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ABSTRACT 

 

Acrylic emulsion paint is one of the most common media employed by 20th 
century painters. Since early acrylic paintings have begun to require the attention 
of conservators, scientists are working to characterize the properties of these 
paints to facilitate conservation efforts. In this study, we report an investigation of 
the physical and chemical properties of acrylic emulsion paints using single-sided 
NMR in conjunction with gloss measurements and scanning electron microscopy 
coupled with energy dispersive spectrometry. Combining the data from these 
techniques gives insight into pigment-binder interactions and the acrylic curing 
process, showing that as pigment concentration is increased in paints, the 
amount of binder adsorbed to pigment particles increases, resulting in films with 
differing relaxation times. Furthermore, pigments with a larger surface area or 
smaller particle size will have a greater effect on physical properties as 
concentration increases. This research emphasizes the efficacy of NMR 
relaxometry in studying cultural heritage objects, and may prompt further study 
into the effects of pigment concentration on the curing and conservation of acrylic 
paint films. 
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Chapter 1: Introduction 

 

 

Acrylic emulsion paints are the most widely used synthetic artists’ paints. They 

were developed in the late 1950s as a versatile medium that had uniformly intense color 

and could be worked to produce a greater range of effects and textures than the oil paints, 

watercolors, and other products that had been used for centuries; their use flourished in 

the 1960s. The binder in acrylic emulsion paints is usually an acrylic copolymer made up 

of either ethyl acrylate (EA) or n-butyl acrylate (nBA) combined with methyl 

methacrylate (MMA) dispersed in an aqueous solution. Stabilizers, surfactants, fillers, 

and other materials are added to the polymer dispersion to control shelf-life and ensure 

optimal performance. [1–4] The aqueous base makes these paints easy to manipulate, 

since they can be thinned with water in order to achieve different textures, and more 

economical and environmentally friendly since they obviate the need for cleanup with 

organic solvents. [2]  

Since acrylics are a relative newcomer to the art world and come in a variety of 

compositions, researchers are still working to characterize their properties fully, 

especially in regard to their degradation and reaction to conservation treatments. [5] This 

lack of knowledge about acrylic paints poses a problem for curators, whose duty it is to 

preserve (acrylic) works in museums worldwide, especially since acrylic emulsion paints 

are found in a large percentage of modern works. [3] Additionally, many early acrylic 

paintings currently need, or will soon require, the attention of conservators since it takes 

about half a century for buildup from air pollution to make a discernible impact on a 

painting’s appearance. [6] Acrylic films are particularly prone to collecting dust and 
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pollutants due to surfactant aggregation on their soft surface, which makes the dry paint 

pliable and durable but also easier to soil. [6, 7]  

Acrylic paint films have previously been studied with Fourier Transform infrared 

spectroscopy (FTIR) [7, 8, 9], x-ray fluorescence spectroscopy (XRF) [1, 10], traditional 

nuclear magnetic resonance spectroscopy (NMR) [11], mass spectrometry (MS) [12], and 

various chromatographic and microscopy techniques [5, 13– 20] which often have the 

unfortunate drawback of requiring a sample to be removed from the object under study. 

The primary instrumentation employed in this study, however, offers an attractive non-

destructive alternative to these more established techniques.  

Single-sided NMR, which emerged in the late 1980s and early 1990s, can non-

destructively study items and chemical processes. This instrumentation improves on 

sensors first developed in the 1950s by scientists in the oil industry used for studying 

fluids trapped in rock pores in oil wells, which required the sensor to be placed inside a 

sample, rather than the other way around. [21] Consequently, magnets and 

radiofrequency coils with a flat, open geometry were developed: an “inside-out” version 

of the core of a traditional NMR, in which an electromagnet and coil surround a sample 

in a cylindrical configuration. This open geometry makes single sided NMR ideal for the 

study of planar samples like paint films, and eliminates the need for invasive sample 

removal and preparation. Therefore, it has in the past been applied to the study of cultural 

heritage objects like paintings [22–26], instruments [26], ceramics [27, 28], and paper 

[29, 30], as well as to food [31–34], manufacturing procedures [35, 36], and building 

materials [37].  
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Additionally, single-sided NMR instrumentation makes use of permanent 

magnets, which lessens the operation and maintenance complexity associated with 

traditional NMR equipment as well as the size of the instrument itself. Traditional NMR 

instruments use superconducting electromagnets, which require a constant replacement of 

cryogens to keep the magnet operational. This renders the instruments large and 

immobile because of the necessary wide layers of liquid nitrogen and helium. Removing 

these makes single-sided NMR devices small and portable, and allows less expensive 

data collection than traditional high-field NMR. [38]  

This streamlining of the hardware, however, comes at the cost of magnetic field 

strength and homogeneity. Whereas the electromagnets in traditional NMR instruments 

are capable of producing homogeneous fields with strengths of over twenty Tesla, the 

permanent magnets in the single-sided NMR instruments available in our lab produce 

fields on the order of half a Tesla and with a pronounced gradient. This weak, 

inhomogeneous field makes it impossible to collect the kind of detailed structural 

information about sample compounds that constitutes the most common data sets 

generated by traditional NMR. 

Although the inhomogeneous field created by the magnets in single-sided NMR 

instrumentation prohibits the determination of chemical shifts and other information 

usually associated with a high-field NMR spectrum, spin-spin relaxation times (T2) can 

be measured using the Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence. [39, 40] 

These relaxation times correlate with the rigidity of a material; compounds like water 

have large T2 values, which indicate a high level of free intermolecular motion, and 

smaller values of T2 indicate restricted intermolecular motion, which, for a polymer, can 
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be caused by crosslinking or adsorption to a surface. [41, 42] T2 values, however, are 

dependent on experimental parameters and do not provide detailed information about a 

material on a macroscopic level. CPMG measurements obtained using the same set of 

parameters can therefore be used to make comparisons across groups of samples, and 

data collected using other instruments is used to interpret the significance of different T2 

values. 

In this study, the physical properties of acrylic emulsion paint films measured 

using single-sided NMR are compared to gloss and scanning electron microscopy/energy 

dispersive spectroscopy (SEM-EDS) measurements. Analyses were performed on paint 

films made with varying concentrations of four commonly used artists’ pigments (ivory 

black, titanium white, phthalo blue, and alizarin crimson) to gain insight into the physical 

effects of pigmentation level on acrylic paint films. Combining the data from each 

technique reveals a more detailed picture of pigment-binder interactions and the acrylic 

curing process.   
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Chapter 2: NMR Theory 
 

 

Nuclear magnetic resonance spectroscopy exploits the fact that most atomic 

nuclei possess an intrinsic angular momentum, or spin, distinct from the angular 

momentum that comes from the rotation of the nucleus. [43, 44] Depending upon the 

number of protons and neutrons that make up the nucleus (each of those subatomic 

particles has a spin of ½), the nucleus itself will have a nuclear spin number, denoted I, 

that has a value of zero, an integer, or a half integer. Nuclei with spin number ½ and 

spherical nuclear charge distribution, such as 1H, 13C, 15N, and 31P, are considered NMR 

active nuclei. Additionally, the spin state of a nucleus is degenerate, with a number of 

levels equal to 2I + 1. In an applied magnetic field, the degenerate spin states in a ground 

state nucleus separate into different energy levels in a phenomenon known as nuclear 

Zeeman splitting. For nuclei with spin ½ like 1H, which is the only nucleus examined in 

this study, application of an external magnetic field results in two energy levels populated 

according to the Boltzmann distribution, with a few more particles in the lower energy 

level than in the higher level. The nuclei in the higher energy level have a quantum 

number of -½, and those in the lower energy level have a quantum number of +½.   

Along with intrinsic angular momentum, nuclei also have an intrinsic magnetic 

moment, μ, and generate a small magnetic field. This magnetic moment is proportional to 

the nucleus’ spin, with a proportionality constant, γ, called the gyromagnetic ratio. The 

gyromagnetic ratio of each nucleus is unique, and can be either positive or negative 

depending on whether the spin and magnetic moment vectors point in the same or 

opposite directions. If no outside forces interfere with the nuclei in a sample, these 
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vectors are arranged randomly and can point in any direction, resulting in a bulk 

magnetic moment of zero.  

When these nuclei sit in an external magnetic field B0, however, this field 

interacts with the nuclear magnetic moments, causing the nucleus to precess, or rotate in 

a conical fashion with a constant angle around an axis in the direction of the applied 

magnetic field as shown in Figure 1.  

 

 

 

 
 

 

 

 

Figure 1: Precession of a single nuclear magnetic moment (solid black arrow) around an 

axis in the direction of an applied magnetic field. The cone described by the precessional 

motion will always keep the same angle between B0 and the magnetic moment vector. 

The direction of the precession depends on the sign of the nucleus’ gyromagnetic ratio. 

Nuclei with a positive γ, such as 1H, have a negative precession like the nucleus shown in 

this diagram. 
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The frequency of the precession, called the Larmor frequency, or ω0, is equal to the 

applied magnetic field, B0, multiplied by the negative of the nucleus’ gyromagnetic ratio: 

 

ω0= -γB0     (2.1) 

 

Over time, the thermal movement of molecules in a sample causes small fluctuations in 

the microscopic magnetic fields local to each nucleus generated by the magnetic 

moments of nearby electrons and nuclei. This fluctuation affects the precessing nuclei, 

gradually changing the angle of their conical motion around B0. The final orientation 

adopted by a nucleus depends on the energy of its interaction with B0. If a nucleus’ 

magnetic moment is aligned perfectly with B0, or it is precessing in a cone with an angle 

of zero, the energy of the interaction between the nucleus and the applied magnetic field 

is very low. Therefore, in order to reach an energetically favorable configuration, the 

spins of the nuclei in a sample will slowly align themselves in a direction closer to the 

direction of B0 until they reach equilibrium. Each individual spin vector will never 

exactly line up with the direction of B0 because of the continued molecular movement in 

the sample and local magnetic field fluctuation which favor a more random array of spin 

orientations. However, the sum of all the spins in the sample, or the bulk magnetization 

vector, will be parallel to B0.  

