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ABSTRACT

Technological advances in proteomics have shown great potential in detecting 
cancer at the earliest stages. One way is to use the time of flight mass 
spectroscopy to identify biomarkers, or early disease indicators related to the 
cancer. Pattern analysis of time of flight mass spectra data from blood and 
tissue samples gives great hope for the identification of potential biomarkers 
among the complex mixture of biological and chemical samples for the early 
cancer detection. One of the keys issues is the pre-processing of raw mass 
spectra data. A lot of challenges need to be addressed: unknown noise 
character associated with the large volume of data, high variability in the mass 
spectroscopy measurements, and poorly understood signal background and 
so on. This dissertation focuses on developing statistical algorithms and 
creating data mining tools for computationally improved signal processing for 
mass spectrometry data. I have introduced an advanced accurate estimate of 
the noise model and a half-supervised method of mass spectrum data 
processing which requires little knowledge about the data.
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Chapter 1 Introduction

1.1. Early Cancer Detection

Cancer is a group of diseases characterized by uncontrolled growth and spread 

of abnormal cells. It can result in death if the spread is not controlled. Cancer is 

the second most common cause of death in the US, accounting for nearly 1 of 

every 4 deaths. In 2012, estimates were that ~577,000 Americans died of 

cancer, more than 1,500 people a day, and -1 .6  million new cases of cancer 

cases were diagnosed in that year [1].

Early detection of cancer is crucial for the ultimate control and prevention. In 

many cases, cancer is not diagnosed and treated until cancer cells have already 

invaded surrounding tissues; most conventional therapies are limited once a 

tumor has spread beyond the tissue of origin. Detecting cancers at their earliest 

stages gives a higher probability of truly curing the disease by current or future 

treatment strategies. For example, the survival rate of prostate cancer at early 

stage is about 100% while the rate is only 34% when cancer is detected at 

advanced stage [1]. So the problem: how to find means to detect early stage 

cancers.

l



Recent technological advances in proteomics, which focuses on protein 

characterization, protein identification and protein function, have been introduced 

as a new method for early cancer detection [2, 3, 6]. All cancers involve the 

malfunction of genes that control cell growth and division. Proteomics may be 

defined simply as the large-scale characterization of proteins expressed by the 

genome. Even in the very early stages of disease, significant changes may arise 

in the type and quantity of proteins and peptides produced by the human body. 

The goal of proteomics is a comprehensive, quantitative description of protein 

expression. Unlike the study of a single protein or pathway, proteomic methods 

enable a systematic overview of expressed protein profiles, which ultimately 

could improve the diagnosis, prognosis, and management of patients by 

revealing the protein interactions affecting overall tumor progression. 

Furthermore, differential protein expression analysis can be used to indicate a 

range of protein markers potentially indicative of disease. Thus, one hopes that 

proteomics will uncover candidate markers and to indicate mechanisms that are 

in need of greater analysis. Although the proposition of finding protein 

expression differences in samples from distinct clinical groups may seem fairly 

straightforward, in reality it can be an extraordinary challenge. Pattern analysis 

of mass spectra of blood samples in particular has attracted attention as a 

potentially effective and efficient approach to identify potential biomarkers for 

early stage detection of cancer.
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1.2. Biomarker Discovery

A biomarker, also known as molecular marker, biological marker, or tumor 

marker, is a biologically derived molecule in the body that indicates the progress 

or status of a disease. When a biological fluid, such as blood, is measured, a 

protein "profile" may be developed. This leads to the potential for finding 

biomarkers that are over-expressed, under-expressed, or modified. Such 

biomarkers can then be used to differentiate pathological states (disease) from 

normal states or to assess and guide drug treatments. If desired, the discovered 

biomarker can be chemically extracted for further analysis. The concentration 

level or pattern of biomarkers related to a certain type of cancer can be served 

for early detection or diagnosis [4, 5, 6 ,17, 23].

Pattern analysis of multiple biomarkers in blood samples has attracted attention 

as an alternative to the usage of a single biomarker for early detection of cancer 

[4, 5]. Proteomic biomarker patterns have proved to be more diagnostic than the 

use of individual biomarkers which have had limited success, and can essentially 

act as “fingerprints” of a disease [5, 6, 23]. The pattern differences of protein 

profiles between cancer and healthy samples are developed using data mining 

algorithms. A successful biomarker discovery program requires high-quality 

samples to be acquired and processed in a standardized manner due to the high 

degree of variability associated with protein expression in biological materials. 

Besides, as these pattern differences originate from the complexity of biological
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fluids, which is a mixture of thousands of proteins, protein profiling requires high 

accuracy and high sensitivity.

1.3.MALDI TOF MS

Mass Spectrometry

Mass spectrometry (MS) is a key tool employed by proteomics for the detection, 

identification, and characterization of proteins [24]. It is a primary analytical 

platform for many aspects of proteomics, allowing unique structural and 

functional aspects of proteins to be characterized, and thus MS is becoming 

more widespread with more sensitive and higher resolution instrumentation [16, 

17, 24]. By providing the sizes and relative abundances of the proteins in a 

complex biological/chemical sample in a rapid and precise manner, MS has the 

potential to make it possible to do the analysis over a large mass range 

simultaneously [4].

Mass spectrometry technologies such as TOF (time-of-flight) mass spectrometry 

analyze proteins based on their mass to charge ratio (m/z). The essential 

components of a TOF mass spectrometer are the ionization source, the mass 

analyzer and the detector. The ionization source is used to ionize samples; the 

mass analyzer “analyzes” these ions by separating them based on their mass to 

charge ratios, the detector records these separated ions.
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MALDl

Significant effort has gone into the development of mass spectrometry 

instruments with greater resolving power and lower detection limits, which would 

allow the use of smaller samples [27, 28]. One important development in 

instrumentation is the introduction of an ionization method that can ionize large 

biological samples “softly" without breaking them into smaller pieces. One of the 

most widely used new ionization methods is matrix-assisted laser desorption 

ionization (MALDl), which offers very high levels of sensitivity and mass accuracy 

for the detection and identification of proteins [15, 16, 17]. The analyzer, in our 

case, TOF MS is most commonly coupled to a MALDl ion source. MALDl TOF 

MS has detection sensitivity in the 0.1 to 10 picomole range and charge to mass 

precision ranging from 0.5% to 1% [18]. Attempts at using MALDl TOF MS to 

analyze relatively large biomarkers were made as early as 1980s [15,16].

MALDl protein profiling, or its derivative: surface-enhanced laser desorption 

ionization (SELDI), uses protein mixtures containing an energy absorbing matrix 

(EAM) as the ion source. Our spectra used a SELDI apparatus, in which a 

protein mixture is first spotted onto a functionalized surface that binds proteins of 

interest present in the sample so the other molecules that are not of diagnostic 

interest can be washed away. After that, an EAM compound is applied to the 

surface so that it crystallizes with the desired sample peptides contained within it, 

in which uses a functionalized bind specific analytes from a protein mixture. 

MALDl and SELDI usually require fractionation of the serum to remove the most
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common, and uninteresting components of the serum. SELDI, thereby offering a 

higher concentration for the proteins of interest can provide a higher sensitivity 

than regular MALDl [30].

Time-Of-Flight

The analysis of time-of-flight spectrometry has been given in a number of places, 

in this brief section; we follow the treatment of Stephens, W.E. [7]. All ions from a 

sample are extracted from the source and accelerated by an electric field into the 

mass analyzer. For each ion, the potential energy of the electric field (U =  zV) is 

converted into the kinetic energy (E =  ^mv2), as zV =  ^mv2. The accelerated

ions travel through a field-free region of the analyzer for the same distance I , for

a time, t, consistent with their velocity, such that, v =  l- . The mass to charge
V

9 1 /^ 2

ratio (m/z) of the ions is then a quadratic function of the flight time: -  =  — .

Ions of the same m/z have the same flight time and thus strike the detector 

simultaneously. If all ions are assumed to have the same kinetic energy, as a 

result of traversing the same electrostatic potential in the acceleration region, 

ions of smaller m/z travel faster than those of larger m/z. Therefore, as ions 

travel through the analyzer, they separate from each other in space, and arrive at 

the detector as different times. The detector measures the arrival time of the 

ions.
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A plot of abundance versus flight time shows the distribution of the detected ions,

o  -

5000 10000 15000 20000 25000

Figure 1: Typical time of flight spectrum, showing a series of sharp peaks. The 
green line shows an exponential decay at the beginning of spectrum. This is 
small, but still important in the mass focusing region, above 5800 time steps.

as in Figure 1, the amplitude of the signal corresponds to the total number of ions 

that struck the detector at a specified time. The flight time could be directly 

transferred to mass to charge ratio to identify the molecular weight of protein.

As Figure 1 shows, in the sample spectrum, at any data point in time, the 

measured signal is not as simple as its average value, but may be larger or 

smaller. In a word, there is noise fluctuation in the signal. The structure of this 

noise and its implications for analysis of the SELDI and MALDl spectra have 

been thoroughly discuss in previous writings which we draw upon below [21].

(1)
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Random variations implicit in a Poisson counting process and baseline 

contributions from other peak tails are two major contributions to the noise. A 

baseline which looks like an exponential decay is usually observed at the 

beginning of the recording time, the cause of the baseline is believed to be from 

the detector overloading (saturation) at very early times due to the ionized 

energy-absorbing matrix molecules, which have small m/z. Peaks representing a 

relatively large amount of ion signal have a finite width or a shape. This largely 

comes from the initial velocity of ions during ionization; finite laser pulse width 

(4ns) and time jitter of each trial (the resulting mass spectrum is the average from 

192 laser shots) also contribute to the shape of the peaks.

To form ions, the dried sample is irradiated with a pulsed laser beam; the energy 

absorbed by the sample results in a rapid heating and expansion. This produces 

collisional ionization of the proteins, usually by adding a hydrogen ion (proton) 

from the acidic matrix. But, this also results in an initial velocity distribution of 

ions so that ions of the same m/z do not all have the same initial velocity or the 

same initial kinetic energy. The initial kinetic energy spread then adds to the 

electrostatic energy to produce a spread of final kinetic energies, meaning a 

spread of final velocities, and thus final arrival times.

The initial velocity distribution of ions with same m/z can be compensated by 

delaying the acceleration voltage until a few hundreds of nanoseconds (900 ns in 

our case) after the ionization pulse. Then, because the ions with high kinetic 

energy travel farther before the acceleration voltage is turned on, those ions will
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then have less potential energy. Conversely, ions that are initially slow, will travel 

less distance, and therefore have a greater electric potential energy when the 

voltage turns on. The net result is that all of the ions in a chosen mass range

( A) t=0 
U

detector

lt>
(B) t-t-delay 

U

AU

Figure 2: Time lag focusing for ions of the same m/z but different initial 
velocity.

(A) During the time delay, ions with greater initial velocity (red dot) travel 
faster than ions of lesser initial velocity and move farther away from 
the point of desorption.

(B) After the time delay, the pulse voltage with potential Ui is applied and 
ions are accelerated. The slower ion (blue dot) is accelerated more 
than the faster ion (red dot). Both ions can be made to reach the 
detector at same time.
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end up with the same total energy, and therefore arrive at the same time at the 

detector. This is called time lag focusing; Figure 2 is a simple illustration of this 

process.

It shows the slower ion as a blue dot, and the faster ion as a red dot. When the 

pulse voltage with potential Ui is applied, the slower ion (blue dot) is accelerated 

over a longer distance than the faster ion (red dot), so both ions can be made to 

reach the detector at same time.

However, this is a mass dependent initial velocity compensation method. So, for 

any given delay pulse time, there is an optimum focused m/z range, referred to 

as mass focusing range, for which the peaks will be their narrowest.

