0 209.4 217.0

II 1 85.8 102.5 121.0 139.9 156.0 167.7 181.1 193.2 204.4 217.2 225.7 234.7

12 5 112.4 130.5 145.6 161.9 176.7 188.9 200.1 210.0 219.7 228.8 235.9 242.3 249.0

13 4 112.9 129.2 144.3 158.1 171.6 183.7 195.1 205.1 214.9 224.6 232.6 238.6 243.8 248.9

14 4 106.8 124.3 138.3 151.0 164.2 175.0 186.4 195.5 203.2 211.4 219.0 225.5 231.4 237.0 241.3

15 1 80.2 91.1 108.0 123.2 143.0 163.3 177.1 193.2 202.5 209.9 215.5 223.4 229.1 236.2 243.6 249.5

16 2 106.1 118.7 130.7 144.6 156.1 166.9 182.2 191.2 202.7 211.8 219.0 227.5 236.2 241.5 247.6 254.6 260.6

17 2 107.7 124.1 137.1 149.0 159.4 171.0 181.0 191.2 202.0 210.2 218.5 227.4 235.5 243.1 250.5 257.1 262.8 267.6

Back-caic Mean 106.7 125.2 139.8 154.1 168.5 179.6 190.9 200.8 210.1 219.0 226.4 233.7 240.1 242.4 245.2 254.7 261.7 267.6

Sample Mean 108.5 120.8 141.5 150.7 177.6 194.0 - 208.5 - - 220.0 240.0 250.2 251.5 243.5 253.0 263.0 270.5
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Table 4.4: Back-calculated total length (cm) of male sand tiger sharks. B = birth, n = sample size. Sample mean is the mean 

length of sharks captured at a given age. All lengths are in cm TL.

Back-calculated age

Age n B 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 9 102.1

t 4 105.9 119.3

2 5 111.5 128.4 139.8

3 2 106.1 121.4 134.4 145.8

4 3 104.4 122.0 137.0 151.9 161.8

5 2 110.2 126.2 144.0 160.6 173.1 181.2

6 I 104.1 121.5 134.0 147.1 161.6 174.5 184.3

7 2 112.6 129.7 145.8 158.1 172.1 183.1 193.0 203.6

8 2 108.4 126.2 141.5 156.3 169.2 178.9 189.2 198.2 208.0

9 1 105.7 124.6 136.7 148.8 160.9 172.0 182.0 191.5 200.3 210.2

10 0 - - - - - - - - - - -

11 3 108.6 123.3 136.7 151.6 166.9 179.8 191.5 201.8 210.3 217.5 223.8 228.1

12 5 104.5 120.2 135.3 148.1 161.3 172.5 182.9 191.8 199.8 206.5 213.0 218.9 223.5

13 2 107.6 120.9 135.3 146.6 156.3 166.8 177.2 184.9 191.0 197.4 204.3 210.1 212.6 219.3

14 1 96.1 112.3 128.3 144.1 155.7 166.5 175.1 182.8 189.1 193.0 198.0 203.0 207.5 212.1 215.9

IS 1 101.5 115.5 126.9 137.1 147.2 158.7 166.6 175.7 185.7 196.0 205.0 211.9 218.8 223.8 228.8 232.3

Back-calc M ean 106.0 122.9 137.5 150.5 163.5 174.7 184.2 193.4 200.2 206.1 212.3 217.8 218.8 218.6 222.4 232.3

Sam ple M ean 106.4 125.3 143.8 149.0 172.3 184.5 191.0 208.5 212.5 214.0 224.0 231.8 229.7 222.0 218.0 235.0
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Vertebral age-at-length data from 48 female sand tiger sharks provided von 

Bertalanffy parameters of L» = 295.8 cm TL, k = 0.11 y r 1, and to = -4.2 years (Figure 

4.4). von Bertalanffy parameters from the linear-modified Dahl-Lea back-calculations 

(with or without sample data included) gave slightly lower k coefficients and slightly 

higher L» and to values (Table 4.5). Results from mean back-calculated data had the 

lowest standard error. Vertebral age data from 48 males provided Bertalanffy parameters 

of L» = 249.5 cm TL, k = 0.16 yr‘l, and to = -3.4 years (Figure 4.4). Back-calculated 

lengths-at-age for male sand tiger sharks (with or without sample data included) again 

provided slightly lower k coefficients, slightly higher L» and to parameters, and mean 

back-calculated data had the lowest standard error (Table 4.5). Vertebral age data for the 

sexes combined (n=96) provided von Bertalanffy parameters of; L» = 280.5 cm TL, k = 

0.12 yr*1, and to = -4.1 years. Parameters resulting from back-calculated data for the 

sexes combined produced results with similar trends as those for females and males 

(Table 4.5). A likelihood ratio test showed that separate von Bertalanffy growth models 

better describe the data for each sex than one model with the sexes combined (X2 = 22.8; 

d f -  3; P = 0.000044).

Although I was missing samples from some winter months, relative marginal 

increment (RMI) analysis indicates that the first postnatal and all subsequent rings form 

annually between December and February. The smallest relative margins in my sample 

occurred in February, followed by a consistent increase in RMI with the largest relative 

margins occurring in October (Figure 4.5).

The administration of OTC was successful in marking vertebrae in 2 of the 3 sand
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Table 4.5: von Bertalanffy growth parameters of female, male and sexes combined for 

sandtiger sharks in the western North Atlantic. Numbers in parentheses are standard 

errors.

Los k toFemales

Sample data (n=48)

Back-calculations (n=366*)

Mean back-calculation (n=18*) 

Back-calculations w/ sample data (n=414*) 

Males

Sample data (n=48)

Back-calculations (n=278*)

Mean back-calculation (n=16*) 

Back-calculations w/ sample data (n=326*) 

Combined 

Sample data (n=96)

Back-calculations (n=644*)

Mean back-calculation (n=34*) 

Back-calculations w/ sample data (n=740*) 

♦Not independent

295.8 (14.0) 0.11(0.02) -4.2 (0.5)

302.4 (7.4) 0.09 (0.006) -4.6 (0.22)

308.3 (5.2) 0.09 (0.004) -4.8 (0.21)

305.3 (6.9) 0.09 (0.006) -4.7 (0.20)

249.5 (7.2) 0.16 (0.02) -3.4 (0.4)

252.7 (6.1) 0.13 (0.009) -4.1 (0.2)

247.5 (3.6) 0.13 (0.009) -4.2 (0.2)

256.1 (5.4) 0.12 (0.008) -4.3 (0.2)

280.5 (9.4) 0.12 (0.01) -4.1 (0.4)

294.7 (6.5) 0.09 (0.005) -4.8 (0.2)

293.1 (16.0) 0.09 (0.01) -5.0 (0.7)

295.2 (5.7) 0.09 (0.004) -4.8 (0.2)
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Figure 4.4: von Bertalanffy growth curves fitted to female (n=48) and male (n=48) 

sample data for sand tiger sharks. Estimates for parameters of the von Bertalanffy 

growth function are summarized.
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Figure 4.5: Results of relative marginal increment analysis indicating annual ring 

formation likely occurs between December and February.
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tiger sharks. The vertebrae from the animal with the spinal deformity did not mark, 

possibly due to the diseased nature of the spine or due to low weight estimates and 

subsequent low doses. The two sharks whose vertebrae were successfully marked by the 

OTC were both aged at 2 years for their date of capture in 1998. One animal had two 

OTC marks and the other had three (Table 4.1). The annual OTC marks in both 

specimens were located near points where rings had formed (Figure 4.6).

Weight-to-length relationships for female and male sand tiger sharks in the 

western North Atlantic were; W = l.3xlO'04,L2'4 ( r  = 0.84, n=55) and W = 9.0xl0'°5*L23 

(r2 = 0.84, n=47) respectively, and 7.9xlO'05«L25 (r2 = 0.84) for the sexes combined 

(Figure 4.7). A likelihood ratio test showed that a single equation for the sexes combined 

better describe the data than separate equations for each sex individually (X2 = 5.3; df=

2; P =0.07).

DISCUSSION

A high degree of variability exists in the periodicity of ring and growth band 

formation within and among taxonomic groups of elasmobranch fishes, and much of the 

variation observed in several lamniform sharks has not yet been explained (Branstetter, 

1990; Branstetter and Musick, 1994; Wintner and Cliff, 1999). For example, Cailliet et al 

(1983) stated that shortfin mako sharks from the Pacific appear to have annual ring 

formation while Pratt and Casey (1983) stated that Atlantic specimens appeared to 

produce two rings per year. However, a new technique using bomb radiocarbon to 

validate ages in long-lived sharks was applied to a single shortfin mako and indicated that 

they form a single ring annually (Campana et al. 2002). This method requires vertebral
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Figure4.6: Sagittally cut vertebral section of OTC sand tiger shark #OTC-2 (from Table

4.1). Arrows without asterisks represent wild growth. Double asterisk indicates initial 

OTC mark shortly after capture. Arrows with single asterisks indicate OTC marks and 

captive growth rings. All three OTC marks can clearly be seen.
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Figure 4.7: Weight- length relationship for sand tiger sharks. The upper dashed line is 

for females; the lower dashed line is for males; the solid line in between them is for the 

sexes combined and best describes the relationship for this species. W = weight (kg); TL 

= total length (cm).
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samples from animals bom prior to the early I960’s. Although I had some samples from 

the early 1960’s, they were all very young animals, hence I was unable to apply the bomb 

radiocarbon method in this study.

