
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

1994

Causal synchrony in the design of distributed programs Causal synchrony in the design of distributed programs

Sandra L. Peterson
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Peterson, Sandra L., "Causal synchrony in the design of distributed programs" (1994). Dissertations,
Theses, and Masters Projects. Paper 1539623855.
https://dx.doi.org/doi:10.21220/s2-mb5r-q596

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623855&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539623855&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-mb5r-q596
mailto:scholarworks@wm.edu

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality*
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

University Microfilms International
A Bell & Howell Information C om pany

300 North Z e e b Road. Ann Arbor. Ml 48106-1346 USA
313/761-4700 800/521-0600

Order Number 9511089

C au sa l syn ch ron y in th e d esign o f d is tr ib u ted program s

Peterson, Sandra Louise, Ph.D .

The College of William and Mary, 1994

U M I
300 N. Zeeb Rd.
Ann Arbor, MI 48106

CAUSAL SYNCHRONY

IN TH E DESIGN OF DISTRIBUTED PROGRAMS

A Dissertation

Presented to

The Faculty of the Department of Computer Science

The College of William and Mary in Virginia

In Partial Fulfillment

Of the Requirements for the Degree of

Doctor of Philosophy

by

Sandra L. Peterson

1994

APPROVAL SHEET

This dissertation is submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Sandra L. Peterson

Approved, June 1994 / -

John P. Kearns, Thesis Advisor

William L. Bynum

SVpL. H
l K .Stephen K. Park

Paul K. Stockmeyer

Roy L. Pearson

CAUSAL SYNCHRONY IN THE DESIGN OF DISTRIBUTED PROGRAMS

ABSTRACT

The outcome of any computation is determined by the order of the events in the computation and

the state of the component variables of the computation at those events. The level of knowledge

that can be obtained about event order and process state influences protocol design and operation.

In a centralized system, the presence of a physical clock makes it easy to determine event order.

It is a more difficult task in a distributed system because there is normally no global time. Hence,

there is no common time reference to be used for ordering events. As a consequence, distributed

protocols are often designed without explicit reference to event order. Instead they are based on

some approximation of global state. Because global state is also difficult to identify in a distributed

system, the resulting protocols are not as efficient or clear as they could be.

We subscribe to Lamport’s proposition that the re/evant temporal ordering of any two events is

determined by their causal relationship and that knowledge of the causal order can be a powerful

tool in protocol design. M attern’s vector time can be used to identify the causal order, thereby

providing the common frame of reference needed to order events in a distributed computation.

In this dissertation we present a consistent methodology for analysis and design of distributed

protocols that is based on the causal order and vector time. Using it we can specify conditions

which must be met for a protocol to be correct, we can define the axiomatic protocol specifications,

and we can structure reasoning about the correctness of the specified protocol. Employing causality

as a unifying concept clarifies protocol specifications and correctness arguments because it enables

them to be defined purely in terms of local states and local events.

We have successfuUy applied this methodology to the problems of distributed termination de

tection, distributed deadlock detection and resolution, and optimistic recovery. In all cases,

causally synchronous protocols we have presented are efficient and demonstrably correct.

SANDRA L. PETERSON

DEPARTMENT OF COMPUTER SCIENCE

THE COLLEGE OF WILLIAM AND MARY IN VIRGINIA

ADVISER: PHIL KEARNS

C ontents

1 Introduction 2

1.1 Time and Order in Distributed S y stem s ... 2

1.2 Global Time and Clock Synchronization... 4

1.3 Causality and Logical C lo c k s ... 7

1.3.1 Lamport’s Logical T im e .. 8

1.3.2 Vector Time .. 10

1.3.3 Causal Synchrony ... 14

2 Distributed Termination 17

2.1 Asynchronous Systems with Synchronous Com m unication............................ 21

2.2 Fully Synchronous S y s te m s .. 31

2.3 Asynchronous Systems and Asynchronous Communication............................. 34

2.3.1 First-In, First-Out Channel Restrictions . .. 34

2.3.2 Fully Asynchronous Systems ... 40

2.4 Causal Termination Detection Protocol ... 49

2.4.1 Vector Clocks for Synchronous Com m unication.................................. 49

2.4.2 Asynchronous System - Asynchronous Communication..................... 56

3 D istributed Deadlock Detection and Resolution 64

3.1 Deadlock Detection - System Model ... 64

iii

3.1.1 Previous R esearch .. 6 8

3.1.2 Deadlock and C au sa lity .. 80

3.1.3 Synchronous Communication Protocols ... 84

3.1.4 Asynchronous FIFO Communication Protocols.................................... 92

3.1.5 Deadlock R esolution.. 93

4 O ptim istic Recovery 103

4.1 Introduction.. 103

4.2 Previous R e se a rc h .. 104

4.3 Rollback and Causality... 114

4.3.1 Generic Model - Term inology... 116

4.3.2 Historical Causality .. 117

4.3.3 Correctness Specifications and Polling W a v es 125

4.4 Causal Recovery Protocol:Single Wave - Serial F a i lu re 130

4.4.1 Informal D escription.. 130

4.4.2 Formal Specification.. 133

4.4.3 An Example ... 137

4.4.4 C orrectness.. 139

4.4.5 C om m itm ent... 147

4.4.6 Bounding the Size of O r V e c t ... 149

4.5 Real Time and Synchronous R ecovery .. 150

4.5.1 Synchronous Rollback - Two Waves ... 154

4.5.2 Formal Specification.. 159

4.5.3 An Example - Synchronous Recovery... 161

4.5.4 Correctness.. 163

4.6 Causal Recovery Protocol - Two W ave .. 167

4.6.1 Informal Description.. 168

iv

4.6.2 Formal Specification... 172

4.6.3 An Example .. 174

4.6.4 C orrectness.. 177

4.7 Concurrent and Multiple Failures... 183

4.7.1 Formal Specification... 187

4.7.2 C orrectness... 189

Conclusions and Future Research 194

v

List o f Figures

1.1 Concurrent Requests.. 6

1.2 Related R equests.. 7

1.3 Lamport’s Logical C lo c k s ... 9

1.4 Vector C locks.. 11

2.1 Control Wave Events.. 25

2.2 Construction of $ set ... - 36

2.3 Vector Time - Synchronous Communication.. 50

3.1 Data Manager and Transaction Execution... 67

3.2 Transaction-Wait-For G raph ... 68

3.3 Initial Resource Allocation.. 70

3.4 Request for R3 ... 71

3.5 Condensed TWF Graphs .. 71

3.6 Counterexample: Initial A llocation... 72

3.7 Counterexample: Second P h a s e ... 72

3.8 Counterexample:Deadlocked Set .. 73

3.9 Undetected Deadlock... 78

3.10 False D ead lock .. 79

4.1 State Intervals .. 106

vi

4.2 Example - Failure to Recognize Lost Messages.. 110

4.3 Example - Multiple R o llb ac k .. I l l

4.4 Failure and Rollback... 116

4.5 Failed Execution H istory... 119

4.6 Temporal and Causal H is to ry .. 120

4.7 Effect of Rollback on Causal O rd er... 121

4.8 Persistence of Causal Effect of Message Transmission.................................... 123

4.9 Vector Time of Orphan E v e n ts ... 126

4.10 Causal Protocol - Single Wave.. 138

4.11 Causal Protocol - Single Wave.. 139

4.12 Commitment P ro to co l.. 148

4.13 Synchronous Protocol: Example .. 161

4.14 Resulting Consistent S ta te .. 163

4.15 An Exam ple.. 175

4.16 Resulting Consistent S ta te .. 176

4.17 Concurrent Failures ... 185

ABSTRACT

The outcome of any computation is determined by the order of the events in the com
putation and the state of the component variables of the computation at those events. The
level of knowledge that can be obtained about event order and process state influences pro
tocol design and operation. In a centralized system, the presence of a physical clock makes
it easy to determine event order. It is a more difficult task in a distributed system because
there is normally no global time. Hence, there is no common time reference to be used
for ordering events. As a consequence, distributed protocols are often designed without
explicit reference to event order. Instead they are based on some approximation of global
state. Because global state is also difficult to identify in a distributed system, the resulting
protocols are not as efficient or clear as they could be.

We subscribe to Lamport’s proposition that the relevant temporal ordering of any two
events is determined by their causal relationship and that knowledge of the causal order
can be a powerful tool in protocol design. Mattern’s vector time can be used to identify
the causal order, thereby providing the common frame of reference needed to order events
in a distributed computation. In this dissertation we present a consistent methodology for
analysis and design of distributed protocols that is based on the causal order and vector
time. Using it we can specify conditions which must be met for a protocol to be correct,
we can define the axiomatic protocol specifications, and we can structure reasoning about
the correctness of the specified protocol. Employing causality as a unifying concept clarifies
protocol specifications and correctness arguments because it enables them to be defined
purely in terms of local states and local events.

We have successfully applied this methodology to the problems of distributed termina
tion detection, distributed deadlock detection and resolution, and optimistic recovery. In all
cases, the causally synchronous protocols we have presented are efficient and demonstrably
correct.

CAUSAL SYNCHRONY IN THE DESIGN OF DISTRIBUTED PROGRAMS

C hapter 1

Introduction

1.1 Tim e and Order in Distributed System s

A conventional single processor computer system is characterized by a single address space

and by the presence of centralized control over the processes using the system. In addition,

the occurrence of every atomic event in such a system can be ordered relative to each other

on a common time line. Each of these characteristics • common memory, centralized control

and the inherent ordering of events - influences the design of protocols and algorithms in a

single processor system.

A distributed system lacks these characteristics. It is composed of independent pro

cessors operating concurrently, without central control. There is no common memory, and

processes communicate only via message passing. While each process may have its own

local clock, there is no global clock to be used as a common time reference for ordering the

events which occur in the system.

It is the lack of a common time reference and its impact on protocol design that con

cerns us in this dissertation. Temporal ordering is essential to our way of thinking about

computational problems and algorithms for their solution. Assumptions about the relative

order of events are often integral to, and unstated in, protocol specifications and definitions.

2

CHAPTER 1. INTRODUCTION 3

This is the case because time is a basic component of our frame of reference, so basic that

its availability is taken for granted.

A typical example of the prevalence of temporal ordering is the frequent use of first come

first served (FCFS) scheduling algorithms in system design. Serving requests in the order

in which they are made is a simple and fair technique, but it is based on a presumption

that requests can, in fact, be ordered in time. The assumption that events can be ordered

is so basic that it is not even stated as part of the specification.

In a centralized system the temporal ordering comes for free. Because there is no global

clock in a distributed system, the temporal ordering of events is not available automatically.

The inability to order events is a complicating factor requiring significant modification of

centralized protocols so that they will work in a distributed environment. Mutual exclusion

[1 , 2 ,3 ,4] and deadlock detection [5,6, 7 ,8 , 9, 10 , 1 1 , 12] are examples of problems for which

there are straightforward centralized solutions which will not work properly in a distributed

environment. Problems such as termination detection [13,14,15,16,17,18,19,20], election

[21, 22, 23, 24, 25], and agreement [26, 27, 28, 29], which are specific to distributed systems,

also arise, in part, because of the absence of global time. Lack of a central clock is not the

only aspect of distributed systems that is a source of difficulty. The independent nature

of the processes and lack of common memory play a part as well. However, the ability to

establish some sort of temporal ordering of events is a necessary part of the solution to any

of these problems.

Mutual exclusion is an example of a problem which is relatively easy to solve in a

centralized system. The mutual exclusion paradigm requires that a process, when granted

mutual exclusion, has exclusive access to some resource. Normally this exclusive right is

granted in the same order that requests for the resource are made, i.e., in FCFS order. In a

centralized system the operating system grants the requests, and a simple queue guarantees

the appropriate ordering.

In a distributed system the solution is complicated by two factors. One, there may be

CHAPTER 1. INTRODUCTION 4

no controlling process to grant mutual exclusion requests, and two, without global time, it

is difficult to identify which request is “first”. Creating a semblance of central control by

endowing one process with the power to enforce mutual exclusion is not in itself adequate to

solve this problem. Some way of establishing the temporal ordor of requests is also required.

The lack of global time necessitates that distributed protocols indirectly establish the

temporal ordering needed to solve a probh m like FCFS mutual exclusion. The indirect

approach usually complicates the protocols by increasing the amount of communication

between processes. Protocols for distributed mutual exclusion provide a clear example of

this. Those protocols which provide first-come, first-served mutual exclusion [1, 2] generally

require 0 (N) messages per service, where N is the number of processes in the system.

Protocols which grant mutual exclusion in an unspecified order [3, 4] require as little as

0(y / N) messages. The extra messages are a direct result of needing to broadcast a request

to all processes to establish order between requests. Availability of global time would

simplify distributed protocols by allowing protocols to be designed as if temporal ordering

were directly given in a manner analogous to centralized systems, thus eliminating the

messages needed to establish it indirectly.

1.2 Global Tim e and Clock Synchronization

The beneficial aspect of having a global clock in a distributed system has been acknowl

edged for some time. To this end, numerous protocols ([30, 31], for example) have been

proposed for synchronizing clocks and providing an approximate global time. These proto

cols generally rely on periodic communication between all the processes to determine the

amount of drift which has occurred in each process’ clock. Based on these determinations,

a correction factor is calculated for each clock to counteract the drift and to keep each clock

synchronized with all the clocks in the system.

The difficulties with this approach are three-fold. First, in most clock synchronization

CHAPTER 1. INTRODUCTION 5

protocols each execution of the algorithm requires 0 (N2) messages, where N is the number

of processes participating in the protocol. Second, most of these protocols require that

message transmission time be bounded by some identifiable constant. While this may be

a reasonable requirement in a system attached to a local area network, it is not a general

solution applicable to geographically dispersed processors. Finally, none of these algorithms

provide absolute accuracy. This may not matter for some protocols; however, any protocol

which uses one of these synchronization algorithms as a method for establishing global time

must be designed with these inaccuracies in mind.

Clock synchronization seems best suited to a small group of processors connected to

a local area network and to applications which are not affected by small errors in the

global time approximation. As a general solution for distributed systems these protocols

are unrealistic and computationally expensive.

An appropriate use of synchronized clocks is to enable processors to act in concert at

a specified time or after a predetermined interval. Synchronized clocks can also be used to

identify the ordering of events. For example, physical clocks can be used to solve the ordering

problem in a distributed protocol for mutual exclusion. Each process could timestamp its

request, and these timestamps could be used to order the granting of the requests.

The presence of timestamps does not totally solve the distributed mutual exclusion

problem. There is no entity with a global view of the system which can observe all the

request times simultaneously for the purpose of granting requests in the appropriate order.

This part of the problem can be solved in a variety of ways. One process can act as a

central server to which all requests are sent. Because of message transmission delay, the

server would either have to communicate with processes to assure that they had no requests

in transit, or it could age the request some time period large enough to assure that any

earlier request had time to arrive. A distributed algorithm which uses physical timestamps

would require that each process broadcast its timestamped request to all the other processes.

The appropriate ordering would then be determined locally at each process.

CHAPTER 1. INTRODUCTION 6

A mutual exclusion protocol based on physical timestamps would guarantee that if T(r)

is the physical time of request r, and if rj and r 2 are two requests for which T (ri) < T (r2),

then ri would be honored before r 2. This is a logical requirement in a centralized system. In

a distributed system it may be a more stringent requirement than necessary. In a distributed

system it is possible for T (ri) < T (r2), yet it is not possible for r 2 to affect r2. In the time

and space diagram [2] shown in Figure 1.1, there are two processes, po and pt- Request ri

occurs in po, and r 2 occurs in pi. There is no communication between po and pj, so ri can

have no impact on r 2. While they are ordered in physical time, r\ and r2 are considered

“causally” concurrent, and their temporal ordering is irrelevant from a computational point

of view. The requests could be granted in either order and the outcome would be correct.

A A

n o

r2 11

Po P i

Figure 1.1: Concurrent Requests

Now consider Figure 1.2. In this example po makes request and follows it with a

message to pi. p\ then proceeds to make its own request, r 2. In this case it is possible for

the events that occurred in po up until the transmission of the message to have an effect on

P i - Therefore, it makes sense to say that r\ causally precedes r 2, and the requests should

CHAPTER 1. INTRODUCTION 7

Po P i

Figure 1.2: Related Requests

be granted in that order.

1.3 Causality and Logical Clocks

In a distributed system there is a logical ordering of events induced by causality. The

relevant order of events is really determined by whether one event can potentially affect

another one. Physical time does not fully convey this aspect of distributed event temporal

ordering. The timestamps of two events can be used to show that one event can’t affect

another; hence if T'(ei) < T(e2), e2 can not affect ej. Physical timestamps can’t be used to

show that one event can affect another; T{e{) may be less than T(e2), but in fact the events

may have no causal relationship to each other. For the problem of mutual exclusion there

is no need to distinguish between concurrent events and ones that are causally related. It

is sufficient to require that the smallest timestamp is served first.

CHAPTER 1. INTRODUCTION 8

1 .3 .1 L am port’s Logical T im e

An alternative to physical, synchronized clocks is a system of logical clocks such as those

developed by Lamport [2]. He formalized the notion of causality to which we alluded above.

Lamport recognized the value of having some consistent definition of time in a distributed

system, so that it would make sense to talk about the relative order of events. He also

realized that, while global time is not available in asynchronous systems, an identifiable

temporal ordering does exist between two events in the same process and between events in

processes which communicate; this ordering is based on potential causality. Using causality

as a basis, it becomes unnecessary to totally order all the events which occur. Some process

events happen concurrently and can have no effect upon one another. The only events

which need to be ordered are those which can influence each other. Based on this observation

Lamport defined the “happens before” relation -*• which formally defines the causal ordering

relevant in a distributed system.

This relation is defined as the smallest relation such that:

1. If event ei and ei are in the same process, and ej occurs before e2 , then e\ —► e<i\

2. If an event e\ is the sending of a message in process pi, and e2 is the receipt of this

message in process pi, then e\ —► e25

3. If ei -* e2 , and e2 —*• e$, then e\ -*■ e$.

A pair of events is concurrent, signified by ei || e2 , if they are not ordered under —

Therefore, ei || e2 if and only if (ei ■/* ei) A (e2 ■/* ei). This is consistent with the notion

that concurrent events are those events which can have no effect on each other.

Lamport defines a logical clock function, C, based on a counter maintained by each

process. The function assigns times to events that are consistent with this causal ordering.

If C(ei) and C(e2) are the logical times assigned to events ei and e2 , and ej — e2 , then

C(e 1) < C(e2). The rules for maintaining such clocks axe straightforward. Each process,

CHAPTER 1. INTRODUCTION 9

i 1
\ A

(4) *

(3)
f

%

PO P i P2

Figure 1.3: Lamport’s Logical Clocks

P i , maintains a counter C,. Ci is incremented each time an event occurs in p,-. The logical

time associated with an event e is denoted by Cj(e) and equals the value of pi's counter at

the time e takes place. If ei is a send in p,-, and e2 is the corresponding receive in Pj, Cj(ei)

is sent along with the message. Cj(e2) is set so that it is greater than C;(ei) and greater

than or equal to the value of Cj when e2 occurred.

An example of the operation of Lamport’s logical clocks is shown in Figure 1.3. The

letters indicate the various send and receive events. The numbers in parentheses are the

associated clock values. In this example a —► b, and C(a) < C(b). Note also that a —> e (by

the transitivity of —►); therefore, C(a) < C(e).

Lamport uses his logical clocks to design a protocol for FCFS mutual exclusion. We

will restate it briefly here to illustrate how logical clocks can be used as a substitute for

physical time. In Lamport’s algorithm each process maintains a queue of timestamped

requests that it has received, including any request that it has made itself. When a process

makes a request, it broadcasts a timestamped request message to every other process. Any

CHAPTER 1. INTRODUCTION 10

process receiving a request sends a timestamped acknowledgment to the requesting process.

A process is granted mutual exclusion when its request is the lowest timestamp in its queue,

and it has received a higher timestamped message from every other process. When a process

releases the resource, it notifies every process so that the satisfied request can be removed

from the process queues.

This protocol guarantees that if ri —► r-i, then t\ will be granted first. A protocol based

on synchronized clocks could be easily developed by substituting physical time for logical

time in Lamport’s algorithm. In the case of this protocol, logical time and physical time

provide the same capability for ordering requests.

Lamport’s clocks and physical clocks have a similar deficiency; the clock values can

only be used to determine that two events could not have occurred in a certain order;

C(ei) < C(e2) implies that C2 could not have happened before ei. Based on the clock

values it is not possible to state the converse, that e\ happened before e2 . Lamport clock

values can not be used to distinguish between e.\ —► e2 and ei || e2. As we pointed out when

talking about physical clocks, not being able to make this determination does not matter for

the mutual exclusion problem, but it is a deficiency that the clocks do not totally correspond

to the partial order.

1.3 .2 V ector T im e

Mattern [32] and, concurrently, Fidge [33] implement logical clocks using vectors of counters

with the object of creating clock values which capture the complete partial order of events

in a distributed system. The extra information preserved in the vector clocks allows the

ordering of events to be deduced from the relative timestamp values in a way that Lamport’s

clocks do not.

Suppose that a distributed program consists of the set of processes {po,Pi,- • • >Pw-i}-

Each process, p,-, has a vector clock V/, ,0 < j < N - 1. V;(e) indicates the clock value of

an event e which has occurred in p,-. The ith component of the vector is incremented before

CHAPTER 1. INTRODUCTION 11

[1,0,2][2.1.0]
[1.0,1]

[2,0,0]

[1.0.0]

Po P i P2

Figure 1.4: Vector Clocks

each event in process p*, and the current timestamp vector is sent along with each message

to update the receiving process’ clock. More formally, the rules for maintaining the vector

clocks are as follows:

1. When event e occurs in p,, V- = V> + 1. The clock value of e is V;(e).

2. If ei is a send in p,, and ei a receive in pj, then the clock value of e2 is updated to

reflect the clock value of e\ so that Vj(e2) is assigned sup(Vj,Vi), where sup(Vi, Vj) =

m axiy* , Vj1), for 0 < A: < N — 1.

Figure 1.4 shows how the vector time would be calculated for the sample computation

shown in Figure 1.3. The value of Vj* is always equal to the number of events that have

occurred in pi- The value of V/, where j £ i, indicates the most current information that

P i has about p j’s activity. This information may be outdated. However, from p,-’s point of

view as obtained from messages sent to pi, it is the most up-to-date and causally relevant

information available.

CHAPTER 1. INTRODUCTION 12

Mattern defines the following relationships between vectors for any two clock values Vi

and Vj.

1. Vi < Vj ilTVfc : V? < V f

2. Vi < Vj iff Vi < Vj and Vi jt Vj

3. Vi || Vj iff (Vi ^ Vj) A (Vj ^ Vi)

Using these relationships, Mattern shows how vector timestamps can be used to deter

mine the causal order between any pair of events e\ and e2:

1. ei ->• e2 iff Vj(ei) < V2(e2)

2. ex || e2 iff ^ (d) || V2(e2)

By allowing us to distinguish between ex —> e2 and ex || e2, vector clocks supply extra infor

mation about the system. The question is whether this information is useful in developing

distributed solutions to computational problems.

An example of how vector time can be exploited in protocol design is the vector time

variant of the algorithm for providing first-come first-served centralized service proposed

by Kearns and Koodalattapuram [34]. The protocol they present has a centralized server

grant exclusive resource access to requesting processes, in the causal order in which the

requests are made. This is a variation of FCFS mutual exclusion as it applies to managing a

centralized resource. Their protocol differs from the centralized mutual exclusion algorithm

we briefly described earlier in that it can determine when to serve a request based solely on

the timestamp of the request and information stored locally in the server. It is not necessary

either to age the requests or to communicate with any processes to determine whether they

have earlier outstanding requests.

In this algorithm vector time is updated on each request for service. When p; makes a

request, V? is set to V> + 1 . This vector timestamp is appended to the requesting message

CHAPTER 1. INTRODUCTION 13

sent to the server. Any process which communicates with another process also appends its

timestamp to the message it sends. A process, pj, which receives a message from pj updates

its own timestamp so that Vj = sup(Vi, Vj). The server also maintains a vector Vc. V* is

set to the value of V> from the vector attached to the last request message from pi to be

processed at the server.

W ith this information the server can tell whether it has received a message out of order

by comparing Vc to the vector attached to the incoming request. If V* > V j for any j ^ i,

then the request from p, is early; it has reached the server before a service request which

causally precedes it. The server knows to place these early messages “on hold” until the

causally earlier requests arrive. If V f < V j for all j ^ i, then the server can be sure that

there are no outstanding requests which causally precede the request from pi. This request

can be served immediately.

The server can make this decision because the contents of Vj capture the state, as far

as outstanding requests are concerned, of all the processes which communicated with p,

before pi made its request. Since these outstanding requests are the only ones that can

causally affect p,-, the server knows that pj’s request can be safely granted once they have

been served. Since the server has this information locally in Vc, it can immediately decide

whether it should serve pi’s request.

This algorithm is very interesting in that it illustrates an aspect of vector time which

makes it more powerful than either physical time or Lamport’s logical time. The protocol

shows that vector timestamps transmit information about the process which creates the

timestamp, and in this case, that information was enough to eliminate the need to commu

nicate with processes about their state. Neither physical clocks, or Lamport’s logical clocks

provide this information.

CHAPTER 1. INTRODUCTION 14

1 .3 .3 C ausal Synchrony

As the examples of FCFS service and mutual exclusion illustrate, the ability to determine

event order is invaluable in the design of distributed protocols. Given that global state does

not exist in a distributed system in the same sense it does in a centralized system, event

order provides a common frame of reference on which to base protocol behavior.

In a synchronous system, the temporal order of events can be identified through the use

of synchronized real time clocks. Knowledge of the temporal order has been shown to be

a powerful tool for simplifying protocol design [35, 36], however, synchronized clocks are

difficult and expensive to implement. In an asynchronous system, the temporal order can not

be determined. However, the causal order of events can be identified and utilized through

the mechanism of vector time. In this way, vector clocks can provide an illusion of synchrony

in an asynchronous system—a kind of pseudo-synchrony which is based on causality. For

many distributed protocols we believe this pseudo-synchrony, or causal synchrony as we

prefer to call it, is an adequate substitute for true synchrony.

Vector clocks and causal order are not an appropriate substitute for synchronized clocks

and temporal order in every case. For example, a protocol which requires the performance

of some action at a specific real time can not directly substitute a vector clock time for a

real clock time. Some distributed problems only require the determination of relative event

order for their solution. In these cases the similarities between the causal order and the

temporal order are great enough that vector clocks can be a practical substitute for real

clocks.

The algorithm for FCFS centralized service, discussed earlier, shows how knowledge of

the causal order is sufficient to structure an effective protocol. Other protocols using vector

clocks and causal order have appeared in the literature. Mattern proposes using them to

obtain global snapshots. Both Fidge and Mattern advocate their use in distributed debug

ging. Ahamad, et.al [37] used vector clocks to implement a weakly consistent distributed

CHAPTER 1. INTRODUCTION 15

shared memory.

In this dissertation we develop causally synchronous distributed protocols for termina

tion detection, deadlock detection and resolution, and optimistic recovery. In each case we

begin with a solution which presumes that synchronized clocks are available. As expected,

the resulting protocol is relatively simple and efficient. Using the synchronous protocol as

a model, we design a corresponding causally synchronous protocol that uses vector clocks

instead of synchronized clocks. While substitution is not exact, the structure of the syn

chronous and causally synchronous protocols is very similar. More importantly, using the

synchronous model as a pattern consistently leads to more efficient protocols for these prob

lems than previously published solutions.

In Chapter 2 we present several causally synchronous solutions to distributed termina

tion detection. This is a well known problem with several published solutions. Most of

these solutions rely on indirect methods for establishing the necessary temporal ordering.

However, a protocol proposed by Rana [16] uses synchronized clocks. This presented us

with the opportunity to show how a protocol which utilizes global time could be readily

implemented using vector time as a substitute for real time. We found that reasoning about

the existing termination detection protocols in a causal way was extremely productive, both

for developing a consistent taxonomy for the extant solutions and for developing our own

vector time protocols.

In Chapter 3 we discuss the problem of resource deadlock detection and resolution,

and we present a causally synchronous protocol for its solution. Detecting and resolving

deadlock in a distributed system is a difficult problem that has been extensively researched

with unsatisfactory results. The use of vector time enabled us to design a straightforward

and demonstrably correct protocol to detect and resolve distributed deadlock.

Chapter 4 is devoted to optimistic recovery. Optimistic recovery is a technique for

providing fault tolerance to a distributed system. The problem of recovery is a difficult

one because of the impact of failure and the resulting loss of state on the causal order and

CHAPTER 1. INTRODUCTION 16

the consistency of vector clocks. Once again, considering the problem in a synchronous

environment provided a suitable model into which vector clocks could be substituted to

provide a solution in an asynchronous environment.

In the final chapter, Chapter 5, we present our conclusions, summarize our findings, and

discuss future areas of research.

C hapter 2

D istributed Term ination

One of the problems unique to distributed systems is determining that a distributed com

putation has terminated. The concept of termination of a sequential program on a single

processor is well defined. Detecting termination in this case can be accomplished based

solely on the program’s state information. What it means for a distributed program to be

terminated is not as easily defined. One approach is to model a distributed program as

many sequential programs operating on autonomous processors. Based on this model, a

termination requirement which comes immediately to mind is that the local state of each

process in the program be in accordance with some completion criteria at some time instant.

However, in a distributed system there is normally no availability of global time, so such a

definition is nonsensical. Further complicating matters is that in some computations a local

process can not tell, based on its local state, whether it is terminated, or just temporarily

idle. Whether or not a process is permanently idle may depend on the state of another

process or set of processes. As a result of this interdependence it is not enough to define

termination based on the state information of an individual process in the system. The

state of every process must be evaluated to determine if termination has occurred. For

this reason termination is viewed as a characteristic of the global state of the system and is

usually defined in terms of the global state.

17

CHAPTER 2. DISTRIBUTED TERMINATION 18

Francez [13] was one of the first to formally describe the distributed termination problem.

The global state of a distributed computation is defined in terms of a global predicate

B m, such that a computation is terminated when B ' is satisfied. He presumes that the

computation can be structured so that for each process, p,-, there is defined a local predicate,

bi, such that 6,- true for all i implies B*.

Testing the local predicates can then be used to determine the global state of termina

tion. The method used for testing must be designed carefully. Simply checking each process

to see if the local predicate holds will not work because the truth of a local predicate may

be altered by the actions of another process. The fact that process pj has satisfied its

local predicate bj does not necessarily mean that pj is terminated. It is possible for other

processes which are still active to negate bj by sending pj a message. For this reason it is

necessary to test the local predicates in such a way as to assure that they are all satisfied

simultaneously. This is a significant weakness in the definition. Without a concept of global

time this is a theoretical requirement that cannot be verified in a real system.

Dijkstra, et al. [15] also attack the problem of distributed termination. Rather than

defining this problem in terms of predicates on the local process states, they make no

assumptions about an individual process’ ability to tell whether it has met a specific termi

nation requirement. Instead their definition only requires that a process determine whether

it is active or idle. An idle process cannot become active spontaneously. Once idle it re

mains so until it receives a message from an active process. Only active processes can send

messages. Given these conditions, termination in a distributed system is said to have oc

curred when all processes are idle, and there are no messages in transit. Note there is also

an implied time frame in this definition. Not only must all processes be idle, the implication

is that they must all be idle at the same time.

Because it is more general, Dijkstra’s characterization of the termination detection prob

lem subsumed the concept of local predicate to become the standard paradigm used in

development of subsequent termination detection algorithms.

CHAPTER 2. DISTRIBUTED TERMINATION 19

Both of these definitions of the termination of distributed computation imply that knowl

edge of the global state of the system is needed to detect termination. No single process

has access to this information, so it becomes necessary to superimpose a detecting compu

tation onto the basic program which will insure that some process will gain the requisite

knowledge about global state. It is relatively easy to gather information about the local

state of each process. The difficult part of such a detecting computation is to verify that

every process is idle a t the same time when an accurate global clock is not available. To

be correct, such a detection algorithm should conclude a program is terminated if and only

if the underlying computation is terminated. The superimposed algorithm should interfere

as little as possible with the underlying computation, and it should conclude termination

within a reasonable time period after termination has occurred.

Appropriate solutions to the termination detection problem depend upon the specifics

of the system environment. The distributed environment is usually asynchronous. In an

asynchronous system, no effort is made to synchronize local process clocks to other clocks in

the system. As a result, global time is not defined. A termination detection protocol meant

for an asynchronous system must accommodate this lack of global time. An alternative

system environment is one which is synchronous. In such a system, a global notion of

time is available to each process. This is accomplished by imposing some type of clock

synchronization protocol on the system. The complexity of detecting termination is reduced

somewhat in a system where such synchronized clocks are available.

The semantics of message passing also impact the solution technique which is appro

priate for detecting termination. A common system specification for existing termination

detection protocols assumes asynchronous operation of the processors, but it requires that

all communication is synchronous. Such a system is termed asynchronous with synchronous

communication. Hoare [38] developed this communication paradigm in which a commu

nicating process blocks until the corresponding sending or receiving process is ready to

communicate. Synchronous communication is usually implemented by having a sending

CHAPTER 2. DISTRIBUTED TERMINATION 20

process block until it receives acknowledgment from the receiving process. As a result, a

process cannot proceed until it knows that the message has been received. A receiving

process must also block until it receives a message. Imposing the restriction of synchronous

communication on the system also reduces the complexity of the termination detection

algorithm.

It is also possible to specify a system environment that is synchronous and supports

synchronous communication. This system type will be referred to as fully synchronous. A

synchronous system in which communication is not synchronous will be termed synchronous

system with asynchronous communications. Neither of these system types are commonly

used as a basis for design of termination detection algorithms. This is probably the case

because of the expensive and unrealistic requirement of synchronized clocks.

Another system type which is used in outlining termination detection algorithms is a

collection of asynchronous process which also communicate asynchronously. No process has

access to global time, and after sending a message, a process continues with its activity

without waiting for an acknowledgment. An important restriction is generally placed on

communication between any two processes. This restriction is that messages are transmitted

in a well ordered manner so that any two messages sent on a single channel between a set

of two processes must be received in the same order in which they are sent. Such a system

is termed asynchronous with First-In First-Out channels.

The most general system environment is one in which the processes are asynchronous

and the only restriction placed on message transmission is that any message sent is received

a finite length of time. We will designate such a system as asynchronous with asynchronous

communication.

In the following sections, we will organize our discussion of existing algorithms according

to the type of system for which they are applicable. In each of these algorithms, messages

which result from the detecting computation are considered separate from those in the

underlying computation. An idle process which receives or sends a detecting computation

CHAPTER 2. DISTRIBUTED TERMINATION 21

message is not considered active. Only basic communication, messages resulting from the

underlying computation, can activate a process.

2.1 Asynchronous System s w ith Synchronous Communica

tion

In this environment the standard paradigm is to repeatedly poll the processes in the system

until every process reports that it has been continuously idle since the last poll. We will

discuss two of the existing algorithms in detail to illustrate how this paradigm is applied.

Francez and Rodeh [14] propose an algorithm which uses a spanning tree as the orga

nizational structure of communication for the detecting computation. The spanning tree is

constructed from existing communication links in the system. The root of this tree is the

process which detects termination. The leaves of the tree are responsible for initiating the

detecting computation.

When a leaf becomes idle, it propagates a control message to its parent. The parent,

upon receiving a control message from each leaf, and upon becoming idle itself, propagates

the control message to its parent. This process is repeated for each subtree. A subtree root

propagates the control message to parent when it has collected control messages from all

of its children and is itself idle. In this way a control wave spreads up through the tree as

nodes become idle, until it reaches the root of the spanning tree.

The control wave reaching the root is not sufficient to declare termination. Every process

is idle when polled, but the processes are not polled simultaneously. It is possible for a

process which has not yet been polled to send an activating message to a process which

has already been passed by the control wave. This kind of activity must be detected or

termination will be falsely declared. To detect this activity each process sets a flag to true

if it participates in any communication unrelated to the detection algorithm. The control

messages propagated by the processes also have a true or false value. When any process

CHAPTER 2. DISTRIBUTED TERMINATION 22

propagates the control wave it sets the value of the control message to that of its flag and

resets its flag to false. If a node has been active since the last wave the status of the flag will

be true. By including this status in the subsequent wave message, this information will be

carried to the root. A wave which collects at least one true flag is considered unsuccessful.

An unsuccessful wave causes the root to echo a restart control wave outward to the leaves.

The detecting wave is restarted by the leaves when they receive the restart control wave.

A control wave which reaches the root without collecting any of these true flags is

considered a successful wave. Receipt of a successful wave at the root implies that every

process has been continuously idle since the last wave. In this environment every process

being continuously idle between two waves implies termination. This is the case because

all communication in this algorithm is synchronous. This guarantees that any activating

message sent during one wave will be received before the next wave; i.e., a message cannot

cross two waves. We will show later that this is absolutely necessary for the correct operation

of the protocol.

Dijkstra[15] derives a similar solution using a circulating token to generate the detection

control wave. In this algorithm the polling structure imposed on the processes is a virtual

ring, with a specified node acting as both the initiator of the detection wave and as the

process which determines whether termination has occurred. In a system of N logical

processes, the processes are numbered from po to p/v-i- A token circulates in the ring such

that po sends the token to p n - \ and p,+i sends the token to p,- for 0 < i < N - 2. When

the initiating node, p o , becomes idle it generates a token and sends it to the next process

in the virtual ring. Any process receiving the token propagates it in turn when it enters an

idle state. The control wave is considered complete when the token returns to po-

As in the Francez and Rodeh algorithm, it is not sufficient that the token returns to

the initiator having left each process in an idle state. It is also necessary that all processes

remained idle after they had been polled. Because the processes are not polled simultane

ously, it is possible for processes ahead of the control wave to generate activity behind the

CHAPTER 2. DISTRIBUTED TERMINATION 23

control wave thus violating this requirement.

To detect this activity a process engaging in basic communication is flagged by coloring

itself black. The token, when propagated by a black process, is also colored black. The

propagation of the token colors the process white as it passes. A black token returning to po

indicates that the control wave has failed, and a new wave is started by coloring the token

white and sending it to pjv-i* A wave is successful when a white token returns to po.

There are striking similarities between the algorithms proposed in [14] and [15]. A

process coloring itself black in [15] corresponds to a process setting its flag to true in [14].

Coloring the token black when it passes a black process serves the same purpose as changing

the status of the control message to true. Finally, resetting the process color to white with

the passage of the token corresponds to resetting the process flag to false when the control

message is propagated. The primary difference in the two techniques is the method used to

poll the processes.

At least two other algorithms have been proposed to detect termination in an asyn

chronous system which uses synchronous (or “instantaneous”) message transmission, [17,

18]. The operation of these protocols is similar to those we have already discussed. In fact,

the basic concept behind all of these algorithms is the same. Every process is polled to

determine whether it is idle. Because it is impossible to simultaneously poll every process,

it is possible for a process which is yet to be polled to activate a process which has already

been polled. This is detected by marking the sender of a message so that it will be known

that there was a message in transit during the poll. The recipient is also marked so that

its activation will be noticed. Any activity detected by a poll will result in another polling

wave. Termination is detected when a wave completes showing no communication activity

since the last wave.

Each of these algorithms is dependent on synchronous message passing to work correctly.

The synchronous nature of the communication guarantees that any activating messages sent

before a wave arrives will be received, and noticed, before the next wave arrives. Without

CHAPTER 2. DISTRIBUTED TERMINATION 24

this guarantee these algorithms would be incorrect.

To more formally describe this general method in causal terms, we need to define some

terminology and use it to restate the definition of termination so that it is applicable to

this protocol type.

• II = {poiPii • • • ,P/v-i} is the set of processes in the distributed computation.

• e- is a generic event in pi.

• s represents a send event of the underlying computation.

• r)(s) represent a receive event corresponding to a transmission s.

• <r(s) is the process where send event s occurs.

• p(s) is the receiving process for a send event s.

• C j (i) signifies the event of the i t h control message arriving at p j .

• w j (i) represents the process event which occurs when p j responds to control message

C j (i) .

• PW (i) is the ith polling wave. PW{i) = C(i) U W (i),

where C(i) = {co(i),ci(t'),...,cjv-i(i)} , and W (i) = {w0{i),w2(i)...wN-i(i)}.

• i-+ e" iff there does not exist e"' such that e' —* e"' —* e".

• iej(k) signifies the event of pj going idle for the kth time.

• IdleQ is a function from events to {True, False}.

Relating this terminology to Dijkstra’s protocol, the event c j (i) corresponds to the token

arriving at p j for the i t h time. The action of the token leaving p j for the i t k time is signified

by W j (i) . The i t h complete circuit of the token corresponds to the polling wave PW (i).

CHAPTER 2. DISTRIBUTED TERMINATION 25

w0 (»+ 2)

co(* + 2)

Po P i P2
token communication

basic communication

Figure 2.1: Control Wave Events

CHAPTER 2. DISTRIBUTED TERMINATION 26

We also define a predicate IdleQ on events which corresponds to the state of a process

at an event(independent of the termination detection protocol). The function Idle(e') =

False if e' is a send or receive event. For any other event e1 on pj, Idle(e') - False iff

(there does not exist 77(a) such that p(s) = pjArj(s) -* e'), and (there does not exist iej(k)

such that 77(a) —► tej(k) -* e')- Figure 2.1 shows an example of the control wave and idle

events.

