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ABSTRACT

Particle transport is an important topic in plasma physics. It determines the density

profile of a burning plasma within a tokamak – a magnetic confinement device.

Microscopic turbulent particle transport is two orders of magnitude larger than other

transport mechanisms for electrons and small ions. In order to confine a plasma in a

tokamak with a core density that exceeds the fusion criteria [1], it is essential to study

turbulent particle transport. This thesis investigates how different plasma parameters

such as the toroidal rotation and microscopic instabilities affect turbulent particle

transport in the DIII-D tokamak. First, we show how toroidal rotation can indirectly

affect particle transport, through its contribution to the radial electric field and thus the

E × B shearing rate. The plasma discharge which has best confinement is the one whose

E × B shearing rate is larger than or at least similar to the growth rates that drive

turbulent transport at the plasma edge. Second, for the first time on DIII-D, we observe

a correlation between electron density gradient and instability mode frequency in the

plasma core. We find that, when the turbulence is driven by the ion temperature

gradient (ITG), the local density gradient increases as the the absolute frequency of the

dominant unstable mode decreases. Once the dominant unstable mode switches over to

the trapped electron mode (TEM) regime, the local density gradient decreases again. As

a result the density gradient reaches a maximum when the mode has zero frequency,

which is corresponds to the cross over from ITG to TEM. This correlation opens a new

opportunity for future large burning plasma devices such as ITER to increase the core

density by controlling the turbulence regime. Finally, we show that, in low density

regime, a reduction in core density is observed when electron cyclotron heating (ECH) is

applied. This reduction is not the result of a change in turbulence regime nor the result

of a change in the density gradient in the core. Through detailed time-dependent

experimental analysis, linear gyro-kinetic simulations, and comparison to turbulence

measurements we show that this reduction in core density is the result of an increase in

turbulence drive at the plasma edge.
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CHAPTER 1

Introduction

1.1 Fusion energy

The evolution of human society is always accompanied by the development and need

for new energy. The use of fire, the development of the steam engine, and the application

of electric and nuclear power represent four important stages in human history. Partic-

ularly, the rise of industrial societies is based on the ability to explore and exploit fossil

fuel on a larger scale, with increasing efficiency, and in convenient ways. Without this

energy source, we cannot imagine products like cars, aeroplanes, and computers, which

are indispensable in modern life. As shown in Figure 1.1, in 2015, about 90% of US energy

production comes from fossil fuels and nuclear power while fossil fuels alone take 80% of

the total energy production (Data from U. S. Energy Information Administration [2]).

However, one large problem with the massive use of carbohydrates fuel is that it produces

a large amount of greenhouse gases, which is the major cause of global climate change [3].

According to the statistics from the Carbon Dioxide Information Analysis Center (CDIAC,

Oak Ridge National Lab) [4], global carbon emissions have increased by 500% since 1950.
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FIG. 1.1: US energy production from 1950 in history to 2040 by anticipation. (Data from U.
S. Energy Information Administration [2])

Additionally, in 2014, fossil fuel emissions (including cement production) accounted for

about 91% of total CO2 emissions from all human sources.

Moreover, a high quality of life requires a high use of energy [5]. As more and more

developing countries such as China and India try to improve their life quality to match the

levels of developed countries, they will need an energy increase of at least 200% in the 21st

century [5], providing that the population of developing countries is 6 times larger than

the developed countries. We can see from Figure 1.2, the Organization for Economic Co-

operation and Development (OECD) (most of which are high-income developed countries)

predicts an almost stable consumption in petroleum for developed countries. The require-

ment of liquid fuel from non-OECD countries will increase more than 200% in the next

25 years (Data from U. S. Energy Information Administration [6]). Considering that the

current consumption speed of fossil fuels has far exceeded its reproduction rate, a global
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FIG. 1.2: Petroleum consumption from OECD countries (blue) and Non-OECD countries be-
tween 1990 and 2040. (Data from U. S. Energy Information Administration [6])

energy crisis will arise from the energy demands of those developing countries somewhere

in the foreseeable future.

On the other hand, nuclear fission has proven to be a reliable, carbon-free energy

source that can be sustained for centuries based on availability of fissionable materials on

earth. The taken share of fission energy in US energy production has been climbing since

the 1970s. However, the nuclear disaster in Fukushima [7] (where the tsunami-caused

equipment failure led to three nuclear meltdowns and the release of radioactive material)

in 2011 brought tremendous fear of the nuclear waste and radiation to the public. Con-

sidering the fact that the US has not authorized to build any new nuclear power plant

for 34 years since the Three Mile Island event in 1974 [8, 9], this new round of fear after

Fukushima will result in more uncertainties in the political future for the nuclear power

industry in the United States.
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To sum up, it is needed to find an energy source that is environmentally friendly (free

of greenhouse gases), economically sustainable (fulfil the increasing energy demand), and

operationally safe (less or no nuclear waste).

Nuclear fusion is one of the possible solutions toward future alternative energy sys-

tems. For billions of years, fusion reactions have powered the sun. At exceedingly high

temperatures such as those in the core of the sun, light nuclei, usually hydrogen isotopes,

can collide with each other so that heavier nuclear species are formed and a large amount

of their binding energy is released. This is referred to as fusion. Nuclear fusion has two

major advantages. The first is clean. It produces no greenhouse gas and has a limited

amount of nuclear waste when compared with the fission reaction. The half-life cycle of

the fusion by-product is also much shorter than all the current nuclear fission products

[10, 11]. Secondly, on our planet, there are a lot more fuels for the fusion reaction than the

fission. Both the ocean and the earth provide almost unlimited fuel supply of hydrogen

isotopes. For example, it has been recognized that among possible fusion reactions, the

most practical one is the Deuterium and Tritium reaction:

D + T = 4He + n + 17.6MeV (1.1)

since the D+ T reaction has a larger reaction cross section and releases more energy than

other fusion reactions such as D +D [12] (here n represents a neutron). There is a large

amount of Deuterium in the ocean, specifically, in the surface sea water (i.e., upper 3

meters of ocean surface [13]). Every litre of sea water contains about 0.03g Deuterium

on average [14]. This 0.03g Deuterium can release fusion energy which equals the energy

released by burning 300 litres of gasoline [15]. By comparison, Tritium is radioactive and
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is actually non-existent in nature (it has a decay half-life of only 12.3 years). However,

we can still use the fission reaction with lithium as an additional raw material to breed

enough tritium:

n + 6Li = 4He + T + 4.8MeV (1.2)

n + 7Li = 4He + T + n − 2.5MeV (1.3)

Here n represents neutron. Therefore, nuclear fusion has become an ideal future energy

candidate since the 1950s.

1.2 Magnetic confinement and tokamak

Although it is not difficult to obtain enough fuel for fusion energy production, the

temperatures needed to trigger the reaction are extremely high. The particles need suffi-

ciently large kinetic energy to overcome the Coulomb barrier before the nuclear force can

dominate. Even for the D+ T reaction which has the minimum temperature requirement

among all the fusion reactions, it is still necessary to reach 10Kev, which is around the

order of 108K [12]. At such high temperatures, the atoms are stripped of their electrons

and form an ionized cloud of particles called “plasma”. A plasma can be loosely defined

as an electrically neutral medium of unbounded positive and negative particles, which can

be achieved by heating a gas to high temperatures [16, 17]. In addition to the required

temperatures, the heated plasmas need to be sufficiently dense and these conditions needs

to be maintained for a long enough period so that the fusion process can become self-

sustained. J. D. Lawson quantized all the above requirements for the D+ T reaction with

Lawson Criteria [1] in 1957:

nτET > 3× 1021m−3KeV s (1.4)
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where n, τE , T are the plasma density, the energy confinement time, and the plasma

temperature respectively. Therefore, how to confine a heated plasma well is an essential

problem which will determine the feasibility of fusion.

Currently, there are two promising ways in the laboratory to confine high temperature,

high density plasmas. One is called inertial confinement [18] which uses a set of concentric

laser beams or X-rays to heat a target pellet. As the outer layer of the pellet ablates off, the

inner fusion fuels are compressed and thus a very high density is contained by the pellet’s

inertia to achieve the fusion burn. The other method is called magnetic confinement. It

uses the Lorentz force which acts on ionized particles when they are crossing a magnetic

field to confine the plasmas on a much longer time scale than the inertial confinement.

Since ionized particles gyrate around a magnetic line while their gyration center moves

along the field line, we can build a torus with self-closed toroidal field lines inside it (as

shown in Figure 1.3). Thus particles following along the closed field lines can remain within

the toroidal confinement chamber. The toroidal magnetic field Bφ is generated by external

Torus

Toroidal Field

FIG. 1.3: Closed toroidal magnetic confinement .
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coils which surround the vacuum vessel of the torus. However, only having a toroidal field

results in poor confinement. There exists a vertical drift on those particles which spiral

around the field lines. The drift is caused by the outward forces that result from gradients

of the magnetic lines as well as its curvature and thus is called ∇B and curvature drift

respectively [12]. As shown in Figure 1.4’s situation where the toroidal magnetic field

+

-

curvB vv ,

curvB vv ,

BEv
E

B

B

Current

FIG. 1.4: Particles drifts under toroidal field : Vertical ∇B and curvature drifts cause charge
separation, which then leads to a radially outward E ×B drift of the plasma particles.

points inside the paper, the ∇B drift v∇B and the curvature drift vcurv are up for ions and

down for electrons. These drifts result in charge separation which produces a downward

electric field E. The electric field can lead to a radially outward E × B drift [17] that

carries the plasma to the outer wall and thus breaks the confinement. To prevent the drift

loss, we need to create another poloidal magnetic field which is produced by the toroidal

plasma current. The poloidal field, although it is typically less than the toroidal field by

an order of magnitude, can help to improve the confinement by continuing to bring these

outer side drifting particles to the inner side of the ’donut’. The tokamak is one of the most
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successful magnetic confinement techniques [12, 17]. It is a torus whose magnetic field,

B, consists of both poloidal and toroidal components, Bθ and Bφ, as shown in Figure 1.5.

Therefore, the resultant total magnetic fields of tokamaks are helical, with the field lines

wrapping around the torus both toroidally and poloidally, forming the nested magnetic

flux surfaces within the vacuum vessel (Figure 1.5).

B

B

Rmaj a

poloidal 

angletoroidal 

angle

flux 

surface

(a) (b)

FIG. 1.5: Magnetic field lines in tokamak : There are toroidal direction as well as poloidal
direction magnetic fields.

1.3 Structure of dissertation

This dissertation investigates how different plasma conditions such as toroidal rota-

tion or instability types can affect the turbulent particle transport in tokamak plasmas. In

Chapter 2, we first introduce the concepts of classical and neoclassical transport theories.

However, these two theories predict much smaller transport coefficients than the experi-

mental results when it comes to calculating the cross-field transport [17]. This discrepancy

between experiment and theory is defined as anomalous transport. Anomalous transport

is caused by turbulence and dominates radial transport in a tokamak. In section 2.2, We
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describe some basic turbulence properties along with one of its suppression mechanisms

through shear flow. Two types of turbulence (i.e., ion temperature gradient mode (ITG)

and trapped electron mode (TEM)) are identified by their poloidal wavenumber. Differ-

ent modes can affect the transport coefficients and thus result in different particle fluxes.

Finally, the third section of Chapter 2 discuss how particle transport affects the plasma

density profiles. We use a gyrokinetic expression to present the particle flux in the form

of its diagonal and off-diagonal terms. The coefficient of each term is analysed so that a

qualitative comparison between experiment and theory can be achieved.

Before proceeding to study how different plasma conditions affect turbulent particle

transport, we will introduce two theoretical simulation tools as well as the essential di-

agnostics used in our research in Chapter 3. The first section describes two simulation

codes, namely, ONETWO and TGLF. ONETWO solves the transport equations while

TGLF solves the linear gyrokinetic equations and thus calculates the growth rates and

frequencies of unstable modes in the plasma. The second section of this chapter covers the

basic principles of several diagnostics. These diagnostics are used in our particle transport

studies to provide experimental data as input to the simulations as well as validation for

theoretical models.

In Chapter 4, the study of how controlled changes in toroidal rotation affect particle

transport and confinement is presented. The toroidal rotation is altered using the co- and

counter Neutral Beam Injection (NBI) in low collisionality H-mode plasmas on DIII-D [19]

with dominant Electron Cyclotron Heating (ECH). We find that when the E × B shear

is less than the linear gyrokinetic growth rate for small wavenumber, which is observed

in a balanced torque injected discharge, particle confinement is lower than in cases where

the linear growth rate is smaller than the E × B shear. In the co- and counter- injected
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discharges the E × B shear is larger or close to the linear growth rate and both configu-

rations result in better particle confinement. In addition, we observe that the calculated

quasi-linear particle flux using TGLF [20] does not agree with experimental observations.

To measure particle transport, we use a small periodic perturbative gas puff from which

we can extract the perturbed diffusion and inward pinch coefficients. This work is sum-

marized in X. Wang et al. [21]

Next, in Chapter 5, we will introduce how the changes in turbulence characteristics

result in changes in turbulent particle transport and thus different electron density pro-

files. That is, the change from ITG regime to TEM regime causes a change of inward to

outward thermal-diffusive electron flux. In an H-mode experiment on DIII-D, the ECH

power is modulated with a period of 500 ms on top of steady neutral beam heating. By

fitting the density evolution during the ECH pulse, we find that the local density gradient

in plasma core agrees with the theoretical gyro-kinetic predictions [22]. Gyro-kinetics pre-

dict that when the absolute frequency of the dominant unstable mode decreases in the ion

temperature gradient (ITG) regime, local density peaking increases. Once the dominant

mode switches over to the trapped electron mode (TEM) regime, the local peaking of the

density decreases again, which means that the density gradient reaches a maximum right

where the turbulence regime switches over from ITG to TEM. For the first time in DIII-D,

we observe this correlation between the changes in density gradient and this change in

frequency, in agreement with theoretical prediction [22] and experimental results on AUG

[23]. We also find that the experimental particle flux (which is independent of the local

gradients) shows a similar correlation. This is a clear indication that particle transport is

dominated by changes in turbulence.

Beside the correlation between the electron density gradient and the mode frequency

11



in Chapter 5, we also observe an electron density pump-out immediately after applying

the ECH pulses. In Chapter 6, we use the same fitted density and temperature data as

in Chapter 5. We find that the strongest density reduction occurs outside mid-radius in

the tokamak, while the initial increase in electron temperature occurs in the plasma core.

So while, the ECH is added to the plasma core, the density pump-out originates at the

plasma edge. Both the linear gyrokinetic analysis using TGLF [20] and the experimen-

tal measured density fluctuations show that the turbulence regime only switches to the

trapped electron mode (TEM), after 150ms. So the onset of the density pump-out is not

the result of a change in turbulence regime, which is what has been assumed in previous

research [24]. The pump-out is the result of an increase in turbulence drive. In addition,

when the ECH pulse is turned off, electron density gets “pumped in” from the plasma

edge and then the turbulence changes back from TEM to ITG.

Chapter 7 will provide a final summary as well as future research directions.
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CHAPTER 2

Particle transport in tokamak

Since fusion power scales with the plasma density squared [1], achieving a high central

density in a reactor is of particular importance. In tokamaks, cross-field particle transport

plays a significant role in deciding the density profiles. Cross-field transport can result in an

outward particle loss or an inward particle pinch depending on different plasma parameters.

Thus, to obtain a magnetically confined plasma whose core density peaks and exceeds the

fusion criteria [1], it is essential to study particle transport within tokamaks. In this

chapter, we start from classical and neoclassical collision theory in Section 2.1 to describe

cross-field transport. However, these two theories predict smaller diffusion coefficients

than the experimental measurements. Thus the importance of including turbulence-caused

anomalous transport process is addressed. Next in Section 2.2, the basic properties of

turbulence are introduced, along with one of its suppression mechanisms (via E×B shear

flow). Two types of turbulence (i.e., the ion temperature gradient (ITG) mode and the

trapped electron mode (TEM)) are also described from the angle of their driven terms in

this section. The last section, Section 2.3, reviews the recent literature on particle transport

and its relation in determining density profiles in tokamaks. A full multi-channel transport
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matrix will be given to describe both the diagonal and off-diagonal terms of the particle

flux.

2.1 Classical and neoclassical particle transport

2.1.1 Classical processes

Confinement in a closed plasma system is limited by various forms of cross-field trans-

port. Classical transport represents the minimum level of “leakiness” from a confinement

system [12]. The underlying physical mechanism involved is binary Coulomb collision

which causes the particles to step from one orbit centered on one magnetic surface to

another orbit centered on a neighbouring magnetic surface, as shown in Figure 2.1 for a

cylindrical system. The general collisional diffusion can be modelled as a random walk

Inner magne!c 

surface

Outer magne!c 

surface

Magne!c field 

lines

Collision

FIG. 2.1: Classical cross-field transport in a cylindrical system.

with a mean free path ∆x and a characteristic time τ . The diffusion coefficient D can be
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expressed as [12]:

D =
∆x2

τ
(2.1)

In a cylindrical magnetic field system, since a particle excurses from a magnetic surface on

the order of its gyro-radius, the mean free path length should be the particle’s gyro-radius

∆x = ρ = mv⊥
eB

, and the characteristic time τ = 1
ν
is the inverse of the collisional scattering

frequency ν. Here, m is the particle mass, v⊥ is the perpendicular velocity to the magnetic

field B, e is the unit charge. Thus the diffusion coefficient given by classical transport for

an electron-ion collision is:

D = νeiρ
2
e (2.2)

where

νei =
e4nilnΛ

4πǫ20m
2
ev

3
th,e

[s−1]

is the electron-ion collision frequency [25], e is electron charge, ni is the ion density, me is

the electron mass, vth,e =
√

2Te
me

is the electron thermal velocity (Te is the electron temper-

ature), ǫ0 the vacuum permittivity, and lnΛ is the dimensionless plasma parameter defined

by Λ = 4
3
π( ǫ0Te

e2ni
)3/2 [25]. We only consider electron-ion collision, because the classical par-

ticle diffusion results from coulomb collisions. The conservation of angular momentum

indicates that no shift in the center of mass occurs for like-particles and thus only unlike-

particles collisions lead to particle diffusion, implying Delectron = Dion = D [25]. As an

example, if we use typical plasma parameters which are obtained in our experiments in

the DIII-D tokamak [19] (detailed experiment set up will be introduced in Chapter 4 and

Chapter 5). The plasma core electron temperature is around 4 Kev, core ion density ni is

about 3×1019m−3, and the toroidal magnetic field is B ≈ 2T . Substituting these numbers

into equation 2.2, we can estimate the classical transport diffusion coefficient to be of the

order of 10−4 [m2/s].
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2.1.2 Neoclassical processes

The classical theory was developed in a cylindrical system. However, for a toroidal

geometry, the particle orbits can excurse away from a magnetic surface in a considerably

larger step size than the gyro-radius. The cross-field transport which is caused by the

inhomogeneity of the magnetic fields is called neoclassical transport [12]. In a tokamak,

all particles gyrate in small circles along a magnetic field line and the center of this gyration

orbit is called the guiding center. For most untrapped particles, the guiding center simply

follows the field line around the torus, see Figure 1.5 (similar as in the classical picture).

However, in a tokamak, the toroidal field Bφ strength is proportional to 1/R:

Bφ(R) =
B0R0

R
(2.3)

where B0 is the magnetic field strength in the plasma center, R0 is the major radius, and

R denotes length in the major radii. Thus Bφ is larger on the inner side of the torus than

the outer side. This causes the guiding center of some particles (trapped particles) to be

reflected at a certain poloidal angle, similar to the dynamics in a magnetic mirror, see

Figure 2.2. As a first approximation, an ion which has a parallel velocity of v‖ <
√

r
R
v

will be trapped. Thus the fraction of the trapped particles is f ≈ ǫ1/2, here v is the total

velocity and the inverse aspect ratio ǫ = r
R

(r and R as shown in Figure 2.2) [26]. As

the trapped-particle guiding centers bounce back and force along the field lines, they are

subject to a drift vD arising from the inhomogeneity of the magnetic field (specifically

the ∇B and the curvature drift as we have discussed in Chapter 1). The drift directed

in the vertical direction with the sign depending on the particle charge and magnetic

field. The approximate magnitude of this drift is vD ≈ mcv2/eBR. For ions, as shown in
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FIG. 2.2: Trapped ions in tokamaks go around a banana orbit in its poloidal projection.

Figure 2.2, at the top of the circular orbit, the vertical drift has an outward component

in the radial direction, while at the bottom of the orbit it has an inward component in

the radial direction. The result of this component of the drift is that the projection of the

guiding center orbit has a “banana” shape in its trapped area, see Figure 2.2. Therefore,

the cross-field diffusive step size of these trapped particles should be the banana orbit’s

width ∆b ≈ vDτ ≈ (r/R)1/2ρθ, where ρθ = mv/eBθ is ionized particle’s gyro-radius in

the poloidal field. On the other hand, since only a small angular deflection is needed, the

collisional scattering out of the trapped-particle region will take place with an effective

frequency νeff ≈ ν/ǫ. Thus by the definition in equation 2.1, the diffusion coefficient

involving a fraction of ǫ1/2 trapped particles should be:

DNC = ǫ1/2νeff∆
2
b ≈ (r/R)1/2νρ2θ ≈ (R/r)3/2q2νρ2 (2.4)
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Where the safety factor is defined as q =
rBφ

RBθ
[25]. Equation 2.4 indicates that the neoclas-

sical diffusion coefficient is a factor (R/r)3/2q2 larger than the classical diffusion coefficient

in equation 2.2. With our experimental parameters substituted, the calculated neoclas-

sical diffusion coefficient is approximately two orders larger than the classical diffusion

coefficient. Lastly, in a low collision frequency regime, a particle can trace out several

banana orbits before colliding. However, when the collisionality (define as ν∗ = νqR/vth

where vth is the thermal velocity) increases, collisions are too frequent to permit a trapped

particle to complete its banana orbit. Thus both the step size and the collision frequency

will be different. Historically, we sort the diffusive coefficients based on collisionality into

three regimes, namely, Banana regime ν∗ < 1, Plateau regime 1 < ν∗ < (R/r)3/2, and

Pfirsch-Schluter regime (R/r)3/2 < ν∗ [27]. Figure 2.3 illustrates how the diffusion coeffi-

cient changes with collisionality in three regimes.

B
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a

Plateau
Pfirs

h-SchluterD

Collision frequency
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1

FIG. 2.3: Diffusion coefficient in Classical and Neoclassical transport .
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Another implication of the neoclassical transport theory for electrons is that the ex-

ternally induced toroidal electric field causes inward plasma pinching. It is been observed

in the Alcator C-Mod tokamak [28] with ion cyclotron range of frequency (ICRF) heating

(a heating method which heats the ions through wave-particle resonance), that an internal

transport barrier is formed in the plasma core. This internal transport barrier results in

a peaked density profile in the center while keeps a similar density profile outside mid-

radius, see Figure 2.4. Since there is no central particle source, the increase in central

1

Without central ICRF

With central ICRF

ne

Central ICRF 

heating

Fueling 

from edge

FIG. 2.4: Core density peaking under ICRF .

density suggests that the outward diffusion needs to be balanced by an inward pinch. In

1970, A. A. Ware [29] found that, in toroidal plasmas, collisionless trapped particles can

drift inward at a velocity of

vware = cEφ/Bθ

which is about 100 times larger than the inward direction’s E×B drift vE×B =
cEφBθ

Bφ2
. Here

Bθ is poloidal magnetic field, Eφ, Bφ are toroidal electric and magnetic field, and the E×B

drift is the drift that a particle has when under the electric force that is perpendicular
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to the magnetic field (it has the magnitude of vE×B = cE×B

B2 with the direction being

perpendicular to both the force and the field). This pinch is later named as the Ware

pinch [29, 17] and has been identified experimentally in many tokamaks [30, 31, 32, 33].