Branstetter and Musick (1994) suggested that sand tiger sharks form two rings per 

year in their vertebral centra whereas my results support a hypothesis that only one ring is 

formed annually. The difference in ageing protocols between the two studies is almost 

certainly the cause of the different results. I feel it is necessary to state the reasons I did 

not follow the Branstetter and Musick (1994) protocol in this study, then discuss my 

results and comment on their ramifications for recovery of the western North Atlantic 

population.

Branstetter and Musick (1994) “counted and measured rings in the intermedialia’’. 

When the intermedialia was damaged, they counted along the corpus calcareum. I found 

that using the intermedialia as the primary counting surface for ageing sand tiger sharks 

could lead to errors. In addition to the distinct rings (narrow bands) that extended all the 

way across the intermedialia and matched up with rings on the corpus calcareum and the 

presence of notches (at or near the rings) along the outside arm of the corpus calcareum, 

the intermedialia contained subtle or indistinct bands. These ‘indistinct bands’ made 

using the intermedialia as the primary counting (and measuring) surface problematic for 

the following reasons: 1) they extended completely across the intermedialia, but did not 

appear on the corpus calcareum (nor were they associated with notches on the corpus 

calcareum); 2) they did not extend all the way across the intermedialia; 3) part-way 

across the intermedialia they blended into another indistinct band; 4) part-way across the 

intermedialia, they blended into a distinct band; S) the number of indistinct bands
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(between distinct bands) was inconsistent ranging from 0-5 in number. Additionally, 

some indistinct bands were seen on the corpus calcareum, but they did not match up with 

bands in the intermedialia and did not possess a corresponding notch along the outer arm 

of the corpus calcareum. These reasons were paramount in my decision to use the corpus 

calcareum as the primary counting and measuring surface, with the distinct rings in the 

intermedialia and notches as ‘confirmation’ of an annulus.

The radials of the intermedialia of carcharhinid sharks are relatively hard, robust 

and numerous, making it nearly solid. In contrast, the radials of the intermedialia in 

lamnoid sharks are less numerous, softer and quite fragile, and the large amount of 

interstitial space often prevents its presence in sectioned vertebrae. When present, the 

outer edge of the intermedialia in lamniform vertebral sections can become warped in a 

concave manner. When this occurs, the rings near the outer edge of the intermedialia 

become “bunched up” and indistinguishable. The bands on the corpus calcareum can 

also become more tightly grouped at the outer edge, particularly in larger/older animals, 

however the rings have a tendency to remain distinguishable due to the stronger (more 

stout) nature of the structure. Based on these observations, I suggest that future studies 

on the age and growth of lamniform sharks use the corpus calcareum as the primary 

counting and measuring surface.

I found that vertebral growth significantly increased with somatic growth (Figure

4.2), which along with the reliability of the centrum edge analysis (Figure 4.5) 

demonstrates vertebral growth patterns are a reliable indicator of age in sand tiger sharks. 

Precision was high between and within readers with limited differences (Table 4.2) that 

were attributable to random error. These results provided a high degree of confidence in
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the accuracy and precision of my age assessments (from sample data) used in the von 

Bertalanffy growth model, and hence in the resulting life history parameter estimates.

The similar von Bertalanffy growth parameter estimates generated from my sample data, 

back-calculated data and the combination of the two indicate that my sample size was 

sufficiently large and encompassed the known size range of males, and all but the very 

upper end of the known size range of females. While my back-calculation results are, of 

course, dependent on the assumption that growth has not significantly changed over time, 

and are applicable only to sand tiger sharks, they demonstrate the importance of choosing 

the appropriate method in order to minimize error (Figure 4.3a and 4.3b), which results in 

a greater ability to accurately model growth.

Branstetter and Musick (1994) gave a weight-length equation for sand tiger sharks 

of; W = 1.62xlO'06»L3 ls. This equation was later found to have an error in it, which has 

not been published. The corrected weight-length equation is: W = 1.62xlO'06»L3 24. My 

data for length conversions and maximum size of sand tiger sharks are similar to those 

form the corrected weight-length equation. The increased sample size (particularly for 

smaller individuals) enhances the accuracy and precision of these estimates. More 

importantly, I was able to determine that a single length-weight curve combined is 

adequate for describing that relationship for both sexes.

The RMI conducted by Branstetter and Musick (1994) indicated that specimens 

from the first part of the year (January-July) had an even number of bands while 

specimens from the second part of the year (August-December). I found no such 

relationship -  animals from every month of the year from which I had more than a single 

sample possessed both even and odd numbers of rings. My RMI analysis indicated that a
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single ring is formed annually sometime between December and February (Figure 4.5). 

Additionally, the results from the two OTC sharks support the hypothesis that a single 

ring is formed annually. The annual OTC marks in both specimens were located near 

points where rings had formed (Figure 4.6) even though they were kept under a constant 

photoperiod and ambient temperature.

Centrum banding patterns may be related to physiological changes induced by 

changes in environmental parameters such as temperature and photoperiod (Cailliet et al. 

1986, Branstetter 1987), however, it has been shown not to be the case for some species 

such as the little skate. Raja erinacea (Natanson 1993), and the Pacific angel shark, 

Squatina califomica (Natanson and Cailliet 1990, Cailliet et al. 1992). The north-south 

migration of sand tiger sharks has been proposed as a possible reason that two rings were 

formed in the vertebral centra each year (Branstetter and Musick 1994) with the primary 

cue for the migration being either temperature or photoperiod. The primary cue for sand 

tiger migration has not been demonstrated, but the fact that captive sand tiger sharks 

appear to form a single ring in their vertebral centra each year makes those possibilities 

less likely. Vertebral growth is inevitably linked to food intake, and a lack of food for 

short periods of time can cause subtle bands to appear in vertebral centra of some species 

(J. Gelsleichter pers comm.). This may explain the “indiscrete bands” I saw in sand tiger 

vertebrae, and play a role in the annual formation of rings in the centra.

The life history parameters presented by Goldman (1998) resulted in k 

coefficients that were Vi of those presented by Branstetter and Musick (1994). This is 

because Goldman (1998) simply doubled the age estimates from Branstetter and Musick 

(1994) by assuming that one ring was formed annually in the vertebral centra (e.g. a 5
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year old would then be considered to be 10 years of age), and not from the examination 

of any vertebral samples. In contrast, the estimations of sand tiger life history parameters 

presented herein are the combined result of using an independently developed ageing 

protocol (applied to vertebral samples from 96 sand tiger sharks), a subsequent RMI 

analysis and the use of a direct validation method (OTC), all of which support a 

hypothesis that one ring is formed annually in vertebral centra. As such, I believe my 

results are a much better indicator of sand tiger shark life history parameters than either 

(Goldman 1998) or Branstetter and Musick (1994).

Branstener and Musick (1994) characterized sand tiger growth based on mean 

back-calculated lengths-at-age as follows; “growth was 25-30 cm per year for ages 0-1, 

20-25 cm per year for ages 2-3, and 15-20 cm per year for ages 4-5. Subadults and adults 

had a growth rate of 10-15 cm per year for ages 6-7, and growth declined to 5-10 cm per 

year for ages 8 and greater.” They also characterized growth in females and males to be 

nearly identical throughout life. My results indicate that growth is similar up to age 5 at 

which point-in-time females begin outgrowing males at a significant rate, and that two 

separate growth curves should be used to describe the rate at which each sex attains their 

maximum size (Figure 4.4). Mean back-calculated lengths-at-age from this study 

indicate that growth averaged 14.5-18.5 cm per year for ages 0-1,13-14.5 cm per year for 

ages 2-3, and 11 cm per year for age 4. For ages 5 and 6, growth averaged 10-11.2 cm 

for females and 9.2-9.5 for males; and for age 7 females averaged 9.3 cm per year 

whereas males averaged 6.8 cm per year. For sand tiger sharks > 8 years of age, the 

growth rates declined to an average of 6.4 cm per year for females and 4.6 cm per year 

for males.
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Female sand tiger sharks become sexually mature at a length of 220-230 cm TL 

and males mature at 190-195 cm TL (Gilmore et al. 1983). Previous estimates of age at 

maturity stated that the equivalent ages to those lengths are 6 years for females and about 

4 years for males (Branstetter and Musick 1994). My age-at-length results place age at 

sexual maturity at 9-10 years for female sand tiger sharks, and at 6-7 years for males. 

Reproduction in captivity (from copulation to parturition) has been documented in South 

Africa and Australia. A female sand tiger shark bom at Underwater World aquarium, 

Australia, in 1992 became pregnant in 2000 (resulting in two pre-term stillborn pups -70- 

80 cm TL) (Henningsen et al. in review). Additionally, a male sand tiger bom at the New 

York aquarium in 1994 has recently (2001-2002) been exhibiting pre-copulatory behavior 

(H. Walters pers. comm.). These data, although captive, provide corroboration to my 

estimates of age at sexual maturity.