Given this predicate on events, we can specify that termination of a computation com

posed of processes pj E II has occurred at the completion of a polling wave P W (i) when

the following conditions hold:

T erm in a tio n C onditions - T

T (a) Idle(wj(i)) for all wj(i) E PW (i); and

T (b) For all receive events 77(a) in the computation there exists wp(3)(t) 6 PW (i) such that
77(a) U7p(s)(i).

For a termination detection algorithm of this type to be correct, any wave completed

during execution of the protocol for which the above conditions do not hold should be

considered invalid, or failed. A successful, or final wave, PW (F), would be one for which

those conditions are true.

In each of the polling protocols we have discussed a process is marked if it becomes

active. This mark is erased by the departure of the control message. We define the function

PstatQ to correspond to the marking of a process. Pstat() is a function defined on the set

of c events. The value of Pstat(cj(i)) is false if pj has been active since the occurrence of

Cj(i — 1). Pstat(cj(i)) is true otherwise.

The following rules define the standard paradigm for detecting termination in an asyn

chronous system using synchronous communication. The information contained in the con

trol message of polling wave PW(i) is signified by tk(i).

CHAPTER 2. DISTRIBUTED TERMINATION 27

Asynchronous System w ith Synchronous Communication - Generic Protocol

G .l -iPstat(cj(i)) iff

i = 1 V

(i > 1) A 3 7 7 (3) such that u>„(4)(t - 1) -+ 77(3) — cp(4)(i) V

(i > 1) A 3s such that uv(4)(i — 1) —*■ s —►

G .2 The occurrence of W j (i) implies

I d l e (c j (i)) A C j (i) 1—>■ w j (i) V

- 1 I d l e (c j (i)) A C j (i) — *• i e j (k) i-*- Wj(i) A

if C j (i) -* e'j —> i e j (k) then e'- is a send or receive.

G .3 ->Pstat(cj(i)) implies tk(i) = active.

G .4 A polling wave, PW (i) is valid iff co(t) has occurred, and tk(i) = idle.

G .5 Event wo(i + 1) occurs iff

co(i) occurs A

tk(i) = active A

tk(i + 1) = idle.

Now we need to show that this standard algorithm satisfies Termination Conditions

T(a) and T(b); that is, a valid wave of this protocol guarantees that T holds. T(a) requires

that Idle(wj(i)) for all wj(i) £ PW(i). Based on the specifications for the occurrence of

Wj(i) given in Rule G.2, it is easily shown that this condition is met in every polling wave,

including the valid final wave.

CHAPTER 2. DISTRIBUTED TERMINATION 28

Lemma 1 For any wfii) event as it is specified in the Asynchronous System and Syn

chronous Communication - Generic Protocol, Idle(wfii)).

Proof: Assume that there exists w f i i) such that -iI d l e (w f i i)) . If this were the case, then

there exists g(s) such that p(s) = pj, and 77(a) —► w f i i) . In addition there would not exist an

idle event i e f i k) such that r)(s) ->■ i e j (k) -* W j (i) . This directly contradicts Rule G.2 which

requires that there be a i e f i k) such that i e f i k) >-*• w f i i) . - > I d l e (w f i i)) also contradicts Rule

G.2. If I d l e (c f i i)) then there exists i e f i k) , such that i e f i k) —<• c f i i) without an intervening

receive or send, and C j (i) —*• w f i i) without an intervening event. Hence, i e f i k) —► w f i i) ,

and there is no 77(a) such that i e f i k) —► f i s) -+ w f i i) . I

To determine whether T(b) holds, we need to show that if polling wave PW (i) is valid

in this protocol then there is no receive event j7(a) in the underlying computation such that

wfii) —* t7(a) for any wfii) G PW(i). First, we define an inter-wave interval set IW (i) , for

i > 1. A send event s G IW (i) iff wa(,fii - 1) —► s -* w ^ f i i) . Similarly, a receive event

T)(s) G IW (i) iff wp(,fii - 1) -*• T}(s) — wp̂ fii). I

Lemma 2 I f a polling wave PW (i) is valid, then there are no send or receive events that

are elements of IW (i) .

Proof: Assume polling wave PW(i) is valid. Rule G.4 requires that if P W (i) is valid then

co(t) has occurred, and tk(i) = idle. If co(i) has occurred then every process has been polled

during the ith wave. Therefore, by Ride G.3, Pstat(cj(i)) at cfii) for all Cj(i) G PW (i). Rule

G .l requires that -iPstat(cj(i)) if there exists a send s such that cr(s) = pj and wfii - 1) -*

s -* cfii), or a receive rj(s) such that p(s) = pj and wfii - 1) —*■ ifis) -* cfii). So any

communication which occurs after wfii - 1) and before cfii), for any pj G II, will invalidate

FW (t), contradicting our original assumption. Pstat(cfii)) also implies that Idle(cfii)).

By Rule G.2, if Idle(cfii)) then there is no event e'- such that Cj(i) —► e'- —*• wj(i). Therefore,

there can be no communication events which occur after wfii) and before Wj(i). I

CHAPTER 2. DISTRIBUTED TERMINATION 29

The requirement of synchronous communication has a significant impact on the causal

relationships between events. In a system with asynchronous message passing, a send

“happens before” its receipt, so that s -*■ 17(3). This is not the case when communication is

synchronous; the action of sending a message and receiving a message in this regime may be

viewed as one event that links two processes temporarily. Associating different names with

the send and receive is a notational convenience. Both names signify the same event, and

for this reason it no longer makes sense to say that the send “happens before” the receive.

By temporarily linking two processes, synchronous communication creates stronger

causal relationships between events in the communicating processes than asynchronous

message passing. Transitivity of the -* relation is used to establish a causal relationship

between any event that precedes an asynchronous send in one process and the events which

follow the corresponding receive. Asynchronous communication does not create a causal

relationship between events in the receiving process which precede the receive and events in

the sending process which follow the send. However, when communication is synchronous

a causal relationship is established between events which happen before the receive in the

receiving process and events which causally follow the send in the sending process. In other

words, transitivity holds “in both directions” when synchronous communication occurs.

The effects of synchronous communication on causality are summarized below.

Rules for Causality under Synchronous Communication

• 3 /► 77(3), and r)(s) s.

• For any event e\ such that e- —*■ 77(3), it is true that e[—<• s.

• For any event e- such that s —► e-, and event e' such that e' —► 77(3), it is true that

CHAPTER 2. DISTRIBUTED TERMINATION 30

These characteristics of synchronous communication provide the leverage needed to

make the protocols described in this section function correctly. They also establish the

causal relationships needed to complete the proof that the protocol meets the required

termination conditions. Lemma 3 shows how this generic protocol and those in [14, 18, 15,

17] require synchronous communication for their correct operation.

Lemma 3 I f polling wave, PW (i), as specified in the Generic Protocol is valid then Ter

mination Condition T(b) is satisfied.

Proof: Assume PW (i) is successful yet there exists a receive tj(s) such that p(s) = pj, and

Wj(i) —► r](s). Because Wk(i — 1) -*• for all Wk(i- 1) G PW (i — 1), W k (i - l) —*• r)(s) for

all iufc(t — 1) € P W (i — 1). Synchronous communication requires that if Wk{i — 1) —*• r){s)

then Wk(i - 1) —► s, for all Wk(i - 1) 6 P W (i - 1). By Lemma 2 the send s may not be in

IW (i) , so if We(3)(i - 1) -*■ a then wa^ (i) -*• s. However, by Lemma 1, for all pk G n, pk

is idle at wjt(i), and by definition, an idle process may not send a message. I

Theorem 1 The completion of a valid wave in the Generic Protocol satisfies Termination

Conditions T(a) and T(b).

Proof: Follows directly from Lemmas 1 and 3. I

The following lemma shows that the protocol will detect termination if it has occurred.

Lemma 4 I f termination conditions T (a) andT(b) hold then there exists i such that PW (i)

of the Generic Protocol is a valid wave.

Proof: By Rule G.5, successive polling waves will be instigated until a valid wave occurs.

Therefore, given that T(a) holds, there will be a polling wave PW (k) for which Idle(cj(k))

will hold for all pj 6 II. Upon completion of PW(k), the value of tk(k) may be idle or active

depending on the activity of the process before the polling events of PW (k). If tk(k) = idle

CHAPTER 2. DISTRIBUTED TERMINATION 31

then, by Rule G.4, PW (k) is a valid wave, and by Rule G.5, the termination detection

protocol terminates. If tk(k) = active then, by Rule G.5, wo(k + 1) will occur, and tk(k + 1)

will be set to idle. Since the underlying computation is terminated, Idle(cj(k + 1)) will hold

for all pj G II. Termination condition T(6) holds for PW (k), therefore, Pstat(cj(&+l))(Rule

G .l) for all pj G II. By Rule G.3, tk(k + 1) will not be changed during the wave, and upon

the occurrence of co(k + 1) the valid wave P W (k + 1) will have completed. I

2.2 Fully Synchronous System s

Rana [16] proposes an algorithm that is suitable for a system environment which supports

synchronous communications and synchronized clocks. The protocol requires that a global

time value can be associated with any event that occurs at a process. This capability is

used to verify that all processes are idle simultaneously.

As in Dijkstra’s termination detection algorithm, Rana uses a token circulating in a

virtual ring to generate a control wave. Rana’s algorithm differs in that more than one

process may originate a control wave. In this protocol any process, upon going idle, records

the time at which it went idle and generates a token with its identification number and time

the process went idle. An active process receiving the incoming token discards it. Similarly,

an idle process with a “went idle” time greater than the timestamp in the incoming token

also discards the token. A process only propagates an incoming token if it is idle and

the timestamp of the token exceeds the process’ latest idle time. A token returning to its

originator indicates termination.

In this algorithm several tokens may be active concurrently, and more than one control

wave may be identified. However, only one token will return to its originator, and only one

control wave will be completed. For this reason we modify the notation we developed in

the previous section as necessary.

• C j (i , n) signifies the arrival of the nth token generated by p,- at process p j .

CHAPTER 2. DISTRIBUTED TERMINATION 32

• W j (i , n) represents the event of the n th token generated by p, leaving p j .

• W (i ,n) will signify the polling wave created by the nth token from process p*.

• tk(i ,n) signifies the nth token generated by p,- and tk(i,n).ts is the timestamp in that

token.

• T(e) is a function which returns the physical time of an event’s occurrence.

Note that the i in w j (i , n), or C j (i , n), no longer indicates that this is a control event

of the i tlx wave, rather it signifies that process * originated the wave. Also note that more

than one token from a process may exist in the system concurrently. For this reason it

is necessary to associate a token index number with the token, the wave events and each

polling wave.

Fully Synchronous System Protocol - Rana

R .l W j (i , m), j occurs iff

Idle(cj(i, m)) A

T(iej(k)) < tk(i, m).ts A

^iej(n) such that iej(k) -*■ iej(n) -* C j (i , m) A

C j (i , m) t-+ W j (i , to).

R .2 W j (j , to) occurs iff 3iej(k) such that iej(k) •-+ tv j (j , to).

R .3 The occurrence of wj(j,m) implies tk.(j,m).ts = T(iej(k)),where iej(k) Wj(j,m).

R .4 A polling wave, P W (j ,m) is valid when Cj(j,m) occurs for some pj E II.

CHAPTER 2. DISTRIBUTED TERMINATION 33

Lemma 5 For any Wj (i , m) event as it is specified in Rana’s Protocol, Idle(wj(i,m)) =

True.

Proof: Rule R.l requires that Idle(wj(i,m)) be true. In the case of the generation of a

token at wfij, m), clearly Rule R.2 guarantees that Idle(wj(j, m)) is true as well. I

The following rules summarize the relationship between real time, causality, and syn

chronous communication:

Rules for Causality and Time in a Fully Synchronous System

• For any events e- and e'-, if e\ —*• e'- then T(eJ) < T (e ').

• For send and receive events s and ij (s) , T (s) = T (tj(s)) .

These properties make the proof that Rana’s protocol satisfies Termination Condition

T(b) straightforward.

Lemma 6 I f polling wave, PW(i, n), as specified in Rana’s Protocol is valid then Termi

nation Condition T(b) is satisfied.

Proof: If T(b) does not hold then there exists rj(s) such that wp̂ (i , n) —* r)(s). There are

two possible cases, either wp̂ (i , n) —*■ s -» w ^ (i , n), or w ^ 3)(i, n) -* s. By Lemma 5,

?„(*) is idle at wa^ (i , n) , so it is not possible that wp(3)(i,n) —► s. If s —► w „ ^(i ,n)

then s — ie^,)(k) -*■ u>„(*)(», n) for some idle event je<T(s)(fc), and T(s) < T (ie ^ s)(k)) <

T(wa{a)(i,n)). Because communication is synchronous, T (tj(s)) < T(iea^ (k)) as well.

P W (i, n) is a valid wave, so by Rule R .l, tk(i,n).ts > T(iea^,)(k)) for any iea^ (k) —•

w„(4)(*,n). Therefore, tk(i, n).ts > T(ri(s)),T(wpM(i,n)) > tk(i,n).ts, a,ad T(w p̂ 3)(i,n)) >

T (t](s)). This implies rj(s) —*• wp̂ (i , n), thus contradicting our original assumptions. I

CHAPTER 2. DISTRIBUTED TERMINATION 34

T heo rem 2 The completion of a valid wave in Rana’s protocol satisfies Termination Con

ditions T(a) and T(b).

Proof: Follows directly from Lemmas 5 and 6 . I

L em m a 7 I f termination conditions T(a) andT(b) hold then there exists i such that PW (i)

of Rana’s Protocol is a valid wave.

P roof: By Rule R.2, a control wave is instigated by every idle event. There will necessar

ily be a latest idle event. Let iefik) be the latest idle event. By Rule R.3, tk (j ,m).ts =

T(iej(k)). Since iefik) is the latest idle event, tk(j ,m).ts > T(ie\(m) for all / ^ j . There

fore, by Rule R .l, wi(j , k) will occur for every p; G II,/ ^ j , and cfij, k) will occur completing

a valid wave. I

2.3 Asynchronous System s and Asynchronous Communica

tion

2 .3 .1 F irst-In , F irst-O u t C hannel R estr ic tion s

Synchronous systems and synchronous message passing are fairly expensive and unrealistic

restrictions. Misra proposes two algorithms which relax these assumptions [20]. Asyn

chronous communication is assumed, however message ordering in the channels (FIFO

channels) is required.

An extremely simple protocol is suitable when the processes are arranged in a ring. In

this case the control wave takes the form of a token or marker which traverses the ring

painting idle processes white. A process colors itself black if it becomes active. If the token

arrives at a white process it knows that the process has been continuously idle since the

last visit. Termination can be declared if N processes in a row are found to be white by

the token. The ring topology and the use of a token satisfies our second condition for

CHAPTER 2. DISTRIBUTED TERMINATION 35

termination. FIFO channels guarantee that any message sent before a wave will arrive at

its destination before the wave does.

The situation is more complicated for arbitrary networks. In the protocol applicable to

the more general case, the marker must traverse all the communication links to flush out

any message in transit. Such a traversal can be accomplished by preprocessing the network

to determine an appropriate cycle that includes every edge, or by instituting a depth first

search to cover all links.

In this protocol every process is initially black. An arbitrary node initiates the procedure

when it becomes idle by painting itself white, setting a counter to one, and sending the token

out on an outgoing edge of the cycle. A process which receives the token passes it on when

it becomes idle. If that process is white it increments the counter in the token by one. If it

is black it resets the counter to 0 before propagating it and paints itself white. Processes

turn black when they receive a message. Termination is declared when M white processes

have been visited in a row, where M is the number of edges in the cycle.

The system in which this protocol operates is complicated by the lack of synchronous

communication, but the requirement of FIFO channels allows the protocol to behave in a

way similar to the synchronous communication algorithms . To show this we will restate

Misra’s algorithm using the terminology we developed earlier. First we must define the

token behavior.

Let the system be composed of N processors and M communication channels. The

system must be preprocessed to determine a cycle of edges which, when followed by the

token, will insure that each channel is traversed at least once. Each of these edges can be

uniquely defined as a triple; (outgoing process, channel, incoming process). The outgoing

process signifies the process the token is leaving. The incoming process is the token’s

destination. Let $ be an ordered set whose elements are in one-to-one correspondence

to the triples representing the edges of the cycle. Let PT be the cardinality of this set,

and $ = {patho,pathi,.. .,pathpr~ i }, where pathi is the ith link in the token’s specified

CHAPTER 2. DISTRIBUTED TERMINATION 36

traversal.

Define the following functions:

1. F(pi,Channelm,p j) = pathk where F() defines the correspondence between the edge

triple in the traversal graph and the appropriate element of $.

2. Pred(pathk) = p, where p; is the outgoing process.

3. Succ{pathk) = Pj where pj is the incoming process.

Po CH(

P2

$ = { (P o , C H 0 , P 3) ,

(P3,C #1,P4),
(p4,C ^ 3 ,P l) ,
(Pi ,CJ74,P3),
(P3,CH2,P2),
(P2,CHe,p\),
(pi,CHs,po),
(P0,CH7,P2)}

Figure 2.2: Construction of $ set

Figure 2.2 illustrates how the $ set is constructed for a sample system. In this example

path0 = (po,CH0,p3), pathi = (pz,CHi,Pi), etc. Pred(path0) = po and Succ(patho) = p3.

Pred(pathi) = p3 and Succ(pathi) = p4. The outgoing process of two different paths may

be the same. For example, Pred(patho) = Pred^pathj) = po. The incoming process of

CHAPTER 2. DISTRIBUTED TERMINATION 37

different paths may also be the same. Consequently, a token may traverse a process more

than once.

The wave events must be redefined to correspond to the token’s behavior. Let C j (i)

signify the event of a control message of the iih polling wave arriving at a process on pathj.

The event of a control message leaving a process on the i i h wave on pathj will be indicated

by W j (i) . A polling wave P W (i) is composed of C(i) = {co(i), c i(i) ,.. .,cp r_ i(i)} and

W (i) = {w0 (t), u>i(0. • • •, w pr-i(t)}-

In Misra’s algorithm, as in Rana’s, it is possible for any process to be the initiator of the

final wave. At first glance it appears that the protocol is composed of numerous abortive

waves and one complete and final wave. In actuality the principle of operation is the same

as those proposed by Dijkstra and Francez: the processes are repeatedly polled until they

are found to be continuously idle. Allowing any process to recognize termination simply

eliminates the inefficiency of returning the markers or other control messages to a specific

process. For this reason, and for ease of exposition, we will assume that process po is the

initiator of the final wave. Given this assumption we can define an inter-wave interval set

and show that this algorithm satisfies termination conditions in a manner analogous to our

previous proofs.

Asynchronous System with FIFO Communications Protocol - M isra

M I.l -iPstat(cj(i)) iff

t = 1 V
‘ (i > 1) A

3q(s) such that p(s) = p* A
Succ(pathj) = Pred(pathj+i) = p* A

t U>i + 1 (j - 1) - 7] { s) - C j (i)

(i > 1) A
3s such that cr(s) = pt A
Succ(pathj) = Pred(pathj+i) = p* A

. wj+i(* — 1) —► s —► Cj(t).

CHAPTER 2. DISTRIBUTED TERMINATION 38

M I.2 The occurrence of W j (i) implies

Idle(Cj- i(i)) A

c > - i (») ^ «>,•(*) A V
Succ(pathj-i) = Pred(pathj) = pk

-ildle(cj-\(i)) A
Succ(pathj-i) = Pred{pathj) = pk A

Cj_!(t) -*■ t'em(fc) U7j(t) A

Cj_j(i) —♦ eji. —*• iem(k) implies ej. is a send or receive.

M I.3 ->Pstat(cj(i)) implies tk(i) = active.

M I.4 A polling wave, PW (i) is valid iff c0(i) has occurred, and tk(i) = idle.

M I.5 Event wq(i + 1) occurs iff
co(t) occurs A
tk(i) = active A
tk(i + 1) = idle.

The inter-wave interval set for this protocol is defined as follows. A send event s G

IW*{i) if cr(s) = pk, Pred(pathj) = pk, and W j(i-l) -*• s -*■ W j (i) , for some W j (i) G PW (i).

A receive event r](s) G ifp(s) = pk, P r e d (w j (i)) = pjt, and W j (i - l) -* t) (s) —* W j (i) .

Lemma 8 I f a polling wave PW (i) is valid, then there are no send or receive events that

are elements of IW(i)*

Proof: Assume polling wave PW(i) is valid. Rule MI.4 requires that if PW (i) is valid

then co(i) has occurred, and tk(i) = idle. If co(i) has occurred then every path in $

has been polled during the ith wave. Therefore, by Rules MI.3 and MI.4, Pstat(cj(i))

at cj(i) for all Cj(i) g PW(i). By Rule MI.1 of the protocol, any send s such that

o(s) = pj,Succ(pathk-i) = Pred(pathk) = Pj, and u?*(i - 1) —► s —► c*_i(i) would cause

-iPstat(ck-i(i)). The same would be true of a receive. Therefore any communication oc

curring between Wk(i - 1) and C k - i (i) would invalidate PW (i), contradicting our original

assumption. Pstat(ck(i)) implies that Idle(cj(i)). By Rule MI.2 if Idle(cj(i)) is true then

there does not exist event e' such that c*_i(i) —* e\ —* Wk(i). Therefore, there can be no

communication events which occur after Wk{i - 1) and before injt(i). I

CHAPTER 2. DISTRIBUTED TERMINATION 39

Note there is very little difference between Lemmas 2 and 8 or their proofs. Lemma 8

will be used to show that this protocol satisfies termination condition T(b), as Lemma 2

was used for the generic protocol. First we show that Misra’s protocol satisfies termination

condition T(a).

L em m a 9 For any wj(i) event as it is specified in the Misra Protocol , Idle(wj(i)).

Proof: Assume that there exists ivfii) such that -iIdle(wj(i)). If this were the case, then

there exists f i s) such that p(s) = pm, i](s) —► wfii), and Pred(pathj) = pm. In addition

there would not exist an idle event iem(k) such that tj(s) —*■ iem(k) —*• wj(i). This directly

contradicts Rule MI.2 which requires that there exists iem(k) such that iem(k) -*• Wj(i), and

there does not exist e'- such that iem(k) -*■ e'- -*• wfii). ->Idle(wfii)) also contradicts Rule

MI.2. If Idle(cj-i(i)) as specified in Ride MI.2, then there exists iem(k) such that iem(k) —+

Cj-i(i) without an intervening receive, and —*• wfii) without an intervening event.

Hence iem(k) —* wfii) and there does not exist r}(s) such that iem(k) —► 77(s) —*• wfii). I

L em m a 10 I f polling wave, PW(i), as specified in Misra Protocol is valid then Termina

tion Condition T(b) is satisfied.

P roof: Assume PW (i) is valid yet there exists a receive f i s) that violates T(b), so that

p(s) = pj, Pred(pathk) = pj, and wfii) -+ f is) . Let f is) be the earliest such receive. By

Lemma 8 the corresponding send must have originated before the wave, so that s —* wfii)

for some wfii) G PW(i). Let cr(s) = pk, and the path corresponding to the channel on

which s is sent and the process pk, be pathm. By Lemma 8 , s & IW(i)~, so s -* wfii — 1)

for all W j(i-l) E PW (i) such that Pred(pathj) = pk• In particular, s -*• inm(i - l) . Because

communication is FIFO, f is) —► cm(i - 1). We also know that cm(i - 1) —<■ wm+fii - 1), and

iom+i(i — 1) —*■ wfii) for all wfii) G PW(i). Hence, 77(a) -*■ wfii) for all wfii) E PW (i).

This contradicts our initial assumption that wfii) —* f is) for some wfii) G PW (i). I

CHAPTER 2. DISTRIBUTED TERMINATION 40

T h eo rem 3 The completion of a valid wave in the Misra Protocol satisfies Termination

Conditions T(a) and T(b).

Proof: Follows directly from Lemmas 9 and 10. I

L em m a 11 / / termination conditions T(a) and T(b) hold then there exists i such that

PW (i) of the Misra Protocol is a valid wave.

P roof: By Rule MI.5 successive polling waves will be instigated until a valid wave occurs.

Therefore, given that T(a) holds, there will be a polling wave PW (k) for which Idle(cj(k))

will hold for all cfik) G PW (k). Upon completion of PW (k), the value of tk(k) may

be idle or active depending on the activity of the process before the polling events of

PW (k). If tk(k) = idle then, by Rule MI.4, PW (k) is a valid wave, and by Rule MI.5, the

termination detection protocol terminates. If tk(k) = active then, by Rule MI.5, wo(k+ 1)

will occur, and tfe(fc +1) will be set to idle. Since the underlying computation is terminated,

Idle(cj(k + 1)) will hold for all C j (k + 1) G PW (k + 1). Termination condition T(b) holds

for PW (k), therefore, Pstat(cj(k + l))(Rule MI.l) for all cfik + 1) G P W (k + 1). By Rule

MI.3 tk(k + 1) will not be changed during the wave, and upon the occurrence of Co(k + 1)

the valid wave P W (k + 1) will have completed. I

2 .3 .2 F u lly A synchronous S ystem s

In an asynchronous system with totally asynchronous message transmission in which FIFO

ordering is not enforced, it is difficult to assert that all messages sent will be received

before a successful control wave. In the previous algorithms we have discussed we have seen

how synchronous communication guaranteed that a message sent before one control wave

would be received before the next wave. In Misra’s algorithms FIFO channels were used

to guarantee that the control wave arrived after the receipt of any message sent before the

control wave. In an asynchronous system with true asynchronous communication there is no

CHAPTER 2. DISTRIBUTED TERMINATION 41

similar mechanism. The only existing algorithms applicable to such systems are suggested

by Mattern[19]. These algorithms verify termination by counting the number of messages

sent and received by all processes.

The first of these algorithms, which he calls the Four Counter Algorithm, operates by

propagating a control wave through the processes in a manner similar to those protocols we

have already discussed. Instead of querying the process to determine if it has been active,

the purpose of the control wave is to poll each process for the number of messages it has sent

and received. These values are accumulated in a token as tk(i).IN i and tk(i).OUT\. After

completion of the first control wave, a second wave is initiated which performs the same

function and accumulates messages received and sent into tk(i).IN 2 and tk(i).0UT2. The

second wave is considered successful if tk(i).IN i = tk(i).OUT\ = tk{i).IN 2 — tk{i).0UT2-

If the values do not balance then termination has not occurred. In this case tk (i).IN i is set

equal to tk (i).IN 2 , tk(i).OUT\ is set to tk(i).0UT2, and a new control wave is initiated to

obtain new values for tfc(i)./Ar2 and tk(i).0UT2. To define this algorithm in the terminology

we have used thus far, we need to add variables used for accumulating message counts. For

all p j £ II, i i i j and o u t j accumulate the number of messages received and sent by a process

Pj-

F ully A synchronous System - M a tte rn ’s Four C o u n te r P ro toco l

M A C .l A send s such that a (s) = p j , sets o u t j — o u t j + 1.

M A C .2 A receive rj(s) such that p (s) = p j , sets i r i j — i n j + 1 .

M A C .3 The occurrence of W j (i) implies

I d l e (c j (i)) A C j (i) >-♦ W j (i) V

- i l d l e (c j (i)) A C j (i) — * i e j (k) >-+ W j (i) A

C j (i) —► e'j —► i e j (k) implies e'j is a send or receive.

CHAPTER 2. DISTRIBUTED TERMINATION 42

M A C .4 The occurrence of Wj(i), t > 2 implies

tk (i).IN 2 = tk(i).IN 2 + irij A

tk(i).0UT2 = tk(i).0UT2 + outj.

M A C .5 The occurrence of Wj(i), i = 1 implies

tk (i).IN i = tk(i).IN i + inj A

tk{i).OUT\ = tk(i).OUTi + outj.

M A C .6 A polling wave, PW (i) is valid iff

co(i) has occurred A

tk(i).IN t = tk{i).OUTi = tk(i).IN 2 = tk(i).OUT2 A

i > 1.

M A C .7 Event wq(i + 1) occurs iff

M A C .8 Initialization:

co(i) occurs A

P W (i) is not valid A

tk(i + 1).IN i = tk (i).IN 2 A

tk(i + l).OUTi = tk{i).OUT2 A

tk{i + 1).OUT2 = tk(i + 1).IN 2 = 0 .

tifc(0)./fVi = tk{Q).OUTi = 0,

tAr(0)./A2 = tk(0).OUT2 = 0,

inj = outj = 0 for all pj 6 II.

CHAPTER 2. DISTRIBUTED TERMINATION 43

Prior to showing that this algorithm satisfies our termination conditions we will prove

the following lemma. Note that it is essentially a restatement of Lemma 2 as it applies to

this protocol.

Lem ma 12 I f a polling wave PW (i) is valid in the M attem’s Four Counter Protocol, then

there is no send or receive in IW (i).

Proof: Assume a polling wave, PW (i) is valid. Let a be a send such that <r(s) = pj, and

s € IW (i) . According to the definition of IW (i), this implies that W j (i - 1) —► s -* W j (i) .

By Rules MAC.l and MAC.4, the value of outj at W j (i) must exceed the value of outj

at W j (i - 1) by at least one, so tk(i).0UT2 > tk(i).OUT\ + 1 at W j (i) , and at any tujt(i)

such that W j (i) —*• W k (i) . This contradicts our assumption that P W (i) is valid. A similar

argument can be made in the case that a receive is assumed to be in IW {i). I

Lemma 13 For any Wj(i) event as it is specified in M attem ’s Four Counter Protocol ,

Idle{wj{i)).

Proof: Assume that there exists W j (i) such that - \ I d l e { w j { i)) . If this were the case, then

there exists 77(a) such that p (s) = p j , and t? (s) —*■ W j (i) . In addition there would not

exist an idle event i e j (k) such that i f i s) — *• i e j (k) —*■ W j (i) . This directly contradicts Rule

MAC.3 which requires that there be a i e j (k) such that i e j (k) t-* W j (i) . - H d l e (w j (i)) also

contradicts Rule MAC.3. If I d l e (c j (i)) then there exists i e j (k) , such that i e j (k) —*• C j (i)

without an intervening receive or send, and C j (i) —*• W j (i) without an intervening event.

Hence, i e j (k) — <■ W j (i) , and there is no r j (s) such that i e j (k) —► r) (s) —* W j { i) . I

Lemma 14 I f polling wave, PW {i), as specified in M attem’s Four Counter Protocol is

valid then Termination Condition T(b) is satisfied.

Proof: Assume that polling wave P W (i) is valid, and there exists r}(s) such that p(s) = pj,

and W j (i) —* g(s). Let s be the corresponding send and cr(s) = p*. Also let t](s) be

CHAPTER 2. DISTRIBUTED TERMINATION 44

the earliest such receive. By Lemma 13, a —► in*(»). By Lemma 12, a 0 IW (i) , hence

a —*• wk(i — 1). If this is true, tk{i).OUT\ and tk(i).0UT2 include a count for a, but

tk (i).IN i and tk (i).IN 2 do not include a count for the corresponding receive. However,

by assumption tk(i).0UT2 = tk(i).OUT\ = tk(i).IN 2 = tk(i).IN i. This can only occur

if there exists a* and t j (s *) such that er(s) = p g , and p(a*) = p m for p g , p m G II, and

t](a*) —<■ wm(i — 1), and wg(i) -* a*. Because wm(i - 1) -*• Wj(i) for all Wj(i) G P W (i), we

have the following contradiction: t?(s*) —*• wm(i - 1) -*■ Wk(i) -* s* -> J?(a*). I

Theorem 4 The completion of a valid wave in the Mattem’s Four Counter Protocol satis

fies Termination Conditions T(a) and T(b).

Proof: Follows directly from Lemmas 13 and 14 I

Lemma 15 I f termination conditions T(a) and T(b) hold then there exists i such that

P W (i) in M attem’s Four Counter Protocol z'a a valid wave.

Proof: If termination condition T(b) holds then the number of messages sent will equal

the number of messages received. Therefore, by Rules MAC.l and MAC.2, *nj —

E j lo 1 outj■ Rules MAC.4, MAC.5, MAC.7, and MAC.8 insure that at the completion of

a polling wave tk (i).IN 2 = ^ f s ^ i n j , and tk(i).OUT2 = outj, where inj and outj

indicate the values of these variables when the polling events occurred. Successive polling

waves will be instigated until a valid polling wave occurs (Rule MAC.7). Therefore, even

tually a polling wave, PW (i), will occur such that tk(i).IN 2 = ITjlo1 *'ni = tk{i).0UT2 =

E fJo outj. It is possible that tk(i).IN 2 = tk(i).IN i = tk(i).0UT2 = tk(i).OUTi. If so

then PW (t) is a valid wave, and termination is detected. If not then Rules MAC .6 and

MAC.7 specify the instigation of P W (i + 1). Rule MAC.7 requires that tk(i + 1).IN i =

tk (i) .IN 2 , and tk(i + 1).0UT\ - tk(i).0UT2. Termination conditions T(a) and T(b) hold

for PW (i). Therefore, the message counts accumulated in outj and inj will not change,

CHAPTER 2. DISTRIBUTED TERMINATION 45

and tk(i + l) .IN i = tk(i + 1) .IN i = tk(i + l).OUTi = tk(i + l).OUTi. By Rule MAC.6 ,

P W {i + 1) will be a valid wave, and termination will be detected. I

M attern’s second algorithm is also based on counting the number of messages sent and

received. In this protocol, which he calls the vector count method, the number of messages

in and out is tracked per process. This extra information is used to detect termination with

fewer messages.

Each process, pj, maintains a vector of counts, countj[0],. . countj[N - 1). The value

of countj[i], i j , is equal to the number of messages sent from p, to p,- since the last

visit of the control wave. The value of countj\j] is decreased by one each time a message

is received. The control wave consists of a control message vector which circulates in a

virtual ring imposed on the processors. The control message vector, tk(i).count carries

information about the number of messages sent and received, around the ring of processes.

When the control vector reaches p,-, counti is set to counti + tk(i).count. If the result of the

summation is vector of all zeros, termination is declared. If there is a non-zero element of

counti, then there is some message en route to p,-. There is no point in the wave continuing

until this message arrives so the the control vector stops at p,- until p,- becomes idle, and pi

has received the number of messages equal to the value of counti[i\. When this occurs, the

vector is checked again to determine whether it every element is zero. If not tk(i).count

is set to counti, counti is set to zero, and the control message is propagated to pt>imod/v-

If every element of the vector is zero then all the messages sent have been received, and

termination has occurred.

Fully A synchronous System - M a tte rn ’s V ector C ount P ro toco l

M A V .l A send s such that <r(s) = pj and p(s) = p* sets count j[k] = countj[k\ + 1.

M AV.2 A receive tj(s) such that p(s) = pj sets countj \ j] = countj\j] — 1.

CHAPTER 2. DISTRIBUTED TERMINATION 46

M AV.3 The occurrence of Wj(i) implies

Idle(cj(i)) A
Cj{i) i - Wj(i) A
count j[j] = 0

-iIdle(Cj(i)) A "
cj(i) —> iej(k) i-* wj(i) A
cj(i) -* e'j -* iej(k) implies e'j is a send or receive A
count j[j] = 0.

M A V .4 When Wj(i) occurs tk(i).count[k] = countj[fc] A countj [A:] = 0, for k = 0 , . . . , N — 1.

M AV.5 When Cj(i) occurs countj[k] = countj[k] + tk(i).count[k], for k = 0 , . . . , N — 1.

M AV .6 P W {i) is valid if count^{k} = 0 at Wj(i) for some pj e II, and for k = 0 , . . N —
1 A t > 1.

As in Misra’s algorithm the final wave may not be complete, i.e. some pj such that

j < N - 1 might detect termination. While it is possible to prove that this protocol meets

our termination conditions, this characteristic makes it difficult notationally. For ease of

exposition, it makes sense to slightly redefine the polling wave.

Let termination be detected on the i t h visit of the control message to p j . This means that

all elements of t k (i) . c o u n t were not zero at njj(l), W j (2) , . . . W j (i - l) , and that W j (2) , . . . W j (i —

1) each mark the end of a failed control wave. For purposes of proof we can neglect

U70(l) , tn i(l) ,.. .u>j_i(l) and designate W j (1) as the beginning of PW (1) and transform the

process numbers accordingly. This is possible because a complete circuit of the processes

is required for initialization. So, any execution of the algorithm will guarantee that the

process which detects termination is visited at least twice by the control message. There

fore, in the following discussion, a valid control wave PW (i) will imply that all elements of

counts - 1 equal zero at w s-i(i) , and some element of count* at ut*(i), 0 < k < N — 1 was

non-zero, with the understanding that p s - i actually designates pj, where pj is the process

which detects termination.

Lem m a 16 For any W j (i) event as it is specified in Mattem’s Vector Count Protocol

CHAPTER 2. DISTRIBUTED TERMINATION 47

Idle(wj(i)).

Proof: See Lemma 13. I

L em m a 17 I f polling wave, PW (i), as specified in Mattem’s Vector Count Protocol is

valid, Termination Condition T(b) is satisfied.

Proof: We will show that termination condition T(b) holds by assuming the opposite.

Let PW (i) be a valid polling wave, and counter- 1 [fc] = 0,0 < k < N - I. Assume there

exists T)(s) , such that p (s) = p*, and W k (i) -*■ i) (s) , and that t/(s) is the earliest such

receive. By Lemma 16, s -*• wm(i). Such a send will increment countm[k] by 1. In order for

P W (i) to be a valid wave, count N-i[k] = 0. This can only happen if at count k[k] =

— So if countm[k] is incremented by 1 , count k[k] must be decremented by

the receipt of a message at p k before W k (i) . By our original assumption Wk(i) —*■ v(3)- Hence,

this message receipt cannot cause countk[k] to be decremented as necessary. Therefore, there

must exist a receipt i/(s*) such that p(s*) = p k , and t)(s“) —► W k (i) . The corresponding send

must originate at some process after PW (i) so that c r (s m) = pg, and wg(i) —* s '. Otherwise,

the send will be counted in the pg count vector, throwing the balance off again. pg is idle

at wg(i), so this is not possible. I

Theorem 5 The completion of a valid wave in the M attem’s Vector Count Protocol satisfies

Termination Conditions T(a) and T(b).

Proof: Follows directly from Lemmas 16 and 17 I

The proof that M attern’s Vector Count Protocol will detect termination when it occurs

closely follows the proof of M attem’s Four Counter Protocol, so it will not be presented

here.

We have gone into great detail in presenting the existing protocols in our causal frame

work. We have done this for two reasons. First, we wanted to illustrate how the polling

CHAPTER 2. DISTRIBUTED TERMINATION 48

wave model and causal reasoning can be used to develop a better understanding of the

termination detection problem and the protocols designed to solve this problem. Second,

we felt that it was important to show the impact of various system environments on the

solution requirements and protocol designs.

Our discussion of these various termination detection protocols amply demonstrates

that the concept of causality as it is defined by —► is basic to understanding the termination

problem and its solutions. This is the case because time and the temporal ordering of events

is an integral part of the problem. Note both Francez and Dijkstra’s specifications for ter

mination of a distributed computation involve an implicit notion of time in the requirement

that processors be idle simultaneously.

Only Rana’s protocol is able to satisfy this requirement directly. It accomplishes this

by requiring perfectly synchronized physical clocks. Given this system characteristic, this

protocol can establish that each process is idle at the same time as the process with latest

active timestamp.

The other protocols we presented are designed for systems in which the processors do

not have access to global time, and as we pointed out in the beginning of our discussion of

termination detection, verifying simultaneity in the absence of global time is impossible. So

instead, each of the algorithms designed for asynchronous system utilizes a series of waves

and the causal relationships between the waves as a substitute for real time. These protocols

report termination when all processes are idle for some time interval, the beginning and

end of which is defined only relative to the events of two successive waves. So the required

condition that all process are idle simultaneously can be inferred in spite of the fact that

no specific physical time can be identified. The common element in all of these polling

algorithms is the use of causal intervals, time intervals which are defined in terms of event

orderings.

CHAPTER 2. DISTRIBUTED TERMINATION 49

In the following section we show how vector clocks can be readily substituted for real

time in Rana’s protocol. Thus the need for synchronized clocks can be eliminated without

having to resort to the causal intervals used in the other polling protocols.

2.4 Causal Termination D etection Protocol

Rana’s algorithm with its use of physical time illustrates the usefulness of global time in

designing a termination detection algorithm. The availability of globally significant time

makes it simple to establish that processes axe idle at the same time and eliminates the

need to create these causally defined intervals of time. However, global time is a very

expensive requirement to impose on a system. Instead of using real time or causal intervals,

we use logical clocks and timestamps in ways analogous to physical timestamps to design

termination detection algorithms.

We pointed out in the introduction that vector clocks allow the complete partial order

to be deduced. For this reason we will use vector clocks rather than Lamport’s logical time

in our protocol. Before we proceed we need to modify the definition of vector time so that

it can be used with synchronous communication.

2 .4 .1 V ector C locks for Synchronous C om m unication

Causality, Lamport’s logical clocks, and vector time were defined primarily for systems

which are based on asynchronous communication. The use of synchronous communication

changes these relationships somewhat as we saw when we defined —► for a synchronous send

and receive. No longer does a send happen before a receive. The vector times of the send

and receive should reflect that by being equal. Accordingly, the previous set of rules for

calculating vector clock values are modified to insure that timestamp of a send is set equal

to that of the receive.

1. When event e\ occurs in p,-, V- = V? + 1 . The clock value of e- is Fi(e-).

CHAPTER 2. DISTRIBUTED TERMINATION 50

[2,2,2]

[2,1,1] [2,1,1]

[1,0,1]

P0 P i P2

Figure 2.3: Vector Time - Synchronous Communication

2. If e- is a send in p,-, and e'j a receive in pj, then the clock value of e' is updated

to reflect the clock value of e[so that Vj(e'j) is assigned Vj = sup(Vj, Vi), where

sup(Vi, Vj) = max(V{k, V f), for 0 < k < N - 1.

