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UmOIXJCTIGN

At the  p resen t time a problem th a t  i s  o f  g re a t concern to  the safe 

recovery  o f  byperveloeity  space veh ic les l i e s  in  m aintaining continuous 

d a ta  transm ission  and coaaminication contact between the  veh icle  and the  

ground during the  c r i t i c a l  braking period  o f the  reen try  maneuver. Con­

tinuous rad io  transm ission  i s ,  a t  the  p resen t tim e, l o s t  during th is  period 

due to  the  strong  bow shock th a t  forms around the  body* The tem perature 

through th i s  shock i s  ra is e d  enough to  io n ise  the  gas in  fro n t o f  th e  

vehicle  which In  tu rn  p revents transm ission o f  the  signal# th a t  i s ,  

the  ion ised  gas la y e r , o r plasma, has a  f in i t e  e le c t r ic a l  conductiv ity  

which m y  absorb and, o r r e f le c t  the  rad io  signal#  Several so lu tio n s to  

t h i s  problem are  a t  the  p resen t tim e under consideration  and are being 

examined experim entally  #

One method which has shown some success, does not attem pt to  a l t e r  

the  plasma bu t ra th e r  r e l i e s  on the  use o f very high frequency signa ls  

which are not a ttenua ted  by the  ionized  gas layer* This approach while 

b a s ic a lly  simple in  concept un fo rtunate ly  b rin g s about many new problems 

involving equipment development. In  ad d itio n , a t  c e r ta in  high frequencies 

atmosphere a tten u a tio n  has to  be contended with* Since the  necessary 

transm ission  and recep tion  gear are  not av a ilab le  fo r  wide ap p lica tio n  o f 

t h i s  method a t  the  p resen t tim e, i t  i s  worthwhile to  look a t  o th er 

solutions* E x isting  e le c tro n ic  equipment could, o f course, be used i f  i t  

were possib le  to  decrease the  amount o f io n iza tio n  behind the  veh icle  bow

2



3

shock to  a  degree th a t  w o ld  allow  sa tis fa c to ry  transm ission . l iq u id  

In je c tio n  methods which cool the  plasma and thereby induce recosibination 

have been considered and show some promise o f  success* Another method, 

namely, the  us© o f an in je c te d  gas, has been given l i t t l e  consideration 

up u n t i l  new because o f i t s  increased  complexity compared to  a  l iq u id  

and because, no advantage o f employing o f  a  gas over a l iq u id  has been 

adequately shown. She p resen t d iscussion  given in  th i s  paper w il l  help  

to  demonstrate a  marked advantage th a t  an in je c te d  gas can have over a 

l iq u id ,  This advantage l i e s  In  the  a b i l i ty  o f the  gas in  c e r ta in  instances 

( re fe rre d  to  in  the  te x t  as la rg e  shock displacem ents) to  a l t e r  g re a tly  

the  shape and the lo c a l s tren g th  o f  the  main stream  shock, thereby not 

only lessen ing  the  degree of io n isa tio n  by cooling as a  l iq u id  does, 

b u t by decreasing the  ex ten t o f the  a lto g e th e r *

The p resen t paper includes inform ation fo r  the  p red ic tio n  o f these 

la rg e  shock displacem ents and in  ad d itio n  provide® a  possib le  th e o re ti­

c a l explanation fo r  the occurrence o f them. An understanding o f th is  

phenomenon thus perm its considera tion  to  be given to  a  gas in je c tio n  

device a® a way to  help  a l le v ia te  th e  rad io  a tten u a tio n  problem. Although 

general consideration  her© i s  given to  133© ap p lica tio n  o f the  in je c te d  gas 

method fo r  re lie v in g  rad io  a tten u a tio n  i t  was so t possib le  to  explore many 

experim ental phases o f the  problem. The m ajority  o f the  experim ental and 

th e o re tic a l  work considered here i s  concentrated on showing the flow 

phenomena and e s tab lish in g  the  c r i t e r i a  th a t  would enable a  forw ard-facing 

j e t  to  be used as a  means o f increasing  the p o s s ib i l i ty  o f rad io  tra n s ­

m ission through the bow shock.
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CHAPTER I

«hb r n jm m  m m m

As a b lu n t body re e n te rs  the earth's atmosphere a t  a  high v e lo c ity  

the  a i r  l a  f ro n t  o f the  body i s  forced  to  pass through a la rg e  p ressure  

d isc o n tin u ity  o r bow shock. I t  i s  by v irtu e  o f  th i s  shock th a t  the 

k in e tic  energy o f the veh ic le  i s  converted to  b ea t as the body d e ce le ra te s . 

ThXs method o f veh icle  d ece le ra tio n  I s  responsib le  fo r  the  ex istence  o f 

extremely high tem perature gases in  the  v ic in ity  o f the body. As the  

tem perature Increases the  oxygen and n itrogen  molecules In  the  gas 

behind the  bow ©hock d isso c ia te  and lead  to  th e  re lease  o f free  e le c tro n s . 

The reac tio n s  lead ing  to  the re lease  o f  these e le c tro n s  can be thought 

o f  b r ie f ly  as fo llow s. In  crossing the  bow shock, the  a i r  moleucles 

undergo a  la rg e  number o f c o ll is io n s . P a r t o f Hi© k in e tic  energy o f 

the  vehicle  i s  absorbed as these c o llis io n s  ra is e  the tem perature o f 

th e  gas to  a  maximum value . Further c o llis io n s  cause the  a i r  molecules 

to  d is so c ia te . $he sing le  atoms may then  recombine in  a manner in  

which free  e le c tro n s  are re leased , fo r  example, taonatomie n itrogen  and 

oxygen recombining re lease  an e le c tro n , 1 + 0 -*110* ♦ e~. Other chemical 

reac tio n s  a lso  r e s u l t  in  the  d ire c t  io n iz a tio n  o f the  atomic p a r t ic le s ,  

fo r  example, H ~*H+ + e~ . D escriptions o f th is  phenomena are  common 

and may be re a d ily  found in  the  l i t e r a tu r e .  Reference 1 , fo r example, 

p resen ts  ch arts  re la tin g  the thermodynamic p ro p e rtie s  fo r  a i r  in  chemical

6
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e fp l l lb r lu a  fo r tem peratures up to  15*000° K and fo r  p ressure  to m  

10-5 to  10^ atmospheres . As a  d ire c t  r e s u l t  o f  th i s  phenomena a high 

concentration o f f re e  e le c tro n s  e x is ts  behind the shock and i t  i s  the 

presence o f these  free  e le c tro n s  which cause© the a tten u a tio n  o f  rad io  

s ig n a ls . Since the e le c tro n  concentration  o f  the  p la sm  i s  a  function  

o f  the  ©tat® p ro p e rtie s  o f  the  gas* the  density  o f the free  e lec tro n s 

( th a t  is*  e le c tro n  concentration  per cubic centimeter* He )* can be

ca lcu la ted  i f  the flow f ie ld  assoc ia ted  w ith the  p la sm  i s  defined .
P i <*hrs

B riefly* %  ® ^e»o * ^h^t is*  Be i s  equal to  the  product o f

the e lec tro n  mole f ra c tio n  X@* l»oschmi&t® number* H0* and the r a t io  o f 

p ressure  behind the  bow shock to  sea -lev e l p ressure  divided by tem perature 

behind the  bow shock to  ice  p o in t tem perature. Keferenee 2* which makes 

use o f hypersonic vehicle  da ta  over a range o f f l ig h t  v e lo c it ie s  and 

a ltitu d e s*  p resen ts  computed e le c tro n  concentrations e x is tin g  behind the 

bow shock o f the vehicle  and these  r e s u l ts  a re  shown in  fig u res  1 and 2 . 

