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ABSTRACT 

 

Gelatinous zooplankton (GZ; cnidarians, ctenophores, and pelagic tunicates) periodically 

are the dominant members of the zooplankton throughout the majority of the world’s 

oceans.  Their unique body plans and life cycles allow them to rapidly take advantage of 

favorable environmental conditions, which has far-ranging consequences for food web 

dynamics and biogeochemical cycles.  GZ populations have been speculated to respond 

to anthropogenic changes, but few long-term studies exist to test this hypothesis and even 

fewer have examined the consequent effects on carbon export.  I analyzed two long-term 

time series in the Chesapeake Bay and one in the Sargasso Sea for annual and interannual 

changes in GZ populations and the environmental drivers of these changes.  I also 

conducted mesocosm experiments in the Chesapeake Bay and developed a carbon flux 

model for the Sargasso Sea to evaluate the role that GZ play in vertical carbon flux in 

these two regions.  In the Chesapeake Bay, summer populations of the dominant 

scyphozoan medusae, Chrysaora quinquecirrha, are positively correlated with spring 

salinity and negatively with dissolved oxygen concentrations.  C. quinquecirrha 

biovolume has been decreasing from 1985-2011, reducing predation pressure on the 

ctenophore Mnemiopsis leidyi, with cascading effects on copepod abundances.  This top-

down control of the food web extends to changes in vertical carbon flux, with the 

presence of M. leidyi reducing copepod fecal pellet flux by 50%.  In the Sargasso Sea, 

large salp blooms can completely dominate the zooplankton community, and both 

cyclonic mesoscale eddies and seasonal changes in primary production can regulate 

annual salp population dynamics.  Long-term salp population trends are correlated with 

changes in decadal climate oscillations, and a long-term increase in the most abundant 

salp species, Thalia democratica, was observed from 1994-2011.  During blooms, salps 

can graze more than 100% of the primary production, and rapidly export carbon to depth 

through sinking fecal pellets and carcasses, and through active transport via respiration at 

depth.  This carbon export to 200 m (average of 2.3 mg C m
-2

 d
-1

) is equivalent to 11% of 

the measured sediment trap flux at the same depth, but salp fecal pellets and carcasses 

attenuate slowly and can be equivalent to > 100% of measured sediment trap carbon at 

3200 m, representing a large export of carbon to the bathypelagic zone during salp 

blooms.  GZ populations in both the Chesapeake Bay and Sargasso Sea are sensitive to 

seasonal changes in the environment on annual and interannual time scales.  Long-term 

changes in GZ abundances could continue into the future, causing corresponding changes 

in carbon export. 
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 3 

 

Importance of gelatinous zooplankton 

The term ‘gelatinous zooplankton’ (GZ) refers to a taxonomically diverse group 

of marine organisms that share a similar gelatinous body with a high water (>95%) and 

low carbon content (Lucas et al., 2011).  This term traditionally includes medusae and 

siphonophores (Phylum: Cnidaria, Class: Scyphozoa, Hydrozoa, and Cubozoa), comb 

jellies (Phylum: Ctenophora), and pelagic tunicates (Phylum: Chordata, Subphylum: 

Urochordata or Tunicata, Class: Thaliacea–salps, doliolids, pyrosomes, and 

Appendicularia–larvaceans).  This low carbon to wet-weight ratio, along with their 

unique body plans, allows GZ to grow quickly and maintain much higher clearance rates 

than non-gelatinous animals with similar carbon content (Acuña et al., 2011; Pitt et al., 

2013).  Additionally, GZ have unique life histories and extremely fast reproduction rates 

when environmental conditions are optimal (reviewed in Purcell, 2005), allowing them to 

have episodic or seasonal large population increases, or ‘blooms’ (where populations are 

several orders of magnitude higher than base levels).  Both medusae and comb jellies are 

important and voracious predators of zooplankton and ichthyoplankton (reviewed in 

Purcell & Arai, 2001), and during blooms they can have extensive top-down effects on 

the food web (Purcell & Decker, 2005; Daskalov et al., 2007; Condon & Steinberg, 2008; 

West et al., 2009).  Blooms of pelagic tunicates can similarly exert top-down control on 

their food source, phytoplankton (Zeldis et al., 1995; Hereu et al., 2006; Madin et al., 

2006; Hereu et al., 2010).  The extremely high abundances that GZ are able to attain 

during blooms not only affect food web dynamics, but also make them important in 

biogeochemical cycling of carbon and nutrients.  



 4 

GZ can affect biogeochemical cycling, including vertical export, through a variety 

of mechanisms.  During the life of the animal, GZ not only excrete highly labile 

dissolved organic matter (DOM) (Condon et al., 2011), but also produce sinking material 

in the form of fecal pellets (Bruland & Silver, 1981; Madin, 1982) or mucous masses 

(Kremer, 1979; Reeve et al., 1989).  Some GZ undergo diel vertical migration, with their 

respiration, excretion, and egestion of fecal pellets at depth contributing to carbon export 

(Steinberg et al., 2000).  The sinking of dead GZ carcasses is also a significant, episodic 

pulse of carbon to the benthos in a variety of environments (reviewed in Lebrato et al., 

2012).  In addition to these direct influences, GZ may also regulate carbon and nutrient 

flux through their top-down control of food webs.  Because phytoplankton and other 

zooplankton have diverse contributions to export, GZ-induced changes in the abundance 

and community composition of these other groups may have numerous secondary effects 

on the amount and content of the vertical flux.  Accordingly, future changes in GZ 

populations would have wide-ranging effects on carbon flux through numerous 

mechanisms. 

Globally, GZ populations oscillate through decadal periods of increase and 

decrease (Condon et al., 2013), although there are long-term directional increases, and 

decreases, documented in some regions (reviewed in Brotz et al., 2012; Condon et al., 

2013).  There is a perception and concern that globally GZ populations are largely 

increasing (Daskalov et al., 2007; Richardson et al., 2009), likely in response to various 

anthropogenic effects (reviewed in Purcell et al., 2007).  However, this notion appears to 

be overstated and studies used to support this claim are often miscited (Condon et al., 

2012; Sanz-Martín et al., 2016).  Much of the ambiguity around this issue is a result of 
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the paucity of long-term GZ time series in most systems, thus estimates of trends are 

often based on only several years of data.  The question of whether GZ populations are 

changing is an important one, as GZ have wide-ranging effects on many human activities, 

including interference with commercial fishing, stinging of recreational swimmers, 

clogging intakes of power and desalination plants, and harming aquaculture operations 

(reviewed in Purcell et al., 2007; Richardson et al., 2009; Graham et al., 2014).  In 

addition to these direct effects, long-term changes in GZ populations would cause 

concurrent long-term changes in trophic interactions and carbon cycling in the 

ecosystems they inhabit.  Two examples of ecosystems where GZ can seasonally account 

for the majority of biomass in the zooplankton are the Chesapeake Bay and the Sargasso 

Sea, and the goal of this dissertation is to: 1) quantify long-term changes in GZ 

populations in these contrasting ecosystems and 2) calculate the effect of those changes 

on vertical flux. 

Chesapeake Bay 

The Chesapeake Bay is a large, highly productive estuary on the eastern coast of 

the United States and is an important nursery ground for a wide variety of commercially 

and ecologically important species.  The dominant and seasonally abundant GZ in the 

Chesapeake Bay are the lobate ctenophore Mnemiopsis leidyi and the scyphozoan medusa 

Chrysaora quinquecirrha. Adult M. leidyi feed primarily on crustacean zooplankton, and 

during M. leidyi peak abundance, can effectively control copepod populations (Purcell et 

al., 2001; Purcell & Decker, 2005; Condon & Steinberg, 2008).  M. leidyi also has a 

significant negative effect on survival of other small zooplankton and on fish eggs 

(Cowan et al., 1992; Houde et al., 1994; Purcell & Arai, 2001), and larval M. leidyi feed 
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almost exclusively on microzooplankton and even consume phytoplankton (Sullivan & 

Gifford, 2004).  Each year, M. leidyi are highest in abundance during April and May 

following increases in water temperature and copepod concentrations (Kremer, 1994; 

Costello et al., 2006), and they continue to be abundant through August (Condon & 

Steinberg, 2008).  This is then followed by a bloom of C. quinquecirrha, starting in late 

May, which feeds voraciously on M. leidyi (Cargo & King, 1990).  C. quinquecirrha can 

exert strong top-down control on ctenophore populations during summers with high 

medusa abundance, causing a trophic cascade (Purcell & Cowan, 1995; Purcell & 

Decker, 2005; Condon & Steinberg, 2008).  However, the factors controlling the relative 

abundances of M. leidyi and C. quinquecirrha differ and are linked to their contrasting 

reproductive strategies.  

M. leidyi reproduces as a simultaneous hermaphrodite and releases sperm and 

eggs into the water column, often self-fertilizing, while C. quinquecirrha alternates 

between a sexual, pelagic medusa stage, and an asexual, benthic polyp stage (Steinberg & 

Condon, 2009). The strength of the C. quinquecirrha bloom is stronger in years with 

warmer temperatures, reduced freshwater flow, and higher solar irradiance (Gatz et al., 

1973; Cargo & King, 1990; Purcell et al., 1999).  Because C. quinquecirrha feeds heavily 

on M. leidyi, years that are environmentally favorable for C. quinquecirrha exhibit low 

M. leidyi abundance (Purcell & Cowan, 1995).  A smaller M. leidyi population reduces 

overall predation on copepod populations, and copepod populations are much higher 

during years with few ctenophores (Burrell & van Engel, 1976; Purcell & Decker, 2005).  

Purcell and Decker (2005) showed that years with a negative North Atlantic Oscillation 

(NAO) Index, which leads to higher water temperatures and salinities, had higher C. 
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quinquecirrha abundances, lower M. leidyi abundances, and higher copepod abundances.  

During the spring and summer, C. quinquecirrha can control the plankton community 

and affect all levels of the food web.  However, prior studies of long-term changes in 

Chesapeake Bay GZ populations are limited in scope either spatially (Cargo and King, 

1990) or temporally (Purcell and Decker, 2005). 

Because GZ in the Chesapeake Bay can form large blooms and become the 

keystone species in the zooplankton community, they have the potential to greatly affect 

nutrient cycling in the Bay, both directly through their own feeding and metabolism, and 

indirectly through trophic cascades (Pitt et al., 2009).  In addition to affecting copepod 

abundance, C. quinquecirrha and M. leidyi shunt carbon (C) away from the main food 

web  and toward the microbial loop by releasing colloidal and dissolved organic matter 

that is enriched in C over N and is readily respired by bacteria  (Condon et al., 2011).  In 

several studies, GZ have been shown to increase primary productivity through release of 

nutrients, as well as initiating top-down trophic cascades in the zooplankton (West et al., 

2009; McNamara et al., 2014; Hosia et al., 2015).  What has not been previously studied 

is how trophic interactions and the relative abundances of these two gelatinous species 

influence particulate organic matter flux to the benthos.   

Sargasso Sea 

The Sargasso Sea is an oligotrophic region in the North Atlantic subtropical gyre, 

and salps can periodically become the dominant GZ in this area (Madin et al. 1996, 

Madin et al. 2001, Roman et al. 2002).  Salps (Class: Thaliacea, Order: Salpa) are tubular 

GZ that filter-feed on phytoplankton and microzooplankton which during blooms 
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increase in biomass to levels much higher than other zooplankton.   Large salp blooms 

occur in other environments (Everett et al., 2011; Loeb & Santora, 2012), and salp 

blooms can consume over 100% of the daily primary production until standing stocks of 

phytoplankton are depleted (Hereu et al., 2006), outcompete crustacean zooplankton for 

food (Dubischar & Bathmann, 1997), and have significant effects on particle export 

(Madin, 1982; Caron et al., 1989; Phillips et al. 2009) as detailed further below.  Thus, 

we predict salps in the Sargasso Sea will also be important grazers and contributors to 

export. The life history of salps includes alternation between a sexual stage (the 

blastozooid) and an asexual stage (the oozoid) which enables them to rapidly replicate 

and form high density blooms when conditions are favorable (Godeaux et al. 1998; 

Henschke et al., 2015).  A number of salp species can form these blooms, but for the 

majority of species, almost nothing is known of the causes or fates of the blooms.  In 

other systems, salp populations have exhibited sensitivity to interannual or long-term 

changes in the environment (Ménard et al., 1994; Atkinson et al., 2004; Licandro et al., 

2006), but studies on long-term population changes in the western Atlantic Ocean, or any 

oligotrophic region, are sorely lacking.   

Mesozooplankton biomass has been increasing in the Sargasso Sea at the 

Bermuda Atlantic Time-series Study (BATS) site over the past 17 years (Steinberg et al., 

2012), and the role that salps play in this increase is unknown.  Ménard et al. (1994) 

found that salp populations increased along with increases in upwelling due to lower 

temperatures and higher winds, and Li et al. (2011) found that salp and doliolid 

abundance in the South China Sea was affected by an increase in chlorophyll a 

concentration caused by coastal upwelling and injection of nutrients into surface waters 
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by cold core eddies in summer.  Henschke et al. (2015) modeled salp populations in the 

Tasman Sea, and found that both temperature and phytoplankton concentrations were the 

dominant drivers of salp population changes.  In the Sargasso Sea, long-term changes in 

net primary productivity (Saba et al., 2010) have been documented, with unknown effects 

on salp populations.  Additionally, cold core mesoscale eddies are an important periodic 

source of nutrient upwelling in the Sargasso Sea (McGillicuddy et al., 2007; Mouriño-

Carballido, 2009), that can increase zooplankton abundance and fecal pellet production 

(Goldthwait & Steinberg, 2008; Eden et al., 2009). The links between these large-scale 

processes, decadal climate oscillations, and salp population changes in the Sargasso Sea 

remain to be explored. 

Salps feed efficiently on small phytoplankton and bacteria and produce large, fast-

sinking fecal pellets (Caron et al., 1989; Sutherland et al., 2010), making them important 

in biogeochemical cycling.  Salps have some of the highest clearance rates of any 

zooplankton– several liters hr
-1

 salp
-1

 (Harbison & McAlister, 1979; Madin & Purcell, 

1992; Madin & Kremer, 1995).  Salps feed by filtering water though a mucous mesh that 

they then consume along with any particles caught on the mesh (Bone et al., 2003).  

Because of this, they ingest a large amount of material that passes through their guts 

undigested and becomes packaged into fecal pellets that are much larger and faster-

sinking than those of other zooplankton (Andersen, 1998).  For example, copepod fecal 

pellet sinking rates can range from 5-220 m day
-1

 (Turner, 2002; Patonai et al., 2011) 

while salp fecal pellet sinking rates range from 42-2700 m day
-1

 (Andersen et al., 1998; 

Yoon et al., 2001; Phillips et al., 2009).  Salp fecal pellet production potentially 

represents a fast, efficient pathway for organic matter in the surface waters to move to 
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depth, and during a salp bloom, salps can be major contributors to the total carbon flux 

from the surface to the deep sea, as demonstrated in the Mediterranean Sea (Yoon et al., 

1996; Fernex et al., 1996), North Pacific (Iseki, 1981), Sargasso Sea (Conte et al., 2001), 

and Southern Ocean (Phillips et al., 2009).   

While contribution to vertical carbon flux through salp fecal pellets has been 

widely studied, salp contributions to flux through vertical migration and sinking carcasses 

have been considered less frequently.   GZ are low in per individual carbon content 

(carbon content is typically ~10 % of dry weight and dry weight is ~4-5% of wet weight; 

Madin et al., 1981; Clarke et al., 1992; Bailey et al., 1995; Madin & Deibel, 1998) 

compared to values for total zooplankton where carbon content is 36% of dry weight and 

dry weight is 19% of wet weight at BATS (Madin et al. 2001).  Even huge falls of GZ 

could be an important source of carbon to the benthos, and a more important contributor 

to global carbon flux than previously thought.  Appropriately, the contribution of GZ 

carcasses to vertical export has recently been receiving more attention (Lebrato et al., 

2013), and salp carcasses have been shown to be a major source of benthic organic 

carbon in at least one region (Henschke et al., 2013).  In addition to sinking carcasses, 

vertically migrating zooplankton consume particulate organic carbon in the surface 

waters and respire or excrete it at depth (Steinberg et al., 2000), further contributing to 

vertical flux.  Calculating the contributions of these other mechanisms of vertical carbon 

export by salps is crucial to understanding the role they play in biogeochemical cycling in 

the Sargasso Sea. 

Structure of dissertation 
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This dissertation examines the population dynamics of GZ in the Chesapeake Bay 

and Sargasso Sea as well as GZ effects on vertical carbon export.  It is separated into four 

main chapters, examining GZ in the Chesapeake Bay in chapters 1 and 2, and in the 

Sargasso Sea in chapters 3 and 4.  This is one of the few studies worldwide to examine 

GZ population dynamics using long-term time series, and the only one in the Sargasso 

Sea.  Additionally, the work includes novel calculations of lifetime salp contributions to 

vertical carbon flux and experimental measurements of top-down control of vertical 

carbon flux. 

Chapter 1 – Introduction to dissertation 

Chapter 2 – utilizes two long-term time series to analyze the population dynamics 

of GZ in the Chesapeake Bay.  These time series include the Virginia Institute of Marine 

Science Juvenile Fish and Blue Crab Survey from 1999-2012 and the Chesapeake Bay 

Program Mesozooplankton Survey from 1984-2002.  Both annual and interannual 

variation in GZ abundances are discussed, along with environmental drivers, and 

potential responses to climate change. 

Chapter 3 – experimentally measures the effects of top-down control by GZ in the 

Chesapeake Bay on vertical carbon flux.  Mesocosm experiments were conducted using 

different combinations of GZ, allowing us to examine how both the quantity and quality 

of carbon and nitrogen flux changes as a result. 

Chapter 4 – utilizes the Bermuda Atlantic Time-series Study (BATS) zooplankton 

time series from 1994-2011 to analyze changes in salp population dynamics in the 

Sargasso Sea.  The annual and interannual variation of multiple species were analyzed to 
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explore the influence of environmental drivers, climate change, and mesoscale eddies.  

Published in Marine Ecology Progress Series as Stone & Steinberg (2014). 

Chapter 5 – quantifies the contributions of salps in the Sargasso Sea to vertical 

carbon flux.  Salp carcass sinking and decomposition rate experiments were conducted, 

and these results are combined with published rates of other processes to develop a model 

of salp contributions to carbon export.  Annual and interannual variation in carbon export 

and attenuation with depth is discussed.  Published in Deep-Sea Research I as Stone & 

Steinberg (2016). 

Chapter 6 – Summary and conclusions of dissertation  
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Long-term changes in gelatinous zooplankton in Chesapeake Bay, USA: 

Environmental controls and interspecific interactions 
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ABSTRACT 

 Gelatinous zooplankton populations are sensitive to environmental perturbations, 

and there has been concern over regional, long-term changes in their abundance due to 

degraded environmental conditions.  We used two time series to analyze the population 

dynamics of gelatinous zooplankton in the Chesapeake Bay, USA: the Virginia Institute 

of Marine Science Juvenile Trawl Survey (1999-2012) and the Chesapeake Bay Program 

Mesozooplankton Survey (1984-2002).  Annual and interannual variations in population 

size and distribution of the scyphozoan medusae Chrysaora quinquecirrha, Aurelia 

aurita, Cyanea capillata, and Rhopilema virrilli, as well as the lobate ctenophore 

Mnemiopsis leidyi, were compared to environmental and other biological data collected 

by both surveys.  All species except R. virrilli varied seasonally, with temperature 

controlling seasonal distribution and salinity controlling spatial distribution within 

Chesapeake Bay.  Scyphozoan population control by environmental factors was primarily 

a result of survival and asexual reproduction by the benthic scyphistomae.  C. 

quinquecirrha was present year-round, but biovolume was highest July-September and in 

salinities between 10 and 20.  M. leidyi populations were primarily controlled by C. 

quinquecirrha predation, and were most abundant in June, after waters warmed above 

18°C but before C. quinquecirrha bloomed.  High spring streamflow significantly 

reduced summer C. quinquecirrha biovolume, and low bottom dissolved oxygen 

concentrations delayed the timing of the peak bloom.  Total GZ biovolume decreased 

over both time series (1984-2012), likely due to decreases in C. quinquecirrha 

abundance, and the peak bloom was shifted later in the summer over the VIMS time 

series (1999-2012).  This reduction in C. quinquecirrha allowed for a concurrent increase 



 26 

in M. leidyi and decrease in copepod abundance.  Predicted future increases in spring 

streamflow and spring hypoxia due to global climate change would further decrease C. 

quinquecirrha abundance, allowing for future increase in M. leidyi populations.  
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1. INTRODUCTION 

Chesapeake Bay is a large estuary on the east coast of the United States, and is a 

productive habitat for a variety of commercially important fish and shellfish species.  

Gelatinous zooplankton (GZ) play a key role in Chesapeake Bay pelagic food web 

dynamics, with two species in particular that are abundant predators during the spring and 

summer: the lobate ctenophore Mnemiopsis leidyi and the scyphozoan medusa Chrysaora 

quinquecirrha. M. leidyi feeds voraciously on a wide variety of crustacean zooplankton, 

and during GZ ‘bloom’ periods exerts significant top-down control on the zooplankton 

community (Purcell et al., 1994; Purcell et al., 2001; Purcell & Decker, 2005; Condon & 

Steinberg, 2008).  Additionally, during bloom periods it competes with and consumes 

ichthyoplankton and bivalve larvae of commercially important species (Govoni & Olney, 

1991; Purcell et al., 1991; Cowan & Houde, 1993; Houde et al., 1994; Purcell et al., 

2001).  Since C. quinquecirrha also feeds on a wide variety of crustacean zooplankton, it 

can have similar effects on the food web as M. leidyi (Purcell, 1992).  However, C. 

quinquecirrha is also a voracious predator of M. leidyi, and can control ctenophore 

populations where these species co-occur (Purcell & Cowan, 1995; Purcell & Decker, 

2005; Condon & Steinberg, 2008).  The timing and strength of these interspecific 

interactions are dependent on environmental conditions and how those conditions affect 

the reproduction of these two species.  

M. leidyi are present in Chesapeake Bay throughout the year, but reproduce 

during the spring when waters warm above 10°C and there is high prey availability 

(Kremer, 1994; Purcell et al., 2001; Costello et al., 2006).  M. leidyi are simultaneous 

hermaphrodites, holoplanktonic, and develop directly.  They have extremely fast growth 
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and high production rates, and under ideal conditions can double their biomass within a 

day (Reeve et al., 1989) and produce up to 14,000 eggs d
-1

 (Kremer, 1976).  C. 

quinquecirrha can also reproduce rapidly under favorable conditions and alternates 

between sexual and asexual reproduction.  The planktonic medusae – most abundant June 

through October – broadcast spawn eggs and sperm into the water column, where the 

fertilized eggs form planulae that quickly settle on hard benthic substrate.  Those planulae 

transform into the benthic polyps (scyphistomae) which persist throughout the year, and 

can encyst if conditions are unfavorable (e.g., low temperatures, low food availability) 

(Cargo & Schultz, 1966).  Once waters warm to above 17°C in the spring (Cargo & King, 

1990), these benthic polyps asexually produce planktonic ephyrae (a process called 

strobilation) which then develop into the adult medusae.  Ephyrae production is highest in 

salinities ranging from 9 to 25 (Purcell et al., 1999). 

In Chesapeake Bay, C. quinquecirrha are controlled by spring environmental 

conditions, with warmer temperatures and higher salinities (lower river discharge) 

leading to higher strobilation rates earlier in the year (Cargo & King, 1990; Purcell & 

Decker, 2005).  These favorable spring conditions lead to higher abundances of medusae 

during the summer, which then exert top-down control on M. leidyi, and release copepods 

from M. leidyi predation pressure (Purcell & Decker, 2005; Condon & Steinberg, 2008).  

Thus, spring temperature and rainfall can have cascading, top-down effects on the 

summer food web in Chesapeake Bay.  These interannual variations in C. quinquecirrha 

abundance are inversely correlated with the North Atlantic Oscillation (NAO) Index, as 

the NAO affects temperature and rainfall regimes in the region (Purcell & Decker, 2005).  

Model predictions of the effect of climate change on the region include increases in 
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winter and spring streamflow which cause lower salinities and increases in hypoxia, 

along with rising water temperatures (reviewed in Najjar et al., 2010).  Additionally, 

increases in hypoxia are expected to also be accompanied by decreases in pH, especially 

in coastal regions (Melzner et al., 2013).  These changes in climate could have significant 

and immediate effects on GZ, with cascading effects down the food web. 

A variety of other GZ species occur in the Chesapeake at varying times of the 

year.  These include the scyphozoan medusa Cyanea capillata in the winter, the 

scyphozoan Aurelia aurita in the fall, the predatory ctenophore Beroe ovata in the fall, 

and infrequent incursions of the scyphozoans Stomolophus meleagris and Rhopilema 

verilli (Condon & Steinberg, 2009).  Because these other species are generally less 

abundant than M. leidyi and C. quinquecirrha, their respective roles in the Chesapeake 

ecosystem have been less studied and their relative importance in food web dynamics is 

unknown.  Accordingly, future changes in climate and the Chesapeake Bay ecosystem 

would have unknown effects on these species.   

Globally, GZ populations are changing in a variety of ecosystems (Mills, 2001; 

Purcell, 2005), and it is hypothesized that GZ populations will continue to change in 

response to future anthropogenic effects (reviewed in Purcell et al., 2007).  While long-

term increases are observed in some GZ populations (Brotz et al., 2012), average global 

changes in GZ populations follow decadal oscillations and increase and decrease 

periodically (Condon et al., 2013).  In Chesapeake Bay, C. quinquecirrha populations 

declined in the mid-1980s, possibly as a result of decreases in oysters, the preferred 

habitat of the benthic scyphistomae (Breitburg & Fulford, 2006).  This decrease led to a 

corresponding increase in M. leidyi and decrease in the copepod Acartia tonsa (Kimmel 
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et al., 2012).  However, the dataset used to analyze changes in C. quinquecirrha 

populations was spatially limited, and overall changes in Chesapeake Bay GZ 

populations, especially after the mid-1980s, remain to be determined.   To better 

understand how GZ populations in the Chesapeake Bay change on seasonal, interannual, 

and decadal time scales, we analyzed two time series of GZ abundance.   These time 

series cover a large spatial and temporal range, and include additional physical and 

biogeochemical data. The goals of this study were to analyze: 1) how GZ populations in 

Chesapeake Bay are changing in response to environmental variables, 2) how those 

changes affect other zooplankton through trophic interactions, and 3) long-term trends in 

GZ populations and predict how these trends may change in the future.   

  



 31 

2. METHODS 

2.1 VIMS Juvenile Trawl Survey 

 One of the time series used to assess GZ populations in Chesapeake Bay is the 

Virginia Institute of Marine Science Juvenile Fish and Blue Crab Trawl Survey (hereafter 

referred to as the VIMS survey or dataset).  This survey is primarily used to develop 

abundance indices for juvenile finfish and blue crabs, but the survey also recorded GZ 

total biovolume and species presence from February, 1999 to February, 2012.  Sampling 

was conducted using a 9.14 m semi-balloon otter trawl with 38.1 mm stretched mesh and 

6.35 mm cod end liner.  Each tow was conducted during daylight hours and consisted of a 

5-minute bottom trawl, and also fished during the net's descent and ascent.  Sampling 

occurred monthly, except during January and March, in each of 19 regions in the lower 

(Virginia) portion of Chesapeake Bay and its tributaries (Figure 1).  Within each region, 

2-4 trawls were conducted at random at each of four depth strata: 1.2 – 3.7 m, 3.7 – 9.1 

m, 9.1 – 12.8 m, and >12.8 m.  In addition to the trawl catch data, surface and bottom 

temperature, salinity, and dissolved oxygen (DO) were recorded, along with wind speed, 

wind direction, and tidal stage.  A complete description of the sampling protocol and 

study design is in Lowery and Geer (2000).   