Gilmore (1990) stated that all female sand tiger sharks he examined from Florida 

to North Carolina between March and January were impregnated and that no resting stage 

took place in the reproductive cycle of this species. However, Branstetter and Musick 

(1994) presented strong evidence that a resting stage did occur and that the reproductive 

cycle was at least 2 years. They presented VIMS records from 29 mature female sand 

tiger sharks caught off Virginia (during the 1980’s and early 1990’s) that were all noted 

as either postpartum or in a resting state with small ovarian egg follicles. Since then, I 

have records (from the VIMS survey) for an additional 17 mature females that were in 

the same postpartum or resting stage condition. The mother of the afore mentioned 

female bom at Underwater World, Australia was captured pregnant in 1992, and while in 

captivity has given birth two more times; in 1997 and 1999 (Henningsen et al, in review).
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A gestation period of 9-12 months leaves little to no energetic “tum-around” time for a 

female to build-up her reserves and go through another reproductive cycle, unless there is 

a resting year. If a female carried pups through a 12-month gestation period, she would 

immediately have to mate again in order to reproduce the following year. Any time delay 

in mating would “throw off’ her timing for parturition, and at some point-in-time she 

would require a resting period. The current body of evidence strongly supports a two- 

year reproductive cycle for female sand tiger sharks. However, preliminary evidence 

from captive male sand tiger sharks indicates that they may mate annually (A.

Henningsen pers. comm.).

Maximum observed age for female and male sand tiger sharks in this study was 

17 and 16, respectively. These ages are close to the maximum documented ages of sand 

tiger sharks in captivity. Govender et al. (1991) reported a male that had been in 

captivity at an aquarium in Durban, South Africa for 16 years, and there is currently a 20 

year old female (as of 2002) at the National Aquarium in Baltimore, MD, USA (A. 

Henningsen pers. comm.). Branstetter and Musick (1994) estimated longevity at 30-35 

years by extrapolating their von Bertalanffy curves generated from back-calculated data. 

Applying the same technique to my data, longevity may be as high as 40 years for 

females and 30 years for males. Applying the formula 5*ln2/k (which determines the 

time required to reach 95 % of its asymptotic length -  see Cailliet et al. 1992, Neer and 

Cailliet 2001) to my back-calculated and sample data provided longevity estimates of 32- 

38 for females and 22-27 for males.

My estimates of sand tiger shark life history parameters show that they are much 

slower growing than previously thought. Since my mean back-calculated lengths-at-age
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gave the smallest standard error in von Bertalanffy estimates (Table 4.5), they may better 

represent the life-history parameters of this species and should probably be used when 

determining vital rates. Considering the large population depletion suffered by sand tiger 

sharks in the western North Atlantic over the past 20 years, this information is crucial for 

accurately assessing the ability of the population to recover, and further justifies the need 

for this species to be fully protected. The life history parameters presented here also 

allow for a re-adjustment of previously predicted vital rate estimates that can aid 

managers in taking appropriate steps for sand tiger shark protection and conservation.
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Chapter 5

Demographic analysis of sand tiger sharks, Carcharias taunts, in the western North 

Atlantic, based on new life history parameters
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INTRODUCTION

In Chapter 4 ,1 presented the results of my study on sand tiger shark (Carcharias 

taurus) age and growth in the western North Atlantic and compared them to previously 

published life history parameters for the area (Branstetter and Musick 1994). My results 

support a hypothesis that only a single ring is formed annually in sand tiger shark’s 

vertebral centra (instead of two) and, as such, this species growth completion rate (k) is 

slower than previously reported. This almost certainly makes them more vulnerable to 

exploitation and over-fishing. More importantly, new demographic analyses are required 

to estimate vital rates in order to advise fishery managers about this population’s current 

status and potential recovery time. It is also necessary to re-evaluate the impact on the 

population from additional mortality due to fishing.

Using life history parameters from Branstetter and Musick (1994), previous 

demographic analyses have estimated vital rates for sand tiger sharks from age-based life- 

table and Leslie matrix models (Goldman 1998, Mollet and Cailliet 2002, Cortes 2002), 

age- and stage-based matrix models (Mollet and Cailliet 2002) and an intrinsic rebound 

potential model (Smith et al. 1998). Of those studies, however, Cortes (2002) is the only 

one to have incorporated uncertainty into vital rate estimates. Incorporating the effect of 

uncertainty in vital rates into demographic analysis of elasmobranchs is a relatively new 

and important aspect of fisheries ecology, because the results of deterministic models 

may lead to errors in management decisions (Musick 1999, Heppell 2000a, Cortes 2002). 

Mollet and Cailliet (2002) stated that a “flaw” in their sand tiger demographic models
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was the “lack of confidence bands for population growth estimates” which may be 

generated by incorporating uncertainty with Monte Carlo simulation. They strongly 

recommended that Monte Carlo “uncertainty analysis” be carried out. This is important 

because model input parameters such as survivorship are difficult to obtain for 

elasmobranchs (particularly for young individuals), and because incorporating variability 

into models may lead to a better understanding of how life history strategies and 

population dynamics respond to exploitation.

Cortes (2002) showed that uncertainty could be incorporated into life-table 

analysis via Monte Carlo simulation to generate population growth rates (X and r) and 

other population statistics with confidence bands. His results, from 38 shark species, 

show that these types of life-tables produce “nearly identical results” to pre-breeding 

census, age-structured Leslie matrix models (which he also presented). I used this life- 

table approach (along with the life history parameters from Chapter 4) in modeling the 

demography of sand tiger sharks.

Elasticity (proportional sensitivity) analysis is becoming a standard tool in 

demographic analysis (Heppell et al. 2000a). Elasticity is a perturbation measure that 

quantifies the proportional change in population growth rate as a function of a 

proportional change in other vital rates such as survival, fecundity or growth (Heppell 

1998, Heppell et al. 1999, De Kroon et al. 2000). Elasticity analysis from single, 

deterministic approaches can lead to inappropriate management decisions (Heppell 

2000a, Cortes 2002). As such, I calculated elasticities with uncertainty incorporated via 

Monte Carlo simulation in my models in order to more accurately gauge the relative 

importance of proportional changes in fertility, juvenile survival and adult survival on the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



154

intrinsic rate of population increase (r, where r  = InX; X -  finite population growth rate) 

(Heppell 1998, Heppell et al. 2000b, De Kroon et al 2000, Caswell 2001).

Density-dependent compensation is a standard concept in ecology and fisheries 

biology (Holden 1974 and 1977, Krebbs 1985). Potential compensatory mechanisms in 

fishes include: increased survivorship in pups, juveniles and adults an increase in 

fecundity or size at birth, an increase in growth rate leading to earlier age at maturity, 

decreasing (shortening) reproductive periodicity and immigration of animals from other 

areas. In sharks, a decrease in the reproductive periodicity may be possible in some 

species, but there is no evidence to support its occurrence, and no species has been shown 

to increase its fecundity due to exploitation. There is no known immigration to, or 

emigration from, the western North Atlantic sand tiger population and this should 

probably not be considered a viable option for compensation in this species. Sminkey 

and Musick (1995) found a small increase in juvenile sandbar shark (Carcharhinus 

plumbeus) growth rate after heavy exploitation, but this was not accompanied by a 

change in age at maturity. Cortes and Parsons (1996) proposed an increase in offspring 

size for the bonnethead shark (Sphyma tiburo) as a possible compensatory mechanism in 

that species. The best evidence of density-dependent compensation in elasmobranchs 

points towards an increase in the survivorship of pups and juveniles (Walker 

1992,Walker 1998, Hoenig and Gruber 1990, Musick et al. 1993).

Direct evidence of increased survivorship in pups and juveniles due to 

exploitation has been obtained for lemon sharks (Negaprion brevirostris) <53 cm 

precaudal length (Gruber et al. 2001). The survival rate of young of the year (YOY) and 

juvenile lemon sharks was made from a mark-depletion experiment and were negatively
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correlated with estimated initial abundance, demonstrating density-dependent survival 

rates in that species. The results of Gruber et al (2001) also support the assumption that 

first year survival can be adequately determined through life-table (or Leslie matrix) 

methods.

A shortcoming of life-table models is that they assume density-independence, so I 

consequently incorporated density-dependent compensation in the present model when 

imposing fishing mortality. I increased survivorship of YOY and juvenile age classes (up 

to age at first reproduction) based on output from the ‘intrinsic rebound potential’ model 

of Au and Smith (1997, also see Smith et al. 1998), which provides a prediction of the net 

increase in sub-adult survivorship ( \a  ) at a given level of F along with a prediction of

the ‘intrinsic rebound potential’ (r at maximum sustainable yield = rMSr) of a species.

Demographic analyses are often used for management and conservation purposes. 

However, it is important that the results of any model (such as those presented here) are 

used to form hypotheses that can be compared to, and tested with, empirical data (e.g. 

catch per unit effort). The goals of this Chapter of my dissertation research were to: 1) 

provide new estimates of demographic parameters for sand tiger sharks based on the life 

history results in Chapter 4; 2) determine if the Au and Smith (1997, also see Smith et al 

1998) ‘intrinsic rebound potential’ model would adequately predict the necessary 

compensation to keep demographic parameters stable when fishing mortality was 

imposed (i.e. attempt to ‘connect’ the life-table and intrinsic rebound potential models in 

a manner that would lead to biologically reasonable results and conclusions); and 3) 

provide results that could be used for comparative purposes with future demographic 

analyses of sand tiger sharks.
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MATERIALS AND METHODS

The Life-table Model

I used age-structured life-tables based on a yearly time step and a 2-year 

reproductive cycle (applied to only females) to model the demography of sand tiger 

sharks in the western North Atlantic. Monte Carlo simulation (n = 5,000) was used to 

incorporate uncertainty in demographic parameters and generate population growth rates 

(A. and r), generation time ( A ), net reproductive rate ( Ra ), reproductive value (vx), stable

age distribution (cx), fertility, juvenile and adult elasticity, and mean life expectancy.

