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Chapter One 

Introduction

An adolescent’s choice to pursue a career is a complex decision in which 

expectancies and values play integral roles. When children highly value mathematics or 

science and expect to be successful in those domains, they are likely to be motivated to 

continue taking courses and to choose science, technology, engineering, and mathematics 

(STEM) careers. High school students who have high ability or demonstrate superior 

performance in mathematics and science form a talent pool from which the future 

scientists, mathematicians, and engineers of our nation should come. Of the large 

number o f individuals who qualify to join this pool of talent, relatively few choose STEM 

occupations (National Science Board, 2010). What distinguishes those who choose 

STEM occupations from those who do not? Motivation theorists posit that individuals 

choose occupations based on psychological, sociocultural, and environmental factors 

(Eccles et al., 1983; Lent, Brown, & Hackett, 1994). In this study, the relationships of 

profiles of domain-specific expectancies and subjective task values to ninth-grade 

students’ occupational decisions will be investigated. Increasing knowledge of these 

motivation variables is important to national efforts to increase the number of students 

who earn college degrees in STEM disciplines. This knowledge could lead to the 

development of educational interventions that develop the expectancies and values that 

will have the greatest effect on student decisions to pursue careers in STEM.

Purpose

The purpose of this study was to investigate expectancy-value motivational

profiles of ninth grade students and the relationships of those profiles with occupational
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choice, ability, achievement, and demographic variables. The Expectancy Value Model 

of Achievement-Related Choices (Eccles et al., 1983) was the primary theoretical 

framework used to examine motivation. The Eccles et al. (1983) framework explains 

expectancies and values as dependent on cultural role expectations and differences in the 

way individuals interpret their experiences. Other theory-based mechanisms that were 

used to explain variations in expectancy value constructs included stereotype threat 

(Steele, 1997) and stigma theory (Coleman & Cross, 2005). Members o f different race, 

gender, and socioeconomic groups have differential exposure to stereotypes and degrees 

of stigmatization that are associated with their general cognitive abilities, domain-specific 

abilities, and race-gender identities. Individuals live in multiple, different cultural 

contexts, each with its own norms and role expectations. Thus, theories such as 

stereotype threat and stigma theory predict and explain differences in expectancies and 

values between gender, race/ethnicity, and socioeconomic groups. A holistic- 

interactionist approach was taken, under which the unit of analysis is the individual 

(Bergman, Magnusson, & El-Khouri, 2003). Expectancy-value constructs are viewed as 

operating together within individuals to collectively result in choice, persistence, and 

performance. Multiple, unique configurations o f these constructs were identified that 

were predictive of occupational choice. This study investigated the following research 

questions:

1. What distinct profiles emerge from measures of mathematics self-efficacy and 

mathematics task values (interest-enjoyment value, utility value, and attainment 

value)?
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2. What distinct profiles emerge from measures of science self-efficacy and science 

task values (interest-enjoyment value, utility value, and attainment value)?

3. How is cost related to math and science profile memberships?

4. How does the membership of the mathematics expectancy-value subgroups 

compare to the science expectancy-value subgroups?

5. How do these profiles relate to mathematics ability?

6. Which set of profiles (mathematics or science) explains more of the variance in 

STEM occupational choice?

7. How do these profiles relate to giftedness?

8. How does membership in these latent classes differ by (a) race-gender group and 

(b) socioeconomic status?

Rationale

The journey toward STEM occupational expertise is a transformational process 

that begins as young children develop interest and demonstrate potential in the domains 

o f mathematics and science, and progresses as decisions are made to engage in activities 

that allow abilities to develop (Bloom, 1985). One critical decision in this transformation 

is the occupational choice, which represents an adolescent’s intention to pursue a specific 

course of talent development. What motivates individuals to make these choices? One 

longstanding motivation theory is expectancy-value theory, which explains choice, task 

commitment, and performance as a result of the beliefs that individuals have about how 

well they will perform and how much the task is valued (Wigfield & Eccles, 2000). 

Expectancy-value theory is a social-cognitive approach that frames expectancies and 

values as products of the interactions between an individual and the environment



(Murdock, 2009). In social-cognitive approaches, sociocultural norms, as well as 

prevailing stereotypes of individuals, abilities, and domains are said to influence how 

individuals construct expectancies and values. Characteristics of individuals such as 

gender, race, ethnicity, and socioeconomic status are each associated with their own 

cultural norms and stereotypes, thus differences in expectancies and values are expected 

between and within groups. Although students with high ability are likely to have high 

expectancies for success, these students may not value the domain or may possess 

inaccurate self-perceptions of their own abilities. Therefore, students with high ability in 

mathematics or science may choose to not pursue STEM careers for a variety of reasons.

Young high-ability students are often labeled gifted based on their cognitive 

abilities or achievements and these labels'may be retained indefinitely, regardless of the 

behavior that individual exhibits. This practice is representative of a traditional, entity 

view of giftedness in which giftedness is thought of an as an inherited, stable trait. A 

contrasting view is of giftedness as a developmental phenomenon, meaning that as 

students’ grow older the retention of the gifted label requires performance (Cross, 2009; 

Subotnik, Olszewksi-Kubilius, & Worrell, 2011). In other words, creative-productive 

output is required to be a gifted adult. When the child is young, aptitude is enough to 

qualify the gifted label. As a child grows older, the retention of the gifted label is 

performance dependent (Cross & Coleman, 2005). In this study, the second view was 

adopted, namely that giftedness is not about being, it is about doing.

To get from being to doing requires motivation; gifted individuals are often 

described as more motivated than those who are not gifted (Tannenbaum, 1983). From an 

expectancy-value perspective, gifted individuals are more likely to have greater



expectations of their own performance, which should increase motivation. However, 

some research has identified groups of students who have been identified as gifted but are 

not motivated, as gifted underachievers (e. g. Reis & McCoach, 2000). Expectancy-value 

theory explains this underachievement as a lack of motivation due to low task value for 

particular activities. Thus, the presence of high self-efficacy alone is insufficient for 

gifted behavior to emerge and task value must also be present to motivate performance. 

Similarly, Renzulli (1978) defined giftedness as an interaction between above-average 

ability, task commitment, and creativity in his Three Ring Conception of Giftedness 

(TRCG). In other words, gifted behavior is dependent on a commitment to perform tasks 

needed to master the domain and produce knowledge. This task commitment, or 

motivation, is the key concept within expectancy-value theory because expectancies and 

values are thought to cause, or motivate, academic choices (Wigfield & Eccles, 2000).

The rationale for studying the expectancy-values o f students in the context of 

STEM occupational choice arises from the combined application of E-V theory and the 

TRCG. First, the TRCG model implies that it is possible to establish giftedness by 

building motivation if an individual has above-average ability and creativity. Second, 

expectancy-value theory provides a model for motivation, which can be strengthened by 

increasing expectancies for success and values of activities. Therefore, better 

understandings of individuals’ expectancies and values could help direct interventions 

designed to increase motivation and also increase the number of students who exhibit 

gifted behaviors in STEM.

Previous studies have examined the factors related to the choice of a STEM career 

using an expectancy-value framework (e .g. Eccles, 1985; Simpkins & Davis-Kean,



2005; Watt, Eccles, & Durik, 2006). This is the first study that uses a nationally 

representative sample to identify domain-specific, expectancy-value profiles and relate 

these profiles to STEM occupational choice. Previous studies have used methods such as 

logistic regression, path analysis, structural equation modeling, or multiple regression to 

find relationships between mean values for groups. This study took a holistic- 

interactionist, or person-centered approach, in which the individual was the unit of 

analysis and variables operated in concert to produce motivation. The bulk of previous 

studies have taken a variable-centered approach that isolated relationships between mean 

values of variables for groups on the outcome of interest. Furthermore, these variable- 

centered approaches were limited by the assumptions of the general linear model and the 

relationships between the variables o f interest. The examination of multiple domain- 

specific components of task-value in a single model has been hampered by the 

multicollinearity of task-values (e. g. Li & Adamson, 1995; Simpkins & Davis-Kean, 

2005). The use of profiles removed this constraint and enabled multiple task-values to be 

included. The use of profile analysis also meant that the assumption of linear 

relationships between variables no longer applied. The profiles found in this study 

describe how groups of expectancies and values work together in individuals to motivate 

these individuals to choose STEM careers.' Findings from this study could lead to the 

development of educational interventions that aim to develop the expectancies and values 

that are conducive to STEM-career interest in students.

Definitions of Terms

1. Above-average ability: Individuals who scored at least one standard deviation above 

the mean within their race/ethnicity group on the mathematics achievement test



administered as part o f the base-year HSLS: 2009. The mathematics achievement test 

is a measure o f general ability (Renzulli, 2005), which is a reasonable proxy of 

potential in the STEM domains in the absence o f other information such as teacher 

observations (J. Renzulli, personal communication, November 12, 2012). This 

definition is based on Renzulli’s (1978) TRCG.

2. Giftedness: Creatively productive behavior that arises due to an interaction among 

three factors: above-average ability, task-commitment or motivation, and creativity. 

This definition is based on Renzulli’s (1978) TRCG.

3. STEM occupation: Occupations that involve science, technology, engineering, or 

mathematics. Health sciences careers are included in this categorization.

4. Expectancies: How well a student thinks he or she will do on future tasks.

5. Self-efficacy: The confidence a student has that he or she can successfully perform a 

future task, in this case to successfully complete future mathematics or science 

courses (Bandura, 1986).

6. Subjective task values: How much value an individual assigns to a task. Task value 

has four components: interest-enjoyment value, attainment value, utility value, and 

cost (Eccles et al., 1983).

7. Interest-enjoyment value: A component o f task value; how much the task is liked or 

enjoyed (Eccles et al., 1983).

8. Attainment value: A component of task value that describes the instrumentality or 

importance of the task. A measure o f how well the task aligns with the individual’s 

identity (Eccles et al., 1983).
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9. Utility Value: A component of task value that describes how well the task aligns with 

the individual’s future goals (college or career; Eccles et al., 1983).

10. Cost: A component of task value that describes the perception of how much 

engagement in this task will preclude other activities, require excessive effort, or 

affect relationships with peers (Eccles et al., 1983).

Organization of the Study 

In Chapter 1, the introduction, statement of the problem, research questions, 

significance of the study, definitions of terms, limitations, and delimitations were 

presented. Chapter 2 contains the review of related literature and research related to the 

problem investigated in this study. First, an overview of the expectancy value model of 

achievement related choices is provided. Second, the constructs of expectancy and value 

are described. Findings of research concerning relative values of these constructs and the 

relationships to mathematics and science course taking plans or STEM occupational 

choices are discussed. Third, expectancy value concerns related to gender, race/ethnicity, 

and socioeconomic status are discussed. Fourth, the relationship of motivation to the 

theories and models associated with giftedness are described and relevant research 

findings are reviewed. Fifth, the differences between a variable-centered and a person- 

centered approach are discussed; the choice o f a person-centered approach is justified. 

Lastly, examples of person-centered expectancy value research are reviewed. Findings 

from critical analyses of these studies are used to design of this study. In Chapter 3, the 

methodology and data-collection procedures for this study are presented. The results of 

analyses and findings that emerge from the study are contained in Chapter 4. Chapter 5



contains a summary of the study and findings, conclusions that follow from the findings, 

discussion of the implications o f these findings, and recommendations for further studies.
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Chapter 2 

Literature Review

This chapter provides an extensive review of the literature related to mathematics 

and science course-taking decisions and STEM occupational choice. It will be divided 

into sections that include: (1) expectancy value theory, (2) motivation and giftedness, (3) 

special populations, and (4) person-centered approaches. This chapter begins with a brief 

description of the expectancy-value model o f achievement-related choices, followed by 

an examination of each of the key constructs in the model that includes the research 

findings that inform this study. The importance of motivation to giftedness is discussed. 

Issues particular to females, high-ability students, underrepresented minority students and 

students from low socioeconomic status are discussed, with an emphasis on potential 

expectancy-value influences on STEM-related outcomes. Person-centered approaches are 

described including the advantages o f these approaches and why this approach is 

appropriate for this study. A rationale for the current study is presented.

The expectancy-value model of achievement-related choices has been used 

extensively in education research. Before reviewing the literature concerning the 

constructs contained in the model, an overview of the expectancy-value model will be 

provided. Discussion of the expectancy-value constructs will be focused on applications 

to career choice and course taking in the STEM domains.

Expectancy-Value (EV)

The EV model is a social-cognitive theory of motivation that was first formalized 

by Atkinson (1957) and later refined by Eccles et al. (1983). In the model, the immediate 

predictors o f academic performance and choice are expectancies and values (Figure 1).
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When making choices, individuals choose among the options that are perceived to be 

available, and the perception of availability is affected by cultural stereotypes and 

parental, familial, or peer influences. These choices are generally not made in isolation; 

multiple options are compared relative to each other. The considerations that drive 

decisions include: (1) the expectations for success if the choice is selected; (2) how well 

the choice aligns with short- and long-term goals, with one’s identity and basic 

psychological needs; (3) the individual’s role schema based on gender, race or ethnicity; 

and (4) the potential cost o f devoting time to this activity over another activity (Wigfield 

& Eccles, 2000). The first of these considerations is called expectancy and the remaining 

three collectively comprise subjective task value.

This model explains choice, persistence, and performance based on an 

individual’s expectation of success and the subjective task value held o f the activity. In 

the model, expectation of success and subjective task values directly influence task 

choice and performance. However, these predictors are influenced by self-beliefs, future 

goals, and identities. Beliefs, goals, and identities have been affected by previous 

experiences, beliefs and behaviors of key socializers, social role systems, cultural 

stereotypes, ethnicity, gender, aptitudes, and demographics. In other words, the 

sociocultural contexts in which children live shape their beliefs about their abilities, 

personal goals, and identities, which directly affect their expectancies and values, which 

in turn affect the choices they make, how much effort they will exert, and how well they 

will perform. Decades of research have shown that expectancies and values are good 

predictors of future course taking and career choice (Eccles, 1985; Eccles, Adler, &

11



Meece, 1984; Simpkins & Davis-Kean, 2005; Simpkins, Davis-Kean, & Eccles, 2006; 

Watt et al., 2006). In the next section the construct o f expectancy will be described. 

Expectancy

Expectancy describes the confidence an individual has in his or her ability to 

successfully perform a task (Wigfield & Eccles, 2000). This construct is distinguished 

from other beliefs about ability, such as self-concept, by its reference to the future 

performance of a task instead of current, comparative levels of performance (Wigfield, 

Tonks, & Klauda, 2009). In this way, expectancy is very similar to the self-efficacy 

construct as defined by Bandura (1997). Much like self-efficacy theory (Bandura, 1986), 

EV theory predicts that individuals who have higher expectancies for success in 

mathematics or science will be more likely to continue to take such courses and choose 

careers in STEM fields. What determines expectancy? Prior achievement is a predictor of 

expectancy, but expectancy is also influenced by sociocultural factors such as the 

stereotypes people hold for activities and of the abilities of members of certain groups, as 

well as individual differences in affective reactions to previous experiences. In other
< * i

words, self-efficacy is positively related to ability, but students who internalize 

stereotypes about their ability to perform or who adopt familial or cultural views about 

which kinds of people can be successful at certain activities are likely to have reduced 

self-efficacies in the STEM domains. These lower expectancies reduce the likelihood of 

choosing a STEM occupation. However, in general, most EV research has found that 

expectancy effects on choice are mediated by task value (e. g. Andersen & Ward, in 

press; Watt et al., 2006) while expectancy affects performance directly.
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Figure 1

Eccles et al. (1983) Expectancy-Value Model
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A large body of research has explored various types of self-efficacy and their 

precursors (for a review of this literature see; Usher & Pajares, 2008). However, the 

present review is confined to findings regarding self-efficacy in the STEM domains and 

its relation to course taking and career choice. In general, domain-specific self-efficacy 

and interest in the domain have a reciprocal relationship (Lent et al., 2001; Lent, Lopez,

& Bieschke, 1991; Navarro, Flores, & Worthington, 2007; Rottinghaus, Larson, & 

Borgen, 2003). In other words, students who had higher self-efficacy in a particular 

domain had more interest in that domain. Furthermore, the effect of self-efficacy on 

choice was indirect and mediated by interest (Navarro et al., 2007); this mirrors the 

aforementioned observation that the effect of expectancy on choice was mediated by task 

value.

Expectancy measurement issues. Researchers who use expectancy-value 

frameworks conceptualize expectancy differently than those who use other theoretical 

frameworks, such as social cognitive career theory. This difference means that findings 

from such studies have limited external validity. For example, outcome expectancy has 

been operationalized as the gain the individual expects as an outcome of the activity, such 

as financial reward or intrinsic enjoyment (Lent et al., 2003). Other studies have 

conflated self-efficacy and self-concept by using items such as “How good are you at 

science?” to measure self-efficacy or expectancy (Mau, 2003; Miller, Lietz, & Kotte, 

2002; Riegle-Crumb, Moore, & Ramos-Wada, 2011; Simpkins & Davis-Kean, 2005). An

appropriate question to measure science self-efficacy would be “How confident are you
> t;

that you can earn a B or better in your science class next year?” (Bandura, 2006). The 

conflation of constructs invalidates many comparisons between studies. In defense of this
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practice, Wigfield and Eccles (2000) stated that within domains, self-concepts and self- 

efficacy loaded on the same factor and were not “empirically distinguishable” (p. 74). 

Wigfield, Tonks, and Klauda (2009) further suggest that ability and expectancy 

“comprise a single concept for children age 6-18” (p. 60). Although self-efficacy and 

self-concepts have loaded onto the same factor in some previous studies, substituting 

self-concept for self-efficacy may not be good practice.

Combining self-concept and self-efficacy may not be valid for high school 

students, some high-ability students, or students who are culturally different. When 

students enrolled in courses which were more challenging or ability-grouped, such as 

high-school mathematics and science courses, self-concept tended to decrease, because it 

was based on comparisons of the self with a referent group that was of higher mean 

ability, while self-efficacy is unaffected by such comparisons (Bandura, 1993; Marsh, 

1986; Plucker & Stocking, 2001; Rinn, Plucker, & Stocking, 2010). This is called the Big 

Fish Little Pond Effect. Further evidence of the volatility o f self-concept comes from 

Denissen, Zarrett, and Eccles (2007) who found a sharp decline in the coupling between 

academic achievement and academic self-concept after tenth grade. In other words, as 

students got older, the same increase in achievement resulted in a smaller increase in self- 

concept. However, Denissen et al. (2007) did not examine domain specific self-concepts. 

On the other hand, task-specific self-efficacies increase with age (Wigfield, Eccles, 

Schiefele, Roeser, & Davis-Kean, 2006; Wigfield & Wagner, 2005). Comparisons of 

self-efficacy findings between studies are further complicated by the task-level nature of 

self-efficacy measures. For example, a student’s confidence in his or her ability to be able 

to solve an Algebra problem will increase with age and mathematics experiences, but the
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confidence in her or his ability to earn a B in a math course may decline with age as 

course content becomes more challenging (e. g. calculus is more challenging than 

geometry). The comparative nature and relative volatility o f self-concept mean that it is 

not an equivalent of self-efficacy. According to Wigfield et al. (2009),

Too often researchers state that they are measuring a certain construct but use a 

measure that perhaps does not capture the construct in the way it is defined 

theoretically. This can lead to conceptual confusion and conflicting results, and 

thus impede the advancement of the field (p. 59).

Conceptual confusion is an apt description of how the field has dealt with the measure of 

expectancy. Self-efficacy measures will be used to represent expectancy in this study 

because self-efficacy best represents the construct o f expectancy as defined by Wigfield 

and Eccles (2000).

Mathematics and science self-efficacy. Bandura (2006) emphasized the 

importance of the domain-specificity of self-efficacy. However, most studies of choice 

have neglected science self-efficacy and used mathematics self-efficacy as a proxy for 

STEM self-efficacy (e.g. Mau, 2003; Moakler, 2011; Zarrett & Malanchuk, 2005). A few 

studies have used latent variables of self-efficacy that combined mathematics and science 

self-efficacy items (e. g. Navarro et al., 2007). The predictive validity of mathematics 

self-efficacy for STEM occupation choice was put into question by the findings of 

Andersen and Ward (in press) that science self-efficacy was a significant predictor of the 

course taking and career plans of ninth-grade students while mathematics self-efficacy 

was not a significant predictor. Further research is needed into the importance of science
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self-efficacy to such choices and to compare the relative predictive power o f mathematics 

self-efficacy and science self-efficacy.

Self-efficacy theory. Observed differences in self-efficacy can be explained by 

Bandura’s (1986) social cognitive theory, which attributes changes in self-efficacy to four 

mechanisms: mastery experiences, social persuasion, vicarious experiences, and 

physiological arousal. When an individual completes an activity competently, this is a 

mastery experience. Vicarious experiences occur when the individual learns about a peer 

who has had a mastery experience. Feedback from significant others in an individual’s 

life provide social persuasion. Mastery experiences, vicarious experiences, and social 

persuasion positively affect self-efficacy. On the other hand, negative physiological 

arousal related to attempts to perform a task, or anxiety, will negatively affect self- 

efficacy. In the context of EV theory, self-efficacy is positively related to choice, 

persistence, and performance. Bandura’s (1986) self-efficacy theory will be used in 

conjunction with the EV model to explain observed differences.

Subjective Task Value

According to expectancy value theory (Eccles et al., 1983), volitional decisions 

are based on comparisons of the value of mathematics and science to the individual and 

the perceived personal cost of learning mathematics and science. This comparison allows 

children to answer the question “Do I want to do this?”. Subjective task value (STV) 

describes the net value ascribed to a task by an individual and this value is influenced by 

some of the same mechanisms that influence expectancies (Wigfield et al., 2009). Past 

experiences that influence value include: how interesting an activity was, how much it 

was liked, and the nature of the feedback provided by parents or teachers as to the
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importance or usefulness of a task. This feedback can come from a variety o f sources. In 

this way, cultural expectations and peer expectations influence the values children place 

on activities. Cultural norms or stereotypes and the level o f internalization of these by the 

individual affect the personal cost of choosing to do an activity. In general, studies have 

found that STV is a better predictor of choice than ability or expectancy. To understand 

how these sociocultural factors influence STV requires further examination of this 

concept. Eccles et al. (1983) defined STV as comprised of four constructs: interest- 

enjoyment value, attainment value, utility value, and relative cost. In the next section, 

each of the four constructs will be described.

Interest-enjoyment value. Interest-enjoyment value describes how much the 

individual is interested in the activity; this is also known as intrinsic value. This construct 

has been operationalized as how much the task is liked or enjoyed (Wigfield & Eccles, 

2000). Individuals who like or enjoy mathematics or science are more motivated to take

courses and pursue STEM careers. Many studies of STEM-related career choice have
|

found that interest is strongly correlated to career choice (Jacobs, Finken, Griffin, & 

Wright, 1998; Lent, Lopez, Lopez, & Sheu, 2008; Lent, Paixao, Silva, & Leitao, 2010; 

Miller et al., 2002) and future course taking (Eccles et al., 1984; Watt et al., 2006).

Measurement o f  interest. Although interest has been found to be an important 

predictor of choice, it has been operationalized in many different ways. Many studies 

have used science attitudes as a predictor of choice (e. g. Maple & Stage, 1991; Mau, 

2003; Miller et al., 2002; Tai, Liu, Maltese, & Fan, 2006). In general, science attitudes 

have been found to be predictive of choice and some measures of science attitudes have 

included the interest/enjoyment value of science. In a review of 66 science attitude
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instruments, Blalock et al. (2008) found less than one-third o f these were measures of 

interest-enjoyment and that most of the instruments were developed without adequate 

attention to treatment of missing data, validity, and reliability. Some studies do not 

describe the science attitude measures that were used, making it difficult to determine 

what constructs were actually measured and to interpret findings appropriately (e. g. 

