
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2004

Runtime support for load balancing of parallel adaptive and Runtime support for load balancing of parallel adaptive and

irregular applications irregular applications

Kevin James Barker
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Barker, Kevin James, "Runtime support for load balancing of parallel adaptive and irregular applications"
(2004). Dissertations, Theses, and Masters Projects. Paper 1539623433.
https://dx.doi.org/doi:10.21220/s2-946t-hy96

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623433&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539623433&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-946t-hy96
mailto:scholarworks@wm.edu

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RUNTIME SUPPORT FOR LOAD BALANCING OF PARALLEL

ADAPTIVE AND IRREGULAR APPLICATIONS

A Dissertation

Presented to

The Faculty of the Department of Computer Science

The College of William & Mary in Virginia

In Partial Fulfillment

Of the Requirements for the Degree of

Doctor of Philosophy

by

Kevin James Barker

2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPROVAL SHEET

This dissertation is submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Kevin J. Barker

Approved, April 2004 !1/i~ v\ kJL i
' Nikos Chrisochoides

Thesis Advisor

lamos National Laboratory

//L_
hil Kearns

~~
Xiaodong Zhang

II

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my parents . ..

Ill

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

Acknowledgments

List of Tables

List of Figures

Abstract

1 Introduction

1.1

1.2

Fundamental Issues In Parallel Computing .

Parallel Runtime Environment for Multi-computer Applications .

1.2.1

1.2.2

1.2.3

Communication Infrastructure

Load Balancing

Analytic Modeling of Load Balancer Performance .

1.3 Contributions of This Thesis

2 Related Work

2.1 Communication Infrastructure

2.2 Global Namespace and Object Migration

lV

xi

xii

XIV

xix

2

4

6

7

8

12

12

16

16

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 Load Balancing

2.4 Parallel Application Modeling Techniques

3 Terms and Definitions

4 Load Balancing Foundations

4.1 Data Movement and Control Substrate .

4.1.1

4.1.2

4.1.3

4.1.4

Description and Applicability . .

Operations and Programming Model .

Implementation Summary .

Performance Summary.

4.2 Mobile Object Layer

4.2.1

4.2.2

4.2.3

Ll.2.4

Description and Applicability

Operations and Programming Model .

Programming Model Example: Distributed Tree

Implementation Summary

24

34

37

44

44

45

46

48

52

56

57

59

60

66

4.2.4.1 Mobile Object Location Using Distributed Directories 66

4.2.4.2 Message Ordering in the Presence of Object Migration 69

4.2.5 Performance Summary . 71

5 Load Balancing Framework

5.1 Programming Model . . .

5.2 Operations and Application Interaction

5.2.1 Application Programming Interface .

v

76

78

80

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2.2 Callback Routines

5.3 Programming Model Example: Distributed Tree

5.4 Load Balancing Framework Architecture .

5.4.1

5.4.2

5.4.3

Schedulable Objects

Scheduler Module .

5.4.2.1

5.4.2.2

5.4.2.3

5.4.2.4

5.4.2.5

Scheduler Interface.

Diffusion Model Schedulers

Gradient Model Scheduler

Prioritized Multi-list Scheduler .

Master-Worker Scheduler

Preemption Mechanism

6 Modeling Dynamic Load Balancing

6.1

6.2

Modeling Simple Task Distributions

Modeling General Task Distributions .

6.3 Analytic Model for Diffusion Load Balancing

6.3.1

6.3.2

6.3.3

6.3.4

6.3.5

6.3.6

6.3.7

Computation Component

Preemptive Polling Thread Component

Application Communication Component .

Load Balancing Communication Component

Load Balancing Migration Component .

Migration Decision Making Component

Accounting for Overlap Between Components .

VI

97

101

106

110

112

113

118

123

125

127

129

132

135

138

142

143

146

147

148

149

149

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.4 Verifying the Analytic Model

6.5 Parametric Studies

6.5.1

6.5.2

6.5.3

Bi-modal Imbalance

Linear Imbalance . .

Impact of Communication Latency

7 Performance Evaluation

7.1 Synthetic Micro-benchmark

7.1.1

7.1.2

Representative Load Balancing Systems

7.1.1.1

7.1.1.2

7.1.1.3

ParMETIS

Iterative Load Balancing in Charm++

Seed-based Load Balancing in Charm++

Experimental Results

7.1.2.1

7.1.2.2

7.1.2.3

Evaluation of the PREMA Execution Model

Implementation Efficiency .

Framework Flexibility . . .

7.2 Parallel Advancing Front Mesh Refinement

7.2.1

7.2.2

7.2.3

Parallel Advancing Front Skeleton

Effects of Domain Decomposition .

Experimental Results

7.3 Parallel Constrained Delaunay Triangulation

7.3.1

7.3.2

Parallel Constrained Delaunay Skeleton

Experimental Results on Homogenous Clusters

VII

151

153

154

157

161

164

166

167

167

169

171

172

174

180

181

184

185

188

190

196

196

198

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.3.3 Experimental Results on Heterogeneous Clusters

7.4 Fast Multi-pole N-body Simulation

7.4.1

7.4.2

7.4.3

7.4.4

7.4.5

N-body and Fast Multi-pole Algorithm Background

Available Parallelism in the FMA

Explicit and Integrated Master /Worker Load Balancing

Load Balancing using the PREMA Library

Experimental Results . .

7.5 Loosely Synchronous Benchmark

8 Conclusions and Future Work

A Compiling and Installing the PREMA Libraries

B Data Movement and Control Substrate

B.1 User-defined Handlers and Prototypes

B.2 Operations Provided

B.2.1 Environment Operations.

B.2.2 Handler Registration Operations

B.2.3 Remote Memory Manipulation Operations .

B.2.4 Remote Service Request Operations

8.2.5 Broadcast Operations

8.2.6 Polling Operations ..

B.2.7 Synchronization Operations

B.3 Example DMCS Code

Vlll

202

204

205

207

208

213

220

230

234

239

244

245

246

246

249

250

266

276

284

286

287

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B.4 Porting DMCS

B.4.1 DML Operations

B.4.1.1 DML Environment Operations

B.4.1.2 DML Send Operations

B.4.1.3 DML Broadcast Operations.

B.4.1.4 DML Polling Operation ...

B.4.1.5 DML Synchronization Operation .

B.4.2 DML Data Structures ..

B.4.2.1 dmcs_message_t

B.4.2.2 dmcs_message_pooLt.

B.4.2.3 dmcs..handler_table_t

C Mobile Object Layer

C.1 User Handler Prototypes .

C.l.1 Request Handlers

C.l.2 Message Handlers

C.2 Operations Provided ...

C.2.1 Environment Operations .

C.2.2 Handler Registration Operations

C.2.3 Mobile Pointer Operations .

C.2.4 Communication Operations

C.2.5 Object Migration Operations

C.2.6 Polling Operations

IX

289

290

290

294

300

303

304

304

305

307

308

309

310

311

311

312

313

317

321

323

331

335

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C.2. 7 Synchronization Operations

C.3 Example Code

Bibliography

Vita

X

336

337

343

356

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENTS

The work contained in this thesis was supported by grants from the National Sci
ence Foundation (NSF) Directorate for Computer and Information Science and Engineer
ing (#CCISE-9726388), NSF Information Technology Research (#ACI-0085969), Career
Award #CCR-0049086, Research Infrastructure #EIA-9972853 and Next Generation Soft
ware #EIA-0203974. Additional funding was provided by the University of Notre Dame
Arthur J. Schmidt fellowship.

The work was performed [in part] using the computational facilities at the College of
William and Mary which were enabled by grants from Sun Microsystems, the National
Science Foundation, and the state of Virginia's Commonwealth Technology Research Fund.
Particular appreciation goes to Tom Crockett, who was tireless in helping us understand
the SciClone cluster computing resource, and never complained when we managed to crash
it! Additional work was conducted on computational resources made possible by grants
from International Business Machines (IBM) Shared University Research program.

The author would also like to thank Audrey Chernikov, Brian Holinka, and Demian
Nave for their work in parallel mesh generation which provided not only the impetus for
the design of the PREMA runtime system, but also the test applications and benchmarks
for measuring its performance. The availability of "real-world" applications for performance
measurements greatly strengthens the quality of this research.

Thanks also to Jeff Dobbelaere and Andriy Fedorov for their work, particularly in the
low-level message passing components of the PREMA architecture. The author also wishes
to thank Jeff Squyres for his help with all things MPI, and for providing critical assistance
at many points during the course of this work. Additional appreciation goes to Houtan
Bastani for assistance in porting the lower components of the PREMA runtime architecture
to the Microsoft Windows/NT /2000 platform.

N-body simulation code was provided by the Engineering Research Center at the Mis
sissippi State University. Gratitude goes to Mahadevan Balasubramanian for his help in
this area. The three dimensional pipe model cited within this thesis arose out of work
conducted by the ITR/ ACS Adaptive Software Project, which is composed of researchers
at Cornell University, Mississippi State University, the College of William and Mary, the
University of Alabama, the Ohio State University, and Clark-Atlanta University.

Finally, the author extends sincere gratitude to his research advisor, Nikos Chriso
choides, who provided immeasurable direction and guidance (and funding!) during his
tenure as a graduate student. The author also wishes to thank his committee members,
whose insights and contributions added greatly to the quality of this work.

XI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

4.1 DMCS OVERHEAD ON PARALLEL 3D MESH GENERATION 55

4.2 COSTS ASSOCIATED WITH MESSAGE PASSING. 74

5.1 ILB ENVIRONMENT OPERATIONS . 81

5.2 HANDLER AND CALLBACK ROUTINE REGISTRATION 82

5.3 SCHEDULER AND MOBILE OBJECT REGISTRATION 83

5.4 ILB COMMUNICATION AND SYNCHRONIZATION 94

5.5 INTERFACE FOR THE ILB SCHEDULER MODULE 114

7.1 RUNTIME SYSTEM OVERHEADS ON 128 PROCESSORS 194

7.2 SUMMARY OF OVERHEADS ATTRIBUTABLE TO PREMA 227

B.1 DMCS USER HANDLER PROTOTYPES 245

B.2 DMCS ENVIRONMENT OPERATIONS 247

B.3 ALLOCATING AND FREEING REMOTE MEMORY 250

B.4 DMCS OPERATIONS TO READ REMOTE MEMORY 251

B.5 DMCS OPERATIONS TO WRITE TO REMOTE MEMORY 252

B.6 DMCS BLOCKING REMOTE SERVICE REQUEST OPERATIONS 267

xu

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B.7 DMCS NONBLOCKING REMOTE SERVICE REQUEST OPERATIONS 268

B.8 DMCS SYNCHRONOUS REMOTE SERVICE REQUEST OPERATIONS 269

B.9 DMCS BLOCKING BROADCAST OPERATIONS 275

B.10 DMCS NON-BLOCKING BROADCAST OPERATIONS 276

B.ll DMCS POLLING AND SYNCHRONIZATION 284

B.12 DML ENVIRONMENT OPERATIONS . 290

B.13 DML MESSAGE SEND OPERATIONS . 294

B.14 DML BROADCAST OPERATIONS . 301

B.15 DML POLLING AND SYNCHRONIZATION OPERATIONS 303

B.16 DMCS MESSAGE POOL INTERFACE METHODS 307

B.17 DMCS HANDLER TABLE INTERFACE METHODS 308

C.1 MOL USER HANDLER PROTOTYPES 310

C.2 MOL ENVIRONMENT OPERATIONS . 313

C.3 MOL MOBILE POINTER OPERATIONS 321

C.4 MOL COMMUNICATION OPERATIONS 324

C.5 MOL OBJECT MIGRATION OPERATIONS 331

C.6 MOL POLLING AND SYNCHRONIZATION OPERATIONS 335

xiii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

1.1 SOFTWARE RUNTIME SYSTEM ARCHITECTURE. 10

1.2 SCHEDULER MODULE "PLUG AND PLAY" ARCHITECTURE. 11

4.1 PREMA ARCHITECTURE WITH DMCS HIGHLIGHTED 45

4.2 EXECUTION MODELS FOR LAPI AND MPI 49

4.3 DMCS PING-PONG MEASUREMENTS ON SOLARIS CLUSTER 51

4.4 DMCS PING-PONG MEASUREMENTS ON LINUX CLUSTER. 52

4.5 DMCS PING-PONG MEASUREMENTS ON WINDOWS CLUSTER . . . 53

4.6 PREMA ARCHITECTURE WITH MOL HIGHLIGHTED 57

4. 7 SERIAL IMPLEMENTATION OF COMPUTATION OVER A TREE . . . 61

4.8 MODIFICATION OF TREENODE STRUCTURE TO USE THE MOL . . 62

4.9 IMPLEMENTATION OF PARALLEL COMPUTATION USING THE MOL 63

4.10 OPTIMIZING CODE WITH MOBILE POINTER DEREFERENCING . . 64

4.11 OBJECT MIGRATION USING THE MOL 65

4.12 MOL FORWARDING AND DIRECTORY UPDATE MECHANISM 67

4.13 OUT OF ORDER MESSAGE ARRIVAL DUE TO OBJECT MIGRATION 69

4.14 MECHANISM TO PRESERVE MESSAGE ORDERING 70

xiv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.15 MOL PING-PONG MEASUREMENTS ON SOLARIS CLUSTER 71

4.16 PING-PONG LATENCY MEASUREMENTS FOR DMCS AND MOL. . . 72

4.17 ROUND-TRIP TIMES FOR MOL MESSAGES WITH HOPS 74

4.18 MIGRATION HISTOGRAM FOR MULTI-STEP PCDT SIMULATION . . 75

5.1 PREMA ARCHITECTURE WITH ILB HIGHLIGHTED 76

5.2 TREENODE STRUCTURE WITH MOBILE POINTERS 103

5.3 PARALLEL COMPUTATION USING MOBILE OBJECT LAYER 104

5.4 TREENODE STRUCTURE AND ILB MESSAGE HANDLER 105

5.5 CODE FOR OBJECT TRANSPORT AND PRIORITY CALCULATION . 106

5.6 HANDLER REGISTRATION AND SYSTEM INITIALIZATION 107

5.7 SCHEDULER MODULE WITHIN THE PREMA ARCHITECTURE ... 113

5.8 SCHEDULER COMMUNICATION MODELS 118

5.9 SENDER-INITIATED DIFFUSION LOAD BALANCING 119

5.10 RECEIVER-INITIATED DIFFUSION LOAD BALANCING 120

5.11 GRADIENT MODEL LOAD BALANCING 123

5.12 LOCAL PRIORITY VECTORS IN THE PML ARCHITECTURE 126

5.13 IMPACT OF PREEMPTION ON LOAD BALANCING PERFORMANCE 130

5.14 HOW PREEMPTION REDUCES LOAD BALANCING RESPONSE TIME 131

6.1 TASK EXECUTION TIMES FOR PCDT 134

6.2 BI-MODAL DIVISION OF TASK EXECUTION TIMES 136

6.3 SIMPLIFIED TASK DISTRIBUTION . 137

6.4 VERIFICATION OF SIMPLE ANALYTIC MODEL 138

XV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.5 BI-MODAL DIVISION OF GENERAL TASK EXECUTION TIMES 139

6.6 MEASURE OF ERROR IN BI-MODAL CLASS APPROXIMATION 141

6.7 GAMMA FOR LINEAR AND QUADRATIC TASK DISTRIBUTIONS . . 142

6.8 BENCHMARK VERIFICATION OF MODEL PREDICTIONS 151

6.9 PCDT VERIFICATION OF MODEL PREDICTIONS 153

6.10 BI-MODAL TIMES: VARIANCE VS. DECOMPOSITION 154

6.11 BI-MODAL TIMES: DECOMPOSITION VS. PREEMPTION QUANTA . 155

6.12 BI-MODAL TIMES: VARIANCE VS. PREEMPTION QUANTA. 156

6.13 BI-MODAL TIMES: NEIGHBORHOOD SIZE VS. DECOMPOSITION . . 157

6.14 LINEAR TIMES: IMBALANCE VS. DECOMPOSITION 158

6.15 LINEAR TIMES: DECOMPOSITION VS. PREEMPTION QUANTA . . . 159

6.16 LINEAR TIMES: IMBALANCE VS. PREEMPTION QUANTA 160

6.17 LINEAR TIMES: NEIGHBORHOOD SIZE VS. DECOMPOSITION. . . . 161

6.18 COMMUNICATION LATENCY'S EFFECT ON LOAD BALANCING . . 162

7.1 BENCHMARK RUN TIMES ON 32 PROCESSORS; 25% HEAVY TASKS 173

7.2 BENCHMARK RUN TIMES ON 32 PROCESSORS; 10% HEAVY TASKS 175

7.3 BENCHMARK RUN TIMES ON 64 PROCESSORS; 25% HEAVY TASKS 177

7.4 BENCHMARK RUN TIMES ON 64 PROCESSORS; 10% HEAVY TASKS 179

7.5 PREMA VS. SEED-BASED LOAD BALANCERS; 32 PROCESSORS . . . 180

7.6 PREMA VS. SEED-BASED LOAD BALANCERS; 64 PROCESSORS . . . 181

7.7 PREMA SCHEDULER ANALYSIS; 32 NODES, 8 TASKS PER NODE . . 182

7.8 PREMA SCHEDULER ANALYSIS; 32 NODES, 16 TASKS PER NODE . 183

XVI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.9 PREMA SCHEDULER ANALYSIS; 64 NODES, 8 TASKS PER NODE . . 184

7.10 PREMA SCHEDULER ANALYSIS; 64 NODES, 16 TASKS PER NODE . 185

7.11 EFFECTS OF OVERDECOMPOSITION ON PAFT PERFORMANCE . . 189

7.12 EFFECTS OF OVERDECOMPOSITION ON PIPE MODEL 190

7.13 PERFORMANCE OF IMPLICIT AND EXPLICIT LOAD BALANCING . 191

7.14 BREAKDOWN DATA FOR SEVERAL LOAD BALANCING METHODS 192

7.15 PREEMPTIVE VS. NON-PREEMPTIVE LOAD BALANCING 195

7.16 PARALLEL CONSTRAINED DELAUNAY TRIANGULATION 197

7.17 PCDT PERFORMANCE ON 32 PROCESSORS 199

7.18 PCDT PERFORMANCE ON 64 PROCESSORS 200

7.19 SCALED PCDT PERFORMANCE ON 64 PROCESSORS 201

7.20 PCDT PERFORMANCE WITH SEVERAL PREMA SCHEDULERS . . . 202

7.21 PCDT PERFORMANCE ON HETEROGENEOUS CLUSTER 203

7.22 APPROXIMATING INTERACTIONS BETWEEN DISTANT PARTICLES 206

7.23 MASTER-WORKER INTERACTION: CASE 1 209

7.24 MASTER-WORKER INTERACTION: CASE 2 210

7.25 MASTER-WORKER INTERACTION: CASE 3 212

7.26 POSSIBLE CHUNKING SCHEMES FOR 16 CELLS 215

7.27 CHUNK DATA STRUCTURE WRAPPER 216

7.28 UNIFORM (A) AND NON-UNIFORM (B) POINT DISTRIBUTION . . . 220

7.29 N-BODY PERFORMANCE WITHOUT LOAD BALANCING 221

7.30 UNIFORM DISTRIBUTION WITH FIXED CHUNK SIZE 1 222

7.31 UNIFORM DISTRIBUTION WITH FIXED CHUNK SIZE 6 223

XVll

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.32 NON-UNIFORM DISTRIBUTION WITH FIXED CHUNK SIZE 1. 224

7.33 UNIFORM DISTRIBUTION WITH DYNAMIC CHUNK SIZE 225

7.34 NON-UNIFORM DISTRIBUTION WITH DYNAMIC CHUNK SIZE . . . 226

7.35 MASTER/WORKER LOAD BALANCING WITHOUT PREEMPTION . 229

7.36 LOOSELY SYNCHRONOUS TEST; 10 STEPS, 10% REFINEMENT 231

7.37 LOOSELY SYNCHRONOUS TEST; 10 STEPS, 50% REFINEMENT 232

B.1 DMCS GET-OP AND PUT-OP OPERATIONS 266

B.2 PING-PONG CODE USING DMCS . 287

B.3 MPI IMPLEMENTATION OF DML INITIALIZATION 292

B.4 MPI IMPLEMENTATION OF DML NONBLOCKING SEND 300

B.5 MPI IMPLEMENTATION OF DML SYNCHRONOUS SEND 301

B.6 DMCS MESSAGE DATA STRUCTURE 305

B. 7 A PORTION OF THE DML POLLING IMPLEMENTATION 306

C.1 EXAMPLE USING MOL CONFIGURATOR OBJECT 316

C.2 USING THE MOL STATUS OBJECT . 324

C.3 SEQUENTIAL CODE FOR A SINGLY-LINKED QUEUE 338

C.4 PARALLEL CODE FOR A SINGLY-LINKED QUEUE 339

C.5 OPTIMIZING COMMUNICATION USING OBJECT LOCALITY 340

C.6 MIGRATING MOBILE OBJECTS USING THE MOL 341

XVlll

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

Applications critical to today's engineering research often must make use of the increased
memory and processing power of a parallel machine. While advances in architecture design
are leading to more and more powerful parallel systems, the software tools needed to realize
their full potential are in a much less advanced state. In particular, efficient, robust, and
high-performance runtime support software is critical in the area of dynamic load balancing.
While the load balancing of loosely synchronous codes, such as field solvers, has been studied
extensively for the past 15 years, there exists a class of problems, known as asynchronous
and highly adaptive, for which the dynamic load balancing problem remains open. As we
discuss, characteristics of this class of problems render compile-time or static analysis of
little benefit, and complicate the dynamic load balancing task immensely.

We make two contributions to this area of research. The first is the design and de
velopment of a runtime software toolkit, known as the Parallel Runtime Environment for
Multi-computer Applications, or PREMA, which provides interprocessor communication,
a global namespace, a framework for the implementation of customized scheduling poli
cies, and several such policies which are prevalent in the load balancing literature. The
PREMA system is designed to support coarse-grained domain decompositions with the
goals of portability, flexibility, and maintainability in mind, so that developers will quickly
feel comfortable incorporating it into existing codes and developing new codes which make
use of its functionality. We demonstrate that the programming model and implementation
are efficient and lead to the development of robust and high-performance applications.

Our second contribution is in the area of performance modeling. In order to make the
most effective use of the PREMA runtime software, certain parameters governing its execu
tion must be set off-line. Optimal values for these pc;trameters may be determined through
repeated executions of the target application; however, this is not always possible, partic
ularly in large-scale environments and long-running applications. We present an analytic
model that allows the user to quickly and inexpensively predict application performance
and fine-tune applications built on the PREMA platform.

xix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RUNTIME SUPPORT FOR LOAD BALANCING OF PARALLEL

ADAPTIVE AND IRREGULAR APPLICATIONS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

While hardware advancements are leading to ever more powerful parallel computing plat

forms, the software to utilize these new systems lags further behind. The building blocks

needed to implement adaptive and irregular applications are largely missing, and develop

ment of these components takes years and a great deal of expertise. An example of this is

the lack of parallel software to efficiently handle the discretization (i.e. mesh generation) of

3D complex domains with rapidly changing geometry and/or topology. The complexity of

efficient parallel codes for adaptive applications such as 3D unstructured mesh generation

increases dramatically compared to the corresponding sequential code due to the dynamic,

data-dependent, and irregular computation and communication requirements of the algo

rithms. This inherent complexity makes development using existing parallel programming

paradigms, such as message passing, both time-consuming and error-prone, especially with

out the aid of parallel languages, software tools, and libraries.

Of critical importance is the issue of dynamic load balancing. Imbalance caused by

either systemic issues (as are frequent in multi-user or heterogeneous environments) or

algorithmic adaptivity can significantly reduce the efficiency of a parallel computation.

Placing the monitoring and data/ computation migration burden on the application can lead

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 3

to code which is error-prone, difficult to maintain, and potentially restricted to a particular

execution environment. Furthermore, it is most likely not the case that an application

developer is an expert in the field of load balancing; applications may therefore be written

using a sub-optimal load balancing technique.

That is not to say that the research community has not begun to address this issue.

The past two decades have seen advancements in the areas of interprocessor communica

tion [75, 21), data partitioning and load balancing [64, 103), and modeling techniques [47].

However, the majority of this work is targeted for synchronous or loosely synchronous par

allel applications. For a significant class of codes, called asynchronous and highly adaptive,

the load balancing problem remains open.

The computation and communication patterns exhibited by such codes evolve as the

application progresses (e.g., the fidelity of a mesh must increase around a crack boundary

during Adaptive Mesh Refinement), rendering compile-time or static analysis oflittle ben

efit. In addition, asynchronous applications impose a large penalty on any synchronization

introduced for the purpose of exchanging processor load information. These codes require a

runtime toolkit which can provide efficient, high-performance, and scalable load balancing,

yet is flexible enough to be useful to a variety of application types. In this thesis, we will

describe our work in developing the Parallel Runtime Environment for Multi-computer Ap

plications (PREMA). Our experiments will show that its design and implementation lead

to reductions in application complexity and significant gains in parallel performance and

efficiency.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 4

1.1 Fundamental Issues In Parallel Computing

Software tools used to implement and maintain the building blocks of parallel adaptive

codes can greatly ease the burden placed on parallel application developers. These tools

should aid developers in addressing the following fundamental issues in parallel computing:

• Domain partitioning: To parallelize an application, the computation invoked by that

application must be distributed among the available processing resources. This can

be done either by decomposing the iteration space of a loop-based program, or by

decomposing the data domain, as is the case, for example, with parallel mesh refine

ment.

• Data locality: While processors can quickly access the data stored in their local mem

ories, the performance penalty for accessing non-local data is too large to be ignored.

Furthermore, adaptive and irregular applications are not amenable to compile-time

analysis, making a parallel runtime system with the ability to facilitate the exploita

tion of data locality imperative.

• Communication and synchronization: Codes running on MIMD parallel systems,

such as Massively Parallel Processing (MPP) machines or Clusters of Workstations

(COWs), are typically made up of independently executing processes that operate in

concert, and therefore need to communicate during the runtime of the application.

Also, synchronous or loosely synchronous applications often progress as a series of

phases, at the end of which processors in the parallel system may need to synchronize

in order to update data and begin the next phase. System software must provide

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 5

tools which developers can use to implement the unpredictable communication within

a single phase, as well as basic tools to synchronize between phases when necessary.

• Communication latency tolerance: The large physical size of many parallel machines

(and the clusters of machines often used for parallel computations) often implies large

message passing latencies, the effects of which are exacerbated by increasing proces

sor speeds in relation to network latencies. While single-processor performance has

been accelerating according to Moore's Law for some time, the same cannot be said

for network latencies. Technologies such as Myrinet [93, 29), Infiniband [7), and Gi

ganet [55] have gone some way in attempting to close the gap between processor and

network performance; however, they are by no means a complete solution. Further

more, it does not appear that this problem will be solved by network technology in the

foreseeable future. Once again, compile time analysis is of little help in hiding these

latencies, due to the unpredictable and dynamic communication patterns present in

adaptive applications such as unstructured mesh generation.

• Global namespace: Large-scale parallel applications typically create data structures

whose elements are distributed among the processors' address spaces. Computation of

ten requires the coordination of multiple data structure nodes, which, in a distributed

address space, may mandate communication between several processors. Without

system software support, the application will need to keep track of which data struc

ture elements are located on which processors. In the presence of data migration, for

instance due to dynamic load balancing, this bookkeeping can become very complex,

leading to error prone application implementations. It is therefore critical for runtime

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 6

system software to relieve the application developer of this burden.

• Load balancing: Large-scale, high-performance parallel machines generally consist of

many processing nodes which coordinate in a loosely synchronous fashion. In order

to best utilize the available computing resources, it is important to avoid overloading

some processors with pending work while leaving others idle. This is equivalent to

stating that it is important to minimize the maximum runtime of any single processor,

thus minimizing the runtime of the entire parallel application. The efficient imple

mentation of adaptive applications which dynamically balance processor workloads

requires a great deal of effort above what is required to implement static applica

tions which execute in the presence of load imbalances. Therefore, efficient software

tools that allow developers to quickly and easily incorporate load balancing into their

applications are of critical importance.

Of these, load balancing is the principle concern of this thesis. However, it is important

to recognize the relationships between issues during the design of any runtime toolkit. For

instance, load balancing is often a multi-dimensional optimization problem in which not

only processor cycles, but memory and network utilization as well as data dependencies

between tasks must be considered.

1.2 Parallel Runtime Environment for Multi-computer Ap

plications

The PREMA runtime toolkit is a middle-ware software library which provides a set of tools

to the application via a concise and intuitive interface. It provides point-to-point com-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 7

munication, a global namespace, and a preemptive load balancing framework targeted to

support adaptive and asynchronous applications which employ a coarse-grained data de

composition in which the original domain is broken into N sub-domains, where N is greater

than the number of available processors, P (known as over-decomposition). Computation is

invoked on each sub-domain in a message-driven manner, using PREMA's message passing

interface. This computation represents the load which composes the application; migrating

a sub-domain implicitly migrates computation, allowing the runtime system to implement

dynamic load balancing.

The PREMA runtime toolkit we describe is composed of several layers, which address

the issues just discussed according to the principle of separation of concerns. Each software

layer is assigned a specific task; application developers may then utilize only that function

ality which they deem necessary. However, if more sophisticated runtime support is later

required, it may be easily added with minimal changes to existing application code. Briefly,

each runtime component may be described as follows.

1.2.1 Communication Infrastructure

We begin by laying the foundation of our runtime system hierarchy by presenting the Data

Movement and Control Substrate (DMCS) [16] and the Mobile Object Layer (MOL) [50].

The DMCS software provides a lightweight and easily portable single-sided communication

and data movement substrate. Applications making use of DMCS communicate between

processors using the Active Messages [152] message passing paradigm, in which user-defined

handlers are executed on target processors upon message arrival. DMCS provides split

phase operations which allow communication to potentially overlap with computation and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 8

mitigate the effects of message latency.

The MOL extends this communication model by providing a global namespace and

automatic message forwarding in the presence of object migration. The MOL is flexi

ble enough to allow application developers to easily exploit data locality in their parallel

codes. Specifically, the MOL provides the concept of a mobile object, which is any piece

of application-defined data which is free to move throughout the parallel system under the

control of the application or a higher-level system library. Applications are able to com

municate directly with mobile objects via their unique mobile pointers, regardless of their

present location, even if the target mobile object is presently in the process of migration.

By providing single-sided, Active Messages style communication primitives, data migra

tion operations, and a global namespace, both DMCS and the MOL are designed to simplify

the implementation and maintenance of software building blocks needed for parallel adap

tive applications. We will show that the communication overhead involved in using DMCS

and the MOL will not contribute significantly to the runtime of a parallel application.

1.2.2 Load Balancing

With the DMCS and MOL software layers in place, we present our load balancing frame

work. There are two strategies commonly used to integrate load balancing with parallel

applications. The first is known as explicit load balancing, referring to the fact that the

application is explicitly responsible for implementing the load balancing decision making

and task migration. The advantages of this strategy lie in the fact that, because the load

balancer is so closely tied to the application, it has access to accurate work load and data

locality information, and is therefore able to make informed load balancing decisions. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 9

drawback to explicit load balancing methods is that the application must deal with func

tionality that is not strictly in the application domain. Programmers are forced to write

load balancing code, about whieh they may not be familiar and are most likely not ex

perts. This may greatly complicate the application code, making it difficult to maintain

and understand, and increase the effort required to create efficient code.

The second load balancing strategy is to incorporate the services provided by a dedicated

load balancing library into the application. This method is known as implicit load balancing,

and has the advantage that application programmers no longer need to implement load

balancing functionality, reducing the complexity of application code. In addition, because

the load balancing library is implemented by domain experts, it can contain finely tuned

and efficient load balancing algorithms. However, because the load balancing code has no

knowledge of the application domain and must work with general programs, it is unable to

make use of application-specific knowledge to migrate data with maximal efficiency. It is

also true that implicit load balancers are often unable to obtain truly accurate processor

load information and are therefore unable to gauge the load of the system processors with

complete accuracy.

We present the Implicit Load Balancing (ILB) [15, 17) component of the PREMA ar

chitecture, which provides a framework for implicitly load balancing dynamic and adaptive

applications. The ILB library takes the load balancing decision making and data migration

away from the application, greatly reducing the code complexity and development time for

load-balancing adaptive codes. Specifically, the ILB library was designed in accordance

with the following goals:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 10

Figure 1.1: SOFTWARE RUNTIME SYSTEM ARCHITECTURE

Adaptive Application

• High performance: The ILB framework must allow for the implementation of high

performance scheduling modules. In other words, scheduling algorithms which result

in a nearly optimal work load distribution (given a particular initial task distribution)

must be implementable. A corollary to this is that the schedulers that are possible

within our framework must be able to significantly reduce the number of idle processor

cycles in the parallel system.

• Evolutionary approach to load balancing: For applications written using the program

ming model provided by the MOL, it is a simple step to use the dynamic load balancing

functionality provided by the ILB library. We can accomplish this by guaranteeing

that the communication model, interface, and programming constructs (such as mobile

objects and mobile pointers) provided by the MOL are mirrored in the ILB library. In

the event of unacceptable runtime load imbalance, application developers may quickly

and easily make use of the ILB library's implicit load balancing functionality without

needing to rewrite significant portions of existing application code.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 11

Figure 1.2: SCHEDULER MODULE "PLUG AND PLAY" ARCHITECTURE

Application

Mobile Object Layer

• Flexibility: The ILB library actually provides a load balancing interface and frame

work which can be used in conjunction with a wide variety of scheduling algorithms.

Figure 1.2 depicts the Scheduler module in the overall ILB architecture; by replacing

the Scheduler, applications are able to customize the load balancing policy without

needing to modify any application code. This allows application developers to quickly

and easily experiment in order to find the most effective load balancing method.

• Low overhead: The overhead incurred by tl_le ILB framework should be kept as low

as possible. While an application may implement any desired scheduling algorithm,

the Scheduler module should not have to conform to an interface that precludes high

performance.

In this thesis, we will highlight the components of the load balancing framework which

are the most important in achieving these goals. We will also subject the load balancing

software to a series of tests using several benchmark programs and "real world" applications,

including mesh generation codes and N-body simulators, under a variety of imbalanced

conditions. Through these experiments, we will establish that the PREMA software achieves

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 12

its purpose of providing efficient and high-performance load balancing support for adaptive

and asynchronous applications.

1.2.3 Analytic Modeling of Load Balancer Performance

In order to make the most effective use of the runtime software we demonstrate, certain

runtime parameters must be set off-line which will govern the interaction between the ap

plication and the runtime system. Complicating the role of the application developer is

the fact that these variables typically depend on characteristics of the specific application

and hardware runtime environment. While optimal parameters can be determined through

repeated experimental executions of the particular target application, such a procedure is

time consuming, potentially expensive, and often prohibitive for large systems and appli

cations. Therefore, we present a runtime analysis technique based on an analytic modeling

method which allows the user to quickly predict application performance given certain as

sumptions. Such a tool allows developers to fine tune the performance of applications built

using the PREMA software in the field.

1.3 Contributions of This Thesis

The first contribution we provide is the development of a programming model which is

intuitive from a developer's standpoint and allows for the efficient construction of runtime

tools. Through close contact with application developers within our research group, we

have determined which operations are of the most benefit to adaptive and asynchronous

applications, and have incorporated them into our toolkit. We also distinguish ourselves

from other research projects by providing a single-threaded programming model based on

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 13

currently existing, widely used programming languages (C/C++), as we feel this removes

many of the hurdles which stand in the way of developer adoption. We do this in such a

way as to not preclude preemptive migration decision making, which is necessary for the

efficient load balancing of coarse-grained tasks. Through a comparative analysis with other

prevalent load balancing techniques, we demonstrate that PREMA is ideally suited for the

asynchronous and adaptive applications we target. Finally, based on our literature review,

we have determined that PREMA is the only runtime toolkit which provides this specific

feature set.

Our second contribution is the development of the PREMA system itself. First, we

will show that, using our runtime system, application developers are able to control the

extent to which the runtime system manages their data migration patterns. Using only the

basic functionality of the PREMA system allows application developers to remain in strict

control over data locality and data migration. In the event that runtime analysis shows

performance to be unacceptably hampered by dynamic load imbalance, developers may

choose to incorporate load balancing, allowing data migration to be handled exclusively

by the runtime system. Our evolutionary approach to runtime system design means that

minimal changes to application code are necessary in order to make use of the more advanced

functionality provided by the system.

A second characteristic of PREMA's implementation is its scheduling flexibility. PREMA

incorporates not just a single load balancing algorithm or family of algorithms, but is instead

a load balancing framework which allows developers to quickly modify existing scheduling

policies or create new ones. These customized schedulers can be easily incorporated into

the existing runtime framework. Because the application itself is isolated from the schedul-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 14

ing policy (Figure 1.2), minimal modification of existing application code is required. In

addition, PREMA provides several of the best-known scheduling policies available from the

literature, which we will describe and examine in our Experimental Results chapter.

The final implementation characteristic is performance: we test the effectiveness of our

load balancing mechanism with a variety of applications and demonstrate its performance

relative to what is in the field today. We also prove its applicability to a variety of scientific

codes. We are concerned about performance from two standpoints: minimizing the overall

application runtime, and minimizing the performance impact caused by the costs incurred

by the runtime system. In other words, the communication and load balancing operations

provided by the PREMA runtime system must not come with a prohibitive cost. Such a

cost may be a result of overheads within the operations themselves, or may stem from in

flexibility or impracticality of the runtime system's programming model. We are concerned

with end-to-end performance of the overall application, not simply the performance of indi

vidual operations taken in isolation. Therefore, we will endeavor to use "real-world" codes

whenever possible to evaluate the efficiency of our runtime system software.

The contributions stemming from our work in the area of modeling dynamic load bal

ancing performance are two-fold. First, we present an analytic modeling framework which

can be used to study a wide variety of load balancing policies and implementations on

an array of parallel machines ranging from Clusters of Workstations (COWs) to massively

parallel MPPs. We then calibrate this model using parametric values corresponding to a

particular cluster, and verify its accuracy through comparisons with actual run times of

both a parallel benchmark [15) and a Parallel Constrained Delaunay Triangulation (PCDT)

program. With this model established and verified, we provide our second contribution,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 15

which is a parametric study focusing on two of the more important runtime parameters:

level of over-decomposition and value of the preemptive polling quantum. We will explain

both of these parameters in greater detail in the relevant Chapter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Related Work

We are interested in examining related research in each section of this project, from processor

to-processor communication through load balancing and any work done in the area of an

alytic and stochastic modeling of dynamic load balancing systems. Below, we will look at

the current state of research in these areas.

2.1 Communication Infrastructure

The primary goals we have for the design of DMCS are (i) high performance, (ii) flexibility

and ease-of-use, and (iii) portability (see Chapter 4, Section 4.1). Existing communication

paradigms and systems tend to fall into one of two broad camps regarding these issues: those

that are geared towards high performance at the expense of usability (e.g. the Low-level

Application Programming Interface (LAPI) [84, 143]), and those that sacrifice performance

in favor of easing the burden placed on the application programmer (e.g. software Dis

tributed Shared Memory (DSM) systems such as Treadmarks [3]). Both approaches present

difficulties to the application developer who requires a high degree of performance, main

tainability, and portability, but does not possess the time nor the inclination to master the

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. RELATED WORK 17

complex intricacies of a large range of complex communication subsystems.

The Message Passing Interface (MPI) [75, 111, 149, 135, 110] has become the de facto

standard for applications geared towards a distributed memory environment by successfully

tackling the issues surrounding portability and ease-of-use, but for the types of applica-

tions we wish to study, MPI presents some conceptual difficulties. MPI does not support a

flexible Remote Procedure Call (RPC) communication paradigm which would greatly sim-

plify the development of runtime systems for dynamic and unstructured applications. In

addition, MPI does not address the issue of dynamic resource management1 . The binary

communication protocol defined by the MPI standard is similar to that provided by the

P4 [38] system. Applications match send operations with explicit receive operations on the

target processor. This communication model presents a problem for adaptive applications,

in which communication patterns cannot be known until runtime.

The Parallel Virtual Machine (PVM) [150, 119, 131], developed at Oak Ridge National

Laboratory, is another popular message passing environment. Unlike DMCS, PVM is de-

signed with heterogeneity in mind; it uses a simple send/receive library to control an ar-

bitrary number of processes on possibly remote computers2 . PVM supports both blocking

and non-blocking sends, along with non-blocking receives. However, message latency using

PVM can be on the order of milliseconds, due to the fact that a daemon running on each

node is responsible for coordinating communication and process creation activities. In situ-

ations in which PVM can be implemented on top of an efficient low-latency communication

package, as may be the case in an MPP environment, this latency may be reduced.

1The MPI-2 standard was not defined at the time DMCS was designed.
2 Scalability in PVM 3.0 is actually limited to 4096 hosts and 262143 tasks per host [131). However, it is

also possible that the underlying operating system will impose additional limits

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. RELATED WORK 18

Madeleine [32, 8) is designed to support distributed, multi-threaded applications. In or

der to facilitate portability, Madeleine's architecture is similar to DMCS's two-tiered design,

with platform-specific code isolated from the application. However, like MPI, Madeleine

implements a binary communication protocol in which send operations must be matched

with receive operations on remote nodes. In addition, Madeleine is designed to be used as

a target for RPC-based multi-threaded environments such as Nexus and not used directly

by user applications.

RPROC [157, 119) is an earlier system which, like PVM, is designed to send messages

between heterogeneous computers. However, RPROC supports a single-sided Active Mes

sages paradigm, making it similar to DMCS. RPROC assumes only an unreliable file transfer

mechanism between processors, meaning that messages are delivered as a pair of transferred

files. The first file transfer would contain the actual message, while the second was used as

an acknowledgement mechanism. This file transfer mechanism was invisible to the user and

can therefore be replaced by TCP /IP or another message passing mechanism in situations

where such a mechanism is available.

The P4 macros [119, 38, 37) developed at Argonne National Laboratory was the first

attempt to develop a true portability platform. Through the use of macros, P4 is able to

avoid function call overhead when sending and receiving messages; however, all communi

cation operations are blocking. P4 provides support for shared memory, message passing,

and mixed systems such as loosely coupled shared memory clusters.

The PARMACS [40, 119] library developed from the work done with P4, and supports

both synchronous and asynchronous send routines. PARMACS supports a binary commu

nication protocol in which messages can be received either according to the sender's process

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. RELATED WORK 19

ID or by message tag. In addition, some support for collective operations are provided. A

feature that distinguishes PARMACS from other systems is its extensive support for various

application topologies. For instance, macros are provided to map processes onto rings and

grids of two or three dimensions. PARMACS strongly influenced the topological aspects

found later in MPI.

Express [73, 119] grew from work on the Crystalline Operating System at Caltech,

and was later managed by the Parasoft company. The early goals for Express were to

implement it on a wide range of parallel architectures and attempt to gain the best possible

performance on each. This explicit goal of portability is shared by DMCS. Later, Parasoft

emphasized usability and attempted to hide many of the details inherent in Express. This led

to development of mapping and communication libraries for different processor topologies.

Finally, Express moved beyond simple message passing and began to tackle problems such

as parallel I/0 and dynamic load balancing.

In addition to these systems, Zipcode [148], the Communication Kernel [128], and

Panda [25] have been developed to facilitate the development of parallel languages and

higher level parallel languages. Of these, only Panda provides single-sided communication

primitives. However, Panda does not provide a single-threaded runtime environment, which

is one of the design points of DMCS.

Another class of systems, including Horus [133, 134], Isis [26], and the Collective Commu

nication Library (CCL) [11] are designed to provide efficient collective communication and

reduction operations. Systems such as Linda [63), Cooperative Data Sharing (CDS) [68, 69),

and Cooperative Shared Memory [89) are designed to effect communication through shared

memory regions. Both classes contrast with the point-to-point, explicit message passing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. RELATED WORK 20

design implemented by DMCS.

These, and other, parallel programming issues were addressed by the POrtabile Run

time Systems (PORTS) consortium [54], where different approaches to communication were

identified. The notable communication models that arose from these discussions are: (i) a

thread-to-thread communication approach, (ii) a Remote Service Request paradigm.

CHANT [85] implements thread-to-thread communication on top of portable message

passing software layers such as p4, PVM [21], and MPI. The efficiency of this mechanism

depends critically on the implementation of message polling. There are three common

approaches to polling for messages: (i) individual threads poll until all outstanding receives

have been completed, (ii) the thread scheduler polls before every context switch on behalf

of all threads, and (iii) a dedicated thread polls for all registered receives. For portability,

CHANT supports the first approach.

The Remote Service Request model has been implemented by a number of systems.

NEXUS [77, 76] decouples the specification of the destination of communication from the

specification of the thread of control that responds to it. Messages are handled by message

handlers which are threads or routines registered by the user with the runtime system and

are invoked upon message receipt. The handler possesses a pointer to a user-level buffer

into which the contents of the message should be placed. Handler threads are scheduled in

the same manner as computation threads. The RPC communication model is also incor

porated into systems such as Peregrine [94), Illinois Fast Messages (FM) [129), and Active

Messages [152, 117}, and has been adopted by DMCS. For adaptive and unstructured ap

plications, not needing to match send operations with explicit receive operations is a great

advantage.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. RELATED WORK 21

In addition, the hybrid communication model implemented by TULIP [20] essentially

combines the thread-to-thread and RSR-driven communication paradigms. In the runtime

substrate, TULIP provides basie communication via global pointers and remote service

requests. Threads are introduced at the pC++ language level.

The design for DMCS was driven by the need for a runtime library for adaptive appli

cations such as parallel adaptive mesh generation. However, DMCS was not designed to

replace any of the systems mentioned, but instead exploits the low-latency constructs of the

underlying communication subsystem and provides operations which handle the special re

quirements of adaptive applications. To achieve low-latency and to provide a programming

model that is the most familiar to application developers, we have decided to support a

single-threaded communication paradigm. Note that "single-threaded" in this case means a

single communication thread and an arbitrary number of computation threads. In this way,

developers may integrate any desired thread package into an application, latency associated

with DMCS operations is minimized, and portability and maintainability issues (a primary

consideration in the design of DMCS) are minimized.

2.2 Global Namespace and Object Migration

Our goals for the Mobile Object Layer (MOL) include (i) to provide a global namespace,

(ii) to preserve the Active Messages communication model, and (iii) to provide efficient

message forwarding in the context of data migration. There are several existing systems that

share similar aspirations. Languages such as CC++ [44] and Split-C [57] have integrated

global pointers at the language level and have shown that global pointers can be used

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. RELATED WORK 22

to build efficient distributed data structures. However, neither language provides direct

support for object migration. Emerald [97} is a object-based language and system which

provides language support for object mobility. In order to locate mobile objects, a scheme

of forwarding addresses are used, which operate in a manner very similar to that employed

by the MOL. However, while the Emerald system has decided to follow a route that has

lead to the development of a new programming language, the MOL is simply a lightweight

library, allowing applications to be written in an existing language such as C/C++.

Orca [10} is language for implementing coarse-grained, explicitly parallel applications

on distributed systems. Shared data structures are encapsulated in objects called "shared

data-objects", which may be migrated or replicated by the system without any intervention

from the user. Instead of replicating data objects, the MOL employs an efficient message

forwarding mechanism, which saves the runtime system the burden of maintaining object

consistency.

CHAOS++ [45} is a portable, object-oriented runtime library designed to support the

construction of dynamic distributed data structures. CHAOS++ defines globally address

able objects whose ownership is assigned to one processor. Shadow copies reside on other

processors and are used to cache the contents of their remote counterparts, so that ac

cesses are local. The contents of these shadow objects are updated through explicit calls to

CHAOS++ routines, leaving the decision concerning when to synchronize objects up to the

application. ABC++ [6] is another system which allows mobile objects to migrate away

from their original "home nodes", but communication is required with the "home node"

each time a message is sent to the object.

The Nexus [76, 77] approach is based on global pointers which act as endpoints for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. RELATED WORK 23

communication. As with the MOL, Remote Service Requests specify a user handler function

and a global pointer which acts as the target of the message. However, global pointers are

not automatically updated as objects move. In addition, the MOL is designed to be much

lighter weight, removing functionality such as authentication that is not applicable to our

target runtime environment.

Because the MOL implements a global namespace in a distributed environment, it is

helpful to briefly touch upon some of the research that has been done in the Distributed

Shared Memory (DSM) arena. The C Region Library (CRL) [95] is an all-software DSM sys

tem designed for message-passing distributed computers. Applications share data through

"regions", which are arbitrarily sized areas of memory defined by the application. Regions

of memory are cached in local copies, which are kept consistent through a coherency pro

tocol. Accesses to regions are grouped into "operations", and modifications to a region of

memory are only visible to other processors after the end of a write operation. The Am

ber [46] system takes a slightly different approach, in that a distributed address space is

achieved by partitioning the virtual address space. Each processor is forced to use disjoint

regions of the address space for heap allocation of dynamic objects. In this way, Amber

can determine which accesses are local and which will involve communication with remote

nodes. One drawback to this approach is the sparse use of a very large virtual memory

space. Amber programs are written using an object-oriented subset of C++ supplemented

with primitives for managing concurrency and distribution.

COOL2 [2] is a distributed object-oriented computing system that extends the single

address-space model of computing to a distributed environment. Objects in COOL2 are

always manipulated through their local pointers, even if they are not local objects. COOL2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. RELATED WORK 24

is therefore like Amber in that local object identifiers are extended to the network, but differs

from Amber in that COOL2 uses virtual memory to maintain object consistency. Finally,

Tempest (132] is an interface for shared memory whose goal is to provide the full range of

shared-memory semantics in user-level software. When a processor accesses a shared page

on a remote node, the reference invokes a user-level page-fault handler which allocates a

new physical page, and maps it to the shared virtual address. The home processor ID for

the data is looked up in a distributed table; this home node will perform any necessary

coherency actions and transport the data to the faulting processor.

Finally, hardware systems like FLASH (109] integrate both message passing and global

shared memory into a single architecture. The key feature of the FLASH architecture is

the MAGIC programmable node controller which connects processor, memory, and network

components at each node. MAGIC is an embedded processor that can be programmed to

implement both cache coherence and message passing protocols.

2.3 Load Balancing

Load balancing methods can be divided into two classes: static methods and dynamic

methods. The static methods (22, 30, 71, 145, 52, 53, 78] make use of a priori knowledge of

the computation in order to partition the work-load into a number of chunks (or work-units)

of roughly equal size. Static methods usually use generic graph partitioning libraries like

Metis [141, 139, 140, 138}, Chaco [88] and Jostle [153] to partition an initial computation

graph into a predetermined number of subgraphs (which represent either sub-meshes [52, 53]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. RELATED WORK 25

or sub-matrices [72, 39, 81, 136]) in such a way as to minimize size of separators3 while they

maintain an equal distribution of vertices (i.e., elements or non-zero matrix coefficients).

However, in the case of adaptive computations like adaptive PDE solvers with h-

refinement and/or p-refinement, it is not possible to know beforehand the computational

requirements, rendering the static load balancing methods ineffective. For these compu-

tations, in order to prevent the overall computation from becoming severely imbalanced,

it is necessary to migrate computational load from overloaded processors to underloaded

processors during the course of the application runtime. This is known as dynamic load

balancing.

There are many dynamic load balancing methods; some are based on re-partitioning

using the static load balancing methods we have mentioned earlier, while others are designed

around application-specific methods like Recursive Coordinate Bisection (RCB) [22, 88],

Unbalanced Recursive Bisection (URB) [88, 96], and Recursive Inertial Bisection (RIB) (88,

145]. These methods are often described as having a global view of application state, and

divide the geometric problem space into pieces recursively through the use of cutting lines in

two dimensions or planes in three dimensions. The URB and RIB methods are derivations

of the RCB method in which the direction and location of the cut are altered according to

particular criteria, such as evening the amount of work represented on either side of the cut

or cutting perpendicular to the coordinate direction in which the sub-domain is the longest

with the desire of minimizing the number of elements that lie along the cut edge.

Other dynamic load balancers avoid the potential bottleneck associated with a global

3In the case of mesh decomposition the communication between sub-meshes is a function of the number
of interface elements or the number of edges cut between sub-meshes; minimizing the interface elements
minimizes the communication between sub-meshes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. RELATED WORK 26

view and restrict themselves to a local view only. The most popular of these methods is

Diffusion [56, 58, 60, 87, 88, 90, 91, 107, 108, 156, 155, 162, 163] which divides the processor

pool into a set of overlapping load balancing domains. Diffusion load balancing methods

come in two types, namely Sender Initiated (SI) or Receiver Initiated (RI). Each processor

in a SI diffusion method acts independently to migrate excess workload to underloaded

neighbor processors. Typically, each processor informs its neighbors of load levels through

out the execution of the parallel program. The profitability of load balancing is determined

by computing the average load in the local domain; if the local processor's work load ex

ceeds the average by a specified threshold, then it can relocate excess load to its neighbors.

Receiver Initiated (RI) diffusion allows any processor to begin the load balancing algorithm

once its workload drops below a threshold. At this point, the underloaded processor sends

load requests to each overloaded neighbor for a fraction of the total load surplus.

Another popular method used for dynamic load balancing is the Gradient Method [13,

35, 41, 121, 156], in which underloaded processors propagate their state throughout the

system, and overloaded processors send a portion of their workload to the nearest lightly

loaded processor. The scheme is based on two thresholds: a processor's state is considered

to be underloaded if the local load level is below a Low Water Mark and overloaded if

it is above a High Water Mark. Any other state is considered optimal. In addition, a

node's proximity is defined to be the distance to the nearest underloaded processor, and is

propagated from a node to its neighbors, eventually potentially reaching every processor.

The proximity map is used to perform task migration; overloaded processors send work to

their neighbors with the lowest proximity (assuming that neighbor has a workload less than

some maximum). The potential problem of multiple processors sending load to the same

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. RELATED WORK 27

underloaded processor can be avoided with a two-stage commit protocol.

In addition, there are several methods based on strategies that make use of neighbor

sets that vary during runtime. At any stage of the load balancing procedure, a processor

is in communication with only a small set of other processors, balancing a subset of the

computation in each stage. Two such methods are the Dimension Exchange Method [160,

122, 156, 159] and the Hierarchical Balancing Method [156].

Finally, some dynamic load balancing methods are based on more general approaches,

like the tree-based methods presented in [113], which make use of global system information

like processor loads and communication costs to construct a spanning tree of the weighted

processor graph. From the spanning tree, a tree walking algorithm is used to calculate

global load balancing information, and a load transfer algorithm is invoked to balance the

computational load among processors while minimizing communication cost.

The goal of our research is not to present yet another dynamic load balancing strategy

and its implementation. Instead, our focus is to present a runtime software support system

that can be used to develop and easily evaluate dynamic load balancing methods for parallel

adaptive applications like mesh generation and refinement. Next, we overview software

systems with similar objectives.

Many of the systems discussed in Section 2.2 are able to provide the basis for load

balancing systems. For instance, ABC++ [6], Split-C [57], CC++ [44], Amber [46], Emer

ald [97], and COOL2 [2] provide the basic software support for object migration or global

namespace. While these systems can provide the needed infrastructure for load balancing

systems, none of them assume responsibility for the decision making associated with bal

ancing runtime load. We therefore describe a class of systems that provide direct support

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. RELATED WORK 28

for dynamic load balancing and are therefore more related to the PREMA load balancing

framework we present in this thesis.

Multi-list Scheduling [158] model is designed to greatly reduce the effort of developing

dynamic task scheduling routines. Essentially, the Multi-list Scheduling model replaces a

single, centralized task list with a distributed task list, where each processor's local lists

contain only those tasks which are local. These local physical lists are then merged into a

single virtual list on each node. The order of the tasks in the physical lists, and therefore

the virtual lists, are dependent upon the priorities assigned to each task relative to each

processor in the system. There are also several optimizations possible, including merging

physical lists whose tasks are always in the same order, and maintaining only the head of the

virtual list on each processor in order to reduce communication costs. While the Multi-list

Scheduler is flexible in providing "work-pulling" load balancing algorithms, it does not easily

provide for the implementation of "work-pushing" algorithms, such as SI Diffusion. Our

load balancing framework encompasses Multi-list Scheduling, and, in fact, we will describe

the design and performance of our Prioritized Multi-list Scheduler. In addition, the ILB

framework allows for the implementation of "work-pushing" methods such as SI Diffusion.

Another such load balancing framework is incorporated into the Virtual Data Space

(VDS) package [60]. The VDS system provides support for various application paradigms,

such as fork-join, weighted tasks, and static DAGs (Directed Acyclic Graphs). VDS also

supports various communication interfaces, such as PVM and MPI, and can therefore run

on a wide variety of platforms and hardware architectures. VDS is designed to work with

multi-threaded programs, spreading the computational load represented by threads among

the computing resources. In contrast, the programming model supported by the ILB library

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. RELATED WORK 29

is single-threaded where application entities communicate via explicit message passing. The

ILB library therefore migrates data and pending computational handlers instead of threads.

In [164], the authors describe a parametric model framework for the dynamic load

balancing of unstructured applications in a distributed system. By tuning a Profitability

Assessment Function (PAF), applications can vary the importance of communication costs

and load imbalance in the load balancing decision making. This results in a spectrum of

load balancing policies being available in a single load balancing framework. While tuning

the PAF function allows the application to vary the level in which runtime imbalance and

communication cost factor into load balancing decisions, other factors, such as affinity be-

tween data objects, cannot be accounted for as they can with the ILB library. In [125], the

authors describe a framework for balancing "heterogeneous" tasks built on the Aroma [124]

programming environment. The load balancer implements schedulers for several "homoge-

neous" task types4 . Scheduling complex tasks of differing types requires the user to supply a

global load balancer to coordinate the activities of the simpler, system implemented sched-

ulers. In this way, simple homogeneous schedulers are composed to create complex load

balancers that can schedule a wide variety of tasks. While our load balancing framework

allows applications to develop their own scheduling policies for complex task types, this

is not required. Applications may make use of a previously created scheduler, and only

create a new one if a customized policy is desired. In addition, because the load balancing

framework described by Nishikawa et.al. is built upon the Aroma programming environ-

ment, porting it to new platforms is a challenging task. This is in contrast to our modular

4Homogeneous tasks are tasks that all have the same runtime characteristics, such as number of
dependencies.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. RELATED WORK 30

runtime system design which places an emphasis on portability.

Functionality similar to what we present in the ILB library can be found in runtime

systems such as Cilk and Multipol. Cilk [28) targets a more restricted class of computations:

strict computations. The scheduling policy is fixed, and for a certain class of applications

is provably efficient with respect to time, space and communication. In contrast to the Cilk

runtime system, Multipol [147) provides more flexibility to the programmer. For example,

the programmer is free to use customized schedulers to accommodate application-specific

scheduling policies for better performance, and can also specify how much of a thread state

needs to be saved. CHAOS++ [45} is a portable, object-oriented runtime library designed

to support the construction of dynamic distributed data structures. CHAOS++ defines

globally addressable objects whose ownership is assigned to one processor. Shadow copies

reside on other processors and are used to cache the contents of their remote counterparts, so

that accesses are local. The contents of these shadow objects are updated through explicit

calls to CHAOS++ routines, leaving the decision concerning when to synchronize objects

up to the application. However, in order to tolerate latency associated with dynamic data

structures, Multipol and CHAOS++ allow for dynamic caching and replication. In order to

avoid this complexity and overhead, and in order to prevent hiding the underlying message

passing from the user, the ILB library does not allow for data replication.

Next we review only the directly related application-specific load balancing methods.

The DRAMA runtime library [19) is comprised of various tools for the dynamic reparti

tioning of unstructured finite element applications. The DRAMA cost model, used for cal

culating the benefit of migrating data during load balancing, is based on hardware specific

parameters and measurements taken via application code instrumentation. Another such

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. RELATED WORK 31

library, PLUM [27, 127), is an automatic and portable load balancing environment specif

ically created to handle unstructured grid applications. PLUM uses the dual of the initial

mesh throughout the application for the purposes of calculating processor load, changing

the weights associated with each element to reflect the current computational load due to

mesh refinement or coarsening. PLUM then makes use of a general purpose partitioner

(such as Metis) to balance the computational loads. PLUM also makes use of several met

rics to model the cost of moving data during load balancing. Zoltan [66, 65, 64] is a dynamic

load-balancing library that provides a call-back function interface that makes it easy to use

with a wide variety of applications. Zoltan's interface provides graph-based partitioning

algorithms through interfaces with ParMETIS [103} or Jostle and several geometric load

balancing algorithms.

All of the application-specific dynamic repartitioning methods share some common char

acteristics, namely that processors involved in the parallel computation must synchronize

at various stages in order to calculate the new mesh distribution. For large scale parallel

machines, this can become a bottleneck in the computation as each processor must exchange

information in order to construct a new global mesh. For example, load balancing libraries

like DRAMA and PLUM libraries use the global view of the computational graph. Our ILB

library does not repartition a global mesh, but instead migrates data objects with pending

work only as needed, and potentially with only local workload knowledge, although the ex

act behavior of the load balancer is up to the implementation of an individual scheduler. In

addition, the small interface to the ILB library is easy for application developers (especially

those familiar with the MOL) to quickly gain familiarity with. This is in contrast to some

of the larger libraries, such as Zoltan, whose APis can be quite complex.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. RELATED WORK 32

Another type of load balancer that comes under this category is the Master/Worker

paradigm [86, 88). In such a configuration, a centralized Master process5 feeds work to

some number of Workers processes. The Master/Worker approach can be attractive due to

the simplicity in its implementation. However Master /Worker methods are generally only

appropriate in instances where tasks can be performed independently and asynchronously

by a single processor [88], making them inappropriate for mesh generation applications

where affinity between regions in a mesh must be taken into consideration for optimal

performance. Furthermore, the single Master process can become a bottleneck in instances

where many Workers are requesting work at a rapid rate, making this scheme difficult to

scale. Schedulers for the ILB library can be implemented with only a local workload view,

eliminating the Master process bottleneck. While the ILB library allows implementations

of the Master /Worker model, we also provide for more flexibility by allowing the runtime

system to take into consideration data dependencies between objects.