3. After Vj is calculated, V must be set to the value of Vj.

Figure 2.3 illustrates how vector time is calculated with synchronous communication.

Note that in this environment event c happens before event b. This is reflected in the clock

values of c and 6 , V(c) < V(b).

The following rules summarize the relationship between vector time, causality, and syn

chronous communication:

CHAPTER 2. DISTRIBUTED TERMINATION 51

Rules for Causality and Vector Time under Synchronous Communication

• For any events e\ and e'j, e\ —<• e'j iff V(e[) < V(e'j).

• For send and receive events s and t } (s) , V(s) = V (ti(s)).

A synchronous System s - Synchronous C om m unication

We will now show some examples of how logical time as maintained by vector clocks can be

used instead of physical time to bring an illusion of synchrony to an asynchronous system.

First we will show how this principle can be applied to an asynchronous system which

uses synchronous communication. The causal protocol we derive is modeled after Rana’s

algorithm which is applicable to synchronous systems with synchronous communication.

Rana’s protocol used physical timestamps to determine the latest time a process was active.

In an asynchronous system where every send and receive has a vector timestamp, these

timestamps can be used to determine which processes are active latest, at least within a

group that are causally related.

In a synchronous system there can only be one latest physical time because the times

of the events are totally ordered. In a causally synchronous system timestamped events

are only partially ordered. So, there could be several events with concurrent timestamps,

from which we could not distinguish a single latest event. To accommodate this difference,

the circulating token we will use to detect termination will contain a set of vector clock

values from several processes rather than a single process timestamp. This set will have the

property that every vector timestamp in the set is concurrent to every other clock vector

in the set. In the discussion and proof of our protocol, we will show that an appropriately

constructed set of vector times can be used to determine which processes were last active

CHAPTER 2. DISTRIBUTED TERMINATION 52

in a manner similar to Rana’s use of a physical timestamp.

Before we describe the algorithm and the means for constructing this set of vector

times, we need to state some assumptions and definitions. In this protocol, the vector

time of processes is updated only by basic communication. Messages of the termination

detection algorithm are not counted in the calculation of the vector time in the underlying

computation. All communication is synchronous. Any token specified in the protocol

circulates in a virtual ring imposed on the processes, so that a token propagated by p,- is

sent to Pi+imodN- The vector time of process p, is denoted by Vi, and the timestamp of an

event e\ in p,- is given by VJ(e{).

In this protocol, as in those we have previously discussed, a token is used to create a

control wave for the purposes of detecting termination. Actually, a series of tokens may be

generated and circulate in the virtual ring. The implementation rules insure that at least

one token completes the circuit and such a completion indicates termination.

A process may either generate a token or propagate a token. When a token is generated,

a new token is created with a new timestamp set. A process which propagates a token

makes no changes to the content of a token. A process propagates a token if the token

arrives when p,- is idle, and VJ < Vj, for some Vj in the timestamp set of the incoming token.

A token may be generated under two circumstances. In the first case, a token is gen

erated when a process becomes idle after some period of activity. The timestamp set in

the token generated by a process p,-, is a singleton containing p,’s current vector time, V{.

In the second case, a process generates a new token if it is idle when a token created by

another process arrives, and the timestamp in this arriving token must be modified. The

timestamp of a token arriving at an idle process must be modified if the vector time of the

idle process is either concurrent, but not equal to, every clock value in the timestamp set

of the arriving token, or greater than any one of the clock values in the set.

CHAPTER 2. DISTRIBUTED TERMINATION 53

In the case where the value of VJ- is concurrent to each member of the set in the incoming

token, the vector Vj- is added to the set to create the timestamp for the new token. If the

value of Vi is greater than any vector in the incoming token, that vector is deleted from

the set, and Vi is added to the set. The function GenerateToken is used to perform the

construction of the timestamp for the token.

Function GenerateToken(Vi, timestamp)

If 3Vj E timestamp such that Vi > Vj then

{VVj E timestamp such that Vi > Vj

DeleteSet — DeleteSet U Vj

return = Vi U timestamp — DeleteSet

}

otherwise,

return = V< U timestamp.

As in Rana’s protocol, each token is associated with its creator by an identification

stamp, and because a process may generate several tokens that may exist concurrently, an

additional index number must be assigned to uniquely identify each token. Therefore, the

nth token generated by p, will be signified by tk(i, n), and its timestamp will be tk(i,n).ts .

In this algorithm there is only one complete wave. In fact, completion of a wave indicates

termination. For this reason events w and c are redefined. The definitions are identical to

that used in the description of Rana’s algorithm. The waves are no longer identified by the

number completed, but rather by the originating process and token index.

CHAPTER 2. DISTRIBUTED TERMINATION 54

C ausal T erm in a tio n D etection • Synchronous C om m unication

C T S .l Wj(i, m), i j Lj occurs iff

Idle(cj(i, m)) A

3VJ £ tk(i, m).ts such that Vj < VJ A

Cj(i,m)>-+ w j(i,m).

C TS.2 Wj(j, m) occurs iff

3iej(k) such that iej(k) *-+ wj(j, m) V

3Cj(i, I) such that Idle(cj(i, I)) A Cj(i, I) >-*■ Wj(j, m) A

JVP £ tk(i, l).ts such that Vj < Vp.

C T S.3 The occurrence of W j(j,m) implies tk (j,m).ts — GenerateToken(Vj, timestamp)

where tim estamp — 0 when iej(fc) w j(j,m), and timestamp = tk (i,l) .ts when

3cj(i,/), such that Cj(i,l) -* W j(j,m).

CTS4. Polling wave P W {j , m) is valid if Cj(j, m) has occurred for some pj £ II.

The first step in arguing the correctness of this protocol is to show that the set of

timestamps in the token has the properties necessary to serve as a surrogate for real time

in detecting termination.

Lem m a 18 I f termination of the underlying computation occurs then there exist j , n such

that P W (j, n) will be a complete wave.

Proof: Let T = {p< | 3fc : Vi < V*}. Each member of this set, T, has an earlier timestamp

than at least one other process. Let S = II - T. pupk € S implies V< || V*. Let pj be a

CHAPTER 2. DISTRIBUTED TERMINATION 55

process in 5 . If the nth token originating at pj has a timestamp equal to {Vi | p,- £ S }, this

token will make a complete circuit of all the processors and produce a valid wave, P W (j, n).

Rule CTS.2 of the protocol requires that each process p,- £ S produce a token when p,-

becomes idle. Rule CTS.3 and the definition of GenerateToken insures that the timestamp

of the token produced when pt- became idle equals Vi. Because Vi is concurrent to V* for

every Pk € S, and because of Rule CTS.3 governing token generation, the value of Vi for

all pi € S will reach pj in a token generated by some element of S. When this occurs, pj

will originate a token such that tk (j,n).ts = {Vi | p,- E 5}. For every pk E II, there exists

Vi E tk(j, n).ts such that Vi > Vj, therefore, by Rule CTS.l, W k(j,n) will occur for all p*.

Rule CTS.4 specifies that in these circumstances P W (j, n) will be a valid wave. I

Lemma 19 Let tk (j,n).ts equal the timestamp of the token propagated or generated at

Wi(j, n). I f there exists Vjt E tk(j, n).ts such that V* > Vj(e{) then e\ —► w,(j, n).

Proof: Let Vjt £ tk(j ,n). ts , and V* > Vj(e). Also assume that e\ -f* Wi(j,n). Because e\

and Wi(j, n) are in the same process, e'j can’t be concurrent to Wi(j, n). That leaves the

possibility that n) —► e. This would imply that Vi(e{) > Vi(w{(j, n)), and V|*(e() >

n))- However, the rules for calculating vector time require that Vf > V- for all pj ^

P i . Therefore, Vj‘(e{) > for all Vm £ tk(j ,n). ts, contradicting our original assumption.

I

Lemma 20 For any Wj(i, n) event as it is specified in the Causal Termination Detection -

Synchronous Communication Protocol, Idle(wj(i, n)).

Proof: Assume that there exists W j (i , n) such that - i l d l e (w j (i , n)). If this were the case,

then there exists i j (s) such that p (s) = p j , and r / (s) -* w j (i , n) . In addition there would

n o t exist an idle event i e j (k) such that t/ (s) —*■ i e j (k) —► W j (i , n) . This directly contra

dicts Rule CTS.2 which requires that there exist a iej(fc) such that iej(fc) >-*■ W j (i , n) .

- > I d l e (w j (i , n)) also contradicts Rule CTS.2. If I d l e (c j (i , n)) then there exists i e j (k) , such

CHAPTER 2. DISTRIBUTED TERMINATION 56

that i e f i k) — ► C j (i , n) without an intervening receive or send, and c f i i , n) - * W j (i , n)

without an intervening event. Hence, i e j (k) —* W j (i , n) , and there is no 77(3) such that

i e j (k) — 77(3) -*■ wfii, n) . I

Lemma 21 I f polling wave, P W (i,n), as specified in the Causal Termination Detection -

Synchronous Communication Protocol, is valid then Termination Condition T(b) is true.

P ro o f: If T(b) does not hold then there exists 77(3) such that U7p(s)(i, ti) —► 77(3). There are

two possible cases, either U7p(s)(t,n) —► s —► w „ ^(i,n), or W g^(i, n) —* s. By Lemma 20,

Pa(s) is idle at wa^ { i , n) so it is not possible that Wg(sfii,n) —*■ s. The other case is

that 3 ->■ wa^ (i , n) which implies V„^(s) < Va^ (w a^ (i , n)). Because communication is

synchronous, = Vp(j)(t/(s)). P W (i, n) is a valid wave so by Rule CTS.l, there exists

Vj £ tk(i,n).ts such that Vj > {Vg^s)(wa^ (i ,n)) > V^(,)(s)). So there exists V/ € tk (i,n).ts

such that Vj > Vp^(r)(s)). By Lemma 19, this implies that 77(3) —*■ wp̂ (i , n), contradicting

our original assumptions. I

Theorem 6 The completion of a valid wave in the Causal Termination Detection - Syn

chronous Communication Protocol satisfies Termination Conditions T(a) and T(b).

Proof: Follows directly from Lemmas 20 and 21. I

2 .4 .2 A synchronous S ystem - A synchronous C om m unication

We have shown how vector time can be utilized in an environment where com m u n ica tion

is synchronous. The next logical step is to examine how vector time can be substituted for

real time to detect termination in a system with asynchronous communication. We will use

an approach similar to that we used to develop the synchronous communication a lg o r i thm

That is solving the problem as if synchronized clocks were available, and then modifying it

to use vector time instead.

CHAPTER 2. DISTRIBUTED TERMINATION 57

There are no published protocols for detecting termination given a system of synchro

nized clocks and asynchronous communication, so we will present two we have developed.

Rana’s protocol will not work correctly if communication is asynchronous because there

is no guarantee that messages sent before or during a final wave will arrive during the final

wave. As we have shown in our correctness arguments, without this guarantee a wave might

complete showing all processes to be idle, yet a message could be in transit. An obvious

way to modify Rana’s algorithm is to keep track of all the messages which have been sent

and not declare termination until they have been received. This can be done by associating

a physical timestamp with each message and using the token to carry this information to

the processes so that the messages sent can be matched to those received.

This protocol operates as follows. Each process maintains two sets of timestamps.

The set Ri contains the timestamps of messages received by p,-. The set 5< contains the

timestamps of messages sent by p,. Any process, p,-, upon becoming idle generates a token

composed of 5,-, the current timestamp, T(p,), and id(p,). This token is sent to Pi+imodN-

Any pi which receives a token checks to see if there is a timestamp in Stk, the send set

carried by the token, that matches a timestamp in Ri. If any are found, they are deleted

from the two sets. An active process, p,-, which receives a token removes any matches

from Stk and Ri as described above. It then saves the remaining timestamps in Stk by

incorporating them into its own set of timestamps, so that 5,- = Si U Stk• The incoming

token is then discarded. An idle process, p,-, which receives a token also removes any

matches, p,- then compares its own timestamp T(p,) to T(tk) to determine what action

to take. If T(pt) > T(tk), p, proceeds as if it were active, saving Stk and discarding the

token. If T(pi) < T(tk), the send set of p; is added to the token’s send set, and the token is

propagated to the next process. An idle process which receives its own token back checks

whether Stk = {}• If this is the case then the computation is terminated. If not, then Stk

is added to Si, and the token is discarded.

Clearly this protocol could be modified to use vector timestamps instead of physical

CHAPTER 2. DISTRIBUTED TERMINATION 58

timestamps in the 5 and R sets. The token timestamp would be maintained exactly as

it was in the Causal Termination Detection protocol for synchronous communication we

presented. Instead of maintaining lists of physical timestamps, vector timestamps would be

used.

Causal Termination D etection • Asynchronous Communication (Protocol A)

C T A A .l A send s such that o(s) = p,-, causes VJ to be updated according to the rules

governing vector clocks and 5, = 5,- U Vi(s).

C T A A .2 A receive tj(s) such that p(s) = pj, and o(s) = p,-, updates Vj according to the

rules governing vector clocks, and R j = Rj U V|(s).

C T A A .3 The occurrence of cj(i, m) implies

Vts.t*' : ts e R j A ts' € Stk A ts = ts', Rj — Rj - ts, Stk = S tk - ts' A

Sj = Sj U Stk-

C T A A .4 Wj(i, m), i ^ j occurs iff

Idle(cj(i,m)) A

3V; € tk(i, m).ts such that Vj < Vi A

Cj(i, m) !-*• Wj(i, m).

C T A A .5 W j (j , m) occurs iff

3iej(k) such that iej(k) >-* W j (j , m) V

3Cj(i,l) such that Idle(cj(i, I)) A

C j (i , l) W j (j , m) A

$VP G tk[i, l).ts such that Vj < Vp.

CHAPTER 2. DISTRIBUTED TERMINATION 59

C T A A .0 The occurrence of wj(j, m) implies tk(j, m).ts = GenerateToken(Vj, timestamp)

where timestamp = 0 when iej(k) *-*■ W j(j,m), and timestamp = tk(i,l).ts when

3Cj(i,l), such that Cj(i,l) -*• W j(j,m).

C T A A .7 Occurrence of wj(j, m) implies Stk = Sj.

C T A A . 8 Occurrence of W j (i , m) implies Stk = Stk U Sj.

C T A A .9 A polling wave, PW (i, m), is valid if Cj(j,m) has occurred for some pj € II and

Stk = {}•

C TA A .10 If C j (j , m) occurs, and Stk ^ {}> t ie token is discarded.

Unfortunately, neither the synchronous protocol we informally described or the causal

protocol specified above is very efficient. The token in both cases may end up carrying an

unrealistic amount of information with it as it transits the cycle of processors. It is not

necessary to maintain a record of messages sent and received in such detail to solve this

problem. The reader will recall that M attem’s Vector Count Protocol was able to detect

termination by tracking the messages received per process. Global clocks can be used to

reduce the amount of detail required even further to a simple balancing of messages in

and messages out. Mattern’s Four Counter protocol used this technique, but it required

two successive waves to prevent counting of messages from the future. The availability of

global time can be used to design a protocol that counts total messages in and out and only

requires a single wave.

Such an algorithm is very similar to Rana’s. Additional variables are required to accu

mulate the message counts. Each process, p,, maintains counters in,- and outi to count the

messages sent and received. The token carries two counters, IN and OUT to accumulate

the total messages sent and received.

CHAPTER 2. DISTRIBUTED TERMINATION 60

Synchronous Termination D etection Protocol - Asynchronous Com m unication

ST A .l A send s such that o(s) = p,, sets in,- = in,- + 1.

STA.2 A receive rj(s) such that p(s) = pj, sets outj = outj + 1.

STA .3 W j (i , m) , j occurs iff

Idle(cj(i, m)) A

T(iej(k)) < T(tk i)A

Cj(i, m) i->- «;,(*, m)A

y9iej(m) such that icj(fc) - » i e j (m) -* C j (i , m) .

STA .4 W j(j,m) occurs iff Biej(k) such that iej(k) W j(j,m).

STA.5 Occurrence of Wj(i, m), i £ j implies IN = I N + irij, and OUT = OUT + outj.

STA.6 The occurrence of W j(j,m) implies T(tkj) = T(iej(k)) where iej(k) W j(j,m).

STA .7 Occurrence of Wj(j, m) implies IN = irij, and OUT = outj.

STA .8 A polling wave, P W (j,m), is valid if Cj(j,m) has occurred for some pj e II,and

OUT = IN .

STA.9 Initialization: ini = outi = 0, for all pt- € II.

By using our previously defined method for maintaining a vector timestamped token this

synchronous protocol can be easily modified to work in a totally asynchronous environment.

This modified protocol is defined in the following section. The reader will note the similarity

to our causal protocol for synchronous communication.

CHAPTER 2. DISTRIBUTED TERMINATION 61

Causal Termination Detection - Asynchronous Communication Protocol(Protocol

B)

C T A B .l A send s such that <7(3) = p,-, and p(s) = pj cause in,- = in,- + 1, and outj =

outj + 1.

C T A B .4 w j(i, m), i £ j occurs iff

Idle(cj(i, m)) A

3Vi € tk(i,m).ts such that Vj < Vj A

Cj(i, m) i-t- wj(i, m).

C T A B .5 W j (j , m) occurs iff

3iej{k) such that ie,(fc) i-> Wj(j, m) V

3Cj(i,l) such that Id le(cj(i,l)) A

Cj(i, /) >-* u)j(j, m) A jlVp 6 ffc(i, /).fs such that Vj < Vp.

C T A B .6 The occurrence of W j (j , m) implies tk(j, m).ts = GenerateToken(Vj, timestamp)

where tim estam p = 0 when iej(k) >-*■ W j (j , m), and timestamp = tk{i,l).ts when

3cj(i, /), such that Cj(i,l) wj(j, m).

C T A B .4 Occurrence of W j (j , m) implies I N = in j , and O t/T = o u t j .

C T A B .5 The occurrence of Wj(i, m) implies IN = IN + in j , and O t/T = Of/T + outj.

CTAB.6 A polling wave, PW (j, m) is valid if C j (j , m) has occurred for some pj 6 II, and

OUT = IN .

C T A B .7 If when C j (j , m) occurs, and OUT ^ IN , then discard token.

CHAPTER 2. DISTRIBUTED TERMINATION

C T A B .8 Initialization: in,- = out,- = 0.

62

L em m a 22 For any W j (i , m) event as it is specified in the Causal Termination Detection

- Asynchronous Communication (Protocol B), Idle(wj(i,m)).

P ro o f: See Lemma 20.

L em m a 23 I f polling wave, P W (i, m), as specified in the Causal Termination Detection

- Asynchronous Communication (Protocol B) is valid then Termination Condition T(b) is

true.

P ro o f: If Termination Condition T(b) does not hold there must exist t] (s) such that

wfi(3)(i, m) - * tj(s) . Let tj(s) be the earliest such receive. By Lemma 22, the corre

sponding send must have originated before the wave. Therefore, s -* wa^ (i , m). This

would imply I N < OUT — 1 at c,(t, m) unless there is a balancing receive, tj(s ') such that

ri(s') -+ wp(s>)(i, m), and tna(,/)(i, m) -► s'(Rules CTAB.l, CTAB.4, and CTAB.5). Because

P W (i,m) is a valid wave, IN = OUT at c,(i,m) (Rule CTAB.6), and such a balancing

receive must exist, s' -* wp{a,)(i,m) implies Vr<,(s/)(s') < < Vp(a,)(wp{a)){i, m)).

Rules CTAB.2 and CTAB.3 specify that Vp̂ (w p̂ ,)(i,m)) 6 tk(i,m).ts , or there exists

Vk 6 tk(i, m).ts such that V* > Vp^,)(wp̂ i)(i, m)). In either case there exists a vector in

tk (i,m).ts of greater value than By Lemma 19, that implies s ' -+ wa^,)(i,m),

contradicting the premise th a t»j(s') is a balancing receive. I

T h eo rem 7 The Causal Termination Detection Protocol for Asynchronous Communica

tion (Protocol B) satisfies Termination Conditions T(a) and T(b).

P ro o f: Follows directly from Lemmas 22 and 23. I

The two causal termination protocols we have presented illustrate the utility of vector

time. They also demonstrate how vector time can be used to stand in for real time in

CHAPTER 2. DISTRIBUTED TERMINATION 63

a straightforward way. Vector time does not eliminate the need to poll every process at

least once after the process becomes idle, but this is a characteristic of every termination

detection algorithm. Vector time does enable us to design algorithms which only require one

final wave. This claim may only be made for Rana’s synchronous protocol and M attern’s

Vector count protocol. The remaining protocols require that each process be polled twice

after they become idle.

In Chapter 3 we will apply the methodology of polling waves, causal correctness con

ditions, causal protocol specifications, and vector time to the problem of detection and

resolution of distributed deadlock. Deadlock is similar to termination in the sense that

every process in a deadlocked set is idle. However, termination is a stable property of a sys

tem. Once a computation has terminated it remains terminated. The purpose of detecting

deadlock is to resolve the deadlock so that computation may proceed, therefore, deadlock

is not a stable property when resolution is instigated. The dynamic nature of deadlock

detection and resolution makes it a difficult problem to solve. We will show how our causal

methodology with its dependence on local state leads to simple and demonstrably correct

solutions.

C hapter 3

D istributed Deadlock D etection

and R esolution

3.1 Deadlock D etection - System M odel

A problem which has been the subject of extensive research is deadlock detection in a

distributed system. Two categories of deadlock, communication and resource, can arise in

a distributed system.

Communication deadlock occurs when each process in a set of processes is blocked,

waiting for a message from some other process in the set. Resource deadlock arises in

distributed databases when each process in a set of processes cannot proceed because it is

waiting for another process in the set to release a resource. We will limit our discussion to

resource deadlock in this section.

A database system is comprised of a static set of d non-terminating data manager

processes V — {Z?i,.. a set of data resources 71, a static set of t non-terminating

transaction manager processes T M = {T M i,. . and a set of transaction processes

T . Data manager D, € V will be bound to a single node of the network, and it will control

access to i2; (some part of the database) which is assumed to reside in some storage device

64

CHAPTER 3. DISTRIBUTED DEADLOCK DETECTION AND RESOLUTION 65

physically located at that node. Similarly, transaction manager TMt- S T M also executes

at a single node of the network, and it will control a single transaction process. Transaction

T{ € T will be created at some node of the network and is controlled by the transaction

manager associated with that node.

Before a transaction T, can access a data resource, it must receive access permission from

the data manager responsible for the resource. A transaction does not directly communicate

with a data manager to obtain this permission. All communication with a transaction, T,,

is routed through the transaction manager that controls T,. However, it is cumbersome to

continually refer to both the transaction manager and the transaction when describing the

operation of the system, therefore, in the remainder of this discussion it should be assumed

that any communication ascribed to a transaction is actually performed by a transaction

manager. Data managers and transaction managers communicate solely by explicit message

passing.

We assume that two-phase locking is used for concurrency control. To that end, a

transaction will send a request message, through its transaction manager, to lock a data

resource. The data manager will reply with a grant message if the lock is granted. Otherwise

a hold message will be sent to the requesting transaction by the data manager to indicate

that the data resource is locked by another transaction and that the lock request has been

enqueued. A transaction may not proceed until it has acquired locks on all the resources

it needs. Once a transaction has all the necessary locks, it can read and write the data

resource. When a transaction no longer needs the data resource (after the transaction has

committed or aborted its changes) it releases the resource. When the transaction releases

the resource, the controlling transaction manager sends a release message to the appropriate

data manager. Once a transaction releases a lock it may make no further requests.

We identify some specific events in the distributed database system:

• sendReqjv-.^ is the transmission of the fcth request message from T, through I ’M,- to

CHAPTER 3. DISTRIBUTED DEADLOCK DETECTION AND RESOLUTION 66

Dj.

• recvR eqy^^ is Dj's receipt of the fcth request message send from T; through T M, to

Dj.

• sendG rant^^j. is the transmission of a grant message from Dj to TM , in response

to the request sent by sendReqy,_Dj.

• recvGrant£)j_ j '. is T M ,’s receipt of the grant message sent by sendGrantjp^y..

• sendHold£)i_ r . is the transmission of a hold message from Dj to TM , in response to

the request sent by sendReqy..,^..

• recvHoldjp^y. is TM ,’s receipt of the hold message sent by sendHoldjp^y.. in response

to the request sent by sendReqyt_ Dj.

• send Rely. is the transmission of a release message from T, through TM, to Dj,

releasing the datum requested by sendReqy._Dj.

• recvRelyt_ Dj is Dj's receipt of the release message sent by sendRely._Dj.

• e- - generic event in D, or T,

Figure 3.1 illustrates the interactions between transactions, transaction managers, and

data managers in a distributed database system. Deadlock can arise if a cycle of transac

tions is formed with each member of the cycle waiting for a resource held by some other

transaction in the cycle. In the example, T\ and T4 are deadlocked because each transaction

is waiting for a resource held by the other transaction.

This type of representation is useful for detailed analysis of system and protocol behavior

because it explicitly identifies the events that occur in the process execution. The complexity

of this representation obscures the wait-for relationships that we want to identify. The

CHAPTER 3. DISTRIBUTED DEADLOCK DETECTION AND RESOLUTION 67

TMi D2 TMt D\

sen d H o ld p 1-> tx

recvHoldb4—r2

r e c v G r a n tp 4_*n

*endG rant]y4_ Tl

$tndGrant\>2m̂Tl

Figure 3.1: Data Manager and Transaction Execution

graphic representation of transaction activity shown in Figure 3.2 is much simpler. This

representation treats requests and the corresponding responses as atomic events. Ignoring

the details of the message events that occur when requests are made and resources are

granted makes it easier to visualize the relationships that develop between transactions and

data managers.

In this example there are six transactions. A directed arc between two transactions in the

graph indicates that one transaction is waiting for a resource held by another transaction.

So, in this example, T\ waits for resource Rg held by T2 , T2 waits R\ held by T3, and so on.

Once this cycle is formed the transactions in the cycle are idle and will remain idle until

CHAPTER 3. DISTRIBUTED DEADLOCK DETECTION AND RESOLUTION 68

some action is taken to resolve the deadlock. The object of resource deadlock detection is

to determine that such a cycle exists.

Figure 3.2: Transaction-Wait-For Graph

Conceptually deadlock is very similar to termination. If all the transactions in a system

are in a deadlock cycle then they will appear idle just as if they were terminated. A dead

lock cycle, however, is usually restricted to a subset of system transactions. A termination

protocol will not work properly when this is the case. There is another difference between

termination and deadlock. While termination is a permanent state, the deadlocked or “ter

minated” set will not remain idle permanently if the protocol acts to resolve the deadlock.

During resolution one transaction is usually aborted, and the remaining processes may be

come active again. These differences have made deadlock detection and resolution a difficult

problem to solve. Numerous protocols for solving this problem have been presented in the

literature. In general they are complex and expensive. More disturbing is that most have

been shown to be incorrect. In the following section we will discuss some of these protocols

and point out some of the problems.

3 .1 .1 P rev io u s R esearch

In a traditional multiprocessing system with shared memory and centralized control, dead

lock detection protocols construct and maintain graphs similar to the one shown in Fig

CHAPTER 3. DISTRIBUTED DEADLOCK DETECTION AND RESOLUTION 69

ure 3.2. These graphs are called transaction-wait-for (TWF) graphs. Each time a request

is made which can not be granted an arc is added to the graph. Arcs are deleted from the

graph when locks are released, and waiting transactions are granted resources. Each time

an arc is added to the graph the detection protocol checks for the creation of a cycle that

indicates deadlock.

Early deadlock detection protocols were modeled on this sequential system paradigm

[39, 12, 7]. The protocols attempt to construct transaction-wait-for (TWF) graphs dis-

tributively, or they impose a centralized control on the system to construct the graphs in a

centralized manner. Maintenance of TWF graphs is a viable technique in a system where

resource requests and releases are totally ordered, and an accurate global view of the sys

tem is facilitated by a shared memory. Accurately maintaining the global view that a TWF

graph represents in a distributed system turns out to be extremely complex and costly. The

complexity of these protocols also leads to errors.

Isloor and Marsland [39] describe a protocol that maintains a complete TWF graph at

every site. This requires the broadcast of each transaction request and release to every site.

It also requires careful design to accommodate the indeterminacy of receipt of messages

conveying the graph update information. In addition to having high overhead, this protocol

has been shown to be incorrect [10].

Menasce and Muntz [12] attempt to reduce the cost of maintaining the TWF graph

by constructing condensed, or partial, TWF graphs at each resource controller site. This

protocol is also incorrect [10]. We will describe the protocol in some detail to illustrate the

difficulty inherent in trying to maintain an up-to-date global view in a distributed system.

The system model Menasce and Muntz use differs slightly from that which we outlined

in Section 3.1. In their model each transaction manager resides at a data manager site.

This means that a transaction must send a request message only when it needs a resource

at a different site from that where it resides.

In their protocol each data manager maintains a condensed TWF graph based on in

CHAPTER 3. DISTRIBUTED DEADLOCK DETECTION AND RESOLUTION 70

formation generated at its site and information sent to it by other data managers. When

a transaction makes a request of a data manager that cannot be met, the data manager

adds an arc to its local TW F graph. So, if transaction T\ makes a request to -Dj, and the

resource managed by D\ is already locked by T2, D\ adds the pair (7 i, T2) to its TWF

graph. If T\ does not reside at the same site as £>j, it sends this pair, (T i,T t), to the site

where 7\ resides. These pairs are called blocking pairs.

When a data manager receives one of these blocking pairs it adds the arc represented by

the pair to its own graph. It then examines its local TWF graph. If there is a transaction

in the local TW F graph that blocks the second element of the incoming pair, a new pair

is generated. This pair will contain the blocked transaction and the blocking transaction.

This pair is sent to the site of the blocking transaction. Whenever a blocking pair is added

to a local TW F graph the data manager checks for a cycle. The presence of a cycle indicates

deadlock has occurred. The following example details the actions of the protocol.

Di Dt d3 D4

Ti t3 Tt

Figure 3.3: Initial Resource Allocation

In Figure 3.3 , T\ has locked R \, T2 has locked R2, T3 has locked R3, T\ has locked IZ4.

Each transaction resides at the data site of the resource it has locked. T\ then makes a

request to D3 for R3. D3 adds the arc (T), T3) to its local TW F graph. D3 also transmits

this pair to D\. D\ will add the pair to its local TW F graph. The situation then appears

as shown in Figure 3.4.

T2 then makes a request for R4, and T4 makes a request for R\. D4 will add (72, T4) to

its TW F graph. It will also send (T2,Ti) to D2. When the request from I4 arrives at D\,

D\ will add the pair (74,7\) to its local graph. Di will also send (74,73) to 74’s site and

TVs site to indicate that T4 is waiting transitively on T3. Figure 3.5 shows how the TWF

CHAPTER 3. DISTRIBUTED DEADLOCK DETECTION AND RESOLUTION 71

01 d 2 03 04

Ti t 2 73 7\

Ti Ta Tl T 3

Figure 3.4: Request for R 3

graphs would look at each site when this activity was complete.

Dl d2 d3 O4
Ti t 2 t 3 Ti

n
Figure 3.5: Condensed TWF Graphs

On the surface this algorithm appears reasonable, however, its informal specification

hides both errors in logic and implementation complexities. These problems are discussed in

[10]. Gligor and Shattuck outline the following counterexample that shows the incorrectness

of the algorithm.

In this example transactions Ti resides at site D\ and has locked R x. T2 has locked R 2

at site D2, and 7 3 has locked R3 at site D3. This initial configuration is shown in Figure

3.6. The following requests are then made; T\ requests R 2, T2 requests R3, and T3 requests

R i . Figure 3.7 shows the portions of the graph that will be present at each site as a result

of these requests. Each data manager will also send a blocking pair to the site where the

requesting transaction resides.

Figure 3.8 shows the TWF graphs that will result when the messages containing the

blocking pairs arrive. The protocol requires that new blocking pairs be generated if the

CHAPTER 3. DISTRIBUTED DEADLOCK DETECTION AND RESOLUTION 72

Di d 2 d 3

Ti t 2 t 3

Figure 3.6: Counterexample: Initial Allocation

D i d 2 d 3

Ti t 2 t 3

• ► • »■ « *-
7 ^ T\ T2 T 2 T3

Figure 3.7: Counterexample: Second Phase

second element of any received pair is blocked in the new TW F graph. In this case when

(T i,T2) arrives at D\, D\ evaluates the new TWF graph and finds that T2 is not blocked.

Therefore, no further deadlock detection activity occurs at £>1. When the blocking pairs

arrive at D2 and D3, arcs are added to the local graphs, but no new blocking pairs are

generated. As a result deadlock will not be detected. The error in this case is caused by

the timing of the arrival of the requests and the messages with the blocking pairs. If the

pair (Ti,T2) had arrived before the request from T3 , the blocking pair (I 3 , T2) would have

been generated and sent to T2 and T3 . The protocol would have worked correctly then, and

deadlock would have been detected.

This example illustrates how the concurrency imposed by message passing, and the

resultant non-determinism of event ordering can introduce subtle errors into distributed

protocols. The more complicated the protocol, the more likely it is that timing errors will

occur. The complexity of this protocol is a direct result of the fact that this protocol tries

to maintain a picture of global state.

CHAPTER 3. DISTRIBUTED DEADLOCK DETECTION AND RESOLUTION 73

Dx d 2 d 3

Tx t 2 t 3

 »• ► • ►
/ t i fTt r r i rr\ r r t

y3 Tx T2 2 3 2 3

Figure 3.8: Counterexample:Deadlocked Set

Gligor and Shattuck suggest a modification to correct the particular error shown in the

example, but they point out that the protocol is impractical even if it could be corrected.

The real difficulty with the protocol occurs when resource releases and transaction aborts

are considered. Menasce and Muntz neglect to describe how their protocol will maintain

the condensed TW F graphs in the presence of releases and aborts. Because these activities

cause the global state to be in a continual state of flux, extending their protocol to handle

releases and aborts would make it more complicated. In addition, the overhead required to

perform this correctly, to keep track of the new arcs and remove vestiges of the old arcs, is

very high.

For example, consider what happens when a transaction releases a resource, and a new

transaction is granted the resource. Every site which maintains an arc to the releasing

transaction must be contacted so that the arc may be removed from the local TW F graphs.

New arcs must be added for any transaction that now waits for the new transaction that

has been granted the resource. Gligor and Shattuck suggest that a broadcast of all arc

changes to all sites would be required to update the TW F graphs properly. This would be

necessary because an individual data manager would not be aware of the sites that need

updating. This continuous updating imposes high overhead on the system. It also makes

the protocol complicated and prone to error.

All of these problems arise from the effort to maintain some approximation to a global

TWF graph. The idea that a view of global state is necessary to solve the deadlock detection

CHAPTER 3. DISTRIBUTED DEADLOCK DETECTION AND RESOLUTION 74

problem is a holdover from the centralized multiprocessor environment. Other protocols

which rely on the construction of TW F graphs have been proposed. For completeness we

describe them briefly. However, we believe that a much simpler protocol, which is not

predicated on some view of global state, is the appropriate solution to this problem.

Badal [9] approaches the distributed deadlock problem in a similar manner to Menasce

and Muntz. Partial TW F graphs are maintained at resource sites. The primary difference

in the two protocols is that, in Badal’s algorithm, the transactions and their lock histories

actually migrate to resource sites. This tends to consolidate state information and reduce

the message passing necessary to update the graphs. Badal does not specify how he handles

the problem of maintaining the graphs (he acts as if this is a solved problem) so it is difficult

to evaluate his protocol with respect to some of the issues raised by Gligor and Shattuck.

He acknowledges that false deadlocks can be detected because of obsolete information in

the stored TW F graphs but claims that this is not a significant problem.

Elmagarmid, et.al.[7] also provide a variant of this type of algorithm. In their protocol,

maintenance of the TW F graph is semi-centralized. This is accomplished by having request

ing processors relinquish control to the processor holding the requested resource unless the

holding transaction is also blocked. Any transaction making a request of a blocked trans

action hands over control to the blocked transaction’s controller. In this way any processes

potentially involved in deadlock are arranged in a tree with one controUing node as the root.

When a transaction relinquishes control it passes any information about wait-for relation

ships and any further resource requests to the controlling transaction. All the information

necessary to detect deadlock is present in this root transaction. As all communication is

done through the controlling transaction it always has an up-to-date view of the state of

the controlled processes. The algorithm gets the remaining leverage it needs to eliminate

the message timing problems found in other algorithms by being formulated in CSP.

All of the aforementioned algorithms are quite complex. We believe the complexity

derives from the attachment to a global state view of the deadlock problem. This attachment

CHAPTER 3. DISTRIBUTED DEADLOCK DETECTION AND RESOLUTION 75

arises from the use of the TWF graph as a model for describing system behavior and

designing deadlock detection protocols. A TW F graph implies a knowledge of global state.

Efforts to construct these graphs are counter-productive in a distributed system because

there is no global view in this environment. The token protocols we will discuss now show

that construction of TW F graphs is not necessary to solve the deadlock detection problem.

Token, or probe, protocols as they tend to be called when dealing with deadlock de

tection, abandon the attempt to extend sequential system solutions to distributed systems.

In these algorithms no explicit transaction-wait-for graphs are constructed or maintained.

The token traverses the edges of the wait-for-graphs driven by blocked requests. The return

of a token to its originator indicates that a cycle has been found. Chandy, Misra and Haas

[5] propose a simple algorithm in which an idle process periodically generates a token to

determine if it is part of a cycle. The token is transferred from one transaction to another

when it is determined that a wait-for relationship holds. If a cycle exists the token will

eventually return to its initiator, and deadlock will be detected.

This protocol does not completely abandon the concept of saving global state informa

tion. Each transaction maintains an array data structure which saves information about

which processes are waiting for it. When a token from Tj arrives at transaction X1,-, the j lh

element of this array is filled in to indicate that Tj is dependent on T,-. This data structure,

with its potential to preserve obsolete state information, makes deadlock resolution difficult.

This is not a problem for the protocol as presented because it does not specify how deadlock

resolution is to be performed.

This protocol also has some performance problems. First, a transaction may instigate

several tokens per blocked request. Second, every transaction in the cycle may detect

deadlock. This is not only imposes extra overhead messages, it makes it difficult to resolve

deadlock.

Sinha and Natarajan [11] present a protocol that attempts to correct these deficiencies.

In their protocol a t most one transaction in a cycle will detect deadlock. This makes

CHAPTER 3. DISTRIBUTED DEADLOCK DETECTION AND RESOLUTION 76

resolution easier and reduces the number of tokens in transit. Their protocol also specifies

that a transaction will generate only one token when it must wait for a resource. Finally,

their protocol makes efficiency claims based on the fact that the token transmits state

information that is saved and may be used in possible future deadlock detection activity.

In comparison to [5] fewer messages will result in this protocol.

In an effort to make a simple token based protocol efficient, Sinha and Natarajan make

it incorrect. In some circumstances, deadlocks will not be recognized because tokens are

not always forwarded when necessary. Out-of-date information may be retained at some of

the nodes in this algorithm resulting in detection of false deadlocks. These difficulties arise

because the protocol is attempting to maintain pieces of the TW F graphs with information

gleaned from the token. As we pointed out in our analysis of the protocol in [12], accurately

maintaining this type of state information distributively is not easy. We will discuss this

protocol in some detail because it is representative of the token based protocols. It also

illustrates the unnecessary complexity that is introduced into a protocol by the attempt to

get a grasp on global state.

Each transaction is assigned a priority based on the identification number assigned to

the transaction. All transaction id numbers are unique, therefore, the priorities of the

transactions are totally ordered. The protocol uses this order to minimize the number of

token transmissions. The priority assignment is also used to identify a unique transaction

that will detect deadlock, and instigate resolution.

In this protocol the data managers initiate the tokens used to detect deadlock. A data

manager initiates a token in response to an antagonistic conflict. An antagonistic conflict

exists when there is an outstanding request for a locked resource, and the transaction

requesting the resource has a higher priority than the transaction that holds the resource.

A data manager initiates a token if an antagonistic conflict is detected when a lock request

arrives. Tokens are also generated when a resource is released and reallocated if there are

requesting transactions in the queue that have higher priorities than the new holder of the

CHAPTER 3. DISTRIBUTED DEADLOCK DETECTION AND RESOLUTION 77

resource. The identity of the transaction that causes an antagonistic conflict is placed in the

new token as the initiator. The data manager then transmits the token to the transaction

that is currently holding the resource.

A transaction saves any token received in its data structure, probeq. If a transaction

is waiting when it receives a token, it sends a copy of the token on to the data manager

where it is waiting. When a transaction makes a lock request and waits for the lock to be

granted, it sends a copy of its probeQ to that data manager.

When a data manager receives a token, it compares the priority the transaction identified

by the token to the priority of the transaction that is holding the resource. If the priority of

the transaction in the token is less than the priority of the holder, the token is discarded. If

the priority of the token transaction is higher, then the token is propagated to the holding

transaction. If the priorities are identical, then deadlock has occurred, and the data manager

initiates action to resolve the deadlock.

To resolve deadlock the data manager sends an abort message to the lowest priority

transaction. This lowest priority transaction is designated the victim. The victim releases

its locks and cancels any pending request. It then sends a clean message to the data manager

where it is waiting, and aborts. This clean message is propagated around the cycle until it

reaches the data manager that initiated the token. The clean message clears the tokens that

reference the aborted victim from the probeQ of each transaction as it passes. A transaction

discards any clean message received if it is in active state or if it is the initiator.