 When modelling these physical phenomena to create a visual explanation for 

them, vectors for the applied external magnetic field, the bulk magnetization, and the 

individual nuclear spins are graphed on a three-dimensional coordinate plane. In this 

coordinate plane, shown in Figure 2, the vectors representing the magnetic moments of 
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individual nuclei in a sample all point in different directions when that sample is at 

equilibrium and no external magnetic field is applied. If the sample is sitting in an 

external magnetic field, the direction of the applied magnetic field and the bulk 

magnetization of the sample always line up with the z-axis when the sample is at 

equilibrium. 

 

 

 

 

 

 

 

 

 

 

Figure 2: 3D coordinate plane model of magnetization vectors. At equilibrium, and with 

no external magnetic field acting on them, magnetic moment vectors of nuclei are 

oriented randomly and there is no net bulk magnetization (left). When a strong external 

magnetic field, B0, interacts with the individual magnetic moments, they begin to precess 

around B0 and align in the direction of the field, resulting in a net bulk magnetization 

vector (solid black arrow) parallel to the z-axis (right). 
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As a result of the Zeeman splitting of spin ½ nuclei, which dictates that the nuclei 

can exist in either a +½ or -½ spin state, approximately half the nuclei in a sample (those 

with spin +½) will be aligned roughly parallel to the external field and their magnetic 

moment vectors will point in the same direction as the applied magnetic field. The +½ 

and -½ spin states are also variously referred to as, respectively, the α and β states or the 

spin up and spin down states. The nuclei with spin -½, while aligned with B0, will have 

magnetic moment vectors that point in a direction opposite to the magnetic moment 

vector of the external field, or an anti-parallel alignment. The difference in energy 

between nuclei in these two states is given by the following equation: 

 

𝛥𝐸 =  ħ𝛾𝐵0     (2.2) 

 

Or, substituting in Equation 2.1, 

 

𝛥𝐸 =  ħ𝜔0     (2.3) 

 

where ħ is the reduced Planck constant and γ is the gyromagnetic ratio. Therefore, the 

difference between the two energy levels is dependent on both the gyromagnetic ratio of 

the nucleus under study (42.577 MHz/Tesla for 1H) and the strength of the applied 

magnetic field, and is related to the Larmor frequency of precessing nuclei in Hertz. 

Since the number of nuclei in a sample that populate each of the two spin states of 

opposite sign is almost equal, the majority of the spins cancel out each other’s magnetic 

moment, causing the net bulk magnetization vector to take its magnitude and direction 
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from the spins of the small excess in population in the lower energy state, which are 

parallel to B0. The fraction of the spins that makes up this excess in population, called the 

polarization (p), is calculated using the equation: 

 

𝑝 =  
𝑁𝛼−𝑁𝛽

𝑁𝛼+𝑁𝛽
     (2.4) 

 

where Nα is the number of spins parallel to B0 and Nβ is the number of spins anti parallel 

to B0. 

 By applying an oscillating magnetic field in the form of a radiofrequency (rf) 

pulse to a sample, the bulk magnetization vector can be shifted away from the direction 

of the applied magnetic field, or in terms of the model in Figure 2, away from the z-axis 

of the coordinate plane and towards the xy-plane. The oscillating rf field, denoted B1, has 

a much smaller magnitude than B0 and a direction orthogonal to the direction of B0.  

If B1 oscillates at ω0, or is “on resonance”, the weak B1 field interacts with and 

changes the precession of the nuclei. The easiest way to visualize the effect of B1 on 

nuclear precession is to imagine the nuclei in a coordinate plane that is rotating around 

the z-axis at the same frequency as 0. This coordinate plane is called the “rotating 

frame”, and within it the precessing nuclei appear to stop moving around the z-axis. Since 

the nuclei are now considered static with respect to their movement around B0, 0 

becomes zero. Therefore, by Equation 2.1, the applied magnetic field B0 that the nuclei 

seem to experience must also have a magnitude of zero. B1, though, is oscillating at the 

same frequency as the as the motion of the rotating frame and will therefore show up in 

the rotating frame system. Within the rotating frame, then, the nuclei can precess around 
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B1, rather than B0, with a frequency of 1. As the nuclei in the sample begin to precess 

around B1, their spins start to align themselves with this new field, changing the direction 

of the bulk magnetic vector. The angle  between the bulk magnetization vector and the 

direction of B0 caused by spin alignment to B1 is dependent on the frequency of 1 and 

the duration, t, of the rf pulse producing B1: 

 

    = 1t     (2.5) 

In many NMR experiments, the duration of the rf pulse is chosen to produce a  of 90 

(/2 radians), and is usually on the order of microseconds. 

This on-resonance pulse is what is used in the simplest traditional NMR 

experiment, shown in Figure 3. A sample is placed in a strong external magnetic field 

and allowed to equilibrate for a few seconds. After the sample’s bulk magnetization 

aligns with the applied magnetic field, a radiofrequency coil around the sample generates 

a π/2 pulse, creating a new magnetic field, B1, aligned perpendicular to the applied 

magnetic field B0. The nuclei in the sample then begin precessing around an axis parallel 

to the pulse and the bulk magnetization vector shifts to the -y axis. Once the pulse ends, 

precession resumes around the z axis. However, since the bulk magnetization vector was 

moved into the xy, or transverse, plane, the bulk magnetic moment is now also precessing 

around the z-axis. The bulk magnetization vector, then, can be broken down into two 

components, one parallel to the z-axis and one perpendicular (located in the xy-plane). 

The rotations in the xy-plane of the nucleic magnetic moments caused by this precession 

induce an oscillating current in the radiofrequency coil surrounding the sample that 

gradually tapers off as the precessing spins lose synchrony and the magnetization in the 
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transverse plane disappears. This current, known as the free induction decay (FID), 

though small, can be detected, amplified, and recorded as a digital signal. Use of a 

Fourier Transform can separate this signal into its various frequencies, which are then 

plotted to create the traditional NMR spectrum. 
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Figure 3: Diagram of a simple NMR experiment. The first set of axes shows a sample 

that has equilibrated in an applied magnetic field, B0, and has developed net 

magnetization in the direction of B0. Next, the π/2 pulse is applied, moving the net 

magnetization vector into the xy-plane. After the pulse ends, the net magnetization vector 

precesses around B0 until it relaxes back into equilibrium; this precession in the xy-plane 

is detected as an oscillating current, the free induction decay, and recorded as a digital 

signal containing the frequencies of the precessing nuclei in the sample.  
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These measurements, however, require that B0 remain homogeneous. This 

homogeneous B0 is produced by a superconducting solenoid maintained with a constant 

electrical current, tuned with smaller magnetic shims, and wrapped in cryogens to prevent 

meltdown. As mentioned in the introduction, all of this extra apparatus makes traditional 

NMR instrumentation bulky and static, and the geometry of the sensor limits the types of 

samples that it can analyze. In order to broaden the applicability of NMR to a wider array 

of samples, single-sided NMR devices have been developed.  

In 1996, Eidmann et al. published the design of first single-sided NMR 

instrument, the mobile universal surface explorer or NMR-MOUSE. [45] This 

instrument, a version of which was employed in this study, can non-destructively analyze 

objects of any shape or size without requiring sample preparation, making it an attractive 

tool for probing the properties of a variety of materials, including fragile and 

irreplaceable cultural heritage objects. The NMR-MOUSE, unlike traditional high-field 

NMR instruments, uses permanent magnets to create the applied magnetic field B0. These 

magnets are configured in a horseshoe geometry [21], shown in Figure 4, with an rf coil 

positioned in between and aligned to their surface to allow the application of an rf field 

(B1) perpendicular to B0 and create a maximum sensitive volume for the instrument.  
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Figure 4: The NMR-MOUSE single-sided NMR apparatus, consisting of two permanent 

block magnets, which produce the inhomogeneous field B0 (red). The intensity of B0 

decreases as a function of distance from the surface of the block magnets, as shown by 

the arcs of varying thickness. Positioned between the two block magnets is a 

radiofrequency coil (black) which produces the rf magnetic field B1 (blue). 
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Both the B0 and B1 fields produced by the NMR-MOUSE are inhomogeneous, 

imparting a strong magnetic field gradient to the sensitive region of the instrument; the 

frequency of the B1 field determines the magnitude of the gradient. [46] Therefore, nuclei 

at different distances from the surface of the magnets and coil experience varying field 

strengths. This makes it impractical to use single-sided NMR to gain information like 

chemical shifts, since these are only useful if it is assumed that all protons in like 

environments precess at the same frequency. By Equation 2.1, however, the frequency of 

precession is proportional to the magnitude of B0 that a proton experiences, so even 

protons in like environments will precess at different frequencies depending on their 

location in a sample and their distance from the magnet’s surface. 

 The sample data that single-sided NMR instrumentation can easily acquire are T1 

and T2 relaxation times, which can be used to determine some of the physical properties 

of a material. Measurement of diffusion coefficients, which describe the motion of 

molecules in a sample, can also be performed since this sort of experiment is simplified 

by the magnetic field gradient inherent in single-sided NMR instrumentation.  

T1 relaxation, also called longitudinal or spin-lattice relaxation, occurs as the 

component of a sample’s bulk magnetization vector parallel to B0 returns to its 

equilibrium magnitude after perturbation with an rf pulse. The longitudinal relaxation 

time constant, T1, is determined from an exponential fit of the buildup magnetization in 

the z-direction after either an inversion or saturation-recovery pulse sequence is applied 

to a sample. [47] The resulting T1 value can be used to study segmental motion in 

polymers since T1 relaxation is related to fluctuations in the small transverse 

magnetization created by the changing dipoles of rotating molecules. [43] T1 values are 
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heavily temperature and field dependent, which makes them less practical measurements 

for gathering concrete information about a sample. They are useful, though, for 

determining the amount of time to wait between successive π/2 excitation pulses in a 

Carr-Purcell-Meiboom Gill (CPMG) experiment, discussed later, which is used to 

measure T2 relaxation times. Since T1 values are measured by timing the recovery of 

magnetization in the z-direction after a pulse is applied, they give the minimum amount 

of time that spins in a sample need to recover equilibrium after perturbation, and 

therefore the minimum amount of time to wait before beginning a new pulse sequence 

iteration. The repetition time for a CPMG experiment is usually set to five times the T1 

value of the sample of interest. This study, though, does not include measurement of T1 

values or diffusion coefficients, and concerns itself solely with examining transverse 

relaxation times. 