Population doubling or halving times were calculated from the mean intrinsic rate of 

population growth (r) from model simulations.

To include uncertainty in parameter estimates, I established probability 

distributions for maximum age (to), age at first reproduction (or), fecundity (mx = 

number of female pups per female per year) and survivorship at age (SO- The estimated 

maximum age of female sand tiger sharks (from Chapter 4) is 30 to 40 years, which was 

represented by a linearly decreasing distribution scaled to a total relative probability of 1 

(Figure 5.1a).

Female sand tiger sharks reach sexual maturity between 220 and 230 cm TL 

(Gilmore et al. 1983), and age at first maturity has previously been estimated to be 6 

years of age (Branstetter and Musick 1994). Based on my results from Chapter 4, age at 

first maturity occurs at 9 to 10 years of age. Age at first reproduction is required for the 

model, hence 10 to 11 years of age was used. With no available information to specify a
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particular age at first reproduction as the “most likely”, a uniform probability distribution 

was used for this parameter (Figure 5.1b).

Sand tiger sharks mate between February and April off Florida’s east coast and 

during April and May off North Carolina, and have a 9-12 month gestation period 

(Gilmore et al. 1983, Gilmore 1993). While some contention still surrounds the 

reproductive periodicity of sand tiger sharks, the current evidence (see Chapter 4) 

supports a two-year reproductive cycle, which was used in my models.

Adelphophagy in sand tiger sharks results in a maximum litter size of two pups, 

with a sex ratio of 1:1 (Gilmore et al.1983, Last and Stevens 1994). I represented total 

fecundity as a fixed distribution of 2. Female-specific fecundity (mx; number of females 

per female per year) was obtained by dividing the total number of offspring in a litter by 

the reproductive cycle in years.

There are several methods available for estimating natural mortality (Af), and 

hence survivorship in the absence of fishing (S = e'M). I estimated the probability of 

annual survival at the beginning of each age using the following six life-history methods 

following Cones (2002) (see Appendix I for equations): 1) Hoenig (1983), 2) Pauly 

(1980), 3) Chen and Watanabe (1989), 4) Peterson and Wroblewski (1984), and 5 and 6) 

Jensen (1996). Although method 4 uses dry weight, wet weight seems to yield more 

realistic estimates of survival for sharks (Cortes 2002 and pers. comm.). The mean water 

temperature (23.8 °C) from the VIMS long-line survey, from 1974 to 2000, was used in 

the Pauly (1980) model.

I used a relatively cautious approach when setting probability distributions for
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Figure 5.1: Probability distributions for (a) sand tiger shark longevity and (b) age at first 

reproduction.
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survivorship. I used the lowest and highest values from the six methods as lower and 

upper bounds for setting survivorship probability distributions. The first three age classes 

(ages zero to two; < 1.5 m TL) were represented by uniform distributions (Figure 5.2a), 

as there are no data that would give reason to suspect that one estimate is more realistic 

than another. For sand tiger sharks age three to 40 (> 1.5 m TL), I assumed that 

survivorship would more likely be at the higher end of the distribution rather than the 

lower end because of their larger size, so I used a linearly ascending distribution scaled to 

a total relative probability of 1 (Figure 5.2b), with the highest estimate of survivorship 

twice as likely to occur in model simulations as the lowest.

Annual population growth rates (X=er) were obtained by iteratively solving the 

discrete form of the Lotka-Euler equation (Goodman, 1982, Roff 1982):

1 = X  e~rxlxmx
x - Y

where lx is the probability of an individual being alive at the beginning of age x , mx is the 

number of female offspring produced annually by a female at age x, and co is maximum 

age. Generation time ( A ) was calculated as

_ (O
A = £ e  rx x ix m x  

x=l

which is the mean age of the parents of the offspring produced by a population at the 

stable age distribution (Caswell 2001).

The reproductive value distribution (v*) was obtained through
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Figure 5.2: Examples of probability distributions used for age specific survivorship, (a) 

Distributions as set for ages zero through two, (b) distributions as set for ages three to 40.
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where v0 is the reproductive value at birth (which is equal to one), and j  denotes all the 

ages a female will pass through from .t to co (Goodman 1982, Ebert 1999, Cortes 2002). 

The stable age distribution (cx) was obtained through

e - n lx
cx=-a> “

X *
x=l

The reproductive value and stable age distribution columns were used to calculate 

elasticities following Caswell (2001) and Cortes (2002) as

_ aij vi wj  
€ij A <w,v>

where a,y is the element corresponding to row i of column j  (survivorship), v, is the value 

of row i in the reproductive value column (vx), wy is the value of row j  in the stable age 

distribution column (cx), and ( w, v) is the scalar product of row elements in the w (cx)

and v (vr) distributions. I calculated elasticities for age zero survival (fertility), juvenile 

survival and adult survival by summation of elasticity elements across relevant age 

classes, which may present viable management options.

The mean life expectancy was obtained by

~X =  i_____
L ife  E x p e c ta n c y  &

“ ta( X  Px )
jc=0
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where Px  is the mean survivorship of the probability distribution for age x  (Lawless 

1982).

The net reproductive rate ( R0 ) was obtained by 

co
Ro = T  lxmx

x=0

Population halving ( r o s = ) and doubling ( t 7 ) times were calculated
r r

from the mean intrinsic rate of population growth (r) from model simulations.

The uncertainty in demographic traits (age specific survival and fecundity, age at

first reproduction and maximum age) was randomly selected from each trait’s probability

distribution during Monte Carlo simulation. Ninety-five percent confidence intervals for

each parameter were obtained from the 2.5th and 97.5th percentiles.

Density-Dependent Compensation

As with all life-tables, the model described above is a density-independent model. 

To allow for density-dependent compensation (for a given level of F) due to the changes 

in mortality of fished ages, I used the predicted net increase in sub-adult survivorship 

from Au and Smith’s (1997 -  also see Smith et al. 1998) ‘intrinsic rebound potential’ 

model. This model provides, as output, a prediction of the net increase in pre-adult 

survivorship needed for a population to ‘rebound’ back to stationary equilibrium (r = 0) 

when a given level of F is imposed (and assumes r -  0 before F begins and that Z [= Af+F] 

is sustainable).
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The Au and Smith (1997) model solves for V  using a variant of the Lotka-Euler 

equation (See Au and Smith 1997 or Smith et al. 1998 for details of converting the Lotka- 

Euler equation given above to):

e -(M+r) + \a b  e - ( r a ) ^ - ( M + r X a t - a + l ) ^ {

where \a = the net increase in sub-adult survivorship (from age 0 to age at first

reproduction, a ), and b -  fecundity (females per female per year). Setting r - 0 ,

changing M  to the total level of mortality Z with \a  =  \a z  and solving for \a , the

solution to the above equation is:

1 ^  ^
a z  % [ +

where \a  z = the predicted net increase in sub-adult survivorship at a given level of Z.

I used Monte Carlo simulation (n = 5,000) to incorporate uncertainty in 

demographic parameters and generate estimates of \a . I then evenly distributed the net 

increase in \a , between when F = 0 and when F0.023 was imposed, amongst the sub-adult 

age classes in the life-table model and ran Monte Carlo simulations with F and the \a  

‘factor’ included. The method of calculating the amount of increased survivorship for 

each age class and evenly distributing it ( \a ) among sub-adults is given in Appendix 2.

Survivorship was accordingly increased (compensation included) for ages zero through 

nine.

All simulations (life-table and intrinsic rebound potential) were implemented with 

Microsoft Excel spreadsheet software equipped with proprietary add-in risk assessment
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software (Crystal Ball, Decisioneering Inc., Denver, CO) and Microsoft Visual Basic for 

Application macros.

Fishing Mortality Scenarios

In 1997, the National Marine Fisheries Service (NMFS) prohibited possession of 

sand tiger sharks in U.S. Atlantic waters (NMFS 1999). A 1998 NMFS large coastal 

sharks stock assessment provided historical estimates of fishing mortality (F) for this 

‘group’ from 1974 through 1997 (NMFS 1998). Estimates of F during those years 

ranged from a minimum of 0.03 (from 1974 to 1976) to a maximum of 0.21 (in 1995 and 

1996). These values were all deemed too high, resulting in further depletion of the sand 

tiger shark population (NMFS 1998, Cortes pers. comm.). Recovery is not yet apparent 

in the sand tiger shark population (Musick et al. 2000), therefore, instituting any kind of 

fishery would be unwarranted. However, considering the updated information on life 

history parameters (Chapter 4) along with the fact that sand tiger sharks are still taken as 

bycatch in several fisheries (Casey and Kohler 1990, Musick et al. 1993, NMFS 1999), 

investigating the potential impacts of F on the population for future management 

purposes is essential. Additionally, it allows further investigation into the use of the Au 

and Smith (1997) model as a predictor of the required density-compensation necessary to 

keep vital rates stable when additional mortality is imposed from fishing.