As we will explain later, the peak widths remain nearly constant over a wider 

range of times if the spectra are plotted as a function of time, rather than m/z. A 

single mass spectrum usually contains many thousands, or even millions, of data 

points; however, information related to the biological samples is encoded in only 

a few hundred peaks. The standard approach to summarizing TOF spectra is to 

generate a list of peaks representing proteins or protein fragments that are more 

plentiful than the background ion signal.

1.4. Experimental data

One of the first steps in the process of biomarker discovery is the collection of the

biological samples that will provide the data. The data sets discussed in this

thesis originated as blood samples taken from patients diagnosed with or without
10



a specific disease. These data were created by Semmes, and his colleagues 

and coworkers at the Eastern Virginia Medical School (EVMS) in Norfolk, 

Virginia. Special care was taken by that group to randomize the processing and 

to make the creation of the sample data as unbiased as possible [26,27].

The working data set contains sample serum from 145 different patients, of which 

78 were classified during the clinical portion as “normal,” and 67 with various 

stages or forms of leukemia. The samples from the patients were processed 3 to 

4 times, resulting in 425 cases for the study. Multiple TOF spectra from the same 

sample are called replicates.

Also, Quality Control (QC) data are taken from a single serum pool which is a 

mixture of a large group of nominally healthy people. Thus the QC samples are 

nominally identical; any variations noted must arise from the data creation 

process of preparation and MS measurement. We can use QC data to calibrate 

the measurements.

Serum samples were processed for SELDI analysis. Metal affinities (IMAC3-Cu)

ProteinChip® were used during the experiment to utilize IMAC (immobilized

metal ion affinity chromatography) to enrich the phosphorylated peptides in a

digested protein sample. Each chip has eight sample sites that allow the

processing of biological samples directly on the chip surface. Thus Serum

sample complexity is reduced, “on-chip” in a convenient format before laser

desorption. The protein chip arrays were analyzed using the SELDI ProteinChip

System (PBS-II; Ciphergen Biosystems, Fremont, CA). The protein masses
l i



were calibrated externally using purified peptide standards (Ciphergen 

Biosystems, Inc.) Instrument settings were optimized using a pooled serum 

standard [26,27].

A nitrogen laser operating at 337 nm with a 4ns pulse width irradiates the 

sample, and is absorbed by the matrix crystals. Focus lag time is 900 ns. Each 

recorded mass spectrum was the sum of 192 laser shots taken from a rastered 

pattern on each sample spot. Analog (rather than counting) detectors are used 

here. Detector Voltage was set as 1375 Volts. Detection range is optimized from 

3000 Daltons to 50000 Daltons. With the detection range optimized as this, we 

found that the peak width (FWHM) was nearly constant in time over a small m/z 

range, e.g., 10 FWHM from 2700 to 10000 at m/z.

For each replicate of a sample, a spectrum was produced and associated with 

metadata, including the patient ID, date of collection of the sample, and the 

settings of SELDI TOF MS. Our data set contains 225 normal spectra and 196 

Leukemia spectra.

To “pick” peaks from the raw spectra, we restrict the data analysis to the mass

focusing region. The spectrum before this is dominated by the large signal due

to the matrix, which has little useful biological information. Figure 3 shows a

typical sample spectrum with mass focusing range from 5800 to 11000. Region

6300-6380 and 10200-10400 are expanded in inserts to show the constant peak

width across the mass focusing range. In both regions, a peak is sitting on noisy

background. A peak in the region of 6300-6380 time points, which has an

12



amplitude of 400 (arbitrary units) above the background, has the same peak 

width as peak with 4000 intensity in the region 10200-10400. It shows that the 

approximation of fixed peak shape is a reasonable assumption.

10200 10250 103506300 0320 6340 6360

6000

Turn

Figure 3: Mass spectrum of mass focusing region from 5800 to 11000 in 
time units.

7000 8000 9000 10000 11000

1.5. Data Processing Overview

This thesis presents a new method for the analysis of TOF-MS data. The

purpose is to tease out key information from raw data and increase the likelihood

of successful disease classification. Three major steps are discussed: first is the

pre-processing of MS data, baseline subtraction is the only pre-processing step

applied in this thesis; second, peaks which are interpretable features

corresponding to distinct protein species are picked from each spectrum. The
13



first two steps are done independently for each spectrum. The third step is to 

identify peaks from the same group of spectra that are sufficiently close to an 

expected time, that we can claim they represent the same peak. This step is 

called peak alignment. After these steps, MS data is ready for biomarker 

candidates’ selection and identification. Once we find a small set of peaks that 

can be used to computationally "predict" phenotypes (that is, the disease state of 

the patient) with high accuracy, these peaks will become the basis of new 

experiments that will then identify the underlying proteins.

Pre-processing

The primary difficulty in processing MS is to separate the true peak signal from 

the baseline and the noise. Traditional peak picking methods usually focus on 

the disentangling of these three pieces. A lot of pre-processing methods are 

applied to simplify the mass spectrum data before picking peaks, e.g., model 

based baseline reduction, noise filtering, and intensity normalization. Most of 

these approaches take the pre-processing as an independent step from the peak 

picking part.

The only pre-processing step we use is the baseline subtraction. We treat the 

baseline as a sooth curve underlying the remaining spectrum after features of 

interest have been removed. Other people, e.g., Dijkstra et al. [30], set up a 

baseline model with adjustable parameters to model the baseline.

14



Peak Picking

We use a model-based criterion that proposes model functions to fit peaks. 

Other method is to move the peak finding problem to the wavelet coefficient 

space; then to find high coefficients that cluster together on a similar position for 

different scales and that thus corresponds to peaks [31,32].

Alignment

After peak picking, we perform alignment to identify the same peaks in different 

spectra, even if they are slightly mis-aligned. First we allow spectra to shift a few 

time-steps to the left or to the right to correct the starting time shift, and then we 

get a master peak list summarized from peaks which correspond to the same 

feature based on the shifted spectra. Wong et al. [33] developed a strategy that 

aligns spectra using selected local features (peaks from the average spectrum) 

as anchors, spectra are locally shifted by inserting or deleting some points on 

the m/z axis. Antoniadis et al. [32] proposed an alignment based on landmarks 

in the wavelet framework. More recently, Kong et al. [34] proposed a Bayesian 

approach that uses the expectation-maximization algorithm to find the posterior 

mode of the set of alignment functions and the mean spectrum for a population of 

patient, and Feng et al. [35] modeling the m/z by an integrated Markov chain 

shifting (IMS) method.

We will go through MS data processing steps in great detail in the following 

chapters and we will show that our method is very useful in narrowing the search 

for protein biomarker candidates.
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1.6. Dissertation Outline

This dissertation is divided into five chapters; Chapter 1 gives background 

information about how this dissertation is related to biomarker research and a 

brief introduction of mass spectrum data from MALDI. Chapter 2 explains the 

peak picking method, including algorithms to eliminate background artifacts 

based on a signal model and a local noise calculation. Chapter 3 focuses on the 

analysis of real data, as opposed to model data, and mentioned a local 

background elimination method, which models a local background by using the 

set of spectra where there were no peaks in that region. Chapter 4 describes 

how to align mass peaks from the multiple spectra present in a dataset using 

non-parametric inferential statistical methods. Chapter 5 summarizes our 

conclusions.

Overall, we have successfully created an automatic algorithm for optimizing the 

data processing; this transforms the raw data into a more useful representation, 

including only confirmed peaks, which will lead to an improved understanding of 

the biological information contained in the data.
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Chapter 2 Peak Detection Using A

Maximum Likelihood Filter

A mass spectrum provides rapid and precise measurements of the mass-to- 

charge ratios and relative abundances of the proteins present in a complex 

biological/chemical mixture. Mass spectrometry (MS) signals from a time of flight 

(TOF) measurement are the sums of ions arriving at a specified time, and the 

time series output usually contain thousands or even millions of data points. 

However, only a few hundred peaks contain the biologically important 

information. The process of reducing an entire TOF spectrum to a small list of 

peaks with their amplitudes and related uncertainties is called peak picking.

In this chapter, we will begin with an overview of the method of fitting spectra with 

a maximum likelihood approach, and then discuss the specific details of the 

method, such as an automatic noise level determination, automatic signal to 

noise threshold, demonstrating the use this technique on simulated data.

2.1. Overview of the Method

Our peak identification algorithm locates a peak by finding those times where a 

data segment has the highest likelihood of describing a peak centered in that 

segment. This combines the accuracy of parameter fitting with the speed of local
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filtering. The algorithm automatically gives precise estimates of the peak position 

and intensity with no supervision required. The major goals of our research have 

been to provide a reasonable set of conditions that simultaneously maximizes the 

number of true detected peaks while minimizing the number of false detected 

peaks. A false detected peak occurs when noise fluctuations in a series of 

nearby points happen to mimic the shape of a peak. Eventually, we will separate 

the true peaks from the false peaks by requiring that true peaks must occur at the 

same location in several spectra from the same data set, but the details of this 

will be discussed in Chapter 4.

There are two steps in the strategy of our peak picker algorithm. First, we 

calculate the likelihood of a data segment having a peak centered in it as the 

data segment, or window, slides along the entire region of interest. We use data 

windows as wide as the Full Width at Half Maximum (FWHM) of the expected 

peaks for this calculation. That calculation also estimates the amplitude of the 

peak simultaneously. Next, we use the peak amplitude estimation to calculate a 

signal to noise ratio (SNR) for each segment to identify the possible peak 

regions. This is necessary because the likelihood will be high in data windows 

that are well described as having a peak of nearly zero amplitude. Finally, we 

determine where the likelihood reaches a maximum value within each region of 

interest in order to identify the locations and amplitudes of the relevant peaks. 

This process works best when we have eliminated any slowly varying
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background from the data, so we will also introduce several iterative methods for 

eliminating the background.

Mass Spectrum Data

In a TOF spectrum, it is usually assumed that the ions fly to the detector without 

any ion-ion interaction after they are created. Thus, each individual time 

measurement is independent of measurements at adjacent times. The mean 

number of ions that arrive at each time may be related to the mean number of the 

ions that arrive at a nearby time by a line shape function, but the individual 

measurements are independent. This is similar to rolling two dice, one with the 

sides labeled 1-6 and the other labeled with only the even numbers from 2-12. 

The average value of the second die will be twice as large as the average value 

of the first die, but on any two rolls, the actual values will be uncorrelated. So in 

a mass spectrum, the average values from one data point to another data point 

are related but their measured values are not, even within a mass peak.

A mass spectrum signal consists of three major components: peaks, background 

and noise. A peak is the relative abundance of ions of a specific charge to mass 

ratio originating from a specific protein in the sample, the background is a 

relatively feature-less signal caused by other sources unrelated to the protein 

that creates the peak plus a constant offset of the analog to digital converter 

(ADC). The noise primarily comes from statistical fluctuations in the ion count 

and variations in the gain of the detector. Electrical pickup noise and the ±'A bit
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digital conversion noise are usually small. These three parts lead to our model of 

the mass spectrum signal in the vicinity of a mass peak:

S, = Ax(ti ) + B + ADC0(fjset + Crji (2)

where Ax(tf) represents the peak, with A as the amplitude and x(tt) as the

expected peak line shape, B is the background due to the other ions, ADC0ffset is 

the constant ADC offset, C is the amplitude of the noise, and rji is a random 

variable with zero mean and unit standard deviation. The shape of most peaks is 

not well characterized in the wings, so we will restrict this model to the upper half 

of any peak, and use a Gaussian shape with a fixed width to describe x ( t .) . The

constant width is a good approximation over the mass focusing range. We will 

assume that follows a Gaussian distribution. We will discuss more details of 

the model later in this chapter, in the section Fitting Data to The Model.