 Because the otter trawl in the VIMS survey fished for GZ on the descent and 

ascent of the net, each tow fished for longer at deep stations than shallow stations.  In 

order to standardize across trawls, catch data were converted into biovolume caught per 

minute fished (L tow-min
-1

).  The net descended and ascended at an average rate of 0.08 

m s
-1

, and this rate was multiplied by the depth of each station and added to the bottom 
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trawl time of 5 minutes to calculate the total time of the tow, which ranged from 5.5 to 

20.4 min.  While only total biovolume of all GZ species combined was measured, the 

presence of each species was recorded, and summer biovolume is primarily C. 

quinquecirrha (Tuckey pers. comm.).  While dead GZ may have been captured during the 

benthic portion of each trawl, technicians did not record any obviously morbibund or 

severaly damaged individuals.  Because of the large mesh size (38.1 mm), hydrozoan 

medusae, small ctenophores, and scyphozoan ephyrae were not caught in the net.   

2.2 Chesapeake Bay Program 

 The second time series used to analyze GZ populations is the mesozooplankton 

monitoring component of the Chesapeake Bay Program (hereafter referred to as the CBP 

survey or dataset).  These data were downloaded from the Chesapeake Bay Program 

online Plankton Database: 

www.chesapeakebay.net/data/downloads/baywide_cbp_plankton_database, where a 

complete description of the sampling methodology can be found.  Sampling was 

conducted monthly from August, 1984 to December, 1992, and monthly (except for 

January and February) from March, 1993 to September, 2002.  Ten stations in the upper 

(Maryland) portion of Chesapeake Bay and its tributaries were sampled (Figure 2), with 

some stations only sampled for a portion of the study period.  Sampling consisted of 

duplicate stepped, oblique tows through the water column using a 0.5 m 

mesozooplankton net with 202 μm mesh.  GZ were recorded as one of three taxonomic 

groups: Hydrozoans, Mnemiopsis sp., and Scyphozoans, and count and biovolume m
-3

 

were reported for each group. Beroe sp. was also recorded by this survey but excluded 

from the analysis as they were observed too infrequently to conduct statistical analyses of 
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their populations.  Large scyphozoans are underestimated by this sampling method, due 

to the small net size, and absolute abundances are unreliable.  However, as the sampling 

method was constant across the time series, relative abundances of Scyphozoans can be 

compared within the time series.  In addition to GZ data, abundance was measured for all 

other mesozooplankton within each tow, with identification to species when possible.  

Water temperature, salinity, DO, and chlorophyll a were recorded at each station for 

several depths. We integrated or averaged these data for the water column where 

appropriate for comparisons with GZ abundance.   

2.3 Other data collection 

 In addition to the VIMS and CBP surveys, two other time series of environmental 

data were used in the analyses.  These were the monthly North Atlantic Oscillation index 

from the National Weather Service Climate Prediction Center 

(www.cpc.ncep.noaa.gov/data/teledoc/nao.shtml) and the monthly mean streamflow for 

the James River from the USGS National Water Information System 

(waterdata.usgs.gov/nwis/sw).  James River streamflow was used to represent streamflow 

magnitude for all data in the VIMS dataset because of its proximity to the study area.  

James River streamflow is highly correlated with streamflow in other river systems (e.g., 

Potomac, Susquehanna, etc.) in the Chesapeake Bay (Spearman correlation > 0.762, p < 

0.0001).   

2.4 Statistical analyses 

 All statistical analyses were conducted with SigmaPlot 11.0 software.  Habitat 

preference analyses were conducted by averaging GZ biovolume or GZ species presence 
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into 0.5 °C temperature or 0.5 salinity unit bins across all years and stations or sampling 

regions for each season.  These averages were then plotted across the range of 

temperatures or salinities sampled. A linear, Gaussian, exponential decay, or exponential 

growth model was then fit to the data as appropriate.   

 To analyze the effect of environment and season on spatial distribution of C. 

quinquecirrha in Chesapeake Bay, we calculated the mean center of population for each 

month of the VIMS time series.  All biovolume observations where C. quinquecirrha 

were present in the VIMS time series were plotted in ArcGIS 10.3 for each month.  These 

observations of population biovolume were then interpolated using the inverse distance 

weighted method with coastline as a boundary, and each month’s resulting interpolation 

was divided into one of four regions (James River, York River, Rappahannock River, and 

mainstem Chesapeake Bay).  The weighted center of each region was calculated for each 

month, and weighting was based on the interpolated GZ biovolume.  After calculating the 

center of population, its distance from the mouth of its respective river along the river’s 

midline was then measured.  This gave an estimate of how far upstream or downstream 

the population biovolume center was for that particular month.  These distances were 

then compared to average streamflow and temperature for each month.   

 Seasonality of GZ biovolume and GZ presence was calculated by averaging 

across all regions and years for each calendar month.  Changes in seasonality were 

calculated by plotting the average weekly GZ biovolume for each year of the VIMS 

dataset.  A Gaussian peak regression was then fit to data for each year, and the Julian day 

and magnitude of each years’ fitted peak was plotted across the time series.  Changes in 

Julian day and magnitude of the biovolume peak were then analyzed using linear 
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regression.  The VIMS survey samples each site on a monthly basis, but this occurs over 

the course of the month.  The weekly averaging for this analysis is not expected to bias 

the results as the order of sites sampled changes randomly from year to year.  This 

seasonal analysis was also attempted for the CBP dataset, but there were not sufficient 

samples to accurately fit curves for each individual year.   

 Anomalies in environmental parameters, GZ biovolume, and taxon abundance 

were calculated for each month using the following formula: 

A′𝑚 = log10 [
Ā𝑚

Ā𝑖
]  

Where Ām is the average of each parameter for year/month m, and Āi is the climatological 

mean for calendar month i of that parameter (Steinberg et al., 2012).  Anomalies were 

calculated for each sampling region (VIMS survey) or station (CBP survey) first, and 

then averaged across regions or stations for each month.  Annual or seasonal anomalies 

were calculated by averaging monthly anomalies.  Multi-year trends or correlations 

between environmental parameter and GZ biovolume anomalies were calculated either by 

linear regression or Pearson’s Correlation Coefficient.  Lags of 1-4 months and 1-2 years 

were also used to examine correlations between GZ biovolume and environmental 

parameters.   

A variety of thresholds have been suggested for hypoxia in the Chesapeake Bay 

including < 2.0 mg O2 l
-1

 (Diaz & Rosenberg, 1995), < 3.5, (Condon et al., 2001), and < 

50% saturation (~ < 3.5-4.0, Breitburg et al., 2003).  For this study, hypoxic conditions 

were defined as a bottom dissolved oxygen concentration of < 3.0 mg O2 l
-1

, as this 



 36 

threshold is an averge of other values used and has been used previously as a cut-off for 

examining effects on Chrysaora/zooplankton interactions (Grove & Breitburg, 2005).   

To combine datasets and calculate trends across a broader range of years, we 

standardized the GZ abundance anomalies in the lower Bay VIMS dataset to the upper 

Bay CBP dataset by using the values from overlapping years (1999-2002).  This was 

accomplished by adjusting the relative magnitudes and distances from zero for each 

anomaly in the VIMS dataset.  First, the mean ratio in anomaly magnitudes (R) between 

the two datasets for all six combinations of overlapping years was calculated as follows: 

R = [(C1999 – C2000) / (V1999 – V2000) + (C1999 – C2001) / (V1999 – V2001) + (C1999 – 

C2002) / (V1999 – V2002) + (C2000 – C2001) / (V2000 – V2001) + (C2000 – C2002) / (V2000 – V2002) 

+ (C2001 – C2002) / (V2001 – V2002)] / 6 

where Cx and Vx are the CBP and VIMS dataset anomalies respectively, for year x from 

the overlapping years 1999-2002.  Each year’s anomaly in the VIMS dataset (Vx) was 

then multiplied by R to obtain an adjusted VIMS dataset (AVx) that had the same relative 

magnitude anomalies as the CBP dataset:   

AVx = R * Vx  

We then calculated the average difference (S) between the datasets AV and C for each of 

the four overlapping years as follows: 

  S = [(AV1999 – C1999) + (AV2000 – C2000) + (AV2001 – C2001) + (AV2002 – C2002)] / 4 

This average difference S was then subtracted from each year in the dataset AV to obtain 

the final adjusted VIMS abundance anomaly for each year x (FAx):  
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 FAx = AVx – S 

Overlapping years (1999-2002) were then calculated as an average of the original CBP 

dataset (C) and the new standardized VIMS dataset (FA).  We acknowledge that the low 

number of overlapping years (4) may contribute to error in this calculation. 
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3. RESULTS 

3.1 Habitat preference 

Both salinity and temperature affect the distributions of all GZ taxa studied in 

both time series, with temperature controlling temporal distribution on a seasonal basis 

and salinity controlling spatial distribution within a season.   

3.2 Salinity 

For C. quinquecirrha, peak biovolume occurs at a salinity of 16.4 and peak 

presence at 16.2 in the VIMS dataset (Fig. 3A, 4B) for the lower portion of Chesapeake 

Bay, while peak scyphozoan biovolume (primarily C. quinquecirrha) occurs at a lower 

salinity of 11.3 (Fig. 3C) in the CBP dataset for the upper Bay.  Even though peak 

salinity is different between datasets, biovolume is very low for both at salinities less than 

6 (Fig. 3A, 3C).  This trend between biovolume and salinity is significant for February, 

March, and June-October, and salinity explains presence of C. quinquecirrha most 

strongly in summer (June-August; Fig. 5).  The weighted center of population for C. 

quinquecirrha was significantly farther downstream in both the York and Rappahannock 

Rivers in summer during years with higher streamflow (Pearson’s Correlation Coefficient 

= 0.511, p< 0.001) (Figure 6).   

M. leidyi biovolume in the CBP dataset is highest at salinities of 6-17, but below a 

salinity of 5 there is a sharp decrease in biovolume (Fig. 7A).  Very low salinities were 

not sampled in the VIMS survey, and ctenophore presence (primarily M. leidyi) decreases 

linearly with increasing salinity from 4 to 26 (Fig. 4C).  Percent presence of both the 

medusae A. aurita and C. capillata peaked at intermediate salinity ranges, but the 
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relationship was stronger for A. aurita (peaking at 20.0, Figure 3D) than for C. capillata 

(peaking at 15.4, Figure 3E).  R. verrilli presence increases linearly with salinity up to the 

highest salinities sampled (~25, Fig. 3F). 

3.3 Temperature 

C. quinquecirrha presence and biovolume (Fig. 3B, 8B) both increased 

exponentially with temperature above ~15-16 °C.  Temperature has a greater effect on C. 

quinquecirrha biovolume than presence, and has no significant (p > 0.05) control on 

presence distribution within any particular month.  Ctenophores are present at all 

temperatures, and percent presence increases linearly with increasing temperature (Fig. 

8C).  M. leidyi biovolume increases exponentially with temperature, with a sharp increase 

above ~18 °C (Fig. 7B).  A. aurita presence increases exponentially with temperature and 

was almost excluded from temperatures below ~13 °C (Fig. 8D).  Conversely, C. 

capillata is only present in temperatures < 21 °C, and percent presence is highest at 

temperatures lower than ~15 °C (Figure 8E).  Temperature has only a very weak effect on 

R. verrilli presence, and it is absent only from the highest temperatures (>27 °C, Fig. 8F). 

3.4 Seasonality 

There are considerable seasonal changes in total GZ biovolume as well as 

presence of all GZ taxa in the lower Bay (VIMS dataset, Fig. 9).  Total GZ biovolume 

begins to increase in April, peaks in June/July, and decreases until November, after which 

winter biovolume remains low through March (Fig. 9A).  C. quinquecirrha is present in 

the lower Bay year-round, but is most frequently found from July-September (Figure 9B).  

This pattern in seasonality in presence corresponds well with the upper Bay (CBP dataset, 
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Figure 10A) where scyphozoan biovolume is highest in July and August, decreases 

September-November, and remains low December-June (Fig. 10B).  Ctenophores 

(primarily M. leidyi) are also present year-round, and peak in percent presence in May 

and June in the lower Chesapeake Bay (Figure 9C) and June-September in the upper 

Chesapeake Bay (Figure 10C).  M. leidyi biovolume increases sharply in June in the 

upper Chesapeake Bay, and then decreases steadily throughout the summer and fall until 

November (Figure 10D).  A. aurita is present in the lower Bay from August to November 

(Figure 9D), C. capillata from December to May (Figure 9E), and R. verrilli from 

September to December (Figure 9F).  Hydrozoan medusae are most often present in the 

upper Bay from May to November (Figure 10E), with higher biovolume in May through 

July (Figure 10F).   

3.5 Changes in seasonality 

 On average, total GZ biovolume (primarily comprised of C. quinquecirrha) peaks 

on Julian day 186 ±12 (July 5) in the lower Bay (VIMS dataset, 2000-2011).  The day of 

peak biomass shifted to later in the year over the course of the time series (Figure 11A).  

Additionally, the magnitude of this bloom decreased over the course of the time series 

(Figure 11B).  However, the magnitude of the bloom is not dependent on the timing of 

the peak, and these two trends do not significantly co-vary (p = 0.57).  The timing of the 

bloom is significantly and negatively correlated with bottom dissolved oxygen (DO) 

concentrations in June (Figure 11C), but DO concentrations do not affect the magnitude 

of the calculated peak total GZ biovolume, which is instead negatively correlated with the 

June temperature anomaly (Fig. 11D).  No change in timing or magnitude of the peak 

scyphozoan medusae or M. leidyi bloom is present in the upper Chesapeake Bay.   
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3.6 Effects of hypoxia on GZ 

 When hypoxic conditions are present (dissolved O2 < 3.0 mg/L), median total GZ 

biovolume in the lower Chesapeake Bay is significantly reduced during both June and 

July, but not August and September (Fig. 12). Similarly, higher DO is correlated with 

higher GZ biovolume, and GZ biovolume anomaly in June is positively correlated with 

June DO anomaly from 1999-2011 (Pearson’s correlation = 0.558, p = 0.048), and the 

same positive relationship between DO anomaly and scyphozoan medusae anomaly is 

present in the upper Bay in July (CBP dataset, Pearson’s correlation = 0.592, p = 0.008).  

However, this relationship reverses later in the summer, with total GZ biovolume 

anomaly for both August (Pearson’s correlation = -0.574, p = 0.040) and September 

(Pearson’s correlation = -0.650, p = 0.016) negatively correlated with July DO anomaly 

in the lower Bay.   

3.7 Long-term changes 

 Annual summer to early fall (June-October) biovolume anomaly of scyphozoan 

medusae decreased over the long term in the upper Bay (1985-2002, CBP dataset) and 

was accompanied by a corresponding increase in M. leidyi biovolume anomaly and 

decrease in copepod abundance anomaly (Fig. 13).  Similarly there was a long-term 

decrease in June-October total GZ biovolume (primarily C. quinquecirrha) in the lower 

Bay from 1999-2011, and this decrease was strongest in June.  The standardized, 

combined upper and lower Bay datasets (see Methods) show a significant decrease over 

the combined time series in scyphozoan/total GZ biovolume from 1985-2011 is evident 

(Fig. 14).   
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 These long-term changes in biovolume are correlated with changes in several 

environmental drivers.  Summer to early fall total GZ biovolume in the lower Bay (1999-

2011) is most highly correlated with changes in bottom salinity over the same time period 

(Fig. 15A).  However, as the summer progresses, environmental influence on GZ 

biovolume changes.  May total GZ biovolume anomaly was negatively correlated with 

streamflow (Pearson’s correlation = -0.588, p = 0.047) and June total GZ biovolume 

anomaly was positively correlated with salinity (Fig. 15B), while GZ biovolume in 

August and September were most strongly and negatively correlated with a 2-month lag 

in bottom DO (Fig. 15C, Fig. 15D respectively).  June total GZ biovolume was also 

positively correlated with June NAO (0.710, p = 0.007), but NAO (including lagged 

winter NAO, as found in Purcell & Decker, 2005) was not correlated with biovolume 

overall for any other month.   

 In the upper Bay, summer scyphozoan medusae biovolume was weakly 

negatively correlated with chlorophyll a (Pearson’s correlation = -0.217, p = 0.025), and 

positively with bottom DO in July only (Pearson’s correlation = 0.737, p < 0.001).  

Summer M. leidyi biovolume anomaly was more closely, and negatively, correlated with 

scyphozoan anomaly (Pearson’s correlation = -0.240, p =0.013) than any physical 

environmental driver.  Hydrozoan medusae summer anomaly was positively correlated 

with both bottom DO and salinity (Pearson’s correlation = 0.243, p= 0.019; Pearson’s 

correlation = 0.222, p= 0.032, respectively).   
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4. DISCUSSION 

4.1 Effects of salinity  

The distribution of C. quinquecirrha medusae in Chesapeake Bay is primarily 

controlled by salinity during the summer months when their biovolume is highest.  While 

C. quinquecirrha were present in Chesapeake Bay across a wide range of salinities (3.5 – 

25), their biovolume approached zero below a salinity of 7.  This lower salinity limit for 

C. quinquecirrha is likely due to their death at salinities below 5 (Wright & Purcell, 

1997).  C. quinquecirrha biovolume and presence also decreased at higher salinities, 

although not to the same extent as at lower salinities, as C. quinquecirrha was still 

present in 18% of the tows at the highest salinity sampled (25).  The range in salinity in 

which peak biovolume occurred differed between upper and lower regions of the Bay (9 

– 15 in the upper Bay and 12.5 – 19.5 in the lower Bay).  This range in peak biovolume 

for the upper Bay is consistent with results from a prior study in the mainstem of both the 

upper and lower Bay that found the highest concentrations of C. quinquecirrha at 

salinities of 10 – 16, and peak presence at 13.5 (Decker et al., 2007).  However, we found 

peak C. quinquecirrha biovolume in the lower Chesapeake Bay occupied higher salinities 

than previously reported.   

Salinity further limits C. quinquecirrha distribution by affecting the benthic 

scyphistomae.  While Decker et al. (2007) suggested that C. quinquecirrha medusae 

vertically migrate in tidal streams to remain in preferred salinities, a recent study of fine-

scale distribution of C. quinquecirrha (Breitburg & Burrell, 2014) found no evidence for 

selective tidal stream transport.  Thus, we posit that medusae distribution is a secondary 
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result of benthic scyphistomae habitat selection and estuarine water circulation patterns.  

Scyphistomae are limited to salinities of 7 – 25 (Cargo & Schultz, 1966 and 1967), and 

strobilation is highest at salinities of 11 – 25 (Purcell et al., 1999).  It is likely that after 

ephyrae are produced at optimum salinities of ~10 – 20, they grow and disperse randomly 

through physical forcing throughout the Bay.  We posit that while ephyrae die if they 

reach salinities below 5, they survive but are widely dispersed at higher salinities in the 

lower mainstem of Chesapeake Bay.  This is supported by the seasonal effect of salinity 

on C. quinquecirrha presence.  Salinity exerts the strongest influence on C. 

quinquecirrha medusae presence in early summer (June and July) immediately after 

strobilation, but this effect weakens with each passing month (August through October) 

and disappears in the overwintering population of medusae.  In addition to reducing 

salinity, higher river flow may also cause a faster and greater physical transport of 

medusae downriver in surface waters. 

 Salinity also significantly affects interannual variation in summer GZ (primarily 

C. quinquecirrha) biovolume.  Both Cargo & King (1990) and Purcell & Decker (2005) 

found long-term changes in C. quinquecirrha abundance to be primarily influenced by 

differences in spring salinity.  While we did find a significant positive effect of salinity 

on GZ biovolume in the lower Chesapeake Bay, especially in May and June, no effect of 

salinity on long-term trends in the biovolume of scyphozoan medusae was evident in the 

upper Bay.   

Ctenophore presence was also significantly correlated with salinity.  Ctenophores 

(primarily M. leidy) were nearly absent at the lowest salinities (0 – 4), but were most 

abundant at salinities immediately above that limit (~6 – 12).  At salinities above the peak 
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abundance and presence of M. leidyi, both measures of abundance decreased linearly.  

Although M. leidyi egg production increases with salinity (Jaspers et al., 2011), 

successful reproduction and population increase of ctenophores at higher salinities in 

Chesapeake Bay are likely limited by the presence of C. quinquecirrha during the 

summer.  Not only does C. quinquecirrha prey heavily on M. leidyi, but non-lethal 

interactions such as escape from predation also reduce M. leidyi fecundity (Purcell & 

Cowan, 1995).  M. leidyi are able to tolerate lower salinities (0.1 – 25.6) than C. 

quinquecirrha (Purcell & Decker, 2005; this study), and low salinity zones may act as 

refugia from predation.  If M. leidyi population sources are primarily in these low salinity 

zones, an individual’s chance of encountering a C. quinquecirrha medusa increases 

cumulatively as it moves downstream, explaining the salinity distribution of M. leidyi we 

found.  As Breitburg & Burrell (2014) also found no evidence for behavioral regulation 

of spatial distribution in M. leidyi, the effect of salinity on M. leidyi abundance and 

presence is likely a secondary effect of the probability of M. leidyi encounters with C. 

quinquecirrha medusae. 

Aurelia aurita presence was restricted by salinity in a similar pattern to C. 

quinquecirrha, but in a higher range of salinities (~10 – 25).  Distribution of A. aurita has 

been little studied in Chesapeake Bay, but A. aurita is reported to be well distributed 

throughout the water column in a variety of other regions (reviewed in Albert, 2011).  

Both A. aurita and A. labiata did not use tidally synchronized vertical migration to 

regulate their distribution within the Wadden Sea (van der Veer & Oorthuysen, 1985) or 

Roscoe Bay (Albert, 2010).  If A. aurita in Chesapeake Bay are not using tidal circulation 

to control their location, then we suggest A. aurita distribution, like that of C. 
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quinquecirrha, is a secondary effect of scyphistomae reproduction.  We posit that 

scyphistomae are present in a narrow salinity range (~18 – 23), and distribution outside 

of this range is governed randomly by estuarine circulation.  Salinity had a weaker 

influence on C. capillata presence, and while medusae were present at all salinities 

sampled (3.5 – 25), there was a peak in percent presence at salinities of 11 – 19.  This is 

consistent with observations that C. capillata reproduces at estuarine salinities down to 

12 (Holst & Jarms, 2010).  Unlike the other scyphomedusae, R. verrilli had the highest 

percent presence at the highest sampled salinities; their presence decreased linearly with 

decreasing salinity and this species was virtually absent below salinities of 12.  This 

pattern strongly suggests that R. verrilli reproduce outside of Chesapeake Bay and are 

advected into the Bay from the Atlantic Ocean, most likely from the south (Harper & 

Runnels, 1990).   

4.2 Effects of temperature 

 While salinity controls C. quinquecirrha, A. aurita, and C. capillata spatial 

distributions, temperature controls their biovolume and frequency of presence seasonally.  

C. quinquecirrha biovolume increased exponentially above 15 °C in both the upper and 

lower regions of the Bay, as scyphistomae began spring strobilation at approximately that 

temperature (Cargo & Schultz, 1966; Purcell et al., 1999).  This control of temperature on 

C. quinquecirrha biovolume is strictly a seasonal phenomenon, as temperature had no 

effect on the distribution of biovolume after removing the seasonal trend.  While percent 

presence of C. quinquecirrha also increased above 15 °C, medusae were commonly 

present throughout the year and at temperatures as low as 1.5 °C.  This result contrasts 

with previous reports that medusae die off at the end of the summer (Cargo & King, 
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1990; Decker et al., 2007) or at temperatures below 10 °C (Gatz et al., 1973).  C. 

quinquecirrha medusae pulsation rate is linearly related to temperature, and is too slow to 

counteract their negative buoyancy below 15 °C (Gatz et al., 1973; Sexton et al., 2010).  

While this temperature-induced drop in pulsation rate causes C. quinquecirrha to 

disappear from surface waters during the winter, our data suggest they are present near 

the bottom during these months.  Because the VIMS survey samples using a benthic 

trawl, it collects these ‘hibernating’ medusae at temperatures below 15 °C.  These 

medusae are caught in good condition (Lowery, pers. comm.), and do occasionally pulse, 

albeit infrequently.  While the majority of medusae likely die in the winter due to 

dropping temperatures or starvation, as evidenced by the significant drop in biovolume 

below 15 °C, some individuals do survive and are present throughout the winter months.   

 Ctenophore percent presence (primarily M. leidyi) increased linearly with 

temperature, and M. leidyi biovolume was significantly higher at temperatures above 18 

°C.  This was expected as M. leidyi reproduction is controlled by a combination of 

temperature and food availability (reviewed in Kremer, 1994).  The rapid increase in M. 

leidyi percent presence and biovolume in June is followed by a steady decrease in 

biovolume, but not percent presence, throughout the summer and fall.  This decrease in 

biovolume is most likely due to predation by C. quinquecirrha, which typically blooms 

one month later in July, and can effectively control M. leidyi populations (Purcell & 

Decker, 2005; Condon & Steinberg, 2008; Breitburg & Burrell, 2014).   

 Temperature has opposing effects on A. aurita and C. capillata presence; percent 

presence of A. aurita increases while C. capillata decreases exponentially with 

temperature.  A. aurita is only present in Chesapeake waters July – November, and C. 
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capillata is present December – May.  As with C. quinquecirrha, temperature controls 

their populations by influencing the timing and intensity of strobilation by the 

scyphistomae.  The timing of A. aurita blooms is affected by both light and temperature 

(Liu et al., 2009), but temperature can be negatively or positively correlated with 

strobilation depending on the region, suggesting that A. aurita populations are locally 

adapted to time their production of medusae with peak zooplankton biomass (Han & Uye, 

2010; Purcell et al., 2012; Wang et al., 2015; Sokolowski et al., 2016).  However, peak A. 

aurita presence in Chesapeake Bay appears after the peak zooplankton bloom.  This may 

be an adaptation to avoid competition with C. quinquecirrha by blooming two months 

later.  In contrast, C. capillata only begins strobilation at temperatures below 15 °C 

(Cargo & Schultz, 1967) explaining the seasonality in its presence in Chesapeake Bay.  

Temperature has only a weak effect on R. verrilli presence, although it is absent in the 

lower Bay in July and August during the highest water temperatures.  

4.3 Effects of dissolved oxygen 

 Because the VIMS survey preferentially samples bottom waters, avoidance of low 

DO waters by C. quinquecirrha may contribute to reduced catches of scyphozoan 

medusae in hypoxic conditions.  However, this is not likely the case as lower biovolumes 

in hypoxic conditions were only observed in June and July but not in August and 

September (Fig. 12), supporting our interpretation that low DO conditions do not cause a 

sampling bias and do have an effect on population growth.  While both C. quinquecirrha 

medusae and M. leidyi can survive DO concentrations as low as 0.5 mg L
-1 

(Breitburg et 

al., 2003), polyp survival and asexual reproduction of C. quinquecirrha are reduced at 

concentrations of 3.5 mg L
-1

 and below (Condon et al., 2001), and M. leidyi growth and 
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reproduction are also decreased by reduced DO concentration (Grove & Breitburg, 2005). 

However, while C. quinquecirrha medusae and M. leidyi ctenophores are able to regulate 

their depth in the water column to avoid low DO levels (Breitburg et al., 2003), benthic 

polyps are unable to escape low oxygen conditions.  In our analysis, bottom DO 

concentrations had a significant effect on the timing of the summer GZ bloom (primarily 

C. quinquecirrha), with lower DO concentrations during the strobilation period delaying 

the onset of the bloom (Fig. 11B).  Spring and summer DO concentrations did not have 

an effect on the overall GZ biovolume, but low DO concentrations in May and June were 

negatively correlated with August and September GZ biovolume.  This suggests that 

while hypoxic conditions can suppress strobilation, it still occurs, albeit at a lower rate, 

and overall biovolume of C. quinquecirrha is not affected by the later strobilation.   