2.1.3 The need for anomalous processes

The former two sections have introduced the classical and neoclassical theories for the

cross-field transport. Although neoclassical theory predicts a diffusion coefficient that is

two orders larger than the classical prediction in our experimental conditions, it is still

too small compared with the actual experimental measured value. For example, in one

of our DIII-D low collisionality discharges [21], the measured electron density is around

5 × 1019m−3 in plasma core, and the electron flux which is calculated by particle bal-

ance equation is 0.5 × 1019m−2s−1. Therefore the actual effective diffusion coefficient

should be of the order of 0.1m2/s, which is much larger than either the classical prediction

(Delectron = Dion ≈ 10−4m2/s) or the neoclassical prediction (≈ 10−2m2/s). Similar ob-

servations are also found in other tokamaks such as ASDEX [34, 30], TFTR [35], and JET

[36], where measured electron particle diffusivity (around 0.1m2/s for H-mode and 1m2/s

for L-mode) is of the same order of the electron heat conductivity and is much larger than

the neoclassical predictions.

On the other hand, central density peaking which exceeds the Greenwald limit (an

empirical scaling which describes the plasma edge density limits in tokamak plasmas

at the pedestal [37]) has been regularly observed in many tokamaks around the world

[38, 39, 40, 41]. Density peaking in the core can have two causes: fueling or an in-

ward pinch. While the neoclassical Ware pinch has been identified in some experiments

[30, 31, 32, 33], in most conditions it is too small to play a role when compared with the
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plasma diffusivity (which is assumed to be of the order of electron heat conductivity [30]).

The Ware pinch cannot explain the peaking of density profiles in a wide range of conditions.

Therefore, the assumption of some kind of anomalous cross-field transport is an ev-

ident necessity for both energy and particle transport in tokamaks. Here the anomalous

transport is defined as every other transport phenomena that cannot be explained by clas-

sical and neoclassical theories in plasma systems. Historically, the anomalous transport in

tokamaks is usually blamed on low-frequency micro-instabilities caused by plasma turbu-

lence. Large amount of research has been done on turbulent transport since the 1970s and

significant progress has been made on both theoretical models and diagnostic capabilities

during the past decades. We will introduce some basic turbulence concepts as well as the

physics of turbulent particle transport in the next two sections.

2.2 Turbulence

2.2.1 General introduction to turbulence

Turbulence is a common phenomenon in fluid dynamics. The general cause of turbu-

lence in a fluid is that, the inertial effects (mass wanting to keep going in the direction

that it’s going) grow so large that the fluid’s viscous effects can not contain the system in

the laminar flow regime anymore. When those viscous effects cannot slow down a whole

chunk of fluid, they are acting as an off-axis force to create angular momentum or vortices

on the fluid mass. Because turbulence flow possesses vorticity, it is useful to think of

the flow as a hierarchy of eddies of different scales. Figure 2.5(a) shows the fast camera

image of a neutral white fluid being ejected into a static black background. We can see

the turbulence causes the formation of eddies of many different length scales. A turbulent
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(a) (b)

Core Edge

FIG. 2.5: Fast camera imaging of turbulence in laboratory. (a) A single pulse neutral white
fluid ejected from a nozzle. (Figure taken from Fluid dynamic gallery, engineer department,
University of Duisburg-Essen, Germany) (b) Cross section film of plasma turbulence in the
cylindrical Large Plasma Device (LAPD) at UCLA (Figure taken from T. A. Carter Ref [42])

eddy is a small convection cell, where particle is transported from one side of the eddy

to the other side by a fast flow. As a result, a larger eddy can transport plasma over a

larger radial extent. The eddy coherence length can be defined as the distance over which

the eddy flow remains correlated and can be thought of as a distance on the order of the

eddy diameter in fully developed turbulence [43]. Moreover, during a turbulent transport

process, the diffusive component of transport scales linearly with the eddies’ radial extent.

As shown in Figure 2.5(b), in plasmas, there also exist turbulences causing fluctuations in

density, temperature and potential (black and white blobs in the picture). In a simplified

model, if we assume Lmach the typical machine size, ∆ the radial eddy size, N the number

of steps to randomly walk out of plasma. Then for a particle to be transferred out of the

machine by turbulence, there should be the following equation [44]:

Lmach ≈
√
N ·∆ → N = (

Lmach
∆

)2 (2.5)
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Here
√
N is the expected distance from the origin for a unit random walk in N steps,

it is a statistic average value, readers can refer to William Feller’s “An Introduction to

Probability Theory and Its Applications”, Chapter 5 for more detailed derivation. If

the time scale of the eddy is ∆
ve
, where ve is the characteristic flow velocity of the eddy.

Therefore the confinement time of the plasma will scale with [43, 44]:

τE ∝ N(
∆

ve
) ∝ (

L2
mach

∆ · ve
) (2.6)

Thus we can see from equation 2.6 that the increase of the coherence length ∆ can

strengthen turbulent transport and cause the decrease in the plasma confinement time.

Another property of turbulence is the turn over time, which is defined as the time

for turbulence to lose its coherence. At each position, the plasma flow is a superposition

of many eddies of different scale length. The configuration of these eddies is constantly

changing due to the transfer of energy between the different scales. We can quantify the

turn over time by assuming that, when an eddy rotates, its energy has been transferred to

other eddies and it has decayed in time τe =
∆
ve

[43], where ve is the flow’s characteristic

velocity. In the absence of viscosity, this energy transfer process is conserved since there is

no loss of energy, only a transfer of energy from one scale to another. However, viscosity

is inherently present in a fluid. The effect of viscosity can be quantified by the viscous

dissipation rate (the rate at which the energy of fluid motion is dissipated and converted to

heat), τ−1
d = µvis/∆

2. Where µvis is the kinematic viscosity. Since the dissipation rate is

inversely proportional to ∆2 while the turbulence turn over rate only inversely proportional

to ∆, at smaller eddy scale, τ−1
d increases faster than τ−1

e . Therefore, at large scales where

τ−1
d < τ−1

e , the energy is transferred between scales with negligible dissipation, establishing

an energy cascade. At smaller scales where τ−1
d > τ−1

e , the energy is dissipated before it
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can be transferred to other scales, thus terminating the eddies. Finally, in a steady state

plasma, to maintain the same amount of energy in the turbulence system, new turbulence

eddies should be produced by the instabilities to balance the dissipation. Since eddies are

characterized by a small density and potential perturbation, we can define the turbulence

growth rate using a perturbative theory:

ñ = n0exp(ik · x− iωt), where ω = ωfreq + iγ (2.7)

Here, ñ is the perturbed density, n0 is the local plasma density, ωfreq, γ denote the in-

stability modes frequency and its growth rate, k is the wave number. The growth rate γ

is a key indication of how fast the instability, causing the eddies, grows. As indicated in

Figure 2.6, a positive value of the growth rate means that the instability causes the eddies

to grow, while a negative value corresponds to decay in the growth of the instability.

0

0

0

Background Flows

Turbulence Eddies

timeline

FIG. 2.6: Turbulence eddies’ change with corresponding growth rate The picture shows how
growth rate indicates the grow (γ > 0), decay (γ < 0), and stasis (γ = 0) of the instability
causing eddies in background plasma flows.
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2.2.2 E × B shear stabilization

Turbulent transport in a tokamak can cause heat and particle loss which is larger

than the collisional transport. Thus to achieve plasma conditions in which fusion occurs,

we need to find a way to reduce turbulence in a plasma. Since the 1990s, both theoretical

and experimental work [34, 45, 43, 46, 47, 48, 49] indicate that turbulent transport can be

strongly reduced by E × B shear flow. Within a tokamak plasma, the electric field is the

result of maintaining the force balance in radial direction for each ion species, i:

eEr = e(Zieni)
−1∇Pi − evθiBφ + evφiBθ (2.8)

Here, Er is the radial electric field, Zi is the net charge, Pi is the ion plasma pressure,

v is the plasma velocity, θ and φ denote poloidal and toroidal direction respectively. On

the right hand side of the equation, the first force term comes from the pressure gradient,

while the second and the third force terms come from the Lorentz force caused by poloidal

and toroidal magnetic fields. The radial electric field Er can drive a plasma flow which is

parallel to the field lines, namely, an E × B flow (see Figure 2.7). The flow, vE×B, is the

result from Ohms law [17] for an ideal plasma: (E + vE×B ×B) · qn = 0. So we can have

the E × B flows velocity of: vE×B = E ×B/B2. Finally, with the E × B flows velocity

calculated, we give out the expression for E × B shearing rate:

ωE×B =
dvE×B
dρ

=
(R0Bθ)

2

B
(
∂

∂Ψ
)
Er
R0Bθ

(2.9)

Equation 2.9 is the definition equation of ExB shearing rate ωE×B , where R0 is the major

radius and Ψ is plasma surface flux. The expression for ωE×B is called the Hahm-Burrell

expression [50, 49]. It is a method for calculating the shearing rate based on non-circular

plasma equilibria. Equations 2.7 and 2.9 also show us that both the growth rate and the
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Er

B
EXB flow

Plasma flux 

surface

FIG. 2.7: E × B shear flow : the radial electric field as well as the magnetic field caused the
E ×B shear flow which is perpendicular to both of them.

E×B shearing rate have the same unit (i.e., [rad/s]), so we can compare their magnitudes

directly to see which effect (turbulence or E ×B shear) dominates in a simplified picture.

Theoretically, E × B shear can affect turbulence in two ways [49]: nonlinear decor-

relation, which includes the reduction in turbulences radial correlation length, phase, and

fluctuation size; or linear stabilization, which enhances the turbulences damping by cou-

pling the unstable modes to nearby, stable modes, thus improving the overall stability of

the system. As mentioned earlier, the eddy’s radial extent scales linearly with the diffusive

component of transport. The E × B flow shear can reduce the radial extent of eddies by

tearing apart turbulence eddies and thus effectively decrease the turbulent transport. In

Figure 2.8 we present an intuitive description of how E × B shear flow reduces transport

through scales decorrelation. Figure 2.8(a) shows that when local flow has the same speed

at different radii and no shear exists, all of the microscopic turbulence eddies keep their
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Radial direction

(a) (b) (c)

r1 r2
r3

r1 < r2 r2 < r3

FIG. 2.8: How shear flow tear apart turbulence eddies into small sizes and thus effectively
reduce transport. With (a) no shear, i.e the flow has the same magnitude at all radii. (b) Small
variations in poloidal flow velocity start to stretch and tilt turbulence eddies. (c) Large flow
shear will finally tear apart eddies into small sizes.

original radial coherence length (i.e., size) as well as their characteristic turn over time.

However, when a small flow shear is introduced, the eddies are stretched and start to tilt

(Figure 2.8(b)). Finally, when the flow shear increases even more, the shear results in the

breakdown of the larger sized eddies into smaller sized eddies (Figure 2.8(c)). Since the

transport diffusivity scales with eddy’s radial extent, this breaking down process caused

by shear flow can strongly reduce the turbulent transport. As an experimental example,

we show in the Figure 2.9 the evolution of the plasma turbulence under E ×B shear flow

in the cylindrical Large Plasma Device (LAPD) at UCLA [42]. Figure 2.9(a) is the fast

camera imaging of the turbulence with no shear flow. At some point a biasing electric field

is placed radially in this cylindrical system, causing a poloidal E × B flow (with B field

perpendicular to the paper). This flow stretches and tears apart the turbulence eddies

(black and white blobs) into smaller pieces along radial directions and thus enhance the

confinement (Figure 2.9(c)).
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(a) (b) (c)

vExB

Core Edge

FIG. 2.9: Fast camera imaging of turbulence suppression by shear flow. (a) Cross section film
of plasma turbulence in no shear flow. (b) Shear flow starts to stretch the turbulence eddies.
(c) Fluctuation amplitude decreases in the stretched eddies. (Figure taken from T. A. Carter
Ref [42] in the cylindrical Large Plasma Device (LAPD) at UCLA.)

2.2.3 Types of turbulence: ITG & TEM

We have mentioned in section 2.2.1 that instabilities are the “source” of energy that

maintains and drives turbulence at different scales in plasmas. As the last part of this sec-

tion, we will discuss two types of instability modes, namely, the ion temperature gradient

(ITG) mode and the trapped electron mode (TEM). The ITG and the TEM modes are

the second most dangerous class of modes after the macroscopic magneto-hydrodynamic

instability (MHD) modes. These two kinds of instability modes have poloidal wave length

of the same order as microscopic eddy size (on the order of the ion gyro-radius) and typi-

cally have a maximum growth rate at 0.1 < kθρs < 2, (here kθ is the poloidal wavenumber,

ρs is the ion gyro-radius). Thus ITG and TEM instabilities are potentially two of the most

likely candidates for explaining the turbulence and anomalous transport in tokamaks [51].

First, we try to give an intuitive picture of what can cause an instability in a plasma
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based on the analogy of an inverted pendulum. As shown in Figure 2.10(a), an inverted

pendulum is in an unstable equilibrium system when compared to a stable pendulum

whose oscillation frequency is ω =
√

g/L, which means a small perturbation away from

its equilibrium point can keep growing with a growth rate of γ. Similarly, in a tokamak,

Stable pendulum

Unstable inverted 

pendulum

Mg

L

M

L

g

i
L

g
i

L

g

Centrifugal force
R

v
g

2

(a) (b)

R

RL

v

L

g

Good-curvature

Bad-curvature

FIG. 2.10: Pictures of instabilities in (a) an unstable inverted pendulum and in (b) toroidal
rotated plasmas (top view of a toroidal plasma).

as the plasma rotates toroidally around the torus, the centrifugal force which points ra-

dially outward produces the instability mechanism. It is shown in Figure 2.10(b) that

the corresponding g = v2

R
, and thus the instability growth rate γ = v√

RL
. Here, L is

the characteristic length of the inhomogeneity, specifically, 1/L ∝ ∇p/p for macroscopic

magneto-hydrodynamic instabilities and 1/L ∝ ∇n and ∇T for microscopic drift wave

instabilities. Where p is plasma pressure, n and T are plasma density and temperature. In

addition, although the poloidal magnetic field keeps carrying plasma from bad curvature

region (outside-torus curvature region) to good curvature region (inside-torus curvature

region), the instabilities can still arise if the growth rate is larger than the propagation

from bad-curvature to good curvature regions.
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Next we will derive briefly the ITG growth rate and threshold. The ion temperature

gradient (∇Ti) driven nature will also be presented in this derivation. We start from a

simplified drift-kinetic equation which describes the time evolution of the plasma distribu-

tion function F (x, v‖, µ, t) [52] (the derivation of this kinetic approximation can be found

in Ref [53, 54, 17]):

∂F

∂t
+ (v‖ + vE×B + vd) · ∇F + (

q

m
− µ∇‖B + v‖(b · ∇b) · vE×B)

∂F

∂v‖
= 0 (2.10)

where vE×B = − c
B
∇φ̃ × b is the perturbed E × B shear velocity, b is the unit vector in

magnetic field direction, φ̃ is the perturbed potential. vd ≈ v2
‖
+v2⊥/2

ΩB2 B × ∇B is the ∇B

and curvature B drift velocity (Ω = eB
mc

is the ion gyro-frequency). µ =
v2⊥
2B

is the magnetic

moment. Equation 2.10 assumes a collisionless and weak electric field condition, and is

simplified using a gyrokinetic form [52] from the original time evolution of F (x, v, t) [55].

Gyrokinetic approximation assumes that the gyro-motion of a particle is neglectable and

the particle’s motion can be described by the guiding center’s motion. Thus the plasma

distribution function can be written as F (x, v‖, µ, t). We separate the distribution function

into an equilibrium part and a perturbation part F = F0+F̃ , where F̃ is small if compared

with F0. Substitute back into Equation 2.10, the equilibrium part and the perturbation

part should satisfy the following equations:

(v‖b+ vd) · ∇F0 − µ∇‖B
∂F0

∂v‖
= 0 (2.11)

∂F̃

∂t
+(v‖b+vd) ·∇F̃ −µ∇‖B

∂F̃

∂v‖
= −vE×B ·∇F0− (

q

m
E‖+(v‖ ·∇b) ·vE×B)

∂F0

∂v‖
(2.12)

The equation of the perturbed distribution function can be linearized by assuming F̃ =
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F̃0exp(ik ·x− iωt), where ω and k are wave frequency and wave number, F̃0 is the wave’s

amplitude. Equation 2.12 then becomes:

(−iω + iv‖ · k‖ + iωdv)F̃ = −vE×B · ∇F0 − (
q

m
E‖ + (v‖ · ∇b) · vE×B)

∂F0

∂v‖
(2.13)

where ωdv = ωd(v
2
‖ + µB)/v2t is the ∇B and curvature B drift frequency, ωd = −kθρsvt/R

and vt is the ion thermal velocity. Assuming the equilibrium part of distribution function

F0 ∝ n0

T
3/2
i

exp(−E/Ti), and E = 1
2
mv2‖ +mµB is the particle’s energy, the first and third

terms on the right hand side will yield to:

i(ωT∗v − ωdv)
eφ̃

Ti
F0 (2.14)

where ωT∗v = ω∗[1 + η(E/T − 3/2)], ω∗ = −kθρs vtLn
, 1/Ln = ∇n

n
and η = Ln

LT
. The second

term is −ik‖v‖ eφ̃TiF0. Thus we can solve for the perturbed distribution function:

F̃ =
−ωT∗v + (k‖v‖ + ωdv)

ω − (k‖v‖ + ωdv)

eφ̃

Ti
F0 (2.15)

For the ITG mode, we assume all the electrons to be adiabatic (electrons under Boltzmann

distribution
∫

dv3F̃ = ñene0
eφ̃
Te
) and the plasma to be in a quasi-neutrality state (ñe = ñi).

By integrating both sides of equation 2.15 over the velocity moment, we can get:

ne0
eφ̃

Te
=

∫

dv3
−ωT∗v + ωdv
ω − ωdv

F0
eφ̃

Ti
= ne0

eφ̃

Ti

∫

dv3
F0

ne0

ωdv − ωT∗v
ω − ωdv

(2.16)

Here we neglected the k‖v‖ since the perturbation along the filed line is much slower than

the rapid variations which cross the field line (i. e. ω, ωT∗v, ωdv ≫ k‖v‖). Rearrange the

equation and assume ω ≫ ωdv, we get the first order approximation of the dispersion
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relation:

Ti
Te

=

∫

dv3
F0

ne0

ωdv − ωT∗v
ω

(1 +
ωdv
ω

+ ...) ≈ 2
ωd
ω

− ω∗
ω

+ 7
ω2
d

ω2
− 2

ωdω∗
ω2

(1 + η) (2.17)

Equation 2.17 is a second order equation of ω, it has solutions of

ω =
2ωd − ω∗ ±

√

(2ωd − ω∗)2 + 4 Ti
Te
(7ω2

d − 2ωdω∗(1 + η))

2(Ti/Te)
(2.18)

The growth rate γ = Im(ω) is the imaginary part of the solutions. As a simple example,

considering the flat density limit where ∇n → 0, ∇T 6= 0. We have ω∗ → 0, η → ∞,

and ω∗η = −kθρs vtLn

Ln

LT
= ω∗T . The solution becomes:

ω =
2ωd ±

√

(4 + 28 Ti
Te
)ω2

d − 8 Ti
Te
ωdω∗T

2(Ti/Te)
(2.19)

Thus the growth rate is approximately:

γ ≈
√
2ωdω∗T

√

Ti/Te
=

√
2kθρs

√

Ti/Te

vti√
RLT i

(2.20)

And the instability only exists (i.e. equation 2.17 has complex solutions) when:

8
Ti
Te
ωdω∗T > ω2

d(4 + 28
Ti
Te

) (2.21)

→ R

LT i
>

1

2
(7 +

Te
Ti

) (2.22)

Equation 2.22 indicates the threshold of the ion temperature gradient to produce the ITG

instability when we assume a flat density [52, 56, 57, 58, 59].
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In ITG mode, all electrons are assumed to be adiabatic. However, as we have discussed

in Section 2.1.2, in a toroidal magnetic geometry, both ions and electrons can be trapped

on the outside region of the torus when their parallel velocity v‖ <
r
R
v (see Figure 2.2).

These trapped electrons are not adiabatic and thus can result in a new instability mode,

i.e., trapped electron mode (TEM). The derivation of the TEM threshold is very similar

to the derivation of ITG mode, with the only exception that those trapped electrons are

not adiabatic. Thus the left hand side of equation 2.16 should become

(1− ft)ne0
eφ̃

Te
+ ft

∫

dv3F̃ (2.23)

where ft is the fraction of trapped electrons. The untrapped portion of electrons (1− ft)

are still treated as adiabatic. Following a similar derivation, we can get the dispersion

relation of ω and thus solve for the growth rate as well as its threshold. For example, J.

Weiland derived the threshold of TEM within his model [51, 57]:

R

LTe
>

ft

3(1− ft)(1 +
Te
Ti

1
1−ft )

(
3

2
− R

2Ln

2

)− R

Ln
+ 5 (2.24)

We can see the drive term for the TEM is a combination of the electron temperature

gradient and the electron density gradient. Finally, in Figure 2.11, we give a summary of

the ITG mode and TEM mode, including their characteristic wave number region, their

affecting transport channels, and some stablization mechanisms.
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FIG. 2.11: Summary of ITG and TEM turbulence .

2.3 Particle transport

2.3.1 Effect on density profile

Both the neoclassical and turbulent particle transport can affect the plasma density

profiles. The electron particle flux is governed by the continuity equation for the electron

density, ne:

∂ne
∂t

= −∇ · (vene) + S (2.25)

where ve is the electron flow and S is the particle source. For the turbulent fluctuation

in a tokamak, because both toroidal and poloidal flows effectively lie on the nested tori

and therefore lead to no loss, net losses are consequently governed by a radial derivative

of the product of density and radial flow ure. Separating the density into averaged and

fluctuated components ne0 and ñe, and considering equilibria in which the average radial
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flow is zero, we find that the average density is governed by:

∂ne0
∂t

= −∂Γe
∂r

+ S, where Γe = ũreñe (2.26)

If the density perturbations are proportional to the gradient, substitution of the propor-

tionality relationship into the flux yields an expression of Γe = −De
dne

dr
(Fick’s law, where

De is the diffusion coefficient). In general, for both the neoclassical and turbulent particle

transport, the particle flux can be written as a combination of a diffusive term which is

proportional to the density gradient and a convection term which is proportional to the

density:

Γ = −D∂n
∂r

+ vn (2.27)

here D is the diffusion coefficient and v is the convection coefficient. While the neoclassical

diffusivity is proportional to collisionality and the convection is usually from Ware pinch,

the turbulent transport coefficients can be altered based on different plasma parameters

and thus determining the local density profile as well as overall confinement. [60, 61].

Figure 2.12 is an example to show how the diffusion and convection coefficients can make

a difference in local density profile of a non-central-fueling steady state plasma.