Figure 1 i s  a  p lo t  o f the  p ressure  and tem perature e x is tin g  behind the 

bow ©hock o f a reen te rin g  body as a  function  o f vehicle v e lo c ity .

Included i s  the  a l t i tu d e  a t  which these p ressures e x i s t .  From th is  

figure* and from the a lt i tu d e  versus density  r e la tio n  i t  i s  possib le  to  

ca lcu la te  the e le c tro n  concentration  behind the bow shock) th is  i s  shown 

in  figu re  2 . Once the  e le c tro n  concentration  i s  known as a function  of 

a lt i tu d e  * fo r  example* i t  i s  possib le  to  ob tain  an estim ate  o f the amount 

o f rad io  signal a tten u a tio n  caused by He . Before proceeding with th i s ,  

however* i t  i s  necessary to  introduce one more flow c r i te r io n . In  the 

above curves i t  has been assumed th a t  the plasma has had s u f f ic ie n t  time
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to  reach equilibrium  cond itions. For the  case o f  normal shock naves 

a t  high Maeh numbers th i s  i s  a  good assumption since I t  has been shown 

(ref#  5» fo r  exaa&Xe) th a t  the  d is tance  needed behind the shock to  

reach these  conditions i s  qu ite  small# Figure 2 , taken from, reference 3> 

shows d a ta  obtained in  a  low density  shock tube which I l lu s t r a te s  th a t  

the  io n isa tio n  d is tance  fo r  chemical equilibrium  in. a i r  i s  o f  the order 

o f a  few centim eters fo r  the  free-stream  Kach answers encountered during 

reentry* In  add ition  i t  can be seen th a t  the  io n isa tio n  d istance  

decreases as the  free-stream  Mach number in c reases . Included on the 

fig u re  i s  a  curve rep resen ting  the  theory  o f  b in  and Teare, reference 4* 

This assumption o f complete equ ilib rium  i s  on the conservative side 

because o f a  lac k  o f complete equ ilib rium  would mean lower e le c tro n  con­

cen tra tio n s  and le s s  signa l a ttenuation* A ssociated w ith the  e lec tro n  

concentration  i s  the  plasma frequency., fp , and th is  quan tity  i s  

a lso  shown in  fig u re  2* the  plasma frequency i s  a parameter p roportional 

to  the  square ro o t o f free  e lec tro n  concentration  in  the plasma and i s  a 

measure o f the  n a tu ra l o s c i l la t io n  o f  m  average free  e le c tro n  ( fo r  an 

in f in i t e  plasma) * For example, in  a  plasma in  which some o f the  e lec tro n s  

have been d isp laced  from th e i r  equ ilib rium  p o s itio n  by m  ex te rn a l fo rce , 

a  re s to rin g  f ie ld  i s  c rea ted  which, i f  the  fo rce i s  removed, w il l  cause 

th e  e le c tro n s  to  o s c i l la te  about th e i r  equ ilib rium  position*  A second 

im portant property  o f  the  plasma i s  the  e le c tro n  c o ll is io n  frequency#

This param eter i s  equal to  the  average number o f c o llis io n s  undergone 

by each p a r t ic le  per u n i t  tim e. (See r e f .  5 , fo r  example.) These two 

c h a ra c te r is t ic s  are  responsib le  fo r  a tten u a tio n  o f a  rad io  signa l passing
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through the plasma. fo  determine a  q u a n tita tiv e  approximation o f the 

amount o f  sig n a l reduction  caused by a  given plasma, the  follow ing 

theory based p rim arily  on th e  th e o rie s  given in  references 5 and 7, 

i s  given* C erta in  sim plifying assumptions w il l  f i r s t  be made which 

enable so lu tions b u t do n o t, as w il l  be seen l a t e r ,  a l t e r  se riously  

the re su lts*  th e  electrom agnetic theory  b r ie f ly  presented  i s  fo r  

plane wave, monocromatle ra d ia tio n  in te ra c tin g  w ith a plane homogeneous 

se m i-in fin ite  in  thermodynamic equllibx*ium *

Consider a  plane- wave normally in c id en t upon a  sem i-in fin ite  

u n ifo ra  plasma* ih e  boundary i s  a  discontinuous from free  space 

values to  the  plasma values . At the  boundary, p a r t  o f the wave may be 

re f le c te d  and the  r e s t  transm itted  in to  the plasma. Figure taken 

from reference 8 q u a li ta t iv e ly  i l l u s t r a t e s  th is  phenomenon fo r  two 

piJMEinft. cond itions. Xn case 4(a) the  p H .a g frequency i s  approximately 

equal to  the plasma c o ll is io n  frequency. I t  can be seen th a t  the cu to ff  

fo r  r e f le c t io n  and absorption i s  q u ite  gradual $ in  the second case %(b) 

(fp »  f c) the c u to ff  i s  very sharp , and when the sig n a l frequency i s  w ell 

below fp  almost the  e n tire  wave i s  r e f le c te d . Since the second case 

corresponds to  plasma conditions a t  the  beginning o f  reen try  ( f ig .  5 

taken from r e f .  9) i f  the  sig n a l frequency i s  small p ra c tic a lly  no 

propagation through the plasma could even be expected. I t  i s  necessary, 

th e re fo re , to  have a signa l frequency near o r g re a te r  than  the plasma 

frequency i f  transmission i s  to  be a tta in e d . For th is  reason high signal 

frequencies are  used and the  problem o f f i r s t  importance becomes one o f 

absorption ra th e r  than re f le c t io n . For th is  reason only the  tran sm itted  

p a r t  o f  th e  wave w ill  be considered in  t h i s  paper.



To proceed w ith the  theory  i t  cm  "be a d d  th a t  i f  the  signa l m ve 

leng th  in  the  plasma i s  ameh g re a te r  than th e  e le c tro n  mean free  path  

o f  th e  plasma* the  ionized  gas can be assumed to  be an uncharged conducting 

continues* (See ref*  6*) The wave equation fo r  th i s  medium i s  ( fo r  

example, ref* 10)

«* jjt€ * uo ||j* « 0  ( l )

and fo r a mire trav e lin g  in  th e  x d ire c tio n

^*•̂ 1 ** ** ac « 0 (<*)
dx2 a #  d t

Assuming a harmonic so lu tio n  fo r  t h i s  e<pation r e s u l ts  in

^  fst~jnx~&x
S « Bq©

where

(K + jn)2 -  -u«(2*f8)2 ♦ .5wf(2*f8) (3)

£  i s  the a tten u a tio n  constant and n i s  the  phase constan t.