Maple & Stage, 1991). Some career choice researchers have operationalized interest as 

interest in a STEM career (Maltese & Tai, 2011; Sadler, Sonnert, Hazari, & Tai, 2012;

Tai et al., 2006), while others measured interest in STEM subjects, such as mathematics 

or science (Chow & Salmela-Aro, 2011; Eccles et al., 1984; Farenga & Joyce, 1998; 

Jacobs et al., 1998; Jones, Taylor, & Forrester, 2011; Lent et al., 2001, 2008; Maltese & 

Tai, 2010; Navarro et al., 2007; Pearson & Miller, 2012; Quimby, Wolfson, & Seyala, 

2007; Simpkins & Davis-Kean, 2005; Watt et al., 2006). In the EV framework, interest is 

conceptualized as the intrinsic value of these activities; therefore the latter 

conceptualization of interest is a better fit to the EV model. In general, interest in the 

mathematics and science domains was a strong predictor of choice and a moderator o f the 

relationship between self-efficacy and choice.

Attainment value. Attainment value describes how important the activity is to 

the individual. This value is an assessment o f  how much the performance of the task 

confirms salient aspects of one’s identity (Wigfield et al., 2009). For example, when a 

child considers him or herself to be a “science person”, taking a chemistry class holds a 

greater value than taking a history class. Thus, STEM course taking and career choices 

will be influenced by how much the person identifies with mathematics or science, the 

greater the identification, the more likely those option will be selected. Factors that affect
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attainment value include: individual perceptions o f the domains of mathematics and 

science and internalization of gender, racial, or ethnic role stereotypes. In other words, 

attainment value is closely related to identity and how well a science or mathematics 

identity aligns with other components of the individual’s identity such as ethnicity, 

gender, or culture. In the vast majority of EV research, attainment value has been 

operationalized as importance and combined with interest and utility value into one 

variable (Wigfield & Eccles, 2000; Wigfield et al., 2009). Thus, the relative importance 

of attainment value as compared to the other STV variables is unknown. However, recent 

research on the relationships between the identities and career choices of minority 

students and women supports the importance of attainment value as a predictor o f choice, 

persistence, and performance (e. g. Oyserman & Destin, 2010).

Identity incongruence. When the student’s perception of a mathematics or 

science identity conflicts with what the student believes is appropriate for his or her 

gender, race, or ethnicity, STEM-related choices will be seen as identity-incongruent and 

will have lower attainment value (Eccles, 2009). Low attainment value reduces the 

likelihood of the choice to pursue that activity. For example, a female student may 

perceive taking a science class to be identity-incongruent because science is a male- 

dominated field and she has internalized that stereotype. Therefore, she would have a 

lower attainment value for science, or a science career, and be less likely to choose those 

options.

Identity congruence may also be an issue for African American and Hispanic 

males because science has been dominated by White males and has its own culture that 

was built on European male culture. Many aspects of this culture do not align well with
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the norms of African American and Hispanic culture (Brickhouse, 1994). Research on 

students’ perceptions of scientists over the past 50 years, across gender and culture, has 

revealed persistent and pervasive stereotypes o f scientists that include descriptors such 

as: exceedingly clever, amoral, insensitive, obsessive, unemotional, unsocial, unkempt, 

and uncaring (Barba, 1998; Finson, 2002; Seymour & Hewitt, 1997). These stereotypes 

are very similar to negative stereotypes of giftedness (Subotnik, Olszewksi-Kubilius, et 

al., 2011). Related to the issue of identity, “scientist” may be viewed as a stigmatized 

identity because scientists are often stereotyped as geniuses, which is also a stigmatized 

identity in an anti-intellectual culture such as the U. S. (Coleman & Cross, 1988; 

Hofstadter, 1963; Howley, Howley, & Pendarvis, 1995). Recent qualitative research 

using the framework of identity-based motivation supports the positive relationship of 

attainment value to STEM-related choices and the importance of the compatibility of 

science identities to individual identities for persistence in STEM (Carlone & Johnson, 

2007; Kao, 2000; Oyserman & Destin, 2010). However, little quantitative research has 

been done in this area.

Measurement o f  attainment value. Few studies have used attainment value as a 

predictor of occupational choice. Some EV studies have included importance as part of 

the STV measure and have generally found that STV is a good predictor o f choice (Chow 

& Salmela-Aro, 2011; Conley, 2012; Eccles et al., 1984; Simpkins & Davis-Kean, 2005; 

Watt et al., 2006). In one of the few studies that used identity as a separate variable, 

identity was found to partially mediate the relationship between self-efficacy and 

commitment to a science career for science graduate students (Chemers, Zurbriggen,

Syed, Goza, & Bearman, 2011). However, this study was conducted with graduate
’ ' ) ;
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students, not high school students. National longitudinal studies prior to the High School 

Longitudinal Study of 2009 have not included measures o f identity or attainment value, 

which has limited previous large-scale studies of this aspect of STV (e. g. Maltese & Tai, 

2011; Mau, 2003; Tai et al., 2006). Further studies of the effect of identity on choice are 

needed.

Utility Value. Utility value describes the degree of alignment with a student’s 

future goals, such as college or career. For example, a chemistry class may have utility 

value because it is required to become a physician. Students who have short- or long-term 

goals that are related to mathematics or science will place higher utility value on 

mathematics or science courses. Utility value has been found to be a significant predictor 

of STEM career choice (Andersen & Ward, in press; Maltese & Tai, 2011), although it 

remains to be determined if the utility value of mathematics and the utility value of 

science are equally important to STEM career choices. In large-scale studies, Andersen 

and Ward (in press) found that a STEM utility value factor comprised of math and 

science utility was predictive of ninth-grade students’ plans to persist in STEM, while 

Maltese and Tai (2011) found that science utility value predicted who would earn a 

STEM major in college. In a study of supports and barriers to continuation in science and 

mathematics in a sample of minority middle school students, the relevance of utility value 

was supported by the internal or individual supports that students reported, such as 

identification with a career goal and the ability to see how mathematics and science 

applies in careers (Fouad et al., 2010). In general, utility value is predictive of course 

taking and career choices but it is unknown if math and science utility value are equally 

influential.
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Relative Cost Relative cost is the individual’s assessment of how much 

engagement in this activity will preclude other activities, require excessive effort, or will 

affect relationships with peers. In other words, relative cost refers to what has to be given 

up to complete an activity. When a student chooses to devote time to mathematics and 

science, he or she may be ridiculed by peers or have less time for hanging out with 

friends. Individuals decide if the anticipated cost is tolerable. Only two empirical EV 

studies that included the cost construct were identified (Battle & Wigfield, 2003; Conley, 

2012). In the first study, cost was found to negatively predict women’s intentions to 

attend graduate school (Battle & Wigfield, 2003). However, cost was conceptualized 

differently in that study; 6 of the 11 items that were used to measure cost had poor 

content validity because the items were actually measures o f the students’ competency 

beliefs. Second, in a cluster analysis of EV profiles, Conley (2012) found that relative 

cost was an important discriminator between more or less adaptive patterns of motivation 

and a good predictor of student affect. Nonetheless, relative cost is the least studied of 

measures of subjective task value (Wigfield et al., 2009). Therefore, future research 

should examine the effect o f cost.

In the social cognitive career theory (SCCT) literature, the constructs of social 

supports and barriers overlap the EV construct of cost. A taxonomy of supports and 

barriers for continuing in mathematics and science was developed through interviews and 

focus groups with culturally diverse middle and high school students; many of the social 

barrier items are similar to EV constructs (Fouad et al., 2010). For example, social 

barriers that were identified included “perception of peer rejection” and “little to no 

social integration” (Fouad et al., 2010, p. 365). Thus, the importance of cost to choice is
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supported by other theories of occupational choice, such as SCCT. On the other hand, in 

a study of 600 Portuguese high school students, social supports and barriers were found 

to have non-significant associations with occupational choice and moderate associations 

with self-efficacy (Lent et al., 2010). However, that study did not examine STEM 

occupations specifically, and cultural differences between that sample and U.S. students 

minimize the generalizability of that finding to US students. Thus, although relative cost 

is thought to be important to choice (Wigfield & Eccles, 2000), only limited empirical 

evidence has been found to support this claim. More research is needed that investigates 

the influence of cost on students’ choices.

Research on components of STV. Subjective task value has been shown to 

predict choice after controlling for prior achievement (Eccles et al., 1984; Simpkins & 

Davis-Kean, 2005; Watt et al., 2006), but these studies have operationalized STV as a 

single score that represented interest-enjoyment, attainment, and utility values. Few 

studies have examined the effects of individual components of STV or how these 

components may work in combination to motivate performance. One study was located 

that examined all four components of mathematics STV (Conley, 2012), reminding 

researchers of the importance of the cost aspect. Most of the studies that have shown 

relationships between STV and choice have focused on the subjective task value of 

mathematics and how it predicted mathematics course taking or career choice. Few 

studies have examined the STV of science. In one such study, Simpkins and Davis-Keen 

(2005) found that science expectancy (operationalized as self-concept) was a better 

predictor of health and science career choice than the value of science. In other words, 

most previous studies of STV have not examined the relative importance of the four
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constructs and have neglected science. Furthermore, the findings of Simpkins and Davis- 

Keen (2005) show that science STV may have less predictive power than science 

expectancy and that science self-efficacy may be more important than math self-efficacy 

in the prediction of career choices.

Summary. In the literature, the EV model has been successfully used to explain 

STEM occupational choice in populations that were largely White and middle class. The 

EV model has explained choices through individuals’ expectancies for success and 

subjective task values. Although EV theory posits that expectancies and values are 

individually constructed and are influenced by many factors that are experiential and/or 

sociocultural, this has been explored extensively with regard to gender differences but not 

nearly as much for race, ethnicity, or SES differences. The Eccles et al. (1983) construct 

of expectancy is very similar to self-efficacy because it represents the beliefs that 

students have about their abilities to succeed in future activities. Nonetheless, expectancy 

has been measured as self-concept in most studies. Both ability and achievement predict 

expectancy, but expectancy is also influenced by sociocultural factors as explained by 

Bandura’s (1997) self-efficacy theory. Expectancies should be domain-specific, but prior 

research has emphasized math self-efficacy while science self-efficacy has been 

relatively neglected. Furthermore, the construct confusion among self-efficacy and self- 

concept has hampered the development of the field of achievement motivation. Another 

barrier to this development is that other theoretical frameworks that have been used to 

investigate choice have operationalized constructs very differently than EV research. This 

difference makes generalizations of findings across frameworks difficult.

(
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Subjective task value is comprised o f four factors -  interest-enjoyment value, 

attainment value, utility value, and relative cost -  but only one study was found that 

included all four factors. Interest and utility value were explored more frequently than 

attainment value and relative cost. In studies that have included more than one of these 

factors, the individual scores were typically combined into an STV composite that was 

found to predict choice. Each of the STV factors is individually constructed and 

influenced by many of the same factors that influence expectancy. Sociocultural concepts 

that explain these influences include stereotype threat and stigma theory. Members of 

different race, gender, and socioeconomic groups have differential exposure to 

stereotypes and degrees of stigmatization that are associated with their general cognitive 

abilities, domain-specific abilities, and race-gender identities. These individuals live in 

multiple, different cultural contexts, each with its own norms and role expectations. Thus, 

differences in STV factors are expected between gender, race/ethnicity, and 

socioeconomic groups.

In most EV research, the first three STV factors (interest, attainment, and utility) 

have been investigated as a domain-specific, single score representing a global STV 

construct and some research has incorporated one or two of the value constructs. No 

research has compared the relative influence of the various components of STV on 

occupational choice. Overall, STV has been found to be a stronger predictor o f choice 

than self-efficacy while self-efficacy has been a better predictor of future levels of 

performance. However, differences between the influence of mathematics values and 

science values on STEM choices remain to be explored. Some evidence of the superior 

predictive ability of science values over math values has been noted for science-related
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choices, but more research is needed that uses the self-efficacies and values of both 

domains to compare the relative predictive effects.

Of the extant mathematics and science course taking and career choice literature, 

some common problems exist. In the most of the EV-based studies, external validity is 

limited by the use of convenience samples or samples that lack adequate representation of 

racial or ethnic diversity. Thus, little is known about how EV theory functions to predict 

choices for underrepresented minority students. The social science literature is fraught 

with convenience sample studies that have limited generalizability, particularly to racial 

and ethnically diverse populations. In response to this concern, several occupational 

choice studies have been conducted using national datasets (e. g. Maltese & Tai, 2011; 

Mau, 2003; Riegle-Crumb et al., 2011). However, problems exist with these secondary 

data analyses, such as: (1) studies that are not grounded in strong theoretical frameworks 

(e. g. Maltese & Tai, 2011; Maple & Stage, 1991; Miller et al., 2002); (2) constructs that 

are only weakly supported by individual survey items (e. g. Maltese & Tai, 2011; Riegle- 

Crumb et al., 2011; Shaw & Barbuti, 2010); (3) overcapitalization on chance through the 

testing of many variables and retaining only significant predictors in models (e. g.

Maltese & Tai, 2011); (4) conflation of constructs, particularly self-efficacy and self- 

concept (e.g Mau, 2003; Riegle-Crumb et al., 2011); and (5) the use of poorly defined 

constructs, such as science attitude (Blalock et al., 2008). Each of these concerns will be 

directly addressed in this study.

In the next section, a summary o f the findings on gender differences will be 

presented.
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Gender and EV

The Eccles et al. (1984) model was created to explain gender differences in 

choices, particularly in mathematics course taking and careers. Children begin to develop 

gender-specific identities that lead to gender-specific behaviors, attitudes and interests 

between 3 to 8 years of age. From age 9 to 13, occupational interests begin to develop 

based on social group affiliations and ability self-concepts. Vocational interests narrow as 

options that do not fit with self-concept or identity are eliminated (Wigfield, Eccles, 

Roeser, & Schiefele, 2006). A large body of research has investigated gender differences 

using EV theory. The findings of these studies will be briefly summarized in order to 

discuss how these findings might be different for underrepresented minority girls and 

economically disadvantaged girls in the next section.

Gender differences in expectancy. Gender differences in expectancy beliefs 

often favor males in gender-role stereotyped domains, such as science (Simpkins &

Davis-Kean, 2005). Early research indicated that mathematics stereotyped gender
1

differences begin in early in elementary school and grow larger during later adolescence 

(Eccles et al., 1984), but more recent research suggests that these self-concept differences 

grow smaller over time and that by twelfth grade the difference is negligible (Jacobs, 

Lanza, Osgood, Eccles, & Wigfield, 2002). A large-scale study using eighth grade 2003 

TIMSS data found that White females and Black females have lower self-concepts in the 

domains of mathematics and science than White males and Black males who had similar 

self-concepts (Riegle-Crumb et al., 2011). Furthermore, these researchers found that 

within race groups, gender patterns of self-concept mirror the patterns o f mathematics 

and science ability scores. Thus, current research confirms the continued existence of
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gender-stereotypical patterns of self-concept and achievement in mathematics and 

science but indicates that race/ethnicity differences may be decreasing.

The amount of distortion of self-beliefs in the stereotyped direction depends on 

how much the individual endorses the stereotype. Girls are susceptible to stereotype 

threat, a condition in which heightened anxiety occurs because she is afraid o f confirming 

a stereotype with her performance and this results in reduced performance. Greater 

anxiety levels lead to lower self-efficacy and lower expectancy. Stereotype threat has 

been experimentally tested and results have generally confirmed theoretical predictions 

regarding effects on achievement, however, the cognitive mechanism involved in this 

process is not yet fully understood (Good, Aronson, & Inzlicht, 2003). Many studies have 

found that girls generally have lower expectancies in domains that are stereotypically 

male such as mathematics and science, although these differences seem to be decreasing 

in mathematics.

Gender differences in values. Research over the past two decades has shown 

that the gap between boys’ and girls’ valuing of math has disappeared, however, girls 

remain less interested in the physical sciences (Wigfield, Eccles, Schiefele, et al., 2006). 

Females may disidentify with subject areas in which females are stereotyped as less 

competent than men and attach a lower value to these areas to maintain self-esteem 

(Spencer, Steele, & Quinn, 1999). This theory of disidentification for science is supported 

by research findings that females had lower STV for science than males but equal STV 

for mathematics (Simpkins & Davis-Kean, 2005).
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Race/ethnicity and EV

The extant literature provides substantial evidence of differential functioning of 

EV constructs among students from different race groups (Graham, 1994; Graham & 

Taylor, 2002). However, little research has examined the EV model in minority 

populations. The potential interactions between race/ethnicity, expectancies and values 

can be predicted through Bandura’s (1997) self-efficacy theory. This widely accepted 

theory explains how students develop their expectancy beliefs. In the next section, these 

predictions will be examined in detail.

Expectancies and values are each influenced by the specific experiences o f racial 

and ethnic minority students that may include stereotyping and institutionalized racism. 

Standardized achievement measures have consistently measured a sizeable gap between 

White and non-White students favoring White students. Nonetheless, previous research 

has found that African American students often rate their self-concepts higher compared 

to White students of equivalent achievement (Graham, 1994; Winston, Eccles, Senior, & 

Vida, 1997). This means that Black children’s ratings of their abilities are less strongly 

correlated to their performance than European American children’s ratings. This has been 

cited as evidence of Black students’ disassociation of self-esteem from achievement 

(Winston et al., 1997). However, there have been few studies of the math and science 

self-efficacies of minority students. The available evidence supports that Black students 

are likely to have equivalent self-concepts to White students, thus it seems that any 

differences in expectancy for these students may stem from differences in self-efficacy.

Self-efficacy and race/ethnicity. In general, minority students tend to be more 

optimistic about their abilities even when achievement is low (Graham, 1994; Schunk &
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Pajares, 2002). On the other hand, in one study Black high school students were found to 

have lower mathematics self-efficacy than White students (Pajares & Kranzler, 1995). 

Potential differences in self-efficacy for racial or ethnic minority students can be 

examined through self-efficacy theory. Self-efficacy theory identifies four ways to affect 

self-efficacy: mastery experiences, vicarious experiences, social persuasion, and 

physiological states (Bandura, 1997). Mastery experiences are previous successes, and 

higher ability students are likely to have had a greater number of such experiences. An 

important element of vicarious experience is that the person who has the experience must 

be someone who the student identifies with as similar to him or herself. For African 

American or Hispanic students who are often racial or ethnic minorities in an advanced 

mathematics or science class, finding appropriate role models may be challenging. Thus, 

vicarious experiences may occur less frequently for minority students, contributing to 

lower self-efficacy. The interpretation of feedback received via social persuasion may be 

affected by the racial identity or race centrality orientation of the individual receiving the 

input (Rodgers, 2008). If the person has a strong racial identity and race centrality, 

opinions of same-race teachers and peers would hold more value than the opinions of 

others. This difference in value could lessen the effect of social persuasion if there are 

insufficient numbers of same-race persons in that educational context. Experiences of 

negative stereotypes and racism can elevate levels of anxiety for minority students and 

decrease self-efficacy (Steele, 1997). Thus Bandura’s self-efficacy theory provides a 

rationale for differences that may exist between and within race/ethnicity groups. 

Furthermore, the conflation of self-efficacy and self-concept in EV studies, combined
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with the differential functioning of achievement and self-concept makes it difficult to 

generalize the findings of EV research to this study.

Subjective task value and race/ethnicity. Most o f the popular theories about 

potential differences between the STVs of minority students and White students come 

from deficit perspectives and have little empirical support. Rodgers (2008) suggests that 

motivational patterns are likely to be different for African American students compared 

to White students, in that the profiles “favor group or social acceptance over academic 

achievement” (p. 118). In the EV framework, this may indicate greater concern for the 

potential effect of spending time doing mathematics and science on peer relationships 

than White students would have. In other words, African American students may have 

stronger perceptions of the potential cost of studying mathematics and science than White 

students. Mathematics and science task values have been studied even less for Hispanic 

students than for African American students. In one study of the science attitudes of 

Hispanic middle school students, after an intervention that significantly improved 

attitudes about science there was no significant change in the percentages o f students who 

thought they might consider a science career (Sorge, Newsom, & Hagerty, 2000). This 

result was explained by the student’s lack of science identity due to a shortage of same- 

race role models. No studies have examined the perceived cost of mathematics and 

science across race or ethnicity groups.

Recent evidence supports more similarity than difference between Black males 

and White males valuing o f science. In a study o f 2003 TIMSS data, the same 

percentages of Black male and White male eighth-grade students (26%) reported that 

they wanted a job in science. In an EV framework, this implies that Black male and
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White male students had very similar STVs for science. The rates o f wanting a science 

job for Black females, White females, and Hispanic students of both genders were 

significantly lower, indicating lower science STVs for these groups of children. 

Furthermore, the same percentage of Black and White males (40%) reported that they 

strongly enjoyed science. Black, Hispanic, and White females all reported significantly 

lower science enjoyment (Riegle-Crumb et al., 2011). Thus, minority adolescent boys 

had similar interest-enjoyment values of science as compared to White boys, despite a 

substantial achievement gap between the groups. However, all female students had lower 

interest-enjoyment values o f science than the Black males and White males. These 

findings imply that males valuing of science may be similar across race groups and that 

the largest differences will be seen between genders.

Race-gender interactions. The findings of Riegle-Crumb et al. (2011) and 

Graham and Taylor (2002) show that race-gender interactions are likely to occur in 

expectancies and values. In a series of studies by Graham and her colleagues, Black boys 

and Hispanic boys displayed very different patterns o f the valuing of academics as 

compared to Black girls and Hispanic girls (Graham & Taylor, 2002). In particular, a 

large shift in the boys’ ideas of which students were most admired occurred between 

fourth and seventh grade. Before seventh grade, boys and girls both valued high 

achievement but in seventh grade boys’ values of achievement were dramatically lower 

while girls’ continued to value achievement. These studies provide support for comparing 

race-gender groups instead of grouping by either variable alone. Notably, the stereotypes 

that the children held for race-gender achievement behaviors were remarkably similar 

across all groups. White girls were stereotyped as working hard and doing well in school,
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while Latino boys were stereotyped as not caring and doing poorly. Therefore, Graham 

and Taylor (2002) concluded, “there are complex ethnicity by gender by age interactions” 

(p. 140).

Summary. Smaller correlations between expectancy and achievement have been 

noted for minority students compared to White students. Winston et al. (1997) noted that 

the linkage between achievement and self-concept is weaker for African American 

students, thus there may be differences in how well the expectancy value model works in 

different populations. This relationship has not been studied for Hispanic students. The 

effects of this weaker linkage may be protective, in that these students are less daunted by 

negative feedback on their performance, but may also be harmful in that these students 

get less o f an increase in self-efficacy from a given increase in achievement. The effect of 

this difference on these student’s choices is not known. The differences between gender 

groups seem to be larger than the differences between race groups for science 

expectancies and values. Large race-gender interactions have been found in examinations 

of students’ expectancies and values that have important implications for the design of 

this study. These design implications are addressed in Chapter 3.

Socioeconomic status and EV

Very little is known about the effects o f socioeconomic status on expectancies and 

values. Collecting SES data is problematic and researchers have operationalized this 

construct in a variety of ways. Most o f the SES measures were derived from various 

combinations of parent education, parent occupation, family income, or number of books 

or computers in the home. However, the validity and reliabilities of these measures are 

unknown. Students who are economically disadvantaged may not have access to high
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quality mathematics and science instruction, which may hamper their development of 

self-efficacy in those domains. Poor students are subject to many negative stereotypes, 

thus they are susceptible to stereotype threat. Few studies have disaggregated race and 

SES effects, thus the overrepresentation of Black and Hispanic students in low 

socioeconomic status groups has resulted in some previous research findings being 

attributed to race/ethnicity when they may have been more correctly attributable to SES 

(Graham, 1994). This study disentangled the effects o f race/ethnicity and SES.

An important aspect of this study is the examination of the relationship between 

domain-specific abilities and motivations. In the next section, the relationship between 

ability and motivation will be discussed. As previously mentioned, giftedness will be 

operationalized via Renzulli’s (1978) Three Ring Conception of Giftedness (TRCG) that 

defines giftedness as creative productive behavior arising from the interaction between 

above average ability, task commitment, and creativity. This study examined task 

commitment using the lens of EV theory. In the next section, issues of giftedness that are 

important to the EV model are discussed.