A final system that deserves mentioning is the dynamic load balancing mechanism built

into Charm++ [100, 98, 99, 101, 102]. We will delve more deeply into Charm++ in Chap

ter 7, Section 7.1, so we will defer the majority of our discussion until then. However, it

is important at this point to distinguish between two types of Charm++ load balancers:

iterative balancers and seed-based balancers. Iterative load balancers assume computation

progresses in a series of phases, or in a loosely-synchronous progression. Load balancing

is most beneficial if it occurs between phases. In addition, iterative load balancers assume

load evolves in a gradual manner, without drastic load changes between phases. Seed-based

load balancers operate asynchronously, and balance the creation of tasks. Once tasks are

5 Either a single Master process or a series of Master processes may be used.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. RELATED WORK 33

assigned to processors, load balancers that measure the state of the parallel system during

runtime are responsible for subsequent task migration. Charm++ is also similar to PREMA,

in that the runtime system is actually a framework, which may be extended through the

creation or customization of scheduling policies.

While all these projects share some of the same goals as our research, our proposed work

differs from these in some crucial respects. In contrast to systems whose object migration

is built in at the language level, we have developed user-level libraries written entirely in

ANSI C and C++. This means that applications using the ILB/MOL/DMCS library can

be written in a widely available language, such as Cor C++. We feel application developers

will be much more likely to use a system if they are able to use a language they are already

familiar with and do not need to rewrite some or all of any existing code. In addition,

developers are also able to make use of the latest in compiler technology, which will be

more readily available for non-specialized languages.

The ILB/MOL library also differs from many of these systems by not allowing copies

of user data objects to exist. This eliminates the need for potentially costly and complex

object coherency protocols. Additionally, unlike many DSM systems, the ILB and MOL

libraries do not attempt to hide data location from the user by making mobile pointers look

identical to local pointers. While such a strategy may ease the programming burden placed

on the user, this benefit must be weighed against the difficulty in implementation. For

instance, Amber and Emerald migrate stack frames as well as data objects; [97] describes a

number of complications involved in moving stack frames, such as deciding which frames to

move for a given object and dealing with callee-saves registers. Solutions to these problems

are machine and operating system dependent, which makes porting these systems more

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. RELATED WORK 34

difficult.

Finally, we have decided to address fault-tolerance only at the application layer and have

ignored issues such as authentication that do not apply to our target platform of MPPs and

tightly coupled clusters of workstations. In such an environment, network security is handled

by other systems such as Cluster CoNTroller [92]. The Cluster CoNTroller software system,

developed by the Cornell Theory Center and sold by MPI Softtech, is made up of secure

resource management services and a deterministic heterogeneous scheduling algorithm.

2.4 Parallel Application Modeling Techniques

Research into modeling methods for dynamic load balancing schemes tends to fall into four

camps. The first of these requires parallel applications to conform to a well-understood

parallel computing model, such as the Bulk Synchronous Processing (BSP) [47] model. The

work by Nyland, et al. [126] is one such example, in which the BSP model is used to develop

prototypes to estimate the differing costs of spatial decomposition algorithms in the context

of Molecular Dynamics codes. However, the irregular applications in which we are interested

do not typically conform to these parallel models, making other techniques necessary.

The second category involves simulation [1, 61, 161]. In [161], the authors use a represen

tative workload generator to create test cases for the purposes of comparing the performance

of different load balancing techniques. The authors of [1] use a large simulation data set to

train a neural network which is, in turn, used to predict the performance of load balancing

strategies under various system parameters (time to transfer a task, time to gather load

balancing information, and time to exchange load information between nodes).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. RELATED WORK 35

The third group of research uses queueing theory or Petri nets to perform performance

analyses. The work presented in [33) uses queueing theory to develop a model to predict

the beneficial impact of load balancing in a network of workstations given the impact of

communication latency; if the benefit is above a given threshold, tasks are migrated to

distribute the load. In [36), the authors are using a queueing model to predict the relative

performance of both static, a priori and dynamic load balancing schemes on a class of

pipelined computations. While this work is similar in some respects to what we describe

here, it does not address the question of how to subdivide a given problem into tasks in

order to obtain the maximum performance benefit (this is a primary question we wish to

address). Mitzenmacher [120) examines a system in which arriving tasks choose from among

some number of servers, based on the queue length at each location. In this work, new tasks

arrive over time and the number of tasks is not fixed, distinguishing it from the analysis we

undertake here. Esser [70) describes an object-oriented language based on time Petri nets

which can be used to evaluate the design of heterogeneous systems made up of a variety of

components with different performance characteristics. This language is then used to model

and study a complex heterogeneous system made up of software, hardware, and mechanical

components.

Such work may address topics in which we are also interested, such as the impact of

communication latency on load balancing, comparison between static a priori and dynamic

load balancing policies, and the assignment of tasks to processing elements. However, the

computational requirements necessary for solving the potentially large systems of equations

associated with the underlying Markovian processes make this approach less practical for

the large-scale parametric studies we wish to undertake. In addition, as one of the future

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. RELATED WORK 36

goals of our research is to develop adaptive application steering through real-time, on-line

modeling feedback, this approach is infeasible.

Therefore, as we are more interested in using analytic techniques to predict load bal

ancing performance, we will focus our discussion on the fourth group, analytic modeling

techniques. Research, such as the work in [80], is concerned with predicting the degree of

imbalance remaining after a given load balancing cycle or iteration. Our load balancing

philosophy is different, however; we are concerned more with minimizing idle cycles in the

processor pool than maintaining an equal load distribution across nodes. Furthermore, we

are interested in modeling the time to completion of all tasks, not the performance of a sin

gle load balancing iteration. Work done at Los Alamos National Laboratory [106, 104, 105)

has developed analytic models similar to what we describe here for the purposes of pre

dicting and evaluating application performance on newly installed parallel machines or for

predicting end-to-end application performance [61). While we follow similar techniques in

developing our model, we tackle the challenging problem of modeling dynamic and adaptive

load balancing.

While components of our research are present in the above mentioned work, we are

unique in that we provide a mechanism for load balancing methodology analysis that may

be performed in the field, allowing developers to calibrate the interaction between the

application and the runtime system for maximal benefit. As the parameters in which we are

primarily interested will not be constant for all applications and all parallel environments,

such analysis is of critical importance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Terms and Definitions

Several terms are used in the remainder of this document and should be defined concretely

before diving into the specifics of the PREMA design.

Asynchronous

In the most general sense, an asynchronous operation is one which will return control

to the user program without needing to synchronize with a partner processor. From

the user's point of view, asynchronous operations will have a lower latency than their

synchronous counterparts, but possibly return before the operation has completed.

As an example, an operation that sends a message asynchronously may return before

that message has arrived at the target processor. Users that wish to know when an

operation has completed may want to use synchronous operations, or may be forced

to construct a secondary mechanism for determining whether or not an operation has

completed.

Blocking

Blocking operations are asynchronous, but do not return until the data referenced by

the operation is safe for modification. This may mean a copy into operating system

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. TERMS AND DEFINITIONS 38

memory has taken place, or the data has been placed onto the network. However,

blocking operations do not wait for actions to be completed by the target processor.

Therefore, from the application's point of view, the latency associated with blocking

operations will be less than the latency associated with synchronous operations.

Callback Routine

Callback routines are application defined and must be registered with the runtime

system prior to making use of PREMA's load balancing capability. Callback routines

are by the runtime system to asynchronously query the application about such matters

as the load and priority of Schedulable Objects. They are also used to pack and unpack

objects during migration. Schedulable Objects are covered in greater detail elsewhere

in this thesis.

Handler

A handler is a user-defined function that is executed during a polling operation. The

PREMA system operates in polling mode, meaning that arriving messages do not

interrupt computation, but are instead queued1 for execution during an application-

posted polling operation. The prototype for handler messages depend on the type

of message to which it corresponds, and these are covered in greater detail in the

appropriate sections of this document.

Message

Messages have two denotations in this document. In the discussion concerning porting

the DMCS runtime library, Message objects are data structures containing information

1This queueing may be the responsibility of the underlying communication substrate, or may be built
into DMCS itself.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. TERMS AND DEFINITIONS 39

about the communication operation, such as what user handler to invoke on the

target and what parameters should be passed to it. When discussing the MOL and

load balancer libraries, messages are sent to user-defined data objects called mobile

objects, and invoke user-specified handlers on receipt. Messages may be forwarded

from processor to processor until they reach their target objects.

Message Tags

Message tags are integer values associated with messages that allow the recipient to

classify them according to type. In this thesis, message tags are used to distinguish

between system-generated load balancing messages and user-generated application

messages.

Mobile Object

Mobile Objects are application-defined data objects which are free to migrate through

out the parallel system. Mobile Objects do not have to lie in contiguous memory.

When using the MOL, mobile objects migrate under the influence of the application.

Using the MOL message operation, applications may communicate with mobile ob

jects and invoke user-defined handlers at their location; locating mobile objects is

the responsibility of the runtime system, removing a great burden from the applica

tion. When using the load balancing library, mobile objects may migrate under the

influence of the runtime system.

Mobile Pointer

Mobile Pointers are opaque handles that refer to mobile objects. Mobile pointers are

system-wide unique identifiers; they reference target mobile objects for MOL message

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. TERMS AND DEFINITIONS 40

operations. However, mobile pointers do not serve in the same capacity as a typical

machine address. In other words, they cannot be dereferenced in a normal manner,

but only through the use of the moLmobile_ptr _deref() routine, which is described in

this document.

Node

A node is a single process. The PREMA system treats the process as a single, in

divisible unit, and therefore a process corresponds to only a single node. Also, by

default, a single process is allocated to each processor (although the PREMA system

does not require this), and therefore node and processor are used interchangeably in

this document.

N onblocking

Nonblocking operations are asynchronous and do not wait for the data to be copied to

the network before returning. Therefore, data buffers referenced by nonblocking oper

ations are not guaranteed to be safe when the operation returns, and modifying them

may corrupt in-progress communication. The latency observed by the application

may be lower for nonblocking operations than for blocking operations. Applications

wishing to modify referenced data may choose to opt for blocking operations instead.

Plug-and-play

The plug-and-play load balancing architecture allows one Scheduler module to be eas

ily substituted for another, allowing the user to customize the load balancing behavior

to suit the requirements of a particular application. This is achieved by defining a

specific interface to which all Schedulers must conform; this interface is designed to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. TERMS AND DEFINITIONS 41

be as concise and general as possible, so that the widest variety of Schedulers possible

may be implemented. In addition, this interface isolates the Scheduler from the ap

plication, so that exchanging Scheduler modules will have minimal impact on existing

application code.

Preemptive

In the context of this thesis, preemptive load balancing refers to the ability of the

decision-making component of the load balancing software to interrupt the ongoing

execution of an application task in order to process incoming load balancing requests

and possible migrate tasks that have not yet begun computation.

Remote Service Request (RSR)

Remote Service Request operations invoke user-defined message handlers on remote

processors. RSRs come in three forms: nonblocking, blocking, and synchronous. In

addition, RSR operations may take several different types of parameters, which are

discussed in more detail in Section B.2. The return type of messages handlers is

always void, so a return value is not expected. In order to implement return types,

the message handler would have to invoke a second communication operation in order

to send a result back to the calling processor.

Request

An MOL Request is a communication operation in which a user-defined handler is

invoked on a remote target processor, and is passed a user-specified data buffer as a

parameter. MOL Requests are not forwarded from processor to processor.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. TERMS AND DEFINITIONS 42

Schedulable Object

A Schedulable Object is any user-defined mobile object that has been registered with

PREMA's load balancing software. A Schedulable Object may or may not have pend

ing computation which will act upon it. Once a message handler has arrived for a

Schedulable Object, it, along with any parameter data, becomes bundled with the

object so they migrate in concert during load balancing.

Scheduler Module

The Scheduler Module encompasses the decision-making and migration capabilities of

PREMA's load balancing layer. The architecture of the runtime system is such that

different Scheduler Modules may be swapped for one another in a "plug-and-play"

architecture, and new Scheduler Modules may be created and used with the system.

Some terms that are used synonymously are Scheduler, Scheduler Implementation,

and Scheduling Policy.

Source Processor

Each operation deals with a pair of processes. The processor on which the operation

originates is called the source processor, while the partner processor is referred to as

the target.

Synchronous

Synchronous operations will not return until the initiating processor has synchronized

in some manner with the target. From the user's point of view, a synchronous message

passing operation will not return until that message has been received (or at least until

the receive operation has begun) on the target node. Synchronous operations typically

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. TERMS AND DEFINITIONS 43

incur a higher latency than their asynchronous counterparts, but applications may be

guaranteed that data buffers used in the operation are available for reuse once the

function has returned.

Target Processor

Each operation deals with a pair of processes. The processor on which the operation

originates is called the source processor, while the partner processor is referred to as

the target.

Task

A task is synonymous with a Schedulable Object; it is the unit of migration during

load balancing. A task encompasses data, as well as any pending computation that

acts on that data.

Work Unit

In this thesis, work unit is synonymous with task.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Load Balancing Foundations

The load balancing framework implemented by the PREMA runtime system has as its

foundation two lower software layers which we have constructed. The first is the Data

Movement and Control Substrate (DMCS) and provides basic Active Messages [152, 117)

style interprocessor communication primitives. On top of this layer, we have constructed the

Mobile Object Layer (MOL) which extends the functionality provided by DMCS by adding

a global namespace and efficient object migration. In this Chapter, we will describe each

of these software components in greater detail and examine how they are used to support

load balancing.

4.1 Data Movement and Control Substrate

The Data Movement and Control Substrate (DMCS) [16) forms the communication infras

tructure for our load balancing framework. DMCS is designed to isolate the upper layers

of the runtime system and the application from the idiosyncracies of the underlying hard

ware, operating system, and low-level message passing infrastructure (Figure 4.1). DMCS

is therefore the only software layer that must be ported in order to migrate the PREMA

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. LOAD BALANCING FOUNDATIONS 45

Figure 4.1: PREMA ARCHITECTURE WITH DMCS HIGHLIGHTED

Adaptive Application

Data Movement and Control Substrate

Low-level Communication Substrate (e.g. MPI)

system from one platform to another.

4.1.1 Description and Applicability

DMCS is designed to serve as middle-ware in the communication software hierarchy, mean

ing that it is constructed using the data movement and message passing functionality pro

vided by a lower-level communication substrate, such as MPI [75]. DMCS is therefore not

designed to compete with or replace any low-level communication system, but instead iso

lates the application from details of the underlying communication substrate. In this way,

DMCS has the ability to leverage specialized or high-performance communication features

that may be present, such as those found in the LAPI [84, 143] communication package on

IBM SP parallel machines or in VIA [43, 151] on clusters of PCs or workstations.

Our desire to create a lightweight communication substrate which would allow developers

to implement high-performance and portable adaptive applications lead us to the following

goals for the design and implementation of DMCS:

• High-performance: In particular, we wanted to provide access to low-latency commu-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. LOAD BALANCING FOUNDATIONS 46

nication operations that may be provided in the low-level communication substrate.

DMCS is designed to be able to exploit such operations while being optimized to

handle the special requirements of adaptive applications.

• Flexibility and ease-of-use: We wanted to ensure that DMCS would be useful for par

allel adaptive and irregular numerical applications. Therefore, the DMCS API, which

contains Remote Service Requests and Remote Memory Manipulation primitives, pro

vides only those operations which are of the most benefit to adaptive application

developers.

• Portability: We wanted to make DMCS as portable as possible to a wide variety of

low-level communication substrates. DMCS is written entirely in ANSI C/C++ and

is designed in a modular fashion on top ofthe DMCS Messaging Layer (DML), which

provides the basic building blocks upon which DMCS is constructed. This reduces

the complexity involved in porting DMCS to new platforms by making it necessary

to implement only a small number of basic operations.

4.1.2 Operations and Programming Model

DMCS is designed in such a way as to target the requirements of adaptive and asynchronous

parallel applications. As such, DMCS provides a single-sided communication interface using

an Active Messages programming paradigm which has been tailored to fit the requirements

of adaptive numerical computations such as unstructured mesh generation for crack propa

gation simulation on parallel computers [42). Such a communication paradigm means that

sending a message does not require an explicit receive operation to be posted on the target

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. LOAD BALANCING FOUNDATIONS 47

processor. This distinguishes the programming model implemented by DMCS from that

which is implemented by communication software supporting a binary communication pro

tocol, such as the Message Passing Interface (MPI). Such a design leads to a significant

reduction in the code complexity of adaptive applications; unpredictable communication

patterns make matching message "sends" with "receives" impractical and unwieldy. The

communication model supported by DMCS will yield applications that are developed more

quickly and easily, and are easier to maintain in the future.

Communication between processors is provided by Remote Service Requests, which are

received and processed on remote processors within polling operations. Remote Service

Requests specify a user-defined handler routine to be executed upon processing at the target

node. Handler routines may take user-defined parameters of arbitrary size, and may execute

any arbitrary computation1 . In this sense, the message passing mechanism implemented

by DMCS can be thought of as being similar to Remote Procedure Invocation, except that

DMCS message handlers do not return any values to their caller.

DMCS also provides operations to manipulate remote memory directly, using put and

get operations. As with Remote Service Requests, remote memory manipulation messages

require polling operations at the target node for processing; the effect of remote memory

manipulation will not be seen by the target until a polling operation has been posted.

All messaging operations are available in nonblocking, blocking, and synchronous vari

eties, enabling the application developer to effectively overlap computation with commu

nication where possible. Nonblocking operations return to the caller as soon as possible,

and possibly before the outgoing parameter data buffer has been copied to the network.

1 Message handler routines are not, however, allowed to post DMCS polling operations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. LOAD BALANCING FOUNDATIONS 48

Although the latency observable by the user is as low as possible, care must be taken to

not modify or delete the outgoing buffer prematurely. Blocking operations will not return

until it is safe to modify the parameter buffer, and synchronous operations will not return

until the receive operation has begun on the target processor.

In addition, DMCS messages may be associated with user-defined tags, that allow for

the categorization of messages at the receiving node. Tags are critical to the implementation

of PREMA's load balancing framework, as we will see in Chapter 5.

Finally, DMCS provides a single-threaded execution model2 in which application-defined

message handlers execute in the main application thread. This eases the burden placed on

application developers, since applications using DMCS do not need to worry about thread

safety issues such as controlling access to shared data structures. The single-threaded

execution model can also provide significant benefits to application performance due to the

fact that user handlers cannot preempt computation which is already in progress3 . This is

desirable because frequent context switching, even between threads, can have a detrimental

impact on performance and may lead to an unnecessarily large number of page faults and

cache misses.

4.1.3 Implementation Summary

We have implemented two versions ofDMCS, one built on top of the LAPI [84, 143) commu-

nication substrate for the IBM SP family of parallel machines, and another built for clusters

2 "Single-threaded" in this case means a single communication thread with an arbitrary number of com
putation threads.

3 Note that we are making a distinction between the programming model provided by DMCS and the
preemptive extension provided by the load balancing framework. We will elaborate on this further in the
appropriate chapter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. LOAD BALANCING FOUNDATIONS

Figure 4.2: EXECUTION MODELS FOR LAPI AND MPI

Incoming
Message

LAPI Completion
Thread

Application Thread

LAPI Execution Model

Application Thread

MPI Execution Model

49

of workstations using MPI [75} for communication. Because both implementations support

the same API and programming model, several construction details must be resolved. We

provide here only a brief discussion of these topics; for a more complete treatment, please

refer to [16].

The execution model of DMCS differs significantly from that of LAPI (Figure 4.2). Of

critical importance is that the LAPI execution model mandates that user-defined handlers

execute inside of a a LAPI completion thread, which violates the DMCS single-threaded

execution model. In addition, LAPI message handlers execute by default in interrupt mode,

meaning that user handlers execute as soon as they arrive at the target processor. On the

other hand, DMCS handlers must execute only from within polling operations posted by

the user.

A second issue is that LAPI, like many other low-level message passing systems, does

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. LOAD BALANCING FOUNDATIONS 50

not guarantee message ordering by default. However, message ordering is critical for the

correctness of many applications, and therefore must be provided by DMCS4 through the

use of sequence numbers and delay queues; when a message arrives out of order, it is delayed

until its turn for execution.

Implementing DMCS using the MPI message passing standard presents its own set of

challenges. MPI already provides a single-threaded execution model, and therefore maps

well to the single-threaded model mandated by DMCS. Also, DMCS can leave message

ordering to MPI; with MPI, messages are guaranteed to arrive in the order in which they

were sent provided certain criteria are met. However, MPI specifies a binary communica-

tion protocol in which explicit receive operations must be posted to match with the send

operation of a remote node. In the context of the adaptive and unstructured nature of the

applications which we target, this binary protocol can lead to unnecessarily complex and

difficult to maintain application codes.

Additionally, because of the single-threaded execution model provided by MPI and exis-

tence of synchronous versions of DMCS message passing operations, the possibility of dead-

lock must be addressed. DMCS's single-threaded execution model implies that deadlock

may occur when two processors send synchronous messages to one another simultaneously.

However, through a careful use of timeouts, deadlock can be avoided. Again, the purpose of

this discussion is simply to provide some insight into the nature of the challenges that must

be overcome in implementing DMCS on various platforms. For a more complete discussion,

4 Message ordering is an example of functionality that is necessary, but also platform-specific. Some low
level communication software may provide message ordering (such as MPI), and in such cases it should not
be provided by DMCS. Therefore, message ordering is an example of functionality that is found in the DML
layer of DMCS.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. LOAD BALANCING FOUNDATIONS

Figure 4.3: DMCS PING-PONG MEASUREMENTS ON SOLARIS CLUSTER

1500
- MPI Non-blocking Send Latency
-· DMCS Non-blocking Send Latency

O I 4 16

(a)

SOK - MPI Synchronous Send Latency
-- DMCS Synchronous Send Latency

20K

O I 4 16

(c)

SOK - MPI Blocking Send Latency
-· DMCS Blocking Send Latency

20K

O I 4 16 64 256 IK 4K 16K 64K256K IM
Payload Size (bytes)

(b)

25
- MPI Non-blocking Bandwidth
--- MPI Blocking Bandwidth
---· MPI Synchronous Bandwidth
--- DMCS Non-blocking Bandwidth
·-·- DMCS Blocking Bandwidth
-- DMCS Synchronous Bandwidth

O I 4 16 64 256 IK 4K 16K 64K256K IM
Payload Size (bytes)

(d)

51

Ping-pong measurements on Solaris cluster using MPI for communication over lOOMb/s
fast ethernet: non-blocking latency (a), blocking latency (b), synchronous latency (c), and
bandwidth for all three varieties (d).

refer to [16]. It should be noted that the existence of such issues in some sense validates

the existence of DMCS itself; by handling these circumstances in the system level, we are

freeing the application developer from worrying about them. By writing applications to

the consistent programming model provided by DMCS, applications are able to push such

portability issues down to the system level, leading to more rapid code development and

the creation of more portable software.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. LOAD BALANCING FOUNDATIONS

Figure 4.4: DMCS PING-PONG MEASUREMENTS ON LINUX CLUSTER

6000 - MPI Non-blocking Send Latency
--·· DMCS Non-blocking Send Latency

1000

O I 4 16 64 256 IK 4K 16K 64K256K IM
Payload Size (bytes)

(a)

lOOK - MPI Synchronous Send Latency
-·- DMCS Synchronous Send Latency

~ SOK

~ l 60K

~ 40K
~

20K

0 I 4 16

(c)

lOOK - MPI Blocking Send Latency
--· DMCS Blocking Send Latency

~ SOK

~
tl 60K g
~ 40K

t=:

20K

O I 4 16

(b)

Z5 - MPI Non-blocking Bandwidth
-···· MPI Blocking Bandwidth
-- MPI Synchronous Bandwidth
--- DMCS Non-blocking Bandwidth
·-- DMCS Blocking Bandwidth
-- DMCS Synchronous Bandwidth

(d)

52

Ping-pong measurements on Linux cluster using MPI for communication over lOOMb/s
fast ethernet: non-blocking latency (a), blocking latency (b), synchronous latency (c), and
bandwidth for all three varieties (d).

4.1.4 Performance Summary

The performance of the D M CS software can be analyzed both in terms of performance

for individual communication operations, and in terms of the aggregate performance for an

entire application. Because DMCS is constructed using lower-level communication software,

in each case it is necessary to view the performance of DMCS in terms of the overhead added

to the lower-level substrate.

Figure 4.3 presents both latency and bandwidth results for a ping-pong micro-benchmark

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. LOAD BALANCING FOUNDATIONS

Figure 4.5: DMCS PING-PONG MEASUREMENTS ON WINDOWS CLUSTER

300 - MPI Non-blocking Send Latency

250
·-- DMCS Non-blocking Send Latency /

~~ _)
··------------------------~

O I 4 16

(a)

20K

18K - MPI Synchronous Send Latency
---· DMCS Synchronous Send Latency

16K

'[t4K
8 12K

i1oK

~ SK
~ 6K

4K

2K

O 1 4 16 64 256 IK 4K 16K 64K256K IM
Payload Size (bytes)

(c)

20K
ISK - MPI Blocking Send Latency

-- DMCS Blocking Send Latency
16K

g14K

g 12K

!toK
~ SK

~ 6K ~

I

I

~~ ~-
0 1 4 16 64 256 1K 4K 16K 64K256K 1M

140
130
120

~no

~ 100
~ 90
~ 80
~ 70
-~ 60
~ 50

"' 40
30
20

Payload Size (bytes)

(b)

- MPI Non-blocking Bandwidth
······· MPI Blocking Bandwidth
--· MPI Synchronous Bandwidth
--- DMCS Non-blocking Bandwidth
--· DMCS Blocking Bandwidth
-- DMCS Synchronous Bandwidth

10
0~1~4~16~64~25~6~1K~4K~16~K~64~K~2~56~K~1~M

Payload Size (bytes)

(d)

53

Ping-pong measurements on Windows cluster using MPI built on top of VIA for com
munication over 100Mb/s fast ethernet: non-blocking latency (a), blocking latency (b),
synchronous latency (c), and bandwidth for all three varieties (d).

running on a cluster of workstations running the Solaris operating system with a 650 MHz

UltraSPARC II processor and using the LAM/MPI [111, 75] implementation for communi-

cation, and connected using 100 Mb fast ethernet. In these cases, DMCS adds a roughly

fixed amount of overhead that is independent of the message size, and varies between 0%

and 10% for message sizes ranging from one byte to one megabyte. We see that we ob-

tain similar results for the same experiment running on a cluster of 1 GHz Pentium III

workstations operating with the Linux operating system and connected with fast ethernet

(Figure 4.4). It should be noted in Figure 4.4(a) that the latency observable with DMCS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. LOAD BALANCING FOUNDATIONS 54

is actually lower than with MPI alone for large sized messages. While the exact cause is

unknown, we feel it can be traced to the message-passing architecture of DMCS. For large

sized messages, the message header is se.nt separately from the payload, or body. Using two

messages, the latency observable to the application is lower than if a single, larger mes-

sage were sent. It should be noted that this does slightly impact the maximum bandwidth

available to the application.

However, when performing the same experiments on a cluster of 1GHz Pentium III

workstations running on the Windows operating system and using an implementation of

MPI for message passing that is able to take advantage of the VIA interface architecture [43,

151), we see that, in the non-blocking case (Figure 4.5(a)), the constant amount of overhead

attributable to the DMCS software is a larger percentage of the overall message passing

latency. This is due to the extremely low latency associated with message passing operations

due to VIA.

This performance penalty is offset, however, by the portability that DMCS provides

to the application developer. Even in the case of applications written using MPI, certain

decisions left by the MPI standard to the MPI implementation developer may render ap-

plications non-portable from one platform to another. We have experienced this first-hand

while porting our software from one implementation of MPI to another. However, with

DMCS, this problem is eliminated; DMCS behaves identically across all platforms.

In order to evaluate the effectiveness of DMCS in the context of an adaptive application,

we have implemented a 3D Guaranteed Quality Delaunay mesh refinement program5 (mesh

5 For more information concerning the 3D guaranteed quality mesh refinement program, please refer to [16)
and the Chapter on performance evaluation contained in this thesis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. LOAD BALANCING FOUNDATIONS 55

Table 4.1: DMCS OVERHEAD ON PARALLEL 3D MESH GENERATION

Number II DMCS Overhead (sec) MPI Overhead (sec) Total Avg. DMCS
of Tets II Min. Avg. Max. Min. Avg. Max. Time (sec) Overhead (pent)
2M .0665 .1060 .1312 28.44 30.75 34.02 71 .1493%
4M .0974 .1642 .2066 44.45 49.23 57.23 128 .1283%
8M .1670 .2662 .3768 76.02 82.78 91.59 240 .1109%

Parallel 3D mesh generation data gathered for 16 Sun Ultra5 296 MHz processors connected
with Fast Ethernet, running the Solaris operating system, and using LAM/MPI for low
level message passing. On average each distributed cavity (approx. 30000 per processor for
SM tets) sends 14 messages.

generation and refinement is a basic building block for the numerical solutions of partial

differential equations (PD Es)). One successful approach to generating unstructured meshes

of guaranteed quality is Delaunay triangulation [144), which refines a given mesh by adding

new points on demand using the four-step Bowyer-Watson kernel [34, 154):

1. Point creation creates a new point by using an appropriate spatial distribution tech-

nique,

2. Point location identifies an element containing this new point,

3. Cavity computation removes existing elements that violate the Delaunay property, and

4. Element creation builds new triangles or tetrahedra by connecting the new point with

old points such that the new cavity satisfies certain geometric properties.

It is this third step that introduces unpredictable computation and communication pat-

terns into the algorithm. The following computation is required: given a point p and an

element e, search among all elements adjacent to e and identify those that violate the De-

launay property. This search is typically done in a breadth-first order, and approximately

20% to 30% of all searches will access non-local data, requiring communication between

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. LOAD BALANCING FOUNDATIONS 56

processors. Non-blocking Remote Service Requests are ideally suited for this purpose, as

synchronous and blocking communication can seriously degrade performance. In addition,

the unpredictable pattern of communication renders binary communication protocols inef

fective.

Table 4.1 depicts the performance and DMCS overheads during mesh refinement. In the

case of eight million tetrahedra, roughly 30000 cavities per processor (using 16 processors)

must access non-local data during the course of the applications runtime. On average,

each distributed cavity is responsible for sending 14 messages, leading to roughly 6.72

million messages in total. For these experiments, we use an implementation of DMCS

built using MPI for lower-level message passing. The data presented is in terms of the

amount of time spent in the MPI message passing layer, as well as the overhead spent

within DMCS (excluding MPI message passing). It is therefore possible to determine the

overhead attributable to DMCS above and beyond what is incurred by the lower software

layers. The results indicate that DMCS overhead accounts for only 0.10% to 0.15% of

overall runtime.

We have demonstrated that DMCS provides valuable functionality to adaptive and

irregular application developers. In addition, the low overheads incurred by the DMCS

software will not significantly impact overall application performance.

4.2 Mobile Object Layer

The Mobile Object Layer (MOL) (50] is a runtime substrate we have developed which extends

the programming model provided by DMCS by providing a global namespace and automatic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. LOAD BALANCING FOUNDATIONS 57

Figure 4.6: PREMA ARCHITECTURE WITH MOL HIGHLIGHTED

Adaptive Application

I

message forwarding in the presence of object migration. The load balancing layer of the

PREMA runtime system has three primary responsibilities: decision making (determining

when and where to migrate data and computation), data migration, and communication

in the presence of data migration. The first and second of these fall under the jurisdiction

of the higher layers of the runtime system and will be covered in greater detail in later

Chapters. The third, communication in the presence of data migration, is the responsibility

of the MOL.

4.2.1 Description and Applicability

The MOL is a lightweight software library which facilitates the automatic data movement

which is a prerequisite for runtime system provided dynamic load balancing. This is done by

providing a global namespace, and a consistent mechanism for interaction with application-

defined data objects in the presence of object migration. To this end, the MOL addresses

the following three issues:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. LOAD BALANCING FOUNDATIONS 58

• Provide a global namespace: The MOL provides a global namespace, meaning that

application-defined data objects are referenced through handles known as mobile

pointers which are valid from ·anywhere in the parallel system. In addition, a mecha

nism for interacting with distributed data is provided which preserves the communi

cation model implemented by the DMCS (Section 4.1) layer of the PREMA runtime

system.

• Preservation of the communication model: The MOL is constructed using the DMCS

substrate for communication and data migration. While the MOL layer extends

DMCS through the addition of a global data namespace, it must preserve the single

sided communication paradigm provided by DMCS. The MOL must also preserve the

single-threaded execution model in which application message handlers are executed

only from within polling operations invoked by the communication thread.

• Provide an efficient software implementation: In terms of functionality, the MOL

is a significant extension of DMCS; however, the additional runtime overhead must

be minimal. Specifically, the location of migratable data objects must be quick and

efficient.

The MOL is well-suited to forming the foundation of our load balancing framework.

The addition of a global namespace allows the load balancer to migrate data objects {and

implicitly, as we will see, computation) according to detected load imbalance without re

quiring complex and time-consuming routines and data structures for maintaining current

mobile object locations. This greatly reduces the complexity and development effort of any

higher-level load balancing software.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. LOAD BALANCING FOUNDATIONS 59

4.2.2 Operations and Programming Model

The foundations of the PREMA system's programming model have previously been de

scribed in Section 4.1.2. The MOL builds upon this framework by adding a global names

pace and a mechanism for interacting with distributed data. Below, we will briefly describe

these extensions; for a more in depth treatment, refer to [50].

A global namespace is provided by the mobile object and mobile pointer concepts. Mobile

objects are any application-defined data objects, and are not restricted to lie in contiguous

memory. Mobile objects have the ability to migrate from processor to processor as a single

unit; a single mobile object is not distributed and will always exist in the memory space of

a single processor. Mobile pointers are the handles utilized by the application to refer to a

mobile object. Mobile pointers are always valid, regardless of the location of the referenced

object, and may themselves be passed between processors as messages.

Interaction with mobile objects is done via an extension of the Remote Service Request

concept described in Section 4.1.2. We call this extension an MOL message, which is a

communication from a processor to a mobile object, regardless of the location of that target

object. In other words, instead of addressing a message to a processor, as is typically done

in message passing systems, the message will be addressed to the mobile pointer which

refers to the target mobile object. The MOL will be responsible for routing the message to

the target object in an efficient manner.

As with communication operations provided by DMCS, polling operations must be

posted on the target processor in order for a message to be received and processed. MOL

messages specify user-defined handler routines to be executed during processing; message

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. LOAD BALANCING FOUNDATIONS 60

handlers are provided with a pointer to the target mobile object as a parameter, allowing

the handler to manipulate the mobile object if necessary.

These operations suggest a programming model which is both message-driven and data

driven. Applications begin by decomposing their data domain into chunks which we will

refer to as sub-domains. Subdomains are then allocated to the available processors, and are

registered with the MOL as mobile objects. The creation of mobile objects will provide the

application with the correct mobile pointers, which may be exchanged among processors if

necessary. Computation then begins by sending messages to the appropriate mobile objects.

The handlers invoked by the messages will encapsulate the computation to be performed

on each sub-domain, and may themselves generate new messages. Once the sub-domains

are established and the initial computation messages are sent, the application will typically

enter a polling loop, which will receive and process any incoming messages until termination

is detected, and the program exits.

Although the number of sub-domains is entirely application dependent, sub-domains

themselves are typically "coarse-grained". This implies a fairly large computation to com

munication ratio, which will have an impact on the design of the load balancing layer of the

runtime system, which we shall examine later.

4.2.3 Programming Model Example: Distributed Tree

In order to make the programming model just described more concrete, and as a way

to demonstrate the effectiveness of the Mobile Object Layer, we present a simple example.

Below, we will take a sequential code snippet which performs an operation over the elements

contained in a tree data structure, and extend it to demonstrate how the procedure can be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. LOAD BALANCING FOUNDATIONS

Figure 4.7: SERIAL IMPLEMENTATION OF COMPUTATION OVER A TREE

1 struct TreeNode {
2 struct TreeNode* left;
3 struct TreeNode* right;
4 int data;
5 II ... Any other data members
6
7 void do_York(int param) {
8 II ... do some computation here involving 'data' ...
9 if (left != NULL) {
10 left->do_York(data);
11 }
12 if (right != NULL) {
13 right->do_York(data);
14 }

15 }
16 };
17
18
19 I I ---------- main 0 -----------
20 int main(int argc, char* argv[]) {
21 TreeNode* root= create_tree(); II Build the tree
22 root->do_york(O); II Begin computation at root
23 return 0;
24 }

parallelized using the MOL.

61

Figure 4.7 contains a simple C++ definition of a TreeNode data structure, which con-

tains a single do_work () method. This method will perform some calculation involving an

integer value received from the caller, and then invoke the same method on both the left

and right children, if they exist, passing the integer data value as a parameter. In order

to parallelize this process, we want to make it possible for the nodes of the tree to be

distributed among the available processors.

By converting the class to make use of the MOL, we must replace the local pointers

between tree nodes with mobile pointers, and we must replace the direct method invocations

with MOL message operations. Figure 4.8 contains the resulting code. In lines 2 and 3, we

see the local pointers replaced with mobile pointers (moLmobile_ptr _t). In addition, the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. LOAD BALANCING FOUNDATIONS

Figure 4.8: MODIFICATION OF TREENODE STRUCTURE TO USE THE MOL

1 struct TreeNode {
2 mol_mobile_ptr_t left;
3 mol_mobile_ptr_t right;
4 int data;
5 II ... Any other data members
6
7 void do_vork(int param) {
8 II ... do some computation here involving 'data' ...
9 if (!mol_mobile_ptr_is_null(left)) {
10 mol_message(left, do_vork_handler, &data, sizeof(int), NULL);
11 }
12 if (!mol_mobile_ptr_is_null(right)) {
13 mol_message(right, do_vork_handler, &data, sizeof(int), NULL);
14 }
15 }
16 };

62

previous method invocations have been replaced with MOL messages in lines 10 and 13.

As mobile pointers are valid regardless of the location of the referenced data, this method

allows nodes in the distributed tree to migrate among the available processors. This ability

is useful, for instance, in the case of dynamic load balancing. We will reexamine this example

in the context of load balancing in Section 5.3.

finally, we must create a message handler to be executed when arriving messages are

processed. Handlers must exist at a static location, and therefore cannot be typical class

methods. The way to handle this restriction is to declare a handler function outside of the

class definition which can then invoke a public method of the class. The definition of this

handler routine begins in Figure 4.9 on line 1. The parameter list for each MOL message

handler is identical, and contains the processor which originated the message (in case a reply

is necessary), the mobile pointer and local pointer which refer to the target mobile object,

a user-defined parameter data buffer and its size in bytes, and finally a single machine-word

sized argument (which is passed NULL in this example).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. LOAD BALANCING FOUNDATIONS

Figure 4.9: IMPLEMENTATION OF PARALLEL COMPUTATION USING THE MOL

1 void do_work_handler(int src, mol_mobile_ptr_t mp, void* obj_data,
2 void* user_data, int user_size, void* arg)
3 {
4 TreeNode* node (TreeNode*)obj_data;
5 int* param_data = (int*)user_data;
6 node->do_work(*param_data);
7 }
8
9

10 II ---------- main() ----------
11 int main(int argc, char* argv[]) {
12 mol_msg_handler_t msg_handlers[] = { do_work_handler };
13 mol_init(argc, argv);
14 mol_register_msg_handlers(msg_handlers, 1);
15 mol_barrier();
16
17 II Each processor will build the local part of the tree, and then
18 II combine the pieces to form a single global tree before returning
19 mol_mobile_ptr_t root_mp = create_tree();
20
21 if (mol_my_proc() == 0) {
22 int init_data = 0;
23 mol_message(root_mp, do_work_handler, &init_data, sizeof(int), NULL);
24 }
25
26 II Make sure all work is complete before exiting ...
27 while (!done) { mol_poll(); }
28 return 0;
29 }

63

In the main() routine, which begins on line 10 of Figure 4.9, we must initialize the

runtime system and register any message handlers that may be invoked by the program.

The barrier operation on line 15 guarantees that all processors have finished the initialization

procedure before creating the distributed tree data structure.

As an optimization, the function moLmobile_ptr_deref () may be used to check if a

mobile object resides on the local processor before sending a message to it (Figure 4.10).

This routine will return NULL if the object referenced by the given mobile pointer is not

local, and a local pointer to the object if it is. In this way, the local mobile object may be

accessed directly, without invoking the MOL's message passing mechanism.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. LOAD BALANCING FOUNDATIONS 64

Figure 4.10: OPTIMIZING CODE WITH MOBILE POINTER DEREFERENCING

1 if (!mol_is_mobile_ptr_null(left)) {
2 TreeNode* node= (TreeNode•)mol_mobile_ptr_deref(left);
3 if (node != NULL) {
4 node->do_work(data);
5 } else {
6 mol_message(left, do_work_handler, &data, sizeof(int), NULL);
7 }
8 }

The final version of the tree code we present makes use of the MOL's object migration

functionality {Figure 4.11). It is important to note that the object migration mechanism

will later form the foundation of the load balancing layer of the PREMA runtime system.

We begin by extending the basic TreeNode data structure by adding a mobile pointer to

the local data object, and a pointer to a buffer which will be created and filled in during the

uninstall process {lines 5 and 6). Note that these data fields are not required, but are often

very convenient. We also add a constructor which will take a packed data buffer containing

the migrating object's state, and will recreate a TreeNode class instance {line 9).

Uninstalling the TreeNode object and migrating it to a new processor is encapsulated

by the migrate ..node() routine {lines 13 through 24). Uninstalling the object requires ere-

ating a buffer to hold the MOL's move info bookkeeping information, and then invoking

the moLuninstalLobj () routine which will notify the runtime system that the object is

migrating, and will fill in the move info buffer. Note that the MOL provides the macro

MOL..MOVE_INFO_SIZE to indicate the size of the required move info buffer, in bytes. The

purpose of the move info buffer is to pass sequence number information between proces-

sors during object migration; sequence numbers are described more fully in Section 4.2.4.1

and 4.2.4.2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. LOAD BALANCING FOUNDATIONS

Figure 4.11: OBJECT MIGRATION USING THE MOL

1 struct TreeNode {
2 mol_mobile_ptr_t left;
3 mol_mobile_ptr_t right;
4 int data;
5 unsigned char* move_info; II Necessary for object migration
6 mol_mobile_ptr_t self; II Mobile ptr to myself for convenience
7 II ... Any other data members
8
9 TreeNode(void* packed_data) { }
10 void do_work() { ... }
11 };
12
13 void migrate_node(TreeNode* node, int proc) {
14 // Uninstall the object
15 node->move_info =new unsigned char[MOL_MOVE_INFO_SIZE];
16 mol_uninstall_obj(node->self, proc, node->move_info);
17 II Pack the tree node into a contiguous buffer and send to new proc
18 int bytes = 0;
19 unsigned char* buffer= pack_tree_node(node, &bytes);
20 dmcs_block_rsrN(proc, migrate_handler, buffer, bytes);
21 II Free the local object and buffer
22 delete [] buffer;
23 delete node;
24 }

25
26 void migrate_handler(int src, void* buffer, int size, void* arg) {
27
28
29
30 }

II Create the neY queue node object from the data buffer and install it
TreeNode* node= new TreeNode(buffer);
mol_install_obj(node->self, node, node->move_info, src);

65

Once the mobile object has been uninstalled, it is packed into a contiguous buffer (line

19) using an application-defined packing routine (not shown), and then migrated to the new

processor using the Remove Service Request functionality provided by the DMCS layer of

the runtime system (Chapter 4, Section 4.1.2). However, any mechanism available may be

used to transfer the packed object buffer from one processor to another. Once it is safe to

do so, the packed object buffer, as well as the object itself, is deallocated.

On the target processor, the migrate..handler() message handler (lines 26 through 30)

will unpack the data buffer and install the object on the new processor. The move info

buffer filled in by the uninstall process is passed to the install operation, ensuring future

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. LOAD BALANCING FOUNDATIONS 66

messages to the mobile object will be routed correctly.

4.2.4 Implementation Summary

The fundamental building blocks provided by the MOL are mobile objects, which are any

application-defined data objects that have the freedom to migrate from processor to proces

sor, and mobile pointers, which are system-wide unique identifiers used to refer to mobile

objects. The runtime system places no restrictions on the size of mobile objects, nor does it

require that mobile objects exist only in contiguous memory. The mobile pointers used to

refer to these mobile objects are valid on any processor in the parallel system and serve as

the means for the interaction with the application data necessary to effect the application's

computation. Because no "shadow-copies" of mobile objects exist, this interaction typically

takes the form of messages passed from ongoing computation to target mobile objects. This

indicates that the primary concerns of the MOL's implementation are:

1. efficient object location and migration,

2. the ability to guarantee message ordering between processors and mobile objects, and

3. low overhead message passing.

We will discuss the first two of these considerations here, and defer our evaluation of the

efficiency of the MOL's message passing functionality to Section 4.2.5.

4.2.4.1 Mobile Object Location Using Distributed Directories

The efficiency of object location and migration is a direct result of the distributed directory

data structure which the MOL uses to locate mobile objects. Under this mechanism, each

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. LOAD BALANCING FOUNDATIONS 67

Figure 4.12: MOL FORWARDING AND DIRECTORY UPDATE MECHANISM

ProcessorO Processor 1

MobPtr Location Step 1: Mobile pointer mp<l,l> is MobPtr Location

mp<O,l> OxOOl
not in local table; send
message to default "Best mp<l,O> OxOOl

mp<0,2> Ox002 Guess" location mp<l,l> Proc2
,_

mp<0,3> Ox003 mp<l,2> Ox003

---> mp<J,l Proc2 mp<l,3> Ox004

mp<l,4> Ox005

Processor2

Step 3: Send directory update Step 2: Forward message
to originating processor; MobPtr Location based on entry in

I
entry is added to local

mp<2,0> OxOOl local directory
I table
I --------------------- mp<2,1> Ox002

mp<l,l> Ox003

processor maintains a local directory which contains the "best-guess" locations for the

mobile objects that are known to the processor, as well as a sequence number indicating how

up-to-date the directory entry is. Such a system minimizes the communication necessary

for object creation and migration; only the processor on which a mobile object is created

updates its local directory, and migration of an object involves modification of the two

processors directly involved in the migration (the source and the target). It should also

be noted that mobile objects are not associated with a "home processor" which would be

notified of an object's migration, further reducing communication6
•

The mobile object location protocol proceeds as follows (Figure 4.12). Whenever a

processor wants to send a message to a mobile object identified by a particular mobile

pointer, it first must look that mobile pointer up in its local directory. There are three

6 The tradeoff in this particular instance is that, although communication is reduced during object mi
gration, message forwards may be necessary in order to locate a mobile object. This is discussed in greater
detail below.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. LOAD BALANCING FOUNDATIONS 68

possible results of this lookup. First, the object may reside on the local processor, in which

case the message may be handled locally. Second, there may be an entry in the directory

indicating that the object resides, or at least used to reside, on a particular remote processor.

In this case, the MOL message is sent to the processor indicated by the directory entry.

If the mobile object no longer resides at that processor, the message will be subsequently

forwarded. The third possible result is that the directory may have no entry for the mobile

pointer, in which case the processor on which the mobile object was created serves as the

default "best-guess" location7 . This third case is depicted graphically in Figure 4.12.

In order to minimize the cost of object migration, the MOL lazily updates distributed

directory entries. When the user migrates a mobile object, only the source and target

processors are aware of the change and update their directory entries. Other processors'

directories are updated only when they send a message to the object's old location and the

message gets forwarded. Again, this is shown in Figure 4.12. In this example, the directory

on Processor 0 is updated only once the forwarded message to mp< 1, 1> arrives on Processor

2. Once a processor receives an update for an object, all subsequent messages to the object

will go directly to the object's new location. This amortizes the cost of directory updates

and message forwards over the number of messages sent to a particular mobile object.

Each mobile object has a movement sequence number associated with it that is incre-

mented each time the object moves. The MOL does not assume any special ordering in the

network (such as FIFO or causal ordering), and allows the network to delay or slow down

messages for arbitrary lengths of time. It is therefore possible for a processor to receive

7 Each mobile pointer is a <processor, sequence number> pair. The processor on which the mobile object
is created is the first element of this pair.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. LOAD BALANCING FOUNDATIONS

Figure 4.13: OUT OF ORDER MESSAGE ARRIVAL DUE TO OBJECT MIGRATION

Processor 0

· Message I to

Time

Processor I Processor 2

:Mobile:
:Object J
~ = =::: _ 9~iect Migration

Message I arrives
out of order

69

object location updates out of order. To prevent an older update from overwriting a newer

one, each update is tagged with the movement sequence number of the object that the

update represents. The processor receiving the updates is then able to discard those that

are out of date.

4.2.4.2 Message Ordering in the Presence of Object Migration

Although the DMCS layer of the runtime system guarantees message ordering between

processors, this is not sufficient for preserving message order for MOL messages. Figure 4.13

demonstrates this. Processor 0 sends Message 1 to a "best-guess" location for a particular

mobile object that turns out to be incorrect. Once Processor 0 receives the update message

notifying it of the correct location, Message 2 is sent. Because Message 2 is sent directly

to Processor 2 (the correct location for the mobile object in this Figure), it is able to pass

Message 1 in the network. Consequently, the two messages arrive in the incorrect order.

To correct this problem, each processor maintains two sets of sequence numbers. An

outgoing sequence number is maintained on each processor for every mobile pointer with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. LOAD BALANCING FOUNDATIONS

Figure 4.14: MECHANISM TO PRESERVE MESSAGE ORDERING

ProcessorO

Time

Processor 1 Processor 2

:"M~bile':
:Object;
~ = =::::: _ ~.?j..":t Migration

Mesage 2 is serviced

70

which that processor communicates. When a processor sends a message to a mobile object,

it includes the outgoing sequence number for the associated mobile pointer. This sequence

number is then incremented after each outgoing message.

A table of incoming sequence numbers contain the next expected sequence number for

each <source processor, mobile pointer> pair. Arriving messages have the outgoing sequence

number contained in the message header checked against the expected incoming sequence

number contained in the table. If the two match, then the message may be handled and the

expected sequence number contained in the incoming table is incremented. If the arriving

message contains a sequence number that has already been seen, then the message may

be dropped as it is a repeat. If the sequence number contained in the message is greater

than the next expected value, the message must be delayed until the missing messages have

arrived and have been serviced. This strategy is shown in Figure 4.14.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. LOAD BALANCING FOUNDATIONS

Figure 4.15: MOL PING-PONG MEASUREMENTS ON SOLARIS CLUSTER

1500
- DMCS Non-blocking Send Latency
- MOL Message Latency w/ Copy
- MOL Messasge Latency w/o Copy

0~~4~16~M~~~6~1K~4K~I6K~M~K~~6~K~IM~
Payload Size (bytes)

(a)

25 - DMCS Non-blocking Send Bandwidth
-· MOL Message Bandwidth w/ Copy

"U' 20 -· MOL Message Bandwidth w/o Copy

" ~
el5

~
J 10 -=:::--::~:-::::::::

5

O I 4 16

(b)

71

Ping-pong measurements for MOL messages on Solaris cluster over lOOMb/s fast ether
net: latency measurements (a) and bandwidth measurements (b). DMCS performance is
provided for comparison.

4.2.5 Performance Summary

We begin by examining the latency and bandwidth afforded by the MOL's message passing

operations relative to the lower levels of the runtime system. Because the MOL is built using

the operations provid~d by the DMCS software, the performance possible using the MOL is

bounded by the performance of DMCS. Figure 4.15 (a) contains latency data for the MOL

executing on a network of workstations equipped with the Solaris operating system and 650

MHz UltraSPARC II processors. Low-level communication is provided by the LAM (111]

implementation of MPI [75], over 100 Mbit ethernet. We have provided two MOL message

operations for comparison. The decrease in observable latency between 32 Kbyte and 64

Kbyte message sizes is attributable to the LAM/MPI handshaking message passing protocol

for large-sized messages. In such a case, only the sending of the envelope is begun before

the operation returns the caller. As this message is very small, a decrease in latency can be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. LOAD BALANCING FOUNDATIONS

Figure 4.16: PING-PONG LATENCY MEASUREMENTS FOR DMCS AND MOL

1500

- MOL Message Latency w/o Copy
···· DMCS Non-blocking Latency
····· DMCS Non-blocking Latency w/ MOL Header

t~
"' ~

500

0 '--!--'-..J4~7:16;---'-:64"-;-'-.2:;-;!5'76 '<t~K:-'--74K~I-f.6K;;-764~K;;;2:;;'56;;cK~I~M
Payload Size (bytes)

72

Ping-pong latency measurements for DMCS non-blocking send, DMCS non-blocking send
with an extra MOL..HANDLER..DATA..SIZE bytes, and MOL send without message copy.

seen.

In the first case, the message passing operation is required to make a copy of the pa-

rameter argument buffer, in order to construct a single outgoing buffer with the requisite

MOL header information. Beginning at a payload size of roughly 4K bytes, we can see that

the memory copy required to build the outgoing message begins to drastically affect the

latency associated wi.th the operation. As the message size grows, this time becomes more

prevalent.

In the second case, the application provides a buffer to the operation that contains the

payload and has MOL..HANDLER..DATA_SIZE bytes free at the beginning of the buffer. This

allows the runtime system to write the necessary message header information directly into

the user-supplied buffer, removing the need to copy the parameter data buffer. With this

option, we can see that the latency associated with the MOL more closely mirrors that of

DMCS.

However, at a message payload size of 64K bytes, we see that message passing latency is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. LOAD BALANCING FOUNDATIONS 73

considerably lower with the MOL than with DMCS. The reason behind this is that the 52

bytes8 required for the MOL message header information increases the payload size so that

LAM's rendezvous· protocol is used, instead of the eager protocol used with smaller messages

(the eager protocol is used with the DMCS message of size 64K bytes) [14]. DMCS uses

non-blocking MPLisend() operations to send messages, which are prohibited from blocking

by the MPI standard definition. By using the eager protocol, LAM will attempt to send

as much of the message as possible before returning, which may include all of the data. In

contrast, the rendezvous protocols will only attempt to send the envelope of the message,

which will incur a much lower latency. It is important to note that neither the MOL nor

DMCS are tied to LAM implementation of MPI, or to MPI at all. Since this behavior is an

artifact of LAM, it may not be present with other low-level communication substrates.

In order to ensure this behavior was not an artifact of our MOL implementation, we

conducted an experiment in which we measure the latency of our DMCS messaging op-

eration, but increased the size of the outgoing payload buffer by MOL.JIANDLER_DATA_SIZE

bytes. The latency observed was nearly identical to that of the MOL messaging operation

(Figure 4.16).

In addition to considering the overall latency and bandwidth of the key MOL operations,

it is important to evaluate the costs of certain critical components of the software architec-

ture. Table 4.2 contains the costs for operations such as forwarding messages, looking up

mobile objects in the distributed directory data structure, and installing and uninstalling

mobile objects. The MOL's implementation is seen to be efficient, particularly in the loca-

8 The constant MOL.JIANDLER_DATLSIZE is equal to 52. This is the number of bytes required for the MOL's
message header.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. LOAD BALANCING FOUNDATIONS

Table 4.2: COSTS ASSOCIATED WITH MESSAGE PASSING

II Operation Time (sec) II
Directory lookup 1.8023 X 10 -o

Directory update 5.6740 X 10 -ti

System message handler 2.3726 X 10 -o

Message forwarding 1.8725 X 10 "4

Installing mobile object 9.1274 X 10 -ti

Uninstalling mobile object 1.1509 X 10 -4

Figure 4.17: ROUND-TRIP TIMES FOR MOL MESSAGES WITH HOPS

t
- MOL Message '

g- 5e+05 ····-· MOL Message (1 Forwarding Hop) f
:g ---- MOL Message (2 Forwarding Hops) ,/,/
.tl 4e+05 ·-·-· MOL Message (3 Forwarding Hops) 1;

~ -·- MOL Message (4 Forwarding Hops) .!.·./.'/

.§ 3e+05

1: j
0

4 16 64 256 IK 4K 16K 64K256K 1M
Payload Size (bytes)

tion and migration of mobile objects.

74

Figure 4.17 cont.ains the round-trip times for MOL messages that are subjected to

forwarding hops. The required time scales linearly with the number of forwarding hops

that are necessary. This makes sense, as a forwarding hop can be thought of as a re-

sending of the original message. Two things should be noted, however. The first is that

the maximal number of hops seen by a typical application is quite low. This is due to the

fact that, for efficiency reasons, applications tend to create mobile objects in a distributed

manner, and objects are primarily migrated due to load balancing. The load balancers we

describe in this thesis do not tend to move objects multiple times, which greatly reduces the

number of forwarding hops necessary. Second, once a processor is made aware of a mobile

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. LOAD BALANCING FOUNDATIONS

Figure 4.18: MIGRATION HISTOGRAM FOR MULTI-STEP PCDT SIMULATION

-- 50% Refinement, 30% Derefinement per step
·--- 10% Refinement, 10% Derefinement per step

60 80 100 120 140
Number of Hops

75

object's new location, subsequent messages can be routed directly. This is in accordance

with the lazy directory updating scheme we have described. The result is that the vast

majority of messages are able to reach their intended targets without being forwarded at

all. This observation is reinforced with Figure 4.18, which depicts the number of message

hops necessary for two executions of a multiple time-step Parallel Constrained Delaunay

Triangulation (PCDT) mesh refinement simulator. The total number of mobile objects in

this experiment is 512.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter. 5

Load Balancing Framework

Figure 5.1: PREMA ARCHITECTURE WITH ILB HIGHLIGHTED

Adaptive Application

Developers of parallel applications whose performance suffers from load imbalance have

typically been faced with limited choices. On the one hand, they may take advantage

of load balancing software systems, but these often involve adapting software to complex

programming interfaces or forcing applications to conform to a programming model under

stood by the load balancer. Making use of such systems is rarely intuitive and may lead

to time consuming and complex development efforts. This leaves application developers to

exercise their second option, which is to incorporate load balancing algorithms directly into

their codes. Although such explicit load balancing strategies have the advantage of a close

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOAD BALANCING FRAMEWORK 77

collaboration between the application and load balancer, quite a large development effort

is necessary in order to implement them, and the complexity of application code may be

greatly increased. Due to the large amount of work involved in implementing these load

balancing algorithms, rarely are the most optimal strategies used. Developers may therefore

find themselves rigidly locked into a particular load balancing policy when more efficient

methods exist.

In response to these issues, we have developed the Implicit Load Balancing (ILB) frame

work library. The ILB component of PREMA is built using the tools and programming

model provided by DMCS (Section 4.1) and the MOL (Section 4.2), and provides automatic

and transparent data (and implicitly, computation) migration in response to perceived run

time workload imbalances. The ILB is designed not just as a single load balancing algorithm

or family of algorithms, but as a framework which supports the rapid development and de

ployment of applications, allowing researchers to experiment with load balancing policies

without needing to extensively modify existing codes. This supports our observation that

there is not a single load balancing method which is optimal on all platforms for all prob

lems. However, in addition to the framework itself, we have also implemented several of

the more common load balancing methods, such as Diffusion [58], Work-Stealing [28], and

a variation on Multi-list [158] scheduling.

The architecture of the ILB is designed to fulfill three primary objectives. The first is

to provide high performance and low overhead load balancing for the adaptive, irregular,

and asynchronous applications in which we are interested in studying. In order for load

balancing tools to be effective, these application characteristics must be incorporated into

the design of the runtime system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOAD BALANCING FRAMEWORK 78

The second objective is to allow as much flexibility as possible in the range of load

balancing policies implementable by the ILB library. To achieve this, we have isolated

the application from the load balancer's decision making Scheduler module using a simple

and flexible architecture and interface. Scheduler modules may be easily implemented

and exchanged without propagating changes to the application code, allowing for quick

experimentation during development.

Finally, we want to provide an evolutionary migration path for parallel applications

written using the MOL. Specifically, for applications written using mobile objects and the

MOL's message passing mechanism, making use of the ILB's load balancing functionality

should involve minimal changes to existing application code. The benefit for the developer

is that applications may be implemented quickly without needing to regard load balancing

at all; however, if load imbalance becomes a performance issue that must be addressed, the

ILB may be easily incorporated. The requirement placed on the runtime system is that the

programming model and interface provided by the ILB should closely parallel that which

is provided by the MOL.

In the remainder of this Chapter, we will examine more closely the programming model,

operations, and architecture of the ILB framework.

5.1 Programming Model

We have already described in Chapter 4 the programming models defined by the lower

software layers within the PREMA runtime framework: the Data Movement and Control

Substrate (DMCS) and the Mobile Object Layer (MOL). The Implicit Load Balancing (ILB)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOAD BALANCING FRAMEWORK 79

layer of the runtime system builds on the tool set supplied by this software foundation.