I examined the effect of fishing mortality (F) on sand tiger sharks using F0.025 for 

two reasons. First, this value is less that the minimum estimate from 1974-76 in the 1998 

NMFS assessment, making it a reasonable starting place. Second, it allows direct 

comparison of these results with those obtained in my demographic analysis for salmon 

sharks in Chapter 2. I examined two fishing scenarios for sandtiger sharks incorporating
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density-dependent compensation. Since all age classes are exposed to fishing mortality 

via bycatch, the main fishing scenario I used for sand tiger sharks included F0.025 at all 

ages. For comparative purposes, I also ran an additional scenario where F0.023 began at 

age five (approximately 180-190 cm TL).

RESULTS

Natural mortality estimates from the six methods used ranged from 0.180 to 

0.097. Minimum and maximum age-specific survivorships ( Px ) are given in Table 5.1. 

The Hoeing (1983) method predicts the average natural mortality for the whole 

population (relative to to). This method provided the highest survivorship values for 

ages zero through 17 in all models. The Peterson and Wroblewski (1984) method, which 

is weight-length based, produced the highest survivorship values for ages 18 through 40 

in all models, and the lowest value (by only 0.001) for age zero. The Pauly (1980) 

method produced the lowest estimates of survivorship for ages two through 40.

The results of initial life-table model simulations (with F = 0) indicate that the 

western North Atlantic sand tiger shark population would be decreasing at a rate of just 

over 1 % per year with a population halving time of 62.4 years (Table 5.2). The 95 % 

confidence values show the variability (from uncertainty) of parameter inputs and 

indicate that under all combinations from the probability distributions of a), a ,  and Px

used in the model, the western North Atlantic sand tiger shark population may still be in 

decline at a rate between 0.09 and 2.1 % per year (Table 5.2). Deterministic estimates of 

V  conducted with the Solver minimization function in Microsoft Excel show that age at
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Table 5.1: Minimum and maximum survivorship estimates for sand tiger sharks used in 

life-table model simulations. Double dashed line indicates where F begins. Density- 

dependent compensation included for all age classes before single dashed line.

Age

F=0 
Survivorship 

Minimum Maximum

F=0.025 @ all ages 
a= 1 .0 l4up  to age 10 
Minimum Maximum

F=0.025 @ ages 5+ 
a = l .0 l4  up to age 10 
Minimum Maximum

0 0.835 0.901 0.826“™™  0.891 0.847 0.908*
I 0.836 0.901 0.827 0.891 0.848 0.908*
2 0.836 0.901 0.827 0.891 0.848 0.908*
3 0.836 0.901 0.827 0.891 0.848 0.908*
4 0.836 0.901 0.827 0.891 0.848 0.908*
5 0.836 0.901 0.827 0.891 0.827 0.891
6 0.836 0.901 0.827 0.891 0.827 0.891
7 0.836 0.901 0.827 0.891 0.827 0.891
8 0.836 0.901 0.827 0.891 0.827 0.891
9 0.836 0.901 0.827 0.891 0.827 0.891
10 0.336 0.901 0.816 0.879 0.816 0.879
11 0.336 0.901 0.816 0.879 0.816 0.879
12 0.836 0.901 0.816 0.879 0.816 0.879
13 0.836 0.901 0.816 0.879 0.816 0.879
14 0.836 0.901 0.816 0.879 0.816 0.879
15 0.836 0.901 0.816 0.879 0.816 0.879
16 0.836 0.901 0.816 0.879 0.816 0.879
17 0.336 0.901 0.816 0.879 0.816 0.879
13 0.836 0.901 0.816 0.879 0.816 0.879
19 0.836 0.902 0.816 0.879 0.816 0.879
20 0.836 0.902 0.816 0.880 0.816 0.880
21 0.836 0.903 0.816 0.881 0.816 0.881
22 0.836 0.903 0.816 0.881 0.816 0.881
23 0.836 0.904 0.816 0.882 0.816 0.882
24 0.836 0.904 0.816 0.882 0.816 0.882
25 0.836 0.905 0.816 0.882 0.816 0.882
26 0.836 0.905 0.816 0.883 0.816 0.883
27 0.836 0.905 0.816 0.883 0.816 0.883
28 0.836 0.906 0.816 0.883 0.816 0.883
29 0.836 0.906 0.816 0.884 0.816 0.884
30 0.836 0.906 0.816 0.884 0.816 0.884
31 0.836 0.906 0.816 0.884 0.816 0.884
32 0.836 0.907 0.816 0.884 0.816 0.884
33 0.836 0.907 0.816 0.884 0.816 0.884
34 0.836 0.907 0.816 0.884 0.816 0.884
35 0.836 0.907 0.816 0.885 0.816 0.885
36 0.836 0.907 0.316 0.885 0.816 0.885
37 0.836 0.907 0.816 0.885 0.816 0.885
38 0.836 0.907 0.816 0.885 0.816 0.885
39 0.836 0.907 0.316 0.885 0.816 0.885
40 0.836 0.908 0.816 0.885 0.816 0.885

•Actual value was 0.913; Increases in sub-adult survivorship was not allowed to
surpass maximum adult survivorship when F  =  0
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Table 5.2: Estimates of demographic parameters and elasticities for sand tiger sharks in 

the western North Atlantic (population growth rates, X and r, generation times, A ; net 

reproductive rate, Rq). Numbers in parentheses are ranges

F  (starts a t age) X r A Ro

0 0.989 (0.979-0.999) -0.0111 ([-0 .0209H -0 .0009]) 17.1 (15.6-17.8) 0.8  (0.7-1.0)*

0.025 (0) 0.973 (0.963-0.983) -0.0276 ([-0.03731-[0.0169]) 16.8 (15.4-17.5) 0.6 (0.5-0.8)

0.025 (5) 0.979 (0.970-0.990) -0.0211 ([-0.0308H O .0100]) 16.6 (152-17 .3 ) 0.7 (0.6-0.9)

Elasticity M ean Life Population

Fertility Juvenile A dult Expectancy doubling dine

53 (53-6.0) 54.9 (53.1-56.7) 39.6 (37.7-41 J ) 7.3 (6.9-7.7) -62.4

5.6 (5.4-6.1) 55.6 (54.0-57.3) 38.8 (36.9-40.6) 6.4 (6.1-6.7) -25.1

5.7 (5.4-6.2) 56.2 (54.6-57.8) 38.1 (36.4-39.8) 6.5 (62-6 .9 ) -32.8

•A ctual value -  0.986
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first reproduction accounted for a greater amount of variation in V’ than maximum age 

(Table 5.3).

The mean reproductive rate of the population was estimated to be 0.8. Mean 

generation time was 17.1 years, and mean life expectancy was estimated to be 7.3 years. 

Summed elasticity values were highest for juvenile survival followed by the adult 

survival and then fertility, indicating that an increase in juvenile mortality would have the 

largest effect on the population growth rate, r (Table 5.2).

The predicted stable age distribution (with co = 40, a  = 10, and F = 0) was 

dominated by the first six age classes (Figure 5.3). The young-of-the-year comprised 

approximately 12.8 % of the population with the next five age classes comprising another 

43.0 % of the population. The predicted stable age distribution indicates that a total of 

74.4 % of the population is comprised of individuals that are younger than the age at first 

reproduction (9 years of age or less). An examination of the stable age distribution when 

Fo.o25 was imposed showed minimal changes. In reality, however, whenever there is 

exploitation, the age distribution is likely to have shifted from stability.

Fishing for sand tiger sharks

The Au and Smith (1997) model predicted that a 1.4 % increase in the 

survivorship of each sub-adult age class would compensate for Fo.ozs (Table 5.4). Results 

from the life-table simulation indicated that the predicted compensation was not 

sufficient to keep ‘r’ from decreasing. Along with the decrease in the population growth 

rate, there was a decrease in generation time, the net reproductive rate and mean life 

expectancy (Table 5.2). The predicted population halving time was shortened to 25.1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



171

Table S3: Influence of maximum age and age at first reproduction on the intrinsic rate 

of population growth for sand tiger sharks in the western North Atlantic.

Age at first reproduction (a )

Maximum age (qj ) 9 10

30 -0.005 -0.013

35 -0.003 -0.011

40 -0.002 -0.010
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Figure 53: Predicted female stable age distribution for sand tiger sharks in the western 

North Atlantic (aj =40 yrs, a  = 10, and F = 0).
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Table 5.4: Sub-adult survivorship compensation values from Monte Carlo simulations of 

the Au and Smith (1997) density-dependent model for estimating the ‘intrinsic rebound 

potential' of fish populations. F = fishing mortality. \a  =net increase in sub-adult 

survivorship, rF = “intrinsic rebound potential” (predicted intrinsic rate of population 

increase in response to F), \a  ratio = predicted proportional difference in sub-adult 

survivorship between different levels of F, a = predicted proportional increase in 

survivorship per sub-adult age class.

jT— I (x f p = I (x ratio «i—

0.00 0.2618 0.00

0.025 0.3010 0.0085 1.150 1.014
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years. Fishing at F0.02S brought about subtle, but predictable, changes in elasticities. The 

importance of juvenile survivorship to the population growth rate increased the most, 

while a smaller increase was seen in fertility elasticity and adult survival elasticity 

decreased slightly (Table 5.2).