Several advantages are claimed for this protocol. Each transaction initiates at most one

token per blocked request. This differs from [5] which requires that tokens be periodically

retransmitted. The use of transaction priorities and antagonistic conflicts guarantee that a

unique token completes the cycle. This makes resolution easier. The information saved in

the probeq's can be used to detect later deadlocks with less work.

Saving information in the probeq's enables the protocol to have these advantages. This

information also causes difficulties. The information saved in the probeq's is essentially state

CHAPTER 3. DISTRIBUTED DEADLOCK DETECTION AND RESOLUTION 78

information about the TWF graphs. As we pointed out in our analysis of the protocol in

[12] it is hard to maintain this information accurately. These difficulties cause this protocol

to be incorrect.

Several of these problems were identified by Choudhary, et. al., [8]. An error in the

specifications for transmitting tokens allows deadlocks to exist which will never be detected

by the protocol. The example shown in Figure 3.9 illustrates how this can occur. In this

example, the token initiated because of 7\ is propagated to T3 . R 3 is allocated to T2 when it

is released by I 3 . The protocol doesn’t require that D3 initiate a token when the reallocation

is made to T2 , because T4 has a lower priority than T2. The protocol doesn’t require that

Tli’s probeq containing the token from 7j be propagated on to 7 2 . In the last step T2 makes

a request for Re which is held by 7\. De will not generate a token from T2 because no

antagonistic conflict exists. As a result deadlock will not be detected when it does exist.

Figure 3.9: Undetected Deadlock

Tokens stored in the probeq's of the transactions can lead to the detection of deadlocks

that do not exist. The example shown in Figure 3.10, also from [8], exhibits how this

protocol detects non-existent deadlocks.

Transactions T2 and T4 are deadlocked. Transaction T\ waits transitively on transaction

T2 and T4 . So the token from T\ will be saved in the probeq's of T2 and T4 . T2 will detect

the deadlock and cause 7 4 to abort. After T4 aborts you have the situation shown in the

second TWF graph of Figure 3.10. T4 will send a clean message to T2 to remove any tokens

that reference T4. The clean message from T4 will not clean 7 | ’s token from 7 2 ’s probeq.

CHAPTER 3. DISTRIBUTED DEADLOCK DETECTION AND RESOLUTION 79

r3
•-

r 4

R*

ts ^

T i *

T3 T i

^ ^ 1
•

R* R3Hi

f Ts '

--
*•

Hi Ri

Ti .> ^ i

Figure 3.10: False Deadlock

The information that Ti is waiting for T2 is obsolete and can lead to detection of false

deadlock. In the final TWF graph T2 makes a request for R\, the resource held by T\. The

data manager of R\ will propagate the contents of ^ ’s probeq to T\. Because this probeQ

contains a token from T\ deadlock will be detected where none exists.

Choudhary, et.al. [8] recommend several changes to make Sinha and Natarajan’s pro

tocol correct. Their solution eliminates state information that has the potential to become

obsolete. This requires that whenever an abort occurs all the probeq's of transactions in

the cycle must be discarded. Discarding the probeq's necessitates that a token must be re

transmitted for every transaction in the cycle and for every transaction waiting transitively

on the cycle.

Their solution has several disadvantages. First, it introduces extra overhead because

tokens and probeq's must be retransmitted. Second, it negates most if not all of the

performance benefits claimed in [11]. It can no longer be claimed that a t most one token is

generated per blocked request. Discarding the probeq'& means that detecting each deadlock

must be done from scratch. Finally it adds complexity to an already complicated algorithm.

This complexity and the informal specification of the protocol make it difficult to determine

if the protocol is correct. Choudhaxy, et. al., do not attempt to show that the protocol is

correct.

CHAPTER 3. DISTRIBUTED DEADLOCK DETECTION AND RESOLUTION 80

We believe that there is no need to maintain the kind of state information that char

acterizes the protocols in [8 , 11, 12]. We have developed a causally based definition of

deadlock. Using this definition we have designed a series of simple token based protocols

that efficiently detect deadlock and provide resolution.

3 .1 .2 D ead lock and C ausality

Deadlock is usually defined in global terms. For example, Chandy, Misra, and Haas[5] define

deadlock as “ a cycle of idle processes each dependent on the next process in the cycle.”

Sinha and Natarajan [11] determine that deadlock occurs when “each member of the group

waits (indefinitely) for a data item locked by some member transaction of the group”.

There is an implicit notion of global time in these definitions. As defined deadlock

“exists” at a certain time, namely the time between when the last arc in the cycle falls

into place and when the deadlock is broken. There is a similarity between this definition

of deadlock and the standard definition of termination that we discussed previously. As

we pointed out when discussing termination detection, when a global clock is absent, it

obscures the issue to involve global time. It preserves the illusion that global state can be

identified and used.

In termination detection this is primarily a theoretical problem. Viewing termination

in causal terms clarifies the protocols and leads to better definition of the problem. As

a m atter of practice, however, existing termination protocols are relatively efficient and

correct. In deadlock detection this global view has not only created theoretical difficulties,

it also has caused the majority of existing protocols to be incorrect. Those that are correct

are extremely complicated.

The reason for this is that deadlock detection and resolution differs from termination

in one important way. Once processes are terminated, they remain terminated. The global

state eventually quits changing, and in fact, an accurate view of the global state can even

tually be constructed. In the case of deadlock, the object of detection is to resolve conflicts

CHAPTER 3. DISTRIBUTED DEADLOCK DETECTION AND RESOLUTION 81

so that deadlock is broken and transactions can proceed. Therefore, during execution of

the protocol the global state is always changing. This makes it very difficult for deadlock

detection protocols that attempt to base their actions on the global state.

A better approach is to define deadlock causally on a series of events and abandon the

global view of deadlock. The probe protocols in [11, 5, 8] attempt to take this approach,

but they can’t quite resist the urge to tie protocol action to non-local state. However, there

is a general pattern which occurs in the probe, or token, deadlock protocols which is useful

for defining deadlock causally. This pattern occurs in the manner in which the transaction-

wait-for graph is traversed. This is normally done by initiating a token at some blocked

transaction and then passing it to the data manager of the object for which the transaction

is waiting. The data manager, in turn, propagates the token to the transaction which holds

the resource. The return of a token to its initiator indicates deadlock has occurred.

The use of a token generates a polling wave in a manner similar to the polling wave used

for termination detection. The difference between the termination detection and* deadlock

detection polling waves is that in the first instance the token traverses a pre-determined

path through all the processes in the system, while the deadlock detection token’s path

is determined dynamically based on the current relationships between transactions and

data managers. Consequently, a deadlock detection polling wave may not encompass every

process in the system.

A transaction generates a token to instigate a polling wave every time it must wait for a

resource. The nth token generated by T; is identified as tk(i,n). The set of processes visited

by tk{i,n) is designated by 5,(n).

The following notation identifies the events of the deadlock detection polling wave:

Events of Detecting Computation

• ctj(i, n) the event which occurs when tk(i,n) arrives at Tj.

• wtj(i ,n) the event which occurs when tk(i, n) leaves Tj.

CHAPTER 3. DISTRIBUTED DEADLOCK DETECTION AND RESOLUTION 82

• cdj{i,n) the event which occurs when tk(i ,n) arrives at Dj,

• wdj(i,n) the event which occurs when tk (i ,n) leaves Dj.

Using the following functions we can formally specify the token’s behavior.

• DW{Ti,eI) = Dj iff sendHold^y_ T. —> e • A recvGrant^_r . 7A e\

(Dj is the data manager of Rj. is waiting for Rj at event e().

• IIT(Dj,e'j) = T{ iff recvGrant^.^y. —► e j A recvRely._Dy -f+ e'-

(Dj is the data manager of Rj. Ti has been granted Rj and has not released it at

event e{).

A polling wave is defined only for the events in the set 5,-(n). Events wtj(i, n) and

ctj(i ,n) e P W (i ,n) iff Tj G 5,(n). Similarly, w dj(i,n) and cdj(i,n) G P W (i,n) iff Dj G

S'i(n). A polling wave, PW (i, n), is complete when ct,(i, n) occurs.

Token Specifications

• Token tk(i, n) always initiated by Tj

• If a token is propagated it moves from

— Tj to D W (Tj,c tj(i ,n)) , or

- Dk to H T (D k,cdk(i,n))

In general, the order of the transactions and data managers visited is not fixed; i.e.,

the token will not necessarily visit Ti then T2, etc. Therefore, w tj(i, n) —> cdk(i ,n) where

D W (T j,w tj(i,n)) = Dk. Similarly w dj(i,n) —► ctj(i,n) if H T (D j,w d j(i,n)) = Tj.

The following predicates formally define transaction and data manager states:

CHAPTER 3. DISTRIBUTED DEADLOCK DETECTION AND RESOLUTION 83

Predicates

• W aitQ is a function from events in a Transaction Process to {True, False)

• LockedQ is a function from events in a Data Manager Process to {True, False)

These predicates are defined as follows:

• Wat't(eJ) = T iff 3j : recvHold^^jv —► A recvGrant^_r . ■/* e\.

• Locked(e'j) = T iff 3i : send Grant —► e'- A recvRely.^^ ■/* e'-.

Using these predicates and our rules for token behavior, we can define deadlock in causal

terms. A set of processes 5,(n) = {Dj \ cdj(i,n) G PW (t, n)} U {Tk | ctk(i,n) G P W {i,n)}

is deadlocked if the polling wave PW (i, n) completes and the following conditions hold:

D eadlock C onditions - D T

D T (a) Wait(wtj{i, n)) for all wtj(i , n) G PW{i, n) A Locked(wdj(i, n)) for all wdj{i, n) G
PW (i,n) .

D T (b) For all grant events, send Grant such that Ti. Dj G 5,(n);
se n d G ra n t^ .,^ —*• wdj{i,n) D recvGrantr>j-*Tk wlk{i,n)-

D T (c) For all release events, sendRelxfc—d, i such that Tt,Dj G 5,(n);
sendRelj^,.^ —*• wtk(i, n) J recvRelj-t _ Dj -+ wdj(i,n).

The correctness conditions specified by DT are quite similar to those specified by T

for termination. Because deadlock is a form of termination for a subset of processes in

a system this is not surprising. Condition T(a) requires Idle(wtj(i, m)) for each process

polled. Condition DT(a) requires Wait(wtj(i, n)) if the process polled is a transaction or

Locked(wdj(i, n)) if the process is a data manager. In both cases, the first conditions of DT

and T require that a polled process is idle. Condition T(b) also corresponds to DT(b) and

CHAPTER 3. DISTRIBUTED DEADLOCK DETECTION AND RESOLUTION 84

DT(c) in that it requires that no communication between elements of the polled set are in

transit during the wave.

These conditions guarantee that if a polling wave as specified completes, and the condi

tions are met, then deadlock exists at the “consistent cut” constructed by the wave. These

conditions do not require that if a deadlock exists the protocol will detect it. For this aspect

of correctness of a protocol we need to require that if deadlock exists, then eventually there

will exist Ti such that PW (i, m) completes. First, we will show that the following protocols

satisfy these DT conditions. Then we will show that if deadlock does exist, then some

polling wave will complete.

3 .1 .3 Synchronous C om m unication P ro toco ls

Initially we will show how the availability of synchronized clocks provides for straight

forward solution of this problem. We will then show how vector clocks can be readily

substituted for real time clocks. As in termination detection we will show how the protocol

and correctness arguments vary according to the system environment. Our first solution

is designed for a system that provides synchronous communication. Initially we will also

restrict our attention to situations where a transaction may have one outstanding request

at a time.

We now describe a protocol which generates a polling wave for which DT holds. This

protocol is modeled after Rana’s termination detection algorithm. Therefore, it presumes

that global time is available, and that processes communicate synchronously. The protocol

can also be viewed as a modification of the protocol proposed in [5]. In this modified

protocol an idle process initiates a probe only once per blocked request. It also identifies a

unique transaction to resolve deadlock. Initially we will only consider detection. For clarity

we will postpone resolution to Section 3.1.5.

In this protocol a transaction T, will generate a token when it receives a hold message.

The m th token generated by T,- will initiate PW (i, m). The transaction places the timestamp

CHAPTER 3. DISTRIBUTED DEADLOCK DETECTION AND RESOLUTION 85

of the hold message receipt event in the token and sends it to the data manager of the

resource the transaction is waiting for, DW(Ti,wti(i,m)). The data manager discards the

token if the data resource is not locked, or if the timestamp of the latest grant message

sent by the data manager is greater than the token timestamp. Otherwise the token is

propagated by the data manager to the transaction that has locked the data manager’s

resource.

When a token arrives at a transaction it is discarded if the transaction is active. When

a blocked transaction receives a token it compares the timestamp in the token to the times

tamp of latest hold message receipt event. If the timestamp in the token is less than this

timestamp, the token is discarded. On the other hand, if the timestamp in the token is

greater than the timestamp in the process the token is propagated to the next data man

ager. There will, of necessity, be a transaction in a deadlocked set that receives the last

hold message. This token will complete the circuit and deadlock will be detected.

Formally the token has two fields:

• tk(i,m).ts = timestamp of latest hd event in Ti

• tk(i,m).id = Transaction identifier

The following rules formally specify the protocol.

D eadlock D etection - Fully Synchronous System P ro toco l

S D .l wtj(i , m), i ^ j occurs iff

3ctj(i, m) such that Wait(ctj(i, m)) A ctj(i, m) i-> wtj(i, m) A
(recvHoldj-^jv -+ ctj(i,m) D T(recvHold£)fc_x;) < tk(i,m).ts).

SD .2 wdj(i, m) occurs iff

3cdj(i,m) such that Locked(cdj(i,m)) A cdj(i, m) i-+ wdj(i, m) A
(sendG rant^.,^ -+ cdj(i,m) D TXsendGrantp^^) < tk(i,m).ts).

SD .3 w tj(j ,m) occurs iff SrecvHold^—Tj such that recvH old^^^ wtj(j ,m).

CHAPTER 3. DISTRIBUTED DEADLOCK DETECTION AND RESOLUTION 86

SD .4 The occurrence of wtj(j ,m) implies

tk .(j,m).ts = T^ecvHoldo^jv) where recvHold^^jv i-> w tj(j ,m) A
tk.(j, m).id = j.

SD .5 A polling wave, PW(i, m) is complete when cf,(i,m) occurs.

L em m a 24 For any wtj(i, m) event as it is specified in the SD Protocol, Wait(wtj(i,m)).

P roof: Rule SD.l requires that W ait(d j(i ,m)) be true. It also specifies that there does

not exist e'- such that ctj(i,m) -* e'- -*■ wtj(i,m). Therefore, Wait(wtj(i, m)) must be true

since there can be no receipt of a grant message between the receipt and transmission of the

token at pj. In the case of the generation of a token at w tj(j ,m), clearly S D .3 guarantees

tha t Wait(wtj(j, to)) is true as well. I

L em m a 25 For any wdfii, m) event as it is specified in the SD Protocol, Locked(wdj(i, to)).

P roof: Rule SD.2 requires that Locked(cdj(i, to)) be true for any cdj(i,m) € P W (i,m) .

Rule SD.2 also requires that there does not exist e' such that cdj(i,m) —<• e' —► wdfii, m).

Therefore, Locked(wdj(i,m)) must be true. I

In this protocol a token cannot return to its initiator unless the timestamp in the token

is greater than the time of every sendGrant event that has occurred in the data managers

that are traversed. Because communication is synchronous, the timestamp of any grant

event, sendGrant^^j-., must equal the timestamp of the corresponding recvG rant^^j.

event. Therefore, the rules of the protocol also guarantee that the timestamp in the token is

also greater than the timestamp of any recvGrant event. The fact that the token timestamp

CHAPTER 3. DISTRIBUTED DEADLOCK DETECTION AND RESOLUTION 87

exceeds every recvGrant event timestamp implies that each recvGrant event must happen

before some polling event in the wave. Therefore, condition DT(b) must hold. Lemma 26

proves formally that DT(b) holds for the SD protocol.

L em m a 26 I f polling wave, P W (i ,m) , as specified in the SD Protocol is complete then

DT(b) is true.

P roof: If DT(b) does not hold then there exists some sendG rantp ..^ —► wdj(i,m)

such that recvGrant£)J_T* ~h wtk(i ,m)- P W (i,m) is a complete wave. So, by SD.2, if

sendGrantp^j^ —► wdj(i,m) then IXsendGrantp^r*) < tk(i,m).ts . T^ecvG rantp^-^) <

tk(i ,m).ts as well because communication is synchronous. The timestamp in the to

ken must be less than any wtj(i ,m) € PW(i, m) events in the polling wave, therefore,

T(recvGrant£jy_ Tjt) < tk(i,m).ts < T(wtk{i,m)). This implies wtk(i, m) -f* recvGrant^^-^.

Since both events are in the same process, recvG rant^^^ —► wtk(i,m), contradicting our

original assumptions. I

L em m a 27 I f polling wave, P W (i,m) , as specified in the SD Protocol is complete then

DT(c) is true.

P roo f: If DT(c) doesn’t hold then there exists some sendRelj^-./^ -*■ wtk(i,m) such that

recvRel^_Dj /*• wdj(i, m). Two phase locking protocol requires that a transaction may not

make any requests after releasing its resources. This contradicts Lemma 24 which shows

that Wait(ctj(i, m)). I

T heo rem 8 The completion of a valid wave in the Deadlock Detection - Fully Synchronous

System Protocol satisfies deadlock conditions DT(a), DT(b), and DT(c).

CHAPTER 3. DISTRIBUTED DEADLOCK DETECTION AND RESOLUTION 88

P roof: Directly follows from Lemmas 24, 25, 26, and 27. I

In the case of termination detection we were able to derive a causal termination detection

protocol by substituting a causal timestamp for a real timestamp in Rana’s synchronous

protocol. This technique is also useful in the case of deadlock detection. Instead of using

the real time of the hold message event in the token we will use the vector timestamp of

the recvHold event. Unlike the termination detection protocol, in this protocol the messages

associated with the detecting computation affect the calculation of vector time just as any

message in the underlying computation.

In the causal protocol each transaction, Ti, when it receives a hold message, generates

a token to initiate P W {i,m). The transaction places the vector timestamp of the recvHold

event in the token. The token is sent to DW (Ti,w ti(i,m)). The data manager discards

the token if the data resource is not locked. The data manager will also discard the token

if the vector timestamp of the latest grant message sent by the data manager is greater

than the token timestamp. Otherwise, the token is propagated by the data manager to

IIT(D j,cd j(i ,m)).

An active transaction discards the token. A blocked transaction compares the timestamp

in the token to the vector timestamp of its latest recvHold event. If the timestamp in the

token is greater than or concurrent to the timestamp of the recvHold event, the token is

propagated to the next data manager. Otherwise the token is discarded.

The rules of the causal protocol are identical to the rules of the fully synchronous protocol

except for the timestamp value in the token. The behavior is somewhat different because

there will not be a unique token that completes a circuit. There may be several concurrent

recvHold events, no one of which is “latest” in causal terms. There will, however, be at least

one such transaction that will successfully detect deadlock.

CHAPTER 3. DISTRIBUTED DEADLOCK DETECTION AND RESOLUTION 89

C ausal D eadlock D etection - Synchronous C om m unication

C S D .l wtj(i,m), i ^ j occurs iff

3ctj(i,m) such that Wait(ctj(i, m)) A ctj(i, m) >-* wtj(i, m) A
recvHoldp^^T^ —► ctj(i,m) D V^recvHoldp^jv) ^ tk(i,m).ts .

CSD .2 wdj(i,m) occurs

3cdj(i, m) such that Locked(cdfii, m)) A cdj(i, m) >-»■ wdfii, m) A
sendGrant^.*^ —► cdj(i,m) D ^ (se n d G ra n t^ .,^) ^ tk(i,m).ts.

C SD .3 w tj(j ,m) occurs iff 3recvHoldp(i_(7v such that recvHoldp^jv >-> w tj(j ,m).

C SD 4. The occurrence of wtj(j, m) implies

tk .(j ,m).ts = Vj(r e c v H o l d) where recvHoldpfc_jv »-*• w tj{ j,m) A
tk.(j, m).id = j .

CSD .5 A polling wave, P W (i ,m) is complete when ci,(i, m) occurs.

L em m a 28 For any wtj[i,m) and wdj(i,m) event as it is specified in the Causal Deadlock

Detection - Synchronous Communication Protocol, W ait(w tj(i , m)) and Locked(wdj(i, m)).

P roof: See Lemma 24 and Lemma 25 I

Lem m a 29 I f polling wave, PW {i,m), as specified in the CSD Protocol is complete then

DT(b) is true.

P roof: If DT(b) does not hold then there exists sendG ran t^ .,^ such that send Grant —►

wdfii, m), and recvGrant^ . . , Tk /► wtk(i, m.). PW(i, m) is a complete wave. By Rule CSD.2,

CHAPTER 3. DISTRIBUTED DEADLOCK DETECTION AND RESOLUTION 90

sendGrant^—r,, -* wdj(i, m) implies V ^sendG rant^.,^) < tk(i,m).ts. Vk(r e c v G r a n t ^) <

tk(i,m).ts as well because communication is synchronous. The timestamp in the to

ken must be less than the timestamp of any wt event in the polling wave. Therefore,

Vi^recvGrant^^j*) < tk(i,m).ts < Vk(wtk(i,m)). This implies wtk(i, m) /*• recvGrant^ _ Tk.

Since both events are in the same process, recv G ran t^ .^ —*■ wtk(i, m) contradicting our

original assumptions. I

Notice the striking similarity between the proofs of Lemmas 26 and 29. In fact, they

are essentially identical.

The rules SD.l and CSD.l governing the transmission of a token from a transaction to a

data manager are the same in the fully synchronous protocol and the causal protocol. This

generic rule specifies that wtfii, m) may not occur unless Wait(ctj(i, m)). The requirements

of two-phase locking in conjunction with this rule guarantees that DT(c) cannot be violated

regardless of whether a real timestamp, a vector timestamp, or no timestamp is present in

the token.

Lem m a 30 I f polling wave, P W (i,m), as specified in the CSD Protocol is complete then

DT(c) is true.

P roof: See Lemma 27. I

T heorem 9 The completion of a valid wave in the Causal Deadlock Detection - Syn

chronous Communication Protocol satisfies deadlock conditions DT(a), DT(b), and DT(c).

P roof: Follows directly horn Lemmas 28, 29 and 30. I

The deadlock conditions specified by DT guarantee that if the conditions are met then

the set of transactions traversed by the token are in fact deadlocked at the polling wave

events. The polling wave essentially identifies a set of system events for which deadlock can

be said to hold. These conditions say nothing about whether a protocol that meets them

will in fact detect any deadlock that occurs. The following theorems prove that if deadlock

CHAPTER 3. DISTRIBUTED DEADLOCK DETECTION AND RESOLUTION 91

occurs then some transaction in the deadlocked set will instigate a complete polling wave

in the SD and CSD protocols.

Theorem 10 I f a set Sj{x) is deadlocked then a complete wave P W (j ,x) as specified by

SD will occur.

Proofs If a set Sj(x) is deadlocked then recvHold^^y. for some Dk has occurred for every

transaction T, 6 Sj(x). In a fully synchronous system the times of the recvHold events

of the members of Sj(x) are totally ordered. Consider Tj, where T(recvHold£jm_jv) >

T(recvHold£>t _ Ti) for all T,- E Sj(x), i ^ j . Rules SD.3 and SD.4 specify that Tj will

generate a token, tk(j, x) such that tk(j, x).ts = T(recvHold£>m_x,)- T(recvHoldJjm_ Tj) <

T(wtj(j , x)),&nd T(w tj(j ,x)) < T(cti(j, x)), for all T, E Sj(x). Therefore, recvHold^^jr -»

cti(j,x). Because tk(j ,x) .ts > T^reo/Hold^_Ti), and Wait(cti(j,x)), for all Tj € Sj(x),

Rule SD.l will be satisfied for every Tf- E Sj(x), i j .

^ re c v H o ld ^ ^ .) < tk(j ,x) .ts implies T(sendHold£,k_ 7’l) < tk(j ,x) .ts , for all trans

actions in the deadlocked set. The latest hold message event in Dk must be preceded

by the latest grant message in D*. Therefore, for all Z, ^ s e n d G r a n t^ ^) < tk(j ,x) .ts ,

and ^ sen d G ran t^ ^ x ,) < tk(j ,x) .ts < T(wtj(j, x)). This implies that sendGrant^^x, -»

cdk(j,x), and Locked(cdk(j,x)). Rule SD.2 will be satisfied for each Dk E Sj(x).

Because Sj(x) is deadlocked a cycle will exist. The token will eventually return to Tj,

ctj{j,x) will occur, and the P W (j ,x) will be complete (Rule SD.5). I

A similar argument can be made for the causal protocol. The proof differs somewhat

because the vector timestamps of the recvHold events are not totally ordered as the physical

timestamps are in a fully synchronous system

Theorem 11 I f a set Sj(x) is deadlocked then a complete wave P W (j ,x) as specified by

CSD will occur.

Proof: If a set Sj(x) is deadlocked then recvHold^_x, f°r some Dk has occurred for every

CHAPTER 3. DISTRIBUTED DEADLOCK DETECTION AND RESOLUTION 92

transaction T, € Sj(x). In an asynchronous system, the vector timestamps of the recvHold

events of the members of Sj(x) are partially ordered. There will be a set of one or more

transactions such that the timestamps of the members of this set will be greater than, or

concurrent to, the timestamps of every member of Sj(x). Consider one member of this

set, Tj, where ^ ’(recvH old j^ .^) ft V ^recvH oldj^^) for all T, € Sj(x), i ^ j . Rules

CSD.3 and CSD.4 specify that Tj will generate a token, tk(j, x) such that tk(j ,x) .ts =

V,(recvHold£>m_ T.). recvHold^,m_ r . wtj(j ,x) , so V,(recvHoldkm_ Tj) < Vj(wtj(j,x)).

Therefore, for all Tj € Sj(x), Vj(wtj(j,x)) < x)). Therefore, recvHold^^y. -*

cti(j,x). Because tk(j ,x) .ts ft Vi(recvHoldDjk_xi), and Wait(cti(j,x)) for all Ti £ Sj(x),

Rule CSD.l will be satisfied for every T; £ Sj(x), i ^ j .

If tk(j, x).ts ft Vi(recvHold£)k_ 7’l) for all transactions in the deadlocked set, then tk(j, x).ts

ft T(sendHoldofc_j>.). The latest hold message event in Dk must be preceded by the latest

grant message in Dk- Therefore, for all I, tk(j,x).ts ft ^ (se n d G ra n t^ .,^). This implies

that sendGrant£>k_ T| —*■ cdk(j,x). Otherwise tk(j,x).ts < ^ (s e n d G r a n t ^). Therefore

Locked{cdk{j,m)). Rule CSD.2 will be satisfied for each Dk G Sj(x).

Because S j(x) is deadlocked a cycle will exist. The token will eventually return to Tj,

c tj(j ,x) will occur, and the P W (j ,x) will be complete (Rule CSD.5). I

3 .1 .4 A synchronou s FIFO C om m unication P rotoco ls

Synchronous communication imposes a performance burden on a distributed system. Hav

ing it available can simplify the description of the problem and its solution. In termination

detection as we relaxed the communication restrictions the protocols became more complex.

In deadlock detection it turns out that there is no benefit from synchronous communica

tion. The protocols described in Section 3.1.3 do not change when defined for a system that

allows asynchronous communications. The requirement that well ordered message passing

be preserved is still necessary to design straightforward protocols.

The following lemmas illustrate the only changes in the proofs that are required to show

CHAPTER 3. DISTRIBUTED DEADLOCK DETECTION AND RESOLUTION 93

that SD and CSD perform correctly in a system with asynchronous FIFO communications.

The lemmas apply without change to both SD and CSD.

Lem m a 31 I f polling wave, PW(i, fn), as specified in the SD or CSD Protocol is complete

then DT(b) is true.

Proof: If DT(b) does not hold then there exists sendGrant^-,^ such that sendGrant^^^ -

wdj(i,m) and recvG rant^,.^ -f* wtk(i,m). By Rule CSD.2, wdj(i,m) occurs if and only

if Locked(cdj(i,m)). This implies rec v R e l^ .^ cdj(i ,m) and HT(Dj) = Tk. The rules

that govern the token’s travel require cdfii, m) —̂ wdfii, m) —*• ctk{i, m). Since communica

tion is FIFO, and se n d G ra n t^ ^ —*• wdfii, m), it must be the case that sendGrantjr,^^ —*

recvGrant^^x^ —► ctj(i,m), contradicting our original assumption. I

L em m a 32 I f polling wave, PW(i, m), as specified in the SD or CSD Protocol is complete

then DT(c) is true.

Proof: See Lemma 27. I

T heorem 12 The completion of a valid wave in the SD or CSD Protocols satisfies deadlock

conditions DT(a), DT(b), and DT(c).

P roo f: Follows directly from Lemmas 28, 31 and 32. I

3 .1 .5 D ead lock R esolu tion

The preceding arguments have treated deadlock as a static condition, with many features

in common with termination. Deadlock differs from termination in one important aspect.

The point of identifying a set of deadlocked processes is to break the deadlock so that the

computation may proceed. The standard method used to resolve the deadlock is to force

CHAPTER 3. DISTRIBUTED DEADLOCK DETECTION AND RESOLUTION 94

one of the transactions in the deadlocked set to abort. When a process aborts it releases

any resource it holds, and any pending requests are cancelled. One way to resolve deadlock

would be to abort all the processes involved in the deadlock. This wouldn’t be the most

efficient solution. To minimize the performance impact of this procedure most protocols

attempt to abort a single process in the deadlock cycle.

One obvious way to accomplish this is to structure the protocol so that only one member

of the deadlock cycle detects deadlock. Then that member may either abort itself, or direct

some other member of the cycle to abort. Sinha and Natarajan use transaction identification

numbers to designate, a priori, the unique transaction in a cycle that will detect deadlock.

Because there is no assurance that the deadlock cycle will be complete when the token from

the highest priority transaction begins its traversal, it is necessary to save a record of this

token in the probeQ's of the transactions traversed by the token. Otherwise record of the

token would be lost when an active transaction is encountered. We have noted the difficulty

caused by saving this state information.

In a system that has a global clock it is easy to identify a unique process to detect dead

lock. The token timestamps of all the transactions in a deadlocked set are totally ordered.

By specifying that the latest token prevails, the fully synchronous protocol guarantees that

deadlock is detected by a unique process.

In our causal protocol it is possible that more than one process will detect deadlock

because of the concurrency of the timestamps of the hold replies. It is necessary to add

information other than the timestamp to the token to insure that a unique process is chosen

to be aborted. There are two possibilities. First, as the token travels through the deadlocked

set the process id of each transaction is collected. Each transaction that detects deadlock

will collect an identical set of these transaction id’s. When a polling wave completes, the

detecting transaction will send an abort message to some member of the deadlocked set

based on some predetermined criteria, such as lowest id number. This will potentially

result in several processes sending an abort message. However, a unique process will abort.

CHAPTER 3. DISTRIBUTED DEADLOCK DETECTION AND RESOLUTION 95

A second possibility that utilizes the vector timestamps of the transactions and does

not require the transmission of any abort messages, requires that the token collect process

ids for any transaction whose timestamp is concurrent to the timestamp in the token. In

this manner, each transaction that detects deadlock will be aware of the other transactions

which could detect deadlock. Based on its process id a transaction that detects deadlock

may then decide whether to abort or not unilaterally. So, if transaction Tk detects deadlock,

and the returning token contains transaction id’s k + 1 and k+x, then Tk knows that it must

abort. On the other hand, if any transaction id in the token is less than k, then transaction

Tk knows that some other member of the deadlocked set will detect the deadlock and abort.

Our causal definition of deadlock simplifies the resolution process. The other protocols

we discussed ran into difficulty when attempting to resolve deadlock because non-local state

information was retained at the processes. Aborting a transaction required cleaning up any

state information that referred to the aborted transaction. This cleanup activity imposes

overhead on the system and complexity on the protocol. In these causal protocols a self

designated process aborts. There is no need for messages to go to an abort victim, and there

is no need to clean up obsolete state information. Because interaction between a transaction

and a data manager during an abort is very similar to that which occurs during a regular

release, major changes in the protocol are not needed to perform resolution. Consequently,

the correctness arguments for these protocols need little modification.

The first protocol we will present that performs deadlock resolution is a modification of

the Fully Synchronous System protocol. This protocol uses synchronized real time clocks

and allows asynchronous, FIFO communication. The transaction with the latest timestamp

detects deadlock and aborts. The second protocol we will present is a causal protocol which

substitutes vector clocks for real time clocks in the synchronous deadlock detection and

resolution protocol. Because there may not be a unique latest timestamp, the token must

be modified to carry extra information.

Before we formally define these modified protocols, it is necessary to define appropriate

CHAPTER 3. DISTRIBUTED DEADLOCK DETECTION AND RESOLUTION 96

abort events.

• sendAbortXj—Dj - transmission of an abort request from T,- to Dj

• recvAbort7'i_Dj - receipt of abort request from T, at Dj

• asi - start event of abort phase in T,-

When a transaction, T„ is in an abort phase it will send release messages to the data

managers responsible for the resources T, holds. A sendAbort message will also be sent to

the data manager responsible for the resource for which T,- is waiting. Once these messages

have been sent, T, will terminate.

We now define the following predicates:

• Abort(ei) iff as,- —*■ e,-

• Queuej(T{, e ') iff sendHold^ - . 7-, —*■ ej A sendGrantp^j-. ■/* e'- A recv Abort £>._Xj ej

Synchronous Deadlock Detection and Resolution - Asynchronous FIFO Com
m unication

S D R .l wtj(i, occurs iff

3ctj(i, m) such that Wait(ctj(i, m)) A ctj{%, m) >-+ wtj(i, m) A
recvHoldjjj^jv -*■ ctj(i,m) D T(recvHold|)A_Xj) < tk(i, m).ts A
-1 Abort(ctj(i,m)).

SD R .2 wdj(i, m) occurs

3cdj(i,m) such that Locked(cdj(i, m)) A cdj(i,m) i-> wdj(i, m) A
sendGrantjj) x* -*• cd j (i , m) D l^sendG rant^^x,,) < tk (i ,m) . t s .

S D R .3 w tj(j ,m) occurs iff BrecvHold^—Xj such that recvHold^_xk m))-

S D R .4 The occurrence of wtj(j ,m) implies

tk.(j,m,).ts = T(recvHold£jt _x,) where recvHold£>Jt_xJ •“* wtj U i m) A
tk.(j, m).id = j.

CHAPTER 3. DISTRIBUTED DEADLOCK DETECTION AND RESOLUTION 97

SD R.5 A polling wave, P W (i,m) is complete when ct,(i,m) occurs.

SD R .7 as,- occurs iff ct,-(t, to) occurs.

SD R.8 The occurrence of as,- implies

Vy such that HT(Dj , wdfii, m)) = T,, as, —*■ sendRelj-._Dj A
if sendHold^_r . —► cti(i,m) then as,- —<• sendA bortr,-,^.

We now show that this modified protocol meets the deadlock conditions specified in DT.

Lemma 33 For any wtj(i, m) and wdfii, m) event as it is specified in the Synchronous

Deadlock Detection and Resolution - Asynchronous FIFO Communication Protocol;

Wait(wtj(i,m)), and Locked(wdj(i, to)).

Proof: Neither Rule SD.l or Rule SD.2 are modified in SDR so that ->Locked(wdj(i, to)),

or -iWait(wtj(i, to)), for any polling event. Therefore DT(a) is still satisfied. I

Lemma 34 I f polling wave, P W (i,m) , as specified in the SDR Protocol is complete then

DT(b) is true.

Proof: The argument used in Lemma 31 to show DT(b) is dependent on the requirements

of Rule SD.2 and the rules governing the behavior of the token. These rules are unaffected

by the modifications of SDR, therefore DT(b) must hold. I

Lemma 35 I f polling wave, PW (i, to), as specified in the SDR Protocol is complete then

DT(c) is true.

Proof: During normal execution of a transaction, Rule SD.l and the requirements of two-

phase locking guarantees that sen d R e lj^ ^ to) for any transaction T*. Therefore,

DT(c) holds when a transaction completes normally. Rule SDR.1 is modified to accom

modate aborting transactions. This rule specifies that wtj(i ,m) can occur if and only if

-iAbort(ctj(i, to)). This means that it is not possible for a s —*■ wtfii, to). Any release

CHAPTER 3. DISTRIBUTED DEADLOCK DETECTION AND RESOLUTION 98

instigated by the abort occurs after asi, by Rule SDR.8 . Therefore, it is impossible for

as{ —*■ sendRel7v_Djk —► wtfii, m) for any k. Hence, DT(c) must hold. I

Theorem 13 The completion of a valid wave in the Synchronous Deadlock Detection -

Asynchronous FIFO Communication Protocol satisfies deadlock conditions DT(a), DT(b),

and DT(c).

Proof: Directly follows from Lemmas 33, 34, and 35. I

The token used in the following causal protocol has three fields:

• tk(i,m).ts = timestamp of latest hd event in T,

• tk(i,m).id = Transaction identifier

• tk(i,m).set = set of transaction identifiers

Causal Deadlock D etection and Resolution • Asynchronous FIFO Com m u
nication

CSD R.1 w tf i i ,m) , i j occurs iff

3ctfii, m) such that Wait(ctfii, m)) A ctfii, m) wtfii, m) A
recvHoldofc_ Tj —*• ctj(i,m) 3 V^recwHoldjj^j-) tk(i,m).ts. A
- \ Aborted f i i , m)).

C SD R .2 wdfii, m) occurs

3cdfii, m) such that Locked(cdfii, m)) A cdfii, m) »-* wdfii, m) A
sendGrantj^.*^ -+ cdfii, m) 3 V ^sendG rant^.,^) ? tk(i,m).ts.

C SD R .3 w tj(j ,m) occurs iff 3recvHold{j,lk_jv such that recvHold^ _ rjk >-* wtfij, m)).

CSD R 4. The occurrence of wtfij , m) implies

tk .(j ,m).ts = Vj(recvHold£)t _ Tj) where r e c v H o l d ^ i - c w tfij ,m) A
t k \ j ,m) . id = j A
tk.(j, m).set = 0 .

CHAPTER 3. DISTRIBUTED DEADLOCK DETECTION AND RESOLUTION 99

C SD R .5 A polling wave, P W (i ,m) is complete when ct,(i, m) occurs.

C S D R . 6 The occurrence of wtj(i ,m) where VyCrecvHoldjr^-jv) || tk(i ,m).ts implies

tk(i, m).set = tk(i, m).set U j.

C S D R .7 as,- occurs iff
ctfii,m) occurs A
i < j for all j € tk{i, m).set.

C S D R . 8 The occurrence of as,- implies

Vj such that HT(Dj, wdj(i, m)) = T,, as,- —* sendRelj>._Cj A
if se n d H o ld ^ ^ —*• ct,-(t,m) then as,- —*■ sendA bortr^^ .

The same arguments used to show that SDR satisfies DT apply to CSDR.

T heo rem 14 The completion of a valid wave in the Causal Deadlock Detection and Reso

lution - Asynchronous FIFO Communication Protocol satisfies deadlock conditions DT(a),

DT(b), and DT(c).

P roof: Directly follows from Lemmas 33, 34, and 35. I

It is now necessary to show that execution of these modified protocols result in detec

tion and resolution of deadlock. Theorem 15 shows that the desired result holds for the

synchronous protocol SDR.

T heo rem 15 I f a set Sj(x) is deadlocked then a complete wave P W (j ,x) as specified by

SDR will occur, and deadlock of Sfix) will be resolved.

P roof: If a set Sj(x) is deadlocked then recvHold^*—i; f°r some Dk has occurred for

every transaction 2; G S. Consider Tj, where r(recvHold£,m_ Tj) > TfrecvHoldx)*—̂)

for all Ti 6 Sj(x), i ^ j . Tj will generate a token, tk(j ,x) such that tk(j ,x) .ts =

T(recvHold£,m_ 7’j) (Rules SDR.3 and SDR.4). T(RH omTj) < T(cti(j, ar)) for all Tj 6 Sj(x).

CHAPTER 3. DISTRIBUTED DEADLOCK DETECTION AND RESOLUTION 100

Therefore, recvHold^^r. -+ cti(j, x), and Wait{cti{j,x)). For Rule SDR.l to be sat

isfied for all Tj € Sj(x) ,i 56 j , ->Abort(cti{j,x)) must also hold. Abort(cti(j,x)) im

plies cfj(i,y) —► cti(j,x), by Rule SDR.7. This implies that the latest recvHold event

in Tj, recvHold£,fc_>T., must have a later timestamp than recvHold£m_,Tj. Contradict

ing our hypothesis about T(recvHold£>m_ j j). Because tk(j ,x) .ts > T(recvHold|)Jt_ j ’.),

Wait(cti(j,x)), and -iAbort(cti(j,x)) for all Tj € •S'j(x), Rule SDR.l will be satisfied for

every Tj 6 Sj(x), i ± j .

The remainder of the argument is the same as that given in Theorem 10. We repeat it

here for completeness.

If T(recvHold£)(t_ 2’.) < tk(j ,x) .ts holds for all transactions in the deadlocked set, then

T(sendHold£)|k_>r.) < tk(j,x).ts. The latest hold message event in Dk must be preceded

by the latest grant message in Dk- Therefore, for all /, T(sendGrant£>k_vr() < tk(j,x).ts ,

and T(sendGrant£,k_ r() < tk(j ,x) .ts < T(w t,(j ,x)) . This implies that sendGrantj^—r, —*•

cdfc(j,i), and Locked(cdk(j,x)). Therefore, Rule SDR.2 will be satisfied for each Dk €

Sj(x).