Although some of the discussion here will mirror what has come before, it is important to

provide a complete description of the programming model provided by the PREMA runtime

system in a single location.

As with the MOL, the basis of the ILB's programming model is a global namespace pro

vided by system-wide unique mobile pointers which refer application defined mobile objects.

Each mobile object is created from a single sub-domain, resulting from the partitioning

of the application's data domain. As an example, applications such as parallel mesh gen

eration and refinement and N-body codes typically create sub-domains by geometrically

partitioning the data domain being manipulated.

As with the MOL, messages are used to invoke computation on mobile objects. Mes

sages bind computation to data, creating the units of work, or tasks, which represent the

cumulative load invoked by an application at a given point in time. The load balancing

library's messaging mechanism is built upon the functionality provided by the MOL; there

fore message routing and object location management are provided by the lower software

layers.

At the time of creation, mobile objects are registered with the load balancing layer of

the PREMA runtime system in order to create Schedulable Objects. Schedulable Objects

bind computation to the mobile data on which it operates and serve as the entities that

are migrated during dynamic load balancing. Migrating data therefore implicitly migrates

computation.

The number of Schedulable Objects created by an application typically is much greater

than the number of available processors in the parallel system; this process is known as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOAD BALANCING FRAMEWORK 80

over-decomposition and gives the load balancer greater flexibility in its data migration

decisions. It is often the case that a greater level of over-decomposition will lead to a

more well-balanced final load distribution, and therefore a more optimal runtime, but this

is not always the case. Application developers must factor in the cost of performing the

decomposition, the (small) overheads that are incurred by the runtime system on a per-task

basis, and the increased amount of intertask communication traffic. In this dissertation,

we also describe modeling techniques that can be used to evaluate these tradeoffs, aiding

developers in making decisions concerning the number of Schedulable Objects to create.

Once the necessary Schedulable Objects have been created and the initial messages

have been sent to them in order to invoke computation, polling operations must be posted

in order to receive and process arriving messages. Message handlers arriving for local tasks

will be executed at this time, and Schedulable Objects may be migrated to balance dynamic

workload. In addition, new messages may be generated from within message handlers,

leading to the creation of dynamic load which may itself require balancing.

Applications may devise their own mechanism to discover termination, or may rely on

an implementation of a termination detection algorithm [67] built into the runtime system.

5.2 Operations and Application Interaction

The mechanism by which the application interacts with the Implicit Load Balancing layer

of the PREMA runtime system can be broken into two components: the Application Pro

gramming Interface (API) and a series of callback routines. In general, the API is used by

the application to provide information to the runtime system, while callback routines are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOAD BALANCING FRAMEWORK 81

Table 5.1: ILB ENVIRONMENT OPERATIONS

System Initialization and Shutdown
void ilb_init {int argc, char* argv[], Initialize the ILB system

ilb_configurator_t* config)
void ilb..shutdown(} Shuts down the ILB system

System Configuration
void ilb_seLconfigurator _field (Sets a field in the configurator;

ilb_configurator_t* config, int field, see below for complete description
int value}

Toggle Application Phase
void ilb_phase..set(int phase) Toggles load balancing on and off

Querying the Environment
int ilb_my_proc(} Returns the processor id of the caller
int ilb_num_procs () Returns the number of processors in the system

used by the runtime system to asynchronously request information from the application.

We will delve more deeply into each component in the following subsections.

5.2.1 Application Programming Interface

The Application Programming Interface (API) defines the set of routines which the appli-

cation uses to interact with the runtime system. The routines described in this Section may

be invoked directly ·by the application. We will give a brief description of each routine, as

well as the parameters required and any return values.

Environment Operations

Table 5.1 contains the operations to manipulate and query the ILB library's runtime

environment. These routines are responsible for initializing and shutting down the runtime

system, and querying the runtime system for information.

ilb_init()

Parameters:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOAD BALANCING FRAMEWORK 82

Table 5.2: HANDLER AND CALLBACK ROUTINE REGISTRATION

Message Handler Registration
void ilb_register _msg_handlers (Register ILB Message handlers with no

ilb_msg_haridler_t handlers[}, int size) associated names
void ilb_register _named__msg_handlers (Register ILB Message handlers with

ilb_msg_handler_t handlerslj, char* names[] associated names
int size)

Callback Routine Registration
void ilb_register ..size_functions (Register size calculation callback routines

ilb_size_Junc_t Junes[}, int size}
void ilb_register _pack_functions (Register object packing callback routines

ilb_pack_Junc_t Junes[], int size)
void ilb_register _unpack_functions(Register object unpacking callback routines

ilb_unpack_func_t Junes[], int size)
void ilb_register _load_functions{ Register load calculation callback routines

ilb_load_Junc_t Junes[}, int size)
void ilb_register _gran_functions (Register granularity calculation callback routines

ilb_gran_func_t Junes[], int size)
void ilb_register _prio_functions (Register priority calculation callback routines

ilb_prio_Junc_t Junes{}, int size}

1. int argc: The number of command line parameters. Passed to main() as

the first parameter.

2. char* argv[J: The command line parameters given to the program. Passed

to rrwin() as the second parameter.

3. ilb_configurator._t* config: OPTIONAL This parameter may be left out

of the ilb_init() call. The configurator object is used to configure the ILB

library, and then is passed directly to the MOL during initialization (see

Section C.2.1). There are three fields in the configurator object using the

ilb_seLconfigurator _field() routine:

• ILB_CONFIGURATOR_POOLSIZE : The size of the buffer entries con-

trolled by the ILB's memory manager

• ILB_CONFIGURATQR_pQQL_ENTRIES : The number of buffers man-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOAD BALANCING FRAMEWORK 83

Table 5.3: SCHEDULER AND MOBILE OBJECT REGISTRATION

Scheduler Registration
void ilb_register _scheduler { Register scheduler module with the runtime system

ilb_scheduler ~t* scheduler}

Mobile Object Registration
void ilb_register _mobile_obj { Register a mobile object with statically

moLmobile_ptr_t mptr, assigned priority, granularity, and load
ilb_pack_func_t pack_func,
ilb_unpack_fu.nc_t unpack_func,
ilb_size_fu.nc_t size_func,
vector< size_t> priority_list,
size_t granularity_val,
size_t load_val)

void ilb_register _mobile_obj{ Register a mobile object with dynamically
moLmobile..ptr_t mptr, calculated priority, granularity, and load
ilb_pack_func_t pack_func,
ilb_unpack_func_t unpack-June,
ilb_size_func_t size_func,
vector< moLmobile_ptr _t> dependencies,
ilb_prio_func_t priority_func,
ilb_gran_func_t granularity_func,
ilb_load_fu.nd load_func}

aged by the ILB's memory manager

• ILB_CONFIGURATORDIR_UPDATE_PROTOCOL : The value of this

field is not used by the ILB library, but is passed transparently to the

MOL layer during initialization.

Returns: None

Description:

This function is responsible for initializing the PREMA runtime system and must

be the first operation called (except for the ilb_seLconfigurator _field{) operation

described below). This routine will also initialize the lower layers of the PREMA

system (DMCS and MOL), so their initialization routines are no longer called by

the application. This operation is collective, meaning that all processors must

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOAD BALANCING FRAMEWORK 84

call ilb_init() at the same time. After the initialization routine returns, other

PREMA routines may be invoked.

NOTE: The ILB library contains the notion of application phases. Immediately

after initialization completes, the application is assumed to be in a startup phase

in which no load balancing should occur. In order to move into a load balancing

phase in which data migration will take place, the application will need to make

use of the ilb_phase_set() routine described below.

ilb__shutdown()

Parameters: None

Returns: None

Description:

This operation is the final ILB call made by any application. The ILB is, in

turn, responsible for shutting down the lower layers of the PREMA runtime

system. This is a collective operation and must be invoked by all processors

at the same time. NOTE: In the case in which runtime profiling information

is gathered (Refer to Compiling and Installing the PREMA Libraries), calling

moLshutdown() will result in profiling files being generated for the ILB and lower

PREMA software layers.

ilb__set_configurator _field()

Parameters:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOAD BALANCING FRAMEWORK 85

1. ilb_configurator _t* configurator: Pointer to a preallocated configurator

object.

2. int field: Which field of the configurator object to set. These fields are

specified in the description of the ilb_init() operation.

3. int value: The value to set the configurator field to. Because the ILB's

configurator object is analogous to the MOL's configurator, refer to Sec

tion C.2.1 for more details.

Returns: None

Description:

Sets a single field of the ILB configurator object. Configurator objects may

be passed as an optional third parameter to the ilb_init() operation in order

to configure components of the ILB library, such as the size of each entry and

the number of entries in the preallocated message pool. Not all fields of the

configurator need to be set; default values are provided for each of the fields.

If no configurator object is passed to ilb_init() default values are used that are

good in most cases.

ilb_phase_set ()

Parameters:

1. int phase: This value indicates to the runtime system which phase the

application is currently in. The available phases are:

• ILB_LOADJJALANCE_NO: This indicates that calls to the ILB's polling

operations should not result in data migration. This is often useful if

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOAD BALANCING FRAMEWORK 86

the application has an initial "startup" phase in which message passing

is necessary, but load balancing is unwanted. All applications begin in

this phase.

• ILB_LOADJ3ALANCE_YES: This indicates that load balancing is now

desired.

Returns: None

Description:

It is often necessary for applications to initially set up data structures and

neighbor-relationships among its mobile objects. During this "startup" phase,

message passing is often necessary, but load balancing is unwanted. Once this

startup phase has completed, the application's computation phase begins, and

load balancing is necessary. The location and extent of these phases are applica

tion defined and unknown to the runtime system. To accommodate this, the ILB

library has the concept of "phases". Initially, all applications are in the startup

phase (once ilb_init() is invoked). The ilb_phase_set() routine is used to toggle

between phases. This is a collective operation, and involves a synchronization

point.

ilb_my _proc()

Parameters: None

Returns: Integer; caller's processor ID

Description:

Returns a value between 0 and N - 1 where N is the number of processors in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOAD BALANCING FRAMEWORK 87

the parallel system. This number is the processor ID of the calling processor.

Although the exact numbering of processors depends on the lowest-level commu

nication substrate (such as MPI), it is generally assumed that the processor IDs

begin at zero and proceed sequentially.

ilb_num_procs()

Parameters: None

Returns: Integer; number of processors in parallel system

Description:

Returns the number of processors in the parallel system, N.

Registering Scheduler Module With the ILB

Preparing a scheduling module for use with PREMA's load balancing functionality is a

two-stage process. First, the scheduler must be instantiated using the constructor for the

specific scheduler class. The second phase is to register a pointer to the new scheduling

policy object with the runtime system. The following routine is provided for that purpose.

ilb_register _scheduler()

Parameters:

1. ilb_scheduler _t* scheduler: Pointer to an instance of the scheduling policy

class. This class may be a user-defined class, but all scheduler types are

derived from the ilb_scheduler_t type.

Returns: None

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOAD BALANCING FRAMEWORK 88

Description:

This routine is used to register an instance of the scheduling policy class with

the PREMA runtime system. This must be done on each processor before any

load balancing can take place.

Registering Message Handlers With the ILB

Although the message handlers for ILB messages are of the same type as message han

dlers for MOL messages, they must be registered separately. However, it is perfectly accept

able for the same handler to be used for both ILB and MOL messages, if the application so

desires. All ILB handlers must be registered on each processor in the same order. Typically,

handler registration takes place immediately after ILB initialization.

ilb_register _msg.Jmndlers()

Parameters:

1. ilb_msg..handler _t handlers[]: An array containing pointers to the user

defined ILB message handlers to be registered.

2. int size: The length of the handlers array.

Returns: None

Description:

Applications make use of this routine to register ILB message handlers with the

runtime system. All message handlers must be registered before they may be

invoked via message passing.

il b_register _named_msg..handlers ()

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOAD BALANCING FRAMEWORK 89

Parameters:

1. ilb_msg.Jmndler_t handlers[]: An array containing pointers to the user

defined ILB message handlers to be registered.

2. char* names[]: An array containing names for the handlers; this array

must be of the same length as the handlers array.

3. int size: The length of the handlers array.

Returns: None

Description:

This routine will register user-defined ILB message handlers with the runtime

system. Furthermore, a name will be associated with each handler. This is

helpful at times for debugging, but this routine is not often used.

Registering Callback Routines With the ILB

As with application-defined message handlers, callback routines must be registered with

the ILB system prior to use. The following routines are used for this purpose.

ilb_register __size_functions()

Parameters:

1. ilb__size_func_t funcs[]: An array containing pointers to the size calculation

callback routines to be registered.

2. int count: The number of entries in the function array.

Returns: None

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOAD BALANCING FRAMEWORK 90

Description:

Applications make use of this routine to register size calculation callback routines

with the runtime system. This must be done prior to use.

ilb_register _pack_functions ()

Parameters:

1. ilb_pack_func_t funcs[]: An array containing pointers to the packing call

back routines to be registered.

2. int count: The number of entries in the function array.

Returns: None

Description:

Applications make use of this routine to register object packing callback routines

with the runtime system. This must be done prior to use.

ilb_regster _unpac~cfunctions()

Parameters:

1. ilb_unpack_func_t funcs[]: An array containing pointers to the unpacking

callback routines to be registered.

2. int count: The number of entries in the function array.

Returns: None

Description:

Applications make use of this routine to register object unpacking callback rou

tines with the runtime system. This must be done prior to use.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOAD BALANCING FRAMEWORK 91

ilb.register _load_functions()

Parameters:

1. ilb_load_func_t funcs[]: An array containing pointers to the load calcula

tion callback routines to be registered.

2. int count: The number of entries in the function array.

Returns: None

Description:

Applications make use of this routine to register load calculation callback routines

with the runtime system. This must be done prior to use.

ilb_register _gran_functions()

Parameters:

1. ilb_gran_func_t funcs(]: An array containing pointers to the granularity

calculation callback routines to be registered.

2. int count: The number of entries in the function array.

Returns: None

Description:

Applications make use of this routine to register granularity calculation callback

routines with the runtime system. This must be done prior to use.

ilb_register _prio_functions()

Parameters:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOAD BALANCING FRAMEWORK 92

1. ilb_prio_func_t funcs(]: An array containing pointers to the priority cal

culation callback routines to be registered.

2. int count: The number of entries in the function array.

Returns: None

Description:

Applications make use of this routine to register priority calculation callback

routines with the runtime system. This must be done prior to use.

Registering Mobile Pointers With the ILB

As with the Mobile Object Layer, the ILB expresses parallelism in terms of mobile

objects. Creating a mobile object and registering it with the runtime system for the purposes

of load balancing is a two-step process. In the first step, a mobile object is created using

the moLcreate_mobile_ptr() routine described in Section 0.2. The return value from this

operation is a mobile pointer, which is a system-wide unique identifier used to reference the

mobile object. This mobile pointer is then registered with the ILB layer of the runtime

system, making it available for load balancing, using the following operation. This routine

is overloaded; each variant is described below.

ilb_register _mobile_obj()

Parameters:

1. moLmobile_ptr _t mp: Mobile pointer returned by a call to moLcreate_mobile_ptr().

This must refer to a local data object.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOAD BALANCING FRAMEWORK 93

2. ilb_pack_func_t pack_func: Pointer to a user-defined function responsible

for packing a mobile object into a contiguous buffer for transport. This

routine must be previously registered with the ILB.

3. ilb_unpack_func._t unpack_func: Pointer to a user-defined function re

sponsible for unpacking and reconstructing the mobile object. This routine

must be previously registered with the ILB.

4. ilb_size_func_t size_func: Pointer to a user-defined function responsible

for calculating the size (in bytes) of a mobile object. This routine must be

previously registered with the ILB.

5. vector<size_t> priority: This is a priority vector, with an entry for each

processor in the parallel system. The higher the value associated with a

particular processor, the stronger the "affinity" the mobile object has for

residing on that particular processor. When load balancing occurs, objects

have a greater probability of migrating to processors with a greater priority

value.

6. size_t granularity: The granularity value is an index describing the diffi

culty associated with migration; the higher the value, the greater the diffi

culty.

7. size_t load: This is an index representing the load associated with a par

ticular mobile object; the higher the value, the greater the associated load.

Returns: None

Description:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOAD BALANCING FRAMEWORK 94

Table 5.4: ILB COMMUNICATION AND SYNCHRONIZATION

void ilb_message(moLmobile_ptr_t mptr, Sends a message to a specific mobile object
ilb_msg_handler_t handler, void* user_data
int user_siie, void* arg)

void ilb_poll() Receives and processes pending PREMA messages
void ilb_barrier() Blocks execution until all processors enter the barrier

Application-defined mobile objects must be registered with the Load Balancing

system software. This informs the runtime system that the load associated with

this particular mobile object should be considered during load balancing. The

mobile pointer in question must also be local to the calling processor. In addition

to the mobile pointer, user-defined callback routines are provided to calculate

runtime information.

ILB Message Passing Operations

Computation using the PREMA runtime system progresses in a message-driven manner.

This means that computation results from the receipt and processing of application-defined

messages. As with the MOL layer discussed previously, messages may be directed to any

application-defined mobile object; the runtime system is responsible for routing messages.

Messages may contain an arbitrary parameter data buffer, and will invoke a user-defined

handler routine. In order for an arriving message to be processed and the specified handler

executed, a polling operation must be posted by the application. Polling operations are

described in greater detail later.

ilb_message()

Parameters:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOAD BALANCING FRAMEWORK 95

1. moLmobile_ptr _t mp: This is the mobile pointer that refers to the object

that is to be the target of the message.

2. ilb_msg_handler _t handler: This is the user-defined handler that is to be

invoked in response to this message. Handlers must be registered with the

runtime system prior to invocation.

3. void* user_data: This is a pointer to the user-defined parameter buffer.

May be NULL.

4. int user _size: This is the size of the user-defined parameter buffer, in bytes.

Zero for a NULL buffer.

5. void* arg: This is a single machine-word sized argument, and will be passed

to the user handler. Note that this is not a pointer to an argument. May be

NULL.

Returns: None

Description:

This routine is used to send a message to a specific mobile object. The runtime

system will route the message to the correct destination in the presence of dy

namic object migration. Note that the data buffer is available for reuse as soon

as this operation returns.

ILB Polling Operations

The PREMA runtime system provides a single-threaded programming model, meaning

that newly arrived messages will not preempt executing computation. There must therefore

be some mechanism the application may use to explicitly check the network for pending

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOAD BALANCING FRAMEWORK 96

messages. This mechanism is the polling operation.

ilb_poll()

Parameters: None

Returns: None

Description:

The polling operation polls the network for incoming messages and executes

any user handlers referenced by the messages. In addition, the ILB polling

operation includes an moLpoll(} call, so MOL messages and DMCS messages

will be handled within an ILB poll. Because the ILB presents a single-threaded

model, the poll call should be made by the main application thread only.

ILB Synchronization Operations

Like the MOL, the ILB provides a simple synchronization operation which can be used to

synchronize all procest>ors. The algorithm is a simple fan-in, fan-out algorithm which ensures

that all processors enter the barrier before any are allowed to leave. What distinguishes

the ILB barrier variant from the barrier operations found in the MOL and DMCS is that

the barrier is implemented using an internal ilb_poll(). This means that load balancing and

data migration may result due to a barrier.

ilb_barrier()

Parameters: None

Returns: None

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOAD BALANCING FRAMEWORK 97

Description:

Blocks execution until all processors have entered the barrier. Pending PREMA

message handlers may be executed within a barrier, and Schedulable Objects

may be migrated due to perceived load imbalance.

5.2.2 Callback Routines

In order to gather runtime information necessary for effective load balancing, the ILB library

must have a mechanism for asynchronously querying the application. For this purpose, the

user must supply six types of callback routines, which are described below.

Object Size Calculation Routine

This routine takes a mobile pointer {Section 4.2) as a parameter, and should return an

unsigned integer value (the size of the referenced mobile object, in bytes). This information

is necessary for packing the user's data object prior to migration during load balancing.

Type Name: ilb_size_func_t

Parameters:

1. moLmobile_ptr _t mp: This is the mobile pointer which refers to the user

defined mobile object in question. It is guaranteed that this object will be

local, and so can be dereferenced with the moLmobile_ptr_deref{) routine.

Returns: size_t; size of the data object in bytes

Object Packing Routine

This routine packs a user-defined data object into a contiguous buffer prior to migration.

The buffer used for packing in preallocated and managed by the system. At the end of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOAD BALANCING FRAMEWORK 98

the packing routine, the user is responsible for deallocating any memory occupied by the

mobile data object and ensuring that application data structures are maintained and remain

consistent.

Type Name: ilb_pack_func_t

Parameters:

1. void* object: This is a pointer to the application-defined mobile object.

2. void* buffer: This is a pointer to the system-managed buffer into which

the object should be packed.

3. int tgt: This is the processor to which the object will be migrating, in case

this information is necessary to update the application's data structures.

Returns: size_t; the number of bytes packed into the buffer. This figure should match

that which would have been returned from the Size Calculation Routine.

Object Unpacking Routine

This routine performs the inverse of the packing routine, reconstructing an application

data object from a packed buffer. The routine is responsible for allocating any memory

necessary for the object. Note that the object must be removed from the buffer; at the end

of this routine, the contents of the system-managed buffer cannot be guaranteed.

Type Name: ilb_unpack_func_.t

Parameters:

1. void* buffer: This is the buffer which contains the packed object.

2. size_t size: This is the number of bytes contained within the buffer.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOAD BALANCING FRAMEWORK 99

Returns: void*; a pointer to the newly reconstructed data object.

Load Calculation Routine

This routine is used to calculate the pending load represented by a data object. The

data object will have one or more newly arrived message handlers awaiting execution; this

routine is given one of these handlers and returns the load represented by this handler for

this particular data object. The runtime system is then able to determine the cumulative

load pending for this object. The handler is able to compare the handler pointer passed as

a parameter with the addresses of the possible handlers in order to determine which this is.

Type Name: ilb_load_func_t

Parameters:

L moLmobile_ptr _t mp: · This is the mobile pointer which references the

application data object. It is guaranteed that this data object will be local,

so the mobile pointer may be dereferenced with the moLmobile_ptr_deref()

routine.

2. ilb_msg..handler _t handler: This is a handler that is currently pending

for this data object. This routine will calculate the load represented by this

pending handler; the application can compare this handler pointer to the

addresses of possible handlers in order to determine which it is.

Returns: size_t; the index representing the pending load. Larger indices indicate a

greater pending load.

Granularity Calculation Routine

This routine is used to calculate the "granularity" of a mobile object, which is an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOAD BALANCING FRAMEWORK 100

index describing the difficulty associated with migrating that object to a remote processor.

Objects that are more difficult to migrate, due to possibly the size of the object or the effort

required in updating application data structures which contain that object, are associated

with a larger granularity index.

Type Name: ilb_gran_func_t

Parameters:

1. moLmobile_ptr _t mp: This is the mobile pointer which references the

application data object. It is guaranteed that this data object will be local,

so the mobile pointer may be dereferenced with the moLmobile_ptr_deref()

routine.

Returns: size_t; the index representing the granularity. Larger indices indicate

greater difficulty in migrated the associated object.

Priority Calculation Routine

This routine is used to calculate a priority vector, with an entry for each processor in

the parallel system. Higher values indicate a greater priority, and thus a greater "affinity"

for that data object to reside on the associated processor. Applications can use the pri

ority vector in conjunction with the scheduling algorithm to influence the migration and

scheduling sequence.

Type Name: ilb_prio_func_t

Parameters:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOAD BALANCING FRAMEWORK 101

1. size_t granularity: This is the value returned by the granularity calculation

routine.

2. size_t load: This is the value returned by the load calculation routine.

3. vector<size_t> dependencies: This is a vector with an entry for each

processor in the parallel system. The value of each entry indicates the num

ber of "dependencies" located on the associated processor. Dependencies are

mobile objects declared to have an affinity with the current object (affinities

are declared when the mobile objects are registered with the ILB). Note that

the dependencies vector will be impacted by the directory update protocol

used in the MOL layer of the runtime system; the vector is filled in with the

"best guess" for the locations of the neighboring mobile objects.

Returns: vector<size_t>; this is a vector with an entry for each processor. The value

in each entry is the priority of the mobile object with respect to the associated

processor; higher values indicate higher priorities.

5.3 Programming Model Example: Distributed Tree

One of our stated goals for the design and implementation of the Implicit Load Balancing

library was to provide an evolutionary migration path for code created using the Mobile

Object Layer (Section 4.2). Following this path, code developed without the capability

for dynamic load balancing can quickly incorporate load balancing functionality without a

severe impact to existing code. The best way to illustrate this is to revisit the example

developed in Section 4.2.3. We will then extend this code to incorporate ILB functionality.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOAD BALANCING FRAMEWORK 102

We begin by reviewing the code sample given in Figures 4.8 and 4.9, and repeated here

in Figures 5.2 and 5.3. In this example, the mechanism is in place to distribute the tree

data structure among the available processors. However, application code must intervene

in order to reassign nodes. If the computation performed by the do_~ork () method is

unpredictable, differing numbers of tree nodes are initially assigned to each processor, or

systemic variances intervene, workload imbalance may result, which must be detected and

corrected by the application itself.

What is needed is runtime system software that will automatically detect and correct

this dynamic load imbalance. This is the job of the ILB. Figure 5.4 contains the modified

TreeNode data structure and do_work...handlerO message handler. Comparing these with

Figure 5.2 and Figure 5.3, we can see that very little has changed. The only difference

comes on lines 10 and 13, in which the mol..message () routine has been replaced by a call

to ilb..message (). This signifies to the runtime system that the computation invoked as a

result of the message is subject to load balancing. In other words, the target mobile object

and pending computation (message handlers) may be migrated to an underloaded processor

prior to handler execution.

In order to minimize the impact of incorporating dynamic load balancing, message

handlers carry over unchanged from Figure 5.3. In addition, the parameter order and

values of the message invocation operations are identical. However, the code contained

in Figure 5.5 must be added. There are six routines, summarized as follows (all of these

callback routine types are described in greater detail in Section 5.2.2):

• Object packing routine {line 1}: This routine is used to prepare a TreeNode object for

migration during load balancing. It must pack the object into a contiguous buffer.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOAD BALANCING FRAMEWORK 103

Figure 5.2: TREENODE STRUCTURE WITH MOBILE POINTERS

1 struct TreeNode {
2 mol_mobile_ptr~t left;
3 mol_mobile_ptr_t right;
4 int data;
5 // ... Any other data members
6
7 void do_work(int param) {
8 // ... do some computation here involving 'data' ...
9 if (!mol_mobile_ptr_is_null(left)) {
10 mol_message(left, do_work_handler, &data, sizeof(int), NULL);
11 }
12 if (!mol_mobile_ptr_is_null(right)) {
13 mol_message(right, do_work_handler, &data, sizeof(int), NULL);
14 }
15 }
16 };

Because the TreeN ode type exists in contiguous memory, this amounts to a simple

memory copy.

• Object unpacking routine (line 8}: This routine unpacks an object after transport,

and modifies any necessary local application data structures to insert this new object

into the global computation.

• Object size calculation routine (line 14): This routine returns the size of the reference

object, in bytes.

• Priority calculation routine {line 18): This routine returns a vector with a priority

value for each processor in the parallel system. In this example, we mandate that

Schedulable Objects have no preference as to the processor on which they execute;

therefore the entries in the priority vector are equivalent.

• Load calculation routine (line 23): This routine returns an integer index describing the

current load imposed on the mobile object by a particular message handler. In this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOAD BALANCING FRAMEWORK

Figure 5.3: PARALLEL COMPUTATION USING MOBILE OBJECT LAYER

1 void do_work_handler(int src, mol_mobile_ptr_t mp, void* obj_data,
2 void* user_data, int user_size, void* arg)
3 {
4 TreeNode* node = (TreeNode•)obj_data;
5 int* param_data = (int•)user_data;
6 node->do_work(*param_data);
7 }
8
9

10 II ---------- main() ----------
11 int main(int argc, char* argv[]) {
12 mol_msg_handler_t msg_handlers[] = { do_vork_handler };
13 mol_init(argc, argv);
14 mol_register_msg_handlers(msg_handlers, 1);
15 mol_barrier();
16
17 II Each processor will build the local part of the tree, and then
18 II combine the pieces to form a single global tree before returning
19 mol_mobile_ptr_t root_mp = create_tree();
20
21 if (mol_my_proc() == 0) {
22 int init_data = 0;
23 mol_message(root_mp, do_work_handler, &init_data, sizeof(int), NULL);
24 }
25
26 II Make sure all work is complete before exiting ...
27 while (!done) { mol_poll(); }
28 return 0;
29 }

104

example, we stipulate that each handler imposes an equal load on the Schedulable

Object. More complex applications may wish to distinguish between handlers; the

pointer to the handler function can be used for this purpose.

• Granularity calculation routine (line 2'7}: This routine returns an integer index de-

scribing the difficulty associated with migrating the mobile object. We dictate that

each Schedulable Object is equally difficult to migrate.

Finally, Figure 5.6 contains the main() routine for the load balanced example. It pro-

gresses in essentially the same pattern as the main () routine in Figure 5.3. Lines 2-8 create

the arrays of message handlers and callback routines used by the example. Line 10 replaces

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOAD BALANCING FRAMEWORK

Figure 5.4: TREENODE STRUCTURE AND ILB MESSAGE HANDLER

1 struct TreeNode {
2 mol_mobile_ptr_t left;
3 mol_mobile_ptr_t right;
4 int data;
5 // ... Any other data members
6
7 void do_work(int param) {
8 // ... do some computation here involving 'data' ...
9 if (!mol_mobile_ptr_is_null(left)) {
10 ilb_message(left, do_work_handler, &data, sizeof(int), NULL);
11 }
12 if (!mol_mobile_ptr_is_null(right)) {
13 ilb_message(right, do_work_handler, &data, sizeof(int), NULL);
14 }
15 }
16 };
17
18
19 void do_work_handler(int src, mol_mobile_ptr_t mp, void* obj_data,
20 void* user_data, int user_size, void* arg)
21 {
22 TreeNode* node = (TreeNode•)obj_data;
23 int* param_data = (int•)user_data;
24 node->do_work(•param_data);
25 }

105

the previous call to moLinitO with a call to ilb_initO, while lines 11-17 register the

message handlers and callback routines.

Lines 19 and 20 create the Scheduler module and register the Scheduler with the runtime

system. Note that the Scheduler may be of a predefined or user-defined type. For more

information on the Scheduler interface and predefined Scheduler types, refer to Section 5.4.2.

Once the Scheduler is registered, initialization is complete.

Line 23 invokes a routine that creates the global tree data structure. We omit this

routine in the code samples for the sake of brevity. Tree creation can proceed in the same

manner as before, with the exception that each mobile object must be registered with the

runtime system using the ilb_register_mobile_ptrO routine. This registration signifies

to the runtime system that this mobile object is a candidate for migration during load

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOAD BALANCING FRAMEWORK 106

Figure 5.5: CODE FOR OBJECT TRANSPORT AND PRIORITY CALCULATION

1 size_t pack_func(void* object, void* buffer, int tgt) {
3 memcpy(buffer, object, sizeof(TreeNode));
4 delete (TreeNode)object;
5 return sizeof(TreeNode);
6 }
7
8 void* unpack_func(void* buffer, size_t size) {
9 TreeNode* t = nev TreeNode;
10 memcpy(t, buffer, size);
11 return (void•)t;
12 }
13
14 size_t size_func(void* object) {
15 return sizeof(TreeNode);
16 }
17
18 vector<size_t> prio_func(size_t gran_val, size_t load_val,
19 vector<size_t> dependencies) {
20 return vector<size_t>(mol_num_procs(), 1);
21 }
22
23 size_t load_func(mol_mobile_ptr_t mp, ilb_msg_handler_t handler) {
24 return 1;
25 }
26
27 size_t gran_func(mol_mobile_ptr_t mp) {
28 return 1;
29 }

balancing.

The rest of the main() routine is unchanged, save for replacing moLmessageO with

ilb_message () on line 27, and replacing moLpoll () with ilb_poll () on line 31.

5.4 Load Balancing Framework Architecture

The architecture and implementation of the ILB load balancing framework arose from a

need to provide efficient dynamic load balancing support for asynchronous and adaptive

parallel applications. Adaptivity in the application level imposes several consequences on

the runtime system. The first is that computational complexity will vary unpredictably

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOAD BALANCING FRAMEWORK 107

Figure 5.6: HANDLER REGISTRATION AND SYSTEM INITIALIZATION

1 int main(int argc, char* argv[]) {
2 ilb_msg_handler_t msg_handlers[] = { do_work_handler };
3 ilb_pack_func~t pack_funcs[] = { pack_func };
4 ilb_unpack_func_t unpack_funcs[) = { unpack_func };
5 ilb_size_func_t size_funcs[] { size_func };
6 ilb_prio_func_t prio_funcs[] { prio_func };
7 ilb_load_func_t load_funcs[] { load_func };
8 ilb_gran_func_t gran_funcs[) { gran_func };
9
10 ilb_init(argc, argv);
11 ilb_register_msg_handlers(msg_handlers, 1);
12 ilb_register_pack_functions(pack_funcs, 1);

13 ilb_register_unpack_functions(unpack_funcs, 1);
14 ilb_register_size_functions(size_funcs, 1);
15 ilb_register_prio_functions(prio_funcs, 1);
16 ilb_register_load_functions(load_funcs, 1);
17 ilb_register_gran_functions(gran_funcs, 1);
18
19 MySchedulerType* sched =new MySchedulerType();
20 ilb_register_scheduler(sched);
21
22 //Each processor will build the local part of the tree ...
23 mol_mobile_ptr_t root_mp = create_tree();
24
25 if (mol_my_proc() == 0) {
26 int init_data = 0;
27 ilb_message(root_mp, do_work_handler, &init_data, sizeof(int), NULL);
28 }
29
30 //Make sure all work is done before exiting ...
31 while (!done) { ilb_poll(); }
32
33 return 0;
34 }

around areas of interest in the data domain. For instance, as the tip of a growing crack in a

solid enters a sub-domain used in adaptive mesh refinement, the computational complexity

associated with further refinement of that sub-domain will rise rapidly. Furthermore, as

this computational complexity varies unpredictably, static a priori partitionings will often

lead to underutilization of processing resources. In other words, compile time analysis alone

is insufficient.

Second, asynchronous codes lack inherent synchronization points that can be used to ex-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOAD BALANCING FRAMEWORK 108

change processor workload information. Any synchronization points added for the purposes

of load balancing will negatively impact performance, often severely. The cost incurred

by synchronization is proportional to the disparity between the execution times of tasks

currently running on each processor. The same unpredictable behavior that leads to poor a

priori static partitionings also contributes to the cost of global processor synchronization.

Finally, it is our experience that most such codes are computationally bound, meaning

the tasks that compose the application have a small "surface-to-volume" ratio. This fact

impacts the rate at which processors will be able to service network messages during task

execution; the computation kernels which make up these tasks often do not poll for messages,

meaning that a mechanism must be provided to process high priority load balancing requests

in a timely manner.

In order to create a flexible load balancing architecture well-suited to improving the

performance of imbalanced dynamic, adaptive, and asynchronous applications, it is instruc

tive to decompose the load balancing process into its constituent parts. By examining how

each phase in the load balancing process is impacted by adaptivity in the application, we

can ascertain the characteristics the runtime software must possess in order to be effective.

Once these characteristics are known, we can develop an architecture which both preserves

the runtime model already provided by the DMCS and MOL layers of the runtime system

and allows for maximal load balancing efficiency.

The first phase in the load balancing process is gathering local processor load information.

With this information, the runtime system can devise a picture of the load distribution

among the processing elements at any given time. There are two methods by which this

information may be gathered. The first is through application-supplied hints, which rely

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOAD BALANCING FRAMEWORK 109

on the ability of the application itself to predict the computational weight of each task.

However, in the context of adaptive applications, this is often difficult to do with any

degree of certainty. The second approach is based on runtime instrumentation, and often

makes the assumption that task performance in the near future is based on that of the

recent past. Referring to our example of crack tip growth, however, we can see that this

is not always the case. With unpredictably and rapidly evolving workload patterns, both

methods are impractical. Application requirements therefore dictate that the load balancing

architecture reduce its reliance on accurate future workload prediction.

Once local load information is gathered, the second phase is the dissemination of work

load information to a set of neighboring processors. This set of neighbors may or may not

include all other processors in the parallel system. Again, there are two methods for infor

mation dispersal. The first is synchronous, meaning that all processors in the neighborhood

must synchronize, and all information is exchanged at once. This implies that computation

stops while load balancing is in progress. As we have mentioned, the codes in which we

are interested do not have inherent synchronization points, so this process will incur some

amount of overhead. Conversely, asynchronous techniques allow computation to progress

while processor workload is exchanged. However, if this information is not acted upon

quickly, load balancing decisions may be made based on out-of-date information. What

is required from the runtime system is therefore an asynchronous information exchange

mechanism which allows for rapid decision making based on up-to-date information.

The third and final step in the load balancing process is decision making and task mi

gration. This phase can be initiated explicitly by the user through an interface routine

from within the runtime library. This method has the advantage of not interrupting well

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOAD BALANCING FRAMEWORK 110

tuned computation kernels, but delays in decision making combined with asynchronous

information dissemination can lead directly to poor load balancing and unnecessary idle

cycles. Implicitly (or preemptively) initiated load balancing can reduce the delay associ

ated with workload information processing. However, any overhead caused by the decision

making procedure will have a negative impact on application performance. Therefore, it

is necessary that the load balancing runtime system provide a preemptive decision making

mechanism capable of balancing the tradeoff between information processing response time

and overhead.

With these requirements established, we will now present the architecture of the load

balancing component of the PREMA runtime system. The primary elements of the archi

tecture are Schedulable Objects, which bind computation to data and serve as the units

of migration during load balancing, the Scheduler interface, which defines the operations

that each scheduling policy must provide in order to be used in conjunction with the load

balancing framework, and the preemptive decision making capability. In the remainder of

this Section, we will explore each of these pieces in greater detail.

5.4.1 Schedulable Objects

Schedulable Objects encapsulate application-defined data objects as well as any pending

work that has arrived for that object in the form of application message handlers. In this

way, Schedulable Objects extend the idea of mobile objects found in the Mobile Object

Layer by providing the runtime system with information necessary to make load balancing

migration decisions, and functionality needed to enact those decisions. Schedulable Objects

communicate information and provide services through the asynchronous callback routines

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOAD BALANCING FRAMEWORK 111

defined in Chapter 5, Section 5.2.2. These callback routines allow the runtime system to

asynchronously query Schedulable Objects during the load balancing process.

In order for the load balancer to make informed migration decisions, Schedulable Objects

must be able to provide information describing the processor workload they represent, and

their affinity for execution on each processor in the parallel system. There are two methods

used to provide this information. The first is to assign a static load value and priority map

to each Schedulable Object at creation time. The load value is an unsigned integer index

which describes the load associated with that object; higher values indicate a greater load.

The priority map contains an index for each processor in the parallel system; Schedulable

Objects that need to migrate tend to move to processors for which they have higher priority

indices. Because the load value and priority map are static, they can be obtained with

very little overhead. At the same time, however, they are ill-suited to reflect the runtime

changes commonly found in adaptive applications, such as dynamically changing workloads

and data-dependence relationships between Schedulable Objects.

To express these dynamic characteristics and relationships, we have designed and imple

mented a method for assigning dynamic load values and priority maps to each Schedulable

Object during runtime. Application-defined callback routines are assigned to each object

at creation time and are invoked by the runtime system prior to object migration. The

priority callback routine can take into account dynamic changes in the load associated with

the Schedulable Object, the cost of migrating the object, and the location of objects which

share data dependencies. Again, however, there is a tradeoff between functionality and

speed; while dynamic runtime information allows the runtime system to more accurately

consider evolving dependency patterns among application data objects, a greater amount

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOAD BALANCING FRAMEWORK 112

of overhead is involved in their calculation. This overhead is typically quite small, and we

have found that this mechanism is quite useful in load balancing adaptive applications.

Once the runtime system has determine that Schedulable Object migration is necessary

in order to balance the runtime load, the first step is to pack an object into a contiguous

buffer that may be sent across the network in a single message. Because the structure of

each object is known only to the application, packing and unpacking callback routines must

be provided. These routines are associated with each Schedulable Object at the time of

creation, and are responsible for packing the object into a buffer provided and managed

by the runtime system, and rebuilding any necessary data structures once the buffer has

arrived at the target processor. If application data objects are simple objects that already

exist in contiguous memory, this process amounts to only a memory copy to and from the

runtime system managed memory buffers. In order to ensure that the system managed

buffers are of adequate size, a callback routine is also necessary that calculates the size of

a given Schedulable Object.

5.4.2 Scheduler Module

A design goal we set forth for the ILB library is for applications to have the ability to

quickly and easily adopt new load balancing strategies with minimal changes to existing

source code. It is the Scheduler module that provides this flexibility. The Scheduler module

encapsulates the load balancing decision making and data migration functionality into a

single object that is isolated from the rest of the load balancing infrastructure by a well

defined and simple interface. While the primary purpose of the Scheduler is to schedule the

execution and migration of Schedulable Objects during runtime, the exact policies to make

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOAD BALANCING FRAMEWORK 113

Figure 5. 7: SCHEDULER MODULE WITHIN THE PREMA ARCHITECTURE

Adaptive Application

these decisions are left to the individual Scheduler implementation.

We will begin by examining how the Scheduler module fits into the architecture of the

runtime system. We will then examine the interface to which each Scheduler implementation

must conform. We will show that this interface allows for a wide variety of Scheduler designs

and implementations. To give some idea as to the breadth of scheduling policies that are

implementable within our framework, we will describe the Scheduler modules that we have

already developed.

The Scheduler modules we have implemented fall into four categories: Diffusion model

Schedulers, Gradient model Schedulers, Prioritized Multi-list model Schedulers, and Master

Worker model Schedulers. We will provide descriptions of their architectures here, while

we will defer a discussion of their performance merits until Chapter 7.

5.4.2.1 Scheduler Interface

From Figure 5.7, we can see that the Scheduler itself is isolated from the application layer

by the ILB interface. This allows us to create a "plug-and-play" architecture, wherein the

Scheduler may be modified or replace with minimal impact to the application itself, and no

impact to the remainder of the runtime system. In order to accomplish this, we define a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOAD BALANCING FRAMEWORK 114

Table 5.5: INTERFACE FOR THE ILB SCHEDULER MODULE

Constructor Create and initialize the Scheduler
Destructor Destroy Scheduler and clean up memory
ilb_schedulable_t* get _next() Returns a Schedulable Object with pending work
void activate{ilb_schedulable_t* sched) Notify Scheduler of a newly created or arrived

Schedulable Object
void notify{ilb_schedulable_t* sched} Notify Scheduler of a change to a Schedulable Object
bool empty(} Return true if Scheduler has no remaining pending

work

concise interface {Table 5.5) which must be supported by all Scheduler implementations. We

have endeavored to make this interface as general as possible while still allowing for high-

performance Scheduler implementations. Below, we will describe the Scheduler module's

interface in greater detail.

Any Scheduler module implementing a specific scheduling policy must be implemented

as a C++ class which inherits· its interface from the ilb_scheduler_t class. Although all

methods declared in the interface class must be implemented, each Scheduler module is free

to implement other methods to be used internally. However, these methods will not be

visible to the rest· of the runtime system, or to the application itself.

The first method that must be implemented is the constructor for the Scheduler class.

The constructor may take any number of parameters, which can be used to initialize any

internal data members. For instance, a Scheduler may elect to have any thresholds required

for load balancing, or the number of neighbors in the load balancing neighborhood, set

via the constructor. In addition, the constructor for the Scheduler class must ensure that

all data structures, such as work pools and task queues, that are needed are initialized

and ready for use. The constructor is called by the application code; at its conclusion the

Scheduler module must be ready to be registered with the PREMA library and used for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOAD BALANCING FRAMEWORK 115

Schedulable Object execution and load balancing.

Conversely, the Scheduler must also implement a destructor which is responsible for

cleaning up any dynamically allocated buffers or data structures. The Scheduler's destructor

method is called by the runtime system itself during system shutdown. At this point, no

further load balancing or Schedulable Object execution is possible.

In addition, four methods of the Scheduler module have specified names, parameter

lists, and return types. The first of these is the geLnext() method, which returns the next

Schedulable Object with pending work for execution. This method is called exclusively

from within the load balancer's polling routine, and returns a pointer to an object of type

ilb_schedulable_t1 . The Scheduler object examines its internal data structures (such as task

pools) to determine if any Schedulable Objects are available for execution, and returns

a pointer to one that satisfies the criteria and load balancing policy implemented by the

particular Scheduler. For instance, the Diffusion Schedulers will look to its work pool for

Schedulable Objects. If any are present, one is removed and its address is returned to the

caller.

In the case of a Scheduling policy in which work is pulled from an overload processor

to an underloaded one, the geLnext() routine is where load balancing begins. Here, the

Scheduler can determine when the processor load level drops below a specified threshold,

and can therefore begin the information dissemination procedure, requesting the availability

of tasks from neighboring processors. For Scheduler policies that push work from overloaded

processors, the geLnext(} routine will typically return a pointer to a Schedulable Object,

1Note that previously in this document we have referred to Schedulable Objects, whereas now we refer
to objects of type ilb_schedulable_t. These are equivalent.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOAD BALANCING FRAMEWORK 116

or NULL if there are none available.

The activate() method is used to communicate the existence of new Schedulable Objects

to the Scheduler module. This method is invoked either when a new Schedulable Object is

created, or when a Schedulable Object arrives at a processor as a result of migration. Note

that newly created Schedulable Objects often have no pending work associated with them,

and therefore may not be of interest to the load balancing scheduling policy. Migrating

Schedulable Objects often will have pending work, but this is not necessarily the case. The

activate() method is called exclusively by the runtime system and never by the applica

tion; invocation arises from within the Schedulable Object constructor or from within the

Schedulable Object installation method.

The Scheduler may elect to examine the length of the Schedulable Object's pending

handler queue (using the handler_queue_size() method), and use this information to make a

decision as to what to do with the Schedulable Object. Schedulers that calculate local load

based solely on the number of objects with pending work may elect to do nothing in the

activate() method if the Schedulable Object in question currently has no pending message

handlers. However, if there is work associated with the object, as is often the case during

migration, the Scheduler may elect to insert it in a work pool data structure. This decision

is left entirely to the scheduling policy implemented by the particular Scheduler.

Schedulable Objects that have already been activated use the notify() method to inform

the Scheduler of a change in the workload associated with the object. The Scheduler may

elect to use this information to adjust the execution order of local Schedulable Objects, or

determine which objects are the best candidates for migration. For instance, Schedulers that

maintain load information based only on Schedulable Objects that currently have pending

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOAD BALANCING FRAMEWORK 117

message handlers use the notify() method to insert the Schedulable Object in any task pool

data structures. Again, the exact behavior of the notification method is entirely dependent

upon the load balancing policy implemented by the Scheduler.

The notification method is called exclusively by the runtime system from one of two

places. The first is from the load balancing library's system-defined message handler that

is executed upon arrival of application messages. This system handler is responsible for

enqueueing newly arrived application handlers in the pending handler queue of the target

Schedulable Object. This will cause the load represented by the Schedulable Object to

increase; notifying the Scheduler may cause the Schedulable Object to move up in the

execution order. The second location from which the notify(} method is invoked is from

within the activate() method previously discussed. If the activation method determines

that pending work is already associated with the Schedulable Object (as is often the case

when the object has migrated due to load imbalance), it may make use of the notification

method.

The final method mandated by the Scheduler interface is the empty() method, which

returns the boolean value true if there are no local Schedulable Objects with pending work,

and false otherwise. This method is used exclusively by the termination detection algorithm

built into the load balancing runtime system.

It is possible to implement a wide variety of scheduling policies using the interface we

have defined. We have attempted to place the minimum number of constraints possible by

keeping the interface concise. In order to give some idea of the breadth of policies that can

fit into the framework, we have implemented several of the more common load balancing

methods (Figure 5.8). In the remainder of this Subsection, we will describe the Schedulers

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOAD BALANCING FRAMEWORK 118

Figure 5.8: SCHEDULER COMMUNICATION MODELS

Send Diffusion Model Recv. Diffusion Model Gradient Model Prioritized Multilist Model
Processor 0 Processor I Processor 0 Processor I Processor 0 Processor I

Request Load Load Priority List

we have implemented in greater detail.

5.4.2.2 Diffusion Model Schedulers

The first Scheduler modules we have implemented are of the Diffusion [58] type. During the

course of this research, we have experimented with both Sender-Initiated Diffusion (SID)

and Receiver-Initiated Diffusion (RID) scheduling policies. However, we have discovered

that RID Schedulers are much more effective at load balancing adaptive and irregular

applications, and are also much simpler for application developers to use. Therefore, we

will give a description of both scheduler types, but will focus primarily on the RID variety.

The performance data contained in this thesis will also be from RID Scheduler modules

whenever diffusion schedulers are used.

Sender-Initiated Diffusion Schedulers maintain a task pool for local Schedulable Objects

that currently have pending message handlers awaiting execution. The Schedulable Objects

are sorted within each task pool according to their estimated load value. Local Schedulable

Objects scheduled for execution are taken from the head of the task pool, as are Schedulable

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOAD BALANCING FRAMEWORK

Figure 5.9: SENDER-INITIATED DIFFUSION LOAD BALANCING

~ 0
' '

119

0---~---~ 0 ~----~

(A) Request load levels (B) Reply with local level (C) Find underloaded (D) Migrate task

Objects that are selected for migration. In this way, the Scheduler will attempt to schedule

"heavy" tasks first.

Load balancing for the SID Scheduler begins when an application-defined message arrives

for a Schedulable Object. If the target object had no previous pending work, then the

load represented by the new message handler is added to the aggregate processor load,

possibly raising the work level above the application-specified high water mark threshold. A

primary issue in using SID Schedulers is the difficulty in selecting an appropriate watermark;

setting the mark too low will result in unnecessary task migration while setting it too high

will prevent load balancing from beginning soon enough, reducing its effectiveness. An

alternative approach is for the Scheduler to "ping" the processor's neighbors periodically,

thereby maintaining a picture of the neighborhood load distribution that is updated after

some period of time. There is a tradeoff between the accuracy of each Scheduler's view

of the neighborhood load and the overhead due to communication. We however, have not

implemented such a scheduler.

Figure 5.9 depicts the SID Scheduler's load balancing algorithm. The overloaded pro-

cessor begins by requesting the current load levels of its immediate neighbors. Once the

Scheduler has the current neighbor loads, it is able to determine which neighbor is the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOAD BALANCING FRAMEWORK 120

Figure 5.10: RECEIVER-INITIATED DIFFUSION LOAD BALANCING

' '

0----cp---@

~
(A) Request load levels (B) Reply with local level (C) Find overloaded

0
0----~----[iJJJ

~
(D) Migrate task

least loaded; this neighbor will be the recipient of migrated tasks. The processor will also

determine whether to migrate a single task, or multiple tasks so that each processor will

have an equal load after task migration. We have found that, because tasks tend to be

coarse-grained and have an unpredictable execution time, it is most effective to migrate a

single task at a time. The overhead of task migration tends to be very small as compared

to task execution time, so multiple migrations tends to not be a factor. In addition, the

unpredictability of task run times often means that tasks migrated to balance the load will

have to be migrated again in the future.

Once the ·least loaded processor in the neighborhood is known, local Schedulable Objects

are uninstalled and migrated to the underloaded neighbor. In addition to the previously

mentioned issue of determining an appropriate high water mark, the SID scheduling poli-

des have the disadvantage that they place the burden of load balancing computation on

the processors that are overloaded. We will see that Receiver-Initiated Diffusion policies

reverse this, thereby distributing the application and load balancing computation among

the available processors.

The RID Scheduler differs from its SID counterpart in that load balancing is initiated

when the local work level falls below a particular threshold. The local load is checked

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOAD BALANCING FRAMEWORK 121

therefore not when new application messages arrive, but when pending message handlers

for Schedulable Objects are executed. While it may seem that picking a suitable low water

mark is no simpler than picking the high water mark necessary for the SID Schedulers, it is

often the case that a threshold of zero can be used; load balancing will therefore not start

until the local tasks are completely exhausted. In some cases, the performance afforded

by this strategy can be improved by starting the load balancing procedure when the last

task begins execution; in this way, computation and load balancing communication can be

overlapped, yielding a reduction in overall runtime.

Figure 5.10 depicts the RID Scheduler's load balancing algorithm. The first two phases

are identical to the SID Scheduler; the processor initiating load balancing must query its

immediate neighbors for their local loads. Once all of the neighbors have replied, the

underloaded processor determines which neighbor has the greatest level of current work. A

message is then sent to this overloaded node requesting a Schedulable Object to be migrated.

A strategy that can be employed to improve the performance of both SID and RID

Schedulers is to allow processors that initiate load balancing to select new neighbors to

replace those that are unable to accept work {in the SID case) or contribute work {in the

RID case). This will prevent processors that are unable to participate in load balancing

from being queried over and over, and will also allow processors to find those that are most

beneficial, leading to more efficient task migration.

By studying the communication required to migrate a single task {Figure 5.10), we

have implemented an optimization that we term Work-Stealinfl. A primary goal of the

2The term "Work-Stealing" has existed in the literature for some time, and is most often used in conjunc
tion with the Diffusion policies we have described here. However, in this thesis, the term is used exlusively
to refer to the Diffusion optimization we present. It should also be noted that, like the other Scheduler im-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOAD BALANCING FRAMEWORK 122

Work-Stealing Scheduler is the elimination the information gathering phases (phases (A)

and (B) in Figure 5.10) which can reduce the efficiency of the load balancing algorithm.

Each processor is paired with a single neighbor, and load balancing consists of a single

request-response mechanism. Underloaded processors request Schedulable Objects from

their neighbors, who respond with a task if one is available, or a negative acknowledgement

(NACK). If an underloaded processor receives a NACK, then a new neighbor is selected

and the process begins again.

The Work-Stealing scheduling policy represents one end point of a continuum that plots

communication complexity against load balancing efficiency. By reducing the neighborhood

size, each load balancing cycle can be performed less expensively. However, the amount of

system state that is available to each processor is also lower, and this can lead to a reduction

in load balancing efficiency. In addition, because communication to several processors can

often be overlapped, it often takes more time to query N processors in a Work-Stealing

environment than is required to query each neighbor in a neighborhood of size N. However,

particularly for small processor configurations (less than 64 processors), the experimental

evidence we are able to accumulate indicates that simpler communication schemes, such as

those in a Work-Stealing Scheduler are able to out-perform more sophisticated but expensive

schemes. We will explore this issue in more detail in subsequent Chapters of this thesis.

plementations we describe, we do not claim to have originally developed the Work-Stealing policy; instead
we wish to indicate the breadth of the load balancing policies that are implementable within our framework.
The design and development of the framework is one of the contributions of this thesis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOAD BALANCING FRAMEWORK 123

Figure 5.11: GRADIENT MODEL LOAD BALANCING

• Overloaded

• Underloaded

5.4.2.3 Gradient Model Scheduler

The Gradient Model (GM) Scheduler (13] uses two water marks to delineate the three states

in which a processor may exist: a processor may be underloaded, overloaded, or optimally

loaded. Like the Diffusion Model Schedulers, the GM Scheduler groups processors into

overlapping neighborhoods of a fixed size. These neighborhoods may take into account

physical groupings creating by the network topology, or may be arbitrary in the case of

a flat network. Load balancing begins once a processor drops below the low water mark

threshold. Therefore, as with the Receiver-Initiated Diffusion Scheduler, the local load is

calculated each time the pending handlers for a Schedulable Object complete execution

(within the geLnext() Scheduler method, described in Section 5.4.2.1).

The GM Scheduler on each processor contains a proximity value that denotes the "dis-

tance" to the nearest underloaded processor, along with the processor ID of that under-

loaded node. This concept can be particularly beneficial to those calculations that benefit

from migrating computation in such a way as to preserve a notion of data locality. Once a

processor Pu becomes underloaded, it begins the process of propagating its own ID through-

out the parallel system by sending a load status message to its immediate neighbors. This

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOAD BALANCING FRAMEWORK 124

load status message contains processor Pu 's ID as well as a proximity value; initially the

proximity value is zero.

Upon· receipt of a load update message, a processor P0 first checks to see if it is able

to satisfy the migration request. This is possible only if Po's local load value is above the

prescribed high water mark. If this is not the case, the load status message is propagated

through the new neighborhood according to:

proximity{p) = m~n(proximity(ni)) + 1
. t

As processors propagate the load status message, they maintain the proximity and ID of

the closest underloaded processor. In the case that a processor becomes overloaded, it

will attempt to migrate some of its work to this node. Note that the spread of load status

messages can be halted if they arrive at processors that are already aware of an underloaded

node with a lower proximity

While load status messages propagate through the parallel system through message

passing between immediate neighbors, load migration may take place between any two

processors. This is in contrast to the Gradient methods described in [35, 41, 121, 156] in

which tasks are also passed only between neighbors. Figure 5.11 depicts a 16 processor

array in which the lightly shaded processor is underloaded while the two darkly shaded

processors are overloaded. The numbers in each processor box represent the proximity to

the nearest underloaded processor.

Migrating Schedulable Objects to underloaded nodes is a two step process. First, an

overloaded processor P0 sends a message to the nearest underloaded processor Pu containing

the number of Schedulable Objects it is able to migrate, if multiple Schedulable Objects

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOAD BALANCING FRAMEWORK 125

are to be transferred in a single load balancing iteration. If only single tasks are to be

migrated, this message will simply specify that a Schedulable Object is available. This is

known as the commit phase of the migration protocol. By splitting task migration into two

phases, the Scheduler can avoid the situation in which an underloaded processor becomes

overloaded due to simultaneous task migrations from several sources.

Processor Pu will respond to a single overloaded processor with the number of tasks it

is requesting (this is one in the case where single tasks are migrating at any one time). This

number may be less than or equal to the number of tasks offered. For instance, if another

processor has beaten processor P0 with an offer, Pu may respond to P0 with a request for

zero Schedulable Objects. Processor Pu will always take into consideration the number of

tasks pledged to it when calculating its local load.

The second stage of load transfer is the migration stage. When P0 receives a reply from

Pu requesting some number of tasks, P0 uninstalls that number of Schedulable Objects and

packs them into a contiguous buffer. The requested tasks are therefore sent in a single

message. Figure 5.8 depicts the overall communication pattern graphically.

5.4.2.4 Prioritized Multi-list Scheduler

The Prioritized Multi-list (PML) Scheduler we have implemented is based on the work

contained in [158). Like the Gradient Model Scheduler, any two processors may act as

source and sink for load transfer. However, the PML Scheduler does away with the concept

of localized neighborhoods. Each of the P processors maintains P physical lists which

contain the local Schedulable Objects for which pending work exists. The ith physical list

is sorted using the ith entry in each Schedulable Object's priority vector (Section 5.4.1) as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOAD BALANCING FRAMEWORK

Figure 5.12: LOCAL PRIORITY VECTORS IN THE PML ARCHITECTURE

NodeO

physical
lists

Node 1

physical
lists

Node2

physical
lists

126

a key. This distinguishes the PML Scheduler from the others that we have implemented,

because the other Schedulers make use of only a single local task list, the Schedulable

Objects contained within the task list of processor pare sorted using the pth entry of the

priority vector.

In addition to the P physical lists, each processor maintains a priority list of length

P. Entry i in processor p's priority list denotes the priority of the Schedulable Object

at the head of the pth physical list on processor i, as well as the processor on which the

Schedulabl~ Object is located (processor i). Examining this priority list for the greatest

value tells the Scheduler where it may find the Schedulable Object with the highest priority;

this is the Schedulable Object that should execute next3 . Figure 5.12 shows the physical list

and priority list architecture. The numbers in the physical list entries refer to the priority

of the Schedulable Object located there.

Once processor i receives a migration request from processor j, it will remove the Schedu-

lable Object at the head of the jth local physical list and transfer it to processor j. Note

that due to the aging of load and priority information, the object at the head of the physical

3In order to preclude the need to scan the priority list in a linear fashion, it is implemented as a sorted
list, so that the head of the list always denotes the processor with the highest priority Schedulable Object.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOAD BALANCING FRAMEWORK 127

may not have the priority that processor j assumes it to have. For instance, another proces

sor may have already executed the message handlers pending for the requested Schedulable

Object. In this case, the PML Scheduler removes whatever object happens to be at the

head of the physical list and packages it for transport. While this may violate the property

that Schedulable Objects should be executed in the order that their priorities dictate, this

solution was deemed to be more efficient than sending back a negative acknowledgement

message containing the new priority of the head of the physical list. Figure 5.8 shows this

communication pattern. In the case that no Schedulable Objects are available for a request

ing processor, a negative acknowledgement is returned. When no local objects are available,

a message is sent to each processor so that the appropriate entries in the priority lists may

be invalidated.

5.4.2.5 Master-Worker Scheduler

The Master- Worker Scheduler differs from the others we have described in that all Schedu-

lable ObjeCts are initially allocated to a centralized Master processor, which is responsible

for doling out tasks to the Workers. With PREMA's preemptive mechanism, it is possible

for the Master processor to also act as a Worker. Without preemption, it is necessary for the

Master processor to solely monitor the network for incoming migration requests; otherwise

the idle cycles incurred by the Worker nodes waiting for task migration will have a drastic

impact on application performance.

At application initiation, all Schedulable Objects are located on the Master processor.