Additional Scenario (F0,025 begins at age 5)

This life-table model was run to see if the combination of decreased fishing 

mortality at ages zero through four along with the predicted increase in sub-adult 

survivorship could compensate for a fishing mortality of F0.025. Population statistics did 

not decline by as much as when all ages are fished (which is what would be expected), 

however, the combination of no fishing mortality on ages zero through four and 

compensation (up to age at first maturity) were still not enough to keep the population 

from a greater rate of decline relative to when F = 0 (Table 5.2). Trends in elasticities 

were similar to the previous model (F0.025 for all ages) with juvenile survival elasticity 

increasing in its importance to the population growth rate, adult survival elasticity 

decreasing slightly and fertility elasticity increasing slightly.

DISCUSSION

Sand tiger shark population status

The decline of the western North Atlantic sand tiger shark population over the 

past 20 years has been well documented (Musick et al. 1993, Musick et al. 1998, Musick 

1999, Castro et al. 1999, NMFS 1998, NMFS 1999, Compagno 2001). This has caused 

sand tiger sharks to be placed under legal ‘protected’ status and to be placed on the 

endangered species candidate list (Musick et al. 2000). This species is also currently 

listed as vulnerable by the IUCN in its Red List of Threatened Animals. Musick et al.
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(2000) stated that the population might be stabilizing under the current NMFS fishery 

management plan (FMP), but that no recovery is apparent. The results presented here 

(under the stated conditions used in model simulations) indicate that the western North 

Atlantic sand tiger shark population may be continuing to decline, and that recovery has 

not yet occurred.

Musick (1999) stated that one of the two most vexing problems in assessing 

vulnerability and extinction risk in marine fishes is assessing uncertainty (variability) in 

estimating vital rates and other population parameters. Only one of the previous attempts 

to model sand tiger demography incorporated uncertainty (Cortes 2002), and one 

incorporated fishing mortality, but no uncertainty or density-dependent compensation 

when fishing mortality was imposed (Goldman 1998). Most importantly, all previous 

studies used life history parameters based on Branstetter and Musick (1994), which were 

shown to be inaccurate in Chapter 4 of this dissertation. As such, I incorporated the new 

estimates of life history parameters and uncertainty into vital rate estimates through 

Monte Carlo simulation, and examined one possible mechanism for density-dependent 

compensation when fishing mortality is imposed. As such, the results of the 

demographic models presented herein are probably more representative of the current 

status of the sand tiger shark population in the western North Atlantic and of their 

vulnerability to fishing mortality. However, my model simulation results need to be 

tested with empirically derived data.

Model simulation assumptions and limitations

Monte Carlo simulation was used because this probabilistic approach allows the 

inclusion of a range of values that reflect the uncertainty in estimates of demographic
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traits (maximum age, age at first reproduction, fecundity and age-specific survivorship).

I used distributions for these traits that I thought would reasonably approximate the 

biology of sand tiger sharks.

Sand tiger sharks have been exploited to varying degrees over the past 25 years 

(through bycatch and some directed fishing), which may have violated the assumption of 

a stable age distribution. If exploitation rates have been relatively consistent over the 

years since achieving protected status, however, it is less likely that the assumption of a 

stable age distribution was violated. Nonetheless, the predicted stable age distribution 

provides insight into the general age-specific composition of the population.

Overall, the statistical distributions I used to describe survivorship seemed 

reasonable, although the lower bounds used may be less realistic for larger individuals 

(Table 5.1). I dealt with this by setting the distributions for sharks greater than 1.5 m TL 

as shown in Figure 5.2b, instead of discarding the lowest estimate as was done by Cortes 

(2002). By doing so, I felt I used a slightly more cautious approach. Cortes (2002) 

assigned a higher probability to estimates of natural mortality obtained from the Peterson 

and Wroblewski (1984) method since its results are based on empirical, rather than 

estimated, parameters and generally gave higher values of survivorship. In this study, the 

Peterson and Wroblewski (1984) method provided the highest estimates in all model 

scenarios for sharks above 18 years of age. Assigning estimates of M  from their model 

the highest probability would have lowered vital rate estimates, as values obtained from 

that model were not the highest for the first 18 age classes. (Ages 18 through 40 only 

comprised 8.5 % of the predicted stable age distribution -  Figure 5.3). The manner in 

which my survivorship probability distributions were set for sharks three years of age and
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greater, gave the highest estimated survivorship value twice the probability of occurring 

in model simulations regardless of the method it was calculated from (Figure 5.2b).

Since young animals are likely to have lower survivorship than older animals and are 

potentially the most difficult for which to estimate natural mortality, I felt it was a more 

cautious approach to use uniform distributions for ages zero through two (< 1.5 m TL).

Density-independent models assume invariability in vital rates over time. While 

we know that vital rates do vary over time, it is extremely difficult to collect and continue 

to update the biological information required for most shark species. The life table 

models used herein appear to be “robust” to deviations of the assumptions of traditional 

density-independent population and fisheries models (e.g. invariance of vital rates over 

time) (Cortes 2002).

Elasticities and density-dependent compensation

Elasticity analysis for sharks has shown that population growth rates are generally 

much more sensitive to perturbations of juvenile and adult survival than to the survival of 

age-zero individuals or fecundity (Heppell et al. 1999, Cortes 2002). This is a more 

typical pattern for long-lived animals in general whether marine or terrestrial (Heppell et 

al. 1999, Heppell et al. 2000b, Cortes 2000), and suggests that the protection of age-zero 

animals would be insufficient to aid in the recovery of declining shark populations. 

Therefore, management efforts need to focus on juvenile and adult portions of the 

population to effectively aid in the recovery of elasmobranch species. While in some 

cases examined, juvenile and adult sharks appear to be equally susceptible to increased 

mortality (Cortes 2002). My results for sand tiger sharks indicate that juveniles would be 

the most important group of individuals, followed by adults, for management to focus on
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(Table 5.2). Cortes (2002) produced an elasticity continuum for 38 shark species, which 

corresponds with the well-known ‘r - K’ continuum (Musick 1999). My elasticity 

calculations for sand tiger sharks place them near the lower end of that continuum.

Elasticity analysis provides useful insight into the effects of decreasing the 

survival of one or more ages or stages of a population. However increases in fecundity or 

a change in the age at first reproduction could offset the effect of reduced survival of 

adult ages. The ultimate benefit of elasticity analysis is in its predictive ability - one does 

not have to wait for a population response (or lack of one) to understand the potential 

effects of increased mortality on particular ages or groups of ages in the population. This 

is critical as recovery times of shark populations are likely to be long due to their general 

life-history characteristics.

Heppell et al. (1999) and Cortes (2002) evaluated the potential for density- 

dependent compensation by calculating the ratios of mean adult survival elasticity to 

mean fertility elasticity and of mean juvenile survival elasticity to mean fertility 

elasticity. For example, a ratio of juvenile survival to fertility elasticities of 2.0 indicates 

that a 10 % decrease in juvenile survival would have to be compensated for by a 20 % 

increase in fertility to return to its original V . They deemed that the required 

compensatory response was not possible if its magnitude exceeded the biological limits 

of age zero survival (= 1) or fecundity of a given population. For sand tiger sharks, the 

ratio of mean adult survival elasticity to mean fertility elasticity was 6.98, and the ratio of 

mean juvenile survival elasticity to mean fertility elasticity was 10.2. Both of these 

values vastly exceed the potential for this species.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



180

My inclusion of density-dependent compensation in life-table model simulations 

where fishing mortality was imposed, by using the \a  (net increase in sub-adult 

survivorship) value generated by the Au and Smith (1997) model, provided fairly 

reasonable results. However, the amount of predicted compensation in sub-adult 

survivorship was not enough to keep population growth rates stable when F was imposed, 

and the ‘intrinsic rebound potential’ (rFa0.02s = 0.0085) was not achieved (Table 5.4)1.

This may be a result of using the rebound potential model in this manner, a lack of the 

‘intrinsic rebound potential’ model’s ability to accurately predict the required 

compensation for this species, or due to the biological parameter inputs for sand tiger 

sharks used in my models. Additionally, \a  predictions may have fallen short of 

keeping population statistics stable due to assumptions of that model (e.g. it assumes r =

0 to begin with, and that Z is sustainable). Future investigation of the use of the intrinsic 

rebound potential model in the manner presented here should focus on this aspect. If the 

\a  predictions were representative of the true potential for sub-adult survivorship to

increase, this would mean that sand tiger sharks are even more susceptible to exploitation 

than previously thought. It appears that ‘connecting ’ the life-table models used by 

Cortes (2002) and the intrinsic rebound potential model of Au and Smith (1997) is useful 

and should be applied to other elasmobranch species to better evaluate the performance 

of the method. Initial indications (from this study) are that using \a  in this capacity 

could become a useful tool for future demographic modeling of elasmobranch and other 

long-lived fishes.

1 Distributing \a  in different ways (e.g. giving entire increase in sub-adult survivorship to age zero, or 
ages zero through three) produced nearly identical results.
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Conclusion

Demographic analysis is extremely useful in evaluating potential population 

productivity and changes caused by imposing various conditions of fishing mortality 

(Caughley 1977, Hoeing and Gruber 1990). Continuing advances in modeling techniques 

for estimating vital rates of long-lived fishes are beginning to reveal more insight into 

their population growth rates and productivity.