4.4 Long-term trends 

 We observed declines in summer total GZ biovolume from 1984 – 2012, in 

scyphozoan medusae biovolume in the upper Chesapeake Bay from 1984 – 2002 and in 

total GZ biovolume in the lower Bay from 1999 – 2012.  These declines are largely due 

to a decrease in C. quinquecirrha medusae, as this species accounts for the majority of 

summer biovolume in both time series.  A previous study which utilized three GZ 

datasets, one of visual counts in surface waters from a pier at a single location, and two 

using a 1 m
-2

 Tucker trawl at various sites in the Patuxent River and mainstem 

Chesapeake Bay, also found a decline in C. quinquecirrha medusae in the upper 

Chesapeake from 1960 – 2005 (Breitburg & Fulford, 2006).  This decline began in the 

mid-1980s, which was attributed to the concurrent rapid decline in oyster (Crassostrea 

virginica) populations.  Oyster shells are the primary substrate for the C. quinquecirrha 
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scyphistomae, and polyps have a higher abundance on oyster shells than other natural and 

artificial substrates (Cones & Haven, 1969).  It was suggested that the greatly reduced 

population of Chesapeake oysters after the mid-1980s greatly reduced the habitat 

availability for scyphistomae (Breitburg & Fulford, 2006).  Our time series began in 

1984, after the observed population reduction in oysters and C. quinquecirrha. While we 

observe a decrease in C. quinquecirrha populations since 1984, oyster populations have 

remained stable or increased in Chesapeake Bay over the same time period (Tarnowski, 

2015; Southworth & Mann, 2016).  Thus, the continued decline in C. quinquecirrha after 

the 1980s is likely not due to changes in oyster populations.    

What then is causing the long-term decrease in C. quinquecirrha?  The overall 

decrease in medusae can be attributed to factors affecting the scyphistomae and 

strobilation, but the environmental factors that affect these processes each have different 

thresholds of influence, and what may affect C. quinquecirrha populations one year may 

not the following year. Long-term changes in C. quinquecirrha biovolume are clearly 

correlated with changes in environmental conditions.   Both Cargo & King (1990) and 

Purcell & Decker (2005) found inter-annual variability in C. quinquecirrha populations 

linked with changes in salinity and temperature, and negatively correlated with changes 

in NAO.  We found a similar positive correlation between summer total GZ biovolume 

and salinity, but temperature was only weakly positively correlated with June peak 

biovolume (Fig. 11D).  NAO was only correlated with GZ biovolume for one month – 

June – and it was a positive correlation, opposite to what Purcell & Decker (2005) 

reported.  We found the interplay between environmental drivers and C. quinquecirrha 

populations is complex, with salinity driving overall abundance, low DO delaying onset 
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of the summer GZ bloom, and temperature windows restricting the period of bloom 

initiation.  Additionally, temperature has an interactive effect with DO, with higher 

temperatures lowering DO solubility and causing higher metabolic demand.  These 

numerous drivers of C. quinquecirrha abundance, coupled with previously observed 

effects of oyster abundance (Breitburg & Fulford, 2006), and NAO (Purcell & Decker, 

2005), make it difficult to attribute the overall decrease in C. quinquecirrha populations 

to one environmental factor.  

Global climate change is predicted to have a variety of wide-ranging effects on 

the Chesapeake Bay region (reviewed in Najjar et al., 2010; Rice & Jastram, 2015), and a 

number of these changes could lead to a continued decline in C. quinquecirrha.  Increases 

in June water temperature could further decrease the magnitude of the peak biovolume.  

January-May streamflow is predicted to increase, causing decreases in spring salinity 

(Najjar et al., 2010) and increases in hypoxia (Hagy et al., 2004).  While the volume of 

hypoxic waters in early summer has been increasing over the last 60 years, late summer 

hypoxia has been slightly decreasing, effectively shifting the hypoxic period earlier in the 

year (Murphy et al., 2011).  Although we did not observe any effect of hypoxia on overall 

GZ biovolume, early summer hypoxia did delay bloom formation.  It may be that future 

increases in early summer hypoxia, and further shifting of hypoxic events earlier into the 

year, will delay C. quinquecirrha blooms past a point when they can achieve their current 

population levels, causing further reductions in C. quinquecirrha.   

 Regardless of the causes of decreasing C. quinquecirrha abundance, the effects of 

this decrease on the rest of the Chesapeake Bay food web are clear.  C. quinquecirrha are 

the primary controller of M. leidyi populations (Purcell & Cowan, 1995; Condon & 
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Steinberg, 2008; Crum et al., 2014; this study), while increases in M. leidyi reduce 

copepod abundances throughout the Chesapeake Bay (Kimmel & Roman, 2004; Purcell 

& Decker, 2005; this study).  Additionally, decreases in C. quinquecirrha populations, 

starting in the late 1980s, led to increases in M. leidyi and decreases in copepod 

abundances in the central portion of the Chesapeake Bay (Kimmel et al., 2012).  Further 

decreases in C. quinquecirrha populations may release M. leidyi from predation pressure 

throughout the summer, depleting copepod populations.  Copepods are particularly 

important for commercial finfish, representing the major pathway for transfer of carbon 

from phytoplankton to finfish, especially through the bay anchovy (Anchoa mitchilli), an 

abundant, zooplanktivorous fish that is a major prey item for higher trophic level species 

(Kimmel et al., 2012).  Thus, cascading effects down the food web caused by changes in 

GZ abundance are potentially as disastrous as those seen in the Caspian and Black Seas 

(reviewed in Costello et al., 2012), where the introduction of M. leidyi caused 

commercial fisheries collapses through increased competition with finfish for crustacean 

zooplankton prey and direct predation on ichthyoplankton (Oguz et al., 2008; Roohi et 

al., 2010).  However, in Chesapeake Bay, decreases in bottom DO may partition M. leidyi 

from their prey and ameliorate the predation impact (Kolesar et al., 2010).   
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5. SUMMARY AND CONCLUSION 

 Analysis of multi-decadal datasets indicates that GZ populations in the 

Chesapeake Bay vary on a seasonal and interannual timescale largely as a result of 

patterns in salinity and temperature.  The most abundant summer species, C. 

quinquecirrha, is present year-round, but is most abundant in the summer when 

temperatures exceed 20 °C and salinities range from 10 – 20.  Other species also vary 

seasonally, with A. aurita present July – November, C. capillata December – May, and 

M. leidyi with highest biovolumes June – August.  The presence and distribution of the 

three scyphozoan medusa species is regulated by the temperature and salinity tolerances 

of their benthic scyphistomae, with distribution of the medusae radiating from the asexual 

reproduction hotspots.  Overall C. quinquecirrha biovolumes are positively correlated 

with spring salinities, and low DO concentrations during the spring reduce early summer 

biovolume and delay the onset of the summer bloom.  M. leidyi biovolume and 

distribution is primarily controlled by predation by C. quinquecirrha, and increases in M. 

leidyi decrease the abundances of their primary prey, copepods.  Total C. quinquecirrha 

biovolume has been decreasing from 1984 – 2012, and these decreases have led to a long-

term increase in M. leidyi and decrease in copepods.  Further decreases in C. 

quinquecirrha populations, due to future increases in spring streamflow and increases in 

early summer hypoxia, could continue to release top-down control of M. leidyi, reducing 

copepod abundances and increasing competition with commercially important finfish for 

copepod prey in the Chesapeake Bay. 
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Figure 1: Map of the sampling regions and depth strata for the Virginia Institute of 

Marine Science Juvenile Fish and Blue Crab Trawl Survey (VIMS survey) in lower 

Chesapeake Bay.  Sampling occurred 2-4 times within each region and strata monthly 

from 1999-2012, except during January and March.   
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Figure 2: Map of the Chesapeake Bay Program’s mesozooplankton monitoring program 

(CBP survey) stations used in this study to analyze changes in GZ populations in upper 

Chesapeake Bay.  Sampling occurred monthly at each of the ten stations from 1984-1992, 

and monthly except during January and February from 1993-2002. 



 65 

 

Figure 3: Response of GZ biovolume to salinity and temperature changes averaged in bins of 0.5 units from June-October (A and C) 

and the entire year (B and D).  Panels A) and B) are total GZ biovolume averaged across the VIMS dataset only for samples in which 

Chrysaora quinquecirrha are present (2000-2012, in lower Chesapeake Bay).  Panels C) and D) are total scyphozoan medusae 

biovolume averaged across the entire CBP dataset (1984-2002, in upper Chesapeake Bay).    
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Figure 4: Effect of salinity on total GZ biovolume (A) and percent presence of individual GZ taxa (B-F) averaged across June-

October for the VIMS dataset (1999-2012) in lower Chesapeake Bay.  ‘Percent presence’ is the percentage of all tows for each salinity 

bin that had a particular taxon present.  Scyphozoan medusae species are (B) Chrysaora quinquecirrha, (D) Aurelia aurita, (E) 

Cyanea capillata, and (F) Rhopilema verilli. 
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Figure 5: Monthly effect of salinity on Chrysaora quinquecirrha presence in lower 

Chesapeake Bay.  Data were averaged for the VIMS dataset (1999-2012) within bins of 

0.5 salinity units for each month. 
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Figure 6: Map of total-GZ biovolume for summers (average of June-August) with A) low James River streamflow (2000-2002, 2005, 

2007, and 2010; average 127 m
3
 s

-1
) and B) high James River streamflow (2003, 2004, 2006, 2008, 2009, 2011; average 274 m

3
 s

-1
) .  

Data are interpolated monthly from the VIMS dataset (2000-2011).
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Figure 7: Effect of salinity (A) and temperature (B) on ctenophore Mnemiopsis leidyi biovolume averaged across all stations for the 

entire CBP dataset (1984-2002) in upper Chesapeake Bay. 
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Figure 8: Effect of temperature on total GZ biovolume (A) and percent presence (B-F) of individual GZ taxa averaged across all 

stations for the entire VIMS dataset (1999-2012) in lower Chesapeake Bay.  ‘Percent presence’ is the percentage of all tows for each 

temperature bin that had a particular taxon present.  Scyphozoan medusae species are (B) Chrysaora quinquecirrha, (D) Aurelia 

aurita, (E) Cyanea capillata, and (F) Rhopilema verilli.  
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Figure 9: Seasonality of total GZ average biovolume (A) and average percent presence (B-F) of individual GZ taxa.  Data are 

monthly averages (±SE) for the entire VIMS dataset (1999-2012) in lower Chesapeake Bay.  Scyphozoan medusae species are (B) 

Chrysaora quinquecirrha, (D) Aurelia aurita, (E) Cyanea capillata, and (F) Rhopilema verilli. 
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Figure 10: Seasonality of total GZ average percent presence (A, C, and E) and average 

biovolume (B, D, and F) of individual GZ taxa.  Data are monthly averages (±SE) for the 

entire CBP dataset (1984-2002) in upper Chesapeake Bay.  Taxa shown are scyphozoan 

and hydrozoan medusae, and the ctenophore Mnemiopsis leidyi. 
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Figure 11: Changes in the timing and magnitude of the peak GZ bloom in lower Chesapeake Bay (VIMS dataset, 2000-2011).  A) 

Changes in the Julian day of the peak total GZ biovolume over the time series, B) changes in the magnitude of peak total GZ 

biovolume over the time series, C) June bottom dissolved oxygen anomaly vs. timing of the peak total GZ biovolume, and D) June 

temperature anomaly vs. magnitude of the peak total GZ biovolume.   
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Figure 12: Effects of hypoxia (dissolved O2 < 3.0 mg/L) on total GZ biovolume by 

month in lower Chesapeake Bay (VIMS dataset, 1999-2011).  Asterisks mark significant 

differences (t-test, p < 0.05) between normoxic and hypoxic conditions.  Sample sizes are 

indicated below bars. 
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Figure 13: Long-term changes in GZ anomalies from 1985-2002 in upper Chesapeake 

Bay. A) scyphozoan medusae biovolume, B) ctenophore Mnemiopsis leidyi biovolume, 

and C) total copepod abundance.   Data are from the CBP dataset.  
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Figure 14: Summer to early fall (June-October) biovolume anomaly for scyphozoan 

medusae in upper Chesapeake Bay from 1984-2002 (CBP dataset) and total GZ in lower 

Chesapeake Bay from 1999-2011 (VIMS dataset).  VIMS dataset anomaly was 

standardized relative to the CBP dataset, and overlapping years (1999-2002) are averages 

of the two datasets.  Inset shows original data for overlapping years of the CBP dataset 

(black bars) and the VIMS dataset (gray bars).
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Figure 15: Correlations between total GZ biovolume and environmental anomalies in lower Chesapeake Bay (1999-2011, VIMS 

dataset).  A) Summer to early fall total GZ biovolume anomaly and salinity anomaly, B) June total GZ biovolume anomaly and 

salinity anomaly, C) August total GZ biovolume anomaly and June bottom dissolved oxygen anomaly, and D) September total GZ 

biovolume anomaly and July bottom dissolved oxygen anomaly.  Error bars are standard error.  
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CHAPTER 3 

 

Influence of top-down control in the plankton food web on vertical carbon flux: a 

mesocosm study in the Chesapeake Bay  
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ABSTRACT 

 The effect of predation on carbon export in planktonic food webs is poorly 

known, but could play an important role in modulating the strength of the biological 

pump.  Carnivorous gelatinous zooplankton (GZ) dominate the zooplankton community 

in Chesapeake Bay during summer months, exerting considerable top-down control on 

the planktonic food web.  To examine the cascading effects of GZ blooms on the 

plankton food web and particulate organic carbon (POC) flux, we conducted multiple 2-

day mesocosm experiments in the York River tributary of Chesapeake Bay in July-

August, 2015.  Mesocosms contained a natural assemblage of phytoplankton, 

microzooplankton, and copepods, and each treatment received additions of the 

ctenophore (Mnemiopsis leidyi), the scyphozoan medusae (Chrysaora quinquecirrha), or 

both M. leidyi and C. quinquecirrha.  Mean clearance rate of C. quinquecirrha on M. 

leidyi was 32.1 L ind.
-1

 h
-1

, and M. leidyi on copepods was 1.9 L ind.
-1

 h
-1

.  There was no 

significant difference between treatments in total POC or PON flux, and average POC 

flux was 0.62 mg C d
-1 

m
-3

 across all treatments and experiments.  However, presence of 

M. leidyi reduced the abundance of copepods, in turn significantly decreasing copepod 

fecal pellet (FP) carbon flux compared to treatments without M. leidyi by 50% (from 36 

to 18 g C d
-1

 m
-3

, or 6% to 3% of total POC flux).  Total POC export fluxes were small 

(<1%) compared to previously measured sedimentation rates in the Chesapeake Bay. But, 

these top-down changes in copepod FP carbon flux are equivalent to a modest portion 

(~10%) of previously calculated C. quinquecirrha carcass flux.  Future experiments and 

models of zooplankton contributions to vertical carbon flux should include top-down 

processes. 
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1. INTRODUCTION 
 

 

The relative importance of bottom-up vs. top-down control in food webs has been 

examined extensively in a wide variety of ecosystems, and trophic cascades initiated by 

top-down control have been demonstrated repeatedly throughout terrestrial, aquatic, and 

marine environments (Micheli, 1999; Borer et al., 2005; Borer et al., 2006; Duffy et al., 

2007).  The effects of top-down control and community composition on cycling of 

organic matter and nutrients have been examined in terrestrial and freshwater ecosystems 

(reviewed in Brett & Goldman, 1996; Vanni, 2002; Schmitz et al., 2010).  For example, 

presence of zooplanktivorous fish in freshwater systems reduce herbivorous crustacean 

zooplankton, increasing phytoplankton biomass and changing composition of sediment 

organic matter (SOM) (Attayde & Hansson, 2001; Allard et al., 2011).  However, the top-

down effects on SOM deposition have only recently been examined in marine 

ecosystems.   In a benthic marine system, the presence of the predator blue crab 

(Callinectes sapidus) reduced epiphyte grazers in seagrass beds, leading to increases in 

epiphytes, decreases in seagrass, and complex changes in sediment organic matter 

amount and composition (Canuel et al., 2007; Spivak et al., 2007; Spivak et al., 2009).  

However, there is a paucity of data on how top-down control affects cycling and export 

of carbon and nutrients in marine planktonic ecosystems.   

Carnivorous gelatinous zooplankton (GZ) (e.g., cnidarians, ctenophores) are 

conspicuous and effective marine planktonic predators that are known to initiate trophic 

cascades (reviewed in Verity & Smetacek, 1996; West et al., 2009; Dinasquet et al., 

2012; McNamara et al., 2014).  GZ are taxonomically diverse, but share two key 

characteristics: alternation of generations between sexual and asexual reproduction and 



 81 

large, fast-growing, gelatinous bodies.  These traits allow them to reproduce extremely 

rapidly under good environmental conditions (Purcell et al., 2005) and to be extremely 

efficient predators (Acuña et al., 2011; Pitt et al., 2013).  These advantages allow GZ to 

exert top-down control during blooms that can extend several trophic levels down 

(Purcell & Decker, 2005; Compte et al., 2010).   

In the Chesapeake Bay, phytoplankton biomass is highest during the spring, and 

primary production increases to a peak during the summer months.  This mismatch 

between the peaks of phytoplankton biomass and production is caused by the high 

grazing of crustacean zooplankton, primarily calanoid copepods which are more 

abundant in the late spring and summer than early spring (White & Roman, 1992; 

Steinberg & Condon, 2009).  This spring progression of blooms – phytoplankton 

followed by copepods – is followed by two species of carnivorous GZ that exert wide-

ranging top-down control throughout the zooplankton food web in summer in 

Chesapeake Bay: the lobate ctenophore Mnemiopsis leidyi and the scyphozoan medusa 

Chrysaora quinquecirrha (Cargo & King, 1990).  M. leidyi is present year-round 

throughout the mesohaline and polyhaline regions of Chesapeake Bay and its tributaries, 

but is most abundant from June through October (Purcell et al., 2001; Purcell & Decker, 

2005; Steinberg & Condon, 2009).  M. leidyi is a voracious predator of crustacean 

mesozooplankton and can exert high predation pressure on copepods, as well as 

icthyoplankton during M. leidyi blooms (Purcell et al., 1994; Purcell & Roman, 1994; 

Purcell et al, 2001; Condon & Steinberg, 2008).   

In contrast to M. leidyi, C. quinquecirrha medusae populations are greatly 

reduced in the winter as they often do not survive temperatures below 10
o
C (Gatz et al. 
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1973). C. quinquecirrha overwinter as benthic polyps and begin to produce planktonic 

medusae when water temperatures rise above 17
o
 C in the late spring (Purcell & Decker, 

2005).  These medusae are present from May to October, but the highest abundances are 

from July to September (Purcell 1992).  C. quinquecirrha feed on a wide variety of meso- 

and macrozooplankton, and are the primary predator of M. leidyi (Purcell & Cowan, 

1995; Suchman et al., 1998).  When present, C. quinquecirrha can exert strong top-down 

control of M. leidyi and significantly reduce their populations (Purcell & Cowan, 1995).  

This reduction of M. leidyi in turn releases their prey (primarily copepods) from predation 

pressure, allowing the copepods to continue to have high summer abundances (Purcell & 

Decker, 2005).  This sets up a trophic cascade where years with higher abundance of C. 

quinquecirrha have lower abundance of M. leidyi and therefore higher abundance of 

copepods, increasing grazing on phytoplankton by copepods.  The populations of the top 

predator, C. quinquecirrha, are regulated by the timing of spring warming and rainfall, 

with earlier warming and low rainfall (higher salinities) leading to years with higher 

medusae abundances (Cargo & King 1990).  Thus, changes in weather patterns (Purcell 

& Decker, 2005) from year to year may have significant top-down effects on the 

Chesapeake Bay food web, and consequently–as we hypothesize–on vertical carbon and 

nitrogen flux to the benthos. 

GZ can affect vertical flux through a variety of mechanisms (Pitt et al., 2008).  At 

the end of a bloom, sinking GZ carcasses provide a large, episodic pulse of carbon to the 

benthos (Lebrato et al., 2013), but throughout the life of a bloom, GZ produce mucus 

which may entrain phytoplankton and other particles, causing it to sink out of the water 

column as a loose, sticky aggregate (Deason & Smayda, 1982). Additionally, both C. 
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quinquecirrha and M. leidyi egest waste material as loose, poorly defined ‘fecal fluff’ 

which sinks more slowly and disintegrates more quickly than the compact fecal pellets 

(FP) produced by copepods (Kremer, 1979; Alldredge & Gotschalk, 1988).  Because of 

the sinking speed and disintegration differences between the GZ-produced fecal material 

and the copepod-produced FP, the quality and overall mass flux to the benthos may 

change depending on which species is dominant in the plankton.  It is these interactions 

between top-down effects and vertical flux that we explore in this study.   

We hypothesized that increases in C. quinquecirrha medusae during the summer 

months will lead to top-down control and a resulting trophic cascade in which M. leidyi 

abundance decreases, releasing copepods from predation pressure and leading to an 

increase in POC and PON export in the form of copepod fecal pellets.  Conversely, 

absence of C. quinquecirrha will allow M. leidyi to decrease the abundance of copepods, 

decreasing predation pressure on phytoplankton and increasing the export of particulate 

organic carbon and nitrogen (POC, PON) in the form of phytoplankton aggregates.  To 

test this hypothesis, we conducted mesocosm experiments in the Chesapeake Bay with 

four treatments of zooplankton communities: 1) natural copepod assemblage with no GZ, 

2) natural assemblage plus M. leidyi, 3) natural assemblage plus C. quinquecirrha, and 4) 

natural assemblage plus both M. leidyi and C. quinquecirrha.  By analyzing the changes 

in zooplankton abundance, total PON and POC flux, and flux from fecal pellets for each 

treatment, we were able to examine top-down controls on vertical particle flux. 
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2. METHODS 
 

2.1 Mesocosm design 

Mesocosm experiments were conducted in July and August, 2015 in a large, 

cylindrical fiberglass tank (3.5 m tall, 3.66 m diameter) with a continuous supply of water 

pumped from the York River–a tidal, brackish estuary of the Chesapeake Bay.  Water 

flow was approximately 110 L min
-1

, thus the tank water was completely flushed every 

~4.5 h, and temperature, salinity, and dissolved oxygen were equal to ambient conditions 

in York River surface waters.  Water conditions for each experiment are listed in Table 1.  

Within the tank, we placed four 1.83 m
3
 mesocosms, each 1 m in diameter and 3 m long 

with a 2 L, PVC cod end.    The mesocosms were the same as those used in Cowan and 

Houde (1990), with the top 2 m being cylindrical and consisting of 2.2 oz Dacron sail 

cloth with an average mesh aperture of ~25 μm, and the bottom conical portion 

constructed of 53 μm Nitex mesh.  Two 6 mm stainless steel hoops were attached outside 

of the central portion to keep it from collapsing, and bricks were attached to the cod end 

to keep it positioned upright and at the bottom of the mesocosm.  The top of the 

mesocosm was placed above the surface of the water and open to allow sunlight to enter. 

These mesocosms allowed free exchange of water, almost immediate response to changes 

in the surrounding temperature, salinity, and dissolved oxygen, and retention of 

zooplankton (de Lafontaine and Leggett, 1987). 

2.2 Experimental procedure 

 Mesocosms were filled by diffusion of water through the mesh, with a small 

amount (~100 L) of water entering through the top to allow large phytoplankton to 
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colonize the mesocosm.  Each experiment was conducted over ~2 days using 4 

mesocosms per experiment.  Animals were collected from the York River the same day 

as the start of each experiment, with M. leidyi and C. quinquecirrha collected by gently 

dip netting from the surface, and copepods collected using a 1-m diameter zooplankton 

net with 200 μm mesh and a non-filtering cod end.  All mesocosms first received a 

natural copepod assemblage (primarily Acartia tonsa copepods), containing copepod 

numbers comparable to those naturally found in the York River during peak abundances 

(6.5 – 11 L
-1

) (Condon and Steinberg, 2008).  Copepods were added first and allowed to 

disperse through the mesocosm before any GZ were added.  One mesocosm also received 

10 Mnemiopsis leidyi, one received 1 Chrysaora quinquecirrha, and the last mesocosm 

received both 10 M. leidyi and 1 C. quinquecirrha.  These abundances of M. leidyi and C. 

quinquecirrha are also similar to their natural abundances in the York River during the 

summer.  For some experiments C. quinquecirrha were unavailable; in these 

experiments, two mesocosms were used as the copepod-only controls and two as 

replicate M. leidyi treatments.  One additional pilot experiment was conducted on July 

22-25, and while the GZ used were healthy, the copepods used in the experiments did not 

survive for unknown reasons and only the results of C. quinquecirrha grazing on M. 

leidyi are included from that study.   

At the start and end of each experiment, salinity, temperature, and dissolved 

oxygen were measured in the center of the tank using a YSI EXO Sonde.  Chlorophyll a 

concentrations were collected from the NOAA data buoy YRK005.40 (37.24728 °N, 

76.49937 °W, www.ndbc.noaa.gov).  Over the course of the experiment, sinking material 

in the mesocosm was funneled into the cod end. At the end of each experiment, the mesh 
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immediately above the cod end was cinched off to prevent exchange of material back into 

the mesocosm.  The cod end was then brought to the surface, removed, capped, and an 

empty cod end was put in its place.  After the new cod end was in place, the entire 

mesocosm was lifted from the water, allowing copepods and other mesozooplankton, GZ, 

and other contents that were suspended in the water column to drain into the cod end.  GZ 

were first quickly removed to prevent continued feeding on copepods, and the remainder 

of the cod end contents saved for subsequent analysis.  Remaining GZ and copepods 

were also checked for swimming activity to ensure they were still alive and active.  

Clearance rate (C) of GZ predators on their prey was calculated from the formula: 

Equation 1: C = (V / (n x t)) * ln(P0 / Pt) 

Where V = volume of experimental container (1832 L), n = number of predators (C. 

quinquecirrha or M. leidyi), t = time of the experiment in hours, P0 = number of prey 

(copepods or M. leidyi) at start of the experiment, and Pt = number of prey at the end of 

the experiment. 

2.3 Analyses of sinking particles and mesocosm contents 

 Cod ends containing either sedimented particles (hereafter particulate organic 

matter; POM) or live zooplankton plus other suspended mesocosm material were 

returned to the laboratory, and stored at 4 °C until analysis, within 24 h.  Oral-aboral 

length (M. leidyi), diameter (C. quinquecirrha), and biovolume (both) were measured for 

each surviving GZ (i.e., uneaten M. leidyi; there was no natural death of either GZ 

species in our 2 day experiments, with GZ actively swimming at the end of experiments).  

Copepods and other mesozooplankton were preserved in 4% formalin and counted under 
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a dissecting microscope.  Sedimented POM was split into two fractions, one for 

elemental analysis and the other for visual analysis of particle type.   

The fraction of POM used for elemental analysis was filtered through a 150 m 

sieve to remove copepods and other mesozooplankton, and then filtered through a pre-

combusted, pre-weighed, 0.7 m pore, glass microfiber (GF/F) filter. Some of the 

copepods that were removed from this fraction may have included copepod carcasses that 

sank out of the water column, and would thus be included as particle export. However, 

whether these copepods died as a result of interactions with GZ or other causes could not 

be determined, and thus they were not included as POM export. Filters were then placed 

in a 60 °C drying oven for at least 7 d. After drying, filters were re-weighed to obtain 

bulk dry weight of POM, and then analyzed for particulate organic carbon and nitrogen 

(POC and PON) using an Exeter Elemental Analyzer CE440.   

The fraction of sedimented POM used for analysis of particle type was preserved 

in 4% formalin, with fecal pellets (FP) quantified using a dissecting microscope at 16-32 

magnification. At least 50 copepod FP were measured for each mesocosm using CellSens 

1.13 software to determine an average volume per FP, and total volume of pellets per 

mesocosm calculated.  To calculate total FP carbon, we used two methods and averaged 

the results of each approach for each mesocosm: we applied a volume to carbon 

conversion factor for Acartia tonsa FP of 0.34 pg C m
-3 

using our calculated mean FP 

volume (Hansen et al., 1999), and we also multiplied the total number of FP by 17.7 ng C 

pellet
-1

 (Saba et al., 2011). 

2.4 Statistical analysis 
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 Both t-tests and one-way ANOVAs were used to test differences in mass flux and 

FP POC and PON flux between treatments.  When appropriate, results from each 

treatment were averaged between experiments and compared using t-tests and ANOVAs.  

Statistical analyses were done using Sigma Plot 11 software.   
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3. RESULTS  
 

 

3.1 Experimental conditions 

While average temperature (27.4 – 28.6 °C) and salinity (20.0 – 20.7) were 

similar between experiments conducted on different days, both dissolved oxygen (2.5 – 

6.29 mg/L) and chlorophyll a (6.7 – 20.3 g/L) varied considerably between experiments 

(Table 1).  