Hext consider an e le c tro n  in  motion in  a  p e rio d ic  e le c t r ic  f i e ld  

which i s  p o la r ise d  in  the y d ire c tio n , the f ie ld  can be represented  as

E -  E0e2*J f8 t

W riting the equation o f motion o f  the p a r t ic le ,  including  a damping 

force due to  e le c tro n  c o ll is io n  gives
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ae g |  .  a s  .  a*t<m  g  (5)

ite r©  1  i s  th e  e le c tro n  charge. S u b s titu tin g  equation (^) and

rew riting

%  | p  4* &  « iS 0e2lĉ :fst  (6)

AammtOB th e  p la s m  e le c tro n  c o ll is io n  frequency, f c# to  be a  constant 

allows th e  so lu tio n

y «* ( 7 )
(Sicf £. 4* SiQfg) ( 2jtf*gi3g}

She cu rren t density  assoc ia ted  w ith the  sowing e le c tro n s  i s  (ref*  6)

*T « ll@lf | f  (8)
a t

i s  again  the  e le c tro n  velocity*  S u b s titu tio n  o f  the  v e lo c ity  te rna t
using the  f i r s t  d e riv a tiv e  o f  equation  (? )  y ie ld s

(9)
(2*fc 4  S f f j f g )  3 %

Using Ohms law J  « oE and su b s titu tin g  in to  equation (9)

0 ° ®* 5^ (2Kfc + 2 sjf8) d o)

and su b s ti tu t io n  o f  equation (10) bach in to  equation (5 (a)) fo r  the 

a tten u a tio n  constant g ives (see again , r e f s .  5 through 7}



fo r  the a tten u a tio n  c o e ff ic ie n t .

Solu tions to  the  plane wave equations fo r  the  tran sm itted  portion  

o f the sig n a l are  p resen ted  in  f ig u re  6 , reference  2* I t  can he seen 

th a t  fo r  values o f  p la s m  frequency much la rg e r  than the  c o llis io n  

frequency, fp  »  f c - to  signa l w il l  be cut o f f  sharply fo r  values o f 

fg  approximately equal to  fp* For values o f  fp •» f c , however, the 

a tten u a tio n  i s  rnxoh more g radual. Ube range o f  fp »  f e i s  associated  

w ith high a l t i tu d e s  and values o f fp  f c are assoc ia ted  with low 

a l t i tu d e s .  I f  f g i s  le s s  than the  maximum value o f %> th e re fo re , 

the signa l would be cu t o f f  sharply  as reen try  begins and the  re tu rn  o f the 

signa l a t  lower a l t i tu d e s  (as fp  again i s  reduced to  fg) would be 

gradual and d i f f i c u l t  to  p re d ic t, fo  compare th is  p red ic tio n  w ith actual, 

f l ig h t  t e s t  d a ta  consider fig u re  ? . Here on a  plasma frequency-velocity  

p lo t  i s  shown the MA-6 Mercury f l ig h t  reen try  t ra je c to ry  ( r e f .  8 ) .  From 

the  theory on® would expect s ig n if ic a n t  a tten u a tio n  o f C-band telem etry  

(5*5 HSU) fo r  the  p a r t  o f the  tra je c to ry  above a  l in e  drawn a t  a plasma 

frequency value o f  5*5 KMC. Actual a tten u a tio n  o f  C-b&nd telem etry  d id  

indeed occur during ree n try  b u t not fo r  as g re a t a p a r t  o f the  t ra je c to ry  

as in d ica ted  by the  simple theory . I t  i s  seen from the f ig u re , however,
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th a t  the  theory has p red ic ted  m  Inclusive  envelope Xn which rad io  

b lackout d id  occur.

A ttenuation o f  o ther signal frequencies may be approximated in  

the same memmr as m s  done fo r  th e  C-band s ig n a l . At c e r ta in  fire- 

tnenc ies above C-bsnd; t e w ; atmospheric a tten u a tio n  becomes a 

problem which m ist a lso  be given considera tion , f ig u re  8 , taken 

from reference  11, fo r  example, i l l u s t r a t e s  hm  atmospheric a ttenua­

t io n  e n te rs  the- problem a t  s ig n a l frequencies much above 10 KUD. 

fbe plasma conditions given in  f ig u re  7 are  those e x is tin g  a t  the 

most severe p a r t  o f  the  flow ( th a t  i s ,  behind a aomal shock) bu t 

since o ther p o sitio n s  in  th e  plasma are  so dependant on lo c a l flow 

conditions which depend fo r  exaj^ile, on vehicle  shape, flow separa tion , 

and so fo r th , they  were not considered, fo r  the  b lu n t body case.

©je signa l b lackout problem has been e s tab lish ed  and i t  remains 

now to  show th a t  the  J e t  probe proposal can be app lied  to  th is  problem 

and th a t  some degree o f  success o f the  proposed method ean be 

e s ta b lish e d «



CHAPTER IX

OF WORK BOBS OH £HE JET PROBE

The expression wJ e t  probe** o r M forw ard-facing jet** as used in  

th is  paper re fe r s  to  the concept o f a  gas J e t  issu in g  d ire c tly  forward 

from a  high-speed b lu n t body* The J e t  a l t e r s  the  s treng th  and shape 

o f  the  bow shock o f  the  body, f&M which i t  i s  flowing and thereby 

has a  la rg e  influence on the  aerodynamic c h a ra c te r is t ic s  o f the  body*

Before considering the  ap p lica tio n  o f the  J e t  probe to  the  b lack­

out problem, i t  i s  d e sirab le  to  look in to  the  f lu id  flow s tu d ies  th a t  

hawe been done on the  J e t  both experim entally  and th e o re tic a l ly . A 

re-view o f  t h i s  work i s  a necessary p a r t  o f understanding the  reasons 

why l i t t l e  considera tion  has been given to  the  J e t  in  work done on the 

blackout problem thus f a r ,  lem o n s o f exp lo ra tion  o f  th i s  concept are  

given and p resen t l im ita tio n s  o f  the use o f the  probe are po in ted  o u t.

The idea  o f  In je c tin g  a  gas forward in to  a  free-stream  flow was 

explored as e a r ly  as 1951 when some in v es tig a tio n s  were made ( r e f .  12) 

to  determine the  e f f e c t  o f  a  sonic J e t  on the  drag o f  a H u n t body 

in  tran son ic  flow , I t  was observed in  th a t  paper (a lso  subsequently 

in  r e f s ,  15-1?) th a t  th e  J e t  issu in g  upstream a t  a  high exhaust v e lo c ity  

could cause a la rg e  change in  the  aerodynamic c h a ra c te r is t ic s  o f the 

body from which i t  was emerging* This work was extended by th e  author

lh
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and Mr. J .  1* S te r r e t t  a t  a  free-stream  Maeh number o f  6 .0  w ith 

ad d itio n a l in te re s tin g  result©  ( r e f .  18) ,  will ch. a re  now given.

High-speed movie© shoved th a t  the a l te ra t io n  o f  the  main-stream 

stock caused by a  forw ard-facing J e t  can be placed in to  too d is t in c t  

categories# In  on© case th e  J e t  produces no apparent change in  the 

bow stock over the  body o ther than to  cause i t  to  increase  in  s iz e .