As discussed in chapter 1, the success of our method largely depends on a 

constant peak width within the spectrum. The full width at the peaks’ 50% 

maximum height (FWHM) is approximately constant in the mass focusing range 

from 5800 time points to 11000 time points, which means m/z between 2700 to 

9900 Daltons. The FWHM of the peaks in this region was 10 time points. 

Outside the mass focusing region, the width grows slowly with mass. For 

example, as shown in Figure 4, the FWHM of a peak located at 7559 time steps 

is 10 time steps while FWHM of peak located around 18500 time steps is 10 

times larger or approximately 100 time steps. We could segment the spectrum
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into several separate regions with different FWHM values to extend our methods 

throughout the entire spectrum, but that is not discussed in this dissertation.
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Figure 4: Outside the mass focusing range, peaks have increasing widths in 
time units.

2.1.1. Fitting Data to The Model Line Shape

The standard approach to summarizing TOF spectra is to generate a list of peaks 

representing proteins or protein fragments that are more plentiful than the 

background ion signal, i.e., a mass spectrum should be reducible to only few 

hundreds of features each including peak position, peak amplitude and the

uncertainties of both parameters. The peak position is related to the charge to
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mass ratio, while the peak amplitude indicates the amount of that protein present 

in the sample.

Data in A Sliding Window

We analyze the data in small segments, called windows, which are as wide as 

the FWHM of a typical peak. For each window, we calculate the likelihood of that 

window describing the data as being background plus a peak centered in the 

window with an amplitude of the peak that would best describe the data. We 

determine that a peak is, in fact, present when the likelihood is at a local 

maximum, and the maximum likelihood amplitude estimate of that peak is 

sufficiently large. This second condition is critical, because a region with no peak 

present can always be described (with high likelihood) as a region with a zero 

amplitude peak centered in the window. By sliding this window along the entire 

spectrum, we can efficiently find a large number of peaks, even without any 

foreknowledge of where they should occur.

We chose a window width as the FWHM to balance two effects. If the window is 

chosen to be too large, then often the window could have two peaks within it, and 

this would require a different model for an accurate likelihood calculation. 

Moreover, if the window were large compared to the FWHM of the peak, the 

likelihood calculation would be sensitive to the shape of the peak in its wings. 

The wings of the MALDI-MS peaks are not well characterized. If we chose the 

window width to be too small, then there would not be sufficient shape in the
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window to identify a peak or to separate the peak amplitude from the featureless 

background.

Signal Model

Our model is that there is a single peak centered in the window, along with a 

background level. So, if one uses N adjacent data points ( s „s s.. .s N)  from the

time series, and a N-component vector to describe the peak line shape 

(x t ,x 2. . .x N) ,  then the observed data within the window should vary a s :

S, = Axi + J e fa + A x j r j ,  + / / ,  i = l ,  2 ...N  (3)

Here A is the amplitude of any peak within the window, + Ax,)tj, represents

the random fluctuation in counts that are expected from a Poisson distribution 

with an average value of(//, +Axi) ,  and //is  an unknown background, due to the

wings of other peaks or to the large background of matrix ion clusters (the matrix 

is the energy absorbing material that holds and ionizes the biological proteins, 

described in chapter 1). Because the chances of cluster formation decrease with 

cluster size, the baseline diminishes monotonically as the mass-to-charge ratio 

increases. The slowly decaying background is large compared to the widow 

size, so the background is almost constant within the window. The vector of 

random values r] = {rjx,r]2...rjN) is assumed to be drawn from a Gaussian 

distribution with zero mean and unit variance, because a Poisson distribution with
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N>10 ions detected is very close to a Gaussian with a width of Vn. The factor s 

is a normalization factor to convert ion counts into a measured voltage.

Likelihood

The likelihood is defined as the probability of the data occurring given a model 

with a particular choice of parameters. We will maximize the log-likelihood for 

each choice of window position to determine the best fit parameters, and then 

choose the best window position to maximize that log-likelihood in regions where 

the high signal to noise ratio implies that there is a peak.

Under the assumption that the ion counts at different times are independent, the 

probability of observing the particular count sequence s =  (s „s e.. .s N)  is simply

The log-likelihood function is the natural logarithm of the above equation:

^ ) = n  J -  exP( - ~ ~ w h e r e  cr = yfsAxi 
%. V2/rcr 2<T2 n

(4)

where an = JeAx]Lp = -  log (n  ) -  £ (5)

That is,

2log(2a»i4x<)~J]

(6)
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To simplify the calculation, let:

' Z xi =N x1
N 2 N

Z — =1L z‘ =N z
M *l M

So the likelihood function becomes:

(7)

N , N : 1
Lp = - — \n(2neA )-— ln ( * , ) -— £

Ax..
-2 (5 , - f i )  + Axt

N_

2 (
1 \  ' 
— |z52 -  2/^5Z + Z /i2 j -  2(5 - / i )  + y43cj + In (x ,)

(8)

The maximum likelihood estimation maximizes the probability of the observed 

outcome to get the unknown parameter values. Here the outcome means the 

signals within a window. The curvature is quantified by the second derivative, 

that is, the change in slope. In particular, if the likelihood is differentiable then its 

partial derivatives are zero when evaluated at any local extreme value. These 

points correspond to solution roots of the following conditions (to indicates the 

window location).

dLp(A,fi,e,t0)
dA

dLp(A,fj,e,tQ)
dA

dLp(A,/j,e,t0)
de

=  0 ,

=  0 ,

0
(9)
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Solving the equations gives the maximum likelihood estimate of unknown 

parameters (A \ / / ,£ * )  for a window located at to and for data in the window. The 

likelihood is sharply peak around the point ( / , / / * ,£ * )  in the parameter space. 

The second derivative is negative, as the slope changes from being positive to 

negative and the larger its absolute value the more sharply curved the likelihood 

is at its maximum. Intuitively, a sharply curved likelihood is desirable because 

this narrows the range over which the likelihood is close to its maximum value, 

that is, it narrows the range of plausible parameter values.

This method can also be considered another expression of least square 

estimations. In the most general terms, least squares estimation is aimed at 

minimizing the sum of squared deviations of the observed values for the 

dependent variable from those predicted by the model, which is equivalent to 

maximizing the probability of the observed values given the model. Essentially, 

the method of maximum likelihood chooses as estimates those values of the 

parameters that are most consistent with the sample data. To solve these 

equations, we set the partial derivatives with respect to e,A, and n  equal to zero:

dLp _ xA2 + e A - s 2z - f t 2z +2[isz _ ^

(10)

Leading to:
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Ae +A2x=(z(s-//)2)

s z -A  
z

xA1 - £ A  + 2 A { f i - s )  + \ z ( s - j = 0

They have the following solutions:

(11)

A =
z s -s z

x z - l

x s z -s
t

—  s1*  n£  = S Z X —- ( x z - l )
sz

The likelihood is then

(12)

(13)

(14)

(  N \*- n*<
V 1-1

-1

e

nv /-i X,
— 2 \ N

~ r  sz x s z - -

- n fi=i xi

X z  - \  

x z - l

(15)

s2z x {x z  - \ ) - s z  X 2

Notice that solving the above equation only maximizes the likelihood with respect 

to parameters (A,ju,£) at the same window location^, i.e. for a fixed data set we

obtain the parameters04*,//*,£*). Maximizing the likelihood with respect to t0 is 

done by computing the likelihood for each window position at ( A \ / u \ £ )  and then
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finding the t0 that maximizes it. However, maximizing over t0 has a different

logic than the other parameters, because we are comparing different data sets as 

we slide the window across the peak. The justification is based upon the physical 

reasonableness. Because the width of the window is large compared to the final 

uncertainty in the position of the peak, most of the data comes from overlapping 

windows so that the data is nearly the same. An alternative way of looking this is 

that by comparing likelihood at different/0, we are actually looking for a window in 

which the data best support the assumption that there is a peak in the window.

In addition to the likelihood estimation of parameters (A \ ju ,e ) , this method 

automatically generates the second derivatives of L to produce estimates of the 

uncertainties of our parameters from the Hessian matrix at(A \ / / ,£ * ) .

VVL( A, M ,e ,t0)=  LmA Lm Lt

The result is:

(16)

{ N \

JV

W W L {A \ti,e \Q  = (17)

\ /
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Where x is the arithmetic mean of x, cr is the variance.

Thus the uncertainties about the best estimation of parameters are:

AA =  £
<Jn(<t2x+ x 2) (1 8 )

(19)

Af = - ^ =  (20)
J i n

Figure 5 shows the calculated log-likelihood value for a simulated spectrum
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Figure 5: A simulated spectrum containing peaks with a noisy background. 
The lower graph shows the log-likelihood calculated with a sliding window, 10 
points wide.
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Figure 6: An expanded view of the simulated spectrum and likelihood of 
Figure 5.

containing 1000 time points and including 5 peaks with varying intensities. We

generated the peaks using a Gaussian line shape with FWHM=10 while 

generating the background with normally random values having a standard 

deviation of 30. These simulation parameters were chosen to mimic typical data.

Figure 6 is an expanded view of the region from 1450 to 1550 in Figure 5. As 

shown in both, the likelihood of the data fitting the model may also be high even if 

there is no peak in the window as the data fits a model with a zero amplitude
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peak centered in the window. We need an additional step to eliminate these 

regions of zero amplitude peaks.

2.1.2. Determining Regions Likely to Contain Peaks

Windows that are likely to contain a peak will be those where the maximum 

likelihood estimate of the peak amplitude is larger than an estimate of the local 

noise. Consequently, we will estimate the local signal to noise ratio and then 

introduce a threshold to identify those regions. In the following sections, we will 

describe how we estimate the local noise, and how we choose the appropriate 

threshold value to identify windows likely to contain a peak as those where the 

signal to noise ratio exceeds that threshold. However, in the complicated spectra 

considered here, we have found that a single threshold is insufficient. 

Accordingly, we will describe a method for iteratively resetting a local threshold in 

those regions where the peaks are most dense. The changing signal to noise 

ratio threshold will be discussed in great detail later in chapter 3.

Automatic Noise Estimation

Many factors can contribute to the noise, such as instrumentation noise from the 

physical and electrical components and noise from the statistical fluctuations of 

the discrete ion counts. Here we focus on the stationary component of the noise, 

which is nearly the same across the whole spectrum, and use this component in 

the signal to noise ratio (SNR) calculation.
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For a normal distribution of stationary noise, the cumulative density function 

(CDF) is:

C D F 'M l  + e rf
yflc1

(21)

where the error function is the probability of a measurement resulting in a 

positive value between zero and x , when the population mean is zero and the

CDP for Gaussian of mean«0 SD«1
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Figure 7: The cumulative distribution function (CDF) of a normal distribution, 
and a linear approximation (red line) to it, near the mean value.

population standard deviation is a . For small values of x near its mean, the 

the CDF is approximately linear:

CDF = - + l 2
2 2 J n  yflcr

+ 0(xO + ...=
<jyj2n

x + . (22)
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In Figure 7, we show the central part of the CDF of a normal distribution, and its 

approximation by a line. The slope of this center part of the CDF is inversely 

proportional to the standard deviation of the distribution.