3.2 Clearance rates 

 The clearance rate of M. leidyi on copepods was calculated from all experiments, 

and averaged 1.9 L ind.
-1

 h
-1

 (± 0.7 SE) including experiment 2 where no predation on 

copepods was observed (Figure 1A).  The clearance rate of C. quinquecirrha on 

copepods was negligible, with no feeding occurring in the C. quinquecirrha-only 

treatments in experiments 1 and 2.  The clearance rate of C. quinquecirrha consuming M. 

leidyi was also calculated from experiments 1, 2, and the pilot study and averaged 32.1 L 

ind.
-1

 h
-1

 (± 13.9) (Figure 1B).   

3.3 Particulate organic carbon and nitrogen flux 

 Overall, there was no significant difference in total POC (ANOVA, p = 0.87) or 

PON (ANOVA, p = 0.77) flux between treatments, and no treatments were significantly 

different from each other for POC or PON as a percentage of the control (ANOVA, p = 

0.70 and 0.66, respectively) when flux was calculated as a percentage of the flux in 

controls (Figure 2).  Flux of POC and PON ranged from 0.39–1.02 mg C day
-1

 m
-3

 and 

0.04–0.17 mg N day
-1 

m
-3

, respectively (Table 2). The C:N ratios of sinking POM were 
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more similar between treatments within an experiment than between experiments 

(ranging from an average of 5.5 in experiment 1 to 9.7 in experiment 2).  

3.4 Fecal pellet flux 

 Flux of Acartia tonsa fecal pellets (Fig. 3) ranged from 0.55–41.1 mg C day
-1

 m
-3

 

(Table 2), and was lower in the M. leidyi treatments than controls in both experiments 3 

and 4, but there was no significant difference (ANOVA, p > 0.05) in FP POC flux 

between treatments for experiments 1 and 2 (Table 2; see also Fig. 4).  Small copepod FP 

(from A. tonsa) were present in all mesocosms, and large crustacean FP (Fig. 3) were 

present in about half of the mesocosms.  POC from large fecal pellets, when present, 

varied from 1.7-173 g C day
-1

 m
-3

 (equivalent to 8–1300% of A. tonsa fecal pellet C), 

but the absence of large fecal pellets from 6 mesocosms through all experiments and high 

variability prevented comparisons between treatments or experiments to be conducted.  In 

all treatments and controls Acartia tonsa fecal pellets made up a small proportion (<1 to 

8.6%) of the exported material (Table 2), with other larger fecal pellets (0 to 39%) and 

phyto-detritus (Fig. 3) or unidentified aggregates constituting the rest.  After combining 

the results of experiments 3 and 4, FP carbon was significantly lower (t-test, p = 0.003) in 

M. leidyi treatments (18.0 g C day
-1

 m
-3

) than in the controls (36.1 g C day
-1

 m
-3

), and 

was equivalent to a 50% decrease in FP POC flux over the 2-day experiments.  Small FP 

carbon was about 20 times higher in all of the treatments and controls for experiments 3 

and 4 than for experiments 1 and 2 (Table 2).       
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4. DISCUSSION 
 

4.1 Clearance rates 

 Clearance rates in our study were similar to those previously reported. Average 

clearance rate of C. quinquecirrha feeding on M. leidyi (32.1 L ind.
 -1

 h
-1

) was similar to 

that reported by Purcell and Cowan (1995) for experiments conducted in a 1 m
3
 

mesocosm (29.2 L ind.
 -1

 h
-1

) but less than reported for a 3.2 m
3 

mesocosm (69.1 L ind.
 -1

 

h
-1

).  Average clearance rate of M. leidyi feeding on copepods (1.9 L ind.
 -1

 h
-1

) was 

similar to experiments using large container sizes reviewed in Purcell et al. (2001) (1.9 

and 2.2 L ind.
 -1

 h
-1

) as well as in Purcell and Decker (2005) (1.3-2.0 L ind.
 -1

 h
-1

 for 

ctenophores 35-53 mm). M. leidyi clearance rate of copepods was higher than those 

reported in Madsen and Riisgård (2010) (0.1-1.2 L ind. 
-1 

h
-1

) and Mazlum and Syhan 

(2007) (0.18-1.25 L ind.
 -1

 h
-1

), although those studies used smaller ctenophores and 

smaller containers, respectively.  Low DO concentrations do not affect C. quinquecirrha 

or M. leidyi clearance rate of copepods (Breitburg et al., 1997; Kolesar et al., 2010), 

therefore low DO in experiment 2 likely did not alter feeding rates. While copepod 

clearance rates were not measured in these experiments, grazing on phytoplankton may 

be reduced in treatments with M. leidyi present, as the presence of M. leidyi significantly 

reduces the number of grazing copepods.  Thus, the trophic cascade caused by C. 

quinquecirrha could extend down to the level of primary producers, reducing 

phytoplankton concentrations when C. quinquecirrha are present. 

4.2 Effect of trophic cascades on export 
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 A trophic cascade initiated by C. quinquecirrha was observed in copepod 

abundances, and this top-down control led to changes in POC flux.  A decrease in A. 

tonsa copepod fecal pellet POC flux occurred in treatments containing M. leidyi 

ctenophores, which we interpret as consumption of copepods leading to their reduced 

abundance and subsequent reduced overall copepod grazing and fecal pellet production 

(Fig. 5).  This suggests a reduction in A. tonsa FP flux could occur in situ during the 

summer months when M. leidyi is present.  Using the rates determined in our study and 

known abundances of copepods and GZ, we can estimate the effects GZ presence would 

have on A. tonsa FP flux in the Chesapeake Bay.  Typically, C. quinquecirrha are 

abundant in the Chesapeake Bay from early July to late September, and exert high 

predation on M. leidyi during those three months (Condon and Steinberg, 2008; Stone et 

al., in prep.).  Copepod densities can reach up to 20,000 m
-3

 in Chesapeake Bay, and are 

significantly reduced by the presence of M. leidyi (Purcell and Decker, 2005; Condon and 

Steinberg, 2008).  To estimate the change in FP POC flux caused by C. quinquecirrha 

over the summer months, we can multiply A. tonsa FP production (C m
-3 

day
-1

) measured 

by this experiment in both the average control and average M. leidyi-only treatments by 

the average depth of the Chesapeake Bay (6.4 m) and 90 days.  In this scenario, A. tonsa 

FP production would increase from 10.4 to 20.8 mg C m
-2

.  This estimate is conservative, 

as the short duration (2 d) of the experiments means M. leidyi predation on copepods is 

likely an underestimate.  This 10.4 mg C m
-2 

increase over three months represents a 

modest portion (3%) of the 357 mg C m
-2

 total POC flux measured by this study over the 

same depth and time period.  However, these fluxes are over two orders of magnitude 

lower than those reported from other studies that measured total POC flux to the benthos 
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in the Chesapeake Bay using sediment traps (126 g C m
-2

, Boynton et al., 1993; 76.8 g C 

m
-2

, Roden et al., 1995) and a deposition model (45.9 g C m
-2

, Hagy et al., 2005) for the 

same 3 months (July, August, and September).  While the presence of M. leidyi has an 

appreciable effect on A. tonsa abundances and FP flux, this represents only a small 

portion of overall summer carbon flux in the Chesapeake Bay.  However, the final fate of 

copepod FP may differ greatly from that of phytodetritus, and future research should 

examine how decomposition, burial, and consumption of these flux components differs. 

In addition to top-down effects, GZ may also influence phytoplankton through 

bottom-up processes.  There were no significant differences in total POC and PON flux 

between treatments containing GZ and those that did not, and this is most likely due to 

the high abundance of aggregates of phytodetritus which made up the majority of the flux 

in all treatments.  In our experiments, while M. leidyi-only treatments had lower FP flux, 

this reduction in FP POC flux may be offset by higher GZ mucus production or higher 

phytoplankton aggregate flux (due to decreased copepod grazing), although we were 

unable to quantify this.  In other systems, GZ have been shown to alter phytoplankton 

composition and abundance both through top-down control of phytoplankton grazers 

(Compte et al., 2010; Dinasquet et al., 2012) and stimulating growth through the release 

of nutrients (Pitt et al., 2009; West et al., 2009; Hosia et al., 2014; McNamara et al., 

2014) although this bottom-up effect is dependent on the extent of nutrient limitation in 

the system.  While this experiment was not designed to measure GZ effects on 

phytoplankton growth, it is possible that the presence of either M. leidyi or C. 

quinquecirrha would increase phytoplankton production through the release of dissolved 

nutrients via excretion, although these nutrients may be shunted into the microbial loop 



 94 

for use in bacterioplankton metabolism (Condon et al., 2011).  During blooms of M. 

leidyi, this bottom-up process would be additive with the top-down control of 

mesozooplankton grazers such as copepods, further increasing phytoplankton production.  

However, during blooms of C. quinquecirrha the bottom-up and top-down effects on 

phytoplankton production would counteract each other.  These bottom-up effects would 

explain the lack of differences seen between treatments in the overall flux, although 

excretion of DON and DOP by GZ was estimated to support < 4% of primary production 

in the Chesapeake Bay (Condon et al., 2010).  Even large blooms of GZ would only 

excrete enough dissolved inorganic N to support a small portion (3%) of microplankton 

production in the Chesapeake Bay (Nemazie et al., 1993). 

While changes in carbon flux due to top-down control were relatively small, one 

of the primary pathways GZ can contribute to flux is through the sinking of dead GZ as 

carcasses, which has been shown to represent a substantial, seasonal carbon pulse in the 

deep sea (Lebrato et al. 2013).  Sexton et al. (2010) found that as temperatures cool in 

October and November in the Chesapeake Bay, C. quinquecirrha medusae pulse more 

slowly, and sink to the bottom before waters are too cold to survive.  This, combined with 

their lack of significant predators, means that the majority of C. quinquecirrha biomass 

produced during the summer returns to the benthos at a rate over 100 mg C m
-2

 yr
-1

 

(Sexton et al. 2010).    However, because M. leidyi ctenophores can better survive winter 

water temperatures in the Chesapeake Bay and quickly disintegrate upon death, it is 

unlikely that their carcasses reach the benthos.  Thus, the presence of C. quinquecirrha 

not only increases copepod FP, but also shifts carbon away from the non-sinking M. 

leidyi carcasses.  This carcass carbon flux of C. quinquecirrha at the end of the year is 10 
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times higher than our estimated increase in flux due to top-down effects of C. 

quinquecirrha presence over the summer, although the fates of these two carbon sources 

(GZ carcass vs. copepod FP) may be very different once they reach the benthos or reach 

the benthos at different rates.   
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5. SUMMARY AND CONCLUSION 

 We observed the hypothesized trophic cascade of C. quinquecirrha preying on M. 

leidyi and M. leidyi preying on copepods, with clearance rates similar to previously 

published values.  While there was no significant change in total POC or PON flux 

between treatments, the composition of the flux did change, with higher flux of A. tonsa 

FP in the controls versus treatments with added M. leidyi in half of the experiments.  The 

presence of M. leidyi reduced this FP flux by 50% over the course of the experiments, 

and we estimate that this decrease in flux would lower FP deposition in the Chesapeake 

Bay by ~10 mg C m
-2

 over the course of the summer.  While summer FP flux is 

extremely small compared to published values for total summer POC flux in the 

Chesapeake Bay, there may be differences in the fate of FP versus phytodetritus and their 

effect on benthic processes.  Additionally, the top-down changes in carbon flux 

controlled by C. quinquecirrha is an appreciable portion of estimates of C. quinquecirrha 

carcass carbon flux for the entire year.   

Top-down control in vertical carbon flux should be considered in experimental or 

modeling studies examining the role of plankton food webs in the biological pump.  As 

similarly shown in freshwater pelagic (Brett & Goldman, 1996; Vanni et al., 2002; Allard 

et al., 2011) and marine systems (Micheli, 1999; Spivak et al., 2009), top-down control 

can significantly affect the composition of vertical POC flux in marine pelagic systems.  

This study only examined one coastal estuary, and carnivorous GZ may exert top-down 

control in a wide variety of ecosystems where they bloom including the Black and 

Caspian Seas (Daskalov et al., 2007; reviewed in Costello et al., 2012), coastal Australia 

(West et al., 2009), Mediterranean marshes (Compte et al., 2010), Baltic Sea (Dinasquet 
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et al., 2012), the Benguela Current (Roux et al., 2013), Bering Sea (Brodeur et al., 2008), 

Northern California Current (Suchman et al., 2008), and numerous others (reviewed in 

Purcell & Arai, 2001; Purcell, 2005).  Furthermore, carnivorous GZ can be highly 

abundant in the mesopelagic zone (Robison et al., 1998; Silguero & Robison, 2000), 

where their top-down control may ultimately affect sinking particle attenuation and thus 

efficiency of POC export to depth.  In each of these ecosystems, GZ have the potential to 

regulate multiple aspects of vertical carbon flux and could have a relatively stronger 

effect in regions more nutrient-limited than the Chesapeake Bay.   
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Table 1: Mesocosm experimental set up and conditions. Dates, average environmental 

data, and treatments with replicates (n) listed for each experiment.  Temperature, 

salinity, dissolved oxygen, and pH were all measured within the tank using an EXO 

Sonde.  Chlorophyll a data were collected from the NOAA data buoy YRK005.40. 

‘Copes’ = copepods and other mesozooplankton; ‘Mnem’ = ctenophore Mnemiopsis 

leidyi; ‘Chrys’ = medusa Chrysaora quinquecirrha. *Note, only data for treatment + 

Mnem, + Chrys are included in our analyses for Pilot study (see text). 

 

Experiment Pilot* 1 2 3 4 

Dates (2015) 22-25 Jul. 3-5 Aug. 6-8 Aug. 18-20 Aug. 1-3 Sept. 

Duration (h) 71 40 48 45 43 

Treatments:  

copes only (control) 

+ Mnem 

+ Chrys 

+ Mnem, + Chrys  

 

 

n=1 

n=1 

n=1 

n=1 

 

n=1 

n=1 

n=1 

n=1 

 

n=1 

n=1 

n=1 

n=1 

 

n=2 

n=2 

 

 

n=2 

n=2 

 

Temperature (°C) 29.1 28.6 28.5 27.7 27.4 

Salinity 19.9 20.0 20.2 20.7 20.6 

Dissolved Oxygen (mg/L) 6.8 4.4 2.5 6.3 4.4 

pH 7.60 7.51 7.37 7.98 7.49 

Chl a (μg/L) 11.2 20.3 8.9 12.5 6.7 

Mean M. leidyi length  

(oral-aboral, mm) 

26.9 49.0 53.1 34.7 35.9 
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Table 2: Comparison of exported particulate organic matter in mesocosms. Particulate 

organic carbon (POC) flux, particulate organic nitrogen (PON) flux, carbon to nitrogen 

ratio (C:N), and A. tonsa fecal pellet (FP) carbon for each experiment and treatment. 

‘Copes’ = copepods and other mesozooplankton; ‘Mnem’ = ctenophore Mnemiopsis 

leidyi; ‘Chrys’ = medusa Chrysaora quinquecirrha. 

Experiment Treatment POC flux 

(mg C 

day
-1

 m
-3

) 

PON Flux 

(mg N 

day
-1

 m
-3

) 

C:N A. tonsa FP 

g C day
-

1 
m

-3
) 

Percent A. 

tonsa FP of 

total POC flux 

1 

Copes only 

(control) 

0.55 0.09 5.9 2.76 0.50 

1 + Mnem 0.46 0.08 5.5 0.55 0.12 

1 + Chrys 0.39 0.08 4.9 0.79 0.20 

1 

+ Mnem, + 

Chrys 

0.62 0.11 5.7 0.70 0.11 

2 

Copes only 

(control) 

0.49 0.05 9.2 0.90 0.18 

2 + Mnem 0.61 0.07 8.9 1.09 0.18 

2 + Chrys 0.98 0.09 10 0.93 0.09 

2 

+ Mnem, + 

Chrys 

0.47 0.04 11 0.87 0.19 

3 

Copes only 

(control) 1 

0.68 0.11 6.1 40.1 5.90 

3 

Copes only 

(control) 2 

0.48 0.08 6.1 41.1 8.56 

3 + Mnem 1 1.02 0.17 6.0 17.0 1.67 
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Table 2: Continued 

Experiment Treatment POC flux 

(mg C 

day
-1

 m
-3

) 

PON Flux 

(mg N 

day
-1

 m
-3

) 

C:N A. tonsa FP 

g C day
-1 

m
-3

) 

Percent A. 

tonsa FP of 

total POC flux 

3 + Mnem 2 0.40 0.07 6.3 21.4 5.35 

4 

Copes only 

(control) 1 

0.74 0.11 6.5 30.1 4.07 

4 

Copes only 

(control) 2 

0.64 0.10 6.3 33.0 5.16 

4 + Mnem 1 0.55 0.09 6.3 10.7 1.95 

4 + Mnem 2 0.90 0.15 6.1 23.1 2.57 

Average 

All 

controls 

and 

treatments 

0.62 0.09 6.9 14.1 2.30 
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Figure 1: Clearance rates (L ind.
-1

 h
-1

) of A) copepods by M. leidyi and B) M. leidyi by C. quinquecirrha in each of four mesocosm 

experiments and one pilot experiment.  Replicates from experiments 3 and 4 (see Table 1) are shown separately.   
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Figure 2: Total particulate organic carbon flux per day averaged for each treatment.  Control (n=6) and Mnem treatments (n=6) are 

averaged from experiments 1, 2, 3, and 4; Chrys (n=2) and Mnem + Chrys (n=2) treatments are averaged from experiments 3 and 4.  

Error bars are 1 standard deviation. Control is natural assemblage of phytoplankton, microzooplankton, and copepods. ‘Mnem’ = 

Mnemiopsis leidyi-only, ‘Chrys’ = Chrysaora quinquecirrha-only, and ‘Mnem + Chrys’ = both M. leidyi and C. quinquecirrha.    
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Figure 3: Examples of mesocosm sinking material, including small fecal pellets from Acartia tonsa copepods, a larger fecal pellet 

from a crustacean (likely larger copepod or decapod), and phytoplankton detritus.  
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Figure 4: Comparison amongst treatments of Acartia tonsa fecal pellet POC production for A) average of experiments 1 and 2 (each 

treatment n=2), B) Average of experiments 3 and 4 (each treatment n=4).  Error bars are standard deviation. Control = natural 

assemblage of phytoplankton, microzooplankton, and copepods, ‘Mnem’ = Mnemiopsis leidyi-only, ‘Chrys’ = Chrysaora 

quinquecirrha-only, and ‘Mnem + Chrys’ = both M. leidyi and C. quinquecirrha.    
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Figure 5: Conceptual diagram of the top-down effects of Chrysaora quinquecirrha on 

the relative abundances of taxa and strength of carbon transfer for the summer 

Chesapeake Bay ecosystem when A) C. quinquecirrha medusae are absent and B) C. 

quinquecirrha are present.  Relative size of text and number of images represents the 

relative abundance of each category, and relative size of arrows represents strength of 

carbon transfer between categories. 
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ABSTRACT 

 Salps are bloom-forming, pelagic tunicates with high grazing rates on 

phytoplankton, with the potential to greatly increase vertical particle flux through rapidly 

sinking fecal pellets. However, the frequency and causes of salp blooms are not well 

known. We quantified salps from day and night zooplankton net tows in the epipelagic 

zone of the North Atlantic subtropical gyre as part of the Bermuda Atlantic Time-series 

Study (BATS). Salp species and size were quantified in biweekly to monthly tows from 

April 1994 to November 2011. Twenty-one species of salps occurred at the BATS site 

over this time period, and the most common bloom-forming salps were Thalia 

democratica, Salpa fusiforimis, Weelia (Salpa) cylindrica, Cyclosalpa polae, and Iasis 

zonaria. Five species of salps exhibited diel vertical migration, and salp abundances 

varied seasonally, with T. democratica, S. fusiformis, and C. polae blooms coincident 

with the spring phytoplankton bloom, and W. cylindrica blooms occurring more often in 

late summer. For T. democratica, mean annual biomass increased slightly over the time 

series and was elevated every 3 yr, and biomass increased in the presence of cyclonic 

mesoscale eddies. Decadal climate oscillations and biogeochemical conditions influenced 

multi-year trends in salp abundance and biomass. Both total salp and T. democratica 

abundance were positively correlated with primary production, total salp biomass was 

positively correlated with the North Pacific Gyre Oscillation, and T. democratica 

biomass was negatively correlated with the Pacific Decadal Oscillation. These salp bloom 

dynamics have important implications for planktonic food web interactions and 

biogeochemical cycling.  
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1. INTRODUCTION 

 Salps are gelatinous, planktonic tunicates with a life history alternating 

between sexual and asexual stages, which enables them to rapidly replicate, forming high 

density blooms when conditions are favorable (Godeaux et al., 1998).  Salps are known 

to form large blooms in many regions of the world’s oceans, including the Sargasso Sea 

(Madin et al., 1996; Madin et al., 2001; Roman et al., 2002), Mediterranean Sea (Ménard 

et al., 1994), Southern Ocean (Atkinson et al., 2004; Loeb & Santora, 2012), western 

Tasman Sea (Everett et al., 2011), southwestern Atlantic (Daponte et al., 2011), and 

Hauraki Gulf (Zeldis et al., 1995).  Salps can feed efficiently on small phytoplankton and 

bacteria (Bone et al., 2003), have some of the highest clearance rates of any zooplankton– 

up to several liters h
-1

 salp
-1

 (Harbison & McAlister, 1979; Madin & Purcell, 1992; 

Madin & Kremer, 1995), and can consume over 100% of the daily primary production 

(PP) (Hereu et al., 2006).  These high clearance rates contribute to salps producing large, 

fast-sinking fecal pellets (Caron et al., 1989; Sutherland et al., 2010b), with sinking rates 

ranging from 42 to 2700 m d
-1

 (Andersen, 1998; Yoon et al., 2001; Phillips et al., 2009).  

Because of their high fecal pellet production rates, salp blooms have a significant effect 

on particle export (Madin, 1982; Caron et al., 1989).  This, coupled with sinking of dead 

carcasses (Lebrato & Jones, 2009; Henschke et al., 2013; Lebrato et al., 2013), represents 

an efficient and fast pathway for organic matter in the surface waters to move to depth. 

During a salp bloom, salps can thus be major contributors to the total carbon flux from 

the surface to the deep sea, as demonstrated in the Mediterranean Sea (Yoon et al., 1996; 

Fernex et al., 1996), Sargasso Sea (Conte et al., 2001), Southern Ocean (Phillips et al., 

2009), and Tasman Sea (Henschke et al., 2013).   
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Salp populations are sensitive to interannual or longer-term changes in the 

environment (Ménard et al., 1994; Licandro et al., 2006).  A long-term decrease in 

pelagic tunicates, particularly salps, in the California Current is attributed to a long-term 

increase in water column density stratification, which has weakened the eddy kinetics of 

the region as well as the southward flow of water and the seeding populations of salps 

within it (Lavaniegos & Ohman, 2007).  Salp populations in some regions of the 

Southern Ocean have been increasing in abundance and expanding their range (Atkinson 

et al., 2004) as a result of long-term warming and decreases in sea ice (Vaughan et al., 

2003; Stammerjohn et al., 2012).  Variability in the Southern Ocean Antarctic 

Circumpolar Current Front causes fluctuations in salp abundance off the western 

Antarctic Peninsula (Loeb et al., 2010).  Ménard et al. (1994) and Sutherland et al. 

(2010a) found salp abundance in the Mediterranean Sea declined in response to increases 

in temperature and stratification of the water column, which decreased mixing of 

nutrients to the surface and PP.  Likewise, salp, doliolid, and pyrosome abundance in the 

South China Sea increased with an increase in chlorophyll a (chl a) concentration caused 

by coastal upwelling and injection of nutrients into surface waters by cold-core eddies in 

the summer (Li et al., 2011).  While previous studies help us to understand salp 

population dynamics in coastal upwelling and continental shelf regions, very little is 

known about how salps respond to environmental changes in the open ocean. 

The Sargasso Sea is an oligotrophic, open-ocean region of the western North 

Atlantic subtropical gyre, with patterns in the biogeochemistry of the region influenced 

by physical forcing with ties to decadal-scale climate oscillations (Saba et al., 2010; 

Álvarez-García et al., 2011; Wu et al., 2011). Long-term changes in regional 
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biogeochemistry of the Sargasso Sea have been documented, including: an increase in net 

primary productivity correlated with the North Atlantic Oscillation (NAO) (Saba et al., 

2010), increases in both shallow-water particulate organic carbon export and mesopelagic 

zone particle attenuation in the winter-spring period (Lomas et al., 2010), and an increase 

in epipelagic mesozooplankton biomass (Steinberg et al., 2012).  Mesoscale eddies are an 

important physical feature in the Sargasso Sea also affecting ecosystem structure and 

biogeochemical cycling.  Cyclonic (cold-core) eddies are an important periodic source of 

nutrient injection into the euphotic zone stimulating new PP (McGillicuddy et al., 1998, 

2007), leading to changes in zooplankton community structure (Eden et al., 2009) as well 

as an increase in mesozooplankton biomass, enhanced fecal pellet flux, and increased 

carbon export by diel vertical migration (DVM) (Goldthwait & Steinberg, 2008).  The 

goals of this study are to examine seasonal, interannual, and decadal patterns in the 

abundance of salp species in the Sargasso Sea and to determine what physical or 

biogeochemical conditions lead to these patterns. 
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2. METHODS 

2.1 Salp collection 

 Meszooplankton were collected as part of the Bermuda Atlantic Time-series 

Study (BATS) in the oligotrophic North Atlantic subtropical gyre (31°40’N, 64°10’W) 

(Madin et al., 2001; Steinberg et al., 2012).  We identified and enumerated salps from 17 

yr of the time series.  Overall, 776 tows were analyzed from 238 cruises starting on April 

6, 1994 and ending November 11, 2011.   Mesozooplankton tows were conducted using a 

net with a 0.8 x 1.2 m rectangular mouth and 202 m mesh, with replicate, double-

oblique tows made during day (09:00-15:00 h) and night (20:00-02:00 h) each month 

(May-January) or biweekly (February-April) (Madin et al., 2001; Steinberg et al., 2012).  

Targeted net depth was between 150 and 200 m, and actual depth was recorded using a 

Vemco Minilog recorder with the exception of the first year, when depth was estimated 

by wire out and wire angle.  Volume filtered was measured using a General Oceanics 

flowmeter.   Tow contents were immediately split on board with one half-split size-

fractionated for total mesozooplankton biomass measurements, and the other half-split 

preserved in 4% buffered formaldehyde for taxonomic analysis (Madin et al., 2001; 

Steinberg et al., 2012).   

2.2 Salp enumeration and biomass determination 

Salps were analyzed from archived, preserved samples using an Olympus SZX-10 

dissecting microscope at 6-10x magnification under dark and bright field illumination.  

Salps from the entire half-split or quarter-split were identified to species and enumerated, 

and the oral-atrial length of each salp was measured.  Samples in which small salps (e.g. 

Thalia democratica) were very abundant (>2000 salps per tow) were subsampled using a 
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10 ml Stempel pipette (2.5 cm in diameter) after removal of any large salps, and at least 

40 individuals were measured to determine average length.  This subsample was analyzed 

for small salps, and large salps were counted separately.  Individual salp length was 

measured as the oral-atrial distance using an ocular micrometer, and these lengths were 

used in published salp live length to carbon weight regression equations for each species 

to calculate salp carbon biomass (see Table 5.3 in Madin & Deibel, 1998, and references 

therein).  Total length of salps preserved in formaldehyde has been shown to decrease 

over time (Heron et al., 1988; Nishikawa & Terazaki, 1996). However, because this 

animal shrinkage is minimal and our preservation times varied, we did not correct salp 

length: thus our carbon biomass estimates may be conservative.  Salp data are presented 

as total salp, T. democratica, Salpa fusiformis, Weelia (Salpa) cylindrica, or Cyclosalpa 

polae abundance (ind. m
-3

) or carbon biomass (mg C m
-3

).   