Because Sj(x) is deadlocked a cycle will exist, and the token will eventually return to

Tj. By Rule SDR.5, ctj(j,x) will occur, P W (j ,x) will be complete, and deadlock will be

detected. Completion of P W (j ,x) implies the occurrence of asj, the release of resources

held by Tj , and the removal of Tj from the queue of the data manager of the resource

for which Tj is waiting (Rules SDR.6 and SDR.7). Therefore, the deadlock detected by

P W (j ,x) will be broken. I

The following argument that the CSDR protocol will detect deadlock parallels Theorem

11 very closely.

T heorem 16 I f a set Sj(x) is deadlocked then a complete wave P W (j ,x) as specified by

CSDR will occur, and deadlock of Sj(x) will be resolved.

P roof: If a set Sj(x) is deadlocked then recvHold£jf c for some Dk has occurred for

CHAPTER 3. DISTRIBUTED DEADLOCK DETECTION AND RESOLUTION 101

every transaction T,- E Sj(x). In an asynchronous system the vector timestamps of the

recvHold events of the members of Sj(x) are partially ordered. There will be a set, Sj(x)

of one or more transactions such that the timestamps of the members of this set will be

greater than, or concurrent to, the timestamps of every member of Sj(x). Consider the

member of this set, Tj, such that j < i for all Ti E 5 '(i) , i ^ j . Tj will generate a

token, t k (j , x) such that tk(j ,x) .ts = V,(recvHold£)m_Tj)(Rules CSDR.3 and CSDR.4).

recvHold£)m_ 3v -*■ w tj(j ,x) , so V^(recvHoldom_*y) < Vj(wtj(j,x)). Therefore, for all

Ti 6 Sj(x), Vj(recvHold£,m_ 7v) < Vj(wtj(j,x)) < Vi(cti(j,x)), and r e c v H o l d ^ -►

cti{j,x), and Wait(ctj(i,x)). For Rule CSDR.l to be satisfied for all T,- E S j(x) , i ^ j ,

->Abort(cti(j,x)) must also hold. AboTt(ct{(j,x)) implies ct,(t, y) —► cti(j,x), by Rule

CSDR.7. This implies that the latest recvHold event in Ti, recvHold^_r ., must have a

timestamp concurrent to recvHoldpm_*jv, and t < j . This contradicts our original assump

tions. Therefore, tk (j ,x) .ts V ^ r e c v H o l d ^), and Wait(cti(j,x)) A->Abort(cti(j,x)) for

all Ti E S. Rule CSDR.1 will be satisfied for every T,- E Sj(x), i ^ j .

If tk (j ,x) .ts Vi(recvHoldjr)fc_ r .) holds for all transactions in the deadlocked set, then

tk (j ,x) . ts ft V^sendHoldjj^y.). The latest hold message event in Dk must be preceded

by the latest grant message in Dk- Therefore, for all I, tk(j ,x) .ts V ^sendG ran tj^^).

This implies that sendGrant£)fc_x1 x). Otherwise tk(j ,x) .ts < V ^sendG ran t^ .^).

Therefore Locked(cdk(j, m)). Rule CSDR.2 will be satisfied for each Dk 6 Sj(x).

Because Sj(x) is deadlocked a cycle will exist, and the token will eventually return to

Tj. By Rule CSDR.5, ctj(j,x) will occur, P W (j,x) will be complete, and deadlock will be

detected. Completion of P W (j ,x) implies the occurrence of asj, the release of resources

held by Tj, and the removal of Tj from the queue of the data manager of the resource for

which Tj is waiting (Rules CSDR.6 and CSDR.7). Therefore, the deadlock detected by

P W (j ,x) will be broken. I

The causal protocols we presented in this chapter illustrate the advantage of using

local state and causal reasoning to analyze and solve dynamic distributed computational

CHAPTER 3. DISTRIBUTED DEADLOCK DETECTION AND RESOLUTION 102

problems. In Chapter 4 we will consider the problem of optimistic recovery. In contrast to

the problems of distributed termination and deadlock detection, consideration of the causal

order of events has always been part of the solution to the problem of optimistic recovery.

The interesting aspect of this problem is the effect that process failure and rollback has on

the causal relation.

C hapter 4

O ptim istic Recovery

4.1 Introduction

An important consideration in the design of distributed systems is how to make them

resilient to failure. The use of checkpoints on stable storage and rollback-recovery protocols

are well established techniques for dealing with process failures within a distributed system

[40, 41, 42, 43, 44]. When failure occurs a rollback protocol uses checkpoints and message

logs to return the system to a consistent global state. By consistent global state we mean

that if the receipt of a message has been recorded in the state of some process then the

event of sending that message must also be recorded.

The strategies used in existing rollback-recovery protocols fall into three broad cate

gories. Pure checkpointing schemes use process synchronization or some variation of global

snapshots to construct a series of consistent checkpoints to be used as a basis for recovery

[40, 45, 41]. Pessimistic message logging protocols require that each message is logged to

stable storage when it is received [42, 43]. This technique makes recovery easier, but it

extracts a performance penalty because each communication must be synchronized with

the log operation. Optimistic message logging protocols avoid the need for synchronization

by taking checkpoints asynchronously and logging messages asynchronously with commu

103

CHAPTER 4. OPTIMISTIC RECOVERY 104

nication. This method complicates the recovery process because messages can be lost when

a process fails. The potential loss of messages, due to failure, makes it is necessary to iden

tify dependency relationships between process states induced by communication, so that a

consistent system state can be constructed after failure [44, 46, 47, 48].

We will only consider optimistic recovery here. The synchronization required by pure

check-pointing and pessimistic message logging protocols makes the order of events irrele

vant to the design of such protocols. On the other hand, optimistic recovery is only possible

because causal dependence imposes a partial order on events. Because identifying the causal

partial order is essential to performing optimistic recovery, vector clocks are useful in de

signing these protocols. In this chapter we will present three causally based protocols which

use vector clocks to perform optimistic recovery.

4.2 Previous Research

Restoration of a distributed computation after failure requires the use of information saved

to stable storage by checkpoints of process state and logging of messages. This informa

tion is used to recover as much execution history as possible in the failed process. Strom

and Yemini [44] developed the first rollback-recovery protocol that did not require synchro

nization during check-pointing or synchronization of message logging with communication.

In their protocol processes make periodic checkpoints of their state onto stable storage.

The check-pointing activity of one process occurs independently of the actions of other

processes. The receipt of incoming messages is also logged to volatile storage, and period

ically the message logs axe moved to stable storage. Optimistic recovery is characterized

by this asynchronous use of stable storage. Saving state and message logs to stable storage

asynchronously reduces the performance impact of the rollback-recovery protocol on the

failure-free execution of the system. However, more work is required to restore the com

putation after failure. Presumably, the time between failures is large, and we seldom incur

CHAPTER 4. OPTIMISTIC RECOVERY 105

the extra restoration expense.

In a system operating under an optimistic recovery protocol, a failed process, upon

recovery from failure, has its state restored to the state saved in the latest checkpoint

in stable storage. The message logs saved to stable storage are used to reconstruct the

process execution that occurs after the restored checkpoint. Because message logging to

stable storage is not synchronized with message receipt, some incoming messages may not

be in the stable logs after recovery. If this is the case, it is not possible to reconstruct

the entire execution history of the failed process from the logs in stable storage. As far as

the recovery process is concerned, any event that cannot be recovered using the stable logs

never occurred. As a result, the state of the recovering process may be inconsistent with

the states of the non-failed processes. This inconsistency occurs if any non-failed process

has received a message from the failed process, and the corresponding transmission is not

part of the recovered execution history.

One of the main activities of the rollback-recovery protocol is to return the system to a

consistent state. This is done by identifying orphan messages and orphan states. A message

is an orphan if it has been received by a non-failed process, but the record of its transmission

has been lost by the sender due to failure. Any process state that causally depends on an

orphan message is considered an orphan state. The existence of orphan states causes the

global state of the distributed computation to be inconsistent. To return the system to a

consistent state, the effect of the orphan messages must be eliminated from the execution

of the system by “rolling back” the state of each non-failed process to before the occurrence

of an orphan state.

Strom and Yemini use causal dependence to identify the states that must be eliminated

through rollback. The system model they use to define causal dependence employs state

intervals to describe process execution. A process history is divided by the receipt of

messages in the process. In this model the receipt of the nth message in a process p,- begins

state interval s". The notation s” signifies the nth state interval in p,-. During a state

, CHAPTER 4. OPTIMISTIC RECOVERY 106

n+1
S i

nS

P P P

Figure 4.1: State Intervals

interval, p, may or may not send messages to other processes. State s" persists until the

next message is received by p,-, causing the state to change to s"+1. Figure 4.1 illustrates

this system model. The receipt of message mi begins s|*, the nth state interval in p,-. State

interval s" +1 begins with the arrival of m2 .

Their rollback algorithm determines which states must be rolled back in case of failure

by identifying dependency relationships between process state intervals. State interval s”

is said to depend on s™, sj* -< s", if p,- receives a message from pj which was sent during

s f , and the message begins s". Referring again to Figure 4.1, s j*- 1 -< s", because of the

message m\. Depends is a transitive relation so in this example s™- 1 -< sj1, and s -1 -< sjj1,

therefore, s j*- 1 -< s™.

When failure occurs in a process, the state interval begun by an unlogged message cannot

be recovered from the information in stable storage. These state intervals are identified as

orphan state intervals, and the messages that were sent during orphaned state intervals are

orphan messages. If sf is an orphaned state interval in failed process p,-, then any state

interval 3 'k in an active process for which s|* -< s'k is also orphaned. Their protocol uses the

CHAPTER 4. OPTIMISTIC RECOVERY 107

depends relation to identify and rollback orphaned state intervals.

The protocol specifies that a vector of state interval indices called a dependency vector is

maintained by each process. The dependency vector is attached to every outgoing message.

The dependency vector attached to an incoming message is used by the process receiving

the message to update its own dependency vector. The receipt of a message by process p,

causes p,- to increment the itfl index of its dependency vector by one. Each of the remaining

indices are set to the maximum of the current index of the local vector and the incoming

index of the dependency vector attached to the message.

The dependency vectors maintained in each process and transmitted with each message

are used to identify the causal relationships between process states as defined by By

comparing the dependency vector of one state interval to the dependency vector of another

state interval, the protocol can determine whether the depends relation holds between the

two states. In this way dependency vectors can be used to identify orphan states.

When a process recovers from failure, it sends a recovery message, containing the index of

the latest state interval that it is able to recover from stable storage, to every other process.

Non-failed processes can determine if their state causally depends on one of the states lost

by the failed process by comparing the state interval index in the recovery message to the

corresponding index in its own dependency vector. If the state interval index associated

with the failed process in the dependency vector of the non-failed process is greater than the

last recovered state interval index communicated in the recovery message, then the current

state of the non-failed process has been orphaned and must be eliminated through rollback.

When a process rolls back it retrieves the latest check-pointed state that is not an

orphan. The latest non-orphan checkpoint is found by comparing the dependency vectors

saved in the checkpoints to the state interval index in the recovery message. Once the

checkpoint has been restored, messages are replayed from the message log until an orphan

message is reached. At this point, the process acts as if it has failed and sends a recovery

message containing its last recoverable state index to every other process. The system is

CHAPTER 4. OPTIMISTIC RECOVERY 108

returned to a consistent state when every process has rolled back to a non-orphan state.

In a failure-free system each state interval index of a process is unique. The isomorphism

between the causal partial order, and the ordering of dependency vectors depends on

the uniqueness of the state interval indices. In this protocol, process failure and rollback

result in the reuse of state interval indices. Consequently, in a system recovering from failure

the isomorphism may no longer hold, and dependency vectors alone are not sufficient to

identify the causal relationship between process states.

For example, consider a process, pi, which fails during state interval Sk- The state of p,

is recovered, up to and including s&_m, through the use of checkpoints and message logs.

When pi resumes execution, it will pass through state intervals s*_m+1 ,s*_m+2 , A

message sent by p,- before failure from state interval Sk-m+i will have the same itfi index in

its attached dependency vector as a message sent by p; during the Sk- m+ 1 state interval after

recovery. The dependency vectors attached to these messages cannot be used to identify

the states on which these messages causally depend. The first message causally depends

on a state that no longer exists, and is, therefore, an orphan. The second message causally

depends on an active state, and therefore, is a valid message. Because the ith state index in

the attached dependency vectors are identical, it is impossible to distinguish between them.

It is possible for messages originating in orphan states to be in transit during the recovery

process. If such a message arrives at a process that has already rolled back, it must be

discarded, or it will cause the system to become inconsistent. On the other hand a correct

protocol should not discard any non-orphan messages. Therefore, it is necessary for the

protocol to be able to distinguish between “slow” orphan messages and valid messages.

Because of duplicated state interval indices, the dependency vectors attached to messages

do not convey enough information to make this distinction.

Strom and Yemini deal with this problem by assigning an incarnation number to every

process. Every time a process restarts after failure or rolls back it must increment its

CHAPTER 4. OPTIMISTIC RECOVERY 109

incarnation number. The dependency vector actually becomes a vector of ordered pairs

^ (^0) /^o)? (^ii A*i)> • • •»(W —1> PN—l) ^ i

where t,- is the incarnation number of p,- during state interval p,-. Each process maintains

an incarnation start table which tracks the first state interval for each incarnation of each

process. Using this table and the dependency vector of an incoming message, orphan

messages can be distinguished from non-orphan messages.

Once rollback is complete, the recovery process must insure that non-orphan messages

that are lost due to failure and rollback are regenerated. Strom and Yemini’s algorithm

accomplishes this with a third set of indices that tracks the expected sequence number of

incoming messages on a channel. If a process receives a message number that is higher than

expected, some messages have been lost, and the process requests their retransmission from

the sender. In some cases this method will not result in the regeneration of lost messages.

Figure 4.2 illustrates a case where this occurs. Part (a) of the figure shows the failure of po

after sending message m3 . Part (b) shows the system after it has returned to a consistent

state. If pi never sends another message to po, po will not be made aware that message mt

was lost and will not request its retransmission.

Strom and Yemini’s protocol illustrates the importance of causal dependence to opti

mistic recovery. It also shows how dependency vectors are useful for identifying the relevant

causal relationships. However, process failure and rollback destroys the isomorphism be

tween dependency vectors and the causal partial order, thus limiting the usefulness of the

dependency vectors. The addition of per-process incarnation numbers to the dependency

vectors is necessary to overcome this difficulty.

The use of per-process incarnation numbers provides an additional benefit in that it en

ables this protocol to accommodate multiple failures, however, it also impairs performance.

Because each process must be made aware of every new incarnation number, each process

CHAPTER 4. OPTIMISTIC RECOVERY 110

(»)

Po Pi P2

A

m i

(b)

Figure 4.2: Example - Failure to Recognize Lost Messages

must communicate with every other process during rollback. Another result of augmenting

the dependency vector with individual incarnation numbers is that only the (state inter

val index;incarnation number) pair can be used to determine the state to which a process

should roll back. This can lead to multiple rollbacks per failure. To see this consider the

sample execution shown in Figure 4.3.

Process po sends two messages, mj and m 2 before failure. Because no checkpoint was

CHAPTER 4. OPTIMISTIC RECOVERY 111

PO PI P 2

(1,0)

(1,0)

(1,0) . . - - *
< (0 , 0), (0 , 2), (0, 1) :

< (0 , 0) , (0 ,0) , (0 , 1) >

y ^ failure

< (0, 0), (0 , 1), (0 , 0) >

m i

< (0 , 0), (0 , 0), (0 , 0) >

recovery m essage

a p p lic a tio n m essage

Figure 4.3: Example - Multiple Rollback

taken in po, the record of transmission of mi and m2 cannot be recovered from stable

storage. When it recovers from the failure, po sends two recovery messages containing the

latest state interval recovered and its current incarnation number. In this case, po recovers

state interval Sq and sets its current incarnation number to 1. The recovery message to P2

causes P2 to roll back to before the receipt of m2. P2 will send a recovery message to p\

containing the pair, (1,0), indicating that it has rolled back to state interval s°. Upon the

receipt of this recovery message p\ will roll back before the receipt of m3 . The recovery

CHAPTER 4. OPTIMISTIC RECOVERY 112

message from p? will not cause pi to roll back before the receipt of m i, even though the

state of of pi after the receipt of mi is orphaned by the same failure that caused P2 to roll

back.

When pi receives the recovery message from po, it will roll back again. The multiple

rollback of pi occurs because P2 only communicates its own (state interval index;incarnation

number) pair in its recovery message. Unfortunately, to maintain the per-process incarna

tion number correctly, this is a necessary restriction on process behavior.

Sistla and Welch [47] developed an optimistic recovery protocol that also uses the state

interval model and dependency vectors composed of state interval indices to identify or

phan states. In their approach, a process, upon restart after failure, communicates its last

recovered state index to every other process. When a non-failed process receives a recovery

message from a failed process, it sends the state interval of the latest state that does not

causally depend on the lost state of the failed process to every other process. Each pro

cess gathers the dependency information from all other process into a local vector. When

the vector is completed, the process replays messages from the stable log until they run

out, or a message with an attached dependency vector greater than the vector constructed

during rollback appears. As the messages are replayed the process repeats its execution,

including the sending of any messages that were previously sent. Duplicate messages are

discarded upon arrival. A duplicate message is identified by comparing the dependency

vector attached to the message to the value of the receiving process’ current dependency

vector.

The communication of every process with every other process accomplishes two purposes.

First, a consistent state is recovered based on the dependency vectors constructed at each

site. Second, all orphan messages are flushed out of the system before recovery is complete

by the transmission of recovery messages along every channel. This eliminates the need for

incarnation numbers to be used for distinguishing slow orphan messages from non-orphan

messages. Lost messages are recovered by having each rolled back process retransmit all

CHAPTER 4. OPTIMISTIC RECOVERY 113

messages. Dependency vectors are used to identify duplicate messages and discard them.

Both of the protocols discussed here have their own strengths and weaknesses. Strom

and Yemini’s protocol will accommodate multiple failures during the recovery process. This

does not come without a cost. Their technique has the potential to cause multiple rollbacks

per failure which would cause a high message overhead. In the best case, 0 (N 2) messages

are required per failure. Sistla and Welch’s protocol can guarantee that no process rolls back

more than once per failure. However, their protocol can not handle concurrent failures, and

it also requires 0 (N 2) messages per failure. Both protocols require the ongoing screening

of all incoming messages. Strom and Yemini’s protocol must identify and discard incoming

orphan messages. Sistla and Welch must identify and discard duplicate messages. Sistla

and Welch’s protocol is structured in such a way as to not need incarnation numbers and

incarnation start tables, but this is done at the cost of freezing each process until it has

heard from every other process during recovery.

It is difficult to determine whether either of these protocols work correctly. In [44]

verbal description is used to specify the actions of the protocol. This informality makes it

hard to identify exactly what the protocol is supposed to do and whether it performs these

functions correctly. Such informal specifications lead to errors in the protocol such as we

illustrated in Figure 4.2. Sistla and Welch use pseudo-code and Input-Output autom ata to

specify their protocol. While this is an improvement over the informal descriptions used in

[44], it is still not clear that the protocol performs as specified.

The correctness arguments in both [44, 47] deal with the global behavior of the system.

As we have shown when discussing deadlock, it is difficult to make reasoned arguments about

the global behavior of a distributed system based on the actions of individual processes.

As a consequence global arguments often appear to be correct, but are in fact wrong. The

error we detected in Strom and Yemeni’s protocol is an example of how a global argument is

inadequate. We believe it is more defensible to argue about the local behavior of a process

and use that to insure the correctness of a distributed protocol. In our presentation of

CHAPTER 4. OPTIMISTIC RECOVERY 114

termination detection and deadlock detection, we used causality and vector time to define

necessary “local” correctness criteria and prove that the protocol met those criteria.

This would seem to be an ideal solution in this problem as well. However, as we shall

show in Section 4.3, causality as it is normally defined does not apply in a system subject

to failure and rollback. The isomorphism between the causal partial order and vector time

is not assured either. Without a clear understanding of the impact of failure on causality,

it is not possible to use it to formally solve this problem. Our object here is to develop a

meaningful definition of causality in a failure prone system and use it as a unifying construct.

We will use it to formally define the criteria for judging a protocol to be correct. We will

use it to develop axiomatic protocol specifications, and finally, we will use it to argue the

correctness of our protocol in a straightforward manner.

4.3 Rollback and Causality

There is an obvious parallel between the -< relation and Lamport’s happened before relation.

The primary difference is that —*• is defined for atomic events such as a message receipt or

send, while the depends relation applies to a set of events. The effect of this difference is that

time increases only when a message receipt occurs. Therefore, s" -< s™ implies s" —► sj" if

the logical clock values used to determine —► are only assigned to message receipts.

Conceptually the relations are very similar. However, Lamport’s happened before re

lation is widely recognized and immediately associated with the concept of causality in a

distributed system. Lamport’s definition of causality has the extra advantage of having a

formalized relation to vector time, namely the isomorphism between the clock value order

and the causal partial order. For this reason we chose to model process behavior with

atomic events and use —► instead of the -< relation used in existing research.

The following example illustrates the steps needed to restore a system to a consistent

state after failure when the system model is based on atomic events. In Figure 4.4(a)

CHAPTER 4. OPTIMISTIC RECOVERY 115

process po fails following the transmission of message m 3 . Figure 4.4(b) shows the state

of the system following the recovery of p0- The state of po was restored to its value at

checkpoint c k Message mj has been replayed from the stable log. Process po is unaware

that it had received message m2 and had sent message m3 . The resulting system state

is inconsistent because p\ shows the receipt of m3 , but po does not have a record of the

transmission of this message. The state of p\ must be rolled back to eliminate the receipt

of m3 . In addition, any event that causally depends on m3 , such as the transmission and

receipt of m4 , must also be eliminated. Figure 4.4(c) shows the consistent system state that

results from rolling back pi and p2-

The existence of inconsistent states in the system as a result of process failure implies

the disruption of the causal partial order imposed by Lamport’s —+ relation. In Figure 4.4

the partial order has been corrupted by the loss of mi and m2 . Restoring the system to a

consistent state requires that the causal partial order also be restored, so that the causal

relationship between events conforms to Lamport’s definition. One way to look at the

rollback-recovery problem is to require that the system be returned to a consistent state.

We prefer to view a correct protocol as one that restores the partial order. Therefore,

we define the rollback problem in terms of the partial order and develop our protocols

accordingly.

We will present several protocols that use causal dependence and vector timestamps

to solve this problem. The first protocol we present requires 0(N) messages per recovery

and does not require that any process wait for any other process during recovery. Its

disadvantage is that it uses incarnation numbers and will not tolerate concurrent failure.

Our second protocol is also of order N, but it is strictly causally based in that it doesn’t

require the use of incarnation numbers. It also will not tolerate concurrent failure. Our final

protocol will tolerate multiple failure, but requires more synchronization during recovery.

Before we present our protocols we define some system parameters and notation.

CHAPTER 4. OPTIMISTIC RECOVERY 116

c * !

(a) ftnowi ftikw (W H h w u iRm wni;
Im m M S tM S W

PO P i P 2

m i

Figure 4.4: Failure and Rollback

4 .3 .1 G e n e r ic M o d e l - T erm in o lo g y

- p i : Process i, which is part of the N process distributed application II = { p o , p i , . . p n - i

- e'j : The ith event of pj. Exactly what constitutes an event is specific to an application,

but the transmission and receipt of application messages are always considered events.

We use e'j and e" to refer to generic events of p j .

- s : A send event of the underlying computation.

CHAPTER 4. OPTIMISTIC RECOVERY 117

- 7?(s): The receive event which matches transmission s.

- a (s) : The process where send event a occurs.

- p (s) : The process where the receive event matched with send event a occurs.

- f j : The ith failure event on pj.

We assume the system has the following characteristics:

Crash Failures - A failed process sends no messages, receives no messages, and performs

no local state transitions.

Reliable FIFO channels - All messages between two processes are received in the order

sent. All transmitted messages are received after an arbitrary but Unite length of

time. In addition, no messages are corrupted or duplicated.

Stable storage - Information saved in stable storage must be recoverable after failure.

Volatile storage - Information saved only in volatile storage is lost by process failure.

We also require that each processor knows its successor in a logical circuit of II; that

knowledge must be in stable storage, since it is critical that it be recoverable after a failure.

Without loss of generality, we assume that P(1+i)modAr is the successor of pi for 0 < t < N.

4 .3 .2 H istorica l C ausality

Causal dependence in a distributed system has come to be synonymous with Lamport’s

happened before relation. This is defined as the smallest relation such that:

1. If event e\ and e" are in the same process, and e\ occurs before e", then e[-*■ e";

2. If an event e[is the sending of a message in process p,- and e'- is the receipt of this

message in process pj, then e[—* e ' ;

CHAPTER 4. OPTIMISTIC RECOVERY 118

3. If e'i -+ e'j and e' -*• e’k, then e\ -*■ e'k.

Rule 1 of this definition specifies the causal relation between two events in the same

process. This rule states that the temporal order of two such events determines their causal

order. One of the assumptions underlying this rule is that events never “disappear” from the

execution history of a process. In a failure-free system this is a valid assumption. Process

failure and rollback can cause the loss of events from a process execution history, thus

violating this basic assumption. As a consequence, Lamport’s causal relation no longer

accurately identifies potential causality between events in a system that uses rollback to

recover from failure. The following discussion of process behavior during failure, recovery,

and rollback illustrates the impact of event loss on the commonly defined causal relationships

between events. The events, functions, and predicates defined below are used to formalize

this discussion.

- ckj : The i th state checkpoint on pj. The checkpoint resides on stable storage.

- rs%j : The i th restart event on pj.

- rbj : The i th rollback event on pj.

- Latest.ck(fj) : The most recent checkpoint before f j . Latest.ck(fj) = ckj if ckj —►

f j A ck'J such that ckj —* ck'j —► f j .

- LastEvent(fj) = e'j iff e'j —*• rs) and there does not exist e" such that e'j —*• e" —► rs'j.

- CK(ckj, e'j) iff the state of pj at e'- is written to stable storage during checkpoint ck'j.

- Logged(e'j) iff e'j is logged to stable storage

When process p,-, is restored after failure / / , its state is set to Latest.ck(f-). The

application is re-executed in pt- using the checkpoint state and the messages which had been

logged to stable storage. A restart event associated with / / occurs when this process is

completed. Any event in p,- which cannot be recovered from stable storage is lost.

CHAPTER 4. OPTIMISTIC RECOVERY 119

Figure 4.5 shows the execution history of a failed process. Latest.cktfj71) = ck}. To

recover, the state of p, is set to ck}. In this example, suppose events ef,ef, and ef are

recoverable from stable storage. Any event which occurred after the last recovered event

in pi is lost (events ef and ef). LastEventtf™) = ef, because it is the last event to be

replayed from the stable logs.

— X— H ----- 1— I----b-X — ►

Figure 4.5: Failed Execution History

Figure 4.6 Part(a) shows the actual sequence of events as they occur over time. Accord

ing to this temporal order and the rules defining the happened before relation, ef —► rsf*.

The loss of ef from the execution history of pi (as shown in Figure 4.6) invalidates this re

lationship. Event ef may precede r s f in time, but it makes no sense to say that ef causally

precedes tsf*.

Part (b) of Figure 4.6 is a more accurate depiction of the causal order. It illustrates how

any event not saved to stable storage is removed from the causal partial order by the failure

/-71. These events that are lost from the current set of events have no causal relationship to

any events in the current set of events.

A similar disruption of the causal partial order in a single process may occur as a result

of events being eliminated through rollback. When a process is rolled back, the current

process state is discarded. A new process state is constructed from an earlier checkpoint

and some subset of the messages saved in volatile and stable storage. When rollback is

completed a rollback event, rb'{ occurs. As a result of the rollback procedure, some events

may be discarded from stable and volatile storage. As in the failed process these discarded

events are lost.

CHAPTER 4. OPTIMISTIC RECOVERY 120

Pi Pi
-- rsJ"

" e f - / r
. . ef rs?

O - ef
"e?

” ck}
' ef

' ef
- f r
- e f
- e f ' ef

-- e*ei
' ef

- e f - ck}
- e f
- ck}

(.) W

Figure 4.6: Temporal and Causal History

Figure 4.7 shows the effects of rollback on the execution history of a process. In this

example, events ej° and ej1 must be eliminated through rollback. The state of pj is instan

tiated to the state saved at checkpoint cfcj. Events and e® are replayed. Rollback event

rbj occurs when the process is completed.

The effect of ej° and ej1 have been removed from the execution history of pj by process

rollback. Therefore, even though e]° and ej1 occur before rbj in time, they can have no

causal effect on rbj.

These examples show that the loss of events due to failure and rollback invalidate the

use of the temporal order of events as the sole basis for the causal order of events in one

process. For this reason, the first rule in Lamport’s definition of causality must be altered

to account for the destruction of the causal links that occur when process events are lost.

CHAPTER 4. OPTIMISTIC RECOVERY 121

(a) Initial Execution Hutory

(b) RoHed-badc Execution History

Figure 4.7: Effect of Rollback on Causal Order

In the preceding discussion of the impact of failure and rollback on the execution of a

process we have characterized a process’s execution history as a set of events. The current

state of a process is determined by its initial state and the set of currently observable events

that have occurred in that process. For a process, p,-, this set is denoted ejcurrenti- If

a process has recovered from a failure or has been rolled back there may be events which

have occurred in p,-, but are no longer in the current execution history. This set of events

is eJosti. Given that e\ is the latest event in ejcurrenti, eJosti can be defined as follows:

e" 6 eJosti if and only if e" -* e\, and ef ejcurrenti. The set, ejalli = eJostiUejcurrenti,

is the set of all events that have occurred in p,-.

The set of events that define the system execution can be constructed from the event

sets of the individual processes. So that,

• Ejcurrent = U^Iq1 ejcurrenti

• EJost = Uilo1 eJosti

• E-dll = EJost U Ejcurrent

Using the set Ejcurrent, we define a new “temporary” causality relation, called the

historical causality relation and denoted by =*■, as the smallest binary relation for which

CHAPTER 4. OPTIMISTIC RECOVERY 122

1. If e'i —► e", e\ G E.current, and e'/ G Ejcurrent, then => e";

2. If an event e\ is the sending of a message in process p,-, and e'- is the receipt of this

message in process p j , and ef G E.current, then e\ => ef\

3. If e\ => e'-, and e'- => e'fc, then e\ =» e'fc.

Note that the second rule defining “=»” is also a modification of the second rule in the

definition of -*• This is because this aspect of causal precedence is only alfected by lost

events in the receiving process. When a process receives a message, the causal impact of

the event of sending that message persists, even if the record of sending the message is lost

by the sender. For example, the system execution shown in Part (a) of Figure 4.8 shows

the events that occurred before failure //™. Part (b) of Figure 4.8 shows the system state

after of recovery of p,.

Event ef is lost from the execution history of p,-. However, the causal effect of ef is

still manifest in pj, so ef => ef, and ef => ej still hold. Due to the transitive nature of

=>, ef =$>■ el as well. These causal relationships between lost events and events at non

failed processes cause the system to be inconsistent after failure. The inconsistency arises

because ef => ej, but ef £ E-current. When one of these inconsistent events is identified

and eliminated through rollback, it is removed from the current event set, and the causal

relationship between the send and receive no longer holds. The second rule defining the

causal order must be modified to recognize this fact. The system is returned to consistency

when all the events that are members of the => relation are also elements of Ejcurrent.

The number of events in Ejcurrent will increase and decrease as execution proceeds,

and failures and rollbacks occur. For this reason this causal relation is temporary. Referring

to Figure 4.8 again, at the time of failure, ef => //" . However, once recovery occurs, and

ckf is restored, ef and fj” become members of EJost and disappear from the current event

set. Therefore, ef f™ when recovery is complete.

CHAPTER 4. OPTIMISTIC RECOVERY 123

Pi Pi Ph

.3

«*: ck'„ ^

(»)

,1

ck'k

(b)

Figure 4.8: Persistence of Causal Effect of Message Transmission

Lost events in the failed process have no causal relationship to the restart event. In

Figure 4.8 neither e\ => rs-", nor rsf* =>• ef. Using the standard definition of causality,

CHAPTER 4. OPTIMISTIC RECOVERY 124

rs™ e'j A e'j rs™, implies e' || rs1? . However, describing these events as concurrent

obscures their actual relationship. In actuality when events are lost due to failure or rollback,

they are disconnected from the partial order and the events which remain in Ejcurrent.

Therefore, we define the following predicate which will allow us to identify these events

which have been eliminated from the causal order by process failure or rollback.

Disc(e", e •) iff e" £ e- A e • £ e", e'{ ^ e •

Using this specification for DiscQ we can define for a given failure event, a predicate

Orphan, on the set of system events as follows:

O r p h a n ^ , fj?) =
True if 3e'k such that Disc(e'k,rs™) Ae'k => e',

False otherwise.

The events which need to be eliminated (removed from Ejcurrent) during rollback are those

for which OrphanQ is true. The problem is then reduced to identifying which events in each

process satisfy the Orphan{) predicate.

From the definition of OrphanQ it is clear that the causal relationship between events

can be used to determine which processors must be rolled back. We will use vector clocks to

develop our causal protocol. Consequently, each process will maintain vector clocks and tag

its transmissions with vector timestamps. Vector clocks as defined above were not designed

to accommodate the loss of events from process execution history. When the system is in

an inconsistent state, the isomorphism between the partial order imposed by —> and the

order of vector clock values breaks down. Figure 4.9 shows a system before failure and

CHAPTER 4. OPTIMISTIC RECOVERY 125

after recovery. Events ej, ej, and ej are orphaned by //**. The vector timestamps of the

orphan events imply that rsj- “happens before” them, when in fact rsj is disconnected to the

orphan events. This anomaly can be used to identify orphan events that must be eliminated

to return the system to a consistent state. Returning the system to a consistent state re

establishes the isomorphism between vector clock values and the causal partial order so that

if -iOrphan(e{,//n) and ->Orphan{e'-, f™) then

1. e'i =>e'j iHVi(e'i) < V j (e'j)

2. ej || e'j iff Vi(eJ-) || V ^) .

4 .3 .3 C orrectness Specifications and P ollin g W aves

When a failed process restarts it retrieves its latest checkpoint from stable storage. The

message log is replayed until it is exhausted to restore as much of the failed process’ state

as possible. The replaying of send events affects only the failed process’ state. No duplicate

messages are sent as a result of replay. Once the logged messages have been recovered the

recovering process instigates a restart event, rs™ and begins the rollback protocol.

At this point the recovering process must communicate with all other processes. Actually

only those processes which have orphaned events need to be contacted. In practice, however,

it is difficult to determine which processes these are without contacting every process.

There are several techniques which can be used to contact all the processes. A virtual ring

of processes can be derived and a token message circulated, as in Dijkstra’s termination

detection protocol [15]. A spanning tree with a designated process at the root may also be

used [14]. It is also possible for the recovery process to broadcast recovery information to

all other processes in the system to begin the rollback procedure [44, 47].

The common theme, in each of these techniques, is that every process must be contacted

at least once to indicate that failure has occurred and to send it information necessary

for recovery. We characterize this process as a series of one or more polling waves. A

CHAPTER 4. OPTIMISTIC RECOVERY 126

Pi P j Pk

ek 'i <dM0,l,0)

(•)

Pk

ck \ A (1 ,0 ,0) c k j ZE^O.1,0)

(b)

Figure 4.9: Vector Time of Orphan Events

polling wave is characterized by the arrival of a polling message which transmits information

CHAPTER 4. OPTIMISTIC RECOVERY 127

necessary for rollback and some response by the polled process which is also integral to the

algorithm. There will necessarily be some last contact with each process. To that end we

define two new event types:

- Cfc(i,m): the arrival of the final polling wave message for rollback from failure //" at

process p*.

- Wk(i, m) : the response to this final polling wave. If no response is required, wk(i, m) =

ck(t,m).

The final polling wave is denoted

N - l N - 1
F W (i ,m)= U U7fc(i,m)U (J ck(i,m).

fe=o fc=o

Using this generic model we can define what it means for a rollback protocol be correct

strictly in terms of causality. A protocol that can be described using this polling wave

model will insure correct rollback if at the completion of the final wave, F W (i,m) , the

following conditions hold:

R ollback C onditions - RB

R B (a) Vwj(i, m) £ FW(i,m),-iOrphan(wj(i,m), /•"); and

R B (b) If u>p(s)(i,m) =*• j](s) V rj(s) => then -iOrphan(wp̂ (i , m) , fj71); and

R B (c) -iDisc(s, wa(a)(i, m)) if and only if u;p(a)(t, m) => t)(s) V 77(a) =>• u/p(3)(t, 771).

Intuitively, condition RB(a) insures that every event orphaned by a failure /•" is elim

inated before the final polling wave is completed. The second condition prevents the ac

ceptance of orphan messages after the polling wave has completed. The third condition,

RB(c), requires that any message sent as a result of a lost event is ignored. In addition,

RB(c) requires that any message sent during a event which is still a member of the partial

order a t the completion of the polling wave event is eventually delivered.

CHAPTER 4. OPTIMISTIC RECOVERY 128

The rollback conditions as specified by RB only insure safety conditions. If RB(a),

RB(b), and RB(c) are met for a failure //" , then it is not possible for the system to be

inconsistent due to this failure. One way to satisfy these conditions is to rollback every

process to its initial event. Clearly such a protocol would satisfy RB; however, it is a

trivial, and not very efficient, protocol. Further conditions must be specified to design an

efficient protocol. Consider the following modified rollback conditions:

R ollback C onditions - RB2

R B 2 (a) Vwj(i,m) € FW(i,m),-iOrphan(wj(i,m), fj*); and

R B 2(b) ->Disc(s, m)) A -iOrphan(s, f t11) if and only if «;„(,)(», m) => »/(s) V 7/(s) =»

These conditions are stronger than what is needed to specify a correct protocol. The

requirement that 77(3) occur if s is not an orphan event means that any non-orphan event

that is lost because of failure or rollback must be restored. This means that the protocol

can only eliminate orphan events from the partial order.

The first protocol that we propose satisfies the stronger requirements of RB2. It elim

inates an event during rollback only if it is an orphaned event. It also restores to the

partial order any message receipts that originate in non-orphaned send events. One of the

assumptions that makes this protocol possible is that there are no concurrent failures in the

system. In Section 4.7 we will eliminate this assumption and show how our protocol can be

modified to handle concurrent process failure. The modified protocol satisfies RB, but not

RB2.

The polling wave model and rollback conditions based on causality provide a different

framework for judging correctness of optimistic recovery protocols than what is commonly

CHAPTER 4. OPTIMISTIC RECOVERY 129

used. Normally correctness of optimistic recovery is evaluated in terms of the execution

history of the environment, i.e., the external behavior of the distributed computation. The

environment of a distributed computation is a special process in the sense that this is where

the committed outputs are made. A correct optimistic recovery protocol will guarantee that

the execution history of the environment of a computation subject to the recovery protocol

is equivalent to a possible failure-free execution history.

The rollback conditions that we have developed do not directly address this issue. How

ever, they can be readily used to argue that any protocol that satisfies them will also

guarantee that the execution history of the environment is equivalent to some failure-free

execution history. To see this consider the environment as the N th process. The polling

wave would not pass through the environment. However, a correct rollback-recovery proto

col should be structured so that the conditions specified by RB or RB2 hold for n U {pjv}-

If RB holds for n U {pjv}, then there are no orphan events in preceding or following

the wave, and every message that originates in a send event left in place by the protocol

will eventually be delivered. Therefore, the execution history in the environment pn must

correspond to some failure-free execution. The conditions specified by RB2 also guarantee

no orphan events in p/y. Additionally, they require that no non-orphaned events be elim

inated due to rollback. The conditions specified by RB and RB2 are satisfied for internal

processes through rollback. In most cases the environment cannot be rolled back. There

fore, the only way to guarantee that the Rollback Conditions axe met for the environment

is to control communication to the environment through a commitment protocol. If com

mitment of outputs to the environment is done correctly, we can insure that RB or RB2

is satisfied and none of these committed outputs are ever rolled back, thus satisfying the

requirement that the external actions of the protocol match a possible failure-free execution.

Our commitment method is described in Section 4.4.5.

The first protocol we present uses a single polling wave and vector clocks to perform

rollback and recovery using 0(N) messages per failure. It is similar to Strom and Yemini’s

CHAPTER 4. OPTIMISTIC RECOVERY 130

protocol in that it augments vector timestamps with a per-process incarnation number to

distinguish between orphan and non-orphaned states. This protocol illustrates how a firm

understanding of causality’s roll in this problem can be used to simplify and formalize the

protocol specification and correctness arguments.

The protocol has two weaknesses. As in Sistla and Welch’s protocol it will not tolerate

multiple, concurrent failures. The protocol could be altered to accommodate such failures

but it would complicate the protocol significantly. This is a consequence of its second

weakness, which is the use of incarnation numbers to restore the isomorphism between the

ordering of the vector clock values and the causal partial order that is destroyed by failure

and rollback. In a later section we will present protocols which do not use incarnation

numbers, and rely strictly on vector clocks and the causal relationships imposed by the

polling wave. This protocol is valuable in the sense that it is a straightforward O(N)

algorithm that is more efficient than those in [44, 47].