Transverse relaxation, also called spin-spin relaxation, occurs as the component of 

a sample’s net magnetic moment perpendicular to an applied magnetic field decays. This 

decay is caused by the gradual decoherence of the precessing spins of the individual 

excited nuclei in the sample, which are precessing at different frequencies in an 

inhomogeneous field, as noted above. Since all the spins are precessing differently, their 

precessional motion loses synchrony and the spins dephase. At this point, the spins’ 

magnetization vectors are distributed randomly and there is no longer an observable net 

magnetization in the xy plane and the FID signal dies out. [43, 48] The transverse 

relaxation time constant, T2, characterizes the time necessary for the precessing spins to 

lose coherence. Samples with highly rigid molecular structures display small T2 values, 

since isotropic motion within the sample is limited, increasing the dipolar interactions 
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between spins and hastening the dephasing of these spins. Larger T2 values are typical of 

samples that allow free molecular motion, since dipolar interactions average out as 

different nuclei interact, preserving spin coherence. In polymers, mobile chains indicate 

free molecular motion, and thus polymer networks with chains that are crosslinked or 

adsorbed onto a surface exhibit a smaller T2 than bulk polymer samples. [49] 

T2 relaxation time however, cannot be measured by single-sided NMR using the 

same simple pulse-acquire experiment used in traditional NMR, like the one shown in 

Figure 3. Since the Larmor frequencies of protons in different parts of a sample in an 

inhomogeneous field are not equal, the protons’ spin axes are tilted at a variety of angles 

after application of an rf pulse, rather than all at the same angle as they would be in a 

homogeneous B0. The majority of the spins, then, are out of phase even while the rf pulse 

is still being applied. Therefore, the total decoherence of the spins after the end of an rf 

pulse by a coil in a single sided-NMR occurs very quickly, usually in an amount of time 

similar to the “dead time” of the coil, during which signal cannot be acquired. This dead 

time is the length of time it takes for residual energy in the rf coil, left over from 

generating an excitation pulse, to dissipate. The rf coil in most NMR instrumentation is 

used both for applying an excitation pulse and for detecting the signal from the 

precessing nuclei after excitation, so if it were used for detection immediately following 

excitation with leftover energy still in it, it would record a phantom signal originating 

from that energy in addition to the signal from the precessing nuclei. If the signal 

attenuation time and dead time are similar in length, it becomes impossible to collect an 

FID. 
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Single-sided NMR instruments instead measure T2 relaxation time using the Carr-

Purcell-Meiboom Gill (CPMG) pulse sequence, during which a series of Hahn echoes are 

collected. [39] A Hahn echo is obtained by refocusing the dephased magnetization 

vectors of nuclei in an inhomogeneous field as they precess following excitation by an rf 

pulse. [50] This is done by applying an initial π/2 pulse to the sample and allowing the 

nuclei to precess and the resulting signal to decay as usual for a specific amount of time, 

τ, that is longer than the dead time of the rf coil. At the end of time τ, a second rf pulse, a 

π refocusing pulse, is applied. The π pulse reflects the bulk magnetization, and therefore 

each precessing spin, over the x- or y-axis, depending upon the axis to which the π/2 

pulse first tilted the vector. By refocusing the precessing spins in this way, the chemical 

shift values of the nuclei are also refocused, making it impossible to collect these values 

using echoes.  

After the  pulse ends, the spins’ motion then resumes and each individual 

magnetic moment returns to the point where it started when the π/2 pulse was applied. 

This convergence of the spins to their origin produces an “echo” of their original FID 

signal, from which the amplitude of that original signal can be determined. The amount 

of time required for the spins to reconverge after the application of the refocusing pulse is 

exactly the same as the length of time between the two pulses, τ, so signal appears long 

after the dead time of the coil and the receiver can easily detect it. The amount of time 

that elapses between the onset of the π/2 pulse and the appearance of the Hahn echo, 

equal to 2τ, is called the “echo time”. A vector representation of precession and 

refocusing during the generation of a Hahn echo is shown in Figure 5. 
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Figure 5: Diagram of a Hahn echo experiment in the same format as Figure 3. The first 

set of axes shows a sample that has equilibrated in an applied magnetic field, B0, and has 

developed net magnetization in the direction of B0. Next, the π/2 pulse is applied, moving 

the net magnetization vector into the xy-plane. After the pulse ends, the magnetization 

vectors of the individual nuclei precess around B0 at different frequencies due to field 

inhomogeneities. This precession is permitted to continue for some time τ which is longer 

than the dead time of the NMR receiver coil. At this point, a π refocusing pulse is applied 

to flip the magnetization vectors over the x axis, reversing the direction of their 

precessional motion. The magnetization vectors continue precessing until they 

reconverge at their starting point at time τ after the π pulse, generating the Hahn echo. 
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In a CPMG pulse sequence, detailed in Figure 6, multiple π refocusing pulses are 

applied after the initial π/2 pulse, creating a chain of echoes that appear at regular 

intervals denoted by the echo time. Over time, the echoes themselves decrease in 

amplitude and die out as a result of spin decoherence. This echo decay train can therefore 

be used to determine the T2 of a sample by graphing data points generated using the 

equation 

𝑆

𝑆0
= 𝑒

−𝑡

𝑇2     (2.6) 

where S is the signal intensity of an echo, S0 is the intensity of the echo with the highest 

observed amplitude, which is used to normalize the data points, t is the length of time 

after the excitation pulse, and T2 is the transverse relaxation time constant. The natural 

log of the normalized signal intensity of each echo plotted with respect to time will form 

a line with the slope -1/T2, making it simple to determine the T2 value of a sample. In 

order to increase the signal-to-noise ratio of the acquired data, and therefore the precision 

of the measured T2 value, fits of the average signal collected from repeated CPMG pulse 

sequences (separated by the repetition time discussed above) are often used. 

 The T2 value determined using this fit of the echo train decay amplitudes is not 

actually the true T2 of the material, which would be the measure of the spin decoherence 

within one echo. The fit of the echo train instead gives the value of the effective 

transverse relaxation, denoted T2,eff, which is a mixture of T1 and T2 and is dependent on 

experimental parameters, particularly the echo time used. The T2,eff and T2 values 

measured for a sample would be the same if T1/T2=1 or if the echo time of the experiment 

were set to zero. [47] For the sake of convenience, however, T2,eff and T2 will be 

considered interchangeable in this paper and will be referred to only as T2. 
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Figure 6: The CPMG pulse sequence. A π/2 excitation pulse and a π refocusing pulse are 

applied to a sample, after which a Hahn echo is collected (as shown in more detail in 

Figure 5). Once the first echo appears, another π pulse is applied after time τ in order to 

generate a second Hahn echo. The second echo has a lower amplitude than the first as a 

result of relaxation. The process of refocusing magnetization and collecting echoes is 

repeated until no more echoes appear. Each echo occurs after the same amount of elapsed 

time, referred to as the echo time. The echo train decay can then be modelled with an 

exponential function to determine the T2 of the sample. 
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Chapter 3: Acrylic Emulsion Paints & Pigment Volume Concentration 

 

 
Acrylic emulsion paints were developed in the years following WWII as 

manufacturers were looking for new ways to use the synthetic polymers that had been 

developed in response to rubber shortages during the war years. [51] One company, 

Rohm and Haas, realized that a strong potential market for their emulsion polymer 

formulation was in producing paints for the swathe of new houses that returning soldiers 

were having built for their families. In 1953, the company patented their formula for 

synthetic water-based acrylic paint. This acrylic emulsion or “latex” paint had many 

advantages over traditionally used solvent-based paint because of its durability, low odor, 

vivid non-fading and non-yellowing color, easy cleanup with soap and water, and low 

toxicity. Within twenty-five years, latex paint had eclipsed oil-based paints for use on 

home exteriors and interiors. [2, 3, 51] The same qualities that made these paints 

attractive for homeowners also appealed to artists, and the first artists’ acrylic emulsion 

paints were sold by Liquitex in 1956. Other companies soon developed their own 

formulations, and the use of these synthetic paints skyrocketed in the 1960s and 1970s. 

Currently, acrylic emulsion paints are the mostly commonly used synthetic artists’ paint, 

and works created whole or in part with either artists’ acrylic paint or other commercial 

acrylic paints (house paint, synthetic car enamel, etc.) account for a majority of the 

objects in the collections of modern art museums worldwide. [3] 

To manufacture acrylic emulsion polymers, acrylic monomers are synthesized and 

then introduced into an aqueous solution with the help of a non-ionic surfactant, often a 

sulfonate or a fatty acid. [2, 52] The most commonly used monomers for acrylic emulsion 

paint are methyl methacrylate (MMA) and n-butyl acrylate (nBA), shown in Figure 7. 
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Early acrylic paints used a copolymer of MMA and ethyl acrylate (EA); however, EA 

was replaced by nBA, which creates films that are more durable and hydrophobic. [3] 

When the solution is agitated, the surfactant coalesces into micelles with a few 

hydrophobic monomers on the inside; other monomers are left undissolved outside the 

micelles and congregate in large monomer “droplets”. A small amount of a radical 

initiator such as a peroxide is then added. The initiator fragments diffuse into the 

monomer-filled micelles, usually only one per micelle, since the concentration of initiator 

is low, and begin polymerizing the monomers within, forming a “polymer particle”. As 

the polymerization reaction progresses and the monomers inside the particle are used up, 

more monomers from the undissolved droplets outside diffuse in to continue the process. 