In  o th er words > the  m ain-stream flow appears to  see an increasing ly  

la rg e r  b lu n t body as the J e t  p ressure  i s  increased , The bow shock 

in  th i s  case i s  q u ite  steady and the  flow phenomena I s  s im ila r to  

th a t  normally observed w ith gas o r l iq u id  in je c tio n  ( fo r  example, 

r e f s .  12-1?) * In  the  second case , an e f f e c t  which was qu ite  d if fe re n t  

was observed) the  main-stream stock was f a r  removed from th e  face o f 

the model. I t  i s  in  th is  condition  th a t  the  J e t  may have toe  a b i l i ty  

to  perm it .successful rad io  transm ission . An e x ce llen t i l l u s t r a t io n  

o f  toe  too cases o f  ©hock displacem ent can be seen in  fig u re  9 fo r  a 

model which has a nominal J e t - e x i t  Mach number o f  6 *% and a r a t io  o f 

model diam eter to  J e t - e x l t  diam eter (% /d j)  o f  1*12* The photos fo r  a 

r a t io  o f J e t - to t a l  p ressu re  to  free-stream  to ta l  p ressure  ( P t , j /P t ,« )  

o f 1 .1% through 2*51 ©how th a t  toe  main-stream stock fo r  th is  range i s  

e s s e n t ia lly  o f the  same shape as a bow stock over a b lu n t body w ith no 

J e t  flow) t h i s ,  th e re fo re , i s  an example o f toe  f i r s t  case mentioned 

above* These photos a lso  show th a t  the  J e t  i t s e l f  ha© gone through a  

normal o r overexpansion stock before  meeting to© main stream . Merely 

as a  means o f convenience th is  e f f e c t  on the  mato'-stream shock w ill  be 

re fe rre d  to  as toe  strong case, re fe rr in g  to  the  bow type main-stream
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shock and the  strong overexpansion shock in  the  Jet*  fhe  second case, 

the  case o f la rg e  main-stream shock displacem ents, i s  seen In  the  photos 

fo r  v a ria tio n s  in  P t,j/P t,<*  0.^5 te*ough 0*86, Here, as s ta te d

shove, the  main-stresm shock i s  f a r  removed fro® th e  face o f  the  model, 

as much as e ig h t tim es th a t  fo r  the  case o f the  strong  ©hock, the  

example shown in  fig u re  9 i s  fo r  a  model in  which a i r  was used as the 

j e t  gas. She e f fe c t  o f  the  use o f  helium as the  j e t  gas may he found 

in  fig u re  10*

fhe graphical determ ination o f  the main-stream displacem ent d istances 

fo r  the  examples fo r  figure© 9 and 10 a re  shown in  f ig u re s  11 and 12. 

fhese  d a ta  show the  measured shock displacem ent d istance  divided by 

model diam eter p lo tte d  versus je t- to - f re e -s tre s m  to ta l-p ressur©  ra tio *

While f ig u re s  9*12 a re  examples o f the  da ta  obtained in  the  experi­

ments o f reference  10 fo r  p a r t ic u la r  models, f ig u re s  13 and 1^ are 

snssaary p lo ts  o f these  data* f ig u re  13 shows maximum values o f  i /%

(the  r a t io  o f shock s tan d -o ff  d istance  to  model diam eter) p lo tte d  

versus model angle o f a tta c k . A rap id  decrease i s  seen in  

as th e  angle o f a ttac k  i s  increased  even s l ig h t ly ,  f ig u re  lh  i s  a  p lo t 

o f  l /%  as nominal e x i t  Mach number fo r  the  t e s t s  in  which a  maximum 

appeared to  have been reached. I t  can be seen here th a t  %&&/% 

in creases  g re a tly  w ith j e t  e x i t  Mach nm bcr fo r  a l l  the  models tested* 

fhe  p lo t  a lso  i l l u s t r a t e s  the  decrease in  1̂ * / %  fo r  any given Mach 

number as % /d j increases* Since the  da ta  fo r  th is  p lo t  were taken 

from both  th e  a i r  and the  helium t e s t s  the  Mach number v a ria tio n  

tends to  ignore o ther d iffe ren ces  in  the  p ro p e rtie s  o f th e  gases on 

% ax/%* I t  cannot be sa id  here th a t  the  j e t  e x i t  Mach number p lays
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the only ro le  in  the  marked increased  in  Z ^ v /da when helium in s tead  

o f  a i r  m s  te s te d  in  models, h a t th i s  question w ill  he given fu r th e r  

considera tion  *

Summarizing the  experim ental r e s u l ts  o f reference 18 m  fin d  

th a t  in  generals

1 . ffiie nature o f  the. a l te ra t io n  o f  the  main-atresaa shock caused 

by the  J e t  could be placed in to  two d i s t in c t  ca teg o rie s . In  one case, 

the  bow shock was forced  away from th e  body b u t re ta in e d  i t s  basic  

shape* In  Hie second ease the shock was f a r  removed from th e  body and 

appeared to  be l e s s  steady than  in  th e  f i r s t  case .

2 , th e  case when the la rg e  displacem ents were observed was seen

to occur at higher values o f to ta l pressure ratio either as the Jet ex it 

Ifech master of the model to Jet«©3dt-diameter ratio was increased.

3 * Wxm the  la rg e  displacem ent case occurred, the  leng th  o f  the  

displacem ent w ith  re sp ec t to  model diam eter was seen to  increase  as the 

J e t  e x i t  Mach number wm  increased  from 1 to  10*3# and a lso  as the  model 

to  jeV ex lt-d ia m e te r  ra ti©  m s  decreased and approached 1*0*

%* Tkm la rg e  displacem ent o f  the  main-stream shock was observed 

to  f a l l  o f f  rap id ly  as the angle o f  a tta c k  was increased .



CHAPTER XXI

THEORETICAL LISCUSSIGH GF THE JET PROBE HELL

The most s ig n if ic a n t  r e s u l t  o f the  experim ental da ta  reviewed in  

chapter IX was the observation o f a  la rg e  displacem ent o f the  bow shock 

under c e r ta in  t e s t  conditions * These conditions had not been previously  

defined  in  terms o f  j e t  pressure* j e t  Mach number* etc*

Because o f  the  ia^ortance of th e  la rg e  displacem ent phenomenon 

in  th e  ap p lica tio n  o f the  j e t  probe to  the  blackout problem) and 

because th is  phenomenon i s  new, i t  i s  f e l t  th a t  an in c lu sio n  o f a  

poss ib le  q u a lita tiv e  explanation  o f the  concept should be presented* 

Perhaps a good p lace to  s t a r t  would be w ith m  explanation  o f what the 

j e t  flow does as i t  exhausts fra®, the  e x i t  o f the  probe*

A j e t  exhausting in to  s t i l l  a i r  o r in to  m  opposing stream w ill 

expand I f  the  pressure  ju s t  ou tside  the j e t  i s  le s s  than  the  pressure 

.in th e  j e t  a t  the  ex it*  th a t  is*  i f  p j /%  > 1 * (8*® fig* 15*) I f  the

pressure  j u s t  ou tside  i s  g re a te r  (Px/Pg < 1) the  j e t  w ill  compress. In  

add ition  i f  the  j e t  flow a t  the  e x i t  i s  sonic o r supersonic th a t  is* 

i f  Mj > 1 ,  expansion waves w il l  form a t  the e x i t  fo r  the  case where the 

j e t  flow expands and cos^ression  waves w ill  form fo r  the  case where j e t  

flow i s  forced to  compress. Xa e i th e r  case these waves w il l  cross the 

exhausting J e t  and w il l  be re f le c te d  a t  the  j e t  boundaries. (See 

f ig s .  15(a) and (b) and 19 and 20 .) Associated w ith the  j e t  How are

IS
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regions o f mixing in  the  boundaries o f  the  J e t  and the  ou tside  flow*