First, turbulent transport is found to produce inward pinch which leads to density

peaking. The observations of peaked density profiles in non-inductive tokamak discharges

on Tore Supra [62, 63], TCV [64], FTU [65], and JET [66], where there is no toroidal

electric field and thus no Ware pinch exist are direct evidence (there is also no core fuel-

ing in these experiments). Another evidence comes from recent experiments on ASDEX

[67, 68], where an electron density peaking in plasma core is observed when adding center

electron heating power into H-mode plasmas while keeping the same amount of neutral
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Flux=0. No convection v=0:

Flux=0. Has convection v:
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Steady state dn/dt=0. No central fueling S=0

FIG. 2.12: Local density profile determined by diffusion coefficient D and convection coefficient
v.

beam injection (NBI) power. The core fueling is the same during the whole discharge and

the turbulence is in ITG or ITG/TEM regime. However, this phenomenon is not observed

in current DIII-D experiments performed at low plasmas density [69]. Finally, in a sep-

arate cylindrical plasma experiment on CSDX [70], a net inward, up-gradient turbulent

particle flux is reported when collisional drift waves generate a sufficiently strong sheared

azimuthal flow. This is a more fundamental experiment addressing the turbulence inter-

action mechanisms and its driven transport.

On the other hand, turbulent transport also causes density flattening. The recent

experimental observations in DIII-D by S. Mordijck et al. [69] point out that, an outward

particle flux is produced by TEM instabilities as a consequence of central electron heat-

ing. This phenomenon is often referred to as density pump-out in the literature and has

been observed previously in TCV [71, 72], AUG [24, 73], T-10 [74], and Alcator C-Mod

[32] tokamaks. Moreover, one recent experiment in DIII-D shows (more details will be

presented in Chapter 6), although the electron heating power is deposited in plasma core,
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both the particle flux and the intermediate-scale density fluctuation are increased closer

to the plasma edge, indicating a turbulence driven nature of the pump-out.

Since peaked core density is desirable and core fueling is impossible in future burn-

ing plasmas devices such as ITER [75, 76], the density profile will be determined mainly

by the balance between outward diffusion and inward convection, see Figure 2.12 where

∇n
n

= v
D
. In the past two decades, experimental researches have been intensively dedicated

to identify the scaling of density profile peaking on various plasma parameters in many

tokamaks. In JET H-mode discharges [77, 78, 79], results from an extensive database anal-

ysis of density profiles in stationary conditions show that the density peaking increases

25% as the effective plasma collisionality νeff ≈ 10−14RZeffne/T
2
e decreases from 1 at mid-

radius to below 0.1 as expected for ITER. Where R is the tokamak major radius, Zeff

is the effective ion charge number, ne and Te are the electron density and temperature.

This result is comparable to other observations on AUG [61, 73], Alcator C-mod [38], and

JT-60U [80]. Moreover, in L-mode or low collisionality H-mode plasmas, magnetic shear

is found to affect density peaking [77, 65, 79, 81]. Some earlier work in JET [77, 78] and

AUG [81] also shows that the density peaking is strongly correlated with ne/nG, where ne

is the experimental density and nG is the empirically calculated density limit [37]. But

recent Alcator C-Mod results [38] counter this correlation. Lastly, the parameter scan on

JET [78] and ASDEX [81] does not show obvious evidence of the dependences on electron

temperature gradient LTe, ion temperature gradient LT i, electron gyro-radius ρe, and nor-

malized plasma pressure βN .

37



2.3.2 The full transport matrix

Besides particle transport, there are also two other transport channels (i.e., energy

transport and momentum transport) exist in a tokamak plasma. Energy transport deter-

mines plasma temperature profile while momentum transport determines plasma rotation

profile. Till now, for the particle transport, we have only considered the diffusive effects

from density gradient (diagonal term). However, in actual experimental environment, all

these three transport channels are coupled. Thus the contributions from off-diagonal terms

which are proportional to temperature gradient and rotation shear can also play an essen-

tial role in establishing the density profile shapes [82, 83]. We can write the flux equations

of coupled transport channels in a unified matrix form:













Γn/n

ΓQ/T

ΓM/vφ













= −













Dn DT Dv

χn χT χv

χn′ χT ′ χv′

























1
n
∂n
∂r

1
T
∂T
∂r

1
vth,i

∂vφ
∂r













+ Vp (2.28)

On the left hand side of the equation, Γn, ΓQ, and ΓM represent particle, energy and

momentum fluxes. On the right hand side, the 3 × 3 matrix is the full transport coef-

ficients matrix with its diagonal term Dn, χT , χv′ representing diffusive flux caused by

density gradient, temperature gradient and toroidal rotation gradient in each channel.

The off-diagonal coefficients in the matrix represent the contribution of diffusivity from

other transport channels. Finally, a pure convection term which exists in the absence of

any gradients is also added to complete the full matrix equations.

From Equation 2.28, we can write the radial particle flux equation in the form of:

Γn
n

= −Dn
1

n

∂n

∂r
−DT

1

T

∂T

∂r
−Dv

1

vth,i

∂vφ
∂r

+ Vpn (2.29)
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The first, second and third term on the right hand side of equation are named diffusion,

thermo-diffusion and roto-diffusion term. We can derive these off-diagonal particle trans-

port coefficients via a gyro-kinetic approach. From equation 2.26 we know the fluctuation

induced particle flux is: Γe = ũreñe. In a statistic plasma, the fluctuation velocity comes

from the perturbed E × B flow [43]. If the mean magnetic field in a tokamak is B,

and the perturbed electric field can be approximated by an electrostatic fluctuation, i.e.,

E = −∇φ̃. The radial component of the fluctuating E × B is therefore:

ũEr =
(E ×B)r

B2
= −B−1∇θφ̃ (2.30)

where ∇θ is the derivative in the poloidal direction. Furthermore, if a Fourier transform

is introduced for the coordinates in the toroidal and poloidal directions, the flux is then

proportional to the imaginary part of φ̃−kñk [43]:

Γe = −B−1
∑

k

kθIm(φ̃−kñk) (2.31)

where φ̃−k and ñk are Fourier amplitudes, k is the wave vector composed of poloidal kθ and

toroidal kφ components. In section 2.2.3, we derived a kinetic expression of the fluctuating

plasma distribution function F̃ in equation 2.15:

F̃ =
−ωT∗v + (k‖v‖ + ωdv)

ω − (k‖v‖ + ωdv)

eφ̃

Ti
F0

This kinetic equation is a collisionless, weak electric field expression in the electrostatic

limit. For the form with collision and strong electric field, readers are referred to [55].

A more general derivation including electromagnetic effects can be found in [84]. If we

multiply both sides of the equation with the conjugation of perturbed potential φ̃∗ and
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integrate over velocity space, we can get the radial particle flux:

Γe = −B−1kθIm(

∫

dv3(
−ωT∗v + (k‖v‖ + ωdv)

ω − (k‖v‖ + ωdv)

e|φ̃|2
Ti

F0)) (2.32)

Since ωT∗v = kθρs[
vt
Ln

+ vt
LT

(E/Te− 3
2
)], where vt is particle thermal velocity and E is particle

energy, the electron particle flux becomes:

Γe = B−1Im(

∫

dv3[
R

Ln
+

R

LT
(E/Te −

3

2
)−R(k‖v‖ + ωdv)]

k2θρsvte|φ̃|2F0

R(ω − (k‖v‖ + ωdv))Ti
) (2.33)

Thus the decomposition presented in equation 2.29 can be recognized in equation 2.33,

where diffusion, thermo-diffusion, and convection can be identified as the first, the second

and the third term on the right hand side of the equation. We note that while the diago-

nal diffusion coefficient is always positive (i.e., represents outward flux contribution), the

thermo-diffusion coefficient involves the energy dependent kernel (E/Te−3/2), and as such

can be directed inwards or outwards depending on turbulence conditions. For example,

theoretical work shows [82, 85, 58, 51] that for electrons, ITG mode produces an increase

of particles in the low energy range so that an inward thermo-diffusion “pinch” is obtained.

In contrast, a TEM instability produces large amount of energetic particles which result in

an outwards thermal-diffusive flux. Similarly, the roto-diffusion term can be derived from

momentum transport equation (which is not part of this thesis, readers can refer to [82, 86]

for details). To summarize, we present all the predicted inward and outward patterns of

each off-diagonal term in the table 2.1, depending on the type of unstable modes and on

the particle species.

Table 2.1 provides a starting point for theory validation. Many experiments have been

conducted in the last decade to find evidence or at least qualitative agreement with these

40



TABLE 2.1: Different directions of off-diagonal terms of electron and ion transport for ITG
and TEM instabilities.

Thermo-diffusion Convection Roto-diffusion
ITG TEM ITG TEM ITG TEM

Electrons IN OUT
IN

OUT IN

Ions OUT IN OUT IN

theoretical predictions. In regard to the thermo-diffusion term, investigations in high den-

sity H-mode discharges on ASDEX Upgrade [87] shows that, when we increase the ratio of

Te/Ti by central electron heating (ECH), the density profile is not affected. However, for

intermediate density plasmas, density peaking is increased when we add central electron

heating to neutral beam injection (NBI) heated plasma in ITG regime [68]. Finally, in

low density L-mode experiments [24] and low density H-mode experiments [73, 69], den-

sity pump-out due to central electron heating is observed in TEM regime and thus the

density profile is flattened in these discharges. This non-monotonic dependence of density

peaking is in correspondence with theoretical prediction that the thermal-diffusive flux

changes sign from ITG to TEM region [68, 88]. In particular, both experiments [23] and

simulations [22] indicate a correlation between the electron density gradient R/Ln and the

most unstable mode frequency, that is, R/Ln peaks where the turbulence regime switches

over from ITG to TEM and decreases toward either deep ITG or deep TEM regime. It

indicates that, when core fueling is small, the thermal diffusive pinch can become one of

the most important contributions to the total inward pinch in plasma core [85].

On the other hand, gyro-kinetic simulations [89, 68] show that, while the impact of

the toroidal rotation and its radial gradient is negligible on electron particle transport,

the roto-diffusion can become important for ion and impurities, due to their heavier mass
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and lower thermal velocity. Correlation analysis based on an AUG experimental H-mode

database [90, 68] indicates that, in the discharges with neutral beam injection (NBI)

heating only and with low electron heating power (dominant by ITG modes), the boron

density gradient decreases as the plasma toroidal rotation Mach number and toroidal

rotation gradient increases. These plots confirm the important role of roto-diffusion in

predicting the experimentally observed trend of increasing impurity peaking.

2.4 Summary

In this chapter, we introduce theories as well as experimental results for the particle

transport. We first describe the classical and neoclassical theory for cross-field transport.

However, these two theories predict smaller diffusion coefficients than the experimental

measurements. The turbulence-caused anomalous transport is of particular importance in

tokamak plasmas. Next, we introduce some basic properties of turbulence along with one

of its suppression mechanisms (via E×B shear flow). The driven terms and thresholds of

two types of turbulence (i.e., the ion temperature gradient (ITG) mode and the trapped

electron mode (TEM)) are presented. Finally, recent literature on particle transport and

its relation in determining density profiles are summarized. Both the diagonal and off-

diagonal terms of the particle flux are described through a full multi-channel transport

matrix.

42



CHAPTER 3

Methods

3.1 Theoretical simulation codes

In this section, we introduce two simulation codes: ONETWO and TGLF. ONETWO

calculates particle, momentum and energy transport relying on conservation principles. In

order to calculate the transport coefficients, ONETWO needs to first calculate the sources

using experimental parameters, from which it can calculate the (particle, momentum,

energy) flux. Then based on the experiment measured profiles or their fitted profiles,

diffusive-like transport coefficients can be extracted. TGLF on the other hand is a quasi-

linear gyrokinetic code which calculates the linear driftwave eigenmodes by solving linear

fluid approximation of the kinetic equations. Extensive benchmarking of the TGLF eigen-

modes against a large database of non-linear gyrokinetic stability calculations verifies that

the TGLF model is accurate in small and medium wave number regions [91].
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3.1.1 ONETWO: One-and-a-half-dimensional transport code

ONETWO code is a one-and-a-half-dimensional, time-dependent code which solves

the plasma transport equations in a tokamak [92, 93]. It is one-and-a-half-dimensional be-

cause it accounts for the 2D geometry of the flux surfaces in the 1D transport calculations.

The magnetic flux surfaces in a tokamak are not circular. Figure 3.1 shows an example

of the cross-section of a set of magnetic flux surfaces in a tokamak. The flux surfaces

are D-shaped instead of the concentric circles in our former simplified model (Figure 1.5)

in Chapter 1. Thus, for ONETWO to calculate a one-dimensional cross field flux from

flux 

surface

FIG. 3.1: Magnetic flux contours for a D-shaped tokamak plasma.

a two-dimensional system, we first need to know the 2-D geometry. The 2-D magnetic

geometry in a tokamak is calculated using a magneto-hydrodynamic (MHD) equilibrium

code. MHD model is a single fluid model which describes the macroscopic properties of a

quasi-neutrally magnetized plasma. The equation of motion for a charge-neutral plasma

placed in a magnetic field is described by:

ρ0(
∂

∂t
+ v ·∇)v =

1

c
J ×B −∇p (3.1)
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where ρ0 = (mi + me)n0 is the plasma mass density, mi, me, n0 are ion mass, electron

mass, and local density, p is pressure. The average plasma flow velocity v is approximated

by the ion velocity and the current is defined by J = n0e(vi−ve). In equilibrium, no time

variation is involved ( ∂
∂t

= 0) and the flow velocity is small if compared with
√

p/ρ0 (of

the order of the plasma sound speed [12]). Equation 3.1 becomes:

0 =
1

c
J ×B −∇p (3.2)

This is the equation to be solved for plasma MHD equilibrium. In a tokamak, we first

write both the pressure and the current as a function of poloidal magnetic flux ψ(R,Z)

under a cylindrical coordinate system, i.e., J , p can be written as J(ψ), p(ψ). Then

equation 3.2 can be transferred into a nonlinear differential equation of the magnetic flux

(for more detailed derivations, one should refer to H. Grad’s paper in 1958 [94] and V.

Shafranov’s paper in 1966 [95]). By numerically solving this differential equation, the flux

surfaces for a desired equilibrium configuration (like the one shown in figure 3.1) can be

obtained. Finally, we can average each quantity in one-dimensional ONETWO model over

the calculated 2-D flux surfaces from MHD equilibrium. For example, the flux surface

average of plasma density n within a surface S =
∮

2πRdl is:

< n >=
2π

∮

nRdl

2π
∮

Rdl
=

∮

ndl
Bθ

∮

dl
Bθ

=

∮

ndl
Bθ

1
2π

∂V
∂ψ

(3.3)

where l is the distance along a curve lying in a flux surface, V and Bθ are the volume and

the poloidal magnetic field in a flux surface [92, 93].

With 2-D flux surface geometry extracted from the MHD equilibrium, ONETWO

calculates the flux surface averaged particle, momentum, and energy transport through
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particle balance equations, toroidal momentum balance equations and energy conservation

equations respectively. For example, the equation that governs the evolution of the density

of primary ion species is the continuity equation:

∂ni
∂t

+∇ · Γi = Si (3.4)

here ni is the ion species’ density, Γi is the particle flux of ion species i. On the left-hand

side of the equation, the first term denotes time dependent density change and the second

term represents the flux surface averaged divergence of the particle flux. The ion density

source term on the right-hand side of the equation has multiple contributions. For example,

thermal ions are produced through the ionization of neutrals, injected by a neutral beam

in the plasma core, or through electron collisional ionization of neutral particles near the

plasma-wall area. Some other physical processes that produce sources or sinks of particles

and energy are also considered, including ohmic heating, radio frequency (RF) heating, gas

puff, electron-ion energy exchange, radiation and so on. Different source calculation models

such as NFREYA [96] and NUBEAM [97] which use Monte Carlo techniques to simulate the

beam deposition in tokamaks are implemented into the ONETWO code. Therefore, from

the simulated source term, we can calculate the ion particle flux. Moreover, if provided

with the experiment measured density profile, the diffusive-like transport coefficients can

be obtained. Figure 3.2 is an example which shows the beam source from neutral beam

injection in plasma core, and the resulted outward particle flux calculated by ONETWO

from equation 3.4 (ONETWO assumes that the plasma is not evolving, i.e., ∂ni

∂t
= 0). The

centrally deposited beam source leads to the increase of an outward ion particle flux from

ρ = 0 − 0.2. In addition, ONETWO assumes that the electron flux is the same as the

ion flux based on quasi-neutral approximation of the plasma. Finally, the momentum and
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FIG. 3.2: ONETWO calculated source and particle flux. (a) Ion beam source profile under 3
MW central neutral beam injection. (b) Corresponding ion particle flux profile calculated from
equation 3.4 (which assumes ∂ni

∂t
= 0).

energy balance equations can be calculated in the similar ways:

∂(niv)

∂t
+∇ · ΓM =Mi (3.5)

∂(3/2niTi)

∂t
+∇ · ΓQ = Qi (3.6)

where niv, 3/2niTi represent the ion momentum and energy density, v is the plasma flow

velocity, Ti is the ion temperature, ΓM , ΓQ are the momentum and energy fluxes, Mi and

Qi are the ion momentum and energy sources.

Other applications of ONETWO code include but are not limited to: determining

transport coefficients from experimental data, calculation of the current profile for MHD

stability analysis, and investigating the effectiveness of gas puff or pellet fueling for in-

creasing plasma density [93].
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3.1.2 TGLF: Quasi-linear kinetic code

The Trapped Gyro-Landau Fluid (TGLF) code is a quasi-linear gyrokinetic code

based on the Gyro-Landau fluid approximation developed by G. Hammett, M. Beer, and

R. Waltz in the 1990s [98, 99, 100, 101, 102, 103]. TGLF has been benchmarked against

GYRO [104], a full non-linear gyrokinetic code which captures the full diagnostics. This

benchmark shows that TGLF agrees well with GYRO up to kθρs = 2 [20] while TGLF

only takes much less computational time. Here kθ is the poloidal wavenumber, ρs is the

ion gyro-radius. The region 0 < kθρs < 2 is typically where the wavenumber of ion tem-

perature gradient (ITG) mode and the trapped electron mode (TEM) exist as we have

discussed in Chapter 2.

The derivation of Gyro-Landau fluid equations starts from the Vlasov equation [17, 55]

which describes the time evolution of the distribution function of plasmas:

[
∂

∂t
+ v · ∇+

q

m
(E +

v ×B

c
) · ∂
∂v

]F = St(F ) (3.7)

here F (x, v, t) is the plasma distribution function, v is the plasma velocity, E is the elec-

tric field, B is the magnetic field, c is the light speed, and St(F ) represents the collision

operator. We can express the distribution function as an equilibrium part and a perturba-

tion part F = F0 + F̃ where the perturbation part is expressed as F̃ = f(x, v)exp(−iωt)

and is small compared with the equilibrium part. Linearizing the Vlasov equation:

[−iω + v · ∇+
q

m
(−∇Φ0 +

v ×B0

c
) · ∂
∂v

]F̃ = St(F )− q

m
(Ẽ +

v × B̃

c
) · ∂
∂v

F0 (3.8)

Here Φ0, B0 are equilibrium part of the electric potential and magnetic field. Ẽ, B̃

are the perturbed electric and magnetic fields. This equation is a 6-D phase-space time
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dependent equation. Using the similar gyrokinetic approximation as has been discussed

in Chapter 2, we can “reduce” this 6-D equation to a 5-D equation by assuming that the

gyro-motion of a particle is neglectable and the particle’s motion can be described by the

guiding center’s motion. Thus F (x, v, t) can be transferred to F (x, E, µ), where E is the

particle’s energy and µ is the guiding centre’s momentum. Further simplification can be

achieved by separating the transport into parallel and perpendicular directions. We use

an exponential eikonal function exp(iS) (much like the Fourier transform) to represent

the rapid, across the field lines perturbations and express the slow, along the field lines

variation by a complex amplitude. Here S is the eikonal [55]. As a result, we can write:

f(x, E, µ) = f0(x, E, µ)exp(iS), where f0 is the amplitude and we impose thatB ·∇S = 0.

When substituting the gyrokinetic form of the perturbed distribution function back into

equation 3.8, we get [55]:

(−iω + v‖∇‖ + iωdv)F̃ = (−v‖∇‖ − iωdv + iωT∗ )F0J0
eφ̃

T
(3.9)

where

ωdv =
ωd
2v2t

(v2‖ + v2), ωd =
ρvt∇S ·B ×∇B

B2
(3.10)

and

ωT∗ = ω∗[1 +
3

2
η(
v2

3v2t
− 1)], ω∗ = −ρvt∇S ·B ×∇n0

n0B
(3.11)

ωdv is the ∇B and curvature B drift frequency (the vertical drifts caused by the outward

forces that result from magnetic lines’ gradient as well as its curvature), v‖ and v is par-

ticle’s parallel and total velocity, vt =
√

T
m

is the thermal velocity. ωT∗ is the diamagnetic

drift frequency, n0 is the local equilibrium density, ρ = vtmc
eB

is the gyro-radius, η = n0∇T
T∇n0

,

and J0 represents zero order Bessel function. Collision operator is neglected in this equa-

tion to simplify our derivation of the TGLF equations. A more general derivation including
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the collision operator can be found in Ref [105], where the collision operator is treated as a

function of perturbed distribution function St(F̃ ) = (νE/2)(∂/∂ξ)(1 − ξ2)(∂/∂ξ)F̃ ( here

ξ = v‖/v, νE is an energy dependent scattering rate from Ref [106] ). The added collision

term requires no changes to the original closure rules of collisionless TGLF model. Thus,

Equation 3.9 is called linearized gyrokinetic equation and is the starting point for the

TGLF model.

TGLF integrates the linear gyrokinetic equation over the velocity space which results

in six fluid equations. Starting from equation 3.9, when we integrate both sides of the

equation over
∫

J0d
3v, we can get the fluid moment equation of the density:

−iωN+vt∇‖U‖−iω∗[HN+
3

2
η(HPT

−HN )]Φ+
vt∇‖B

B
U‖+iωd(

1

2
P‖+

3

2
PT )+KN = 0 (3.12)

with the normalized moments of the fluctuating part of the distribution function defined

by [20]:

Density : N =
1

n0

∫

d3vJ0F̃

Parallel velocity : U‖ =
1

n0vt

∫

d3vv‖J0F̃

Parallel pressure : P‖ =
1

n0v2t

∫

d3vv2‖J0F̃

T otal pressure : PT =
1

3n0v2t

∫

d3vv2J0F̃

KN =
−vt
n0

∫

d3v[∇‖J0 − J0∇‖]v‖(F̃ + J0F0Φ)

HN , Hp‖, Hp⊥ are the similar velocity moments integration over the equilibrium part F0 of

the distribution function. In the same way, by integrate over higher orders of the velocity

moment (i.e
∫

J0vd
3v,

∫

J0v
2d3v...), we can get other five fluid equations of U‖, P‖, PT ,
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Q‖, QT . Where the parallel and total energy are defined as:

Q‖ =
1

n0v3t

∫

d3vv3‖J0F̃

QT =
1

3n0v3t

∫

d3vv‖v
2J0F̃

We can write these six linear equations into the matrix form and solve for the eigenmodes

of ω. The imaginary part of the eigenvalue Im(ω) represents the mode growth rate, where

positive growth rate Im(ω) > 0 means unstable mode and negative growth rate Im(ω) < 0

means stable mode. The real part, Re(ω), represents the mode drift frequency. It is also

possible to identify the most unstable mode growth rate and frequency for a specified wave

number by searching the largest eigenvalue.