2.3 Comparison to environmental parameters and data analysis 

We examined potential environmental and climatological parameters influencing 

salp species abundance and biomass.  For these analyses, salp biomass data for total salps 

and the 4 most abundant species on each sampling date were averaged between replicate 

tows and then between night and day.  Average biomass for each sampling date was then 

compared to environmental data extracted from the BATS website (http://bats.bios.edu/) 

including sea-surface temperature (SST), water potential density, chl a integrated to 140 

m, and PP integrated to 140 m (Knap et al., 1997; Steinberg et al., 2001).  The water-

column stratification index (WCSI) was calculated as the difference in potential density 

between the surface and 200 m (Steinberg et al., 2012).  Salp abundance was compared to 

the 12-mo, centered moving average of the NAO 
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(www.cpc.noaa.gov/products/precip/CWlink/pna/nao/shtml), Multivariate El Niño 

Southern Oscillation (MEI) (www. esrl.noaa.gov/psd/people/klaus.wolter/MEI/), North 

Pacific Gyre Oscillation (NPGO) (http://eros/eas/gatech/edu/npgo/), and Pacific Decadal 

Oscillation (PDO) (http://jisao.washington/edu/pdo/) indices as described in Steinberg et 

al. (2012).  Salp biomass anomaly was calculated for each month using the following 

formula: 

𝐴′𝑚 = 𝑙𝑜𝑔10[
�̅�𝑚

�̅�𝑖

] 

where A̅𝑚 is the average biomass for year/month m, and A̅𝑖is the climatological median 

for calendar month i.  Annual biomass anomalies were then calculated as the average of 

A′𝑚 for each year (Steinberg et al., 2012), and included total salps, T. democratica, S. 

fusiformis, and total salps minus T. democratica and S. fusiformis.   

The Spearman rank correlation coefficient was used to compare salp abundance 

and biomass with environmental parameters, climate indices, and date to analyze 

seasonal and long-term changes.  Monthly time series from April 1994 to November 

2011 were constructed, with one observation per month, by averaging within months that 

contained more than one observation.  Months with missing data (n = 13 out of 212) were 

assigned the median measured value of that calendar month, and the smallest non-zero 

observation for each species was added to all observations to eliminate zeroes.  The time-

series data were then natural-log transformed.   After constructing the time series, each 

species and environmental dataset was decomposed into its long-term trend (12 mo 

moving average), seasonal component (average of each calendar month after removing 

the long-term trend), and noise component (the remainder after removing both the long-

term trend and seasonal component) using the time-series (ts) and decompose functions in 
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R 2.13.0.  The Spearman rank correlation coefficients were then calculated by comparing 

the extracted long-term trends of each variable, and the effective degrees of freedom used 

in calculating significance were adjusted for autocorrelation using Eq. (1) in Pyper & 

Peterman (1998).  In order to better examine the synergistic effects of different 

environmental variables on salp populations, correlations of seasonal and long-term 

trends were also compared using principal component analysis (PCA) in JMP 11.0.0.  

Bloom seasonality was analyzed by comparing the median bloom frequency between 2 

seasonal periods within the year (e.g. February and March vs. the other 10 months of the 

year), and DVM was analyzed by comparing day and night salp abundance, both using 

the Mann-Whitney Rank Sum Test.   

2.4 Mesoscale eddies 

 To examine the role that mesoscale eddies play in salp population dynamics, 

mesoscale eddy data in raw form were downloaded from the Cooperative Institute for 

Oceanographic Satellite Studies website (http://cioss.coas.oregonstate.edu/eddies/) 

(Chelton et al., 2011).  This information included weekly eddy locations, rotation 

direction, amplitude, radius, and rotation speed.  Using ESRI ArcGIS (version 10.0), we 

then determined which eddies were present at the BATS sampling location during tow 

sampling events.  Only eddies with a total lifespan of 8 wk or more were used.  As eddy 

location was only given weekly, any eddy that overlapped the BATS sampling site within 

110% of its circumference (our own estimate to include any eddy edge effect) within 6 

days of the sampling date was considered present at the time of BATS sampling.  The 

effect of eddy type and presence on salp biomass was evaluated using an ANOVA on 

ranks, the Bonferroni-Dunn test was used for pairwise comparisons, and correlation 
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between salp biomass and eddy speed, amplitude, and radius were calculated using the 

Spearman rank correlation coefficient.   

Additionally, eddy presence data was obtained from Mouriño-Carballido (2009), 

who determined eddy presence and type from 1993 to 2002 using both satellite altimetry 

and BATS hydrographic profiles.  Mouriño-Carballido (2009) categorized eddy influence 

on the BATS site as cyclonic, anticyclonic, mode-water, none, or the frontal region 

between cyclonic and anticylconic eddies.  For the purposes of our study, mode-water 

and anticyclonic eddies were combined into one ‘anticyclonic’ category, and frontal 

regions were delineated as no eddy present.  A separate analysis was completed with 

these categorizations over the shorter time period, using an ANOVA on ranks to 

determine eddy influence on salp biomass. 
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3. RESULTS 

3.1 Species composition and seasonality 

In total, 21 species of salps were identified in the time series, with Thalia 

democratica, Salpa fusiformis, Weelia (Salpa) cylindrica, and Cyclosalpa polae being the 

most common species (present in tows from 77, 61, 21, and 16% of the 238 monthly 

cruises, respectively) (Fig. 1, Table 1).  Thalia democratica was the most abundant salp 

species and had the highest biomass, with average abundance across all samples of the 

time series in day and night tows of 3.31 and 1.90 ind. m
-3

, respectively, and biomass of 

40.8 and 30.2 g C m
-3

, respectively. This was considerably higher than the second-most 

abundant and highest biomass species, S. fusiformis, with an average abundance in day 

and night tows of 1.86 x 10
-3

 and 2.56 x 10
-2 

ind. m
-3

, respectively, and a biomass of 0.21 

(day) and 3.39 (night) g C m
-3

 (Table 1).  Total salp abundance and biomass was 

influenced mainly by T. democratica, although the other 20 species contributed relatively 

more to total biomass than abundance (Table 1), as T. democratica is one of the smallest 

salps in the region.  Qualitatively, salps were highest in biomass during the spring 

(February-April) throughout the entire time series, with both early and late summer peaks 

(July-August) as well, particularly from 1999 to 2003 (Fig. 2).   

Salp ‘blooms’ were defined as the top 10% of biomass observations within all 

non-zero observations for each species.  The species analyzed for blooms were T. 

democratica, S. fusiformis, W. cylindrica, and C. polae.  All of the bloom events were 

more than one order of magnitude greater than the median (T. democratica and S. 

fusiformis) or mean (W. cylindrica and C. polae; median was zero) biomass.   
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Salp blooms occurred regularly, with blooms of T. democratica, S. fusiformis, and 

C. polae occurring more often in February and March, with a median total of 5.5, 4, and 1 

blooms, respectively, in each of those months over the time series (Fig. 3A).  The 

occurrence of blooms in those 2 months was significantly higher than the median 

occurrence in the other 10 months of the year (p < 0.05; Mann-Whitney Rank Sum Test).  

W. cylindrica blooms occurred more commonly in late summer (median total of 1 bloom 

in each of July, August, and September) compared with the rest of the year (p = 0.002).  

Blooms in all other species combined were evenly distributed throughout the year.  

Monthly averages of salp biomass with the long-term trend removed showed similar 

seasonal patterns with T. democratica, S. fusiformis, and C. polae peaking in the spring, 

W. cylindrica peaking in late summer, and all others remaining relatively constant 

throughout the year (Fig. 3B). 

3.2 Diel vertical migration 

 Of the 21 salp species present, 5 exhibited a detectable pattern of DVM with 

significantly higher median biomass during the night than during the day (Fig. 4).  These 

diel vertical migrators included 2 species of Salpa (S. fusiformis, n = 136, p < 0.001; S. 

aspera, n = 30, p < 0.001), W. cylindrica (n = 48, p = 0.030), Iasis zonaria (n = 31, p < 

0.001), and Ritteriella retracta (n = 11, p = 0.002).  Overall T. democratica did not 

demonstrate DVM (Fig. 4), with day median biomass (0.342 g C m
-3

) not significantly 

different from night median biomass (0.362 gC m
-3

) (n = 165, p = 0.899).  When at 

bloom concentrations, we did detect day-night differences in T. democratica, with 6 

blooms (out of 33) having at least 2-fold higher biomass at night compared to during the 

day, but also 12 blooms with at least 2-fold higher biomass in the surface waters during 
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the day than at night.  For most other species, presence in tows was too infrequent or 

biomass likely too low for a significant difference between day and night to be detected. 

3.3 Mesoscale eddies 

 A total of 56 mesoscale eddies were detected intersecting the BATS site within 6 

d of a zooplankton sampling event from April 1994 to November 2011, using the Chelton 

and Schlax eddy data set.  Of these 56 eddies, 38 were cyclonic and 18 were anticyclonic: 

there was no significant difference between the median amplitude, speed, and radius of 

the 2 eddy types (Table 2). When comparing median abundance of T. democratica 

between cyclonic, anticyclonic, and no eddies, there was a significant difference between 

treatments (P = 0.017), but there were no significant differences in pairwise comparisons.  

However, the median biomass of T. democratica was significantly higher within cyclonic 

eddies (0.609 g C m
-3

) than within anticyclonic eddies (0.129 g C m
-3

) (Fig. 5).  

Within the 38 cyclonic eddies, T. democratica biomass was not significantly correlated 

with eddy rotational speed or amplitude.  No significant relationships between other salp 

species and eddy presence, type, or attributes were found.   

 Using the Mouriño-Carballido (2009) eddy determinations, a total of 48 sampling 

events between April 1994 and December 2001 were eddy influenced, with 31 cyclonic 

eddies and 17 anticyclonic eddies.  The median biomass of T. democratica was 

significantly higher within cyclonic eddies (0.638 g C m
-3

) than within anticyclonic 

eddies (0.165 g C m
-3

) or in the absence of eddies (0.202 g C m
-3

, Fig. 5).  No 

significant relationships between other salp species and eddy presence or type were 

found. 

3.4 Long-term trends 
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There was no significant long-term positive or negative trend in total salp biomass 

over the 17 yr time series; however, over the time series there were weak, but significant, 

increases in both T. democratica and C. polae biomass, and in water column stratification 

index (WCSI) (Fig. 6A, B, and C, respectively).  The linear increase in WCSI is due to 

both a significant increase in SST and a coinciding decrease in temperature from 300 to 

600 m depth (R
2 

= 0.25, p < 0.0001, for both) over the time series.  The increases in salp 

biomass were log-linear and represented an increase of 0.01 g C m
-3

 yr
-1

 for T. 

democratica and 0.003 g C m
-3

 yr
-1

 for C. polae.  Mean annual biomass anomalies for T. 

democratica (Fig. 7B) were consistently positive over the last 6 yr of the time series, and 

for S. fusiformis were strongly negative over the last 4 yr (Fig. 7C).  Additionally, there 

was a distinct shift after 2000 (t = -3.413, P = 0.004) from consistently negative to 

positive anomalies in total salps other than T. democratica and S. fusiformis (Fig 7D).  

Additionally, a cyclical pattern in T. democratica biomass was evident, with 

average annual biomass increasing by 3-7 orders of magnitude every 3 yr (Fig. 8).  This 

cycle is supported by the spectral density of the T. democratica biomass long-term trend, 

which was highest in value at a period of 33.3 mo (Fig. 8, inset).  This pattern is mostly 

driven by larger spring blooms of T. democratica during these peak years, but also by 

elevated biomass throughout the year, and occasional non-spring blooms. 

3.5 Environmental and climate influences 

  Total salp seasonality was most closely grouped with integrated PP in the PCA of 

seasonality in salps and environmental parameters (Fig. 9A).  Additionally, T. 

democratica and S. fusiformis were closely grouped with PP and chl a concentrations.  

These 2 species were also seasonally negatively correlated with SST and the WCSI.  C. 
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polae was weakly negatively correlated with SST and the WCSI.  W. cylindrica and all 

salps other than the ‘top’ (highest biomass) 4 species grouped together, and were most 

strongly, and negatively, correlated with 300-600 m water temperature, although this only 

explained a small portion of their variability. 

Long-term trends in salp biomass were significantly correlated with several 

environmental parameters (Table 3, Fig. 9B).  However, the variance explained by 

components 1 and 2 of the PCA (Fig. 9B) is low, suggesting a complex system poorly 

represented by the first two components alone.  Both SST the WCSI were positively 

correlated with T. democratica and C. polae biomass (Table 3).  Additionally, T. 

democratica and C. polae were positively correlated with SST in the PCA (Fig. 9B).  PP 

was negatively correlated with biomass of S. fusiformis, C. polae, and W. cylindrica 

(Table 3), but strongly positively correlated with total salp and T. democratica abundance 

(Table 3, Fig. 9B).  Integrated chl a was negatively correlated with W. cylindrica and 

weakly so with biomass of less abundant salp species (Table 3).  Chl a was positively 

correlated with C. polae biomass and abundance and S. fusiformis abundance (Table 3).  

Lower mesopelagic temperatures corresponded with higher biomass of total salps, T. 

democratica, S. fusiformis, C. polae, and other less abundant species (Table 3).   

We compared the long-term trend of biomass of total salps, T. democratica, S. 

fusiformis, W. cylindrica, C. polae, and all other salp species combined with the 12-

month moving average of 4 decadal climate indices (Table 4, Fig. 10).  Total salp 

biomass was most strongly, and positively, correlated with the NPGO (Fig. 10A).  T. 

democratica was most strongly, and negatively, correlated with the PDO (Fig. 10B).  S. 

fusiformis was significantly positively correlated with the PDO (Fig. 10C), while all other 
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salps combined was most strongly positively correlated with the NPGO (Fig. 10D).  

Significant correlations between other salp species and climate indices can be found in 

Table 4. 
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4. DISCUSSION 

4.1 Salp species composition and seasonality 

 We found a total of 21 species of salps present in the entire time series, compared 

to 16 species over 2 cruises in late summer and spring of 1989-1990 (Madin et al., 1996) 

and 20 species throughout the year in 1967-1972 (van Soest, 1975) in the BATS region.  

Of the 25 salp species van Soest (1998) reports to occur throughout the northwestern 

Atlantic Ocean, only 4 species were not present at the BATS site: Salpa younti, Brooksia 

bermeri, Cyclosalpa bakeri, and Cyclosalpa foxtoni.  The most common species at the 

BATS site were Thalia democratica and S. fusiformis, with other species such as Weelia 

(Salpa) cylindrica, C. polae, Iasis zonaria, and S. aspera seasonally abundant.  While van 

Soest (1975) and Madin et al. (1996) did not measure absolute abundance of salps, the 

relative abundances of species that they observed were similar to those we found.  In the 

BATS time series, total salp abundance reached as high as 371 ind. m
-3 

(during a T. 

democratica bloom), which is comparable to documented maxima of 150 ind. m
-3

 for the 

Bay of Bengal (Madhupratap et al., 1980), 300 ind. m
-3 

for the Agulhas Bank (Gibbons, 

1997), and 100 ind. m
-3

 in the South Atlantic Bight of the USA (Paffenhöfer & Lee, 

1987).  However, this is lower than off of southeast Australia where abundance exceeded 

2444 ind. m
-3

 for T. democratica in a bloom event within an eddy (Henschke et al., 

2011).  The second most common species, S. fusiformis, reached 0.96 ind. m
-3

, which is 

comparable to a S. fusiformis maximum of 1.6 ind. m
-3 

in coastal Taiwan (Tew & Lo, 

2005) and 2 ind. m
-3 

in the Humboldt Current (González et al., 2000).  But this is much 

lower than ~700 S. fusiformis ind. m
-3 

found in the North Atlantic west of Ireland 

(Bathmann, 1988) and 225 ind. m
-3

 off northwest Spain (Huskin et al., 2003). 



 132 

 There was a distinct seasonality in salp blooms, with 3 of the 4 most abundant 

species (T. democratica, S. fusiformis, and C. polae) blooming more commonly in 

February and March (spring), coinciding with the seasonal increase in primary production 

and chlorophyll biomass (Steinberg et al., 2001; Lomas et al., 2013).  In contrast, W. 

cylindrica bloomed more frequently in late summer, suggesting that other processes are 

responsible for their rapid population increase.  Similarly, Madin et al. (1996) found W. 

cylindrica present in August but absent in March and April, although van Soest (1975) 

found W. cylindrica present in low abundances year-round.  Other salp species were more 

variable in their bloom seasonality and showed no overall trend.  

4.2 Environmental influences  

 Environmental parameters such as SST and water column stratification (which in 

turn influence mixing and PP) are important seasonal regulators of salp abundance at 

BATS.  The BATS region is characterized by a spring phytoplankton bloom in January-

March that follows a period of winter mixing (Steinberg et al., 2001).  Abundance and 

biomass of 3 of the 4 most common species of salps at BATS (T. democratica, S. 

fusiformis, and C. polae) respond to this seasonal bottom-up forcing, as shown by the 

increase in their abundance with increasing chl a and PP, and the more frequent 

occurrence of blooms in early spring than at other times of the year.  Correspondingly, 

seasonally lower SST and reduced stratification, typical of conditions at the onset of the 

spring bloom, result in higher abundance of these 3 salp species.  This response of salps 

to the spring phytoplankton bloom is similar to that in other systems, including T. 

democratica off the southern Atlantic coast of the USA (Deibel & Paffenhöfer, 2009) and 

in the Tasman Sea (Heron, 1972), S. fusiformis off northwestern Spain (Huskin et al., 
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2003), and both T. democratica and S. fusiformis in the western Mediterranean Sea 

(Ménard et al., 1994).  In some coastal systems, the correlation between chl a and salp 

abundance becomes negative at very high chl a concentrations (Zeldis et al., 1995; Liu et 

al., 2012) presumably due to the clogging of the salp’s mucous feeding net (i.e., at chl a 

concentrations  > 1 μg l
-1

, Harbison et al.,1986).  However, phytoplankton biomass in the 

oligotrophic BATS region, typically ranging from 0 to 0.8 μg l
-1 

(Steinberg et al., 2001; 

Lomas et al., 2013), rarely would approach the level required to negatively impact salp 

feeding.   

In contrast to other salps species, W. cylindrica abundance was positively 

correlated with both SST and water column stratification, while it was not significantly 

correlated with chl a, and was most abundant during the late summer (July, August, and 

September).  This difference in seasonal abundance may be due to W. cylindrica’s 

apparent preference for warm tropical waters.  W. cylindrica is not reported in waters 

colder than 17 °C (van Soest, 1975), and Harbison & Campenot (1979) experimentally 

determined that W. cylindrica stopped swimming at temperatures colder than ~5 °C.  

However, Harbison & Campenot (1979) also reported that C. polae demonstrated a 

response to cold temperatures similar to that of W. cylindrica.  This is in contrast to our 

results, which indicate higher C. polae abundance in cool, high-phytoplankton biomass 

conditions, suggesting that food availability has more influence than temperature on C. 

polae abundance.   

4.3 Diel vertical migration (DVM) 

Five species (S. fusiformis, I. zonaria, S. aspera, Riitteriela retracta, and W. 

cylindrica) exhibited clear DVM, with significantly higher night vs. day biomass in the 
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top 150 m.  Madin et al. (1996) also found DVM off Bermuda in S. fusiformis, I. zonaria, 

S. aspera, and R. retracta, but additionally in Ihlea punctata.  In the slope waters of the 

NE USA, S. aspera also exhibited DVM (Madin et al., 2006). The most abundant 

vertically migrating species, S. fusiformis, was also negatively correlated with 

mesopelagic zone temperature (300-600 m), suggesting that warming of waters at typical 

daytime residence depths for vertical migrators in the region (e.g. Steinberg et al., 2000, 

2012; Bianchi et al., 2013) could have a negative impact on S. fusiformis populations, 

such as increasing their metabolism at depth.  While the most abundant species, T. 

democratica did not exhibit DVM during times of average or low abundance, there was 

an indication of DVM (both ‘normal’ and reverse) during different large T. democratica 

blooms. However, this is likely an artifact of horizontal movement of the salps and not 

vertical, as extremely high abundances could amplify the patchiness of the bloom.  This 

is supported by both ‘normal’ and reverse T. democratica DVM on different sampling 

days during individual blooms in both 1996 and 2011.  Other studies in the Agulhas Bank 

(Gibbons, 1997), off SW Taiwan (Tew & Lo, 2005), and in the Kuroshio current (Tsuda 

& Nemoto, 1992) found that T. democratica did not exhibit DVM and generally stayed 

within the upper 200m.  Thus, we conclude that the diel differences we detected in T. 

democratica were likely due to bloom patchiness and that T. democratica likely does not 

undergo significant DVM. 

4.4 Mesoscale Eddies 

 Mesoscale eddies can enhance nutrient upwelling and PP in the BATS region 

(McGillicuddy et al., 2007; Mouriño-Carballido, 2009) as well as the oligotrophic North 

Pacific gyre (Landry et al., 2008).  Eddy presence can also lead to increases in biomass 
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and changes in the community composition of mesozooplankton (Goldthwait & 

Steinberg, 2008; Eden et al., 2009).  The only salp species that significantly changed in 

biomass in response to mesoscale eddies was T. democratica, which had elevated 

biomass in cyclonic eddies compared to the absence of eddies or anticyclonic eddies (Fig. 

5).  The first eddy data set we used (Chelton et al., 2011) does not distinguish between 

the 2 anticyclonic eddy types: anticyclonic eddies that are downwelling, and anticyclonic 

mode-water eddies with isopycnal displacement and upwelling.  However, when using 

the Mouriño-Carballido (2009) data which do distinguish these eddy types, we found no 

significant difference between T. democratica median biomass between anticylonic 

mode-water and anticyclonic eddies, although the low number of anticyclonic eddies (4) 

may be an insufficient sample size with which to detect a significant difference.  

Increases in T. democratica biomass in response to cyclonic mesoscale eddies 

may be the result of several processes.  Everett et al. (2011) reported T. democratica 

blooming within a 30 km cold-core, cyclonic eddy off southeast Australia, with an 

estimated abundance of over 5000 ind. m
-3

.  This high abundance of salps in the cyclonic 

eddy was linked to an uplift of the nutricline and elevated fluorescence (Everett et al., 

2011). While an increase in salps and other zooplankton in cyclonic eddies compared 

with the absence of eddy perturbation might be predicted, it is less clear why T. 

democratica was the only salp species to significantly increase in biomass in eddies. It is 

possible that only this most abundant species occurs in numbers large enough to detect 

differences between eddy types and that other salps may be responding to eddy 

perturbation as well.  Alternatively, differences in phytoplankton community structure 

between eddy types may play a role.  Previous studies showed that in anticyclonic mode-
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water eddies in the BATS region there was an increase in the percentage of larger 

phytoplankton such as diatoms and dinoflagellates (2-200 m), while in cyclonic eddies 

there was an increased percentage of cyanobacteria such as Synechococcus and 

Prochlorococcus (0.5-1.5 m) (Sweeney et al., 2003; Mouriño-Carballido, 2009).   If T. 

democratica can outcompete other salp species in cyanobacteria-dominated 

phytoplankton assemblages, this shift in phytoplankton may explain why only T. 

democratica increased in the presence of cyclonic eddies.  Although early studies showed 

that smaller salps could feed more efficiently on smaller particles (Harbison & McAlister, 

1979; Kremer & Madin, 1992) and that T. democratica can feed on bacteria (Mullin, 

1983), a recent study shows that at least one large salp (Pegea confoederata) can also 

feed on sub-micrometer particles (Sutherland et al., 2010b).   

4.5 Long-term trends 

 The only significant long-term trends in salp abundance or biomass at BATS were 

slight increases in T. democratica and C. polae biomass.  While the trend in T. 

democratica was consistent over the time series, the trend in C. polae is mostly driven by 

the extremely low concentrations during the first 2 yr of the study.   For T. democratica, 

the increase was equivalent to an integrated (0-150 m) biomass increase of 1.43 g C m
-2

 

yr
-1

 or ~10.0 g dry weight m
-2 

yr
-1 

(assuming C = 12.8% dry weight; Madin et al., 1981), 

and represents an increase of ~0.17 mg dry weight m
-2

 (85%) over the 17 yr time series.  

While this increase is small compared to an increase of 10.7 mg dry weight m
-2 

 in total 

mesozooplankton biomass at BATS over the same time period (Steinberg et al., 2012), 

any shift in the baseline of salp biomass will have larger impacts seasonally at bloom 

concentrations.  Significant long-term changes in salp abundance have been documented 
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in other regions, including a long-term decrease in the California Current (Lavaniegos & 

Ohman, 2007) and a range expansion in the Southern Ocean (Atkinson et al., 2004).  In 

other regions, salp abundance was positively associated with changes in primary 

production (Baird et al., 2011; Li et al., 2011).   

There has been a 2% increase per year in net PP from 1989 to 2007 at BATS 

(Saba et al., 2010). This may be driving the long-term increase in T. democratica, as 

suggested by the significant positive correlation with long-term trends in primary 

production and their close grouping in the PCA of long-term trends.  Chl a was not as 

good a predictor of salp biomass; while PP and chl a are significantly positively 

correlated at BATS over the long term (p < 0.001), salps at bloom abundances may 

quickly deplete chl a concentrations.  Interestingly, long-term trends in both T. 

democratica and C. polae are positively correlated with the WCSI which has also been 

increasing over the time series.  While an increase in the WCSI would reduce the amount 

of mixing and nutrient influx into surface waters, this overall increase may not be 

affecting winter-time advective mixing, which is most important for driving the BATS 

spring phytoplankton bloom (Lomas et al., 2010; Lomas et al., 2013). 

   In addition to a long-term increase, there were unusually large spring blooms of 

T. democratica every third year starting in 1996, as well as elevated biomass of this 

species throughout the rest of that year.  No other salp species showed a similar cycle of 

blooms or abundance.  Globally, salps have been shown to follow approximately a 4 yr 

cycle of high and low relative abundance (Condon et al., 2013, their supplementary Fig. 

S2C).  Condon et al. (2013) posit that this may be related to the 4.4 yr quasi-cycle of high 

tidal levels based on the lunar perigee (the closest distance the moon is to Earth; Haigh et 
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al., 2011), during which an increase in internal tidal wave energy causes an increase in 

turbulence and mixing over the deep ocean (Garrett, 2003).  However, we have no 

mechanistic evidence of a link between this 4.4 yr cycle of increased mixing and the 

slightly offset 3 yr cycle of T. democratica we detected, and no other explanation for the 

pattern.   

4.6 Climate oscillations 

 Decadal climate oscillations play an important role in regulating long-term trends 

in physical forcing and biological response in the North Atlantic (Greene et al., 2003) and 

specifically in the BATS region (Krause et al., 2009; Lomas et al., 2010; Saba et al., 

2010; Steinberg et al., 2012).  The phase of the NAO influences the ecology of the North 

Atlantic through changes in temperature, circulation patterns, and wind intensity 

(Ottersen et al., 2001).  In the BATS region, a negative phase in the NAO results in 

increased storm activity (Dickson et al., 1996), which causes an increase in the frequency 

of mixing in the region (Lomas et al., 2010).  This increased mixing leads to an increase 

in primary production (Saba et al., 2010), higher chl a (Lomas et al., 2010), and increased 

mesozooplankton biomass (Steinberg et al., 2012).  In our analysis a negative NAO 

correlated with an increase in chl a and biomass and abundance of C. polae, but not with 

an increase in biomass of the 3 most abundant species of salps. 

Due to climate teleconnections between the North Atlantic and other ocean basins 

(Kucharski et al., 2006; Müller et al., 2008), PP and mesozooplankton biomass are also 

positively correlated with the NPGO (Saba et al., 2010; Steinberg et al., 2012).  The 

NPGO was positively correlated with long-term trends in total salp biomass and 



 139 

abundance.  The other Pacific climate indices, MEI and PDO, both decreased while total 

salp biomass, abundance, and the NPGO increased.  This suggests that salp biomass is 

influenced through a similar mechanism by the 3 Pacific indices while the NAO has little 

or no effect on long-term trends in salp biomass.  Thalia democratica was also 

significantly correlated with the Pacific oscillation indices but not with the NAO, again 

suggesting that variability in these climate indices affects physical forcing ultimately 

leading to salp blooms in the BATS region in different ways.  The PDO was negligibly 

correlated with long-term trends in S. fusiformis and no climate index was correlated with 

W. cylindrica biomass.  It is likely that the processes affecting their long-term trends are 

unrelated to the mechanism linking the Pacific indices and T. democratica.  El Niño 

Southern Oscillation (ENSO) forcing affects Southern Ocean salp populations (S. 

thompsoni), but the nature of the environmental conditions driven by this forcing leading 

to years with large summer blooms of S. thompsoni is still unknown (Loeb & Santora, 

2012).   Similarly, the mechanism by which forcing associated with these Pacific climate 

oscillations affect changes in BATS region ecology remains to be determined. 
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5. SUMMARY AND CONCLUSION  

The high diversity and seasonal increase in abundance of salps in the BATS region has 

important implications for trophic interactions in the planktonic food web, as during 

blooms, salps periodically make up more than 90% of the mesozooplankton biomass.  