This may have implications for applications which are large enough so that the physical

memory available is not adequate to hold all tasks. As application messages arrive for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOAD BALANCING FRAMEWORK 128

the Schedulable Objects, they are enqueued in a task pool which contains all pending

computation for the application. Worker processors request tasks from the Master, which

are then allocated in chunks of a fixed number of tasks. The size of the migration chunks

represents a tradeoff; small chunk sizes will lead to a more even load distribution but will

incur a higher communication cost. Typically, due to the coarse granularity of tasks, a

single Schedulable Object is used to satisfy each migration request.

Master-Worker load balancing schemes will generate optimal load balancing for a given

initial ordering of tasks in the Master processor's task pool. However, they suffer from

several short comings. First is that the Master processor will tend to act as a bottleneck

on computation as the number of Worker processors increases. We will explore this issue

in greater detail elsewhere in this thesis. Another potential problem is that, for iterative

applications, the system state will need to be "reset" at the beginning of each iteration.

In the worst case, this will involve migrating all Schedulable Objects back to the Master

processor. Finally, as task granularity becomes more fine, the migration chunk size must

be used to limit the load balancing communication overhead.

Several strategies exist for dealing with each of these issues. For instance, in large

systems a hierarchical Master processor network can be used to alleviate the communication

traffic on a single Master. Also, methods exist, such as those described in [12, 74], for

allowing tasks to be initially distributed among the workers. The PREMA load balancing

framework we have described can easily accommodate both optimizations, although we have

not implemented them.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOAD BALANCING FRAMEWORK 129

5.4.3 Preemption Mechanism

Although the scheduling algorithms discussed so far are well known in the literature, we

discovered several problems when attempting to adapt them to our specific target applica-

tion types. For instance, the 3D parallel advancing front mesh generation program we wish

to study makes use of a relatively small number of coarse grained work units4• Typically,

the number of tasks is less than ten times the number of processors, and each task can take

from several minutes to over an hour to execute.

Second, it is often the case that an application being parallelized cannot be modified to

include polling operations at strategic locations, either due to code complexity, licensing, or

the fact that only pre-compiled libraries are made available. This is problematic because,

as we have previously described, polling is necessary in order to receive and process both

application messages and system-generated load balancing request and information update

messages. These factors together mean that it is often the case that load balancing requests

and information are out of date by the time they are processed, leading the runtime system

to make poor load balancing decisions.

As an example to illustrate this point, we provide Figure 5.13, which graphically shows

the runtime performance of a micro-benchmark code executing on 32 processors. The bench-

mark is composed of 512 tasks which are classified as either "heavy" or "light," depending

upon their required execution time. One quarter of the tasks are heavy and require ap-

proximately 4.25 times the computation time of light tasks. In Figure 5.13, the gray color

represents task execution time, while the black represents idle time or load balancing time.

4The codes used to evaluate the performance of the PREMA runtime library are described more fully in
the performance evaluation Chapter of this thesis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOAD BALANCING FRAMEWORK

Figure 5.13: IMPACT OF PREEMPTION ON LOAD BALANCING PERFORMANCE

,....._ 150

] 125
8
!6,100

~ 75

50

1¥1 Computation Time
I Idle/Load Balancing Time

(A) Without preemption

1\1 Computation Time
1 Idle/Load Balancing Time

Pro<,eSSirlT ID

(B) With preemption

130

We can see the number of idle cycles increases dramatically without preemption, leading to

a poorer quality of load distribution and a longer total execution time.

We have developed a multi-threaded preemptive approach which nicely solves this prob-

lem. Our strategy is to spawn a polling thread during system initialization, which will

periodically awaken according to a specified polling quantum. Upon awakening, the polling

thre1l:d will examine the network for any load balancing messages that have arrived dur-

ing the previous quantum. This allows each processor to maintain up-to-date information

regarding system or neighborhood status, as well as satisfy any pending load balancing

requests in a timely manner.

Figure 5.14 provides an intuitive example that explains the benefit of this approach. As

processor Po exhausts its local task supply, it requests work from its neighbor P1. Note

that this method is the Work Stealing load balancing strategy described in Section 5.4.2.2.

This request arrives during the execution of a task. Without preemption, processor P1 must

complete the currently executing task before it will be able to process and respond to the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOAD BALANCING FRAMEWORK

Figure 5.14: HOW PREEMPTION REDUCES LOAD BALANCING RESPONSE TIME

Single-threaded
PO PI

Request Work

Idle Time

Migrate Work

Application-defined
Work Units

Multi-threaded
PO PI

Request Work

Migrate Work

Polling Thread

~.

131

request. In the meantime, processor Po may be sitting idle. In the case in which no tasks

are available for migration, Po will have to repeat this process with a new neighbor, leading

to a large number of wasted cycles. With preemption, the idle time is bounded by the

choice of the polling quantum.

The polling quantum represents a tradeoff between timely message response and over-

head added to the ongoing computation. For very small quantum, the overhead imposed by

the polling thread can dominate the runtime. Overly large quanta, however, will prevent

optimal load balancing. We explore this issue in greater detail in Chapter 6 of this thesis.

Note that, without preemption, the idle time may be reduced by beginning the load

balancing process while there is still a buffer of local work awaiting execution. However,

we have found that, in practice, this solution is not always satisfactory. Setting the load

balancing threshold at too high of a value will lead to unnecessary task migration, and may

often exacerbate an already poor load distribution. Conversely, setting the threshold too

low will incur a large number of idle cycles. With a small number of coarse-grained tasks

per processor, there is often no middle ground.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Modeling Dynamic Load Balancing

Previously in this thesis, we have described the PREMA runtime model and software imple

mentation, which is adept at supporting asynchronous and dynamic parallel computations.

However, several questions have been left unanswered to this point, namely how system

software parameters and platform performance characteristics affect load balancing perfor

mance and overall application runtime. In particular, we are interested in studying the

impact on performance caused by the following three elements:

• Degree of application decomposition. The computation contained within an applica

tion is discretized into a series of tasks, which may or may not communicate among

themselves. Generating a greater number of tasks will most often lead to a more even

potential load distribution. However, this comes with a cost, typically in the form of

increased communication requirements. The analytic model we develop will allow the

developer to quickly analyze this tradeoff.

• Runtime system software parameters. The PREMA system we have described pro

vides a great deal of flexibility to the application developer in terms of load balancing

policies and implementations. However, it is often difficult to intuitively understand

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. MODELING DYNAMIC LOAD BALANCING 133

the impact caused by particular values for the systems parameters. Two parameters

in which we are most interested are the length of the preemptive polling thread's quan

tum, and the number of neighbors in a load balancing neighborhood. Both variables

represent a tradeoff; small quantum values may lead to rapid replies to load balancing

requests, but will incur larger amounts of overhead attributable to the polling thread.

Similarly, increasing the size of the load balancing neighborhood may lead to fewer

necessary load balancing iterations, at a greater cost per cycle. What is especially

unclear is how these parameters interact.

• Performance characteristics of the parallel platform. In particular, we wish to examine

how characteristics such as message passing latency and bandwidth can impact overall

application performance and load balancing quality.

However, accurately modeling a generalized task distribution is a very difficult analytic

problem. We will therefore begin our discussion in Section 6.1 with an overview of our

work -in developing analytic techniques which are able to accurately estimate the runtime

of applications with a particular class of task weight distributions. This work involves

the derivation of a "bi-modal" approximation function which can be used to model an

application's task execution. In the simplest case, (see Section 6.1), such applications are

composed of tasks that can be described using a single average weight estimation and a

maximum deviation which dictates how much individual tasks are allowed to vary from

that average. This class encompasses those applications whose task execution times are

contained within an exponential distribution around a fixed mean, or describe a linear

function.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. MODELING DYNAMIC LOAD BALANCING

Figure 6.1: TASK EXECUTION TIMES FOR PCDT

18 - Measured PCDT Task Execution Times
······· Quadratic Curve

~ 16 ---· lOth Degree Curve

~ 14
~12
0)

~ 10
§ 8

•.z:j J : ""';""' ----~:::
2

0o 64 128 192 256 320 384 448 512
TaskiD

134

There are, however, applications whose task weight distributions cannot be described in

this manner. An example is Parallel Constrained Delaunay Triangulation (PCDT), whose

refinement times are related to the square (in two dimensions) of the area bound placed

on the sub-domain (Figure 6.1). While, from an analytic point of view it is desirous to

retain a bi-modal approximation function, our method for deriving it must be refined. In

Section 6.2, we extend our mechanism used to create the approximation function in order

to account for this more general class of applications.

Once an appropriate bi-modal approximation function is derived, the techniques de-

scribed in Section 6.3 can be used to estimate an application's runtime in the presence of

dynamic load balancing. We then conclude this Chapter by verifying the accuracy of our

model's predictions using both benchmark programs and a PCDT application, and con-

ducting a parametric study to evaluate the impact of the previously mentioned runtime

parameters on load balancing performance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. MODELING DYNAMIC LOAD BALANCING

6.1 Modeling Simple Task Distributions

135

Accurately modeling a generalized task distribution analytically is a very challenging prob

lem. Therefore, we begin by simplifying the problem; we will define a class of applications

characterised by a task distribution in which task weights may not vary from the average

by more than a fixed percentage. By sorting the tasks so that their execution times are

monotonically increasing, we can define the parameter Gamma (r) which divides the task

pool into two classes. In this Section, for simplicity, we have selected an approximation

technique which dictates that r is equal to half the number of tasks (Figure 6.2).

We then approximate the cost function of the original task weights (task_weight

f(task_id)) using a "bi-modal" approximation function that defines two classes of equally

weighted tasks, separated at point r. Note that it is not necessary to have a precisely

defined cost function, as this would imply a priori knowledge of task execution times. As

our goal is to estimate optimal values for such parameters as preemption quantum and task

granul_arity, coarse estimations often suffice.

We will model the heavier tasks using a class which we will term Alpha (a), which will

be composed of tasks with equal weight Tel-task· The lighter tasks will be approximated

with a group we call Beta ((3), which is made up of tasks with equal weight Tf3_task·

The average task weight, along with the maximum variance from that weight are supplied

as input to the model (Figure 6.3). With this information, the model is able to calculate

upper and lower bounds on the predicted program execution time using a specified number

of processors. The lower bound is computed under the assumption that all tasks are identical

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. MODELING DYNAMIC LOAD BALANCING

Figure 6.2: BI-MODAL DIVISION OF TASK EXECUTION TIMES

Ga~a Cost Function

.,
~
r:1 Average Task Weight
~ -------------------- ,----------------------

J
' ' ' ' ' '

-------------------~----------------------
'

TaskiD

136

to the specified average task weight. Assigning an equal number of tasks to each processor1

will yield an equal distribution of computation across all processors. Similarly, the upper

bound can be computed by assigning half of the tasks to the a class, and giving them a

computation weight equal to the average plus the maximum variance. The other half are

assigned to the (3 class and given a weight of the average minus the maximum variance. In

essence, we have approximated the original problem by constructing a new one composed

of only two types of tasks. It is this simplification which allows us to tackle the modeling

of dynamic load balancing analytically.

In Figure 6.4, we demonstrate that this modeling method works well for those applica-

tions whose task execution times can be modeled with this bi-modal approximation function.

We have created a benchmark program which can be parameterized with the number of

tasks, the average task weight, and the maximum allowable variance from this average.

In this particular example, the number of tasks is given on the x-axis. The benchmark

contains an aggregate of roughly 5000 total seconds of computation, and a maximum task

1 Our models assume that an equal number of tasks are assigned to each processor at the start of the
application.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. MODELING DYNAMIC LOAD BALANCING 137

Figure 6.3: SIMPLIFIED TASK DISTRIBUTION

(a) (b)

The minimum and maximum potential program execution times are represented by even
initial task distributions (a) and task distributions with the maximum allowable variance
(b).

variance of 25%. On a 32 processor cluster composed of 650 MHz Sun UltraSPARC lie

processors, our model was able to predict the benchmark runtime in both the balanced and

imbalanced cases with a maximum error of approximately 3.5% (Figure 6.4(a)). The same

experiment performed on a 64 processor cluster composed of 333 MHz Sun UltraSPARC IIi

processors yielded similar results (Figure 6.4(b)), with a maximum error of 11%. However,

as the ~umber of tasks increased, the error on 32 processors dropped to 2%, while on 64

processors the error was reduced to 6%. This is acceptable, as we are typically interested

in studying the performance of large-scale problems.

However, the aproximation method we have described is not without problems. Most

importantly, separating tasks into two equally sized a and f3 classes, whose weights are

separated from an average task weight by a maximum allowable variance, does not suffice

for more generalized task distributions. As an example, the task execution times for a

sample execution of our Parallel Constrained Delaunay Triangulation (PCDT) program

are shown in Figure 6.1. In this case, the average task execution time is 7 seconds, with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. MODELING DYNAMIC LOAD BALANCING

Figure 6.4: VERIFICATION OF SIMPLE ANALYTIC MODEL

~-- Measured runtime in well-balanced case
i -- Measured runtime in imbalanced case
\ - Model runtime predictions

\

140o 128 256 384 512 640 768 896 1024
Number of Tasks

(a)

120,.-.-,-.,...,..-r-TO~...-....... ~,..,..,...,-,.......,...,......-.,..,
115

~110
~ 105
§ 100
~ 95
- 90 --··

·I~
I>: 75
] 70
~ 65

60
55

--· Measured runtime in well-balanced case
~-~·· Measured runtime in imbalanced case
- Model runtime predictions

50o!-'-'-""'12~8 ~25:76 ~3874 ~5:-!c12,......._.,640~-'::7~68~89!:-!6~1024
Number of Tasks

(b)

138

Actual benchmark execution times in both imbalanced and balanced cases, compared
against model predictions on both 32 processors (a) and 64 processors (b). In each case,
measured run times are provided for the benchmark for both balanced and imbalanced
executions, an average prediction generated by the model, and error bars to indicate the
maximum possible variance from the average.

a maximum variance of 9 seconds. This indicates that the weights of the {3 tasks are -2

seconds! This situation arises in any case in which the cost function describing task weights

is of a degree greater than linear. It is therefore clear that our model must be extended to

deal with the generalized case; this work is covered in the next Section.

6.2 Modeling General Task Distributions

In this Section, we wish to retain the bi-modal (two-class) approximation of task distribu-

tion, due to its analytic tractability, but, in order to handle more general task distributions,

redefine the policy used to divide tasks into the two equal classes. Therefore, we are left

with the following question: How can we map general task distributions to the two-class

formulation which our analytic model can handle?

We seek to define a bi-modal step function which approximates the execution times of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. MODELING DYNAMIC LOAD BALANCING 139

Figure 6.5: BI-MODAL DIVISION OF GENERAL TASK EXECUTION TIMES

Gamma
Cost Function

TaskiD

a set of tasks (defined by a cost function) by partitioning it into two subsets which are not

necessarily of equal size, using the parameter Gamma (r) as the separation point. This

step function provides an approximation of the original problem formatted in such a way

that it may be tackled by our analytic modeling technique. However, we wish to eliminate

the restriction that each task class must contain an equal number of tasks. We also remove

the stipulation that required the a class to contain tasks whose weights were equal to the

global task average plus a maximum variance, and the (3 class to contain those tasks whose

weights were equal to the global average minus the maximum variance. In our generalized

model, the weights of the a tasks will be independent of the weights of the (3 tasks.

We are able to define a unique approximation function using the following two criteria:

1. The area under the curve defined by the step function must be equal to the area

under the original cost function. In our interpretation, this amounts to stating that

the aggregate amount of computation invoked by the tasks in the original cost function

must be equal to the amount of computation invoked by the approximation model.

2. The computational complexity of the tasks contained within the a and (3 approxi-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. MODELING DYNAMIC LOAD BALANCING 140

mation classes must "accurately" reflect the weights of the tasks in the original cost

function (we define this more precisely shortly). This ensures that we accurately ap-

proximate the time at which load balancing will begin and the amount of computation

that will be migrated during each load balancing operation.

Our search for a unique approximation function entails searching for the point which

separates the a class from the f3 class, which we have termed Gamma (r) (Figure 6.5). For a

given selection of r, there are unique values for the task weights in each of the approximation

classes (Tcdask and Tf3_task) that satisfy Equation 6.1, Equation 6.2, and Equation 6.3, in

which Ti is the computational weight of (or time required by) task i and N is the number

of tasks. Hence, these equations also satisfy the first criterion defined above.

Workrotal
N

'I:Ti = (r X Tf3_task) + ((N- r) X Tcdask)

i=l

1

'I:Ti = r X T(3_task

i=l

N

~' L._; Ti = (N - r) x Tct-task

i=I'+l

(6.1)

(6.2)

(6.3)

The selection of r, from the N possible choices, is determined from our second criterion.

We select the unique r which minimizes the sum of Errora and Errorf3, defined by Equa-

tions 6.4 and 6.5 (in the case in which all tasks are of equal weight, r will not be unique;

however this case will not require any load balancing and so is not considered further). We

interpret the definition of Error a to be a measure of the accuracy (as in a least-square

approximation [79]) in which our selection for the weight of the a tasks (Ta_task) represents

the original cost function. This is depicted graphically by the shaded regions of Figure 6.6.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. MODELING DYNAMIC LOAD BALANCING

Figure 6.6: MEASURE OF ERROR IN BI-MODAL CLASS APPROXIMATION

Ta_task

Oass

TaskiD

Cost Function

Alpha Approximation
Oass

The same interpretation holds for Errorf3.

Error a

Errorf3

N

L (Tel-task -11)2

i=r+I

r
L (T(3.:task - Ti)

2

i=l

141

(6.4)

(6.5)

Figure 6.7(a) depicts the approximation function's assignment of tasks into a and {3

classes for a linear initial cost function. In this case, r is selected so that half of the tasks

belong to each group, indicating that this approximation method reduces to that which

was described in Section 6.1 for "simple" task distributions. In addition, the computational

weight assigned to the "approximation" tasks contained within each class is equal to the

average weight of the actual tasks within the group. However, for a cost function which

describes a quadratic task distribution (Figure 6.7(b)), r is shifted toward the heavier tasks,

with the a and {3 classes adjusting accordingly.

We defer our discussion of the accuracy of this generalized method until Section 6.4,

after we have provided more concrete details concerning our modeling technique.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. MODELING DYNAMIC LOAD BALANCING

Figure 6.7: GAMMA FOR LINEAR AND QUADRATIC TASK DISTRIBUTIONS

I Alpha Task Approximation
1 Beta Task Approximation

- Original Cost Function

Task 10

(a) Linear task distribution

I Alpha Task Approximation
I Beta Task Approximation

- Original Cost Function

TaskiD

(b) Quadratic task distribution

6.3 Analytic Model for Diffusion Load Balancing

142

We wish to model the execution time of the slowest processor (which we term the dominating

processor) in the parallel system, as this will determine the overall run time of the parallel

application. As there are an infinite number of task execution time distributions, we make

the problem tractable by dividing the tasks into two classes, Alpha (a) and Beta ({3). The

a ta.sks are "heavy" tasks and require more computation time than the "lighter" f3 tasks.

We have described our method for creating this bi-modal approximation function in the

previous Section.

The processors initially assigned f3 tasks will finish their computation first, at which

point they are termed underloaded and will begin the process of requesting tasks from

other processors in the parallel system. Each processor's preemptive polling thread will

awaken periodically (according to the specified preemption quantum), interrupt the ongoing

computation, and check the network for any such load balancing requests. Upon processing

a request, if sufficient tasks are currently in the local work pool, a task will be uninstalled and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. MODELING DYNAMIC LOAD BALANCING 143

migrated to the requesting node. Note that all processors assigned f3 tasks will exhaust their

work at the same time; only processors initially assigned a tasks will possibly have any work

to contribute. This equates with the Diffusion scheduler type we have previously described

in Chapter 5, Section 5.4.2, which we have found to be the most generally applicable. In

addition, the model we present can be trivially extended to encompass the Work-stealing

method. We leave modeling the remaining methods as future work.

Once the requisite task partitioning information is defined, Equation 6.6 is used to

predict application execution time, and is itself comprised of several terms. The remainder

of this section will be used to discuss the derivation of each of these.

Ttotal = Twork + Tthread + T~J:.m + T~~mm + T:/:.igr + TJ~cision-making- Toverlap (6.6)

6.3.1 Computation Component

The Twork term of Equation 6.6 encompasses the amount of time attributable to task execu

tion. As there is an imbalance of work caused by the discrepancy between a task and f3 task

execution times, dynamic load balancing is possible and we must take this into account. As

a simplifying assumption, we state that ~ tasks are assigned to each processor, where N is

the total number of tasks and Pis the number of available processors (P « N). We also

name processors by the type of task initially assigned to them, with Pa and P13 denoting

those processors assigned a and f3 tasks, respectively. We define N Pa and N pfJ to be the

number of Pa and P13 processors.

Note that N must be divisible by P in the remainder of this discussion. Furthermore,

we stipulate that each task class is grouped together. This is not an unrealistic assumption,

as it is often the case that geometric domains in close proximity will be assigned to the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. MODELING DYNAMIC LOAD BALANCING 144

same processor in order to maximize locality. Neighboring regions also tend to be affected

by adaptivity in an ongoing computation.

Ta.
N
p X Ta._task (6.7)

N
(6.8) TfJ = p X TfJ_task

We know that load balancing will begin once the [3 tasks have completed, which we

model using Equation 6.8. Similarly, Equation 6. 7 defines the time required to complete

all a tasks, barring migration. Once all f3 tasks have completed, suitable a tasks must be

located; this gives rise to two possible cases. In the best case, a PfJ processor will locate

an a task in only a single attempt. In the worst case, the P13 processor will probe every

other P13 node before a task suitable for migration is located (due to the unpredictable

nature of adaptivity, neither the runtime system nor the application knows in advance the

location of a tasks). For simplicity, we use the term Tzocate to describe both instances in

the -remainder of this discussion, although we define the amount of time required for each

attempt in Section 6.3.4.

(6.9)

The time between the completion of f3 tasks and the completion of a tasks is termed Tb..,

and is defined by Equation 6.9. However, as we do not migrate currently executing tasks,

only tasks that have not yet begun execution are candidates for load balancing. Knowing

the size of each a task, from Tb.. and Ta<-task we can determine how many a tasks on each Pa.

processor are actually available for transfer. We term this quantity Ma. = L~ J. Note
D<-task

that because there are upper and lower bounds on Tb.. (due to the upper and lower bounds

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. MODELING DYNAMIC LOAD BALANCING 145

placed on 1locate), there are subsequently upper and lower bounds on M0, which we denote

as Ma_upper and Ma..lower· The upper bound on Ma will result in more task migrations, and

subsequently a shorter total run time.

To calculate the lower bound of Twork, we begin by determining the number of load

balancing iterations that will be possible before all tasks are consumed. If each processor

in the system consumes a single task per iteration, then the number of tasks consumed per

round per Pa processor is given by Ca = NNpfJ + 1, and the number of possible load balancing
Po:

rounds is given by Nrounds = L M"'c:per J. The number of tasks that each Pa processor will

donate to migration can then be expressed as Migr0 = Nrounds x LNNp/3 J. Therefore, the
Pa

lower bound on the time required for task computation on Pa processors is given by:

Ta_work = (;X aminimum) - (Migra X Ta_task) (6.10)

where aminimum denotes the minimum task weight of a task in the original cost function

approximated by the a class.

We calculate the number of tasks that will be received by each underloaded Pp processor

as Migr{J = Nrounds X r~Pcy l The computation time required for task execution on f3
p(J

processors is given by:

Tp_work = (; X f3minimum) + (Migr{J X Ta_task) (6.11)

where f3minimum denotes the minimum task weight of a task in the original cost function

approximated by the f3 class.

Because execution time will always be dictated by the slowest processor, we compare

T 01 _work (Equation 6.10) with TfJ_work (Equation 6.11); the greater value is determined to be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. MODELING DYNAMIC LOAD BALANCING 146

the lower bound on task execution time. Note that in both equations we take an optimistic

view on the amount of work that is executed before load balancing begins.

Calculating an upper bound on task execution time is done in a similar manner. Note

that using Madower will lead to a fewer number of load balancing iterations, and therefore

fewer task migrations. A more pessimistic estimation of the weight of computation executed

before load balancing begins yields the following equations:

Ta_work = (~ X O!maximum) - (Migra X Ta_task)

T[:J_work (~ X f3maximum) + (Migr{:J X Ta_task)

(6.12)

(6.13)

where amaximum and f3maximum denote the maximum original task weight in each approxi-

mation class.

Once again, the greater value is selected as the upper bound on task execution time.

Although we evaluate Equation 6.6 for both the upper and lower bounds, in order to simplify

our remaining discussion, we will simply refer to Twork as the task computation component.

6.3.2 Preemptive Polling Thread Component

Because the preemptive polling thread periodically awakens to interrupt ongoing compu-

tation in order to check the network for load balancing messages, it is viewed as adding a

fixed percentage of overhead to each task. As input to the model, we are given Tquantum,

which represents the quantum or period after which the polling thread will awaken. An

additional input is Tpoll, which is the amount of time required to complete a single polling

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. MODELING DYNAMIC LOAD BALANCING 147

operation, and is independent of Tquantum· With this information we can derive:

Twork))
Tthread = T. X (Tpoll + (2 X Tctx

quantum
(6.14)

where Tctx is the time required for a thread context switch.

6.3.3 Application Communication Component

We assume that each task will send a fixed number of messages of a fixed size. Both the

number of messages and the message size are input as parameters to the model. We also

model message passing (for both the application and the runtime system) as a fixed startup

cost (Tstartup) plus a fixed cost per byte of the message (TperJJyte)· Again, both Tstartup and

Tper .byte are parameters to the model. We then define:

T msg = Tstartup + (Tper .byte X message_size) (6.15)

and the message passing cost per task (Tmsg_task) as Tmsg X Nmsg, where Nmsg is the number

of messages sent by a single task. Note that, although we do not overlap consecutive

communication operations, it would be trivial to do so. We then derive:

(~ - Migra) X Tmsg_task

(; + Migr13) X Tmsg_task

(6.16)

(6.17)

Equation 6.16 is used in the case than a Po processor dominates, while Equation 6.17 is

used when a P13 processor dictates the overall run time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. MODELING DYNAMIC LOAD BALANCING 148

6.3.4 Load Balancing Communication Component

We focus on developing an analytic modeling technique for the Diffusion scheduling strat-

egy discussed previously in Chapter 5, Section 5.4.2.2. This strategy groups processors into

overlapping neighborhoods of a size of at least two. When a processor becomes underloaded,

it sends an information request to the other processors in the neighborhood, inquiring as

to the availability of migratable tasks. However, this procedure is performed only by un-

derloaded, and therefore PfJ, processors. Note that we are not yet concerned with the costs

of task migration (which involve both Pa and PfJ processors), but only with information

gathering. In addition, because it is impossible to accurately predict the number of unsuc-

cessfulload balancing attempts, we will assume the the number of attempts is equal to the

number of migratable tasks, which serves as an optimistic lower bound.

Therefore, if the dominating processor is a PfJ processor:

Tlb
comm (

Tquantum) .
Treq +

2
+ Tproc_reply X MzgrfJ (6.18)

= (Nneighbor X Tstartup) + (Tper-hyte X message_size) (6.19)

In Equation 6.18, the term Tproc_reply refers to the amount of time the load balancer requires

to process a reply to an information request, and is an input parameter to the model. In

addition, Tqv.a;tv.m represents the expected elapsed time on the receiver to process and reply

to the request. Since it is possible that the receiver is currently processing a task, this

term is the expected amount of time before the preemptive polling thread will awaken and

process the request.

Note that Equation 6.19 indicates that the load balancer can overlap communication to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. MODELING DYNAMIC LOAD BALANCING 149

the neighbor set. This equation is trivial to alter if this is not the case.

In the case in which a Pa node is the dominating processor, no load balancing information

gathering is required, so we assume this component contributes no time to the predicted

application run time.

6.3.5 Load Balancing Migration Component

The T;::igr term of Equation 6.6 represents the time required for task migration. This can

be broken into two cases. In the case in which a Pa processor dominates application run

time, the cost of uninstalling and packing a task for migration must be considered. This

cost is given by Equation 6.20. Conversely, P13 processors must unpack and install migrated

tasks, and this cost is defined by Equation 6.21.

Tlb
migr

Tlb
migr

Migra X [Tuninstall + Tpack + Tstartup + (Tper ..byte X task_size)] (6.20)

Migr13 X (Tunpack +Tinstall) (6.21)

The times for Tuninstall, Tinstall, Tpack, and Tunpack are measured quantities and are provided

as input to the model, along with the size of each task in bytes, task_size.

6.3.6 Migration Decision Making Component

The T~~cision_rnaking term of Equation 6.6 represents the time required for the load balancing

scheduling software to select a partner processor once it has received replies to all infor-

mation request messages. It is from this partner processor that the underloaded node will

request a task. There is no equation to define this term as it is a. measured quantity and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. MODELING DYNAMIC LOAD BALANCING 150

an input to the model. Substituting one load balancing policy for another will impact this

value, as will the Nneighbor constant used in Equation 6.19.

6.3. 7 Accounting for Overlap Between Components

On several parallel architectures, it is possible to overlap communication between proces

sors with ongoing computation. In such an environment, the Toverlap term of Equation 6.6

must be non-zero in order to produce as accurate an approximation as possible. This will

adjust the model for those instances in which, for example, the communication required

for data migration (T;.:;,igr), inter··task communication (T%!~m), or load balancing commu

nication (T~mm) can be overlapped with task computation (Twork)· The extent to which

computation and communication may overlap, along with the number of communication

operations, will determine the value of Toverlap·

It should be noted that the experimental studies and results contained within this thesis

were conducted on a platform which does not allow for overlapping communication oper

ations or overlapping communication with computation. Although the Message Passing

Interface (MPI) used to construet the Data Movement and Control Substrate component

of the PREMA system provides the capability for immediate message sends, with only a

single processor per compute node {and no processing capability on the network interface

card itself), ongoing computation must be suspended in order to complete the sending

operation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. MODELING DYNAMIC LOAD BALANCING 151

Figure 6.8: BENCHMARK VERIFICATION OF MODEL PREDICTIONS

350

]300

h50

- MCI!SlUCdRunlime
·- Predictal Lower Bound
- Predicled Upper Bound
- PxedictcdAven.ge

s 200r-=.:;-=-------------
.Ji 150 --- -.___,

! 100

50

%4 128 192 256 320 384 448 512
NumbaofTuts

(a)

800.-.-~~~-.-,.-.--.

700

:a-600
l5oo
S4oo
-~300
~ 200...,.-=---~
.. 100 --'---'--' -- -

-M~Runtimo
- Predicted Lower Bound
-- Predicted Upper Bound
-- Predit:tcdAverap

V28 256 384 512 640 768 896 to24
Number of Tasks

(d)

~~--~~~--~~~-
350

'54 128

700

1600
~500

S4oo
.g300
J2oo~-

too · ----..::_

- MCI\S1U'edRunlime
-- Predicted Lower Bound
- Predi~:tcd Upper Bound
- Predic:tedAvaap

192 256 320 384 448 512

Number of Tasks

(b)

- Measured Runtime
- Predicted Lower Bound
-- Predicted Upper Bound
- PRdietcd AvaaJC

~

V28 256 384 512 640 768 896 1024
Number of Tasks

(e)

350

]300

!2so

S2oo
-~ 150

- MeuumiRw:alimo
- Prcdktcd Lower Boond
- Pmiictcd Upper Botmcl
- J>Jaiic:tcdAvc:raac

J100~-~ __

50 ~ v -..;;;:::_:_~..:::..__·_

'54 128 192 256 320 384 448 512
N11m.bero!Tasks

(c)

800.-.-~~~.-~~~-.

700

1:
s~
.g300
J2oo

1 oor-..::::: ------- ---../:::::--._______ _
"-:-='.,----:-;' --r· --

V28 256 384 5t2 64o 768 896 t024
Number of Tasks

(f)

Comparison between measured benchmark run times and model predictions for 32 (row 1)
and 64 (row 2) processors.

6.4 Verifying the Analytic Model

With our analytic model defined, the next step is to ascertain its predictive ability. We

verify the accuracy of the model using both a benchmark program and an implementation

of a 2D Parallel Constrained Delaunay 'friangulation (PCDT) mesh refinement algorithm.

We utilize the benchmark program in order to accurately control the initial imbalance, while

the PCDT code gives some insight into the behavior of the model in a more "real-world"

scenano.

Using our benchmark program, we present results from three test cases. In the first,

task execution times vary linearly from a minimum value Tmin to a maximum of Tmax,

where Tmax is double Tmin (linear-2 test). In the second test, the maximum task execution

time is a factor of four times the minimum (linear-4 test), which leads to a more severe

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. MODELING DYNAMIC LOAD BALANCING 152

initial imbalance. In the third test, 25% of the tasks are rated as "heavy" tasks, which

require double the computation time of the remaining 75% "light-weight" tasks (step test).

In all three tests, tasks are allocated so that tasks of similar weight are assigned to the same

processor.

Figure 6.8 contains the results of these tests on both 32 and 64 homogeneous processors.

In each test, we vary the granularity of the task decomposition by varying the number of

tasks allocated to each processor from 2 to 16. Each graph displays the measured program

execution time, along with an upper, lower, and average prediction generated by the analytic

model.

In Figure 6.8(a), which contains the results from the linear-2 test, the expected runtime

(prediction average) and the measured execution time differ by an average of only 2.9%,

while this figure increases slightly to 4.4% for the linear-4 test shown in Figure 6.8(b). For

the step test on 32 processors (Figure 6.8(c)), the average error is roughly 11%. However,

this increase can be explained by the shorter total execution time, and the existence of a

couple of outlying points. However, for longer execution times, our model becomes more

accurate; this is desirable as our modeling tool is most beneficial to long-running, and

therefore more expensive, programs.

Figures 6.8(d), 6.8(e), and 6.8(f) contain results from the same tests executed on 64

processors. The average errors are roughly 4% for the linear-2 and linear-4 tests, and

roughly 10% for the step test.

While these results give us some measure of confidence in our model's accuracy, further

tests are required before it may be applied to more typical codes. The PCDT application is

more challenging for two reasons. First, the load imbalance is generated by a "heavy-tailed"

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. MODELING DYNAMIC LOAD BALANCING

Figure 6.9: PCDT VERIFICATION OF MODEL PREDICTIONS

- Measured PCDT Runtimes
~--· Model Prediction Lower Bound

~ -··· Model Prediction Upper Bound
~ 150 -·~:-' Model Prediction Average

~ ~---------·----- --------
~ 100 -------..:::::-==~--=----:::_~~:=----~ .g
j 50

1M 128 192 256 320 384 448 512
Number of Tasks

(a)

?28 256 384 512 640 768 896 1024
Number of Tasks

(b)

153

Comparison between measured PCDT execution times and predictions generated by the
analytic model on 32 (a) and 64 (b) processors.

distribution of task execution times (Figure 6.1), not by a linear or stair-step distribution.

Secondly, communication between tasks during runtime must be captured (for a more com-

plete description of the PCDT algorithm, refer to Chapter 7).

Figure 6.9 indicates the effectiveness of our model at predicting PCDT performance on

32 and 64 processors. The average error for 32 processors is 3.2%, while on 64 processors this

fi_gure increases slightly to 6%. As with our benchmark program, these small error values

indicate that our modeling technique is robust enough to capture the added complexities

of the PCDT application.

6.5 Parametric Studies

With the accuracy of our modeling technique established, we next want to study the impact

variations in certain runtime parameters have on application performance. The specific

variables in which we are interested include the preemption quantum, number of processors,

task granularity, load balancing neighborhood size, and communication latency. We also

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. MODELING DYNAMIC LOAD BALANCING 154

Figure 6.10: BI-MODAL TIMES: VARJANCE VS. DECOMPOSITION

200
,.

-lOPerce.ntVariattcc - lOPercentVariancc: - 10 Percent Variance

I::
-· 20 Pcn:ent Variaaee - 20 Percent Variance ;a'25

- 20 Percent Varianoc
- SOPerceatVariaAce - 50 Perceat Variance

1,.
- 50 Percent V ariancc

.i .~
! 170 :23
5 5 -
& 160 on

80
1S0

0 256 512 768 1024 1280 1536 1792 2048 210 1024 2048 3072 Sl20 6144 7168 8192
Number ofTasts NumberofTasts

{a} {b) (c)

Predicted benchmark execution times for three levels of task variance under the influence
of various degrees of over-decomposition on 32 processors (a}, 64 processors {b), and 256
processors (c).

want to model applications that conform to both the simpler stair-step imbalance pattern

without inter-task communication, and the more complex linear load distribution pattern

with application communication. We therefore break this discussion into two components.

6.5.1 Bi-modal Imbalance

The applications we model here are composed of two types of tasks: heavy and light.

Heavy tasks make up 50% of the task count, and the variance, or difference in execution

time between heavy and light tasks is configurable at runtime.

The first question we wish to ask is how the number of tasks, or the level of over-

decomposition, affects the overall runtime. Intuitively, we would expect that a greater

number of tasks will give the load balancer a greater degree of flexibility in terms of task

migration, and we can see from Figure 6.102 that this is indeed the case.

In all cases, we notice a certain dampening periodic behavior as the number of tasks

increases. This reflects the ability of the load balancing algorithm to evenly distribute the

2 Please note that the values of they-axes for the graphs vary.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. MODELING DYNAMIC LOAD BALANCING

Figure 6.11: BI-MODAL TIMES: DECOMPOSITION VS. PREEMPTION QUANTA

r·
~200

!

- 128Tcls
- 256Tcls

SI2Tcls
- 1024Tasks

r· l:----lr------.-1------l
160

-t28Tasks
···· 256Tasks

512Tasks
-·· 1024Tasks ,:: -SI2T..O

--- 1024T..O
-- 2048 Tasks
- 8192Tasb

I2•
~26
j24
0 22 '-- --------------------

155

01234.5678910
Preemption Quantum (seconds)

2 4 6 8 10
20ot234.S678910

PR:emption Quantum (seconds) Preemprioo Quantum (oeconds)

(a) (b) (c)

Predicted benchmark execution times for three levels of over-decomposition under the influ
ence of various preemption quanta on 32 processors (a), 64 processors (b), and 256 processors
(c).

workload represented by the available tasks; once a task has begun execution it cannot be

migrated. Periodically, the task decomposition creates a situation in which the smoothest

possible load distribution creates a workload difference between processors of nearly an

entire task, creating a peak in the total runtime. Further over-decomposition eliminates

this effect by allowing "part" of the original task to migrate. The dampening effect is

caused by the decreasing size of this "peak" task, as the task size is inversely proportional

to the number of tasks.

We next wish to examine the effect of the preemption quantum on the overall runtime.

We can see from Figure 6.11 that there is often a range of quantum values that will lead

to a local minimum in terms of total execution time. If the quantum is too small, the

cost of frequent thread context switches and network polling operations will dominate the

computation time. On the other hand, if the quantum is too large, polling will not happen

frequently enough and load balancing performance will suffer due to an increased delay in

responses to load balancing queries. We also see that increasing the number of tasks allows

the load balancing algorithm to be more tolerant of large quanta; this is due again to the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. MODELING DYNAMIC LOAD BALANCING

Figure 6.12: BI-MODAL TIMES: VARIANCE VS. PREEMPTION QUANTA

- 10 Percent Variance
- 20 Percent Vari~
-- SO Percent Variance 1220

i2 ..
!
';1180

g ~--===_r:±=--=-;;;;;;;;;=--=-=--=-=!
160

- 10 Pen:ent Variance
- 20 Percent Variance
- SO Percent Variance r:

.~
§ i 100 ~------

0 90 ~-::-_ ---:=1----------

:a32

130
- lOPen:ent V.-iance
·- 20 Perceut Variance
~-- 50 Pm:cat Variance

I: c:--------·----------------]24
i5 22 -------------------

156

0 ~ I U 2 U 3 U 4 ~ 5
Pteemptioo Quantum (=onds)

••• 1 2 3 4 20oo . .Sti.S2.2.533.544 . .S.S
Preemption Quantum (seronds) Preemplim Quanrum (seoonds)

(a) (b) (c)

Predicted benchmark execution times for three levels of task variance under the influence
of various preemption quanta on 32 processors (a), 64 processors (b), and 256 processors
(c).

increased flexibility afforded by the finer granularity of the task decomposition.

Figure 6.12 allows us to study the effect the preemption quantum has as the amount of

variance between a and f3 tasks (and therefore the amount of initial imbalance) changes.

Again, we see that certain values of the quantum will lead to a minimum in overall runtime.

However, in this case we see that as the variance increases, the load balancer becomes more

sensitive to long quanta. In the case of 256 processors and a 50% task variance, we can see

that the quantum that leads to a minimal predicted runtime is quite small.

Finally, we wish to examine how the load balancing neighborhood size will impact load

balancing efficiency (Figure 6.13). In all previous experiments, each processor was paired

with a single partner. If a partner was unable to satisfy a request for task migration, the

underloaded processor would pick a new partner and issue a new request. The amount of

time required for a request/reply transaction is, in large part, dictated by the preemption

quantum; as the number of processors grows, it may not be possible for an underloaded

node to issue a request to every processor. As a result, some tasks that are available for load

balancing may not be migrated, resulting in a load imbalance. By increasing the number

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. MODELING DYNAMIC LOAD BALANCING 157

Figure 6.13: BI-MODAL TIMES: NEIGHBORHOOD SIZE VS. DECOMPOSITION

175 88 24

- 1 Neighbor 87 - 1 Neighbor -I Neighbor

l70

·- 2 Neighbors i86 - 4 Neighbors

123
- 8Neighbors

·- 4 Neighbors - 8 Neighbors 16 Neighbors
- 8 Neighbors §" - 16 Neighbors - 32 Neighbors

~ ..
-~ 165 -~ 83 -~ 22

~ ~82 ~
'2 G" " ~ 21 3160 Q80 0

79

1550 256 512 768 1024 1280 1536 1792 2048 780 256 512 768 1024 1280 1536 1m 2048 200 1024 2048 3072 4096 5120 6144 7168 8192
Number ofTasks Number of Tasks Nwnber ol Tasks

(a) (b) (c)

Predicted benchmark execution times for four neighborhood sizes under the influence of
various degrees of over-decomposition on 32 processors (a), 64 processors (b), and 256
processors (c).

of processors that belong to each neighborhood, this problem may be overcome. Doing so

represents a tradeoff between the cost of each load balancing iteration and the number of

iterations necessary to locate tasks for migration. The benefit of a larger neighborhood is

particularly apparent in the case of Figure 6.13(c). On 256 processors, it often not possible

to locate all available work when each processor is paired with a single neighbor. For

large processor configurations, increasing the neighborhood size will lead to performance

improvements, while on smaller numbers of nodes small neighborhoods will suffice.

6.5.2 Linear Imbalance

For the second set of experiments with our analytic model, we choose to study a more

complex type of application. Instead of a "stair-step" load distribution as we saw before,

task execution times vary linearly over one of three ranges. Mild imbalance varies task

execution times over a range in which the heaviest tasks require roughly 20% more time

than the lightest ones. With a moderate imbalance, heavy tasks are roughly twice as costly

as the lightest ones, while severe imbalance increases this range to a factor of four.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. MODELING DYNAMIC LOAD BALANCING 158

Figure 6.14: LINEAR TIMES: IMBALANCE VS. DECOMPOSITION

2~ .. ~~~~~------·
.-. - Mild lnitiallmbalance i 22S - Moderate Initial Imbalance
~ -- Severe Initial Imbalance

~200~~~~-/~
·tl75 ·~- ~...::::::::
"'I~
1l t 125

100
256 512 768 1024 1280 1536 1192 2048

NumbecofTuks

(a)

25
1024 2048 3ffl2 4096 5120 6144 7168 8192

18
2048 4096 6144 8192 10240 12288 14336 16384

Number of TaW Number of Tub

(b) (c)

Predicted benchmark execution times for three levels of initial imbalance under the influence
of various degrees of over-decomposition on 64 processors (a), 256 processors (b), and 512
processors (c).

Secondly, tasks now communicate during runtime and this must be captured by the

model. We study an application in which each task has four neighbors with whom a sin-

gle message is exchanged during runtime (the amount of message traffic can be trivially

reconfigured, however). We also assume that the computation invoked as a result of each

message is constant, as is the size of each message. Note that this is similar to the execution

model of a Parallel Constrained Delaunay Triangulation (PCDT) program, which we study

in greater detail elsewhere.

As with the previous benchmark, the first point we wish to understand concerns the im-

pact over-decomposition has on overall execution time. As was the case earlier, an increase

in the number of tasks that compose an application (and subsequent decrease in task gran-

ularity) will afford the load balancer a greater degree of task migration flexibility. However,

this freedom is in tension with the greater amount of required inter-task communication.

From Figure 6.14, we can see that this tension will eventually penalize greater levels of

over-decomposition, particularly in the case of a mild initial imbalance. In this case, tasks

must be fine-grained before any migration is possible; however, by this point, the cost due

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. MODELING DYNAMIC LOAD BALANCING

Figure 6.15: LINEAR TIMES: DECOMPOSITION VS. PREEMPTION QUANTA

30,--.--,-,,......,......-,--.--,-...,....,-.,...,-....,--....,.-,,..,

1
.-. - 4TasksPerProcessor

29 - 8 Tasks Per Processor
- 16TasksPerProccssor

~"27 r8 L--
j26, F=· -----------
125
!24

159

160012345678910 40012345678910 23012345678910
Preemption Quantnm (aeeonds) Prcempcion Quantum (seconds)

(a) (b) (c)

Predicted benchmark execution times for three levels of over-decomposition under the in
fluence of various preemption quanta on 64 processors (a), 256 processors (b), and 512
processors (c).

to computation invoked by inter-task communication will outweigh the benefits gained by

improved load distribution. This effect is also seen in the cases of moderate and severe

initial imbalance after a local minimum in total execution time is reached. Load balancing

is initially effective at reducing the runtime via task redistribution; however, the benefits

are overcome as task granularity decreases.

We next examine the effect of the preemption quantum on the overall runtime. As was

the case with our previous benchmark, we expect that a quantum value which is too small

will lead to excessive thread context switching and network polling, while a quantum which

is too large will prevent effective load balancing due to the lengthly delay between request

and response messages. From Figure 6.15, we can see that this is indeed the case. What

is interesting is that the range of optimal quantum values decreases in size as the number

of processors grows. In addition, we again note that decreasing the granularity of the tasks

allows the load balancer to be more tolerant of excessively large quantum values.

Figure 6.16 depicts the results of repeating this experiment while varying the level of

initial imbalance. We again obtain similar results. Regardless of the initial level of processor

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. MODELING DYNAMIC LOAD BALANCING 160

Figure 6.16: LINEAR TIMES: IMBALANCE VS. PREEMPTION QUANTA

220,--.--,.--,,.-,,.-,.....--,--.-,--.-,-......,....,.-..-, w~,.-,~--.-,-~......,~~~•

"'"' - Mild Initial hnbalancc
l210 - ModaateWtiallmbolalt<e g ·- Severe Initial lmbalaRce

~ :: J ____ / ____ -----
i ,. 1180 f--1 ~-------------

~ 170 --

.-. - Mild Initial Imba1ance

1 58
- Moderate Initial Imbalance

.'56 -- Severe Initial hnbalance _.,..

ls4 ~~
J :~ ~------------
~.. r·---------------------------
~~~r-----------------~ 

160ot234S673910 44ot2345678910 24ot2345678910 
Preemption Quuttum (seconds) Prmnption Quantmn (seconds) Preemplion QIWlhlm (ltCOJlds) 

(a) (b) (c) 

Predicted benchmark execution times for three levels of initial imbalance under the influence 
of various preemption quanta on 64 processors (a), 256 processors (b), and 512 processors 
(c). 

imbalance, a range of preemption quantum values exist which will lead to an optimal total 

execution time. What is critical to note with both benchmarks, is that regardless of the 

task granularity of initial level of workload imbalance, the optimal quantum values are 

equivalent. This indicates that certain quantum values will be the most beneficial, regardless 

of application characteristics. 

Lastly, we examine the effect of neighborhood size on load balancing efficiency (Fig-

ure 6.17). We can see that for smaller processor configurations (Figure 6.17(a)), neighbor-

hood size does not have a great impact, provided the preemption quantum is not too large 

(in these experiments, the preemption quantum is 0.5 seconds). This indicates that it is 

possible for the load balancer to probe all processors in a relatively small amount of time. 

As the number of processors increases, this is not always feasible. We can see from Fig-

ure 6.17(b) that increasing the neighborhood size to 8 or 16 processors can cause a significant 

performance improvement. As the number of processors increases further (Figure 6.17 (c)), 

the neighborhood size must likewise grow. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 6. MODELING DYNAMIC LOAD BALANCING 161 

Figure 6.17: LINEAR TIMES: NEIGHBORHOOD SIZE VS. DECOMPOSITION 

-I Neighbor 
--- 4 Neighbors 

&Neighbors 
- 16Neighbors 

160 256 512 768 1024 1280 1536 1792 2048 42 l02A 2048 3072 4096 5120 6144 7168 8192 
20 

2048 4096 6144 8192 10240 12288 14336 16384 
NwnbecofTasb NumberofTasb NumbcrofTub 

(a) (b) (c) 

Predicted benchmark execution times for four neighborhood sizes under the influence of 
various degrees of over-decomposition on 64 processors (a), 256 processors (b), and 512 
processors (c). 

6.5.3 Impact of Communication Latency 

A final set of experiments explores the impact networking technology has on benchmark 

execution time and load balancing efficiency. We begin with a simple ping-pong program 

which allows us to gather performance data for 10 Mb, 100 Mb, and 1000 Mb ethernet 

networking. We then calibrate our model using this data. It should be noted, however, that 

our analytic model is capable of only an approximation of actual network performance. We 

model message passing as a startup cost, plus a fixed cost for each byte of payload data. 

In reality, the latency figures we observed with our ping-pong test were quadratic, not 

linear. In any case, our linear approximation does not impair the accuracy of the model's 

predictions. 

In Figure 6.18(a) and 6.18(d), we examine the effect of varying the preemption quantum 

on each type of network. The communication latency's impact in this case is negligible, 

as the application performance is nearly identical in all three cases, on both small (32 

processors) and large (256 processors) parallel configurations. In this particular example, 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 6. MODELING DYNAMIC LOAD BALANCING 162 

Figure 6.18: COMMUNICATION LATENCY'S EFFECT ON LOAD BALANCING 

95 

190 
Iss 
~80 
.g 7S 

- IOMbEthemetNetwork 
- 100Mb Ethernet Network 
- 1000Mb Ethernet Network 

A 70 

65r-~-,----_r---------:1 
~~~~~2~~~3~-T~~ 

Preemption Quantum (seconds)

(a)