In TGLF approximation, both trapped and passing particles have been included. As

has been discussed in Chapter 2, trapped particles are particles which bounce back and

force in a banana shaped orbit in the outer part of the torus due to their small paral-

lel velocity, see Figure 2.2. Being able to treat both trapped and passing electrons in

a unified system of equations is one of the main motivation behind the development of

the TGLF model from its predecessor GLF23 model (a similar linear gyro-kinetic model

developed by R.E. Waltz et al. [103] in 1997 to solve gyro-Landau fluid equations). For

kθρs < 1, GLF23 model has both isothermal circulating electrons and trapped electrons

included. For kθρs ≫ 1, GLF23 treats all ions to be adiabatic and all electrons to be

circulating. This treatment of poloidal wavenumber overlooks the trapped electron mode

(TEM) whose wavenumber is kθρs ≈ 1 − 2 and thus does not capture an important in-

stability [20, 91, 107]. In TGLF, we introduce a trapped electron fraction number ft to

unify both the trapped and circulating electrons into a same set of equations. While we
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are integrating over the velocity momentum, the integration domain for trapped particles

should be
∫

|v‖|<ftv dv
3 and the integration domain for all the particles can be written as

∫

|v‖|<v dv
3 with only ft set to be 1. Here v‖ is the parallel velocity. Therefore, the TGLF

model is theoretically valid from the lowest k in trapped ion mode all the way up to the

electron temperature gradient (ETG) mode at high k.

The way of calculating ft in TGLF is related to the Landau-damping average effect by

the trapped particles. Landau damping is a wave-particle interaction damping term in a

plasma system [17]. It associates with the particles (resonant particles) in the distribution

function that have a velocity nearly equal to the phase velocity of the wave. The particles

that have a speed similar to the phase velocity of a wave in the plasma tend to see a

relatively static electric field, rather than a rapidly fluctuating one. They will, therefore,

exchange energy with the wave. Since turbulence in its nature is a fluctuating “wave” in

plasma density and potential, it can exchange energy with particles through this Landau

resonance. However, the trapped electrons with fast bounce frequencies in a plasma wave

can ’compete’ with Landau damping, since once the electrons become trapped they can

no longer take any more energy from the wave [12]. A classic picture [108] to explain this

is that when the resonant electrons are trapped within the wave, they first pick up enough

energy from Landau damping to overtake the wave. The wave potential now causes the

electrons to lose energy and give it back to the wave, and the cycle continues thus the

Landau resonant effect is averaged [109, 102]. In TGLF, not all the trapped electrons are

treated to average Landau resonance, only those trapped particles which change the sign

of their parallel velocity within half period of the wave are counted (i.e bounce frequency

should be larger than the wave frequency). This is expressed in the form that the poloidal

angle travelled by a wave in half period should be larger than the electron’s bounce angle

2θB since the electron’s velocity changes sign after getting bounced. The poloidal angle
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that a wave travels in time ∆t is ∆θ = ω∆t
R0qk‖

, where q is the safety factor, ω is the wave

frequency and k‖ is the mode parallel wave number. From the fact that half wave period

is ω∆t = π, we can define a maximum bounce angle θmax for trapped particles which can

Landau average a particular wave:

θB,max = min[
π

2R0qk‖
, π] (3.13)

Therefore, the fraction of Landau averaging trapped particles can be calculated by ft =
√

1−B(θ)/B(θB,max) where B(θ) is the local magnetic field in the ploloidal angle θ.

TGLF code is written based on the TGLF model to solve six fluid equations numeri-

cally. Its workflow is shown in Figure 3.3. Firstly, we use experimental measured profiles

like the electron density, the electron temperature and the ion temperature as input to the

TGLF code. The magnetic flux surface is described by Miller geometry. Miller geometry

[110] is a finite aspect ratio, noncircular equilibrium model which is described by plasma

parameters such as elongation, triangularity, safety factor and so on. The equilibrium sat-

isfies the MHD equilibrium [17] and is particularly suitable for localized stability studies.

Second, Hermite basis functions are used to convert the TGLF equations from poloidal θ

space to matrix equations. By taking the inner product of the equations with the Hermite

basis functions, the coefficients of six TGLF equations at each grid point can be written

in a matrix form and thus can be solved by any eigenvalue solver programs in the next

step. Finally, we sort out the most unstable mode growth rate and its corresponding mode

frequency from all the eigenvalues of the matrix. The perturbed particle, momentum and

energy fluxes can also be obtained by summing their values over all the wavenumbers.
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FIG. 3.3: Work flow of TGLF code.

3.2 Diagnostics

In this section, we will briefly introduce the principles of the essential diagnostics

that are used in this thesis. These diagnostics provide measurements of various plasma

parameters such as the electron density, the electron temperature, the ion temperature,

the toroidal rotation, and the density fluctuations. Table 3.1 gives a summary of all the

diagnostics that will be discussed.

3.2.1 Thomson Scattering System

Thomson Scattering is the name of the process where electromagnetic radiation is

scattered by free electrons. It is in honor of J. J. Thomson who won the Nobel Price

in physics with the discovery of the electron. The Thomson Scattering system is widely

used diagnostic system [111, 112, 113, 114] in tokamaks. It measures the absolute electron
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TABLE 3.1: Diagnostics for different plasma parameters in tokamaks

Name Measured parameter
Thomson scattering Electron density: ne

Electron temperature: Te
Reflectometer Electron density: ne
Electron cyclotron Electron temperature: Te
emission (ECE)
Charge exchange Ion temperature: Ti
recombination (CER) Poloidal rotation: vθ

Toroidal rotation: vφ
Beam emission Density fluctuation: ñ
spectroscopy (BES) (long wave-length kθρs < 1)
Doppler backscattering Density fluctuation: ñ
(DBS) (short wave-length kθρs > 1)

temperature from the thermal broadening of scattered laser light [112]. The total scattered

power is the sum of the scattered power from individual electron presented in the observed

scattering volume. Hence for the Maxwellian distributed electrons in tokamak plasmas,

the scattered power spectrum should be Gaussian in shape following the Selden Model

[115]:

P (λ) ∼ PInee
− 127.5

Te
∆λ2 (3.14)

where P (λ) is the scattered power spectrum, PI is the power of incident laser beam, ne is

the local electron density, Te is the local electron temperature, ∆λ = λ−λI
λI

is the relative

difference between incident wavelength λI and scattered wavelength λ.

From equation 3.14, we see the scattered power spectrum is under Gaussian distri-

bution with respect to λ. Thus the half width at half maximum of this spectrum, ∆λ1/e,
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which is measurable, can then be linked with electron temperature by the equation:

Te = (
2.5× 102∆λ1/e
λIsin(θ/2)

)2 (3.15)

where θ is the angle between incident and scattering laser. In addition, from the scattering

power, density profiles can also be determined using equation 3.14.

Experimentally, the spatial resolution of Thomson Scattering is decided by its optical

collection chords number while its temporal resolution ( usually ≈ 5ms for DIII-D ) is

decided by the amount of laser pulses. DIII-D has a multipulse Thomson Scattering system

which uses a mix of 20Hz and 50Hz pulsed lasers with ≈ 1J per pulse [116, 117, 114]. The

system has 54 viewing chords giving date from 54 spatial points, including the divertor

region, high resolution (50Hz) plasma edge, and plasma core region [114].

3.2.2 Reflectometer

The reflectometer is a diagnostic derived from radar principles to measure the electron

density using microwaves [118, 119]. As shown in Figure 3.4, it captures the amplitude and

the phase variation of a microwave reflected from a cut-off layer at a particular location.

We know that in ordinary polarization situation where E ‖ B (E is wave electric

field and B is the wave magnetic field), the dispersion relation of an electromagnetic wave

in plasma is [111]:

f 2 = f 2
pe + k2c2 (3.16)

where f is the wave frequency, k is the wave number, and fpe =
1
2π
( ne2

ǫ0me
)1/2 is the plasma

oscillation frequency, ne is the local electron density, and me is the electron mass. We
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FIG. 3.4: Reflectometer cut-off layer for a given density profile.

can see from equation 3.16, that the frequency of electromagnetic wave, f , is larger than

fpe that it can propagate in the plasma. Otherwise, the wave is reflected. Thus the cut-

off layer is defined as the plasma layer where f = fpe. Because the plasma oscillation

frequency is proportional to the local plasma density, we have a correlation between the

incident wave frequency and the local plasma density at the cut-off location [33]:

ne =
4π2ǫ0me

e2
f 2 (3.17)

Similarly, for the extraordinary polarization situation where E ⊥ B, we can get the corre-

sponding cut-off frequencies which depend on both electron density and the local magnetic

field [111, 33].

In the DIII-D tokamak, the reflectometer system’s temporal resolution is typically
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25µs and it has a density range of ne = 0−6.2×1019m−3 for Bt > 1.6T [120]. It also has a

very high spatial resolution (≈ 0.4cm) which can be useful to measure the electron density

profile as well as its dynamic evolution. However, the reflectometer profile data can become

inaccurate and have errors when there are flat or hollow density profiles. This is because

the reflectometer system can only ’see’ monotonic increasing electron density profile due

to its reflecting nature, i.e., the microwave with the hollow density cutoff frequency will

be reflected earlier by outside plasma layers.

3.2.3 Electron Cyclotron Emission

The Electron Cyclotron Emission system (ECE) is a routine diagnostic in measuring

electron temperature in tokamak plasmas since 1974 [121, 112, 122, 119, 123]. In tokamaks,

the electrons gyrate around the toroidal oriented magnetic field lines. This gyromotion

results in an electron cyclotron emission of the plasma at the electron gyrofrequency [122,

119]:

ωgyro = ne
eB

γrelme
(3.18)

where B is the magnetic field, me is the electron mass, n=1,2,3.... is the harmonic

wavenumber, and γrel = (1 − β2)−1/2 is the mass increasing effect from relativistic ef-

fects. Here β = v/c, v is the electron thermal velocity. As mentioned earlier, the magnetic

field in a tokamak is inversely proportional to the major radius (equation 2.3), thus the

electron cyclotron frequency has a one-on-one mapping to the radius R of the correspond-

ing resonant layer:

ωgyro(R) =
neeB0R0

γrelmeR
(3.19)

In optically thick plasmas, the ECE radiation intensity received by the antenna ap-
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proximately equals the Black Body radiation intensity at temperature Te [112]:

I(ωgyro) ≈ IB ≈
kBTeω

2
gyro

8π3c2
(3.20)

here kB is the Boltzmann constant. Since the Black Body radiation intensity is propor-

tional to Te at high temperatures, there is a correlation between the electron temperature

and the radiation intensity from equation 3.19, and 3.20:

Te(ωgyro(R))) =
8π3c2I(ωgyro)

kBω2
gyro(R)

(3.21)

Therefore, the electron temperature profiles based on the measurement of the electron

cyclotron radiation intensity can be obtained.

In DIII-D, the ECE radiometer has a very good temporal resolution of 1−2KHz. There

are currently 40 channels in the system providing electron temperature data from plasma

core to outside mid-radius (specific spatial range varies discharge by discharge depending

on toroidal magnetic field Bφ and local plasma optical thickness). In our experiments

which will be introduced in Chapter 4 to Chapter 6, the spatial resolution is about 2cm

[123].

3.2.4 Charge Exchange Recombination

Unlike the Thomson scattering or reflectometer systems, which are designed to mea-

sure electron properties, the Charge Exchange Recombination (CER) system measures ion

temperature, ion poloidal rotation, and ion toroidal rotation. In a deuterium plasma, since

me/mD ≈ 1/3600 (where me and mD are electron and deuterium mass), the ions as well

as other impurities (such as C6+) carry most of the momentum in tokamak plasmas. As
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we will show in Chapter 4, the plasma rotation can have a significant effect on energy and

particle confinement. Therefore, it is necessary to get reliable measurements of the ion

temperature and impurity rotation.

When a neutral beam (here we take deuterium for example) of very high energy is

injected into a plasma, the charge exchange recombination process happens in the form of

[124, 125]:

D0
fast + AZ+ = D+

fast + A(Z−1)+∗

= D+
fast + A(Z−1)+ + γ0

where D0
fast is the injected deuterium atom with large kinetic energy, A typically repre-

sents element of D, He, C, or O, Z is the atom ionized number, γ0 represents photon, and

A+∗
means that the newly created ion exists in an excited state. From the above reaction

we can see that a deuterium atom and an impurity ion undergo a charge transfer that

results in producing an ion in an excited state. The ion then de-excites to the stable state

by emitting one or more photons. Thus we can determine the impurity ion temperature

and rotation speed respectively from the Doppler broadening of the spectrum and the

Doppler shift of the spectral line [126]. For example, the 70 − 75Kev energetic neutral

heating beams used in DIII-D can produce a He II 468.6nm line which is bright enough

to be detected in the spectrum Figure [124].

The CER system of DIII-D has 48 tangential viewing and 32 vertical viewing which

cover the whole plasma from the high field side to low field side. Figure 3.5 shows how one

cord of the CER system works. A rotating ionized impurity AZ+ collides with an injected

fast deuterium atom within the detecting angle and emits photons by de-excitation. This
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light is then detected through a set of optical lenses by the spectrometer and is converted

into temperature or rotation data.

A
Z+

A(Z-1)+*

Dfast

0

spectrometer

. . . . . . .

lens

cable

photon

FIG. 3.5: Schematic of CER set up. As we look downward into a tokamak, the impurity rotate
counter-clockwisely and collides with injected neutral beams. The emitted photons during this
process is captured by outside spectrometer and is converted into ion species’ temperature or
rotation data.

3.2.5 Beam Emission Spectroscopy

Fluctuations in the plasma density, temperature, and electrostatic potential are widely

recognized to result in the anomalous cross-field transports which are observed in nearly all

magnetically confined fusion plasmas. An understanding of the underlying physical mech-

anisms that give rise to such fluctuations and transport requires experimental diagnostics

to measure the turbulent fluctuations. The Beam emission spectroscopy system (BES)

measures localized, long-wavelength (kθρs < 1) density fluctuations in tokamak plasmas in

an effort to characterize plasma turbulence and resulting turbulent-driven transport. The

system obtains the plasma density by observing the collisionally excited emission from the

deuterium beam particles as they traverse the plasma, interacting with plasma electrons

and ions [127].
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The injection of fast neutral deuterium atoms into a fully ionized hot plasma leads

to two kinds of physically distinct excitations [128]. The first excitation occurs to plasma

ions (or impurities) via charge exchange reactions as have been mentioned in the former

section. The second excitation takes place in the injected deuterons themselves through

collisions with plasma deuterons, impurity ions, and to a lesser extent, with electrons:

D0
fast + AZ+ = D0∗

fast + AZ+

= D0
fast + γ0 + AZ+

Here A represents element of electron, deuteron, or other impurities. The beam atoms

that are collisionally excited to the n = 3 quantum state and subsequently decay to the

n = 2 state (the D-alpha transition near 656nm) are observed. The D-alpha emission is

Doppler-shifted by 0.5−3.5nm because of the beam velocity (v = 2.6×106m/s for 70KeV

deuterium), allowing the observed beam emission to be spectrally isolated from the intense

edge D-alpha emission and the weaker thermal charge exchange signal [128, 127]. The in-

tensity of this emission is a function of the local plasma density and the beam density.

Thus the density fluctuations can be calculated through the fluctuations of observed beam-

plasma emission intensity.

In DIII-D, the BES system currently has 64 channels, providing spatial resolution

of 1 − 3cm based on the radial and poloidal arrangement of the channels. The detected

fluctuations frequency range is 1 − 500kHz and the accessible spatial region covers from

0.2 < r/a < 1.0 (where r is the radial distance from the magnetic axis, a is the minor

radius of a tokamak, see Figure 1.5).
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3.2.6 Doppler Backscattering

The Doppler backscattering system (DBS) is a diagnostic technique which measures

density fluctuation as well as the propagation velocity of the turbulent structure in the lab

frame. It differs from a reflectometer which uses and reflects a normal-incidence microwave

beam at a certain cut-off layer. A DBS system is a hybrid of reflectometry and microwave

scattering [118, 119, 129]. The return signal of interest in this technique is not due to

reflection but is due to Bragg backscattering off turbulent structures. [130, 131].

In solid state physics, the Bragg condition states, when a radiation whose wavelength

is comparable to atomic spacings is scattered in a crystal (see Figure 3.6), the distance

between each lattice planes within this crystal can be measured through the interference

of the reflected waves. Specifically, only those waves with incident angle θ which satisfies:

2dsinθ = nλ (3.22)

can interfere with each other. Here d is the distance between each lattice plane, λ is the

incident wavelength, n = 1, 2, 3... is any positive integer. Thus the size of each lattice d

can be calculated through the interference characteristics.

In a plasma, the electron density distribution can be regarded as a superposition of

the background density profile and the density fluctuations. The density fluctuations are

caused by the turbulence which can be pictured as many micro-sized blobs. The blobs near

the cut-off layer can reflect the corresponding incident microwave. Due to Bragg condition,

we know that the reflected microwave contains the information of the characteristic size

of the turbulence eddies [131]:

K⊥ = 2k0sin(θ) (3.23)
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FIG. 3.6: Bragg scattering

where k0 is the wave vector of the microwave. K⊥ is the perpendicular wave number of the

density perturbations. Therefore we can get the density fluctuation amplitude (through re-

flectometry principle in Section 3.2.2) of a certain turbulent wave number (through Bragg

backscattering principle). For more details about the step-by-step derivation, please check

J. Hillesheim’s paper [129].

Moreover, those turbulence blobs usually propagate with a velocity v in plasma,

which produces a Doppler shift in the reflected wave frequency. And the shifted frequency

is calculated by:

∆ωturb = v ·K (3.24)

With measured Doppler shift frequency, the propagation velocity of the turbulent struc-

tures can be finally calculated [130].
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3.3 Summary

In this chapter, we discuss the theoretically based codes and experimental diagnostics

that are crucial for studying turbulent particle transport. Two simulation packages of

which one (ONETWO) solves the transport equations and the other (TGLF) is a quasi-

linear gyrokinetic solver are introduced. Next we describe the basic principles of several

essential diagnostics. These diagnostics measure the electron density, the electron tem-

perature, the ion density, the toroidal rotation and the density fluctuation in the DIII-D

tokamak.
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CHAPTER 4

Turbulent particle transport as a

function of toroidal rotation

4.1 Introduction

In this chapter we will study how toroidal rotation affects particle transport. Toroidal

rotation in tokamaks is very important in that it can stabilize MHD instabilities [132, 133],

reduce error field penetration [134], as well as determine global confinement in tokamaks

[49, 45]. According to Lawson’s Criteria [1], a high central density is eventually needed to

achieve a high fusion gain in future magnetic confinement devices. However, the current

predictive capability of particle transport in tokamaks is not well validated [135]. We still

need to investigate how different plasma parameters can affect particle transport and con-

finement. Toroidal rotation is one of such parameters that we can use to help controlling

the density profiles. Thus it is necessary to study the correlation between the toroidal

rotation and the density.
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As shown in Chapter 2, a significant amount of previous work has been done to

investigate the role of collisionality and turbulence with respect to particle transport

[81, 23, 82, 136, 38, 137, 78, 77, 79, 73, 38, 137, 24]. However, the role of toroidal rotation

has historically received limited considerations in particle transport. Since the toroidal

rotation is one of the contributions to the E × B shear (see Equation 2.8), it plays an

important role in determining confinement through the E×B shear suppression of turbu-

lent transport. This motivates us to investigate in more detail how toroidal rotation and

rotational shear affect particle transport directly. In addition, because previous research

on AUG has shown that the changes in the dominant mode can result in the changes of

rotational shear and the local density gradient [23, 82]. We conduct our dedicated exper-

iments on DIII-D to keep the same input power and fueling levels while only change the

injected torque by using a mix of co- and counter- beam injection [21].

In this chapter,the toroidal rotation is altered by changing the injection direction of

the neutral beams from co-torque to counter-torque, see Figure 4.1. Here co- and counter-

refer to the direction correspond to the toroidal plasma current. A balanced torque can be

obtained by turning on the same amount of co- and counter-torque injection. We study

the effect of rotation, rotational shear, and the E × B shear upon particle transport and

confinement. The ion and electron temperature profiles remain identical and as a result the

dominant instability turbulent mode is similar for all three discharges. Thus any changes

in the density profile or the rotation profile will not be the result of a change in turbulence

regime, but a direct result of a difference in injected torque and resulting E×B shear. We

find in DIII-D that the normalized density inverse scale length R/Ln = −R0

ne

∂ne

∂R
is weakly

correlated with the E × B shearing rate, where ne is electron density, R0 is the major

radius. Moreover, we will show that the plasma which has the best density confinement, is

the one whose shearing rate is larger than or similar to its microscopic turbulence growth
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FIG. 4.1: Geometry of the DIII-D neutral beam injection system. Three of the beamlines inject
power in the same direction as the usual plasma current (counter-clockwise in the diagram).
We define these three as co-torque injection. One system is defined as counter-torque injection
since its power is injected in the opposite direction. (Figure taken from DIII-D website, Neutral
Beam Overview)

rate. Whereas the lowest density is observed in the balanced torque discharge, where the

linear growth rate is larger than the E × B shearing rate. We also find that the quasi-

linear calculated particle flux by TGLF does not agree with the experimental particle flux.

Neither does the linear growth rate as calculated with TGLF correlate with the observed

density fluctuations. This indicates that more research needs to be done to validate the

reduced linear transport model.

The chapter is organized in the following order. First, in section 4.2, we will discuss

the experimental setup of these experiments as well as the linear stability calculations.

In section 4.3 we will discuss the experimental particle flux along with the experimentally

measured perturbed transport coefficients. Next, in section 4.4 we will show the changes in

turbulence characteristics with a focus on the changes in E×B shear along with the changes

in growth rates and density fluctuations. Section 4.5 presents some comparisons between
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TGLF simulations and the experimental results. We will conclude with a discussion and

short summary.

4.2 Experiment setup

Our experiments were performed in the DIII-D tokamak with major radius, R ∼

1.67 m and minor radius, a ∼ 0.67 m. The heating power is ∼ 5 MW in these H-mode

plasmas, with a line averaged density of 3 − 4 × 1019m−3, see Figure 4.2. The toroidal
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FIG. 4.2: Time evolution of three DIII-D H-mode discharges with different torque injection.(a)
The NBI heating power for each discharge and the (b) ECH injected power are kept the same.
(c) The NBI torque injection is varied from co- to counter-injected. (d) The fueling from the
NBI is the same for all three discharges (e) The change in torque injection results in different line
averaged electron density. (f) The core carbon rotation close to ρ = 0.3 varies from co-rotating
to zero rotation.

magnetic field is Bφ = 1.9 T and the plasma current is Ip = 1.1 MA. In Figure 4.2, at

2000 ms, the initial 3.5 MW NBI power is reduced to 2MW , and 3MW of ECH power

is added. The torque is varied from 1.1 Nm in one discharge to 0 Nm in the second

discharge and −1.6 Nm in the third. The only fueling of the plasma comes from the NBI

and the plasma-wall interactions, there is no additional gas puff during the H-mode phase
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of these discharges.

We choose a steady state time slice for each of the three discharges and compare the

profiles of different plasma parameters at these times. More specific, the chosen time slices

are the time between two edge localized modes (ELMs). ELM is a periodic MHD instability

occurring in the edge region of an H-mode tokamak plasma [138]). It can cause disruptions

in plasma edge density and temperature and thus limits the measurement accuracy of those

parameters. Figure 4.3 gives an example of how edge density changes before, during, and

after an ELM crash in MAST (Figure taken from R. Scannell et. al Ref [139]. Note here

that the MAST is a different tokamak to DIII-D, we use this figure only as an example to

show how ELM affects the edge plasma density). We can see that during an ELM (red

(a) (b)

FIG. 4.3: Density profiles at the edge before and after ELM. The timing of measured density
profiles (a) are shown on the Dα measurement (b) with time interval of 200µs. (Figure taken
from R. Scannell et. al Ref [139])

line), the density profile collapses inward largely. The density then recovers gradually to its

initial value (blue line) after the crash (see green and yellow lines). Therefore, in order to

avoid the edge transport effects from ELM crashes, we choose the time slices which equal
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80%-90% τELM after each ELM crash (τELM is the time interval between two ELMs). We

can see that the change in injected torque results in a change in the core carbon rotation

as measured by the Charge Exchange Recombination (CER) system [140] (see Chapter 3).