Giftedness

This study frames the occupational decision as a decision within a talent 

development trajectory. The Mega Model of Talent Development (Subotnik, Olszewksi- 

Kubilius, et al., 2011) describes a three-stage process, in which the career decision 

represents a preparation to enter the second stage of development, or the transition from 

competence to expertise. High school students are preparing to enter this stage as they 

choose careers and develop occupational identities. Subotnik et al. (2011) emphasized the 

importance of motivation to the talent development process. “[Gjeneral ability is
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necessary but not sufficient to explain optimal performance or creative productivity. It 

remains a component of talent development along with domain specific abilities, 

psychosocial skills, motivation, and opportunity” (p. 14). Thus to successfully navigate 

the talent development process requires a nominal level o f ability, but also requires 

motivation. Motivation is an important characteristic of giftedness and a requisite trait for 

talent development. Furthermore, it has been suggested that motivation should be part of 

the process of identifying giftedness in adolescence (Coleman & Cross, 2005), which 

provides support to the importance of the examination of expectancies and values as a 

possible means of identifying potentially gifted students.

In the Three Ring Conception of Giftedness, Renzulli (1978) describes creative- 

productive giftedness as a behavior arising from the interaction among three constructs: 

above-average ability, task commitment, and creativity. Above-average ability was used 

in the TRCG model rather than the more typical 95th percentile designation because 

research has shown that for IQ scores above 120, other variables become more important 

to creative production. In other words, creative productivity is not predicted by 

intelligence for individuals who are at least one standard deviation above the mean in 

intelligence (Renzulli, 2005). However, this notion of a threshold value above which 

ability is no longer correlated to creative production is not universally accepted. Recent 

studies have found significant differences in the STEM creative productivity of doctoral 

degree holders who were in the top quartile of the top one percent compared to those who 

were in the bottom quartile of students who iook the SAT mathematics test at age 13 

(Park, Lubinski, & Benbow, 2008; Robertson, Smeets, Lubinski, & Benbow, 2010). 

However, it may be that those individuals who were more productive were also had
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higher subjective task value and were more motivated; motivation variables were not 

measured in these studies. Furthermore, the top one percent represents a very elite group 

and these findings may not generalize to all potentially gifted students. Above-average 

ability designates a group that is vastly larger than the top one percent group. Therefore, 

more research is needed regarding the relative effects of ability and motivation on 

achievement or creative-productive giftedness, especially an examination of students who 

are more typical of the gifted population.

Although the TRCG advocates a more liberal ability criteria o f “above-average”, 

in practice, gifted program identification criteria are generally much more stringent. The 

strict adherence to a threshold global percentile rank as identification criteria has resulted 

in the underrepresentation of minority students in U.S. gifted program (Ford, 2010). A 

persistent achievement gap exists between the achievement test scores of White and
i

minority (Black and Hispanic) students. The gap between the achievement tests scores of 

these two groups has been consistently 0.75 standard deviations or larger in favor of 

White students. This omnipresent gap, along with the common practice o f using 

standardized test scores to identify giftedness, has resulted in the underrepresentation of 

Black and Hispanic students in gifted programs. There is no evidence to support the 

attribution of intelligence differences to race (Nisbett et al., 2012). Thus, students o f all 

races and ethnicities should be proportionally represented in the gifted population. A 

solution to this underrepresentation problem is to use different cutoff scores on tests for 

various groups such that equal proportions of each group are identified (Coleman &

Cross, 2005; Lohman, 2005, 2006). This approach will be taken in this study.
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Task commitment

The task commitment component of the TRCG model (Renzulli, 1978) 

incorporated motivation into the concept of giftedness. Renzulli defined task commitment 

as “a refined or focused form of motivation” (Renzulli, 2005, p. 263) that is described by 

terms such as perseverance and endurance and enhanced by “the synergistic effects of 

extrinsic motivators on intrinsic motivation” (p. 263). Gifted individuals are intensely 

interested in, or passionate about their talent areas and willing to spend large amounts of 

time engaged in talent development activities, Bloom (1985) explained this as due to their 

identification with the talent domain. In STV terminology, task commitment is 

represented by a combination of high interest-enjoyment value and high attainment value. 

Such individuals believe that the value of the activity outweighs the potential cost of the 

activity. The development of talent requires the individual to engage in deliberate 

practice, a term that describes those activities specifically designed to improve skills 

(Ericsson et al., 1993). Unlike play, which has an intrinsic reward, and work, which has 

extrinsic rewards, deliberate practice has ho reward other than skill development. 

Deliberate practice is undertaken, despite its high cost, because it holds utility value for 

the individual who wants to develop expertise. Individuals who are gifted in mathematics 

and science would be expected to have higher STV (interest-enjoyment, attainment, and 

utility value) than students who are not gifted in these domains. On the other hand, school 

subjects may not be as valued as much as more authentic learning contexts, such as 

scientific investigations or self-directed learning activities. For example, a recent study of 

academically gifted and artistically talented students showed that none of the 

academically talented students were passionate about school work in academic subjects
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(Fredricks, Alfeld, & Eccles, 2010). More research needs to be done regarding task 

commitment and the self-regulatory mechanisms that sustain engagement such as the 

relative influences of interest-enjoyment, attainment, and utility values.

The findings of Fredericks, Alfeld, and Eccles (2010) raise the question as to why 

none of the academically talented students were passionate about academics. This may 

indicate some level of intentional disidentification with academics by these students.

Why would students disidentify? The Information Management Model (Coleman & 

Cross, 1988) provides an explanation for why gifted students may disidentify with 

academics. Gifted students encounter mixed messages in different contexts and often 

must decide between achievement and social acceptance. In the typical American high 

school, passion about academics is viewed as socially unacceptable or stigmatizing. 

High-ability students desire popularity and social acceptance just as other children do. 

However, most gifted children feel different from their nongifted peers, and some of 

those who feel different engage in social-coping strategies to manage their identities at 

school and feel less different. Some of the most common strategies are to hide their 

abilities or to disidentify. In terms of the EV model, such students are likely to report a 

higher cost of studying mathematics and science and lower levels of attainment value. No 

research has been done on gifted students’ disidentification with the STEM domains 

specifically.

Gifted students and STEM occupational choice

One of the dilemmas of STEM talent development is that substantial numbers of 

students who have high levels o f performance in science and mathematics in high school 

do not pursue careers in science (Subotnik, Edmiston, & Rayhack, 2007). Paralleling the
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substantially lower rates o f female and minority participation in STEM careers that have 

been noted for decades in the general education literature, lower rates o f creative 

productivity have been observed for gifted women as compared to their male peers (Dai, 

2002). These gender differences have been attributed to gender differences in interest. In 

studies of highly gifted students, educational-occupational interests had incremental 

predictive value above measures of ability for occupational choice (Achter, Lubinski, 

Benbow, & Eftekhari-Sanjani, 1999; Robertson et al., 2010; Webb, Lubinski, & Benbow, 

2002). Although the studies within the gifted education literature have been conducted 

with very high-ability students, the predictive power of interest-enjoyment value above 

ability or expectancy is supported by research with other populations. In general, 

students’ interest in science follows gender-stereotyped patterns and interest takes 

precedence over ability in occupational choice.

Another explanation for lower participation rates in STEM for females is 

differences in cultural gender role expectations. Females have traditionally been the 

primary caregivers in families and tend to value family over career interests. Females are 

more affected than males by internal conflicts concerning spending time in support of 

family concerns versus career advancement. Furthermore, females seem to be more 

concerned with conformity to gender-role expectations and science identities are 

perceived to be at odds with feminine roles. This identity-incongruence is a barrier to 

girls’ decisions to persist in STEM. A study of gifted elementary school students showed 

that science attitudes including enjoyment of science, science leisure activities, and 

perceptions of the normality of scientists were predictive of the science course selections 

for girls but not for boys (Farenga & Joyce, 1998). On the other hand, some evidence
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supports that gender differences in male-stereotyped domains are less in the gifted 

population. Alfeld-Liro and Eccles (1997) found that patterns of AP science course 

taking were related to ability and not gender, thus it may be that for gifted students the 

effects of gender on choice are significantly smaller than for other students. Therefore, it 

seems that gender differences exist in the reasons why boys and girls choose to pursue 

mathematics and science activities, but gifted girls take as many mathematics and science 

courses as gifted boys in high school.

Gifted Students and Mathematics and Science Expectancy

It is important to note that an adolescent’s self-perception of his or her 

competence may not align well with objective measures of ability. For example, a high- 

ability student may not view mathematics as an area of strength, even when achievement

thmeasures are above the 90 percentile because his or her achievement in another domain, 

such as English, is at the 98th percentile. Low self-assessments of ability in math and 

science reduce the likelihood of decisions to study those domains. In high school, math 

and science self-concept tend to decrease (Jacobs et al., 2002). Mathematics content 

increases in difficulty, and grouping within tracked math and science classes yields 

comparison groups that have higher mean levels of ability. Children receive more 

evaluative feedback about their school performance while improvements in students’ 

cognitive processing and understanding lead to more realistic self-assessments. Student’s 

self-concepts within a domain are based on two types of comparisons: (1) comparisons of 

the self to others in the domain, and (2) comparisons of one’s abilities in one domain to 

another domain (Plucker & Stocking, 2001). Thus, changes in academic grouping can 

cause a lower self-concept and a subsequent decrease in academic motivation (Wigfield
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& Wagner, 2005). For high-ability students, self-concept will come from comparisons of 

the self with the most salient social comparison group. When this comparison group 

consists of other gifted students, self-concept is usually reduced. As these students enroll 

in advanced classes during high school, they are likely to encounter such comparison 

groups and experience declines in self-concept in the domain for which that comparison 

group is relevant. Furthermore, Rinn, McQueen, Clark, and Rumsey (2008) found that 

self-concepts in the verbal domains were negatively correlated with self-concepts in 

mathematics. Therefore, high-ability students’ math and science self-concepts are likely 

to be lower in high school and this contributes to lower likelihood of continuing studies 

of science and mathematics.

Gifted girls tend to have lower mathematics and science self-concepts than gifted 

boys. This difference may be attributable to girls’ tendencies to have higher self-concept 

in language arts that create internal comparisons of relative ability which, favor language 

arts over science.

The self-efficacy research has identified gender differences in the gifted 

population, particularly in male-stereotyped domains such as mathematics and science 

(Dai, 2002). Gifted boys tend to have higher expectancy beliefs for STEM-related 

activities than gifted girls despite lower achievement in high school coursework. Overall, 

gifted students have been found to have more accurate self-efficacy assessments than 

non-gifted students and to have the tendency to underestimate their chance of solving a 

particular mathematics problem. Gifted girls underestimated their abilities more than 

gifted boys. The evidence implies that gifted girls are affected by cultural gender 

stereotypes. Much research has been done on gender differences and STEM-related
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outcomes. In general, gifted girls seem to have many of the same issues non-gifted girls. 

As a group, girls appear to be susceptible to the pervasive gender stereotyping that exists 

within US culture. Therefore, gifted girls are likely to have higher self-efficacies in 

STEM domains than non-gifted girls and that are lower than the self-efficacies of gifted 

boys. Evidence also supports that gifted girls are more responsive to social-evaluative 

feedback and stereotype threat than gifted boys (Dai, 2002). In the EV framework, this 

may be interpreted as a higher cost for mathematics and science activities for gifted girls 

than for gifted boys.

Gifted students and STV

A key element of subjective task value is interest and enjoyment of the domains 

of mathematics and science. Academic intrinsic motivation is demonstrated by enjoyment 

of learning, curiosity, persistence, and the ability to learn challenging or difficult tasks 

(Gottfried, Marcoulides, Gottfried, & Oliver, 2009). This concept is similar to the STV 

construct of interest-enjoyment value. It seems natural that students who have high ability 

would also be intrinsically motivated, however, this is not always true. Students with 

high achievement in math or science are more likely to have high interest in those 

domains (Denissen, Zarrett, & Eccles, 2007). On the other hand, Gottfried, Cook, 

Gottfried, and Morris (2005) compared academic ability and intrinsic motivation and 

found that when students were grouped by high academic ability and by high academic 

intrinsic motivation, a minority of students were members o f both groups. Furthermore, 

Gottfried et al. (2005) found that the high intrinsic motivation group had higher levels of 

achievement than the high-ability group. However, the sample for this study was a small 

(N = 111), non-diverse, convenience sample, which limits the generalizability o f this
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finding. High achievement may or may not be coincident with high intrinsic motivation, 

however studies that include diverse populations or that focus on domain-specific 

intrinsic motivation have not yet been conducted.

Summary

Adolescents’ decisions to study mathematics and science or pursue STEM 

occupations depend on determinations of domain-specific value, cost, self-efficacy, self- 

concept, interest, and intrinsic motivation (Eccles, 2011; Maltese, 2008; Zarrett & 

Malanchuk, 2005). The students with the highest abilities or prior performance within 

the domains of mathematics and science are thought to be the best candidates for talent 

development in that domain. However, other variables may be more important than 

ability to the development of talent. For example, many external factors can affect 

students’ levels of interest in science and mathematics (and subsequent cost-value 

assessments of activities in STEM) such as parent encouragement, peer influences, 

sociocultural influences, and stereotypes. Students who are motivated to pursue STEM 

talent development believe that they can do it, and that they want to do it. They must 

value the domain and determine that the cost o f the task is tolerable. Insufficient numbers 

o f our nation’s high-ability students are choosing STEM careers. President Obama has 

established a goal of recruiting more students to study mathematics and science in college 

(The White House, 2010). To accomplish this goal, a better understanding of 

mathematics and science motivation in needed, and the literature base across the 

disciplines of psychology, counseling, science education, and gifted education support 

the idea that this understanding needs to be differentiated between race and gender 

groups. In the next section, each of the race-gender groups will be examined separately to
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highlight the differences that are thought to exist between these groups and how these 

differences may affect STEM occupational choice. As students may be members of more 

than one of these special groups, multiple effects that are attributable to specific 

characteristics may have opposing predictions for differences in expectancies and values. 

Gifted White Males

The comparison of the gifted subpopulations begins with White males because 

this group has the fewest barriers to science talent development. Coleman and Cross 

(2005) labeled White middle-class children as the modal gifted children, who were more 

easily identified and most likely to receive gifted education services. In this study, this 

concept is extended to the domain of science and narrowed to exclude females because 

females are underrepresented in STEM occupations. In the domain of science, White, 

middle-class males are the modal gifted and they experience the fewest barriers to talent 

development. Science culture is closely associated with White male culture, thus White 

males are likely to have the highest attainment value for science relative to other groups. 

Generally, White males are positively stereotyped to have greater abilities in mathematics 

and science relative to the other groups in the study (White females, Black males, Black 

females, Hispanic females, Hispanic males). This stereotype supports the high self- 

efficacy of this group. An achieving White male who is gifted in mathematics or science 

is expected to have high self-efficacy and high-value in the corresponding talent domain. 

Nonetheless, all White males who have above average ability in these domains may not 

have high subjective task values. Influences from adolescent peer culture may create a 

high perception of cost that lowers STV. In particular, for underachieving White males, 

increased cost may create overall lower STV. However, underachievers have been found
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to have high self-efficacy despite lower achievement. Nonetheless, White males are 

represented in the STEM professions in proportion to their representation in the general 

population (NSF, 2012) and this is evidence of their modal status.

Gifted White Females

Previous research supports that there are significant differences between gifted 

White females and their male counterparts. Gifted White females have additional barriers 

to identification with STEM occupations. First, these occupations are stereotypically 

male and girls may view these careers as identity-incongruent. From an EV standpoint, 

these girls would have lower interest and attainment value for STEM. Second, cultural 

gender role expectations may influence girls to value home and family over career. This 

expectation would be reflected in a lower utility value for STEM. Third, girls are 

stereotyped as having lower abilities in mathematics and science and higher abilities in 

language arts. According to Marsh’s (1986) I/E model, girls’ self-concept beliefs in 

mathematics and science will be reduced when these girls believe their relative strengths 

are in the verbal domain even if  performance in the mathematics and science domains is 

high. The prevalence of negative stereotypes concerning girls in mathematics and science 

subjects girls to stereotype threat. A variety of responses can result from this stereotype 

threat including reduced self-efficacy caused by an anxiety response, or disidentification 

with the domain to protect self-esteem. For equivalent levels of performance, gifted 

White girls have been observed to have lower mathematics and science self-efficacies 

than gifted White boys. Thus, a typical gifted White girl is expected to have a lower self- 

efficacy, lower attainment value, lower utility value, lower interest-enjoyment value, and 

higher perception of cost than a gifted White boy.
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Gifted Black Students

In general, Black students have distinct cultural characteristics and values that 

affect expectancies and values. Black students tend to be more socially oriented and 

demonstrate strong needs for social acceptance, belonging, and affiliation (Ford, 2011). 

From an EV standpoint, this difference may create a higher perception of cost for Black 

students. However, gender differences between gifted Black boys and gifted Black girls 

may be larger than the race differences between Black and White gifted children.

Gifted Black Boys

Previous research has found that for equivalent levels of achievement, Black 

students generally rate their self-concepts higher than White students. Riegle-Crumb et 

al. (2011) found that Black males and White males had equivalent science and math self- 

concepts despite a substantial achievement gap between the groups that favored Whites. 

However, self-efficacy theory predicts effects for Black students resulting from social- 

cognitive influences. For example, Black males are often negatively stereotyped with 

regard to academics, including mathematics and science. As previously stated, responses 

to a stereotype threat may include reductions in self-efficacy and STV. However, there 

have been few studies of Black boys mathematics and science self-efficacy to support or 

refute the predictions of self-efficacy theory. An additional barrier to the persistence of 

Black males in STEM is caused by differences in Black cultural norms and the norms of 

science culture (Brickhouse, 1994). This identity dissonance is likely to reduce the 

attainment value these students have for STEM. On the other hand, in the study 

conducted by Riegle-Crumb et al. (2011) using middle school TIMSS data, Black boys 

and White boys demonstrated the same levels o f interest in science occupations, which
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were significantly higher than those of all girl groups and Hispanic boys. Thus, some 

evidence suggests there are more similarities than differences between these two groups. 

More research is needed with gifted Black boys.

Gifted Black Girls

Little research has been done with this subpopulation of gifted students. Previous 

research supports that gifted Black girls may have higher self-concepts than White girls 

o f equivalent ability (Graham, 1994). However, gifted Black girls encounter additional 

barriers to STEM persistence as compared to White girls. Riegle-Crumb et al. (2011) 

found that Black girls self-concepts in science were lower than those of all White 

students and those of Black boys. Negative stereotypes exist for Black students’ abilities 

both overall and in STEM domains as well as for girls’ abilities in mathematics and 

science. Thus, Black girls must overcome barriers associated with race and gender 

stereotypes to persist in STEM. However, Black girls do not experience the same degree 

of stigmatization o f their race-gender identities as Black boys.

Hispanic Gifted Students

Scant research exists on this subpopulation of gifted students. Many Hispanic 

students also are English Language Learners, which is a barrier to identification of 

giftedness and access to gifted education services (Gandara, 2005). High-achieving 

Hispanic students are five times as likely to have parents who are not high school 

graduates and half as likely to have parents who have completed college. These students 

are disproportionately affected by poverty (Gandara, 2005). For example, attending a 

local public school had a larger negative effect on achievement for Latinos than Whites 

because Whites typically attended schools with more resources. The typical Hispanic
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student has a mother with significantly less education that the typical White student and 

this was negatively associated with high-ability students progress in school, and resulted 

in the loss of early high-ability status for most of these students. Gandara (2005) created 

profiles of typical high-ability Hispanic students and described how language barriers, 

undocumented immigrant status, and poverty affected students academically. For 

Hispanic students, duty to family is often placed ahead of personal accomplishment.

Thus, high-achieving Hispanic students often do not fulfill their academic potential. 

Furthermore, high-ability Hispanic students also experience stigmatization of giftedness 

and use coping strategies such as hiding their talents to avoid social consequences 

(Castellano, 2011).

Gifted Hispanic Boys

Riegle-Crumb et al. (2011) found that Hispanic boys had lower science self- 

concepts than Black boys and White boys. Hispanic boys encounter similar negative 

stereotypes about their academic abilities as Black boys. At the same time, Hispanic boys 

enjoyment of science was equal to that of Black boys and White boys and their 

enjoyment of math was greater than that of White boys but less than that of Black boys. 

The grade eight TIMSS data indicated that all three groups o f boys desired science 

careers at rates that were between 20 and 26%, with the lowest rate for Hispanic boys, the 

highest rate for White boys, and Black boys with a rate in the middle o f the two.

However, these data were for a mixed ability sample. This limited evidence suggests that 

Hispanic boys interest-enjoyment value of science and math is likely to be as high as for 

White boys.
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Gifted Hispanic Girls

The achievement gap between Hispanic boys and girls has been sustained while 

the gaps between White boys and girls have narrowed (Gandara, 2005). Riegle-Crumb et 

al. (2011) found that Hispanic girls were significantly less likely to report wanting a 

science job and had lower science self-concepts than White males. Castellano (2011) 

explains that high-ability Hispanic students utilize social coping strategies such as hiding 

their talents because being smart may not be socially acceptable. The limited available 

research suggests that Hispanic girls will have lower expectancies and values for math 

and science than White boys and girls.

Summary

Each of the gifted subpopulations described above encounters varying degrees of 

dissonance between cultural norms and the norms of science culture, conflict between 

gender-role expectations and STEM career expectations, negative racial/ethnic 

stereotypes, and negative gender stereotypes. All gifted students feel stigmatized to some 

degree due to their differentness from other students. STEM identities are also 

stigmatizing due to the negative stereotypes associated with these occupations that 

directly oppose the characteristics and traits that adolescents desire and thus threaten their 

potential for popularity and peer acceptance. These sociocultural phenomena may affect 

gifted students’ decisions to pursue STEM occupations if these students use coping 

mechanisms such as disidentification. However, recent research has shown that some 

students respond with increased persistence and determination to prove the stereotype to 

be incorrect and placing a higher value on achievement. Furthermore, research also 

supports gender differences in ability and failure attributions that may influence females
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to disidentify with STEM domains. More empirical research is needed to study the actual 

expectancy value patterns of above average ability students to assess the actual state of 

affairs. Some theories regarding how individuals will respond to stigma, stereotypes, and 

prejudice have not been widely supported. A large-scale study of students’ expectancies 

and value will provide some baseline data to guide further research into why some 

students persist and others disidentify.
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Table 1

Potential Barriers to STEM Talent Development Across Gender-Race Groups

Gender-Race Groups
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Stigma of giftedness increases perception of Y Y Y Y Y Y
cost of devoting time to academic/STEM
activities

Lack of connection between STEM school Y Y Y Y Y Y
subjects, personal context, and potential 
career reduces utility value

Stigma of scientist stereotypical identity Y Y Y Y Y Y
lowers attainment value and increases 
perception of cost of STEM activities

Personal culture norms are a poor match for Y Y Y Y Y
science culture norms resulting in lower 
attainment value

Negative stereotype about personal race and Y Y Y Y
intellectual ability influence self-beliefs 
about ability and lowers value of STEM

Negative stereotype about personal gender Y Y Y
and STEM abilities influences self-beliefs 
about ability and lowers value of STEM

Cultural gender role expectations are a Y Y Y
mismatch for a science career role
expectations

Greater sensitivity to social persuasion Y Y Y Y Y
increases perception of cost of devoting 
time to academic/STEM activities

Tendency to attribute failure/difficulty to Y Y Y
ability interferes with progression in STEM
courses reduces self-beliefs about ability___________________________________
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Which patterns of expectancy and value are predictive of STEM occupational 

choices? This question remains to be answered empirically and needs to be answered to 

solve national problems of underrepresentation in STEM occupations. A relatively small 

number of students who have high ability in STEM have chosen STEM occupations 

(Atkinson & Mayo, 2011; Lowell, Salzman, & Henderson, 2009; National Science 

Board, 2010). Therefore, a large number of students who have high ability in STEM, 

particularly culturally diverse students, have not chosen STEM occupations. This implies 

that high expectations of success are insufficient to motivate these choices. Students who 

have chosen a particular occupation have higher STV in that domain. Do all students who 

have higher STV have high ability in STEM? If not, what patterns o f expectancy and 

value are associated with student interests in STEM occupations? This study will look 

for answers to these questions.

Person-Centered Approaches 

Rationale for approach

The vast majority o f quantitative studies have been variable-centered approaches. 

In a variable-centered study, the level o f a variable for one person is compared to other 

people in the sample, while in a person-centered approach the level o f a variable for that 

person is compared to the levels of the other variables for that person. In this study, a

person-oriented approach will be used to find classes, or profiles, of variable
!

configurations present in individuals, instead of using group-level mean values of 

variables to make inferences about individuals. Variable-centered approaches include 

ANOVA, multiple regression, and structural equation modeling while examples of
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person-centered approaches include cluster analysis, latent class analysis, and latent 

profile analysis. These processes will be discussed in more detail in Chapter 3.