!OO,--~.--~.--.--.-..---,

95 - lOMbEthemetNetwork
-- tOOMbEthemetNetwork
- 1000Mb Ethernet Network 190

_,.85

~ 80 . . g 75

J 70

651r---l

~~~~~2~~3~~47-~ 
Preemption Quantum (seconds) 

(d) 

- tOMbEthemetNetwork 
··- lOOMbEthemetNetwork 
- lOIX> Mb Ethernet Network 

20 40 60 80 
Tasks Per Processor 

(b) 

- 10Mb Ethernet Network 
- 100Mb Ethernet Network 
- 1000Mb Ethernet Network 

20 40 60 80 
Tasks Per Processor 

(e) 

67 

66.5 

I.,: 
~ 65 . 
'164~ 
"' 63.5 

100 630 

67 

66.5 

166 

\ £.,_, 
~ 65 

·i 64.S 

! 64 

63.5 

100 630 

- 10Mb Ethernet Network 
- lOOMbEthmtetNetwork 
- 1000Mb Ethernet Network 

--
s 12 t6 w ~ ~ n 

Number of Neljbbors 

(c) 

- 10Mb Ethernet Network 
-- 100Mb Ethernet Network 
-·· 100) Mb Ethernet Netwak 

8 12 16 20 24 28 32 
Number cl Neighbors 

(f) 

Modeling the effect of communication latency on 32 (top row) and 256 (bottom row) pro
cessors. Results are shown for varying the polling quantum (column 1), varying the task 
decomposition (column 2), and varying the number of load balancing neighbors (column 
3). Tests are for a linear load distribution with a minimum of 40 seconds and a maximum 
of 80 seconds of computation per processor. 

each processor is initially allocated 16 tasks; decreasing the task granularity (increasing 

the number of tasks) may result in poorer load balancing performance as the network 

latency increases. However, we are most interested in improving the performance of coarse 

decompositions, and in such a case network latency seems to play little role. 

Figure 6.18(b) and 6.18(e) contain the predicted application execution time as the task 

granularity varies, from two tasks per processor to 100. In this case, we can see that, as the 

task granularity decreases, there is a noticeable penalty for low network performance. For 

both large and small processor configurations, the predicted run times begin to diverge at a 

task decomposition of roughly 40 tasks per processor. This observation is in agreement with 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 6. MODELING DYNAMIC LOAD BALANCING 163 

our earlier prediction; network latency becomes a factor as the task granularity decreases. 

Finally, we study the interaction between network latency and load balancing neigh

borhood size (Figure 6.18(c) and 6.18(f)). With a parallel configuration of 32 processors, 

experiments indicate an increase in predicted execution time on 10 Mb ethernet networks, 

while the higher performance networks remain relatively constant. This is due to the in

creased cost of each load balancing interaction: querying neighbors and waiting for replies 

requires more time as network latency increases. However, it can be seen that this impact is 

nominal; an total runtime increase of less than half a second is predicted. On larger proces

sor configurations, increasing the neighborhood size will initially lead to a lower execution 

time, due to the resulting improved load distribution. However, once a local minimum is 

reached, we see the same phenomenon as before. The increased cost associated with each 

load balancing iteration will lead to a slight increase in total execution time. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Chapter 7 

Performance Evaluation 

Previously in this document we have described the PREMA approach to load balancing 

which allows adaptive parallel applications to easily migrate from an explicit message pass

ing execution model, to message passing within a global namespace combined with sup

port for explicit application-controlled load balancing, and finally to system-managed load 

balancing in which data and computation migration is handled exclusively by the runtime 

system. We have described the Data Movement and Control Substrate (DMCS) (Chapter 4) 

which forms the foundation of our runtime environment and provides single-sided message 

passing and remote memory manipulation primitives. Chapter 4 also describe the Mobile 

Object Layer (MOL), which provides a global namespace in the presence of data migration 

and which forms the message forwarding infrastructure of our load balancing framework. 

Chapter 5 looked at the Implicit Load Balancing (ILB) framework, which provides implicit 

and dynamic load balancing for adaptive and asynchronous applications. 

With this software framework established, what remains is to examine its performance in 

the context of our target applications. The results of these experiments are contained within 

this Chapter. As this research is focused on the development of load balancing technology 

for asynchronous parallel applications, we will focus our experiments in this direction. Our 

164 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 165 

study is broken into four sections, with each section describing a set of experiments designed 

to highlight one or more particular aspects of load balancing performance. 

The first set of tests examines load balancing performance using a micro-benchmark 

program developed within our research group. Although a synthetic benchmark program 

may seem to be a trivial example, there are several important reasons why we begin our 

discussion here. We will enumerate these in the appropriate section. From there, our 

second set of experiments looks at a 3D Parallel Advancing Front Technique {PAFT) mesh 

generation and refinement program. This program is computation bound and very limited 

in its use of runtime message passing, and therefore serves as an important introductory 

application. Our third set of tests involve a 2D Parallel Constrained Delaunay Triangulation 

{PCDT) mesh generation application. This code is not as computationally intense as the 

PAFT, and makes use of interprocessor message passing during computation. From the load 

balancer's point of view, these characteristics make the PCDT program more challenging 

than the PAFT. Next, we examine a Fast Multi-pole Algorithm {FMA) N-body program. 

As this code was developed prior to PREMA and outside our research group, this will allow 

us to determine the ease of integrating PREMA into previously existing applications, as well 

as determine PREMA's applicability to non-meshing codes. In addition, we will examine 

PREMA's load balancing performance in comparison to a tightly integrated and provably 

optimal load balancing strategy which was incorporated into the software by its original 

developer. Up to this point, we have been concerned with load balancing performance of 

asynchronous applications, as it is this class that originally motivated our research. For 

the final Section of this Chapter, we will provide some insight into PREMA's performance 

on loosely-synchronous applications. Our results indicate that PREMA is a robust toolkit 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 166 

whose applicability extends beyond our original intentions. 

7.1 Synthetic Micro-benchmark 

We evaluate two aspects of the PREMA system software: the runtime execution model and 

the software implementation itself. For the first part of this analysis, we will compare the 

performance of the PREMA library with an example from the family of repartitioning tools 

(Metis) as well as a representative of the loosely synchronous class of dynamic load balancers 

(Charm++'s iterative load balancers). We will demonstrate that these load balancing 

paradigms are not well suited for asynchronous and adaptive applications. 

Second, we will compare PREMA's performance with another member of the asyn

chronous class of load balancers, namely the seed-based balancers implemented by the 

Charm++ library. We will show that PREMA's design leads to more efficient implementa-

tions, which in some cases can have a dramatic effect on reducing overall runtime. 

To carry out this analysis, we have implemented a benchmark program which simulates 

a simple class of asynchronous applications. The application is composed of a number of 

tasks (either 4, 8, or 16 times the number of processors) which are rated as either "heavy" 

or "light". Heavy tasks require twice the amount of computation as lighter ones. We begin 

with either 10% or 25% of the tasks rated as heavy, with heavy tasks clustered together. It is 

important to note that the amount of computation required by tasks cannot be predicted in 

advance, making static partitioning algorithms ineffective. In addition, no communication 

is required between tasks during runtime. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 167 

7.1.1 Representative Load Balancing Systems 

We wish to evaluate the effectiveness and efficiency of both PREMA's programming model 

and implementation. To do this, we have chosen three load balancing methods that will 

serve as a basis for comparison. These methods are widely available and are used by many 

scientific computing projects within academia and industry. 

7.1.1.1 ParMETIS 

Repartitioning tools are the most frequently used dynamic load balancing methods found 

in the scientific c~mputing literature. These methods make use of a priori knowledge of the 

computation in order to partition the workload (or problem domain, in the case of mesh 

refinement) into a user-specified number of chunks (sub-domains). Some methods use graph 

partitioning algorithms to divide an initial graph into equally weighted subgraphs. Other 

methods are more application-specific, and may choose to optimize certain criteria, such as 

sub-domain surface-to-volume ratio, cut edge weights, or data redistribution costs. 

Repartitioning tools are incorporated into such projects as Jostle [153], DRAMA [19), 

Zoltan [66}, and Metis [103). For the comparisons presented in this paper, we have chosen 

to use Metis as a representative for this class of tools, due to the fact that Metis is widely 

used and often serves as a basis for other software systems. 

Two common methods exist for creating a new partitioning for an already distributed 

mesh that has become load imbalanced due to mesh refinement and coarsening: scratch

remap schemes create an entirely new partition and tend to more evenly distribute load, 

while diffusive schemes attempt to tweak the existing partition to achieve better load bal

ance, often minimizing data migration costs. Metis' ParMETIS_ V3_Adaptive-



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 168 

Repart() routine makes use of a Unified Repartitioning Algorithm [140], which combines 

the characteristics of both scratch-remap and diffusive schemes. 

A parameter known as the Relative Cost Factor (a) is application-defined and describes 

the relative costs required for performing interprocessor communication during parallel pro

cessing and performing data redistribution associated with load balancing. This gives rise 

to the minimization function 

IEcutl +a IVmovel (7.1) 

where IEcutl is the edge-cut of the partitioning, and IVmovel is the total cost of data redis

tribution. 

Repartitioning progresses in three stages. First, the graph is coarsened using a local 

variant of heavy-edge matching [140] that is shown to be effective at helping to minimize 

both the number of edge-cuts and data redistribution costs. In addition, this algorithm is 

scalable to a large number of processors. The second step is to create an initial partition. 

Because the most beneficial method depends on the particular problem instance [141], as 

well as the value chosen for the Relative Cost Factor (a), the initial partition is created 

twice (once using a scratch-remap method, and once using a diffusive method). The cost 

function (Equation 7.1) is then computed, with the best option chosen. Finally, a multilevel 

refinement algorithm is used [139] while minimizing Equation 7.1. 

Explicit repartitioning such as these have two disadvantages for adaptive asynchronous 

applications such as parallel mesh generation and refinement. The first is the global syn

chronization that is necessary in order to exchange current load information between pro

cessors and build the data structures needed for the repartitioning routines. The cost of 

synchronization can grow both with the number of processors, and with the variance in the 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 169 

computational work load present; processors with less computationally intense data parti-

tions may reach global synchronization points long before more loaded processors, leading 

to wasted processor cycles. A second disadvantage stems from the difficulty in predicting 

future work loads for highly adaptive applications. It is difficult to predict the computa-

tional weight associated with particular data sub-domains, meaning that processors after 

repartitioning may still not be balanced. In order to combat this problem, multiple repar-

titionings are often necessary, forcing the costs associated with synchronization to be paid 

multiple times. 

7.1.1.2 Iterative Load Balancing in Charm++ 

In many cases, applications (e.g. simulations) are organized as a series of discrete time steps. 

In such cases, it is often beneficial to perform load balancing at strategic locations, rather 

than at arbitrary points during the computation. Charm++ [100, 98, 99, 101, 102] provides 

a runtime framework in which load balancing policies may be "plugged into" an application 

in a modular fashion. With each module provided in the Charm++ distribution, the load 

balancing methods are implemented using a global barrier [23], making them well suited for 

loosely synchronous computations1 . 

Charm++ presents a programming model in which the application data domain is di-

vided into a number of chunks, with the number of chunks being much greater than the 

available number of physical processors. Each chunk is represented as a chare object, whose 

interface is defined by entry point methods. Messages invoke computation by specifying 

1 According to [23), local synchronization barriers are used in all load balancing modules provided in the 
Charm++ distribution, but are not necessary in custom-designed modules. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 170 

the entry point to execute upon reception. Load balancing is achieved by mapping and re

mapping chares to available processors. An assumption, known as the principle of persistent 

computation and communication structure (24], is made which states that changes to the 

computation and communication structure of an application happen slowly or infrequently. 

Two components make up the Charm++ load balancing framework: the specific load 

balancing policy or strategy and a distributed load balancing database constructed through 

runtime monitoring of the application. The load balancing module makes use of the in

formation contained within the database (possibly gathering it at a central location, if 

necessary) to determine what chares should migrate in order to balance the runtime load. 

Because creating an optimal load distribution is an NP-hard problem that involves 

optimizing for both interprocessor communication and load distribution, several heuristic 

approaches are provided (23). The simplest are Greedy Strategies, which sort both chare 

workloads and processor load levels in order to assign the heaviest free chare to the processor 

with the lightest current load. Such a strategy may result in a large amount of data 

migration. Refinement Strategies aim to minimize the number of chare migrations while 

improving load balance. For each overloaded processor only, heavy objects are migrated 

to underloaded processors until the load falls below a threshold, which is defined as a 

percentage of the average processor workload. Finally, Charm++ provides Metis-based 

Strategies, which make use of Metis graph partitioning capabilities described earlier. 

For highly adaptive asynchronous applications, such as Parallel Adaptive Mesh Genera

tion and Refinement, there are several problems with this runtime model. First, each chare 

(mesh sub-domain) is refined only once during each mesh refinement iteration, making the 

runtime data gathering method ineffective at predicting future load. Second, Charm++'s 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 171 

pick-and-process loop [102), which executes on each processor and selects messages destined 

for local chares for execution, ensures that the entry point methods specified by the messages 

execute atomically. Large, coarse-grained entry point methods may delay the subsequent 

processing of messages, potentially delaying load balancing status update or request mes

sages for some time, hampering load balancing performance. The performance data we 

present validates this point. 

7.1.1.3 Seed-based Load Balancing in Charm++ 

Seed load balancing involves the migration of chare creation messages, or "seeds", to create a 

balance of work across the available processors [130, 31). Seed-based balancers load balance 

chares only at creation time; once the chare has been created, the seed-based balancer 

will not induce subsequent migration. However, the measurement-based balancers we have 

previously described will perform the task of moving chares during execution in order to 

achieve dynamic load balancing. 

Several variations of seed-based balancers have been implemented and studied within 

Charm++: 

1. Random: This strategy will place the seeds randomly among the processors at creation 

time and performs no seed migration afterward. By default, this is the seed-based 

balancer used. 

2. Neighbor: This strategy imposes a "virtual topology" on the processors, and load 

exchange happens between neighbors only. Overloaded processors initiate load bal

ancing, pushing work to its underloaded neighbors. By default, the topology imposed 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 172 

on the processors in a 2D mesh, although this can be changed at runtime to one of 

several other topologies, such as a torus, ring, dense graph, or 3D variants. 

3. Spray: This strategy imposes a spanning tree organization on the available processors. 

A global average load value can then be computing using a global reduction commu

nication operation. The load balancer uses this average load information to compute 

how seeds should be migrated during load balancing. 

Other load balancing strategies may be implemented using the provided seed load balancer 

interface. 

By default, the random load balancer is always used. For our experiments, however, 

we make use of the neighbor policy combined with the 3D torus and 2D mesh connection 

topologies. 

7.1.2 Experimental Results 

We break the discussiqn of our experimental results into three parts. First, we make use of 

both stop-and-repartition and loosely synchronous load balancing tools in order to evaluate 

the appropriateness of PREMA's execution model. With these experiments, we are able to 

determine the efficiency of the design of the runtime system. We then evaluate the efficiency 

of its implementation using performance data from another asynchronous load balancing 

tool. Finally, we demonstrate the flexibility of PREMA's load balancing framework by 

examining the performance of several Scheduler types. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 

Figure 7.1: BENCHMARK RUN TIMES ON 32 PROCESSORS; 25% HEAVY TASKS 

• Idle and Other Time 
MI. Task Execution Time 

• Idle and Other Time 
®:: Task Execution Time 

• Idle and Other Time 
~ Task Execution Time 

• Idle and Other Time 
~ Task Execution Time 

• Idle and Other Time 
• Synchronization Time 
mil: Task Execution Time 

• Idle and Other Time 
ret Task Execution Time 

I 
~ 
j 

• Idle and Other Time 
Ill Task Execution Time 

• Idle and Other Time 
• Synchronization Time 
111: Task Bxccution Time 

• Idle and Other Time 
!IIi Task Execution Time 

• Idle and Other Time 
~ Task Ex.ecution Time 

173 

Overall benchmark run times on 32 processors for no load balancing (row 1), load balancing 
using the Metis repartitioning tool (row 2), load balancing using a Charm++ iterative 
balancer (row 3), and load balancing using PREMA's Diffusion Scheduler (row 4) with 4 
tasks (column 1), 8 tasks (column 2), and 16 tasks (column 3) initially assigned to each 
processor. 25% of the tasks are rated as "heavy". 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 174 

7.1.2.1 Evaluation of the PREMA Execution Model 

Figure 7.1 contains the overall run times on a 32 processor cluster for our benchmark 

program with 25% of the tasks rated as heavy. The first row contains execution data for 

runs with no load balancing at all, with 4 tasks (column 1), 8 tasks (column 2), and 16 tasks 

(column 3) initially allocated to each processor. We expect these graphs to be identical; 

the total amount of computation executed by the program is the same, regardless of the 

task decomposition. Due to the discrepancy between the execution times of "heavy" and 

"light" tasks, processors 1 through 8 require roughly twice the computation time of the 

remaining processors. The large area of black in these graphs indicates wasted cycles due 

to idle processors. 

The second row of Figure 7.1 contains the performance of the same benchmark when 

Metis is used for periodic task repartitioning. Once a processor drops below a predefined 

threshold, it will request a barrier from all other processors for the purpose of load infor

mation exchange and the calculation of new task assignments. If a satisfactory amount of 

work remains to be completed, a new partitioning is calculated and tasks are subsequently 

migrated. From Figure 7.1 (row2, column 3), in which there are initially 16 tasks allocated 

to each processor, we can see that this scheme works reasonably well. However, for sev

eral processors the synchronization overhead can grow as high as 24% of the total runtime. 

However, as the task decomposition becomes more coarse, the costs due to synchronization 

grow substantially. In Figure 7.1 (row 2, column 1), in which there are only 4 tasks per 

processor, synchronization costs average roughly 60% of the total runtime. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 

Figure 7.2: BENCHMARK RUN TIMES ON 32 PROCESSORS; 10% HEAVY TASKS 

• ldleandOtherTime 
!I Task Execution Time 

• Idle and Other Time 
i!\t T.ask Execution Time 

• Idle and Other Time 
mi Task Execution Time 

175 

Overall benchmark run times on 32 processors for no load balancing (row 1), load balancing 
using the Metis repartitioning tool (row 2), load balancing using a Charm++ iterative 
balancer (row 3), and load balancing using PREMA's Diffusion Scheduler (row 4) with 4 
tasks (column 1), 8 tasks (column 2), and 16 tasks (column 3) initially assigned to each 
processor. 10% of the tasks are rated as "heavy". 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 176 

The third row of Figure 7.1 depicts the performance of a benchmark which makes use 

of the iterative algorithms implemented in Charm++ to dynamically balance the workload. 

Load balancing takes place at synchronization points; once a predefined number of tasks 

have completed, the runtime system will evaluate the load distribution and potentially mi

grate tasks. We display the results of using four synchronization points, as this seems to 

be the best balance between quality of load distribution and load balancing overhead. As 

with Metis, we can see that the quality of the load distribution increases inversely with task 

granularity. However, we can also see that load balancing and synchronization overhead 

overcome any benefits gained by load balancing. This is not a fault of the Charm++ imple

mentation; asynchronous applications carry a large penalty for processor synchronization. 

PREMA's load balancing framework (Figure 7.1 (row 4)) contains a preemptive polling 

thread, which awakens after each quantum of time elapses in order to process and respond 

to pending requests from neighboring processors. By eliminating synchronization points, 

the quality of the resulting load distribution, as well as the overall runtime, can be greatly 

improved. For a coarse task decomposition (column 1), PREMA provides a performance 

improvement of 25% over no load balancing, 54% over repartitioning with Metis, and a 30% 

improvement over incremental load balancing using Charm++. As the task granularity 

decreases (column 3), PREMA is able to provide similar results. PREMA demonstrates a 

33% improvement over no load balancing, a 20% improvement over load balancing using 

Metis, and a 39% improvement over the iterative techniques implemented in Charm++. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 

Figure 7.3: BENCHMARK RUN TIMES ON 64 PROCESSORS; 25% HEAVY TASKS 

I Idle and Other Time 
i Task Execution Time 

I Idle and Olher Time 
l% Task Execution Time 

I Idle and Other Time 
S Task Execution TUne 

I Idle and Other Time 
I Syncbroniution Timo 
} Task Ex«ution Time 

I Idle and Olher Time 
m Task Execution Time 

I Idle and Olhe< Time 
I Task Bxeculion Time 

I Idle and Other Time 
I Synchronizatioo. TiiDll 
ill TaskExecutionTimo 

I Idle and Othet Time 
I Task Execulion Time 

I Idle and Other Time 
t' Task Execution Time 

177 

Overall benchmark run times on 64 processors for no load balancing (row 1), load balancing 
using the Metis repartitioning tool (row 2), load balancing using a Charm++ iterative 
balancer (row 3), and load balancing using PREMA's Diffusion Scheduler (row 4) with 4 
tasks (column 1), 8 tasks (column 2), and 16 tasks (column 3) initially assigned to each 
processor. 25% of the tasks are rated as "heavy". 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 178 

Figure 7.2 repeats this same experiment with only 10% of the initial tasks rated as 

"heavy". While overall, the relative performance between load balancing methods is similar, 

it is worth noting the poor performance of the stop-and-repartition methods contained in 

row 2. Regardless of the task granularity, Metis is unable to effectively migrate tasks in 

order to improve runtime. 

Figure 7.3 contains performance results for the benchmark executing on 64 processors 

with 25% of the tasks rated as "heavy" (the problem size has scaled with the number of pro

cessors). As on the smaller processor configurations, the synchronization points mandated 

by both the stop-and-repartition (row 2) and incremental load balancing schemes (row 3) 

are detrimental to overall performance. For coarse-grained task decomposition (column 1), 

PREMA provides a 25% improvement over no load balancing, a 50% improvement over 

stop-and-repartition balancing, and a 41% improvement over incremental load balancing. 

For a finer-grained decomposition (column 3), PREMA leads to a 31% improvement over no 

load balancing, a 23% improvement over repartitioning using Metis, and a 36% improvement 

over incremental load balancing using Charm++. 

Figure 7.4 contains the performance results of this same experiment executed on 64 

processors with the "heavy" tasks making up only 10% of the total population. Results in 

this case are very similar. For a coarse-grained task decomposition (column 1), PREMA 

provides a runtime improvement of 25% over no load balancing, 52% over repartitioning 

using Metis, and 28% over a loosely-synchronous load balancing method. For a finer

grained decomposition (column 3), PREMA provides an improvement of 38% over no load 

balancing, 39% over repartitioning using Metis, and 35% over iterative load balancing using 

Charm++. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 

Figure 7.4: BENCHMARK RUN TIMES ON 64 PROCESSORS; 10% HEAVY TASKS 

I ldleandOtberTune 
i Task Execution Time 

I Idle and Other Time 
!i Task Execution Time 

I Idle and Other Time 
i Task Execution Time 

I Idle and Other Tune 
i Task Execution Time 

I Idle and Other Time 
I Synchronization Time 
i Task Execution Time 

I Idle and Other Time 
ti Task Execution Time 

I Idle and Other Time 
i1 Task Execution Time 

Procusor ID 

I ldlo and Other TilllD 
I Task Execution Time 

I Idle and Other Time 
I SynchroniZAtion Time 
I Task Execution Time 

I Idle and Other Time 
!I! Task Execution Time 

I ldleandOtherTimc 
g Task Execution Time 

179 

Overall benchmark run times on 64 processors for no load balancing (row 1), load balancing 
using the Metis repartitioning tool (row 2), load balancing using a Charm++ iterative 
balancer {row 3}, and load balancing using PREMA's Diffusion Scheduler {row 4} with 4 
tasks (column 1), 8 tasks (column 2), and 16 tasks (column 3) initially assigned to each 
processor. 10% of the tasks are rated as "heavy". 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 

Figure 7.5: PREMA VS. SEED-BASED LOAD BALANCERS; 32 PROCESSORS 

• Idle and Otbor Time 
~ Task Execution Tune 

• Idle and Other Time 
it®. Task Execution Tune 

• Idle and Other Time 
fJI Task Execution T1111C 

• Idle and Other Time 
IdA Task Execution T'une 

180 

Overall benchmark run times for PREMA (column 1) and seed-based load balancers imple
mented by Charm++ (column 2) on 32 processors. In row 1, 8 tasks are allocated to each 
processor, while in row 2, 16 tasks are initially allocated to each node. 

7.1.2.2 Implementation Efficiency 

We use the same benchmark program to· evaluate the efficiency of PREMA's implemen-

tation, with an initial imbalance of 25%. However, in this case we use the seeded load 

balancers provided as part of the Charm++ distribution as a means for comparison. Like 

PREMA, Charm++'s seeded balancers are asynchronous, eliminating the global synchro-

nization points that plagued the iterative balancers. 

Figure 7.5 contains the results of our experiments, executed on 32 processors. Compar-

ing PREMA (row 1) and Charm++ (row 2) for 16 finer-grained tasks initially allocated 

to each processor (column 1) indicates that PREMA offers a performance advantage of 

roughly 9%. However, as the task granularity increases, the performance advantage of 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 

Figure 7.6: PREMA VS. SEED-BASED LOAD BALANCERS; 64 PROCESSORS 

I Idle and Other 'lime 
Iii Task Execution Time 

I Idle and Other Time 
Iii Task Execution Time 

Processor ID 

I Idle and Other T'lmc 
5 Task Execution llme 

I Idle and Olher Tunc 
[; Task Execution Time 

Processor ID 

181 

Overall benchmark run times for PREMA (column 1) and seed-based load balancers imple
mented by Charm++ (column 2) on 64 processors. In row 1, 8 tasks are allocated to each 
processor, while in row 2, 16 tasks are initially allocated to each node. 

PREMA becomes more evident. With the application decomposed into half the number of 

tasks (8 tasks initially allocated to each processor), the runtime improvement afforded by 

PREMA increases to 27% (Figure 7.5, column 2). As the number of processors grows to 64 

(Figure 7.6), PREMA offers roughly an 18% performance advantage in both cases. 

7.1.2.3 Framework Flexibility 

The final component of this set of experiments is to ascertain the efficiency of the PREMA 

load balancing framework itself. We can do this by examining a variety of Scheduling Module 

implementations; a truly useful framework will allow for the efficient implementation of 

multiple Schedulers, not just a single type. We once again make use of the benchmark 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 

Figure 7.7: PREMA SCHEDULER ANALYSIS; 32 NODES, 8 TASKS PER NODE 

(a) 

(c) 

• Idle and Other TllllC 
OOl Task Execution Tune 

• Idle and Otber Time 
81\ Task Execution Tune 

I 
! . . g 

J 

{b) 

(d) 

• Idle and Otbcr Tim:: 
WI Task Execution Tune 

• Idle and Otber Time 
iOOl Task Execution Tunc 

182 

Benchmark run times for PREMA's Diffusion (a), Work-stealing {b), Multi-list (c), and 
Gradient {d) Schedulers on 32 processors with 25% initial imbalance and 8 tasks initially 
allocated to each processor. 

program that we have described previously. In addition, we will use four Scheduler types 

that we have covered in this thesis, and which are well-known in the dynamic scheduling 

literature: Diffusion, Work-stealing, Multi-list, and Gradient. 

In Figure 7.7, we present the results of our experiments on 32 processors in which 8 

tasks are initially allocated to each processor. The load balancing method which leads to 

the lowest total execution time is the Diffusion method, although this is not the method 

which results in the highest quality final load distribution. In this case, the tradeoff between 

the increased complexity of a single load balancing iteration and the reduction in the number 

of iterations necessary to find work results in a gain in overall performance. In this case, 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 

Figure 7.8: PREMA SCHEDULER ANALYSIS; 32 NODES, 16 TASKS PER NODE 

(a) 

(c) 

• Idle and Other Time 
ti Task Execution Tune 

• Idle and Other Tune 
!Ill Task Execution TllllC 

• Idle and Other Time 
flfii Task Execution TJme 

Processor ID 

(b) 

• Idle and Other Time 
II Task Execution Time 

Processor ID 

(d) 

183 

Benchmark run times for PREMA's Diffusion (a), Work-stealing (b), Multi-list (c), and 
Gradient (d) Schedulers on 32 processors with 25% initial imbalance and 16 tasks initially 
allocated to each processor. 

the PREMA Diffusion Scheduler results in. a performance improvement of 37% over no 

load balancing (shown in Figure 7.1, row 1, center), while gains of 24%, 32%, and 24% are 

achieved with the Work-stealing, Multi-list, and Gradient Schedulers, respectively. 

Similar results can be seen both with a finer task granularity (Figure 7.8), as well as 

when the number of processors increases (Figure 7.9 and Figure 7.10). This indicates that 

a variety of Scheduler implementations result in a high quality of load distribution and a 

low overhead. We are therefore able to comfortably state that the PREMA load balancing 

framework is not restrictive in the types of scheduling policies it allows, freeing developers 

to experiment with load balancing algorithms and implementations. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 

Figure 7.9: PREMA SCHEDULER ANALYSIS; 64 NODES, 8 TASKS PER NODE 

(a) 

(c) 

I Idle and Other Time 
!. Task Execution Time 

I Idle and Other Time 
ill Task Execution Time 

(b) 

(d) 

I Idle and Otber 1lme 
12 Task Execution Time 

I Idle and Other Time 
5 Task Execution 1lme 

184 

Benchmark run times for PREMA's Diffusion (a), Work-stealing (b), Multi-list (c), and 
Gradient (d) Schedulers on 64 processors with 25% initial imbalance and 8 tasks initially 
allocated to each processor. 

7.2 Parallel Advancing Front Mesh Refinement 

Parallel mesh generation and refinement is an important adaptive application and a good 

candidate to demonstrate the effectiveness of PREMA's load balancing infrastructure. To 

this end, we have implemented a 3D Parallel Advancing Front Technique (PAFT) [137) 

mesh refinement program, which is presented in [48]. 

A critical point that is worth mentioning is that the software used to perform the sequen-

tial mesh refinement is provided by a third party [123]; the PREMA framework allows us 

to use this software without modification and still achieve excellent speedup and scalability. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 

Figure 7.10: PREMA SCHEDULER ANALYSIS; 64 NODES, 16 TASKS PER NODE 

(a) 

(c) 

I Idle and Other Time · 
I Task. Execution Time 

I Idle and Other Time 
ft Task &ecution Time 

(b) 

I Idle and Other Time 
!l Task Execution Time 

I Idle and Other Time 
i Task Execution Time 

Processa ID 

(d) 

185 

Benchmark run times for PREMA's Diffusion (a), Work-stealing (b), Multi-list (c), and 
Gradient (d) Schedulers on 64 processors with 25% initial imbalance and 16 tasks initially 
allocated to each processor. 

A crucial element to this success is the preemptive decision making capability incorporated 

into PREMA, and we will subsequently demonstrate its importance in achieving acceptable 

parallel performance. 

7.2.1 Parallel Advancing Front Skeleton 

Three dimensional advancing front mesh refinement methods [114, 115, 116, 9, 118] begin 

by dividing a coarse mesh into triangular faces, which form the initial front. Tetrahedra 

are then generated starting at these boundary faces, and work toward the center of the 

region being meshed. The inner surface of these elements collectively form the advancing 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 186 

front [144]. 

The domain decomposition approach we employ was initially proposed by Lohner in [116], 

and extended for handling adaptivity and load balancing in [137]. However, we do not 

use the concept of interior and interface regions to uncouple the sub-domains as in [116]. 

Moreover, instead of the master/worker model used in [137], we implement a decentralized 

scheduling of parallel computation. 

The key steps in the parallel advancing front method are: 

1. Decompose the initial volume grid into N (N » P, where Pis the number of available 

processors) sub-domains (i.e., apply over-decomposition). 

2. Generate the dual graph of the subdivision and partition it into P sets of sub-domains. 

3. Find the representation of each sub-domain as a set oftriangular faces and orient the 

faces. 

4. Load each set of sub-domains in parallel into the corresponding processor and create 

a Schedulable Object (Chapter 5, Section 5.4.1) for each of the sub-domains. 

5. Apply mesh generation subroutine [123) on each processor for every local Schedulable 

Object (i.e., sub-domain), while executing a dynamic load balancing algorithm in 

between, so that some of the Schedulable Objects are moved from one processor to 

another in the case of imbalance due to different levels of refinement in the geometry. 

6. Glue the adjacent sub-domains on each processor in parallel. 

At the end of the execution of the above steps, the mesh is ready for parallel finite element 

analysis. The PAFT represents one of the simpler application types which are still consid-



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 187 

ered interesting; once Schedulable Objects have been created, no further communication is 

necessary until time to glue the global mesh together. 

In order to evaluate the effectiveness of the PREMA system, we have designed the PAFT 

mesh generation program to control data migration either explicitly, or leave the decision 

making and data migration to the PREMA for implicit load balancing. Explicit work 

stealing begins with the PAFT mesher maintaining a queue of local sub-meshes pending 

refinement. During refinement, each processor performs three steps: local region refinement, 

load balancing, and polling the network. After refining local regions, a processor determines 

whether or not its pending work load has fallen below a predetermined threshold. If so, 

the processor enters a work-seeking state in which it requests work from other processors 

in a round-robin fashion. The processor then polls the network for responses to these 

work requests. Iteration through these steps continues until there is no work left awaiting 

execution. 

A second method which falls into the explicit load balancing category is to use a stop

and-repartition scheme using parallel Metis [138]. As with the other load balancing methods 

under consideration, load balancing begins when a processor's workload falls below a pre

determined threshold2 . At this point, all processors in the parallel system synchronize and 

exchange workload information. Metis' LDiffusion algorithm is then used to perform the 

decision making for migration of work units in order to restore load balance. 

Implicit load balancing places the decision making and data migration burden on the 

runtime system. The pre-defined scheduling algorithms implemented by PREMA have 

been described previously. After the initial distribution of sub-meshes and creation of 

2 The thresholds used for all load balancing experiments in this Section are identical. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 188 

Schedulable Objects, a single message is sent to each region invoking the mesh refinement 

stage of the algorithm. Each processor then polls for incoming messages; polling will invoke 

the refinement computation as well as the migration of Schedulable Objects when necessary. 

7 .2.2 Effects of Domain Decomposition 

We begin with an examination of the effects of over-decomposition on application perfor

mance and on the overheads incurred by the runtime system. Three parameters play a 

role in this study: the number of work units created by the decomposition (N), the num

ber of processors available (P), and the weights of the individual work units. We have 

developed a synthetic benchmark program which begins by dispersing work units to the 

available processors. Computation is then invoked via PREMA's messaging mechanism. 

Once computation involving a data object is complete, a notification is sent to the root 

processor; once all notifications have been received, the application terminates. Implicit 

load balancing is utilized during runtime when necessary. 

Figure 7.11(a) depicts the time spent" inside the runtime system as both Nand P vary, 

excluding the initialization and termination stages of the program3 . In all processor config

urations (ranging from 8 to 128 processors), PREMA overhead decreases as the number of 

work units (N) increases until a minimum is reached. After this point, PREMA overhead 

grows with N. This indicates there is a point at which further over-decomposition is ac

tually detrimental to overall performance; in our study optimal performance was achieved 

with roughly 32 work units initially allocated for each processor. 

Figure 7.11(b} and Figure 7.11(c) show the results of varying the computational work-

3We have chosen to exclude these stages because they are highly application dependent. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 

Figure 7.11: EFFECTS OF OVERDECOMPOSITION ON PAFT PERFORMANCE 

(a) 

•8-..... 
• 16Proeeasonl 
• 32 Processon 
•64-..... 
• 128J'roc.eswn 

so 100 200 400 800 
Avg. Work Unit Weight (Millions of Operations) 

(b) 

IO.OIS 
.a 

A • ..,~ ! 
I 0005 • • 

so 100 200 400 800 
Avg. Work Unit Weight {Millions of Operatioos) 

(c) 

189 

Effects of varying processor count (P), work unit count (N), and work unit weight on 
PREMA overheads: the runtime overhead in terms of seconds as the total number of work 
units increases on varying numbers of processors (a), the total time spent in the PREMA 
system as the average weight of each work unit varies, for 2048 work units (b), and the 
total time spent in the PREMA system as a percentage of computation time as the average 
weight of each work unit varies, for 2048 work units (c). 

load in each work unit (note that this in turn affects the overall computation performed by 

the program). Varying the work units from roughly 50 million operations to 800 million 

operations results in an increase in the amount of time spent within the runtime system by 

slightly less than half a second. However, the ratio between this time and the computation 

time actually decreases. This indicates that the ILB load balancing system is robust given 

changes in work unit sizes4 . 

Figure 7.12 depicts the the reduction in total execution time per processor for a pipe 

geometry (left), viewed by Medit from the Institut National de Recherche en Informatique en 

Automatique (INRIA) [59]. The reduction in total execution time is due to better memory 

utilization and nonlinear computational complexity of the sequential mesh generator [48]. 

As the number of sub-domains increases and the final mesh size remains fixed, the working 

set per processor is decreasing. The improvement in the utilization of virtual memory 

4We have used the Work Stealing Scheduler implementation for these tests; many details are dependent 
upon the scheduler implementation. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 190 

Figure 7.12: EFFECTS OF OVERDECOMP08ITION ON PIPE MODEL 

400) ·1 

3500 

1500 

11XXl 

500 ~ 
~------+ 

0 
16 64 128 256 512 

Number of subdomains 

(a) (b) 

overcomes the slight overhead introduced by the runtime system per mobile object. 

7.2.3 Experimental Results 

We now evaluate PREMA's performance with the PAFT application in terms of three 

metrics: (1) overall application runtime, (2) the quality of the workload distribution (mini-

mizing the standard deviation of mesh refinement times), and (3) overhead attributable to 

the runtime system itself. 

Figure 7.13(a) compares the overall execution times of the PAFT program using all load 

balancing methods (as well as no load balancing) on several processor configurations. The 

test platform on which we conduct our experiments consists of 333 MHz Ultra SPARC IIi 

machines, connected by Fast Ethernet and utilizing the LAM [111] implementation of the 

Message Passing Interface (MPI) [75]. On 32 processors, PREMA's Diffusion Scheduler 

module provides an improvement of 42% over no load balancing, 12% over load balancing 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 

Figure 7.13: PERFORMANCE OF IMPLICIT AND EXPLICIT LOAD BALANCING 

(a) 

• NoLoadBalancing 
• Explicit Wed. Stealing 
8 ExplicitMasler-Worker 

• Stop""" Reportidoo 
• R.B PML (Muld-tbreaded) 
• R.BMast«-Worta-(Multl--
• n..B DiffusioD (Multi-threaded) 
• n.B Work StealinJ (Multi-threaded) 

(b) 

• No Load Balaocing 
• ll..B PML (Single-lhreaded) 
• R.BMu..,..Wooku(Singt.-lhmod<d) 

• R.B Dillusioo (Sinslo-tbreaded) 
• R.BWOJtSteallng(SIDJio-lhmod<d) 
• R.B PML (Muld-threaded) 
• n.BMulcr-Worker(Multi-lbrcadcd) 
• R.8 IJillusioo (Muld-threaded) 
• R.B WOJt Stealing (Multi-threaded) 

191 

Runtime performance of explicit, :implicit, and stop-and-repartitioning load balancing (left), 
as well as single-threaded and multi-threaded preemptive load balancing (right). 

with stop-and-repartition methods, and roughly 13% over explicit load balancing. On 64 

processors, these numbers are 39%, 9%, and 20%, while on 128 processors they are 42%, 

15%, and 30%5 . 

In Figure 7.13(b), we compare the results of implicit load balancing with and with-

out multi-threaded preemption (the preemptive component of our runtime framework was 

described in Chapter 5, Section 5.4.3). Particularly in the cases of Work-stealing and Diffu-

sion, preemptive load balancing decision making can provide a reduction in total run time of 

over 40%. These numbers represent a significant overall performance increase over methods 

that are commonly in use today. 

Our second metric is the quality of the workload distribution resulting from load balanc-

ing. In Figure 7.14(a), we see a processor-by-processor breakdown of the PAFT program's 

performance on a 128 processor system with no load balancing. Most of the computation is 

5Note that the 128 node cluster used in these experiments is heterogeneous and made up of processors 
whose clock speeds range from 333 MHz to 650 MHz. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 

Figure 7.14: BREAKDOWN DATA FOR SEVERAL LOAD BALANCING METHODS 

1600 

(a) 

(c) 

1 Polling 
I 110 and Object Creation 
I Initialization 
J Mesh Refinement 

.$ I/0 and Object Creation 
J Initialization 
l Mesh Refinement 

1600 

(b) 

1600 

(d) 

I Synchronization 
I Partition Calc. + Dala Gathering 
I 1.10 and Object Creation 
i lnitializalion 
i Mesh Refinement 

Initialization 
Mesh Refinement 

192 

Breakdown data for no load balancing (a), stop-and-repartition load balancing (b), and 
two explicit load balancing methods: master/worker (c), and work-stealing (d) on 128 
processors. 

clustered within processors toward the "front" of the system (processors with IDs 0 through 

31), leaving ample opportunity for effective load balancing. Figure 7.14(b) provides results 

for load balancing using a stop-and-repartition algorithm. Workload is distributed fairly 

evenly across the processors (mesh refinement time has a standard deviation of roughly 

51, compared with 305 for no load balancing), however, from the figure we can see that 

synchronization and partition computation causes a large amount of overhead which can be 

avoided (up to roughly 11% of the overall runtime). 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 193 

The last row of Figure 7.14 shows the results of two explicit load balancing methods. 

Figure 7.14(c), the master/worker method, is the more successful of the two in terms of 

computation distribution quality, balancing the work load with a standard deviation of 

roughly 83. However, initialization costs impose a large penalty. This can be avoided by 

using a "pipelining" method to read in the data objects, effectively overlapping I/0 with 

computation on the worker nodes. However, judging from the workload distribution, there 

is still room for performance improvements. In addition, master /worker type algorithms 

suffer from another shortcoming: with iterative applications which may have several phases 

of mesh refinement, the algorithm will need to be "reset" at the beginning of each phase, 

meaning all data objects will have to be gathered on the master processor. 

Figure 7.14(d) contains the results of load balancing with the explicit application

managed work-stealing method. This method suffers due to the fact that polling cannot 

occur during the execution of a task, preventing messages containing load balancing infor

mation and requests from being processed in a timely manner. Consequently, underloaded 

nodes tend to spend a great deal of time idle. The ultimate result is that too few tasks mi

grate to alleviate workload imbalance, as evidenced by a mesh refinement standard deviation 

of 246. 

Figure 7.15 contains processor-by-processor breakdowns for both preemptive and non

preemptive implicit load balancing methods implemented using PREMA's load balancing 

framework. Providing a preemption mechanism within the runtime system clearly provides 

a performance benefit; with the Diffusion method (row 2), overall execution time decreased 

by 41% compared to the non-preemptive counterpart. Similar results can be seen in the case 

of Work-stealing (row 1). In addition, workload distribution quality is increased, compared 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 194 

Table 7.1: RUNTIME SYSTEM OVERHEADS ON 128 PROCESSORS 

Load Min/Max PREMA Overhead 
Balancing Refinement Poll Thr. Msg. Send Call-back Sched. Prcnt. 

None 487/1332 sec - - - - -
Stop & Repart. 499/786 sec - - - - -

ILB W.S. 635/775 sec 0.1681 sec 0.0018 sec 0.0137 sec 0.0019 sec 0.023% 
ILB Diffusion 632/765 sec 0.2080 sec 0.0026 sec 0.0110 sec 0.0670 sec 0.037% 

ILB PML 411/1043 sec 0.9669 sec 0.0021 sec 0.0459 sec 1.0893 sec 0.200% 
ILB M.W. 622/775 sec 0.5377 sec 0.0111 sec 0.4329 sec 0.000004 sec 0.092% 

with both repartitioning and explicit load balancing methods. The standard deviation of 

mesh refinement time with the preemptive implicit Work-stealing method is roughly 27, 

while with Diffusion it drops to 25. 

Note that less dramatic results are obtained with the Prioritized Multi-list (PML) and 

Master/Worker scheduling methods. In the case of the PML, this is most likely due to 

the large number of information and update messages needed. Because processors are not 

divided into small "neighborhoods", each processor receives load updates and may receive 

work requests from every processor in the system, potentially leading to a glut of system 

messages and subsequent performance degradation. In the case of the Master /Worker pol-

icy, workload is well-balanced in the non-preemptive case; the addition of a preemption 

mechanism does nothing to improve this. However, preemption does allow the Master 

processor to itself act as a Worker, which was not possible before. 

Finally, we show that the overhead imposed by the runtime system is small and does 

not negatively impact overall application performance. Table 7.1 summarizes the over-

heads caused by PREMA according to several different categories. In all cases, overhead 

contributes significantly less than 1% to the overall runtime. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 

Figure 7.15: PREEMPTNE VS. NON-PREEMPTIVE LOAD BALANCING 

I Idle/Misc. Polling 
I n.B Message Send 
I UserCaUbackRouline 
1 Object Pacting/Unpacking 
~ Scheduler Decision Making 

I Polfuogn.-1 
1 L'O and Objec:tCrudon 
llnitiallzalion 
I Mesh ReJinemcat 

Polling Thread 
IJO and Object Creation 
Initialization 
Mesh Refinement 

Polling Thread 
110 and Object Creation 
Initialization 

~ MeshRefinement 

Idle/Misc. Polling 
ll.B Message Send 
User Callback Routine 
Objut Plldiftg!Unpacl;ing 

ldleiMisc::. Polling 
ll.B Message Send 
User Callback Routine 
Obje-.::1 Pac);;ng!Unpac.J;,ing 
Scheduler Decision Making 

I Polling 
I 110 and Object Creation 
I Initialization 
~ MeshRefinement 

195 

Breakdown data for preemptive (left) and non-preemptive (right) implicit Work-stealing 
(row 1), Diffusion (row 2), Prioritized Multi-list (row 3), and Master/Worker methods (row 
4) on 128 processors. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 196 

7.3 Parallel Constrained Delaunay Triangulation 

Our next series of experiments involves using the load balancing facilities provided by 

PREMA to balance the workload created by a 2D Parallel Constrained Delaunay Triangu

lation (PCDT) [49, 51] program. As we will demonstrate, this code presents a set of unique 

challenges for the runtime system that we have not seen until this point. In this Section, 

we will provide a brief introduction for the purposes of establishing how this problem is 

unique. We will then describe our experiments and present our performance results. 

7.3.1 Parallel Constrained Delaunay Skeleton 

The Delaunay Triangulation D of a set of vertices Vis defined as follows [62]: 

• Any circle in the plane is said to be empty if it contains no vertex of V in its interior. 

However, vertices are permitted on the circle. 

• An edge from vertex u to vertex v is in D if and only if there exists an empty circle 

that passes through u and v. 

The Delaunay triangulation is very popular in the mesh generation and engineering com

munities due to the resulting element quality; the Delaunay triangulation of a vertex set 

maximizes the minimum angle among all possible triangulations [144]. 

The mesh refinement process begins with a coarse triangulation whose elements do not 

conform to specified restrictions on element quality. This coarse mesh is refined by adding 

new points and modifying the existing triangulation through strictly local operations, in a 

procedure that is often referred to as the Bowyer-Watson (BW) kernel [51]: 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 197 

Figure 7.16: PARALLEL CONSTRAINED DELAUNAY TRIANGULATION 

Processor,~/ 

./~.//Processor 1 

/"~---· 

,./' 
~f 

,/,./,'/! 

Processor,9• 

,././Processor 1 

,,'',/,,/,/;;' 

(a) Circumcenter of poor element (b) Encroachment on boundary (c) Midpoint inserted instead 

rocessor,?-,.

,,/,,,'',,,,'',,/,,,'',/ Processo' I 

(d) Cavity retriangulation 

Processo:,9· 

, ,,'',,,''/,/,,/,/,,,''Processo' I 

(e) Cavity retriangulation (f) Consistent retriangulation 

Point creation: A new point is inserted into the vertex set using an appropriate spatial 

distribution technique. 

Point location: A triangle which contains this new point is identified and located. 

Cavity computation: Existing triangles which interact with this new point in such a way 

as to violate the Delaunay property are removed. 

Element creation: New triangles are built by properly connecting the newly inserted point 

with the old points, so that the resulting triangles are satisfactory. 

However, in a parallel implementation of this kernel, two points cannot be inserted con-

currently if their corresponding cavities overlap. We therefore introduce a set of constrained 

edges which define boundaries between sub-domains. The resulting triangulation is as close 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 198 

as possible to a Delaunay triangulation, given that these constrained edges must be present 

in the final triangulation. The resulting modified BW kernel is shown in Figure 7.16. 

Once a poor element is located {Figure 7.16{a)), it can be determined whether or not 

that element's circumcircle encroaches on a constrained boundary edge (Figure 7.16{b)). If 

so, we insert the midpoint of that constrained edge into the vertex set V (normally, we would 

insert the center of the circumcircle). However, because the constrained edge is shared by 

two processors, the remote processor must be notified of this edge split (Figure 7.16{d)) 

and the remote cavity must therefore be re-triangulated. As a result, the mesh is able to 

remain globally consistent {Figure 7.16{f)). 

This application introduces a new component that was not present in our previous 

experiments, namely communication between tasks during the refinement process. In ad

dition, 2D triangulation is not as compute intensive as the 3D tetrahedralization that we 

studied in the previous Section, allowing us to explore PREMA's impact on finer-grained 

computations. 

7 .3.2 Experimental Results on Homogenous Clusters 

We begin with experiments performed on a homogeneous 32 processor cluster. We are able 

to achieve a load imbalance by varying the area bound across the sub-domains. Refinement 

will take place until the areas of the elements within the sub-domain are less than the 

specified area bound. This allows us to simulate a greater level of refinement for areas of 

interest within the geometry. 

The top row of Figure 7.17 depicts the performance with no load balancing. These 

three graphs are nearly identical, indicating that the total computation performed by the 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 

Fie:ure 7.17: PCDT PERFORMANCE ON 32 PROCESSORS 

(a) 

160.---~-,-~-----.~-.-~---r] 

140 

1120 
~100 

~ 80 

.§ 

J 
20 

• ldleJSyru:hro.aizationl"une 
• SpliiHandlcrTIIDC 
• Refinement TUDe 

24 32 

(d) 

140 

1120 
~100 

~ 80 

.~ 60 

J 40 
20 

(b) 

• ldleJSyncluonizatjonTu:ae 
• SplitHandler'flme 
• Refinement 11mc 

16 24 
Processor ill 

(e) 

I 
~ 
j 

(c) 

• lcDe/S~niudoa nm. 
• SplitllaDdletT~JnD 140 
• Retincmcnt'l'lme 

~ 

I I 
I I 
I I 

20 

32 16 24 32 
l'rocesro<ID 

(f) 

199 

PCDT performance with no load balancing on 32 processors with either 4 (a), 8 (b), or 16 
(c) sub-domains per processor, as well as with work-stealing load balancing with either 4 
(d), 8 (e), or 16 (f) subdoamins per processor. 

application is independent of the level of over-decomposition. Note, however, that this 

is not strictly true; increasing the number of sub-domains will increase the amount of 

message traffic necessary to communicate split information on boundary edges. However, 

the computation resulting from this traffic is quite small as compared to the refinement 

procedure. 

The bottom row of Figure 7.17 contains performance data from the same experiments, 

but using PREMA's Work-stealing load balancing policy. With a fairly coarse domain 

decomposition (only 4 sub-domains initially allocated to each processor), PREMA is able 

to provide a 30% performance increase, reducing total execution time from 128 seconds to 

roughly 89 seconds. As the sub-domain granularity becomes finer and the load balancer 

has more freedom in terms of task migration, performance improvements measure as high 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 

Fie:ure 7.18: PCDT PERFORMANCE ON 64 PROCESSORS 

I ldleiSyncluonizadonTh:J:., I ldltJSynduonization TllllC 
I Split Handler Tune I Split HandluTIIDC 
I Refinanml. 11me f 1 Refinement nmc 

"' ~ 
8 

J 
Proc:essoriD l'rocessc<ID 

(a) (b) 

I ldltJSynchronizationTlmll I ldlrJSynclumdzation.11me 
I Split HandlerTJD~C I Split HaDdlcr Tunc 
I RcfiDc:mentTUDe 

I 
I Refincment'Iimc: 

~ 
8 

J 
Pro==ID l'rocessc<ID 

(d) (e) 

I 
~ 
! 
J 

f 
"' ~ 
8 

J 

I ldJ.ciSfMbronludoallmll 
I SJ*t Handler 1'imo 
I Rollnomml 11m> 

(c) 

I IcUc/Syncllronludon 'nml 
I Split Hmdler Timo 
I Rel'inemeatTIIDCI 

Procc-ID 

(f) 

200 

PCDT performance with no load balancing on 64 processors with either 4 (a), 8 (b), or 16 
(c) sub-domains per processor, as well as with work-stealing load balancing with either 4 
(d), 8 (e), or 16 (f) subdoamins per processor. 

as 42% (Figure 7.17(c) vs. Figure 7.17(f)). 

Our next set of experiments involved meshing the same sized problem on 64 processors. 

These results are shown in Figure 7.18. In this case, the overall performance improvements 

were not as dramatic, with a reduction in overall execution time of only roughly 15% in each 

case. We also notice a larger synchronization cost as the number of processors increases. 

This can be traced to the termination detection algorithm within the application itself, 

which employs a global reduction mechanism to ensure that all split messages have been 

received and processed. At issue is the possibility of split operations themselves generating 

more message traffic. Termination guarantees that any such oscillation has completed before 

the application is allowed to exit. Experimentally, we have shown that up to 4 or 5 such 

cycles are possible. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 201 

Fi!mre 7.19: SCALED PCDT PERFORMANCE ON 64 PROCESSORS 

I 
~ 
j 

I ldle/SynchronizatlonTime 
I Splitllaftdlc:r'limll 
I Refiaement T"UDC 

Proca""ID 

(a) 

I ldk/SyllcluonizationTUDC 
I Split Handla: Time 
........... Timo 

ProcessoriD 

(d) 

~.-~~~----~--~-n 
180 

-160 

1140 
'-'120 

~ 100 
8 80 

]: 
20 

I 
.~ .. 
j 

I ldJciSynchronizatjonT:amc 
I Splitll:andi«TDDII 
I ...,__Timo 

I 1~ : 

I "~ : 
I ~ I 
I I 
I I 
I ' 
I I 
I I 

16 32 48 
l'rooeuo< ID 

(b) 

I ldlciSyncluoniution Time 
I Split Handla: 1'b:nD 
........... Timo 

(e) 

.. 

200.-~.-~--~----~~ 

180 

f:: 
'-'120 

~ 100 
8 80 

l: 
20 

I ldle/Synchrollization TUDO 
I Splitllandki"Time 
I RofincmcniTuoo 

I ~ I 
I I 
I I 
I • I 
' I 
I I 
I I 
I I 
I I 

16 32 48 
ProcencriD 

(c) 

1 ldleiSynduonludon 1lmc 
I Split Handler 'J1mD 
........... Timo 

(f) 

.. 

PCDT performance for a scaled problem size with no load balancing on 64 processors with 
either 4 (a), 8 (b), or 16 (c) sub-domains per processor, as well as with work-stealing load 
balancing with either 4 (d), 8 (e), or 16 (f) subdoamins per processor. 

We were then lead to wonder if the problem size would affect the synchronization over-

head. To determine this, we scaled the problem size so that the number of elements in the 

final mesh is twice that of our earlier experiments. These results are shown in Figure 7.19. 

The synchronization overhead is shown to be independent of the problem size, and scales 

only with the number of processors. Moreover, the maximum performance increase due to 

dynamic load balancing grows to roughly 20%. 

In Figure 7.20, we present performance data for four scheduling policies implemented 

with the PREMA runtime framework. The problem size is the same as is shown in Fig-

ure 7.19, in which the number of mesh elements has scaled with the number of processors. 

The total number of sub-domains in this case is 1024, or a factor of 16 times the number 

of available processors. In each case, we can see that PREMA is successful in improving 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 

Figure 7.20: PCDT PERFORMANCE WITH SEVERAL PREMA SCHEDULERS 

I ldle/Synchroniz:atioo Time 
I Split HaiK!ler Time 
I Rcfmement Time 

Processor ID 

(a) 

I ldle/Synchronization Time 
I Split Handler Timo 
I ReUnement Time 

Processor ID 

(c) 

I Idle/Synchronization Timo 
1 Split Handler Time 
I Refinement Tunc 

Processor ID 

(b) 

I IdleJSynchronizatioo nme 
I Split Homdler Tuno 
I Refmement Time 

ProccssoriD 

(d) 

202 

PCDT performance for a scaled problem size with work-stealing (a), diffusion (b), gradient 
(c), and multilist {d) load balancing on 64 processors with 16 sub-domains initially allocated 
to each node. 

the total execution time versus runs "in which dynamic load balancing is not utilized. Run-

time decreases by 20% with the Work-stealing scheduler, 18% with the Diffusion scheduler, 

12% with the Gradient scheduler, and 14% with the Multilist scheduler. These figures re-

inforce our assertion that the PREMA framework is flexible enough to allow for efficient 

implementations of a wide variety of scheduler types. 

7.3.3 Experimental Results on Heterogeneous Clusters 

As a final experiment with the PCDT program, we expanded the execution environment 

to include 128 heterogeneous processors. Specifically, the runtime environment was made 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 

Figure 7.21: PCDT PERFORMANCE ON HETEROGENEOUS CLUSTER 

Processor ID 

200.-~~--~~--~-.--~-, 

180 I Idle/Synchronization Time 
I Split Hnndler Tune 
I Refmement Time 

32 64 96 
Processor ID 

128 

203 

PCDT performance on a 128 processor heterogeneous cluster both without (left) and with 
(right) dynamic load balancing. 

up of 64 333 MHz UltraSP ARC IIi processors equipped with 256 MB of physical memory, 

32 360 MHz UltraSPARC II processors equipped with 256 MB of physical memory, and 32 

650 MHz UltraSPARC lie processors equipped with 1 GB of physical memory. All nodes 

were connected via a 100 Mb fast ethernet network.· We then refined a new mesh where the 

imbalance is caused by systemic differences only. In other words, no load imbalance was 

incurred by the application itself; each sub-domain was refined to an equal extent. 

Our results are shown in Figure 7.21. On the left, we can clearly see that the varying 

capabilities of the computing hardware leads to a significant overall imbalance. In fact, 

the time required for refinement varies among the nodes by roughly a factor of two, which 

corresponds directly to the differences in processor clock speeds. However, with load balanc-

ing managed by the PREMA runtime system, the refinement is spread much more evenly 

among the available nodes, which leads to a reduction in overall run time by 23%. 

This result is significant, in that it demonstrates the effectiveness of the PREMA system 

in situations in which application·-perceived load imbalance is caused by outside factors, such 

as other users in a shared environment, or, as in this case, a heterogeneous environment_ 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 204 

As Cluster of Workstations (COW) parallel environments are becoming more and more 

prevalent due to their cost-effectiveness, software such as PREMA can lead to reduced 

application run times and therefore better resource utilization. 

7.4 Fast Multi-pole N-body Simulation 

The goals for this phase of our experimental analysis are three-fold. First, we want to 

establish the effectiveness of the PREMA programming model and runtime system imple

mentation when used in conjunction with non-meshing codes. As mesh generation is the 

application which has driven our development work and is of the most interest to our re

search group, it is only natural that we have concentrated our efforts in that direction. 

However, the PREMA system is designed to be of use to a wide variety of computational 

scientists. It is therefore important to determine its usefulness in a wider .context. 

Our second goal is to determine the ease of integrating the PREMA system with previ

ously existing codes or codes that have been developed outside of our local research group. 

The codes we have previously discussed were developed in a symbiotic environment in which 

the application developer had ready access to the runtime system designer and implemen

tor. It is important to determine weather or not this environment had any impact on our 

perceptions toward the runtime system. In other words, did the proximity between appli

cation and system developers bias our view that it is easy to integrate scientific codes with 

PREMA? 

Finally, our third criterion is to compare the efficiency of PREMA 's load balancing 

mechanism with a previously created and tightly integrated load balancing strategy that is 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 205 

provably optimal for a given initial cell distribution [12, 74). The PREMA approach cleanly 

separates the application domain from load balancing, freeing the application developer 

from worrying about load balancing details. However, this convenience is for naught if it 

carries a stiff performance penalty. These sets of experiments will allow us to evaluate this 

tradeoff. 

We begin with a brief discussion of theN-body problem itself, along with an overview 

of the Fast Multi-pole Algorithm. We will then examine the initial load balancing strategy 

which is bundled with the application. From this, we will devise a method for integrating 

the application with PREMA, and conclude with our experimental results. 

7.4.1 N-body and Fast Multi-pole Algorithm Background 

N-body simulations are useful in many areas of science, such as astrophysics, fluid me

chanics, and molecular dynamics. In general, the problem considers the interaction of N 

particles or bodies and computes the forces they exert on one another, calculating how these 

forces influence their respective locations over some number of time-steps. Once the new 

positions are calculated, the process can move to the next time-step. 

The simplest N-body algorithm computes all pairwise interactions. The disadvantage of 

such an approach is the resulting O(N2) complexity per time-step. In order to make large 

simulations computationally tractable, more efficient algorithms have been developed, such 

as continuum and hierarchical methods [4, 5, 18, 82). Hierarchical N-body methods use trees 

(quad-trees in two dimensions, and oct-trees in three dimensions) to decompose the physical 

domain space into units known as "cells", and thereby can reduce the time complexity to 

either O(N log N) [18) or O(N) !:5, 82) per time-step. This can be achieved by computing 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 

Figure 7.22: APPROXIMATING INTERACTIONS BETWEEN DISTANT PARTICLES 

• 

Group of 
Particles 

• • Equivalent 
Particle 

206 

the interaction forces exactly only for those particles that are determined to be "near" the 

particle in question; forces contributed by more distant particles are approximated. 

The Fast Multi-pole Algorithm (FMA) computes the potential forces among N particles 

in a time proportional toN. The leaf-level nodes of the corresponding domain decomposi-

tion tree contain particles, while coarser levels contain the field effects of the particles found 

in the rooted subtree. The algorithm makes two passes over the tree. During the upward 

pass, the summary of field effects of particles in the subtrees are propagated up the tree, 

while during the downward pass the local expansions and direct particle interactions are 

computed. 

In order to reduce the computational effort associated with computing direct particle-

to-particle interactions, the FMA clusters particles and computes the interactions between 

clusters that are sufficiently far away6 (Figure 7.22) using multi-pole expansions, which 

represent the potential field effect of a number of particles as an infinite series. Any level of 

desired accuracy can be obtained by truncating the infinite series after a sufficient number 

of terms. 

6 Although there are precise definitions for "far away" and "well-separated", for the purposes of this thesis 
the intuitive definitions will suffice. Interested readers may consult the previously cited works. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 207 

The FMA has also been shown to be fairly well suited for parallelization, and, with 

appropriate partitioning and scheduling, can execute with very little interprocessor com

munication [83, 112, 142, 146]. 

7 .4.2 Available Parallelism in the FMA 

The unit of parallel granularity in the FMA is the cell, and there are three types of cell 

dependencies: nearest neighbors, parent/child relationships, and interaction lists (the in

teraction list for a cell x at some level is the set of cells that are children of the nearest 

neighbors of x and that are well-separated from cell x). Compared to other hierarchical N

body algorithms, such as the Barnes-Hut algorithm [18] which requires distant data access 

for every particle, the FMA data access is relatively local. 

Greengard [83] has shown that some phases of the FMA, such as the multi-pole expan

sion computations at the leaf-level in the upward pass and the local expansion and the sum 

of the direct far-field computations at the leaf-level of the downward pass, are well-suited 

for parallelization and can execute with a complexity of 0(~). Other phases may involve 

interprocessor communication, such as when parent and child nodes are not assigned to 

the same processor, or during the computation of interaction lists which involves cells lo

cated on different processors. In addition, direct interaction computations with particles 

in nearest neighbor cells may involve interprocessor communication in the cases in which 

the computation crosses processor boundaries. Finally, barrier synchronization is needed 

between the upward and downward passes. 

The FMA can, however, lead to load imbalance that can only be corrected dynamically. 