Each particle grows to approximately the same molecular weight since each original 

micelle contains one initiator and a similar number of monomers. The reaction terminates 

when another radical diffuses into the particle. Since there are only a few initiator 

fragments in solution, it takes a long time for the reaction to terminate and the resulting 

particles have a very high molecular weight. [53] 

 

 

            
 

Figure 7: Methyl methacrylate (MMA) monomer (left) and n-butyl acrylate (nBA) 

monomer (right), which are used in the radical-catalyzed polymerization of acrylic 

emulsion polymers for use in acrylic emulsion paints. 

 

MMA nBA 
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To modify the polymer dispersion for sale as a paint, various stabilizers, fillers, 

and other materials need to be added to ensure optimal performance. [1–4] Buffers are 

needed to prevent the paint from developing a low pH which could compromise the 

integrity of a painting. Fillers like glass particles are added to increase the body of the 

paint and make it easier to manipulate. Defoamer is included to prevent air bubbles from 

forming in films. Biocides are added to prevent mold and mildew formation in the wet 

paint or on the dry films. Most importantly, pigments, and pigment dispersal agents, are 

added to give the paint color.  

A quantitative measure of the level of pigmentation in a paint is the pigment 

volume concentration value (PVC). [54] The PVC of a paint film has also been shown to 

have a significant effect on many of the film’s other physical characteristics such as glass 

transition temperature, water permeability, aging processes, tensile strength, and elastic 

modulus. [19, 54-57] It can be calculated using the following equation: 

 

         𝑃𝑉𝐶 =
𝑉𝑝

𝑉𝑏+𝑉𝑝
     (3.1) 

 

where Vp is the volume of the pigment, calculated using the mass of pigment used and 

the pigment density, and Vb is the volume of the nonvolatile portion of the base.  

As the PVC of a paint film increases, a point is reached at which the amount of 

binder is just enough to coat the pigment particles with a thin shell composed entirely of 

adsorbed binder and fill the voids between them. This point is referred to as the critical  
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pigment volume concentration [56], and can be calculated using the formula   

 

𝐶𝑃𝑉𝐶 =  
1

1+(𝑂𝐴)(𝜌𝑝/𝜌𝑏)
     (3.2) 

 

where OA is the pigment oil absorption, which is listed on the pigment manufacturer’s 

website or in artists’ handbooks, ρp is the density of the pigment, and ρb is the density of 

the nonvolatile portion of the binder. 

As the pigment concentration in a paint film approaches the CPVC, a clear change 

can be observed in many of the physical and mechanical properties of that film. These 

changes include a decrease in gloss, elastic modulus, blistering, and scrub resistance and 

an increase in permeability, opacity, rusting, and porosity as a result of the lack of binder 

and incorporation of air voids into the film. [56, 58-60] 

To facilitate comparison of the changes in paint film properties as a function of 

increasing pigment concentration while keeping in mind the varying CPVCs of different 

binder/pigment systems, the reduced pigment volume concentration (Λ) is used as: 

 

𝛬 =
𝑃𝑉𝐶

𝐶𝑃𝑉𝐶
     (3.3) 

 

This parameter allows one to look at films made with different pigments or different 

binders at identical particle packing levels, and helps determine which property changes 

can be viewed as dependent on pigment type. [61] A simplified representation of the 

binder/pigment interactions at different Λ values is given in Figure 8. 
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Figure 8: The changes in a paint film as Λ is increased. At the top is an unpigmented 

film, Λ=0, made up of pure acrylic binder. As pigment is added and Λ increases, the film 

becomes disrupted as more binder is adsorbed to the surface of the pigment particles. 

Above the CPVC, when Λ>1, air voids begin to form in the paint film and all binder is 

adsorbed to the pigment particles. Figure adapted from [62]. 
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Since artists use not only paint produced specifically for art applications, but also 

acrylic paint meant for houses, cars, and other industrial applications, a variety of 

different pigments in different concentrations appear in artwork. Paints for different 

purposes are often formulated with different amounts of pigment, depending on the 

desired paint characteristics. Interior house paint is often formulated with more pigment 

than binder, which gives it more of a matte appearance, greater opacity, and better 

coverage. Exterior paints have a higher binder to pigment ratio, which increases their 

water resistance and durability. Even artists' paints have varying pigmentation levels 

depending on the desired properties, the color, and the relative cost of the paint (cheaper 

paints have less pigment). [3] As previously mentioned, the level of pigmentation in a 

paint film has a significant influence on the film’s physical properties. Therefore, a 

comprehensive study of the properties of acrylic paints with different PVCs is essential to 

better understanding acrylics and leading to better-informed conservation practices. 

The rate at which a paint film cures is another property influenced by its pigment 

volume concentration. Studies using transmission electron microscopy (TEM) and atomic 

force microscopy (AFM) have shown that acrylics cure in a three step process with four 

distinct stages (shown in Figure 9) that can be finished within a matter of weeks or even 

days, depending on the film thickness. [63-68] This quick drying time is one of the most 

attractive qualities of acrylic paint, both for artists’ and house paints. 

The first step in this process is evaporation of the volatile component of the 

acrylic emulsion. This causes a transition in the paint binder from acrylic particles 

suspended in an aqueous solution to individual particles deposited on a substrate with a 

small amount of water retained in the voids between particles. These particles then 
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deform as solvent evaporation completes, creating a densely packed array of particles 

with no spaces in between, but which still retain their individuality. Finally, polymer 

chains diffuse between adjacent particles, resulting in formation of a continuous film. 

[64, 65, 67-71] This film is quite durable and cannot be redissolved with water.  

 

 

 

Figure 9: The stages in the acrylic curing process. Stage I shows acrylic particles 

suspended in an aqueous solution, which begins to evaporate and push the particles closer 

together resulting in Stage II, where the particles are densely packed but still have voids 

containing solution between them. The solution in the voids later evaporates and causes 

the particles to deform, as shown in Stage III. Polymer chains then begin to diffuse 

between the deformed particles, and the particles lose their individuality and form a 

continuous film. Figure adapted from [63].  
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Since the acrylic curing process requires no more than a few days for samples less 

than a millimeter thick [70,71], the paints prepared in the current study, which were 

allowed to age under ambient conditions in a temperature and humidity controlled 

laboratory for a minimum of four weeks before measurements were taken, are presumed 

to be uniformly cured. Differences in film curing, then, cannot account for different film 

T2 values (discussed in Chapter 2), which are often considered characteristic of areas of 

more or less crosslinking or curing extent when studying oil paints using NMR. Unlike 

acrylics, oil paints form a cured film in a two-step process: the volatile compounds in the 

wet paint evaporate, and then the fatty acids which make up the binder begin to crosslink 

in an autoxidative process that can take years to complete fully. [49] Parts of the paint 

films that are closer to the surface, and therefore closer to air and more easily oxidized, 

exhibit smaller T2 values than less cured regions in the films’ interiors. This interpretation 

should not work when looking at the acrylic paint films in this study, however, since 

acrylic paints cure far more quickly than oils and in a manner that is not reliant on 

oxygen diffusion into the paint layers. However, in polymers, mobile chains indicate free 

molecular motion, and thus polymer networks with chains that are adsorbed onto a 

surface (such as a pigment particle) exhibit a smaller T2 than bulk polymer samples like 

binder that is not interacting with a surface, which will be discussed in Chapter 5. [72]  
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Chapter 4: Materials & Methods 
 

 

Paint Sample Preparation: 

Acrylic emulsion paint samples were prepared in varying concentrations for four 

commonly used pigments, two organic (phthalo blue, color index PB 15:3, product 

#23060, and alizarin crimson, color index PR83, product #23610) and two inorganic 

(ivory black, color index PBk 9, product #47200, and titanium white, color index PW6, 

product #46200), purchased from Kremer Pigmente (New York, NY). Titanium white 

pigment has a chemical formula of TiO2 and ivory black is a mixture of CaCO3, 

Ca5(PO4)3(OH), and amorphous carbon. The structures of the organic pigments used are 

shown in Figure 10. 

 

           

  

 

 

Figure 10: Structures of phthalo blue (left) and alizarin crimson (right). 

 

 

Phthalo Blue 

Alizarin Crimson 
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Ivory black and titanium white samples were produced by weighing out dry 

powdered pigment and wetting it with deionized water. The water/pigment mixture was 

ground on a glass slab using palette knives until it reached a gel-like consistency, at 

which point a previously-weighed portion of either Golden Semi-Gloss Regular Gel 

Medium (Golden Artist Colors, Inc., New Berlin, NY, item #3040) or Regular Gel 

Medium (Golden Artist Colors, Inc., New Berlin, NY, item #3020) was added. Mixing 

continued until the pigment appeared evenly distributed in the base. Samples of the 

prepared paints were drawn down with a drawbar (Elcometer, Rochester Hills, MI) set to 

200 μm on 1” by 3” glass microscope slides; this resulted in dry films approximately 50 

μm thick. A minimum of three slides were made for each pigment concentration. 

Photographs of the paint making process and finished slides are included as Figures 11 

and 12, respectively.  

Phthalo blue and alizarin crimson samples were made in a nearly identical 

manner, except that ethanol (ACS grade, 200-proof, Pharmco-AAPER, Brookfield, CT) 

was used for initial wetting of these organic pigments instead of deionized water. Once 

the dry pigment was thoroughly coated in ethanol, deionized water was added and the 

pigment mixture was ground to a gel like-consistency as before. If ethanol alone was 

used, the paint sample became too dry and sticky to allow the deposition of a smooth film 

on the glass slides.  
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Figure 11: Paint being made in a fume hood. Ivory black pigment and deionized water 

are ground together with palette knives on a glass slab until they reach approximately the 

consistency of toothpaste. Afterwards, acrylic base is added and mixing continues in the 

same manner until pigment is evenly distributed in the binder. 