Our automatic noise estimation method uses the distribution of differences 

between two nearby data points in a spectrum to generate a CDF of values that 

have a zero mean. We use pairs of data points that are two FWHM apart to 

prevent the slow variation of the line shape near its center from contributing to 

our estimate of the noise variation. The data at the peaks will create differences 

that are large (either positive or negative), and so they will not affect the slope of 

the CDF near its center. The inverse of the slope of the central part of the CDF 

then yields a representation of the stationary noise in the spectrum.
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A Robust Estimate of Background Noise 
Results on Generated spectra

Known noise 1

Estimated noise 1.031 Estimated noise 1.026
(Sample without peak) (Sample with peak)

Figure 8: Result from a robust estimate of background noise.

We have generated spectra with a known noise character to illustrate our noise 

estimation method, as shown in

Figure 8. The left hand side shows a simulated noise spectrum of 5000 normally 

distributed points with variance 1. The estimated noise is 1.031, only 3.1% 

different from the value used to generate the spectrum. The difference is

approximately yj2/N as expected for 5000 difference points. The right hand side

shows a simulated spectrum including four Gaussian peaks (FWHM=10). 

Because the peaks primarily affect the ends of the CDF, the estimated noise value 

is still within 2.6% of the value used to generate the data.
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We have repeated this for a variety of different numbers of data points and plotted 
the difference between the variance used to generate the data, and that estimated 
by our method as introduced before. As shown In

Figure 9, each blue point was generated from 10 sample spectra, and the errors 

bars represent ± one standard deviation of those estimations. We also plot the

expected error of ^2/N  as black dots for comparison.

Error Rati of Noise Estimation VS Number of points in the simulated data
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Figure 9: The difference between the estimated noise and the value used to 
generate simulated spectra as a function of the number of points in simulated 
spectra. The error bars show the standard deviation of these estimates for a 
sample of 10 spectra. Each spectrum was generated from a population with 
zero mean and unit standard deviation. The black dots show the expected 
error in the noise estimate.

In Figure 10, we show the results of applying this method to one of the TOF 

spectra used in this work. Our noise estimation method produces a noise estimate
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of 38 for these 50,000 points, and the results are shown in an expanded view of 

the data near the end, where there appear to be no peaks.

Noise Estimate Results on Sample Spectrum 
Calculated Noise=38

lim e

Figure 10: Result of the automatic noise estimate for a typical spectrum.

Signal to Noise Ratio calculation

The SNR is the ratio of the average peak signal size to an estimate of the local 

noise. It is a quantitative indicator measuring how much a peak is distinguished 

from the background noise. The likelihood calculation produces an estimate of

N

the peak amplitude, so the average signal size isvi*2]jc./jv. The local noise is
i=i

estimated as the square root of the average variance of the fitted data weighted 

by the amplitude of the noise estimate from the previous section plus the



amplitude of the peak signal. This weighting accounts for the 4n growth of the 

statistical fluctuations in a signal composed of n ions following a Poisson 

distribution. The net result is a SNR for a peak centered in a sliding window given 

by:

A ' j r Xi/ N
 /=!________

/=!
(s,-A)2
nx+ A

(23)

where N is the total time points within the window, A* is the maximum likelihood 

estimate of the peak amplitude (with details in section: Likelihood), x, is the N- 

component vector describing the peak line shape (xt,xg...xN), and St is the N- 

component vector of data points (s},ss. . .s N)  in the window of interest, and is

the local estimate of the stationary noise (with details in section: Automatic Noise 

Estimation).
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As a window slides along the spectrum, this will generate a SNR for each time 

point in the entire spectrum. Figure 11 shows the calculated SNR for a simulated 

spectrum which contains 1000 data points and 5 peaks of varying intensities 

embedded in a noisy background. A Gaussian shape (FWHM=10) is generated to 

simulate peaks, the background noise is normally distributed with standard 

deviation as 30. These simulation parameters were chosen to match typical data 

in our data set. The top plot shows the generated spectrum, while the lower plot 

shows the SNR over the same region. High values of the SNR indicate the 

regions where peaks are likely.
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Figure 11: Estimated signal to noise ratio value (lower plot) constructed from 
a simulated spectrum (upper plot).
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Figure 12: Magnified view of the data in Figure 11.

In Figure 12, we show a magnified view of the peak near 1500 time points. The

larger the SNR, the more confident we are about the peak evidence. The smaller 

the SNR, the less chance there maybe peak there. A small SNR value will 

exclude the possibility that there exist a peak.

The uncertainty of reported peak position is determined as following:

Window size (FWHM)
SNR

(24)

SNR threshold

SNR values above the SNR threshold value indicate regions of the spectra that

are likely to contain peaks. The value of the SNR threshold should be chosen so

that small peaks with a relatively low SNR are detected, while the risk of
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reporting false peaks remains small. As seen in the earlier figures, the SNR is 

based on the estimate of the peak amplitude A*, which is much larger near the 

peaks. Consequently, if the SNR are sorted in increasing order, there will be a 

turning point, above which all the SNR values result from peaks. This point 

would be the ideal choice for a SNR threshold as it would separate regions with 

peaks from those without. Thus, to select a SNR threshold, we will estimate the 

maximum SNR expected from pure noise, assuming that it follows the standard 

CDF used to estimate the stationary noise.
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Figure 13: The distribution of SNR from a simulated noise spectrum in panel 
(A), compared to the expected CDF in panel (B), plotted on a log scale in (C), 
and with the linear fit in panel fD l________________________________________

Figure 13 shows the entire process, with the sorted CDF of the SNR for a 

simulated pure noise spectrum of 5000 points with a standard deviation of 30 in 

panel (A), the expected CDF based on an error function in panel (B), the CDF on 

a log scale in panel (C), and the linear fit to the center region in panel (D). We 

choose the SNR threshold as the value where the linear estimate of the CDF 

reaches the point where all SNR values would be observed.
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Figure 14 shows the calculated SNR threshold for a simulated pure noise 

spectrum on a logarithmic scale. Figure 14 is the same plot as panel (D) in 

Figure 13 with the inverted axes, Linear regression (red line) to center part of 

ordered log (SNR) gives fitting parameters, based on that, we get the maximum 

SNR as 0.78 in logarithm scale, which is e°-78=2.18 in a normal scale.
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Figure 14: Sorted SNR (black dots) for a simulated pure noise spectrum, with 
a linear fit (red) to the log (SNR) applied to the middle. The horizontal line 
shows the estimated SNR threshold.
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In a real spectrum, the SNR values of peaks are higher than those of the noise, 
so the peaks will only affect the tail of the CDF and will not influence the fitting 
process. As we can see from

Figure 15, which shows CDFs of SNR from spectrum with five large peaks (black 

line) and spectrum only contains noise (red line). The shapes of the CDFs are 

very close to each other at when SNR is less than 5.
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Figure 15: Cumulative distribution of SNR from simulated spectrum. The black 
curve is the CDF for SNR from simulated noise spectrum (the same as in 
Figure 13 and 14); while the red curve (upper) is CDF for simulated spectrum 
with five peaks.
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Figure 16 shows the details for the spectrum of

Figure 15. Panel A shows the simulated spectrum of 1000 data points including 

5 peaks (of FWHM 10) with varying intensities embedded in background noise 

that has a standard deviation of 30. Panel B shows the calculated SNR for this 

spectrum. Panel (C) shows an expanded view of the SNR, along with the 

estimated SNR threshold of 2.48. The SNR is based on the estimate of the peak
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Figure 16: Calculated SNR threshold (red line in B and C) for simulated noisy 
spectrum in (A).

amplitude A . Sometimes the calculated A may lie below zero when there are
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negative noise fluctuations; we will force the calculated negative amplitude to be 

zero.

The real spectra tend to have significant pedestals resulting from the poorly 

characterized tails of the mass peaks. Consequently, we have used a local SNR 

threshold, obtained by using this same method applied to a region local to the 

point in question. So, we generate an estimate of the SNR threshold using only 

those data points within ± 5000 points adjacent to each point in the spectrum. 

We will present the details of this process in Chapter 3. This results in a 9% false 

detection rate for simulated spectrum data.

Summary of the peak detection method

The automatic peak picking algorithm presented in this chapter is ideal for fast 

handling of large data sets because the entire procedure operates unsupervised. 

This also adds the additional benefit that it is not sensitive to potential bias that 

might be introduced by investigators. Applied to the SELDI TOF-MS data, our 

peak picking method reduces a typical spectrum to a few hundred peaks.

A successful peak picking method, however, is only one aspect of the low-level 

processing. The next step is to unify many spectra by correlating the peaks that 

are found in one spectrum to those that are found in other spectra. This peak 

alignment will have the added benefit of identifying false peaks that occur when 

the noise fluctuations happen to mimic a peak. We will eliminate those false
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peaks because they will not occur in the same place in multiple spectra. We will 

discuss the alignment algorithm in detail in chapter 4.

The peak detection process described in this chapter uses six steps as follows:

1. Estimate the stationary noise level

2. Evaluate the likelihood, the peak amplitude, the baseline and the SNR for 

a sliding window

3. Determine a local SNR threshold based on a sliding window of 1000 

points

4. Determine where the SNR exceeds the local SNR threshold.

5. Find the window position that maximizes the likelihood for each of those 

regions that have a SNR above the SNR threshold

6. Report maximum likelihood of the position, amplitude and uncertainties for 

each peak found.

Figure 17 shows the entire process applied to a simulated spectrum which 

includes a Gaussian peak of intensity 200, centered at the time position 1500, 

added to a noise level of 30. The estimated stationary noise for this spectrum is 

31. The SNR reaches a maximum value of 36 and the estimated local SNR 

threshold is 2.48.
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The likely peak region, where the SNR rises above the threshold is between 

1490 and 1510 time points, and the likelihood reaches its maximum at 1500.1.

154015201460 1460

Threshold
o

1520 15401460 1480

1460 1460 1500 1520 1540

Time

Figure 17: Peak picking for a simulated spectrum.
The top pane is the simulated spectrum showing one peak embedded in 
background noise. The second pane shows the SNR for this spectrum, and 
the estimated SNR threshold. The lowest pane shows the likelihood, 
reaching a maximum at the best estimate of the true peak position.
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Chapter 3 Data Analysis

In this chapter, we apply the methods from the previous chapter to spectra from 

the 2004 Leukemia study. Most pattern differences in mass spectra of samples 

such as plasma/serum are very subtle. In addition, we will demonstrate several 

steps taken to eliminate the featureless background signal, and show how that 

allows the peak detection method to operate more reliably.

3.1. Introduction

Mass spectrometry data consists of three components: the peak signals, a 

featureless background, and noise. Most other peak picking methods focus on 

disentangling these three pieces and apply pre-processing techniques, e.g. 

normalization, noise decomposition, and background elimination, to simplify the 

data before picking any peaks. Our method only uses background subtraction as 

the least destructive preprocessing technique to ensure that we keep as much of 

the information as possible. Consequently, our data analysis method requires 

four steps:

(1) Eliminate the background.

(2) Construct the likelihood for each possible window in the spectrum. This 

simultaneously generates maximum likelihood estimates of the model 

parameters and of the SNR for each possible window.



(3) Determine which windows have a sufficiently large SNR that they are likely 

to contain a peak.

(4) Determine the peak positions, amplitudes and uncertainties for each peak 

in those identified windows

For the best performance, we have found that the background must be removed 

iteratively, using the results of the peak picking procedure to better identify how 

to remove the baseline, and then using the results of the alignment procedure (in 

chapter 4) to further improve the model of the background. So, each of these 

four steps will generally be done repeatedly.