4.4 Causal Recovery Protocol:Single Wave - Serial Failure

4 .4 .1 Inform al D escrip tion

Each send and receive event in the application computation increments vector time. The

current vector clock value of a process is considered part of its state and is logged to

stable storage when a checkpoint is done. V{(pi) will signify the current vector clock value

of process p, where e\ is the most recent event in p,-, and K(p») = V\(e'i)- Each time a

checkpoint is taken in a process, or a restart event occurs, the vector clock value of that

process is incremented. Checkpoints and restart events are the only events of the rollback

protocol that cause vector time to advance. None of the polling events of the rollback

procedure cause vector time to be incremented.

Each process also maintains a current incarnation number, /nc, and a vector of sequence

numbers, V.seqi, as part of its state. The process incarnation number is updated during

CHAPTER 4. OPTIMISTIC RECOVERY 131

the rollback protocol. The vector of sequence numbers is updated whenever a message is

received, so that, V.seqi(j) equals V?(t)(s)), where <r(s) = j .

When a failed process restarts, it retrieves its latest checkpoint, including its vector clock

value, from stable storage. This value is V{(Latest.ck(f?”)), the vector clock value of the last

checkpoint taken before failure /•". The message log is replayed until it is exhausted. The

vector time of each message is logged with the message so as the messages are replayed the

clock value of the failed process can be appropriately updated. After the logged messages

have been recovered the recovering process instigates a restart event, rsj71, to begin the

rollback protocol and then originates a token message containing the vector timestamp of

rs|" . The token associated with failure f™ and restart event rsj" is designated tk(i,m).

The token is composed of four fields:

• tk(i ,m).ts = Vi(rs7*)

• tk (i ,m) . id = i

• tk(i,m).inc = I n a

• tk(i, m).seq = V.seqi

Process p,- buffers all incoming messages until the return of the token. When this occurs

P i resumes normal execution.

The token is circulated through the ring of processors. When the token arrives at process

Pj the event C j (i , m) occurs. The timestamp in the token is used to determine whether the

process must be rolled back. If tk(i, m).ts < Vj(pj) then an orphaned event has occurred

in pj, and pj must be rolled back to an earlier state. This is accomplished by instantiating

Pj to the state of ck'j, where ckj is the latest checkpoint for which Vj(ckj) < tk(i,m).ts,

and then replaying logged messages as long as the timestamps of the messages are less than

tk(i, m).ts.

CHAPTER 4. OPTIMISTIC RECOVERY 132

It is possible that an orphan event in pj is the receipt of a message originating in a

non-orphaned send event. Since the send event corresponding to such a receipt is not an

orphan, it does not causally succeed any lost event in p,-. Therefore, the recovery of p,- will

not result in the replay of these messages. To make sure that these messages are not lost,

Pj must request their retransmission during the rollback step.

During rollback, pj must also retransmit any message that it sent to pt- that was lost due

to failure. Process pj can determine whether the messages it has sent have been received by

the failed process pi by comparing the vector timestamps of these messages to tk(i, m).seq.

If Vj(s) > tk(i, m).seq(i), where s is a message that was sent to p,-, then it is possible the

failed process has lost the message and it must be resent. Because it is also possible that the

message is not actually lost, but is still in transit, p,- must discard any duplicate messages.

Because channels are FIFO, p; can identify any duplicate message from its timestamp.

After the logged messages have been replayed and required message retransmissions are

done, pj instigates a rollback event, rbj, to indicate that rollback is complete. Vector time

is not incremented for this event, so Vj(rbj) = Vj(e'j), where e'- is the last event replayed.

Any logged event whose vector time exceeds tk(i,m).ts is discarded. In the case where

tk(i ,m).ts ^ Vj{pj), when the token arrives the state of pj is not changed. However, for

consistency, a rollback event is instigated to indicate that rollback is complete at pj and to

allow the token to be propagated.

When rollback is completed, Vj(pj) ^ V^rs-71). In causal terms this means that every

event in pj either happens before or is concurrent to any lost event in p,-. When we present

our correctness proof we will show how the properties of vector time can be used to prove

this.

The token is propagated from pj to Pj+i(modN)i eliminating orphan events as it goes,

until it returns to the originating process p,-. When this occurs rollback is complete.

There is one complication in this procedure. It is possible for orphaned messages to be

in transit during the rollback process. If these messages are received and processed during

CHAPTER 4. OPTIMISTIC RECOVERY 133

or after the rollback procedure, an inconsistent global state will result. Rollback condition

RB2(b) is specified to prohibit this occurrence. To identify these orphan messages and

discard them on arrival, it is necessary to include an incarnation number with each message

and with the token. /nct- equals the current incarnation number of the process p;. The

function Inc{e'i) denotes the incarnation number of event e[. The value returned for an

event equals the current incarnation number of the process in which the event occurred.

The incarnation number in the token is designated by tk(i, m).inc.

When pi initiates the rollback process it increments its current incarnation number by

one and attaches it to the token. A process receiving the token must save both the vector

timestamp of the token and the incarnation number in stable storage. Because there is

no bound on message transmission time, the vector timestamps and associated incarnation

numbers which have arrived in the token must be accumulated in a set. The set OrVecti

is composed of ordered pairs of token timestamps and incarnation numbers received by pj.

We describe practical techniques for bounding the size of OrVecti at the end of this section.

When an application message is received by process p,-, the vector timestamp of the

message is compared to the vector timestamps stored in OrVecti. If the clock value of the

message is found to be greater than a timestamp in OrVecti then the incarnation number

of the message is compared to the incarnation number corresponding to the timestamp in

OrVecti. If the message incarnation number is the lesser of the two, then the message

is discarded. Clearly this is an orphaned message that was in transit during the rollback

process. In all other cases the message is accepted. Upon receipt of a token the receiving

process sets its incarnation number to that in the token.

4 .4 .2 Form al Specification

Retransmission of messages lost by the failed process and requests for retransmission of

messages lost during rollback are instigated by the rollback-recovery protocol and are not

part of the underlying computation. The following formalizes the rules followed by the

CHAPTER 4. OPTIMISTIC RECOVERY 134

protocol during rollback to insure the necessary retransmissions are accomplished:

Retransmit(tk.ts, tk.id, tk.seq, id, c.event)

For all e'id = 77(a) such that:

77(a) => c.event A

Vid(r)(s)) > tk.ts A

^ (,)(s) J* tk.ts

retransmission of message from p „ ^ is requested

For all e'id = a such that:

a =>• c.event A

V?(a) > tk.seq(i) A

K(») ^

a is retransmitted to pt/t.id

The following rules specify the protocol. In each case we formally describe the rule in

terms of events and then, in the italicized text, describe verbally the impact of the rule. The

formal specifications are used to make a formal argument for the validity of the protocol in

as concrete terms as possible.

CHAPTER 4. OPTIMISTIC RECOVERY 135

Causal Recovery Protocol : Single Wave - Serial Failure

Initial Conditions

Inci = 0 A

V?(Pi) = 0 for all pi € II, j = 0 , 1, ...,N - 1

C R B .l The occurrence of rs™ implies

LastEvent^fp) => rs™ A

tk(i,m).ts = Vj(rs™) A

tk(i,m).id = i A

tk(i,m).inc = Inc(Latest.ck(f•")) + 1 A

/nc,- = Inc(Latest.ck(f/")) + 1.

i4 restart event occurs when the latest event that occurred prior to failure is recov

ered from stable storage. A token incorporating the timestamp o f the restart event,

the id o f the recovering process, and the current incarnation number is created

during this event.

C R B .2 . Wi(i, m) occurs iff

3rs™ such that rs™ Wi(i,m) A

3ck'i such that ck'i => w,(i, m) A C K ^k^, rs-) A

fie'i such that rs™ => e\ => «?,•(*, m) A

e\ is an event of the underlying computation

A form erly failed process creates and propagates a token, event W i (i , m), only after

the occurrence o f a restart event rs™.

CHAPTER 4. OPTIMISTIC RECOVERY 136

C R B .3. The occurrence of an r6' event instigated by rsf1 implies

C j(i, m) -*• rb'jA

e'j => rbj iS V j(e 'j) ^ t k (i ,m) . t s A

R e tr a n s m it (tk (i , m) . ts , t k (i , m) .id , tft(i, m) .s e q , j , Cj(i, m)) A

/ncj = tfc(i, m).in c A

(tfc(i, m).ts , tk (i , m) .in c) E O rV ec tj.

A rollback event will occur in a non-failed process only after alt events with tim es

tamps greater than the token have been eliminated and the necessary retransmis

sions have been requested. The process m ust have also incremented its incarnation

number, and stored the vector timestamp o f the token and the incarnation number

o f the token in its OrVeci set.

C R B .4 . wj(i, to), i ^ j occurs iff

3rbj instigated by rs-" such that rbj => wj(i, m) A

3ckj such that ck'j => wj(i, to) A CK(ckj, rbj) A

fie'j such that rbj => e'j =» wj(i, to) A

e'j is an event of the underlying computation.

A non-failed process will propagate the token only after it has rolled back and check-

pointed the process state at the rollback event.

C R B .5 . The occurrence of ii{s) where p (s) = p f, and rsj71 =>■ t) (s) , implies that c,(i, to) =s>

T) (S) .

A recovering process will not accept any incoming messages until the first polling

wave is completed.

C R B .6 . Polling wave PW(i, to) is complete when c;(i, to) occurs.

CHAPTER 4. OPTIMISTIC RECOVERY 137

When the process which failed, recovered, and initiated the token receives its token,

the rollback is complete.

C R B .7 . Any message received by event, rj(s), is discarded iff 3m E O r V e c t such that

/nc(s) < Inc(m) A V{m) < V(s).

Messages which were in transit and which were orphaned by the failure and subse

quent restart and recovery must be discarded.

4 .4 .3 A n E xam ple

In Figure 4.10 we see a system of three processes. The processes take checkpoints at ck^, ck\,

and ck\. Each event on a process time line is tagged with the vector time of its occurrence.

Each message is tagged with [i](x, y, z), where i is the incarnation number associated with

the message send event, and (x, y, z) is the vector time of the send. Process po fails just

after the message receipt which increments its vector clock to (5,5,0).

The execution of the causal recovery protocol is shown in Figure 4.11. Upon restart of

P o , the checkpoint ckg is restored, and the restart event, r s j is performed by the protocol.

A token, appearing as [1](4,0,0) is created and propagated to p\ (the dashed lines indicate

token transmission). Upon receipt of the token, pi rolls back to a point meeting the re

quirement that its vector time is not greater than (4,0,0), the time in the token. Hence p\

rolls back to its state at time (1,3,0). p\ then records the token in its OrVect set. Finally,

it sends the token to p2 . P2 takes action similar to p\ to roll back to time (1,3,2). The

token is then returned to p o , and recovery is complete.

Two messages are in transit while the polling wave is taking place. The message from

CHAPTER 4. OPTIMISTIC RECOVERY 138

Po P i P 2

[01(4.6.0)
(4.6.0)

(4.4.0)

[01(4.0.0)

(4.0.0)

 * (1 A 2)

cfcji 1 (0.0.1)

(3.0.0) 1 1

(1.0.0)
(0.0.0) (0.0,0) (0.0.0)

Figure 4.10: Causal Protocol - Single Wave

po to P2 with label [0](2,0,0) will be accepted when it arrives. Application of Rule CRB.7

will result in message [0](4,6,4) being discarded when it arrives at p\.

The net effect of the recovery process is that the application is rolled back to the con

sistent global state indicated by the bold line, and all constituent processes have sufficient

CHAPTER 4. OPTIMISTIC RECOVERY 139

information to discard messages sent from orphaned events on their arrival.

Po P i P2

[01(4,6,4)

C o (0 ,l)

[11(4,0,0).%(?,.y __ Cl(0,1)

(4,6,0) [01(4,6,0)

[01(4,0.0)

[0)(2A0)

0.3.2)

ck~ i i (0,0,1)

dfc>
(3A 0) i 1

[01(1,0,0)

(OAO)

Figure 4.11: Causal Protocol - Single Wave

4 .4 .4 C orrectness

When no restrictions are placed on the occurrence of failure in the system, it is possible

for messages and states that are part of the recovery protocol to be lost. In this section

we limit failure during the recovery process. This simplifies the problem and the protocol.

CHAPTER 4. OPTIMISTIC RECOVERY 140

In this less complex environment we will prove the validity of our method. In Section 4.7

we will eliminate these restrictions on failure and present a modified protocol which will

accommodate concurrent failure.

This protocol is resilient to multiple failures if they occur serially. Two failures are

defined to have occurred serially if all the polling events instigated by one failure complete

before another failure occurs. The formal conditions for serial failure are stated below. The

first disjunct specifies that any event in a polling wave of one failure must occur before any

failure that might occur in the same process as the event. The second disjunct requires

that no event of one polling wave be orphaned by another failure. The final two disjuncts

specify that polling waves from two failures may not overlap one another. Formally, two

failures, f j 71 and f j , occur serially if and only if:

e'i=>fr, for all e\ € FW {j, k) A

->Orphan(ex , f f 1), for all e'x G F W (j,k) A

wi(j, k) => ci(i, to), for all pt G II A

Cj(j, k) => Cj(i, m),

or

e'j => f j , for all e'- 6 FW (i, to) A

-iOrphan(ex, f j) , for all ex G F W (i,m) A

wi(i, to) => c/(j, k), for all p/ G IlA

c,(i, m) =► a (j , k).

Our first result establishes the fact that the token, as constructed during the restoration

of a formerly failed process, contains the information necessary to determine if any event is

orphaned by a failure.

CHAPTER 4. OPTIMISTIC RECOVERY 141

Lemma 36 Ve- such that Disc(ei,rs■?), V^rs-71) < Vj(e-).

Proof: If Disc(e'it rs™) then LastEvent(f™) => e[in the failed execution history, and

Vi(LastEvent(f•”)) < VJ(e(). This implies V>(LastEvent{fJ71)) < and for all j ^ i,

V/(LastEvent(f™)) < V^(e(). The vector clock value of rsj" differs from Vi(LastEvent(f™))

only in the ittl position, and thus, ^ '(r s j7*) = V'(LastEvent{f™))-\-\. Therefore, ^-‘(rs-71) <

V7(eJ), and ^ (r s f) < V ^) I

Lemma 37 shows that every orphaned event has a timestamp greater than the token

timestamp. The converse is not always true. Lemma 38 proves the converse for events that

happen concurrently to c,(i, m).

Lemma 3 7 I f O r p h a n (e j , /■") t h e n t k (i , m) . t s < Vy(e').

Proof: By the hypothesis, Orphan(e'j, f™). Then there exists e- such that Disc(e’i, rsj71),

and e{ =7- e '. By Lemma 36, Disc(e'i , rs™) implies V^rs-71) < VJ(e{). Therefore, V^rsf1) <

V|(eJ) < Vj(e'j). Because tk(i,m).ts = V i(rsf) (CRB.l), tk(i,m).ts < Vj(e'). I

Lemma 38 Ve'- s u c h t h a t C i (i , m) 76- e', i f t k (i , m) . t s < Vj(e') t h e n O r p h a n (e ' j , f ™) .

Proof: Suppose that tk(i,m).ts < Vj(e'), and c;(i, m) 7 ̂ e'-, for some event e '. This

implies that V{(rs™) < Vj(e') (by CRB.l). This in turn implies that there must exist at

least one event e\ such that e\ =7 e'j. Let e* be the latest of the events in p,- such that

e\ =7 e'-. If this is the case, then = V-(e'j). The facts that Vi(rs™) < Vj{e'f), and

Vfie!-) = V-(e'j) imply that V^rs-71) < V|(ef). Therefore, ef 7$- rs™.

Rule CRB.5 specifies that no receive event, and therefore, no send event occurs between

rsj71, and c,(i,m). Since ef is the latest event in pi such that ef => ef, e* must be a

send event, and rsj71 =7 c,-(i, m) =7 e*. However, this implies c,(i,m) =7 e' contradicting

the hypothesis. Therefore, rs™ 7$- ef, ef 7$- rs-7*, and Disc(ef, rs-71). By definition, if

Discie^rs™), and ef ^ e' ,then Orphan(e'j, f™). I

CHAPTER 4. OPTIMISTIC RECOVERY 142

Having established the preliminary result of Lemmas 37 and 38, we proceed to show

that the Causal Recovery Protocol satisfies the first rollback requirement: that all orphan

events are detected and eliminated.

L em m a 39 For any W j (i , m) event as it is specified in the C ausal R ecovery P ro toco l,

-i<Orphan(wj(i,m),ff1).

P roo f: Assume the contrary, a polling event, wfii, m), exists for which Orphan(wfii, m), f™)

If that is the case, then there exists e\ such that Disc(e'{, rsf1), and e\ =>• Wj(i, m). Then

there must exist e' such that e\ =>• e'- => wj(i,m). This implies Orphan(e'j, /•"), and by

Lemma 37, tk(i,m).ts < Vj(e'). This contradicts Rule CRB.3 of the rollback protocol. I

The following lemmas establish that non-orphaned messages are delivered and that

orphaned messages in transit during or after a failure and recovery are discarded.

L em m a 40 I f ->Orphan(s, f™) A ->Disc(s,rSfl) then t / (s) => u>p(»)(i, m) V wp(,){i ,m) =>

T)(S) .

P roo f: ->Disc(s, wa^ (i , m)) implies s => w m), or w „ ^(i ,m) =>■ s. s =$■ U7a(5)(i, m)

implies tk(i ,m).ts ^ and -iOrphan(s, f™). By Lemma 39, wa^ (i , m) =>• s also

implies ->Orphan(s, f f 1).

Let s be a send such that ->Orphan(s, fi*). Given reliable channels the message will

eventually arrive. The receipt of the message can only disappear from the causal order if

it is lost by a failed process, rolled back by the protocol, or discarded upon arrival. The

first possibility is that pi (the failed process) lost the message due to its failure. Note that

in this case p(s) = i. During the rollback at pa(a), this message will be retransmitted.

The occurrence of the rb event associated with wa^ (i , m) guarantees this because >

tk(i,m).seq(o(s)) (Rules CRB.3 and CRB.4). Therefore, W{(i, m) rj(s). The second

possibility is that r)(s) => cp̂ (i ,m) , and i](s) was rolled back because Orphan(T](s),//").

CHAPTER 4. OPTIMISTIC RECOVERY 143

However, V^(,)(s) ^ tk(i,m).ts. Therefore, pp̂ will request retransmission before the

occurrence of the rb event, and wp̂ (i , m) ^ r/(s)(Rules CRB.3 and CRB.4).

The final possibility is that 77(3) occurs after the wave but is discarded upon arrival. By

Rule CRB.7,77(3) is discarded if and only if Vv^ (a) > tk(i, m).ts, and Inc(s) < tk(i, m).inc.

If 3 ^ uV(4)(i, 771) then Vr<T(a)(s) ^ tk(i,m).ts. Therefore, the message will be accepted, and

u>„(4)(i,m)=e 77(3).

In the case that tti) =>• 3 , Inc(s) ft tk(i,m).inc (Rule CRB.3). Therefore, 77(s)

will not be discarded upon arrival, and wp̂ (i ,m) => It is not possible in this case

for 77(3) to be lost due to p f s failure. It is possible that 77(3) is eliminated through rollback.

But in that case C j(z , 771) ^ 3 . Therefore, by Lemmas 37 and 38, V „ ^ ^ tk(i, m).ts, and

Po(») will request retransmission of 77(3). I

L em m a 41 Ifr](s) =► wp(3)(i,m)V wp̂ (i , m) => Tj(s) then ->Orphan(s, //**) A

-<Disc(s,w^a)(i,m)).

P roof: Case 1: Assume 77(3) =>• wp^ (i ,m) . By Lemma 39 -yOrphan(wp^ (i , m) , //").

Therefore ->Orphan(j}(a), //"), and ->Orphan(s, f™). 77(3) => wp^ (i , m) implies

tk(i,m).ts . ft Va^ (a) . Therefore, 3 => cp^ (i , m), and tti)), Rule CRB.3.

Case 2: Assume wp^ (t ,m) 77(3), and Orphan(s, f™). By Lemma 37 this implies

that tk(i ,m).ts < V^^^s). Rules CRB.l and CRB.2 of the protocol guarantee that if

Orphan(s, f™) is true then Inc(3) < tk(i, m).inc. Rules CRB.3 and CRB.4 require that

tk(i, m).ts and tk(i, m).inc are stored in OrVectj before Wj(i,m) occurs. Therefore there

exists z € OrVect j for which V(z) < V(s) and Inc(z) > Inc(s). Rule CRB.7 requires that

such a message be discarded contradicting our assumption that wp̂ (i , m) =>■ r](s). The

same argument applies in the case that Disc(s,w„^3)(i, m)). I

T h eo rem 17 The completion of a valid wave in the Causal Recovery protocol satisfies

RB2(a) and RB2(b).

CHAPTER 4. OPTIMISTIC RECOVERY 144

Proof: Follows directly from Lemmas 39, 40 41. I

Theorem 17 shows that RB2 is satisfied at the completion of the polling wave. To finish

our correctness arguments, we need to show that the specification of the protocol guarantees

the completion of a valid wave, so that, rsf* c,(i, m). Before we can do this we must talk

about what progress means given failure.

In a failure free system, once an event occurs it remains part of the execution history. To

show e{ e'j, it is sufficient to argue that if e- occurs then eventually e'j occurs. Underlying

arguments about progress is the implicit assumption that events are stable in some sense.

Once an event occurs it doesn’t disappear. In a failure prone system this assumption

doesn’t hold. It is not enough to show, for example, that C j (i , m) leads to W j { i , m) because

the failure of the p j at some time in the future can result in the loss of W j (i , m). To show

progress we must not only show that the protocol guarantees the occurrence of an event,

but we must show that the event will never be lost from the current set of events. An event

that cannot be lost from E.current is stable. We define the following predicate:

To show that rsj™ C j(i , m), we first show that all events in the polling waves are

stable.

Stable(e'j) iff or rb'j instigated by rsj" such that D i s c (e ' j , r s V Disc(e'j, rb[).

Using this predicate we define progress in a failure prone system as follows:

e'- occurs A

If " Stable(e’j) A

e'i => e':

then e'i e'-.

Lem m a 42 I fw j (i ,m) 6 F W (i,m) then there does not exist f j such that Disc(e'j,rsj).

CHAPTER 4. OPTIMISTIC RECOVERY 145

Proof: Assume there exists / j ' and Wj(i,m) G F W (i ,m) such that Disc(e'j, r 3 j) . This

implies rajf Wj(i,m), and Wj(i,m) rs*j.

Case 1 (i ^ j): Rule CRB.4 specifies that the occurrence of Wj(i, m) implies there

exists ck'j such that CK(ckj, rb'j). The rule also requires that no event of the underlying

computation occurs between rbj and Wj(i,m). Therefore, Wj(i, m) is always recoverable

following failure and ->Diac{e'j, rs'j).

Case 2 (t = j): A similar argument can be made in this case using Rule CRB.2. I

L em m a 43 Given a failure, f™, tk(i,m).inc > Inc(ci(i, m)) for all pi G II.

P roof: Because failure and recovery are required to be serial in this system environment,

we use induction to prove this hypothesis. Let f™ be the first failure in the system. So

that for all failures, /* ^ //" there exists Wj(i,m) G FW {i,m) such that Wj(i,m) => /* .

Initially Inci = 0 for all pi G II. Inci can only be changed according to rules CRB.l

and CRB.3. Since there exists Wj(i, m) such that Wj(i, m) => /* for any other failures,

no process incarnation number can be incremented before the arrival of the token by the

application of CRB.l. It is also the case that wi(i,m) =>• ci(j,k) for any pi G II and

C((j, k) G F W (j ,k) . Therefore, no process incarnation number can be incremented before

the occurrence of c/(t, m) by the application of CRB.3.

We now assume the hypothesis is true for some failure f j that occurs after the initial

failure. So that for all C|(j, k) G FW (j, k), tk(j,k).inc > Inc(ci(j,k)). Now we will show

that the hypothesis holds for the failure immediately following the completion of recovery

from f j . Let f f be this failure, such that there exists wa(j,k) => /* , and there does not

exist / j such that wa(j, k) => wa(b, y) => /* . The application of Rule CRB.3 specifies

that Inc(wi(j,k)) = tk(j,k).inc for all pi G II and wi(j,k) G F W (j ,k) . wa(j ,k) => /* ,

so by Rule CRB.l, tk(a,x).inc > Inc(wa(j, k)). Hence, tk(a, x).inc > Inc(wi(j,k)) for all

pi G n and wi(j,k) G F W (j ,k) . The conditions governing serial failure also specify that

=► c/(a, z) for all pi G II. Since there are no intervening failures and recoveries

CHAPTER 4. OPTIMISTIC RECOVERY 146

between f j and /* , Inc(wi(j, k)) = Inc(ci(a,x)), and tk(a,x).inc > /nc(c;(a, x)) for all

pi € n I

Lemma 44 I fe 'jE F W (i ,m) then there does not exist /* or rb'j such that rb'j is instigated

by rs%, and Disc(e'j,rbj).

Proof: Assume the contrary, that there exists W j (i , m) € FW(i, m) , /* , and r b " such

that Disc(wj(i, m) , r b ' j) . Case 1 (i ^ j): The conditions of serial failure require that

iO j (i , m) =>• C j (a , k) , or C j (a , k) =>■ W j (i , m) . First consider the case that C j (a , k) => W j (i , m) .

This implies W j (a , k) => W j (i , m) , and r b " => W j (a , k) W j (i , m) . Now consider the

possibility that W j (i , m) => C j (a , k) . In this case W j (i , m) => r b " unless W j (i , m) is eliminated

by the rollback instituted by the occurrence of C j (a , k) . The elimination of W j [i , m) by

rollback implies that the rb event, r b j , and checkpoint event specified in Rule CRB.4 must

also be eliminated by rollback. In that case, Rule CRB.3 implies V j { r b ' j) > t k (a , k) . t s . By

Lemma 38 this implies O r p h a n (r b ' j , /*), and O r p h a n { w j { i , m), f j f) . However, the conditions

of serial failure prohibit this. Therefore, W j (i , m) => r b " .

Case 2 (i = j): A similar argument can be made that rb" => W{(i,m), or tu,(t, m) =>

rb". Rollback of w,(i, m) implies rollback of rsj’*. This implies Orphan(rs™, /*) and

Orphan(wi(i,m), /*). This contradicts the conditions imposed by serial failure. I

Theorem 18 rsj" c,(t, m) in the Causal Recovery Protocol: Single Wave - Serial Fail

ure.

Proof: Lemmas 42 and 44 showed that Stable(wj(i, m)) for all W j (i , m) G FW (i, m) .

According to Rule CRB.2 u>;(i, m) will occur following r s ™ . Since W i (i , m) is stable,

rs” ^ «>,•(*, m) . Given reliable communication a token message originating in an event

W i (i , m) will arrive at Pi+i(modN)- The restrictions on failure guarantee that the message is

not lost, however, Rules CRB.5 and CRB.7 restrict the occurrence of incoming messages.

Rule CRB.5 could lead to deadlock if two tokens are traversing the system concurrently.

CHAPTER 4. OPTIMISTIC RECOVERY 147

However, the restrictions of concurrent failure require that Pi+i(modN) must have completed

any recovery before the arrival of the token. Therefore, the receipt of a polling message

would not be blocked by Rule CRB.5. Rule CRB.7 could cause an incoming token to be

discarded if its attached incarnation number and vector timestamp do not meet the specified

conditions. For the token to be discarded the incarnation number attached to the token must

be less than the incarnation number of one of the ordered pairs stored in OrVecti+i(modN)-

It must be the case that all of these stored incarnation numbers must be less than or equal

to Inci+i(modN). Lemma 43 showed that tk(i,m).inc > /nc(ct+1(modW)(i, m)). Since the

incarnation number attached to the token message equals tk(i,m).inc, it cannot be less

than any of the incarnation numbers stored in OrV ecti+^ modN), and CRB.7 will not cause

the rejection of the token message. Thus, c1+1(mojjv)(*»m) will occur following Wj(i, m), and

iu,(i, ci+i(modJV)(*,m)- Rule CRB.3 implies the occurrence of an rb'j event following

ci+i(modN)(iim). This in turn implies Wi+i(modN)(^ m)- Because the token travels in a

logical ring rs™ c,(i, m). I .

4 .4 .5 C om m itm en t

To guarantee that the external behavior of the system is correct, messages cannot be com

mitted to the environment until it is no longer possible that they will be rolled back. A

process knows that one of its events will never be rolled back, if all of the messages that

causally precede that event are logged in stable storage or otherwise saved in a process state

checkpoint and cannot be lost in a failure. Because of the causal dependencies, a process

cannot decide whether an event is committable based solely on local information. It must

gather information about the state of other processes in the system.

For the purposes of this discussion, an event that is recoverable from stable storage is

called a recoverable event. Recoverable events may be discarded due to rollback, but they

are never lost because of process failure. A process event that is causally dependent only

on recoverable events will never be rolled back. The example in Figure 4.1‘2 illustrates this.

CHAPTER 4. OPTIMISTIC RECOVERY 148

The recoverable events in each process are circled. Events ej and e\ will never be lost to

failure, and neither will they be rolled back because they do not causally depend on any

message that could be lost to failure. Similarly, e\ and e\ will never be rolled back because

they do not causally depend on any event that might be lost. The set of the latest such

events in each process are e%,e\,e2 , and e\. This set of events comprises the consistent cut

shown in Figure 4.12 by the dashed line. Any event in this set and all the events that

causally precede the events in the set may be committed because they will never be rolled

back.

(4,2,4,2;

(2,0,4,2)

(2,0,3,2(3,2,0,0

(1,2,0,0),

(0 ,0 ,1,2)

(2,0,0,0)
(1,1,0,0)

(0,0,1,0
(0,0,1,1)

Pi P3Po

Figure 4.12: Commitment Protocol

A process can determine whether a local event is causally dependent on any event that

might be lost by comparing the timestamp of a local event to the timestamps of the latest

CHAPTER 4. OPTIMISTIC RECOVERY 149

recoverable events in the other processes. In this example p\ can compare V{(e\) to Vj{e'j)

where e'- is the latest recoverable event in pj for all pj £ p% in the system. If Vf(e[) < V j (e ')

for all j ^ 1 then e[wiU never be rolled back and may be committed to the environment.

A simple means of gathering the latest recoverable event indices is for some process, p; for

example, to circulate a token that builds a composite timestamp from the timestamps of the

latest recoverable events in each process. So that when the token, designated by tk.commiti,

leaves pj the j th index of the composite timestamp, tk.commiti[j], equals V /(e '), where e'

is the latest stable event in pj. When the token returns to p,-, it has constructed a consistent

cut comprised of events that will never be rolled back. With this information, p,- can commit

messages to the environment. This information is useful to other processes as well. For this

reason, the token is circulated a second time to spread the knowledge of the consistent cut

to the other process.

Any process may instigate the token. The criteria used by a process to decide to in

stigate a token can vary with system requirements, but an obvious trigger would be the

accumulation of some predetermined number of messages targeted for the environment.

The following theorem establishes the correctness of this technique.

T heo rem 19 I fV f{e \) < tk.commitk\j] for some k and all j i then event e'{ will never

be rolled back.

P roof: Assume the converse. Event e\ can be rolled back only if O r p h a n ^ , /£*) for some

failure / ” . If this is true then tk{k,m).ts < Fj(e{) and tk(k,m).ts[j] < V^(eJ) for all j .

However, if e'k is the latest stable event in pjt then Vk (e'k) < tk(k, m).fs[fc] < VJ*(e{). This

contradicts our assumption that < tk.commitk[j] for all j ^ i. I

4 .4 .6 B ou n d in g th e S ize o f O rV ect

In a system with FIFO channels, elements of OrVect can be deleted from the set once a

process can determine that all orphan messages associated with a failure have been flushed

CHAPTER 4. OPTIMISTIC RECOVERY 150

from its incoming channels. A process can determine this from the timestamps of incoming

messages. When process p, receives a message from pj and the j ih index of the incoming

vector is greater that the j th index of a vector stored in OrVecti, process pi knows that any

orphan message en route from pj has been flushed from the system. When this is true for

all the elements of a vector in OrVect, that vector and its associated incarnation number

may be deleted.

The protocol presented here is efficient and fairly easy to understand. It uses a token

to rollback every process to a consistent state. The resulting state is optimum in that

only orphaned events are eliminated. However, it requires incarnation numbers to prevent

the system from becoming inconsistent as the result of accepting slow orphan messages.

The way rollback is performed here is the cause of this. In previous protocols we have

been able to use the causal relationships imposed by the polling wave to deduce properties

of the system. In this protocol we don’t have that opportunity, because process rollback

destroys these causal relationships. It is not true that w i(i,m) => 102(1, 771), or even that

ci(i, m) => wx(i, m). This is a result of eliminating the polling events and rolling back time.

The synchronous protocol in the next section illustrates how this rolling back of time is

unsatisfactory from a logical point of view.

4.5 R eal Tim e and Synchronous Recovery

When developing protocols for termination and deadlock detection we assumed the existence

of a global clock and used this assumption to design simple protocols. The availability of

global time does not have the clear advantage over vector time in the development of a

recovery protocol. The following discussion outlines a synchronous protocol for rollback and

recovery that is modelled after the protocol presented in the previous section. It highlights

some of the difficulties that occur.

In a system where global real time is available to each processor it is relatively easy

CHAPTER 4. OPTIMISTIC RECOVERY 151

to identify a global state which is consistent with the state of a failed process. All that is

necessary is to rollback the non-failed processes to the state they were in at the time of the

last recovered event in the failed process. So that if a failed process is able to recover its state

at time 11 , each non-failed process is rolled back so that its state is the same as it was at t\ .

Since no message can be received before it is sent, no process state will include an orphaned

event, and a globally consistent state will result. Clearly, a protocol that rolls back every

process to a particular global real time satisfies RB2(a). The consistent state that results

is less than optimum. The fact that an event occurs later in time than the time of the last

recovered event does not necessarily mean the event is an orphan. Therefore, non-orphan

events may be rolled back, and this real-time protocol only meets the specifications of RB.

This protocol will use real timestamps rather than vector timestamps to identify the

rollback point. In our synchronous protocol, when a failed process restarts, it retrieves its

latest checkpoint from stable storage. The time of the checkpoint event, considered part

of the processor’s state, is saved on stable storage and, therefore, recovered during restart.

The message log is replayed until it is exhausted. The recorded time of the last event

recovered determines the time to which all the other processes must be rolled back. After

the logged messages have been recovered the recovering process instigates a restart event,

rs™, to begin the rollback protocol and then originates a token message containing the time

of the last recovered event. The token associated with failure f™ and restart event rs™ is

designated tk(i,m). The timestamp value of the this token is tk(i,m).ts.

Before we can describe the protocol some additional notation is required:

• T,(eJ) - local clock value of event e[

• T(e-) - clock value at time of e\ occurrence

In the causal protocol the vector time clock of a failed process was restarted at the

timestamp value of the restart event, rs™. As processes were rolled back their vector

clocks were also set to an earlier value. In a system with a global real time clock it is

CHAPTER 4. OPTIMISTIC RECOVERY 152

not desirable to actually rollback the clock to recover from failure. Instead we will use

a correction factor to “logically” turn the clock back. Therefore, if T (rs^) is the clock

value of the restart event, and Ti(LastEvent(f™)) is the timestamp of the last recoverable

event, T(rs™) — Ti(LastEvent)) will be used to simulate the “rollback” of the process clock.

Therefore, after all the messages have been replayed the process compares the timestamp

of the the last recovered event to the current value of the real time clock T to calculate the

correction factor. A checkpoint is taken during the restart event to save the token values

and the correction factor. The timestamp of this event and all the following events will be

calculated by subtracting this correction factor from the current value of the real time clock.

The correction factor must be circulated in the token to keep the clocks of the processes

synchronized. The correction factor component of the token is tk(i, m).cf.

The token is circulated through a virtual ring of the processors. When the token arrives

a t a process pj, the timestamp in the token is used to determine how far the the process must

be rolled back. Process pj must be rolled back so that Tj(e') < tk(i, m).ts for all e' . This

is accomplished by instantiating pj to the state of ck'-, where ck'- is the latest checkpoint for

which Tj(ckj) < tk(i, m).ts, and then replaying logged messages as long as the timestamps

of the messages are less than or equal to tk(i, m).ts. After the logged messages have been

replayed pj instigates a rollback event, rbj, to indicate that rollback is complete. The time

of this rollback event must be synchronized with the clock of the recovering process. This

is done using the correction factor in the token so that Tj(rbj) = T(rbj) — tk(i , m).cf. The

timestamp of any event following rbj must also be calculated in this way. Any logged event

for which Tj(ej) exceeds tk(i, m).ts is discarded. Once the events that have later times than

the timestamp are discarded and the correction factor has been used to “set” the process

clock, the token is propagated to the next process.

As in the previous protocol it is necessary to identify orphan messages that are in transit

during the rollback process. This can be done through the use of incarnation numbers as

before.

CHAPTER 4. OPTIMISTIC RECOVERY 153

The formal specification and correctness proofs for this protocol follow the same pattern

as the ones presented for the first causal protocol, so they will not be presented here. This

protocol is inefficient because it may roll back processes farther than necessary. This occurs

because the ordering of real timestamps is not isomorphic to the causal partial order in the

way that vector timestamps are. The fact that T,(e-) < T<(e') does not imply e\ =>■ e'- the

way that Vj(e{-) < Vj(e') does. Therefore, some events will be eliminated through rollback

that are not orphans, but whose timestamps exceed rs™. This means that the protocol

satisfies RB, but not RB2. The other undesirable feature to this protocol is that it requires

correction factors to rollback time.

This attempt to structure a synchronous protocol after the causal protocol presented in

Section 4.4 runs into difficulty because it requires that time go backward. As a consequence,

a contrived technique of adding offsets to the real time to construct clock values is required,

because it is not reasonable to make real clocks go backward. This is inefficient, counter

intuitive, and, in general, a poor use of perfectly synchronized clocks.

A protocol that has no need for correction factors or incarnation numbers would be

preferable. Such a protocol would be dependent solely on event timestamps to perform roll

back and ensure that the system remains in a consistent state. In the following synchronous

protocol there is no need for time to go “backward”. Timestamps are never reused, there

fore, actual clock values are used eliminating the need for correction factors. The resulting

protocol seems more natural and less contrived.

As it turns out this also eliminates the need for incarnation numbers. The ordering

of the timestamps alone is sufficient to perform rollback and recovery. In Section 4.6 we

will show how vector timestamps can be substituted for real timestamps in this protocol

to produce a causal protocol that also does not require incarnation numbers to augment

vector timestamps. The causal relationships imposed by the polling wave and the ordering

of vector timestamps is sufficient when vector time does not go backwards.

CHAPTER 4. OPTIMISTIC RECOVERY 154

4 .5 .1 Synchronous R ollback - T w o W aves

Informal Description

As in the previous protocol a token is circulated through a virtual ring of processors to

transmit the rollback and recovery information. Two circuits of the token are required

for each failure. The first circuit, i.e., the first polling wave, transmits the information

necessary to rollback each process to a consistent state. The second polling wave transmits

information needed to prevent the acceptance of messages that originate in orphan events.

Arrival and departure events of the token message at each process define the polling waves.

We define the following event types.

- clfc(i, m) : the arrival of the first polling wave message for rollback from failure //* at

process pk■

- w l fc(i, m) : the response to the first polling wave.

- c2fc(t, m) : the arrival of the second polling wave message for rollback from failure f j n

at process p*.

- w2 k(i, m) : the response to the second polling wave.

The waves of rollback are defined as

N - l N - l
P W l{ i ,m)= [J u;l*:(j,jn)U [J clfc(i,m).

k=o fc=o

and
N - l N - l

P W 2 (i, m) = [J w2 k(i, m) U [J c2*(i, m).
k=o fc=o

F W (i,m) = PW 2(i,m).

CHAPTER 4. OPTIMISTIC RECOVERY 155

The current clock value of a process is considered part of its state and is logged to stable

storage when a checkpoint is done. The clock values of an incoming message and the receive

event are saved with the message content in the message logs.

When a failed process begins recovery it retrieves its latest checkpoint from stable stor

age and replays messages from the log saved in stable storage. It also recovers the clock

value, T(Latest.ck(fp)). Once the message log is exhausted a restart event occurs. The

value of T(rs™) will be the current time on pi's clock. The timestamp of LastEvent(f-n)

will necessarily be less than T (rs •n). It is also true that if T (e ') < T(LastEvent(f-n)) then

-\Orphan{e'j). It is not possible to say that T (e ') > T(LastEvent(f[ri)) implies 0rphan(e'j).

By comparing the timestamps of every other process state to T(LastEvent(f-n), it is pos

sible to eliminate all orphan events and return the system to a consistent state. This state

is the one that existed at T(LastEvent(fl ,l).

The recovering process generates a token after the occurrence of the restart event. The

token is composed of four fields:

• tk(i, m).ts = T(LastEvent(f-n))

• tk(i,m).id = i

• tk(i, m).times(j) = T(s) where t) (s) is the latest message received from pj

• tk(i, m).Ltime = T(cl,-(t, m))

The token is circulated through the virtual ring of processors. The arrival of the token

a t pj is signified by the event c lj(t, m). When pj receives the token, the timestamp of

the process’ clock before the arrival of the token is compared to the timestamp in the

token. So, if e'- is the latest event before c lj(i, m), T (e ') is compared to tk(i, m).ts. If

tk(i ,m).ts < T(e'j), event e'- is possibly an orphaned event, and pj must be rolled back.