 

 

 

 

 

Films of plain acrylic base with the same thickness as the pigmented samples 

were also prepared for comparison, using both the Semi-Gloss Regular Gel Medium and 

the Regular Gel Medium used in preparing the paint samples. 

The PVC of each paint sample was calculated using Equation 3.1. The 

nonvolatile percentage of the acrylic base had been previously determined by measuring 

the decrease in mass of five samples of base as they dried over a period of two weeks (or 
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until no change in mass was detected).  Volumes were calculated using the pigment 

densities (available on the Kremer Pigmente website) and the density of the dried acrylic 

binder, which was measured experimentally by observing the change in volume when a 

preweighed dry binder film was placed in a graduated cylinder of deionized water. 

CPVCs for each of the pigments were calculated with Equation 3.2. The oil 

absorption values for each pigment were taken from the Kremer Pigmente website, or if 

that information was not available there (as in the case of phthalo blue and alizarin 

crimson) these values were taken from the Artist’s Handbook. [73] Pigment and binder 

densities were determined as described above.  

Once both the PVCs and CPVCs had been calculated, Λ values were calculated 

for all pigment/binder combinations using Equation 3.3. The CPVCs of each pigment 

can be found in Table 1, and the PVCs and Λ values for all paint samples can be found in 

Table 2, both in Appendix A. 
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Figure 12: A selection of cured paint samples made with each of the four pigments 

(clockwise from top left: ivory black, alizarin crimson, phthalo blue, and titanium white) 

at various pigment volume concentrations. Paint film PVC increases from left to right 

across each sample group. Note the visible difference in color and texture as PVC 

increases, especially evident in the alizarin samples. 
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Gloss Measurements 

Gloss measurements were taken using an ETB-0686 Glossmeter (M&A 

Instruments Inc., Arcadia, CA) with a beam angle of 60° and a range of 0-200 gloss units 

(GU). This instrument determines the relative gloss of a sample by shining a beam of 

light at a sample at a certain angle and recording the amount of light that reflects back 

from it. This amount of light is compared to the amount of light that reflects from a piece 

of black glass used as a standard. The ratio of these two quantities is flashed on a digital 

display in the arbitrary unit GU. The gloss of each paint sample was determined as the 

average of measurements at three separate points on each of the three slides for each 

unique pigment/concentration combination.  

 

Single-Sided NMR 

NMR analysis was performed using a PM 5 NMR-MOUSE single-sided NMR 

(Magritek, New Zealand) with a field strength of approximately 0.4 T (19.27 MHz proton 

frequency) and a field gradient of 23.5 T/m connected to a Kea2 spectrometer (Magritek), 

shown in Figure 13, after the samples were allowed to dry a minimum of four weeks. 

The PM 5 NMR-MOUSE coil can take measurements of a 25 mm by 25 mm sample 

area, and can obtain signal from a depth of a maximum of 5 mm into a sample. The 

maximum depth can be altered by adding up to two 2 mm spacers to the magnet; adding 

spacers reduces the maximum depth but increases the amount of signal that be detected 

during a measurement while also shortening the minimum echo time and pulse length 

that can be used. All measurements performed for this study were done with both spacers 

in the instrument since the T2 values of the acrylic films were very short and required a 
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short echo time to observe, and because the samples were very thin and produced very 

faint signal if placed too far from the rf coil. The magnet’s vertical distance from a 

sample can also be adjusted in increments of 10 μm with a lift (Magritek) in order to find 

the area with the greatest signal intensity. The magnet, spectrometer, and lift are all 

controlled by a laptop running the program Prospa (Magritek), which also records the 

signal generated during experiments. 

 

 

 

 

Figure 13: The NMR-MOUSE apparatus used in our lab. The PM5 magnet itself (black, 

with blue stripe) is housed in the lift (aluminum frame). To the left, the Kea2 

spectrometer is visible. An ivory black paint sample sits in the sensitive region atop the 

magnet.  
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Before the T2 of an acrylic sample was collected, a profile experiment, in which 

CPMG measurements are performed at incremental depths, was run to determine the 

region of greatest signal intensity within the sample. All samples were shown by the 

NMR measurements to be about 50 μm thick, and the lift height was adjusted so that 

CPMGs could be run at approximately the middle of the sample. Sample profile data is 

given in Figure 14, and profile parameters can be found in Appendix B. Within Figure 

14, the left-hand plot shows the echo decay collected during the last CPMG experiment 

in the profile (which shows only noise here; a curve with an exponential decay would be 

visible if signal were detected), and the right-hand plot shows the amplitudes of the signal 

acquired at each depth. Each line on the profile plot (right) is generated by adding 

different parts of the echo decay train to get signal intensity with different T2 weighting. 

If only the first few echoes in the decay are used, the signal intensity observed is 

dependent only on the proton density of the sample, whereas using the full echo decay 

gives a signal intensity based on both the proton density and T2 of the sample. Because of 

the signal phasing used in the current experimental parameters, the area of greatest signal 

intensity corresponds to the minimum amplitude observed on the profile plot. 
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Figure 14: Results of a profile experiment for an alizarin crimson paint sample with 

Λ=0.15, generated using the Prospa software. The area of greatest signal intensity 

corresponds to the minimum amplitude observed at a depth of around 820 μm. The areas 

of low signal intensity above and the peak in the middle correspond to the air above the 

sample and the glass slide on which the paint sample is mounted, neither of which 

produce signal. The magnet was therefore moved to the 820 μm position before CPMG 

experiments were performed.  

 

 

 

 

Each sample is slightly different, however, so the first of the three CPMG 

experiments performed on each sample was processed using a Fourier transform to 

ensure that the measurement was actually localized at the point of greatest signal. 

Adjustments of up to 100 μm in either the positive or negative z direction were 

occasionally necessary; if an adjustment was made in the sample height, three new 

CPMGs were performed and the original one was discarded. The same Fourier transform 

output was also used to approximate the thickness of the sample, as shown in Figure 15. 

The determination of spatial information through a Fourier transform of the single-sided 

NMR data is made possible because the transform analyzes data from the frequency 

domain. Since the B0 field of a single-sided NMR has a gradient, protons at different 

distances from the magnet are precessing at different frequencies, and all protons at a 

given depth will precess at the same frequency, encoding spatial information in the 
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frequency data. For example, since B0 is stronger closer to the magnet, by Equation 2.1 

protons closer to the magnet will precess at a higher frequency than those farther away. 

Depths where no signal is recovered correspond to empty space above and non-proton 

containing material (glass slide) below the sample. Performing a Fourier transform on the 

signal produced by the precessing nuclei in the inhomogeneous field separates the 

different frequencies making up the detected signal, and can therefore discern the depths 

of the nuclei in a sample, as well as the thickness of the sample, provided that the sample 

does not extend outside the magnet’s sensitive region.  

 

 

Figure 15: Fourier Transform of the echo train decay of an ivory black Λ=0.15 paint 

sample, generated using a MATLAB script and used to position samples at a level with 

maximum signal intensity. On the right, one can see that signal is obtained over an area 

of approximately 50 μm, corresponding to the sample thickness, and the area of greatest 

signal intensity (yellow) is slightly above where the sensitive region of the magnet is 

positioned, at the 0 μm mark. The plot on the right is a “slice” of the plot on the left, with 

space on the x-axis and signal intensity on the y-axis. This makes it easier to determine 

the signal maximum, which in the case of this sample is 19.29 μm above the magnet’s 

sensitive region.  
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For T2 collection, three CPMG experiments with a pulse length of 2.75 μs for both 

the π and π/2 pulses, pulse amplitudes of -4 for the  pulse and -10 for the /2 pulse, and 

an echo time of 60 μs, during which 64 echoes were collected, were performed on each 

paint slide at the position determined during the profile measurements. Each T2 

measurement comprised 2048 acquisition scans for a total measurement time of 17 min. 

The sets of three CPMG experiments for each sample were programmed to run one 

immediately following the other by a script developed in our lab and run through 

Prospa’s debugger, into which all experimental parameters can be entered. The Prospa 

script and the CPMG parameters can be found in Appendix B.  

 

Scanning Electron Microscopy/Energy Dispersive Spectrometry (SEM-EDS)  

The air-contacting surface of the paint films was imaged using a Phenom Pro-X 

scanning electron microscope (PhenomWorld) in order to examine the distribution and 

size of the pigment particles in the film. Samples were excised from the microscope slide 

films using a razor blade, and images were collected using a beam intensity of 10 keV.  

To determine the elements in the paint films, EDS analysis was carried out using 

the Phenom Pro-X’s Element Identification (EID) software package on the areas of the 

paint films imaged with the SEM. Atomic concentration percentages and maps of the 

element concentration were collected with a beam intensity of 10 keV. The map 

resolution was 64 pixels, with a pixel time of 200 μs. Each map took approximately 45 

minutes to acquire.  
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Data Processing 

Single-sided NMR data was processed using MATLAB scripts (MathWorks Inc.; 

Natick, MA) developed in house. For each pigment/PVC combination, the full echo train 

decays for nine separate measurements were superimposed and analyzed with an Inverse 

Laplace Transformations (ILTs) in order to determine the number of unique T2 values 

displayed by each sample. Since ILTs are by nature unstable and occasionally return 

ambiguous solutions, [74, 75] the full echo train decays for each data set were fit to either 

a monoexponential decay curve of the form  

 

S(t) = Ae-t/T2 

 

where t is the time in milliseconds and A is the signal intensity, or to a biexponential 

decay curve of the form 

 

S(t) = Ae-t/T21 + Be-t/T22 

 

where t is again the time in milliseconds, T21 and T22 are the two unique T2 values 

observed in the sample, and A and B are the signal intensities corresponding to each T2 

value. For initial exponential fits of data, where all data sets were processed with a 

monoexponential decay, the first two echoes of all CPMG echo train decays were omitted 

to reduce noise and account for inhomogeneities in the refocusing pulse. These 

exponential decays were fit using non-linear fitting parameters. The biexponential fit 

proved to model the echo decays more accurately than the monoexponential fit in low 
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PVC samples, confirming the presence of two unique T2 values in paint films with 

pigment concentrations up to the CPVC. The R2 values for the exponential fits were 

generally 0.85 or higher, and if the R2 values for the monoexponential and biexponential 

fits were within 0.05 of each other, residuals calculated for the fits in the MATLAB curve 

fitting toolbox were used as the deciding factor in determining which fit was more 

appropriate. A comparison of a mono- and biexponential fit (with residuals) for the same 

paint sample is given in Figure 16, and numerical results for the exponential T2 fits are 

given in Appendix A, Table 4. 