3.2. Background Elimination

There is always a non-zero baseline in a raw spectrum because the Analog to 

Digital Converter (ADC) requires an offset to detect negative signal fluctuations 

and because very large signals tend to produce a decaying signal after the main 

peak. The high-signal, low mass, matrix region usually produces an exponentially 

decaying baseline in the earliest times we have analyzed. The details of the 

baseline vary with the instrument settings and with the magnitude of the matrix 

signal that reaches the detector. Our peak picking method allows an arbitrary 

baseline, as long as it is nearly constant within the fitting window. This not only 

corrects the ADC offset, but can also correct any background due to ions that does 

not vary much across a window. Our method routinely picks even small peaks but 

it sometimes also detects sporadic peaks when the noise fluctuations in a large
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background look like peaks. To counter this, we have subtracted various models 

of the background, and then forced the background to be zero in the peak model. 

This requires a precise removal of the background from the data, consequently, 

there are several steps involved in background elimination.

The most common contribution to this baseline, and the easiest to correct, is the 

large, exponentially decaying signal associated with the matrix products [22].

i
i
I

I  I
1
1
3

§

i
f §

i
s

Figure 18: A typical spectrum before (A) and after (B) subtracting the 
exponentially decaying background due to the matrix clusters.
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Figure 18 shows one spectrum before and after applying this background 

subtraction to the early part of a spectrum, where it is most noticeable.

Although this removes the largest part of the background, the accumulation of 

signal from the poorly understood tails of the large peaks still remains. However, 

there is no mathematical model for such accumulated pedestals. We therefore 

determine the remaining baseline by the maximum likelihood parameter 

estimation, i.e. by using a floating-baseline in our data model. However, this 

makes our method especially sensitive to noise fluctuations which look like peaks 

and introduces false peaks. Figure 19 shows an example of false peaks resulting 

from a large, uncorrected baseline. Moreover, since this estimated baseline 

(green line in panel A) has large fluctuations that are due to statistical 

fluctuations, rather than real variations in the true average baseline, the peak 

amplitudes will also be in error. For high amplitude peaks, this estimated 

baseline is always higher than the true average baseline.
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Figure 19: Peak picking using a floating baseline model.
Panel A shows a small region of the original spectrum (black line), with marks 
(red X) wherever peaks were found. The green line in panel A shows the 
calculated baseline which has large variations. Panel B shows the SNR 
calculated for the spectrum in panel A, with anomalously high SNR values 
near where the estimated baseline decreases.

One can avoid the errors caused by the rapidly varying baseline estimate by 

obtaining a better estimate of the true, average baseline, subtracting that, and 

then using a model that forces the baseline to be zero. Figure 20 shows that 

even a small residual baseline can produce a large number of false peaks. In 

the top panel (A), the spectrum has had an exponentially decaying background 

subtracted, but some baseline remains due to the combined pedestals of the
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high peak density region above 7000 time steps. This small, but growing, 

background leads to a high SNR as shown in the lower panel (B). These high
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Figure 20: If the baseline is assumed to be zero, then the estimated peak 
amplitude will mimic any pedestals, giving a SNR that stays high.
Panel A shows a spectrum after removing an estimate of the decaying 
baseline. Panel B shows how the pedestal baseline above 7000 times steps 
keeps the SNR high.

SNR values increase the risk of reporting false peaks.

We have improved our model of the baseline based on smoothed data that is not 

part of a peak. Because the original floating-baseline model primarily errs by 

introducing false peaks, we use it to determine the regions where there are no
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peaks. We use the floating-baseline peak-finding algorithm to determine the 

position of all peaks, including the false peaks, and then eliminate windows around 

those peaks to construct a baseline from the remaining data in the spectrum. Of 

course, some baseline points are excluded due to accidentally picked false peaks, 

but that tends to be a small fraction of the total data. This new background 

estimate eliminates most of the pedestals. We use linear interpolation to fill in the 

background in the regions where the data was excluded, and then a moving 

average to make the final baseline estimate.

The key to this baseline estimation is to size the exclusion windows and the 

moving average properly. For the exclusion window size, we have used a window 

that grows with the peak amplitude to avoid having this baseline be dominated by 

the rapidly changing pedestal of a particularly large peak. Accordingly, we have 

used an exclusion window width of:

where A* is the maximum likelihood estimate of the peak amplitude.

Figure 21 shows the entire process in a region between 11000 and 12200 time 

steps. In this region, the exponentially decaying matrix signal plays no role. 

Rather, the downward sloping baseline in panel A of Figure 21 is due to a slowly 

decreasing pedestal from all the peaks in the earlier region. The blue dots in panel 

B are the remaining points after the initial floating baseline model determines

FWHM
Exclusion

FWHM
(25)
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Figure 21: Eliminating the background due to pedestals of large peaks.
Panel (A) shows the original spectrum. In panel (B), the background data is 
blue, while the red shows a linear interpolation over the region that was found 
to have a peak. In panel (C), a red line shows the smoothed background from 
panel (B). Panel (D) shows the original spectrum after subtracting the 
background from (C).

which regions might have peaks, and should therefore be excluded. The red dots

are the interpolated points covering the excluded regions. The moving average of

the blue and red points gives the estimated background, which is shown in panel C

as a red line. Panel D shows the spectrum after the estimated baseline has been

subtracted. The slowly varying background has been removed while all peaks

remain. This baseline subtraction technique does not subtract signal attributable

to slowly varying structure. The baseline correction flattens regions with no peaks

while retaining the peak shape where there are peaks. Hence, very broad peaks

will not be mistakenly eliminated as background. Other model-based approaches
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are only effective with limited data sets and they require a complete 

understanding of physical aspect of the instruments and the chemical nature of 

the samples. This parameter-free baseline elimination method requires much 

less prior information about the data and could be widely used in place of the 

cumbersome model-based approaches.

3.3. Local Baseline Correction

The previously discussed background subtraction methods work well to remove 

slowly varying background, either due to the long tail of the matrix signal, or to 

the pedestals that persist near large peaks or dense collections of peaks. 

However, they do not work when a small peak is close to a large peak, 

overlapping the rapidly decreasing edge of the large peak. A rapidly changing 

background can distort the true shape of the peak, giving rise to errors in both 

the amplitude and the peak position.

In this section, we present a local background correction that can eliminate the 

background due to the problematic large peak, even though that peak’s line 

shape is not well described beyond the ±1/4FWHM. After our initial peak picking 

and alignment (to be described in chapter 4) of all spectra, we obtain a master 

peak list which tells where each peak should be in each spectrum and whether or 

not that peak was detected. Much like the earlier approach of using the regions 

where no peaks were found to model the background, here we will use the 

spectra where specific peaks were not found to model the background that they
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sit upon. We will start with a special case involving only two peaks, one sitting on 

the side of a large peak. From there, we will extend the approach to cases 

where peaks occur in clusters, and apply a similar approach to modeling the 

effect on each peak of the baseline due to the others.

A Small Peak Adjacent to A Large Peak

When a small peak sits near a large peak, the large peak may introduce a 

significant pedestal that is not corrected by our previous methods. Typically, this 

happens when both peaks fit within the exclusion window that was used to 

determine the baseline. Then, the pedestal under the small peak is also 

contained inside the exclusion window, so it is not removed. To correct this, we 

have corrected the baseline near the small peak by using an average over all the 

spectra in which the small peak was not discovered. Although this average may 

include some spectra in which the small peak is present, but not detected, this 

average will generally match the shape of the baseline due to the large peak 

pedestal, so that it can be subtracted.
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Figure 22: Small peak located at 10497 time steps sits on the shoulder of 
nearby large peak locate at 10460 time steps.
Blue curve is the baseline due to the large peak. Red circle indicates points 
where we match the shape.

Figure 22 shows such an example where a small peak, near 10,497 time steps, 

is sitting on the shoulder of a large peak at 10,460 time steps. As we can see 

from Figure 22, the wing of the large peak still contributes a slowly decreasing 

baseline of nearly 2000 at the location of the small peak. The blue curve is our 

constructed local background due to the tail of the large peak around 10,460 time 

step. First we calculate the average of spectra without report of the small peak
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Figure 23: Correcting the local background on the shoulder of a large peak.
The region in the box was corrected from the original (gray) by subtracting the 
background that remained in those spectra which did not have a peak in this 
region. The expanded view shows that the background correction produces a 
small shift in the position of the peak, in addition to the large correction in its 
amplitude.

near 10,497 time steps as the background shape, and then adjust the 

background to each spectrum by matching the background shape over the 

averages of five end points.

Figure 23 shows the local background removal result. The expanded view 

shows the original spectrum as a black line, with a red dot at the location of the 

detected peak. The lower, green line shows that same region after subtracting
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the baseline created from the average of all spectra where no peak was detected 

near 10,497. The new peak position and amplitude is indicated by the purple X. 

There were two major changes, the new peak amplitude no longer contains the 

~2500 contribution from the large peak, and the position has moved slightly to
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Figure 24: Typical Leukemia Spectra before and after removing the local 
background.
In each panel, the black line shows the original spectrum and the green line 
shows the corrected spectrum. The peaks originally detected are marked with 
red dots, while the corrected peaks are marked with purple X marks. Note that 
no peaks were found in the three lower panels after correcting the background, 
suggesting that the original peaks were false.
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the right, reflecting the removal of a sloping baseline due to the large peak.

Figure 24 shows six other cases of applying this local background correction in 

the region adjacent to a large peak. In all six, the black line shows regions of the 

original spectra, with red dots at the location of detected peaks, while green line 

shows the spectra after applying the local baseline correction, with purple X 

marks indicating the new peaks. In the top three spectra, the new peak positions 

and amplitudes better represent the true peak, while in the lower three spectra, 

no peaks were found after the baseline correction, indicating that those three 

spectra had false peaks detected because the pedestal level was high, and the 

baseline fluctuations mimicked a peak.

Local Baseline Correction near Clusters of Peaks

This improved baseline modeling method is particularly important in regions with

a high peak density. However, in many of those cases, the baseline will have

contributions from more than one nearby large peak. In such cases, we have

found that we must treat clusters of peaks, rather than the pairs of peaks

considered in the previous section. For example, when one matches the model

baseline to the average of the spectra without a given peak, it is crucial that the

end points of that modeled baseline not be located in the vicinity of a peak, or

else the amplitude of that peak will dominate the process of matching that

baseline to the spectrum. However, once one uses clusters of peaks, then there

will generally be peaks within the modeled baseline that one subtracts. This

means that in addition to matching the end points of the modeled baseline, one
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must also match the amplitude of the variation within this region, so we also set 

an additional parameter to insure that within the cluster, we match the end points 

and wherever the signal is largest.

Determine Local Baseline Region

Before applying the automatic local background correction method, we first

Clusters in Average Leukemia Spectrum
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Figure 25: Cluster detection is necessary for local background removal.
In this average spectrum, the region for modeling the local background must 
include all the nearby peaks that form a cluster. The black curve is the 
average of all spectra with red marks (X) at the locations of peaks in the final 
aligned peak list. The blue boxes outline the clusters.

identify the locations where local background corrections are needed. Peaks 

within a half FWHM distance are considered to be too close to having a locally 

raised background. Thus, a cluster, where local background corrections are



needed, is determined wherever peaks are within half FWHM away to each 

other. The cluster boundaries are determined as FWHM away from the first and 

last peaks belonging to the cluster. Figure 25 is a graph showing part of the 

result of the final determined clusters on average leukemia spectrum at region 

9700-10600. Red Xs shows positions of the aligned peaks, which are peaks 

supposed to be found at all the spectra. Blue rectangles are the determined 

clusters. Figure 26 is a closer look at the cluster of region 9840-9920. There 

exists a local baseline with an intensity of around 300, which likely result from 

large peaks some distance nearby.
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Figure 26: A cluster identified from the average of all leukemia spectra 
between 9840 and 9920 time steps.