Grazing by salp blooms and competition with other mesozooplankton could alter the 

phytoplankton and zooplankton community structure in ways that persist after the salp 

blooms have died off by changing the relative ratios of different phytoplankton groups.  

These high abundances, coupled with the high filtration rates of salps, could also 

efficiently transfer carbon to the deep pelagic ocean and benthos, through rapid sinking of 

their large fecal pellets, sinking of salp carcasses, and active transport by DVM.  In 

conjunction with a long-term increase in PP at BATS, there has been a corresponding 

long-term increase in T. democratica and C. polae biomass, and long-term trends in other 

species may emerge as the data set continues.  Salp populations are clearly sensitive to 

both seasonal and multi-year changes in environmental conditions, and each species 

responds uniquely to environmental changes.  While the links between climate 

oscillations and changes in salp populations need to be further explored, increased 

warming of the oceans and resultant changes in decadal climate oscillations could lead to 

future changes in salp abundance.   
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Table 1: Day (n = 227) and night (n = 222) biomass and abundance (mean ± SD) for 

each salp species in the epipelagic zone at the Bermuda Atlantic Time-series Study 

(BATS) site.  Mean and maximum day and night biomass and abundance are given for 

each species for the entire 17 yr time series.  Species are listed in decreasing order of 

frequency of presence (see Fig. 1). See ‘Methods’ for biomass calculations. 

  

 Abundance (ind. m-3) Biomass (g C m-3) 

Species Day mean Night mean Day max Night max Day mean Night mean Day max Night max 

Total salps 3.32 ±25.5 1.95 ±17.5 281 221 43.1 ±361 41.5 ±245 4470 2630 

Thalia democratica 3.31 ±25.5 1.90 ±17.5 281 221 40.8 ±361 30.2 ±245 4470 2630 

Salpa fusiformis 1.86E-3 ±7.35E-3 2.56E-2 ±7.11E-2 0.073 0.962 0.211 ±1.24 3.39 ±13.6 14.1 178 

Weelia (Salpa) cylindrica 3.44E-3 ±14.4E-3 6.32E-3 ±30.9E-3 0.133 0.293 0.245 ±1.10 0.587 ±4.40 8.45 62.6 

Cyclosalpa polae 7.52E-4 ±34.3E-4 2.98E-3 ±17.6E-3 0.033 0.186 0.150 ±0.810 0.240 ±1.11 6.72 11.6 

Iasis zonaria 1.37E-4 ±10.9E-4 2.01E-3 ±7.09E-3 0.012 0.061 0.070 ±0.934 1.22 ±5.23 14.0 60.6 

Salpa aspera 4.24E-4 ±40.1E-4 1.41E-2 ±10.3E-2 0.054 1.44 0.034 ±0.347 3.77 ±15.4 4.07 136 

Ritteriella retracta 6.09E-5 ±64.9E-5 1.03E-3 ±7.67E-3 0.007 0.098 0.057 ±0.836 0.202 ±1.29 12.6 12.6 

Pegea confoederata 1.23E-3 ±11.7E-3 1.69E-3 ±17.5E-3 0.143 0.239 0.298 ±3.11 0.242 ±2.53 44.4 35.8 

Ihlea punctata 4.04E-4 ±41.2E-4 8.05E-4 ±62.3E-4 0.053 0.071 0.035 ±0.396 0.134 ±1.02 5.69 12.6 

Pegea socia 8.34E-4 ±83.3E-4 2.57E-4 ±20.7E-4 0.114 0.023 1.10 ±14.1 0.148 ±1.64 210 23.7 

Traustedtia  

   multitentaculata 

1.84E-4 ±13.6E-4 2.53E-4 ±27.8E-4 0.015 0.040 0.019 ±0.232 0.017 ±0.200 3.45 2.90 

Cyclosalpa floridana 8.50E-5 ±98.4E-5 2.22E-4 ±16.9E-4 0.014 0.016 0.002 ±0.017 0.003 ±0.027 0.22 0.34 

Salpa maxima 6.42E-5 ±70.3E-5 4.72E-3 ±69.2E-3 0.009 1.03 0.005 ±0.055 1.20 ±16.7 0.78 249 

Thalia orientalis 6.02E-4 ±61.3E-4 3.22E-4 ±34.6E-4 0.083 0.047 0.013 ±0.124 0.008 ±0.092 1.45 1.35 

Cyclosalpa pinnata 8.32E-5 ±73.7E-5 2.63E-5 ±39.2E-5 0.008 0.006 0.017 ±0.199 0.008 ±0.120 2.93 1.79 

Thalia cicar 2.29E-5 ±34.5E-5 7.04E-5 ±75.2E-5 0.005 0.009 0.001 ±0.018 0.001 ±0.020 0.27 0.30 

Brooksia rostrata 3.16E-5 ±47.6E-5 6.32E-5 ±94.1E-5 0.007 0.014 0.000 0.014 ±0.215 0.07 3.20 

Cyclosalpa affinis 1.96E-4 ±29.6E-4 2.86E-5 ±42.6E-5 0.045 0.006 0.001 ±0.009 0.003 ±0.050 0.14 0.75 

Pegea bicaudata 2.48E-5 ±37.4E-5 5.33E-4 ±79.4E-4 0.006 0.118 0.002 ±0.028 0.061 ±0.907 0.42 13.5 

Helicosalpa virgula 0.00 1.64E-5 ±24.4E-5 0.000 0.004 0.000 0.001 ±0.016 0.00 0.24 

Thetys vagina 0.00 1.83E-5 ±27.3E-5 0.000 0.004 0.000 0.015 ±0.222 0.00 3.31 
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Table 2: Mean (± SD) and range for the amplitude, rotation speed, and radius of the 56 

mesoscale eddies that passed through the Bermuda Atlantic Time-series Study (BATS) 

site within 6 d of a zooplankton sampling event.  Eddies were considered to have passed 

through the BATS site if 110% of their circumference encompassed the BATS site.  Eddy 

data were collected from the online database http://cioss.coas.oregonstate.edu/eddies/ 

(Chelton et al., 2011). 

 Cyclonic Anticyclonic 

Number 38 18 

Mean amplitude (cm) 8.0 ±4.4 8.1 ±2.8 

Amplitude range (cm) 1.2 – 16.5 4.2 – 14.2 

Mean rotational speed (cm/s) 17.0 ±6.4 17.5 ±3.8 

Rotational speed range (cm/s) 7.1 – 33.9 13.1 – 26.6 

Mean radius (km) 96 ±22.2 104 ±29.5 

Radius range (km) 54 - 148 66 – 159 
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Table 3: Spearman correlation coefficients for the 12 mo moving average of salp 

abundance (no m
-3

) and biomass (mg C m
-3

) versus environmental parameters.  Not 

significant (NS): p ≥ 0.05, * 0.05 > p ≥ 0.01, ** 0.01 > p ≥ 0.001, *** p < 0.001. 

 

Species Sea surface 

temperature 

Water column 

stratification 

index 

 Temperature 

300 to 600 m 

Primary 

production 

integrated to 140 m 

Chlorophyll 

a integrated 

to 140 m  

Total salp abundance NS NS NS     0.42*** NS 

Total salp biomass NS NS -0.23** 0.18* NS 

Thalia democratica abundance NS 0.20* -0.24**     0.32*** NS 

Thalia democratica biomass 0.23**    0.48***   -0.43***   0.22** NS 

Salpa fusiformis abundance NS NS   -0.29*** NS 0.20* 

Salpa fusiformis biomass NS NS   -0.36***  -0.19** NS 

Weelia (Salpa) cylindrica 

abundance 
NS NS NS    -0.30***    -0.32*** 

Weelia (Salpa) cylindrica 

biomass 
NS NS NS  -0.38**    -0.23*** 

Cyclosalpa polae abundance  0.34***     0.29*** NS NS   0.20** 

Cyclosalpa polae biomass  0.31***     0.30***         -0.16* -0.16*     0.24*** 

Others combined abundance NS NS NS NS NS 

Others combined biomass NS NS         -0.19* NS -0.20* 
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Table 4: Spearman correlation coefficients for the 12 mo moving average of climate 

index anomalies versus the 12 mo moving average of salp biomass and abundance.  MEI: 

Multivariate El Niño Southern Oscillation; NAO: North Atlantic Oscillation; NPCO: 

North Pacific Gyre Oscillation; PDO: Pacific Decadal Osciallation.  Not significant (NS): 

* 0.05 > p ≥ 0.01, ** 0.01 > p ≥ 0.001, *** p < 0.001. 

Species MEI NAO NPGO PDO 

Total salp abundance   -0.40*** NS 0.55*** -0.37*** 

Total salp biomass -0.22** 0.20** 0.57*** -0.45*** 

Thalia democratica abundance   -0.44*** NS 0.28*** -0.35*** 

Thalia democratica biomass   -0.44*** NS 0.40*** -0.54*** 

Salpa fusiformis abundance NS NS NS            0.25** 

Salpa fusiformis biomass NS NS NS  0.27*** 

Weelia (Salpa) cylindrica abundance NS NS NS NS 

Weelia (Salpa) cylindrica biomass NS NS NS NS 

Cyclosalpa polae abundance NS -0.33*** 0.26*** NS 

Cyclosalpa polae biomass NS -0.32***         0.22** NS 

Others combined abundance NS  0.25*** 0.47***          -0.25** 

Others combined biomass NS  0.38*** 0.46***          -0.27** 
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Figure 1: Frequency of presence (as %) of each salp species in monthly cruises (n=238). A total of 776 tows were analyzed from all 

cruises between April, 1994 and November, 2011.   
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Figure 2: Seasonal and interannual total salp biomass at the Bermuda Atlantic Time-

series Study (BATS) site. Total combined (all species) salp biomass across the time series 

(April 1994-November 2011).  Note that biomass is depicted on a natural log scale. 
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Figure 3: Monthly distribution of (A) salp blooms and (B) average monthly biomass 

after removal of the long-term trend.  Blooms are defined as salp biomass in the top 10% 

of the entire time series for that species. Shown are the sums of all blooms in each month 

for the 4 most abundant species: Thalia democratica, Salpa fusiformis, Weelia (Salpa) 

cylindrica, and Cyclosalpa polae, and all other salps combined over the entire time series 

(April 1994-November 2011).   
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Figure 4:  Salp diel vertical migration. Day and night median biomass of total salps and 

18 species of salps at the Bermuda Atlantic Time-series Study (BATS) site across the 

time series (April 1994 - November 2011).  Day and night biomasses that are 

significantly different (i.e. the species demonstrates diel vertical migration) are marked 

with an asterisk, and the number of day-night observation pairs for each species is in 

parentheses.  Full species names given in Fig. 1. 
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Figure 5:  Median biomass of Thalia democratica within cyclonic and anticyclonic 

eddies, and when no eddies are present, at the Bermuda Atlantic Time-series Study 

(BATS) site.  Black bars represent salp median biomass for eddies from the Chelton and 

Schlax database (http://cioss.coas.oregonstate.edu/eddies/) that encompassed the BATS 

site within 110% of their circumference within 6 d of a zooplankton sampling event, and 

represents our entire salp time series (April 1994 - November 2011).  Gray bars represent 

salp median biomass for eddies listed in Mouriño-Carballido (2009) that influenced 

BATS from April 1994 to December 2001.  Numbers in parentheses indicate the number 

of eddy-influenced samples within each category.  Bars with different letters are 

significantly different (Bonferroni-Dunn test, p < 0.05) from other bars within that 

database (‘a’ and ‘b’ for Chelton and Schlax, and ‘x’ and ‘y’ for Mouriño-Carballido), 

and bars with the same letters are not significantly different (p < 0.05).  
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Figure 6: Twelve month moving average of (A) Thalia democratica biomass (B) 

Cyclosalpa polae biomass, and (C) the water column stratification index (WCSI) across 

the time series (October 1994 - May 2011).  Note the natural log scale for the salp 

biomass plots.  All regressions are log-linear.  
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Figure 7: Yearly average biomass anomaly for (A) total salps, (B) Thalia democratica, (C) Salpa fusiformis, and (D) total salps minus 

T. democratica and S. fusiformis.  Red and blue bars indicate higher and lower biomass, respectively, for that year compared to the 

annual median of the whole time series.   



 164 

 

Figure 8: Annual average biomass of Thalia democratica.  Monthly averages were calculated first to avoid bias towards the more 

frequently sampled spring period, and the median monthly value of each month was used for missing data points.  Error bars represent 

standard error. Note natural log scale and the cycle of higher average biomass every 3 yr.  Inset is the calculated spectral density of the 

monthly time series 12 mo moving average showing the most significant periodicity.   
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Figure 9: Principal component analysis of salp biomass and environmental parameters for (A) seasonal averages after removing the 

long-term trend and (B) the long-term trend.  Total: total salps; T. dem: Thalia democratica; S. fus: Salpa fusiformis; C. pol: 

Cyclosalpa polae; W. cyl: Weelia (Salpa) cylindrica; Others: all other salp biomass combined; PP: primary production integrated to 

140 m; Chl a: chlorophyll a integrated to 140 m; WCSI: water column stratification index; SST: sea surface temperature; Deep Temp: 

mean temperature in mesopelagic zone from 300 to 600 m.  
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Figure 10: Salp biomass and climate index 12 mo moving average.  Monthly salp 

biomass trend (solid line) is shown with the most strongly correlated monthly climate 

index trend (dashed line).  (A) total salps with North Pacific Gyre Oscillation (NPGO), 

(B) Thalia democratica and (C) Salpa fusiformis with Pacific Decadal Oscillation (PDO), 

and (D) total salps minus T. democratica, S. fusiformis, Weelia (Salpa) cylindrica, and 

Cyclosalpa polae with the NPGO.  Correlations between salp trends and climate indices 

were tested using the Pearson correlation (see Table 3 for full results of analysis) for the 

period of the salp time series (October 1994-May 2011). 

  



 168 

 

 

 

 

 

 

CHAPTER 5 

Salp contributions to vertical carbon flux in the Sargasso Sea 

 

This chapter published in the journal Deep-Sea Research I as: 

 

Stone JP, Steinberg DK (2016) Salp contributions to vertical carbon flux in the Sargasso 

Sea. Deep-Sea Res I 113: 90-100. doi: 10.1016/j.dsr.2016.04.007 

 

 



 169 

ABSTRACT 

We developed a one-dimensional model to estimate salp contributions to vertical 

carbon flux at the Bermuda Atlantic Time-series Study (BATS) site in the North Atlantic 

subtropical gyre for a 17-yr period (April 1994 to December 2011).  We based the model 

parameters on published rates of salp physiology and experimentally determined sinking 

and decomposition rates of salp carcasses.  Salp grazing was low during non-bloom 

conditions, but routinely exceeded 100% of chlorophyll standing stock and primary 

production during blooms.  Fecal pellet production was the largest source of salp carbon 

flux (78% of total), followed by respiration below 200 m (19%), sinking of carcasses 

(3%), and DOC excretion below 200m (<0.1%).  Thalia democratica, Salpa fusiformis, 

Salpa aspera, Wheelia cylindrica, and Iasis zonaria were the five highest contributors, 

accounting for 95% of total salp-mediated carbon flux.  Seasonally, salp flux was higher 

during spring-summer than fall-winter, due to seasonal changes in species composition 

and abundance.  Salp carbon export to 200m was on average 2.3 mg C m
-2

 d
-1

 across the 

entire time series.  This is equivalent to 11% of the mean 200 m POC flux measured by 

sediment traps in the region.  During years with significant salp blooms, however, 

annually-averaged salp carbon export was the equivalent of up to 60% of trap POC flux 

at 200 m.  Salp carbon flux attenuated slowly, and at 3200 m the average modeled carbon 

from salps was 109% of the POC flux measured in sediment traps at that depth.  

Migratory and carcass carbon export pathways should also be considered (alongside fecal 

pellet flux) as facilitating carbon export to sequestration depths in future studies. 
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1. INTRODUCTION 

The Sargasso Sea is an oligotrophic region in the North Atlantic subtropical gyre, 

with patterns in biogeochemistry influenced by physical forcing, moderated by strength 

of winter mixing, and tied to decadal-scale climate oscillations (Saba et al. 2010, 

Álvarez-García et al. 2011, Wu et al. 2011). In years with increased frequency of winter 

mixing, increased surface nutrients fuel new production, ultimately leading to higher 

particulate organic carbon (POC) fluxes to 150 m (Lomas et al. 2010).  This POC flux is 

significantly attenuated in the meso- and bathypelagic zones of the Sargasso Sea (Conte 

et al., 2001), where flux to these depths consists of phytodetritus, amorphous aggregates, 

zooplankton fecal pellets, and foraminifera shells (Shatova et al., 2012; Conte and Weber, 

2014), with variation in mass flux closely coupled to seasonal changes in epipelagic 

particle flux (Conte et al., 2001; Lomas et al., 2010).  Flux is also influenced by climate 

oscillations, with higher nitrogen flux to 3200 m in years with a negative North Atlantic 

Oscillation (NAO) anomaly (Conte & Weber 2014).  Interannual variations in 

mesozooplankton biomass in this region also affect vertical export (Steinberg et al., 

2012); we examine here how fluctuations in salp populations (Stone and Steinberg, 2014) 

contribute to vertical carbon flux through a variety of mechanisms.   

Salps are gelatinous, tubular zooplankton which alternate life stages between 

solitary, sexually-produced individuals and aggregated, asexually-produced colonies–

ranging in size from a few mm’s to tens of m’s in length (Godeaux et al., 1998).  Salps 

are highly efficient filter feeders, with clearance rates up to several liters salp
-1

 hour
-1

 

(Madin & Cetta, 1984; Andersen, 1985; Vargas & Madin, 2004), and they can consume a 

broad size range of phytoplankton and bacteria (Bone et al., 2003; Sutherland et al., 
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2010). Salps feed incessantly as they propel themselves through the water, and when 

numerous, can consume more than 100% of the primary production (Hereu et al., 2006).  

Their continuous ingestion of a wide range of particle sizes promotes rapid rates of 

growth, reproduction, and defecation. Salp fecal pellets are relatively large (Caron et al., 

1989; Sutherland et al., 2010), and sink at rates up to 1600 m day
-1

 (Bruland & Silver, 

1981; Phillips et al., 2009).  Due to fast sinking velocities, salp pellets can reach 

bathypelagic depths relatively intact, and are found in high numbers in sediment traps 

(Iseki, 1981; Matsueda et al., 1986; Caron et al., 1989; Conte et al., 2001).  This 

observation suggests remineralization or scavenging of these particles by microbes or 

other metazoans may be limited.   

Dead carcasses of salps also contribute to vertical export of organic matter 

(Lebrato et al., 2013a).  While the fate of many salp blooms is unknown, seasonal blooms 

of salps often quickly collapse (Purcell et al., 2001), and this sudden production of 

carcasses can represent an important source of food for deep-sea animals and bacteria 

(Cacchione et al., 1978; Wiebe et al., 1979; Lebrato et al., 2012).  Flux from salp fecal 

pellets and carcasses are estimated to contribute up to 72% of the measured flux in the 

coastal Mediterranean (Andersen & Nival, 1988), and a Salpa sp. bloom in the 

northeastern Pacific resulted in a major deposition of fecal pellets and carcasses to the 

seafloor (Smith et al., 2014).  In addition to producing fecal pellets and carcasses, several 

abundant species of salps in the Sargasso Sea and elsewhere undergo diel vertical 

migration, spending time well below the pycnocline during the day and migrating to 

surface waters at night (Wiebe et al., 1979; Madin et al., 1996; Stone & Steinberg, 2014).  

While at depth, vertical migrators metabolize particulate organic carbon (POC) consumed 
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in surface waters, respiring it as CO2 and excreting dissolved organic carbon (DOC), 

contributing to vertical transport of carbon to depth (Steinberg et al., 2000).   

While salps are important contributors to vertical carbon flux while they are 

present, their populations are quite variable.  Salps periodically bloom throughout the 

world’s oceans, including in the Sargasso Sea (Madin et al., 1996, 2001; Roman et al., 

2002, Stone & Steinberg, 2014), where they are occasionally the dominant epipelagic 

zooplankton (Stone & Steinberg, 2014). Salps are sensitive to interannual and longer-

term changes in the environment, mostly related to variations in temperature and 

stratification.  Shifts in prevailing wind led to temperature and primary production 

changes that caused salp species composition in the Mediterranean to alternate between 

Thalia democratica and Salpa fusiformis  (Ménard et al., 1994; Licandro et al., 2006).  

Increases in temperature, as measured by the Northern Hemisphere Temperature 

anomaly, caused observed increases in the pelagic tunicate Pyrosoma atlanticum due to 

more stable water masses and decreases in phytoplankoton community size (Lebrato et 

al., 2013b).  Long-term regional changes in salp populations have been reported in the 

California Current (Lavaniegos & Ohman, 2007) where shifts in temperature regimes 

caused changes to both their species composition and biomass.  In the Southern Ocean, 

changes in El Niño–Southern Oscillation (ENSO) and regional warming are correlated 

with increases in salps (Atkinson et al., 2004; Loeb et al., 2010), and worldwide, 

gelatinous zooplankton fluctuations are linked to oscillations in climate indices (Condon 

et al., 2013).  In the Sargasso Sea, biomass of the salps Thalia democratica and 

Cyclosalpa polae increased over the last 20 years, and was positively correlated with 

water column stratification (Stone & Steinberg, 2014).  T. democratica abundance was 
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also higher within cyclonic eddies in the Sargasso Sea, possibly through increased eddy-

induced production or through eddy-wind aggregation (Stone & Steinberg, 2014).  These 

long-term changes in salps in the Sargasso Sea could increase carbon export to the deep 

sea. 

 In this study, we hypothesize that all three mechanisms of salp-mediated carbon 

export –1) sinking of fecal pellets, 2) sinking of carcasses, and 3) respiration and 

excretion at depth– represent significant pathways of export.  To test this hypothesis, we 

used salp abundance and species composition data from the Bermuda Atlantic Time-

series Study (BATS) to individually model each species’ contributions to vertical carbon 

flux.  This one-dimensional model includes previously-published rates of salp fecal pellet 

production and sinking, newly measured rates of salp carcass decomposition and sinking, 

and previously published rates of salp metabolism.  By modeling each species and export 

mechanism separately, we can estimate total salp contributions to vertical flux in an 

oligotrophic, open-ocean environment and how those fluxes change through the water 

column as salp abundance and species composition change. 
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2. METHODS 

2.1 Sinking and decomposition rate experiments 

 Salps used in sinking and decomposition rate experiments were collected in the 

western North Atlantic subtropical gyre at stations within ~100 km of the Bermuda 

Atlantic Time-series Study (BATS) sampling site (31
o
40’N, 64

o
10’W).  Cruises were 

aboard the R/V Atlantic Explorer during the ‘Trophic BATS’ project from July 19-31, 

2012 and on regular monthly BATS cruises from March 4–7, April 28–May 3, and 

August 19–23, 2014.  Salps were collected using a net with a 0.8 x 1.2 m rectangular 

mouth, 202 m mesh, and a non-filtering cod end to minimize damage to the salps.  Tows 

were conducted during both day and night to depths of 50-150 m, and lasted ~50 min 

each.  Immediately after each tow, captured salps were separated from other zooplankton 

and brought into the lab for experimentation.  Any particles or other zooplankton stuck to 

the outside or inside of the salps were first removed.  Salps were then identified to 

species and life stage, and individual salp length was measured as the oral-atrial distance 

using digital calipers.  Salps that were not already dead post capture were killed by 

placing them in a shallow pan of seawater (~2 mm deep) to collapse and suffocate them 

while allowing them to remain moist.  

 To determine sinking rates, dead salps were placed individually into a sinking 

chamber comprised of a clear acrylic tube 60 cm long and 15 cm in diameter filled with 

surface seawater.  This experimental set up and sinking chamber is similar to those used 

in Lebrato et al., (2013a), which were 12.5 cm and 19 cm in diameter.   The chamber 

diameter in relation to the size of some of the salps may allow flow interactions between 



 175 

the salp and the wall, slowing the salp sinking rate.  To correct for this, we used equation 

12 from Ristow (1997) to apply a sidewall correction factor to each individual salp’s 

sinking rate based on the size of the salp.  Water temperature was measured using a Cole-

Parmer Traceable
®
 90205-22 temperature probe, and salinity was determined from the 

ship’s flow-through salinometer.  Water temperature in the sinking chamber changed less 

than 1 °C throughout each experimental run, and salps were stored in water with the same 

temperature and salinity as the sinking chamber.  After placement in the sinking chamber 

using forceps, salps were gently shaken to remove any bubbles on or inside the salps.  If 

any bubbles remained, the salp was discarded.  Each salp was then gently released and 

allowed to sink.  Depth of each salp in the sinking chamber was determined by 

comparison to measurement markings on the outside of the chamber.  Once each salp 

appeared to reach terminal velocity (after ~20 cm), a timer was started, and the time to 

sink a distance between 5 and 30 cm was recorded.  Different sinking distances were used 

when an individual salp sank particularly quickly or slowly, as we attempted to time each 

sinking salp for 30-60 s.  Each salp was sunk once to avoid retrieving the salp from the 

bottom of the chamber and introducing turbulence. 

  Decomposition rate experiments were conducted with Cyclosalpa polae, Iasis 

zonaria, Salpa fusiformis, S. maxima, Thalia democratica, Wheelia cylindrica, and 

Ritteriella retracta in March, May, and August of 2014.  Dead salps were placed in small 

(~5x5 cm) 200 m mesh bags submerged in a large beaker in the dark with a continuous 

flow-through of surface seawater (19-23 °C) for the duration of the experiment, 

simulating the decomposition process in warm epipelagic waters with the resident 

microbial assemblage.  Several salps were removed at each time point from their mesh 
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bags and “sacrificed” from the experiment to be frozen for analysis onshore.  This 

removal occurred at regular intervals (~8-12 h) until all salps were either removed or 

completely decomposed.  Once onshore, salp remains were placed in a drying oven at 60 

°C for at least one week and then weighed.  Initial salp dry weight (i.e., T0) was estimated 

from length measurements of freshly caught, whole salps using published salp live length 

to carbon weight regression equations for each species (see Table 5.3 in Madin & Deibel, 

1998, and references therein).  Occasionally, the measured dry weights of the initial, 

undecomposed salps were consistently different from the dry weights calculated by the 

regression equations.  When this occurred, a correction factor was applied to all salps in 

that experiment by adding or subtracting the difference between the mean calculated and 

mean measured dry weights of the time zero (t0) salps.  Decay rate of salp carcasses was 

calculated by plotting the percent remaining of initial salp dry weight over time and 

fitting a first-order exponential decay curve: 

P = a*e
(-k*t)

 

where ‘P’ is percent of starting salp dry weight remaining at time ‘t,’ ‘a’ is the percent 

remaining at time zero t0, ‘k’ is the decay constant, and ‘t’ (hours) is time from the start 

of the experiment. Similar experiments were carried out at 8 °C using water collected 

from 1000 m, to simulate meso- and bathypelagic conditions.  For these experiments, 

instead of water continuously flowing through the decomposition chamber, carcasses 

were placed in 4 L bottles in a refrigerator, and the water in each bottle was replenished 

every 12 h.   