Figure 4.4(a) shows that both the co-torque and the balanced torque discharges rotate in

the co-current direction. For the counter-torque discharge, the toroidal rotation is in the

counter-current direction within ρ ∼ 0.3 while is close to zero at ρ > 0.3. Here we use

a polynomial fitting technique to fit the measured data (7th order polynomial fitting for

rotation data and 5th order for the density and temperature data below). The unsymmet-

ric co- and counter- torque rotation and the co-current directed balanced torque rotation

indicate that an intrinsic torque in the co-current direction is presented in all three cases,

similar as it has been shown in Solomon et al. Ref [141]. Moreover, in our experiments, the

electron density is measured with the reflectometer system [120] and is verified with the

Thomson Scattering system, the electron temperature profiles are measured using both

the electron cyclotron emission (ECE) [123] and Thomson Scattering system [114], and

the ion temperature profile is measured with the CER system (see Chapter 3 for all the

diagnostics). Figure 4.4(c)(d) shows that both the co- and counter-torque discharges have

a similar electron density profile as well as a similar inverse density gradient R/Ln within

experimental error bars. However the balanced torque discharge has a much lower density

and R/Ln. In Figure 4.4(e)(f), we can see the electron temperature profiles of all three

discharges match well and are only marginally affected by the changes in toroidal rotation.

Lastly, comparing the ion temperature profiles from Figure 4.4(g)(h), we see the co-torque

discharge has a slightly higher Ti, however the ion temperature gradients in the region of

interest for all three discharges are similar.

Previous research on AUG has shown that changes in the frequency of the dominant

unstable mode can result in changes in rotational shear as well as the local density gradient
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FIG. 4.4: Experimental fitted profiles and their inverse gradients for all three discharges (blue
= co, yellow = balanced and red = counter injected NBI). (a-b) Due to the different injected
torque the toroidal carbon rotation and its normalized gradient, u′ are very different for all
three discharges. (c-d) The electron density is the highest for the counter injected discharge
and the lowest for the balanced injection. R/Ln for the co- and counter injected discharge are
fairly similar. (e-f) The electron temperature profile is fairly similar for all three discharges
outside rho ∼ 0.2. (g-h) The ion temperature is slightly higher for the co-injected discharge in
comparison with the two other discharges.
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[23, 82]. In order to study only the effect of toroidal rotation and control the changes of

other variables, we need to verify that there is no change in the mode frequency. We

use TGLF [20], a quasi-linear gyrokinetic code to calculate the linear growth rates and

frequencies of the most unstable mode (see Chapter 3 for more details on TGLF). We use

the experimental profile fits from Figure 4.4 as input to TGLF. For 0 < kθρs < 1 (where

kθ is the poloidal wave-number, ρs is the ion sound radius), the frequency of the instability

mode which has the largest growth rate (i.e., the most unstable mode) is extracted at

each radial location. Figure 4.5 shows the mode frequency profiles of all three discharges.

From ρ = 0.4 − 0.7, the frequency of the most unstable mode is positive, which means
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FIG. 4.5: Frequency of the most unstable mode for 0 < kθρs < 1 by TGLF. All three discharge
are in TEM regime outside ρ = 0.4 (ω > 0). Inside ρ = 0.4, the counter torque injected plasma
is still in the TEM regime, whereas the other two discharges change to the ITG regime.

the turbulence drifts in the electron diamagnetic direction. Thus we can identify this

mode as a Trapped Electron Mode (TEM), which is driven by both the density gradient

and the electron temperature gradient. For the co-torque and counter-torque discharges,

when ρ < 0.4, the mode frequency becomes negative, which means the drift direction of

turbulence switches to the ion diamagnetic direction. As a result, the dominant mode can

now be identified as an Ion Temperature Gradient (ITG) unstable mode. We can observe
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from Figure 4.5 that not only is the frequency of the most unstable mode in the same drift

direction (for ρ > 0.4 ), but also the value of the frequency is similar. Therefore, we can

assume that the changes in electron density and density gradient are not the result of a

change in mode frequency and focus on the role of the toroidal rotation in determining

particle transport. However, we need to note here, although typically the instabilities at

small wave numbers dominate the changes in transport, GYRO simulations have shown

that non-linear coupling can have a substantial effect on the heat flux [142]. We still do

not know whether the non-linear effect from large wave number turbulence can play an

important role in particle transport. Further discussion about the non-linear effect of the

instability will be presented in Section 4.6.

4.3 Experimental particle transport changes

4.3.1 Particle flux

We use ONETWO, a one-and-half-dimensional code which solves transport balance

equations to determine the fueling source from the beams and calculate the particle flux

(readers can refer to Chapter 3 for more details of ONETWO). The particle balance

equation that ONETWO solves is

∂ne
∂t

= −∇Γe + Se (4.1)

where ne is the electron density, Γe is the particle flux and Se is the fueling source. Figure

4.6(a) shows the total particle flux calculated by ONETWO. Since the central neutral

beam fueling is proportional to the injected power and the NBI heating power is similar

for all three discharges, we can see a similar particle flux in the core for all three discharges.
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FIG. 4.6: Particle flux and effective diffusion coefficient profiles (a) Total electron particle
flux determined using particle balance. (b) Effective transport as represented by an effective
diffusion coefficient, Deff = Γ/(∂n/∂r) for the 3 discharges.

Next we show in Figure 4.6(b) how steady-state transport coefficients varies. We

calculate the effective diffusion coefficient which is defined as Deff = −Γe/(∂ne/∂ρ) in

these three discharges. Deff is an representation of the total change in radial transport.

It includes both the particle pinch as well as the actual diffusion coefficient. As shown in

Chapter 2, particle transport has multiple components, but these components cannot be

extracted using steady state calculations. It is observed that, although the particle flux is

similar for all three discharges, the changes in local density gradients (see Figure 4.4) result

in different Deff . We see the balanced torque discharge which has the lowest density profile

(Figure 4.4(c)) has much larger effective diffusion coefficient from ρ = 0.2−0.7. While the

co- and counter- torque discharges which have higher density profiles have smaller Deff .

4.3.2 Perturbed transport coefficients

In previous section, we show that while the particle flux can be similar, particle trans-

port can be very different (see Figure 4.6). Although we have studied the effective diffusion

coefficient Deff = −Γ/(∂n/∂ρ), the actual particle flux equation should include both an
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outward diffusion coefficient as well as an inward convection coefficient, Γ = −D ∂n
∂ρ

+ vn

(for more details, see Section 2.3). However, steady state measurement prevents us from

getting both D’s and v’s at the same time since there is only one particle flux equation

but two unknown variables. Therefore, in order to extract both the pinch and diffusion

coefficient separately, we have to rely on the use of a perturbative gas puff technique.

The gas puff technique has been developed since 1980s and is used in more recent years

(due to improved temporal and spatial diagnostic capabilities) to provide measurements

of the perturbed diffusion coefficient Dp and the perturbed convection coefficient vp [137,

143, 69, 144, 145, 36, 146]. This technique adds a periodic small gas puff into plasma,

which modulates the density profile with a fixed periodicity. Figure 4.7 is an example

from Ref. [137] showing how density evolves during two edge gas puffs (red overlay). The

2600 2800 3000 3200
0

1

2

3

4

5

n
e (

10
19

 m
-3
)

0.95

0.65

0.75

0.85

0.5
0.6

0.7

0.8

0.9

1.0

1.05

ρ

Time (ms)

gas puffs

142247

FIG. 4.7: Density evolution through two edge gas puffs. Density data measured by the DIII-D
reflectometer system from mid-radius to the plasma edge.
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time interval between two gas puffs is 400ms. We can see clearly a gas-puff-induced density

perturbation which propagates from the edge into the plasma core. Here the dashed line

is only a guide to the eye and is not a fit to the data. We assume the density perturbation

has the form of

ñ(ρ, t) = A(ρ)exp(i[ωt− φ(ρ)])

Here A is the measured amplitude, ω is the measured frequency, and φ is the measured

phase shift of the perturbed density ñ. We can extract the amplitude A and the frequency

ω by Fourier decomposing the modulated density profiles. Next we express the perturbed

particle flux as Γ̃ = −Dp
∂ñ
∂ρ

+ vpñ. The continuity equation for the perturbed density can

be written in the form of:

∂ñ

∂t
= −1

ρ

∂

∂ρ
(−Dp

∂ñ

∂ρ
+ vpñ) (4.2)

Here we assume zero perturbation on particle source. Therefore, by replacing the perturbed

density into Equation 4.2, we can derive the perturbed diffusion and convection coefficient:

Dp = −ω(Y sinφ+Xcosφ)

ρ(∂φ/∂ρ)A
(4.3)

vp = −ω(∂A/∂ρY − ∂φ/∂ρAX)sinφ

ρ(∂φ/∂ρ)A2
− ω(∂A/∂ρX + ∂φ/∂ρAY )cosφ

ρ(∂φ/∂ρ)A2
(4.4)

where X =
∫

ρAcosφdρ and Y =
∫

ρAsinφdρ. More details about this technique can

be found in H. Takenaga’s paper [147]. Also, readers can refer to Doyle et al. [137] and

Mordijck et al. [143, 69] for more experimental details on this technique for DIII-D plasmas.

We presents in Figure 4.8 the results of measured Dp and vp of the three discharges.

We can see that while the co-torque discharge and balanced torque discharge have similar

Dp and vp, the counter-torque discharge has a stronger convective inward pinch outside ρ =
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FIG. 4.8: Perturbative transport measurement for the three discharges: (a) Diffusive coefficients
are similar in magnitude (b) Convective coefficients show that counter-torque discharge has a
much larger inward pinch than the other two discharges outside ρ = 0.6. (c) The ratio of vp/Dp.

0.6. This matches well with the observation in Figure 4.4(c) that counter-torque discharge

has the highest electron density profile. Caution needs to be applied into over-interpreting

these results. The Fourier analysis only results in the extraction of the perturbed transport

coefficients and does not include the steady-state and perturbed fueling sources. Ongoing

work on JET includes a non-linear optimization to extract the steady state transport

coefficients, not just the perturbed transport coefficients [148]. However, this technique is

still under development and cannot yet be applied to DIII-D plasmas.

4.4 Turbulence and E × B shear

4.4.1 Role of toroidal rotation in deciding E × B shearing rate

Toroidal rotation can indirectly affect particle transport, through its contribution to

the radial electric field Er and thus the E × B shearing rate. Recall the radial electric
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force balance equation 2.8 and the E×B shearing rate definition equation 2.9 in Chapter

2 [49, 50]:

eEr = e(Zieni)
−1∇Pi − evθiBφ + evφiBθ (4.5)

ωE×B =
(RBθ)

2

B
(
∂

∂Ψ
)
Er
RBθ

(4.6)

Here, Zi is the net particle charge of species i, Pi is plasma pressure, vi is the plasma

velocity and θ and φ denote poloidal and toroidal direction respectively, B is the magnetic

field and Ψ is the poloidal flux. On the right hand side of equation 4.5, there are three

terms (plasma pressure, poloidal rotation, and toroidal rotation) that contribute to the

radial electric field Er. As an example, for the co-current discharge, Figure 4.9 shows the

magnitude of each component. We can see that the contribution from toroidal rotation

vφiBθ takes the largest portion of the total electric field (except in the edge where the

diamagnetic term dominates, see pink line in Figure 4.9). Since the poloidal magnetic

field Bθ is fixed, a change in toroidal rotation profile can cause a consequent change in Er.

Next, with the radial electric field calculated, the E × B shearing rate can be obtained

via equation 4.6. Figure 4.10 shows a correlation plot between the E × B shearing rate

and the normalized density inverse scale length R/Ln at ρ = 0.5− 0.8 from a database of

DIII-D plasmas. We can see a weak correlation between the local E×B shearing rate and

the local peaking of the density for ρ = 0.5−0.8. Here the E×B shearing rate is based on

measured quantities only (Carbon was the ion species used by the CER system). While

the density gradient has a contribution in the ωE×B (see diamagnetic component in Figure

4.9), there were large variations in the electron temperature gradient, ion temperature

gradient, and rotation shear which can affect turbulence drive and thus eliminating any

trends related to the density gradient. In the next section we will study the role of the

E×B shearing rate in determining particle confinement by comparing the three dedicated
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FIG. 4.9: Components of radial electric field for the co-current discharge from the plasma
pressure gradient (solid line), the poloidal rotation (dashed line), and the toroidal rotation
(cross dotted line).

discharges in which we varied the torque injection.

4.4.2 Growth rate versus E × B shearing rate

As discussed in Chapter 2, previous research has shown that shear flow can tear apart

turbulence eddies and thus reduce the turbulent transport [45, 46, 43, 49, 48]. Sheared

flow, such as the E × B shear, suppresses turbulence in two ways [49]; through nonlinear

de-correlation, which includes the reduction in the turbulence radial correlation length,

phase, and fluctuation size; or through linear stabilization, which enhances the damping

of turbulence by coupling the unstable modes to nearby, stable modes, thus improving the

overall stability of the system. Although the radial electric field (and thus the ωE×B rate)

is dominated by the pressure gradient in the pedestal region, as it goes deeper inside the

core, the toroidal rotation contribution is more important (see Figure 4.9) [149]. As shown
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FIG. 4.10: Correlation plot : Inverse density gradient, R/Ln as a function of E × B shearing
rate ωE×B for low density H-mode discharges in which the ratio of Te/Ti is varied.

in Figure 4.11, the E × B shearing rate in our set of three discharges changes due to the

variations in toroidal rotation. We can see that the change in toroidal rotation has the

strongest effect from ρ = 0.6 − 0.8. Outside ρ = 0.8 the changes in the pressure gradient

dominate and inside ρ = 0.6 the shearing rate is small and the local difference between

the discharges are related to fitting choices. Figure 4.11 shows that the discharge with

balanced torque (yellow line) injection has the lowest ωE×B, while the co- (blue line) and

counter-torque discharges (red line) have a higher shearing rate from ρ = 0.6− 0.8.

The E × B shearing rate by itself is only an indication of how strong the shear

is. The strength of the turbulence drive is also crucial. In a simplified picture, without

including non-linear effects, the rule of thumb is that if the linear growth rate is smaller

than the shearing rate, the mode will be suppressed, whereas if the linear growth rate is

larger than the shearing rate, the mode will not be suppressed. This rule of thumb has

been observed before on DIII-D, where the toroidal rotation is strongly modified using

81



0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

1.5

2

2.5

3

3.5

4

ρ

 

 

Co-torque

Counter-torque

Balanced torque

ω
ExB

 [x10  rad/s]

Error range

5

FIG. 4.11: E×B shearing rates (using Hahm-Burrell [49]) for the three discharges with different
torque injection.

Resonant Magnetic Perturbations [143]. When we compare the linear growth rate to the

E ×B shearing rate in our experiment (see Figure 4.12), we find that ,for the co- (Figure
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FIG. 4.12: E×B shearing rates versus the maximum growth rates for kθρs = 0.1− 0.5. Three
E ×B shearing rates are labeled with different colors: (a) co-torque (Blue), (b) counter-torque
(Red), and (c) balanced torque (Yellow). All the growth rates are represented by the green
lines.

4.12(a)) and the counter-torque injected discharges (Figure 4.12(b)), ωE×B is larger than or

of similar to the maximum linear growth rate from ρ = 0.6−0.85. Whereas for the balanced

torque injected discharge (Figure 4.12(c)), the E × B shearing rate is much smaller than
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the average linear growth rate. Thus based on the simplified rule, the balanced torque

discharge will be less able to suppress turbulent transport from outside the mid-radius up

to the top of the pedestal. However, the comparison between ωE×B and the growth rate

is based on a simplified linear picture. As mentioned in the beginning of this section, the

E × B shear flow can also result in the non-linear de-correlation of the turbulent eddies.

Since we lack a direct 2D visualization measurement of the actual eddies, we cannot tell

whether it is because the modes at smaller kθρs are suppressed or whether it is because of

the de-correlation of these modes that results in a decrease in transport and improvement

in confinement.

4.4.3 Density fluctuations

As the last part of this section, we present the profile of experimental measured

density fluctuations, see Figure 4.13. The density fluctuation is measured by the Doppler

BackScattering (DBS) [129]. In our experiment, the DBS measures density fluctuations

range in kθρs = 1.6−2.8, i.e., at the intermediate scale. This intermediate scale is typically

associated with the TEM unstable regime. In Figure 4.13, from ρ = 0.6−0.75, we observe

that the balanced torque discharge has slightly higher ñ/n than the other two discharges.

While from ρ = 0.75− 0.9, the density fluctuation of counter-torque discharge has a large

increase and there is no data for the co and balanced discharge. Outside ρ = 0.9, density

fluctuations of all three discharges are similar.
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scale (kθρs = 1.6− 2.8) for all three discharges.

4.5 Comparison with theory

4.5.1 Growth rate and frequency spectrum

The quasi-linear gyrokinetic code (TGLF) we use in this chapter, despite lacking

precision in large wave number region, can produce well calculations of the dominant mode

frequency and growth rate spectrum. Figure 4.14 shows the frequency and growth rate

spectrum of all three discharges with x-axis the radial distance and y-axis the normalized

wave-number. We can see from Figure 4.14(a-c), in the core part (ρ < 0.4) of co-torque and

balanced torque discharges, the plasmas are under ITG regime. While outside ρ = 0.4, for

all three discharges, we see the signs of frequency are positive and thus all three discharges

are in TEM regime. One feature of this intermediate scale TEM instability is, its growth

rate usually peaks within 1 < kyρθ < 2.5 [142][150] and is usually larger than the growth

rate of ITG mode Figure 4.14(d)-(f). Also, we can see the instability growth rate maintains

the magnitude of same level at ρ = 0.6−0.7, which address the importance of E×B shear
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change on particle confinement.

4.5.2 Quasi-linear turbulent particle flux

Next we present a comparison between the TGLF calculated particle flux and the ex-

perimental particle flux got from Section 4.3.1. TGLF can calculate the turbulent particle

flux at each kθρs for the different radii. Thus we can extract the quasi-linear particle flux

at different radial locations by integrating over kθρs = 0 − 1. The difference between the

TGLF calculated turbulent flux and the experimental results is that, the calculation of

the experimental flux is based on the radial integral of the source, whereas TGLF does

not know anything about the fueling sources, the TGLF calculations are based upon local

gradients. The solid lines in Figure 4.15 show the total particle flux from ONETWO while

the dashed lines show the quasi-linear turbulent particle flux from TGLF. Comparing these

two flux results, we find that, even considering the range of error bars, there is still an
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large mismatch between the quasi-linear flux and the experimentally measured flux. Here

we calculate the error bars by varying separately the gradients such as R/Ln, R/LTe, or

R/LT i by 10%, and then choose the largest variation as the upper bound and the lower

bound of each point. We can see that, in the co-torque injected discharge, although the

quasi-linear flux follows the same trends as the experimental flux, it is still a factor 3 too

small. For the counter-torque injected discharge, the quasi-linear flux has a negative value

between ρ = 0.5 and ρ = 0.6 and then increases largely above experimental values when

towards plasma edge. Finally, for the balanced-torque injected discharge, the calculated

quasi-linear particle flux also exceeds the experimental observations outside ρ = 0.6.
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4.5.3 Density fluctuations versus growth rate

We have shown the experimental density fluctuations at kθρs = 1.6 − 2.8 in Figure

4.13. In a simplified linear picture, if we re-consider here Equation 2.7 in Chapter 2,

ñ = n0exp(ik · x− iωt), where ω = ωfreq + iγ (4.7)

here ñ is the perturbed density, n0 is the local plasma density, ωfreq, γ denote the instabil-

ity modes frequency and its growth rate, k is the wave number. We can see the equation

indicates that the growth rates should have same trend of change as to the actual density

fluctuations at the same scale. Figure 4.16 shows the average linear growth rate profile for

the same kθρs = 1.6− 2.8 scale. We observe that, outside ρ = 0.9, the linear growth rates
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FIG. 4.16: Linear growth rate profiles The average linear growth rate for kθρs = 1.6− 2.8.

seem to qualitatively agree with the observed density fluctuations. However, considering

the fact that there is no data for the co and balanced injected discharge, it is impossible

to compare the trends between ρ = 0.7− 0.9.
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To sum up, in this section, we find that there is a mismatch between the quasi-linear

calculated turbulent flux and the experimental flux. The linear growth rates also do not

match the experimental density fluctuations. One of the explanations can be that, for

now, the linear calculation can not capture all the physics on microscopic and macroscopic

scales, non-linear effects play an important role in turbulent transport and that a full

non-linear gyrokinetic simulations would result in a better agreement. As an example,

non-linear multi-scale gyrokinetic simulations of C-mod results [150] have already shown

to increase the heat flux by 30% in comparison with ITG-only non-linear gyrokinetic

simulations. But it is still unclear now whether a fully non-linear multi-scale gyrokinetic

simulations will result in a change of the particle flux. Further research is needed to study

whether non-linear gyrokinetic simulations can make a different with quasi-linear results

for particle transport.

4.6 Discussion

In this chapter we study the effects of toroidal rotation on particle transport. In three

dedicated discharges of low density H-mode plasmas on DIII-D, we keep the frequency

of the dominant unstable mode the same and only change the input torque (from co- to

counter- torque). The profile of toroidal rotation and electron density is changed while the

electron temperature remains similar of all three discharges, see Figure 4.4. In addition,

the changes in toroidal rotation can feed into the E × B shearing rate via changing the

radial electric field. Thus, we can vary the E × B shear substantially from ρ = 0.6 − 0.8

by altering the injected torque. The ability of the E × B shear to regulate particle con-

finement from mid-radius to the top of the pedestal has been found previously during the

application of Resonant Magnetic Perturbations (RMPs) [143] (a technique using mag-
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netic perturbations to control ELMs in tokamak plasmas) and in Quiescent H-mode [151]

(a high confinement plasma operation mode without the disruption from one of the plasma

instabilities called edge localized modes (ELMs) [152]). In both cases, a reduction in par-

ticle confinement is observed when the linear growth rate for small kθρs is larger than

the E × B shear. However, there are many differences between our experiments and the

previous experiments in the QH-mode and the RMP H-mode on DIII-D. One example is

that, the former experiments would change the temperature gradients and thus change the

underlying linear instability, while in this dedicated set of three discharges the temperature

gradients are similar and, as a result, the frequency of the most unstable mode is similar

for all three discharges in which the torque was varied.

Another example of the turbulent particle transport suppression by E×B shear is the

observation of an Internal Transport Barrier (ITB) on TFTR, where the magnetic shear

reversal cannot explain the improvement in confinement [153]. Different from the approach

of our experiment, the change of the E×B shear in this case is not the result of a change

in toroidal rotation, but is due to the steep pressure gradients formed in the ITB region.

For the ITB case, the mechanism of turbulence suppression is more comparable to the

formation of the pedestal during the L- to H-mode transition [154], where eventually the

gradients in the pedestal provide the shear to maintain the pedestal through suppression

of turbulent transport.