CHAPTER 4. OPTIMISTIC RECOVERY 156

Rollback is accomplished by discarding the current state, recovering the latest check

point ckj for which T(ck^) ^ tk(i, m).ts, and replaying the messages from the log whose

timestamps are not greater than the one in the token. After the logged messages have been

replayed, all logged events whose timestamps exceed tk(i,m).ts are removed from volatile

and stable storage with one exception. Record of the token’s arrival is maintained in the

logs. When the appropriate events in pj have been discarded, rollback is complete, and

T(pj) ? T(rs**).

In our first causal protocol, a process pj, could determine whether p,- had possibly lost

a message sent by pj, by comparing the vector timestamps of such messages to the vector

of sequence numbers in the token. In this protocol the clock time of received messages is

used to determine which messages must be retransmitted. This necessitates the token field,

tk(i, m).times , to transmit the timestamp of the latest message received from each process.

During rollback, Pj compares the timestamp of each message sent to p,- (the failed

process) to tk(i, m).times. If the j th element of the timestamp of any of these messages

exceeds the j th element of tk(i, m).times , p< has possibly lost that message. Pj resends any

message that it determines has been lost by p{.

Rolling back a process may eliminate the receipt of messages that originate in events

that are not lost due to failure or rollback. These messages will have timestamps less than

tk(i,m).ts . Process pj must request retransmission of these messages if RB(c) is to be

satisfied. The clock value of each incoming message that will be eliminated during rollback

is compared to tk(i, m).ts. If the clock value of a message is less than tk(i, m).ts, then it

originated in a non-lost event. Pj requests retransmission of any messages that meet this

criteria. The following specifies the rules followed by the protocol to guarantee that the

necessary transmissions are accomplished.

CHAPTER 4. OPTIMISTIC RECOVERY 157

Retransmit{tk.ts, tk.id, tk.times, id, c.event)

For all e'id = 77(5) such that:

rj(s) => c.event A

T(r}(s)) > tk.ts A

T(s) ^ tfc.ts

retransmission of message from pa^) is requested

For all e'id = s such that:

s =» c.event A

T(s) > tk.times(i) A

T(s) < tk.ts

s is retransmitted to ptk.id

Once rollback is completed, the arrival of c lj(t, m) is replayed. The state of pj is updated

to include the polling event, and T(clj(i, m)) is set to the current clock value.

After c lj(t, m) is replayed, event rbj occurs to indicate rollback is complete. A check

point of process p j’s state is taken before the token is propagated This checkpoint preserves

the token information. This information is necessary for future execution of the process,

P j , and must be recoverable following any future failure.

The token is propagated from pj to Pj+\(modN) until it returns to the originating process

p,. When this occurs, the actual rollback portion of the protocol is complete, and every

process has been returned to a consistent state. However, it is possible for a message

CHAPTER 4. OPTIMISTIC RECOVERY 158

originating in an orphan send event to be in transit during the rollback process. Our

previous protocol used incarnation numbers to prevent such messages from being accepted.

In this protocol, the clock value of clj(i, m) is used to determine whether a message might

have originated in an orphan send event or not. A message sent during an orphan event must

have been sent before T(cla 3̂)(i,m)). Therefore, T(s) < T (w l(r̂ (i , m)) < T(cl,(z,m)).

It is also the case that if Disc(s, rsj"), then tk(i, m).ts < T(s). Using tk(i ,m).ts and

T (cl,(i, m)), every process can determine whether to accept messages that arrive after the

first polling wave.

The second polling wave disseminates T(cl,(i, m)) to all the processes. T (cl,(i, m)) is

put in the token field, tk(i , m).Ltime, before the token begins its second circuit. The times

tamp pair, tk(i,m).ts and tk(i, m).Ltime, is stored at each process and used to determine

whether to accept incoming messages. A message whose timestamp exceeds tk(i, m).ts and

is less than tk(i, m).Ltime is discarded. If the sender is p,-, then the timestamp in the mes

sage must be greater than tk(i, m).Ltime , or the message is discarded. All other messages

are accepted.

Each process must wait until it has received the token a second time before it sends

any messages. Any communication event of the underlying computation with timestamp

greater than T ^astE ven tt f™)) and less than T(cli(i,m)) must be considered a potential

orphan. There is no way to determine, based on timestamp, whether a message is sent after

a process has been rolled back and is valid, or whether it is an orphan, if its timestamp falls

in this interval. To prevent valid messages from being incorrectly discarded or eliminated

through rollback, the restriction on communication is necessary. Each process must also

buffer any incoming message that arrives after c l; (i, m) and whose timestamp is greater

than tk(i,m).ts until c2j(i,m) has occurred. The reason for this is that a rolled back

process cannot determine if such a message originated in an orphan event until the value of

tk(i,m).L time is received.

CHAPTER 4. OPTIMISTIC RECOVERY

4.5.2 Formal Specification

159

Synchronous R ecovery P ro toco l - Two W ave

T R B .l The occurrence of rs™ implies

LastEven^f™) => rsj" A
tk(i ,m).ts = T{La.8 tEvent(fl li)) A
tk(i ,m).id = i A

T}(s) => rs?* A <t (s) = j A
tk(i ,m).tim e 8 (j) = T(a) where ,S»7(a') such that T](a) =>• 7/(a') =» raj71 A

<r(a) = a(s')

A restart event occurs when the latest event that occurred prior to failure is re
covered from stable storage. A token incorporating the timestamp of the restart
event, the id of the recovering process, and a vector of latest message receipt times
is created during this event.

T R B .2 . w li(i, m) occurs iff

Bra?1 such that raj7* => ml,(i,rra) A
such that ck'{ => A CK(ck'{, rs™)A
such that r s ™ => ej- => m) A

e\ is an event of the underlying computation

A formerly failed process creates and propagates a token, event ivlj(i, m), immedi
ately after the occurrence of a restart event rs™.

T R B .3 . A rollback event, r b j , is instigated by ra-71 iff

c lj(i,m) =*• rbj A
fle'j such that c lj(i, m) => e' => rb 'j A
e'j is an event of the underlying computation.

Rollback is immediately instigated by the arrival of the token.

T R B .4 . The occurrence of r6' instigated by ra-71 implies

e'j => clj(i ,m) ifFT(e') < tk(i,m).ts A
Retransmit(tk(i, m).ts, tk(i, m).id, tk(i, m).times,j, c l; (i, m)).

Rollback implies that any event that occurs before the cl; (i, m) and whose times
tamp is greater than the token, is eliminated.

CHAPTER 4. OPTIMISTIC RECOVERY 160

T R B .5 . wlj(i, m), i ^ j occurs iff

3rbj instigated by r s -71 such that rbj =>• m) A
3ck'j such that ckj =*■ w lj(i, to) A CK(ck'j,rbj) A

>3e' such that rbj => ej =► w lj(i, m) A
ej is an event of the underlying computation.

A non-failed process will propagate the token only after it has rolled back and check-
pointed its state.

T R B .6 . cl,'(i,m) => tv2,'(t,m).

The second polling wave begins when the first wave is completed.

T R B .7 . The occurrence of w2i(i,m) implies that tk(i,m).Ltime = T (cl,(i,m)).

The tim e o f the last event o f the first polling wave is put in the token before the
beginning o f the second polling wave.

T R B .8 . The occurrence of ri(s) where p(s) = pj, and w lj(i ,m) => i](s) implies that
w2 j(i, m) => t)(s).

A process will not accept any incoming messages until the second polling wave
arrives.

T R B .9 The occurrence of ri(s) where u/2p̂ (i ,m) => r)(s) implies that

T(s) < tk(i, m).ts V
T(s) > tk(i, m).Ltime.

A ny message arriving after a polling wave must be compared to the token timestamp
and the timestamp o fc l i (i ,m) to determine whether it originated in an orphan
event.

T R B .10 The occurrence of s such that ^ s implies that c2a^ (i , m) => s.

Messages are not sent until the arrival o f the second polling wave.

T R B .l l w2j(i, to), i £ j , occurs iff

c2j(i, to) => w2j(i, m) A
Logged(c2j(i, to)) A

fle'j such that c2j(i, to) =» e'- => w2j(i, to) A
e' is an event of the underlying computation.

T R B .12 The occurrence of c2,(i, to) implies Logged(c2i(i,m)).

CHAPTER 4. OPTIMISTIC RECOVERY

4.5.3 An Example - Synchronous Recovery

161

P2Tune

18

17

16

IS

14

13

12

11

><
10

9
(7-1)

8

7

6

(4.1;
5

(3.2)

4

A (2.5)3

2
(0.2)

1

0

Figure 4.13: Synchronous Protocol: Example

Figure 4.13 shows a system of three processes. The processes take checkpoints at ckg, cfcj,

and ck\ . Each event on a process time line is tagged with the clock time of its occurrence.

Each message is tagged with T (s), where T(s) is the clock time of the send. Process po fails

just after the receiving a message at (9.0).

Figure 4.14 shows the events that occur during rollback. Upon restart of po, the check

CHAPTER 4. OPTIMISTIC RECOVERY 162

point ck^ is restored, and the restart event rs j is performed by the protocol. A token, with

values:

• tk(0, l).ts = 2.8

• tk(0, l).id = 0

• tk(0 , l).times = < 0 ,0 ,0 >

• tk(0, l).Ltime = Null

is created and propagated to pi (the dashed lines indicate token transmission). Upon

receipt of the token, p\ rolls back to the latest checkpoint whose time is not greater than

tk(i,m).ts. Hence pi rolls back to its state at time (2.2). The polling event c li (0 ,1) is

reinstated, the rollback event rb\ occurs, the state of pi at rb\ is saved in stable storage,

and the token is sent to p2 ■ Process pi takes action similar to p\ to roll back to time (2.5).

The token is then returned to po. When the token returns to po, tk(i,m).Ltime is set to

(15), the timestamp of the arrival of the token at po. The token is then circulated again.

Completion of the protocol occurs at event c2o(0,1).

Two messages are in transit while the polling wave is taking place. The message from

Pi to pi with label (1) will be accepted when it arrives because (1) ^ (2.8). Application of

Rule TRB.9 will result in message (7.0) being discarded when it arrives at pi.

The message at (3.2) from pi to pi will be eliminated by rollback even though it is not

an orphan. This is an example of how a real time based protocol may rollback the system

further than necessary. The protocol is correct: the resulting state is consistent, and every

message that originates in a non-lost event is eventually received, but the rolled back state

is not optimal.

CHAPTER 4. OPTIMISTIC RECOVERY 163

PO P2Time

18

17

16

IS

- ■ rb t14

- \c k \13

12

-■Ci,
- t »;u

X
10

9

8

7

6

5

4

1

0

Figure 4.14: Resulting Consistent State

4 .5 .4 C orrectness

This protocol is designed to work in a system environment in which failures are serial. The

failure restrictions presented in Section 4.4.4 are modified below to apply to a two wave

protocol:

CHAPTER 4. OPTIMISTIC RECOVERY 164

e- =► f r , for all e< G F W (j,k) A

- ‘Orphan(e'x , / f 1), for all e'x G F W (j ,k) A

w2i(j,k) =>■ cl/(i,m), for all pi G II A

c2 j (j ,k) => c lj(i, to),

or

e'- =» /* , for all e'- 6 F W (i,m) A

-iOrphan(e'x , fjf), for all ej. G FW (t, m) A

tu2/(i, m) =>■ cl/(j, &), for all pi G IlA

c2 i(i,m) =>• cliO',*).

The following result establishes that the protocol allows no causal links to be created

between rs™ and any event that does not happen after cl,(i, to).

L em m a 45 For any event e'j, if e’j =>• c l; (i, to) then rsj" e' .

P roof: Assume the contrary. Let e'j be an event on pj such that rs™ => e' => c lj(i, to).

The token cannot establish this causal link directly, because e'j precedes the arrival of the

token. Therefore, there must exist a send s such that to) => s => e'-.

Initially consider the case where e'- = 77(5) . This implies that to) => s => tj(s) =>

c lj(i,m). Because c 1j (i , t o) =>■ c2t(i,m) for all fc, it is also the case that to) =>•

s => c2a(s)(i,m). This contradicts Rule TRB.10 of the protocol.

If e'j £ T) (s) then there exists a series of message events between 3 and e' . At some

point in this sequence of events a message there must exist s' and J?(s'), such that t)(s') =>

e'j =>■ clj(i,TO), and w la^ (i , m) => s' =>• ri(s'). This implies => s' =► cl,(i, to),

contradicting TRB.10. I

CHAPTER 4. OPTIMISTIC RECOVERY 165

The following lemma shows that the timestamp of any messages lost due to a failure f™

must be greater than the timestamp of the restart event.

L em m a 46 VeJ- such that Disc(e,-,rsJ"), T(LastEvent(f-n)) < T(e-).

Proofs If Disc(e'i, rs™) then LastEvent(f-n) => e\ in the failed execution history. There

fore, T(LastEvent(f-n)) < T(e-). I

Lemma 47 shows that every orphaned event has a timestamp greater than the token

timestamp.

L em m a 47 I f Orphan(e'j, f™) then tk(i, m).ts < T(e').

P roof: By the hypothesis, O r p h a n ^ , f™). Then there exists e\ such that Disc(e'i, rs-").

and e\ =► e'j. Disc(e'i , rs™) implies TiLastEven^f™)) < T(e'i), Lemma 46. There

fore, T(LastEvent(f[n)) < T(e'i) < T (e '). Because tk(i,m).ts = T (LastE ven t(f f1)),

tk(i, m).ts < T(e'j). I

We use Lemma 47, to show that the token transmission event of the first wave is never

an orphan.

L em m a 48 For any w \ m) event as it is specified in the Synchronous R ecovery

P ro toco l - Two W ave, -iOrphan(wlj(i, m), f™).

P roof: Assume the contrary, an event w lj(i ,m) exists for which Orphan(wlj(i, m), f™).

Then there exists e\ such that Disc(e[, rsj"), and ej- => wlj(i, m). Also let w lj(i ,m) be

the earliest token transmission event in the polling wave for which Orphan(w\j(i, m), //").

By Rules TRB.3 and TRB.5, c lj(i, m) => rb* => w lj(i ,m) . So. Orphan(wlj(i,m), f™)

implies Orphan(clj(i,m), //"). Since w\j{i,m) is the earliest token departure event where

CHAPTER 4. OPTIMISTIC RECOVERY 166

Orphan(wlj(i, m), f-71), c lj(i ,m) must be the earliest token arrival event for which

Orphan(clj(i, m), //"). Therefore, -iOrp/ian(clJ_1(modW)(t, m), J f 1). Then there must exist

e'j such that e \ => e'- => clj(t,m) => tn lj(i,m). This implies that Orphan(e'j, //") is true,

and by Lemma 47, tk(i ,m).ts < T(e'). This contradicts Rules TRB.4 and TRB.5 of the

rollback protocol. I

L em m a 49 I f f?zsc(ej, rs™) then T(e() < tfc(z, m).Ltime.

P roof: Assume the contrary. If T(e{) > tk(i,m).Ltime then either e\ — cl;(z, to), or

cl,(z, m) => e\. In either case, rs™ => ej- contradicting our initial hypothesis that

D is c ^ r s ™). I

L em m a 50 Ifr)(s) => znlp(4)(z, to) V w lp(3)(i,m) => 77(5) then -iOrphan(s, f™) A

-iDzsc(s,rsJn).

P roof: Case 1: Assume zj(s) => w lfi(sj(i,m). By Lemma 48 -iOrphan(wlfi(a)(i,m), f™).

Therefore, -iOrphan(ri(3), //"), ->0 rphan(3 , f f 1), and -*Disc(s, rs™). By Rules TRB .8 and

TRB.10, s => rs™, or 3 => cl*(4)(i,m). We have shown that ->Orphan(s, f™), so in either

case, tk(i ,m).ts > T(s). Therefore, 3 => u>l,(s)(z,m), and ->Disc(s, w l7 (4)(i, m)). Case 2:

Assume that tn lp(J)(z, m) => t](s). Also assume that there does not exist 77(3 ') such that

77(3 ') => 77(3), and 7n lp(,/)(z, 771) => 77(5 '). In other words assume that 77(3) is the earliest

event, in this causal chain, that occurs following the wave. The following proves that if

Orphan(s, f™) or Disc{s, rsj"), then rule TRB.9 is violated.

First, consider Disc(s,znl,(z,to)). This implies Disc(s,rs™), Rule TRB.2. Lemma 46

shows that tk(i, m).ts < T(s). This violates the first disjunct of TRB.9. Lemma 49 shows

that it is not possible for T(s) > tk(i, m).Ltime thus violating the last disjunct of TRB.9.

In the case that cr(s) z, Disc(s, tnlff(4)(z, tzz)) implies tk(i, m).ts > T(s) (Rule CRB.4),

and Orphan{s, / ”). In addition, Orphan(s, f™) implies Disc(s, Lemma 48.

Therefore, it will suffice to show that Orphan(s, //") leads to a contradiction.

CHAPTER 4. OPTIMISTIC RECOVERY 167

Now assume Orphan(s, //"). This implies that T(s) > tk(i,m).ts (by Lemma 47), thus

violating the first disjunct of TRB.9. T(s) > tk(i,m).Ltime implies T (w la^ (i ,m)) <

T(s). This, in turn, implies iwl<x(a)(i, m) => a, contradicting Lemma 48 which states that

->OrphaTi(wlj(i, m), //") for all pj € II. Thus neither of the two disjuncts of TRB.9 can be

satisfied. I

L em m a 51 I f -iDisc(s, wv^ (i , m)) then 77(a) => u;lp(s)(i, m) V tnlp(4)(i, m) =*• 77(a).

P roof:

Case 1: a => m). This implies T(s) < tk(i, m).ts. If the receipt of a is lost

by a failed process it will be retransmitted during the rollback process (Rule TRB.4). If

ti(s) arrives after the token it will be accepted, because the first disjunct of TRB.9 will be

satisfied. If 77(a) occurs before the arrival of the token, 77(a) => i/7l p(,)(i, m) (Rule TRB.4).

Case 2: w \a(a)(i,m) =► s. By Rule TRB.8 , this implies w2„(a)(i ,m) => a. Hence,

T(a) > tk(i,m).Ltime. Therefore, 77(a) will be accepted, and w lp^ (i , m) => 77(a). I

T heo rem 20 The completion of a valid wave in the Synchronous Rollback protocol satisfies

RB.

Proof: Lemma 48 showed that ~iOrphan(wlj(i, m), f f 1) for all pj 6 n. Lemma 50 showed

that there does not exist 77(a) such that wlj{i, m) => 77(a), and Orphan(rf(s), //"). There

fore, -iOrphan(w2j(i,m), f™)) for all w2j(i,m) € F W (i,m) thus satisfying RB(a). Since

w lj(i ,m) => w2j(i,m) for all pj E II and Lemmas 50 and 51 have shown that RB(b) and

RB(c) hold for all wlj(i, m), clearly, RB(b) and RB(c) hold for all w2j(i, m). I

4.6 Causal Recovery Protocol - Two Wave

The causal protocol presented in this section is modelled after the two wave synchronous

protocol presented in Section 4.5.1. In it the recovering process generates a token that

CHAPTER 4. OPTIMISTIC RECOVERY 168

traverses the virtual ring of processes twice to create two polling waves. During the first

wave the token is used to identify and rollback orphan events. The token is used in the

second wave to transmit the timestamp of the last event in the first wave to every process.

This information is used to identify and discard any orphan messages that are in transit

during recovery. The polling events of this protocol are the same as those defined for the

Synchronous - Two Wave protocol.

Vector timestamps are associated with each application event instead of real time values.

Unlike the causal protocol presented in Section 4.4 polling events cause vector time to

increase just as events of the underlying computation.

In this protocol, as in the Synchronous - Two Wave protocol, and unlike the Causal

Recovery Protocol - Single Wave, process rollback does not cause vector time to go back

ward. Every event in the polling waves are causally related and their vector timestamps

reflect this relationship. This eliminates the need for incarnation numbers. The timestamps

of wave events can be used instead.

4 .6 .1 Inform al D escrip tion

Recovery of a failed process follows the same pattern as the previously described protocols.

The process retrieves its latest checkpoint from stable storage, replays messages from the

stable log, and instigates a restart event. The vector clock of the recovering process is

recovered as part of the checkpointed state and is updated as messages are replayed and

the the restart event occurs.

At the time of a restart event, the only knowledge that a failed process has of any

lost event is that its vector clock value must be at least as great as the vector clock value

of the restart event. Before the recovering process communicates with any other process,

i.e., before any causal links can be established between rsf1 and any other event, it is true

that rs™ e'j for all e' . Therefore, if there is some event, e' in the system for which

Vj(e') > Vi(rsf*), then there must be some lost event e\ in pi for which e(- => e ' . In other

CHAPTER 4. OPTIMISTIC RECOVERY 169

words, any event in the system for which Vj(e') > is an orphan event. We could

not make a similar claim for the synchronous protocol; that T (e ') > T(LastEvent(f-n))

implied e'- was an orphan event. The link between the ordering of real clock values and the

paxticil order is just not strong enough.

Note how the loss of events disrupts the normal isomorphism between vector time and

causality. For all orphan events in the system Vi(rs™) < V^(e'), but rs f1 5̂ e' . We can

use this breakdown in the isomorphism to identify orphan events if we are careful not to

introduce causal links between rsj" and any event e'- for which Orphan{e'-, /•).

To do this, we require that no communication that causally follows r s f , i.e., no send

event s for which rsf1 => s, is received before the first polling wave arrives at a process. The

causal chain established by the first circulation of the token must act as a demarcation line,

so that for any event before the wave, e' =» clj(t, m), V^rsf1) < Vj(e'j) implies rs™ e'-.

For any event after P W l(t, m) the isomorphism of vector time to causality must hold, i.e.,

V iW K V jie ' j) iS ^ ^ e'j.

In the synchronous protocol, preservation of the first polling wave as a line of demarca

tion required no process communication during the polling waves, except for retransmission

and propagation of the token. In this protocol the restriction on process communication is

not as stringent. Some process communication is allowed, so long as it doesn’t establish a

causal link between rs™ and an orphan event.

The failed process always instigates the polling wave. Once the restart event occurs, a

token is generated containing the process id and the vector timestamp of the restart event.

The token i6 composed of four fields:

- tk(i, m).ts =

- tk(i, m).id = t

- tk{i,m).Ltime = Vi(c\i(i,m))

CHAPTER 4. OPTIMISTIC RECOVERY 170

- tk(i, m).seq = V.seq,•

The function of the token in the first wave is the same in this protocol as it is in the

Causal Recovery Protocol - Single Wave and the Synchronous Recovery Protocol. When the

token arrives at a process, pj, the token’s timestamp is compared to the current timestamp

of pj. If the timestamp in the token is less than pj's vector timestamp, then some of

the events in pj have been orphaned, and pj must be rolled back. To rollback, the latest

checkpoint, ckj, such that Vj(ckj) ^ tk(i, m).ts is reinstated from stable storage, and any

events with a timestamp not greater than the token timestamp are replayed from the logs.

During rollback pj must retransmit any message that p,- has lost due to failure. Pj must

also request retransmission of any messages it had received that originated in non-orphan

events, but were eliminated through rollback. The rules for doing this are quite similar to

those used in the single wave causal recovery protocol:

Retransmit(tk.ts, tk.id, tk.seq, id, c.event)

For all e'id = q(s) such that:

ij(s) => c.event A

Vid(r)(s)) > tk.ts A

Kr(*)(s) ? tk.ts

retransmission of message from pa(>) is requested

For all = s such that:

CHAPTER 4. OPTIMISTIC RECOVERY 171

s =► c.event A

VJ‘(s) > tk.seq(i) A

VJ(s) ^ tk .ts

s is retransmitted to ptk.id

Once rollback is completed, the arrival of m) is replayed. The state of pj is updated

to include the polling event, and Vj(pj) is updated accordingly. This is done to preserve

the causal order between polling events and to prevent “time” from going backwards.

As in the synchronous protocol, after c lj(i, to) is replayed, r6' occurs to indicate rollback

is complete. A checkpoint of process p /s state is taken before the token is propagated. Once

the process has been rolled back, it may resume normal operations. However, pj may not

send a message that could arrive ahead of the first polling wave. An event, e'k , occurs ahead

of wave P W l(i, to) if e'k => wlk(i, m). If e'- is a send event, and 7?(e') => w lk(i, to), then pj

has sent a message that arrived ahead of P W l(t,m). If c lj(i, to) => e'-, then this message

has “crossed” P W l(i ,m) . To avoid sending such messages, pj is restricted from sending

any message to any process p* where clfc(t, to) c lj(i,m). This restriction prevents the

establishment of a causal link between rsf* and events ahead of the first polling wave. Any

such link would disrupt the relationship between vector clock values and orphan events.

One purpose of the second polling wave is to make each process aware that P W l(i , to)

is complete. The arrival of c2j(i, to) implies cl*(i, to) =>• clj(i, to) for all pk € n . The

occurrence of c2 j(i, m) means pj can send a message to any process.

As in the all the previous protocols the token is propagated from pj to Pj+i(modN) until

it returns to the originating process p,-. When this occurs every process has been returned

to a consistent state. Messages originating in orphaned send events must be discarded upon

CHAPTER 4. OPTIMISTIC RECOVERY 172

arrival to insure that the system state remains consistent. This is accomplished through the

use of the vector clock value of cl,(i, m). A message sent during an orphan event must have

been sent ahead of P W \(i ,m) . Therefore, V̂ (4j(s) < m)) < V;(clt(i,m)). It

is also true that tk(i, m).ts < V„(4)(s) if Orphan(//" , s). Using tk(i, m).ts and Fj(cl,-(i, m)),

every process can determine whether to accept messages that arrives after the first polling

wave.

The second polling wave disseminates V<(cl,(i, m)) to all the processes. VJ(cl,(i, m))

is put in the token field, tk(i, m).Ltime, before the token begins its second circuit. The

vector timestamp pair, tk(i, m).ts and tk(i, m).Ltime, is stored at each process and used

to determine whether to accept incoming messages. A message whose timestamp exceeds

tk(i, m).ts and is less than tk(i, m).Ltime is discarded. If the sender is p,, then the times

tamp in the message must be greater than tk(i,m).Ltime , or the message is discarded. All

other messages are accepted.

The only process which must freeze during this protocol is the failed process. It must

buffer any message received until c l,(i, m) has occurred. All other processes must buffer

any incoming message whose timestamp is greater than tk(i, m).ts until c2 j(i, m) has oc

curred. The reason for this is that a rolled back process cannot determine if such a message

originated in an orphan event until the value of tk(i, m).Ltime is received.

4 .6 .2 Form al Specification

Causal Recovery Protocol: Two Wave - Serial Failure

C R B 2.1 The occurrence of rs™ implies

LastEvent(f™) => rs-" A
tk(i,m).ts = A
tk(i, m).id = i.

A restart event occurs when the latest event that occurred prior to failure is recov
ered from stable storage. A token incorporating the timestamp o f the restart event
and the id o f the recovering process is created during this event.

CHAPTER 4. OPTIMISTIC RECOVERY

C R B 2.2. m) occurs iff

3raJ" such that raj" => wl,-(t, m) A
3cfcJ such that ck'{ =► t«l;(i, m) A CK^ck'^ raj")A

^e- such that raj" => ej =>■ w l;(t,m) A
ej is an event of the underlying computation.

A formerly failed process creates and propagates a token, event m), immedi
ately after the occurrence of a restart event raj".

C R B 2.3. An rollback event, rb'j, is instigated by raj" iff

c lj(t,m) => rb'j A
fle'j such that c l; (t, m) => e'j =>■ rb'j A
e'j is an event of the underlying computation.

Rollback is instigated by the arrival of the token.

C R B 2.4. The occurrence of rb'j instigated by raj" implies

e'j => c lj(i,m) HfVj(e'j) ? tk(i,m).ts A
Retransmit(tk(i, m).ts, tk(i , m).id, tk(i , m).seq,j, m)).

Rollback implies that any event that occurs before the clj(i,m) and whose times
tamp is greater than the token, is eliminated.

C R B 2.5. w lj(i , m), i ^ j occurs iff

3r6' associated with raj" such that rb'j => w lj(i , m) A
3ck'j such that ck'j =>• tu lj(i, m) A CK(ck'j,rb'j) A

fle'j such that rb'j => e'j =► u>lj(t, m) A
e'- is an event of the underlying computation.

A non-failed process will propagate the token only after it has rolled back.

C R B 2.6. clj(i, m) => w2i(i, m)

The second polling wave begins when the first wave is completed.

C R B 2.7. The occurrence of u;2,(i, m) implies that tk(i, m).Ltime = VJ(cl,(i, to)).

The vector time of the last event of the first polling wave is put in the token before
the beginning of the second polling wave.

C R B 2.8. The occurrence of 77(a) where p(s) = p,, and raj" ^ 77(a), implies that
w2 ,•(*, to) =*► 77(a).

A recovering process will not accept any incoming messages until the first polling
wave is completed.

CHAPTER 4. OPTIMISTIC RECOVERY 174

C R B 2.9 The occurrence of 77(3) where w lp(4)(i, to) => 17(3) implies that

Kr(a)(s) } tk(i,m).ts V
^(»)(5) > **(*» m).Ltime V
^<r(»)(s) I! ^(*» m).Ltime A tr(s) ^ i.

.Any message arriving after a polling wave must be compared to the token timestamp
and the timestamp o f cl,'(i, m) <0 determine whether it originated in an orphan
event.

C R B 2.10 The occurrence of 3 , such that u>l<,(4)(i, to) =>■ s => c2<7(s)(i, m), implies that
c l p («) (* , * n) = > 7 7 (3) .

Messages are not allowed to cross the first polling wave.

CR B2.11 w2j(i,m), i ^ j , occurs iff

c2j(i, to) => w2j(i, to)A
Logged(c2j(i,m)) A

^e'- such that c2j(i,m) => e'- =>• w2j(i, to) A
e' is an event of the underlying computation.

C R B 2.12 The occurrence of c2,(i, to) implies Logged(c2i(i,m)).

4 .6 .3 A n E xam p le

In Figure 4.15 we see a system of three processes. The processes take checkpoints at c&o, ck\,

and ck\. Each event on a process time line is tagged with the vector time of its occurrence.

Each message is tagged with (a;, y, z), where (x, y, z) is the vector time of the send. Process

po fails just after the message receipt which increments its vector clock to (4,5,0).

Figure 4.16 shows the system during execution of the protocol and when rollback is

complete. Upon restart of po, the checkpoint ckl is restored, and the restart event rs j is

performed by the protocol. A token, with timestamp of (3,0,0) is created and propagated

to pi (the dashed lines indicate token transmission). Upon receipt of the token, pi rolls back

to a point meeting the requirement that its vector time is not greater than (3,0,0). Hence

CHAPTER 4. OPTIMISTIC RECOVERY 175

po Pi

!l ><

(3.5JD)

Figure 4.15: An Example

P i rolls back to its state at time (1,3,0). Process p i retransmits the message timestamped

(3,5,0) because the second element of the timestamp of the message is greater than the

second element of tk(0, l).seg, meaning that po lost that message. The polling event c l i (0 ,1)

is reinstated, the rollback event rb\ occurs, the state of p\ at rb{ is saved in stable storage,

and the token is sent to p%. Process pi takes action similar to p\ to roll back to time (1,3,2).

The token is then returned to po- When the token returns to po, tk(i, m).Ltime is set to

CHAPTER 4. OPTIMISTIC RECOVERY 176

(6 ,10,9), the timestamp of the arrival of the token at po. The token is then circulated

again. Completion of the protocol occurs at event c2<j(0,1).

Two messages are in transit while the polling wave is taking place. The message from

P2 to pi with label (1,3,3) will be accepted when it arrives because (1,3,3) (3,0,0).

Application of Rule CRB2.10 will result in message (3,6,5) being discarded when it arrives

at pi.

PO P l P2

(8.12.11) (7,12,11)

c l O(0 , l)

(5,10,8) - -c

(5,10,7) - - r i l

a m vMq'-11
~ - c k l

(3,0,0) - -r»A
/o1 > <

Figure 4.16: Resulting Consistent State

CHAPTER 4. OPTIMISTIC RECOVERY 177

4 .6 .4 C orrectness

The first step in showing the correctness of this protocol is to prove that no messages cross

from behind the wave to the front of the wave.

Lem ma 52 For any event e'j, if e'j => m) then rsj" e'j.

Proof: Assume the contrary. Let e' be an event on pj such that r s ™ => e' => clj(i, m).

The token cannot establish this causal link directly because e'j precedes the arrival of the

token. Therefore, there must exist a send s such that m) => s => e'j.

Initially consider the case where e'j = r}(s). This implies that w l(T(a)(i, m) => a => r}{s) =>

c lj(i,m). Because c lj(i,m) => c2k(i,m) for all k, it is also the case that =►

s =► c2 (T(4)(i, m). This contradicts Rule CRB2.10 of the protocol.

If e’j T) (s) then there exists a series of message events between s and e'j. At some

point in this sequence of events a message must be sent to a process ahead of the wave from

a process that has already propagated the token. So there exists s ' and tj(s ') such that

s => s ' => t] (s ') =» e'j, and w l^ 4q(t,m) => s ' => q (s ') => m). The above argument

applies in this case as well. I

Lemma 53 shows that the token timestamp as specified by the protocol is less than

the timestamp of any orphaned event. Lemma 54 proves the converse for events occurring

before the wave.

Lemma 53 I f Orphan(e'j, //") then tk(i,m).ts < Vy(e').

Proof: By the hypothesis, Orphan(e'j, //"). Then there exists e\ such that Disc{e\, rs™)

and e\ => e'j. By Lemma 36, Discfe'^rs™) implies Vi(rs™) < Vf(e(-). Therefore, Vj(rsJ") <

VJ(eJ) < Vj(e'j). Because tk(i,m).ts = Vi(rs™) (CRB2.1), tk(i,m).ts < Vj(e'j). I

Lemma 54 Ve' such that e'j => c lj(i,m), iftk (i,m).ts < Vj(e'j) then Orphan(e'j, /•").

CHAPTER 4. OPTIMISTIC RECOVERY 178

Proof: Suppose that tk(i, m).ts < Vj(e') for some event e'- => m). This implies that

Vi{rsf') < Vj(e'j) (by CRB2.1). This in turn implies that there must exist at least one event

e\ such that e[=> e' . Let e* be the latest of the events in p,- such that e* => e'-. If this

is the case then ^ ‘(e*) = V/(e'). The facts that V^rsf1) < Vy(e'), and V/(ef) = V-(e'j),

imply that Vi(rs™) < Vi(ef). Therefore, ef rs™. However, it is also not possible that

rs™ = e*, or that rs f1 => ef, because in Lemma 52 we have shown that e'- => c lj(i, m)

implies rsj" 56- e '. Therefore, D isc(ef,rsJ"). By definition, if Disc(ef, rsf1), and ef => e' ,

then Orphan(e'j, f™). I

This result establishes the fact that the token, as constructed during the restoration of

a formerly failed process, contains the information necessary to determine if any event is

orphaned by failure.

Lem ma 55 For any w lj(i, m) event as specified in the Causal Recovery Protocol :

Two Waves - Serial Failure, -<Orphan(wlj(i, to), / ”).

Proof: Assume the contrary, an event w lj(i,m) exists for which Orphan(wlj(i, m), f™).

Then there exists e- such that Disc(e[, rs™), and e[=> w lj(i,m). Also let w lj(i,m) be the

earliest token departure event in the polling wave for which Orphan(wlj(i, m), /™). By Rule

CRB2.3 and CRB2.5, c lj{ i,m) =► rbf =» 101j(i,m). This implies O rphan(clj(i,m), f™).

Since m) is the earliest token departure event where Orphan(wlj(i, m), /,™), c lj(i, m)

must be the earliest token arrival event for which Orphan(clj(i, m), //"). Therefore,

-iOrp/ion(clj_1(morfiv)(t, m), /•"). Then there must exist e' such that ej => e' =» c lj(i,m) =>•

w lj(i ,m) . This implies Orphan{e'-, //"), and by Lemma 53, tk(i,m).ts < Vj(e'). This

contradicts Rules CRB2.4 and CRB2.5 of the rollback protocol. I

Before we can show that ->0rphan(w2j(i, m), //") for all w‘2j(i, m) £ F W (i, m) we must

establish that orphaned messages in transit during or after a recovery are discarded.

CHAPTER 4. OPTIMISTIC RECOVERY 179

Lemma 50 I f Disc(e'i}w li(i,m)) then V<(e() ^ tk(i,m).L tim e.

Proof: Assume the contrary. If Vj(eJ) > tk(i, m).Ltime then VJ(eJ) > V,(cl{(i, m))(Rule

CRB2.7). Since c lj(t, m) =► clj(i, m) for all pj ^ p,- G II, this implies that K(eJ-) >

V j(c\j{i,m)) for all pj E II. However, if Disc(e(, m)) then c lj(i, m) f t e[(Rule

CRB2.2), and V^(e-) < V j(c lj(i,m)). If the j th element of c lj(i, m)’s vector clock value

exceeds the j th value of the timestamp of e', then it is not possible for VJ(eJ) > V j(clj(i, m)).

I

Lemma 57 I f r)(s) =>■ w lp(4)(i, to) V tnlp(4)(i, to) => T) (s) then ->Orphan{a, f ™) A

-iDisc(s, w l7(4)(i, m)).

Proof: Case 1: Assume t j (s) => w l p ^ (i , m) . By Lemma 55 - i O r p h a n (w l p ^ (i , m), /•").

Therefore, - > O r p h a n (T } (s) , //**), -> O r p h a n (s , //"), and ->Disc(s, r s ?*). By Rules CRB2.8 and

CRB2.10, s => rs™, or s => c l(T(4)(i,7n). We have shown that - i O r p h a n (s , f f 1) , so in either

case, t k (i , m) . t s jf V ^ ^ s) . Therefore, s =*■ m), and ->Disc(s, ti/l^ 4)(i, to)).

Case 2: Assume that w lp(4)(i, to) => T](s). Also assume that there does not exist tj(s ')

such that 7?(s') =► T)(s) and w lp(4<)(i, to) => J](s'). In other words assume that r)(s) is the

earliest event, in this causal chain, that occurs following the wave. The following proves

that if Orphan(s, /™) or Disc(s, m)), then rule CRB2.9 is violated.

First, consider Disc(s, u;l,(i,m)). Lemma 36 shows that tk(i, m).ts < Vj(s). This

violates the first disjunct of CRB2.9. Lemma 56 shows that it is not possible for V)(s) >

tk(i,m).L tim e. The last disjunct of CRB2.9 is violated because <r(s) = i.

In the case that <r(s) ^ i, Disc(s, tnl<r(4)(i, to)) implies tk(i,m).ts < V̂ (4j(«) (Rule

CRB2.4), and Orphan(s, /•"). In addition, Orphan(s, /™) implies D isc (s ,w l^a)(i,m)),

Lemma 55.

Therefore, assume Orphan(s, //"). This implies that > tk(i, m).ts (Lemma 53),

thus violating the first disjunct of CRB2.9. If > tk(i,m).L tim e then cli(i,m) =>• s.

CHAPTER 4. OPTIMISTIC RECOVERY 180

This implies m) =>■ s, thus contradicting Lemma 55 in which it was shown that

->Orphan(wlj(i,m), //") for all pj £ II. If V^4j(s) || tk(i,m).L tim e, and ct(s) ^ i, the

final disjunct of CRB2.9 would be satisfied. However, this also implies u;l<y(4)(i, m) => s,

contradicting Lemma 55. Thus neither of the last two disjuncts of CRB2.9 can be satisfied.

I

L em m a 58 I f -<Disc(3 ,wa^ (i ,m)) A -iOrphan(s, f-"1) then 77(3) =>■ u;lp(3)(i,m) V

w lp(s)ih'm) ^ r)(s).

Proof: -iDisc(s, m)) implies s =>• U7l<,(4)(i, 771), or l u l ^ j ^ m) => s. s =>■ wl„(a)

(i,m) implies tk (i,m).ts ft V^(,)(s), and -<Orphan(s, //"). t0l<,(4)(i, 77i) =>• s also implies

-iOrphan(s, f™), according to Lemma 55. Let 3 be a send such that -iOrphan(s, f™).

Case 1: s => U7l<,(4)(z, m). Lemmas 53 and 54 show that in this case V (̂4)(s) ^

tk(i, m).ts. Therefore, the send is never eliminated during rollback. Given reliable channels

the message will eventually arrive. The receipt of the message can only disappear from the

causal order if it is lost by a failed process, rolled back by the protocol, or discarded upon

arrival. The first possibility is that p,- (the failed process) lost the message due to its failure.

Note that in this case p(s) = i. During the rollback at p„(,) this message will be retrans

mitted. The occurrence of the rb event associated with iul<r(4)(i, m) guarantees this because

V $ > tk(i, m).seq(cr(s)) (Rule CRB2.4). Therefore, w l,(t, m) => 77(3). The second pos

sibility is that 77(3) =>• c lp(4)(i, m) and r)(s) was rolled back because Orphan(r](s), f™).

However, Vr4(J)(s) ^ tk(i,m).ts , so pp(s) will request retransmission before the occurrence

of the rb event, and u>lp(4)(i, to) => ^(s)(Rule CRB2.4). The final possibility is that 77(3)

occurs after the wave but is discarded upon arrival. However, Rule CRB2.9 specifies that

77(3) is accepted if V ^a)(a) ^ tk(i,m).ts.