Bo d a ta  a re  a t  p resen t av a ilab le  stitch  give the th ickness o f th i s  

mixing reg ion  fo r  two opposing flews o r two flow® a t  high Kaeh numbers • 

References 21 and 22* however* p re sea t da ta  which show th a t  fo r  a  j e t  

exhausting a t  low supersonic Mach numbers in to  Quiescent a i r  the  region 

o f  mixing w il l  extend approximately 5°  to  e i th e r  side  o f  the  th e o re tic a l 

j e t  boundary* Due to  th e  absence o f da ta  a t  o t te r  Mach numbers th i s  3° 

mixing region was assumed fo r a l l  cases in  th is  study* One r e s u l t  o f  

reference  22 was th a t  the mixing region was not influenced  s ig n if ic a n tly  

by the  j e t  e x i t  Mach number fo r  th e  range te s te d . Before proceeding to  

a method fo r  p red ic tin g  th e o re tic a l ly  under what conditions the  j e t  

exhausting from the body w i l l  e n te r  in to  the  strong  shock case or the 

la rg e  displacement m m  noted in  th e  experimental resu lts*  end sketched 

fo r  reference  in  fig u res  15(a) and (b ) , one more flow condition  must be 

e s ta b lish e d . As the  flows on the  cen ter l in e  o f the  j e t  and the mein 

supersonic opposing flow come to  a  mutual s tagnation  p o in t w ith  resp ec t 

to  th e  probe ( f ig .  15) ,  as they must* th e  stagnation  p ressu res o f both 

flows must be eq u a l. f h is  requirem ent i s  perhaps Use most s ig n if ic a n t 

one a ssoc ia ted  w ith the  whole flow phenomenon because i t  1© believed  to  

be the condition  which determines the  behavior o f  the  supersonic j e t  

flow# At th e  stagnation  point* therefore*

(1)

U W )
$ t* j £t,<» 2 t* j
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where a prime denotes conditions a f te r  a  normal shock* For a given

£ i
pt ,

p i
supersonic main stream Mach number -*&**-> i s  fixed  ( fo r  example, ref*  23) *

„0®
Pt*09For a given r a t io  o f main stream to  J e t  to ta l  p ressure  th ere fo re

p . . pt , j
i t  i© seen th a t  i s  fixed  (eq . ( l ( a ) )  which mean© the supersonic

■^t,J
Mach number a t  which the  J e t  overexpands o r goes through a  normal shock,

i s  a lso  fixed* For example, consider a J e t  exhausting a t  a  given Mach

number and a main stream  flow a t  an id e n tic a l Mach number* I f  the  J e t

and main stream to ta l  p ressu re  are  equal, « \ t then a normal shock
Ft,«®

w ill  occur Ju s t a t  the  J e t  e x i t  and a  stagnation  p o in t w ill  occur very

close to  the  J e t  e x i t  s im ila r to  figu re  15(e) * I f ,  however, > 1
P t,»

the J e t  must expand ( th a t  i s ,  the  gas acce le ra te s  to  a h igher Mach

number) as i t  leaves the  nozzle in  order to  satisfy- inw iseid  normal

shock re la tio n s  (eq* l( a ) )#  %  to  now the e x is tin g  pressure r a t io

p^/pg fo r  th is  case ( f ig .  15) has not been considered, h u t i t  was

pointed out th a t  i f  p^/pg < 1 the  J e t  would compress and slow down as

i t  leaves the nozzle. Conceivable i t  could occur, due to  e x te r io r  boundary 
P t J

conditions th a t  > 1 req u irin g  an expansion fo r  normal shock
Pt,*>

re s t r ic t io n s  and p^/pg < 1 requ iring  a  compression. Since these two 

conditions cannot, o f  course, sim ultaneously occur i t  must be reasoned 

th a t  i f  % /pg  < 1 in v isc id  normal shock conditions are  not s a t is f ie d .

In  o th er words the  J e t  cannot d ire c tly  go through a normal shock in  order 

to  s a t is fy  P l>3 -  This incom patib ility  can be removed, however,

by considering the  J e t  mixing region , since a  lo s s  in  to ta l  head through 

the  mixing region could allow a l l  above conditions to  be met. fh a t  i s ,  

i f  the  J e t  cannot expand s u f f ic ie n tly  to  meet both e x i t  and c e n te r- lin e
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stagnation  pressure  cond itions, then  sot© viscous mixing ev iden tly  must 

take p lace along the  cen ter l in e  to  account fo r  th e  necessary j e t  

p ressu re  reduc tion , (See f ig ,  15(h) ♦) Q u a lita tiv e ly , then the  conditions 

o f strong shock case ( f ig ,  15{&)) and la rg e  displacement case (fig#  15(h)) 

haw  been given an explanation# Bext some q u a n tita tiv e  examples o f the  

tiro cases w ill  he given# These examples a re  fo r  a  j e t  exhausting in to  

s t i l l  a i r  and are th e re fo re  much e a s ie r  to  handle than the two flow 

problems. However, they s t i l l  .give r e s u l ts  which a re  believed  to  be 

analogous to  the  ac tu a l two opposing flow problems.

Coarse n e t c h a ra c te r is t ic  diagrams fo r  two-dimensional j e t s  

exhausting in to  s t i l l  a i r  a t  several values o f P^/Pg are sketched in  

f ig u re  16# fiie p ressu re  r a t io  (pg/&® * 1 .5 ) was held  constant and the  

to ta l  pressure  o f the  j e t  m s  varied  to  produce d if fe re n t  values o f  

p^/pg# That i s

2 k « 2 *  pt,«> to \
$2 ~ *2 * t ,«  H , j  ^

where the  f i r s t  term on the r ig h t  i s  held  constan t, the  second term i©

varied  and the  th ird  and fo u rth  terms are fixed  fo r  a  given j e t  model

and free-stream  Mach number. Also shown in  fig u re  16 a re  the  assumed

5° mixing reg ions. These four sketches i l l u s t r a t e  the conditions fo r

the  la rg e  displacement type and the  strong shock type o f flow occurrence.

In  fig u re  16(a) i t  can be seen th a t  p* > p! everywhere on the  cen ter
t ,  j  t,*»

l in e  before  mixing occurs and, th e re fo re , fo r  equal stagnation  p ressures 

(a  condition  th a t  must be met somewhere on the cen ter l in e )  some mixing
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mxst  take place to  decrease the  to ta l  pressure  o f  the  J e t ,  In  th is

fig u re  and a lso  in  fig u res  16(b) and 16(c) the  j e t  cannot expand to  a

Mach number high enough fo r  p i 4 to  he equal to  p ' ’without mixing

energy lo ss  because o f  the  e x it-p ressu re  r a t io  P1/P2 * fhese cases

where mixing occurs are believed  to  he the cases where the la rg e  displace*

meat type p a tte rn s  occurred in  the  experimental data* and are o f the  type

sketched in  fig u re  15(h)# When th e  conditions are  such th a t  mixing must

take p lace , the  d istance  the  j e t  p en e tra tes  in to  th e  main stream i s

such g rea te r  than a case where a mixing lo s s  i s  not requ ired  to  s a t is fy

c e n te r- lin e  cond itions. A case where j / p^ «  i s  la rg e  enough to

allow an expansion and normal shock lo s s  s u f f ic ie n t  to  s a t is fy  cen ter-

l in e  conditions w ithout a mixing- lo s s  i s  shown in  .figure 16(d ) , and

th is  ease i s  s im ila r to  th e  one sketched in  fig u re  1 5 (a ) . Here the  d istance

to  the  normal shock i s  much le s s  than in  the above cases and th i s  i s  an

example o f the strong shock case# How th a t  two d if fe re n t  type® o f flow

conditions have been discussed  for  the  simple two-dimensional model

exhausting in to  s t i l l  a i r  and these  two d if fe re n t  types have been assoc ia ted

with what has been experim entally  observed, i t  i s  in te re s tin g  to  look

next a t  the  regions a t  which these  two d if fe re n t  types occur and to  see

how these regions vary th eo re tic a lly *  fig u re  IT fo r  d if fe re n t  j e t - e x i t