63



Once the clusters are identified, we go through each cluster to do the local 

background correction for each aligned peak and for each spectrum by adjusting 

every spectrum locally to the average spectra without local large peaks. The 

averages of five end points and maximum of the region are used to match the 

background shape. After correcting local background, the peak picker algorithm 

is applied again to get more accurate report of peak information just around the 

region where original aligned peak were reported. The same process is applied 

to each aligned peak within each cluster.

In this section, we have introduced a non-supervised local background correction 

method; this method is based on the idea that the spectra data belonging to the 

same group should be similar. By applying this method, we can get more 

accurate peak information.

3.4. Determination of The Optimum Signal To Noise 

Threshold

We have reversed our normal procedure to use our standard peak picking

algorithm to identify the regions where there are no peaks so that we can then

model the baseline and eliminate it. However, even with this improved baseline

correction, a small component of peak pedestals remain, and this degrades the

signal to noise calculation because the higher baseline level appears to increase

the signal, making this estimate of the SNR no longer appropriate to identify peak

regions. Thus, assuming a constant SNR limit may introduce spurious peaks.
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We have therefore introduced a variable (but slowly varying) SNR limit to 

determine the peak region. We describe this procedure in this section.

The peak identification method discussed before requires an appropriate pre­

determined peak shape. Here we use a simple normal distribution to model the 

peak shape, which captures most of the characteristics of the upper half of a 

typical peak. For the tail of a peak, especially at high intensity, we do not have a 

good model of the shape. Moreover, clusters of closely spaced peaks would add

1 0060 1 0200

10100 10200

Figure 27: Large peaks can raise the SNR due to their tails.
Panel (A) shows a typical spectrum near 10,100 time steps. Panel B shows 
the SNR which has a high value below 10,100 time steps, due to the 
persistent tails of the two large peaks.
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even more complications to the modeling of peak tail shapes. But the tails of the 

high intensity peaks effectively increase the baseline, and this makes the SNR 

appear artificially high. Figure 27 shows an example peak region where we can 

see how sensitive SNR is to the wide pedestals.

This situation depends largely on the local signals. Clearly, setting a constant 

threshold value to determine peak regions will pick spurious peaks at high signal
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Figure 28: Estimating the local SNR threshold with a sliding window.
Panel (A) shows a region of a typical Leukemia spectrum between 9250 and 
10,250 time steps. Panel (C) shows a 1000 point window with sorted SNR 
values, a linear fit to the low values, and the estimated threshold where the fit 
reaches the end of the window. Panel (B) shows the SNR values and the 
slowly varying estimated SNR threshold, as the 1000 point window moves 
across the spectrum.
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regions while missing some true peaks at low signal regions. To correct this, we 

have introduced a slowing varying SNR limit suitable for different local signal 

types. The method is similar to the use of a moving average: we calculate SNR 

limit value based on the data within a 1000 points window which moves through 

the entire spectrum. For each window position, a linear fit to the central part of 

the rank-ordered log SNR estimates the SNR limit value. Figure 28 shows the 

calculation of SNR within one window. Panel (A) is a spectrum from 9250 to 

10250, the blue line in panel (B) is the corresponding SNR; the red line is the 

calculated locally varying SNR limit.

Each SNR value has a corresponding SNR limit value; the SNR limit value is 

based on the trend of the SNR for nearby 1000 data points. In Figure 28, to get 

the SNR limit value at time 9750, we first sort the SNR of ±500 points, and fit the 

log of the low SNR values as shown in panel (C), this produce a In (SNR) limit 

value of -0.4, so that the SNR limit value is 0.67 for data point at 9750.

Results

Even though the signal to noise ratio is artificially high in some tail regions, the 

changing SNR limit also becomes a little higher to avoid the picking of spurious 

peak. When we go back to the region with high SNR at 10050 to 10200 at time 

as shown in Figure 29, our SNR limit value (red line in panel B) is high enough to 

pick the “right" peaks.
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Figure 29: The local estimate of the SNR threshold stays above the high SNR 
values at on the tails of the large peaks.
Panel (A) shows a region of a typical spectrum, while panel (B) shows the 
SNR for that spectrum, and the local estimate of the SNR threshold.

What is more, we could also see how well our SNR represents the signal 

fluctuations. Only looking at the original spectrum, even we may see that there 

are signs of two peaks. Due to the overlapping of peak tails, the structure of two 

peaks is no clear. However, when looking from the corresponding signal to noise 

ratio, the double peak structure becomes much more distinctive. In a word, our 

signal to noise ratio not only reflects the peak information in our spectrum, but 

also clarifies the overlapping peak structures.

Looking at the whole region of the spectrum as shown in Figure 30, it is clearly

demonstrated how the SNR limit automatically changes with SNR. To the region
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Figure 30: A view of a larger region that shows the local SNR threshold 
increases where peaks are large and dense so that the SNR seldom exceeds 
the threshold due to pedestal effects.
Panel (A) shows a typical spectrum, while panel (B) shows the SNR and the 
local SNR threshold.

with large signal, or large SNR, e.g. time region from 9500 to 11000, we also 

have a large SNR limit, which avoided picking up too many spurious peaks. 

While at the same time, our automatically changing SNR limit value becomes 

small for a region with small SNR value in order to pick even very small peaks in 

the spectrum.
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With the improved algorithm, the changing SNR limit based on floating-baseline 

peak picker, we can confidently identify very small signals in the spectra, even 

those which are almost hidden in the noisy background.

3.5. Maximum Likelihood Method

LftukwnUi Spectrum

Thm

Figure 31: When the region likely to contain a peak is too large, the peak 
picker sometimes finds a false peak at the end of the region as the likelihood 
returns to its high noise-only value.
The top panel (A) shows a portion of a typical spectrum from the Leukemia 
data set with red marks (X) at the locations of maximum likelihood. The 
second panel (B) shows the SNR and the SNR threshold. The lowest panel 
(C) shows the region where the SNR predicts a likely peak.

Even with the varying local SNR threshold, the likely peak region for some small

peaks can be too large. For example, Figure 31 shows a peak picking example

where the very small peak near 6320 times steps (in panel A) has noise that
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produces an apparent shoulder on the amplitude estimation (in panel B). 

Because this shoulder then puts the SNR threshold above the limit (red line in 

panel B), the likely peak region extends over into the region best fit by noise 

alone. Furthermore, the likelihood is maximum at the edge of the region, where 

the signal is mostly noise. The net result is that the peak picker identifies the 

edge for the region as the peak location (identified by a red X in panel A). To 

correct this, we have reduced the likely peak region to a window of a single
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Figure 32: Restricting the above threshold region means the likelihood will be a 
maximum at the true peak.
Panel (A) shows a region of a spectrum and the peaks found, either without 
restricting the region (red X), or with the restriction (purple dots). Panel (B) 
shows the SNR (blue curve), the local SNR threshold (horizontal red line), the 
region above threshold (black vertical lines), and the restricted region (red 
vertical lines). Panel (C) shows the likelihood, with the restricted region 
hm inrlarips
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FWHM centered on the maximum SNR in the region.

Figure 32 shows the result of limiting the likely peak region. This time, by limiting 

the possible peak region to half FWHM around the strongest SNR value, we 

dramatically reduced the uncertainly in the peak picking. Panel A again shows a 

portion of the spectrum, with markers showing the original peak position (red X) 

and the improved position (purple dot) resulting from the reduced likely peak 

region where the high likelihood of the pure-noise region has been excluded.

Summary

Our peak picking algorithm reduces a pure spectrum to a list of the important 

peak positions and amplitudes is an accurate and automatic way. The work flow 

for finding peaks is as follows:

1. Read in raw spectra data, and set peak picking information: FWHM of peaks -  

10, peak picking range from 5800 to 11000 in time.

2. Prepare for baseline subtraction: put a sliding window isolating N (N=FWHM) 

data points throughout the whole spectrum. Calculate SNR and likelihood values 

based on a “floating baseline” signal model within each window. Get reported 

peak information including peak positions and peak intensities.

3. Construct the baseline based on smoothed background without reported peak 

points from step 2. Subtract baseline.
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4. Put a sliding window isolating N (N=FWHM) data points at each point 

throughout the spectrum without baseline from step 3. Calculate SNR using “non­

floating” signal model. Estimate SNR limit based on local SNR.

5. Identifly possible peak regions by comparing SNR to local SNR limit value 

from step 4.

6. Find peaks in region identified from step 5 and extract peak information by 

maximum likelihood method.

After all of these steps, peak positions and intensities together with the 

uncertainties are reported. A detailed peak picking result from a leukemia 

spectrum is shown in Figure 33. Red Xs on plot represent calculated peak 

positions and intensities.

7. Get a master peak list of all reported peaks using alignment method (details of 

the alignment method is in chapter 4 ).

8. Based on the master peak list from step 7, correct the local baseline when 

necessary, for example when peaks from the master peak list are too close to 

each other. Adjust reported peak intensities and positions according to the 

corrected local baseline.

After all of the steps, a peak list contaning peak postion, peak intensities and 

uncertainties is ready to use.
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Figure 33: A typical spectrum showing the results of the peak picking 
algorithm (red X).
The expanded view shows the details near 9000 time steps.
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Chapter 4 Peak Alignment

4.1. Introduction

Peak detection reduces a single spectrum to its essential information about the 

important proteins and protein fragments within that sample. However, a 

biomarker discovery experiment will typically include hundreds of samples; each 

will then be summarized by its own list of peak positions and amplitudes. Peak 

alignment is the process of correlating the peaks found in any one spectrum to 

those found in the other spectra. If the spectral data were noise-free and entirely 

reproducible, this process would not be difficult; however, three things complicate 

this process: (1) spectra taken at different times may not be precisely calibrated;

(2) experimental error will introduce some slight shift in each peak positions; and

(3) some peaks will be false peaks, i.e. they will have been identified by the peak 

picker, but they will not represent true peaks associated with proteins or protein 

fragments. Our alignment procedure is designed to minimize each of these 

issues.

The calibration problem can give rise to two separate effects. If the electronic 

start signal is varies from the true laser firing time (usually due to electronic noise 

generated by the laser firing), then each spectrum might have a time shift 

compared to the others. Our alignment procedure begins by adjusting this so
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that the most common peaks line up with each other. We typically find time shifts 

of about two time steps (and as large as 5 time steps) to be necessary. The 

other likely calibration problems are associated with small changes in the 

acceleration voltage. This would show up in the spectra as a scaling necessary 

to match the largest peaks at long times (or high m/z) when the short time peaks 

have already been aligned by a start time adjustment. We have found no 

evidence of this in the data set discussed here, so we have not allowed any 

scaling correction in our current alignment procedure.

To deal with the other two issues, experimental peak position error and false 

peaks, we use a procedure that chooses which locations are most likely to 

represent clusters of peaks that are common in many spectra. This represents 

the bulk of the effort in alignment, because it requires an automated method of 

deciding when any given peak is sufficiently close to be said to belong to one 

cluster rather than another cluster. This is especially difficult when the other 

cluster has not yet been identified.

4.2. Method

We use an alignment routine to match peaks representing the same m/z from 

different samples based solely on their positions. We do not use peak 

amplitudes because they are expected to have a wide variation among different 

patients. Not all peaks will eventually be associated with the final list of peaks. If 

a peak only appears in a small number of samples, we will eliminate it as either a
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false peak (representing a coincidental noise fluctuation that looked like a peak) 

or a peak that is specific to only a very small number of patients. In either case, 

it is not a good candidate for a biomarker, and so we will eliminate it from our 

final master list.

