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ABSTRACT PAGE

Magnetization dynamics and anisotropy of a Ni/NiO bilayer have been studied by static 
magneto optical Kerr effect (MOKE) and time resolved pump-probe MOKE. The time 
domain measurements show coherent magnetization oscillations on the picosecond scale 
whose frequency fits well to FMR equations used for frequency domain measurements. 
Anisotropy constants extracted from the time domain data agree with the findings of the 
static MOKE measurements and reveal tetragonal and uniaxial components induced by the 
strain in the lattice-mismatched Ni/NiO bilayer. Studies of the Gilbert damping show a 
strong effect of the sample’s anisotropy on the frequency dependence of the damping that 
has not been mentioned in the literature so far.
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Magnetization Dynamics and Anisotropy in 

Ferromagnetic/Antiferromagnetic Ni/NiO Bilayers



1 Introduction

Magnetism is one of the key phenomena used in modem information technology. Beside 

the magnetic remanence which is the backbone of all magnetic, non -  volatile data 

storage, other magnetic effects are essential for modem devices. These effects can be 

observed in a variety of multilayer stmctures, made of different combinations of 

ferromagnetic (FM), nonmagnetic and antiferromagnetic (AFM) materials. The 

technically most important of these effects is the Giant Magnetoresistance (GMR), 

discovered in 1988 [1,2]. GMR is observed in stmctures of alternating ferromagnetic and 

non magnetic layers. It causes a large change in the material’s resistance, when the 

relative orientation of the magnetic moments in the ferromagnetic layers is changed from 

parallel to antiparallel. This technique finds applications in magnetic random access 

memory (MRAM) as well as in magnetic field sensors or hard drive read heads. In fact, 

without GMR, the current data densities on hard drives would not be possible. Another 

area of great interest is the field of FM/AFM multilayers. These systems exhibit a unique 

type of anisotropy called exchange bias (EB) [3]. EB acts as a pinning mechanism in 

modem GMR devices and it can be used to achieve data densities, higher than what is 

allowed by the superparamagnetic limit [4].

High data densities are important, but relatively useless without a fast mechanism 

to write the data, i.e., to manipulate the magnetization. In order to switch the 

magnetization at rates in the GHz regime, necessary for modem computer applications, it 

is crucial to understand dynamic magnetization processes. A relatively novel all-optical 

pump probe technique can resolve those dynamic processes in the time domain with
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picosecond resolution [5]. These time domain measurements provide direct information 

about intrinsic spin damping, which is a key factor to design fast memory devices.

The goal of this thesis is to use this pump probe technique to study magnetization 

dynamics and damping in a Ni/NiO film as an example for a FM/AFM interface.

The main objectives are:

Characterize the anisotropy by measuring the angle dependence of coercivity and 

exchange bias

Measure the magnetization precession frequency as a function of external field 

and as a function of the angle between external field and the anisotropy axes 

Determine the anisotropy constants by fitting these angle and field dependences 

Study the intrinsic damping as a function of field, frequency and angle

Chapter 2 of this thesis discusses the theory of the magneto-optical Kerr effect

(MOKE), the magneto-crystalline anisotropy and the theoretical description of 

magnetization dynamics. The experimental setup and the sample used are described in 

chapter 3. Results and discussion of the different measurements are presented in chapters

4, 5 and 6. Chapter 7 contains the conclusions.
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2 Theory

2.1 Magneto Optical Kerr Effect - MOKE

The Kerr Effect is named after the Scottish physicist John Kerr, who discovered in the 

late nineteenth century that linearly polarized light changes its polarization upon 

reflection off a magnetized medium. This effect is similar to the Faraday Effect, where 

the polarization is rotated while the light is transmitted through a Faraday active material 

in the presence of a magnetic field. The Kerr effect is explained in terms of the material’s

dielectric tensor, £, which is diagonal in an isotropic medium. Either an applied 

magnetic field or an effective magnetization of the medium changes the isotropy of the 

material and adds off-diagonal elements to s , which are proportional to the 

magnetization [6]. The dielectric tensor can be written as [7]:

direction of light propagation.

Equation 2 causes real and imaginary parts of the refractive index, n , to be 

different for left and right (LCP and RCP) circular polarized light. Linear polarized light

1 iQ, -iQy i
£ = £„ -iQ z 1 iQx

1
(1)

The normal modes of light are left and right polarized with refraction index

(2)

where Q = (Qx,Qy,Qz) is called the Voigt vector, and k is the unit vector along the
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can be described as a sum of LCP and RCP components, with the same frequency and 

amplitude. Therefore, variations in the real part of n cause a phase difference between 

LCP and RCP components and lead to a rotation of the polarization denoted as the Kerr 

angle p . Differences in the complex part of n are responsible for a difference in 

reflectivity and therefore affect the magnitude of the two components. This gives rise to 

an elliptical polarization of the light called the Kerr ellipticity rj [8]. A schematic of this 

process is shown in figure. 2.1.

y

l inearly  
p o la r ize d  
l ight

Figure 2.1: Schematic of the Kerr effect. The incoming linearly polarized light can be decomposed into 
LCP and RCP components which have different amplitudes and phases after reflection from a magnetic 
medium. This leads to an ellipticity and a rotation of the polarization. Figure taken from ref. [9]

One distinguishes between three main MOKE geometries depending on the orientation of 

the magnetization relative to the surface of the sample and to the plane of incidence. The 

polar MOKE geometry measures the magnetization component that is perpendicular to 

the plane of the sample and in the plane of incidence. For the longitudinal and the 

transverse MOKE geometries, the magnetization component parallel to the plane of the 

sample is measured. In the longitudinal case, the measured magnetization component is 

also parallel to the plane of incidence while in the transverse setup it is perpendicular to 

the plane of incidence. The three geometries are shown in figure. 2.2.

lep  ICP re f lec ted  re f lec ted  e l l ip t ica l ly
lep rep p o lar ized

l ig h t
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Figure 2.2: Sketch of the three main MOKE geometries. They are determined by the orientation of the 
magnetization with respect to the surface of the sample and to the plane of incidence. The light can be 
either polarized perpendicular (s) or parallel (p) to the plane of incidence. Figure taken from ref. [8]

In contrast to longitudinal and polar geometry, the transverse MOKE does not rotate the

polarization, instead the reflectivity of the sample depends on M  . This means, that the 

transverse component can not be measured with the cross polarization scheme used in 

this thesis. For the other two MOKE geometries, the effective Kerr rotation depends on 

the angle of incidence. Figure 2.3 shows the cross-polarization factor for longitudinal 