2.2 Model development 
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 We developed a one-dimensional model to calculate salp contributions to total 

vertical carbon flux (Fig. 1).  Fecal pellet production, grazing, production of carcasses, 

and respiration at depth was calculated daily for each species’ biomass.  Data forced into 

the model included biological, environmental, and process rate data (e.g., salp biomass, 

temperature, primary production) collected through the BATS program 

(http://bats.bios.edu/), previously published rates of salp metabolic and export processes 

(fecal pellet production, respiration, and DOC excretion), as well as results from the 

above sinking and decomposition experiments.  Salp ‘blooms’ were defined as in Stone 

and Steinberg (2014), i.e., when total salp biomass is in the top 10% of all observations. 

 Salp biomass (mg C m
-2

) and vertical migration was calculated from monthly and 

bimonthly tows at the BATS site as detailed in Stone and Steinberg (2014).  Species-

specific biomass was averaged from duplicate day and night tows, with only the night 

tow biomass used for species that exhibited diel-vertical migration. Salp blooms are 

generally short-lived, and typically do not remain at high abundance for several months.  

Because the duration of each salp bloom could not be accurately estimated from monthly 

sampling, the biomass data were linearly interpolated between each sampling date to give 

a biomass estimate for each day from April 15, 1994 to November 14, 2011.  This was 

done for each of the 21 species and 4 higher taxa categories (Pegea sp., Salpidae, Salpa 

sp., and Thalia sp.) in the dataset; the 25 biomass time series were then used to force the 

flux model.  Based on Stone and Steinberg (2014), all species were split into those which 

exhibited diel vertical migration (DVM; Salpa fusiformis, Wheelia cylindrica, Iasis 

zonaria, S. aspera, and Ritteriella retracta) and those that did not exhibit DVM (Brooksia 

rostrata, Cyclosalpa affinis, C. floridana, C. pinnata, C. polae, Helicosalpa virgula, Ihlea 
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punctata, Pegea bicaudata, P. confoederata, P. socia, Pegea sp., S. maxima, Salpa sp., 

Salpidae, Thalia cicar, T. democratica, T. orientalis, Thetys vagina, and Traustedtia 

multitentaculata).  For each DVM species, an overall average migrating proportion of the 

biomass was calculated by dividing each sampling date’s day biomass by night biomass 

and subtracting from 1 to obtain a percentage of biomass that was migrating.  These 

percentages were then averaged for each species across the entire time series.  For non-

DVM species, we calculated the amount of carbon reaching 200 m from both fecal pellet 

production (FPP) and from sinking of carcasses (i.e., the ‘passive flux’).  For DVM 

species, we additionally calculated respiration and dissolved organic carbon (DOC) 

excretion while at depth (i.e., the ‘active flux’).      

 Fecal pellet production, sinking of dead carcasses, respiration and DOC excretion 

at depth, and grazing were all resolved daily from April 1994 to November 2011 as 

described in the following sections.  For fecal pellet production, species-specific FPP 

rates were used when available from the literature; for species without a specific rate, 

rates from the same genus or family were averaged (Supplementary Table 1; Deibel, 

1982; Madin, 1982; Mullin, 1983; Small et al., 1983; Cetta et al., 1986; Andersen, 1985; 

Huntley et al., 1989; Madin & Purcell, 1992; Sreekumaran Nair et al., 1995).  Fecal pellet 

decomposition was based on rates averaged from Caron et al. (1989), who measured the 

loss of ash free dry weight over a 10-day experiment.  Based on literature values for fecal 

pellet sinking rates (Bruland & Silver, 1981; Caron et al., 1989; Phillips et al., 2009), salp 

fecal pellets would reach the Sargasso Sea floor well within 10 days.  Because the 

experiments in Caron et al. (1989) measured fecal pellet decomposition over a total of 10 

days through a temperature gradient (1 day at 22 °C followed by 9 days at 5 °C) and did 
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not measure pellet decomposition at only one temperature, we were unable to separately 

model the decomposition taking place in the warm surface waters from that at colder 

depths.  Thus, we applied the total 10-day decomposition measured by Caron et al. 

(1989), and no additional decomposition parameter was applied after the fecal pellets 

reached 200 m.  Because fecal pellets would sink below 200 m much more quickly than 

10 days, our estimates are conservative.  For DVM species, we assumed the following: 1) 

FPP was the same in the surface waters and at depth, as salps with full guts would 

continue to produce fecal pellets after migrating to depth for some time and would not 

immediately begin producing them again after returning to the surface, 2) migrators spent 

12 h per day above 200 m and 12 h per day below 200 m, and 3) while physical breakup 

or resuspension of fecal material may occur, we had no reliable estimates of these 

processes, and they were not included in the model.   

 We modeled carcass sinking and decomposition by incorporating the 

experimentally-determined rates for each species (Fig. 2 and Table 1), and averaging 

across genus or family when species-specific rates were not available.  Daily biomass of 

each species and life stage was multiplied by the proportion dying each day (the mortality 

rate), which gave a biomass of dead salps produced each day.  All salps were 

conservatively assumed to have died at the surface, and the amount of time required to 

sink 200 m was calculated by using the species-specific corrected rates in Fig. 2.  The 

decomposition equations in Table 1 were then used with the time required to sink 200 m 

to determine the sinking carcass biomass.  The monthly proportion of salp biomass in 

each life stage (blastozooid or oozoid) was calculated from BATS count data, and then 

linearly interpolated to obtain a daily value.  Life spans were estimated as 3 days for 
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Thalia blastozooids, 14 days for Thalia oozoids, 15 days for all other salp blastozooids, 

and 30 days for all other salp oozoids (Henschke et al., 2011, Deibel & Lowen, 2012).  

Daily death rates were estimated as the proportion of the population reaching the end of 

its lifespan each day; for example, the 14-day lifespan of Thalia oozoids translates as 

1/14 of Thalia oozoid biomass dying each day.  For DVM species, we estimated that half 

of the population died above 200 m, and half below 200 m.  Since we did not measure 

decomposition at colder temperatures or under increased pressure at depth, we calculated 

biomass of carcasses produced below 200 m (reaching depths of 300 m, 500 m, 1500 m, 

and 3200 m) by applying the decomposition rates of Lebrato et al. (2011) (2013a) 

separately to T. democratica (due to slower sinking speeds of this species), and then to all 

other species combined.  We assumed a constant temperature of 18 °C from 200 to 500 

m, 8 °C from 500 to 1000 m, 5 °C from 1000 to 1500 m, and 3 °C from 1500 to 3200 m 

(http://batsftp.bios.edu/BATS/ctd/).  

Salp active transport–respiration and DOC excretion at depth– was calculated for 

the five DVM species while they were below 200 m.  One rate for each parameter was 

applied to all species.  An average respiration rate (2.2% body C h
-1

) was calculated from 

data compiled in Madin and Purcell (1992) and Cetta et al. (1986).  There is no published 

DOC excretion rate of salps, thus DOC excretion rate for this model was averaged from 

those of other gelatinous zooplankton (ctenophores and cnidarians) in Condon et al. 

(2011) (0.182 mg C h
-1 

g dry body weight
-1

). 

Daily salp grazing (mg C m
-3

 d
-1

) was calculated by multiplying the volume of 

water cleared by the average carbon biomass of phytoplankton 0-140 m, as 

phytoplankton biomass is not significant below 140 m.  Both daily chlorophyll a and 
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primary production were linearly interpolated from the monthly BATS sampling 

(http://batsftp.bios.edu/BATS/bottle/bats_pigments.txt and 

http://batsftp.bios.edu/BATS/production/bats_production.dat).  Phytoplankton carbon 

biomass was calculated by multiplying the daily chlorophyll a concentration by a 

seasonal carbon to chlorophyll ratio (C:Chl).  These C:Chl ratios (g/g) were calculated 

from seasonal averages of BATS chlorophyll a concentration and average seasonal 

values of phytoplankton carbon from Wallhead et al. (2014), and were as follows 

(months in parentheses): 52 – winter (JFM), 60 – spring (AMJ), 52 – summer (JAS), and 

47 – fall (OND).  Species-specific clearance rates were used when available; otherwise, 

average rates for genus or family were used (Supplementary Table 1; Harbison and 

Gilmer, 1976; Harbison & McAlister, 1979; Deibel, 1982; Mullin, 1983; Madin & Cetta, 

1984; Andersen, 1985; Deibel, 1985; Reinke, 1987; Madin & Purcell, 1992; Sreekumaran 

Nair et al., 1995; Vargas & Madin, 2004; Hereu et al., 2010). Because salps are 

considered non-discriminant filter feeders (Madin, 1974) and only cease feeding when 

their internal filters become clogged at very high phytoplankton concentrations (i.e., 

above ~1 ug chl a L
-1

, Andersen, 1985 and Harbison et al., 1986; concentrations rarely 

reached at BATS), we assumed clearance rates to be constant regardless of phytoplankton 

concentration. While some DVM species may migrate at different times of the day 

(Madin et al., 1996), further research is needed to quantify these differences, and all 

DVM species were assumed to graze 12 h each 24-h period in surface waters.  All salp 

grazing rates were based on phytoplankton standing stocks, and FPP rates for this model 

were independent of calculated grazing (see above).  If grazing rates were to be used in 

an energetic model or to calculate FPP, consumption of microzooplankton (such as 
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dinoflagellates and ciliates shown in Vargas & Madin, 2004) would also need to be taken 

into consideration. 

2.3 Sediment trap flux 

 Sediment trap POC flux data (mg C m
-2

 day
-1

) for sediment traps at 150 m, 200 m, 

and 300 m from April 1994 to November 2011 were downloaded from the BATS 

database (bats.bios.edu).  Mean POC flux for traps at 500 m (1984-1986, 1989-1982, and 

1997-1998), 1500 m (1984-1992, and 1997-1998), and 3200 m (1978-1998) was 

calculated from Table 1 in Conte et al. (2001).   
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3. RESULTS 

3.1 Sinking and decomposition rates 

Mean salp carcass sinking rate was measured for 8 species ranging in average size 

from 8 mm T. democratica to 30 mm S. maxima.  Sinking rates ranged from 414-871 m 

d
-1

 and 467-1002 m d
-1

, before and after correcting for wall-interaction effects, 

respectively (Fig. 2), with a mean (corrected) sinking rate across all species of 727 m d
-1 

(n=293).  The corrected rates were used throughout the model calculations.  There were 

weak linear correlations between salp length vs. sinking rate (p<0.001; r
2
 = 0.21) and 

water density vs. sinking rate (p>0.05; r
2
 < 0.01).  We posit that sinking rate was not 

dependent on water density due to the high water content of salp carcasses, and thus there 

was an equally proportional change in their body density as in the surrounding seawater 

after adjusting to the new temperature.   However, there were significant differences in 

sinking rate between individual species, with Wheelia cylindrica (1002 m d
-1

) and Salpa 

maxima (927 m d
-1

) sinking faster than the two slowest sinking species, Cyclosalpa polae 

(526 m d
-1

) and Thalia democratica (467 m d
-1

) (Kruskal-Wallis ANOVA on ranks; Fig. 

2).  Thus, the average rates of similar taxa were used in model calculations, and sinking 

was not based on salp size or variance in water density.   

 Species-specific decomposition rates were calculated for species with sufficient 

replication to obtain a significant exponential decay curve (I. zonaria, S. fusiformis, and 

T. democratica), while an average of all of the warm-water experiments was used to fit a 

decay curve for the rest of the species (Table 1; Fig. 3).  No measurable decomposition 

occurred over 3 days during the cold-water experiments.  As described in the methods, 

actual measured salp weights at t0 were used to adjust the calculated starting weights.  
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This method was successful, as measured/modeled weight ratio at t0 was distributed 

normally (Shapiro-Wilk p=0.132) and the mean ratio was 1.07 (± 0.27 SD).  Modeled 

salp decomposition was rapid within the first several hours, with 50% of the starting dry 

weight lost after only 8 h.  Decomposition of the subsequent 49% took much longer, ~44 

additional hours, with some salp biomass still present 56 h into the experiment.      

3.2 Grazing model 

  Total daily salp grazing was, on average, 0.05 mg chl a m
-3

 d
-1 

(± 0.003 standard 

error, SE), or 26% of the chlorophyll biomass over the 17+ year model run (6423 days).  

However, median daily salp grazing was only 0.004 mg chl a m
-3

 d
-1

, or 2% of the 

chlorophyll biomass; this difference being driven by periodically high salp abundances.  

Likewise, while salp grazing impact was typically low (an average of 3.9% of the 

chlorophyll biomass during non-bloom salp abundances), during salp blooms, calculated 

grazing was an average of 220% of the phytoplankton standing stock present in 

epipelagic waters (Fig. 4A).  Grazing was also seasonally variable, with elevated mean 

grazing in spring and early summer (March-June; 6.5 mg C m
-2

 d
-1

) compared to the rest 

of the year (July-February; 0.7 mg C m
-2

 d
-1

).  Annual grazing across the time series was 

a median of 17% of the annual primary production (Fig. 4B), with annual grazing 

exceeding 100% of the primary production in 1999, 2002, and 2008.  Additionally, the 

proportion of primary production exported by salps was low (<0.5%) for much (86%) of 

the time series, but increased to as much as 35% during large blooms (Fig. 5B).  On 

average, 0.5% of all primary production at BATS, from April 1994 to November 2011, 

was exported to below 200 m by salps.    
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3.3 Flux model results 

 The daily salp-mediated carbon flux to 200 m for each of 25 salp taxa from April 

15, 1994 to November 15, 2011 was computed in the model.  This included fecal pellet 

production (FPP) and export, sinking of salp carcasses, and respiration and DOC 

excretion by DVM at depth.  The total carbon flux was generally low, with salp-mediated 

carbon export less than 1.0 mg C m
-2

 day
-1

 in 76% of the time series. However, due to the 

population dynamics of salps, this low baseline was punctuated with large salp blooms 

causing spikes in the flux of several orders of magnitude (Fig. 5).  These salp blooms 

cumulatively accounted for 79% of the total modeled salp POC flux across the time 

series, over half of which was produced by the blooms in 1999, 2008, and 2011.  Total 

salp-mediated export to 200m was highly correlated with total salp grazing (Pearson’s 

correlation coefficient = 0.93, p < 0.001), and averaged across the entire time series salp 

carbon flux was 1.6% of the total carbon grazed by salps.  The average daily salp-

mediated carbon export across the time series was 2.3 mg C m
-2

 day
-1

 and the median 

flux was 0.4 mg C m
-2

 day
-1

.  The largest proportion of salp-mediated carbon export came 

from fecal pellets, with an annual average of 78% (586 mg C m
-2

 year
-1

) (Table 2).  The 

second largest contribution to export was from respiration at depth (19%; 139 mg C m
-2

 

year
-1

), followed by sinking of carcasses (3%; 23 mg C m
-2

 year
-1

), and DOC excretion at 

depth (< 0.1%; 0.1 mg C m
-2

 year
-1

) (Table 2).   

 Seasonal trends in salp carbon flux varied according to the source of the flux, and 

trends were slightly different dependent upon whether mean or median values of export 

were considered (Fig. 6).  As salp export is several orders of magnitude higher during 

periodic salp blooms, mean values were much higher than median values for much of the 
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model output.  Mean export due to salp fecal pellets was elevated in spring and early 

summer (March-June), while respiration and carcass carbon flux were more elevated in 

late summer (July-September) (Fig. 6A).  Median fecal pellet and carcass fluxes were 

elevated through all of the spring and summer (February-September), while median 

respiration peaked in late winter (February and March) and summer (July-September) 

(Fig. 6B).  DOC excretion was negligible in all seasons.  Both mean and median total 

salp carbon flux were higher in spring and summer than in fall and winter.   

 Five species accounted for 96% of the total salp-mediated carbon flux at BATS, 

with Thalia democratica contributing the most, followed by Salpa aspera, S. fusiformis, 

Iasis zonaria, and Wheelia cylindrica (Fig. 7A). The other 20 species and taxa combined 

contributed the remaining 4%.  This was calculated by summing the total flux contributed 

by each species for the entire time series.  However, when each species' annual total 

contribution was averaged for each year of 1995-2010, S. fusiformis was the largest 

contributor to flux, followed by T. democratica, S. aspera, W. cylindrica, and I. zonaria 

(Fig. 7B).  

 Overall, total annual salp carbon flux ranged widely, from 97 to 4580 mg C m
-2 

y
-

1
 in 1997 and 1999, respectively (Fig. 8A), with a mean and standard deviation of 748 ± 

1133 mg C m
-2

 y
-1 

for the time series.  Annual BATS 200 m sediment trap flux ranged 

from 5260 to 9710 mg C  m
-2

  y
-1 

in 2005 and 2002, respectively (Fig. 8B) with a mean 

and standard deviation of 7530 ± 1050 mg C m
-2

 y
-1

.  Annual salp-mediated export flux 

was equivalent to a mean of 10% ± 15 (range 1-60%) of the 200 m sediment trap POC 

flux over the time series (Fig. 8C).   



 187 

While there was no consistent long-term change in total salp C export over the 

time series (r
2
 < 0.01), there was a periodicity to export.  We performed spectral analysis 

on monthly totals of salp C export to 200 m, and the highest spectral densities were found 

at 9, 12, and 36 months (approximate p-value < 0.001, Bartlett's Kolmogorov–Smirnov 

statistic, Fuller, 1996), indicating total salp carbon export cycles on seasonal (9 months 

between the late summer and spring blooms), annual, and interannual time scales, 

respectively.   

 Relatively little of the total salp-exported carbon was lost as it sank through the 

water column (Fig. 9), due to fast sinking and slow decomposition of fecal pellets and 

carcasses.  Average daily salp carbon flux at 200 m across the time series was 2.3 mg C 

m
-2

 day
-1

 and only attenuated to 1.9 mg C m
-2

 day
-1 

at 3200 m.  This was a decrease of 

only 19%, whereas average daily POC flux captured in sediment traps decreased by 92% 

between 200 m and 3200 m (from 20.6 to 1.7 mg C m
-2

 day
-1

).  At 3200 m, calculated 

salp carbon (mostly from fecal pellets) was equivalent to 109% of the POC collected in 

the sediment traps (Fig. 9).  
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4. DISCUSSION 

4.1 Carcass sinking rates 

Salp carcass sinking rates varied between 467 and 1002 m d
-1

, similar to the few 

previously published measurements.  Moseley (1880) recorded a sinking rate of ~860 m 

d
-1 

for an unknown species of salp, and Wiebe et al. (1979) reported Salpa aspera 

carcasses sank 240-480 m d
-1

.  Lebrato et al. (2013a) found Salpa thompsoni carcasses 

sink 800-1700 m d
-1

, and other gelatinous zooplankton, including Cyanea sp., Pelagia 

noctiluca, Mnemiopsis leidyi, and Pyrosoma atlanticum, had average sinking rates of 

400-1500 m d
-1

.  While Lebrato et al. (2013a) found a positive relationship between salp 

biovolume and sinking rate, we found no significant relationship overall between salp 

length and sinking rate but that there were some significant differences between species.  

In our study the smallest species of salp (Thalia democratica) did have the slowest 

sinking rate. Differences between species in sinking rate other than body size could be 

related to different relative sizes of the dense, phytoplankton-filled gut or sinking 

orientation of each individual salp.   

4.2 Decomposition rates 

Decomposition rates of salps were fast enough that while much of the carcass carbon 

would be exported out of the epipelagic, very little would reach bathypelagic depths 

before complete decomposition.  We found the exponential decay constant ‘k’ of all salp 

species combined to be 2.2 d
-1

 at 21 °C, which is close to the calculated k of 2.9 d
-1

 for all 

gelatinous zooplankton using Equation 2 in Lebrato et al. (2011).  However, the decay 

constant for Thalia democratica (k = 14.5) was much higher than that calculated for all 
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gelatinous zooplankton in Lebrato et al. (2011).  While this may be due to a higher 

surface area-to-volume ratio of the small T. democratica compared to larger salps, 

decomposition of T. democratica was included in Equation 2 of Lebrato et al. (2011), 

albeit at a lower experimental temperature of 16.5 °C (Sempéré et al., 2000).  Sempéré et 

al. (2000) observed that salp carcasses consist of a quickly decomposing, labile fraction 

and a more slowly decomposing fraction, which is consistent with our experimental 

results showing exponential decay.   

While slow-sinking salp species or small individuals, which make up the majority of 

salp biomass at BATS, may decompose before reaching the benthos, less common 

blooms of larger and faster sinking species would be able to reach the deep sea.  

Additionally, DVM species could die at their daytime mesopelagic residence depth, and 

thus be more likely to reach the benthos since much of the decomposition occurs in 

warmer surface waters.  While we used a depth horizon of salp DVM of 200 m for the 

purpose of our model, at least one species of salp in the North Atlantic subtropical gyre 

(Salpa aspera) migrates to depths >800 m (Wiebe et al., 1979), where temperatures are 

~10 °C and decomposition much slower.  Thus, our estimates of salp carcass carbon 

export to the deep sea are likely conservative. 

4.3 Grazing  

Salp grazing had relatively low impact on phytoplankton standing stock and 

primary production (PP) for much of the year, but periodically extremely high grazing 

during salp blooms resulted in demand often exceeding phytoplankton supply, with 

grazing over 100% phytoplankton standing stock and PP. Similarly, salp grazing in the 
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Humboldt Current averaged 16% but was up to 60% of PP (González et al., 2000), off 

NW Spain averaged 7% of chlorophyll standing stock but was as much as 77% (Huskin 

et al., 2003), in the California current system ranged from <1 to >100% of daily PP and 

phytoplankton biomass (Hereu et al., 2006), and in the Eastern Tropical North Pacific 

ranged from 0.01 to 3.5% of chlorophyll standing stock each day (Hereu et al., 2010).  

The high grazing impact seen during salp blooms would only be sustained for a short 

time before phytoplankton standing stocks were depleted, suggesting bottom-up control 

and a mechanism for the rapid demise of salp blooms (Henschke et al., 2014).   

Seasonal patterns of grazing by salps were similar to other mesozooplankton at 

BATS, with elevated grazing in spring compared to the rest of the year.  Total 

mesozooplankton (>64 m) grazing in the Sargasso Sea was 88 mg C m
-2

 day
-1

 in 

March/April 1990 (82% of PP) and 13 mg C m
-2

 day
-1

 in August 1989 (25% of PP) 

(Roman et al., 1993).  In both seasons, salps contributed a similar proportion to the total 

mesozooplankton grazing, with average salp grazing in both March/April and August 6% 

of the total grazing reported in Roman et al. (1993).   

4.4 Salp-mediated carbon flux 

On average, total salp-mediated C flux is significant compared to the POC flux 

measured by sediment traps at 200 m, consistent with previous studies of fecal pellet 

contributions to carbon flux in the Sargasso Sea (Steinberg et al., 2012) and the temperate 

North Pacific (Iseki, 1981).  Annual average salp fecal pellet flux in our study is 

equivalent to 7.8% of sinking trap POC flux and active transport by DVM is 1.9% of trap 

POC flux.  During blooms, however, salps account for a higher portion of C flux out of 
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the euphotic zone, and high-abundance years can produce total salp-mediated carbon 

fluxes up to 60% (as in 1999) of trap POC flux at 200 m.  These high fluxes are mostly a 

result of Thalia democratica blooms, where daily total export fluxes reached up to 144 

mg C m
-2

 d
-1

, and these bloom fluxes are more comparable to those found in coastal 

regions.  For example, Madin et al. (2006) found FPP by Salpa aspera in the summer in 

slope waters off New England was 5-91 mg C m
-2

 night
-1

, and Phillips et al. (2009) found 

S. thompsoni produced up to 20 mg C m
-2

 day
-1

 in fecal pellets off the Antarctic 

Peninsula.   

Dissolved organic carbon flux was low compared to other sources of salp carbon 

export, likely because the most abundant species, Thalia democratica, did not vertically 

migrate, and any DOC excretion by non-DVM species would remain in the surface 

waters.  However, uncertainties in our applied weight-specific salp DOC excretion rate 

could lead to underestimates of DOC export.  There are limited measurements of DOC 

excretion by zooplankton, and none for salps.  We used DOC excretion rates based on 

those measured for gelatinous zooplankton by Condon et al. (2011). Kremer (1977) found 

that DOC excretion by the ctenophore Mnemiopsis leidyi is equal to 61% of respiration, 

and Steinberg et al. (2000) found that average DOC excretion was 31% of respiration for 

several migrating crustacean zooplankton taxa and a gelatinous polychaete.  Using an 

intermediate DOC excretion rate of 40% of respiration, our estimates of salp DOC export 

at BATS would increase to 56 mg C m
-2

 y
-1

, or 7% of the yearly total salp-mediated 

carbon flux.  Experimental measurements of salp DOC excretion rates are needed to 

resolve this issue. 
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Seasonality in average carbon export by salps can be explained by seasonality in 

salp blooms, with the peaks driven by periodic large blooms.   The general pattern of 

higher flux in late winter and spring, and lower flux in late summer and fall, is consistent 

with the general pattern of primary production at BATS (Steinberg et al., 2001; Lomas et 

al., 2013).  Higher respiratory DVM flux in the early spring and late summer is due to 

seasonal increases in large, vertically migrating species like S. fusiformis in the spring 

and W. cylindrica in the late summer (Stone & Steinberg, 2014).  Because biomass of 

salps increases by several orders of magnitude during blooms, average salp fluxes are 

often driven by a few large blooms over the time series.  Thus when summing across an 

entire year, the difference between mean and median may not be great; however, when 

summing across smaller time periods, such as a single season, the difference may be 

large.   

Differences between salp species' effect on carbon export are primarily dependent 

on the size of the salp, due to increases in FPP and respiration rates with body size, and 

whether they vertically migrate.  Vertically migrating species (Salpa aspera, S. 

fusiformis, Wheelia cylindrica, Iasis zonaria, and Ritteriella retracta) produce fecal 

pellets and carcasses and respire at depths already below the pycnocline, not only 

decreasing the distance they have to sink, but also spending less time in warmer surface 

waters where bacterial decomposition is faster.  Carcasses from small species, such as 

Thalia sp., not only sink more slowly, but also decompose more rapidly.  Thus, a small 

species such as T. democratica would overall export less carbon than an equivalent 

biomass of a larger, vertically migrating species such as S. aspera.  However, in the 
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Sargasso Sea this difference is often masked by the considerably higher biomass of T. 

democratica blooms compared to all other species.   

There were no significant long-term trends in total annual salp C export, which is 

dependent on the frequency and size of blooms, and peaks in export every three years is 

consistent with a three-year cycle of Thalia democratica peak biomass (Stone & 

Steinberg, 2014).  However, there is a recorded long-term increase in total sinking POC 

flux to 150 m as measured by sediment traps during the high production winter-spring 

transition period at BATS (Lomas et al., 2010; although there was no significant increase 

when averaged over the entire year). Steinberg et al. (2012) also calculated an increase in 

both fecal pellet POC export and active C transport by diel migrating zooplankton over 

time due to a long-term increase in BATS mesozooplankton biomass  (including an 

increase in DVM zooplankton biomass).  This contrast between increases in winter-

spring period trap flux and no change in calculated salp flux may indicate that other, non-

salp-mediated pathways of export are as efficient as salp-mediated ones during this 

period.  Comparisons between measured trap flux and calculated flux are further 

complicated by sediment traps not reliably capturing exported particles from spatially and 

temporally variable salp blooms.   

Salps contribute an increasingly higher proportion of C export with increasing 

depth compared to sinking POC flux measured with sediment traps.  At 200 m, salp flux 

only accounts for 11% of the daily POC flux on average.  Comparatively, average daily 

POC flux at 3200 m of 1.7 mg C m
-2

 day
-1

 at BATS (Conte et al., 2001) is less than our 

calculated salp flux of 1.9 mg C m
-2

 day
-1

 at that same depth.  This high amount of salp 

carbon reaching the deep sea has been directly observed on one occasion in the 



 194 

northeastern Pacific, where a Salpa sp. bloom deposited large amounts of fecal pellets 

and carcasses to the seafloor (~4000 m) (Smith et al., 2014).  However, Shatova et al. 