M&eh numbers shows these  reg io n s . Tho so lid  l in e  on the  fig u re  rep resen ts

th e  Mach mm&er necessary fo r  p i  * to  equal p i ,  and i s  obtained- z,<*>
fro m equation l ( a )  fo r  o 6 .00 . *Ehe dashed l in e s  are the  maximum j e t  

Mach numbers th a t  can be reached on the cen ter l in e  by expansion from 

th e  j e t  e x i t  and are obtained fro© equation (2) and frosm
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% ax * n  ♦ 2( v2 - v i) (3)

where v i s  the  Pran&tl-Meyer expansion angle, o r angle through which 

a  sonic flow must tu rn  in  o rder to  expand to  a  given Mach. number.

Flow conditions rep resen ting  the- strong  shock case would occur 

shove the  in te rse c tio n  o f  the  dashed and s o lid  l in e s  and la rg e  d isp lace ­

ment cases would occur- below the in te rsec tio n #  $he maximum F t,j/^ t,« °  

fo r  la rg e  displacem ent a t  any given Mach number increases as the  e x i t -  

p ressu re  r a t io  pg/p^ increase® , t h i s  agrees w ith  the  experim ental da ta  

i f  i t  i s  assumed th a t  increasing  the body-to~Jet-ex it-d iam eter r a t io  

increases pg/lb* Also seen i s  the  f a c t  th a t  the  J e t - e x i t  Mach numbers 

a re  very im portant in  th a t  the BuuKjmuiii values o f fo r la rg e

displacem ent increase  rap id ly  as the  e x i t  Mach number in c reases . Hhis 

same trend  o f increasing  maximum P t, w ith  Increasing  e x i t  Mach

number was ex ac tly  what was observed experim entally . For low, nearly  

sonic e x i t  Mach numbers the  reg ion  over which la rg e  displacem ents occur 

i s  very sh o rt. Because o f th is  and because o th er in v es tig a tio n s  up 

u n t i l  now have not been run a t  high e x i t  Mach numbers these phenomena 

o f  la rg e  displacem ents have no t received  much a tte n tio n  as was mentioned 

in  chapter 1 . Figure 18 i s  a  re p lo t o f fig u re  IT except th a t  helium 

was used as the  J e t  gas. fbese  curves are  s im ila r in  tren d  b u t the  most 

UXportaat t td a e  to  see here la  th a t  the  awdmum values o f Pt j J /p tjm 

fo r  la rg e  type displacem ents fo r  a .given pg/p» i s  very  much g re a te r  fee? 

helium than fo r  a i r .  !fhis again was noted experim entally .

© ieo re tiea l examples based on two-dimensional flow in to  s t i l l  a i r  

have thus been given which help to  exp la in  the  observed experim ental 

r e s u l ts  o f the  more complicated, two opposing How problems.
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fee  r e s ta t s  o f  the  experim ental t e s ta  re v ie w !  in  chapter I I  have 

shown th a t  th e  forward fee ing  J e t  can cause a  la rg e  a l te r a t io n  o f the 

bow shock of a  b lu n t body. In  o rder to  apply these  r e s u l ts  to  a  

ty p ic a l b a l l i s t i c  reen try  body fo r  which the  blackout problem was 

defined in  chapter I  r e f e r  f i r s t  to  th e  ©hatch o f  f ig u re  19. Here 

the  b lu n t body i s  used as an antenna probe extending through bu t not 

a lte r in g  the  main bow shock. To use the  J e t  to  a l t e r  the  paren t bow 

shock w ill  no t be considered because i t  must be assumed th a t  the  method 

used to  allow rad io  transm ission  w il l  not a l t e r  to  any s ig n if ic a n t 

decree the  aerodynamic c h a ra c te r is t ic s  o f the  paren t v eh ic le , A small 

probe o f th i s  type would be sub jec t to  heating  along tb s  side© o f the 

probe bu t i t  w il l  be assumed th a t  th e  J e t  flow w in  be s u f f ic ie n t  to  

cool the probe adequately in  th i s  reg ion  and th a t  the  face o f fee  

probe which i s  -subjected to  fee  normal p a r t  o f  the  bow shock w il l  a lso  

have s u f f ic ie n t  p ro tec tio n  when fee  gas i s  being used. A small probe 

w ithout c o d in g  could not survive fee  reen try  f e a t ,  fee  b lu n t probe 

w ill  have a  strong  bow-type shock assoc ia ted  w ith i t  and w il l  have 

i n i t i a l  e le c tro n  concentrations and plasma frequencies id e n tic a l to  

fee  le v e l behind fee  bow shock o f fee  b lu n t paren t veh icle  ^assuming 

equilib rium  d is tance  i s  very sm a ll) . feese  conditions have already

2k
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been discussed in  chapter I* ©ms the  io n isa tio n  problem associated  

w ith the  b lu n t antenna probe w il l  be nearly  id e n tic a l  to  th a t  o f the 

paren t c h i c l e .  For t h i s  d iscussion  the  gas j e t  operating  a t  a strong 

shock condition w ill  not be considered. I t  i s  tru e  th a t  the  strong 

shock case fo r  the j e t  (s im ila r  to  l iq u id  in je c t io n ) , i s  i t s e l f  a means o f 

reducing the amount o f e le c tro n  concentration  a t  the  probe, bu t in  th i s  

d iscussion  I t  i s  desired  to  show the increased a b i l i ty  given. by the  j e t  when 

operated so as to  e s ta b lis h  the  case o f la rg e  displacem ents. Bata a c tu a lly  

needed in  accu ra te ly  computing the  degree o f e le c tro n  concentration  a t  

the face o f the  antenna, such as how the two flows mix, recombination 

tim es, face and flow tem peratures, and so fo r th , haw  not been obtained 

experim entally . Factors which m y  be approximated from the re s u l ts  o f 

reference 18,  however, such m  antenna face pressure  and geometric a rea  

r a t io s ,  suggest th a t  the  j e t  may be used successfu lly  and by making 

fu r th e r  assumptions a  model case w ill be considered. Wrm th e  experi­

mental r e s u l ts  (chap ter I I )  the  design param eters fo r  the  j e t  can be 

e s tab lish ed  (such as = i ,  high j e t  e x i t  Mach number, and so f o r th ) .

I t  w ill  be assumed th a t  w ith these data  i t  i s  te c h n ic a lly  possib le  to  

design a j e t  antenna which w il l  operate a t  the  condition o f la rg e  d is ­

placements throughout the  p a r t  o f  the reen try  maneuver where a tten u a tio n  

reduction  i s  needed.