MOKE. It is a measure of the conversion efficiency from p to s polarized light upon 

reflection, as a function of the angle of incidence, 9 , as shown in figure 2.2 [8]. The 

maximum Kerr response can be achieved for 6 « 65°. For polar MOKE, the cross

polarization factor is nearly constant for 0° <6 < 60°and goes to zero for 9 = 90° . In the 

apparatus used in this thesis, experimental constraints limit 9 « 45°, however this value 

still guarantees a good MOKE response for both longitudinal and polar geometries. Note 

that the polar MOKE response is typically an order of magnitude stronger than its 

longitudinal counterpart.
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0
0 10 20 30 40 50 60 70 80 90

Angle of incidence (deg)

Figure 2.3: The cross-polarization factor for longitudinal MOKE as a function of the angle of incidence. 
The highest Kerr response can be achieved at an incidence angle of roughly 65°. Figure adapted from ref.

2.2 Demagnetizing Fields

In a magnetized body, there exists a natural field trying to demagnetize the body. 

Uncompensated magnetic poles at the boundaries of a finite, magnetized material create 

an effective field that acts to frustrate the magnetization. This important effect is shown 

in figure 2.4 [10].

It is described by a demagnetizing field, Hd, which is proportional to the 

magnetization because it determines the number of free poles.

N  is called the demagnetization factor and depends only on the shape of the sample. It 

can be calculated for an ellipsoid with its three principal axes a , b and c shown in

H d = - N M (3)

figure 2.5 (a) [11].
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(b) (c)

Figure 2.4: (a) shows a bar magnet in an external field Hext. This field causes the poles and their field lines 
shown in (b). Those field lines are pointing in the opposite direction of the external field and causing the 
demagnetization of the sample. The effect decreases with increasing distance between the two poles, (c) 
shows the effective B field with its closed field lines. Inside the magnet, it still points in the direction of the 
former external field HgXt because the demagnetization field can never exceed the magnetization in 
magnitude. Figure taken from ref. [9]

In this case, Na , Nb and Nc are the demagnetizing factors along these three axes. If

c
a ^ b  = c and in the lim it  » co (thin disc), the demagnetization factors in cgs units are

a

given by

Na « An and Nb = Nc = 0 . (4)

This means that for a thin film the magnitude of the demagnetization field is

H d = AnM  cos 6 , (5)

where 6 is the out of plane angle of the magnetization vector. This field acts to pull M

in the direction of the plane. (In SI units Na * 1 and Nb = Nc =0.)

8



(b)

Figure 2.5: (a) shows a general ellipsoid with its axes a, b and c. If the axes b and c have the same length as 
in (b) it is called oblate spheroid. This can be considered a thin film in the limit c —» oo . Figure taken from 
ref. [11].

2.3 Magnetocrystalline Anisotropy

The response of the magnetic properties of a material, such as the coercivity and 

hysteresis, in general depends on the direction of an applied external field. This effect is 

caused by the crystallographic structure and is called magnetic anisotropy [10]. It can be 

described by an anisotropy energy, whose minima correspond to the preferred direction 

of magnetization. These energetically favorable directions are called easy axes of 

magnetization, whereas the directions corresponding to maxima in the energy are called 

hard axes of magnetization. The sample used in this thesis is made of nickel, which has a 

face centered cubic (fee) structure. For cubic materials, it is common to express the

anisotropy energy in terms of the direction cosines (ax,a y,a z ĵ of the magnetization 

vector with respect to the cube edges.

9



For example, a x denotes the cosine of the angle between the magnetization vector and 

the x direction. In spherical coordinates the a i are given by

a x = sin 6 cos <f>,
a y = sin 6 sin (6)

a z = cos#.

The high cubic symmetry requires that the energy expansion does not include odd powers 

of a ; , because a change of sign in any a t leads to a direction equivalent to the original

one. Furthermore, the energy must be invariant under the exchange of any two a t . These

facts, with the additional requirement that a x +ccy2 + « z2 = 1 yields a general expression

for the cubic energy [10]:

Eabic = K, ( « > /  + V  + a . V ) + K2 ( a » 22) + K,  (...) +... (7)

The coefficients Kt are called anisotropy constants and are unique to specific materials.

For most materials the bulk values of K x and K 2 are known. Higher order terms in most

cases are small and cannot be determined reliably.

The crystallographic orientation of the easy axes in a cubic material depends on 

the sign of its anisotropy constants. In the case K x> 0, which is the case for iron, the

easy axes are [100], [010] and [001] as shown in figure 2.6 (left). For K x < 0, which we

have in nickel, the easy axes are [111], [-1,1,1], [1,-1,1] and [1,1 ,-1]. (fig. 2.6 (right))
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I

Figure 2.6: Polar plot of the cubic anisotropy energy density (Eq. 7). The left plot represents the case 
K x > 0 . Here the easy axes are along the cube edges as in the case of iron. The right plot shows the case for

K x < 0 . In such a material, like nickel, the easy axes are along the cube diagonals. Figure taken from ref. 
[12].

2.4 Magnetization Dynamics

A magnetic field 5  exerts a torque r, on the magnetic moments juj in a material.

T i  = f l t x B (8)

In the macroscopic limit, it is more convenient to use the magnetization M  instead of . 

The magnetization is the volume density of the magnetic moment:

_ I *
M  = —

V
(9)

The equation of motion for the magnetization in an external magnetic field H  is [13]

dM
dt

= - y M  x H . (10)

In this equation, y  is the gyromagnetic ratio. It is defined as

r  = = (cgs)or
2 m e  Oe

11



mAe\= 8 7 >9 .1 0 9 _h^ ( s i )  
2m„ A m

(11)

Typically, the dimensionless g-factor or spectroscopic splitting factor has a value close to 

two, but for some ferromagnetic materials its value is higher. In the case of 

Nickel g = 2.21 .[10]

Figure 2.7: The undamped magnetization vector precesses around the effective magnetic field. (f> and 0  

are the aximuthal and polar angles of M  respectively. Figure taken from ref. [9].