 

 

 

 

 
 

 

 

Figure 16: A monoexponential (top left) and biexponential fit (top right) of nine separate 

echo train decays measured for ivory black paint with Λ=0.15. The residuals for each, 

shown below their respective fits, mark the biexponential as more accurate since its 

residuals are distributed evenly around zero. The residuals for the monoexponential fit, 

on the other hand, shown an almost sinusoidal distribution around zero. 
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Chapter 5: Results and Discussion 
 

 

When the PVC of a paint film increases, the surface of the film becomes 

disrupted. In low PVC films, pigment particles are uniformly submerged in the polymer, 

resulting in a smooth surface that easily reflects light. As the paint approaches the CPVC 

and the ratio of pigment to binder decreases, pigment particles clump together and begin 

to protrude from the smooth, glossy polymer matrix as is evident in the SEM images in 

Figure 17. The uneven surface creates more opportunity for incident light to scatter and 

therefore causes the gloss of the film to decrease. [61, 62, 76]  

 

 

 
 

 

Figure 17: SEM images of ivory black paint formulated at pigment concentrations below 

(left, Λ = 0.3) and above (right, Λ = 1.12) the CPVC, showing decrease of binder and 

increased surface roughness, as well as pigment agglomeration. 

 

 

The decrease in gloss observed for the paint films created in this study, shown in Figure 

18, follows a curve similar to those published in the literature [62], given in Figure 19, 

confirming that paint films were correctly formulated. 
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Figure 18: The change in gloss as Λ increases. Both the raw data and the natural log of 

the data have been presented, as the natural log better displays the trend in gloss, but the 

gloss values for certain pigments, such as alizarin crimson, decrease to zero too quickly 

to include all the points in the log plot. This was due to a lack of sensitivity in the 

instrument in measuring the reflectance of matte surfaces. 
 

 

 

 

Figure 19: Figure from [62] showing the decrease in gloss as the PVC of titanium white 

pigment is increased in a latex paint with a vinyl acetate/ethylene copolymer emulsion 

base. The middle line, with gloss measurements taken with a 60° beam angle (the same 

angle used in the current study) align well with the data shown in Figure 18. 
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The lack of binder in high PVC paint films also influences T2. As described 

above, the magnitude of T2 corresponds to the rigidity of a material. [41] Since 

unpigmented acrylic emulsion paint films remain pliable after drying, but films with 

higher pigment concentrations become brittle and chalky, the T2 of the paint films is 

expected to decrease as their PVC increases. This is supported by the single-sided NMR 

data collected. Figure 20 shows the changes in the observed T2 of acrylic emulsion paint 

films made with four different pigments as the PVC is increased. These T2 values, 

tabulated in Appendix A, Table 3, were determined using a monoexponential fit of the 

echo decay trains collected during the CPMG experiments. 
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Figure 20: The T2 relaxation times calculated for paint samples at varying Λ values. 

These T2 values were determined using a monoexponential fit of the raw data. The data 

used for this fit discarded the first two echoes of each echo train decay for all data sets 

except those for above-CPVC phthalo blue, alizarin crimson, and titanium white samples, 

which showed no visible decay without the first two echoes. This improved the accuracy 

of the monoexponential fit, but also removed the possibility of examining a component 

with a shorter relaxation time. 

 

 

To further probe the relationship between T2 and PVC, the raw NMR data was 

reprocessed using an Inverse Laplace Transform (ILT). This mathematical technique, 

which converts variables from the one domain to another, in this case the time domain to 

the ‘T2 domain’, is useful in looking at NMR data in studies of complex materials since it 

can reveal the existence of multiple T2 values in a sample. [74, 75] ILT analysis of the 

paint films revealed that some of the samples show two distinct T2 values that differ by an 

order of magnitude. Furthermore, it appeared that the proportion of the signal belonging 

to the larger T2 decreased with increasing PVC, as can be seen in Figure 21.  
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Figure 21: Inverse Laplace Transforms (ILTs) of raw NMR data for titanium white paint 

samples, arranged in order of increasing Λ value. Each peak on the plot represents a 

possible T2 value for the sample, and the peak heights correspond to each T2 value’s 

contribution to the overall observed signal. 

  
 

 

Since ILTs are ill-conditioned and occasionally return ambiguous solutions, [74, 

75] the raw NMR data was re-processed with biexponential fits to determine the samples’ 

T2 values. The biexponential fit was shown to model the echo decays more accurately 

than the monoexponential fit in samples with a low PVC, confirming the presence of two 

unique T2 values in paint films with pigment concentrations up to the CPVC. Figure 22 

shows the changes in both the large and small T2 values as  increases, and numerical 

results for the exponential T2 fits are given in Appendix A, Table 4. As is evident in 

Figure 22, the small T2 value remains nearly constant for all samples regardless of 

pigment type or pigment concentration, whereas the large T2 value decreases and 

eventually disappears in samples with a  value near and above 1. 
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Figure 22: Large and small T2 values of all samples vs. Λ. The small T2 value remains 

nearly constant for all samples regardless of pigment type or pigment concentration, 

whereas the large T2 value decreases and eventually disappears in all samples with a  

value near and above 1, except for those produced with ivory black pigment.  

 

 

 

 

Previous single-sided NMR research has described polymers that exhibit multiple 

T2 values. NMR studies of materials like polyethylene (PE), for example, give results 

analogous to those obtained in this study. [44] PE, which is used in pipes, is a 

semicrystalline polymer that has areas of ordered and disordered polymer chains making 

up crystalline and amorphous regions that have, respectively, a smaller and a larger T2. 

However, PE is classified as a hard polymer and the polymers used in acrylic emulsion 

paint are much softer so they should not have a crystalline phase; a cured acrylic film is 

composed of amorphous polymer chain tangles. [64-70] Studies of the glass transitions of 
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paints and other materials in which particulate matter is added to a polymer matrix have 

concluded that in this type of system, however, the polymer can be described similarly to 

semicrystalline polymers like PE. Polymer binder chains adsorbed to particles, with 

limited molecular mobility, are considered a crystalline “interphase” between the 

particles and the amorphous bulk binder. [56, 72, 77]  

It therefore stands to reason that the small T2 observed in the single sided NMR 

measurements corresponds to adsorbed binder and the large T2 to the bulk binder: “free” 

or “bulk” polymer should have a larger T2 than crosslinked polymer or polymer adsorbed 

onto pigment particles, since adsorbed or crosslinked molecules experience a limited 

amount of motion. [40] This interpretation, though, at first seems contradicted by the fact 

that the unpigmented acrylic base has two T2 values. However, the SEM data in Figure 

23 shows that the acrylic base itself contains silicate particulate matter, probably glass or 

pure silica added as a thickener or extender. [2, 3] Therefore the small T2 value measured 

for the base is assumed to come from binder adsorbed to these silica particles.  
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Figure 23: SEM image of unpigmented Semi-Gloss acrylic base showing silica particles, 

with an EDS elemental map overlaid. Yellow areas indicate the presence of silicon, and 

purple regions indicate carbon.  

 

 

 

To gain a clearer idea of the T2 trends, the normalized amplitudes of the small and 

large T2 values were calculated by dividing each T2 value’s amplitude by the sum of the 

two components’ amplitudes. In this way, the contribution of the small and large T2 

values to the overall observed signal for each sample could be determined. As shown in 

Figure 24, the change observed in the normalized amplitudes of the small T2 values 

displays a nearly linear relationship with the change in Λ before reaching a maximum of 

1 near the CPVC for most of the pigments studied, with the exception of ivory black. The 

maximum of 1 corresponds to the point where the small T2 value accounts for the entirety 

of the observed signal. This shows the increasing abundance of the samples’ small T2 

with increased Λ, and therefore that more binder is adsorbed to pigment particles, as 

expected.  
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Figure 24: Normalized amplitude of the small T2 value as a function of , showing the 

contribution of the small T2 value to the overall observed signal. The amplitude of the 

small T2 value increases as  increases until it becomes the only T2 value observed for 

high PVC samples of alizarin crimson, phthalo blue, and titanium white samples. The 

outliers in titanium white (=0.50) and alizarin crimson (=0.66) are caused by problems 

with the positioning of the sample. 
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The slopes for the fits for each pigment are different however, and may be 

indicative of particle size; this appears to be upheld by the SEM data in Figure 25, in 

which the sizes of the pigment particles can be seen: ivory black pigment, whose grains 

have an average size of 10 µm, for example, has an overall lower incidence of the smaller 

T2 than titanium white, whose grains have an average size of 0.5 µm. [78, 79] phthalo 

blue, which has particles with a diameter of between 100 and 200 nm, the smallest of any 

of the pigments used in this study, seems to have the most drastic effect on the small T2 

value’s amplitude. If the particles are smaller, the pigment has a larger surface area and 

more binder can adsorb, resulting in the smaller T2 comprising a larger proportion of the 

overall signal. Therefore, pigments with larger surface area or smaller particle size will 

have a greater effect on the physical properties of a paint film as pigment concentration 

increases. 
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Figure 25: SEM images of the four pigments used for making paints in this study. 

Clockwise from top left, alizarin crimson (dry), ivory black (dry), titanium white (in 

semi-gloss acrylic base), and phthalo blue (dry). On average, ivory black particles are 

largest in size, close to ten microns, followed closely by alizarin crimson particles. 