There are two major sub-steps in this alignment procedure. The first step is to 

adjust the starting time value for each spectrum. The second step is to then 

group the high peak density regions to determine the final master peak positions 

based on the shifted peaks. Both steps use window bins to identify likely peak 

locations from the maxima in the density of peak positions. We set window bins 

to define each individual feature, i.e., common peaks which should be found at 

the same group of spectra. We use peak density values as reference to mark 

the place where windows bins should be set. Our general procedure is to set 

window bins at high density regions, and then subdivide those regions until they 

only contain peaks belonging to the same group.
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The top panel of Figure 34 shows an example of listing the detected peak
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Figure 34: Constructed peak density (C) for peaks located from 9200 to 9260 
(A) at time.

positions for the region between 9200 and 9260 time steps for the leukemia

samples in the data set. We sort all the peak positions to get the total peak 

numbers at times as shown in panel B, then do an interpolation to get regular 

values for every time click, smooth the result by integrating over half of a FWHM. 

The derivative is the constructed peak density as shown in panel C. As we can 

see from Figure 34, high peak density value, e.g., 70 at 9230, indicates large

78



number of peaks clustered at these time points, thus could be used as the 

reference to set window bins.

Window bins are first determined by the peak density. Likely peak cluster regions 

are placed where the peak density is above a manually introduced threshold. If 

the window bin is larger than a FWHM, then more than one group of peaks are 

likely in the same window bin, so the bin should be subdivided. We subdivide the 

bin by putting a smaller bin of ±FWHM/2 around the maximum density value. We 

repeat this process to further subdivide the remaining part of the high density 

region if necessary.

After setting window bins to the desired size, the next step is to check peaks 

within each window; and choose only one peak if two peaks from the same 

spectrum are assigned to the same group. Finally, we eliminate any bins where 

too few spectra contribute peaks. The master peak list is then the average 

position of all measured values in each bin.

The master peak list gives us a summary of which peaks should be present in 

the group of spectra. Some spectra may not have detected a peak at each of the 

master list positions. For those spectra, we record the average signal intensity at 

the expected peak position to generate a complete data set.

Starting Time Shift
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To correct the start time shift, we generate a peak list based on the most 

commonly occurring peaks, and get the starting time shift values by a least 

square fitting to minimize the differences among these peak positions.

Tm!m

7000 110008000 9000 10000

Time

Figure 35: A start time shift makes the red spectrum approximately 3 time 
steps (one time step is 2 ns) earlier than the black spectrum.
Correcting the start time aligns many of peaks in these spectra.

Figure 35 shows an example of a starting time error between two spectra. The

two spectra are plotted in different colors (red and black) in the region between 

6800 to 1100 time steps. The insets show magnified views of the spectrum 

region from 7500 to 7640 (panel A) and from 10420 to 10500 (panel B). In both 

panels, the two spectra look similar, but the red spectrum is shifted approximately
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3 time steps early. Shifting the start time of one of these spectra aligns many of 

the features of both spectra.

The starting time shift values for the 196 leukemia spectra are shown in Figure 

36. For these spectra, the starting time shift ranges from -2.5 to 4.5. Note that 

although the spectra are measured at integer time steps, the net starting time 

shift is not an integer. This effectively removes the ±14 step measurement error 

introduced by digitizing the time.

Starting tim e shifts fo r Leukem ia Spectra
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Figure 36: Starting time shift values for leukemia spectra.
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This algorithm only uses the peak position data developed by the peak picking 

algorithm described in earlier chapters and requires no other information (such 

as an expected target spectrum, for example). However, it could also be 

manually supervised by selecting a specific set of reference peaks for alignment, 

if a standard set does exist throughout the full spectra range. We have found this 

unnecessary, although the peaks used for calibrating the machine could have 

served that purpose. Using our start-time adjustment method, peak misalignment

I*m Ii  Positions
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Pook Portions wtth starting tim t correction
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Figure 37: Reported Peak Positions from 200 leukemia spectra in (A) and (B) 
compared to peak positions with starting time correction (C) and (D) at same 
location.
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was reduced from about 1-2 time steps to about half a time step, globally.

Figure 37 shows the peak positions for the leukemia spectra in two regions near 

10,300-10,400 time steps before (top panels, A and B) and after (lower panels, C 

and D) correcting the start times. The peak around 10270 is used as one of the 

reference peaks for the time shift alignment, but the other peaks were not. The 

tight bunching the peaks around 10340 and 10400 demonstrate that the starting 

time adjustment was a valid step.

4.2.1. Peak Binning:

The second step of peak 

alignment calculates the 

overall distribution of shifted 

peaks and dynamically 

identifies boundaries of 

regions where many peaks 

have similar position. Here, 

we identify and quantify 

significant features,

discarding data that do not 

seemed to be part of a 

feature. A general overview 

of the preprocessing and

< Input 
data

at

Out put data

:heck window  
bin

Get final window bin 
Summarize information

determine parameters 
Construct density function 

Set window bins

Figure 38: Flow chart of Alignment algorithm.
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analysis strategy is shown in Figure 38.

The input data is the shifted peak positions combined from all spectra. A 

corresponding density function is constructed as the reference to pick the 

common peaks. Master peaks should be picked from the region with high peak 

density.

The major difference of this peak alignment step and the starting time correction 

step is how the threshold is set for picking the high peak density. In the start-time 

correction step, a set of highly reproducible peak groups should be chosen and 

set as reference to do the axis shift. Thus, a high threshold should be set to pick 

those standard peaks which are supposed to be found at most spectra. While in 

constructing the master peak list, the purpose is to extract as many important 

features within the data set as possible. Therefore, the peak density threshold 

value should be set lower than what is used for starting time correction so as to 

extract the common features among the same group of spectra. For a large data 

set, we decide on conversion of a peak found in 5% of all the spectra should be 

considered as a feature to be paid attention to. In contrast, we required peaks 

used for the time-shifting part of alignment to appear in at least 20% of the 

spectra.

Window bins are used to separate the high peak density region from low peak 

density region. However, some peaks are difficult to resolve from one another 

when they are very close to each other and included in the same window. We
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may see groups of peaks which are supposed to belong to different master 

peaks are in the same large window bin. Those large window bins need to be 

divided, but then two problems arise: first, how to determine a window size is too 

large; second, what is the condition to halt further subdivision? Any window 

larger than the full peak width is likely to contain more than one peak, so we 

check those windows. Then each window bin size is determined based on the 

peak density within that window. Starting from the highest peak density value in 

the distribution within the first pass of window, we descend down either side of 

the meta-peak until the distribution increases again. The place where the trend 

of distribution just changes is the sub-bin setting point. This process defines a 

sub-window bin in which different groups of peaks are set apart; it is flexible 

enough to adjust for different lengths of sub window bins.

One time subdividing sometimes is not enough for very large windows; 

examining the remaining part within window is necessary. If the remaining part is 

still considered to be too large, second subdividing will take place. We perform 

the process in a loop until no further subdividing is necessary.
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Once all the beans have set, we first check that each bin includes at most one 

peak from each spectrum, and then eliminate any bins that represent peaks that 

occur in 5% or fewer from the total samples, according to the previous mentioned 

criteria.

Figure 39: Window bin setting example.
(A) First window bin boundaries set by peak density in (D)
(B) Subdivide too large window bin
(C) Check data within each window bin and discard extra peaks from the 
same spectrum; red dots are peaks used to determine the final align peaks.
(D) Window bin define reference: peak density. Red line: threshold to identify 
high peak density region.
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Figure 39 is a detailed example about the window bin setting process for a high 

peak density region from 7120 to 7180, panel D is the corresponding peak 

density for this region. Black dots in panel A, B and C represent peak positions 

from all the spectra, vertical blue lines are the left bounds for window bins while 

green lines are right bounds. A blue line and a green line compose a window 

bins. Panel A shows the result of setting the window bins after choosing high 

peak density region, the first window bin is 60 time step wide, this is too large 

compared to the desired window bin size 10. Subdividing this window bin is 

necessary. We subdivide this window bin by putting a smaller window ±5 time 

steps around maxima density value within the large window. Re-subdivision 

procedure is repeated within this large window bin until each window bin contains 

only one master peak, the final window bins are set as shown in panel B. Next is 

to identify peaks that were present across most spectra within the same group 

and make sure that only one peak from same spectrum is included in the same 

peak group. The red dots in panel C are those peaks. Discarding peaks that 

were selected from few spectra, a final master peak list is generated based on 

the peaks (red dot in panel C) within each window.

Finally, peaks must then be matched across spectra to allow calculation of time 

deviations and recording of intensity information, we assume the closest peak is 

the correct match. Additionally, the algorithm determines which spectra are 

missing from each peak group, and then raw data are integrated to fill in intensity 

values for each of the missing peaks.
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Figure 40 shows the relationship of average reported position uncertainties and 

standard deviation of peaks contributed to final master peaks for each align peak. 

Small peak uncertainty is related with small standard deviation as a high 

confidence in the peak finding.

Normal data set
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Figure 40: Average position uncertainties vs. SD of peaks contributed to 
the final align peak in normal data.

4.3. Summary

We have developed a peak alignment procedure that aligns peaks in different 

SELDI TOF-MS spectra. Several steps are taken to construct common peaks 

from peak list; a detailed flow chart is shown in Figure 41:
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Major steps are:

1. Prepare data: combine all the picked information in an ordered way, and then 

construct peak density function as a measure for peak reproduction.

2. Correct starting time shift: select the most well behaved common peaks as 

standards to shift each spectrum to correct errors (usually of only a time step or 

two) in the start time signal which can result from the electronic noise created 

when the laser fires.

3. Get master peak list: determine the final master peak list based on the 

“shifted” spectra. Set window bins to group near-by peaks. Window bins are 

divided several times until the window size is sufficiently small and each window 

contains only a single feature. Finally, we have identified peaks that were 

present across most spectra within the same group while also avoiding peaks 

that were selected in few spectra.

4. Complete peak information: determine master peak positions according to 

peaks within each window bin, add peak intensity value for picked master peaks 

or fill in peak intensity value for missing picked master peak in each spectrum. 

Get metrics, such as X and Y, of a peak group that will serve as features.
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Figure 41: Overview of alignment



After the alignment process, we will have a master peak list representing all the 

spectra in a uniform manner. After processing a set of n spectra and identifying 

and quantifying p peaks per spectrum, we are left with a n n x p  matrix of peak 

expression levels.

There are 147 final master aligned peaks in the EVMS leukemia spectra data 

while there are 157 final master aligned peaks in normal spectra data. 110 

master aligned peaks are considered to be the same peaks as the difference in 

position is within 3 time lag. The difference of the Intensity of these similar peaks 

is range from 0.34 to 2.08. Detailed data could be found at Table 1.