Next, we will discuss the perturbed diffusion coefficient Dp and the perturbed convec-

tion coefficient vp measured by gas puff technique. As shown in Section 4.3, the perturbed

transport coefficients indicate that the changes in transport are not only just the result of

changes in outward diffusion, but also the changes in inward convection. However, we need

to be careful that the perturbed transport coefficients are not equal to the transport coeffi-
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cients in steady state. This is because although the perturbations to the density are small,

this can still affect the local gradients. Currently it is still unclear whether the perturbed

coefficients can accurately reflect the physics of steady-state transport. In order to connect

the perturbed transport coefficients to the background steady state transport coefficients,

a non-linear optimization is needed, which includes not only the perturbed density pro-

files, but also the steady-state density profile, and the perturbed fueling sources. Initial

progress on this topic has been made on JET, but the technique is still being tested and

developed [148].

Finally, we report another interesting finding from our experiment. In one recent

paper by S. Mordijck et al. [69] where Te/Ti is varied on DIII-D H-mode plasma, a

correlation between a strong increase in perturbed inward particle pinch and an increase in

intermediate scale density fluctuations is observed around ρ = 0.6. In our experiment, we

find a similar correlation. For the counter-torque discharge, a strong inward particle pinch

happens around ρ = 0.8 (Figure 4.8(b)), this is the same radii where the strong increase

in intermediate scale density fluctuations occurs (see Figure 4.13(a)). This correlation

provides the possibility of turbulence drive inward pinch in plasma edge and thus is worth

further research.

4.7 Conclusion

In this chapter we present the first dedicated study on how changes in toroidal rotation

affect particle transport and confinement. While keeping the underlying turbulence drive

unchanged, we vary the toroidal rotation by changing the injected torque in co-current,

counter-current, and balanced directions. We find that there is a correlation between R/Ln

and the E ×B shear. A reduction in particle confinement is observed in balanced torque
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discharge when the E ×B shear is lower than the linear growth rate at small kθρs outside

mid-radius. However, when the E×B shear is larger than or at least similar as the linear

growth rate, the density profile as well as the plasma peaking increases. In addition, quasi-

linear gyrokinetic simulations of the particle flux using TGLF do not match experimental

observations. This suggests that more future work need to be made to validate the quasi-

linear gyrokinetic simulations in order to improve the ability in predicting density profiles.

Finally, the perturbed transport coefficients which are measured by gas puff technique

indicate that changes in transport are not only just related to an increase in outward

diffusion, but also related to the changes in inward pinch. In the counter-torque injected

discharge, a strong increase in the perturbed inward pinch is observed at the plasma edge.

An increase in intermediate scale density fluctuation is also observed at the same radius.

This correlation is similar as it has been reported in Ref [69].
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CHAPTER 5

The determination of local density

gradient by the local turbulence

regime

5.1 Introduction

In Chapter 4, we have shown that the balanced torque injected plasmas can result in

a reduction in confinement. This reduction can become a big concern for future burning

plasmas devices such as ITER [155], since ITER will have no external momentum source.

One way to counter the confinement loss due to changes at the plasma edge is through an

increase in peaking of the core density. There are three known mechanisms to affect the

density gradient in the core: collisionality [77, 78, 79, 61, 73], frequency of the dominant

turbulent mode [22, 68, 82, 23, 82], and the q-profile driven by plasma current (q is the

plasma safety factor defined as: q =
rBφ

RBθ
, where r and R denote length in minor and major

radii) [66, 77, 78]. As discussed in Chapter 2, in JET H-mode discharges [77, 78, 79], results
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from an extensive database analysis of density profiles in stationary conditions show that

the density peaking increases 25% as the effective plasma collisionality decreases from 1 at

mid-radius to below 0.1. However, on DIII-D, in a set of dimensionless scaling experiments,

no increase in density peaking was observed when collisionality was reduced by a factor of

2 in both H-mode and L-mode discharges [137]. Another component in determining the

density profile is the q-profile, through the curvature pinch. Density peaking is observed to

increase when the plasma current drive (proportional to 1/q) increases on JET [66, 77, 78].

A similar correlation between the density peaking and q-profile is also observed on DIII-D,

where the correlation is more pronounced when Te = Ti and less pronounced when Te > Ti

and the plasma is in a TEM turbulence regime. Finally, in this chapter, we will investi-

gate the role of the linear mode frequency in determining the density profile in the core.

Particularly, we will focus on the dependence of electron density gradient on frequency of

the most unstable mode.

In recent years, both gyrokinetic simulations [22, 68, 82] and experiments in AUG

[23, 82] have reported a connection between the electron density gradient and the frequency

of the linear microinstability mode. The inverse density scale length R/Ln = −R0

ne

∂ne

∂R
is

found to maximize near the ITG-TEM transition and decreases towards both the ITG and

the TEM regimes. Here ne is the electron density, R0 is the major radius. This inter-

esting dependence was first derived theoretically by assuming little turbulent particle flux

in Ref. [22] and then found in a set of L-mode and H-mode discharges across different

plasma parameters at r/a = 0.45 on AUG [23]. Here r denotes length of the minor radii,

a is the minor radius. The dependence seems to be universal in describing the density

peaking under various experimental conditions, such as L- and H-mode plasmas, whether

the plasmas are dominantly ion heated or dominantly electron heated. However, the AUG

experimental results only report the dependence at r/a = 0.45 [23]. These results have
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yet to be confirmed on other experimental devices nor at other radial locations. More

validation is still needed.

In this chapter, we report for the first time on DIII-D the dependence of R/Ln on

frequency of the unstable mode. Counter to AUG, we investigate this correlation time-

dependently with a 3MW ECH pulse added into a steady neutral beam heated H-mode

plasma on DIII-D. Instead of steady states, we are looking at the dynamic ITG-TEM tran-

sition process in our experiment. We use a polynomial fitting method to fit the electron

density data in time evolution direction during the whole process. The same fitting is

performed at all radial locations so that a 2D figure in both time and spatial directions

can be drawn for the density data. With this smoothed fits, the electron density gradient

can be calculated. On the other hand, TGLF can calculate frequency of the turbulence

in one time point using profiles of different plasma parameters at that exact time. Thus

together with time-dependent fitted R/Ln and time-independent calculated frequency of

mode, we find that he electron density gradient in plasma core shows a dependence on the

most unstable mode frequency. That is, when the absolute frequency of the dominant un-

stable mode decreases in the ion temperature gradient (ITG) regime, local density peaking

increases. Once the dominant mode switches over to the trapped electron mode (TEM)

regime, the local peaking of the density decreases again. As a result the density gradient

reaches a maximum where the turbulence regime switches over from ITG to TEM. This

dependence is in agreement with theoretical prediction [22] and experimental results on

AUG [23]. However, when we move to the plasma edge, the dependence between R/Ln

and frequency of instability mode disappears. In addition, to study how particle transport

changes during the ITG-TEM change, we calculate the radial integral of the electron den-

sity changing rate
∫ r

0
dne(r,t)
dt

dr and compare it with the mode frequency. Since core fueling

is a constant during our discharge, the integral of dne/dt is a good reflection of how the
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electron flux changes. We observe that the electron density changing rate also peaks near

the ITG-TEM transition, which indicates that the particle flux in this discharge is largely

affected by changes in turbulence.

We will firstly describe our experiment set up in Section 5.2. The next section, 5.3,

presents all the fitting methods that are used to fit the raw density data, along with the

comparison of their fitting errors. In Section 5.4, the correlation between the density

gradient R/Ln and the instability mode frequency is presented. We then calculate the

electron flux assuming the core fueling is not affected by changes in electron flux Γe, ion

flux Γi, and ne in Section 5.5. This chapter will end with a discussion section and a

summary section (Section 5.6, 5.7).

5.2 Experiment set-up

We conduct our experiment in the DIII-D tokamak[19] whose major radius R0 =

1.67m and minor radius a = 0.67m. The plasmas are low density, low collisionality H-

mode plasmas heated by a constant neutral beam injection, see Figure 5.1(a). The central

toroidal magnetic field is BT = 1.88T and the plasma current is Ip = 1.1MA. The plasma’s

safety factor is around q95 ≈ 4.2 and the normalized plasma pressure is among βN = 1−1.5.

As shown in Figure 5.1(a), at 2500ms, 3.2MW electron cyclotron heating (ECH) power is

added. It lasts for 500ms and is reduced to 1MW at 3000ms. The second ECH pulse starts

at 3500ms with the same 3.2MW power and the same duration time 500ms, after which

it is again reduced to 1MW at 4000ms. The core injected neutral beam power is kept at

3MW so that the beam fueling and heating is the same at all times, see Figure 5.1(b). We

see from Figure 5.1(c)-(f), for each ECH pulse, the electron temperature increases while

the line averaged density, ion temperature, and the impurity rotation decrease. Moreover,
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we can see that it takes much less time for the electron temperature to reach a new steady

state than the electron density.
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FIG. 5.1: Time evolution figures of a DIII-D H-mode discharge with periodic added ECH
pulses.(a) The NBI heating power is kept same and a 500ms long ECH pulse (3.2 MW) is
injected every 1000ms after 2500ms. (b) The fueling from both the NBI and the edge gas puff
are the same at all time. The periodic injected ECH pulses result in different (c) line averaged
electron density, (d)Core electron temperature, and (e) Core carbon toroidal rotation.

The electron density in this experiment is measured by the Reflectometer system

[120] and has been compared to the Thomson Scattering system (see detailed comparison

in the next chapter). The electron temperature profile data comes from both the electron

cyclotron emission (ECE) system [123] and the Thomson Scattering system [114]. The

ion temperature and the impurity toroidal rotation are measured by the charge exchange

recombination (CER) system [140]. In the DIII-D tokamak, the reflectometer system can

provide temporal resolution of 25µs for the density range of ne = 0 − 6.2 × 1019m−3 for
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FIG. 5.2: Measured electron density data. Time evolution of the electron density at different
radial locations.

Bt > 1.6T [120]. It also has a spatial resolution of ≈ 0.4cm. Figure 5.2 presents the time

evolution of electron density at different radial locations. We can observe that, during

the first ECH pulse (2500− 3000ms), the electron density is pumped out as time evolves

(along the x-axis), and the pump-out happens at all radial location (along the y-axis).

This periodic decrease of ne can repeatedly be seen during the successive ECH pulses.

Moreover, if we set time t as the x-axis and normalized radial location ρ as the y-axis

(here ρ is calculated by normalizing the square root value of each flux surface, it ranges

from 0 to 1 and is typically used as a coordinate to reflect the radial extent in a tokamak

cross section), a 2D contour plot can be drawn (see Figure 5.3). The 2D plot presents a

clearer and more direct way to show the changes in both temporal and spacial direction.

We will use 2D plot repeatedly in the following sections and in Chapter 6.
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5.3 Data fitting

Although the high resolution electron density measurement can show the pump-out

phenomenon in ECH plasmas, the raw data is too scattered if we want to calculate the

density gradient versus time (i.e., dn/dt) and versus radius (i.e., dn/dρ) directions. Figure

5.3 gives an example of calculating dn/dt via raw density data. the variation of ne versus

time is too fast to give information on slow time scale of interest. Therefore, in order

to study the dynamic process of this density pump-out, we need to remove the higher

frequencies. In this section, we use three methods to fit the density data during the first

ECH cycle (from 2500ms to 3000ms). Among all three methods, polynomial fitting is

shown to produce the best fits by providing minimum fitting errors.
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FIG. 5.3: dn/dt calculated by raw data. (a) 2D plot of raw electron data. (b) 2D plot of dn/dt
calculated by raw data.

5.3.1 Exponential fitting

The first fitting method we try is an exponential fitting method since the trend of

density pump-out from 2500ms to 3000ms behave as an exponential decay, see Figure 5.2.
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We set ne,norm from 0 to 1 by normalizing the electron density via:

ne,norm(t, ρ) =
ne(t, ρ)− ne(3000, ρ)

ne(2500, ρ)− ne(3000, ρ)
(5.1)

Here ne(t, ρ) is the electron density at time t and location ρ. We assume ne to be max-

imum at 2500ms and to be minimum at 3000ms. Next, we use an exponential fitting

equation ne,norm = exp(− t−2.5s
τfit

) to fit the data set of the normalized electron density from

2500ms to 3000ms. τfit is the time interval in which the normalized density drops to 1/e

of its initial value. It can be interpreted as the characteristic decay time which indicates

how fast the fitting line decays. In a tokamak plasma, the particle confinement time τp is

defined by the ratio of total number of confined particles over the particle lose at the edge

τp =
∫
v ndv∫
s Γds

(where v and s are the volume and surface area within the torus chamber, Γ is

particle flux). Thus with the same amount of core fueling, the smaller τfit is, the larger

transport is, and the smaller confinement time τp would be during the exponential decay.

Figure 5.4(a) shows both the raw reflectometer data and the exponential fitting line at

ρ = 0.2 while Figure 5.4(b) shows the same comparison at ρ = 0.7. The characteristic

decay time are τfit = 159ms at ρ = 0.2 and τfit = 119ms at ρ = 0.7, which indicates that

the particle confinement time is smaller at the plasma edge than in the plasma core.

However, from Figure 5.4(a), we can see that the exponential fitting quality at ρ = 0.2

is much worse than at ρ = 0.7. Particularly, during t = 2500 − 2650ms (i.e., in the

beginning of the ECH cycle), the decrease of raw density data does not follow exponential

decay, which introduces inaccuracy to the fitted density line. Also, the τfit,core > τfit,edge is

not strictly valid since the initial decrease in the core maybe faster. Thus it is necessary to

find another fitting method which can fit the density data in the first 100ms in the core.
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FIG. 5.4: Exponential fitting of normalized electron density from t = 2500ms− 3000ms at (a)
ρ = 0.2, (b) ρ = 0.7.

5.3.2 Linear fitting

Linear fitting is used to fit the raw density data in the beginning of the first ECH

cycle. When the time interval is small enough (smaller than 50ms in this case), the de-

crease of electron density can be treated as a linear function of the time in its first order

approximation. Thus we can use a fitting equation ne,norm = 1 + k(ρ)t to fit the data.

Here k is the slope and 1 is the intercept since ne,norm ranges from 0 to 1. Figure 5.5(a)

shows the raw data and the linear fitting at ρ = 0.2 and Figure 5.5(b) shows the same

comparison at ρ = 0.7. The slope k(ρ) is an indication of how fast the electron density

decreases. We can see that the slope at ρ = 0.2 is −3.4 while the slope at ρ = 0.7 is −7,

which again means the density decrease in plasma edge is faster than plasma core. This

is in agreement with the exponential fitting result.

However, although a linear fitting technique can fit the density data well in the begin-

ning of the ECH cycle, it cannot fit the whole cycle from 2500ms to 3000ms similar to the
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FIG. 5.5: Linear fitting of normalized electron density from t = 2500ms − 3000ms at (a)
ρ = 0.2, (b) ρ = 0.7.

exponential fitting. When the time interval becomes larger, a first order approximation is

no longer valid and higher orders effects become important. Thus we need to introduce a

polynomial fitting method for a longer time interval.

5.3.3 Polynomial fitting

Lastly, we use a polynomial fitting method to fit the density data. The polynomial

fits can capture the full time interval of interest (from 2500ms to 3000ms) and provide

a good fit in the core as well as the edge. The fitting equation looks like: ne,norm =

A0 + A1t + A2t
2 + A3t

3 + ... where Ai are the fitting coefficients for different orders. We

show in Figure 5.6(a) and (b) the 5th order polynomial fitting results at ρ = 0.2 and at

ρ = 0.7.

There are two reasons that we use the 5th order polynomial fitting. First, as shown in

Figure 5.7(a), the 5th order’s relative fitting error is 20% less than the 4th order in the core

area (here the relative error refers to the ratio of density fitting error and local density, i.e.,
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FIG. 5.6: Polynomial fitting of normalized electron density from t = 2500ms− 3000ms at (a)
ρ = 0.2, (b) ρ = 0.7.

δn
n
). Second, while the 6th order fitting reduces the error further, it introduces a higher

frequency ne modulation which defeats the purpose. Figure 5.7(b) gives an example of

how data gets fitted from 2500-3000ms at ρ = 0.8, we see that, comparing with the 5th

order, 6th order fitting captures more high frequency changes (small waves) in the fitting

line. Thus it is better to keep in 5th order since we only want to see the slow evolution in

density.

In the following part of this chapter and also in Chapter 6, we will use polynomial

fitting to fit the density data because it gives more accurate fitting quality and less er-

ror when compared with exponential fitting or linear fitting. Figure 5.8 is a 2D plot of

the polynomial fitted density data from 2500ms to 3000ms. It is much smoother when

compared with the 2D plot of raw data (Figure 5.3(a)) however the slow evolution of the

electron density is well captured. We can see the density decreases at all radial locations

and this dynamic process takes at least 300ms before the plasma reaches to new equilib-
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FIG. 5.7: Polynomial fitting quality (a) Relative fitting error of the 4th, 5th and 6th polynomial
fittings. (b) Real data and the fitted lines between 5th order and 6th order polynomial fittings
at ρ = 0.8.

rium (i.e. after 2800ms).

5.4 Changes in electron density gradient

5.4.1 2D plot of R/Ln

In the former section, we smoothed the electron density data from t = 2500−3000ms

using a polynomial fit, see Figure 5.8. This smoothed data provides us with the ability to

study how the density gradient changes when ECH is applied. We can calculate the inverse

density scale length R/Ln = −R0∇ne

ne
(where R0 is the major radius) at each radial location

at t = 2500 − 3000ms. A 2D plot (Figure 5.9) illustrates the magnitude of R/Ln versus

time and space. We can see from Figure 5.9, in plasma core at ρ ≈ 0.1, inverse density

scale length R/Ln keeps increasing after we turn the ECH on at t = 2500ms. R/Ln peaks

around 2650ms in the core (red region in Figure 5.9) and decreases afterwards. Around
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FIG. 5.8: Polynomial fitting of electron density. 2D plot of electron density from 2500ms -
3000ms

mid-radius region (ρ = 0.4 − 0.65), the similar trend can be observed where R/Ln first

increases until 2600ms and then decreases again. However, we cannot observe this peaking

of inverse density scale length when it goes toward the plasma edge (ρ > 0.7). We do not

plot the value of density gradient outside ρ = 0.85 since for H-mode plasmas, the R/Ln

in pedestal region is much larger than the one inside the pedestal. In addition, we focuses

mainly on the role of turbulence regime in this chapter. However, from Chapter 4, we can

see that the role of E × B dominates over the turbulence effects (i.e., E ×B shear larger

than the linear growth rate) outside ρ = 0.85.

5.4.2 Dominant mode frequency

Next we calculate the frequency of the dominant instability mode using TGLF. TGLF

is a quasi-linear gyrokinetic code to calculate the linear eigenvalues of the most unstable

mode (more details about TGLF can be found in Section 3.1). We choose six time slices

before and after the ECH pulse: one in steady state NBI phase (t − 35ms), three in the
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FIG. 5.9: 2D plot of R/Ln using the polynomial fitted electron density data during the ECH
pulse (2500ms - 3000ms). x-axis is the time, y-axis is ρ.

dynamic changing phases after turning on ECH (t+7ms, t+30ms, t+65ms), and two in

steady state ECH phase (t+ 168ms, t+ 340ms). Here t = 2500ms is the time we turn on

the ECH pulse. TGLF uses fits of experimental plasma parameters. Fits were obtained

in similar way as previous chapter. The calculated profiles of the frequency of the most

unstable mode for 0 < kθρs < 1 are shown in Figure 5.10, where kθ is the poloidal wave-

number, ρs is the ion sound radius. During the steady state phase with only NBI heating

(t− 35ms, blue line), the frequency of the most unstable mode is negative in the plasma

frame, which is in the ion diamagnetic direction. As a result we can identify this mode as

an ITG mode, which is driven by the ion temperature gradient. After turning on ECH at

t = 2500ms, we can see that the most unstable mode remains in the ITG regime at t+7ms,

t + 30ms, and t + 65ms, while the absolute magnitude of frequency from ρ = 0.4 − 0.6

decreases gradually. At t+ 168ms, the mode frequency inside ρ < 0.65 switches sign from

negative to positive, indicating a switch to electron diamagnetic direction. As a result, the

dominant mode now becomes a Trapped Electron Mode (TEM) which is driven by both the
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FIG. 5.10: Frequency of the most unstable mode within 0 < kθρs < 1 by TGLF at different
time slices.

electron density gradient and the electron temperature gradient. However, for the region

where ρ = 0.65− 0.75 at t + 168ms, the mode is still dominated by ITG, which indicates

that the switch in mode starts in the plasma core and propagates outward. Lastly, as it

goes further into steady state ECH phase at t+340ms, the dominant mode becomes TEM

in the whole plasma region (black line).

5.4.3 Inverse density scale length versus unstable mode frequency

We compare the inverse density scale length R/Ln and the frequency of the most

unstable mode in this section. Figure 5.11 shows R/Ln as a function of the mode linear

frequency at ρ = 0.4 and ρ = 0.5. We can see that, when the absolute value of mode

frequency decreases in the ITG regime (negative ω), local density peaking increases. Once

the dominant unstable mode switches over to the trapped electron mode (TEM) regime,

the local density gradient decreases again. A maximum in the density gradient has been
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FIG. 5.11: Electron density gradient vs the mode frequency at ρ = 0.4 (blue), ρ = 0.5(green).

reached when the mode has zero frequency, which corresponds to the cross-over from ITG

to TEM. However, this non-monotonic correlation between R/Ln and mode frequency is

only observed from plasma core to mid-radius. It no longer exists in outside ρ = 0.6

region, see Figure 5.12. One explanation is that the microscopic turbulent transport is

no longer dominant in this region. Effects from E × B shear can overwhelm turbulence

and thus suppress the turbulent transport (see previous chapter). Other particle transport

mechanisms such as collisional transport or MHD instability can also become important

as it goes toward the plasma edge.

In addition, this correlation between R/Ln and mode frequency is in agreement with

the theoretical predictions [22, 68, 82] as well as the experimental results [23, 82] from

AUG. In those theoretical studies on AUG and on off-diagonal turbulent particle trans-

port [73, 32, 24], thermo-diffusion is used to explain this non-monotonic correlation. As
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FIG. 5.12: Electron density gradient vs the mode frequency at ρ = 0.6 (purple).

discussed in Section 2.3, thermo-diffusion can produce an inward pinch while in the ITG

regime, in which case the thermo-diffusion coefficient DT is negative. In Ref. [85, 22]

simulations show the absolute value of DT increases when the instability mode frequency

approaches zero from the ITG side (negative ω side), indicating an increase in the inward

pinch. However after the turbulence changes to electron dominant regime, DT switches

quickly from negative to positive, indicating an outward flux. Although the change in

thermo-diffusion coefficient matches the correlation between density gradient and mode

frequency, we should be careful that in the original work of [85, 22], simulations are car-

ried out assuming zero turbulent flux in quasi-linear gyrokinetic calculations and zero

central fueling. While in our experiment on DIII-D there exists a constant central beam

source as well as a non-neglectable turbulent flux . Therefore, further validation needs to

include turbulent flux term as well as source fueling term in the simulations to provide a

more convincing comparison.