Phthalo blue and titanium white have much smaller particles, usually less than one 

micron in diameter. 
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Particle size cannot be the only factor affecting the percentage of small T2, 

though, since if that were the case an increase in alizarin crimson pigment particles 

(average diameter 1-2 m) should cause the amount of small T2 to increase more slowly 

than an increase in titanium white particles (average diameter 0.2 m). Since this does 

not seem to be the case, it is likely that the structure of the pigment also influences its 

effect on T2. Organic pigments, like alizarin crimson and phthalo blue, may adsorb more 

of the hydrophobic polymer chains more closely than inorganic, hydrophilic pigments 

like titanium white. This would also explain why ivory black is the only pigment which 

still displays a large T2 value even in paint films above the CPVC: since it has very large 

particles and is inorganic, is adsorbs a relatively small amount of acrylic binder. 

Data collected for acrylic binder without silica extender, however, points toward 

an even more complex relationship between polymer matrix and added particles. As 

discussed earlier, films of unpigmented semi-gloss acrylic binder (which contains silica 

particles with an average diameter of about 5 μm to reduce gloss and increase opacity and 

thickness) display two T2 values, one larger, one smaller. Films of unpigmented regular 

gloss acrylic base, which contains no particulates, still show two T2 values, but, although 

the smaller T2 of the gloss base is similar to the smaller T2 of the semi-gloss base, the 

larger T2 of the semi-gloss base is more than three times the length of the large T2 of the 

gloss base. After adding pigment to the regular gloss base, the larger T2 increases to 

approximately the same length as the large T2 of semi-gloss films with the same level of 

pigmentation, as shown in Figure 26. The numerical data shown on this chart is also 

listed in Table 5.  
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Figure 26: Large T2 values of ivory black and titanium white samples at different levels 

of pigmentation and formulated with different acrylic binders. The large T2 seems to 

increase as a small amount of particles added (note the large difference in T2 between the 

two bases, the gloss base which has no added particles and the semi-gloss base which 

contains silica filler) and then decrease again with higher amounts of added particles. The 

apparent absence of data for titanium white at a concentration of Λ=1.0 is intentional, 

since these samples only display a small T2 value. 
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This result seems to show that film T2 actually increases as small amounts of 

particles are introduced, before dropping with the addition of more particles as observed 

in the films of pigmented semi-gloss binder previously studied. An explanation of this 

phenomenon may be that adding a small amount of particulate matter disorders the 

polymer matrix enough to increase the T2, without adsorbing enough polymer to decrease 

T2 by limiting molecular motion. This disorder is likely to take the form of increased 

local free volume, or cavities in the polymer film. [41] The local free volume in polymer 

films with added particles has previously been studies using Positron Annihilation 

Lifetime Spectroscopy (PALS), and has been shown to increase in both size and 

frequency with increasing percentage by weight of silica particles added to a polymer 

film. [80] These cavities form when polymer chain packing is disrupted, especially by an 

added hydrophilic filler which cannot easily adsorb the hydrophobic polymer chains. In 

the areas of the film where the local free volume increases, the polymer chains have a 

higher mobility than adsorbed polymer chains or the densely packed chains in bulk 

polymer, increasing the observed T2 value. 
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Chapter 6: Conclusions 
 

 

Complementary single-sided NMR and SEM-EDS data have helped to improve 

understanding of the formation of acrylic paint films. Comparing these measurements 

shows that as pigment concentration is increased in paints, the paint films’ relaxation 

time changes. The majority of the paint films, especially those with a PVC lower than the 

CPVC, exhibit two separate T2 values, a large and a small, that correspond to different 

environments in the polymer binder. Films with a high PVC have a significantly lower 

occurrence of a long relaxation time than low PVC films since the amount of binder 

adsorbed to pigment particles increases with increasing PVC, restricting molecular 

motion. Pigments with a larger surface area or smaller particle size may have a greater 

effect on physical properties since more binder can adsorb to them. Additionally, data 

collected for acrylic binder without silica extender point towards an even more complex 

relationship between polymer matrix and added particles, in which a very small amount 

of added particles (pigment or extender, less than 25% volume concentration) increases 

polymer mobility by creating open spaces in the film.  

 The data for the two acrylic binders may not be fully comparable however, 

because it is not certain that the inclusion of silica extender is the only difference between 

them. This is the only difference listed in the manufacturer’s product documentation; 

however, their ingredient information is somewhat vague for proprietary reasons, and the 

discrepancy in the large T2 for the two bases may in fact be a result of polymer 

interactions with another component of the paint, such as a different type of surfactant. It 

would be beneficial to further study the makeup of the acrylic bases with a method such 
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as pyrolysis gas chromatography-mass spectrometry which could help identify the 

polymer itself, as well as some of the additives. [3]  

 In addition to conducting a more detailed study of the acrylic bases, it would be 

interesting to expand the number of pigments used in this research to reinforce the 

connection between particle size and change in T2 value. With a larger variety of 

pigments, it could also be determined whether there are other characteristics besides 

particle size that have a significant effect on paint T2 values, such as the chemical 

composition or dipole moment of the pigment which could influence the strength of the 

binding between the polymer binder and pigment particles. This research could involve 

computational modelling of the paint system in addition to single-sided NMR 

measurements of paint films to facilitate interpretation of results. 

 Another avenue of related research aligns with a different project currently active 

in our lab, which is investigating the ingress of solvents into paint films during 

conservation and cleaning efforts. This study uses single-sided NMR to compare the 

effects of different solvent application methods on identically pigmented films of 

commercially available traditional and water mixable artists’ oil paints. Extending this 

project to include analysis of solvent ingress into films with varying levels of 

pigmentation could provide valuable information for conservators of acrylic artwork who 

need to make decisions about which solvents and solvent application methods to use for 

cleaning a painting. 
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Appendix A: Data Tables 
 

 

 

 

 

Table 1: Pigment Characteristics. All information is available on the Kremer Pigmente 

website in MSDSs and Pigments Details documents [78, 79, 81, 82] except for the 

density of Ivory Black pigment and the oil absorption of Alizarin Crimson and Phthalo 

Blue, which are from [73]). CPVCs were calculated using Equation 3.2. 

 

Pigment 

Name 

Kremer 

Product # 

Color 

Index 

Name 

Color 

Index # 

Oil 

Absorption 

Density 

(g/cm3) 

CPVC 

Acrylic 

CPVC 

Linseed 

Oil 

Alizarin 

Crimson 
23610 PR 83 58000 76g/100g 1.7 45.99% 41.98% 

Ivory Black 47200 PBk 9 77267 60g/100g 2.29 44.46% 40.49% 

Phthalo Blue 23060 PB 15:3 74160 70g/100g 1.6 49.55% 45.50% 

Titanium 

White (rutile) 
46200 PW 6 77891 20g/100g 4.23 56.53% 52.50% 
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Table 2: Sample PVCs and Λ values 

 

Semi-Gloss Base 

Alizarin Crimson Ivory Black Phthalo Blue Titanium White 

PVC Λ PVC Λ PVC Λ PVC Λ 

6.84% 0.15 6.61% 0.15 6.32% 0.13 2.87% 0.05 

13.92% 0.30 9.24% 0.21 13.20% 0.27 6.11% 0.11 

21.80% 0.47 13.41% 0.30 19.11% 0.39 10.01% 0.18 

30.14% 0.66 19.07% 0.43 25.16% 0.51 14.78% 0.26 

32.77% 0.71 23.90% 0.54 30.46% 0.61 20.63% 0.36 

38.82% 0.84 29.40% 0.66 36.72% 0.74 28.02% 0.50 

45.82% 1.00 33.61% 0.76 44.74% 0.90 40.56% 0.72 

55.89% 1.22 38.68% 0.87 47.81% 0.96 49.43% 0.87 

  39.15% 0.88 52.92% 1.07 60.12% 1.06 

  49.91% 1.12 56.15% 1.13 64.44% 1.14 

 

 

Regular Gel Base 

Ivory Black Titanium White 

PVC Λ PVC Λ 

11.21% 0.25 14.76% 0.26 

23.05% 0.52 28.06% 0.50 

45.46% 1.02 56.44% 1.00 
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Table 3: T2 data for paint films made with Golden Semi-Gloss Regular Gel Base, 

calculated using a monoexponential fit and ignoring the first two echoes in the decay, 

except where noted. 

 PVC Λ T2 (ms) T2 Uncert. (ms) Comments 

Base 0.00% 0 0.48 0.04  

Ivory Black 

6.61% 0.15 0.53 0.03  

9.24% 0.21 0.58 0.03  

13.41% 0.30 0.48 0.03  

19.07% 0.43 0.55 0.03  

23.90% 0.54 0.42 0.03  

29.40% 0.66 0.43 0.04  

33.61% 0.76 0.41 0.04  

38.68% 0.87 0.32 0.03  

39.15% 0.88 0.28 0.05  

49.91% 1.12 0.31 0.03  

Phthalo Blue 

6.32% 0.13 0.54 0.03  

13.20% 0.27 0.45 0.03  

19.11% 0.39 0.36 0.03  

25.16% 0.51 0.39 0.03  

30.46% 0.61 0.36 0.02  

36.72% 0.74 0.21 0.05  

44.74% 0.90 0.08 0.01  

47.81% 0.96 0.14 0.04  

52.92% 1.07 0.08 0.02 No echoes omitted 

56.15% 1.13 0.08 0.01 No echoes omitted 

Alizarin Crimson 

6.84% 0.15 0.46 0.03  

13.92% 0.30 0.44 0.03  

21.80% 0.47 0.35 0.03  

30.14% 0.66 0.39 0.04  

32.77% 0.71 0.32 0.03  

38.82% 0.84 0.24 0.06  

45.82% 1.00 0.19 0.05  

55.89% 1.22 0.14 0.01 No echoes omitted 

Titanium White 

2.87% 0.05 0.49 0.03  

6.11% 0.11 0.46 0.03  

10.01% 0.18 0.43 0.03  

14.78% 0.26 0.43 0.04  

20.63% 0.36 0.40 0.06  

28.02% 0.50 0.39 0.08  

40.56% 0.72 0.31 0.03  

49.43% 0.87 0.13 0.02 No echoes omitted 

60.12% 1.06 0.13 0.06 No echoes omitted 

64.44% 1.14 0.12 0.03 No echoes omitted 
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Table 4: T2 data for paint films made with Golden Semi-Gloss Regular Gel Base, 

calculated using a biexponential fit with no echoes omitted where required, and a mono 

exponential fit where the biexponential fit returned identical T21 and T22 values. 
   Monofit Bifit 