Person-centered approaches represent a holistic-interactionist perspective to 

model building that considers the person and his or her context as a system and the unit 

of study (Bergman, Magnusson, & El-Khouri, 2003). Individuals are considered to be 

active agents who take intentional actions as they interact with the environment in a 

dynamic, complex, and adaptive process. Such an approach should be adopted only when 

this perspective is a good match for the process under study (Bergman et al., 2003). In 

this study, a person-centered approach is proposed for several reasons including: (1) EV 

variables function in constellations instead of singly, (2) relationships between variables 

within the EV model are different for each individual, and (3) the need for the removal of 

methodological constraints of the general linear model. These reasons will be explained 

in the next section.
i i

Focus on constellations of variables. Individuals make choices based on 

combinations of expectancies and values. Thus considerations of single variables in 

isolation, examined out of context from other relevant variables that are operating 

simultaneously, are not psychologically significant. The assumption that relative position 

in the distribution of a variable has equivalent meaning for each individual does not hold 

in the EV model. Previous research has shown that some groups tend to over- or 

underestimate in their self-perceptions of ability and that these expectancies have 

different relationships with choice, persistence, and performance. Thus, it is expected that 

the EV model will have differential functioning across and within gender, ethnic, and 

socioeconomic groups. The use of a person-centered approach recognizes the person as
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an organized whole, instead of a linear combination of variables. Classes o f people will 

be identified by the patterns of variables that exist within the population.

Differential functioning of variables. A variable-centered analysis, such as a 

regression or a structural equation model, assumes that the variables within the model 

operate identically for all individuals in the group. In such analyses, relationships 

between group means on the independent variables are used to make inferences about 

individuals. In such an approach, an observed statistical relationship may appear to be 

small because it only applies to a small group or class of individuals within the sample. 

This is a concern for STEM motivation research because o f the relatively small 

percentages of students who chose STEM careers. Thus, the relationships that have been 

found between particular variables and persistence may be underestimated because the 

effects only occurred in a small portion of the sample. Furthermore, differences in how 

individual variables function within and between groups means that previous models may 

have not detected effects that were important for subgroups o f individuals within the 

sample. The use o f a person-centered approach permits the identification of such classes 

within the larger sample and the sizes of the effects for these classes to be compared.
' ; i

Constraints of the general linear model. Collinearity is a concern when building 

models using regression or structural equation modeling. In general, collinearity reduces 

the amount of explained variance that is attributed to individual variables within a set of 

independent variables. In EV research, the collinearity of the STV constructs has already 

been noted. Most previous EV research has handled this concern by using a composite 

variable that represented the three STV constructs o f interest-enjoyment value, utility 

value, and attainment value. However, this combination of constructs masked any

55



differences in their relative contributions to outcomes or how the STV constructs may 

have worked together in those models. In a person-centered approach, patterns of 

expectancies and values will be examined to identify classes within the population. Thus, 

the function of each of the STV constructs within the EV profile of classes of individuals 

can be examined. The use of a person-centered approach permits the use of collinear 

variables and facilitates study of the contributions o f the components o f STV. In the next 

section, the few previous person-centered studies o f STV will be reviewed.

Previous person-centered research

Only one study was found that studied all four STV constructs using a person- 

centered approach. Conley (2012) used cluster analysis to study patterns of achievement 

goal and expectancy-value for mathematics in a large sample (N = 1,870) of primarily 

Latino (69%) and Vietnamese (17%) seventh-grade students. The seven-cluster solution 

indicated complex motivational processes as each cluster was characterized by a unique 

pattern of the four STV components. Utility value was almost uniformly high, but cost 

was an important discriminator between clusters. The classes reported either high or low 

cost levels with no groups reporting average levels o f cost. Cost was an important 

predictor of math achievement and affective outcomes. Overall, STV measures were 

good predictors of achievement, but not affect. However, the generalizability o f this 

study is limited by the nature of the sample. Furthermore, this study did not examine 

race-gender groups; race and gender were examined separately, ignoring the potential for 

interactions that has been demonstrated by previous research (Graham & Taylor, 2002; 

Riegle-Crumb et al., 2011). Analyses showed that combination of the four STV variables 

reduced distinct patterns to an identical overall score that was a good predictor o f math
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achievement but not of affect. The only domain included in this study was mathematics 

and an expectancy measure was not included in the analysis.

Chow and Salmela-Aro (2011) used latent profile analysis to examine patterns of 

task-values across four school subject domains for a sample of Finnish ninth-grade 

students (N = 638). The relationships between class membership and decisions to further 

their education at the completion of compulsory education were investigated. Four 

distinct task-value groups were identified, including a high-math-and-science group 

(20.2%) and a low-math-and-science group (19.1%). The membership of these groups 

followed gender-stereotypical patterns. Boys were overrepresented in the high group 

(98% compared to 2%) while girls were overrepresented in the low group (82% 

compared to 18%). The high group members were more likely to decide to continue their 

educations. The researchers operationalized subjective task value as a scale score based 

on a composite of importance, usefulness^ and interest. A logistic regression was used to 

assess how well group membership predicted educational choice and researchers found 

that class membership was a significant predictor of choice that remained significant after 

controlling for achievement. In particular, the high math group was significantly more 

likely to further their educations than the low group after controlling for ninth-grade GPA 

(OR = 4.11, p  < .05). However, this study did not provide sufficient information or 

analyses to validate the four-group solution and the contributions of the individual 

components of STV were not examined.

Another Finnish study used similar task value profiles (across five school 

subjects) to predict educational expectations and occupational aspirations. Viljaranta, 

Nurmi, Aunola, and Salmela-Aro (2009) used cluster analysis with a group of 614
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students who were at the end of comprehensive school. A six-cluster solution was 

identified, including a math and science motivated group (14.5%) in which boys were 

overrepresented. A significant task-value group x gender interaction was found. For girls, 

task-value grouping had a significant effect on educational expectations, but this effect 

was not seen for boys. After controlling for SES and GPA, task-value was not a 

significant predictor o f whether students would follow an academic or vocational track 

(Viljaranta, Nurmi, Aunola, & Salmela-Aro, 2009). The generalizability o f this study to a 

U.S. population is unknown. Race/ethnicity data were not provided for this sample.

Roeser and Peck (2003) and Roeser, Eccles, and Samaroff (2000) used cluster 

analysis to investigate patterns of competence beliefs, values, and mental health for a 

sample of 1,500 seventh-grade students in Maryland, o f which 60% were African 

American. In the six-cluster solution, half of the clusters were classified as “problematic” 

due to scores that indicated negative mental health or perceived academic value. White 

females were equally represented among all clusters, but Black females were 

overrepresented in the poor mental health group (Roeser, Eccles, & Sameroff, 2000; 

Roeser & Peck, 2003). Black males were overrepresented in all three problematic groups 

while White males were overrepresented in the low valuing of school group. Students in 

the problematic groups were less likely to attend college. Motivational factors 

differentiated outcomes for students of equivalent abilities. However, this study used a 

single score for the value of academics, thus it was not domain-specific and the 

individual components of STV were not examined. The findings of these studies further 

emphasize the importance of race-gender groups due to likely interactions. This study
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used general academic values and competence beliefs, thus its usefulness for predicting 

outcomes of this study is limited.

Summary. Person-centered approaches are much less widely used than variable- 

centered approaches. However, the nature of the EV model is a good fit for the holistic- 

interactionist perspective taken by a person-centered approach. Students make choices 

based on their own unique set of expectancies and values that work together to support 

choice, persistence and performance. The features of person-centered approaches provide 

new techniques that will reduce the number o f compromises that must be made to analyze 

EV data. Pattern-based analyses nullify concerns about collinearity and will enable 

analyses of all four STV constructs simultaneously. The ability to identify classes of 

individuals within the sample who exhibit similar patterns based on EV constructs and to 

measure effects for those group means that research is no longer confined to examining 

effects based on gender, ethnicity, or socioeconomic status. The characteristics shared by 

these classes and the representations of demographic groups within those classes provide 

a means to examine similarities and differences between and among members o f such 

groups. Person-centered methods do not assume that models function identically for all 

members of the sample as variable-centered modeling methods do. Little extant research 

has examined expectancy value profiles. However, the alignment between the 

perspectives o f the person-centered, analytic approach and the social-cognitive EV model 

means that this approach is more likely to yield useful information.

The match between the theory and the method of this study is important. 

Variable-centered and person-centered approaches can be complementary and both types 

of studies contribute valuable knowledge to advance the field of achievement motivation.
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In this study the goal is to identify naturally occurring EV profiles and examine these 

profiles with regard to their alignment with STEM occupational choice. A person- 

centered approach will describe the different ways that students are motivated. Then a 

variable-centered approach will be used to identify differences in occupational choice and 

course taking plans that are associated with the different expectancy value patterns.

Statement of the Problem 

The domestic need for STEM innovators and experts is both critical and 

nationally recognized (National Science Board, 2010). The proportion of U.S. students 

who majored in the sciences or engineering is much lower than in other countries, and 

35% of the PhDs in the domestic science and engineering workforce are foreign-born 

(Atkinson & Mayo, 2011). Meanwhile, a large amount of domestic STEM potential 

remains undeveloped, as evidenced by the acute underrepresentation of minorities in 

these disciplines. In 2008, Blacks and Hispanics comprised 31.8% of the 18 to 24-year- 

old U.S. population, while they represented only 15.1% of students enrolled in 

undergraduate engineering programs. Meanwhile, the corresponding figures for White 

students were 61.3% of the population and 68.1% o f engineering enrollment (NSF,

2012). Demographic trends in the U.S. indicate that population diversity is rapidly 

increasing. Therefore, it is important to understand the variables that facilitate STEM 

persistence for talented Black and Hispanic students, not only to provide equitable 

outcomes for these students compared to the outcomes attained by their White and Asian 

peers, but also to ensure the viability of the STEM workforce. Of course, these outcomes 

will only be attained after students take appropriate science and mathematics coursework 

in high school, ensuring their readiness to enter the postsecondary STEM pipeline.
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Therefore, achieving a greater understanding of adolescents’ decisions to embark on a 

trajectory of STEM talent development through appropriate high school course-taking is 

important to increasing the numbers of students who opt to do so.

Increasing understanding of the motivational mechanism behind mathematics and 

science is a problem of international concern. What affects students’ occupational 

choices? The extant literature suggests that occupational choice is a result of interactions 

between internal, psychological factors and external, sociocultural factors. Each of these 

influences may encourage or discourage STEM persistence. Sociocultural norms within 

the school context may stigmatize students who have ability and interest in these 

domains. Racial, ethnic, and gender stereotypes may influence self-beliefs or the value of 

the STEM domains. The expectancy-value theory of motivation frames choice as a result 

of social cognitive formation of expectancies and values. When students choose a science 

or mathematics occupation, or trajectory of talent development, they have responded 

affirmatively to two questions: “Can I do this?” and “Do I want to do this?”. When 

students have expectations of success and value the activity they are more likely to 

choose to engage in that activity. Thus, to increase the numbers of students who choose 

STEM occupations, particularly those who are women or underrepresented minorities, a 

better understanding of what motivates students to make these choices is needed. No 

research has examined expectancy-value profiles and the relationship of these profiles to 

STEM occupational choice. Although a great deal is known about the effects of 

individual expectancy value variables on choice, persistence, and performance, little is 

known about how the variables function together within individuals. More research is
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needed with diverse samples to examine the validity of the expectancy value model with 

different race/ethnicity groups.

If expectancy-value theory is shown to be robust, programs of STEM talent 

development may need to reconsider the foci of their programs to include activities that 

foster the growth of self-efficacy and increase the value students have for STEM. The 

goals of STEM education should include the identification and nurturance of potential. 

Models of talent development support the importance of motivation at every stage of the 

process. Particularly for students who come from economically disadvantaged 

environments, or whose families lack the cultural capital to provide their children with 

the experiences necessary to develop potential, it is critical that public schools actively 

participate in the process o f talent development. Thus, educators must understand what 

motivates students in order to redesign instruction and school environments to build 

subjective task value and expectancies while reducing the perception of cost.

Teachers are in prime positions to help students develop self-efficacy in STEM 

subjects and increase the value of these subjects. Using the lens of expectancy-value, 

methods to adapt instruction can be created. If the teacher is to accomplish this; he or she 

needs to have the necessary awareness, knowledge, and skills to address individual 

student’s needs. First, teachers need to understand how students make academic choices. 

An understanding of this process will enable teachers to design lessons that increase 

engagement and promote the value of STEM. Second, the teacher needs to be aware of 

the unique social-emotional needs of gifted students and how some ways that students 

may cope with giftedness affect their expectancies and values. Third, differences arising 

from cultural background and SES must be understood and how these differences may
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affect expectations and values. Fourth, teachers must be able to identify and develop 

STEM talent. Taken together, these can be conceptualized as the core of best practices in 

the development of STEM talent.

It is necessary to determine whether or not expectancy-value is a good model for 

the basis of occupational choices, to justify recommendations for changes in practice that 

will improve the school’s capacity to identify, nurture, and develop STEM talent. 

Previous research has correlated self-efficacy expectations and task-values to career 

choices, however no studies have been conducted on large-scale, diverse populations. 

This study will identify expectancy value profiles that are supportive o f students’ STEM- 

related choices. The extant literature supports the hypothesis that there exist multiple 

profiles that promote such choices and other profiles that do not promote those choices. 

Profile analysis has the potential to reveal how expectancy-value constructs function 

together.
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Chapter 3 

Method

In this chapter the method that was employed is described. First, the subjects and 

sample selection are described. Second, the instruments that were used and the 

corresponding reliability and validity information are provided. Third, the statistical 

analyses that were conducted are explained.

Purpose

The purpose of this study is to investigate expectancy-value motivational profiles 

of ninth grade students and the relationships o f those profiles with occupational choice, 

ability, achievement, and demographic variables. The Expectancy Value Model of 

Achievement-Related Choices (Eccles et al., 1983) was the primary theoretical 

framework used to examine motivation. Secondary data analysis of the High School 

Longitudinal Study of 2009 (HSLS: 2009) was conducted. This study investigated the 

following research questions:

Research Questions

1. What distinct profiles emerge from measures of mathematics self-efficacy, 

and mathematics task values (interest-enjoyment value, utility value, and 

attainment value)? Based on previous cluster-analytic research using 

subjective task values (Conley, 2012), it was hypothesized that subgroups 

comprised of high expectancy-value and low expectancy-value will emerge. It 

was also hypothesized that a number of subgroups with mixed levels of 

expectancy-value will emerge.
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2. What distinct profiles emerge from measures o f science self-efficacy, and 

science task values (interest-enjoyment value, utility value, and attainment 

value)? Based on previous cluster-analytic research using subjective task 

values (Conley, 2012), it was hypothesized that subgroups comprised of high 

expectancy-value and low expectancy-value will emerge. It was also 

hypothesized that a number of subgroups with mixed levels o f expectancy- 

value will emerge.

3. How is cost related to mathematics and science profile membership? Based on 

expectancy-value theory, it is expected that cost will be positively related to 

profile membership. Students in both high mathematics and science 

motivation profiles are expected to have more positive perceptions of cost.

4. How do the memberships of the mathematics and science profiles compare? It 

is expected that students who in the high mathematics motivation profiles will 

be more likely to be in the high science motivation profiles; there will be some 

correspondence between the mathematics and science profiles.

5. How do these profiles relate to mathematics ability? Based on previous 

research on the relationship of ability and intrinsic motivation (Gottfried & 

Gottfried, 2004), it was hypothesized that high expectancy-value profiles will 

be positively, but not strongly related to mathematics ability. This relationship 

is expected to be weaker between science expectancy-value and mathematics 

ability than between mathematics expectancy-value and mathematics ability 

because students with higher mathematics ability should have higher 

mathematics self-efficacy, but this is not as good a predictor o f science self-
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efficacy. Self-efficacy is domain specific and only mathematics ability was 

measured in this study.

6. How do these profiles relate to STEM occupational choice? It is hypothesized 

that high expectancy-value profiles will have a stronger relationship to STEM 

occupation choices. Students who place a high value on mathematics and 

science should be more motivated to pursue careers in these domains.

7. How do these profiles relate to giftedness? It is hypothesized that expectancy 

value profiles will not be strongly related to giftedness. This prediction is 

based on the work of Gottfried and Gottfried (2004) who found that only a 

small percentage of students were in both the high-ability and high-motivation 

groups.

8. How does membership in these profiles differ by (a) race-gender group and 

(b) socioeconomic status? It is hypothesized that males (Black and White) will 

be overrepresented in high expectancy value profiles. This prediction is based 

on the previous work of Riegle-Crumb et al. (2011) which showed that Black 

boys and White boys had similar opinions of mathematics and science careers. 

It was hypothesized that low-SES students will be overrepresented in low 

expectancy value profiles. This prediction is based on the extant 

underrepresentation of low-SES students in gifted programs and STEM 

occupations.

Subjects and Sample Selection

The High School Longitudinal Study of 2009 (Ingels et al., 2011) is the fifth in a 

series of secondary longitudinal studies from the National Center for Education Statistics
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(NCES) that track nationally representative samples o f secondary students from high 

school through their postsecondary years. The data used in this study come from the base 

year of HSLS: 2009. The sample design is a stratified, two stage random sample design 

with primary sampling units defined as schools selected at the first stage and students 

randomly selected from schools at the second stage. The sample is designed to be 

representative of ninth grade students in public and private schools in the U.S. in 2009.

School selection was stratified by school type (public or private), region 

(Northeast, Midwest, South, and West) and locale (city, suburban, town, rural). A study 

identified 1,889 schools as eligible for the study and schools in ten states were selected. 

The number of schools that participated was 944. Within each school, a stratified random 

sample of students was selected based on race/ethnicity (White, Black, Hispanic, Asian, 

Native Hawaiian/Other Pacific Islander, and American Indian/Alaskan Native); Asians 

were oversampled to increase the power of the study. An average of 27 students per 

school were selected and the total number of students who participated in the study was 

21,444. The response rate was 86%; non-response bias analyses were conducted to 

determine if  unit non-response increased bias. Analytic weights were used with software 

in statistical analyses to adjust for non-response bias and produce estimates o f the target 

population (Ingels et al., 2011).

Instrumentation

The design of HSLS: 2009 differs from previous NCES longitudinal studies in 

ways that were important to its use in this study. The HSLS: 2009 is designed to examine 

“the paths into and out of science, technology, engineering, and mathematics; and the 

educational and social experiences that affect these shifts” (Ingels et al, 2011, p. iii). The
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questionnaire items support the important constructs o f EV theory, and this study, very 

well. Thus, the researcher chose to use the first wave of HSLS: 2009 data instead of 

selecting a dataset with more available waves o f data. A copy of the student questionnaire 

is available at http://nces.ed.gov/surveys/hsls09/pdf/2012_student.pdf.

Procedures for Data Collection

Students were surveyed in 90-minute in-school sessions where they were given a 

35-minute questionnaire and a 40-minute adaptive algebraic reasoning assessment. 

Although some questions were identical to questions used in previous NCES studies, 

many new questions were created to support the unique goals of HSLS: 2009. Questions 

were field-tested and revised one year before the data collection began. After data 

collection, item non-response analyses were conducted and the general rate of non

response was found to be low. A total of 18 variables were imputed by NCES to produce 

a complete set (Ingels et al., 2011).

Variables

A list of the variables used in this study is provided in Appendix A.

Background characteristics.

Race/ethnicity. Student race or ethnicity groups were obtained from the NCES 

composite variable XIRACE. Existing categories - Black/African-American non- 

Hispanic (10.34%), Hispanic, no race specified (0.95%), Hispanic, race specified 

(15.44%), and White non-Hispanic (55.28%) - were collapsed into four categories in a 

variable called RACE. This variable has values corresponding to the race categories of 

Asian, Black, Hispanic, and White.

68

http://nces.ed.gov/surveys/hsls09/pdf/2012_student.pdf


Gender. Data was obtained from the student questionnaire, parent questionnaire, 

and/or school-provided sampling roster by NCES in the dichotomous variable XISEX.

Gender-race groups. The race/ethnicity and gender variables were used to assign 

cases to a eight new dummy variables, called WM, WF, BM, BF, HM, HF, AM, and AF.

Socioeconomic status. A continuous, composite variable (X1SES) created by 

NCES that uses parent/guardian education (X1PAR1EDU and X1PAR2EDU), 

occupation (X1PAR10CC2 and X1PAR20CC2), and family income 

(X1FAMINCOME). Data for non-responding parent/guardians was imputed by NCES. 

The values of the standardized variable X1SES range from -1.93 to 2.88, with an 

approximate mean of zero and approximate standard deviation of one.

Expectancies. Expectancies were operationalized as self-efficacies, or the 

confidence that the student has in their ability to be successful at specific mathematics or 

science tasks. Self-efficacy scales for science and math were included in HSLS: 2009. 

Self-efficacy item responses used a four-point Likert-type scale.

Science self-efficacy (SSE). A continuous, composite variable was created by 

NCES derived from factor analysis of four items, S1STESTS, S1STEXTBOOK, 

S1SSKILLS, and S1SASSEXCL. Cronbach’s Alpha for this scale is 0.88.

Math self-efficacy (MSE). A continuous, composite variable was created by 

NCES derived from factor analysis o f four items, S1MTESTS, S1MTEXTBOOK, 

S1SMKILLS, and S1SASSEXCL. Cronbach’s Alpha for this scale is 0.90.

Subjective Task Values. Subjective task values represent the degree that the 

student valued mathematics or science. Separate scales for three of the STV constructs, 

for each of the two domains, were included in HSLS: 2009.
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Math attainment value (MA V). Math attainment value describes how well the 

domain of mathematics fits with the student’s identity. A continuous, composite variable 

was created by NCES derived from factor analysis o f two items, S1MPERSON1 and 

S1MPERSON2. The responses for each item used a four-point Likert-type scale. 

Cronbach’s Alpha for this scale is 0.84.

Math utility value (MUV). Math utility value describes how much the student 

thinks mathematics will be useful in life, for college, or for a future career. A continuous, 

composite variable was created by NCES derived from factor analysis o f three items, 

S1MUSELIFE, S1MUSECLG, and S1MUSEJOB. The responses for each item used a 

four-point Likert-type scale. Cronbach’s Alpha for this scale is 0.78.

Math interest-enjoyment value (MIV). Interest-enjoyment value describes how 

much the student is interested in or enjoys the subject. A continuous, composite variable 

was created by NCES derived from factor analysis o f six items, S1FAVSUB, 

S1LEASTSUBJ, S1MENJOYING, S1MENJOYS, S1MWASTE, and S1MBORING. The 

responses for the first two items are dichotomous and the last four used a four-point 

Likert-type scale. Cronbach’s Alpha for this scale is 0.75.

Science attainment value (SA V). Science attainment value describes how well 

the domain of science fits with the student’s identity. A continuous, composite variable 

was created by NCES derived from factor analysis o f two items, S1SPERSON1 and 

S1SPERSON2. The responses for each item used a four-point Likert-type scale. 

Cronbach’s Alpha for this scale is 0.83.

Science utility value (SUV). Science'utility value describes how much the student 

thinks science will be useful in life, for college, or for a future career. A continuous,
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composite variable was created by NCES derived from factor analysis of three items, 

S1SUSELIFE, S1SUSECLG, and S1SUSEJOB. The responses for each item used a four- 

point Likert-type scale. Cronbach’s Alpha for this scale is 0.75.

Science interest-enjoyment value (SJV). Interest-enjoyment value describes how 

much the student is interested in or enjoys the subject. A continuous, composite variable 

was created by NCES derived from factor analysis o f six items, S1FAVSUB, 

S1LEASTSUBJ, S1SENJOYING, S1SENJOYS, S1SWASTE, and S1SBORING. The 

responses for the first two items are dichotomous and the last four used a four-point 

Likert-type scale. Cronbach’s Alpha for this scale is 0.73.