(2012) quantified zooplankton fecal pellets in traps at 500, 1500, and 3200 m at BATS in 

2007, and found that FP carbon only contributed 4.6% of the total carbon flux at 3200 m, 

much lower than our calculated values.  Additionally, they found that fecal pellets are 

subject to high rates of recycling and repackaging in the deep water column.  Our higher 

estimates of deep salp export may be explained by: including carcasses–which baffles on 

sediment traps are likely to exclude, including DVM–which is not measured by sediment 

traps, and not including scavenging and consumption of salp fecal pellets and carcasses.   
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5. SUMMARY AND CONCLUSION 

 Salp populations in the oligotrophic Sargasso Sea play an important role in 

transporting carbon from the epipelagic zone to the deep sea.  The primary source of salp-

mediated carbon flux is the sinking of fecal pellets, but contributions from respiration at 

depth by diel vertically migrating species and sinking of salp carcasses are also 

important.  Salp carbon flux is relatively low for much of the year, punctuated by several 

orders of magnitude higher fluxes during periodic population blooms, especially in 

spring.  Salp grazing follows a similar pattern, with relatively low levels of grazing 

interspersed with removal of 100% of phytoplankton standing stock and PP during 

blooms.  Thalia democratica is the highest contributor to salp flux, but due to its small 

size and absence of vertical migration, most of this species’ contribution is from sinking 

fecal pellets.  Larger species that vertically migrate (such as Salpa fusiformis, S. aspera, 

Iasis zonaria, and Wheelia cylindrica) respire carbon consumed in the epipelagic in the 

mesopelagic zone, and produce carcasses at depth that can reach the benthos (Cacchione 

et al., 1978; Wiebe et al., 1979).  While low and high periods of salp flux average out to 

be a small percentage of total flux captured annually in sediment traps at 200 m, salp flux 

contributes a much higher percentage of the total flux in the bathypelagic zone, mostly 

due to slow decomposition and fast sinking of fecal pellets and carcasses.   

Future changes in the diversity and abundance of salp populations could affect the 

efficiency of the biological pump in the Sargasso Sea.  As shown in Stone and Steinberg 

(2014), Thalia democratica and Cyclosalpa polae populations have increased, and T. 

democratica biomass was three-fold higher within cyclonic eddies than outside eddies.  If 
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these population increases continue, carbon flux would significantly increase, especially 

to the bathypelagic and benthos–carbon sequestration depths.     
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Table 1: Warm-water decomposition rates for three species of salps and for all measured 

species combined.  The equation solves for the percent (P) of the starting salp dry weight 

remaining after t hours.  Decomposition follows an exponential decay curve, with a faster 

decay rate followed by slower decomposition. 
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Table 2: Average annual carbon flux from the 9 largest contributors to flux and all other species combined.  Shown are fluxes of fecal 

pellets, sinking of dead carcasses, respiration at depth of diel-vertical migrators, and the total of those three categories.  Values are in 

mg carbon m
-2

 year
-1

, and ± standard deviation.  DOC excretion is less than 0.1 mg C m
-2

 year
-1

 for all species combined. 
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Figure 1: A summary of the model.  Black boxes indicate forced values from BATS data (phytoplankton biomass, salp biomass, and 

salp diel vertical migration), red boxes indicate modeled rates (grazing, fecal pellet production (FPP), sinking carcasses, respiration, 

dissolved organic carbon (DOC) excretion, and decomposition), green boxes indicate outputs (shallow and deep salp carbon), and blue 

arrows indicate carbon flow.   
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Figure 2: Mean carcass sinking rate for eight species of salps, arranged from largest salp 

on the left to smallest on the right.  Open circles are the wall-interaction corrected values 

of the measured sinking rates (filled circles).  Error bars are standard error, and n for each 

species is in parentheses after name.
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Figure 3: Percent of starting salp dry weight remaining after decomposing in surface 

waters.  Data from 7 species and 96 individuals were used to fit the exponential decay 

regression.  Experiments were carried out in March, May, and August of 2014 using 

surface water that ranged from 19-23 °C.   
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Figure 4: A) Daily chlorophyll a concentration (blue) and calculated amount of 

chlorophyll a grazed by total salps each day (black).  B) Annual primary production 

(integrated to 140 m) from 1995 to 2010 (black bars) and calculated percent of that 

annual PP carbon grazed by total salps for each year (gray bars).   
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Figure 5: A) Total salp daily carbon flux to 200 m (green) and 3200 m (blue) at BATS.  

Total flux is from all salp species and is combined fecal pellet export, sinking of salp 

carcasses, and respiration and DOC excretion by DVM at depth.  Blue lines without 

corresponding green indicate 3200 m flux that is nearly equal to the 200 m flux.  B) 

Percent calculated total salp flux of daily primary production (integrated to 140 m). 
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Figure 6: Seasonal variation in the salp flux to 200 m of carcasses (red), fecal pellets 

(black), respiration below 200 m (blue), and DOC excretion below 200 m (green).  

Average (A) and median (B) daily salp carbon flux for each Julian day are shown from 

the entire time series. 
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Figure 7:  The percent of the total salp carbon flux at 200 m for each of the top 5 species at the BATS site for (A) the sum of each 

species’ contribution across the entire time series and (B) the average annual percent contribution for years 1995-2010.   
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Figure 8: (A) Annual totals from 1995-2010 for combined salp carbon flux to 200 m, and 

the proportion different sources (fecal pellets, respiration, sinking of dead carcasses, and 

dissolved organic carbon excretion) contribute to those totals.  These totals are compared 

to (B) the total annual BATS sediment trap flux at 200 m by calculating (C) the percent 

salp flux of the total BATS trap flux at 200 m. 
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Figure 9: Depth attenuation of modeled salp carbon flux (black bars) and measured 

sediment trap flux (gray bars).  Modeled data are averaged from January 1994 to 

December 2011; 200 and 300 m sediment trap fluxes are from the BATS dataset and 

averaged from January 1989 to December 2011; and 500, 1500, and 3200 m sediment 

trap fluxes are collected from Conte et al. (2001).  
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Supplementary Table 1: Clearance rates and fecal pellet production rates used in the 

salp carbon flux model.  Values are averaged from multiple sources, with the individual 

values reported by each paper in parentheses after the citation.  The standard error of each 

of these averages is reported below the value.   

Parameter Modeled taxa Value Sources 

 

Clearance 

(liters 

cleared per 

mg salp C 

per day) 

 

 

Blastozooid – Thalia 

democratica, Thalia cicar, 

Thalia orientalis, Thalia sp. 

8.894  

± 3.8 

Averaged from Deibel 1982 (19.2), 

Mullin 1983 (6.0, 8.4), Vargas and 

Madin 2004 (2.0) 

Oozoid – T. democratica, T. 

cicar, T. orientalis, Thalia sp. 

5.2  

± 2.1 

Averaged from Mullin 1983 (6.0, 8.4), 

Vargas and Madin 2004 (1.2) 

Blastozooid – Brooksia 

rostrata, Helicosalpa virgula, 

Ihlea punctata, Iasis zonaria, 

Ritteriella retracta, Salpidae, 

Traustedtia multitentaculata, 

Thetys vagina 

14.783 

± 3.4 

Averaged from Harbison and Gilmer 

1976 (6.3, 15, 29.6), Harbison and 

McAlister 1979 (9.2, 15.9), Deibel 

1982 (19.2), Mullin 1983 (6.0, 8.4), 

Madin and Cetta 1984 (46.8, 42.1), 

Andersen 1985 (4.2), Madin and 

Purcell 1992 (3.9, 8.5), Vargas and 

Madin 2004 (2.0, 17.8, 1.6) 

Oozoid – B. rostrata, H. 

virgula, I. punctata, I. 

zonaria, R. retracta, Salpidae, 

T. multitentaculata, T. vagina 

27.265 

± 9.7 

Averaged from Harbison and Gilmer 

1976 (99.6 and 8.1), Harbison and 

McAlister 1979 (77.1 , 37.5, 8.7), 

Mullin 1983 (6.0, 8.4), Madin and 

Cetta 1984 (97.5), Andersen 1985 

(5.6), Madin and Purcell 1992 (3.8, 

8.5), Vargas and Madin 2004 (1.2, 

17.8, 1.6) 

Blastozooid – Cyclosalpa 

affinis 

5.711 

± 2.2 

Averaged from Harbison and Gilmer 

1976 (6.4), Harbison and McAlister 

1979 (9.2), Vargas and Madin 2004 

(1.6),  

Oozoid – C. affinis 59.455 

± 29 

 

Averaged from Harbison and Gilmer 

1976 (99.7), Harbison and McAlister 

1979 (77.1), Vargas and Madin 2004 

(1.6), 

Blastozooid – Cyclosalpa 

floridana 

15.936 Harbison and McAlister 1979 

Oozoid – C. floridana 37.584 Harbison and McAlister 1979 

Blastozooid – Cyclosalpa 

pinnata 

7.571 

± 2.0 

Averaged from Harbison and Gilmer 

1976 (6.4), Harbison and McAlister 

1979 (9.2, 15.9), Madin and Purcell 

1992 (3.9, 8.5), Vargas and Madin 

2004 (1.6) 

Oozoid – C. pinnata 33.860 

± 15 

Averaged from Harbison and Gilmer 

1976 (99.6), Harbison and McAlister 

1979 (77.1, 37.6, 8.7), Madin and 

Purcell 1992 (3.9, 8.5), Vargas and 

Madin 2004 (1.6) 

Blastozooid – Cyclosalpa 

polae 

7.571 

± 2.0 

Averaged from Harbison and Gilmer 

1976 (6.4), Harbison and McAlister 
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1979 (9.2, 15.9), Madin and Purcell 

1992 (3.9, 8.5), Vargas and Madin 

2004 (1.6) 

Oozoid – C. polae 8.712 Harbison and McAlister 1979 

Blastozooid – Pegea 

bicaudata, Pegea 

confoederata, Pegea socia, 

Pegea sp.  

30.924 Averaged from Harbison and Gilmer 

1976 (15.0), Madin and Cetta 1984 

(46.8) 

Oozoid – P. bicaudata, P. 

confoederata, P. socia, Pegea 

sp. 

8.112 Harbison and Gilmer 1976 

Blastozooid – Salpa aspera, 

Salpa fusiformis 

4.152 Andersen 1985 

Oozoid – S. aspera, S. 

fusiformis 

5.616 Andersen 1985 

Blastozooid – Salpa maxima 35.856 Averaged from Harbison and Gilmer 

1976 (29.6), Madin and Cetta 1984 

(42.1) 

Oozoid – S. maxima 35.856 Averaged from Harbison and Gilmer 

1976 (29.6), Madin and Cetta 1984 

(42.1) 

Blastozooid – Wheelia 

cylindrica 

17.823 Vargas and Madin 2004 

Oozoid – W. cylindrica 17.823 Vargas and Madin 2004 

 

FPP (% 

body C per 

hour) 

B. rostrata, C. floridana, H. 

virgula, I. punctata, I. 

zonaria, R. retracta, Salpidae, 

T. cicar, T. democratica, T. 

multitentaculata, T. 

orientalis, T. vagina, Thalia 

sp. 

1.179 

± 0.17 

Averaged from Madin 1982 (0.99, 

0.37, 0.65, 2.77, 0.99, 1.22, 1.30), 

Small et al. 1983 (1.24), Cetta et al. 

1986 (0.62, 1.2, 1.3), Madin and 

Purcell 1992 (1.5)  

C. affinis 0.99 Madin 1982 

C. pinnata 0.37 Madin 1982 

C. polae 0.68 Averaged from Madin 1982 (0.99, 

0.37) 

P. bicaudata 0.65 Madin 1982 

P. confoederata 2.77 Madin 1982 

P. socia 0.99 Madin 1982 

Pegea sp. 1.47 

± 0.65 

Averaged from Madin 1982 (0.65, 

2.77, 0.99) 

S. aspera, S. fusiformis 1.238 

± 0.03 

Averaged from Madin 1982 (1.22, 

1.3), Cetta et al. 1986 (1.2) 

S. maxima 1.3 Cetta et al. 1986 

Salpa sp. 1.26 

± 0.03 

Averaged from Madin 1982 (1.22, 

1.3), Cetta et al. 1986 (1.2, 1.3) 

W. cylindrica 1.22 Averaged from Madin 1982 (1.22), 

Cetta et al. 1986 (1.2) 
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CHAPTER 6 

Summary and Concluding Remarks 
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Gelatinous zooplankton are important predators and grazers in the majority of the 

world’s oceans and seas.  Due to their unique body plans, complex life histories, and 

ability to bloom in extremely high abundances, their effects on food web dynamics and 

vertical carbon flux are strong and diverse.  Additionally, GZ are sensitive to 

environmental changes, and future changes in global climate could greatly affect their 

abundance.  My research is the most spatially and temporally rich long-term analysis of 

GZ population changes in the Chesapeake Bay (Chapter 2), and the only long-term 

analysis of GZ population changes in the Sargasso Sea (Chapter 4).  I also present the 

first measurements of top-down control of vertical carbon flux (Chapter 3), and the first 

estimates of lifetime contributions by salps to vertical carbon flux (Chapter 5). 

Previous studies of GZ population dynamics in the Chesapeake Bay have shown 

that abundance of the dominant species, the scyphozoan medusa Chrysaora 

quinquecirrha, is driven by changes in spring temperature and stream flow (Cargo & 

King, 1990), with the North Atlantic Oscillation driving interannual changes (Purcell & 

Decker, 2005).  Relative abundances of C. quinquecirrha in turn control populations of 

the ctenophore Mnemiopsis leidyi, causing a trophic cascade down the food web (Purcell 

& Decker, 2005; Kimmel et al., 2012).  My results show that spring salinity is the 

primary driver of overall C. quinquecirrha populations, with lower salinities leading to 

higher summer biovolume through regulation of asexual reproduction by the benthic 

scyphistomae.  Temperature is primarily a seasonal control on the Chesapeake Bay C. 

quinquecirrha population, with warming waters regulating the timing, but not magnitude, 

of the bloom.  Additionally, low dissolved oxygen concentrations delay the onset of the 

summer bloom, with hypoxic conditions negatively affecting spring C. quinquecirrha 
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biovolume.  Changes in C. quinquecirrha abundances are the primary controller of M. 

leidyi populations, which in turn have a significant effect on the overall spring and 

summer copepod abundance.  C. quinquecirrha populations in Chesapeake Bay have 

been decreasing from 1985-2011, with a concurrent increase in M. leidyi and decrease in 

copepod abundances, the latter similar to the decrease in Acartia tonsa copepods shown 

by Kimmel et al. (2012).  Both spring streamflow and spring hypoxia are predicted to 

increase in  Chesapeake Bay in response to global climate change (Hagy et al., 2004; 

Najjar et al., 2010), and both of these trends would continue to cause a decline of C. 

quinquecirrha populations in Chesapeake Bay.  This reduction in C. quinquecirrha 

would further release M. leidyi from top-down control in the summer, reducing copepod 

abundances and increasing predation pressure on ichthyoplankton (Purcell et al., 1994; 

Purcell & Cowan, 1995) and bivalve larvae (Purcell et al., 1991; Breitburg & Fulford, 

2006). 

This top-down control of Chesapeake Bay food webs by C. quinquecirrha also 

has implications for vertical carbon flux.  In my mesocosm experiments, I showed that 

the presence of C. quinquecirrha reduces the abundance of M. leidyi, releasing Acartia 

tonsa copepods from predation pressure.  This in turn allows the copepods to produce 

more fecal pellets, and for some experiments, fecal pellet carbon flux was 2 times higher 

in treatments without the addition of M. leidyi.  However, overall particulate organic 

carbon flux was not different between treatments, most likely due to bulk flux being 

dominated by phytoplankton detritus.  Over the course of a summer, the presence of C. 

quinquecirrha in Chesapeake Bay increases copepod fecal pellet carbon flux by 10.4 mg 

C m
-2

, equivalent to a significant portion (10%) of the calculated direct contribution to 
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vertical flux by C. quinquecirrha carcasses (~100 mg C m
-2 

yr
-1

, Sexton et al., 2010).  

While this change in flux is small relative to the overall summer Chesapeake Bay carbon 

flux (Boynton et al., 1993; Roden et al., 1995; Hagy et al., 2005), it remains to be 

investigated how the fate of copepod fecal pellets may differ from phytodetritus in the 

benthos.  Future reduction of C. quinquecirrha populations will reduce the overall 

vertical flux of copepod fecal pellets in the Chesapeake Bay. 

Much work remains to be done on the role of GZ in the Chesapeake Bay.  

Population changes in C. quinquecirrha and M. leidyi affect the entire Chesapeake Bay 

ecosystem, and further investigation is needed into how hypoxia, especially in 

conjunction with other environmental changes, affects C. quinquecirrha asexual 

reproduction.  Additionally, the fate of overwintering C. quinquecirrha is an intriguing 

issue, especially if these individuals are shown to reproduce for a second year and winter 

survival is increased by warmer winters.  Future research should also examine the fate in 

the benthos of copepod fecal pellets versus GZ particulate organic matter, and the role 

that GZ mucous plays in aggregating phytoplankton into sinking masses.  Finally, little is 

still known of what predators consume GZ in Chesapeake Bay.   

In the Sargasso Sea, salps are the most abundant GZ and population dynamics are 

characterized by very low baseline abundances interspersed with short periods of 

extremely high abundances (up to 371 ind. m
-3

) during blooms.  Of the 21 species 

identified in the Bermuda Atlantic Time-series Study (BATS), Thalia democratica was 

the most common and bloomed to the highest abundances.  While total salp biomass was 

primarily driven by T. democratica blooms, several other species (Salpa fusiformis, 

Weelia cylindrica, and Cyclosalpa polae) also occasionally bloomed.  Blooms of T. 
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democratica, S. fusiformis, and C. polae were seasonally associated with increases in 

chlorophyll a and primary production during the onset of the spring phytoplankton bloom 

(Feb-Mar).  A second seasonal peak in salp biomass during the late summer (Aug-Sep) 

was generally associated with blooms of W. cylindrica.  Outside of this seasonal trend, T. 

democratica populations were also significantly higher in cyclonic mesoscale eddies, 

common oceanographic features in the Sargasso Sea.  These increases may be due to 

physical aggregation of salps, but mesoscale eddies have also been shown to enhance 

primary production (McGillicuddy et al., 2007) and mesozooplankton biomass 

(Goldthwait & Steinberg, 2008), potentially causing bottom-up stimulation of T. 

democratica blooms.  Interannual variation was tied to changes in decadal climate 

oscillations, including several Pacific indices. Total salp biomass remained constant 

throughout the time series (1994-2011), but long-term increases in T. democratica (+0.01 

g C m
-3

 yr
-1

) and C. polae (+0.003g C m
-3

 yr
-1

) biomass were observed, concurrent 

with an overall increase in primary production at BATS (Saba et al., 2010).     

GZ can contribute to vertical carbon flux through several mechanisms, and 

previous studies have separately examined the contributions to flux by sinking fecal 

pellets (Matsueda et al., 1986; Caron et al., 1989; Shatova et al., 2012), sinking carcasses 

(Lebrato et al., 2013), and respiration in conjunction with diel-vertical migration 

(Steinberg et al., 2000).  I modeled the contributions of salps to vertical carbon flux in the 

Sargasso Sea through all three of these mechanisms, and found that salps have the 

potential to transport an extremely large pulse of carbon to the deep sea during large 

blooms (over 100 mg C m
-2 

day
-1

).  However, because baseline salp abundance is several 

orders of magnitude lower than bloom abundance, average fluxes are much lower (2.3 
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mg C m
-2

 d
-1

).  Sinking fecal pellets were the greatest source of carbon flux to 200 m 

(78% of total flux), followed by respiration (19%), and sinking of carcasses (3%).  

Although carcasses represent a small portion of the overall calculated flux, sinking and 

decomposition rate experiments show that carcasses can reach the sea floor relatively 

intact, consistent with deep-sea observations (Lebrato et al., 2012) and be consumed by 

organisms that would not consume fecal pellets.  While salp carbon flux was a modest 

portion of overall measured flux at 200 m (11%), annual salp flux to 3200 m could 

exceed 100% of that measured by sediment traps due to the slow attenuation of salp 

carcasses and fecal pellets.  Future increases in salp populations, such as those observed 

for T. democratica and C. polae, would increase the overall carbon flux in this region. 

The development and progression of individual salp blooms has not been tracked 

in the Sargasso Sea, and future research should focus on the short-term mechanisms that 

lead to the growth of blooms.  Specific attention is needed to the relative importance 

different phytoplankton play in initiating a salp bloom, the role that mesoscale eddies 

play in production vs. aggregation of salps, as well as what causes salp blooms to 

collapse. Models of salp contributions to vertical carbon export could also be refined by 

determining the scavenging and consumption of salp fecal pellets and carcasses that 

occurs throughout the water column.   

 While there has been much concern over whether GZ populations are increasing 

globally (Daskalov et al., 2007; Richardson et al., 2009), my research shows that different 

taxa of GZ respond very differently to changing environmental conditions, and complex 

food-web interactions further complicate population dynamics.  In Chesapeake Bay, C. 

quinquecirrha populations have been declining, leading to increases in M. leidyi; in the 
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Sargasso Sea, overall salp populations have been stable, with only small increases over 

time in T. democratica and C. polae.  If these changes in populations and community 

composition continue, they have the potential to significantly impact both prey 

abundance and vertical carbon flux in both regions, with further implications for 

commercial fisheries and carbon sequestration.   

 

  



 227 

REFERENCES 

Boynton WR, Kemp WM, Barnes JM, Matteson LL, Rohland FM, Jasinski DA, Kimble  

HL (1993) Ecosystem Processes Component Level 1 Interpretive Report No. 10. 

Chesapeake Biological Laboratory, University of Maryland System, Solomons, 

MD 20688-0038. Ref. No. [UMCEES]CBL 93-030a 

Breitburg DL, Fulford RS (2006) Oyster-sea nettle interdependence and altered control  

within the Chesapeake Bay ecosystem. Estuaries Coasts 29(5): 776-784 

Cargo DG, King DR (1990) Forecasting the abundance of the sea nettle, Chrysaora  

quinquecirrha, in the Chesapeake Bay. Estuaries 13(4): 486-491 

Caron DA, Madin LP, Cole JJ (1989) Composition and degradation of salp fecal pellets:  

implications for vertical flux in oceanic environments. J Mar Res 47: 829-850 

Goldthwait SA, Steinberg DK (2008) Elevated biomass of mesozooplankton and  

enhanced fecal pellet flux in cyclonic and mode-water eddies in the Sargasso Sea.  

Deep-Sea Res II 55: 1360-1377 

Hagy III JD, Boynton WR, Jasinski DA (2005) Modelling phytoplankton deposition to  

Chesapeake Bay sediments during winter-spring: interannual variability in 

relation to river flow. Est Coast Shelf Sci 62: 25-40 

Hagy III JD, Boynton WR, Keefe CW, Wood KV (2004) Hypoxia in Chesapeake Bay, 

1950–2001: Long-term change in relation to nutrient loading and river flow. 

Estuaries 27: 634–658 

Kimmel DG, Boynton WR, Roman MR (2012) Long-term decline in the calanoid  

copepod Acartia tonsa in central Chesapeake Bay, USA: An indirect effect of 

eutrophication?. Est Coast Shelf Sci 101: 76-85 



 228 

Lebrato M, Mendes PJ, Steinberg DK, Cartes JE, Jones BM, Birsa LM, Benavides R,  

Oschlies A (2013) Jelly biomass sinking speed reveals a fast carbon export 

mechanism. Limnol Oceanogr 58(3): 1113–1122. 

Lebrato M, Pitt KA, Sweetman AK, Jones DOB, Cartes JE, Oschlies A, Condon RH,  

Molinero JC, Adler L, Gaillard C, Lloris D, Billett DSM (2012) Jelly-falls historic 

and recent observations: a review to drive future research directions. 

Hydrobiologia 690: 227–245 

Matsueda H, Handa N, Inoue I, Takano H (1986) Ecological significance of salp fecal  

pellets collected by sediment traps in the eastern North Pacific. Mar Biol 91: 421-

431 

McGillicuddy DJ, Anderson LA, Bates NR, Bibby T, Buesseler KO, Carlson C, Davis  

CS, Ewart C, Falkowski PG, Goldthwait SA, Hansell DA, Jenkins WJ, Johnson 

R, Kosnyrev VK, Ledwell JR, Li QP, Siegel DA, Steinberg DK (2007) 

Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms. 

Science 316: 1021−1026 

Najjar RG, Pyke CR, Adams MB, Breitburg D, Hershner C, Kemp M, Howarth R,  

Mulholland MR, Paolissso M, Secor D, Sellner K, Wardrop D, Wood R (2010) 

Potential climate-change impacts on the Chesapeake Bay. Est Coast Shelf Sci 86: 

1-20 

Purcell JE, Cowan Jr. JH (1995) Predation by the scyphomedusan Chrysaora  

quinquecirrha on Mnemiopsis leidyi ctenophores. Mar Ecol Prog Ser 128: 63-70 

Purcell JE, Cresswell FP, Cargo DG, Kennedy VS (1991) Differential ingestion and  



 229 

digestion of bivalve larvae by the scyphozoan Chrysaora quinquecirrha and the 

ctenophore Mnemiopsis leidyi. Biol Bull 180: 103-111 

Purcell JE, Decker MB (2005) Effects of climate on relative predation by scyphomedusae 

and ctenophores on copepods in Chesapeake Bay during 1987-2000.  Limnology 

and Oceanography 50(1): 376-387 

Purcell JE, White JR, Roman MR (1994). Predation by gelatinous zooplankton and 

resource limitation as potential controls of Acartia tonsa copepod populations in 

Chesapeake Bay. Limnol Oceanogr 39: 263-278 

Richardson AJ, Bakun A, Hays GC, and Gibbons MJ (2009) The jellyfish joyride:  

causes, consequences and management responses to a more gelatinous future. 

Trends Ecol Evol 24: 312–22 

Roden EE, Tuttle JH, Boynton WR, Kemp WM (1995) Carbon cycling in mesohaline  

Chesapeake Bay sediments 1: POC deposition rates and mineralization pathways. 

J Mar Res 53: 799-819 

Saba VS, Friedrichs MAM, Carr M-E, Antoine D, Armstrong RA, Asanuma I, Aumont  

O, Bates NR, Behrenfeld MJ, Bennington V, Bopp L, Bruggemann J, Buitenhuis 

ET, Church MJ, Ciotti AM, Doney SC, Dowell M, Dunne J, Dutkiewicz S, Gregg 

W, Hoepffner N, Hyde KJW, Ishizaka J, Karneda T, Karl DM, Lima I, Lomas 

MW, Marra J, McKinley GA, Mélin F, Moore JK, Morel A, O’Reilly J, Salihoglu 

B, Scardi M, Smyth TJ, Tang S, Tjiputra J, Uitz J, Vichi M, Waters K, Westberry 

TK, Yool A (2010) Challenges of modeling depth-integrated marine primary 

productivity over multiple decades: A case study at BATS and HOT. Global 

Biogeochemical Cycles 24: GB3020 



 230 

Sexton MA, Hood RR, Sarkodee-adoo J, Liss AM (2010) Response of Chrysaora 

quinquecirrha medusae to low temperature. Hydrobiologia 645: 125-133 

Shatova O, Koweek D, Conte MH, Weber JC (2012) Contribution of zooplankton fecal 

pellets to deep ocean particle flux in the Sargasso Sea assessed using quantitative 

image analysis. J Plankton Res 34(10): 905–921 

Steinberg DK, Carlson CA, Bates NR, Goldthwait SA, Madin LP, Michaels AF (2000)  

Zooplankton vertical migration and the active transport of dissolved organic and 

inorganic carbon in the Sargasso Sea. Deep-Sea Res I 47: 137-158 

 

 

 

 

 

  



 231 

VITA 

JOSHUA PAUL STONE 

Born in McKeesport, PA on February 10, 1988.  Was homeschooled through high school, 

and graduated in May, 2006.  Earned a Bachelor of Science in Biology and a Bachelor of 

Arts in Spanish in May, 2010 from Messiah College, Grantham, PA.  Worked as a 

Biological Aide for Blackwater National Wildlife Refuge seasonally from 2006 to 2009.  

Entered the Masters program at the Virginia Institute of Marine Science, College of 

William & Mary in August, 2010 under graduate advisor Dr. Deborah K. Steinberg and 

bypassed into the Ph.D. program in 2012. 


	Population Dynamics of Gelatinous Zooplankton in the Chesapeake Bay and Sargasso Sea, and Effects on Carbon Export
	Recommended Citation

	tmp.1478710447.pdf.z8Gfl