According to equation 10 the magnetization, once excited, precesses indefinitely around 

the direction of the magnetic field. In order to describe real systems, Gilbert (1955) 

proposed a phenomenological viscous damping term [14]. Equation 10 becomes

H

MsinC 0)

d M

dt
(12)

12



In this form, the Landau Lifshitz Gilbert (LLG) equation is not easy to solve for M ,

dM
however, we can simplify it by considering the inner product of M  with

dt

—- d M  1 d / — ' \ 2
M ------ = ——(M l = 0 . (13)

dt 2 d t ' '

Thus, the magnitude of M  , M s , is a constant of motion. Only homogeneous damping 

processes that leave M  constant can be described by the Gilbert formalism. If we

consider the outer product M  x we have
dt

. .  d M  7 7  / 7 7  7 7  \ T 7 z a M  ,1M x  = —yM  x i M x  H \ - /?! M  ------ , (14)
d t d t

which, substituted into equation 12 yields

1 + a 2 dM  7 7  — a  T7 (T7 H \------------- = - M x H  M  x \ M  x H  ), (15)
r  dt M s V /

where or = yijMs . This unitless parameter is called the Gilbert damping parameter.

Figure 2.8 is a sketch of the damped precessional motion emphasizing the components of 

equation 15.

13



-M x (M x H)

-M x H

Figure 2.8: The magnetization vector precesses according to equation 15. —M  x H  is always perpendicular 

to M  and H  . It causes the precession around H  whereas - M  x ^ M  x H ^  causes the damping by pulling

the magnetization in the direction of H  . Figure taken from ref. [9]

For small oscillations, the LLG equation is linearized, yielding solutions as an 

exponentially damped sine with a decay time r  and frequency co [15, 16].

A -e^-sin(ty? + £) (16)

The Gilbert damping parameter, a , can be extracted from these fits using the relation

a  = — [17]. The decay time, r  , is just a measure for the time it takes to damp out the
(O T

oscillations w hiles represents the damping per oscillation, a  therefore determines the 

number of oscillations after an excitation. Figure 2.9 shows equation 16 for different 

values of a  at a certain frequency.

14



Time (a.u.)
Figure 2.9: Plots of equation 16 for different values of a  . Figure taken from ref. [9].

In real pump probe measurements, non magnetical effects like electron lattice interactions 

cause deviations between measured oscillations and equation 16. To take this into 

account, a first order correction in form of a linear term is added to equation 16. It 

becomes

2.5 Ferromagnetic Resonance Frequency

The resonance frequency for a system obeying equation 10 can be determined 

analytically under the assumption of small oscillations of the magnetization around its 

equilibrium position. In spherical coordinates, equation 10 takes the form

(17)

(18)
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where H^ and H e are the (j) and 0 components of the effective magnetic field, H ef f , in

spherical coordinates. The effective field is defined as

dF
H e f f  =

dM
——Vm •F (19)

where F  is the free energy density of the system. Heff contains the external field, the 

demagnetization field and other crystalline anisotropy fields. H eff can be written as

f  dF I dF 1 d F N
dM ,

(20)
M s d6  ’ M s -Sin6 d(j)

Assuming small oscillations around the equilibrium position, the energy can be expanded 

as a power series up to second order. In this case the derivatives with respect to 0 and (j)

are

dF d2F  82F  86 + , 8F 82F  82F
and  = — —dpi-------- od

80 802 ~~ ' 808f r 80 8 f  ' 8080

Combining equations 18, 20 and 21 yields a system of linear equations,

M s - Sin 6 d6 d2F  ^  d2F  ^
  ̂ = ------- 80 + — -8 6

y dt d6d</> d(/>2
M ,-S in  Odd d2F  d2F
—     = --------------------86 +  — -8 6

y dt d6d<f) 60

which has periodic solutions of the form 0,<j) ~ eiat if the determinant is equal to zero.

(21)

(22)

co = 7 d2F  d2F
f  a 2 j P 1

M s -SinO\ 802 d<t>2 Kd6d</) J
(23)

This formula is known as the Smit -  Suhl formula [18, 19].
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In the following chapters, the geometry of the sample and the angles $ and 0 are defined 

as follows (fig. 2.7):

The plane of the sample lies in the x-y plane.

- The x axis points in the direction of the free energy’s global minimum. This 

direction is called easy easy axis.

<f> denotes the angle between the in plane component of M and the easy easy 

axis.

0 is the angle between M and the z-axis.
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3 Experimental Setup

Two different measurement techniques are used in this thesis: static MOKE (S-MOKE) 

and time resolved pump probe MOKE (TR-MOKE). S-MOKE is used to measure the 

sample magnetization as a function of the applied magnetic field, and TR-MOKE makes 

it possible to resolve magnetization dynamics on the picosecond timescale. Both setups 

are discussed in this chapter.

3.1 S-MOKE

Fig. 3.1 shows a schematic of the MOKE setup used in this thesis. The sample is 

mounted on a rotation stage (Newport SR 50) oriented between the poles of an 

electromagnet (GMW 3470) such that applied fields are constrained to the plane of the 

sample. This makes it possible to apply the external field at any in-plane angle with 

respect to the sample’s crystallographic axes. It allows one to obtain information about 

the angular dependence of the sample anisotropy. A He-Ne Laser (Melles Griot 25 LHR) 

with a wavelength of 632.8nm is directed at the sample and polarized by a Gian polarizer 

(Newport 10GL08) such that the ingoing polarization is in the plane of incidence. 

Reflected light is directed to a second Gian polarizer oriented nearly 90° from the Erst 

one. Finally, the outgoing beam is focused via a lens on a photodiode (Thor Labs DET 

210). The laser is modulated at ~280Hz with a chopper and a lock-in amplifier (SR 530) 

filters out all other frequency components thus eliminating much of the noise. An 

external computer controls the rotation stage, the electromagnet acquires the data. The 

best signal is measured if the relative angle between polarizer and analyzer is chosen to
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be half a degree to one degree off the extinction angle. All measurements are performed 

at room temperature. Note that because of the high demagnetization fields only the 

component of magnetization that is parallel to both the plane of incidence and the plane 

of the sample contributes to the MOKE signal. Therefore the longitudinal MOKE 

geometry, described in chapter 2.1 is realized.

m irror

photodiode
lock-in amplifier

sam ple in analyzer
m agnet PC w ith LabV IEW

Figure 3.1: Schematic of the static MOKE setup. A polarizer analyzer combination is used to measure the 
polarization rotation due to the magnetization in the sample. Figure adapted from ref. [9]

3.2 TR-MOKE

In order to perform time resolved measurements, the setup has to be modified. It is shown 

in figure 3.2. Instead of the He-Ne Laser, an amplified Ti:Sapphire laser system (Spectra 

Physics Tsunami and Spitfire) with a wavelength of 800nm, generates 150fs laser pulses 

at 1kHz repetition rate. Its average power output is 700mW and the peak power 4.7GW. 