Cost. Four questions asked students about the impact o f spending a lot of time and 

effort in math and science classes on the amount of time available to spend with friends, 

time to spend on other activities, popularity, and being made fun of. The response 

choices for this set of questions used a four-point Likert-type scale. To create a score for 

COST, an exploratory factor analysis was conducted using SPSS for a scale consisting of 

the items S1TEFRNDS, S1TEACTIV, S1TEPOPULAR, and S1TEMAKEFUN.

Principal component analysis with Varimax rotation was used to create factor scores for 

the cost scale. Cronbach’s Alpha for this scale was determined; the acceptability 

threshold value was .65. An acceptable factor solution should explain 70% or more of the 

variance in the original variables. The scores were stored in two variables called COST- 

Time and COST-Popular.

Above-average ability. In alignment with procedural recommendations for the 

identification of underrepresented groups (eg. Lohman, 2005) students in each racial 

group were selected using within-group scores. Students who scored at least one standard
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deviation above the mean within their racial group (Asian, Black, Hispanic, or White) on 

the mathematics IRT-estimated number right score, X1TXMSCR, were identified as 

having above-average ability in STEM. This criterion was chosen based on the Three 

Ring Conception of Giftedness definition (Renzulli, 1978). The mathematics 

achievement test score is an acceptable proxy for above-average ability in STEM (J. 

Renzulli, personal communication, November 2, 2012). Using SPSS, the data file will be 

split by race, and descriptive statistics were run to determine the 84th percentile score for 

each group. Syntax was used to assign each case meeting this criteria a value of “ 1” in a 

dummy variable called HABILITY while all other cases will be assigned the value “0”.

Dependent Variable. The dependent variable of this study will be a categorical 

variable with two levels that indicates the student’s decision in grade 9 to pursue a 

STEM-related occupation that requires a bachelor’s degree or higher. The HSLS: 2009 

variable X1STUOCC6 identifies the occupation expected at age 30. Students were asked 

to write in the name of the occupation. The written names were coded by NCES into six 

digit 0*NET codes. The written occupation titles were checked against the codes to 

ensure accuracy. The Occupational Outlook Handbook distributed by the U.S. 

Department of Labor’s Bureau of Labor Statistics was used to classify these jobs as 

STEM or not. Jobs that require education in the STEM disciplines above the high school 

level were coded as STEM. Variable transformation was used to assign the value of “ 1” 

to a dummy variable called STEMOCC. Educational level was determined by the value 

of the variable XISTUEDEXPCT. Variable transformation were used to assign the value 

of “ 1” to a dummy variable. Students who expected to be in STEM occupations and who 

expected to earn a bachelor’s or higher were coded as “1” in a variable called STEM.
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A n a l y s i s

Data Cleaning

Data were examined for missing values and accuracy. Data cleaning was done in 

SPSS and the remaining analyses were done using Mplus. In each analysis, the 

complexity of the sample was taken into account and standard errors were adjusted for 

the clustering of students within schools. A table of descriptive statistics was generated 

that includes the means, standard deviations, and zero order correlations for each of the 

nine indicators: mathematics self-efficacy, science self-efficacy, mathematics attainment 

value, science attainment value, mathematics utility value, science utility value, 

mathematics interest-enjoyment value, science interest-enjoyment value, and cost. The 

coefficient alphas for each scale were calculated. Descriptive statistics for the correlates 

(race-gender and SES) as well as the dependent variable, occupational choice, were 

determined.

Question 1

The first research question asked if distinct student profiles emerged from four 

expectancy value measures (latent class indicators): mathematics self-efficacy (MSE), 

mathematics attainment value (MAV), mathematics utility value (MUV), and 

mathematics interest-enjoyment value (MIV). Latent profile analysis (LPA) was used to 

find a parsimonious set of patterns that accounted for variability in mathematics 

expectancy and values. The number of latent classes was unknown and could not be 

directly estimated from a single model. To identify the best model, various models with 

different numbers of classes were estimated and compared. Models with 2 through 7 

latent classes, using five different parameterizations (A, B, C, D, and E) were tested;
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these structures are described in Table X. As the models progressed from 

parameterization A to E constraints were released and variances or covariances were 

allowed to vary within and between classes. The simplest covariance structure was tested 

first and gradually constraints were released to test more complex models.

Table 2

Description o f  Model Parameterizations

Parameterization Variance Structure Covariance Structure
A Variances differ across clusters 

but not within clusters.
Covariances are zero.

B Variances are equal across 
clusters but vary within clusters.

Covariances differ within clusters 
but are equal across clusters.

C Variances differ across clusters 
and within clusters.

Covariances are zero.

D Variances vary within clusters 
and across clusters.

Covariances vary within clusters 
but are equal across clusters.

E Variances vary within and across 
clusters.

Covariances vary within and 
across clusters.

In LPA, the latent variable is a categorical variable that describes class 

membership. The individual’s value on this variable is assumed to be the cause of his or 

her levels on the observed dependent variables or latent class indicators. In this study, a 

vector of four indicator variables described each case. The data were thought o f as 

samples from a population that consists of a mixture of distributions, one for each class. 

Each class had its own unique combination of levels of the observed variables, weights 

for each class were determined and these weights sum to one (Pastor, Barron, Miller, & 

Davis, 2007).
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Following recommended practices o f LPA researchers (Chen, 2012; Pastor et al., 

2007), the final model was decided by using several indicators of model fit. First, the log- 

likelihood (LL) is a measure of model fit; values closer to zero indicate better fit. Second, 

for models with the same number of classes that are nested, the chi-square difference test 

was used to test for significant improvements to model fit. Third, the Lo-Mendell-Rubin 

(LMR) tests the null hypothesis that the K class and the K-l class models are equivalent. 

If the LMR was not significant the K class model was not a significant improvement in fit 

over the K-l class model. A small p-value indicated the more complex solution should be 

retained. Fourth, the Bayesian Information Criterion (BIC) was used to compare models 

with different number of clusters and/or specifying different parameterization. Lower 

values of the BIC indicated better model fit. However, BIC does not provide a 

significance test to compare models. Thus, the chi-square difference test and the LMR 

were also employed. A table of that lists the number of groups, parameterization, log- 

likelihood, number of free parameters. BIC, LMR p  value, entropy, and smallest class 

frequency was created.

To determine the optimal number of latent classes within a particular 

parameterization, a plot of BIC versus the number of classes was created. This plot was 

used similarly to the scree plots in Exploratory Factor Analysis. The point in the graph 

where the slope decreases notably, or the “elbow”, was used to judge the number of 

classes for which additional classes do not significantly reduce the BIC. The cluster 

profiles were examined and theory, sample size, and uniqueness of the profiles were used 

to evaluate the model. For a model to be accepted, the identified classes must have had 

reasonable size compared to the whole sample; classes that were very small were not
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used. The profiles were distinguishable by the uniqueness of the constellations of 

indicator values and the utility of these constellations for explaining variations in the 

outcomes of interest and differences between characteristics of subgroups in the 

population.

Once the final model decision has been made sample statistics for each cluster 

were computed. Item profile plots were created and the resulting clusters were labeled 

and described qualitatively according to the characteristics of the profile. The profiles 

were examined for reliability. The classification table was examined to ensure that the 

probability o f correct class membership was acceptable (0.70 or greater; Wang & Wang, 

2012). The value of the entropy indicates good classification and should be at least 0.60 

(Clark, 2010). The estimated parameters of the model were checked to ensure that the 

values conformed to the population parameters estimated by the model. The sample 

covariances and correlations were checked to ensure that they fit with the 

parameterization of the model.

Question 2

The second research question asked if  distinct student profiles emerged from four 

expectancy value measures: science self-efficacy (SSE), science attainment value (SAV), 

science utility value (SUV), and science interest-enjoyment value (SIV). The same 

procedure that was used to answer Question 1 was employed to answer Question 2. 

Question 3

Question 3 asked about the relationship o f cost to profile membership. The 

relation between each cluster membership and cost was examined using the Mplus 7 

function, AUXILIARY (e), that tests for equality of means of variables that were not
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used in forming the latent classes. The Wald chi-square test statistic will be used to 

determine if there is a statistically significant difference in mean cost across classes. 

Question 4

Question 4 asked how the membership of the math classes compared to the 

science classes. To answer this question, each case was assigned to the most probable 

class and a crosstabulation was performed. To test for a relationship between science and 

math latent class assignment, a chi-square analysis was conducted.

Question 5

Question 5 asked about the relationship between cluster membership and 

mathematics ability. The relation between each cluster membership and ability was 

examined using the Mplus 7 function, AUXILIARY (e). The Wald chi-square test 

statistic was used to determine if there was a statistically significant difference in mean 

mathematics ability across classes.

Question 6

Question 6 asks about whether there is a relationship between cluster membership 

and STEM occupational choice, a distal outcome. Occupational choice is a categorical, 

dependent variable with two possible values. The relation between each cluster 

membership and occupational choice was examined using the Mplus 7 function, 

AUXILIARY (e). The Wald chi-square test statistic will be used to determine if there 

was a statistically significant difference in mean STEM occupational choice across 

classes.
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Question 7

Question 7 asked about the representation of high-ability students in the classes. 

For this study, the high-ability qualification was defined according to the Three Ring 

Conception of Giftedness (J. Renzulli, personal communication, November 2, 2012). 

Students who had a score on the mathematics achievement measure that was at least one 

standard deviation above the mean were identified as having high ability. A dummy 

variable called HABILITY was created that has a value of “ 1” or “0”. The AUXILIARY 

(e) function will be used to answer this question in a fashion similar to question 2. The 

mean value of HABILITY for each class represents the percentage of the members of that 

class who have mathematics achievement test scores that meet the criterion described 

above. If there is a significant difference on this variable favoring a class, that class has a 

greater representation of high-ability students.

Question 8a

Question 8 asked about the relationship of membership in the latent classes to 

race-gender group. The AUXILIARY (e) function in Mplus was used to answer this 

question. For race-gender, a case may belong to one of eight categories (White-male, 

White-female, Black-male, Black-female, Hispanic-male, Hispanic-female, Asian-male, 

Asian-female). A set o f eight dummy variables was created to represent the race-gender 

categories (WM, WF, BM, BF, HM, HF, AM, AF). The decision to use these race-gender 

categorizations was based on previous research that showed large interactions between 

gender and race on expectancy-value constructs, particularly for underrepresented 

minority students (Graham & Taylor, 2002; Taylor & Graham, 2007). The presence of 

similar interactions would be seen in under- or overrepresentation of race-gender groups
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in latent classes. The mean value of the race-gender variable represents the percentage of 

that latent class were occupied by members o f that race-gender group. The mean values 

of the race-gender variable were visually inspected to compare the representation of that 

group in the class to the level in the overall sample.

Question 8b

Question 8b asked about the relationship of SES to class membership. The 

AUXILIARY (e) function was used to test for equality of means on the variable SES. 

Socioeconomic status is a continuous variable that is scaled as a z-score. Significant 

differences between classes on the SES variable indicate differential representation of 

cases within the classes. If it is found that a particular class has a significantly lower 

mean SES, this means that lower SES students were classified into the class at higher 

frequencies.

Limitations and Delimitations

For any study, there are factors that affect validity, and these factors are grouped 

into two categories: limitations and delimitations (Locke, Spirduso, & Silverman, 2007). 

Limitations are threats to internal validity, or factors that impact the researcher’s ability 

to establish a direct relationship between the independent and dependent variables (Gall, 

Gall, & Borg, 2007). Delimitations are factors within the researcher’s control that affect 

external validity, or the generalizability of the study results to a larger population. 

Limitations

This study had some limitations. First, a limitation of this study was the lack of a 

standardized measure of science achievement. In HSLS: 2009 a mathematics IRT 

achievement test was administered, however, a science achievement test was not given.
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The mathematics achievement test score was used as a proxy for high-ability in science. 

Second, although 21,444 ninth grade students participated in the HSLS: 2009 study, a 

significant percentage of these students were not enrolled in a mathematics (9.85%) or 

science (16.83%) course when the survey was given. This led to a large number of 

legitimate skips on items that pertained to the students’ Fall 2009 mathematics or science 

courses. The distribution of these non-enrollments across race and SES would have 

caused bias in the data if these cases were deleted. To reduce the amount of bias, the 

missing data estimation capabilities of Mplus 7 were utilized; however, this caused the 

entropy of the latent class models to be reduced. Third, this cohort of ninth-graders 

occupied a specific moment in history and had a unique set o f experiences that make 

history a limitation of this study (Gall et al., 2007). Fourth, the cost scale did not have as 

high of reliability as the NCES-created scales and was highly skewed and kurtotic. Cost 

was originally planned to be a latent class indicator, however, when cost was included as 

an indicator the latent class models would not converge. Therefore, the decision was 

made to use cost as a correlate instead of an indicator.

The nature o f the expectancy-value questionnaire items was a limitation. The 

questions were asked specifically about the Fall 2009 mathematics and sciences courses 

that the students were enrolled in. Students’ expectancies and values about a specific 

mathematics or science course may be different than their expectancies and values about 

the domains of mathematics and science in general. Furthermore, expectancies and values 

for technology and engineering were not addressed in the HSLS: 2009 questionnaire. It 

may be that students valuing of technology and engineering could affect their motivation 

to pursue a STEM occupation.
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Delimitations

The operationalization of giftedness in this study was a delimitation. Using the 

TRCG (Renzulli, 1978) high-ability was defined as a score greater than or equal to +1Z 

within a race group on the mathematics achievement test. Students who scored at least 

+1Z within their own race group were identified as high-ability students. This definition 

may differ from other definitions because it used within group norms instead of global 

norms. The bulk of studies on gifted students have used identification standards that are 

more stringent that this standard.

The operationalization of STEM occupation is also delimitation. No standard 

definition of STEM occupation could be found; therefore, the researcher identified 

occupations that required STEM knowledge beyond high school content, according to the 

0*NET database, as STEM occupations. This included the health sciences and the social 

sciences. The method used to identify the education level o f that occupation is a 

delimitation. Inconsistencies in the education requirements for occupations that were 

listed in the 0*NET database and difficulties in coding the occupations that students 

wrote in as their answers to the survey led to the decision to use the student response to 

the educational expectations question as the education level. Many students answered 

“don’t know” to the educational expectations question and these cases were not included 

in the STEM plus bachelor’s or higher code. Furthermore, students may not have 

accurate knowledge of the educational requirements for the occupation that they wrote in 

as their expected occupation at age 30.

A methodological limitation is that the latent profile indicators were scale scores 

and the use of scale scores instead of the actual items assumes that the factor structure for
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the scales is invariant across groups. This assumption was used by NCES for the extant 

scales in HSLS: 2009 and was applied to the researcher-created scale for cost. More 

accurate models may be possible if the actual items are used instead of scale scores. 

However, the trade-off is the tremendous amount o f time it would require for the 

computer to estimate such models. The most complex models estimated in this study 

required over three hours to be processed.
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Chapter 4 

Results

The purposes of this study were to investigate extant expectancy-value 

motivational profiles of ninth grade students and the relationships of those profiles with 

occupational choice, high-ability status, mathematics achievement, and demographic 

variables. The Expectancy Value Model of Achievement-Related Choices (Eccles et al., 

1983) was the primary theoretical framework used to examine motivation. Secondary 

data analysis o f the High School Longitudinal Study of 2009 (HSLS: 2009) was 

conducted. This study investigated the following research questions:

Research Questions

1. What distinct profiles emerge from measures of mathematics self-efficacy and 

mathematics task values (interest-enjoyment value, utility value, and 

attainment value)?

2. What distinct profiles emerge from measures of science self-efficacy and 

science task values (interest-enjoyment value, utility value, and attainment 

value)?

3. How is cost related to mathematics and science profile membership?

4. How do the memberships of the mathematics and science profiles compare?

5. How do these profiles relate to mathematics ability?

6 . How do these profiles relate to STEM occupational choice?

7. How do these profiles relate to giftedness?

8 . How does membership in these profiles differ by (a) race-gender group and 

(b) socioeconomic status?
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Data Cleaning

Data cleaning was performed using SPSS 20. The restricted use dataset contained 

25,206 cases.

The NCES race variable, XI RACE, originally had eight categories (Table 3a). 

The eight categories were collapsed into five categories (Table 3b) using variable 

transformation. The two categories: (1) Hispanic, no race specified and (2) Hispanic, race 

specified categories were combined into one category called Hispanic. The three 

categories; (1) American Indian/Alaska Native; (2) more than one race, non-Hispanic; 

and (3) Native Hawaiian/Pacific Islander, non-Hispanic categories were combined into 

one category called Other.

Table 3 a

Composition o f  Full Sample by Race (n=25,206)

Race Frequency
American Indian/Alaska Native 168
Asian, non-Hispanic 2,096
Black/African-American, non-Hispanic 2,648
Hispanic, no race specified 590
Hispanic, race specified 3,410
More than one race, non-Hispanic 1,952
Native Hawaiian/Pacific Islander, non-Hispanic 1 1 0

White, non-Hispanic 12,259

3,214 of cases were weighted to zero by NCES because of missing data and were omitted 

from further analysis, leaving 21,992 cases. The 2,199 cases in the “Other” category were 

omitted from subsequent analyses, leaving 19,793 cases,
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Table 3b

Composition o f  Analysis Sample by Race (n = 19,793)

Race Frequency
Asian 1,792
Black 2,293
Hispanic 3,655
White 12,053

Occupation Codes

In HSLS: 2009, ninth grade students were asked to write in the occupation that 

they saw themselves in at age 30. These occupations were manually coded by NCES staff 

using the six-digit Occupational Information Network (0*NET) coding system. Although 

0*NET has categorized these six-digit codes into STEM and non-STEM categories, a 

modified coding system was used in this study. The US Bureau of Labor and Statistics 

maintains a database of occupations that was used to determine the level of education 

typical for that occupation. Occupations that typically required education in science, 

technology, education, and mathematics (STEM) beyond high school coursework were 

coded as STEM occupations (Appendix C). Some occupations that were coded by 

0*NET as non-STEM, but were found to require STEM knowledge beyond high school 

coursework were manually recoded as STEM occupations. For example, postsecondary 

science and math educators were indicated as STEM occupations in the 0*NET system 

while high school teachers of those same subjects were coded as non-STEM. Because a 

Bachelor’s degree in the discipline is required to be a high school science or math teacher 

those occupations were manually recoded as STEM occupations. Occupations were 

coded as “STEM”, “Non-STEM”, and “Don’t Know” (Table 4). The large group of
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students who responded “Don’t Know” to this question were included in the profile 

analysis process, but were not included in the subsequent occupational choice analysis. 

Table 4

Occupation Coding (n = 19,793)

Occupation Type Frequency Percentage
STEM 6697 33.8%
Non-STEM 6407 34.4%
Don’t Know 5538 28.0%
Missing 1151 5.8%

The NCES variable, X1STUEDEXPCT, was collapsed into one three-level 

variable, STUEXPCT, with three possible values: less than BA, BA or higher, and don’t 

know (Table 5). The two variables STEMOCC and STUEXPCT were used to create the 

outcome variable, STEM. Students who identified STEM occupations and indicated that 

they planned on achieving a bachelor’s degree or higher were coded as “ 1 ” in the variable 

STEM (Table 6 ).

Table 5

Students ’ Educational Expectations

Level Frequency
Less than BA 3,729
BA or higher 11,362
Don’t know 4,168
Missing 534
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Table 6

Occupation and Education Classifications

Category < BA >=BA Don’t Know Total
STEM 
Non-STEM 
Don’t know 
Missing

893 (4.8%) 
1,427 (7.7%) 
1,247 (6.7%)

4859(26.1%) 
3698 (19.8%) 
2489(13.4%)

945 (5.1%) 
1,282 (6.9%) 
1,802 (9.7%)

6,697 (35.9%) 
6,407 (34.4%) 
5,538 (29.7%) 
1,511

The math achievement test score X1TXMSCR was used to identify students who 

had high ability. Cutoff scores were calculated for each race group separately and the 

+1Z score for each group was used as the determining score (Table 7). Therefore, 

students were identified as high ability relative to other students of the same 

race/ethnicity group. The value of X1TXMSCR had already been imputed by NCES for 

all valid cases. Of the 19,793 cases in the current sample, 534 were found to be missing 

values for the math achievement score and these cases were omitted from future analyses, 

leaving 19,259 cases.

Table 7

Math Achievement Test +JZ Cutoff Score by Race/Ethnicity Group

Race Cutoff Score Valid N
Asian 61.375839 1,672
Black 46.430236 2,218
Hispanic 48.695370 3,515
White 53.198261 11,854

A dummy variable called HABILITY was created that had the value of “0” if a student’s 

X1TXMSCR was below the cutoff score and “ 1” if it was at the cutoff or higher.

Cost Scale

Four items were used to create a scale for cost. Items S1E13A, S1E13B, S1E13C, 

and S1E13D asked students about the potential effect of time and effort in math and
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science on time with friends, time for extracurricular activities, popularity, and being 

made fun of. Responses were on a four-point Likert scale that was coded such that higher 

scores indicated more positive perceptions of cost. Principal components analysis with 

Varimax rotation was used to create factor scores for the cost scale (Table 8 ). Cronbach’s 

Alpha for this scale was .75, which was indicates acceptable internal consistency for the 

COST scale. A two-factor solution explained 84.4% of the total variance. Scale reliability 

analysis showed that the deletion of any of the four items would decrease Cronbach’s 

alpha.

Table 8

Factor Loadings fo r  Cost Scale

Item Factor 1 Factor 2
Cost- Cost-
Popular Time
Loading Loading

SI E l3A Time/effort in math/science means not enough time .898
with friends.
SI E13B Time/effort in math/science means not enough time .901
for extracurriculars
SI E13C Time/effort in math/science means 9th grader won’t .894
be popular.
SI El 3D Time/effort in math/science means people will make .917
fun of 9th grader.
% of explained variance 57.4 27.0

Descriptive Statistics

A table o f descriptive statistics was generated that included means, standard 

deviations, and zero order correlations for each of the nine indicators: mathematics self- 

efficacy, science self-efficacy, mathematics attainment value, science attainment value, 

mathematics utility value, science utility value, mathematics interest-enjoyment value, 

science interest-enjoyment value, and cost. The coefficient alphas for all scales, except
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the cost scale, were calculated by NCES. Descriptive statistics for the correlates (race- 

gender and SES) as well as the dependent variable, occupational choice, were determined 

(Tables 9, 10, and 11).

Table 9

Descriptive Statistics (N = 19,259)

Variable Mean (SE) SD Alpha
Socioeconomic Status -0.0718 (.0118) 0.759 N/A
Math Achievement Test Score 38.956 (0.187) 11.920 N/A
Math Self-Efficacy 0.0016 (.0167) 0.997 .90
Math Attainment Value 0.0010 (.0157) 0.999 .84
Math Utility Value 0 . 0 0 2 0  (.0166) 0.997 .78
Math Interest-Enjoyment Value 0.0055 (.0168) 0.996 .75
Science Self-Efficacy -0.0057 (.0174) 0.994 . 8 8

Science Attainment Value -0.0061 (.0156) 0.996 .83
Science Utility Value 0.0019 (.0174) 0.995 .75
Science Interest-Enjoyment Value 0.0060 (.0175) 0.990 .73
Cost-Time -0.0059 (.0161) 1 . 0 1 1 1A
Cost-Popular -0.0166 (.0161) 1.009

Table 10

Race-Gender Distribution

Race-Gender Group Frequency %
Asian Female 824 1.9
Asian Male 848 1.9
Black Female 1,069 8 . 0

Black Male 1,149 6.9
Hispanic Female 1,751 1 2 . 0

Hispanic Male 1,764 12.4
White Female 5,845 27.8
White Male 6,009 29.1
Total 19,259
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Table 11

High Ability Status

Status Frequency %
High ability 3,054 15.9
Not High ability 16,205 84.1
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Table 12

Bivariate Correlations
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MUV .360** .290** 1
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SAV .188** .274** .103** .114**
SUV .2 0 1 ** .190** .426** .224**
SIV 141 ** .136** .180** 194**
COST-TIME .1 0 1 * .065** .109** 134**
COST-POPULAR .174** .135** .105** .2 0 0 **
X1TXMSCR .306** .384** . 0 0 0 .213**
X1SES .128** .117** -.070** .039*
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Results for Research Question #1 

Testing Latent Class Models

For each of the five parameterizations (A through E), multiple models were 

tested. First, a two-class model was estimated, then models with additional classes were 

estimated until: (1) the model would not converge, (2) the LMRp -value exceeded .05, or 

(3) the log-likelihood would not replicate. The initial number of starts used in Mplus was 

initially set to 1000; the number of starts was increased first to 2000, then to 4000 to 

attempt to reach convergence or log-likelihood replication. If the model did not converge 

after the starts were changed to 4000, “did not converge” was recorded as the result. The 

results of the model testing are shown in Table 13 and plots o f the class profiles for each 

tested model are in Appendix E.