I t  3ms been shown th a t  the  j e t ,  when operating  in  the la rg e  d is ­

placement reg ion , mixes w ith the free-stream  flo v  f a r  ahead o f  the  body*

(See f i g .  2 0 (c ) .)  Furthermore, the a i r  th a t  goes through the  s trongest 

p a r t  o f  the  bow shock must, in  add ition  to  mixing, expand rap id ly  around
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the  probe* th e  d istance  the  main stream  gas behind the bow shock m ist 

tra v e l  while miking w ith th e  j e t  gas w il l  provide time fo r  cooling, and 

some recom bination. *£he d istance  trav e led , and the amount o f  mixing, I s  

la rg e  when compared to  the r e la t iv e ly  sho rt s tan d -o ff d istance  o f the  strong 

shock case, figu re  20(b)* In  ad d itio n , the sch lie ren  photographs show 

th a t  the  size  o f  the  normal o r strong  p a r t  o f the  bow shock I s  decreased 

and the shock wave in  the  proxim ity o f the  antenna face I s  re la t iv e ly  

ob liq u e . Free-stream  a i r  crossing  m  oblique shock wave w il l  encounter 

a such sm aller r i s e  In  tem perature than i t  would in  crossing  a normal 

shock. A few reasurements o f the  oblique shock angle a t  the  ax ia l 

p o s itio n  o f the  j e t  probe face were made from the  se h lie ren  photographs 

and these  d a ta  are  shown in  figu re  21. I t  i s  seen th a t  th is  angle i s  

r e la t iv e ly  independent o f the  j e t  param eters as long as the  j e t  i s  

operating  in  the  la rg e  displacem ents regime. More im portant, however, 

i s  the  fa c t  th a t  th is  angle i s  only s l ig h tly  la rg e r  than the  free-stream  

Mach wave angle (a  compression wave caused by an in f in i te ly  small die* 

turbance) * Since the Mach angle decreases rap id ly  w ith increasing  

free-stream . Mach number, f ig u re  21, i t  i s  encouraging to  see th a t  the 

flow has nearly  expanded to  these  cond itions, because i t  suggests th a t  

the  shock angle a t  the  probe may be even le s s  a t  free-stream  Mach 

numbers h igher than th a t  te s te d . Since the  le s s  normal i s  th e  shock 

wave angle, the le s s  w ill  be the re su ltin g  e le c tro n  concentration  and 

the  lower w ill  be the plasma frequency, i t  i s ,  o f  course, desirab le  to  

look fo r  p a r t ia l  a lle v ia tio n  o f the  blackout problem along these  l in e s .

By assuming equilib rium  condition© to  e x is t  d ire c tly  behind the  shock 

(a  s i tu a tio n  much more severe than a c tu a lly  occurs, as w il l  be seen below)
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i t  1* poss ib le  to  c a lcu la te  th e  plasma frequency behind the  oblique 

shock and compare i t  to  the  more severe normal shock case* fbe plasma 

conditions e x is tin g  behind the  oblique p a r t  o f the  shock have been 

approximated as a function  o f shock angle in  the  follow ing manner, 

fhe s ta te  p ro p e rtie s  e x is tin g  behind an oblique shock w ith a shock 

angle 9 a t  a  free-stream  Mach number %  are  id e n tic a l to  the  

p ro p e rtie s  e x is tin g  behind a  normal shock wave occurring a t  a  free -  

stream  Mach masher o f  Mg, where Mg « %  s in  9. ffliis i s  due to  the  

f a c t  th a t  an oblique shock wave a c ts  as a normal shock to  the  flow 

perpendicular to  i t .  (See, fo r  example, r e f .  2%.) At a given a l t i tu d e ,  

th e re fo re , since the  lo c a l  free-stream  speed o f sound i s  the same fo r 

both cases, the  v e lo c it ie s  o f the  two cases a re  re la te d  in  the  same 

manner, ?2 « V^sin 9 . As a function  o f  9, th e re fo re , plasma frequencies 

were found by tra c in g  along constant a l t i tu d e  l in e s  in  f ig u re  7 to  the 

ca lcu la ted  Vp and reading the  value o f  plasma frequency on the o rd in a te . 

For the  Mercury tra je c to ry  shown in  f ig u re  7 the plasma frequencies fp  

have been obtained using th is  method and these  r e s u l ts  along w ith the  

normal, shock ease a re  ©tom in  fig u re  22. t h i s  f ig u re  shows th a t  the 

maximum plasma frequency obtained in  the  tra je c to ry  shown decreases as 

the  shock angle decrease®. An angle o f  5CP fo r  example, has reduced 

the  maximum plasma frequency by almost a  h a lf  an order o f magnitude 

over the  normal shock value. In  the  above ca lcu la tio n s  chemical 

equ ilib rium  was- assumed to  e x is t  immediately behind the flow. A ctually 

the  equilib rium  d is tan ces fo r  th e  o u te r po rtions th a t  i s  the  oblique 

p a r t  o f  the  shock wave are f i n i t e .  (See r e f .  %.) In  add ition , the



20

expansion o f the  f l m  in  t h i s  reg ion  w ill  help to  reduce the  -degree o f 

ion isation*  Figures 25 and 24 are  sketches from unpubXished ca lcu la tio n s 

which show the io n isa tio n  d is tan ce , and percent o f  io n isa tio n  to  equi­

lib rium  io n isa tio n  as functions o f oblique shock angle* Figure 25 show 

an increase  in  io n isa tio n  d istance  o f  almost two orders o f magnitude a© 

a normal shock i s  reduced to  an oblique angle o f around 20°. Figure 24 

shows th a t  reducing the bow shock angle decreases the  percen t o f con­

cen tra tio n  th a t  w il l  reach equilib rium  conditions * In  ad d ition , the  

gas used in  the J e t ,  can be se lec te d , as one w ith a la rg e  a f f in i ty  fo r 

e le c tro n s . Beferenee 25,  fo r  example, has shown th a t  w ater vapor has 

the a b i l i ty  to  reduce s ig n if ic a n tly  e le c tro n  concentrations in  rocket 

exhausts* F in a lly  from what ha© been determined experim entally and 

th e o re tic a lly  the  p ressures a t  the  f ro n t o f the  probe are known to  be 

very much lower than  the  stagnation  p leasure  behind the  normal p a r t  o f 

the  shock. With the  assumption th a t  the pressure on the face o f  the  

probe i s  1,25 p* (based on c o rre la tio n  between theory and da ta  o f 

r e f .  18) a second curve labe led  probe has been drawn fo r  comparison 

in  fig u re  ?* This reduction  p ressure  a t  the  face o f the  antenna again 

accounts fo r  a  reduction  in  maximum, p la s m  frequency reached, The value 

i s  an order o f magnitude lower than the  b lu n t face bow shock values 

(MA~6 f l i g h t ) .

Despite these  encouraging trends a disadvantage o f the J e t  system 

e x is ts  which needs fu r th e r  considera tion . This disadvantage o f the J e t  

system i s  the  in s ta b i l i ty  in  the occurrence o f the  la rg e  displacement 

phenomenon a t  even small angles o f  a tta c k . This occurrence o f in s ta b i l i ty
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has a lready been .noted In  chapter IX. 4  small flow misalimement 

ev id en tly  d is ru p ts  the  bonmdaiy p ressures a t  th e  l e t  allowing the  j e t  

flow to  overexpand and shorten  th e  p en e tra tio n  distance* (See fig* 1>.)