After collimating the beam with a telescope, it is split into a pump beam and a probe 

beam by a beam splitter. The probe beam is polarized parallel to the plane of incidence 

and attenuated such that its average power is approximately 5mW before it reaches the 

sample. The pump beam is directed through a computer controlled delay stage, which 

provides a time delay between the two beams such that the probe beam arrives after the
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pump beam. The pump beam power before reaching the sample is 50mW. A modulation 

scheme is used to filter out unwanted signals: in this case the pump beam is modulated at 

~280Hz with a chopper and the lock-in amplifier accepts only this frequency component 

of the probe beam. Both beams are directed on the same spot on the sample. The 

diameters of the pump and probe beam are (2.0±0.l)m m  and (l.6±0.l)m m

respectively. These beam sizes contain 50% of the beams total power. A PC with a 

LabView program controls the experiment and records the data. In contrast to the S- 

MOKE measurement, the TR-MOKE signal is mainly caused by the component of 

magnetization that is parallel to the plane of incidence and perpendicular to the plane of 

the sample. Therefore the polar geometry described in chapter 2.1 is realized. Like S- 

MOKE, the TR-MOKE experiments are also performed at room temperature.

lock-in amplifier

pulsed amplified laser

chopper

analyzer

Figure 3.2: Schematic of the TR-MOKE experimental setup. The path length of the pump beam can be 
altered via a delay stage, causing the pump beam to arrive at the sample some time At before the probe 
beam. The magnetization oscillations excited by the pump beam are measured with the polarizer analyzer 
setup. The MOKE signal is recorded as a function of A t . Figure taken from ref. [9]
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3.3 Sample

The sample used was grown by the group of Prof. R.A. Lukaszew at the University of 

Toledo. This group published a paper containing detailed information about the sample 

[20].

Important aspects for this thesis are described below.

The Ni film was grown on MgO (001) substrate using MBE. It was in situ 

annealed in UHV at 573K (-1/3 of Ni melting temperature) for several hours [20]. The 

total film thickness is reported to be 30nm (-170 monolayers). Transmission electron 

microscopy (TEM) and reflection high energy electron diffraction (RHEED) studies 

performed during growth and after in situ annealing, indicate the formation of a rough 

interfacial layer of NiO (~7-8nm thick) caused by the annealing process. The origin of 

this interfacial layer, which is shown in figure 3.3, can be inferred from the crystalline 

structure of the substrate and the film. Nickel and MgO both have fee structure but their 

lattice parameters differ by 16.4%, whereas the lattice parameter of NiO, which also has 

fee structure, only differs by 0.9% from that of MgO. (The lattice parameters of Ni, MgO 

and NiO are 3.52A, 4.213A and 4.177A respectively.) As a result of this lattice 

mismatch, a NiO layer is formed to relieve the strain due to the lattice mismatch between 

Ni and MgO [20]. After this thin intermediate layer is formed the crystal field of the 

(001) MgO substrate favors the subsequent cube on cube epitaxial Ni growth observed, 

but with high defect density [20],
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Figure 3.3: Cross sectional TEM image of the sample after in situ annealing. The dark area between Ni and 
MgO is a 7-8 nm thick NiO layer. It forms during growth of the sample and becomes thicker during further 
annealing. The bottom left scale corresponds to two nanometers. Figure taken from ref.[20]

In a material with a cubic structure like nickel, the magnetic anisotropy is expected to be 

fourfold. To verify this, longitudinal magneto optical Kerr effect (MOKE) has been used 

to study the anisotropy in the magnetization reversal on the samples prior and after in situ 

annealing [20]. Figure 3.4(a) shows the azimuthal dependence of the coercivity prior to 

annealing. Here the fourfold symmetry is clearly visible. However, after annealing the 

fourfold symmetry is broken, as the coercivity exhibits an additional uniaxial component 

as shown in figure 3.4(b).
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non annealed
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60

Figure 3.4: Azimuthal dependence of the coercivity for the as grown sample (a) and after in situ annealing 
(b). The as grown sample exhibits the expected cubic four fold symmetry. The annealing process induces 
an additional uniaxial anisotropy. The vertical axis corresponds to the coercive field in Oe. Figure taken 
from ref. [20]

This uniaxial anisotropy is consistent with prior reports about a lattice distortion in NiO 

along [111] causing such an anisotropy [20]. The annealing process causes a tetragonal 

lattice distortion, manifested as a uniaxial anisotropy component [20]. Furthermore, a 

weak, but measurable, exchange bias field of 16 Oe is reported in ref. [20].

3.4 Anisotropy Energy

The information provided in this chapter, makes it possible to write down a more specific 

expression for the anisotropy energy of the sample. The anisotropy should be based on 

the cubic anisotropy of nickel. In addition, there should be a tetragonal and a uniaxial 

anisotropy term to take into account the tetragonal lattice distortions and the uniaxial 

component measured in static MOKE, respectively. Therefore the anisotropy energy is 

assumed to be the sum of a cubic, a tetragonal and a uniaxial term.
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E = E + E + E  (24)anisotropy cubic tetragonal uniaxial V '

For the cubic and the uniaxial energy, only an in plane dependence is considered because 

their out of plane components can be neglected, due to the strong demagnetization field.

7tThe cubic energy expression for the (001) plane is given by equation 7. Setting 0 = — it 

becomes

EaMc=^-cos(2</,)2 (25)

The expression for the in plane uniaxial anisotropy energy is

= « s in ( f 0 2 (26)

In contrast to the other two energy terms, the tetragonal term has a significant out of 

plane (perpendicular) contribution [21].

E ,e,raSo„a, =  E i„ p,a„e +  E perp =  ̂ '“ S + T perp (27)

The anisotropy constants K 1 , U1, T1 and T  are determined from the TR-MOKE data 

in chapter 5.
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4 Static MOKE

4.1 Measurements

Static MOKE measurements are used to investigate the angular dependence of the 

sample’s anisotropy. Using this information, in combination with the dynamic 

measurements described in chapter 5, it is possible to determine the sample’s anisotropy 

constants. To obtain the angular dependence of the anisotropy, the magnetization of the 

sample as a function of an applied magnetic field (i.e. a hysteresis loop) is measured for 

different in-plane angles of the applied field. The field angle, J3, takes values between 0° 

and 360° in steps of 5°. In order to control this angle, the sample is mounted inside the 

magnet on a rotation stage. For this measurement it is crucial to have the surface of the 

sample aligned perpendicular to the axis of rotation, otherwise, the reflected beam moves 

relative to the detector as the sample rotates. A Hall sensor is used to calibrate the 

magnetic field which is determined to be accurate within ±5 Oe.