Case 2: => s. If £7(3) ^ i then cl,(i, to) || 3, or c l,(1, 771) =>• s. Therefore,

Kr(s)(^) > tk(i,m).L tim e, or VJ,(4)(3) || tk(i,m).L tim e. If <7(3) = i then cl,(i, m) =>• s, and

Vi{s) > tk(i, m).Ltim e. In either case CRB2.9 specifies that the message be accepted. I

CHAPTER 4. OPTIMISTIC RECOVERY 181

T heo rem 21 The completion o f a valid wave in the Causal Recovery Protocol: Two Wave

- Serial Failure satisfies RB2.

Proof: Lemma 55 showed that -<Orphan(wlj(i,m), f™) for all pj 6 II. Lemma 57

showed that firj(s) such that w lj(i,m) =>• q(s), and Orphan{g(s), //"). Therefore, for all

w2j(i, m) 6 F W (i, m), ->Orphan(w2j(i, m), //")), thus satisfying RB2(a). Since w lj(i, m) =>

w 2j(i,m) for all pj € II, and Lemmas 57 and 58 have shown that RB2(b) holds for all

w lj(i,m), clearly RB2(b) holds for all w2j(i, m). I

To complete our correctness arguments for this protocol, we must also show that a

polling wave instigated by a restart event will complete. To do this we must show that

rsj71 c2j(i, m). As a first step we argue that all events in the polling waves are stable.

Lem m a 59 I f e'j € P W l{i, m) |J PW 2(i, m) then there does not exist f k such that

Disc(e'j,rSj).

Proof: Assume there exists fjf such that Disc(e'j,rSj). This implies rsk e'j, and e'j

Case 1 (t ^ j): In this case, clj(t, m) => w lj(i,m) => c2j(i,m) =*• w 2j(i,m). Given

the restrictions on failure, w 2j(i,m) => f j , or w2i(j,k) =» f™. Rule CRB2.11 requires

c2 j(i, m) be logged before the occurrence of w2 j(i, m) and that no event occur between

c2 j(i,m) and w 2j(i,m). Therefore, w2j(i,m) => f j implies w 2j(i,m) = L a stE ven t(fj),

or w2j(i,m) => L astE ven t(fj). This in turn implies c lj(i,m) =» w lj(i, m) => c2j(i,m) =>

w 2j(i,m) => vs1-. Since e'j must be one of these events, e' => rsk. A similar argument

applies if w 2 => f f 1. Rule CRB2.11 will insure w 2 => rs|". rsk => w2{(j,k) =>

rs™ => c lj(i,m) => w lj(i,m) => c2j(i,m) => w2 j(i, m). Therefore, rskj => e' .

Case 2 (i = j): In this case wl,-(t,Tn) =» cl,(i, m) =» w2,(i,m) =>■ c2;(i. m). Given the

restrictions on failure, c2i(i,m) => /* , or c2j(j,m) => f™. First consider c2,(i, m) => / j \

Rule CRB2.12 specifies Logged(c2i(i,m)). Therefore, c2,(i, m) =>■ f k implies c2,(i, m) =>

CHAPTER 4. OPTIMISTIC RECOVERY 182

rs*, and e' =>• rs*. In the case that c2j(j,m) =► //" , Logged(c2j(j,m)) implies rs* =>

c2j(j,m) => rsj" =► m). Therefore, rs* => e'j. I

L em m a 60 I f e'j £ P W l(i,m)\J P W 2 (i,m) then there does not exist /* or rb'j such that

rb'j is instigated by rs*, and Disc{e'j,rb'j).

P roof: Assume the contrary. Case 1 (i ^ j): According to Rule CRB2.4, e'j will be elim

inated if and only if Vj(e') > tk(a,k).ts. The failure restrictions specify that c2j(i, m) =>

c lj(a , J f e) . Hence, e' => clj(a,fc). This implies Orp/ian(e'-,/*) (Lemma 54). This contra

dicts the serial failure restrictions that specify that no polling wave event of the recovery

from one failure may be orphaned by another failure.

Case 2 (t = j): The argument is similar to the case i ^ j . I

T heorem 22 rs™ c2j(i, m) in the Causal Recovery Protocol - Two Waves.

P roof: Lemmas 59 and 60 showed that Stable(e'j) for all e'j € P W \(i, m) U P W 2(i,m).

According to Rule CRB2.2, wl,-(i,m) will occur following rs™. Since w li(i,m) is stable,

rs™ w l,(i, m). Rules CRB2.3 and CRB2.5 specify that w lj(i, m), i ^ j , occurs following

clj(z, m). Given that w \j{i, m) is stable for all pj € II, c lj(i, m) w lj(i, m). Rule CRB2.6

will guarantee that cl,-(t,m)~* w2,(i, m). Rule CRB2.11 guarantees that w 2 j(i,m),i ^ j ,

occurs following c2 j(i, m), and since w2j(i,m) is stable, that c2j(i, w2j(i,m). Given

reliable communication, a token message originating in an event w lj(i, m) will arrive at

Pj+i(modN)- The restrictions on failure guarantee that the message is not lost, however,

Rules CRB2.8, CRB2.9, and CRB2.10 restrict the occurrence of incoming messages of

the underlying computation. Polling messages are not considered part of the underlying

computation, so these restrictions will not prevent their acceptance. In any case, since

w2 i(a, k) => rs™, for any failure /* occurring before /™. these restrictions would be met,

and the receipt of a polling message would always be accepted. Thus, c lJ+1(mo(ijv)(z\ m)

will occur following w lj(i ,m) , and w lj(i,m) m). A similar argument

CHAPTER 4. OPTIMISTIC RECOVERY 183

can be made that w2 j(i, m) c2j+1(mod/v)(i, m). Because the token travels in a logical

ring, u>l«(i, m) cl«(i, m). We also know that cl,(i, m) w2<(t, m), and w2i(i, m)

c2j+i{modN)(iim)• Therefore, m) c2,(i, m), and rsj" c2,(i, m). I

4.7 Concurrent and M ultiple Failures

In this section we will relax the restrictions on failure that we imposed in the previous section

and show how our protocol must be modified to accommodate multiple and concurrent

failures.

Failure during recovery affects not only the protocol design, but also the meaning of

the protocol specifications. Several of the rules specifying CRB2 state that if one event

occurs than another event must occur. For example, CRB2.2 specifies that if rsj" occurs

then the token departure event w li(i,m) must also occur, and rsj" => w l,(i, m). The

semantics of such a specification are obvious when it is known that p, will not fail between

the occurrence of rsj" and tvl,-(t, m). If it is possible for pt- to fail at any time, then implicit

in this specification is that the state information necessary to cause the w l,(i,m) event

must survive the failure. Therefore, rsj" must be logged to stable storage so that it cannot

be lost due to any failure that could occur before m). Otherwise there is no assurance

that rsj" =» wl,-(t,m).

When multiple failures can occur there is also the potential for a process to be failed

when a recovery token arrives, or to fail between the token’s arrival and its processing. The

protocol must be protected against such a loss of the token. For this reason, rules requiring

that w lj(i,m) c lj+1(mo<iW)(i, m), and w2 j(i ,m) c2 j+HmodN){hm) are added to the

protocol specifications. Implementation of these specifications will require action on the part

of the processes that are not spelled out in the protocol rules. The process transmitting the

token must guarantee that the token arrives and is processed. This may require a process to

save the token information in stable storage before transmitting the token and to retransmit

CHAPTER 4. OPTIMISTIC RECOVERY 184

the token until an acknowledgement is received from the receiving process.

Multiple failures can also give rise to two or more instantiations of the recovery protocol

proceeding concurrently. When this occurs the waves of the concurrent recovery protocols

may cross, so that, w lj(t, m) => c l,(j, k) => c2<(i, m), and w lj(j, k) =» c lj(i, m) =>• c2 j (j , k).

Concurrent failures will cause the the protocol presented in Section 4.6 not to work

properly. One difficulty arises if a restart event in one process is orphaned by a failure in

another process, i.e., there exist i , j , m, k such that Orphan(rs™, f j) . In this case, rsj" and

the polling events instigated by this restart event will be eliminated during the rollback

process. This problem is easily dealt with by treating the polling events as special messages

forcing the propagation of the token and restoring the polling events after rollback has

completed. These changes (outlined below) enable the protocol to handle concurrent failures

but at a price of eliminating some non-orphan events.

During the first wave of the protocol the relationship between vector time and the

partial order is in a state of flux. The isomorphism of vector time to the partial order holds

for those events that occur after a wave event, w lj(i,m) G P W l{ i,m). The rules of the

protocol specify that inconsistencies in the partial order are removed before the rollback

event instigated by w lj(i, m) occurs. This is not true for those events ahead of the wave.

This is not a problem when a wave can be completed without disruption of any of the causal

relationships that existed at the time of failure.

The rollback wave of one process can disrupt the partial order ahead of the wave in

stigated by another process. This occurs if there is a causal relationship between lost or

orphan events in one failed process and orphan or lost events in another failed process. As

a result, events occurring between the concurrent waves may have timestamps that indicate

that they are orphans, when in fact they are not. Consequently it is possible to identify

all the orphan events by their timestamps, but it is not possible to guarantee that all the

events so identified are orphans.

Figure 4.17 shows how this can occur (the checkpoints and rollback events associated

CHAPTER 4. OPTIMISTIC RECOVERY 185

(3.4,0,0)

(0,0,1 JO)

P2PO PI P3

mg

(5,8,73) 1 0 1 ,(3 ,1)

(5,0,03) (S . W ' I , c l l (3 ,1)

(0,0,03) to 13(3 , 1)

(3,6,0,0) (3 AM)

(3.0.0.0) .tc loC O j.l)

m,

PO Pi P2 P3

(b)

Figure 4.17: Concurrent Failures

with the token have been left out for clarity). In part(a) of the figure both po and pz are

recovering from failure. The token from po has been propagated to pz- The token from pz

has reached po. Part (b) of the figure shows the state of the system when the token from

Pz arrives at pz- Message m j from pz was eliminated when pz rolled back. This eliminated

CHAPTER 4. OPTIMISTIC RECOVERY 186

any events in pz that were orphaned by p3*s failure. However, the timestamp of message

mg makes it appear to be an orphan of pg’s failure. This occurs because there was a causal

relationship between the lost events in po and the event orphaned by pz. The receipt of

mg will be eliminated when pz rolls back even though mg does not originate in an orphan

event.

Since our protocol depends on timestamps to identify orphan events it will in some

instances eliminate events occurring between the waves that are not orphans. Therefore,

the protocol we present in this section can not guarantee that all non-orphan events are

restored. It can guarantee that the system is returned to a consistent state and that messages

originating in send events not eliminated from the partial order by rollback are received, so

it meets the weaker rollback conditions specified by RB.

Three changes need to be made to the protocol to make it accommodate concurrent

failure. First, during rollback a process will not request retransmission of messages that

originated in non-orphaned events. It will simply reinstate them from the message log. This

requires a modification of the Retransmit rules.

Retransm it(tk.ts , tk.id, tk.seq, id, c.event)

For all e'id — s such that:

s =>■ c.event A

Vj‘(s) > tk.seq(i)A

Vi(s) tk .ts

s is retransmitted to ptk.id

CHAPTER 4. OPTIMISTIC RECOVERY 187

The second change requires that all polling events are also reinstated from the message

log before the rollback event occurs. In the previous protocol only those messages whose

timestamps were not greater than the token’s timestamp were replayed from the message

log during the rollback procedure. In this protocol all polling events are replayed from the

log regardless of their timestamp. In this way polling events will never be eliminated from

system execution by the rollback protocol.

Finally, the token message must also be treated specially by the process propagating

it and by the receiving process. The process which sends the token must make sure that

the token is received. This may require repeated transmissions and acknowledgements to

insure that the token arrival event occurs. The token message must always be received

regardless of its timestamp. A recovering process will receive an incoming token, save the

token information to stable storage, rollback if necessary and propagate the token even

though it is nominally frozen until its own token returns.

4 .7 .1 Form al Specification

C ausal R ecovery P ro toco l - C oncurren t Failures

C R B 3.1 The occurrence of rs™ implies

LastEvent(f™) => rsf1 A
tk(i,m).ts = V^rs™) A
tk(i,m).id = i.

A restart event occurs when the latest event that occurred prior to failure is recov
ered from stable storage. A token incorporating the timestamp o f the restart event
and the id o f the recovering process is created during this event.

CHAPTER 4. OPTIMISTIC RECOVERY

C R B 3.2. w li(i, m) occurs iff

3raJ" such that rs™ ^ tul,(*\ m) A
Bcfcj such that ck't => u;lj(z,m) A C K ^ k '^ r s ^ A

fle't such that rs™ => e\ => tnl;(z, m) A
e\ is an event of the underlying computation.

A form erly failed process creates and propagates a token, event w li(i ,m) , immedi
ately after the occurrence of a restart event rs™.

C R B 3.3 m) ^ c li+1(moeijv)(*» m).

It is the responsibility o f the i ,h process to guarantee arrival o f token at Pi+\(moiS) ■

C R B 3.4 . A rollback event, rb'j, is instigated by rs™ iff

c lj(i, m) =* rbj A
fle'j such that c lj(i, m) => e'- rbj A
e'j is am event of the underlying computation.

Rollback is immediately instigated by the arrival o f the token.

C R B 3.5 . The occurrence of rbj instigated by rsj" implies

Vj(e'j) ^ tk(i,m).tsV
e'j = i?(s) A K (s)(s) ? tk{i,m).ts)V
3k, I: e'j € P W l(k , I) U PW 2{k, I)

Retransm it(tk(i, m).ts, tk(i, m).id, tk(i, m).seq,j, clj(i, m)).

e'j => c lj(i, m) iff

A rollback event implies that all orphan events have been eliminated except those
message receipts that do not originate in an orphan event. It also implies that the
necessary messages have been retransmitted.

C R B 3.6 . w lj(i, m), i / j occurs iff

3rb'j instigated by rs™ such that rbj => w lj(i,m) A
3cfc' such that cfc' =>• wl;(z\ m) A CK{ck'j,rb'j) A

ft e'j such that rb'j => e'j => w lj(i, m) A
e'j is an event of the underlying computation,

A non-failed process will propagate the token only after it has rolled back.

C R B 3.7. For i ^ j , zi>lj(z,m)-^ clj+n modN)(i,m).

C R B 3.8. c li(i,m) =» tn2,(z, m).

The second polling wave begins when the first wave is completed.

CHAPTER 4. OPTIMISTIC RECOVERY 189

C R B 3.9. The occurrence of u>2,(z, m) implies

tk(i,m).L tim e = Vi(clj(i, m)) A
w2 i (i ,m) ^ c2 i+n modN)(i,m).

The vector time of the last event of the first polling wave is put in the token before
the beginning of the second polling wave.

C R B 3.10. The occurrence of t j (s) where p (s) = p,, and rs™ => t) (s) , implies cl,(i, m) =>
T } (S) .

A recovering process will not accept any incoming messages until the first polling
wave is completed.

CRB3.11 The occurrence of r/(s) where =► tj(s) implies that

Kr(a)(«) ^ tk(i, m).ts V
Kr(a)(5) > tk(i,m).L tim e V
^T(a)(s) II **(*« m).Ltim e A cr(s) ^ i.

Any message arriving after a polling wave must be compared to the token timestamp
and the timestamp of clj(», m) to determine whether it originated in an orphan
event.

CR B3.12 The occurrence of s such that w l7 (s)(t, m) =*<• s => c2<r̂ (i , m) implies c lp(4)(z, m)

Messages are not allowed to cross the first polling wave.

CR B3.13 w2j(i, m), i j occurs iff

c2 j(i, m) => w2 j(i, m)A
fle'j such that c2j(i, m) =► e'- => w2j(i, m) A
e'j is an event of the underlying computation.

C R B 3.14. For i ^ j , w2j(i, m) c2J+1(m0(W)(i, m).

CR B3.15 The occurrence of e' = c lj(i, m), or e'- = c2j(i, m), implies Logged(e'j).

4 .7 .2 C orrectness

First, we will show that the polling events are stable. Showing that these events persist

though failure and rollback is necessary in later arguments about the protocol’s operation.

CHAPTER 4. OPTIMISTIC RECOVERY 190

L em m a 61 I f e' G P W \{ i,m)\J P W 2 (i,m) then there does not exist f* such that e'j =>

/ f 1 A Disc(e'j,TSj)

Proof: Assume there exists /* such that Disc(e'j,rsj). This implies rs* 56- e' and e'- 7$- rs*.

Rule CRB3.15 specifies that the occurrence of c lj(i, m) implies Logged(clj(i, to)). There

fore, clj(i, m) => L a stE ven t(fj), or c lj(i, to) = LastEvent(f*), and c lj(i,m) =► rs*. Sim

ilarly, Rule CRB3.15 specifies Logged(c2j(i, m)), so e'- = c2j(i, m), or e' = c lj(i, m) implies

e'j =► rs j.

Now consider the case where e' = w lj(i, to), or e'j = w2j(i, to), and i ^ j . Rule CRB3.6

requires that there exist a checkpoint ck'j, such that C K (ck'j, rbj), where rbj is the rollback

event instigated by c lj(i, to). Since CRB3.6 also specifies that no event of the underlying

computation occur between rb'j and w lj(i, to), w lj(i, m) can always be recovered, and

w lj{ i,m) => L a stE ven t(fj), or w lj(i,m) = LastEvent(f*). Therefore, e' = w lj(i,m)

implies e'j => rs*. A similar argument can be made in the case where e' = w2j(i, to).

Logged(c2j(i, m)), and no receive event of the underlying computation may occur between

c2j(i,m) and w2j(i, to), therefore, w2j(i,m) => rs*.

Finally consider the case that e' = to), or e' = u>2,(i, m). Rule CRB3.2 specifies

that a checkpoint of rs™ must occur before w l,(i, to) takes place. Therefore, u;l,(i, to) can

always be recovered, and iol,(i, to) =>■ rsjf. Rules CRB3.8 and CRB3.15 guarantee that

u>2 ,•(*, to) is recoverable from the stable logs, and w2,•(*, to) => rs*. I

L em m a 62 I f e'j G P W l(i, to) (JFW 2(j, to) then there does not exist f* or rb'j such that

rbj is instigated by rs*, and Disc(e'j,rb'j).

Proof: Assume the contrary, so that there exists a failure f* and a rollback event rb'j

instigated by rs* such that Disc(e'j,rb'j). Rule CRB3.5 specifies that if e' G P W l(i,m) U

P W 2(i,m) then e'j =>• c lj(i, m). Rule CRB3.4 specifies that c lj(i,m) => rbj. Therefore.

e'j rbj, and ->Disc(e'j,rb'j). I

CHAPTER 4. OPTIMISTIC RECOVERY 191

Lemmas 52 and 53 still hold in the modified protocol. However, we can no longer show

Lemma 54.

Lemma 63 For any w lj(i, m) event as it is specified in the Causal Recovery Protocol

- Concurrent Failures, ->Orphan(wlj(i,m), f™).

Proof: Assume the contrary, that there exists w lj(i,m) for which O rphan(w lj(i,m), //")

is true. Let w lj(i,m) be the earliest token transmission event in the polling wave for

which Orphan is true. If that is the case, then there exists e\, such that Disc(e(-,rsJri), and

e\ => w lj(i,m). Then there must also exist e ', such that e- => e'j => w lj(i,m). Let e'

be the earliest such event in Pj. It is not possible for e' = c lj(i, m), because this would

imply O rphan(w lj_nmo<iM)(i,m), /■*) contradicting the assumption that w lj(i ,m) was the

earliest token transmission which was an orphan. Therefore, e' => c lj(t, m). According to

Lemma 53, Orphan{e'j, f™) implies Vj(e') > tk(i, m).ts. Rules CRB3.4 and CRB3.6 of the

protocol specify that a rollback event r i ' occurs such that c lj(i,m) => rbj => m).

Therefore, e' =>• rb'-. However, if e'- => 7-6', and Vj(e') > tk(i,m).ts then e'- is a polling

event, or e'- is a receive event t)(s) such that ^ tk(i, m).ts.

If e'j is a polling event and is the earliest event in pj such that Orphan(e'j, f™), then

3k, n such that e'- = c lj(k , n), or e'j = c2j(k, n). -\Orphan(wlj_nm0(lN)(i, m), //**), and

O rphan(clj(k,m), //") implies j - l(m odN) = i, and D isc(w li(k,n),rs?1). However, we

proved in Lemma 61 that -iDisc(u;l,(£,re),rs?*) for all //" . The other possibility is that

e'j = c2j(k, n) for some k and n. Once again this implies Disc(w2i(k,n),rs™), which

contradicts the results of Lemma 61. Therefore, if e' = clj(k ,n) , or e'j = c2j(k,n), then

-iOrphan(e'j, f™).

The other possibility is that e'- is a receive event t) (s) such that Va^ ^ tk(i,m).ts.

In this case ->Orphan(s, f™). This implies there does not exist e- such that e\ => s, and

Disc(e'i, rs™) (Lemma 53). Therefore, ->Orphan(r)(s), f™). I

CHAPTER 4. OPTIMISTIC RECOVERY 192

Lemmas 56 and 57 still hold in the modified protocol. Lemma 64 will show that RB(c)

holds for C ausal R ecovery P ro toco l - C oncurren t Failures.

Lem m a 64 I f -iDisc(s, w la^ (i , m)) then i](s) => w lp̂ (i ,m) V w lp(,)(i,m) =>

Proof: Case 1: a => w la^ (i ,m) . This implies I^(,)(s) ? tk(i,m).ts. If the receipt of s is

lost by a failed process then tk(i, m).seq(a(s)) < Therefore, s will be retransmitted

during the rollback process (Rule CRB3.5). If t)(s) arrives after the token it will be accepted,

because the first disjunct of CRB3.11 will be satisfied. If ii(s) occurs before the arrival of

the token, jj(s) => w l p ^ (i , m) (Rule CRB3.5).

Case 2: wl„(a)(i,m) => s. In this case V^(,)(s) || tk(i,m).L tim e , or V (̂4)(s) >

tk(i, m).Ltim e and <r(s) = i. Therefore, t/(s) will be accepted, and u>lp(s)(i, m) =>• t/(s). I

T heo rem 23 The completion of a valid wave in the Causal Recovery Protocol- Concurrent

Failures satisfies RB.

Proof: Lemma 63 showed that -iO rphan(wlj(i,m), f™) for all pj E II. Lemma 57 showed

that]It}(s) such that w lfii, m) =► j/(s) and Orphan(r)(s), //"). Therefore, for all w‘2j(i , m) E

F W (i,m), ->Orphan(w2j(i,m), //")), thus satisfying RB(a). Since w lj(i ,m) => w2j(i, m)

for all pj E II, and Lemmas 57 and 64 have shown that RB(b) and RB(c) hold for all

u;lj(t,7n), clearly RB(b) and RB(c) hold for all w2j(i,m). I

T heo rem 24 rs™ c2,(i, m) in the Causal Recovery Protocol - Concurrent Failures.

P roof: Lemmas 61 and 62 showed that Stable(e'j) for all e' E P W l(i, m) U P W 2(i,m).

According to Rule CRB3.2, w lj(t,m) will occur following rs-™. Since w l,(i, m) is stable,

rs™ wl,-(i, m). Rule CRB3.3 specifies u>l,(i, m) cl,+1(moj^)(i, m) Rules CRB3.4 and

CRB3.6 specify that w lj(i ,m) ,i ^ j , occurs following c lj(i,m). Given that w lj(i, m) is

stable for all pj E II, c lj(i,m) w lj(i,m), i £ j . Rule CRB3.7 implies u;lj(i, m)

c lj+1(m0(j^)(i, m), i ^ j . Because the token travels in a logical ring, tnl,(i, m) c l,(i, m).

CHAPTER 4. OPTIMISTIC RECOVERY 193

Rules CRB3*8 <md CRB3>9 ^iisTsiiitGc thiit cli|ty 771) ^ w2,'(t, 77l) ^i+HmodN)i.^i 7̂l)*

Rule CRB3.13 guarantees th a t w2j(i, j , occurs following c2; (i, m), and since w2j(i, m)

is stable, th a t c2j(i, m) w2j(i, m), i / ji. Rule CRB3.14 specifies w2j(i, m) c2J+1(m0(i/v)

(i, m). Therefore, c l,(i, m) c2,(i, m), m) c2,(i, m), and rs™ c2,-(i, m). I

C hapter 5

C onclusions and Future R esearch

The basic premise that originally motivated this research was that the function of vector

clocks and synchronized clocks was similar enough so that vector timestamps could be me

chanically substituted for real timestamps in certain synchronous protocols. In cases where

this was possible, and we hoped that this would be true for a large class of distributed prob

lems, vector clocks could be used to implement distributed protocols which were designed

as if synchronized clocks were available. This would have the effect of simplifying protocol

design without imposing the performance demands of clock synchronization on the system.

Unfortunately, upon investigation we found that while the temporal order and causal order

share similar characteristics, the lack of isomorphism between the two orderings prevents

the direct substitution of vector timestamps for real timestamps.

Depending on the nature of the distributed problem either the temporal order or causal

order is more relevant to the problem’s solution. In the cases of distributed termination

detection and deadlock detection, knowledge of the temporal order led to straightforward

solutions. In both cases identification of a latest event, an idle event in the case of ter

mination detection, a request event in the case of deadlock detection, was integral to the

synchronous protocols presented. This identification is possible because the order imposed

by synchronized clocks is a total order. Because the causal order is a partial order, identifi

194

CHAPTER 5. CONCLUSIONS AND FUTURE RESEARCH 195

cation of a unique latest event may not be possible in a causally synchronous system which

uses vector clocks. As a result, vector timestamps can not be mechanically substituted for

real timestamps, and the synchronous deadlock detection and termination detection proto

cols must be modified to accommodate the inability of vector time to impose a total order

on events.

However, the necessary protocol modifications were not extensive, and much of the sim

ple structure and performance efficiency of the synchronous protocols could be preserved in

the causally synchronous protocols. Because the functioning of the synchronous and casu

ally synchronous protocols was similar, the correctness arguments used in the synchronous

system environment could also be used with slight modification to argue that the causally

synchronous protocols were correct.

The problem of optimistic recovery differs from distributed termination and deadlock

detection in that the causal order is more useful than the temporal order in design of

an optimistic recovery protocol. The causal relationship between events determines what

actions should be taken to restore a system to consistency. Real timestamps can be used

to show that no causal relationship exists between a set of events, but they can’t be used

to show that such a relationship does exist. Therefore, the temporal order does not supply

the needed information, and the synchronous optimistic recovery protocol we presented is

not as logical or efficient as the optimistic recovery protocols which use vector clocks.

The FCFS centralized service problem we presented in Chapter 1 is another example of

a problem where the causal order is more relevant than the temporal order. In this case

vector clocks, because their ordering is isomorphic to the causal order, can be used more

readily than synchronized clocks in design of a solution.

Even though we discovered that vector time could not be directly substituted for real

time in distributed protocols, we found that solving a problem first in a synchronous en

vironment led us to a useful solution in a causally synchronous environment. Availability

of synchronized clocks and knowledge of the temporal order provides insight into the prop

CHAPTER 5. CONCLUSIONS AND FUTURE RESEARCH 196

erties of a distributed computation that is not available in an asynchronous system. This

insight often leads to an obvious and simple solution. Rana’s termination detection protocol

is a good example of how imposing order on the events of a distributed computation sim

plifies the problem and its solution. Consideration of order is also useful in understanding

and solving the distributed deadlock problem. Existing protocols for this problem were

either incorrect or inefficient, primarily because there was no consideration of event order

in these solutions. Identifying the order in which events of the underlying computation oc

curred made the solution to the deadlock problem straightforward. The similarities between

the causal order and temporal order are strong enough that these synchronous protocols

provided a template for our causal protocols.

Knowledge of event order, even if it is only knowledge of the causal partial order, is a

powerful tool. With it we were able to develop a methodology for analysis and design of

distributed protocols. Using the causal order we can specify conditions which must be met

for a protocol to be correct, define the axiomatic protocol specifications, and structure the

reasoning about the correctness of the specified protocol. The advantage of using causality

as a unifying concept is that the correctness conditions and protocol specifications are

defined in terms of local states and local events. This means that we need consider only

local process state when arguing that a causal protocol is correct.

Whereas our emphasis is on event order and local state, the prevailing framework for

presentation and analysis of distributed protocols emphasizes global state and ignores event

order. This is a natural consequence of the fact that in an asynchronous distributed system

without logical clocks there is no way to explicitly identify the event order. Without knowl

edge of event order it is difficult to reason about the operation of a distributed computation

using only local state, therefore, it is necessary to try to reason about global state.

The standard technique used to formally argue that a distributed protocol is correct is to

define a global invariant and attempt to show that the protocol preserves the invariant. Both

Francez and Dijkstra[14, 15] propose global invariants for justification of their termination

CHAPTER 5. CONCLUSIONS AND FUTURE RESEARCH 197

detection protocols. Sistla and Welch[47] use global arguments in presentation of their

optimistic recovery protocol.

The difficulty with global invariants and global reasoning is that it is easy to define

a global invariant, but it is hard to show that the invariant is satisfied. To show that a

global invariant is satisfied in every instance, all possible global states must be identified

and considered. This is a daunting task when the distributed computation being analyzed

is complex.

A good example of the difficulties that can arise can be seen in [49]. Kshemkalyani and

Singhal identify errors in Choudary, et.al.’s[8], priority-probe deadlock detection protocol

that we outlined in Chapter 3 and propose necessary corrections. To show that their solution

is correct, they define two global invariants. Paraphrasing, the invariants are:

• For all Ti and Tj, such that T, waits for Tj, there exists n such that a probe initiated

by Ti will become a member of Probe.Qj in n steps (T, and Tj are transactions).

• For all Ti and Tj, a probe initiated by T, in Probe.Qj implies T,- waits for Tj.

Clearly these invariants, if always satisfied, ensure detection of deadlock and prevent de

tection of false deadlock. The problem is showing that every action of the protocol preserves

the invariant. Kshemkalyani and Singhal purport to show that their protocol does. They do

this by trying to identify all relevant execution threads of their protocol, and then arguing

that in no case are the invariants violated. We won’t repeat the arguments of Chapter 3

here, but while Choudary, et.al., and Natarajan did not state these invariants formally, it

is obvious they thought their versions of priority-probe deadlock detection satisfied them.

They even posed arguments to that effect. However, it has been shown that these invariants

are not satisfied by their protocols. When making their arguments they failed to identify

a possible execution sequence that violated one of the invariants. In arguing that their

protocol is correct, Kshemkalyani and Singhal try to identify every relevant execution path.

However, how do they know that they have identified every path? How can they prove that

CHAPTER 5. CONCLUSIONS AND FUTURE RESEARCH 198

they have? That is the crux of the difficulty with global invariants and global reasoning.

In a complicated system it is hard to know that every possibility has been considered.

Global invariants have strong appeal because they are consistent with the single proces

sor model, the schema most of us axe comfortable with and find most logical. The problem

is that a global invariant perpetuates the illusion of global state. Since there is no global

state in an asynchronous distributed system, the use of global invariants in an asynchronous

system is not a productive way to view such a system.

We believe we have shown that causal reasoning, by concentrating on local state, pro

vides a superior framework for analyzing distributed problems. The polling model can be

used to structure and evaluate distributed protocols. Correctness arguments can be stated

purely in terms of the local state of a process at an event or set of events. The advantage

of this is that there is no need to try to identify all possible paths of execution. It is only

necessary to argue about what is true or false about a particular event using the causal

order. Admittedly, the causal correctness criteria are not as intuitively obvious as a global

invariant, but once they are designed it is much easier to show that they are correct, as the

protocols we have presented have demonstrated.

In the future we plan to apply the causal order and the polling wave model to other

distributed problems. The resource deadlock problem we analyzed in Chapter 3 is only one

variant of the distributed deadlock problem. Other variants include communication dead

lock and multiple resource deadlock. We also plan to apply this methodology to distributed

election, garbage collection and agreement protocols. Even if the use of vector time does not

result in more efficient protocols, we think the polling model will provide a useful framework

for analyzing these problems.

B ibliography

[1] G. Ricart and A. Agrawala, “An optimal algorithm for mutual exclusion in computer
networks,” Communications ACM, vol. 24, no. 1, pp. 9-17, 1981.

[2] L. Lamport, “Time, clocks, and the ordering of events in a distributed system,” Com
munications ACM, vol. 21, no. 7, pp. 558-565, 1978.

[3] I. Suzuki and T. Kasami, “A distributed mutual exclusion algorithm,” ACM Trans.
Computer Systems, vol. 3, no. 4, pp. 344-349,1985.

[4] M. Maekawa, “A y/N algorithm for mutual exclusion in decentralized systems,” toes,
vol. 3, no. 2, pp. 145-159,1985.

[5] K. Chandy, J. Misra, and L. Haas, “Distributed deadlock detection,” ACM Trans.
Computer Systems, vol. 1, no. 2, pp. 144-156,1983.

[6] S. Huang, “A distributed deadlock detection algorithm for csp-like communication,”
ACM Trans. Programming Languages and Systems, vol. 12, no. 1, pp. 102-122,1990.

[7] A. Elmagarmid, N. Soundararajan, and M. Liu, “A distributed deadlock detection
and resolution algorithm and its correctness proof,” IEEE Transactions on Software
Engineering, vol. 14, no. 10, pp. 1443-1452,1988.

[8] A. Choudhary, W. Kohler, J. Stankovic, and D. Towsley, “A modified priority based
probe algorithm for distributed deadlock detection and resolution,” IEEE Trans. Soft
ware Engineering, vol. 15, no. 1, pp. 10-17, 1989.

[9] D. Badal, “The distributed deadlock detection algorithm,” ACM Trans. Computer
Systems, vol. 4, no. 4, pp. 320-337, 1986.

[10] V. Gligor and S. Shattuck, “On deadlock detection in distributed systems,” IEEE
Transactions on Software Engineering, vol. SE-6, no. 5, pp. 435-440, 1980.

[11] M. Sinha and N. Natarajan, “A priority based distributed deadlock detection algo
rithm,” IEEE Trans. Software Engineering, vol. SE-11, no. 1, pp. 67-80, 1985.

[12] D. Menasce and R. Muntz, “Locking and deadlock detection in distributed data bases,”
IEEE Trans. Software Engineering, vol. SE-5, no. 3, pp. 195-202,1979.

[13] N. Francez, “Distributed termination,” ACM Trans. Programming Languages and Sys
tems, vol. 2, no. 1, pp. 42-55, 1980.

199

BIBLIOGRAPHY 200

[14] N. Francez and M. Rodeh, “Achieving distributed termination without freezing,” IEEE
Trans. Software Engineering, vol. SE-8, no. 3, pp. 287-292, 1982.

[15] E. Dijkstra, W. Feijen, and A. van Gasteren, “Derivation of a termination detection
algorithm for distributed computations,” Inf. Process. Lett., vol. 16, no. 5, pp. 217-219,
1983.

[16] S. Rana, “A distributed solution of the distributed termination problem,” Information
Processing Letters, vol. 17, pp. 43-46, 1983.

[17] R. Topor, “Termination detection for distributed computations,” Inf. Process. Lett.,
vol. 18, no. 1, pp. 33-36, 1984.

[18] K. Apt, “Correctness proofs of distributed termination algorithms,” ACM Trans. Pro
gramming Languages and Systems, vol. 8, no. 3, pp. 388-405,1986.

[19] F. Mattern, “New algorithms for distributed termination detection in asynchronous
message passing systems,” Report 42/85, University of Kaiserslautern, 1985.

[20] J . Misra, “Detecting termination of distributed computations using markers,” in Pro
ceedings of the ACM SIGACT-SIGOPS Symposium o f Principles of Distributed Com
puting, pp. 290-294,1983.

[21] H. Abu-Amara, “Fault tolerance distributed algorithm for election in complete net
works,” IEEE Trans. Computers, vol. 37, no. 4, pp. 449-453, 1988.

[22] H. Garcia-Molina, “Elections in a distributed computing system,” IEEE Trans. Com
puters, vol. C-31, no. 1, pp. 48-59, 1982.

[23] G. Peterson, “An o(n log n) unidirectional algorithm for the circular extrema problem,”
ACM Trans. Programming Languages and Systems, vol. 4, no. 4, pp. 758-762, 1982.

[24] A. Itai, S. Kutten, Y. Wolfstahl, and S. Zaks, “Optimal distributed t-resilient election
in complete networks,” IEEE Trans. Software Engineering, vol. 16, no. 4, pp. 415-420,
1990.

[25] G. Lelann, “Distributed systems—towards a formal approach,” in Proceedings of the
IFIP Congress, pp. 155-160,1977.

[26] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the presence of faults,”
J. ACM, vol. 27, no. 2, pp. 228-234,1980.

[27] L. Lamport, R. Shostak, and M. Pease, “The Byzantine Generals problem,” ACM
Trans. Programming Languages and Systems, vol. 4, pp. 382-401, 1982.

[28] M. Fischer, N. Lynch, and M. Paterson, “Impossibility of distributed consensus with
one faulty process,” J. ACM, vol. 32, pp. 374-382, 1985.

[29] M. Fischer, N. Lynch, and M. Merritt, “Easy impossibility proofs for distributed con
sensus problems,” Distributed Computing, vol. 1, no. 1, pp. 26-39, 1986.

BIBLIOGRAPHY 201

[30] T. Srikanth and S. Toueg, “Optimal clock synchronization,” J. ACM, vol. 34, no. 3,
pp. 627-645, 1987.

[31] H. Kopetz and W. Ochsenreiter, “Clock synchronization in distributed real-time sys
tems,” ACM Trans. Computer Systems, vol. C-36, no. 8, pp. 933-940, 1987.

[32] F. Mattern, “Virtual time and global states of distributed systems,” in Parallel and
Distributed Algorithms: Proceedings of the International Workshop on Parallel and
Distributed Algorithms (M. C. et. al., ed.), pp. 215-226, Elsevier Science Publishers B.
V., 1989.

[33] J. Fidge, “Timestamps in message-passing systems that preserve the partial ordering,”
in Proceedings 11th Australian Computer Science Conference, pp. 56-66, 1988.

[34] P. Kearns and B. Koodalatupuram, “Immediate ordered service in distributed sys
tems,” in Proceedings o f the Ninth International Conference on Distributed Computing
Systems, pp. 611-618, 1989.

[35] C. Morgan, “Global and logical time in distributed algorithms,” Inf. Process. Lett.,
vol. 20, no. 4, pp. 189-194,1985.

[36] G. Neiger and S. Toueg, “Substituting for real time and common knowledge in asyn
chronous distributed systems,” in Proceedings of the Sixth Annual ACM Symposium
on Principles o f Distributed Computing, pp. 281-293,1987.

[37] M. Ahamad, P. Hutto, and R. John, “Implementing and programming causal dis
tributed shared memory,” in Proceedings of the Eleventh International Conference on
Distributed Computing Systems, pp. 274-281,1991.

[38] C. Hoare, “Communicating sequential processes,” Communications ACM, vol. 21,
no. 8, pp. 666-677,1978.

[39] S. S. Isloor and T. A. Marsland, “An effective ‘on-line’ deadlock detection technique for
distributed data base managment systems,” in Proceedings COMSAC 1978, pp. 283-
288,1978.

[40] R. Koo and S. Toueg, “Checkpointing and rollback-recovery for distributed systems,”
IEEE Trans. Software Engineering, vol. SE-13, no. 1, pp. 23-31,1987.

[41] P. Ramanathan and K. Shin, “Use of common time base for checkpointing and rollback
recovery in a distributed system,” IEEE Trans. Software Engineering, vol. 19, no. 6,
pp. 571-583,1993.

[42] A. Borg, J. Baumbach, and S. Glazer, “A message system supporting fault tolerance,”
in Proceedings of the Ninth ACM Symposium on Operating Systems, pp. 90-99, 1983.

[43] M. Powell and D. Presotto, “Publishing: A reliable broadcast communication mecha
nism,” in Proceedings o f the Ninth ACM Symposium on Operating Systems, pp. 100-
109, 1983.

BIBLIOGRAPHY 202

[44] R. Strom and S. Yemini, “Optimistic recovery in distributed systems,” ACM Trans.
Computer Systems, vol. 3, no. 3, pp. 204-226,1985.

[45] K. Chandy and L. Lamport, “Distributed snapshots: Determining global states of
distributed systems,” ACM Trans. Computer Systems, vol. 3, no. 1, pp. 63-75, 1985.

[46] D. Johnson and W. Zwaenepoel, “Recovery in distributed systems using optimistic
message logging and checkpointing,” Journal of Algorithms, vol. 11, no. 3, pp. 462-
491, 1990.

[47] A. Sistla and J. Welch, “Efficient distributed recovery using message logging,” in Pro
ceedings o f the ACM Symposium on Principles of Distributed Computing, pp. 223-238,
1989.

[48] E. Elnozahy and W. Zwaenepoel, “Manetho: Transparent rollback-recovery with low
overhead, limited rollback, and fast output commit,” ACM Trans. Computer Systems,
vol. 41, no. 5, pp. 526 - 531, 1992.

[49] A. Kshemkalyani and M. Singhal, “Invariant-based verification of a distributed dead
lock detection algorithm,” IEEE Trans. Software Engineering, vol. 17, no. 8, pp. 789-
799, 1991.

VITA

Sandra L. Peterson was born in Coral Gables, Florida, on June 19, 1952. A graduate of
Melbourne High School in Melbourne, Florida, she received her B.A. in Mathematics from
the College of William and Mary, Williamsburg, Virgina, in 1974. She worked as a computer
programmer until 1978 when she completed an M.B.A. from the College of William and
Mary. After working as a financial analyst she returned to college and completed a M.S.
degree in Computer Science at William and Mary in 1989. She expects to receive her
doctorate in Computer Science from the College of William and Mary in August, 1994.

	Causal synchrony in the design of distributed programs
	Recommended Citation

	00001.tif