Math E-V Models

The next step was to determine which model best represented the latent class 

structure for the math classes. The list o f models was sorted by BIC and the models with 

the five lowest values o f BIC are displayed in Table 13. Model 4D had the lowest value 

of LL and BIC. The / 7-value for the model 4D LMR was 0.5172, which indicated that the 

4D model was not a statistically significant improvement over the 3D model. The cluster 

profiles (Figure 2), sample size, and sample statistics were inspected. Profile plots were 

created for each estimated model (Appendix E). A unique profile (class 3) was revealed 

in the 4D model that was not visible in the 3D model, which justified retention of the 4D 

model even though the 4D model was not a statistical improvement. Pastor et al. (2007) 

has recommended the retention of profiles with an additional class beyond that which is
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indicated by the LMR when the solution reveals a unique profile that would otherwise be 

subsumed into another class. Model 3E was rejected because the LMR could not be 

computed. Therefore, model 4D was selected as the best latent class model for the 

mathematics expectancy-value indicators.

Table 13

Math Model Fit Indicators

Model LL No. free 
parameters

BIC P
LMR

Entropy Smallest 
class freq.

2A -91429 13 182988 . 0 0 0 0 .658 8450 (.441)
3A -89134 18 178446 .0009 .707 2902 (.151)
4A -88235 23 176698 .0067 .703 904 (.047)
5A -87121 28 174518 .0231 .841 604 (.032)
6 A -86195 33 172717 . 0 1 2 2 .741 543 (.028)
7 A -85939 38 172252 .4824 .724 589 (.031)
2B -88185 19 176558 .1233 .918 408 (.021)
3B -87147 24 174531 . 0 0 0 2 .788 977 (.051)
4B -85771 29 171828 . 0 0 0 0 .852 531 (.028)
5B -85485 34 171306 .2906 .846 553 (.029)
2C -90980 17 182129 . 0 0 0 0 .658 9508 (.496)
3C -87190 26 174647 . 0 0 0 0 .751 4186 (.218)
4C -85769 35 171883 .1215 .753 2126 (.1 1 0 )
5C Would not 

converge
2D -87345 23 174917 . 0 0 0 0 .726 4766 (.25)
3D -85276 32 170867 . 0 0 0 0 .640 3541 (.18)
4D -84700 41 169804 .5172 .713 2571 (.13)
2E -87195 29 174676 . 0 0 0 0  

Could not
.419 5882 (.31)

3E -84874 44 170181 be
computed

.611 4512 (.22)

4E Not
replicated
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Table 14

Math Models with Lowest BICs

No. of 
groups

LL No. free 
parameters

BIC P
LMR

Entropy Smallest 
class freq.

4D -84700 41 169804 .5172 .713 2571 (.13)
3E -84874 44 170181 NA .611 4512 (.22)
3D -85276 32 170867 . 0 0 0 0 .640 3541 (.18)

Next, the probabilities of latent class membership o f model 4D were examined for 

sufficiency (Table 15). The correct class assignment probabilities of .813, .829, .852, and 

.881 were all above the minimum threshold of acceptability o f 0.70 (Wang & Wang, 

2012). The entropy statistic for this model was .713, which is considered to be good 

(Clark, 2010). The size o f the classes was good, with the smallest class comprising 13.4% 

of the sample.

Table 15

Average Latent Class Probability for Most Likely Class Membership (Row) by Latent 

Class (Column) fo r  Math 4D Model

Class 1 2 3 4
1 .813 .116 .023 .049
2 .126 .829 . 0 1 1 .034
3 . 0 2 2 .026 .852 . 1 0 0

4 .039 .057 .023 .881

Class homogeneity was assessed via comparison of the model-estimated within 

class variances for each indicator to the overall sampling variance (Table 16). The 

smaller the within class variance, the more homogeneous the class. The overall sampling 

variance for each indicator was 1.0 because the indicators are z-scores. Classes 1 and 4 

are more homogeneous than classes 2 and 3. Class 2 is less homogeneous with respect to
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MUV, and class 3 is less homogeneous with respect to MAV and MIV. Class 3 is typified 

by high MSE and is very homogeneous with respect to that indicator. Class 4 is typified 

by a high MUV and is very homogeneous with respect to MUV. Class 1 is typified by 

average values o f MSE and MUV. Class 2, the lowest expectancy-value class, is also the 

least homogeneous.
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Figure 2

Math Model 4D Profiles
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Table 16

Model-estimated Within Class Variances fo r  Math 4D Model

Class 1 Class 2 Class 3 Class 4

Math Self-Efficacy 0.155 0.924 0.038 0.345
Math Attainment Value 0.568 0.706 0.923 0.676
Math Utility Value 0.218 1 . 2 1 0 0.660 0.051
Math Interest-Enjoyment Value 0.504 0.711 0.987 0.614

The estimated covariances were compared to the parameterization D 

specifications (Table 17). In parameterization D, the covariances are constrained to be 

equal across the classes, while the variances vary within and between the classes. The 

values on the diagonal for each class will be the variances specific to that class.

Table 17

Estimated Covariance Matrix fo r  Math Model 4D

Math Self- 
Efficacy

Math
Attainment
Value

Math Utility 
Value

Math Interest-
Enjoyment
Value

Math
Self-Efficacy 
Math Attainment 
Value
Math Utility 
Value

.090**

.003 - . 0 0 2

Math Interest- 
Enjoyment Value

.073** .205** .041**

According to the model, MUV does not have a significant relationship with MSE 

or MAV, but has a weak positive relationship with MIV. The relationship between MAV 

and MIV is the strongest in this set of indicators, while the other statistically significant 

relationships are all small.

97



The class separation is the distance between the classes. The 95% confidence 

intervals for estimates were examined to check for overlap. The only overlap occurred 

between classes 3 and 4 on the MIV indicator, the two confidence intervals overlap by 

0.024. The classes were well separated.

Table 18

Estimated Means, Standard Errors, and Confidence Intervals for Math 4D Model

Class 1 
M (SE) 
[CI1

Class 2 
M (SE) 
[Cl]

Class 3 
M (SE) 
[Cl]

Class 4 
M (SE) 
[Cl]

Math -0.004 (.016) -0.894 (.066) 1.535 (.010) 0.278 (.073)
Self-Efficacy [-0.035, 0.027] [-1.023,-0.765] [1.515, 1.555] [0.135,0.421]

Math 0.144 (.033) -0.800 (.039) 0.891 (.077) 0.337 (.057)
Attainment
Value

[0.079, 0.209] [-0.876, -0.723] [0.740, 1.041] [0.225, 0.449]

Math -0.263 (.014) -0.676 (.039) 0.452 (.073) 1.139 (.012)
Utility Value [-0.290, -0.236] [-0.752, -0.560] [0.309, 0.595] [1.112, 1.163]

Math Interest- 0.135 (.024) -0.855 (.044) 0.730 (.063) 0.511 (.061)
Enjoyment
Value

[0.088, 0.182] [-0.941,-0.769] [0.607, 0.853] [0.391,0.631]

Results for Research Question #2

The same model testing procedure was used for the science classes. The results 

of the model testing are shown in Table 19 and in Appendix G.

Science E-V Models

The next step was to determine which model best represented the latent class 

structure for the science classes. The list of models was sorted by BIC and the models 

with the five lowest values of BIC are displayed in Table 20. Model 3E had the lowest 

value of LL and BIC. The two models with the lowest BIC are nested and can be
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compared using the chi-square difference test, which shows that the 3E model is 

significantly better than the 3D model, (x2 (12) = 864, p  < .001). The / 7-value for the 

model 3E LMR was 0.4635, which indicated that the 3E model was not a statistically 

significant improvement over the 2E model. The cluster profiles (Figure 3), sample size, 

and sample statistics were inspected. A unique profile (class 3) was revealed in the 3E 

model that was not visible in the 2E model, which justified retention o f the 3E model. 

Pastor et al. (2007) recommended the retention o f profiles with an additional class 

beyond that which is indicated by the LMR when the solution reveals a unique profile 

that would otherwise be subsumed into another class. Therefore, model 3E was selected 

as the best latent class model for the mathematics expectancy-value indicators.

Next, the probabilities of latent class membership of model 3E were examined for 

sufficiency (Table 21). The correct class assignment probabilities of .768, .749, and .834 

were all above the minimum threshold of acceptability of 0.70 (Wang & Wang, 2012). 

However, the classification table indicates that classes 1 and 2 have some overlap. Class 

3 has a much higher correct class assignment probability than the other classes. The 

entropy statistic for this model was .524, which is considered to be low (Clark, 2010).

The size of the classes was good, with the smallest class comprising 13.7% of the sample.
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Table 19

Science Model Fit Indicators

Model LL No. free 
parameters

BIC P
LMR

Entropy Smallest 
class freq.

2A -86025 13 172180 . 0 0 0 0 .578 9311 (.487)
3A -83920 18 168019 .0008 .680 2685 (.203)
4A -83390 23 167006 .3251 .648 594 (.031)
2B -83290 19 166769 .2333 .812 714 (.037)
2C -85715 17 171597 . 0 0 0 0 .585 8988 (.497)
3C -83059 26 166374 .1079 .627 3382 (.177)
2D -82627 23 165480 .0314 .286 5523 (.29)
3D -81854 32 164023 .2367 .623 2428 (.13)
2E -82476 29 165239 .0216 .314 5792 (.30)
3E
4E

-81590 
Did not

44 163614 .4635 .524 2628 (.14)

replicate

Table 20

Science Models with Lowest BICs

Model LL No. free 
parameters

BIC P
LMR

Entropy Smallest 
class freq.

3E -81590 44 163614 .4635 .524 2628 (.14)
3D -81854 32 164023 .2367 .623 2428 (.13)
2E -82476 29 165239 .0216 .314 5792 (.30)
2D -82627 23 165480 .0314 .286 5523 (.29)

Table 21

Average Latent Class Probability fo r  Most Likely Class Membership (Row) by Latent 

Class (Column) fo r  Science Model 3E

Class 1 2 3
1 .768 . 2 1 1 . 0 2 1

2 .217 .749 .034
3 .078 .088 .834

Class homogeneity was assessed via comparison of the model-estimated within 

class variances for each indicator to the overall sampling variance (Table 22). The
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smaller the within class variance, the more homogeneous the class. The overall sampling 

variance for each indicator was 1.0 because the indicators are z-scores. Classes 2 and 3 

are more homogeneous than class 1. Class 3 is typified by high SUV and is very 

homogenous with respect to SUV. Class 3 is more homogeneous with respect to SIV and 

SSE than the sample. Class 2 is more homogeneous than the sample with respect to all 

four indicators, and class 1 is less homogeneous with respect to SSE, SUV, and SIV than 

the sample. Class 1, the lowest expectancy-value class, is the least homogeneous. Class 2, 

the typical or average class, is the most homogeneous overall.

Table 22

Model-estimated Within Class Variances fo r  Science 3E Model

Class 1 Class 2 Class 3
Science Self-Efficacy 1.515 0.537 0.694
Science Attainment Value 0.938 0.775 1.099
Science Utility Value 1.173 0.298 0.052
Science Interest-Enjoyment Value 1.030 0.601 0.528

The model-estimated covariances were compared to the parameterization for 

model E. In model E, the variances and covariances are allowed to vary within and 

between classes. Thus, each class has its own unique covariance matrix, unlike the D 

models in which only the diagonal o f the covariance matrix differs between classes. 

The three matrices for the science classes are shown in Tables 23a, b, and c.
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Table 23a

Covariance Matrix fo r  Class 1

Science Self- Science Self- Science Self- Science Self-
Efficacy Efficacy Efficacy Efficacy

Science 1.5145
Self-Efficacy 
Science Attainment .463** .938
Value
Science 3 9 4 ** .260** 1.173
Utility Value 
Science Interest- .442** .226** .276** 1.030
Enjoyment Value

Table 23b

Covariance Matrix for Class 2

Science Self- Science Self- Science Self- Science Self-
Efficacy Efficacy Efficacy Efficacy

Science
Self-Efficacy
Science
Attainment Value 
Science

.694

3 7 7 **

.018*

1.099

-.004 .052
Utility Value 
Science Interest- .291** .342** .0 2 0 ** .528
Enjoyment Value

Table 23c

Covariance Matrix fo r  Class 3

Science Self- 
Efficacy

Science Self- 
Efficacy

Science Self- 
Efficacy

Science Self- 
Efficacy

Science
Self-Efficacy
Science
Attainment Value

0.537

.333** .775

Science 
Utility Value

.131** .151** .298

Science Interest- 
Enjoyment Value

.317** .312** .156** .601
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The class separation is the distance between the classes. The 95% confidence 

intervals for estimates were examined to check for overlap (Table 24). No overlaps 

occurred; the classes were well separated.

Table 24

Estimated Means, Standard Errors, and 95% Confidence Intervals fo r  Indicators by

Class for Science 3E Model

Class 1 Class 2 Class 3
M (SE) M (SE) M (SE)
fCI] [Cl] rcn

Science -0.304 (.055) -0.034 (.026) 0.673 (.034)
Self-Efficacy [-0.412,-0.196] [-0.085,0.017] [0.606, 0.740]

Science -0.397 (.048) 0.078 (.029) 0.639 (.079)
Attainment Value [-0.491,-0.303] [0.021,0.135] [0.484, 0.794]

Science -0.598 (.069) -0.035 (.026) 1.479 (.016)
Utility Value [-0.733, -0.463] [-0.086, 0.016] [1.448, 1.510]

Science Interest- -0.599 (.067) 0.127 (.024) 0.889 (.042)
Enjoyment Value [-0.703, -0.468] [0.080, 0.174] [0.807, 0.971]
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Figure 3

Science Model 3E Profiles
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Results for Research Question #3

Question 3 asked how the membership of the math classes compared to the 

science classes. To answer this question, each student was assigned to his or her most 

probable Math and Science class and a crosstabulation was performed (Table 25). To test 

for a relationship between science and math latent class assignment, a chi-square analysis 

was conducted. The result of the x2 test showed that the fit o f the observed frequencies to 

the expected frequencies was poor; therefore math class membership was not 

independent of science class membership (x (6 ) = 1678,/? = .000).

Table 25

Comparison o f  Membership o f  Science Class 3E and Math Class 4D

Science 
Class 1 
Low
obs (exp)

Science 
Class 2 
Average 
obs(exp)

Science 
Class 3 
High Science 
Utility Value 
obs (exp)

Totals

Math Class 2 -  Low 1,889 (1352) 3,016(3184) 392 (761) 5,297

Math Class 1 -  Average 1,588(1942) 5,346 (4573) 674(1093) 7,608

Math Class 3 -  High Math 778 (700) 1,296(1649) 669 (394) 2,743
Self-Efficacy
Math Class 4 -  High Math 612(873) 1,805 (2057) 1005 (492) 3,422
Utility Value
Totals 4,867 11,463 2,740 19,070

A larger number of students from the low science class (class 1) were in the low 

math class (class 2) than would be expected by chance. Smaller numbers of students from 

science classes 2 and 3 were in math class 2 than would be expected by chance. Both of 

these classes are labeled as low; therefore students who had low E-V profiles in science 

were more likely to have low E-V profiles in math.
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A larger number of the students in the average science class (class 2) were in the 

average math class (class 1) than would be expected by chance. A smaller number of 

students in the low and high science classes (classes 1 and 3) were in the average math 

class (class 1) than would be expected by chance. Therefore students who had average E- 

V profiles in science were more likely to have average E-V profiles in math.

A larger number o f students from the low and high science classes (1 and 3) were 

in the high MSE math class (class 3) than would be expected by chance, while smaller 

numbers of students from the average science class (2) were in the high MSE math class 

(3). Therefore, students who were in the average science class were less likely to be in the 

high MSE math class, while students who were in the low and high science classes were 

more likely to be in the high MSE math class.

A larger number of students from the high science class (3) were in the high 

MUV math class (4) than would be expected by chance, while smaller numbers of 

students from the low and average science classes (1 and 2) were in the high MUV math 

class (4). Therefore, students who were in the high science class were more likely to be in 

the high math utility value class. Notably, the observed number of students from the high 

MUV class that were in the high SUV class was more than double the expected number 

of students, and the number of students in the high MSE class that were in the high SUV 

class was 70% above the expected value. Taken together, students who were in the two 

high math classes (MSE and MUV) were far more likely to be in the high SUV class.

Results for Research Question #3 

To examine the relationship between latent class membership and cost the 

AUXILIARY (e) function in Mplus 7 was used. The equality o f means across latent
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classes was tested using pseudo-class-based multiple imputations (Muthen & Muthen, 

2 0 1 2 ) for each of the subscales of the cost scale -  cost-time and cost-popular.

For math, the overall test found significant differences between the mean values 

of cost-time for the four math classes (x2 (3) = 75.174,p  = .000). Furthermore, the 

differences in cost-time between class 1 and class 2  were not significant and the 

differences in cost-time between class 3 and class 4 were not significant (Table 26a). The 

effect size of the difference in cost-time from the low to the high MSE class was d = 

0.200. This is a small effect. The overall test found significant differences between the 

mean values of cost-popular for the four math classes (^ (3) = 323.571, p  = .000). The 

differences in cost-popular were significant between every pair of math classes. The 

effect size o f the difference in cost-popular from the low to the high MSE class was d  = 

.330. This is a small effect.

For science, the overall test found significant difference between the mean values 

of cost -tim e for the three science classes (^ (2 ) = 76.611 ,p  = .000). The differences 

between cost-time for the low and average science classes was not significant. The 

difference between the low and the high class, and between the average and the high class 

were significantly different, with the most positive sense of cost-time for the high class 

(. 196Z), with a slightly negative sense of cost for both the low and average class. The 

effect size of the difference in cost-time from the low to the high science class was d -  

.239. The overall test found significant differences between the mean values o f cost- 

popular for the three science classes {% (2) = 35.306, p  = .000). The differences between 

all pairs of science classes on cost-popular was statistically significant. The effect size of
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the difference in cost-popular from the low to the high science class was d  = .167. This is 

a very small effect.

Table 26a

Mean Cost-Time Scores fo r  Latent Classes

Math Class Mean (SE) Science Class Mean (SE)
Class 2 -  Low 
Class 1 -  Average 
Class 3 -  High MSE 
Class 4 -  High MUV

-0.094 (0.018) 
-0.077 (0.014) 
0.175 (0.027) 
0.133 (0.023)

Class 1 
Class 2 
Class 3

-  Low
-  Average 
-H ig h

-0.024 (0.018) 
-0.045 (0.012) 
0.196 (0.027)

Table 26b

Mean Cost-Popular Scores for Latent Classes

Math Class Mean (SE) Science Class Mean (SE)
Class 2 -  Low 
Class 1 -  Average 
Class 3 -  High MSE 
Class 4 -  High MUV

-0.216(0.018) 
0.002 (0.013) 
0.233 (0.028) 
0.074 (0.021)

Class 1 
Class 2 
Class 3

-  Low
-  Average 
-H igh

-0.126 (0.018) 
0.000 (0.013) 
0.192 (0.028)

Results for Research Question #4

To examine the relationship between latent class membership and mathematics 

ability the auxiliary (e) function in Mplus 7 was used. For math, the overall test found 

significant differences among the mean values of the math achievement test score, 

X1TXMSCR, for the four math classes {^{3) = 1307,p  = .000). The effect size of the 

difference in math achievement score between the lowest and highest math classes was, d 

= .6 8 , which is a medium-sized effect. Furthermore, the differences between every pair of 

math classes were significantly different (Table 24). For science, the overall test found 

significant differences among the mean values o f the math achievement test scores for the 

three science classes (x(2)  = 14.094,/? = .001). The differences between every pair of
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science classes were significantly different. The effect size o f the difference in math 

achievement score between the lowest and highest science classes was d  = . 18, which is a 

very small effect. This was not surprising because it was hypothesized that math 

achievement score would not be strongly related to science expectancy-value class.

Table 27

Mean Math Achievement Scores for Latent Classes

Math Class Mean (SE) Science Class Mean (SE)
Class 2 -  Low 
Class 1 -  Average 
Class 3 -  High MSE 
Class 4 -  High MUV

35.391 (0.179) 
40.227 (0.164) 
45.111 (0.318) 
38.335 (0.231)

Class 1 
Class 2 
Class 3

-  Low
-  Average 
-H ig h

38.115 (0.208) 
39.357 (0.157) 
40.293 (0.315)

Results for Research Question #5

To examine the relationship between latent class membership and high ability the 

auxiliary (e) function in Mplus 7 was used. The variable, HABILITY, was a dichotomous 

dummy variable that used to indicate gifted status. Students who had math achievement 

test scores that were at least one standard deviation above the mean were assigned a “ 1 ” 

in HABILITY and those who had scores less than that threshold were assigned “0”. The 

mean score on HABILITY indicates the percentage membership of each latent class by 

gifted students.

Table 28

Membership o f  High-ability Students in Latent Classes

Math Class M (SE) Science Class M (SE)
Class 2 -  Low 
Class 1 -  Average 
Class 3 -  High MSE 
Class 4 -  High MUV

0.084 (.005) 
0.161 (.005) 
0.312 (.011) 
0.135 (.007)

Class 1 
Class 2 
Class 3

-  Low
-  Average 
-H igh

0.138 (.006) 
0.152 (.004) 
0.187 (.009)
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As high-ability students were identified using a +1Z cutoff within racial group, 

15.9% of the population was identified. An examination of the means showed that high- 

ability students were significantly underrepresented in the low math class, while 

significantly overrepresented in the high MSE math class. Representation in the average 

math class was very close to the representation in the population, while slight 

underrepresentation in the high MUV class was noted. For the science classes, the 

distribution of high-ability students among the classes was much more uniform; slight 

overrepresentation in the high class and slight underrepresentation in the low class were 

noted.

Results for Research Question #6

To examine the relationship between latent class membership and race-gender 

category the AUXILIARY (e) function in Mplus 7 was used. Eight dichotomous dummy 

variables were used to indicate race-gender group. The mean score on this variable 

indicated the percentage membership of each latent class by that race-gender group.

Each class was examined for over- or underrepresentation by visually inspecting 

the membership percentages for each race-gender group (Table 29). Asians were slightly 

underrepresented in the low math class while Hispanic females were overrepresented in 

the low math class. Hispanic females were greatly underrepresented in the high MSE 

group; White females were also underrepresented. Asian males and White males were 

over represented in the high MSE group. Black females, Black males, Hispanic males, 

and Asian males were overrepresented in the high MUV group, while Hispanic females, 

and all White students were underrepresented.
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Asians were slightly underrepresented in the low science group, while the 

representation of other groups was very similar to their representation in the population. 

In the high science group, Asians were greatly overrepresented, Blacks females were 

were somewhat overrepresented, Black males were slightly overrepresented, Hispanic 

Males were underrepresented, and Whites were underrepresented. White students were 

overrepresented in the average science class while the representation of other groups was 

close to their representation in the population.



Table 29

Race-gender Group Membership o f  Latent Classes

Race-
gender
group

Math 
-  Low 
(2)

Math
-  Avg 
(1)

Math -  
High 
MSE 
(3)

Math -  
High 
MUV 
(4)

Science 
-  Low 
(1)

Science
-A v g
(2)

Science
-H ig h
(3)

Overall
%

Asian
Female

.014
(.002)

.021
(.002)

.021
(.003)

.019
(.003)

.016
(.002)

.017
(.002)

.030
(.004)

.019

Asian
Male

.010
(.002)

.020
(.002)

.030
(.004)

.025
(.003)

.016
(.002)

.019
(.002)

.029
(.004)

.019

Black
Female

.071
(.005)

.062
(.004)

.087
(.009)

.119
(.008)

.079
(.006)

.072
(.004)

.110
(.009)

.080

Black
Male

.057
(.004)

.061
(.004)

.071
(.008)

.096
(.006)

.071
(.005)

.061
(.003)

.083
(.007)

.069

Hispanic
Female

.142
(.006)

.123
(.005)

.080
(.007)

.111
(.007)

.122
(.006)

.118
(.005)

.124
(.009)

.120

Hispanic
Male

.115
(.006)

.122
(.005)

.120
(.009)

.137
(.007)

.126
(.007)

.126
(.005)

.106
(.008)

.124

White
Female

.298
(.006)

.303
(.007)

.250
(.010)

.230
(.008)

.272
(.008)

.292
(.006)

.257
(.011)

.278

White
Male

.289
(.007)

.292
(.006)

.341
(.012)

.262
(.009)

.298
(.008)

.295
(.006)

.260
(.010)

.291

Note: Bolded values indicate overrepresentation; italicized values indicate 
underrepresentation.