For each field angle four hysteresis loops are recorded and averaged. Figures 4.1 

-  4.4 show some of these MOKE loops recorded for characteristic directions. The 

information extracted from the data is the coercivity field H c (half width of the loop)

and the exchange bias field H EB (the field value the loop is centered around). To obtain

these fields, the y-axis is centered about the mean of the two saturation values 

corresponding to the value where the measured component of magnetization is zero. 

1 . ,

H c = —|H cx - H C21 is given by half the difference of the two switching fields (the field
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where the magnetization is zero) and H EB = —^Hcx + H C1) is given by their mean, as 

indicated in figure 4.1.

Easy-Easy Axis - p=180'0.08 i

0.06
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d  0.02  -

Heb
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- 0.02  -

-0.04 -

Hc1 J

-0.06 -

Hc2
-0.08

0 200 400 600-600 -400 -200

Magnetic field in Oe

Figure 4.1: Hysteresis loop measured for ft = 180° . H ( l , H ( 2 and H EB are indicated by dashed vertical 
lines.
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Figure 4.2: Hysteresis loop measured for (3 = 85° .
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Figure 4.3: Hysteresis loop measured for /? = 55° . 1 , 2  and 3 mark the regions of fast switching, slow 
switching and saturation of the magnetization, respectively.
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Figure 4.4: Hysteresis loop measured for /? -  135° .

4.2 Results and Discussion

Figure 4.5 shows a polar plot of the measured coercivity field H c as a function of the 

external field angle /?. The axis where the coercivity is highest (0° and 180°), from now 

on is referred to as the easy-easy axis (black). If the sample is magnetized in this 

direction, the free energy, F  , is at the lowest value possible. If the sample is magnetized 

along the second axis (85° and 265°), F  is at a local minimum. This axis is called an 

easy-hard axis (red). The axes where the coercivity is smallest correspond to a maximum 

in F  and are called hard axes (blue). The green direction in figure 4.5 marks a sharp 

increase in coercivity. These coercivity “spikes” are observed for all <100> directions. 

Figure 4.6 shows the four hysteresis loops, corresponding to the highlighted directions.
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Figure 4.5: Polar plot of the coercivity field H c as a function of the external field angle /? . Also indicated
are selected crystallographic directions and the four directions corresponding to the hysteresis loops shown 
in figure 4.6.
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Figure 4.6: Hysteresis loops for the four characteristic directions marked in figure 4.5.

29



The data indicates the expected cubic fourfold symmetry of nickel with a superimposed 

uniaxial contribution also observed by Lukaszew et. al. [20] (fig. 3.4 b). As in ref. [20], 

we notice the presence of four “spikes” (green) located between easy and hard axes at 

45°, 135°, 225° and 315° (the angles are defined in the coordinate system, where the 

easy-easy axis is at 0°). However, the four loops seem to be smoother and less pointed 

compared to the data published in ref. [20]. It is also interesting to note that, except for 

the different coercivity values, there is no real difference in the switching behavior of the 

magnetization for different orientations (fig. 4.1 -  4.4). This behavior is expected because 

the magnetization is easy to saturate for cubic Ni regardless of the crystallographic 

direction as can be seen in fig 4.7.

< m >500
Easy 
<1 I I>

< 1  I 0 >4 0 0

£ 300

< 100>
H a r d

100

40 0 500100 200 3000 60 0

Hi  Oe)

Figure 4.7: Magnetization curves of different crystallographic directions for single crystal nickel. For 
comparison, the boundaries of region 1, 2 and 3 have the same field value as the regions in figure 4.3. 
Figure taken from ref. [11].
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This is not the case for all ferromagnetic materials. Hexagonal cobalt for example shows 

totally different magnetization curves (fig. 4.8). Here a field of over 10000 Oe is needed 

to magnetize the sample along its hard axis which is roughly twenty times the field that is 

needed to magnetize it along its easy direction. Figure 4.7 also shows the unit cell of Ni 

and the crystallographic directions, corresponding to easy, hard and intermediate axes of 

magnetization. The sample, as described in chapter 3, is a MBE grown epitaxial (001) Ni 

film. Therefore the <111 > easy directions, which represent the global minimum in the 

cubic anisotropy energy, are pointing out of the sample plane, hence play no roll in the 

measured in-plane anisotropy. Instead the axes previously called easy-easy and easy-hard 

axis and pointing in the <110> directions are identical to the medium axis in figure 4.7 

while the in-plane hard axis is identical to the global one. The measured switching 

behavior of the hard axis can be divided into three regions as depicted in figure 4.3. One 

can see that the measured saturation region starts exactly at the expected field value of 

250 Oe, whereas the region of fast switching, region one, is measured to be a little larger 

than expected from figure 4.7.

The small exchange bias of 16 Oe that was reported in ref. [20] is not observed in 

the measurements. This may indicate that the exchange bias degenerates over time.
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Figure 4.8: Magnetization curves of easy and hard direction for single crystal cobalt. Figure taken from ref. 
[11]

In summary, the sample quantitatively shows the hysteresic behavior expected for a thick 

(30nm) Ni (001) film. The angular dependence of the coercivity, a cubic fourfold 

symmetry with a superimposed uniaxial term, is similar to what was reported in ref. [20]. 

Note that the angle between easy-easy and easy-hard axis slightly differs from the 

expected value of 90°. This seems to be a result of the annealing process because it is also 

present in the original data taken by Lukaszew et. al. [20] after annealing (fig. 3.4 b), but 

not visible prior to annealing (fig. 3.4 a). The reported exchange bias field of 16 Oe is no 

longer present in the sample.
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5. Time Resolved-MOKE

5.1 Measurements

The time domain response of the magnetization is investigated using the TR-MOKE 

technique, a relatively novel technique which was introduced by van Kampen et. al. in 

2002 [5]. TR-MOKE uses femtosecond laser pulses to excite magnetic spin waves by 

electronic heating, a process Beaurepaire et. al. described in 1996 [22]. This technique 

has some advantages of over classical ferromagnetic resonance (FMR) measurements. 