There are two principle contributing factors. The first is due to unequal particle distribution; 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 208 

i.e., an unequal number of particles in each cell. This will increase the number of direct 

particle interactions that must be calculated for certain regions in the domain space. This 

problem may also be exacerbated by the movement of particles as the simulation progresses. 

Another factor leading to runtime imbalance is the difference in computation required for 

particles near the domain boundary versus interior particles (interior particles tend to have 

more direct particle interactions). Due to these factors (and to systemic variances, which 

can also have a part in runtime load imbalance), a dynamic load balancing strategy must 

be employed in order to achieve maximal efficiency. 

7.4.3 Explicit and Integrated Master/Worker Load Balancing 

As we have mentioned, the parallel FMA N-body simulation code we are using for our 

experiments came bundled with a tightly-integrated, explicit load balancing mechanism 

based on a modification of the Master /Worker load balancing method we have previously 

described. We will now provide an overview of this method, as it will be subsequently used 

in our experimental analysis." We will begin our discussion assuming that the application 

has broken the data domain into a number of "cells". Cells contain particles, and interact 

with some subset of other cells (called an Interaction List), which are specified using a MAC 

(Multi-pole Acceptability Criterion) macro. 

The N cells are initially distributed to the P available processors in a static manner; each 

processor is allocated If, cells. Each processor then partitions its local cells into batches, 

according to the load balancing method used. For the purposes of this load balancing 

discussion, the batch creation scheme is irrelevant. However, the relevant methods include: 

• Static-Sized Chunking: Static chunking allocates cells to processors in fixed-size 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 

Figure 7.23: MASTER-WORKER INTERACTION: CASE 1 

1. Notify Master of completed iterations 

2. Reply with local work 

209 

batches. When the size of each batch is a single cell, this is referred to as Guided 

Self-Scheduling. The size of the batches represents a trade-off between load balancing 

and overhead; for small batches, load balancing is often good but overhead is often 

high. The high overhead is attributable to the number of scheduling events that must 

take place. At the other extreme, scheduling cells in batches of size ~ leads to very 

low overhead, but will often result in load imbalance. 

• Dynamic-Sized Chunking (Factoring): The factoring method of batch creation 

aims to reduce the number of scheduling events while still maintaining satisfactory 

load balance. To do this, batches are dynamically sized, with large batches being 

scheduled early and small batches scheduled later in order to smooth out the load 

imbalance. It has been shown that a good size for the batches is to contain half of the 

remaining work in each batch; therefore each batch is half the size of the previously 

scheduled batch, up to some minimum batch size. 

Once the cells are partitioned among the processors, and each processor has partitioned 

its local cells into batches, the batches must be scheduled for execution. One processor is 

designated as the Master processor and is responsible for maintaining accurate counts of 

how many batches and cells have been executed by each processor. Each time a processor 

wishes to execute some work, it must communicate with the Master processor requesting 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 

Figure 7.24: MASTER-WORKER INTERACTION: CASE 2 

1. Notify Master of completed iterations 

4. Slow processor yields 
work unit to helper 
processor 

3. Master commands 
slowest processor 
to yield a work unit 

210 

pending work to be done. This request will contain the number of cells that have been 

completed, so that the Master may update its counters and thereby keep an accurate and 

up-to-date picture of the system. For instance, at the beginning of program execution, each 

worker processor will send a message to the Master stating that it has completed no work. 

The Master may then reply in one of the following ways. 

• Case 1: Worker still has local work: Because the Master is aware of how cells have 

been allocated at the beginning of the program, and maintains an up-to-date counter 

specifying how much work each processor has completed, it is able to know whether 

or not the worker processor still has local work remaining. In this case, the Master 

will reply that the worker node should schedule the next local batch for execution. 

This interaction looks like the communication pattern contained in Figure 7.23. 

• Case 2: Worker has run out of local work, but work still remains in the 

system: One consequence of notifying the Master processor each time a batch is 

scheduled is that the Master is aware how much work remains on each processor 

and is therefore able to determine which processor is the slowest (has the most work 

remaining). This slow processor is also the one that would benefit the most from 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 211 

off-loading some of its remaining work. In this case, four messages are required: 

1. Message from the worker processor to the Master notifying it that it has finished 

a batch and requests more work to do. However, there is no local work remaining. 

This worker processor we will call the Helper. 

2. Message from the Master back to the Helper informing it that there is no local 

work available. Work will therefore be arriving from the slowest processor; the 

Helper processor therefore knows from where work will be arriving and how to 

post the receive operation to receive it. 

3. Message from the Master to the Slow processor instructing it to yield the next 

batch and send it to the Helper processor. 

4. Message from the slow node to the Helper node containing the batch of work. 

This interaction follows the communication pattern shown in Figure 7.24. 

• Case 3: The Master. itself has run out of work, but work still remains in 

the system: The Master processor is initially allocated cells to execute; once these 

cells are finished the Master tries to pull work to itself for execution. Again, because 

the Master keeps track of the amount of work executed by each processor, it knows 

which processor has the greatest amount of work remaining and selects this processor 

as the load balancing processor. The Master requests a batch of cells from this slow 

node, and the node replies with cells for execution. The communication pattern is 

illustrated in Figure 7.25. 

• Case 4: Worker has run out of local work and no work remains in the 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 

Figure 7.25: MASTER-WORKER INTERACTION: CASE 3 

1. Master request work from slow node 

(Master 

2. Slow node replies with work 

212 

system: In this case, the Master replies with an exit message, signalling the worker 

that its portion of the application is finished. Once the Master has sent P - 1 such 

exit messages, it may exit itself. 

There are several reasons why such a load balancing scheme may not perform optimally. 

First is that, for each and every batch scheduled, synchronization is required between the 

worker processor and the Master processor. In the case of load balancing, in which cells 

must migrate to a helper processor, this synchronization may extend to three processors. 

This problem is compounded by the fact that, without preemptive decision making, 

messages may arrive at a processor some period of time before they are processed. This is 

because messages may arrive (particularly at the Master) while the recipient is processing 

a work unit. The newly arrived message will therefore be delayed, and will result in idle 

cycles on the worker processor. In the case of load balancing (Case 2 above), this may 

happen twice: once when the worker sends the initial request to the Master, and again 

when the Master processor sends the yield command to the slowest node. While it is the 

case that the FMA code has been designed in such a way so that periodic polling operations 

are inserted into the work units, this is not the case in all applications (nor is it always 

possible}. In addition, over-polling can become a problem as well. It is important to note 

that the burden of deciding the optimal polling frequency has been placed on the application 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 213 

developer, forcing him or her to make a decision about which they may know very little. 

By removing the synchronization with the Master processor and by providing preemptive 

decision making, we can reduce the idle time spent by the worker processors and improve 

load balancing performance. 

7 .4.4 Load Balancing using the PREMA Library 

We had several guidelines to bear in mind as we adapted the existing N-body code to use 

the PREMA library. First, we wanted to impact the existing code as little as possible. The 

FMA can be quite complex, and it is an area in which we are not experts. We therefore did 

not want to undertake the task of modifying existing data structures or tinkering with the 

FMA itself. Second, we wanted to reuse as much existing code as possible. For instance, 

routines were already in place to pack and unpack data structures for migration during 

load balancing. Finally, we obviously wanted to remove all traces of the Master-Worker 

scheduling algorithm that was already in place and replace it with PREMA scheduling 

policies. This task was simplified by the fact that the original load balancing code was 

isolated into a module that was separate from the FMA itself. 

Four things must be done in order to adapt the FMA N-body code to make use of the 

PREMA dynamic load balancing functionality: 

1. Create mobile Schedulable Objects. Schedulable Objects are application-defined 

data objects which represent the decomposition of the overall data domain. Load 

balancing is achieved via the migration of Schedulable Objects and their associated 

computation. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 214 

2. Invoke computation using messages to objects. The PREMA runtime system 

binds computation to data in a message-driven manner. Messages sent to data ob

jects invoke computation in the form of application-defined message handler routines. 

Messages bound to Schedulable Objects migrate with their targets in order to effect 

load balancing. 

3. Create callback routines invoked by the runtime system. The runtime system 

must have a mechanism to asynchronously obtain information concerning the appli

cation's data objects and pending computation. This is achieved through the use of 

several callback functions provided by the application. 

4. Select a load balancing scheduling policy. The PREMA system does not pro

vide a single load balancing algorithm, but is instead a framework that allows load 

balancing scheduling policies to be quickly and easily substituted in a "plug-and-play" 

fashion. The application may select from one of the supplied policies, or may choose 

to implement a custom policy. 

Below, we will cover each step in more detail and describe how each relates to the specific 

FMA N-body simulation code. 

TheN-body application code naturally partitions the global data domain into discrete 

units called "cells" which act as scheduling units. Therefore, cells make a natural candidate 

for Schedulable Objects. However, cells are typically scheduled in "chunks", which contain 

one or more cells. We have decided to make each chunk of cells a single Schedulable Object. 

The size of each cell, the particles contained within each cell, and the cells to be contained 

within each chunk are determined at the beginning of a time-step. Equal numbers of cells 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 215 

Figure 7.26: POSSIBLE CHUNKING SCHEMES FOR 16 CELLS 

Chunk= 1 

Chunk= s Chunk= 4 c~ A 

Chunk=4 Chunk=4 Chunk=4 Chunk=4 

are distributed to each processor, and are then grouped into chunks according to either a 

Static-Sized or Dynamic-Sized chunking policy (Section 7.4.3 and Figure 7.26). Each chunk 

is registered with the PREMA system as a mobile Schedulable Object. From this point 

onward, it is the responsibility of the runtime system to migrate objects in order to restore 

load balance; the application no longer has any control over cell migration. 

In order to minimize the impact to existing code, we did not modify the cell data struc-

ture in order to accommodate the mobile object concept. Instead, we created a "wrapper" 

data structure that defines a chunk. This data structure contains the cell IDs of the first 

and last cells in the chunk (the cells contained within a chunk always have contiguous cell 

IDs), and a PREMA mobile pointer pointing to itself. This is for convenience only and 

is not required by the runtime system. Finally, the chunk contains a flag which denotes 

which FMA work routine to execute; the original FMA code has one work routine for lo-

cally created work and a separate routine for chunks which have been migrated. In order 

to maximize code reuse we chose to stick with this mechanism. Our chunk data structures 

interface well with these existing computation routines, as each takes as parameters the first 

and last cell IDs for the cells whose forces are to be computed. Our chunk data structure 

is shown in Figure 7.27. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 

Figure 7.27: CHUNK DATA STRUCTURE WRAPPER 

struct prema_chunk_t { 
int first_cell_id; 

}; 

int last_cell_id; 
mol_mobile_ptr_t self; 
int work_flag; 

II ID of first cell in the chunk 
II ID of last cell in the chunk 
II PREMA mobile pointer to myself 
II Should we execute FMA's work() routine 
II or Others_Work() routine? 

216 

Once the application has created chunks and registered them with the runtime system as 

PREMA Mobile Objects, computation must be invoked on each chunk. We use a message-

driven mechanism to bind computation to data; as data migrates during load balancing, 

computation is implicitly relocated smoothing out the computational workload. Messages 

are passed not only between processors, but from processors to application-defined data 

objects (mobile objects); it is the responsibility of the PREMA system to route messages to 

objects, even though objects have the ability to migrate between processors. An efficient dis-

tributed directory data structure combined with message forwarding allows message routine 

to take place with minimum overhead, sparing the application from the complex bookkeep-

ing that is associated with mbbile objects [50]. 

After a chunk mobile object is created, a message is sent to it using PREMA's message 

operation. Message processing at the target takes place only during PREMA polling opera-

tions and involves invoking an application-defined handler routine. This handler is provided 

with a pointer to the chunk data structure, from which the first and last cell IDs contained 

within that chunk can be obtained. The chunk also contains a flag which indicates whether 

this chunk was created locally or has been migrated due to load balancing. The original 

FMA code distinguishes between these two cases, and therefore the PREMA adaptation 

does as well. The appropriate FMA supplied work routine is then executed. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 217 

The third task is to create the six callback routines that are application-defined but 

invoked by the runtime system. These routines provide information to the runtime system 

that is then used to provide. priorities to individual objects for scheduling purposes and to 

prepare data objects for migration. The following are the routines that must be provided: 

• Packing chunks into buffers: For packing data objects, we are able to make use 

of a packing routine that was already contained in the FMA code. The packing 

callback function takes as parameters a pointer to the object to be packed, a pointer 

to a system-managed buffer, and the target processor id to which the chunk is to be 

migrated. The first things packed into the buffer are the cell IDs of the first and 

last cells contained within the chunk. After this, each cell must be serialized and 

packed into the buffer. Once the packing is complete, the chunk data structure may 

be deallocated. The number of bytes packed into the buffer is then returned7• 

• Unpacking chunks from buffers: Unpacking a chunk is simply the reverse proce-

dure of packing it. Again-, we can make use of code which already existed within the 

FMA. After the cells have been unpacked and a new chunk object created, we set the 

work-flag field to indicate that this object has been migrated. This routine returns a 

pointer to the newly created chunk object. 

• Determining the chunk size: This routine returns the size of a chunk object 

in bytes. The original FMA code has a similar routine which returns 40000 bytes, 

regardless of the actual size of the chunk; this seems to be a upper bound on the 

7The original FMA code always stated that the size of the packed buffer was 40000 bytes, regardless of 
the actual size. This seems to be an upper limit on the size of a chunk. We have maintained this policy in 
our adaptation. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 218 

potential size of a chunk. Larger chunk sizes will cause the FMA code to fail. For 

consistencies sake, we will continue this policy in our adaptation, although in no way 

is it required. PREMA allows mobile objects to be of any size. 

• Determining the load of a chunk: The load imposed by a particular chunk is 

dependent upon where the contained cells lie in the domain space (on the boundary 

or in the interior) as well as the number of direct particle interactions contained within 

the cells. However, for the purposes of this adaptation it is sufficient to state that the 

load imposed by a chunk is proportional to the number of cells contained within that 

chunk. Therefore, we state that the load of a chunk is the number of cells within that 

chunk. 

• Determining the granularity .of a chunk: The granularity of a chunk is an integer 

index which indicates the difficulty in migrating that chunk. Although the size of 

chunks may vary (depending on the number of cells and particles contained within 

that chunk), we elect to state that all chunks are equal difficult to migrate. Therefore, 

we always return 1. 

• Determining the priority of a chunk: The priority of a chunk is a vector with 

an entry for each processor in the parallel system. Each entry is an integer, which 

higher values indicated a greater "affinity" that chunk has for the associated processor. 

The application can steer the data migration pattern, for instance by assigning a 

higher value to the local processor in order to discourage migration, or assigning equal 

values to each processor in order to attempt to achieve the smoothest possible load 

distribution. The load and granularity values for the chunk are passed as parameters 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 219 

to this routine and can be used to calculate the priorities. Because we want as smooth 

a load balance as possible, we set each entry in the priority vector to be the load value 

calculated for ·this chunk. This will guarantee that larger chunks will execute first, 

which is what is necessary for fractiling [74) scheduling. 

The PREMA runtime library does not provide simply a load balancing algorithm, but 

is a framework in which many conceivable algorithms may be developed and experimented 

with quickly. Moving from one method to another involves minimal impact to existing 

source code. Several load balancing policies come packaged with the PREMA system and are 

available for immediate use, such as diffusion, work-stealing, and Multi-list [158] methods. 

Some experimentation may be necessary in order to determine the optimal load balanc

ing algorithm. We have elected to use a diffusion method, in which the available processor 

pool is grouped into overlapping neighborhoods. When a processor detects that it is un

derloaded, it first sends a request to each neighbor asking its current work load. Once 

a response is received for each neighbor, the underloaded processor selects the neighbor 

with the heaviest load, and requests work to be migrated. If certain neighbors reply that 

they have no work to contributed, the underloaded processor may replace them with new 

neighbors for the next round of load balancing. 

The number of neighbors can be varied at the beginning of the application run, and 

represents a tradeoff between overhead and a more complete system image. Although 

load balancing takes place asynchronously and does not require synchronization within a 

neighborhood, the overhead grows with the neighborhood size. However, greater number of 

neighbors tends to lead toward more even work load distribution, due to the fact that a more 

complete system image is available to the underloaded processors. In our experiments with 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 

Figure 7.28: UNIFORM (A) AND NON-UNIFORM (B) POINT DISTRIBUTION 

"uniform-1000.dar + 

1000 

(a) 

1000 
900 
800 
700 
600 
500 
400 
300 
200 
100 • 

0 

'non-uniform.1000.dlllr + 

1000 

(b) 

220 

this N-body code, we have found that eight neighbors tends to represent a good tradeoff, 

although this number is somewhat application dependent. 

7 .4.5 Experimental Results 

We will examine the performance of the PREMA load balancing library using theN-body 

code we have previously described and which was provided by Mississippi State University, 

and which implements the Fast Multi-pole Algorithm. All of our experiments are performed 

on 64 nodes of 650 MHz Sun lie machines with 1 GB of memory and connected using Fast 

Ethernet (100 Mbit). Communication is performed using LAM/MPI v.7.0. All simulations 

contained 1 million points and a cubic spatial domain with each dimension of length 1000, 

and progressed through a single time-step. 

All experiments begin with one of two initial point distributions. Uniform distribution 

randomly distributes the particles throughout the spacial domain (1000 particles scattered 

with a uniform distribution are shown in Figure 7.28(a)). Non-uniform particle distribution 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 221 

Figure 7.29: N-BODY PERFORMANCE WITHOUT LOAD BALANCING 

350~~~--~~--~~--~~-

300 I Computation Time I Computation Time 

Processor ID Processor ID 

(a) (b) 

N-body execution times for a single time-step without load balancing for uniform (a) and 
non-uniform (b) distributions of 1 million particles. 

restricts the assignment of points to half of the cube, as shown in Figure 7 .28(b). The same 

number of particles are used in both distributions. 

In order to obtain a baseline for performance comparisons, we ran the simulation with 

no load balancing (Figure 7.29). Even with a uniform particle distribution (Figure 7.29(a)), 

the simulation is not ~ell load balanced. This is due to the differing numbers of particle 

interactions for particles in the interior versus those near the boundary. Figure 7.29{b) con-

tains the results for the simulation with a non-uniform distribution. Half of the processors 

are unused, due to the fact that cells are created by recursively geometrically dividing the 

spacial domain, regardless of the locations of particles within the domain. Therefore, half of 

the cells are empty. Cells are then distributed to processors such that each processor begins 

with an equal number of cells. Due to the method of cell allocation, half of the processors 

receive empty cells and therefore have no interactions to compute. 

Figure 7.30 contains the results for load balancing using both the PREMA runtime li-



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 222 

Figure 7.30: UNIFORM DISTRIBUTION WITH FIXED CHUNK SIZE 1 

350~~~--~~-.~~-.~--~ 

I ldleTime 
1 Migrated Computation Time 
~ Computation Time 

(a) 

300 

250 

1204.1 
~ 

~ 

I ldleTime 
I Migrated Computation Time 
m Computation Time 

8 16 24 32 40 48 56 64 
Processor ID 

(b) 

N-body execution time for a single time-step using PREMA (a) and Master/Worker (b) 
load balancing for uniformly distributed 1 million particles and a static chunking scheme of 
chunk size 1. 

brary and the Master/Worker algorithm originally incorporated into theN-body code (and 

hereafter referred to as the "Master/Worker" scheme)8 . In both cases a static chunking 

scheme was employed in which chunks were made up of single cells. While such a chunking 

method increases the number of scheduling events, the work load can be more finely dis-

tributed, which leads 'to a more even load distribution. Performance is roughly equal with 

each load balancing scheme, with overall runtime varying by less than one second. 

Another metric that is commonly used to examine the load balancing efficiency is a 

ratio between the maximum processor computation time to the average time; the closer 

this ratio is to one, the more even the work distribution. In the case of PREMA, this ratio 

for the above experiment is 1.020, while for the Master/Worker scheme this ratio is 1.024. 

However, this figure can be somewhat deceiving in this case. Overheads attributable to the 

8 In all cases, the execution times of the PREMA experiments are equal across all processors, while this is 
not the case with the Master/Worker method. This is an artifact of the application itself; a "work loop" in 
which all computation is performed is timed. With PREMA, this loop does not terminate until all processors 
have completed, leading to equal execution times across all nodes. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 223 

Figure 7.31: UNIFORM DISTRIBUTION WITH FIXED CHUNK SIZE 6 

350 350 

300 I Idle Time 300 I IdleTime 
I Migrated Computation Time 1 Migrated Computation Time 

250 
I! Computation Time 

250 
~ Computation Time 

i215.5 I 205.s 0 
il _; 
~ 

~ 
150 ~ 

j::: 

100 

50 

0 
Processor ID Processor ID 

(a) (b) 

N-body execution time for a single time-step using PREMA (a) and Master/Worker (b) 
load balancing for uniformly distributed 1 million particles and a static chunking scheme of 
chunk size 6. 

runtime system can give the appearance of a smooth workload. What is important to note 

is that the work distribution achievable with PREMA can very closely mirror that of the 

Master/Worker method, which is shown to be optimal. 

Figure 7.31 contains the results for the same experiment using a chunking scheme where 

six cells are allocated t~ each chunk (there is a single chunk per processor which contains 

4 cells; 64 cells are allocated to each processor initially). We can see that the runtime 

increases slightly for both load balancing methods, although PREMA suffers more. This is 

due to the fact that the Master/Worker method benefits from knowledge of a global system 

state. The Master processor is able to determine the optimal processor to donate work to 

underloaded nodes, ensuring at all times an optimal workload distribution. The PREMA 

scheduler used in this test makes use of a diffusion algorithm which maintains only local 

state information. Optimal workload distribution is not possible in this case. However, 

three points should be stressed here: 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 224 

Figure 7.32: NON-UNIFORM DISTRIBUTION WITH FIXED CHUNK SIZE 1 

8oo~~~~~~~~,-~~-r~ 

I IdleTime 
1 Migrated Computation Time 
m Computation Time 

700 

600 

I ldleTime 
1 Migrated Computation Time 
1 Computation Time 

8 16 24 32 40 48 56 64 
Processor ID Processor ID 

(a) (b) 

N-body execution time for a single time-step using PREMA (a) and Master/Worker (b) load 
balancing for non-uniformly distributed 1 million particles and a static chunking scheme of 
chunk size 1. 

1. given sufficient workload, the PREMA results presented here are nearly identical to 

the Master /Worker method, 

2. because the PREMA diffusion scheduler presented here makes use of only local infor-

mation, it is theoretically more scalable than the Master /Worker method9 , 

3. and nothing prevents a developer from implementing the Master /Worker method 

within the PREMA framework10 . 

Figure 7.32 shows the results for load balancing a non-uniform particle distribution. 

Simulation times vary from one run to the next; however, PREMA overall run times varied 

from being nearly identical to their Master /Worker counterparts to being slower by 1%-

2%. This runtime variation can lead to some interesting results, such as what is shown in 

9 We would have liked to demonstrate this fact, but the Master /Worker method crashed for 128 processors, 
and the processor count must be a power of two. 

10 Although this implementation should be quite trivial, we have not done it. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 225 

Figure 7.33: UNIFORM DISTRIBUTION WITH DYNAMIC CHUNK SIZE 

350~~~~~~~~~~~~~ 350~~~--~~--~~--~~-

300 

250 
~216.0 
i 
~ 

I Idle Time 
1 Migrated Computation Time 
H Computation Time 

Processor ID 

(a) 

300 

250 

I 204.1 
~ 
.§ ,... 

I IdleTime 
1 Migrated Computation Time 
B Computation Time 

Processor ID 

(b) 

N-body execution time for a single time-step using PREMA (a) and Master/Worker (b) 
load balancing for uniformly distributed 1 million particles and a dynamic chunking scheme. 

Figure 7.32. Here, the load balancing quality demonstrated by PREMA is higher (the ratio 

between the maximum and average computation times is 1.037, while for the Master/Worker 

method it is 1.076), while the overall runtime is also higher! Again, PREMA benefits from 

having a finer-grained workload decomposition, but is theoretically more scalable due to the 

fact that this particul~r Scheduler module makes use of only local neighborhood information. 

A dynamic chunking scheme creates chunks of different sizes on each processor; each 

chunk contains half of the remaining cells allocated to that processor. Larger chunks are 

scheduled at the beginning of the execution, while smaller ones are left to the end to smooth 

out any load imbalance. 

Figure 7.33 contains the execution times for both PREMA {Figure 7.33(a)) and the 

Master/Worker method (Figure 7.33(b)). The overall execution times are within 3%, and 

the ratios between the maximum and average computation times are also similar (1.061 

for PREMA and 1.032 for the Master/Worker method). Also of note is that the overall 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 

Figure 7.34: NON-UNIFORM DISTRIBUTION WITH DYNAMIC CHUNK SIZE 

I IdleTime 
I Migrated Computation Time 
~ Computation Time 

Processor ID 

(a) 

I Idle Time 
I Migrated Computation Time 
• Computation Time 

Processor ID 

(b) 

226 

N-body execution time for a single time-step using PREMA (a) and Master/Worker (b) 
load balancing for non-uniformly distributed 1 million particles and a dynamic chunking 
scheme. 

execution times displayed in Figure 7.33 are very similar to those in Figure 7.31. This 

indicates that a performance improvement could be obtained through a finer decomposition 

of cells. 

However, Figure ~.34 contains data from the same experiment but with a non-uniform 

initial particle distribution. In this case, runtime suffers greatly. This is due to two primary 

factors. First, having the same number of particles in half the space dramatically increases 

the number of direct particle interactions, increasing the computational "weight" of each 

cell. Second, only half of the cells have particles in them, meaning only half of the cells have 

work to do. These factors together make the workload much more coarse and a smooth 

distribution impossible. 

Even so, the overall runtime achieved using the PREMA library is within 1% of the time 

achieved using the Master/Worker method. As we have seen in some other experiments, the 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 227 

Table 7.2: SUMMARY OF OVERHEADS ATTRIBUTABLE TO PREMA 

II Overhead Type II Uniform Distribution I Non-uniform Distribution II 
Polling Thread 0.2477 sec 0.5810 sec 
Message Sends 0.0392 sec 0.0194 sec 
PREMA Message Handlers 0.0214 sec 0.0066 sec 
Determining Neighbors 0.0004 sec 0.0010 sec 
Determining Data to Migrate 0.0000 sec 0.0001 sec 
Scheduler Handlers 0.1554 sec 0.5249 sec 
Callback Routines 0.0197 sec 0.0609 sec 

Total Overhead 0.4838 sec 1.1937 sec 
Total Runtime 204.9 sec 400.4 sec 
Overhead Percent :::::0.24% :::::0.29% 

total amount of work performed by the PREMA version is greater than the work performed 

by the Master /Worker method, although the reason for this is not known. While it is true 

that a second thread is employed by PREMA, this does not account for the difference as 

the total execution time of the thread is a fraction of a single second on each processor. In 

addition, the same cells are allocated to each processor in each case, and the same cells are 

grouped into chunks. It is even often the case that the same chunks are migrated during 

load balancing in each case. 

In addition to demonstrating the quality of the resulting load balancing and the re-

duction in overall runtime, it is important to show that the PREMA runtime system does 

not contribute significant overhead which may adversely affect application performance. 

Table 7.2 contains the overheads attributable to the PREMA system for two different ap-

plication runs. The column marked "Uniform Distribution" corresponds to an initially 

uniform particle distribution (whose runtime breakdown is given in Figure 7.30(a)), while 

the "Non-uniform Distribution" column corresponds to a run with an initial particle imbal-

ance (Figure 7.32(a)). 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 228 

Overhead attributable to the PREMA system can be divided into several categories. The 

first is the overhead attributable to the second, polling thread which periodically interrupts 

executing user. work units to check the network for load balance requests and updates. We 

can see that in the case of non-uniform distribution, the polling thread takes a greater 

amount of time than with a uniform initial distribution. This is due to the fact that the 

non-empty work units have a greater number of particles, must therefore compute a larger 

number of inter-particle interactions, and therefore take longer to compute. This gives the 

polling thread more opportunity to "wake up" and therefore incur greater overhead. 

Correspondingly, the second category ("Message Sends" and "PREMA Message Han

dlers") incurs a smaller overhead in the initially imbalanced case. There are fewer cells that 

require work, and therefore fewer messages must be sent. This second category measures 

the overhead incurred by the runtime system in sending and receiving messages. 

The third category measures the overhead caused by the Scheduler module itself. It 

should be noted that this overhead is influenced by the design and implementation of the 

Scheduler, and will therefore vary from one Scheduler to the next. The components here 

are "Determining Neighbors", "Determining Data to Migrate", and "Scheduler Handlers". 

The overhead corresponds to the number of load balancing invocations and items migrated, 

and is therefore higher in the initially imbalanced case. 

The final category is "Callback Routines", which measures the time spent in priority 

calculation, and the packing and unpacking of migratable objects. These times are again 

influenced by the number of work units that are migrated. In addition, the packing and 

unpacking routines are influenced by the number of particles in the migrating cell, which is 

greater in the initially imbalanced case. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 229 

Figure 7.35: MASTER/WORKER LOAD BALANCING WITHOUT PREEMPTION 

1600 ...-.r-r-.--.-r--r--.--,-.....-.--.--,-..,.-,,.,..--, 
I IdleTime 

500 I Migrated Computation Time 
m Computation Time 

Processor ID 

(a) 

1400 I Idle Time 
I Migrated Computation Time 
~ Computation Time 

(b) 

N-body execution time for a single time-step using the Master/Worker method with no 
polling during work units for uniform (a) and non-uniform (b) particle distributions. 

While the overheads are greater in the imbalanced case, the runtime percentage at-

tributable to overhead is roughly equal for uniform and non-uniform particle distributions. 

Furthermore, we can see that the PREMA overhead accounts for far less than 1% of the total 

runtime, demonstrating that PREMA can be used to effectively balance dynamic runtime 

load without concern that it will dominate application performance. 

Finally, we want to graphically demonstrate the importance of preemptive decision 

making to load balancing success. The Master /Worker method is dependent upon periodic 

polling operations placed within the computational routines. PREMA, on the other hand, 

removes this necessity by incorporating a preemptive thread which awakes periodically to 

check for load balancing requests and updates. The frequency at which this thread awakes 

represents a tradeoff between timely message processing and additional overhead. However, 

this approach can be advantageous in the cases in which third party software is used during 

work routines for which source code is not available. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 230 

Figure 7.35 depicts the results of the Master/Worker load balancing method when no 

polling takes place during work routines for uniform (Figure 7.35(a)) and non-uniform 

(Figure 7.35(b}) initial particle distributions. Both instances suffer dramatically from two 

problems. The first is the great increase in processor idle time, due to the fact that processors 

must wait for messages from the Master processor before beginning computation on any 

chunk. If the request arrives at the Master during a local computation phase, the Master 

must complete its work (which, in this case may take over a minute) before responding. 

This time is charged as idle time to the Worker processor. The second problem is that a 

load balancing request from the Master must suffer this delay once, while a work request 

from any other processor must suffer twice (once while the request awaits processing at the 

Master, and again when the load balancing request must wait at the slowest processor). 

This leads to a work "spike" at the Master and a poor distribution of work. 

7.5 Loosely Synchronous Benchmark 

We conclude our performance evaluation discussion with a look at PREMA's applicability to 

the class of loosely synchronous parallel applications. To aid in this endeavor, we have con

structed a benchmark program which simulates the execution of our previously mentioned 

Parallel Constrained Delaunay Triangulation (PCDT) code over a series of successive time

steps. As input to the benchmark, we can specify the percentage of sub-domains to refine 

in each time-step, the percentage to de-refine or coarsen, and the volume of message traffic 

containing segment split information. Note that in the first time-step, all sub-domains are 

refined. The initial geometry is broken into 512 sub-domains in all cases. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 

Figure 7.36: LOOSELY SYNCHRONOUS TEST; 10 STEPS, 10% REFINEMENT 

8 

I ldleTime 
I Split Handler Time 
I Derefmement Time 
II Refinement Time 

16 24 32 40 48 56 64 
Processor ID 

(a) No load balancing 

I Idle Time 
I Split Handler Time 
I Derefmement Time 
!ill Refinement Time 

l'roc;esscor ID 

(b) PREMA load balancing 

231 

Figure 7.36 contains the results of two experiments carried out on 64 processors. In 

the top row, 10% of the sub-domains are refined, and 10% are de-refined in each time-step 

after the first. In Figure 7.36(a), we can see that the majority of the cycles are wasted; 

once past the initial time-step, the majority of processors have no work, which results in an 

unnecessarily long total execution time. Using PREMA's dynamic load balancing capability, 

we are able to substantially reduce the total runtime by distributing work with each time-



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 

Figure 7.37: LOOSELY SYNCHRONOUS TEST; 10 STEPS, 50% REFINEMENT 

I IdleTime 
I Split Handler Time 
I Derefmement Time 
!!I Refinement Time 

Processor ID 

(a) No load balancing 

I IdleTime 
I Split Handler Time 
I Derefmement Time 
I Refmement Time 

(b) PREMA load balancing 

232 

step (Figure 7.36{b)). We can still see that some processors remain idle within each time-

step; however, this is due to the lack of sufficient computation to keep each processor busy. 

With only 20% of the sub-domains requiring either refinement or coarsening, there are not 

enough tasks to allocate work to each processor. In this case, using the PREMA library for 

dynamic load balancing results in a 54% reduction in overall runtime. 

Figure 7.37 contains the results of a similar experiment. However, in this case 50% 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. PERFORMANCE EVALUATION 233 

of the sub-domains require refinement, and 50% of the sub-domains require de-refinement 

in each time-step. We can see from Figure 7.37{a) that, while none of the processors are 

completely idle in any time-step, the work is not distributed evenly and there are a large 

number of idle cycles that can be eliminated. Using the dynamic load balancing capabilities 

provided by the runtime system results in a reduction in total execution time of 23%. 

Repeating the same experiments with 20 time-steps instead of 10 gives similar results. 

PREMA provides a runtime improvement of 57% in the case of 10% refinement (reducing 

runtime from 180 to 103 seconds), and 24% in the case of 50% refinement (reducing runtime 

from 267 to 204 seconds). 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Chapte_r 8 

Conclusions and Future Work 

In this thesis, we have described two significant contributions: 

1. the design and development of the PREMA runtime system, which is mid-level sys

tem software to support the dynamic load balancing of adaptive, asynchronous, and 

irregular parallel applications; and 

2. the development of analytic modeling techniques which allow developers to study the 

effects of load balancer parameter settings in an inexpensive, off-line environment. 

Our experimental ·results and data from comparisons with several prevelant load balanc

ing tools and techniques have shown that PREMA can provide a significant performance 

improvement for parallel applications whose dynamic load imbalance is caused by either 

application or systemic factors. Our runtime system design is distiguished from other tools 

in the field by the flexibility it affords developers; PREMA provides not just a single load 

balancing policy, or a family of policies, but a framework in which a wide variety of scheduler 

types may be implemented. We have given some insight into the breadth of possible poli

cies by implementing several schedulers, and have demonstrated their efficiency on several 

challenging problems. 

234 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 235 

Our second contribution lies in the area of performance modeling. We have developed 

a technique based on the derivation of a bi-modal approximation function, which allows 

users to accurately approximate general task execution patterns using two distinct class 

types. In addition, we have highlighted a number of runtime parameters, including level of 

over-decomposition and preemption, or polling, quantum, which are of critical importance 

to load balancing quality and overall execution time. Using the analytic model we have 

developed, we are able to quantitatively study the impact of these parameters on applica

tion performance. In particular, our model may be used to answer the nagging question 

concerning the appropriate level of over-decomposition. Before a problem domain is parti

tioned, which can be a significant problem in and of itself, the performance achievable from 

such a partitioning can be accurately predicted. This gives developers the ability to make 

educated and informed decisions, potentially shortening this costly application phase. 

With the PREMA toolkit, users create applications using an explicit-message passing 

paradigm, which is already very familiar to most developers. In addition, applications 

may be created in C/C++, a language which is already the platform of choice for many 

third-party numerical kernels and for which sophisticated compiler support already exists. 

Such familiarity ensures that developers will be able to quickly get their bearings and begin 

writing quality parallel code. 

The architecture of the runtime system allows developers to utilize only that function

ality which they deem appropriate. For instance, applications may be developed using only 

the provided global namespace and message passing abilities. Once this initial development 

stage is complete, if workload imbalance is deemed to be harmful, dynamic load balancing 

can be quickly incorporated without requiring significant portions of code to be rewritten. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 236 

In fact, this can often be done simply by including the proper header file, with no further 

modification to the code at all! We feel this approach will allow applications experts to 

quickly feel at ease with PREMA; functionality which is not necessary does not have to be 

incorporated. 

We have also striven to keep the interfaces of our software libraries as compact as 

possible. This can often lead to a tradeoff; it is often the case that small interfaces lead 

to inflexible software. However, we have had the opportunity to work in close coordination 

with our "first wave" of application developers, and through this interaction we have been 

able to ensure that PREMA includes those operations which are determined to be the most 

beneficial for adaptive and asynchronous codes. 

PREMA's explicitly parallel message-passing paradigm is a common one throughout 

the scientific computing community, and this can allow our runtime system to be quickly 

integrated into existing codes. We have demonstrated this ability with a challenging N

body simulation code, which a single student was able to integrate with our system software 

in under two days. Furthermore, the performance achievable with PREMA's load balancing 

capability lead to significant reductions in overall runtime versus no load balancing, and 

was comparable to a provably optimal, tightly integrated load balancing mechanism that 

was already in place within the application. 

This project highlights two advantages of the PREMA system, from the application 

developer's point of view. By separating load balancing from the application itself, devel

opers are able to concentrate on their domain of expertise, leaving the system management 

and task scheduling to a third-party software library. This leads to a reduction in code 

complexity and simplifies subsequent code maintenance. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 237 

Our future goals for this line of research again focus on two areas. We first plan to in

corporate the lessons we have learned in system architecture to improve the performance of 

the PREMA implementation. Two areas worth mentioning at this time are efficiency across 

runtime layer boundaries (e.g., between DMCS and the MOL), as well as message passing 

performance for large numbers of small messages. Many of the codes we have studied are 

relatively coarse-grained in their decompositions. We are interested in exploring PREMA's 

applicability to more fine-grained application types, where communication between com

ponents is much more frequent. Of critical importance is developing a message passing 

architecture in which the more sporadic load balancing request and update messages do not 

become lost in a flood of application messages, hampering load balancing efficiency. 

A second line of future research involves integrating our analytic modeling capabilities 

with the runtime itself, in order to use the model's predictive abilities to dynamically 

"steer" the application in the presence of dynamic resource requirements. This involves 

adapting our off-line model to an on-line environment, and embedding it into the runtime 

system itself. The model will act as a component in a feedback loop, which will monitor 

the application's status and performance and use this information to adjust any parameters 

made available by the runtime system. Such a capability will be particularly useful for long

running programs which are composed of phases with very different resource requirements, 

or in multi-user environments. Additionally, this will remove some setup burden from the 

developer. 

At any rate, the work contained within this thesis is useful to computational scientists 

today. We have demonstrated the scalability, efficiency, and applicability of our software 

design and implementation. We have furthermore armed the developer with an analytic 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 238 

toolkit so that they may achieve the maximum performance from the runtime software. We 

hope these tools will continue to mature and impact future scientific computing projects. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Appendix A 

Compiling and Installing the 

PREMA Libraries 

The PREMA runtime system is composed of several component libraries, which may be 

compiled all together or separately. Only those libraries which provide the functionality 

actually used by the application need to be linked in order to form the executable. In other 

words, if the application uses only the functionality provided by the DMCS library, only 

libdmcs.a must be linked in order to form the executable program. 

The first step in preparing to compile and install the libraries is to edit the config-defs 

file in the prema/ directory. Several macros need to be set to accurately reflect the current 

directory structure and compilation environment: 

• TOPDIR: This macro should be set to the directory in which the PREMA source 

code can be found. The dmcs/, mol/, and ilb/ directories should be found here. 

• CXX: This defines the C++ compiler that should be used to compile the source code. 

Unlike earlier versions, a C++ compiler must be used to compile all layers of the 

PREMA library. 

239 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX A. COMPILING AND INSTALLING THE PREMA LIBRARIES 240 

• SYSYLAGS: This macro is used to tell the library what type of system it is being 

compiled on. This is often necessary, for instance, in determining what header files 

are-present. An example is that header files such as sysjtime.h, which are found on 

Unix systems, are not found on Windows platforms. This macro is used to control 

the conditional compilation. Some common definitions to be included are: 

- -D __ GCC_296 __ : Specifies that the g++ v. 2.96 compiler should be used for 

compilation. 

- -D __ SOLARJS_CC __ : Specifies that the Sun Microsystems C++ compiler should 

be used for compilation. 

- -D __ WIN_32_CC_: Specifies that the Windows C++ compiler should be used 

for compilation .. 

- -D _ _LONG_LATENCY _NETWORK __ : This macro should be defined when com-

piling the PREMA system for a platform in which Ethernet is used within the 

communications layer. This will specify the "cross-over" point in which DMCS 

will attempt to send large messages in separate pieces, as well as the timeout 

values used in deadlock detection. 

- -D __ SHORT _LATENCY _NETWORK __ : This macro should be defined when com-

piling PREMA for a platform in which a dedicated, high-speed network is avail

able for communication. 

- -D __ 64_BIT _ARCH __ : This macro should be defined when compiling the PREMA 

system for a 64-bit architecture. By default, compilation is for a 32-bit architec

ture. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX A. COMPILING AND INSTALLING THE PREMA LIBRARIES 241 

• D MLJJ IR: This tells the system which version of the D ML should be compiled into the 

DMCS library. The DML contains low-level, core functionality upon which the DMCS 

library is built. A separate DML code base is used for each low-level communication 

platform, such as MPI. A more complete description of the DML is provided in the 

DMCS portability discussion later in this document. 

• BUILD_LIB: This macro de:fines the commands that are used to combine the compiled 

object files into a single, statically linked library. This changes from system to system. 

• PREMA.YLAGS: This macro defines the flags that are to be passed to the library 

during compilation. They may include: 

- -DPREMA_FROFILING_ON 

- -DPREMA_LOGGING_ON 

- -DPREMA_DEBUG_ON 

- -DPREMA_REENTRANT -mt 

- -DPREMA_USE_FOSIX_THREADS 

- -D_REENTRANT 

- -D_FOSIX_THREAD_SEMANTICS 

- -DPREMA_USE_SOLARIS_THREADS 

- -DMOL_OUTPUT_USERJIANDLERS 

In addition, one of the following must be defined: 

- -DMOL_USKHASH_DIRECTORY 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX A. COMPILING AND INSTALLING THE PREMA LIBRARIES 242 

- -DMOL_USE_MAP ..DIRECTORY 

With profiling turned on, runtime statistics are gathered and written to files when the 

runtime system is shutdown. Files in this case take the form of dmcs-profiling.proc<proc

id> and mol-profiling.proc<proc-id>. Turning on logging will cause descriptive state

ments to be written to a file as the program progresses. In this case, files are of the 

form prema-log.<proc-id>. All files are written to the current working directory. 

Turning on debugging simply compiles more "sanity checking" code into the PREMA 

libraries. However, a slight performance penalty must be suffered for this extra level 

of protection. 

Defining one of the threads macros will allow the load balancing component of PREMA 

to make use of preemptive, multi-threaded load balancing capability. 

Defining MOLOUTPUT_USER_HANDLERSwill cause the name of user-defined han

dler routines to be written to a file as the handler is executed. The file will have the 

form· mol-user-handler. <proc-id> and will be written in the working directory. In 

order for a name to be associated with a user handler, the handler must be registered 

using the moLregister_named_req_handlers(} and moLregister_named_msg_handlers(} 

routines covered in Section C.2. 

Finally, either MOLUSE_HASH.JJIRECTORYor MOLUSE_MAP_DIRECTORYmust 

be defined. This macro determines what type of data structure will be used for the 

MOL's internal directory. As such, it probably should not be changed from the default 

value without good reason. 

• INSTALLDIR: This macro specifies the location where the PREMA header files 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX A. COMPILING AND INSTALLING THE PREMA LIBRARIES 243 

and libraries should be installed. If this directory does not exist, it will be created 

(assuming its parent directory exists). The user must have the appropriate permissions 

to create files in this directory. After compilation, there will be lib/, include/, and 

man/ subdirectories, where the libraries, header files, and online man pages will be 

installed. 

• DML_MACROS: This macro is where any flags that must be passed to the DML files 

during compilation are specified. The DML layer of the runtime system is described 

further in the portability discussion concerning DMCS. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Appendix B 

Data Movement and Control 

Substrate 

The Data Movement and Control Substrate is a thin software runtime layer which provides 

a point-to-point communication API encompassing only those operations that provide the 

most benefit to asynchronous and irregular parallel applications. Such applications are 

characterized as containing communication and computation patterns which cannot be pre

dicted at compile time, and are therefore not amenable to compile time static analysis. 

DMCS is designed to be easily portable, thereby isolating the application and higher

level libraries from the specifics of the uderlying communication layer and platform. Ap

plications written using DMCS can therefore quickly and easily be moved to new target 

platforms without needing to alter application code. 

DMCS is lightweight and provides a concise API to the user. This is so that developers 

can quickly become familiar and comfortable with DMCS and will be inclined to use it for 

a wide variety of applications. Keeping the code size as small as possible will also decrease 

the effort required to maintain the library. 

DMCS is not designed to compete with or replace any lower-level communication li-

244 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 245 

Table B.l: DMCS USER HANDLER PROTOTYPES 

Remote Service Request Handlers 
void {*dmcs_rsrOJumdler_t)(int proc) Remote Service Request with no parameters 
void. {*dmcs_rsrLhandler_t)(int proc, Remote Service Request with 1 machine-word-size 

dmcs_arg_t arg1) parameter 
void {*dmcs_rsr2_handler _t) {int proc, Remote Service Request with 2 machine-word-size 

dmcs_arg_t arg1, dmcs_arg_t arg2) parameters 
void {*dmcs_rsr3_handler_t)(int proc, Remote Service Request with 3 machine-word-size 

dmcs_arg_t arg1, dmcs_arg_t arg2, parameters 
dmcs_arg_t arg9) 

void {*dmcs_rsr4_handler _t }{int proc, Remote Service Request with 4 machine-word-size 
dmcs_arg_t arg1, dmcs_arg_t arg2, parameters 
dmcs_arg_t arg9, dmcs_arg_t arg.O 

void {*dmcs_rsrN_handler_t)(int proc, Remote Service Request with variable-sized 
dmcs_pointer_t buffer, size_t size) parameter buffer 

Remote Memory Manipulation Handlers 
void {*dmcs_mem_op_handler_t)(int proc, Handler executed during get_op and put_op 

dmcs_pointer_t loc_addr, size_t size, operations 
dmcs_arg_t arg1) 

braries. For example, DMCS does not claim to be a replacement for MPI, but instead 

isolates the application from the specific communication syntax and semantics provided by 

MPI. DMCS provides a consistent programming model to the user across a wide variety of 

parallel platforms. 

B.l User-defined Handlers and Prototypes 

User-defined handlers must conform to the prototypes given in Table B.l. These handlers 

make use of the following types: 

• dmcs_arg_t: This type is a single machine-word sized argument. Typically, this is the 

size of a pointer, so for instance on a 32-bit machine, a dmcs_arg_t argument can be 

any 32 bits of data. 

• dmcs_pointer_t: This is a typical pointer used to refer to local data. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 246 

Each handler, regardless of the type, is supplied with the processor id of the calling 

processor as the first argument. This is useful, for exapmle, when the handler wishes to 

return a reply to its caller. 

Because DMCS is not able to make any assumptions concerning the location of user 

handlers in memory on each processor, handlers must be registered with the runtime system 

during initialization. The routines provided for this purpose are discussed in Section B.2. 

B.2 Operations Provided 

With the programming model firmly established, we can now examine the operations that 

DMCS provides to the user. These can be broken into five categories: Environment func

tions, Remote Memory Manipulation functions, Remote Service Request functions, Polling 

functions, and Synchronization Operations. 

B.2.1 Environment Operations 

Table B.2 contains the operations in the Environment section of the DMCS API. These 

functions are responsible for initializing and shutting down the runtime system, along with 

determining certain runtime information. 

dmcs_init() 

Parameters: 

1. int argc: The number of command line arguments given to the executable 

from the command line and subsequently passed to the main{) routine 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 247 

Table B.2: DMCS ENVIRONMENT OPERATIONS 

System Initialization and Shutdown 
void dmcs_init {int argc, char* argv[]) Initialize the DMCS system 
void dmcs_shutdown() Shuts down the DMCS system 

Profiling Information Printing 
void dmcs_profiling_dump_info{char* path} Outputs profiling information 

Querying the Environment 
int dmcs..my _proc{) Returns the processor id of the caller 
int dmcs_num_procs {) Returns the number of processors in the system 

Handler Registration 
void dmcs_register _rsrO_handlers ( Register user handlers that take no arguments 

dmcs_rsrO_handler_t handlers{], int size) 
void dmcs...register ...rsr 1 _handlers ( Register user handlers that take 1 argument 

dmcs_rsrLhandler_t handlers[], int size) 
void dmcs...register _rsr2_handlers { Register user handlers that take 2 arguments 

dmcs_rsr2_handler_t handlers[], int size) 
void dmcs_register ...rsr3_handlers { Register user handlers that take 3 arguments 

dmcs_rsr3_handler_t handlers[], int size) 
void dmcs...register _rsr4_handlers ( Register user handlers that take 4 arguments 

dmcs_rsr4_handler_t handlers{], int size) 
void dmcs...register _rsr N _handlers ( Register user handlers that take variable sized 

dmcs_rsrN_handler_t handlers[], int size) argument buffers 
void dmcs_register _mem_op_handlers ( Register user handlers used for remote memory 

dmcs_mem_op_handler_t handlers[], int size) reads and writes 

2. char* argv[]: The command line arguments given to the executable from 

the command line and subsequently passed to the main() routine 

Returns: void 

Description: 

This function is responsible for initializing the runtime system and must be the 

first DMCS operation called. DMCS is responsible for initializing any underlying 

communication substrate, so, for instance, the application should no longer call 

MPIJnit() or similar initialization function. Parameters to dmcs_init() include 

the argc and argv parameters given to the main() routine, and no return value is 

given. This operation is collective, so all processors must call dmcs_init() at the 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 248 

same time. 

dmcs_shutdown{) 

Parameters: None 

Returns: None 

Description: 

This operation is the final DMCS call made by any application. As with initial

ization, DMCS is responsible for shutting down any lower level communication 

systems, so such calls should not be present in the application. No parameters 

are given to the shutdown routine, and no return type is expected. As with 

initialization, dmcs_shutdown() is a collective operation and must be called by 

each processor. 

dmcs_my _proc() 

Parameters: None 

Returns: Integer; the ID of the calling processor 

Description: 

This routine is used to determine the ID of the calling processor. Processors 

are numbered according to the method used by the underlying communication 

system. Typically, this is a number between zero and P -1, where Pis the total 

number of processors. 

dmcs_num_procs() 

Parameters: None 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 

Returns: Integer; the number of processes in the parallel system 

Description: 

Returns the number of processes in the parallel system. 

B.2.2 Handler Registration Operations 

249 

Table B.2 contains the routines that are used to register application-defined DMCS message 

handlers with the runtime system. All message handlers must be registered with the runtime 

system before they may be invoked as the result of a message from a remote processor. 

Handler registration must be performed by each processor, with every processor registering 

handlers in the same order. Typically this is done immediately after initializing the system. 

dmcs_register _<handler-type> _handlers () 

Parameters: 

1. dmcs_<handler-type>_handler_t handlers[]: This is an array of the han

dlers to register with DMCS. These arrays must conform to the correct 

prototype, given in Table B.l. 

2. int size: The number of handlers in the array 

Returns: None 

Description: 

These routines are used to register user-defined handlers with the runtime system. 

This is necessary due to the fact that DMCS is unable to make any assumption 

regarding the locations of function code in memory on remote processors. There

fore, instead of referring to remote handlers by absolute address, another level of 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 250 

Table B.3: ALLOCATING AND FREEING REMOTE MEMORY 

void* dmcs_malloc(int proc, size_t size) Allocate memory on a remote processor 
void dmcs_free{int proc, void* addr} Free memory on a remote processor 

indirection is provided via handler table indices. There are handler registration 

operations provided for each type of user handler. These routines take an array 

of handlers and the length of the array as pointers. Handler registration must be 

performed on each processor at the same time, typically immediately after the 

dmcs_init() call is made. The valid handler types include: 

• rsrO: Remote Service Request that takes zero machine-word sized arguments. 

• rsrl: Remote Service Request that takes one machine-word sized argument. 

• rsr2: Remote Service Request that takes two machine-word sized arguments. 

• rsr3: Remote Service Request that takes three machine-word sized argu-

ments. 

• rsr4: Remote Service Request that takes four machine-word sized arguments. 

• rsrN: Remote Service Request that takes a variable length buffer as a pa-

rameter. 

• mem-op: Handler used for a get-op or put-op operation. 

B.2.3 Remote Memory Manipulation Operations 

Tables B.3, B.4, and B.5 contain the operations used to manipulate remote memory. This 

includes allocation and deallocation, as well as reads and writes. There are two types of 

operations which can be described as asynchronous and synchronous. Broadly speaking, 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 251 

Table B.4: DMCS OPERATIONS TO READ REMOTE MEMORY 

void dmcs_sync_get(int proc, size_t size, Read data from a remote processor 
dmcs_pointer-t rem_addr, 
dmcs_pdinter_t loc_addr, 
int tag) 

void dmcs_async_get {int proc, size_t size, Read data from a remote processor 
dmcs_pointer_t rem_addr, 
dmcs_pointer_t loc_addr, 
int tag) 

void dmcs_sync_get_op(int proc, size_t size, Read data from a remote processor and execute 
dmcs_pointer_t rem_addr, a handler on the local node 
dmcs_pointer_t loc_addr, 
dmcs_mem_op_handler _t loc_handler, 
dmcs_arg_t handler_arg, int tag} 

void dmcs_async_geLop(int proc, size_t size, Read data from a remote processor and execute 
dmcs_pointer_t rem_addr, dmcs_pointer_t loc_addr, a handler on both the local and remote node 
dmcs_mem_op_handler _t loc_handler 
dmcs_arg_t loc_arg 
dmcs_mem_op_handler_t rem_handler 
dmcs_arg_t rem_arg 
dmcs_arg_t rem_arg, int tag} 

synchronous operations return only when a condition has taken place on the remote pro-

cessor, while asynchronous operations are under no such restriction. While synchronous 

operations will incur a greater latency from the application's point of view, developers are 

guaranteed that data buffers are free to be altered or deallocated once the operation returns. 

For asynchronous operations, a secondary mechanism must be provided to signal the user 

that data buffers are safe to handle. 

dmcs_malloc() 

Parameters: 

1. int proc: The procesor on which the memory should be allocated. 

2. size_t size: The number of bytes to allocate. 

Returns: void*; address of allocated memory 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 252 

Table B.5: DMCS OPERATIONS TO WRITE TO REMOTE MEMORY 

void dmcs_sync_put {int proc, size_t size, Write data to a remote processor 
dmcs_pointer_t rem_addr, 
dmcs_pointer_t loc_addr, 
int tag) 

void dmcs_block_put {int proc, size_t size, Write data to a remote processor 
dmcs_pointer _t rem_addr, 
dmcs_pointer_t loc_addr, 
int tag) 

void dmcs_noblock_put{int proc, size_t size, Write data to a remote processor 
dmcs_pointer_t rem_addr, 
dmcs_pointer_t loc_addr, 
dmcs_status_t* status, int tag} 

void dmcs_sync_puLop(int proc, size_t size, Write data to a remote processor and execute 
dmcs_pointer_t rem_addr, a handler on the remote node 
dmcs_pointer_t loc_addr, 
dmcs_mem_op_handler _t rem_handler, 
dmcs_arg_t handler_arg, int tag} 

void dmcs_block_puLop(int proc, size_t size, Write data to a remote processor and execute 
dmcs_pointer_t rem_addr, a handler on the remote node 
dmcs_pointer_t loc_addr, 
dmcs_mem_op_handler_t rem_handler, 
dmcs_arg_t handler_arg, int tag) 

void dmcs_noblock_put_op(int proc, size_t size, Write data to a remote processor and execute 
dmcs_pointer_t rem_addr, a handler on both the local and remote node 
dmcs_pointer_t loc_addr, 
dmcs_mem_op_handler_t rem_handler 
dmcs_arg_t rem_arg, 
dmcs_mem_op_handler_t loc_handler, 
dmcs_arg_t loc_arg, 
dmcs_status_t* status, int tag) 

Description: 

This function is used to allocate memory on a remote processor. It works by 

sending a request to the specified processor and waiting for a reply. This function 

is synchronous and will not return until a reply is heard back from the target 

node. The pointer returned is valid only on the remote processor. 

dmcs_free() 

Parameters: 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 253 

1. int proc: The processor on which the memory was previously allocated. 

2. void* addr: The address of the previously allocated memory. 

Returns: None 

Description: 

This function is used to free a block of memory that was previously allocated 

using the dmcs_malloc() operation. This operation is non-blocking and asyn

chronous, meaning that it will return at its earliest opportunity and will not 

synchronize with the remote processor. 

dmcs_sync_get () 

Parameters: 

1. int proc: The processor from which to retrieve memory. 

2. size_t size: The number of bytes to retrieve. 

3. dmcs_pointer _t rem_addr: The address on the remote processor to read 

from. 

4. dmcs_pointer _t loc_addr: The address on the local processor to write to. 

5. int tag: This is a user-specified tag field. Because all communication must 

be received using polling operations, the tag field can allow the poller to 

differentiate between message types, and only handle those types with a 

certain tag. A greater description is provided in the dmcs_poll() operation 

discussion. By default, this field has the value DMCS..DEFAULT_TAG. Tags 

should be positive integral values. 

Returns: None 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 254 

Description: 

This function will retrieve memory of a specified size from a remote processor, 

and copy that memory into the provided local buffer. It will not return to the 

user until the buffer is filled. This routine assumes that the local buffer provided 

is of sufficient size to hold the incoming data. The data on the remote node is 

unaltered. The application has the reponsibility to allocate and free local and 

remote memory buffers. 

dmcs_async_get() 

Parameters: 

1. int proc: The processor from which to retrieve memory. 

2. size_t size: The number of bytes to retrieve. 

3. dmcs_pointer _t rem_addr: The address on the remote processor to read 

from. 

4. dmcs_pointer _t loc_addr: The address on the local processor to write to. 

5. int tag: This is a user-specified tag field. Because all communication must 

be received using polling operations, the tag field can allow the poller to 

differentiate between message types, and only handle those types with a 

certain tag. A greater description is provided in the dmcs_poll(} operation 

discussion. By default, this field has the value DMCSJ)EFAULT_TAG. Tags 

should be positive integral values. 

Returns: None 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 255 

Description: 

This function will retrieve memory of a specified size from a remote processor, 

and will copy that memory into the provided local buffer. It will return to the 

user at the earliest opportunity, and will not wait for the data to arrive from the 

remote node. If the user wishes to be notified of the data arrival, it is suggested 

that one of the geLop operations be used instead. 

dmcs_sync_get_op() 

Parameters: 

1. int proc: The processor from which to retrieve memory. 

2. size_t size: The number of bytes to retrieve. 

3. dmcs_pointer _t rem_addr: The address on the remote processor to read 

from. 

4. dmcs_pointer _t loc_addr: The address on the local processor to write to. 

5. dmcs_mem_op_handler _t loc_handler: A pointer to a user-defined han

dler function to execute on the local processor once the data has arrived at 

the caller. 

6. dmcs_arg_t handler _arg: A single machine-word sized argument to pass 

to the remote handler 

7. int tag: This is a user-specified tag field. Because all communication must 

be received using polling operations, the tag field can allow the poller to 

differentiate between message types, and only handle those types with a 

certain tag. A greater description is provided in the dmcs_poll(} operation 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 256 

discussion. By default, this field has the value DMCS.DEFAULT _TAG. Tags 

should be positive integral values. 

Returns: None 

Description: 