Results for Research Question #7

To examine the relationship between latent class membership and socioeconomic 

status the auxiliary (e) function in Mplus 7 was used. The data showed significant 

differences in SES by math class (%2(3) = 2 0 6 . 1 4 1 , =  .000). However, the difference in 

mean SES from the lowest value in Class 4 to the highest value in class 3 only 

represented an effect size of d= .21 \ a small effect. Only one pair of math classes did not
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have a significant difference in SES (Class 2 vs. 4; ^ ( l )  = 0.490,/? = .484); every other 

pair of classes were significantly different at the p  = .000 level. The low math class (Class 

2) and the high MUV math class (Class 4) both had low SES values, which were not 

significantly different. The high MSE class had the highest SES and the average math 

class had an average SES value. There were no significant differences in SES by science 

class (^(2) = 2.129, p  = .255).

Table 30

Mean Socioeconomic Status o f  Students by Latent Classes

Math Class M (SE) Science Class M (SE)
Class 2 -  Low 
Class 1 -  Average 
Class 3 -  High MSE 
Class 4 -  High MUV

-0.131 (.012) 
-0.037 (.011) 
0.105 (.019) 

-0.145 (.015)

Class 1 
Class 2 
Class 3

-  Low
-  Average 
-High

-0.092 (.014) 
-0.057 (.010) 
-0.049 (.020)

Results for Research Question #8

To examine the relationship between latent class membership and STEM 

occupational choice the auxiliary (e) function in Mplus 7 was used. The variable STEM 

was a dichotomous dummy variable that indicated students expected to be in a STEM- 

related occupation at age 30 and to have earned at least a bachelor’s degree. The mean 

value of this variable indicates the percentage of these students within that class (Table 

31).

In math, the overall test indicated a significant difference in the means by class

“)(X (3) ~ 292.821 ,p  = .000) and the differences between every pair of classes were 

significant. The high MSE math class had a higher value than the high MUV math class 

(X2(l)  = 18.17,/? = .000). The average math class had a higher value than the low math 

class.
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In science, the overall test indicated a significant difference in the means by class 

(j^(2) = 143.862,/? = .000). The high science class had the highest value, and the low 

science class had the lowest value.

Table 31

STEM Occupational Choice by Latent Class

Math Class M (SE) Science Class M (SE)
Class 2 -  Low 
Class 1 -  Average 
Class 3 -  High MSE 
Class 4 -  High MUV

0.174 (.006) 
0.246 (.006) 
0.353 (.012) 
0.284 (.009)

Class 1 
Class 2 
Class 3

-  Low
-  Average
-  High SUV

0.193 (.007) 
0.237 (.006) 
0.413 (.013)

Summary of Mathematics Expectancy-Value Classes

In this section, the characteristics of the classes that were identified through latent 

class analysis are discussed. Table 32 provides a comparison of the data for each 

mathematics class.

Mathematics Classes

Typical. In the typical mathematics expectancy-value class all o f the EV profile 

indicators were near the mean. These students had a perception of the cost that was 

considered average and mathematics achievement scores that were slightly above the 

mean. High-ability students were represented at the same rate as in the population. The 

SES of this group was slightly below the mean. These students identified STEM 

occupations at a rate that was slightly below the mean rate for the population. White 

females were overrepresented in this group, while Black females are underrepresented.
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Table 32

Summary o f Mathematics Expectancy-Value Classes

Math
Self-
Efficacy
M
(SE)

Math
Attainment
Value
M
(SE)

Math
Utility
Value
M
(SE)

Math
Interest
Value
M
(SE)

Cost-
Time
M
(SE)

Cost-
Popular
M
(SE)

Math
Ach.
M
(SE)

High- 
ability 
students 
% of class

SES
M
(SE)

STEM
% o f
class

Over
rep

Under
rep

M l -
Typical
(36.5%)

-.004
(.016)

.144 (.033) -.263
(.014)

.135
(.024)

-.077
(.014)

.002
(.013)

40.227
(.164)

16.1 -.037
(.011)

24.6 WF BF

M2 -
Low
(29.7%)

-.894
(.066)

-.800
(.039)

-.676
(.039)

-.855
(.044)

-.094
(.018)

-.216
(.018)

35.391
(.179)

8.4 -.131
(.012)

17.4 WF,
HF

BM,
AF,
AM

M3 -  
High 
MSE 
(13.1%)

1.535
(.010)

0.891
(.077)

0.452
(.073)

.730
(.063)

.175
(.027)

.233
(.028)

45.111
(.318)

31.2 .105
(.019)

35.3 AM,
WM

WF,
HF

M 4 -
High
MUV
(20.7%)

.278
(.073)

.337 (.057) 1.139
(.012)

0.511
(.061)

.133
(.023)

.074
(.021)

38.335
(.231)

13.5 -.145
(.015)

28.4 BF,
BM

WF,
WM

Entire
Sample

.002
(.017)

.001 (.016) .002
(.017)

.006
(.017)

.000
(.016)

.000
(.017)

38.956
(0.187)

15.9 -.072
(.012)

26.1
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Low. In the low mathematics expectancy-value class all of the EV profile 

indicators were below the mean, and ranged from -.676Z to -0.894Z. These students had 

a perception of cost that was more negative than average and achievement test scores that 

were below the mean. High-ability students were represented in this group at about half 

the rate as in the population. The SES of this group was below the mean. These students 

identified STEM occupations at a rate that was 8.7% less than the mean rate for the 

population. Hispanic females and White females were overrepresented in this group, 

while Black males and Asian females were overrepresented.

High MSE. In the high MSE mathematics expectancy-value class, MSE was high 

(+1.535Z) and the other EV profile indicators were above the mean, ranging from +.452Z 

to +.891Z. These students had a perception of cost that was the most positive of any of 

the classes; they also had the highest mean achievement test scores. High-ability students 

were represented in this group at nearly twice the rate as in the population. The SES of 

this group was above the mean. These students identified STEM occupations at a rate that 

was 9% higher than the mean rate for the population. Asian males and White males were 

overrepresented in this group, while Hispanic females and White females were 

underrepresented. This class is best described as traditional high math achievers. These 

students had the strongest sense of mathematics self-efficacy and saw themselves in 

STEM occupations at greater rates than the population. This class of students fit the 

stereotype of the gifted math student.

High MUV. In the high MUV mathematics expectancy-value class, MUV was 

high (+1.139Z) and the other EV profile indicators were above the mean, ranging from 

.278Z to .511Z, but were lower than the values for the high MSE class. These students
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had a perception of cost-time that was the same as the high MSE group but had a more 

negative perception of cost-popular than the high MSE students. The mean achievement 

score was the same as the mean for the population. High-ability students were 

represented in this class at a rate that was 2.4% less than the population. These students 

had the lowest mean SES of the four classes. These students identified STEM 

occupations at a rate that was 2.3% higher than the population. Black females and Black 

males were overrepresented in this class, while White females and White males were 

underrepresented. This class is best described as math utilitarian. These students had the 

strongest perception of the usefulness of mathematics for their future careers and college 

success, however they did not see themselves in STEM occupations at greater rates than 

the population.

Summary of Science Expectancy-Value Classes

In this section, the characteristics of the science classes that were identified 

through latent class analysis are discussed. Table 33 provides a comparison of the data 

for each science class.

Science Classes

Low. In the low science expectancy-value class all o f the EV profile indicators 

were below the mean, ranging from -.304Z to -0.599Z. These students had a perception 

of cost that was average and achievement test scores that were at the mean. High-ability 

students were represented in this group at a rate that was 2.1% less than in the population. 

The SES of this group was at the mean. These students identified STEM occupations at a 

rate that was 6.8% less than the mean rate for the population. No race-gender groups 

were under- or over represented in this class.
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Typical. In the typical science expectancy-value class all of the EV profile 

indicators were near the mean. These students had a perception of the cost that was 

average and mathematics achievement scores that were at the mean. High-ability students 

were represented at the same rate as in the population. The SES of this group was at the 

mean. These students identified STEM occupations at a rate that was 2.4% below the 

mean rate for the population. White females were underrepresented in this class, while 

Black students were overrepresented.

High. In the high science expectancy-value class, SUV was high (+1.479Z) and 

the other EV profile indicators were above the mean, ranging from .639Z to .889Z. These 

students had a perception of cost that was more positive than average, at nearly the same 

level as the high MSE students. The mean achievement score was slightly above the 

mean for the population. High-ability students were represented in this class at a rate that 

was 2.8% greater than the population. The SES of this group was at the mean. These 

students identified STEM occupations at a rate that was 15.2% higher than the 

population. Asian students and Black females were overrepresented in this class, while 

White males and Hispanic males were underrepresented. This class is best described as 

science motivated. These students had the strongest perception of the usefulness of 

science to their future careers and college successes, and they saw themselves in STEM 

occupations at greater rates than the population.
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Table 33

Summary o f Science Expectancy-Value Classes

SSE
M
(SE)

SAV
M
(SE)

SUV
M
(SE)

SIV
M
(SE)

Cost
time
M
(SE)

Cost-
Popular
M
(SE)

Math 
ach. 
(of 70) 
M
(SE)

High- 
ability 
students 
% of class

SES
M
(SE)

STEM
% o f
class

Over
rep

Under
rep

SI -  Low 
(34.3%)

-.304
(.055)

-.397
(.048)

-.598
(.069)

-.599
(.067)

-.024
(.018)

-.126
(.018)

38.115
(.164)

13.8 -.092
(.014)

19.3

S2 -
Typical
(51.7%)

-.034
(.026)

.078
(.029)

-.035
(.026)

.127
(.024)

-.045
(.012)

.000
(.013)

39.357
(.157)

15.2 -.057
(.010)

23.7 WF BF, BM

S3 -  
High 
(14.0%)

.673
(.034)

.639
(.079)

1.479
(.016)

.889
(.042)

.196
(.027)

.192
(.028)

40.293
(.315)

18.7 -.049
(.020)

41.3 AF,
AM,
BF

HM,
WM

Entire
Sample

.002
(.017)

.001
(.016)

.002
(.017)

.006
(.017)

.000
(.016)

.000
(.017)

38.956
(0.187)

15.9 -.072
(.012)

26.1
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CHAPTER 5 

DISCUSSION, CONCLUSIONS, IMPLICATIONS

The purposes of this study were to investigate extant expectancy-value 

motivational profiles of ninth grade students and the relationships o f those profiles with 

occupational choice, high-ability status, mathematics achievement, and demographic 

variables. This study investigated the following research questions:

Research Questions

1. What distinct profiles emerge from measures of mathematics self-efficacy and 

mathematics task values (interest-enjoyment value, utility value, and 

attainment value)?

2. What distinct profiles emerge from measures of science self-efficacy and 

science task values (interest-enjoyment value, utility value, and attainment 

value)?

3. How is cost related to mathematics and science profile membership?

4. How do the memberships o f the mathematics and science profiles compare?

5. How do these profiles relate to mathematics ability?

6. How do these profiles relate to STEM occupational choice?

7. How do these profiles relate to giftedness?

8. How does membership in these profiles differ by (a) race-gender group and 

(b) socioeconomic status?
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Extant Mathematics and Science Expectancy-Value Profiles

The main objective of this study was to identify mathematics and science 

motivation latent classes. An exploratory modeling process revealed patterns in the latent 

profile indicators that were observed in the population of US ninth-grade students in 

2009. Separate models were established for mathematics expectancy-value and for 

science expectancy value. These models differed by the number of distinct classes that 

were identified and by the parameterization of the covariance matrix. In math model 4D, 

four distinct classes of mathematics expectancy-value were identified and the best model 

employed a covariance matrix in which the indicator variances were allowed to vary 

within clusters and across classes, while the covariances could vary within classes but 

were constrained to be equal across the classes. The math latent class indicators, MSE, 

MAV, MUV, and MIV were correlated, but these correlations were the same for each 

class. The variances of the four indicators were different from each other and varied 

across the classes. In science model 4E, three distinct classes of science expectancy-value 

were identified and the best model utilized a covariance matrix in which the indicator 

variances and covariances were allowed to vary within and across classes. The science 

latent class indicators, SSE, SAV, SUV, and SIV were correlated and those correlations 

differed for each class. The variances o f the four indicators were different from each 

other and varied across the classes. Thus the best science model had a more complex 

covariance matrix than the best math model, while the best math model had more classes 

than the best science model. The latent profile indicators for science had more complex 

interrelationships while the cases were categorized into fewer distinct classes than the 

math model.
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The classes that were identified partially supported the hypothesis that a number 

of subgroups would be identified with high, low and mixed levels o f expectancy-value. 

The high and low classes were identified for mathematics and for science, while mixed 

levels were only identified for mathematics. Based on Conley (2012), who found seven 

distinct clusters in her analysis of mathematics expectancies and values, it was expected 

that the latent class models would have had several classes. However, Conley used 

cluster analysis and model selection was affected more by the researcher’s opinion than 

objective measures. Therefore, direct comparisons between the cluster solutions in 

Conley (2012) and the latent profile solutions in the current study may not be valid. 

Comparison of Math and Science Profiles

The latent class expectancy-value models that were obtained in this study 

revealed information about students’ comparative self-efficacies and subjective task 

values in mathematics and science. While the math model had four classes, the science 

model only had three classes. However, both models were selected based on the model- 

selection guidelines of Pastor et al. (2007). Thus, there was more differentiation in the 

ways that students viewed their mathematics expectancies and values than their science 

expectancies and values. First, in the math model the high MSE class (class 3) depicted a 

class of students who had a mean math self-efficacy that was at the 94th percentile with a 

math utility value that was around the 67th percentile. However, a similar profile was not 

seen in the science classes. Second, the high MUV class (class 4) described a class of 

students who had a mean math utility value that was at the 87th percentile with a math 

self-efficacy that was around the 60th percentile. A similar high SUV profile was 

identified in the science classes. The high SUV class described a class of students who
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had a mean science utility value that was at the 93rd percentile with an average science 

self-efficacy that was at the 75th percentile. The high math and science classes had the 

highest correct class assignment probabilities, which indicated that the high classes are 

better defined than the low and average classes where greater probabilities o f incorrect 

assignment were observed. The math profiles reflected a wider range of all constructs 

between classes, except for utility value, than the science profiles.

Class Size and Membership

The size of the two high math classes combined (66.2%) far exceeded the size of 

the high science class (14.0%), the size of the low science class (34.3%) was slightly 

larger than the size of the low math class (29.7%), and the size of the average science 

class (51.7%) was much greater than the size of the average math class (36.5%). Fewer 

students had high science expectancy-value profiles than had high mathematics 

expectancy-value profiles. Although a class o f students who placed a high utility value on 

science was identified, a class typified by high science-self-efficacy was not identified. 

Classes had a wider range of math self-efficacies than science self-efficacies; a relatively 

low MSE was observed in the high MUV class. A possible cause may be that students 

have had a greater number of and more frequent experiences with mathematics than with 

science prior to high school because of US testing mandates that place much greater 

emphasis on mathematics than science in the K-8 curriculum (Berliner, 2009, 2011; 

McMurrer, 2008). Thus, students may have not developed a strong sense of what science 

is or of their abilities in science by the ninth grade. If the current trend of increased 

emphasis on STEM education continues, more differentiation of students’ science 

expectancy-value profiles may result.
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Some dependency between math and science class membership was identified 

because students who were in the two high math classes were in the high science class, 

those in the average math class were in the average science class, and those in the low 

math class were in the low science class more frequently than would have been expected 

by chance. However, a surprising finding was that students who were in the high MSE 

class were in both the low and high science classes more frequently than would have 

been expected by chance and in the average science classes less frequently than would 

have been expected by chance. For some students, there was a negative relationship 

between math expectancy-value and science expectancy-value.

Representation of High-Ability Students

In this study, high-ability was operationalized as students who scored +1Z 

(84.1%) on the mathematics achievement test within the respective race/ethnicity group. 

This is a much broader conception of giftedness than is generally seen in practice because 

typical threshold scores are closer to 95% for selection, and it reflects a strategic effort to 

identify equal proportions of gifted students in every race/ethnicity group through the use 

o f group-specific thresholds. It was hypothesized that expectancy-value profiles would 

not be strongly related to giftedness; the findings of this study supported this hypothesis. 

The representation of high-ability students varied considerably between the math classes 

and the science classes. While the high MSE class had nearly twice the level o f high- 

ability students as in the population, high-ability students were represented in the high 

MUV class at a rate proportional to the population. High-ability students had a 

significantly greater chance of belonging to the high MSE class, but their chances of 

belonging to the high MUV classes or low math classes were not different than their
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chances of belonging to the average class. However, there was a positive relationship 

between mathematics ability and math self-efficacy, as would be expected. Interestingly, 

in the science classes the distribution of high-ability students was much more uniform, 

with little difference in the chance of high-ability students belonging to the low or high 

science group compared to the average group. There was a much smaller relationship 

between high-ability and science expectancy-value class membership than the 

relationship between high-ability and math expectancy-value class membership. Thus, 

high-ability status based on mathematics achievement was a poor predictor of 

expectancy-value class membership in science. However, this difference may be 

attributable to the fact that the identification of high ability was a mathematics 

achievement measure because no science achievement measure was administered in 

HSLS. Furthermore, the more inclusive operationalization o f high ability means that 

many students who were included in this group have not been formally identified as 

having high ability by their schools. The lack of formal identification may cause these 

students to have lower self-efficacy and attainment value in the domain because they 

have not received the affirmation of their teachers. These lower expectancies and values 

would result in a lower expectancy-value class membership than the students’ abilities 

might warrant.

Representation of Race-Gender Groups

It was hypothesized that males (Black and White) would be overrepresented in the 

high expectancy-value profiles. The findings only partially support this hypothesis. White 

males were only overrepresented in the high MSE class, while Black males were only 

overrepresented in the high MUV class. Furthermore, neither group was overrepresented
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in the high science class. However, several other instances o f over- and 

underrepresentation were identified in the mathematics classes and some in the science 

classes. Asian males and White males were overrepresented in the high MSE group, 

while Black females and Black males were significantly overrepresented in the high 

MUV group. Hispanic females and White females were overrepresented in the low math 

class. The high rate of representation of Black females in the two high math classes 

implies that these girls have not internalized common negative stereotypes about 

mathematics. However, the low rate of representation for Hispanic females and White 

females implies that these girls may have been more affected by negative stereotypes. 

This supports the findings of Simpkins and Davis-Kean (2005) that the gap between 

females mathematics self-concepts has narrowed, while contradicting the findings of 

Riegle-Crumb et al. (2011) who found that Black females had lower math self-concepts 

than other students. The findings of this study indicated that gender gaps in mathematics 

expectancy-value class assignment are much smaller for Black students than for other 

students. This phenomenon should be investigated further.

Black females were the only group overrepresented in the high MUV group. This 

finding is interesting because it implies that Black female students view mathematics as 

important for their future careers and college entrance at greater rates than other students. 

However, like other members of the high MUV group, these students selected STEM 

occupations at rates that were only slightly higher than the overall population. This 

finding implies that these students saw mathematics as important for entrance into 

college, success in college, and for future careers, but not necessarily for a STEM career. 

The prominence of utility value in both the mathematics and science profiles is supported
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by previous research (e.g. Andersen & Ward, in press; Maltese & Tai 2011), which 

supported utility value as predictive of persistence plans or the completion of a STEM 

bachelor’s degree. However, in this study the high MSE profile had a stronger association 

with STEM occupational choice than the high MUV profile.

The distribution of Black females among the motivation classes was surprising 

because the overrepresentation of these students in the high math and science classes 

implies that these girls do not personally endorse prevalent stereotypes about minorities 

or females and mathematics and science ability. This is a contrast to the 

underrepresentation of Hispanic females and White females in the high math and science 

classes, which indicates that Hispanic females and White females are more susceptible to 

gender stereotyping than Black females. However, the continued underrepresentation of 

Black females in STEM occupations may indicate that events that happen after ninth 

grade may deflate these girls’ sense of efficacy and value and reduce their motivation to 

persist.

The science classes had fewer instances of over- or underrepresentation. In the 

high SUV group, Hispanics males and Whites males were underrepresented, while Asian 

females, Asian males, and Black females were overrepresented. An interesting finding 

was that Hispanic females were not underrepresented in the high science profile, nor were 

Black males which ran counter to research on identity-based motivation (e. g. Carlone & 

Johnson, 2007; Kao, 2000; Oyserman & Destin, 2010) that claims lower science 

identities for these students. However, none of the science classes was typified by a high 

science self-efficacy.
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In general, White students were underrepresented in both high utility value classes 

(math and science), which indicated that majority status tends to be correlated to lower 

utility value. Of minority students, only Hispanic males were underrepresented in the 

high SUV profile indicating that minority status tended to correlate to higher utility value. 

Surprisingly, even though White males are the modal gifted for science these students 

were underrepresented in the high science class.

Representation of SES

Students of different SES were distributed quite differently in the mathematics 

classes than in the science classes. The high MSE class had the highest mean SES, the 

average class had an average value of SES, and both the high MUV and low classes had 

the same and lowest mean SES. Lower SES students tended to have a higher utility value 

for mathematics. Although the differences in SES were statistically significant, they were 

relatively small. These findings imply that there was not a relationship between SES and 

science expectancy-value class. It was surprising that science class membership was 

independent of SES while math class membership had a relationship with SES, albeit a 

small one. In the math classes, the high MUV class had the lowest SES and the highest 

utility value for mathematics, which implies that students in this class may view 

mathematics coursetaking as a means to pull themselves up from a lower SES group to a 

higher one. Science does not appear to be viewed in this way.

STEM Occupational Choice

Overall, 26.1% of ninth-grade students planned to be in a STEM occupation at 

age 30 and have earned a bachelor’s degree. It was hypothesized that high expectancy- 

value classes would have stronger relationships to STEM occupational choice. The
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results support this hypothesis. Both the math and science latent classes had relationships 

with STEM occupational choice, but the science classes better predicted choice than the 

math classes. Among the math classes, the high MSE class had the highest rate o f STEM 

occupational choice (35.3%), while the high MUV profile had a lower rate (28.4%). This 

finding implies that high math self-efficacy is a better predictor of choice than high math 

utility value. The high MUV class had only a slightly higher rate of choice than the 

average math class (24.6%). This implies that although students in the high MUV class 

hold a high utility value for mathematics, this is not as influential in the decision to 

pursue a STEM career as high values of mathematics self-efficacy. Among the science 

classes, the high SUV profile had the highest rate of STEM occupational choice (41.3%); 

however, there was not a high SSE profile for comparison. The average science class 

(23.7%) had a rate that was comparable to the average math class (24.6%). These 

findings imply that science-expectancy value class membership is a better predictor of 

STEM occupational choice than math expectancy-value membership. The high SUV 

class had the highest SSE of the three science classes; therefore this finding is somewhat 

similar to the findings of Andersen and Ward (in press), that SSE was a better predictor 

of choice than MSE. However, the lack of separate high SSE and high MUV classes 

clouds this issue. Most extant research relies on mathematics expectancies and values to 

predict STEM outcomes (e. g. Maltese & Tai, 2011; Mau, 2003) and this practice may be 

less valuable than using science expectancies and values.

STV Components

In this study, a person-centered approach was taken that considered the 

relationship of profiles of the STV variables that naturally occurred with correlaten and
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an outcome, rather than the mean levels of the STV variables. These two approaches are 

different methods of looking at the same set o f data and each provides useful information. 