Compared to the extraction of damping from the line width in frequency domain FMR 

measurements, TR-MOKE measurements are taken in the time domain, providing direct 

information about the damping. Furthermore, TR-MOKE is a local technique; it excites 

and probes the magnetization with a laser beam which limits the spatial resolution to the 

beam diameter. In the following the laser induced excitation process is described. The 

excitation is a three step process [5]:

1. Prior to arrival of the pump beam, the magnetization M  points in the equilibrium 

direction, , which lies in the plane of the sample due to the strong

demagnetization field, is the direction of the effective field Heff — Vm ■F)

2. The pump beam with its peak power of 4.7GW locally heats the sample which 

changes the sample’s anisotropy field, causing M  to precess around its new 

equilibrium direction. This process happens on a timescale of 0.5ps [22],
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3. The heat diffuses due to electron-phonon interactions and on a time scale of about

lOps the original equilibrium angle is restored. M  continues to precess around 

the effective field till it is damped out [5].

Figure 5.1 shows a plot of a typical oscillation. The MOKE signal is plotted as a function 

of the time difference At between pump and probe beam:

At = t , — tprobe pump

The times tprobe and t correspond to the travel times of the two beams. For

At < 0 there is no signal because the probe beam arrives, before the pump beam excites 

the oscillations. At At = 0 a small peak, the “overlap peak”, is visible indicating the time 

overlap between the two beams. In this short period of time the three processes described 

above take place. After that the oscillations begin, whose frequency is given by equation 

23. The red curve represents a fit using equation 17.
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Figure 5.1: A typical magnetization oscillation measured with TR-MOKE. The external field of 6850e is 
oriented along the hard axis (/? = 120°). The timescale on the horizontal axis denotes the time difference 
between pump and probe beam. For negative times, the probe beam arrives before the pump beam and at 
t = 0 , both beams arrive simultaneously.

5.2 Results and Discussion

A selection of time domain data for different field values and corresponding fits using 

equation 17 are shown in figures 5.2 to 5.7. For low field values, the overlap peak is 

clearly separated from the first oscillation (fig. 5.3). However, for higher field values the 

left flank of the first oscillation becomes distorted and tends to merge with the overlap 

peak (fig. 5.6 and 5.7). This distorted area can not be described by equation 17 and must 

be excluded from the fit. Note that the typical timescale of damping, z , is independent of 

the oscillation frequency. This means that the number of oscillations observed increases 

with increasing frequency, or equivalent, the damping per oscillation decreases with 

increasing frequency. The damping is discussed in chapter 6.
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Figure 5.2: Magnetization oscillations measured with TR-MOKE. The external field of 510e is oriented 
along the hard axis (/? = 120°). The timescale on the horizontal axis denotes the time difference between 
pump and probe beam. The red curve is a fit using equation 17.
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Figure 5.3: Magnetization oscillations measured with TR-MOKE. The external field of 2320e is oriented
along the hard axis (/? = 120° ). The timescale on the horizontal axis denotes the time difference between
pump and probe beam. The red curve is a fit using equation 17.
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Figure 5.4: Magnetization oscillations measured with TR-MOKE. The external field of 4590e is oriented 
along the hard axis (/? = 120° ). The timescale on the horizontal axis denotes the time difference between 
pump and probe beam. The red curve is a fit using equation 17.
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Figure 5.5: Magnetization oscillations measured with TR-MOKE. The external field of 6850e is oriented
along the hard axis (/? = 120° ). The timescale on the horizontal axis denotes the time difference between
pump and probe beam. The red curve is a fit using equation 17.
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Figure 5.6: Magnetization oscillations measured with TR-MOKE. The external field of 9110e is oriented 
along the hard axis (/? = 120°). The timescale on the horizontal axis denotes the time difference between 
pump and probe beam. The red curve is a fit using equation 17.
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Figure 5.7: Magnetization oscillations measured with TR-MOKE. The external field of 11380e is oriented
along the hard axis (/? = 120°). The timescale on the horizontal axis denotes the time difference between
pump and probe beam. The red curve is a fit using equation 17.
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The magnetization dynamics are measured as a function of the external field for two 

different field angles p . The first angle, J3 = 120°, corresponds to a hard axis (fig. 5.8) 

and the second angle, p  = 20° is close to an easy-easy axis (fig. 5.9). A measurement for 

P  = 0° (easy-easy axis) is not presented, since it was impossible to excite oscillations for 

that field direction over a wide range of field values. It is difficult to excite oscillations on 

an easy axis because the laser excitation mainly reduces the magnitude of the anisotropy 

field but it is not changing its direction. Only for higher fields an excitation is possible, 

since small out of plane field components (the field is never exactly in the plane of the 

sample) in combination with the effective demagnetization field (which is altered by the 

laser) can also cause precession motion [23]. Additionally, the frequency is measured as a 

function of p  at constant field values of 459 Oe and 685 Oe (fig. 5.10 and 5.11 

respectively).
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Figure 5.8: Precession frequency as a function of the external field measured for an external field angle 
P  = 120° . The red line represents the fit using equation 23 with the parameters given in table 5.1.
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Figure 5.9: Precession frequency as a function of the external field measured for an external field angle 
/? = 20° . The red line represents the fit using equation 23 with the parameters given in table 5.1.
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Figure 5.10: Precession frequency as a function of the external field angle ft measured for an external field 

value H ext = 458 O e. The red line represents the fit using equation 23 with the parameters given in table 
5.1.
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Figure 5.11: Precession frequency as a function of the external field angle (5 measured for an external field 

value H ext = 685 Oe . The red line represents the fit using equation 23 with the parameters given in table 
5.1.

Both, field and angle dependent data are fitted with equation 23, which depends on 

derivatives of the free energy F  evaluated at the equilibrium position of magnetization 

O0). The free energy is given by

E  =  E ext + E demag +  E anisotropy ( 2 8 )

where Eext = Hext ■M  and Ed = 2tuMs2 c o s  6 are the energies due to the interaction of

the magnetization with the external field and demagnetization field, respectively. The 

anisotropy energy Eanlsolmpy= Ecllbic +Elemgma,+E,lniaxial is assumed to be the sum of a

cubic, a tetragonal and a uniaxial term as described in the sample section. The

dF
equilibrium direction of magnetization ( </>0, 0O) is determined by the conditions —  = 0
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and —  = 0 . These two equations can only be solved numerically which means that the 
d(j>

data fitting also has to be done numerically.