108



5.5 Changes in electron particle flux

5.5.1 Time dependent electron flux

We use ONETWO, a one-and-a-half-dimensional code, to calculate time independent

flux. As shown in Section 3.1, ONETWO calculates the ion flux by solving the transport

equation:

∂ni
∂t

+∇ · Γi = Si (5.2)

here ni and Γi are the density and the particle flux of ion species i, Si is the ion beam

source. For time independent case, ONETWO assumes that the plasma is not evolving,

i.e., ∂ni

∂t
= 0. Thus the radial ion flux can be integrated by Γi =

∫

Sidρ. Furthermore,

ONETWO assumes that the electron flux Γe is the same as the ion flux based on quasi-

neutral approximation of the plasma. From time evolution Figure 5.1(a)(b) we can see

that the central neutral beam fueling is always the same no matter whether it is before

or after the ECH pulse at t = 2500ms. Therefore, it is reasonable that ONETWO gives

similar time independent electron flux for each time slice, see Figure 5.13(a). However,
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FIG. 5.13: Electron flux at different time slices. (a) Time independent flux with only source
term included. (b) Time dependent flux with both dn/dt and source term included.
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time independent calculation only holds when the plasma is in a steady state or when the

source is much larger than dn/dt. In our case, the plasma after applying ECH undergoes a

dynamic process where the magnitude of dn/dt is comparable to core particle source. Thus

a time dependent term
∫

−dn
dt
dρ need to be added in order to fully describe the flux change.

We can calculate dne(t,ρ)
dt

at each time and radial location using the polynomial fits to the

density from Figure 5.8 (more details regarding dn/dt changes will be presented in the next

chapter). Then the time dependent electron flux is calculated by Γe =
∫

(−dne

dt
+Si)dρ, see

Figure 5.13(b). We observe that, immediately after turning on the ECH at 2500ms (see

the green line in Figure 5.13(b)), the outward electron flux increases largely from outside

mid-radius area (ρ > 0.4). Then an increase in plasma core (ρ = 0.2 − 0.4) follows after

about 30ms later (red and yellow lines). In the final stage, the electron flux decreases back

to the same level as it was before the ECH pulse after 300ms (purple and black lines),

indicating that plasma has reached a new equilibrium (i.e., dn/dt = 0). In addition, we

make a 2D plot to describe how the time dependent component of electron flux changes,

see Figure 5.14. As time evolves, we see the value of
∫

−dne

dt
dρ increases first and then

decreases around 2600ms at ρ = 0.3 − 0.7. The ”ridge” (which is defined as the line

connecting the maximum curvature point of each contour curve, see black line in Figure

5.14) of this contour plot lays around t = 2600ms, which coincides with the switch point

of ITG to TEM as discussed in Section 5.4.2. Caution needs to be applied here that we

only plot
∫

−dne

dt
dρ (instead of Γe) in Figure 5.14. This is because we do not have precise

profile of the electron source. More details of the electron source will be discussed in the

Discussion Section.
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FIG. 5.14: 2D plot of the time dependent electron flux which includes both dn/dt and the
source term during the first ECH pulse (2500ms - 3000ms). x-axis is the time, y-axis is ρ.

5.5.2 Γe versus unstable mode frequency

Similar to what we did in Section 5.4, we plot the time dependent component of

electron flux
∫

−dne

dt
dρ as a function of dominant mode frequency at ρ = 0.4 and ρ = 0.5,

see Figure 5.15. A similar non-monotonic correlation is obtained as in Figure 5.11, where

the magnitude of
∫

−dne

dt
dρ peaks at ITG-TEM cross-over location and decreases toward

both deep inside each instability regime. This similarity between Figure 5.11 and Figure

5.15 is a very interesting finding because we get these two figures from two independent

calculation approaches, i.e., R/Ln from density changing in spatial direction and Γe from

density changing in time direction. Since particle flux can be closely related to density

gradient through a diffusion coefficient, an important conclusion from this similarity is

that, the diffusion coefficient is close to a constant or is only slightly linear correlated with

the mode frequency (i.e., the ITG-TEM change). Figure 5.16 shows how effective diffusion

coefficient, Deff = −Γe/(∂ne/∂r) depends on the mode frequency. Please note, that this

is an effective diffusion coefficient and thus does encompasses the particle pinch as well as
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FIG. 5.15: Electron particle flux vs the mode frequency at ρ = 0.4 (blue), ρ = 0.5(green).

the actual diffusion coefficient. We can see that the non-monotonic correlation no longer

exists. Deff increases slightly when crosses from ITG regime to TEM regime.

5.6 Discussion

In this chapter, we seek to find how changes of turbulence characteristics can affect

density peaking. We observe for the first time in DIII-D a correlation between the changes

in R/Ln and the changes in dominant mode frequency. The density peaking is maximized

at the cross-over between the ITG and the TEM regime and decreases rapidly toward

both deep ITG and deep TEM sides. This correlation is in agreement with theoretical

predictions [22, 68, 82] and experimental results [23, 82] on AUG. While one difference

from the results of AUG is that, instead of using a database of steady state L-mode and

H-mode discharges, we find this correlation through an unsteady state process, using a
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FIG. 5.16: Effective diffusion coefficient vs the mode frequency at ρ = 0.4 (blue), ρ = 0.5
(green).

dynamic analysis within only one low-collisionality H-mode discharge. In our case, core

neutral beam fueling is kept the same, which makes it possible for us to calculate and thus

compare the changes in electron particle flux. In addition, the correlation between R/Ln

and mode frequency is critical to both theoretical prediction and experimental control of

the density profile in future burning plasma devices such as ITER. Currently, the predic-

tive capability of particle transport is not well validated, and as such ITER assumes that

the core density will be flat [135]. However, in this chapter we show that the peaking of

the core density is strongly influenced by the frequency of the turbulent mode. This opens

up a new opportunity to control density peaking in plasma core through controlling the

turbulence regime, which has the potential to compensate for some loss of confinement at

the plasma edge.

In Section 5.5, we also find a similar non-monotonic correlation between the time de-

pendent component of electron particle flux
∫

−dne

dt
dρ and the dominant mode frequency,
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see Figure 5.15. However, we cannot make the conclusion that
∫

−dne

dt
dρ is proportional to

the electron flux Γe until we can prove Si = Se. Although the profile of ion source Si can be

obtained from simulation models such as NFREYA [96] and NUBEAM [97] in ONETWO,

the calculation of electron particle source from these models is still not yet validated. Cur-

rent simulations from NFREYA show a difference in profiles between electron source and

ion source, which indicates that the electron flux should be different from the ion flux.

Since we already captured dne

dt
from fitted electron density data, in order to obtain a fully

accurate time dependent electron flux, more work is still needed to investigate how the

actual electron source profile looks like. In addition, we find that the effective diffusion co-

efficient Deff = −Γe/(∂ne/∂r) is close to a constant during ITG/TEM transition (Figure

5.16). However Deff encompasses the particle pinch v as well as the actual diffusion coef-

ficient D. Thus further research will be placed on separating these two coefficients and on

understanding how D’s and v’s change as a function of the frequency of the unstable mode.

Lastly, although thermo-diffusion can be used to explain the correlation between R/Ln

and mode frequency, it does not apply to explain the electron density pump-out phe-

nomenon after turning on the ECH. This is because the pump-out process happens in a

much shorter time scale (τfit < 150ms as shown in Section 5.3.1), during which the mode

frequency is always negative and the plasma is always in ion dominant region, see Figure

5.10. In the next chapter we will study the dynamic process of the density pump-out and

compare it with the growth rate of the most unstable mode. This study will reveal the

turbulence drive nature of the ECH pump-out.
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5.7 Conclusion

In this chapter, we present for the first time on DIII-D an observation of a correlation

between electron density gradient and instability mode frequency. A dedicated low density

H-mode experiment is conducted on DIII-D where the ECH power is modulated with a

period of 500 ms on top of steady neutral beam heating. By fitting the density evolution

during the ECH pulse, we find that the local density gradient has a non-monotonic cor-

relation with the linear gyro-kinetic calculated mode frequency. In the ion temperature

gradient (ITG) regime, local density peaking increases as the absolute frequency of the

dominant unstable mode decreases. Once the dominant mode switches over to the trapped

electron mode (TEM) regime, the local peaking of the density decreases again, producing

a maximum value of density gradient in the ITG/TEM cross-over. We also find that the

time dependent particle flux (which is independent of the local gradients) shows a similar

correlation. This indicates that the effective diffusion coefficient is close to a constant

during ITG/TEM switch.
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CHAPTER 6

Understanding the ECH pump-out

process on DIII-D

6.1 Introduction

In Chapter 5, we have discussed the correlation between electron density peaking

and frequency of instability mode. Aside from this correlation, we also observe a strong

decrease in electron density when electron cyclotron heating (ECH) is applied. This phe-

nomenon is often referred to as density “pump-out” in the literature [61, 71, 72, 32, 24, 73].

In future large burning tokamak devices like ITER [156], ECH will be installed as one of

the three radio frequency (RF) heating systems [157] to deliver sufficient central heating

power and maintain an active current control (the other two are lower hybrid (LH) heating

system, and ion cyclotron (IC) resonant heating system). Thus it is important for us to

understand the physics of this ECH induced density pump-out since a density flattening

reduces plasma performance and thus fusion gain.
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During the past decade, observations of electron density pump-out caused by ECH

have been reported in many tokamaks [71, 72, 24, 73, 74, 32]. For example, in one recent

paper by S. Mordijck et al. [69], experiments are designed to investigate the impact of

replacing a fraction of neutral beam injection (NBI) power with ECH in low collisionality

H-mode plasmas on DIII-D. The line average electron density decreases from 3.5×1019m−3

in NBI discharge to 2.0 × 1019m−3 in ECH discharge, while both plasmas are in steady

states. Since the decrease in fueling of ECH discharge is much smaller than the decrease

in ne (see Figure 1 in Ref [69]), we can say that the overall outward particle transport

has increased under the ECH. However, most of the previous research focuses on steady

state plasmas which does not address how the plasma reaches the new steady state regime.

Therefore, questions like when and where the density pump-out happens, or what drives

the density pump-out, have not been addressed. In order to solve these questions and to

understand the physics behind the ECH pump-out, a time-dependent analysis needs to be

conducted to study the dynamic pump-out process. Today, thanks to the progress in high

resolution diagnostic techniques, we are able to perform a time-dependent analysis of the

electron density in low collisionality DIII-D H-mode plasmas. This analysis helps to reveal

the drive behind the ECH pump-out.

In this chapter, we use the same plasma discharge as in Chapter 5, where a modulated

ECH pulse is added into NBI heated H-mode plasma. The same polynomial fitting is also

carried out to smooth the electron density data and the electron temperature data. We

observe an electron density pump-out when applying 3MW ECH power at t = 2500ms.

Using the fitted data, the electron density changing rate over time dn/dt can be calculated.

We find that, although the localized central electron heating leads to a maximum increase

of the electron temperature in plasma core, the fastest decrease of the electron density oc-

curs outside mid-radius (ρ ≈ 0.7). Both the quasi-linear gyrokinetic calculations and the
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measured density fluctuations show that, this reduction in electron density corresponds

to an increase in ITG turbulence drive at ρ = 0.7 − 0.8. The turbulence changes on a

slower time scale from an ion dominant mode to an electron dominant mode. Finally,

after we reduce the ECH power to 1MW at t = 3000ms, an electron density pump-in is

observed. However, the density pump-in does not happen at the same radial location as

the pump-out. Thomson Scattering measurement shows that the pump-in starts from top

of the pedestal and then transfers inward to the core area.

The structure of this chapter is as follows. First, in Section 6.2, we will present the

changes in different plasma parameters during the first ECH pulse, along with a comparison

between the measured electron density data from the Thomson Scattering system and the

Reflectometer system. In Section 6.3, a dynamic observation of the ECH caused electron

density pump-out will be reported. We choose several time slices during this process

to show in detail how changes in turbulence drive the density pump-out. We also show

a comparison between the experimentally measured density fluctuations and the linear

stability calculations. In the following section, Section 6.4, will discuss the electron density

pump-in process when the ECH power is reduced to 1MW at t = 3000ms. A discussion

(Section 6.5) and a summary (Section 6.6) will be provided at the end.

6.2 Experimental measurement

In this chapter, we use the same low-collisionality H-mode discharge on DIII-D as

in Chapter 5, where the ECH power is modulated with a periodicity of 500ms on top

of steady neutral beam heating (see Figure 5.1 in Chapter 5 for the time evolution of

different plasma parameters). The electron density is measured by both the Thomson

Scattering system [114] and the Reflectometer system [120]. The electron temperature
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comes from both the electron cyclotron emission (ECE) system [123] and the Thomson

Scattering system. The ion temperature and the impurity toroidal rotation are measured

by the charge exchange recombination (CER) system [140]. Readers can refer to Chapter

5 for more details about the experimental set up and refer to Chapter 2 for the diagnostics.

In order to compare the changes in different plasma parameters, we choose one time

slices before the ECH pulse and three time slices after the ECH pulse. They are: one

during the steady state NBI phase (t− 35ms), two in the dynamic changing phases after

turning on the ECH (t+30ms, t+65ms), and one during the ECH after new equilibrium

is achieved (t + 340ms). Here t = 2500ms is the time we add 3.2MW ECH power into

plasma core (ρ ≈ 0.2). Figure 6.1(a) shows the electron density profiles measured by

the Thomson Scattering system. We observe that, although the electron density profile

FIG. 6.1: Density profiles. (a) Thomson scattering data shows the electron density pump-out
when adding ECH at 2500ms. (b) Reflectormeter profiles data also indicate the similar decrease.

originally decreases at the plasma edge after applying the ECH, it eventually decreases

at all radial locations during the new equilibrium. A similar pump-out is also seen by

reflectometer data, see Figure 6.1(b). However, it is difficult to distinguish just from

Thomson Scattering profiles where the strongest pump-out happens. Thanks to high
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temporal and spacial resolution of the Reflectometer system, an calculation of dn/dt is

possible. We will show the results of dn/dt in the next section. In addition, the electron

temperature increases (see Figure 6.2(a)) and the central electron heating which is slightly

off-axis causes a peak of Te profile at ρ = 0.2 after 2500ms. The ion temperature profile

and the impurity toroidal rotation profile in Figure 6.2(b)(c) decrease after the turn on of

the ECH. We can also see by comparing Figure 6.1 and Figure 6.2, that the increase in

electron temperature Te is much faster than the decrease in ne, Ti, and vφ. In other words,

the characteristic time of the Te change is much smaller than the other three.

FIG. 6.2: Temperature and rotation profiles. (a) Electron temperature profiles. (b) Ion tem-
perature profiles. (c) Toroidal rotation velocity profiles.

Before ending this section, one more comparison is presented here between the electron

density measured by the Thomson Scattering system and the Reflectometer system. Since

the precision of the electron density measurement would largely affect the results of our

time-dependent analysis, we need to verify the accuracy of density measurements. Figure

6.3 shows the time evolution data from both the Thomson scattering system (red dots) and

the Reflectometer system (blue lines) in the plasma core (ρ = 0.29), at mid-radius (ρ =

0.52), and at the plasma edge (ρ = 0.76). To reduce the noise in the Thomson Scattering

data, we calculate its combined average value (grey lines) based on the nearest five points.
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Therefore, by comparing blue and grey lines, we can observe that the measurements from

both systems shows good consistency through t = 2500 − 3000ms (first ECH pulse) in

the plasma core, and through t = 2600 − 3000ms at the plasma edge and at mid-radius.

However, after the ECH power is reduced to 1MW , an obvious discrepancy can be observed

at all radial locations. One explanation for this discrepancy is that the reflectometer profile
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FIG. 6.3: Thomson scattering data vs reflectormeter data of electron density at (a) plasma
core, (b) mid-radius, and (c) plasma edge. The Thomson data is always higher than the
reflectormeter data during the time window of 3000ms-3500ms.

can become inaccurate and have errors when the density profiles become hollow or flat. As

we have discussed in Section 3.2.2, the reflectometer system measures the electron density

profile by detecting the phase delay of the reflected microwaves from their corresponding

plasma cutoff layers [120], thus it can only “see” monotonic increasing electron density
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profile due to its reflecting nature. As will be discussed in Section 6.4, the density becomes

hollow or flat in our ECH reducing process at t = 3000−3500ms (see Figure 6.9), where the

density pump-in starts from top of the pedestal and thus the density profile arises firstly

from the edge. To conclude, we can use the high resolution electron density data provided

by the Reflectometer system during the density pump-out phase (t = 2500− 3000ms) but

we should choose the Thomson Scattering measurement to study the pump-in.

6.3 Density pump-out

In this section, we will present a detailed analysis of what causes the density to pump-

out. Our results show that the strongest change in the local electron density correlates

with a substantial increase in the linear growth rate of the dominant mode. Moreover, the

experimentally measured density fluctuations also indicate an increase in turbulence.

6.3.1 2D plot of dn/dt and dTe/dt

Using the same polynomial fitted electron density data from Section 5.3 in Chapter

5, we first calculate the normalized electron density changing rate over time:

dne,norm
dt

=
1

ne

dne
dt

[s−1]

Similar to the 2D figures in chapter 5, we present a contour plot of dn/dt in Figure 6.4(a),

with the x-axis in time direction and the y-axis in spatial direction. Here the time window

is chosen from 2500ms to 3000ms and the radial location expands from ρ ≈ 0.1− 0.9. In

addition, the same polynomial fitting method can be applied to the electron temperature

data measured by high resolution ECE system. Figure 6.4(b) shows how the normalized

electron temperature changes dTe,norm

dt
= 1

Te
dTe
dt

from t = 2500−2580ms from ρ = 0.08−0.7
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FIG. 6.4: Density and temperature change. (a) 2D plot of electron density changing rate as a
function of time during first ECH pulse (2500ms - 3000ms) (b) 2D plot of electron temperature
changing rate as a function of time during ECH pules (2500ms - 3000ms)

(the black box area in Figure 6.4(a) where the outer limit is set by ECE coverage). By

comparing the figures of dne,norm

dt
and dTe,norm

dt
, two interesting observations can be made.

First, we can see that the increase of electron temperature occurs on a much shorter

time scale when compared to the density pump-out process, indicating a larger diffusive

transport in electron energy transport channel than electron particle transport channel.

Second, since the ECH power is centrally deposited around ρ = 0.2, the increase of electron

temperature also occurs first in the plasma core. However, for the electron density, the

maximum reduction happens outside mid-radius around ρ = 0.6 − 0.8 as highlighted by

dark blue in Figure 6.4(a). This density reduction then spreads inward to the plasma core

after about 100ms. These features of the electron density pump-out tell us that there is a

local change in particle transport to which is triggered by ECH pulse at the plasma edge

and that this change is not coupled directly to the change in ∇Te in the core.
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6.3.2 Change in turbulence drive

Global changes in plasma density, temperature, and rotation profiles alter the local

gradients and thus affect the linear stability and turbulence drive. We know from Section

2.2 that the Ion Temperature Gradient (ITG) mode is driven by ion temperature gradient,

while the Trapped Electron Mode (TEM) is driven by both the electron density gradient

and the electron temperature gradient [158]. Thus we can plot the quotient of
R/LTe

R/LTi
,

ηe =
R/LTe

R/Lne
, and ηi =

R/LTi

R/Lni
as an indication of the competition between TEM drive and

ITG drive, see Figure 6.5. Figure 6.5(a) shows that
R/LTe

R/LTi
increases by a factor of 2 from

FIG. 6.5: Changes in gradient drive. (a) (R/LTe)/(R/LTi) profiles at different time slices from
ρ = 0.3− 0.8 (b) ηe = (R/LTe)/(R/Lne

) profiles. (c) ηi = (R/LTi)/(R/Lni
) profiles.

t − 35ms to t + 340ms. This increase indicates that the TEM drive gradually overtakes

the ITG drive during the ECH pulse. This leads to a change in the instability from ion

dominant mode to electron dominant mode. Figure 6.5(b) shows how ηe =
R/LTe

R/Lne
changes

after applying the ECH. At ρ = 0.4− 0.5, ηe peaks and the value increases from t− 35ms

to t + 340ms. However, outside mid-radius where ρ = 0.7, the magnitude of ηe is small

and does not change within experimental errorbar. Thus the potential for a TEM driven

instability is larger in plasma core than at the plasma edge and the drive increases as a

result of ECH pulse. Finally, in Figure 6.5(c), profile of ηi =
R/LTi

R/Lni
shows little change in

plasma core, while it shows a 50% decrease between steady states (blue and black lines)
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and dynamic states (red and yellow lines) in plasma edge. These figures illustrate that the

turbulence drive in these plasmas is strongly affected by the addition of an ECH pulse.

6.3.3 Change in dominant unstable mode

In order to see how turbulence affects the density pump-out as well as to see how

instability type changes, we use TGLF (see Section 3.1.2) to calculate the linear growth

rate and frequency of the most unstable mode for each of the selected time frames. The

experimental profiles from Figure 6.1 and 6.2 are used as input to TGLF. In addition to the

previous four time frames, we add two more time frames (t+7ms, t+168ms) to show how

the eigenvalues evolve. Figure 6.6(a) shows the growth rate profiles of the most unstable

mode from 0 < kθρs < 1 for the selected time slices. We can observe that, after turning
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FIG. 6.6: Growth rate and frequency profiles. (a) Growth rate of the most unstable mode for
0 < kθρs < 1 by TGLF at different time slices. (b) Frequency of the most unstable mode for
0 < kθρs < 1 by TGLF at different time slices.

on the ECH, the linear growth rate of the most unstable mode increases strongly from

ρ = 0.6 − 0.8 (red and yellow lines). This increase coincides with the same region where

the maximum density pump-out is observed (see in Figure 6.4(a)). Figure 6.7 shows the

time evolution of the dn/dt, the growth rate γ and the frequency ω of the most unstable
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mode at ρ = 0.5 (red lines) and ρ = 0.73 (blue lines). We can see the decrease in the
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FIG. 6.7: Time evolution of dn/dt, γ and ω during the pump-out induced by ECH heating.

electron density correlates with a strong increase in the linear growth rate at ρ = 0.73,

while at ρ = 0.5 the turbulence drive first decreases. Therefore, the initial density pump-

out induced by ECH heating at the plasma edge is a result of an increase in turbulence

drive, not a change in frequency. The turbulence only drifts from the ITG regime to

the TEM regime (represented by positive mode frequency) on a much longer time scale,

namely, after 160ms at the plasma edge, at which time the growth rate at ρ = 0.6 − 0.8

has decreased again to the same level as before the ECH. We can see that the change from

ITG to TEM occurs first in the core and takes even longer to reach the edge. Therefore,

it is excluded that the initial of the pump-out is resulted from a change of the ITG to the

TEM regime and thus a sign change of the thermo-diffusion pinch [61, 82] (the reversal of

the thermo-diffusion pinch can only add to the pump-out at a later time, see Chapter 5).
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6.3.4 Density fluctuations

To further investigate the changes in turbulence, we compare the density fluctuations

measured by the Beam Emission Spectroscopy (BES) and the Doppler BackScattering

(DBS). The BES measures density fluctuations at ion-scale (typically kθρs < 0.3), while
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FIG. 6.8: Time evolution of density fluctuation measurement. (a) Density fluctuations measured
by BES at ρ = 0.55. (b) Density fluctuations measured by DBS at ρ = 0.73. (c) Density
fluctuations measured by DBS at ρ = 0.6.

the DBS measures at intermediate scale (kθρs = 1.6−2.1) which is typically associated with

the TEM unstable regime. More details of these two diagnostics can be found in Section

2.2. Figure 6.8 presents the experimentally measured density fluctuations. We can see that,

immediately after the ECH is turned on, there is an increase in density fluctuations at the

ion-scale, measured by the BES at ρ = 0.55, see Figure 6.8(a). However, in Figure 6.8(c)

there is nearly no increase in intermediate density fluctuations at ρ = 0.6. On the other

hand, at ρ = 0.73, we find that the intermediate density fluctuations increase largely after
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170ms, which corresponds to the time when the turbulence switches from ITG to TEM

regime (see Figure 6.8(b)). In this case, we can validate that the turbulence only changes

from ITG to TEM in a much larger time scale than the density pump-out. However, there

is no BES data available in plasma edge. We will still need ion-scale density fluctuation

measurement around ρ = 0.7 to confirm previous TGLF simulation results, which predicts

a large increase of ITG driven turbulence in plasma edge.