Previous research has shown that the STV variables are highly correlated and has 

combined the multiple constructs into a composite variable (e. g. Eccles et al., 1984; 

Simpkins & Davis-Kean, 2005; Watt et al., 2006). In this study, profiles of the STV 

variables showed that the variables are somewhat related but do not always occur at the 

same levels. In the science profiles, the low, average, and high groups all had low, 

average, or high values of each of the EV constructs, respectively; no mixed profiles were 

observed. In the mathematics profiles, the low and average profiles each contained low or 

average values of the EV constructs. However, the two high mathematics profiles were 

mixed. In the high MUV class (class 4) the value of MUV was higher than in the high 

MSE class (class 3). However, MAV was higher in class 3 than class 4, while there was 

no significant difference in MIV between the two classes. The differences between these 

two math classes justify the use of a person-centered approach because these differences 

would not be observed if the STV variables were combined into a composite. However, 

no mixed classes were observed in the science profiles. The C, D, and E, 

parameterizations of the science profiles would not converge for models with larger than 

three classes. Mixed profiles were observed in the A parameterization, but these models 

did not fit as well as the other parameterizations.

Cost

The cost scale was somewhat o f an enigma in this study. Initially, attempts were 

made to include cost in the set of science latent class indicators, but the models would not 

converge due to a problem in the covariance matrix involving the cost variable.
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Therefore, the method was modified to test science latent class models that did not 

include cost and to use cost as a correlate.

The math classes had nearly the same relationship with cost-time as the science 

classes. In math, the range of mean cost-time from the lowest to the highest group was 

0.227 which is an effect size of d=  0.200. The high MSE and high MUV groups had 

equivalent, positive perceptions of cost (z = 0.175 and 0.133). There was no difference in 

the high MUV and high MSE group beliefs that exerting effort in math and science 

would have a negative impact on their time with friends and for activities. This analysis 

showed a significant relationship between math expectancy-value class and cost-time. In 

science the range of cost-time from the lowest to the highest group was 0.220 which is an 

effect size of d=  0.239.

The effect on cost-popular was smaller for the science classes than for the math 

classes. The effect size of the difference in cost-popular from the lowest to the highest 

math class was d=  0.330. In science, the effect size was 0.167. The relationship between 

cost-popular and science class membership is much smaller than the relationship between 

cost-popular and math class membership. This implies that there is much less difference 

between the perceptions of cost for members of different science classes than for 

members of different math classes.

This study addressed problems in the extant literature with external validity 

because a large, nationally representative sample was used. Previous studies of STEM 

occupational choice lacked sufficient representation of underrepresented minority 

students. This provided a chance to examine students’ expectancies and values to see if 

stereotypical patterns existed. The only previous study that separated STV components
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and included cost was Conley (2012). However, her sample consisted of predominantly 

Vietnamese and Latino children of working class parents. Conley (2012) found that 

mathematics utility value was uniformly high and cost had either high or low values with 

no average values across the seven-cluster solution. In this sample that had proportional 

representation to the US population of ninth-grade students in 2009, classes with high and 

low utility value were identified. However, no classes with extreme values o f cost were 

identified. An explanation for this may be that the subpopulations in which extreme 

values of cost might be found were relatively small portions of this sample.

Motivation Profiles and Gifted Potential

The classification of students into motivation profiles has potential to facilitate the 

identification of high-ability students who may exhibit gifted behavior. The Three Ring 

Conception of Giftedness (Renzulli, 1978) describes giftedness as the intersection of 

three traits: above-average ability, task-commitment or motivation, and creativity. Cross 

and Coleman (2005) described gifted adolescent children as those who “demonstrated 

consistent engagement in activities” (p. 59). Production and consistent involvement are 

indicators of high levels of motivation. In this study, a +1Z cutoff was used to define the 

high-ability group and latent profile analysis was used to identify the high motivation 

groups. Through this process, students who possessed the first two traits were identified. 

In the Three Ring Conception of Giftedness (Renzulli, 1978), motivation is a key 

component that must be combined with above average ability and creativity to produce 

gifted behavior. In the School-Based Conception of Giftedness, Cross and Coleman 

(2005) asserted that if a child does not exhibit such indicators of motivation, the child 

should not be labeled gifted.
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Expectancy-value profiles could provide a means to identify those students within 

the high-ability group who have the greatest potential for creative productivity within that 

domain. In the math profiles, the students in the high MSE class (class 3) would be 

identified as highly motivated. This class had 31.2% of its membership from high-ability 

students; this represents 4.1% of the population, which could be considered 

mathematically gifted based on two of the three rings. This elite group represented 25.8% 

of the high-ability students. If the high MUV class (class 4) is included in the highly 

motivated group, the percentage of the population that would be identified as 

mathematically gifted increases to 6.9%, or 43.3% o f the high-ability students. In the 

science profiles, the students in the high SUV class had 18.7% of its membership from 

high-ability students; this represents 2.6% of the population and 16.4% of the high-ability 

students. These two groups have some overlap in membership. The finding that a 

minority of high-ability students also exhibited high motivation is supported by previous 

research with small samples (e. g. Gottfried, Cook, Gottfried, & Morris, 2009; Gottfried 

& Gottfried, 2004).

This approach demonstrates a way to cast a wider net for identification of students 

who are potentially gifted because within group norms were used to identify high-ability 

students and motivation was considered. The use of within group norms has been 

recommended by Lohman (2005, 2006) as a method to alleviate underrepresentation in 

gifted programs, while motivation has been identified in the gifted education literature as 

vitally important to the development of talent and creative productivity (Coleman &

Cross, 2005; Subotnik et al., 2011). Thus, attempts to identify the concomitance of high-
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ability and high motivation could be useful in gifted education to select those students 

who would benefit most from gifted education services.

Motivation Profiles and Underachievement

Expectancy-value profiles could also be used to identify high-ability, but 

undermotivated students who are likely to be underachieving academically. 

Contemporary methods used in schools generally compare expected school achievement, 

as indicated by achievement or IQ tests, to actual school achievement; underachievement 

is indicated by a large disparity between the two. However, by broadening the field of 

view to include above-average students and measuring motivation a larger number of 

underachieving, undermotivated, high-ability students could be identified. An 

examination of the rate at which high-ability students populated the lowest motivation 

profiles in this study exemplifies this point. The low math class (class 2) was comprised 

of 8.4% high-ability students and this represented 2.5% of the population, or 15.7% of 

high-ability students. The low science class (class 1) consisted of 13.8% high-ability 

students and this represents 4.7% of the population, or 29.6% of high-ability students.

The size of the low-motivation, high-ability group in science was larger than the high- 

motivation, high-ability group. The high occurrence o f high-ability students in low 

motivation profiles is a topic that should be investigated further to ascertain the causes of 

this undermotivation, as this condition is likely to result in underachievement and hamper 

the development of potential. However, this group of high-ability students may be less 

likely to benefit from gifted education services than the group of high-ability students 

who exhibit high motivation. Thus, considerations o f relative motivation could prevent 

the placement of students who are unlikely to benefit from gifted education services in
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such programs over placements of students who are more likely to benefit. This view is 

advocated by Cross and Coleman (2005) in the School-Based Conception of Giftedness. 

Given the omnipresent fiscal concerns of public schools it seems prudent to reserve 

placement in gifted education programs to those students who are most likely to benefit. 

Historically, these placements have been reserved for students who scored very high on 

achievement or IQ measures without consideration o f motivation. Perhaps, talent 

development outcomes of gifted education could be improved if motivation was 

considered along with measures of intellectual potential.

Some evidence was found of disidentification among high-ability students. In 

general, the students with higher self-efficacies had higher utility, attainment, and interest 

values. This analysis may not have revealed groups o f student with high self-efficacy and 

low subjective task values because the high-ability group was less than 16% o f the total 

sample; if the latent profile analysis was conducted using the high-ability group alone, 

perhaps this class may have been detected. However, substantial numbers o f high-ability 

students were found in the low motivation classes, which means that many high-ability 

students exhibited low self-efficacy in mathematics or science. This contradicted the 

findings of Dai, Moon, and Feldhusen (1998) in their review of the literature on gifted 

students and self-efficacy that claimed invariant findings of higher self-efficacy among 

gifted students. The relationships of self-efficacy and giftedness in this sample should be 

investigated further.

Future Research

It remains to be analyzed how the classes and the groups of students who chose 

STEM occupations were populated in detail. Although the correlates o f race-gender
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group, high-ability status, and SES were included, interactions were not tested. Extant 

literature on the differences between minority and modal gifted children has raised many 

questions that could be answered with further analysis of these data. For example, 

questions in the literature concerning differentiated views o f cost among race-gender 

groups could shed light on the reasons why some groups are underrepresented in STEM 

occupations. These data could also be used to answer questions about the potential stigma 

of STEM and how it is perceived by students of different race/ethnicity, gender, and SES. 

The future waves o f data that will be collected from this sample will also provide an 

opportunity to explore longitudinal person-centered approaches.
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Appendix A

HSLS: 2009 Variables Used

Variable
X1TXMSCR

X1STU30OCC6

XIRACE

XI SEX

X1SES

S1TEFRNDS,
S1TEACTIV,
S 1TEPOPULAR, and 
S1TEMAKEFUN

X1MTHEFF
(S1MTESTS,
S1MTEXTBOOK,
S1MSKILLS,
S1MASSEXCL)

X1SCIEFF
(S1STESTS,
S 1STEXTBOOK,
S1SSKILLS,
S1SASSEXCL)

Description_____________
Mathematics IRT-estimated 
number right score. 
Maximum of 72 possible.

Occupation expected at age 
30, specified by six digit 
0*NET code

NCES composite variable 
designating race ( 8  values)

NCES composite variable 
designating gender

NCES composite variable 
indicating SES.

Asked students about the 
impact of spending a lot of 
time and effort in math and 
science classes on the 
amount of time for 
friends/activities and peer 
responses

NCES created scale score 
representing mathematics 
self-efficacy, 4 items, a  = 
.90

NCES created scale score 
representing science self- 
efficacy, 4 items, a  = . 8 8

Use____________________
To identify above-average 
mathematics ability within 
each race group and as a 
correlate.

Used to create outcome 
variable, STAYIN

To select the Black, 
Hispanic, and White 
students who will be 
included in this study.

Used with XI RACE to 
create dummy variables for 
race-gender groups

Correlate

Dimension reduction and 
factor analysis used to create 
scale scores for COST.

Latent Class Indicator 
MSE

Latent Class Indicator 
SSE
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X1MTHID
(S1MPERSON1,
S1MPERS0N2)

X1SCIID
(S1SPERSON1,
S1SPERSON2)

X1MTHINT
(S1FAVSUBJ,
S1LEASTSUBJ,
SI MEN JOYING, 
S1MENJOYS, 
S1MWASTE, 
S1MB0RING)

X1SCIINT
(S1FAVSUBJ,
S1LEASTSUBJ,
S1SENJOYING,
S1SENJOYS, S1SWASTE,
S1SBORING)

X1MTHUTI
(S1MUSELIFE,
S1MUSECLG,
S1MUSEJOB)

NCES scale of student’s 
math identity. Used as 
indicator of math 
attainment value. 2  items, a  
= .84

NCES scale of student’s 
science identity. Used as 
indicator of science 
attainment value. 2  items, a  
= .83

NCES scale of math 
interest-enjoyment value, 6  

items, a  = .75

NCES scale of science 
interest-enjoyment value, 6  

items, a  = .73

NCES scale of math utility 
value, 3 items, a  = .78

X 1SCIUTI NCES scale of science
(S1SUSELIFE, utility value. 3 items, a  =
S1SUSECLG, .75
S1SUSEJOB)____________________________________

Latent Class Indicator 
MAY

Latent Class Indicator 
SAY

Latent Class Indicator 
MIV

Latent Class Indicator 
SIV

Latent Class Indicator 
MUV

Latent Class Indicator 
SUV
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Appendix B

Researcher-created Variables Used

Variable Description Use
CM Researcher-created 

variable to represent class 
membership

Latent Class

cs Researcher-created 
variable to represent class 
membership

Latent Class

HABILITY Researcher-created 
dummy variable for ability 
status; Students who have 
scores on X1TXMSCR 
that are 1 SD above the 
mean.

Correlate

STEM Researcher-created 
dummy variable for 
STEM occupational 
choice defined as students 
who planned to be in a 
STEM occupation at age 
30 and have at least a 
Bachelor’s degree

Outcome Variable

WM, WF, BM, BF, HM, 
HF, AM, AF

Researcher-created 
dummy variables for race- 
gender group membership

Correlates

COST-Time
COST-Popular

Researcher-created scale 
score to represent 
perceived cost.

Correlate
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Appendix C

List o f STEM Occupations

Q*NET Code Description
131041 Coroner/Medical Examiner
150000 Computer Sci/Technology
151000 Computer Sci/Tech
151021 Computer Programmer

151031 Computer Programmer

151032 Software Design
151041 IT Support
151051 Computer systems analyst
151071 Computer network specialist
151099 Computer engineer, video game designer
152000 Math
152011 Actuary
152021 Mathematician
152041 Statistician
170000 Computer Business
171011 Architect
171012 Landscape Architect
172000 Engineer
172011 Aerospace Engineer
172021 Agricultural Engineer
172031 Biomedical Engineer
172041 Chemical Engineer
172051 Civil Engineer
172061 Computer Engineer
172071 Electrical Engineer
172072 Electronic Engineer
172112 Industrial Engineer
172121 Naval/Marine/T echnician/Engineer
172131 Materials Engineering
172141 Automotive/Mechanical/Robotic Engineer
172161 Nuclear Engineer
172171 Petroleum Engineer
172199 Engineering, All Others
173011 Architectural & Civil Drafters
173012 Technology Design
173023 Electronic technician, vehicle engineer
190000 Scientist
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191000 Astronaut, Biologist, Scientist
191013 Plant biologist
191021 Geneticist, biochemist
191022 Microbiologist
191023 Marine biologist, ornithologist, herpetologist, zoologist
191029 Biotechnology, physiologist
191031 Park ranger, conservationist
191032 Forestry
191041 Epidemiologist
191042 Medical research scientist
192000 Physics
192011 Astronomy
192012 Physics (Astro, Nano, Nuclear)
192021 Meteorology/Space
192031 Chemist & Psychotherapist
192041 Environmental Science
192042 Geology
193000 Psychology (Social Science)
193011 Economist (Social Science)
193030 Psychologist (Social Science)
193039 Psychologist (Social Science)
193041 Sociologist (Social Science)
193051 Urban Planner (Social Science)
193091 Anthropologist and Archaelogist (Social Science)
193094 Political Scientists (Social Science)
194000 Forensic Science
194021 Biotechnologist
194031 Chemical Technician
194091 Environmental Scientist
194092 Forensic Science Technician
251000 Math or Science Professors
251071 Health Specialties Teachers, postsecondary
251072 Nursing Instructor, post secondary
252000 STEM High School Teachers
252031 Math or Science High School Teacher
271021 Engineering (Car design, weapons research, inventor)
290000 Medical
291000 Doctor/Medical
291011 Chiropractor
291021 Dentist
291023 Orthodontist
291031 Dietician
291041 Optometrist
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291051 Pharmacist
291061 Anesthesiologist
291062 General Practitioner
291063 Internal Medicine
291064 OB GYN
291065 Pediatrician
291066 Psychiatrist
291067 Surgeon
291069 Physicians and Surgeons
291071 Physician Assistant
291111 Nurse
291122 Occupational Therapist
291123 Physical Therapist
291126 Respiratory Therapist
291127 Speech-Language Pathologist
291129 Therapists
291131 Veterinarian
291199 Health Diagnosing and Treating Practitioners
292000 Medical
292011 Medical Lab Director
292021 Dental Hygienists
292031 Cardiovascular tech
292032 Ultrasound technician
292034 X-ray tech
292041 EMT, Paramedic
292052 Pharmacy Tech
292055 Surgical Tech
292056 Veterinarian Tech
299011 Occupational Health Tech
299091 Athletic Trainer
310000 Geriatrics/NICU
311012 Nurses Aide
312000 Occupational therapy assistants
319011 Massage Therapists
319092 Medical Assistant
319096 Veterinary Assistant
492011 Computer technician
493011 Aviation mechanic/technician
493023 Automotive technician
514041 Machinist
514061 Model designer
553019 Military STEM jobs
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Appendix D 

Missing Data Analysis

A large number of cases had missing values on some of the latent profile 

indicators because these students were not enrolled in math or not enrolled in science, 

which resulted in a legitimate skip o f the section of questions that pertained to the math 

or science course respectively. If this was a random effect, the cases with missing data 

could be omitted without biasing the sample. Ultimately, the decision was made to 

include students who were not enrolled in a mathematics or science class in Fall 2009 in 

subsequent analyses. The following data and analyses are provided to substantiate this 

decision.

Two dummy variables were created that indicated students who were not enrolled 

in math (F09Math) or not enrolled in science (F09Science). A third dummy variable 

(MathSci) was the sum of F09Math and F09Science. Table 34 displays the frequency 

distribution of MathSci and the SES for those groups. A one-way ANOVA was used to 

compare the mean SES for each of the three groups and was significant (F(2) = 248.037, 

p  = .000). A Tukey test was used to conduct a post hoc analysis and the differences 

between each pair of groups was significant at the p  = .000 level. The students who were 

not enrolled in math or science had significantly lower SES than the students who were 

enrolled math or science as well as the students who were enrolled in math and science in 

Fall 2009.
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Table 34

Student Enrollment in Math or Science in Fall 2009

Status N SES
M (SD)

Not enrolled in Math or Science 1,152 -0.356 (.696)
Enrolled in Math or Science 2,859 -0.106 (.747)
Enrolled in Math and Science 15,782 0.101 (.789)

Another analysis was conducted to examine the differences in these groups separated by 

math and science (Table 35)

Table 35

Student Enrollment in Math and Science in Fall 2009

Status Frequency SES 
M (SD) t d f P d

Enrolled in Math 17,883 0.0388 (1.003)

Not enrolled in Math 1,910 -0.3634 (0.933) 16.829 1 . 0 0 0 0.42

Enrolled in Science 

Not enrolled in Science

16,540

3,325

0.0619(1.00)

-0.3150(0.935)
19.846 1 . 0 0 0 0.39

The SES of the enrolled students was compared to that of the students who were not 

enrolled using an independent samples t-test and the groups were found to be 

significantly different for math. The effect size was determined by calculating Cohen’s d; 

the effect is a medium-sized effect. This is the same as saying that enrolled group mean
• L

SES is at approximately the 65 percentile o f the non-enrolled group. Therefore, the 

omission of the non-enrolled students would bias the sample in favor o f higher SES.

The enrolled and non-enrolled groups were also compared by race-gender group 

distribution (Table 36). Examination of this data showed that Hispanic and Black
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students were overrepresented in the not enrolled groups while Asian and White students 

were underrepresented. Therefore, the omission of the non-enrolled students would also 

bias the sample in favor of Asian and White students.

Table 36

Math and Science Fall 2009 Non-Enrollment by Race-Gender Group

Race-Gender Group Not enrolled in Math Not enrolled in Science
Asian Female .0764 .1129
Asian Male .0995 .1388
Black Female .1245 .2309
Black Male .1308 .2079
Hispanic Female .1149 .1840
Hispanic Male .1371 .2152
White Female .0788 .1425
White Male .0866 .1551
All Females .0905 .1576
All Males .1023 .1709

Examination of these data led to the decision to retain the cases for students who 

were not enrolled in math or science in Fall 2009. Mplus has excellent capabilities for 

dealing with missing data (Wang & Wang, 2012); MLR estimation was used to handle 

missing data. Models were tested with three different datasets: (1) all cases, (2) all cases 

minus the students who were not enrolled in math, and (3) all cases minus the students 

who were not enrolled in science. The models were compared and found to be equivalent; 

the only difference that was noted was that the entropy was typically .05 higher for the 

models built from datasets without missing data. Thus, the decision was made to proceed 

with all subsequent analyses using the dataset that included the students who had not 

taken math or not taken science in Fall 2009.
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Appendix E

Math Latent Class Profile Plots 
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Math Model 2C
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Appendix F

Mplus VERSION 7 
MUTHEN & MUTHEN 
04/10/2013 4:26 PM

INPUT INSTRUCTIONS

TITLE: LATENT CLASS ANALYSIS LORI ANDERSEN

DATA:
FILE IS hslsnew.dat;
FORMAT IS free;
TYPE IS individual;

VARIABLE:
names -  S tu JD  S chJD  W1STUDEN xltxmscr X1SES 

MAV MUV MSE MIV SAV SUV SSE SIV 
STRAT ID PSU choice hability
WM WF BM BF HM HF AM AF stem costtime costpop; 
USEVARIABLES ARE MAV MUV MSE MIV; 

AUXILIARY = X1TXMSCR (E) X1SES (E)
HABILITY (E)
WM (E) WF (E) BM (E) BF (E) HM (E)
HF (E) AM (E) AF (e) STEM (E) 
costtime (E) costpop (E);

MISSING- ALL(-99);
CLUSTER IS SchJD ;
STRATIFICATION IS STRAT ID;
WEIGHT IS wlstuden; 

classes = cm(4);

ANALYSIS:
TYPE IS mixture;
TYPE IS COMPLEX; 
starts = 1 0 0 0  1 0 0 ; 
stiterations = 50;
ESTIMATOR = MLR;
OPTSEED = 638977;

SAVEDATA:
FILE -  4dCm.DAT;
SAVE -  CPROBABILITIES;

MODEL:
%OVERALL%
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MAV; MUV; MSE; MIV;
MAV WITH MUV MSE MIV;
MUV WITH MSE MIV;
MSE WITH MIV;
%Cm#l%
MAV; MUV; MSE; MIV;
%Cm#2%
MAV; MUV; MSE; MIV;
%Cm#3%
MAV; MUV; MSE; MIV;
%Cm#4%
MAV; MUV; MSE; MIV; 

plot:
series = MSE mav muv miv(*); 
type = plot3;

output:
TECH1 TECH2 TECH8  TECH7 TECH11 TECH 12 MODINDICES SVALUES;
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Appendix G

Science Class Latent Profile Plots 
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Science Model 3A
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Science Model 3C
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Appendix H

Mplus VERSION 7 
MUTHEN & MUTHEN 
04/10/2013 4:19 PM

INPUT INSTRUCTIONS

TITLE: LATENT CLASS ANALYSIS LORI ANDERSEN

DATA:
FILE IS hslsnew.dat;
FORMAT IS free;
TYPE IS individual;

VARIABLE:
names = S tuJD  S chJD  W1STUDEN xltxmscr X1SES 

MAV MUV MSE MIV SAV SUV SSE SIV 
STRAT ID PSU choice hability
WM WF BM BF HM HF AM AF stem costtime costpop;

USEVARIABLES ARE SAV SUV SSE SIV; 
AUXILIARY -  X1TXMSCR (E) X1SES (E)

HABILITY (E)
WM (E) WF (E) BM (E) BF (E) HM (E)
HF (E) AM (E) AF (e) STEM (E) 
costtime (E) costpop (E);

MISSING= ALL(-99);
CLUSTER IS SchJD ;
STRATIFICATION IS STRAT ID;
WEIGHT IS wlstuden;

ID VARIABLE = STU JD ; 
classes = cS(3);

ANALYSIS:
TYPE IS mixture;

TYPE IS COMPLEX; 
starts = 2 0 0 0  2 0 0 ; 
stiterations = 50;

ESTIMATOR = MLR;
OPTSEED = 715561;

SAVEDATA:

FILE = 3E-SCIENCE-NOCOST-FEB26.DAT;
SAVE = CPROB;
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FORMAT = FREE;

MODEL:
%OVERALL%
SAV SUV SSE SIV; 
sav with suv sse siv; 
suv with sse siv; 
sse with siv;
%CS#1%
SAV SUV SSE SIV; 
sav with suv sse siv; 
suv with sse siv; 
sse with siv;
%CS#2%
SAV SUV SSE SIV; 
sav with suv sse siv; 
suv with sse siv; 
sse with siv;
%CS#3%
SAV SUV SSE SIV; 
sav with suv sse siv; 
suv with sse siv; 
sse with siv;

plot:
series = SSE SAV SUV SIV(*); 
type = plot3;

output:
TECH1 TECH2 TECH8 TECH7 TECH11 TECH11 TECH 14 MODINDICES 

SVALUES

1 9 7
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