The fitting procedure minimizes the least squares error (LSE) through an iterative 

method: first the LSE is calculated for an initial set of parameters. In the next step, the 

algorithm varies the parameters by a small amount and calculates the LSE for all possible 

combinations of those varied parameters. The parameter set with the smallest LSE is used 

to replace the initial set. This process is repeated until a minimum is obtained. In order to 

avoid local minima, the starting parameters are chosen randomly within a user defined 

range. A drawback of this method is the fact that the runtime of the program scales 

exponentially with the number of free parameters. On a 1.8Ghz Centrino notebook, the 

Mathematica program used in this thesis is able to handle 4 free parameters in a 

reasonable time. In this thesis, 3 free parameters were determined by fitting. The best 

results are obtained by fitting the four datasets (fig. 5 .8 -5 .11 ) simultaneously, meaning 

that the sum of the four LSEs is minimized.

The fits reproduce the measured data well for all four datasets. During fitting, 

saturation magnetization, cubic anisotropy constant and the g-factor are fixed to the 

values reported for bulk Ni. This is reasonable, since the sample is a relatively thick film 

(30 nm), containing about 170 monolayers of Ni. Three parameters are determined by the 

fitting process: the uniaxial anisotropy constant, U l, and the tetragonal in and out of 

plane anisotropy constants, T1 and Tperp respectively. Both anisotropies, tetragonal and 

uniaxial, are most likely caused by the distorted NiO layer which grows during in situ 

annealing. U l, T1 and Tperp therefore can be regarded as changes of the anisotropy caused
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by the lattice distortions mentioned in chapter 3. While the uniaxial anisotropy is clearly 

visible in the in-plane static MOKE measurements discussed in chapter 4, the tetragonal 

component remains hidden. For the (001) plane, the tetragonal in plane component has 

the same functional dependence as the cubic anisotropy and therefore does not change the 

four fold symmetry of the coercivity. The tetragonal out of plane component can not be 

detected by in plane MOKE. Table 5.1 gives an overview on the parameters of equation 

23.

Parameter Value Error Reference

g-factor 2.21 not specified by 
source

Fixed to the value for 

bulk Nickel given by 

[10]

Ms (Saturation 

magnetization)

oo not specified by 

source

Fixed to the value for 

bulk Nickel given by 

[11]

K1 (First cubic anisotropy 

constant for Ni)
-57000er^ /  3

/  cm
not specified by 

source

Fixed to the value for 

bulk Nickel given by 

[10]

U 1 (Uniaxial anisotropy 

constant)

-2008 ers /
/  cm'

20% Free parameter -  value 

determined by this work

T1 (Tetragonal in plane 

anisotropy constant)
-21554er% /  ,

/  cm'
10% Free parameter -  value 

determined by this work

Tperp (Tetragonal out of 

plane anisotropy constant)

-292072 er& /  , 
/  cm

10% Free parameter -  value 

determined by this work

Table 5.1: Overview on the parameters of equation 23.
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Assuming the coherent rotation model [24], where the magnetization of a sample always 

follows the energy gradient, one would expect the following equation to be fulfilled:

H c (easy -  hard axis) (easy -  hard axis)
(28)

H c (easy — easy axis) Eanisot (easy — easy axis)

This essentially means that the field necessary to switch the magnetization, is 

proportional to the anisotropy energy that it has to overcome.

( K1 Tl''
■ + ----

4 4
- U l

Ul
The right side of equation 28 is given by - — —— E-------= 1 - « 90.5% and theKi  ^ 11  K1 11

4 ~4 ~4~ ~4

94 Oe i /
left side evaluates to  w 91.3% . The factor yA comes from the anisotropy energy

103Oe / 4

(eq. 25 and 27). This estimate shows that the anisotropy constants obtained with TR- 

MOKE agree with the coercivity values from the S-MOKE measurements presented in 

chapter 4.

77The tetragonal in plane anisotropy, T l, enhances the cubic energy by —  « 48% ,
K l

compared to bulk nickel. At the same time, the tetragonal out of plane component reduces

T erthe effective demagnetization field by — »- 20%.  However, the effective
E 'Demag

demagnetization field still restricts the magnetization to the plane of the sample, since it 

is fifty times larger than the in plane anisotropy fields.

Summarizing, the precession frequency of the magnetization is determined by an 

all optical pump probe technique. Field and angular dependence of the precession are 

studied and the magneto-crystalline anisotropy constants are determined by fitting the
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data to the Smit -  Suhl formula (Eq. 23). The anisotropy constants agree with the static 

MOKE measurements described in chapter 4 and they show that the interfacial NiO layer 

is responsible for a 48% enhancement of the cubic anisotropy as well as a 20% decrease 

in the effective demagnetization field.

45



6 Damping

The dimensionless Gilbert damping parameter, a  , is extracted from the field and angular

dependent TR-MOKE measurements, a  is calculated from the TR-MOKE fitting

parameter, t , using the relation a  = -----. The results are shown in figures 6.1 -  6.4. The
COT

red curves in these figures are explained later in this chapter.

0.08

0.40 External field angle p = 120°

0.35 0.06

£  0.30

0.04 aj
c  0.25

0.20
0.02

0.15

0.10 0.000 200 400 600 800 1000 1200

External field in Oe

Figure 6.1: Gilbert damping as a function of the external field. The field is oriented along the hard axis 
(/? = 120°). The red curve represents the derivative of the magnetization’s equilibrium angle with respect
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Figure 6.2: Gilbert damping as a function of the external field. The field angle is J3 = 20° . The red curve 

represents the derivative of the magnetization’s equilibrium angle with respect to H  .

External field H _ = 458 Oe

8
JDO)| 0.6 
(5
Q.O)
£  0.4 aj TJ •C <D 

_ a

6 o-2

0.0 0
-100 -50 0 50 100 150

External field angle p

Figure 6.3: Gilbert damping as a function of the external field angle /? with H  = 458 Oe . The red curve 
represents the derivative of the magnetization’s equilibrium angle with respect to /3 .
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External field H . = 685 Oe

0.6

s
0)0)
E
CO

2. 0 4 05ca.
E«o
T3■c
J  0.2 

0

0.0
-50 0 50 100 150-100

External field angle (3

Figure 6.4: Gilbert damping as a function of the external field angle j3 with H  ; = 685 Oe . The red curve 
represents the derivative of the magnetization’s equilibrium angle with respect to j3 .

a  takes values between 0.09 and 0.3 for the field dependent measurements and lies 

between 0.1 and 0.6 for the angle dependent measurements. This is higher than a  = 0.05 

reported by van Kampen et. al. for a single layer nickel film [5]. However, Djordjevic et. 

al. [17] reported much higher values up to or = 0.8 for Ni Cr bilayers. Others reported 

values of a  » 0.3 for other ferromagnetic materials [9, 16].