The use of Monte Carlo simulation does not eliminate the need for further data 

gathering or sensitivity tests (Cortes 2002). Important additional data to gather to 

enhance predictive power of the models and elasticity analysis used herein include better 

information on natural mortality (Af) and longevity. The ability to obtain refined 

estimates of natural mortality (Af), possibly through tag-recapture data, would be useful 

for model simulations. The information required in order to enhance demographic 

modeling of sand tiger sharks will likely be slow in coming as it is difficult to gather, but 

the pursuit of refined data (and models) is a necessity if we are to better model the 

demography of all elasmobranch fishes.

The present demographic analysis provides new information that improves our 

understanding of sand tiger shark population dynamics, and gives fishery managers a 

more accurate idea of the population’s current status and sensitivity to fishing mortality. 

Elasmobranchs tend to have low productivities relative to other marine fishes (Musick 

1999), however there is a relatively wide range among species. My estimates of sand 

tiger shark population statistics are at the lower (slower growing) end of the continuum 

Cortes (2002) generated for vital rates of 38 other shark species, and the general r  -  K 

continuum. My model simulations suggest that the sand tiger shark population may still
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be slowly declining and that it is probably more sensitive to fishing mortality than 

previously thought. In order to test the model, empirical data on the current F on sand 

tiger sharks due to bycatch and catch per unit effort trends is needed. Continuing to 

gather data on sandtiger shark bycatch and further refinement of population parameter 

estimtes are critical for future assessments of their population status.

Aside from reducing sand tiger shark bycatch as much as possible, the focus of 

management needs to be placed on ways to preserve the reproductive capacity of the 

population and allow for the survival of adults in their best-contributing reproductive 

years. Considering the low reproductive rate of sand tiger sharks, this would correspond 

to a relatively large range of ages and sizes. Increasing juvenile survivorship via reduced 

fishing mortality would (obviously) allow more individuals to reach reproductive age, but 

survival of the first several reproductive ages are critical to the recovery of this 

population.
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Chapter 6

A comparison of growth completion rates of endothermic and ectothermic sharks
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In the Introduction Chapter of this dissertation, I put forward a general hypothesis 

regarding the possible effects of endothermy on life history parameters such as growth 

completion rate (£). Elevated body temperature in several lamniform shark species is 

considered to be a highly evolved aspect of their biology that directly relates to their 

functioning as highly active apex predators in cool temperate and boreal environments 

(Block et al. 1993, Block and Finnerty 1994, Naylor et al. 1997, Lowe and Goldman 

2001, Bemal et al. 2001). The physiological ecology of any species is instrumental not 

only in understanding its environmental niche, but in providing clues about species’ life 

history parameters that have evolved over time to their current state. Garland and Carter 

(1994) emphasized the inherent link between physiological ecology and evolution quite 

eloquently by stating:

“Physiological ecology is concerned with the way that physiological traits fit 

organisms for the ecological circumstances in which they live, so there is always, 

by definition, an implicit evolutionary component to i t”

They further stated that:

“The field o f physiological ecology is fundamentally evolutionary to the extent 

that it considers how organisms came to be the way they are and how they might 

change in the fu ture”

The relative rate of growth is a critical component of every species’ life history

strategy (Musick 1999). A comparison of growth completion rates (k) is a standard

method for examining life history strategies and species limitations, and provides insight

184

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



185

into species ecology and vulnerability (Branstetter 1990, Cortes 2000). Considering the 

link between physiological ecology and evolution, the fact that several teleost and 

elasmobranch fishes are endothermic and that many of them are commercially fished, it is 

somewhat surprising that the question of whether endothermic fishes achieve their 

maximum size at a faster rate than ectothermic fishes has not been addressed. A faster 

rate of growth can lead to earlier age at maturity, higher intrinsic rates of increase and 

greater potential for resilience in the face of high exploitation.

Elasmobranch fishes have developed their current life history strategies over the 

past 400 million years. Relative to most other fishes, life history patterns in 

elasmobranchs are generally characterized by slow growth rates, long lifespan, late 

sexual maturity, low fecundity and long gestation times (Musick et al. 2000). Branstetter 

(1990) examined general trends in life history traits of 27 shark species, grouping sharks 

based on growth completion rates, litter size and size at birth relative to adult females. 

Cortes (2000), examined life history patterns and correlations between traits related to 

body size, reproduction, age, and growth in 164 shark species. Both studies showed 

similar trends amongst groups of shark species and placed sharks in similar life history 

categories base on body size, offspring size, k coefficient, longevity and litter size, 

however no separate comparison of these trends between endotherms and ectotherms 

were made.

The goal of this dissertation Chapter was to make the first general qualitative 

comparison of trends in growth completion rates (kr, yr'1) of endothermic and ectothermic 

sharks that achieve similar maximum length and live in similar temperature regimes. I 

examined general trends of several life history traits relative to the female growth
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completion rates of seven ectothermic and seven endothermic shark species (Table 6.1), 

including multiple entries for some species to represent different geographic locations 

(Table 6.2). Growth completion rates were compared to female maximum total length 

(TL), mean pup TL at birth, mean estimates of female longevity, median sea-surface 

temperature (SST) at which species occur, mean gestation time and liner size (Table 6.2). 

(Growth completion rates for sexes combined were used when k values for females were 

unavailable, and are noted accordingly in Table 6.2). Trends in growth completion rates 

were also compared to the percentage of offspring length to maximum female length 

(%BL) in order to factor out the effects of body size (Cortes 2000) (Table 6.2). A variety 

of sources were used to obtain parameter estimates, and are listed in Appendix 3.

Trends in life history traits relative to growth completion rates

Length at birth, maximum length and longevity

Both ectotherms and endotherms showed decreasing trends in maximum TL, 

longevity and length at birth relative to increasing growth completion rates (Figures 6.1, 

6.2 and 6.3). These trends are not surprising as faster growth completion rates are 

generally associated with shorter lifespan and maximum length achieved, and large adults 

tend to produce relatively large pups. The trends I observed do not differ from those 

reported by Branstetter (1990) and Cortes (2000). However, when Cortes (2000) factored 

out the effect of body size (by comparing k with %BL), the relationship became slightly 

positive. This occurred for the endotherms I examined, however the ectotherms 

continued to show a decrease in %BL relative to increasing k (Figure 6.4). The
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Table 6.1: Scientific names, common names and general distribution of ectothermic and 

endothermic shark species examined in comparison of growth completion rates (&).

Ectotherms Common name General distribution

Carcharias taurus Sand tiger shark Temperate to sub-tropical

Carcharhinus falciformes Silky shark Temperate to tropical

Carcharhinus plumbeus Sandbar shark Temperate to tropical

Carcharhinus obscurus Dusky shark Temperate to tropical

Carcharhinus signatus Night shark Warm temperate to tropical

Prionace glauca Blue shark Cool temperate to tropical

Cetorhinus maximus Basking shark Boreal to cool temperate

Endotherms

Lamna ditropis Salmon shark Boreal to cool temperate

Lamna nasus Porbeagle shark Boreal to cool temperate

Isurus oxyrinchus Shortfin mako shark Warm temperate to tropical

Carcharodon carcharias White shark Cool temperate

Alopias vulpinus Common thresher shark Temperate to tropical

Alopias supercilliosus Bigeye thresher shark Temperate to tropical ♦

Alopias pelagicus Pelagic thresher shark Temperate to tropical
♦Can tolerate temperatures as low as 6 °C (Smith et al. in press)
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Table 6.2: Female life history traits used for comparison of ectothermic and endothermic shark species. % BL = 100(mean length at birth/
female maximum length); SST = sea surface temperature. All lengths are cm TL; gestation period is in months.

k (y r ' )
Maximum Mean length Gestation Maximum

Ectotherms length Median SST Longevity at birth % BL period litter size

Carcharhinusfalciformes (NWGM) 0.153* 305 23 22 81.5 26.72 20 15

Carcharhinus falciformes (SGM) 0.091 308 23 22 100 32.47 12 15
Carcharhinusohscurus (WNA) 0.039 371 23 40 100 26.95 12 14

Carcharhinus plumbeus (WNA 1) 0.059 234 23 30 62.5 26.71 10.5 13
Carcharhinus plumbeus (WNA2) 0.086 233 23 30 62.5 26.82 10.5 13
Carcharhinus signal us (WNA) 0.125*t 275 14 70 25.45
Carcharias taurus (WNA) 0.090 318 20 35 100 31.45 10.5 2
Cetorhinus maximus (All) 0.040* 960 20 32 160 16.67 12 6
Prionace glauca (ENP) 0.251 260 12 20 40 15.38 10.5 40
Prionace glauca (WNA) 0.160 327 12 20 40 12.23 10.5 40
Prionace glauca (WNP) 0.160 280 12 20 40 14.29 10.5 40

Endotherms

Alopias pelagicus (WNP) 0.085 375 20 29 170 45.33 12 2
Alopias supercilliosus (WNP) 0.090 422 20 20 100 23.70 12 2
Alopias vulpinus (ENP) 0.124 550 19 25 132 24.00 9 4

Carcharoilon carcharias (ENP) 0.058* 594 15 45 135 22.73 12 9

Carcharodon carcharias (SWA) 0.065* 594 15 45 135 22.73 12 9

Isurus oxyrinchus (ENP) 0.072* 394 19 28 65 16.50 16.5 12

Lamna ditropis (ENP) 0.170 260 10 25 87 33.46 9 5
Lamna ditropis (WNP) 0.140 260 10 25 87 33.46 9 5
Lamna nasus (WNA) 0.061 365 10 45 67.5 18.49 10 5

* k coefficient is for sexes combined, f median value for range given by Branstetter 1990. NWGM = northwestern Gulf of 
Mexico; SGM = southern Gulf of Mexico; WNAI = western North Atlantic 1980-1981; WNA2 = western North Atlantic 

1990-1992; ENP = eastern North Pacific; WNP = western North Pacific; SWA = southwestern Atlantic.
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FIGURE 6.1: Comparison of growth completion rate (k) and maximum total length in 

ectothermic and endothermic sharks.
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FIGURE 6.2: Comparison of growth completion rate (k) and longevity in ectothermic 

and endothermic sharks.
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FIGURE 6.3: Comparison of growth completion rate (k) and mean total length at birth in 

ectothermic and endothermic sharks.
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FIGURE 6.4: Comparison of growth completion rate (k) and percentage of offspring 

length to maximum female length (%BL) in ectothermic and endothermic sharks.
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decreasing trend in %BL relative to the growth completion rates for ectotherms is 

completely dependent on the blue shark data; when removed, the relationship of %BL to 

k became positive.