This function invokes a two-step operation designed to copy memory from the 

target processor to the source processor. In the first step, a request is sent 

to a target processor asking for a memory block of a specified size and at a 

specified location to be returned to the calling processor. The target processor 

replies with the requested memory; once this reply arrives at the originating 

processor, a user-defined handler is executed1 . The handler is supplied with the 

local address where the memory was copied, the size of the memory block, and 

a single machine-word sized argument. Because this operation is synchronous, 

it will not return to the user until the original message to the target processor 

has arrived. Note, however, that this routine will return to the user before the 

data has been returned from the target. It is therefore necessary for the user 

application to post a polling operation in order to receive the data. 

dmcs_async_get_op () 

Parameters: 

1. int proc: The processor from which to retrieve memory. 

2. size_t size: The number of bytes to retrieve. 

1 Actually, the handler is not executed until a polling operation is posted. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 257 

3. dmcs_pointer _t rem_addr: The address on the remote processor to read 

from. 

4. dmcs_pointer _t loc_addr: The address on the local processor to write to. 

5. dmcs_mem_op_handler _t loc_handler: A pointer to a user-defined han

dler function to execute on the local processor once the data has arrived at 

the target. 

6. dmcs__arg_t loc_arg: A single machine-word sized argument to pass to the 

local handler. 

7. dmcs_mem_op_handler _t rem_handler: A pointer to a user-defined han

dler function to execute on the remote processor once the data has arrived 

at the target. 

8. dmcs_arg_t rem_arg: A single machine-word sized argument to pass to 

the remote handler. 

9. int tag: This is a user-specified_ tag field. Because all communication must 

be received using polling operations, the tag field can allow the poller to 

differentiate between message types, and only handle those types with a 

certain tag. A greater description is provided in the dmcs_poll() operation 

discussion. By default, this field has the value DMCS_DEFAULT_TAG. 

Returns: None 

Description: 

Like the dmcs_sync_geLop() operation, this function is designed to copy mem

ory from the target processor to the source. However, there are some semantic 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 258 

differences. First, the operation will return as soon as possible; the originating 

request to the target processor is asynchronous. Second, once the reply from 

the target has arrived at the source node, another message is sent to the target 

which will execute a user-defined remote handler. This handler may be used, for 

instance, to deallocate the referenced memory on the target node. 

dmcs....sync_put() 

Parameters: 

1. int proc: The processor to which to write data. 

2. size_t size: The number of bytes to write. 

3. dmcs_pointer _t rem_addr: The address on the remote processor to write 

the data. 

4. dmcs_pointer _t loc_addr: The address on the local processor from which 

to read the data. 

5. int tag: This is a user-specified tag field. Because all communication must 

be received using polling operations, the tag field can allow the poller to 

differentiate between message types, and only handle those types with a 

certain tag. A greater description is provided in the dmcs_poll(} operation 

discussion. By default, this field has the value DMCS_DEFAULT _TAG. Tags 

should be positive integral values. 

Returns: None 

Description: 

This function will write a specified memory buffer into a specified location on 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 259 

the target processor. It will not return until the receive operation has begun on 

the target node. In addition, this operation assumes that the target buffer has 

been allocated and is of sufficient size to hold the incoming data. The memory 

buffer on the source processor is unaltered. 

dmcs_noblock_put () 

Parameters: 

1. int proc: The processor to which to write data. 

2. size_t size: The number of bytes to write. 

3. dmcs_pointer _t rem_addr: The address on the remote processor to which 

to write the data. 

4. dmcs_pointer_t loc_addr: The address on the local processor from which 

to read the data. 

5. dmcs....status_t* status: The status variable can be used to determine when 

it is safe to modify the parameter data buffer. The operations available to 

test the status object are described in this document. If a status object is 

not required, the constant DMCS_STATUS_IGNORE may be used. 

6. int tag: This is a user-specified tag field. Because all communication must 

be received using polling operations, the tag field can allow the poller to 

differentiate between message types, and only handle those types with a 

certain tag. A greater description is provided in the dmcs_poll() operation 

discussion. By default, this field has the value DMCS__DEFAULT_TAG. Tags 

should be positive integral values. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 260 

Returns: None 

Description: 

This function will write a specified memory buffer into a specified location on 

the target processor. It will return to the user at the earliest opportunity and 

will not wait for the data to be copied to the network. Therefore, the user 

should not modify the source buffer; if the application needs to know when 

it is safe to access the buffer but still wants the low latency associated with 

asynchronous operations, it is suggested that the asynchronous put_op operations 

be used instead. The target memory buffer is assumed to be of sufficient size 

to contain the incoming data. The memory buffer on the source processor is 

unchanged. 

dmcs_block_put () 

Parameters: 

1. int proc: The processor to which to write data. 

2. size_t size: The number of bytes to write. 

3. dmcs_pointer _t rem_addr: The address on the remote processor to which 

to write the data. 

4. dmcs_pointer _t loc_addr: The address on the local processor from which 

to read the data. 

5. int tag: This is a user-specified tag field. Because all communication must 

be received using polling operations, the tag field can allow the poller to 

differentiate between message types, and only handle those types with a 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 261 

certain tag. A greater description is provided in the dmcs_poll() operation 

discussion. By default, this field has the value DMCS__DEFAULT_TAG. Tags 

should be positive integral values. 

Returns: None 

Description: 

This function will write a specified memory buffer into a specified location on 

the target processor. It will return to the user once it is safe for the outgoing 

data buffer to be modified. It is assumed that the target memory buffer is of 

sufficient size to contain the incoming data. In addition, the memory buffer on 

the source processor is unchanged by this operation. 

dmcs_sync_put_op() 

Parameters: 

1. int proc: The processor to which to write data 

2. size_t size: The number of bytes to write 

3. dmcs_pointer _t rem_addr: The address on the remote processor to write 

the data 

4. dmcs_pointer _t loc_addr: The address on the local processor from which 

to read the data 

5. dmcs_mem_op_handler _t rem_handler: A pointer to a user-defined han

dler function to execute on the remote processor once the data has been 

written to the target 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 262 

6. dmcs_arg_t handler _arg: A single machine-word sized argument to pass 

to the local handler 

7. int tag: This is a user-specified tag field. Because all communication must 

be received using polling operations, the tag field can allow the poller to 

differentiate between message types, and only handle those types with a 

certain tag. A greater description is provided in the dmcs_poll() operation 

discussion. By default, this field has the value DMCS_DEFAULT_TAG. Tags 

should be positive integral values. 

Returns: None 

Description: 

This function will write a specified memory buffer into a specified location on the 

target processor. It will return to the user only after the request has arrived at 

the target processor. In addition, a user-defined handler function will execute on 

the target and may be used to possibly inform the processor of the arrival of the 

data. It is assumed that the target memory buffer is of sufficient size to contain 

the incoming data. The source memory buffer is unchanged by this operation. 

dmcs_noblock_put_op() 

Parameters: 

1. int proc: The processor to which to write data 

2. size_t size: The number of bytes to write 

3. dmcs_pointer_t rem_addr: The address on the remote processor to which 

to write the data 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 263 

4. dmcs_pointer _t loc_addr: The address on the local processor from which 

to read the data 

5. dmcs_mem_op_handler _t rem_handler: A pointer to a user-defined han

dler function to execute on the remote processor once the data has been 

written to the target 

6. dmcs_arg_t rem_arg: A single machine-word sized argument to pass to 

the remote handler 

7. dmcs_mem_op_handler_t loc_handler: A pointer to a user-defined han

dler function to execute on the local processor once the data has been written 

to the target 

8. dmcs_arg_t loc_arg: A single machine-word sized argument to pass to the 

local handler 

9. dmcs_status_t* status: The status variable can be used to determine when 

it is safe to modify the parameter data buffer. The operations available to 

test the status object are described in this document. If a status object is 

not required, the constant DMCS_STATUS_IGNORE may be used. 

10. int tag: This is a user-specified tag field. Because all communication must 

be received using polling operations, the tag field can allow the poller to 

differentiate between message types, and only handle those types with a 

certain tag. A greater description is provided in the dmcs_poll() operation 

discussion. By default, this field has the value DMCS__DEFAULT_TAG. Tags 

should be positive integral values. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 264 

Returns: None 

Description: 

Like the dmcs_sync_puLop() operation, this function will copy memory from 

the source processor to the specified target. However, unlike its synchronous 

counterpart, this operation returns to the user at the earliest possible point. 

Therefore, the application must not modify the parameter buffer until it is safe 

to do so. Once the message has arrived at the target, and before the remote 

handler is executed, a reply is sent from the target back to the source to execute 

a user-specified handler. This handler may inform the source processor that it 

is now safe to modify the local memory buffer. Additionally, the DMCS status 

object may be used to inform the sender that the message has been sent to the 

target. 

dmcs_block_puLop() 

Parameters: 

1. int proc: The processor to which to write data 

2. size_t size: The number of bytes to write 

3. dmcs_pointer _t rem_addr: The address on the remote processor to 

write the data 

4. dmcs_pointer _t loc_addr: The address on the local processor from 

which to read the data 

5. dmcs_mem_op_handler _t rem_handler: A pointer to a user-defined 

handler function to execute on the remote processor once the data has 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 265 

been written to the target 

6. dmcs_arg_t handler ....arg: A single machine-word sized argument to 

pass to the local handler 

7. int tag: This is a user-specified tag field. Because all communica

tion must be received using polling operations, the tag field can al

low the poller to differentiate between message types, and only handle 

those types with a certain tag. A greater description is provided in the 

dmcs_poll{) operation discussion. By default, this field has the value 

DMCS_DEFAULT _TAG. Tags should be positive integral values. 

Returns: None 

Description: 

This function will write a specified memory buffer into a specified location 

on the target processor. It will return to the user once it is safe to modify 

the outgoing data buffer. In addition, a user-defined handler function will 

execute on the target and may be used to possibly inform the processor of 

the arrival of the data. It is assumed that the target memory buffer is of 

sufficient size to contain the incoming data. The source memory buffer is 

unchanged by this operation. 

Figure B.l depicts the communication pattern between source and target processors 

for the puLop and geLop type operations. In each diagram, time moves downward, and 

messages between processors are shown as dashed arrows. Black rectangles represent user

specified handlers. Note that the synchronous get-op operation (Figure B.l(a)) does not 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 266 

Figure B.l: DMCS GET-OP AND PUT-OP OPERATIONS 

Synchronous Get-Op Asynchronous Get-Op Synchronous Put-Op Asynchronous Put-Op 
Source Target Source Target Source Target Source Target 

--- --- ------ ---
--- --- / --------- ------ ---

~ 
--- User Handler 

User Handler 

User Handler 

User Handler 

(a) (b) (c) (d) 

block until the data is returned to the initiator; instead a user-specified handler is executed 

when the data arrives on the calling node. This handler may be used to signal the process 

that the requested data has arrived. Likewise with the synchronous put-op operation 

(Figure B.l(c)). The asynchronous put-op operation (Figure B.l(d)) will invoke user-

specified handlers on both the source and target nodes; these handlers typically notify the 

process that the data has migrated. 

B.2.4 Remote Service Request Operations 

Tables B.6, B.7, and B.8 contain the operations used to send Remote Service Requests 

(RSRs) between processors. Operations are provided which send a fixed number of machine-

word sized arguments (zero through four), as well as an application-defined buffer of any size. 

It is the user's responsibility to marshall data into contiguous memory prior to transmission. 

Any buffers required for parameter marshalling on the sending processor fall under the 

responsibility of the user; the system will not deallocate these buffers. 

In addition, the target processor must make sure to place incoming data into safe loca-



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 267 

Table B.6: DMCS BLOCKING REMOTE SERVICE REQUEST OPERATIONS 

void dmcs_block_rsrO{int proc, Send a blocking RSR with no arguments 
dmcs_rsrO_handler_t handler, int tag) 

void dmcs_block_rsrl{int proc, Send a blocking RSR with one 
dmcs_rsr Lhandler _t handler, machine-word sized argument 
dmcs_arg_t argl, int tag} 

void dmcs_block_rsr2{int proc, Send a blocking RSR with two 
dmcs_rsr2_handler _t handler, machine-word sized arguments 
dmcs_arg_t argl, 
dmcs_arg_t arg2, int tag) 

void dmcs_block_rsr3{int proc, Send a blocking RSR with three 
dmcs_rsr3_handler _t handler, machine-word sized arguments 
dmcs_arg_t argl, dmcs_arg_t arg2, 
dmcs_arg_t arg3, int tag) 

void dmcs_block_rsr4{int proc, Send a blocking RSR with four 
dmcs_rsr4_handler_t handler, machine-word sized arguments 
dmcs_arg_t arg1, dmcs_arg_t arg2, 
dmcs_arg_t arg3, dmcs_arg_t arg4, 
int tag) 

void dmcs_block_rsrN (int proc, Send a blocking RSR with variable 
dmcs_rsrN_handler_t handler, sized argument buffer 
dmcs_pointer_t buffer, size_t size, 
int tag) 

tions; memory buffers given to message handlers are not guaranteed to be permanent. For 

instance, the underlying communication layer may elect to reuse memory buffers to store 

incoming message data. Because these buffers will likely be reused in the future, data left 

in them is not guaranteed to be permanent. It is left to the application to move incoming 

data to safe locations. With all message types, polling operations must be posted on the 

target processors; once a message has arrived and a polling operation has been posted, the 

specified application-defined handler function will be executed with the specified arguments 

as parameters. 

The semantics of the various RSR types are discussed below. The operations come in 

three types. Nonblocking operations return to the user before the associated data has been 

copied to the network. While the latency observable to the application is the lowest in 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 268 

Table B.7: DMCS NONBLOCKING REMOTE SERVICE REQUEST OPERATIONS 

void dmcs_noblock..rsrO{int proc, Send a nonblocking RSR with no arguments 
dmcs_rsrO_handler_t handler, int tag) 

void dmcs_noblock_rsrl{int proc, Send a nonblocking RSR with one 
dmcs_rsrLhandler_t handler, machine-word sized argument 
dmcs_arg_t arg1, int tag) 

void dmcs_noblock..rsr2 {int proc, Send a nonblocking RSR with two 
dmcs_rsr2_handler_t handler, machine-word sized arguments 
dmcs_arg_t arg1, 
dmcs_arg_t arg2, int tag) 

void dmcs_noblock..rsr3 {int proc, Send a nonblocking RSR with three 
dmcs_rsr3_handler_t handler, machine-word sized arguments 
dmcs_arg_t argl, dmcs_arg_t arg2, 
dmcs_arg_t arg3, int tag) 

void dmcs_noblock..rsr4{int proc, Send a nonblocking RSR with four 
dmcs_rsr,f._handler_t handler, machine-word sized arguments 
dmcs_arg_t arg1, dmcs_arg_t arg2, 
dmcs_arg_t arg3, dmcs_arg_t arg,f., 
int tag) 

void dmcs_noblock_rsrN {int proc, Send a nonblocking RSR with variable 
dmcs_rsrN_handler_t handler, sized argument buffer 
dmcs-pointer_t buffer, size_t size, 
dmcs_status_t* status, int tag} 

this case, users must be careful not to modify data buffers until the data has been safely 

transferred2 . Blocking operations do not return to the user until the outgoing message 

has been copied to the network. For large messages in particular, the latency incurred by 

blocking operations can be significantly higher than with their nonblocking counterparts. 

However, once the operation has returned, users can safely modify any parameter data 

buffers. The final operation type is synchronous. Synchronous operations do not return 

until the data has been received at the target processor, and therefore have the highest 

observable latency of the three types. The three blocking types are specified with the 

strings "noblock", "block", and "sync". 

dmcs_ <block-type> _rsrO () 

2 However, with the provided status parameter, users are able to associate DMCS status objects with 
nonblocking communication operations, which can be checked in order to determine operation completeness. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 269 

Table B.8: DMCS SYNCHRONOUS REMOTE SERVICE REQUEST OPERATIONS 

void dmcs..sync...rsrO{int proc, Send a synchronous RSR with no arguments 
dmcs-rsrO_handler_t handler, int tag) 

void dmcs..sync...rsrl{int pmc, Send a synchronous RSR with one 
dmcs_rsr Lhandler_t handler, machine-word sized argument 
dmcs_arg_t argl, int tag) 

void dmcs..sync...rsr2 {int proc, Send a synchronous RSR with two 
dmcs-rsr2_handler_t handler, machine-word sized arguments 
dmcs_arg_t argl, 
dmcs_arg_t arg2, int tag) 

void dmcs..sync...rsr3 {int proc, Send a synchronous RSR with three 
dmcs_rsr3_handler_t handler, machine-word sized arguments 
dmcs_arg_t argl, dmcs_arg_t arg2, 
dmcs_arg_t arg3, int tag) 

void dmcs..sync...rsr4{int proc, Send a synchronous RSR with four 
dmcs_rsr4-handler_t handler, machine-word sized arguments 
dmcs_arg_t argl, dmcs_arg_t arg2, 
dmcs_arg_t arg3, dmcs_arg_t arg4, 
int tag) 

void dmcs_block...rsrN (int proc, Send a synchronous RSR with variable 
dmcs_rsrN_handler_t handler, sized argument buffer 
dmcs_pointer_t buffer, size._t size, 
int tag) 

Parameters: 

1. int proc: The processor on which the specified handler is to execute 

2. dmcs_rsrO_handler _t handler: A pointer to a user-defined handler func-

tion which is to execute on the remote processor; no parameters are passed 

to the handler 

3. int tag: This is a user-specified tag field. Because all communication must 

be received using polling operations, the tag field can allow the poller to 

differentiate between message types, and only handle those types with a 

certain tag. A greater description is provided in the dmcs_poll() operation 

discussion. By default, this field has the value DMCSJ)EFAULT_TAG. Tags 

should be positive integral values. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 270 

Returns: None 

Description: 

This type of Remote Service Request takes no arguments, other than the han

dler to execute on the remote processor. The handler executed on the remote 

processor must conform to the prototype given in Table B.l. 

dmcs_ <block-type> _rsr 1 () 

Parameters: 

1. int proc: The processor on which the specified handler is to execute 

2. dmcs_rsrLhandler _t handler: A pointer to a user-defined handler func

tion which is to execute on the remote processor; a single machine-word sized 

argument is passed to this handler 

3. dmcs_arg_t arg: A single machine-word sized argument to be passed to 

the handler 

4. int tag: This is a user-specified tag field. Because all communication must 

be received using polling operations, the tag field can allow the poller to 

differentiate between message types, and only handle those types with a 

certain tag. A greater description is provided in the dmcs_poll{) operation 

discussion. By default, this field has the value DMCS..DEFAULT_TAG. Tags 

should be positive integral values. 

Returns: None 

Description: 

This type of Remote Serivce Request takes a single machine-word size argument. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 271 

The handler executed on the remote processor must conform to the prototype 

given in Table B.l. 

dmcs_ <block-type> _rsr2 () 

Parameters: 

1. int proc: The processor on which the specified handler is to execute 

2. dmcs...rsr2_handler _t handler: A pointer to a user-defined handler func

tion which is to execute on the remote processor; two machine-word sized 

arguments are passed to this handler 

3. dmcs_arg_t argl: A single machine-word sized argument to be passed to 

the handler 

4. dmcs_arg_t arg2: A single machine-word sized argument to be passed to 

the handler 

5. int tag: This is a user-specified tag field. Because all communication must 

be received using polling operations, the tag field can allow the poller to 

differentiate between message types, and only handle those types with a 

certain tag. A greater description is provided in the dmcs_poll() operation 

discussion. By default, this field has the value DMCS..DEFAULT _TAG. Tags 

should be positive integral values. 

Returns: None 

Description: 

This type of Remote Serivce Request takes two machine-word size arguments. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 272 

The handler executed on the remote processor must conform to the prototype 

given in Table B.l. 

dmcs_ <block-type> _rsr3() 

Parameters: 

1. int proc: The processor on which the specified handler is to execute 

2. dmcs_rsr3_handler _t handler: A pointer to a user-defined handler func

tion which is to execute on the remote processor; three machine-word sized 

arguments are passed to this handler 

3. dmcs_arg_t argl: A single machine-word sized argument to be passed to 

the handler 

4. dmcs_arg_t arg2: A single machine-word sized argument to be passed to 

the handler 

5. dmcs_arg_t arg3: A single machine-word sized argument to be passed to 

the handler 

6. int tag: This is a user-specified tag field. Because all communication must 

be received using polling operations, the tag field can allow the poller to 

differentiate between message types, and only handle those types with a 

certain tag. A greater description is provided in the dmcs_poll() operation 

discussion. By default, this field has the value DMCSJ)EFAULT_TAG. Tags 

should be positive integral values. 

Returns: None 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 273 

Description: 

This type of Remote Serivce Request takes three machine-word size arguments. 

The handler executed on the remote processor must conform to the prototype 

given in Table B.l. 

dmcs_ <block-type> _rsr4() 

Parameters: 

1. int proc: The processor on which the specified handler is to execute 

2. dmcs_rsr4_handler _t handler: A pointer to a user-defined handler func

tion which is to execute on the remote processor; four machine-word sized 

arguments are passed to this handler 

3. dmcs__arg_t argl: A single machine-word sized argument to be passed to 

the handler 

4. dmcs_arg_t arg2: A single machine-word sized argument to be passed to 

the handler 

5. dmcs_arg_t arg3: A single machine-word sized argument to be passed to 

the handler 

6. dmcs_arg_t arg4: A single machine-word sized argument to be passed to 

the handler 

7. int tag: This is a user-specified tag field. Because all communication must 

be received using polling operations, the tag field can allow the poller to 

differentiate between message types, and only handle those types with a 

certain tag. A greater description is provided in the dmcs_poll() operation 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 274 

discussion. By default, this field has the value DMCS_DEFAULT_TAG. Tags 

should be positive integral values. 

Returns: None 

Description: 

This type of Remote Serivce Request takes four machine-word size arguments. 

The handler executed on the remote processor must conform to the prototype 

given in Table B.l. 

dmcs_ <block-type> _rsr N () 

Parameters: 

1. int proc: The processor on which the specified handler is to execute 

2. dmcs__rsr N _handler _t handler: A pointer to a user-defined handler func

tion which is to execute on the remote processor; a single parameter buffer 

of a user-specified size is passed as an argument to this handler 

3. dmcs_pointer _t buffer: A pointer to the parameter data buffer 

4. int size: The size of the parameter data buffer, in bytes 

5. dmcs_status_t* status: The status variable can be used to determine when 

it is safe to modify the parameter data buffer. The operations available to 

test the status object are described in this document. If a status object is 

not required, the constant DMCS_STATUS_IGNORE may be used. NOTE: 

This is a parameter for the non-blocking RSR only! 

6. int tag: This is a user-specified tag field. Because all communication must 

be received using polling operations, the tag field can allow the poller to 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 275 

Table B.9: DMCS BLOCKING BROADCAST OPERATIONS 

void dmcs_block_broadcast_rsrO ( Invoke blocking RSR with no arguments 
dmcs_rsrO_handler_t handler, int tag) 

void dmcs_block_broadcast-.rsrl ( Invoke blocking RSR with a single 
dmcs_rsrLhandler_t handler, machine-word sized argument 
dmcs_arg_t arg, int tag) 

void dmcs_block_broadcast-.rsr2 ( Invoke blocking RSR with two 
dmcs_rsr2_handler _t handler, machine-word sized arguments 
dmcs_arg_t arg1, dmcs_arg_t arg2, 
int tag) 

void dmcs_block_broadcast-.rsr3 ( Invoke blocking RSR with three 
dmcs_rsr3_handler _t handler, machine-word sized arguments 
dmcs_arg_t arg1, dmcs_arg_t arg2, 
dmcs_arg_t arg3, int tag) 

void dmcs_block_broadcast-.rsr4 ( Invoke blocking RSR with four 
dmcsssr4_handler_t handler, machine-word sized arguments 
dmcs_arg_t arg1, dmcs_arg_t arg2, 
dmcs_arg_t arg3, dmcs_arg_t arg4, 
int tag} 

void dmcs_block_broadcast_rsrN ( Invoke blocking RSR with variable 
dmcs_rsrN_handler_t handler, sized argument buffer 
dmcs_pointer_t buffer, int size, 
int tag) 

differentiate between message types, and only handle those types with a 

certain tag. A greater description is provided in the dmcs_poll() operation 

discussion. By default, this field has the value DMCS.J)EFAULT_TAG. Tags 

should be positive integral values. 

Returns: None 

Description: 

This type of Remote Service Request takes a single user-defined parameter buffer 

as an argument. The handler executed on the remote processor must conform to 

the prototype given in Table B.l. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 276 

Table B.lO: DMCS NON-BLOCKING BROADCAST OPERATIONS 

void dmcs_noblock_broadcast..rsrO ( Invoke nonblocking RSR with no arguments 
dmcs_rsrO_handler_t handler, int tag) 

void dmcs_noblock_broadcast..rsrl ( Invoke nonblocking RSR with a single 
dmcs_rsrLhandler_t handler, machine-word sized argument 
dmcs_arg_t arg, int tag) 

void dmcs_noblock_broadcast..rsr2 ( Invoke nonblocking RSR with two 
dmcs_rsr2_handler_t handler, machine-word sized arguments 
dmcs_arg_t argl, dmcs_arg_t arg2, 
int tag) 

void dmcs_noblock_broadcast..rsr3 ( Invoke nonblocking RSR with three 
dmcs_rsr3_handler _t handler, machine-word sized arguments 
dmcs_arg_t argl, dmcs_arg_t arg2, 
dmcs_arg_t arg3, int tag) 

void dmcs_noblock_broadcast..rsr4 ( Invoke nonblocking RSR with four 
dmcs_rsr4_handler_t handler, machine-word sized arguments 
dmcs_arg_t argl, dmcs_arg_t arg2, 
dmcs_arg_t arg3, dmcs_arg._t arg4, 
int tag) 

void dmcs_noblock_broadcast..rsr N ( Invoke nonblocking RSR with variable 
dmcs_rsrN_handler_t handler, sized argument buffer 
dmcs_pointer_t buffer, int size, 
dmcs_status_t* status, int tag) 

B.2.5 Broadcast Operations 

Broadcast operations are used to invoke user-defined handlers in all processes except for the 

caller. The blocking and nonblocking semantics are identical as for Remote Service Request 

invocations. Blocking operations return once it is safe to modify any user-defined parameter 

buffers, while nonblocking operations will return immediately, possibly before the outgoing 

message has actually been placed on the network. 

In addition, the user should notice that there are no synchronous broadcasting opera-

tions. In order to make the broadcast operation as efficient as possible, it is possible that 

the messages are sent in a tree configuration, with the processors in the parallel system 

serving as the nodes in the tree. For large numbers of processors, this would lead to very 

high latencies associated with synchronous operations. For this reason, we have elected not 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 277 

to provide synchronous broadcast operations. 

There is a second ramification to a tree-structure broadcast implementation. That is 

polling operations are necessary, not only to receive incoming messages, but to know to 

forward messages for lower stages in the call tree. However, this behavior is not mandated 

by DMCS and is left to the individual implementation. 

The DMCS broadcast API is given in Tables B.9 and B.lO. Each broadcast operation 

is discussed in more detail below, where block-type denotes either "block" or "noblock". 

dmcs_ <block-type> _broadcast__rsrO() 

Parameters: 

1. dmcs__rsrO_handler _t handler: A pointer to a user-defined handler func-

tion which is to execute on all processors except the caller; no parameters 

other than the caller processor id is passed to this handler. 

2. int tag: This is a user-specified tag field. Because all communication must 

be received using polling operations, the tag field can allow the poller to 

differentiate between message types, and only handle those types with a 

certain tag. A greater description is provided in the dmcs_poll(} operation 

discussion. By default, this field has the value DMCS_DEFAULT _TAG. Tags 

should be positive integral values. 

Returns: None 

Descrption: 

This operation is used to invoke a user-defined handler on all processors except 

for the caller. The broadcast operation takes as a parameter the handler ot invoke 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 278 

on each node. The user-defined handler must conform to the handler prototypes 

given in Table B.l. The user handler must be registered with the runtime system 

prior to its execution, using the DMCS handler registration routines described 

previously. 

dmcs_ <block-type> _broadcast_rsr 1 () 

Parameters: 

1. dmcs_rsrLhandler _t handler: A pointer to a user-defined handler func

tion which is to execute on all processors except the caller. As parameters, 

this handler must accept the source id of the caller (integer) and a single 

machine-word sized argument (dmcs_arg_t). 

2. dmcs_arg_t arg: A single machine-word sized argument that is passed as 

a parameter to the user-defined handler on each node. 

3. int tag: This is a user-specified tag field. Because all communication must 

be received using polling operations, the tag field can allow the poller to 

differentiate between message types, and only handle those types with a 

certain tag. A greater description is provided in the dmcs_poll() operation 

discussion. By default, this field has the value DMCS__DEFAULT_TAG. Tags 

should be positive integral values. 

Returns: None 

Description: 

This operation is used to invoke a user-defined handler on all processors except 

for the caller. The user handler invoked by the broadcast operation takes a single 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 279 

machine-word sized argument as a parameter and must conform to the handler 

prototypes given in Table B.l. In addition, the user handler must be registered 

with the runtime system prior to its execution, using the DMCS handler regis

tration routines described previously. 

dmcs_ <block-type> _broadcast_rsr2 () 

Parameters: 

1. dmcs_rsr2_handler _t handler: A pointer to a user-defined handler func

tion which is to execute on all nodes except the caller. As parameters, this 

handler will take the source id of the caller (integer), and two machine-word 

sized arguments ( dmcs_arg_t). 

2. dmcs_arg_t argl: A single machine-word sized argument that is passed as 

a parameter to the user-defined handler on each node. 

3. dmcs_arg_t arg2: A single machine-word sized argument that is passed as 

a parameter to the user-defined handler on each node. 

4. int tag: This is a user-specified tag field. Because all communication must 

be received using polling operations, the tag field can allow the poller to 

differentiate between message types, and only handle those types with a 

certain tag. A greater description is provided in the dmcs_poll{) operation 

discussion. By default, this field has the value DMCSJ)EFAULT _TAG. Tags 

should be positive integral values. 

Returns: None 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 280 

Description: 

This operation is used to invoke a user-defined handler on all processors except 

for the caller. The user handler invoked by the broadcast operation takes two 

machine-word sized arguments as parameters and must conform to the handler 

prototypes given in Table B.l. In addition, the user handler must be registered 

with the runtime system prior to its execution, using the DMCS handler regis

tration routines described previously. 

dmcs_ <block-type> _broadcast_rsr3() 

Parameters: 

1. dmcs_rsr3_handler _t handler: A pointer to a user-defined handler func

tion which is to execute on all nodes except the caller. As parameters, this 

handler will take the source id of the caller (integer), and three machine-word 

sized arguments ( dmcs_arg_t). 

2. dmcs_arg_t argl: A single machine-word sized argument that is passed as 

a parameter to the user-defined handler on each node. 

3. dmcs_arg_t arg2: A single machine-word sized argument that is passed as 

a parameter to the user-defined handler on each node. 

4. dmcs_arg_t arg3: A single machine-word sized argument that is passed as 

a parameter to the user-defined handler on each node. 

5. int tag: This is a user-specified tag field. Because all communication must 

be received using polling operations, the tag field can allow the poller to 

differentiate between message types, and only handle those types with a 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 281 

certain tag. A greater description is provided in the dmcs_poll() operation 

discussion. By default, this field has the value DMCS..DEFAULT_TAG. Tags 

should be positive integral values. 

Returns: None 

Description: 

This operation is used to invoke a user-defined handler on all processors except 

for the caller. The user handler invoked by the broadcast operation takes three 

machine-word sized arguments as parameters and must conform to the handler 

prototypes given in Table B.l. In addition, the user handler must be registered 

with the runtime system prior to its execution, using the DMCS handler regis

tration routines described previously. 

dmcs_ <block-type> _broadcast_rsr4 () 

Parameters: 

1. dmcs...rsr4_handler _t handler: A pointer to a user-defined handler func

tion which is to execute on all nodes except the caller. As parameters, this 

handler will take the source id of the caller (integer), and four machine-word 

sized arguments ( dmcs_arg_t). 

2. dmcs_arg_t argl: A single machine-word sized argument that is passed as 

a parameter to the user-defined handler on each node. 

3. dmcs_arg_t arg2: A single machine-word sized argument that is passed as 

a parameter to the user-defined handler on each node. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 282 

4. dmcs_arg_t arg3: A single machine-word sized argument that is passed as 

a parameter to the user-defined handler on each node. 

5. dmcs_arg_t arg4: A single machine-word sized argument that is passed as 

a parameter to the user-defined handler on each node. 

6. int tag: This is a user-specified tag field. Because all communication must 

be received using polling operations, the tag field can allow the poller to 

differentiate between message types, and only handle those types with a 

certain tag. A greater description is provided in the dmcs_poll(} operation 

discussion. By default, this field has the value DMCS.J)EFAULT_TAG. Tags 

should be positive integral values. 

Returns: None 

Description: 

This operation is used to invoke a user-defined handler on all processors except 

for the caller. The user handler invoked by the broadcast operation takes four 

machine-word sized arguments as parameters and must conform to the handler 

prototypes given in Table B.l. In addition, the user handler must be registered 

with the runtime system prior to its execution, using the DMCS handler regis

tration routines described previously. 

dmcs_ <block-type> _broadcast_rsr N () 

Parameters: 

1. dmcs_rsr N _handler _t handler: A pointer to a user-defined handler func

tion which is to execute on all nodes except the caller. As parameters, this 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 283 

handler will take the source id of the caller (integer), a user-defined pa

rameter buffer of arbitrary length (dmcs_pointer_t), and the length of the 

parameter buffer in bytes ( dmcs_arg_t). 

2. dmcs_pointer _t buffer: A user-defined parameter data buffer of arbitrary 

length. 

3. int size: The size of the parameter data buffer, in bytes. 

4. dmcs..status_t* status: The status variable can be used to determine when 

it is safe to modify the parameter data buffer. The operations available to 

test the status object are described in this document. If a status object is 

not required, the constant DMCS_STATUS_IGNORE may be used. NOTE: 

This is a parameter for the non-blocking broadcast only! 

5. int tag: This is a user-specified tag field. Because all communication must 

be received using polling operations, the tag field can allow the poller to 

differentiate between message types, and only handle those types with a 

certain tag. A greater description is provided in the dmcs_poll{) operation 

discussion. By default, this field has the value DMCS_DEFAULT_TAG. Tags 

should be positive integral values. 

Returns: None 

Description: 

This operation is used to invoke a user-defined handler on all processors except 

for the caller. The user handler invoked by the broadcast operation takes an 

arbitrarily long user-defined parameter buffer as a parameter, and must conform 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 284 

Table B.ll: DMCS POLLING AND SYNCHRONIZATION 

II Polling Operation 
II void dmcs_poll(} I Polls the network for pending messages 

II Synchronization Operation 
II void dmcs_barrier () I Blocks a node until all nodes enter 

to the handler prototypes given in Table B.l. In addition, the user handler must 

be registered with the runtime system prior to its execution, using the DMCS 

handler registration routines described previously. 

B.2.6 Polling Operations 

Because DMCS is single-threaded, interrupts are not able to notify the application of new 

message arrivals. Therefore, the application must poll the network to check for any pending 

messages and to execute their associated handlers. The dmcs_poll() operation in Table B.ll 

is provided for this purpose. 

How often the application chooses to post polling operations represents a tradeoff. Fre-

quent polling will ensure the timely delivery of messages; however polling overhead may 

begin to take its toll on application performance. For this reason, applications must decide 

carefully when and where to post polling operations. 

Polling will first check the network for any pending messages. For messages that have 

arrived since the previous poll, their associated user and system handlers will be executed 

in the order in which the messages have arrived and within the polling thread. This means 

that application developers writing single-threaded applications will be guaranteed that all 

application code, including message handlers, will execute within the same thread, elimi-

nating the need for critical sections and mutex locks. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 285 

It should be noted that polling operations are necessary not only for RSR messages, but 

also for get, put, get_op, and put_op operations, even when no application handler function 

is executed. 

dmcs_poll() 

Parameters: 

1. int tag: This is a user-specified tag field. Because all communication must 

be received using polling operations, the tag field can allow the poller to 

differentiate between message types, and only handle those types with a 

certain tag. A greater description is provided in the dmcs_poll() operation 

discussion. By default, this field has the value DMCS_ANY_TAG, which 

indicates that a message of any tag will be received. Tags should be positive 

integral values. 

Returns: None 

Description: 

Polls the network for any newly arrived messages, and executes any user-defined 

handlers or other functionality associated with the messages. Note that the user 

may supply an optional tag parameter, which can be used to differentiate among 

incoming message tags. Posting a polling operation with a specific tag will ensure 

that only messages with matching tags will be handled. However, all messages 

of any type are received, and those with nonmatching tags are buffered for later 

handling. This buffering may impact memory utilization, and applications should 

take care to not exhaust available memory. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 286 

B.2. 7 Synchronization Operations 

The dmcs_barrier(} operation provides a simple fan-in, fan-out barrier algorithm which will 

ensure that all processors enter the barrier before any processor is allowed to leave. There are 

several words of warning when using the barrier, however. First is that the dmcs_barrier(} 

operation is designed to synchronize all processes. If only a subset of processes which 

to synchronize, the application will need to provide this functionality. However, this is 

relatively easy to build using the communication operations provided by DMCS3. 

Second, DMCS is unable to distinguish between one barrier call and another. Therefore, 

it is not necessary that all processors enter the same barrier, only that all processors enter 

some barrier. A corollary to this statement is that two barriers placed closely together will 

often lead to unpredictable behavior and should be avoided. 

Finally, this barrier operation is not particularly high performance. Users desiring a 

more performance and a greater degree of scalability may wish to implement their own 

synchronization functionality. 

drncs_barrier() 

Parameters: None 

Returns: None 

Description: 

Blocks processes entering the barrier until all processes have entered the barrier. 

3 In fact, the dmcs_barrier() operation itself is built using DMCS communication operations. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 

#include 11 dmcs.h" 
2 
3 bool ping_pong_ack = false; 
4 bool finished = false; 
5 int num_messages =- 1000; 

Figure B.2: PING-PONG CODE USING DMCS 

6 int payload_sizesO • {16~ 32, 64, 128, 256, 512, 1024}; 
7 int num_payload_sizes • 7; 
8 
9 void finish_handler(int sre_proc) { finished .. true; } 
10 
11 void rsrN_reply(int src_proc, dmcs_pointer_t buffer, size_t size) { 
12 ping_pong_ack = true; 
13 } 
14 
16 void rsrN_handler(int src_proc, dmcs_pointer_t buffer, size_t size) { 
16 dmcs_block_rsrN(src_proc, rsrN_reply, buffer, size); 
17 } 
18 
19 int main(int argc, char• argvO) { 
20 dmcs_rsrO_bandler_t rsrO_handlersO • { finish_handler }; 
21 dmcs_rsrN_handler_t rsrN_handlersO • { rsrN_handler, rsrN_reply }; 
22 
23 dmcs_init(argc, argv); 
24 int my_proc = dmcs_my_proc(); 
25 int nllDl_proc = dmcs_num_procs 0 ; 
26 dmcs_register_rsrO_handlers(rsrO_handlers, 1); 
27 dmcs_regiater_rsrN_bandlers(rsrN_handlers, 2); 
28 
29 if (my_proc •• 0) { 
30 for (int i = 0; i < num_payload_sizes; ++i) { 
31 ping_pong_ack = false; 
32 char• buffer = new char[payload_size [iJ]; 
33 for (int j ,. 0; j < num_messages; ++j) { 
34 dmcs_block_rsrN(l, rsrN_handler, buffer, payload_size[i]); 
35 while ( !ping_pong_ack) { dmcs_poll(); } 
36 ping_pong_ack ,. false; 
37 
38 delete D buffer; 
39 } 
40 for (int i = 0; i < num_procs; ++i) { dmcs_noblock_rsrO(i, finish_handler); } 
41 } 
42 
43 while (!finished) { dmcs_pollO; 
44 dmcs_shutdown(); 
45 return 0; 
46 

B.3 Example DMCS Code 

287 

In this Section, we will take a look at some sample code snippets that illustrate in concrete 

terms how to use the DMCS library. The program shown in Figure B.2 is a simple ping-pong 

program that sends some number of DMCS RSRN messages from processor 0 to processor 

1 and waits for responses back. This program needs only two processors to run; any other 

processors present will have no work to do. The header file dmcs.h is included on line 1; this 

is the only header file that needs to be included to make use of the DMCS functionality. 

Lines 3-7 declare some global variables that are used throughout the program, such as the 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 288 

number of ping-pong messges that will be sent, and the size of the message payloads. The 

done_ftag variable is used to signal when a single ping-pong message has completed the 

round-trip journey, and the finished flag is used to signal when the program is done. 

Next, lines 9-17 declare the three handlers that will be used by this program. The 

finish_handler() routine is used to signal program completion and forms part of a motif 

that is used frequently in DMCS programs. Often, only a single processor is aware that a 

program has completed and is ready to exit. Many times this is the result of all data being 

gathered to a single processor for output, or some condition has occurred of which only one 

processor is aware. In this case, only processor 0 will know that all ping-pong messages have 

arrived. This processor will then send a shutdown message to all others, so all processors 

will be able to call dmcs_shutdown() at the same time. The other two handlers form the 

two ends of the ping-pong cycle: processor 0 will send a message to node 1 and invoke 

the rsrN_handler() routine, which will respond with a message to invoke the rsrN_reply() 

handler. 

Line 19 begins the main() routine for the program. In lines 20 and 21, arrays are 

declared which contain the handlers we wish to register. There is a separate array for each 

handler type; in this case we have only RSRO and RSRNhandlers. Line 23 calls dmcs_init(}, 

passing the argc and argv parameters. We are then able to determine the local processor's 

rank and the number of processors in the parallel system. Lines 26 and 27 then register the 

handlers with the runtime system. 

At line 29, the processors diverge, with processor 0 entering the conditional statement, 

and processor 1 proceeding directly to the while-loop on line 43. Processor 0 simply loops 

over all of the payload sizes and the number of messages and sends the first half of a 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 289 

ping-pong to processor 1. Processor 0 then waits for the response in a while-loop on line 

35. Because processor 1 is polling on line 43, it will receive the message and execute 

the rsrN_handler() routine, which was specified in the message. This routine will send a 

reply back to the caller, which processor 0 will receive in the polling loop on line 35. The 

rsrN_reply(} routine will set the done_flag to false, which will break processor 0 out of the 

while-loop on line 35 and allow the process to begin again. 

Once all ping-pong cycles have completed, processor 0 will send the completion message 

to all processors in the for-loop on line 40. All processors will receive this message within 

the polling operation on line 43, which will end the while-loop and allow each processor to 

shutdown DMCS and exit. 

B.4 Porting DMCS 

In order to make the DMCS runtime layer as easily portable as possible, we have isolated 

a small set of operations upon which all DMCS operations may be constructed. This layer, 

known as the DMCS Messaging Layer (DML), is completely isolated from the application 

and higher layers of the runtime system by the DMCS API software layer. Porting DMCS 

to a new communication platform involves providing only this small set of DML operations. 

Each DML implementation should be kept in a separate subdirectory of the dmcsj 

directory (for instance, the DML/MPI implementation is found in dmcsjdmljdmLmpi/). 

Selecting which DML implementation to use is done using the DML_DIR macro provided 

in the premajconfig-defs configuration file. 

Each DML module must provide a Makefile that is responsible for compiling all DML 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 290 

Table B.12: DML ENVIRONMENT OPERATIONS 

System Initialization and Shutdown 
void dmLinit {int argc, char* argv[j) I Initialize the DMCS system 
void dmLshutdown{} I Shuts down the DMCS system 

Profiling Information Printing 
void dmLprofiling_dump.Jnfo{FJLE* fp) I Outputs profiling information 

Querying the Environment 
int dmLmy _proc () I Returns the processor id of the caller 
int dmLnum_procs() I Returns the number of processors in the system 

source files. However, no library should be built from these source files and the resulting 

object files should be left in the src directory under the DML directory. The object files 

will be combined with the object files from the DMCS API layer into a single library. 

Below, we will describe the operations that must be provided by the DML runtime 

layer, as well as the data structures that are used to convey information between the DMCS 

operations and the DML operations. 

B.4.1 DML Operations 

There are certain operations that must be provided in the DML layer; we will discuss those 

operations next. We will supplement this discussion with some example code snippets il-

lustrating the operations' implementation using MPI. This may provide some insight to 

developers for how they may be implemented using other low-level communication sub-

strates. 

B.4.1.1 DML Environment Operations 

Table B.l2 contains the operations in the Ennironment section of the DML API. The oper-

ations closely mirror the operations found in Table B.2, which the exception that operations 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 291 

used to register user-defined handlers are not present. 

dmLinit() 

Parameters: 

1. int argc: The number of command line arguments given to the executable 

from the command line and subsequently passed to the main() routine 

2. char* argv[]: The command line arguments given to the executable from 

the command line and subsequently passed to the main() routine 

Returns: void 

Description: 

This function is responsible for initializing the lower-level communication sub

strate, as well as setting any global variables that are needed by the DML runtime 

layer. In addition, it is up to the DML to decide whether or not user handlers 

must be registered; if so, then the system handlers dmcs_free_remote_handler(), 

dmcs_malloc_remote_handler(), and dmcs_malloc_locaLhandler() must be regis

tered with the runtime system. This can be accomplished by inserting the han

dlers into the _dmcs_handler_table handler table. The dmLinit() routine is only 

called from within the dmcs_init() routine, and never by the user application. 

The code snippet shown in Figure B.3 gives the MPI implementation of the 

dmLinit() routine. 

dmLshutdown() 

Parameters: None 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 

Figure B.3: MPI IMPLEMENTATION OF DML INITIALIZATION 

1 void dml_init(int argc. char* argv[]) { 
2 MPI_Init(&argc. &argv); 
3 MPI_Comm_rank(MPI_COMM_WORLD. &_dml_my_proc); 
4 MPI_Comm_size(MPI_COMM_WORLD. &_dml_num_procs); 
5 
6 II Create the data structures needed internally by the DML 
7 _dml_request_avail_pool =new dml_request_avail_pool_t(); 
8 _dml_request_pending_pool =new dml_request_pending_pool_t(); 
9 _dml_pending_msg_map =new dml_pending_msg_map_t(); 
10 
11 //Register the DMCS system handlers 
12 _dmcs_handler_table->insert((void•)dmcs_free_remote_handler); 
13 _dmcs_handler_table->insert((void*)dmcs_malloc_remote_handler); 
14 _dmcs_handler_table->insert((void*)dmcs_malloc_local_handler); 
15 } 

Returns: None 

Description: 

292 

This routine is used to shut down the low-level communication substrate. In 

addition, any data structures created by the DML must be cleaned up. This 

routine is called only by the DMCS shutdown procedure, and never by the user 

application. 

dmLprofiling_dump_info() 

Parameters: 

1. FILE* fp: A file pointer to a previously opened file; profiling information 

should be written to this file 

Returns: None 

Description: 

The DML runtime layer is free to determine what system states should be 

recorded during profiling. The purpose of this routine is to output any gathered 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 293 

runtime information. This routine is called only by the dmcs_profiling_dump_info() 

routine, and never by the user application. 

dmL.my _proc{) 

Parameters: None 

Returns: Integer; the ID of the calling processor 

Description: 

This routine is used to determine the ID of the calling process. Processes are 

numbered according to the method used by the underlying communication sys

tem, but typically these IDs are in the range of 0 to P - 1, where P is the 

number of processes in the system. For small routines such as this, it may be 

advantageous for the implementation to make use of the C++ inline capability. 

Note that this routine is only called by the dmcs_my_proc() routine, and never 

by the user application. 

dmLnum_procs() 

Parameters: None 

Returns: Integer; the number of processes in the parallel system 

Description: 

Returns the number of processes in the parallel system. For small routines such 

as this, it may be advantageous for the implementation to make us of the C++ 

inline capability. Note that this routine is called only by the dmcs_num_procs() 

routine, and never by the user application. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 294 

Table B.13: DML MESSAGE SEND OPERATIONS 

Send Operations - Without Handlers 
void dmLblock_send{int tgt, Send a DMCS Message object with blocking semantics 

dmcs_message_t* msg) 
void dmLnoblock_send{int tgt, Send a DMCS Message object with nonblocking semantics 

dmcs_message_t* msg) 
void dmLsync_send{int tgt, Send a DMCS Message object with synchronous semantics 

dmcs_message_t* msg) 

Send Operations - With Handlers 
void dmLblock_send{int tgt, Send a DMCS Message object with blocking semantics; 

dmcs_message_t* msg, user handlers specified 
void* rem_handler, void* loc_handler) 

void dmLnoblock_send{int tgt, Send a DMCS Message object with nonblocking semantics; 
dmcs_message_t* msg, user handlers specified 
void* rem_handler, void* loc_handler) 

void dmLsync_send(int tgt, Send a DMCS Message object with synchronous semantics; 
dmcs_message_t* msg, user handlers specified 
void* rem_handler, void* loc_handler) 

B.4.1.2 DML Send Operations 

Table B.13 contains the operations used by DMCS to send all types of messages to re-

mote processors. The DML send operations come in two types. The first is used to send 

simply a DMCS Message object, and is used for the dmcs_sync_put(), dmcs_async_put(), 

dmcs_sync_get(), and dmcs_async_get{) operations; these do not invoke user-defined han-

dlers on either the local or remote processors. The second type of send operation takes 

local and remote user-defined handler pointers as parameters (NULL is specified for any 

handler that is not applicable). 

DMCS Message objects are allocated and filled in by the DMCS-level routines used to 

send messages, such as Remote Service Request operations. DMCS Message object deallo-

cation is dependent upon the blocking/nonblockingjsynchronous semantics of the operation. 

For blocking and synchronous operations, the DMCS Message object may be deallocated 

at the conclusion of the send operation. A code snippet shown with the dmcs_sync_send(} 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 295 

operation below shows how this deallocation must be performed. For nonblocking opera

tions, deallocating the Message object from within the send operation is not possible. See 

below for a more detailed description of what must be done in this case. 

Note that the example code below will make use of fields of the dmcs_message_t objects; 

a more complete description of this datatype can be found elsewhere in this document. 

dmLblock_send() 

Parameters: 

1. int tgt: The process ID to which the outgoing message should be sent 

2. dmcs_message_t* msg: Pointer to a DMCS Message object that contains 

outgoing message data (the Message object is allocated and filled in by the 

DMCS API-layer routines) 

Returns: None 

Description: 

This routine is used to send a DMCS Message object to a target processor using 

blocking semantics. This routine is used to send a Message to a target pro

cess that does not require the invocation of either a local or remote user-defined 

handler, such as with a DMCS get or put operation. This routine should not re

turn until the Message object is placed onto the network; modifying the Message 

object once the routine has returned should not affect the communication oper

ation. The DMCS Message object is allocated and filled in by the DMCS-level 

API operations. Note that this routine is called only by the DMCS operations, 

and never by the user application. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 296 

dmLnoblock_send() 

Parameters: 

1. int tgt: The process ID to which the outgoing message should be sent 

2. dmcs_message_t* msg: Pointer to a DMCS Message object that contains 

outgoing message data (the Message object is allocated and filled in by the 

DMCS API-layer routines) 

Returns: None 

Description: 

This routine is used to send a DMCS Message object to a target processor using 

nonblocking semantics. This routine is used to send a Message to a target process 

that does not require the invocation of either a local or remote user-defined 

handler, such as with a DMCS get or put operation. This routine may return 

before the communication operation is complete, and the user should not modify 

the DMCS Message object until it can be guaranteed that it is safe to do so. 

The DMCS Message object is allocated and filled in by the DMCS-level API 

operations. Note that this routine is called only by the DMCS operations, and 

never by the user application. 

Because this operation is nonblocking, the implementation must provide a method 

to determine when it is safe to deallocate the DMCS Message object. The code 

shown in Figure B.4 shows the nonblocking send operation in the MPI imple

mentation of the DML. 

dmLsync_send{) 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 297 

Parameters: 

1. int tgt: The process ID to which the outgoing message should be sent 

2. dmcs_message_t* msg: Pointer to a DMCS Message object that contains 

outgoing message data {the Message object is allocated and filled in by the 

DMCS API-layer routines) 

Returns: None 

Description: 

This routine is used to send a DMCS Message object to a target processor using 

synchronous semantics. This routine is used to send a Message to a target process 

that does not require the invocation of either a local or remote user-defined 

handler, such as with a DMCS get or put operation. This routine will not return 

until the message has been received on the target processor. The DMCS Message 

object is allocated and filled in by the DMCS-level API operations. Note that this 

routine is called only by the DMCS operations, and never by the user application. 

In Figure B.5, we show a code snippet that illustrates the implementation of this 

operation using MPI. In it, the DMCS Message object is deallocated once the 

operation is finished; this same strategy is applicable to the DML send operations 

with blocking semantics. 

dmLblock_send () 

Parameters: 

1. int tgt: The process ID to which the outgoing message should be sent 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 298 

2. dmcs_message_t* msg: Pointer to a DMCS Message object that contains 

outgoing message data (the Message object is allocated and filled in by the 

DMCS API-layer routines) 

3. void* rem_handler: A pointer to a user-defined handler function to be exe

cuted on the remote processor 

4. void* loc_handler: A pointer to a user-defined handler function to be exe

cuted on the local processor 

Returns: None 

Description: 

This routine is used to send a DMCS Message object to a target processor using 

blocking semantics. The DML layer has the option of whether or not to use 

user-handler tables, so the handler pointers passed to this routine may be looked 

up in the DMCS handler table, or inserted into the Message object as-is. More 

information concerning the DMCS handler tables as well as the DMCS Message 

object fields can be found elsewhere in this document. 

dmLnonblock_send() 

Parameters: 

1. int tgt: The process ID to which the outgoing message should be sent 

2. dmcs_message_t* msg: Pointer to a DMCS Message object that contains 

outgoing message data (the Message object is allocated and filled in by the 

DMCS API-layer routines) 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 299 

3. void* rem_handler. A pointer to a user-defined handler function to be exe

cuted on the remote processor 

4. void* loc_handler: A pointer to a user-defined handler function to be exe

cuted on the local processor 

Returns: None 

Description: 

This routine is used to send a DMCS Message object to a target processor using 

nonblocking semantics. The DML layer has the option of whether or not to use 

user-handler tables, so the handler pointers passed to this routine may be looked 

up in the DMCS handler table, or inserted into the Message object as-is. More 

information concerning the DMCS handler tables as well as the DMCS Message 

object fields can be found elsewhere in this document. 

dmLsync_send() 

Parameters: 

1. int tgt: The process ID to which the outgoing message should be sent 

2. dmcs_message_t* msg: Pointer to a DMCS Message object that contains 

outgoing message data (the Message object is allocated and filled in by the 

DMCS API-layer routines) 

3. void* rem_handler: A pointer to a user-defined handler function to be exe

cuted on the remote processor 

4. void* loc_handler. A pointer to a user-defined handler function to be exe

cuted on the local processor 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 

Figure B.4: MPI IMPLEMENTATION OF DML NONBLOCKING SEND 

1 void dml_noblock_send(int tgt, dmcs_message_t* msg) { 
2 // For the message header, we get the MPI Request object from the pool of 
3 II preallocated reqeuests. We will check (and free) the completion of 
4 //these communication operations in the dml_poll() operation. 
5 MPI_Request* msg_send_req = _dml_request_avail_pool->remove(); 
6 MPI_Request buf_send_req; 
7 int tag = 0; II Arbitrary 
8 
9 MPI_Isend(msg, sizeof(dmcs_message_t), MPI_BYTE, tgt, tag, 
10 MPI_COMM_WORLD, msg_send_req); 
11 if (msg->loc_ptr != NULL) { 
12 MPI_Isend(msg->loc_ptr, msg->size, MPI_BYTE, tgt, tag, 
13 MPI_COMM_WORLD, kbuf_send_req); 
14 } 
15 
16 II Insert the header's MPI Request object into the pending request pool, 
17 // and insert the request/message pair into the pending message map. 
18 //These data structures are emptied in the DML polling operation. 
19 _dml_request_pending_pool->insert(msg_send_req); 
20 _dml_pending_msg_map->insert(msg_send_req, msg); 
21 } 

Returns: None 

Description: 

300 

This routine is used to send a DMCS Message object to a target processor using 

synchronous semantics. The DML layer has the option of whether or not to use 

user-handler tables, so the handler pointers passed to this routine may be looked 

up in the DMCS handler table, or inserted into the Message object as-is. More 

information concerning the DMCS handler tables as well as the DMCS Message 

object fields can be found elsewhere in this document. 

B.4.1.3 DML Broadcast Operations 

DML broadcast operations trasmit DMCS Message objects and user data buffers to all nodes 

in the parallel system except the caller. If the underlying communication substrate provides 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 

Figure B.5: MPI IMPLEMENTATION OF DML SYNCHRONOUS SEND 

1 dmcs_sync_send(int tgt, dmcs_message_t* msg) { 
2 MPI_Request msg_send_req; 
3 int tag= 0; II Arbitrary 
4 
5 II If the payload buffer is not NULL, then ve vill first send the header 
6 II information using nonblocking semantics, and then send the payload 
7 II data using synchronous semantics. Othervise, ve vill send the header 
8 II information using synchronous MPI operations. 
9 if (msg->loc_ptr != NULL) { 
10 MPI_Isend(msg, sizeof(dmcs_message_t), MPI_BYTE, tgt, tag, 
11 MPI_COMM_WORLD, &msg_send_req); 
12 MPI_Ssend(msg->loc_ptr, msg->size, MPI_BYTE, tgt, tag, MPI_COMM_WORLD); 
13 MPI_Request_free(&msg_send_req); 
14 } else { 
15 MPI_Ssend(msg, sizeof(dmcs_message_t), MPI_BYTE, tgt, tag, 
16 MPI_COMM_WORLD); 
17 } 
18 
19 II Since this is a synchronous operation, ve can safely return the DMCS 
20 II Message object to the pool of available objects 
21 _dmcs_message_pool->insert(msg); 
22 } 

Table B.14: DML BROADCAST OPERATIONS 

Broadcast Operations 
void dmLblock_broadcast ( Broadcast a DMCS message with blocking semantics 

dmcs_message_t* msg, void* handler) 
void dmLnoblock_broadcast ( Broadcast a DMCS message with nonblocking semantics 

dmcs_message_t* msg, void* handler) 

301 

efficient broadcast operations conforming to the semanitics mandated by DMCS, then the 

implementor may feel free to use them. However, in the MPI version of DMCS, broadcasts 

are built using only point-to-point communication operations, and messages travel to all 

nodes in a tree-like fashion. Child nodes are dynamically calculated in such a way that each 

messaage arrives at each node exactly one time. 

The broadcast operations that must be provided by the DML runtime layer are shown 

in Table B.l4. It should be noted that there is no synchronous broadcast available. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 302 

dmLblock_broadcast () 

Parameters: 

1. dmcs_message_t* msg: DMCS Message object, filled in by the DMCS 

broadcast operation. 

2. void* handler: Pointer to the user-defined handler to execute, cast as a 

generic pointer. 

Returns: None 

Description: 

This routine is used to invoke the user defined handler on all nodes in the parallel 

system, except the caller. Blocking semantics mean that the routine will not 

return until it is safe to modify the outgoing data buffer. However, the latency 

observable by the application will most likely be higher with this routine than 

with its nonblocking counterpart. 

dmLnoblock_broadcast() 

Parameters: 

1. dmcs_message_t* msg: DMCS Message object, filled in by the DMCS 

broadcast operation. 

2. void* handler: Pointer to the user-defined handler to execute, cast as a 

generic pointer. 

Returns: None 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 303 

Table B.15: DML POLLING AND SYNCHRONIZATION OPERATIONS 

II Synchronization Operations 
II void dmLpoll() I Polls the network for pending messages 

II Polling Operations 
II void dmLbarrier() I Blocks until all processors enter barrier 

Description: 

This routine is used to invoke the user defined handler on all nodes in the parallel 

system, except the caller. Nonblocking semantics mean that the routine may pos-

sibly return before it is safe to modify the outgoing data buffer. The caller must 

take measures to ensure that the data buffer will not be deallocated or modified 

until it is safe to do so. However, the latency observable by the application will 

most likely be lower with this routine than with its blocking counterpart. 

B.4.1.4 DML Polling Operation 

The purpose of the DML polling operation (Table B.15) is to encapsulate the system-specific 

functionality that is required to poll for messages. Note that the dmLpoll(} routine is called 

only by dmcs_poll(}, and never by the user application. 

dmLpoll() 

Parameters: None 

Returns: None 

Description: 

The DML polling operation encapsulates any low-level system-specific function-

ality needed to poll the network for incoming messages. Incomming messages 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 304 

contain tags that state the type of arriving message (more information concern

ing the DMCS Message object is found later in this document); these messages 

should be properly handled in the D ML runtime layer. 

NOTE: The DMCS polling operation simply calls the DML poll routine, so all polling 

activity must be handled in the DML runtime layer. 

B.4.1.5 DML Synchronization Operation 

Table B.15 contains the DML synchronization operation. While it would be possible to 

build a barrier operation using the RSR functionality provided by DMCS, we have cho

sen to place the barrier within the DML runtime layer in order to take advantage of any 

higher performance barrier functionality that may be provided by the lower communication 

substrate. 

dmLbarrier() 

Parameters: None 

Returns: None 

Description: 

Blocks processes entering the barrier until all processes have entered the barrier. 

B.4.2 DML Data Structures 

Several data structures are used to transfer information between the DMCS API routines 

and the underlying DML operations upon which they are constructed. In this Section, we 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 

Figure B.6: DMCS MESSAGE DATA STRUCTURE 

1 struct dmcs_message_t { 
2 II The process that sent the message 
3 int src; 
4 
5 II The type of message: RSR, PUT, GET, PUT_OP, GET_OP. The tag field 
6 II is used for specific message types: RSR1. RSR2. RSR3 ... 
7 int tag; 
8 int type; 
9 
10 II Array to hold the arguments available for RSR operations 
11 dmcs_arg_t arg[4]; 
12 
13 II Handler table index of the local and remote handlers. The local 
14 II handler always executes on the originating (src) processor, while 
15 II the remote handler executes on the target node. 
16 int loc_handler_idx; II May also be a function address 
17 dmcs_arg_t loc_handler_arg; 
18 int rem_handler_idx; II May also be a function address 
19 dmcs_arg_t rem_handler_arg; 
20 
21 II The pointers to the local and remote data buffers used in the Get-op 
22 II and Put-op operations 
23 dmcs_pointer_t rem_ptr; 
24 dmcs_pointer_t loc_ptr; 
25 
26 II The size of the data buffer to transfer; used for both RSRN and Put-op 
27 II and Get-op operations 
28 int size; 
29 
30 II The sync flag address is used to signal a processor that a particular 
31 II synchronous operation has completed. 
32 bool* sync_flag_addr; 
33 }; 

305 

will describe these data structures and how they may be used to implement DML-level 

routines. 

B.4.2.1 dmcs_message_t 

The dmcs_message_t data structure (Figure B.6) contains information about a particular 

DMCS message, such as the sender of the message and the message type (RSR, put, get, 

etc.). 

The dmcs_message_t object is filled in by the DMCS-level message send operations, such 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 306 

Figure B. 7: A PORTION OF THE DML POLLING IMPLEMENTATION 

1 ~hile (probe_flag) { 
2 probe_flag = false; 
3 
4 //Probe each processor for incoming messages 
5 for (int i = 0; i < num_procs; ++i) { 
6 dmcs_message_t* msg_ptr = dml_probe(i); 
7 if (msg_ptr != NULL) { 
8 probe_flag = true; 
9 s~itch (msg_ptr->tag) { 
10 case DMCS_RSR: dml_rsr_handler(msg_ptr); break; 
11 case DMCS_PUT: dml_put_handler(msg_ptr); break; 