Both, field and angle dependent data, show a relation between damping and 

precession frequency: a  decreases for increasing frequency. This observation is 

consistent with what is reported in the literature. The phenomenon is well known and can 

be observed in both, frequency domain FMR experiments [25, 26] and time domain 

pump probe experiments [16, 17]. Figures 6.5 and 6.6 show a  as a function of the 

precession frequency for both, field and angle dependent measurements.
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Figure 6.5: Gilbert damping as a function of the precession frequency. The external field angle, J3 , is fixed 
to 120° and 20° for the black and red curve, respectively. The frequency is varied by changing the external 
field H  . The two lines are linear fits to the data.
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Figure 6.6: Gilbert damping as a function of the precession frequency. The external field value, H exl, is
fixed to 6850e and 4580e for the green and blue curve, respectively. The frequency is varied by changing 
the external field angle /? . The two curves are first order exponential fits to the data.
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The frequency dependence of a  is linear for the field dependent measurements (fig 6.5) 

and exponential for the angle dependent measurements (fig. 6.6). The data are fitted with 

a linear and an exponential term, respectively.

One can see that for the field dependent measurements, shown in figure 6.5, a  

depends linear on the frequency. In this case y-intercept and slope depend on the 

orientation of the external field with respect to the sample’s anisotropy. If on the other 

hand, the field angle is changed while applying constant field; the resulting frequency 

dependence follows an exponential law, as shown in figure 6.6.

This finding shows that the frequency dependence of the Gilbert damping, a , 

depends on the angle of the external field with respect to the crystallographic orientation 

of the sample. Furthermore, the angle dependent data in figure 6.6 indicates, that the 

frequency dependence of a  does not depend on the value of the external field. At least 

not for the range of fields applied in the experiment.

In the current literature, there are reports about changes in the frequency dependence of 

the damping for different substrates or capping layers [16]. Another recent publication,

[17], reported a change in frequency dependence of a  for Ni films with different 

thicknesses. The authors varied the frequency by changing the magnitude of the external 

field and found that the frequency dependence of a  , strongly depends on the thickness of 

the sample as shown in figure 6.7.

The findings of this thesis show that the frequency dependence of the Gilbert 

damping is not only affected by the sample parameters. It also strongly depends on the 

relative orientation of the external field with respect to the sample’s anisotropy.
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Figure 6.7: Gilbert damping parameter as a function of the frequency for three different Ni samples. The 
frequency is varied by a variation of the applied field. Figure taken from ref. [17]

Aside from the fact that the frequency dependence of the damping depends on the 

crystallographic orientation of the sample, the data presented in this thesis agrees with 

previous findings. The damping is commonly attributed to two-magnon scattering 

processes [16, 27, 28], where the coherent precession mode (k=0) decays into 

degenerated modes with k>0. This process is not momentum conserving and therefore 

requires defects to absorb the momentum [29, 30]. Beside normal lattice defects, a 

ferromagnet -  antiferromagnet interface, like the Ni-NiO interface, can be responsible for 

two-magnon scattering [16]. The two magnon scattering is likely to occur in our sample 

because of the lattice defects at the NiO interface. An example for a frequency dependent 

damping, similar to the one displayed in figures 6.5 and 6.6, is shown in figure 6.7.

A second mechanism for magnetization damping is the local resonance model, 

which assumes, that the magnetization in adjacent magnetic domains precesses with 

slightly different frequencies [31]. Over time, the magnetization vectors of the different 

domains dephase and cause an effective damping. From this model, one would expect the
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damping to be strong if there are a large number of domains with different resonance 

frequencies.

In general, the number of domains increases if the magnetization direction is 

changed because it is energetically more favorable for the material to form smaller 

domains that can change their magnetic moment independently. Hence, the faster the 

magnetization is changing, the higher the damping should be. The red curves, shown in 

figures 6.1 -  6.4, represent the derivatives of magnetization’s equilibrium angle with 

respect to the parameter varied during the measurement. There is a clear trend throughout 

all four figures, showing that the damping increases as the magnetization angle changes

more rapidly. For a fast change in the equilibrium angle of M , more domains are 

forming. Hence the dephasing effect becomes more pronounced and results in a higher 

damping as can be seen in figures 6.1 -  6.4.

In order to determine which mechanism dominates the damping in this sample, 

further experiments have to be conducted. The contribution of the two magnon scattering 

for example can be determined by applying the magnetic field out of the plane of the 

sample, since that suppresses two magnon scattering. [30].

Summarizing, the Gilbert damping was extracted from time domain pump probe 

measurements and its field, angle and frequency dependence were studied. The results 

can be explained equally well by two different models: the two magnon model, which 

damps through scattering into modes with a higher wave number and the local resonance 

model, that causes an effective damping through dephasing.
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In general the data shows the same trend as the results reported in the literature. 

However, in contrast to current literature, it is found that the Gilbert damping can not just 

be regarded as a function of the materials magnetic resonance frequency. It rather seems 

to depend strongly on the orientation of the external field with respect to magneto- 

crystalline anisotropy.
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7 Conclusions

The magnetization dynamics and anisotropy of a Ni/NiO bilayer have been studied by 

time-resolved pump-probe MOKE and static MOKE. The data has been analyzed with 

respect to crystalline anisotropy and intrinsic damping.

Field and angular dependence of the magnetization precession frequency have 

been measured and are found to be in agreement with the Smit -  Suhl formula for FMR 

precession.

The anisotropy components obtained from the time-resolved MOKE measurement 

show that the NiO layer causes a 48% increase of the cubic anisotropy compared to pure 

nickel and lowers the effective demagnetization field by 20%. The value determined for 

the uniaxial component is consistent with static MOKE measurements.

The Gilbert damping was extracted from time-domain pump-probe MOKE 

measurements and its field, angle and frequency dependence were studied. The results 

can be explained equally well by the two-magnon model and the local resonance model. 

Further experiments are necessary to determine the contribution of the two models to the 

damping.

The Gilbert damping parameter is found to depend strongly on the orientation of 

the external field with respect to magneto-crystalline anisotropy.
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