Figure 42 shows the difference of position shifts in m/z between the same peaks 

from leukemia data and normal data. The difference in positions ranges from -2
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Figure 42: Differences in reported peak position of leukemia data and 
Normal data set at m/z.
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to 2 at m/z, very small and thus these peaks could be considered as the same 

ones. The two sets of data are generated independently based on the method we 

have introduced; it shows the power of our method to capture the important 

information from raw spectra.
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Leukemia Normal Diff in 
Position(m/z)

Ratio in 
IntensityPosition(m/z) Intensity Position(m/z) Intensity

2758.88 114.6141 2760.47 179.261 -1.59254 1.56

2798.71 434.5866 2799.61 149.0417 -0.89746 0.34

2861.26 155.5834 2859.96 137.2284 1.292487 0.88
2874.7 205.0836 2875.44 202.0462 -0.7364 0.99

2961.72 192.5645 2961.74 162.3469 -0.02271 0.84

2982.16 126.5191 2980.89 211.525 1.265057 1.67
3001.7 114.1613 3001.56 83.61061 0.138164 0.73
3023.7 307.8199 3023.96 206.0026 -0.26139 0.67

3038.7 296.315 3039.82 171.8144 -1.12022 0.58
3044.88 94.02478 3045.51 133.5147 -0.63074 1.42

3137.68 343.5196 3138.62 186.0019 -0.93606 0.54

3155.35 144.7113 3153.11 207.3843 2.235595 1.43
3160.75 106.7598 3159.02 137.5683 1.734803 1.29

3165.98 197.3618 3164.79 228.2176 1.19429 1.16

3249.69 273.7903 3250.53 141.2753 -0.83471 0.52

3268.86 837.6403 3269.9 365.8684 -1.04259 0.44
3283.74 1179.807 3284.22 548.675 -0.47931 0.47
3298.11 609.645 3299.28 253.0078 -1.17543 0.42
3329.07 131.7423 3329.71 102.6225 -0.64384 0.78
3381.75 240.826 3381.94 313.5202 -0.19309 1.3
3442.87 82.76032 3443.59 118.2315 -0.72077 1.43

3452.5 309.3272 3452.81 444.3109 -0.30491 1.44

3495.75 239.7732 3496.36 295.108 -0.61686 1.23
3610.46 218.7629 3609.85 115.2803 0.614855 0.53
3722.81 133.3003 3723.26 156.0588 -0.44837 1.17
3784.01 421.2357 3784.89 308.7442 -0.87398 0.73

3827.7 167.455 3828.33 209.4019 -0.6309 1.25
3897.41 699.3287 3899.69 1058.445 -2.27261 1.51
3920.49 259.7456 3918.59 357.0874 1.900448 1.37
3951.28 1207.315 3951.61 814.3245 -0.33191 0.67

3967.3 1232.728 3967.82 788.4412 -0.52116 0.64
3983.13 1043.489 3983.83 738.0126 -0.70314 0.71

3996.9 357.8637 3995.47 160.694 1.434912 0.45
4076.31 821.7408 4076.53 1138.315 -0.22359 1.39
4145.76 252.0529 4145.89 247.781 -0.13085 0.98
4163.72 427.8508 4164.32 415.0337 -0.60885 0.97
4178.16 306.0153 4180.73 303.3399 -2.57715 0.99
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Leukemia Normal Diff in 
Position(m/z)

Ratio in 
IntensityPosition(m/z) Intensity Position(m/z) Intensity

4190.81 347.2302 4193.57 374.4131 -2.76553 1.08

4278.61 2002.029 4278.97 1324.663 -0.36675 0.66

4294.57 1564.517 4294.57 1048.162 0.001189 0.67

4311.52 1049.809 4312.1 582.5834 -0.58501 0.55

4480.05 744.3882 4481.28 658.9594 -1.23645 0.89

4627.75 455.3989 4627.7 321.4798 0.046906 0.71

4639.25 216.5044 4641.11 195.9052 -1.85776 0.9

4656.12 841.4731 4656.64 866.3903 -0.52004 1.03

4688.88 203.4551 4688.34 210.3111 0.546688 1.03

4697.82 149.995 4696.88 150.7374 0.936453 1

5033.57 112.7449 5034.08 109.0638 -0.50982 0.97

5092.69 239.6647 5092.45 191.238 0.240855 0.8

5118.25 226.4116 5118.23 156.3084 0.010385 0.69
5145.67 151.258 5146.88 171.8362 -1.20801 1.14

5258.19 202.2392 5260.07 189.4216 -1.87652 0.94
5276.43 162.2263 5278.84 195.9256 -2.41766 1.21

5349.46 774.1606 5349.84 711.7508 -0.38357 0.92
5364.75 364.6307 5366.07 311.505 -1.32651 0.85

5430.95 129.9867 5431.78 109.2275 -0.83716 0.84
5556.54 156.5283 5557.07 163.8407 -0.5316 1.05
5816.15 293.0885 5816.07 282.1563 0.083034 0.96
5878.54 694.3221 5879.82 286.3004 -1.27311 0.41

5887.75 353.9223 5887.66 255.6022 0.094682 0.72
5898.02 379.1293 5898.82 203.0718 -0.80275 0.54
5917.36 2722.283 5917.97 2681.003 -0.617 0.98
5932.48 1404.471 5933.28 1309.8 -0.80089 0.93
5954.54 385.2366 5956.25 291.1736 -1.71126 0.76

6104.36 266.1195 6104.13 261.928 0.22259 0.98
6123.29 426.1981 6124 388.1693 -0.71001 0.91
6139.89 344.0095 6135.85 277.2943 4.047505 0.81
6201.31 287.9949 6202.49 236.7808 -1.17613 0.82
6447.41 142.1659 6447.02 223.4671 0.396324 1.57
6644.98 332.4379 6645.64 280.0892 -0.65533 0.84
6662.05 171.1186 6660.04 181.8805 2.011262 1.06
6677.55 198.8523 6680.85 270.3919 -3.3013 1.36
6691.59 330.9991 6692.36 363.3238 -0.76154 1.1
6865.68 454.2204 6867.18 273.2295 -1.49169 0.6
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Leukemia Normal Diff in 
Position(m/z)

Ratio in 
IntensityPosition(m/z) Intensity Position(m/z) Intensity

6957.89 253.325 6954.28 263.4481 3.603654 1.04

7200.6 544.8441 7198.92 1053.266 1.679915 1.93

7358.91 264.5894 7358.33 403.7622 0.580647 1.53

7412.56 217.3874 7412.66 173.4448 -0.09999 0.8

7448.1 116.1127 7449.54 165.3601 -1.44405 1.42

7484.2 426.3862 7485.53 789.6282 -1.32665 1.85
7578.64 394.0007 7579.01 819.2108 -0.36494 2.08

7652.03 453.7857 7650.13 456.0407 1.903218 1

7740.07 508.3908 7741.03 514.1341 -0.96115 1.01

7936.86 1151.48 7938.05 1243.361 -1.18833 1.08

7962.11 631.2532 7964.05 436.1237 -1.94003 0.69
7985.22 1033.612 7986 1027.146 -0.77678 0.99
8000.94 701.9094 8002.07 888.5049 -1.13306 1.27

8140.58 8633.804 8141.5 11898.88 -0.92021 1.38

8154.59 2120.05 8155.32 1780.074 -0.72926 0.84

8201.15 1926.563 8202.35 2834.806 -1.19974 1.47

8362.8 1135.008 8363.69 1569.755 -0.89618 1.38
8579.01 596.561 8578.22 992.7151 0.789991 1.66
8616.35 4243.643 8617.26 2915.262 -0.90967 0.69
8677.79 1197.021 8680.6 732.7147 -2.80649 0.61
8687.41 533.1212 8689.69 510.8203 -2.28362 0.96
8877.39 1045.431 8878.88 822.5677 -1.48764 0.79
8897.92 772.6767 8900.03 903.518 -2.10568 1.17

8906 898.5214 8910.71 875.9717 -4.71031 0.97
8947 6261.814 8947.91 5088.069 -0.9098 0.81

8960.1 3392.297 8961.56 2857.034 -1.4602 0.84
9005.7 1480.746 9004.06 845.139 1.635991 0.57

9075.27 736.4276 9076.45 786.3785 -1.17563 1.07
9153.46 1578.662 9153.7 1242.531 -0.24308 0.79

9167.6 1114.109 9168.81 1288.234 -1.21635 1.16
9302.56 6899.431 9303.39 6954.589 -0.82268 1.01
9362.77 1023.65 9363.93 964.1195 -1.15899 0.94

9380.72 712.3056 9384.5 617.7523 -3.77938 0.87
9508.64 992.0342 9509.79 500.5067 -1.15029 0.5
9523.79 828.1956 9523.42 756.5106 0.371913 0.91

Table 1: Comparison oi the similar master pea ks from normal and leu
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Chapter 5 Conclusion

Biomarker identification has the potential to assist in early cancer prognosis and 

diagnosis. MALDI TOF MS provides a precise and rapid way of measuring the 

relative abundances of the protein present in the complex mixture of biological 

and chemical samples. We have successfully created an automatic algorithm for 

optimizing the data processing, transforming the raw mass spectrum data into a 

high quality representation to maximize the use of samples collected from 

measurement of protein concentrations in biological samples for biomarker 

discovery.

Peak Picking

We have been using a peak identification algorithm that maximizes the likelihood

of data setting in a filtering mode of operation. We restrict the peak region from

noisy background by choosing regions with high signal to noise ratio values. A

changing SNR limit is used as the SNR threshold to determine the possible peak

region. The threshold value is determined automatically by a survey of the local

signal to noise ratio trend. Studying the SNR when there are no peaks, we can

predict a relationship between the signal to noise ratio and the probability of there

being a peak within the window. The survey approach allows this value to

change at different regions, reflecting the variations in the level of background

noise. What is more, we did not just pick peak position at the maximum value of
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likelihood in a possible peak region; we limit the possible peak region to a 

reasonable size and reject cases when the maximum likelihood occurs at the 

edge of that possible region. With this improved algorithm, we dramatically 

reduce the number of false peaks and get more precise representative 

information from spectrum.

Background Elim ination

In my work, I have developed algorithms to eliminate background artifacts, this is 

necessary to get a true “zero baseline” spectra prepared for the peak picking 

step. Our best representation of the background is determined by smoothing the 

data in those regions where we determined that peaks were unlikely to be found. 

The peak picker algorithm, mentioned above, easily finds most peaks, except for 

very small signals which are obscured by the baseline noise. By using this peak- 

picker to first determine the regions that should be smoothed to get a baseline, 

the net effect of any small included peaks is negligible. Once the background 

has been removed, the peak-picker can use a zero background model, which is 

more stable in regions where the background level had been elevated.

Alignm ent Process

Next is our alignment process which aims at getting summary of sample data 

belongs to the same group. There are two major sub-steps: first we generate a 

peak list based on the largest signal peaks, and use this list to adjust the zero 

time value of each spectrum to correct for start signal variations; second, we
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generate a master peak list based on all the peaks of the shifted spectra. Both 

steps use the same general approach, which identifies likely peak locations from 

the maxima in the density of peak positions, averaged over all the spectra. This 

requires setting windows to represent the common peak regions, and then 

subdividing these windows until they are no larger than a desired size, based on 

the peak width; finally, we eliminate any bins for which too few spectra contribute 

peaks. From these windows, we then generate a master peak list as the average 

position of all measured values in those remaining bins. Thus we have reduced 

the peak list by restricting it to most common and most distinguished peaks using 

the alignment routine.

L o c a l B a c k g ro u n d  R e m o v a l

However, information about small peaks sitting on the shoulder of nearby large 

peaks may be distorted by the influence of that large peak; this may lead to an 

unnecessary focus on those small peaks causing inaccurate reporting of the 

positions. To correct that influence, we adjust the local baseline around that 

small peak according to nearby large peak by removing the shoulder or tail effect 

of the nearby large peak. This task will easily be achieved by adjusting every 

spectrum locally to the average spectra contributed by large peaks. We know 

exact which spectra do not claim to have found that small shoulder peak in that 

region, averaging these spectra will give a good representative of the local 

baseline introduced by the nearby large peak. Removing the local baseline,
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peak picking and alignment process gives a more precise report about the peak 

information.

Future Work

The success of the peak picking method relied largely on the peak shape; we 

use a constant peak width here, which is acceptable within a narrow mass 

focusing range, however, a changing peak width maybe needed as we push the 

peak picking beyond the mass focusing range. What is more, our signal model is 

a simple model of a peak sitting on noisy background. Overlapped peaks may 

neecl to use different signal models. It is then necessary to set up different 

models containing one or two overlapping peaks, and then choose the most likely 

model.
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