6.4 Density pump-in

In this section, to verify the features of density pump-out and the instability change

during the ECH pulse, we will look at its inverse case – electron density pump-in when the

ECH is reduced by 66% of the power during 2500−3000ms. We carry out time-dependent

analysis for the density pump-in phase after 3000ms, which confirms the correlation be-

tween changes in turbulence at plasma edge and particle confinement.

6.4.1 Changes in Profiles

As shown in the time evolution figure (Figure 5.1), at 3000ms, we lower the ECH

power to 1MW and maintain it for another 500ms so that the plasmas can reach a new

steady state. The power of the neutral beam injection is kept at 3MW , which ensures

the same level of central beam fueling. Figure 6.9(a)(b) shows the raw data of electron

density profiles from the Thomson Scattering system and the Reflectometer system. Here

t represents the time when ECH power is lowered (t = 3000ms). The new selected time

slices here are: steady state 3.2MW ECH case (t − 44ms), two slices during 1MW ECH

(t+50ms, t+188ms) when profiles are still evolving, and a steady state 1MW ECH case

(t+402ms). We can see from Figure 5.1 that, there is an increase in electron density profile

which takes about 300ms to reach another steady state. But the density pump-in does not
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FIG. 6.9: Density profiles in pump-in process. (a) Thomson scattering data shows the electron
density increase when reducing the ECH power to 1MW at t=3000ms. (b) Reflectormeter
profiles data also indicate the similar density pump-in.

show a maximum increase at ρ = 0.6 − 0.8 area like in the pump-out case. The pump-in

process seems to start from top of the pedestal based on the Thomson Scattering data, see

Figure 6.9(a). As discussed in Section 6.2, we can only rely on the Thomson Scattering

profiles in density pump-in case due to the measurement inaccuracies in the Reflectometer

profiles. However, the Thomson Scattering data doesn’t have a high temporal resolution

(especially in plasma edge), we will not use polynomial fitting (which gives a large fitting

error) to smooth its data and thus no 2D plot is available for dn/dt in the pump-in case.

As shown in Figure 6.10, the electron temperature decreases on a much shorter time

scale than the other plasma parameters. Both the ion temperature and the impurity

toroidal rotation increase during this process (Figure 6.10(b)(c)). However, it is still not

clear what causes the decrease of ion temperature in the pump-out case (t = 2500−3000ms)

and the increase in the pump-in case (t = 3000−3500ms) since the injected neutral beam

power remains the same. One qualitative answer is that the increased total heating power

drives more energy transport, which causes the decrease of Ti.
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FIG. 6.10: Temperature and rotation profiles in pump-in. (a) Electron temperature profiles
decrease fast after we lower the ECH power. While (b) ion temperature profiles and (c) toroidal
rotation velocity profiles have an increase.

6.4.2 Change in dominant mode

Finally, as we did in the pump-out section, we calculate the most unstable linear

mode eigenvalues. The only exception is that here we use electron density profiles from

the Thomson Scattering system instead of from Reflectometer system as input to TGLF.

Figure 6.11 shows the growth rate as well as the mode frequency profiles of all four selected

time slices. Unlike the density pump-out case, the growth rate in pump-in process does not
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show a sudden change around ρ = 0.75. Instead, after reducing the ECH at t = 3000ms,

the growth rate decreases from ρ = 0.4 − 0.7 and increases outside ρ > 0.8. From Figure

6.11(b) we can tell that the turbulence changes gradually from TEM regime (positive ω

value) back to ITG regime (negative ω value). This change in turbulence type again first

happens in plasma core and takes more than 300ms to switch fully into ITG regime (black

line in Figure 6.11(b)), which is longer than the density pump-in time scale.

6.5 Discussion

In this chapter, we study the role of turbulence during the electron density pump-out

process when ECH is applied. Where previous research on ASDEX [24], DIII-D [69], and

C-Mod [32] has studied the density response to central electron heating during steady state

conditions, we investigate for the first time the time evolution of electron density during

the ECH pump-out process using high resolution Reflectometer data. We show that the

ECH pump-out corresponds to an increase in the unstable mode growth rate in the ITG

regime outside mid-radius (see Figure 6.7). The measured density fluctuations from both

the BES and the DBS also highlight that the density pump-out is the result of an increase

in ITG turbulence. This new result complements the previous non-time dependent anal-

ysis, where the pump-out was attributed to a change in turbulence type and the reversal

of the thermo-diffusive pinch [82].

In Section 6.3, we have already obtained the changes in dominant mode maximum

growth rate and frequency among 0 < kθρs < 1. However, a more comprehensive and

more persuasive way is to look at the mode spectrum instead of just the maximum value.

In Figure 6.12, a detailed linear gyrokinetic simulation which shows the spectrum of mode

growth rate and frequency at each radial location is presented. Where the x-axis repre-
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FIG. 6.12: Growth rate and frequency spectrum. 2D plot of the growth rate as a function of
ρ and kθρs at (a)t-35ms, (b)t+30ms, (c)t+340ms. 2D plot of the frequency as a function of ρ
and kθρs at (d)t-35ms, (e)t+30ms, (f)t+340ms.

sents the radial locations and the y-axis is the normalized wave number kθρs which extends

from 0 < kθρs < 2.8 . We can see that after turning on the ECH, a large increase of the

linear growth rate at ρ = 0.73 is observed within 0 < kθρs < 1 (Figure 6.12(e)) while the

frequency of the unstable mode remains in ITG regime for all kθρs between 0.7 < ρ < 0.8

(purple box in Figure 6.12(b)). Therefore, the effect of changing the thermo-diffusive

pinch can be ruled out in the initial of pump-out since the instability mode remains the

same. Moreover, comparing Figure 6.12(a)(b)(c), we find that the change from ion drift

direction to electron drift direction first starts in the core at large wave number area, then

it “spreads” into the plasma edge and drives low wave number turbulence into electron

diamagnetic direction as time evolves. The maximum value of the growth rate in steady

state ECH case also moves from 0 < kθρs < 1 regime in NBI case to kθρs ≈ 1.5 regime

in TEM case (see Figure 6.12(d)(f)), indicating a shift in turbulence size from ion-scale to

intermediate scale.
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The correlation between the increased growth rate and the maximum pump-out rate

at ρ = 0.73 can be related to the results discussed in Chapter 4 (also see in Ref. [21, 143]).

During the experiment reported in Chapter 4, the E ×B shearing rate is altered by vary-

ing the toroidal rotation while all other plasmas parameters such as Te, Ti, and instability

type are kept the same. The particle confinement is observed to be strongly reduced in

balanced torque injected discharge, where the E × B shearing rate is smaller than the

low wave number turbulence growth rate from mid-radius to top of the pedestal. On the

contrary, the confinement improves when the E×B shearing rate at ρ = 0.7−0.9 is larger

than or equal to the mode growth rate. Similar effects of the E×B shear were also found

previously during the application of Resonant Magnetic Perturbations (RMPs) [143] and

in the QH-mode [151]. Therefore, both the results in this chapter and the one in Chapter

4 indicate that the turbulence drive at outside mid-radius region plays a dominant role in

determining the particle confinement and thus the density profiles.

As for other plasma parameters, since the radial expansion of ECE system depends

on the optical thickness of plasma and in our case it can only provide electron temperature

data of ρ < 0.67, we are not able to get high temporal resolution Te data in the plasma

edge. However, the Thomson Scattering system can provide electron temperature data in

plasma edge. Finally, the CER diagnostic has more limited spacial resolution and thus

prevents us from plotting 2D figures of the ion temperature and the impurity toroidal

rotation.

6.6 Conclusion

In this chapter we present the first time-dependent analysis of the electron density

during the ECH pump-out process. We add centrally deposited ECH pulses into neutral
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beam heated H-mode plasmas. A polynomial fitting method is carried out on both the

electron density data and the electron temperature data. While the initial increase of the

electron temperature occurs in the plasma core, we find that the strongest density reduction

occurs outside mid-radius. At the same time, both the linear gyrokinetic calculation and

the experimentally measured density fluctuations show that the dominant mode growth

rate has a large increase at the same outside mid-radius region (ρ = 0.73). However, the

turbulence only changes from the ITG regime to the TEM regime in a much longer time

scale than the density pump-out. Finally, we show that a density pump-in which starts

from top of the pedestal is triggered when the ECH is reduced to 30% of the pulse power.

The instability changes fully back from TEM to ITG after about 300ms.
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CHAPTER 7

Conclusion and Outlook

This chapter summarizes the main results of this thesis. We also outline some possible

directions for future research on turbulent particle transport.

7.1 Conclusions

The work described in this thesis contributes to both the experimental observations

and the theoretical predictions in turbulent particle transport. Our experiments on DIII-D

focus on low density, low collisionality H-mode plasmas in the ITER Similar Shape (ISS)

[156, 135]. We investigate how different plasma parameters such as toroidal rotation or

instability types can affect turbulent particle transport and thus the density profile. Below

we outline the main results of the thesis sorted by chapter.

In Chapter 2, we show that classical and neoclassical theories predict particle trans-

port which is at least two orders of magnitude smaller than the experimental results. Thus

microscopic turbulent particle transport plays an important role in determining density

profile. Next, some general concepts of turbulence as well as an intuitive picture of how
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shear flow stabilizes turbulence is introduced. Through gyro-kinetic derivation, we show

that the ion temperature gradient (ITG) mode is driven by ∇Ti while the trapped electron

mode (TEM) is driven by both ∇ne and ∇Te. A literature review summarizing current

work on particle transport is also presented in this chapter.

In Chapter 3, we introduce two simulation codes, namely, ONETWO and TGLF.

ONETWO calculates energy, particle, and momentum transport by solving transport bal-

ance equations. TGLF solves the linear gyrokinetic equations and thus calculates the linear

growth rates and frequencies of unstable modes in plasma. We also briefly introduce the

principles of 6 essential diagnostics that are used in our experiments. These diagnostics

provide measurements of various plasma parameters such as the electron density, the elec-

tron temperature, the ion temperature, the toroidal rotation, and the density fluctuations.

The spatial and the temporal resolution of these diagnostics on DIII-D are discussed at

the end of each corresponding subsection.

Chapter 4 discusses how changes in toroidal rotation affect particle transport and

confinement. We vary the toroidal rotation by changing the injected torque while keep-

ing the same underlying turbulence drive. A correlation between the normalized density

inverse scale length R/Ln and the E × B shearing rate is observed. We find that the

electron density profile decreases from outside mid-radius to top of the pedestal when the

E×B shear is smaller than the linear growth rate of the most unstable mode at small kθρs.

However, when the E×B shear is larger than or at least similar to the linear growth rate,

the density profile is increased. In addition, the perturbed transport coefficients Dp and

vp indicate that changes in transport are not only just related to an increase in outward

diffusion, but also related to the changes in inward pinch. We find a substantial increase in

the perturbed inward pinch at the plasma edge for the counter-torque injected discharge.
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An increase in intermediate scale density fluctuation is also observed at the same radius,

which is similar to previous work in Ref [69]. Finally, we show that quasi-linear gyrokinetic

simulations of the particle flux do not match experimental observations, which suggests

that more work is still needed to improve the quasi-linear gyrokinetic simulations for low

rotation and ECH dominantly heated plasmas.

Chapter 5 discusses how changes in turbulence regime can determine the local den-

sity gradient. For the first time on DIII-D, a correlation between the inverse density scale

length R/Ln and the frequency of the most unstable mode is observed. We find that, when

the turbulence is driven by the ion temperature gradient (ITG), the local density gradient

increases as the absolute frequency of the dominant unstable mode decreases. Once the

dominant unstable mode switches over to the trapped electron mode (TEM) regime, the

local density gradient decreases again, i.e., the density gradient reaches a maximum when

the mode has zero frequency, which corresponds to the crossover from ITG to TEM. This

correlation suggests that local density peaking can be controlled through turbulence regime

in future large burning plasma devices such as ITER. Furthermore, we find that the time

dependent component of electron particle flux
∫

−dne

dt
dρ shows a similar correlation with

the frequency of the unstable mode. This indicates that the effective diffusion coefficient

Deff = −Γe/(∂ne/∂r) is close to a constant during ITG/TEM switch if we assume the

same electron particle source.

In Chapter 6, the phenomenon of electron density pump-out caused by ECH heating

is studied. We present the first time-dependent analysis on electron density during the

central electron heating. We show that, while the electron temperature increases initially

from the plasma core, the strongest density reduction occurs outside mid-radius. Linear

gyrokinetic analysis using TGLF shows that the onset of the density pump-out is not the
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result of a change in turbulence regime, but the result of an increase in turbulence drive,

in the ITG regime. Experimental measurement of the density fluctuations from both the

Doppler BackScattering (DBS) system and the Beam Emission Spectroscopy (BES) sys-

tem also support the increase in turbulence drive nature of the ECH pump-out. Finally,

we reverse-test all the pump-out results by showing that a density pump-in which starts

from top of the pedestal is triggered when the ECH is reduced to 30% of the pulse power.

7.2 Future work

This thesis has investigated how some of the plasma parameters such as toroidal ro-

tation or turbulence regime can affect the turbulent particle transport. However, there

are still many challenges ahead. In order to get to full predictive capability for particle

transport, we will need to perform investigations with more complex simulation models and

more precise measurements. Here we present some ideas and directions in our future work.

Non-linear gyrokinetic simulations The work presented in this thesis only

includes linear or quasi-linear gyrokinetic calculations. As discussed in Chapter 4, the

linear or quasi-linear gyrokinetic simulations show a disagreement with experimental ob-

servations for the particle flux as well as density fluctuations. One explanation could be

that non-linear effects play an important role and that full non-linear gyrokinetic simula-

tions would result in a better agreement. However, it is currently still unclear whether a

fully non-linear multi-scale gyrokinetic simulations will result in an increase of the particle

flux. Also, full non-linear calculations are too slow (in the aspect of CPU intense) for

predictions. Since ongoing recalibration in TGLF has included a saturation model based

on benchmarking with non-linear code GYRO [159], our future work will focus in two
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aspects. If full scale modelling fixes the disagreement between simulation and experimen-

tal observation, an update on the saturation model for TGLF should be implemented. If

non-linear calculation doesn’t give the right result either, we should consider adding some

missing physics such as neoclassical simulations.

Perturbed transport coefficients We use a perturbative technique in Chapter

4 to extract the separate contributions of diffusion coefficient Dp and inward pinch vp.

However, we need to be careful when interpreting the results from this technique. It is

because the perturbed transport coefficients do not include the steady state and perturbed

fueling sources. And these coefficients are calculated under circular plasma shape. Also,

local electron temperature gradient and ion temperature gradient can be affected by gas

puffs, which may cause the perturbed coefficients becoming larger. Currently it is still

unclear whether the perturbed coefficients can accurately reflect the physics of steady-

state transport. Therefore, improvements on analysis for D and v are needed on DIII-D

in the future. It can include but not limit to, implementing non-circular geometry into

perturbative analysis, controlling Te and Ti during the gas puff, and including a non-linear

optimization to extract the steady state transport coefficients as well as the perturbed

transport coefficients [148].

Impurity transport The original work of this thesis only deals with changes in

electron particle transport and electron density profile, it does not study the changes in

impurity transport. However, impurity transport is an important topic in particle trans-

port. Impurity ion accumulation in the core of tokamak plasmas can cause a deleterious

combination of fuel dilution (mainly by light impurities) and radiation (mainly by heavy

impurities) [160, 161], which strongly limits the stable operation as well as the good perfor-

mance of a fusion power plant. Therefore, a more completed validation of the theoretical
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paradigm will require the consideration of both electron and impurities transport. While

electron transport is mainly produced by turbulent processes, the calculation of impurities

transport is more complicated in that it has to include both turbulent and neoclassi-

cal components. There has already been some work of impurities transport on ASDEX

[68, 161, 160] which show that impurities are well predicted by neoclassical theory. How-

ever, since we need quasi-neutrality in plasmas, we still want to see what changes could

impurities bring to electron density and how does the impurity transport affect electron

transport.

Momentum transport Besides the particle transport, a change of instability

from the ITG regime to the TEM regime can also affect the momentum transport. For

example, it is been found that the turbulence change can be one of the reasons to cause

the reversal of intrinsic rotation (a phenomenon which plasmas can self-rotate toroidally

without any external input of momentum) in a tokamak plasma [158, 162, 67, 163, 164].

Although there is no such reversal being observed in our low collisionality H-mode plasma

experiments in Chapter 5 and Chapter 6, we can still see a decrease in the toroidal ro-

tation when applying ECH at t = 2500ms. Thus further work of how turbulence regime

affects momentum transport can also be performed using our modulated ECH discharge.

In addition, the coupling between momentum and particle transport will be studied. By

extracting similar momentum transport coefficients using perturbed technique, we can

investigate on questions such as how density increase triggers the reversal of intrinsic ro-

tation [162, 164], and whether the pinch of these two transport channels are the same.

q-profile peaking We report a correlation between the normalized density inverse

scale length R/Ln and the frequency of the most unstable mode in chapter 5. Another

component in determining the density profile is q-profile (q is the safety factor), through
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the curvature pinch. Density peaking is observed to increase when the value of 1/q in-

creases on JET [66, 77, 78]. A similar correlation between the density peaking and q-profile

is also observed on DIII-D, where the correlation is more pronounced when Te = Ti, and

less pronounced when Te > Ti and the plasma is in a TEM turbulence regime. Thus we

provide two possible methods (i.e., frequency of turbulent mode and q-profile) to help

controlling core density peaking for future burning plasma devices like ITER.

ITER To sum up, many future works are still required to get a good predictive

capability for ITER. We need a better recalibration in TGLF with ITER like conditions.

Experimental scaling as well as simulations need to be validated on multiple devices. The

coupling of multi-transport channels needs to be studied. And a detailed study concerning

the roles of fueling versus pinch on density peaking should be performed, since both of

them can affect core density peaking but have their own limitations (core neutral beam

fueling is not desirable on ITER while pinch term is largely depend on different plasma

conditions). With ITER aimed at achieving net energy gain from magnetic confinement

device, no piece of the transport puzzle is too small to solve. We hope the contributions

from this dissertation, although far from a solution to the confinement problem, can serve

as an important step in building future improved particle transport predictions.



APPENDIX A

Frequently used physical symbols

This appendix lists all physical symbols used in this dissertation as well as their units

(except for the dimensionless parameters) following behind.

TABLE A.1: Physical symbols and their units

Symbol Unit Quantity

R0 [m] tokamak major radius

a [m] tokamak minor radius

ǫ inverse aspect ratio

ǫ0 [Farad/m] vacuum permittivity

n [×1019m−3] plasma density

ne [×1019m−3] electron density

ne,norm [×1019m−3] normalized electron density

ni [×1019m−3] ion density
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n0 [×1019m−3] equilibrium plasma density

ñ [×1019m−3] density fluctuation

ñe [×1019m−3] perturbed electron density

ñi [×1019m−3] perturbed ion density

k [m−1] wave number

k‖ [m−1] parallel wave number

kθ [m−1] poloidal wave number

kB [J/K] Boltzmann constant

ω [rad/s] oscillation frequency

ωfreq [rad/s] instability mode frequency

ωE×B [rad/s] E ×B shearing rate

ωgyro [rad/s] electron gyro-frequency

γ [s−1] instability mode growth rate

γ0 one photon

Γe [m−2s−1] electron particle flux

Γi [m−2s−1] ion particle flux

Γn [m−2s−1] particle flux

ΓQ [mJ/s] energy flux

ΓM [kgm2/s2] momentum flux

Ψ [T ·m2] poloidal magnetic flux

φ̃ [V ] perturbed electric potential

F (x, v, t) [m−3] density distribution function

F0 [m−3] equilibrium part of the distribution function

F̃ [m−3] perturbation part of the distribution function

F̃0 [m−3] perturbation amplitude of the distribution function
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m [kg] general particle mass

me [kg] electron mass

mi [kg] ion mass

mD [kg] deuterium mass

q safety factor

e [Coulomb] electron charge

T [KeV ] plasma temperature

Te [KeV ] electron temperature

Ti [KeV ] ion temperature

τE [s] energy confinement time

τe [s] decay time of a turbulence eddy

τd [s] characteristic time of viscous dissipation

τ [s] characteristic collision time of a random walk

τfit [s] exponential decay characteristic time

E [V olt/m] electric field

E [J ] particle energy

Er [V olt/m] radial electric field

B [T ] magnetic field

b unit vector in the direction of B

‖ and ⊥ parallel and perpendicular to b

θ and φ toroidal and poloidal directions in a tokamak

B0 [T ] magnetic field in the plasma center

v [m/s] particle velocity

vE×B [m/s] E ×B drift velocity

v∇B [m/s] ∇B drift velocity
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vcurv [m/s] curvature drift velocity

vware [m/s] ware pinch inward drift velocity

vt [m/s] general particle thermal velocity

vth,e [m/s] electron thermal velocity

vth,i [m/s] ion thermal velocity

ve [m/s] characteristic flow velocity of a turbulence eddy

vφ [m/s] impurity toroidal velocity

V [m3] volume of a flux surface

c [m/s] light speed

∆x [m] mean free path length of a random walk

∆b [m] banana orbit width

∆ [m] eddy radial size

ρ [m] general particle gyro-radius

ρ0 [kg/m3] plasma mass density

ρ normalized square root of each flux surface

when shown as axis label in figures

ρe [m] electron gyro-radius

ρs [m] ion gyro-radius

ρθ [m] gyro-radius in poloidal field

D [m2/s] particle diffusion coefficient

Deff [m2/s] effective diffusion coefficient

DNC [m2/s] neoclassical particle diffusion coefficient

Delectron [m2/s] electron diffusion coefficient

Dion [m2/s] ion diffusion coefficient

Dn [m2/s] diagonal particle diffusion coefficient
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DT [m2/s] thermal diffusion coefficient

Dv [m2/s] roto-diffusion coefficient

χT [m2/s] energy diffusion coefficient

χv′ [m2/s] momentum diffusion coefficient

vp [m/s] pure convection coefficient

ν [s−1] collisional scattering frequency

ν∗ normalized collisionality

νei [s−1] electron-ion collisional frequency

ν [s−1] collisional scattering frequency

νeff effective plasma collisionality

µ [J/T ] magnetic moment

µvis [m2/s] kinematic viscosity.

R
Ln

normalized electron density gradient

R
LTe

normalized electron temperature gradient

R
LTi

normalized ion temperature gradient

lnΛ dimensionless plasma parameter

Zi impurity charge number

p [Pa] plasma pressure

Pi [Pa] ion plasma pressure

PI [J ] power of incident laser beam

IB [Watt] Black Body radiation intensity

λI [m] incident beam wave length

∇λ1/e [m] half width of spectrum

f [Hz] wave frequency

fpe [Hz] plasma oscillation frequency
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λ [m] scattered beam wave length

g [m/s2] gravity

L [m] Characteristic length of inhomogeneity

Lmach [m] tokamak machine size

d [m] crystal lattice size

ft fraction of trapped particle

S [m−3s−1] particle source rate

Si [m−3s−1] ion source rate

βN normalized plasma pressure

Ip [A] plasma

J [C/m2] current density

J0 zero order Bessel function
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