SST, gestation period and litter size

Decreasing trends in median SST and gestation period were observed relative to 

increasing growth completion rates in both ectotherms and endotherms (Figures 6.5 and 

6.6). It is interesting that faster growth completion rates were accompanied by lower 

SST, however if the blue shark and night shark data were removed, the relationship 

between SST and k in ectotherms became positive, which is probably more likely to be 

the case for temperate and tropical shark species. The interesting result shown in Figure 

6.5 is that for ectotherms and endotherms with similar growth completion rates, 

endotherms typically occurred in cooler water.

Litter size increased with increasing growth completion rates for ectotherms, but 

decreased slightly for endotherms (Figure 6.7). The large increase in the litter size of 

ectotherms is driven by blue shark litter size; the increase became very slight when those 

data were removed. Even so, this comparison shows that endothermic sharks with the 

fastest growth completion rates tend to have smaller litters than ectothermic sharks with 

similar growth completion rates.

Possible effects ofendothermy

The results of Chapters 1 and 4 of this dissertation further furled my long­

standing curiosity regarding the role of endothermy in the life history strategies of lamnid 

(the so-called mackerel) and alopiid (thresher) sharks. Six of the seven life history traits

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



198

FIGURE 6.5: Comparison of growth completion rate (k) and median sea-surface 

temperature where ectothermic and endothermic sharks occur.
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FIGURE 6.6: Comparison of growth completion rate (k) and mean gestation period of 

ectothermic and endothermic sharks.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



M
ea

n 
ge

st
at

io
n 

pe
ri

od

-A— Endotherm 
-O — Ectotherm

00

0.000 0.050 0.100 0.150 0.200 0.250 0.300

k (female; yr*1)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



202

FIGURE 6.7: Comparison of growth completion rate (k) and maximum litter size of 

ectothermic and endothermic sharks.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



M
ax

im
um

 
litt

er 
si

ze

50 :

45
0

40 O % e • « o

35 0 ^0
0 *

30

25 r
Endotherm
Ectotherm

20
0 *••0

15

10

o . 0 * * 0
A . *

o

o

5 I ---------------------- a — ^  A

n
Afl

0.000 0.050 0.100 0.150 0.200 0.250

k (female; yr'1)

n  ---1
0.300

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



204

examined relative to growth completions rates provided no indication that endothermic 

sharks achieve their maximum length at a faster rate than ectothermic sharks. However, 

the comparison of k with median SST at which species occur indicated that for sharks 

possessing similar growth completion rates, the endothermic sharks occurred in cooler 

water temperature regimes. This indicates that endothermy may have played an 

evolutionary role in maintaining growth completion rates as these species moved into 

new niches in temperate and boreal seas as global circulation developed during the past 

60 million years. The development of global ocean circulation changed the world’s 

oceans from a warm water environment into a much more dynamic system with boreal 

and temperate environments which were open to ‘niche partitioning’ (Valentine 1984, 

Block and Finnerty 1994). The Order Lamniformes can be tracked genetically and 

through the fossil record to the mid-Cretaceous period (124-140 million years ago) and 

the families Lamnidae and Alopiidae date back at least 60 million years (Applegate and 

Espinosa-Arrubarrena 1996, Purdy 1996, Shiria 1996, Martin 1996). As such, the timing 

of the development of global circulation may be the driving evolutionary pressure behind 

the development of endothermy in lamnid and alopiid sharks and in maintaining their 

ability to pursue and capture highly active prey in colder temperature regimes.

The trends presented in this Chapter also indicate that for species with growth 

completion rates greater than 0.10 yr'1, endotherms tend to have slightly shorter gestation 

times and produce fewer and larger pups. Endothermy may play a role in the shorter 

gestation periods in cold-water species, particularly for the porbeagle and salmon sharks. 

Porbeagle and salmon sharks possess a kidney rete not found in the other endothermic 

sharks (see Chapter 3). This rete lies directly above the uteri and would provide a
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warmer environment for gestating pups. This has been suggested as a possible 

contribution to the difference between shortfin mako and salmon shark gestation periods 

(Mollet et al. 1999) (see Table 6.2).

The data examined herein are obviously sensitive to minor changes in given 

values for the various life history traits or environmental parameters. As refined growth 

completion rates for several of the ectothermic and endothermic species become 

available, further examination of the role endothermy has played in the evolution of life 

history parameters and overall strategies should be made.
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Appendix 1: Equations for estimating natural mortality (M) used in demographic model.

1) Hoenig (1983);

InM = 1.46-1.01 (Inn;) 

where (o = maximum age

2) Pauly (1980);
log M = -0.0066 - 0.279(log L~) + 0.6543(log k) + 0.4634(log T) 

where L°° is the maximum length, k is the growth coefficient (both from the von 

Bertalanffy growth function) and T is the mean annual water temperature.

3) Chen & Watanabee (1989);

Mt =
1

/

V̂max * J

where t = age, k is the growth coefficient and to is the age (or time) when length is 

theoretically zero (both from the von Bertalanffy growth function).

4) Peterson & Wrobleski (1984);

A/w = 1.92(W°-25)

where W = weight in kg.

5) Jensen k method (1996);

M = l.50(k)

where k is the growth coefficient (from the von Bertalanffy growth function).

6) Jensen age at maturity method (1996);

M - 1.651(a) 

where a  is the age at first reproduction.
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Appendix 2: Converting the net increase in \a  from Au and Smith (1997) into the 

increase in S per sub-adult age class in life history table.

Before fishing (F * 0):

SoSiSl...Sn = \a  (1)

where n = maximum subadult age, \a = the net increase in sub-adult age classes.
This can be re-written as:

m  * '«  ©i=0

After fishing, compensation occurs in the form of increased survivorship of sub-adult age classes, 

resulting in a new cumulative survival of \aF. If the net increase in survival affects all sub-adult 

age classes equally, then:

aSaaSiaSi...aSn = \afr (3)

where a = increase in 5 per sub-adult age class, and n = maximum sub-adult age 

It follows that:

1=0

then:

therefore:

<■**■= lae . (5)
■or

V 'a
(6)
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Appendix 3: Sources for life history parameter estimates used in Chapter 6. Camhi et al. 

1999, Compagno 1984, Cortes 2000 and Compagno 2001 supplemented main sources.

Ectotherms Main source
Carcharhinus falciformes (NWGM) 
Carcharhinusfalciformes (SGM) 
Carcharhinus obscurus (WNA) 
Carcharhinus plumbeus(WNA1) 
Carcharhinus plumbeus(WN A2) 
Carcharhinus signatus(WNA) 
Carcharias taurus (WNA) 
Cetorhinus maximus (All)
Prionace glauca (ENP)
Prionace glauca (WNA)
Prionace glauca (WNP)

Branstetter 1987 
Cortes 2000 

Natanson et al. 1995, Romine in prep. 
Sminkey and Musick 1995 
Sminkey and Musick 1995 

Branstetter 1990 
Goldman 2002 

Pauly 1978, Corte's 2000 
Cailliet et al. 1983 

Skomal and Natanson in press 
Tanaka etal. 1990

Endotherms
Alopias pelagicus (WNP) 
Alopias supercilliosus (WNP) 
Alopias vulpinus (ENP) 
Carcharodon carcharias(ENP) 
Carcharodon carchariasiSWA) 
Isurus oxyrinchus (ENP)
Lamna ditropis (ENP)
Lamna ditropis (WNP)
Lamna nasus (WNA)

Luiet al. 1999 
Luiet al. 1998 

Cailliet et al. 1983 
Cailliet etal. 1985 

Cliff and Wintner 1999 
Cailliet etal. 1983 

Goldman 2002 
Tanaka 1980 

Natanson et al. 2002

NWGM = northwestern Gulf of Mexico; SGM = southern Gulf of Mexico; WNA1 = 

western North Atlantic 1980-1981; WNA2 = western North Atlantic 1990-1992; ENP 

eastern North Pacific; WNP = western North Pacific; SWA = southwestern Atlantic.
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