 PVC Λ T2 (ms) T2 (higher %) Amplitude T2 (lower %) Amplitude 

Base 0.00% 0.00  0.1558 37.550 3.050 7.476 

Ivory Black 

6.61% 0.15  0.1461 39.080 3.384 6.670 

9.24% 0.21  0.1512 25.300 3.406 3.606 

13.41% 0.30  0.1494 24.450 2.936 4.362 

19.07% 0.43  0.1558 16.690 3.475 2.472 

23.90% 0.54  0.1463 22.080 2.710 3.112 

29.40% 0.66  0.1545 16.080 2.238 2.434 

33.61% 0.76  0.1494 22.720 2.394 2.560 

38.68% 0.87  0.1209 14.460 1.921 1.666 

39.15% 0.88  0.1332 13.580 2.977 1.555 

49.91% 1.12  0.1130 17.800 1.793 1.997 

Phthalo Blue 

6.32% 0.13  0.1497 4.354 5.604 0.594 

13.20% 0.27  0.1405 32.170 1.885 4.400 

19.11% 0.39  0.0983 10.290 2.331 1.256 

25.16% 0.51  0.1324 22.680 1.544 2.509 

30.46% 0.61  0.1222 13.950 1.222 1.107 

36.72% 0.74  0.1434 14.190 1.140 1.657 

44.74% 0.90 0.1575     

47.81% 0.96 0.1084     

52.92% 1.07 0.1103     

56.15% 1.13 0.0951     

Alizarin 

Crimson 

6.84% 0.15  0.1513 41.830 3.100 5.648 

13.92% 0.30  0.1394 23.670 2.850 3.478 

21.80% 0.47  0.1379 40.560 3.337 4.055 

30.14% 0.66  0.1590 11.370 2.731 1.845 

32.77% 0.71  0.1515 12.670 3.375 0.538 

38.82% 0.84 0.1294     

45.82% 1.00 0.1341     

55.89% 1.22 0.1094     

Titanium 

White 

2.87% 0.05  0.1398 43.330 3.225 5.107 

6.11% 0.11  0.1468 37.260 3.771 4.878 

10.01% 0.18  0.1308 26.080 2.257 3.859 

14.78% 0.26  0.1544 36.410 4.439 4.114 

20.63% 0.36  0.1489 21.710 3.525 2.325 

28.02% 0.50  0.1533 27.320 2.872 5.058 

40.56% 0.72  0.1320 36.560 1.432 3.537 

49.43% 0.87 0.1480     

60.12% 1.06 0.1608     

64.44% 1.14 0.1674     
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Table 5: T2 data for Ivory Black and Titanium White paint films made with Golden 

Regular Gel Gloss Base (top) and Golden Semi-Gloss Regular Gel Base (bottom). No 

large T2 is given for paint films with a high concentration of Titanium White pigment 

since the echo train decay for those concentrations is best modelled using a 

monoexponential fit; a biexponential fit of that data shows two identical T2 values. 

 

Gloss 

Base 

 Λ Small T2 Amplitude Large T2 Amplitude 

Base 0.00 0.1350 23.54 0.8043 1.532 

 

Ivory Black 

0.25 0.1600 26.76 2.866 4.063 

0.50 0.1566 26.39 2.702 6.887 

1.00 0.1801 14.56 1.974 2.510 

 

Titanium 

White 

0.25 0.1581 22.43 1.513 2.397 

0.50 0.1621 34.40 1.899 3.065 

1.00 0.1616  -  

 

Semi-

Gloss 

Base 

 Λ Small T2 Amplitude Large T2 Amplitude 

Base 0.00 0.1558 37.550 3.050 7.476 

 

Ivory Black 

0.21 0.1512 25.300 3.406 3.606 

0.54 0.1463 22.080 2.710 3.112 

1.12 0.1130 17.800 1.793 1.997 

 

Titanium 

White 

0.26 0.1544 36.410 4.439 4.114 

0.50 0.1533 27.320 2.872 5.058 

1.14 0.1674  -  
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Appendix B: Experimental Parameters 

 

Profile: 

 

B1 Frequency (MHz)   19.27 

90° Pulse Amplitude (dB)  -10 

180° Pulse Amplitude (dB)  -4 

Pulse Length (μs)   2.75 

Resolution (μm)   200 

Repetition Time (μs)   500 

Number of Scans   256 

Number of Echoes   64 

Initial Depth (μm)   1100 

Final Depth (μm)   500 

Step Size (μm)    -20 

 

 

CPMG: 

 

B1 Frequency (MHz)   19.27 

90° Pulse Amplitude (dB)  -10 

180° Pulse Amplitude (dB)  -4 

Pulse Length (μs)   2.75 

Resolution (μm)   200 

Repetition Time (μs)   500 

Number of Scans   256 

Number of Echoes   64 

Number of Complex Points  64 

Dwell Time (μs)   0.5 
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Debugger Script: 

The parameters adjusted for each sample are indicated by ‘%’. 
 

procedure(CPMGBD) 

# Cache macros 

   cd("$appdir$\\Macros\\Kea-NMR") 

   cachemacro("CPMG.mac","local") 

   cd("$appdir$\\Macros\\Kea-Core") 

   cachemacro("keaCtrl.mac","local") 

   cachemacro("keaRun.mac","local") 

   cachemacro("keaPlot.mac","local") 

   cachemacro("keaFiles.mac","local") 

   cd("$appdir$\\Macros\\NMR-MOUSE") 

   cachemacro("Service2.mac","local") 

   cacheproc("true") 

# Set up gui par 

   guipar = ["90Amplitude = -10", 

             "180Amplitude = -4", 

             "accumulate = \"yes\"", 

             "acqTime = 0.032", 

             "alpha = 1e10", 

             "autoPhase = \"yes\"", 

             "b1Freq = 19.21", 

             "bandwidth = 2000", 

             "dataDirectory = \"Z:\Data\MTR\Paint\"", % Change file location 

             "dummies = 0", 

             "dummyEchoes = 0", 

             "dwellTime = 0.5", 

             "echoShift = 0", 

             "echoTime = 60", 

             "expName = \"TitaniumWhite49.43Slide3new\"", % Change experiment name 

             "expNr = 0", 

             "filter = \"no\"", 

             "filterType = \"sinebellsquared\"", 

             "fitType = \"nnls\"", 

             "flatFilter = \"no\"", 

             "incExpNr = \"yes\"", 

             "normalize = \"yes\"", 

             "nrEchoes = 64", 

             "nrPnts = 64", 

             "nrScans = 2048", 

             "pulseLength = 2.75", 

             "repTime = 500", 

             "rxGain = 31", 

             "rxPhase = 247", 

             "saveData = \"true\"", 

             "sumEchoes = \"no\"", 

             "timeMag = \"no\"", 

             "usePhaseCycle = \"yes\"", 

             "x_maximum = 100", 

             "x_minimum = 0.2"] 

# Run the macro via the backdoor 

for(t = 0 to 2)    

   guipar = setlistvalue(guipar,"expNr","\"$t$\"") 

   CPMG:backdoor(guipar) 

   pause(3)    

next(t) 

endproc() 
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Appendix C: Abbreviations  

 

CPMG  Carr-Purcell-Meiboom Gill Pulse Sequence 

CPVC   Critical Pigment Volume Concentration  

EA   Ethyl Acrylate 

EDS   Energy Dispersive Spectrometry 

FID   Free Induction Decay 

FTIR   Fourier Transform Infrared Spectroscopy 

GU   Gloss Units 

ILT   Inverse Laplace Transform 

MMA   Methyl Methacrylate  

MOUSE  Mobile Universal Surface Explorer 

MS   Mass Spectrometry 

nBA   n-Butyl Acrylate   

NMR   Nuclear Magnetic Resonance (Spectroscopy)  

PE   Polyethylene  

PVC   Pigment Volume Concentration 

RF   Radiofrequency  

SEM   Scanning Electron Microscopy  
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Appendix D: Acquisition Parameter Terms  

 

1. 90° and 180° Amplitude (dB): The power of the applied 90° on-resonance excitation 

pulse and 180° refocusing pulse 

 

2. Pulse Length (μs): The length of application for the 90° and 180° pulses; this varies 

according to the number of spacers inserted into the magnet.  

 

3. Echo time (μs): The time after which each echo is acquired (explained in detail in 

Chapter 3). The echo time multiplied by the number of echoes is approximately equal to 

the length of one scan.  

 

4. Repetition Time (ms): The time between the beginning of one scan and the initiation of 

another scan with a new excitation pulse. The repetition time is the length of an entire 

scan and can be used to estimate the length of a full CPMG experiment.  

 

5. Number of Scans: The number of repeated pulse sequences in the CPMG experiments. 

More scans generate a greater amount of signal since more signal amplitudes are added, 

but also lengthen an experiment.  

 

6. Number of Echoes: The number of echoes obtained during each scan. Samples with 

short relaxation times require less echoes to capture the full signal decay.  

 

7. Number of Complex Points: The number of digital points collected to construct each 

echo. The acquisition time for an echo can be calculated by multiplying the number of 

complex points by the dwell time.  

 

8. Dwell Time (μs): The length of time needed to collect each complex point.  

 

9. Depth (μm): The distance into a sample where the single-sided NMR is acquiring data. 

The highest point at which the magnet acquires data is given by the initial depth, and the 

final depth is the point to which the magnet is lowered.  
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