An occurrence o f  the  lo s s  o f  la rg e  displacem ents w ith  even small 

angle o f  a tta c h  would r e s u l t  in  a  lo s s  o f  most o f  the advantages l i s t e d  

above. At the p resen t tim e i t  cannot be sa id  whether th i s  in s ta b i l i ty  

problem can be reso lved  e a s i ly  w ith  ad d itio n a l aerodynamic design or 

whether i t  w il l  continue to  be a  se rio u s drawback, d esp ite  fu r th e r  

in v e s tig a tio n .

SwMiarising th e  b e n e f its  o f  the  j e t  probe we find  th a t  a  reduction  

in  plasma frequency ha# been shown to  e x is t  a t  th e  probe fo r  the  follow ing 

reasons:

1 . The s im  o f  th e  normal p a r t  o f th e  b m  shock was reduced.

2* The b m  shock wm  to  reed  to  occur f a r  ahead o f the  probe,  thus 

allowing an increase  in  time and d istance  fo r  cooling by  mixing, and 

recom bination.

3* The a i r  th a t  c rosses the  oblique p a r t  o f the  shock receive© 

much le s s  therm al a g ita t io n  and, th e re fo re , has a  lower plasma f r e ­

quency than  the  normal p o rtio n  o f the shock.

th e  equ ilib rium  d istance  fo r  the  oblique shock i s  f i n i t e ,  th a t  

i s ,  not se re .

5* fhe p ressu res  e x is tin g  in  the  proxim ity o f the  face are  much 

lower than the  stagnation  pressure' e x is tin g  behind the  bow shock.

6 . A gas w ith a  la rg e  a f f in i ty  fo r  e lec tro n s  can be se lec ted  fo r  

use w ith  the probe.
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Host o f the  assumptions made a t  th e  p resen t time in  the ea leu lfttioa  

'which ind ica ted  the  successfu l use o f a forward lac ing  J e t  need to  he 

d r i f t e d  experim entally  before i t  can f in a l ly  he sa id  th a t  th e  J e t  w ill  

he as successfu l as proposed. P a r tic u la r  in te r e s t  i s  d irec te d  to  the 

f i e ld  o f the  in v e s tig a tio n  o f  the  ac tu a l e le c tro n  concentration  h is to ry  

through the d istance  th e  pl&sssa m s t  tra v e l  from the shock to  Hie face 

o f th e  probe. In  ad d itio n , much ©are has to  he known about th e  J e t  

plasma mixing p rocess , and tests- need to  he run using gases w ith high 

absorption cross se c tio n s , M l  o f  these  area® o f  in te r e s t  a re  so com­

p lex  th a t  in  the  end a c tu a l fn e e -f lig h t t e s t  models w ith a l l  v a riab les  

rep resen ted  w il l  probably need to  he te s te d , A ll o f  these  a reas o f 

in te r e s t  must he considered before successfu l opera tion  o f  th e  j e t  

probe can be p red ic ted . C onsideration o f these  problems has become 

worthwhile, however, in  view o f the  e sp erlo en ta l r e s u l ts  tre a te d  

here which have given in d ic a tio n  th a t  the  forward fac ing  J e t  may have 

u se fu l ap p lica tio n  in  helping to  solve the  b lackout problem*
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The problem o f rad io  signa l a tten u a tio n  during hypervelocity  

reen try  lias been reviewed. I t  was shown th a t  the  s ig n a l lo s s  was doe 

to  the  presence o f  a  high concentra tion  o f fre e  e lec tro n s  e x is tin g  

behind the  bow shock o f a  reen te rin g  v eh ic le , fha ex istence  o f 

e le c tro n  concentration  and s ig n a l lo s s  was shown to  be p red ic tab le  and 

l a  q u a lita tiv e  agreement w ith a c tu a l f l ig h t  r e s u l ts .

The re s u l ts  o f  e a ^ r im su te l  and th e o re tic a l  work don® on a 

forward facing J e t  were a lso  reviewed. The ex istence  o f  a  reg ion  o f  

la rg e  bow shock a l te r a t io n  by the  J e t  was shown and th is  reg ion  was 

described in  terms o f J@t-to-probe-diam®ter r a t io ,  J e t - to - f  ree-stream  

pressure  r a t io ,  J e t  e x i t  Mach number and angle o f  a tta c k . S im plified  

th e o re tic a l considerations were given to  the shock displacement 

phenomena which provided a  p oss ib le  explanation  fo r  the occurrence 

o f the  la rg e  shock displacem ents.

F in a lly  ap p lica tio n  o f the  forward fac ing  J e t  to  the  o v e ra ll rad io  

a tten u a tio n  problem was considered. The advantages o f the  J e t  were 

s ta te d  and .several sim p lified  i l lu s t r a t io n s  were given t e a t  showed 

te a t  te e  J e t  could be used to  help  a l le v ia te  the  blackout problem.
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Although i t  has been s ta te d  th a t  much more eacperisaeatal and 

th e o re tic a l work in  o ther phases o f  the o v e ra ll problem need to  he 

undertaken# the  experimental resu lts- fo r  the  flow show

th a t  fu r th e r  work i s  worthwhile*
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( a ) . -  Sketch o f  flow  f i e l d  fo r  strong shock ca se .

Expansion o r  compression waves

Main stream  shock

J e t  shock

J e t  flow

Main stream  flow

Mixing regionMutual s ta g n a tio n  p o in t 

Pf«o  = Pt ’, J

Figure 1 5 (t>) • - Sketch o f  flow  f i e l d  fo r  la rg e  displacem ent ca se .



(a) Type o f  flow  which corresponds to  la rg e  displacem ent case  
(normal shock lo s s  "before mixing not s u f f ic ie n t  fo r  to t a l  
pressure lo s s ) )  Pp/pg = O.85 and pt ^ / p t 0̂0 = 1 .1 .

p'u> p't,®—

(h) Type o f  flow  which corresponds to  la rg e  displacem ent case  
(normal shock lo s s  "before m ixing not s u f f ic ie n t  fo r  t o t a l  
pressure lo s s ) )  Pp/P2 = 1*00 when p^ ^/p^ „ = 1 . 3 .

0 °
6 .0 0 '

(c) Type o f  flow  which corresponds to  la rg e  displacem ent case  
(normal sh o d  lo s s  "before mixing not s u f f ic ie n t  for  to t a l  
pressure lo s s ) )  P ^ /^  = when j/p ^  „ = 2 .0 0 .

0M

Com pression 
Expansion 
Stream lines 
Mixing regions

Note: Complete mixing regions 
ex ternal of stream lines 
not shown.

(d) Type o f  flow  which corresponds to  strong shock case
(normal shock lo s s  before mixing s u f f ic ie n t  fo r  t o t a l  pressure  
l o s s ) )  P i/p 2 = 2 .3 0  when pt ^ / p t 0̂o = 3 .0 0 .

Figure 16 . -  I l lu s tr a t io n s  o f  two typ es o f shock d isp lacem ents, 
p2/p 00 assumed to  be 1 .3 0  fo r  = 6 .00) Mj = 6 .0 0 .
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~  stagnation point

-----------  interface

(a) Jet off

(b) Jet on*strong shock case

c) Jet on,large displacement case

Figure 2 0 .-  Sketch o f  antenna probe
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Figure 2 3 .-  Io n iz a tio n  d istan ce  to  equilibrium , as a fu n ction
o f oblique shock a n g le .
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Figure 2^ .-  Nonequilibrium /equilibrium . Ne versus a lt itu d e  for  
various oblique shock an gles; V = 23,000 fp s .
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