12 case DMCS_GET: dml_get_handler(msg_ptr); break; 
13 case DMCS_PUT_OP: dml_put_op_handler(msg_ptr); break; 
14 case DMCS_GET_OP: dml_get_op_handler(msg_ptr); break; 
15 } // end switch 
16 } // end if 
17 } // end for 
18 } // end ~hile 

as dmcs_async_rsrN(). By examining the contents of particular fields, DML routines are 

able to determine how to properly handle outgoing and incoming messages. For instance, 

DML send operations look at the loc_ptr field to determine the location of any user-defined 

parameter data buffers, as may be present with DMCS put and rsr operations. Examining 

the size field gives the number of bytes to transfer to the remote processor. At the target 

processor, the DML polling operation is able to determine how to handle the incoming 

message via the tag and type fields. 

As a concrete example, the code in Figure B. 7 illustrates part of the polling functionality 

found in the MPI implementation of the DML (in a somewhat shorthand notation). The 

code examines the incoming DMCS message object's tag field to determine what type of 

message is arriving. A separate function is called to handle each type of message. 

In this code example, the dmLprobe() routine is used to check for an arriving message 

from a single processor. If a message is present, a new DMCS Message object is allocated 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 307 

Table B.l6: DMCS MESSAGE POOL INTERFACE METHODS 

dmcs_message_t* remove() Allocate a DMCS Message object from the pool 
void insert ( dmcs_messaage_t * msg_ptr) Return a DMCS Message object to the pool for future reuse 

from the DMCS Message object pool (discussed below) and is filled in with the arriving 

data. If no incoming message is present, NULL is returned. Once the message is handled, 

the DMCS Message object is returned to the available Message object pool. 

B.4.2.2 dmcs_message_pooLt 

In order to eliminate the dynamic allocation and deallocation of DMCS Message object 

during runtime, a pool of available Message objects is maintained by the runtime system. 

When creating and sending an outgoing message, the DMCS API-level routines will request 

Message objects from this pool and fill them in before passing them to the DML-level send 

operations. It is then up to the DML routines to deallocate the Message objects and return 

them to the preallocated pool. On the target node, it is up to the DML layer to entirely 

manage the allocation and deallocation of DMCS Message objects. 

Inside the dmcs_init() routine, a global DMCS Message pool object is created. The 

_dmcs_message_pool object has two public methods, one for inserting objects into the pool 

(deallocation) and one for removing items from the pool (allocation). The remove(} method 

will return a pointer to a DMCS Message object (call it msg_ptr), while insert{msg_ptr) will 

return the DMCS Message object to the pool, making it available for future reuse. 

Note that in order to access the global DMCS Message pool and its methods, the header 

files dmcs_globals.h and dmcs_message_pool.h need to be included. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. DATA MOVEMENT AND CONTROL SUBSTRATE 308 

Table B.l7: DMCS HANDLER TABLE INTERFACE METHODS 

void insert{void* handler) Insert a user-defined handler into the table 
int lookup.ldx{void* handler) Given a handler pointer, return its table index 
void* lookup_handler{int idx) Given a handler index, return its address 
void remove(int idx) Remove a user-defined handler from the table 

B.4.2.3 dmcs_handler _table_t 

The third data structure we will discuss is the DMCS handler table, which is used to register 

user-defined handlers prior to their invocation. Many parallel environments, such as loosely-

coupled networks of workstations, are not able to guarantee that routines are mapped to 

corresponding addresses on each node. For these environments, user-defined handlers are 

associated with small integer indices, which are then passed between processors instead of 

routine addresses. However, some environments may be able to pass memory address of 

functions safely between processors, and will therefore not need to make use of the handler 

tables. Whether or not to make use of the handler tables is therefore a decision left to the 

DML layer of the runtime system. 

Table B.17 defines the interface to the DMCS handler table. A global handler table 

(_dmcs_handler_table) is created inside the dmcs_init(} routine. In addition, operations 

are provided by the DMCS API-level to register user-defined handlers with the handler 

table. However, in the DML send operations, user handlers may need to be looked up, 

thus requiring the use of the handler table. In such cases, transforming table indices to 

handler addresses will be necessary on the target node. Note that in order to access the 

global handler table and its methods, the header files dmcs_globals.h and dmcs_header_table.h 

must be included. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Appendix C 

Mobile Object Layer 

The Mobile Object Layer is a light-weight toolkit which provides a global namespace and the 

mechanisms necessary for object migration. The MOL provides a global namespace through 

the concept of mobile pointers which refer to application-defined data objects regardless of 

where they are in the parallel system. The MOL provides an efficient migration mechanism 

which allow these mobile objects to migrate under the control of either the application or 

higher-level runtime libraries; this migration mechanism makes use of a distributed data 

structure and automatic message forwarding to efficiently migrate data and ensure that 

processors are able to communicate with application data objects. This mechanism means 

that the MOL frees application developers from the tedious bookkeeping of maintaining 

up-to-date locations for all data objects in the application domain, greatly reducing the 

complexity of parallel adaptive applications. 

The MOL extends the communication model provided by DMCS [16] by providing op

erations for communication between processors and mobile objects, not just between pro

cessors. This allows applications to invoke computation at the site of data, without needing 

to know explicitly where that data lies; it is up to the MOL to ensure that messages arrive 

at their intended targets. 

309 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX C. MOBILE OBJECT LAYER 310 

Table C.l: MOL USER HANDLER PROTOTYPES 

MOL Request Handler Prototype 
void {*moLreq_handler_t)(int proc, void* data, int size, I MOL Request handler prototype 

void* arg} 

MOL Message Handler Prototype 
void {*moLmsg_handler_t)(int proc, moLmobile_ptr_t mptr, I MOL Message handler prototype 

void* obj_data, void* user_data, int size, void* arg) 

The MOL is built entirely using the communication operations provided by DMCS, 

meaning that the MOL is immediately portable to any platform for which a DMCS im-

plementation exists. The MOL is also written in ANSI-C++, further easing the burden of 

porting the runtime system to new platforms. 

The MOL is not intended to provide a fully Distributed Shared Memory programming 

model. By this, it is meant that processors may not access distributed data using semantics 

which are inherent to sequential programming. Processors access data through messages, 

which will be described more fully later. 

In addition, the MOL does not allow copies of data to exist. This allows the MOL to 

avoid the issue of maintaining object consistency and lowers the cost associated with the 

runtime system. This does not prevent the application from explicitly creating copies of 

data objects, but the coherency concerns are left to the application. 

C.l User Handler Prototypes 

The Mobile Object Layer provides two basic types of communication operations: requests 

and messages. These operations are designed to execute a user-defined handler at the target. 

These handlers must conform to specific prototypes, which are given in Table C.l. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX C. MOBILE OBJECT LAYER 311 

C.l.l Request Handlers 

MOL Request handlers execute within a moLpoll(} operation, are sent from one processor 

to another, and are described by the following: 

Type Name: moLreq_handler _t 

Parameters: 

1. int proc: This is the processor that sent the request, and is often useful for 

sending replies back to the caller from within the handler. 

2. void* data: This is the user-specified parameter data buffer. This buffer 

may be of any size, and may possibly be NULL. 

3. int size: This argument is the size of the parameter data buffer, in bytes. 

4. void* arg: This argument is the single machine-word sized argument that 

was specified as the final requred parameter in the moLrequest() operation. 

Again, this value can be NULL. 

Returns: None 

C.1.2 Message Handlers 

MOL Message handlers also execute within a mol_poll() operation. However, these are sent 

from a processor to a mobile object whose location does not need to be known to the caller. 

The message will be forwarded if necessary in order to reach its intended target. MOL 

Message handlers are described by the following: 

Type Name: moLmsg_handler _t 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX C. MOBILE OBJECT LAYER 312 

Parameters: 

1. int proc: This is the processor that sent the message, and is often useful 

for sending replies back to the caller from within the handler. 

2. moLmobile_ptr_t mptr: This is the mobile pointer that is the target of 

the message. 

3. void* obj_data: This is a pointer to the local mobile object. Because MOL 

message handlers always execute on the processor on which the target mobile 

object is located, we know that a local pointer to the data object is available. 

This is provided so that the handler will have access to the mobile object. 

4. void* user _data: This is the user-specified parameter data buffer. This 

buffer may be of any size, and may possibly be NULL. 

5. int size: This argument is the size of the parameter data buffer, in bytes. 

6. void* arg: This argument is the single machine-word sized argument that 

was specified as the final required parameter in the moLmessage() operation. 

Again, this value may be NULL. 

Returns: None 

C.2 Operations Provided 

Now that we have provided a brief introduction to the Mobile Object Layer and its pro

gramming model, we can delve into the specifics of the operations that are provided. These 

operations can be divided five categories: Environment functions, Mobile Pointer functions, 

Communication functions, Polling functions, and Synchronization functions. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX C. MOBILE OBJECT LAYER 313 

Table C.2: MOL ENVIRONMENT OPERATIONS 

System Initialization and Shutdown 
void moLinit {int argc, char* argv[}, Initialize the MOL system 

moLconfigurator_t* config) 
void moLshutdown(} Shuts down the MOL system 

System Configuration 
void moLseLconfigurator _field{ Sets a field in the configurator; 

moLconfigurator_t* config, int field, see below for comlete description 
int value} 

Querying the Environment 
int moLmy _proc () Returns the processor id of the caller 
int moLnum_procs (} Returns the number of processors in the system 

Handler Registration 
void mol....register_req_handlers{ Register MOL Request handlers with no 

moLreq_handler_t handlers[], int size) associated names 
void mol_register _named_req_handlers ( Register MOL Request handlers with 

moLreq_handler_t handlers[], char* names[] associated names 
int size} 

void mol_register _msg_handlers{ Register MOL Message handlers with no 
moLmsg_handler_t handlers[], int size} associated names 

void mol_register _named_msg_handlers ( Register MOL Message handlers with 
mol_msg_handler_t handlers[], char* names[] associated names 
int size) 

C.2.1 Environment Operations 

Table C.2 contains the operations in the Environment section of the MOL API. These 

functions are responsible for initializing and shutting down the runtime system, along with 

determining certain runtime information. 

moLinit() 

Parameters: 

1. int argc: The number of command line parameters. Passed to main(} as 

the first parameter. 

2. char* argv[]: The command line parameters given to the program. Passed 

to main() as the second parameter. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX C. MOBILE OBJECT LAYER 314 

3. moLconfigurator_t* config: OPTIONAL This parameter may be left out 

of the moLinit() call. There are three fields in the configurator object using 

the moLseLconfigurator_field() routine: 

• MOL_CONFIGURATOR_pOOL..SIZE : The size of the buffer entries 

controlled by the MOL's memory manager 

• MOL_CONFIGURATOR_pOOLENTRIES: The number of buffers man-

aged by the MOL's memory manager 

• MOL_CONFIGURATOR.DIR_UPDATE_pROTOCOL : The directory 

update protocol to use. By default, the MOL uses a lazy directory 

update protocol (MOL_LAZY ..FORWARDING). However, the MOL is 

designed to allow alternative protocols to be easily incorporated into the 

architecture1 . 

Returns: None 

Description: 

This function is responsible for initializing the runtime system and must be the 

first MOL operation called (except for the moLseLconfigurator_field() operation 

described below). The MOL is responsible for initializing the underlying DMCS 

layer, so a dmcs_init() call is no longer necessary in the application code. This 

operation is collective, meaning that all processors must call moLinit() at the 

same time. After this function returns, other MOL operations may be invoked. 

moLshutdown() 

1 Descriptions of how to create and incorporate directory update protocols is beyond the scope of this 
document. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX C. MOBILE OBJECT LAYER 315 

Parameters: None 

Returns: None 

Description: 

This operation is the final MOL call made by any application. As with initializa

tion, the MOL is responsible for shutting down any lower level communication 

systems, so such calls should not be present in the application. In addition, the 

shutdown routine is a collective operation and must be called by each processor 

at the same time. 

NOTE: In the case in which runtime profiling information is gathered (Refer 

to Compiling and Installing the PREMA Libraries), calling moLshutdown() will 

result in profiling files being generated for the MOL and lower PREMA software 

layers. 

moL.seLconfigurator _field() 

Parameters: 

1. moLconfigurator _t* configurator: Pointer to a preallocated configurator 

object. 

2. int field: Which field of the configurator object to set. These fields are 

specified in the description of the moLinit{) operation. 

3. int value: The value to set the configurator field to. The pool size field is 

set to an integer value which specifies the size of the pool buffers in bytes. 

The number of pool entries field is an integer value which specifies the num

ber of buffers managed for each source-target processor pair. The directory 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX C. MOBILE OBJECT LAYER 316 

Figure C.l: EXAMPLE USING MOL CONFIGURATOR OBJECT 

1 int main(int argc, char* argv[]) { 
2 mol_configurator_t config; 
3 
4 mol_set_configurator_field(&config, MOL_CONFIGURATOR_POOL_SIZE, 1024); 
5 mol_set_configurator_field(&config, MOL_CONFIGURATOR_POOL_ENTRIES, 256); 
6 mol_init(argc, argv, &config); 
7 
8 
9 
10 return 0; 
11 } 

update protocol field is set to an integer flag which will specify which pro-

tocol to use. Any protocols provided by the MOL have constants defined 

in moLconstants.h; however, the user is free to create new directory upate 

protocols. 

Returns: None 

Description: 

Sets a single field of an MOL configurator object. Configurator objects may 

be passed as an optional third parameter to the moLinit(} operation in order 

to configure the Mobile Object Layer. Not all fields of the configurator object 

need to be set; default values are provided for each of the fields. The code in 

Figure C.l is an example of how to use configurator objects: 

moLmy _proc() 

Parameters: None 

Returns: Integer processor id 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX C. MOBILE OBJECT LAYER 317 

Description: 

Returns a value between 0 and N - 1 where N is the number of processors in 

the parallel system. Although the exact numbering of processors depends on the 

lowest-level communication substrate (such as MPI), it is generally assumed that 

the processor ids begin at zero and proceed sequentially. 

moLnum_procs() 

Parameters: None 

Returns: Integer number of processors 

Description: 

Returns the number of processors in the parallel system, N. Although the num

bering of processors in the parallel system is dependent upon the lowest-level 

communication substrate, processors are typically numbered from zero to N - 1. 

C.2.2 Handler Registration Operations 

Table C.2 contains the routines that are used to register application-defined MOL message 

and request handlers with the runtime system. All message handlers must be registered 

with the runtime system before they may be invoked as the result of a message from a 

remote processor. Handler registration must be performed by each processor, with every 

processor registering handlers in the same order. Typically this is done immediately after 

initializing the system. 

moLregister _req_handlers() 

Parameters: 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX C. MOBILE OBJECT LAYER 318 

1. moLreq_handler_t handlers[]: An array of MOL request handlers to be 

registered with the runtime system. The prototype for the request handlers 

is discussed in Section C.l. 

2. int size: The number of handlers in the handlers array. 

Returns: None 

Description 

This function is used to register MOL Request handlers with the runtime sys

tem. Because the MOL is unable to make the assumption that functions lie 

at the same address on each processor in the parallel system, requests are sent 

between processors specifying a table index which processors use to locate user

defined handlers. With this function, no names are associated with the handlers; 

associating names with handlers can be useful for application debugging with 

the MOLOUTPUT_USER_HANDLERS flag provided during compilation. 

moLregister _named_req_handlers() 

Parameters: 

1. mol_req_handler _t handlers[]: An array of MOL request handlers to be 

registered with the runtime system. The prototype for the request handlers 

is discussed in Section C.l. 

2. char* names[]: An array of strings used to identify the handlers. These 

names may be the names of the handlers, or any other string the application 

developer can use for identification purposes. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX C. MOBILE OBJECT LAYER 319 

3. int size: The number of entries in each of the handlers array and names 

array. Note that these two arrays must be of the same size. 

Returns: None 

Description: 

This function is used to register MOL Request handlers with the runtime system. 

Because the MOL is unable to make the assumption that functions lie at the 

same address on each processor in the parallel system, requests are sent between 

processors specifying a table index which processors use to locate user-defined 

handlers. With this function, the application is able to associate names with 

each of the request handlers. These names may be useful during application 

debugging, provided the MOLOUTPUT_USERJIANDLERS flag is specified 

on the compile line when compiling the MOL. The name associated with each 

handler will be output to stderr when it is entered and when it exits during the 

application run. 

moLregister _msg_handlers() 

Parameters: 

1. moLmsg_handler _t handlers[]: An array of MOL message handlers to be 

registered with the runtime system. The prototype for the message handlers 

is discussed in Section C.l. 

2. int size: The number of handlers in the handlers array. 

Returns: None 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX C. MOBILE OBJECT LAYER 320 

Description: 

This function is used to register MOL Message handlers with the runtime sys

tem. Because the MOL is unable to make the assumption that functions lie at 

the same address on each processor in the parallel system, messages are sent 

between processors specifying a table index which processors use to locate user

defined handlers. With this function, no names are associated with the handlers; 

associating names with handlers can be useful for application debugging with 

the MOLOUTPUT_USER..HANDLERS flag provided during compilation. 

moLregister _named....msg_handlers() 

Parameters: 

1. mol....msg_handler _t handlers[]: An array of MOL message handlers to be 

registered with the runtime system. The prototype for the request handlers 

is discussed in Section C.l. 

2. char* names[]: An array of strings used to identify the handlers. These 

names may be the names of the handlers, or any other string the application 

developer can use for identification purposes. 

3. int size: The number of entries in each of the handlers array and names 

array. Note that these two arrays must be of the same size. 

Returns: None 

Description: 

This function is used to register MOL Message handlers with the runtime system. 

Because the MOL is unable to make the assumption that functions lie at the 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX C. MOBILE OBJECT LAYER 321 

Table C.3: MOL MOBILE POINTER OPERATIONS 

Mobile Object Creation 
moLmobile_ptr_t moLcreate_mobile_ptr ( Create a mobile pointer given a local pointer 

void* object) 

Mobile Pointer Dereferencing 
void* moLmobile_ptr _deref( Return the address of the data referenced by 

moLmobile_ptr _t mptr) the mobile pointer (if local) 

Miscellaneous Mobile Pointer Operations 
int moLmobile_ptr _locate( Returns the processor on which a mobile object is 

moLmobile_ptr_t mptr) located (Please read the description of this operation 
for a complete discussion) 

int moL.num_locaLobjs() Returns the number of mobile objects on the 
local processor 

same address on each processor in the parallel system, messages are sent between 

processors specifying a table index which processors use to locate user-defined 

handlers. With this function, the application is able to associate names with 

each of the message handlers. These names may be useful during application 

debugging, provided the MOLOUTPUT_USERJIANDLERS flag is specified 

on the compile line when compiling the MOL. The name assocated with each 

handler will be output to stderr when it is entered and when it exits during the 

application run. 

C.2.3 Mobile Pointer Operations 

The MOL mobile pointer is a system-wide unique identifier that refers to any application-

defined data object. The data object is not restricted to lie in contiguous memory. The 

operations discussed below are used to create and dereference mobile objects. 

moLcreate_mo bile_ptr () 

Parameters: 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX C. MOBILE OBJECT LAYER 322 

1. void* object: Pointer to local data object to which the mobile pointer will 

refer 

Returns: moLmobile_ptr_t Mobile pointer which refers to the data object 

Description: 

This operation is used to create a mobile pointer which refers to an application

specified data object. The application data object must be local to the processor 

calling the routine. Once this operation returns, the mobile pointer is known 

only to the calling processor. However, mobile pointers may be distributed to 

other processors using communication routines provided by the MOL, DMCS, 

or lower communication substrate. 

moLmobile_ptr _deref() 

Parameters: 

1. moLmobile_ptr _t mptr: The mobile pointer to dereference 

Returns: void* address of data object. This is a valid address for local objects, and 

NULL for remote objects 

Description: 

This operation is used to "dereference" a mobile pointer. For mobile pointers 

that refer to local data objects, this routine will return the local address of the 

data object. For mobile pointers which refer to remote data objects, this routine 

will return NULL. This operation is often used for optimizations; the application 

can first check to see if the data object is local, and if so can operate on it directly. 

moLmobile_ptr _locate() 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX C. MOBILE OBJECT LAYER 323 

Parameters: 

1. moLmobile_ptr _t mptr: The mobile pointer for the object to locate 

Returns: Integer processor id 

Description: 

This routine is used to locate a mobile object. However, it must be noted that 

the MOL uses a distributed directory structure to maintain mobile object loca

tions. Using some directory update protocols (and by default), local directories 

are updated only lazily and are allowed to be out of date. In order to make 

this operation as efficient as possible, mobile objects are looked up on the local 

directory only, so the value returned to the user may reflect the out of date status 

of the local directory. 

moLnum_locaLobjs() 

Parameters: None 

Returns: Integer value; the number of local objects 

Description: 

This routine returns the number of mobile objects that are currently located on 

the calling processor. 

C.2.4 Communication Operations 

The MOL provides two types of communication operations: requests and messages. Appli

cations send requests from one processor to another, while messages are sent to application

defined mobile objects. These operations are shown in Table C.4. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX C. MOBILE OBJECT LAYER 324 

Table C.4: MOL COMMUNICATION OPERATIONS 

MOL Request Operations 
void moLrequest(int proc, Sends a request from one processor to another 

moLreq_handler_t handler, 
void* data, int size, void* arg, 
moLstatus_t * status) 

void mol..request..no_copy(int proc, Sends a request from one processor to another 
moLreq_handler_t handler, void* data, int size, without copying the data on the sender node 
void* arg, moLstatus_t* status) 

MOL Message Operations 
void moLmessage ( moLmobile_ptr_t mptr, Sends a message to a mobile object 

moLmsg_handler_t handler, void* data, int size, 
void* arg, moLstatus_t* status) 

void mol..message..no_copy ( moLmobile_ptr _t mptr, Sends a message to a mobile object 
moLmsg_handler_t handler, void* data, int size, without copying the data on the sender node 
void* arg, moLstatus_t* status} 

MOL Status Object Operations 
int moLstatus_test(moLstatus_t* status) Tests for associated operation's status 
void moLstatus_wait(moLstatus_t* status} Waits for associated operation's completion 
void moLstatus_reset{moLstatus_.t* status) Resets the status object for subsequent reuse 

Figure C.2: USING THE MOL STATUS OBJECT 

1 mol_status_t status; // Object is initialized to the correct state 
2 mol_request_no_copy(tgt_proc, user_handler, data_buffer, size_of_buffer, NULL, 
3 &status); 
4 while (mol_status_test(&status) != MOL_STATUS_COMPLETE) { 
5 //Do some work here; do not modify data_buffer! 
6 } 
7 mol_status_reset(&status); //status now available for subsequent operations 

MOL communication operations make use of a status object, which allows applications 

to monitor the state of ongoing communication operations. The status object is particularly 

useful for requests and messages sent using the no_copy option; for larger messages, split-

phase communication is used to lower the latency visible to the application. However, the 

application must have a mechanism for determining when it is safe to modify the data buffer 

used in the communication operation. Status variables provide this mechanism. In the code 

snippet shown in Figure C.2, we demonstrate the use of the status object. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX C. MOBILE OBJECT LAYER 325 

moL.request () 

Parameters: 

1. int proc: The processor to which the request will be sent 

2. moLreq_handler _t handler: The user handler to invoke on the target 

processor 

3. void* data: Parameter data buffer; this buffer will be provided to the user 

handler 

4. int size: The size of the parameter data buffer, in bytes 

5. void* arg: This is a single machine-word sized argument, and will be passed 

to the user handler 

6. moL.status_t* status: OPTIONAL This parameter may be left out of the 

moLrequest{) call. 

Returns: None 

Description: 

Sends a request to a remote processor. The data buffer is copied in order to 

construct an outgoing message and is therefore available for modification as soon 

as this operation returns. However, for large data sizes, this copy can have an 

adverse impact on latency and overall performance. 

moL.request_no_copy() 

Parameters: 

1. int proc: The processor to which the request will be sent 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX C. MOBILE OBJ.ECT LAYER 326 

2. moLreq_handler _t handler: The user handler to invoke on the target 

processo~ 

3. void* data: Parameter data buffer; this buffer will be provided to the user 

handler 

4. int size: The size of the parameter data buffer, in bytes 

5. void* arg: This is a single machine-word sized argument, and will be passed 

to the user handler 

6. moL.status_t* status: OPTIONAL This parameter may be left out of the 

moLrequest() call. 

Returns: None 

Description: 

Sends a request to a remote processor. The data buffer is not copied in order 

to construct the outgoing message; therefore the application should be sure to 

provide the optional status parameter. Only when testing the status object 

returns MOL_STATUS_COMPLETE can the application know that it is safe to 

modify the data buffer. In addition, the user-supplied data buffer must have 

an empty region at the beginning of size MOLJIANDLER_DATA_SJZE bytes, 

which the MOL uses to store data that must be sent with the request. Any data 

occupying this region will be overwritten before the request is sent. 

moLmessage() 

Parameters: 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX C. MOBILE OBJECT LAYER 327 

1. moLmobile_ptr _t mptr: The application-defined mobile object to which 

this data message should be sent 

2. moLmsg_handler _t handler: The user handler to invoke on the target 

processor 

3. void* data: Parameter data buffer; this buffer will be provided to the user 

handler 

4. int size: The size of the parameter data buffer, in bytes 

5. void* arg: This is a single machine-word sized argument, and will be passed 

to the user handler 

6. moLstatus_t* status: OPTIONAL This parameter may be left out of the 

moLmessage() call. 

Returns: None 

Description: 

Sends a message to a user-defined mobile object which may be anywhere in the 

parallel system, and which may be in transit as the message is being delivered. 

The data buffer is copied in order to construct an outgoing message and is there

fore available for modification as soon as this operation returns. However, for 

large data sizes, this copy can have an adverse impact on latency and overall 

performance. 

moLmessage_no_copy() 

Parameters: 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX C. MOBILE OBJECT LAYER 328 

1. moLmobile_ptr _t mptr: The application-defined mobile object to which 

this data message should be sent 

2. moLmsg_handler _t handler: The user handler to invoke on the target 

processor 

3. void* data: Parameter data buffer; this buffer will be provided to the user 

handler 

4. int size: The size of the parameter data buffer, in bytes 

5. void* arg: This is a single machine-word sized argument, and will be passed 

to the user handler 

6. moLstatus_t* status: OPTIONAL This parameter may be left out of the 

moLmessage() call. 

Returns: None 

Description: 

Sends a message to a user-defined mobile object which may be anywhere in 

the parallel syste, and which may be in transit as the message is being de

livered. The data buffer is not copied in constructing the outgoing message; 

therefore the application should be sure to provide the optional status param

eter. Only when testing the status object returns MOLSTATUS_COMPLETE 

can the application know that it is safe to modify the data buffer. In addition, 

the user-supplied data buffer must contain an empty region at its beginning of 

size MOLHANDLER_DATA_SfZE bytes, which the MOL uses to store data that 

must be sent along with the message. Any data occupying this region will be 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX C. MOBILE OBJ.ECT LAYER 

overwritten before the message is sent. 

moLstatus_test () 

Parameters: 

1. mol....status_t* status: Pointer to a status object 

Returns: Integer; one of three possible values 

329 

1. MOL_ETATUS_UNINITIALIZED: The status object has not yet been asso-

ciated with a communication operation 

2. MOL_STATUSJN_FROGRESS: The communication operation associated 

with the status object has begun, but has not yet completed 

3. MOLSTATUS_COMPLETE: The communication operation assocated with 

the status object has completed, and any data buffers are now safe to access 

or modify 

Description: 

This routine is used to test the status of a communication operation. The MOL 

makes use of asynchronous and split-phase communication operations which re

turn to the user before the operation has completed. This lowers the latency 

associated with communication visible to the application. However, it is not safe 

to modify data buffers used in communication until the operation has completed. 

The status variable is used to signal when operations have finshed. This routine 

returns immediately, allowing applications to proceed with other work. 

Note: 

In order for a processor to be notified of an operation's completion, that processor 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX C. MOBILE OBJECT LAYER 330 

must be issueing either DMCS or MOL polling operations. 

moLstatus_wait() 

Parameters: 

1. moL.status_t* status: Pointer to a status object 

Returns: None 

Description: 

This routine does not return until the communication operation associated with 

the status object has completed. Once this operation returns, the application 

may safely modify parameter data buffers. 

Note: 

This operation executes DMCS polling operations, and therefore any application 

DMCS messages may be serviced during the moLstatus_wait(} operation. 

moLstatus__reset () 

Parameters: 

1. moLstatus_t* status: Pointer to a status object 

Returns: None 

Description: 

This routine is used to prepare a status object that has already been used in a 

communication operation for subsequent reuse. The result is that the state of 

the status object is returned to MOLSTATUS_UNINITIALIZED. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX C. MOBILE OBJECT LAYER 331 

Table C.5: MOL OBJECT MIGRATION OPERATIONS 

Installing and Uninstalling Operations 
void moL.instalLobj{moLmobile_ptr-t mp, Installs a mobile object after migration 

void* data, moLmove_info_t* move_info, 
int src) 

moLmove_info_t* moLuninstalLobj( Uninstalls a mobile object prior to migration 
moLmobile_ptr_t mp, int tgt) 

void moLuninstalLobj{moLmobile_ptr_t mp, Uninstalls a mobile object prior to migration and 
int tgt, void* buffer) uses buffer to store move info information 

Convenience Operations (DEPRICATED!!!) 
void moLmove_obj{moLmobile_ptr_t mp, Sends an object to a remote processor and 

int size, int tgt) installs it 

C.2.5 Object Migration Operations 

The MOL provides the mechanism, but not the policy, for object migration. That means 

that applications or higher level libraries may migrate objects explicitly, but the MOL itself 

is not going to initiate any object migrations. It is up to the application or higher level 

library to determine which mobile objects are candidates for migration and to where those 

objects should be moved. 

Table C.5 contains the operations used to migrate mobile objects. 

moLinstalLobj() 

Parameters: 

1. moLmobile_ptr _t mp: The mobile pointer which refers to the object which 

is being installed 

2. void* data: A pointer to the local data which makes up the mobile object 

3. moLmove_info_t* move_info: An opaque object which contains informa-

tion used to update the local directory structure 

4. int src: The processor from which the mobile object is migrating 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX C. MOBILE OBJECT LAYER 332 

Returns: None 

Description: 

This operation is used to install a mobile object once that object is moved to 

a new processor. This is not necessary when the object is first created. This 

routine is passed an pointer of type moLmove_info_t*, which is obtained when 

the object is uninstalled from the original processor. This buffer contains infor

mation used to update the MOL's internal tables, guaranteeing that messages 

will find their intended targets and messages sent from a particular processor 

will arrive in order. (The MOL guarantees message ordering for messages shar

ing a common source, but makes no guarantees about the ordering of messages 

sent from different sources.) Once this function is called, subsequent messages 

intended for this data object will be routed correctly. 

moLuninstalLobj () 

Parameters: 

1. moLmobile_ptr _t mp: The mobile pointer which refers to the object which 

is being uninstalled; note that the mobile object must be local to the calling 

processor 

2. int tgt: The processor to which the mobile object is being transferred 

Returns: moLmove_info_t*; needed to update the directory on the remote processor. 

This is a pointer to a buffer of size MOLMOVEJNFO_SIZE. 

Description: 

This operation is used to uninstall the mobile object before migrating it to a 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX C. MOBILE OBJECT LAYER 333 

new processor. This routine returns a pointer of type moLmove_info_t*, which 

points to a buffer that must be passed, along with the object data, to the target 

processor for reinstallation. This buffer is of size MOL.MOVEJNFO_SIZE. It 

should also be noted that this routine does not deallocate the memory occupied 

by the mobile object; that is the reponsibility of the user or higher-level library. 

moLuninstalLobj () 

Parameters: 

1. moLmobile_ptr _t mp: The mobile pointer which refers to the object which 

is being uninstalled; note that the mobile object must be local to the calling 

processor 

2. int tgt: The processor to which the mobile object is being transferred 

3. void* buffer: A user-defined buffer used to contain the move info buffer. 

This buffer must be at least of size MOL.MOVEJNFO_SIZE bytes. 

Returns: None 

Description: 

This operation is used to uninstall the mobile object before migrating it to a 

new processor. This routine fills in a buffer with information used to update the 

receiving processor's internal tables used to enforce message ordering and provide 

correct message routing. This routine is provided in order to avoid the dynamic 

memory allocation that would otherwise be necessary during object migration. 

The buffer passed to this routine must be sent, along with the mobile object 

data, to the new processor during object migration. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX C. MOBILE OBJECT LAYER 334 

mol..move_obj{) 

NOTE: This routine has been depricated and should no longer be used; 

it will cause a memory leak (or worse). The better way to migrate 

mobile objects is to provide routines which are responsible for allo

cating and deallocating the memory occupied by the objects, calling 

the moLuninstalLobj{) and moLinstalLobj{) routines, and transferring the 

data. DMCS or another low-layer communication substrate may be 

used for the transferral. 

Parameters: 

1. mol..mobile_ptr _t mp: The mobile pointer which refers to the object which 

is being moved 

2. int size: The size of the mobile object in bytes 

3. int tgt: The processor to which the mobile object is being transferred 

Returns: None 

Description: 

This is a convenience operation, and only works in a limited set of cases. The 

mobile object being transferred must be a single, contiguous chunk of memory. 

In addition, the target processor must be polling in order to receive the incom

ing data. This operation is simply a wrapper around the moLuninstalLobj(} 

and the moLinstalLobj() routines, and frees the user from having to deal with 

moLmove_info_t objects. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX C. MOBILE OBJECT LAYER 335 

Table C.6: MOL POLLING AND SYNCHRONIZATION OPERATIONS 

MOL Polling Operation 
void moLpoll(} Polls the network for pending messages 

MOL Synchronization Operation 
void moLbarrier(} Blocks until all nodes enter the barrier 

C.2.6 Polling Operations 

There are two methods that runtime systems use to notify applications of the arrivals of 

messages from the network: interrupts and explicit application polling. In the first method, 

arriving messages asynchronously signal the application, at which time interrupt handlers 

are executed in order to deal with the new arrival. The second method has applications 

post explicit polling operations to retrieve any messages that may have arrived since the 

last poll. 

While interrupts ensure the timely delivery of messages, they can lead to poor appli-

cation performance. For instance, many interrupts require a user-kernel level boundary 

crossing. In addition, interrupts can lead to poor cache utilization due to the fact that ap-

plication code, which may fill the cache with needed data, may be interrupted, potentially 

flushing the cache. 

Polling avoids these pitfalls. However, in order to ensure timely delivery of messages, 

polling operations must be placed at the appropriate intervals. Polling infrequently may lead 

to network congestion with some messages being dropped. Polling too frequently may cause 

polling overheads to build up and harm overall application performance. Applications must 

therefore be careful concerning where and how often moLpoll() is called. Turning on the 

MOL's profiling capability may provide information which will assist application developers 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX C. MOBILE OBJECT LAYER 336 

in making this decision. 

Table C.6 contains the polling operations provided by the MOL. 

moLpoll() 

Parameters: None 

Returns: None 

Description: 

The polling operation polls the network for any incoming communications, and 

executes any user handlers. The MOL's polling operation contains a DMCS 

polling operation, so any arriving DMCS messages will also have their asso

ciated user handlers executed. Therefore, applications do not need to post 

both moLpoll() and dmcs_poll() calls. Because the MOL is single-threaded, the 

moLpoll() call should be made only from within the main application thread. 

This means that all user handlers will execute within a single thread. 

C.2. 7 Synchronization Operations 

The MOL provides only a simple barrier operation to synchronize processes. The algorithm 

is a simple fan-in, fan-out algorithm which ensures that all processes enter the barrier before 

any are allowed to leave. As with DMCS, there are some words of warning for applications 

using the MOL barrier. 

First is that the MOL barrier operation synchronizes all processes. If applications 

wish to synchronize only a subset of the available processes, then separate synchronization 

operations will need to be constructed. Second is that the MOL is unable to distinguish 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX C. MOBILE OBJECT LAYER 337 

between different barrier calls in the application code. Therefore, it is not necessary that all 

processes enter the same barrier, only that all processes enter some barrier. A result of this 

is that barriers placed close together in the application code will often lead to unpredictable 

behavior. 

moLbarrier() 

Parameters: None 

Returns: None 

Description: 

Blocks until all processes have entered the barrier. 

C.3 Example Code 

The code snippet in Figure C.3 shows a simple singly-linked queue node data structure, 

with a single integer value field. In addition, the node data structure has a single method 

defined which takes as a parameter the partial sum of the values in the queue nodes, adds 

the local value to the partial sum, and calls the method on the next node, passing the new 

partial sum. The last node in the queue prints out the total result. 

This program begins by creating a ten element queue, where each node contains a 

random integer value. The create_queue() function returns a pointer to the first node in the 

queue. The program then calculates the sum of all of the values contained in the queue, by 

calling the calculate_sum(} method on the first node in the queue, and seeding the partial 

sum value with 0. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX C. MOBILE OBJECT LAYER 

Figure C.3: SEQUENTIAL CODE FOR A SINGLY-LINKED QUEUE 

1 struct queue_node_t { 
2 int value; 
3 queue_node_t• next; 
4 
5 queue_node_t(int v) ; value(v) { } 
6 
7 void calculate_sum(int partial_sum) { 
8 int new_sum = partial_sum + value; 
9 if (next == NULL) { 

10 cout << "Total sum is " << new_sum << endl; 
11 } else { 
12 next->calculate_sum(new_sum); 
13 } 
14 } 
15 }; 
16 
17 queue_node_t* create_queue(int num_elems) { 
18 queue_node_t* node= new queue_node_t(rand()); 
19 queue_node_t* prev_node = node; 
20 for (int i = 1; i < num_elems; ++i) { 
21 queue_node_t* new_node =new queue_node_t(rand()); 
22 prev_node->next = new_node; 
23 prev_node = new_node; 
24 } 
25 return node; 
26 } 
27 
28 int main(int argc, char* argv[]) { 
29 quee_node_t• queue_head; 
30 
31 queue_node_t* queue_head = create_queue(10); 
32 queue_head->calculate_sum(O); 
33 
34 return 0; 
35 } 

338 

Each node in the queue will add its local value to the partial sum and pass that value 

along until the last node, which will print out the total sum of the nodes in the queue. The 

next step is to examine how we would implement this simple program using the MOL. The 

code to do this is given in Figure C.4. 

The code changes necessary begin with the queue_node_t structure itself. In the sequen-

tial example, line 3 indicates that the nodes in the queue are linked together with local 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX C. MOBILE OBJECT LAYER 

Figure C.4: PARALLEL CODE FOR A SINGLY-LINKED QUEUE 

1 bool glob_finished a false; 
2 
3 struct queua_node_ t { 
4 int value; mol_mobile_ptr_t next; 
5 queue_node(int v) : value(v) { } 
6 void calculate_sum(int partial_sum) { 
7 int new_sum. • partial_aum + value; 
8 if (noxt •• NULL) { 
9 cout << "Total sum is " << nev_sum << encil; 
10 for (int i = 0; i < mol_num_procs(), ++i) { mol_rectuest(i, finish_handler, NULL, 0, NULL); } 
11 }olso{ 
12 mol_message(next, calculate_sum ... handler, bev_sum, sizeof(int), NULL); 
13 } 
14 } 
15 }; 
16 
17 void calculate_sum_handler(int src, mol_mobile_ptr ... t mptr, void* obj ... data, 
18 void• user ... data, int size, void* arg) { 
19 queue ... node ... t• q_node • (queue ... node ... t•)obj ... data; 
20 q_node->calculate_aum(•(int•)user ... data); 
21 } 
22 
23 void finish ... handler(int src, void• data, int size, void• arg) { glob_finished • true; } 
24 
25 mol_mobile_ptr_t c::reate_queue(int num_elems) { 
26 queue_node_ t• node = nev queue_node_ t (rand()) ; 
27 mol_mobile_ptr_t queue_head = mol_ereate_mob_ptr(node); 
28 queue_node_t• prev_node = node; 
29 for (int i = 1; i < num_elems; ++i) { 
30 queue_nod•_t• new_node • nev queue_node_t(rand()); 
31 mol_mobile_ptr_t new_mob_ptr = mol_create_mob_ptr(nev_node); 
32 prev_node->next • nev_mob_ptr; 
33 prev _node • nev _node; 
34 } 
36 return queue_head; 
36} 
37 
38 int main(int argc:, c:har* argvD) { 
39 mol_mobile_ptr_t queue_head; int zero = 0; 
40 mol_msg_handler_t msg_handlersD = { calc:ulate_sum_handler }; 
41 mol_ini t (argc, argv); mol_register _msg_handlers (msg_handlers, 1) ; 
42 if (mol_my _proc () == 0) { 
43 mol_mobile_ptr_t queue_head = create_queue(10); 
44 mol_message (queue_head, calculate_sum_handler, &zero, sizeof (int), NULL); 
45 } 
46 while ( !glob_finishod) { mol_poll(); } 
47 mol_shutdown(); 
48 return 0; 
49 } 

339 

pointers. In a distributed data structure, this method is no longer valid. Instead, the MOL 

provides mobile pointers to link queue nodes to one another. Line 4 of Figure C.4 demon-

strates this; a mobile pointer replaces the local pointer to point to the next element in the 

queue. This alteration has ramifications on the calculate_sum() method. In line 12 of the 

sequential example, we see that, because all nodes of the queue are in same memory space, 

a simple method invocation is all that is necessary to invoke the calculate_sum{) method 

on the next queue node. When using the MOL, this is no longer the case, and the method 

invocation is replaced in line 14 with a moLmessage() call. Also, because a single function 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX C. MOBILE OBJECT LAYER 

Figure C.5: OPTIMIZING COMMUNICATION USING OBJECT LOCALITY 

1 queue_node_t* node= (queue_node_t*)mol_mobile_ptr_deref(next); 
2 if (node == NULL) { 
3 mol_message(next, calculate_sum_handler, &new_sum, sizeof(int), NULL); 
4 } else { 
5 node->calculate_sum(new_sum); 
6 } 

340 

call stack does not exist in the second case, we must devise a method to signal all processors 

that the end of the queue has been reached and the program is finished. Line 10 loops over 

all processors in the parallel system and sends a request signalling the end of the program. 

The request handler simply sets a global flag to true. On line 46 of the program, the while-

loop will wait for this condition while polling the network for any incoming messages or 

requests. 

The function used to construct the queue data structure (beginning on line 17 of 

the sequential example and line 25 of the parallel example) also needs to change. The 

moLcreate_mob_ptr(} routine is used to make mobile objects of each queue node. This rou-

tine will return a mobile pointer to the newly created mobile object. This mobile pointer 

is then stored in the queue node structure. 

As a brief aside, there is a simple optimization which may prove beneficial in a vari-

ety of instances, and that is to check to see if the mobile object which is the target of 

an moLmessage() operation is actually not local. This applies specifically to line 17 in 

Figure C.4. We can replace this line of code with the code given in Figure C.5. 

In this code, we used the moLmobile_ptr_deref() function to determine whether or not 

a mobile object is local or remote; a non-NULL pointer will be returned only if the object 

is local. We can then use this pointer to call the desired class method directly. Only when 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX C. MOBILE OBJECT LAYER 

Figure C.6: MIGRATING MOBILE OBJECTS USING THE MOL 

1 struct handler_struct_t { 
2 mol_mobile_ptr_t mp; 
3 mol_move_info_t move_info; 
4 }; 
5 
6 void receive_obj_handler(int src, dmcs_pointer_t data, dmcs_arg_t size) { 
7 header_struct_t* header = (header_struct_t•)data; 
8 int obj_size =size- sizeof(header_struct_t); 
9 void* obj_data = malloc(obj_size); 
10 memcpy(obj_data, (char•)data + sizeof(header_struct_t), obj_size); 
11 mol_install_obj(header->mp, obj_data, header->move_info); 
12 } 
13 
14 void move_obj(mol_mobile_ptr_t mp, int size, int tgt) { 
15 void* obj_data = mol_mobile_ptr_deref(mp); 
16 mol_move_info_t move_info = mol_uninstall_obj(mp, tgt); 
17 void* buffer= malloc(size + sizeof(header_struct_t); 
18 header_struct_t* header = (header_struct_t•)buffer; 
19 header->mp = mp; 
20 
21 
22 
23 
24 
25 } 

header->move_info = move_info; 
memcpy((char•)buffer + sizeof(handler_struct_t), obj_data, 
dmcs_block_rsrN(tgt, receive_obj_handler, buffer, 

size+ sizeof(handler_struct_t)); 
free(buffer); 

size); 

341 

the object is actually on a remote processor do we need to go through the moLmessage() 

mechanism. 

From lines 53-54 in Figure C.4, we can see that only processor 0 is going to be responsible 

for creating the parallel queue. Therefore all queue nodes are going to exist only on that 

processor. To be truely distributed, there must be some way to move nodes from one 

processor to another. The code snippet given in Figure C.6 shows how to do this. First, we 

declare a simple data structure that will contain the information necessary during object 

migration. This consists of the mobile pointer for that object, as well as a field of type 

moLmove_info_t, which is an opaque data object used to transport information necessary 

for updating the distributed directory structure. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX C. MOBILE OBJECT LAYER 342 

The processor on which the queue node is originally located calls the move_obj() routine, 

which begins on line 14. This routine makes use of the moLuninstalLobj() function (line 

16) to uninstall the mobile object and obtain a moLmove_info_t object. A single buffer is 

then constructed which contains the header information and the user-defined mobile object. 

Note that if the mobile object does not exist in contiguous memory, then there must be 

some method to pack it prior to transport. This packed buffer is then sent to the target 

processor using a DMCS communication operation, however, any communication operation 

from DMCS, the MOL, or the lower-level communication transport may be used. 

Once the data arrives at the target, the receive_obj_handler() routine is executed (line 

6). This handler will obtain the mobile pointer and the move info structure from the header 

at the beginning of the buffer. Note that the mobile object data must be copied into a 

safe permanent location; the data buffer supplied to the handler is in system memory and 

will not be valid once that handler returns. Finally, in line 11, the moLinstalLobj() routine 

is used to install the mobile object on the new processor. Now, messages will be routed 

correctly to the mobile object. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Bibliography 

(1] I. AHMAD, A. GHAFOOR, K. MEHROTRA, AND C. MOHAN. Performance model
ing of load balancing algorithms using neural networks. Concurrency; Practice and 
Experience, 6(5):393-409, 1994. 

[2) P. AMARAL, C. JACQUEMOT, P. JENSEN, R. LEA, AND A. MIROWSKI. Transparent 
object migration in COOL2. In Position Papers of the ECOOP '92 Workshop W2, 
Y. Berbers and P. Dickman, editors, pages 72-77, 1992. 

(3] C. AMZA, A. L. Cox, S. DWARKADAS, P. KELEHER, H. Lu, R. RAJAMONY, 
W. Yu, AND W. ZWAENEPOEL. Treadmarks: Shared memory computing on networks 
of workstations. IEEE Computer, 29(2):18-28, February 1996. 

[4] C. ANDERSON. An implementation of the fast multipole method without multipoles. 
SIAM Jour. Scientific Computing, 13(4):923-947, July 1992. 

[5] A. APPEL. An efficient program for many-body simulation. SIAM Jour. Scientific 
Stat. Computing, 6, 1985. 

(6] E. ARJOMANDI, W. O'FARRELL, I. KALAS, G. KOBLENTS, F. EIGLER, AND 
G. GAo. ABC++: Concurrency by inheritance in C++. IBM Systems Journal, 
34(1):120-137, 1995. 

(7) INFINIBAND TRADE ASSOCIATION. lnfiniband home page. 
http:/ /www.infinibandta.org. Accessed June 30, 2000. 

(8] A. AUMAGE, L. BOUGE, A. DENIS, J. MEHAUT, G. MERCIER, R. NAMYST, AND 
L. PRYLLI. Madeleine ii: A portable and efficient communication library for high
performance cluster computing. Technical Report Research Report No. 2000-26, Lab
oratoire de l'lnformatique du Parallelisme, Ecole Normale Superieure de Lyon, 2000. 

[9) T. BAKER. Automatic mesh generation for complex three-dimensional regions using 
a constrained delaunay triangulation. Engineering with Computers, 5:161-175, 1989. 

[10) H. BAL, M. FRANS KAASHOEK, AND A. TANENBAUM. Orca: a language for parallel 
programming of distributed systems. IEEE Transactions on Software Engineering, 
18(3):190-205, 1992. 

(11] V. BALA, J. BRUCK, R. CYPHER, P. ELUSTONDO, A. Ho, C. Ho, S. KIPNIS, 
AND M. SNIR. CCL: A portable and tunable collective communication library for 

343 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

BIBLIOGRAPHY 344 

scalable parallel computers. IEEE Transactions on Parallel and Distributed Systems, 
6(2):154-164, 1995. 

[12] I. BANICESCU. Load Balancing and Data Locality in the Parallelizatoin of the Fast 
Multipole Algorithm. PhD thesis, Polytechnic University, Brooklyn, New York, Jan
uary 1996. 

[13] A. BARAK AND A. SHILOH. A distributed load-balancing policy for a multicomputer. 
Software Practice and Experience, 15(9):901-913, September 1985. 

[14] K. BARKER. Personal conversation with Jeffrey M. Squyres, 2004. Jeff Squyres' 
clarification of the cross-over point between LAM's immediate eager and rendevous 
protocols, and how each protocol impacts the latency observable to the application. 

[15] K. BARKER AND N. CHRISOCHOIDES. An evaluation of a framework for the dynamic 
load balancing of highly adaptive and irregular applications. In Proceedings of the 
IEEE/ACM SC'03, 2003. 

[16] K. BARKER, N. CHRISOCHOIDES, J. DOBBELAERE, AND D. NAVE. Data movement 
and control substrate for parallel adaptive applications. Concurrency Practice and 
Experience, 14:77-101, 2002. 

[17] K. BARKER, N. CHRISOCHOIDES, AND K. PINGALI. A load balancing framework 
for adaptive and asynchronous applications. IEEE Transactions on Parallel and Dis
tributed Computing, 15(2):77-101, February 2004. 

[18] J. BARNES AND P. HUT. A hierarchical O(NlogN) force calculation algorithm. Na
ture, 324:446-449, 1986. 

[19) A. BASERMANN, J. CLINCKEMAILLIE, T. COUPEZ, J. FINGBERG, H. DIGONNET, 
R. DUCLOUX, J.-M. GRATIEN, U. HARTMANN, G. LONSDALE, B. MAERTEN, 
D. RoosE, AND C. WALSHAW. Dynamic load-balancing of finite element applica
tions with the drama library. Applied Mathematical Modelling, 25:83-98, 2000. 

(20] P. BECKMAN AND D. GANNON. Tulip: Parallel runtime support system for pC++. 
http:/ jwww .extreme.indiana.edu. 

(21] A. BELGUELIN, J. DONGARRA, A. GEIST, R. MANCHEK, S. OTTO, AND J. WAL
PORE. PVM: Experiences, current status, and future direction. In Supercomputing 
'93 Proceedings, pages 765-766, 1993. 

[22] M. BERGER AND S. BOKHARI. A partitioning strategy for non-uniform problems on 
multicomputers. IEEE Transactions on Computers, 36:570-580, 1987. 

(23) M. BHANDARKAR AND R. BRUNNER. Run-time support for adaptive load balancing. 
In Proc. of 4th Workshop on Runtime Systems for Parallel Programming, Cancun, 
Mexico, March 2000. 

[24] M. BHANDARKAR, L. KALE, E. STURLER, AND J. HOEFLINGER. Object-based 
adaptive load balancing for MPI programs. Technical Report 00-03, Univ. of Illinois 
at Urbana-Champaign, 2000. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

BIBLIOGRAPHY 345 

[25) R. BHOEDJANG, T. RUHL, R. HOFMAN, K. LANGENDOEN, H. BAL, AND 
F. KAASHOEK. Panda: A portable platform to support parallel programming lan
guages. In Symposium on Experiences with Distributed and Multiprocessor Systems 
IV, pages 213-226, September 1993. 

[26) K. BIRMAN, R. COOPER, T. A. JOSEPH, K. MARZULLO, M. MAKPANGOU, 
K. KANE, F. SCHMUCK, AND M. WOOD. The ISIS system manual, September 
1990. Dept. of Computer Science, Cornell University. 

[27] R. BISWAS, S. DAS, D. HARVEY, AND L. 0LIKER. Parallel dynamic load balanc
ing strategies for adaptive irregular applications. Applied Mathematical Modelling, 
25:109-122, 2000. 

[28) R. BLUMOFE, C. JOERG, B. KUSZMAUL, C. LEISERSON, K. RANDALL, AND 
Y. ZHOU. Cilk: An efficient multithreaded runtime system. In Proceedings of the 
5th Symposium on Principles and Practice of Parallel Programming, pages 55-69, 
1995. 

(29) N. BODEN, D. COHEN, R. FELDERMAN, A. KULAWIK, C. SEITZ, J. SEIZOVIC, AND 
W. Su. Myrinet: A gigabit-per-second local area network. IEEE Micro, 15(1):29-36, 
1995. 

[30) S. BOKHARI AND D. MAVRIPLIS. The tera multithreaded architecture and un
structured meshes, 1998. ICASE, NASA Langley Research Center, NASA/CR-1998-
208953. 

[31] J. BOOTH. Balancing priorities and load for state space search on large parallel 
machines. Master's thesis, University of Illinois at Urbana-Champaign, 2003. 

[32] L. BOUGE, J. MEHAUT, AND R. NAMYST. Madeleine: An efficient and portable 
communication interface for RPC-based multithreaded environments. In Proceedings 
of the Jgg8 Conference on Parallel Architectures and Compilation Techniques, PACT 
'g8, pages 240-247, 1998. 

[33] J. BOURGEOIS AND F. SPIES. Performance prediction of distributed applications 
running on network of workstations. In Proc. of PDPTA '99, volume 2, pages 672-
678, June 1999. 

(34] A. BOWYER. Computing dirichlet tessellations. The Computer Journal, 24(2):162-
166, 1981. 

[35] M. BOZYIGIT. History-driven dynamic load balancing for recurring applications on 
networks of workstations. The Journal of Systems and Software, 51:61-72, 2000. 

[36] A. BRUNSTROM AND R. SIMHA. Dynamic versus static load balancing in a pipeline 
computation. International Journal of Modeling and Simulation, 17( 4):317-327, 1997. 

[37] R. BUTLER AND E. LUSK. User's guide to the p4 programming system. Technical 
Report TM-ANL-92/17, Argonne National Laboratory, 1992. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

BIBLIOGRAPHY 346 

[38] R. BUTLER AND E. LUSK. The p4 parallel programming system. Parallel Computing, 
20:547-564, April1995. 

[39] X. C. CAl ANDY. SAAD. Overlapping domain decomposition algorithms for general 
sparse matrices. Technical Report umsi-93-027, Army High Performance Computing 
Research Center, 1993. 

(40] R. CALKIN, R. HEMPEL, H.-C. HOPPE, AND P. WYPIOR. Portabile programming 
with the PARMACS message-passing library. Parallel Computing, 20(4):615-632, 
1994. 

(41] L. CAMPOS AND I. SCHERSON. Rate of change load balancing in distributed and 
parallel systems. Parallel Computing, 26:1213-1230, 2000. 

(42] B. CARTER, C. CHEN, L. CHEW, N. CHRISOCHOIDES, G. GAo, G. HERBER, A. IN
GRAFFEA, R. KRAUSE, C. MYERS, D. NAVE, K. PINGALI, P. STODGHILL, S. VAVA
SIS, AND P. WAWRZYNEK. Lecture Notes in Computer Science 1800, chapter Parallel 
FEM Simulation of Crack Propogation - Challenges, Status. Springer-Verlag, 2000. 

(43] NATIONAL ENERGY RESEARCH SCIENTIFIC COMPUTING CENTER. M-VIA: High 
performance modular via for linux. http:/ /www.nersc.gov/research/FTG/via. 

(44] K. CHANDY AND C. KESSELMAN. Research Directions in Concurrent Object-Oriented 
Programming, chapter CC++: A Declarative Concurrent Object-Oriented Program
ming Notation. MIT Press, 1993. 

[45] C. CHANG, A. SussMAN, AND J. SALTZ. Parallel Programming Using C++, chapter 
CHAOS++. MIT Press, 1996. 

[46] J. CHASE, F. AMADOR, E. LAZOWSKA, H. LEVY, AND R. LITTLEFIELD. The 
amber system: Parallel programming on a network of multiprocessors. In The 1·2th 
Annual ACM Symposium on Operating System Principles (SOSP12}, pages 147-158, 
December 1989. 

[47) T. CHEATHAM, A. FAHMY, D. STEFANESCU, AND L. VALIANT. Bulk synchronous 
parallel computing - a paradigm for transportable software. In Proc. of the 28th 
Annual Hawaii Conference on System Sciences, volume II. IEEE Computer Society 
Press, January 1995. 

[48) A. CHERNIKOV, N. CHRISOCHOIDES, AND K. BARKER. Parallel programming envi
ronment for mesh generation. Submitted to 8th International Conference on Numer
ical Grig Generation in Computational Field Simulations; Waikiki Beach, Honolulu, 
Hawaii, USA, June 2-6 2002. 

[49] L. CHEW. Constrained delaunay triangulations. Algorihmica, 4:97-108, 1989. 

[50) N. CHRISOCHOIDES, K. BARKER, D. NAVE, AND C. HAWBLITZEL. Mobile object 
layer: A runtime substrate for parallel adaptive and irregular computations. Advances 
in Engineering Software, 31(8-9):621-637, August 2000. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

BIBLIOGRAPHY 347 

[51) N. CHRISOCHOIDES, P. CHEW, AND F. SUKUP. Parallel constrained delaunay mesh
ing. In 1997 ASME/ASCE/SES Special Symposium on Trends in Unstructured Mesh 
Generation, pages 89-96, June 1997. 

[52) N. CHRISOCHOIDES, E. HOUSTIS, AND J. RICE. Mapping algorithms and software 
environment for data parallel iterative PDE solvers. Special Issue of the Journal of 
Parallel and Distributed Computing on Data-Parallel Algorithms and Programming, 
21(1):75-95, April1994. 

[53] N. CHRISOCHOIDES, N. MANSOUR, AND G. Fox. Performance evaluation of data 
mapping algorithms for parallel single-phase iterative PDE solvers. In IEEE Pro
ceedings of the Scalable High Performance Computing Conference, pages 764-772, 
Knoxville, Tennessee, May 23-25 1994. 

[54] PORTABLE RUNTIME SYSTEMS (PORTS) CONSORTIUM. 
http:/ fwww.cs.uoregon.edu/researchfparacompfportsf. Accessed June 30, 2000. 

[55} EMULEX CORPORATION. Emulex homepage. http:/ /www.emulex.com. Accessed June 
30, 2000. 

[56) A. CORRADI, L. LEONARDI, AND F. ZAMBONELLI. Diffusive load-balancing policies 
for dynamic applications. IEEE Concurrency, 7(1):22-31, January-March 1999. 

[57] D. CULLER, A. DUSSEAU, S. GOLDSTEIN, A. KRISHNAMURTHY, S. LUMETA, 
T. VON EICKEN, AND K. YELICK. Parallel programming in split-c. In Proceedings 
of Supercomputing 'g3, pages 262-273, 1993. 

[58] G. CYBENKO. Dynamic load balancing for distributed memory multiprocessors. Jour
nal of Parallel and Distributed Computing, 7(2):279-301, 1989. 

[59} INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE EN AUTOMATIQUE. Site 
web de l'inria. http:/ fwww.inria.frj. Accessed March 29, 2004. 

[60] T. DECKER. Virtual data space - load balancing for irregular applications. Parallel 
Computing, 26:1825-1860, 2000. 

[61] E. DEELMAN, A. DUBE, A. HOISIE, Y. Luo, R. OLIVER, D. SUNDARAM-STUKEL, 
AND H. WASSERMAN. Poems: End-to-end performance design of large parallel adap
tive compuational systems. In Proc. of the First International Workshop on Software 
Performance, pages 18-30, October 1998. 

[62) B. DELAUNAY. Sur la sphere vide. Izvestia Akademia Nauk SSSR, VII Seria, Otde
lenie Matematicheskii i Estestvennyka Nauk, 7:793-800, 1934. 

[63] A. DESHPANDE AND M. SCHULTZ. Efficient parallel programming with linda. In 
Supercomputing 'g2, pages 238-244, 1992. 

[64} K. DEVINE, B. HENDRICKSON, E. BOMAN, M. ST. JOHN, AND C. VAUGHAN. 
Zoltan: A dynamic load-balancing library for parallel applications: Developer's guide. 
Technical Report SAND99-1376, Sandia National Laboratories, Albuquerque, NM, 
1999. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

BIBLIOGRAPHY 348 

[65} K. DEVINE, B. HENDRICKSQN, E. BOMAN, M. ST. JOHN, AND C. VAUGHAN. 
Zoltan: A dynamic load-balancing library for parallel applications: User's guide. 
Technical Report SAND99-1377, Sandia National Laboratories, Albuquerque, NM, 
1999. 

[66) K. DEVINE, B. HENDRICKSON, E. BOMAN, M. ST. JOHN, AND C. VAUGHAN. De
sign of dynamic load-balancing tools for parallel applications. In Proceedings of the 
International Conference on Supercomputing, Santa Fe, May 2000. 

[67] E. DIJKSTRA, W. SEIJEN, AND A. VAN GASTEREN. Derivation of a termination 
detection algorithm for a distributed computation. Information Processing Letters, 
15(5):217-219, 1983. 

[68] D. DINUCCI. Cooperative data sharing: An architecutre-independent interface for 
implementing parallel cfd applications. Technical Report M/S T27A-2, NASA Ames 
Research Center. 

[69} D. DINUCCI. Cooperative data sharing: A layered approach to an architecture
independent message-passing interface. In Proceedings of the Second MPI Developers 
Conference, Notre Dame, pages 58-65, July 1996. 

[70) R. ESSER, J. JANNECK, AND M. NAEDELE. Applying an object-oriented petri net 
language to heterogeneous systems design. In Proc. of the Workshop on Petri Nets 
in Systems Engineering, September 1997. 

[71] C. FARHAT. On the mapping of massively parallel processors onto finite element 
graphs. Computers and Structures, 32(2):347- 353, 1989. 

[72} W. FERNG, K. Wu, S. PETITON, AND Y. SAAD. Sparse matrix computation on 
massively parallel computers. Technical Report umsi-92-084, Army High Performance 
Computing Research Center, 1992. 

[73] J. FLOWER AND A. KOLAWA. Express is not just a message passing system. Parallel 
Computing, 20{4):597-614, 1994. 

[74] L. FLYNN AND S. HUMMEL. The mathematical foundations of the factoring scheduling 
method. Technical Report RC18462, IBM Research Report, Oct. 1992. 

[75] MPI FORUM. Message passing interface standard 1.0 and 2.0. http:/ /www.mpi
forum.org, 1997. Accessed Nov 11, 2003. 

[76} I. FOSTER, 0. KESSELMAN, AND 8. TUECKE. Nexus: Runtime support for task par
allel programming languages. Technical Report FKT94, Mathematics and Computer 
Science Division, Argonne National Laboratory, Argonne Il., 1994. 

[77) I. FOSTER, C. KESSLEMAN, AND S. TUECKE. The nexus approach to integrating 
multithreading and communication. Technical Report MCS-P494-0195, Argonne Na
tional Laboratory, 1994. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

BIBLIOGRAPHY 349 

[78} G. Fox, R. WILLIAMS, AND P. MESSINA. Parallel Computing Works! Morgan 
Kaufmann Publishers, Inc. San Francisco, CA., 1994. 

[79} W. GAUTSCHI. Numerical Analysis: An Introduction. Birkhauser, Boston, 1997. 

(80} B. GHOSH, F. LEIGHTON, B. MAGGS, S. MUTHUKRISHNAN, C. PLAXTON, R. RA
JARAMAN, A. RICHA, R. TARJAN, AND D. ZUCKERMAN. Tight analyses of two local 
load balancing algorithms. In Proc. of the 27th Annual A CM Symposium on Theory 
of Computing, pages 548-558, May 1995. 

[81] T. GoEHRING AND Y. SAAD. Heuristic algorithms for automatic graph partitioning. 
Technical Report umsi-94-29, University of Minnesota Supercomputer Institute, 1994. 

[82] L. GREENGARD. The rapid evaluation of potential fields in particle systems. Tech
nical Report YALEU /DCS/RR-533, ACM Distinguished Dissertation Series, Vol. 14, 
Cambridge, MA, April1997. 

[83] L. GREENGARD AND W. GROPP. A parallel version of the fast multipole method. 
Computers Mathematical Applications, 20(7):63-71, 1990. 

[84} IBM RS6000 GROUP. IBM Parallel Systems Support Programs for AIX: Adminis
tration Guide. IBM RS6000 Group. 

[85} M. HAINES, D. CRONK, AND P. MEHROTRA. On the design of chant: A talking 
threads package. In Proceedings of Supercomputing '94, pages 350-359, Washington, 
D.C., November 1994. Also appears as ICASE Technical Report 94-25. 

[86] M. HAMDI AND C. LEE. Dynamic load-balancing of image processing applications 
on clusters of workstations. Parallel Computing, 22:1477-1492, 1997. 

[87] H. HEISS AND M. SCHMITZ. Decentralized dynamic load balancing: Th~ particles 
approach. Information Sciences, 84:115-128, 1995. 

[88) B. HENDRICKSON AND K. DEVINE. Dynamic load balancing in computational me
chanics. Computer Methods in Applied Mechanics and Engineering, 184:485-500, 
2000. 

[89) M. HILL, J. LARUS, S. REINHARDT, AND D. WOOD. Cooperative shared memory: 
Software and hardware support for scalable multiprocessors. In Proceedings of the 5th 
International Conference on Architectural Support for Programming Languages and 
Operating Systems, pages 262-273, New York, NY, 1992. ACM Press. 

[90] Y. Hu AND R. BLAKE. An improved diffusion algorithm for dynamic load balancing. 
Parallel Computing, 25:417--444, 1999. 

[91] C. HUI AND S. CHANSON. Flexible and extensible load balancing. Software-Practice 
and Experience, 27(11):1283-1306, November 1997. 

(92) MPI SOFTWARE TECHNOLOGY INC. Clustercontroller scheduling software. 
http://www .mpi-softtech.comjproducts/ cluster _controller/ default.asp. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

BIBLIOGRAPHY 350 

[93] MYRICOM INC. Myricom homepage. http:/ /www.myri.com. Accessed June 30, 2000. 

[94] D. JOHNSON AND W. ZWAENEPOEL. The peregrine high-performance RPC system. 
Software - Practice and Experience, 23(2):201-221, 1993. 

[95) K. JOHNSON, M. KAASHOEK, AND D. WALLACH. CRL: High-performance all
software distributed shared memory. In 15th Annual Symposium on Operating Systems 
Principles (COSP15}, pages 213-228, December 1995. 

[96] M. JONES AND P. PLASSMANN. Computational results for parallel unstructured mesh 
computations. Computing Systems in Engineering, 5:297-309, 1994. 

[97] E. JUL, H. LEVY, N. HUTCHISON, AND A. BLACK. Fine-grained mobility in the 
emerald system. ACM Transactions on Computer Systems, 6{1):109-133, February 
1988. 

[98) L. KALE. Parallel programming with charm: An overview, July 1993. Technical Re
port PPL-TR-93-8, University of Illinois, Urbana-Champaign, Department of Com
puter Science. 

(99] L. KALE, M. BHANDARKAR, AND R. BRUNNER. Run-time support for adaptive 
load balancing. In Lecture Notes in Computer Science, Proceedings of 4th Workshop 
on Runtime Systems for Parallel Programming (RTSPP) Cancun, Mexico, J. Rolim, 
editor, volume 1800, pages 1152-1159, March 2000. 

[100] L. KALE AND S. KRISHNAN. CHARM++: A Portable Concurrent Object Oriented 
System Based On C++. In Proceedings of the OOPSLA 'g3 Conference on Object
oriented Programming Systems, Languages and Applications, pages 91-108, 1993. 

(101] L. KALE, B. RAMKUMAR, A. SINHA, AND A. GURSOY. The charm parallel program
ming language and system: Part I - description of language features, 1995. Technical 
Report 95-2, Parallel Programming Laboratory, Department of Computer Science, 
University of Illinois, Urbana-Champaign. 

[102] L. KALE, B. RAMKUMAR, A. SINHA, AND V. SALETORE. The CHARM parallel 
programming language and system: Part II - the runtime system. IEEE Transactions 
on Parallel And Distributed Systems, 1994. 

(103] G. KARYPIS AND V. KUMAR. ParMETIS: Parallel graph paritioning and sparse ma
trix ordering library. Technical Report 97-060, Dept. of Computer Science, Univ. 
of Minnesota, http:/ /www-users.cs.umn.edu/ karypis/metis/parmetis/main.shtml, 
1997. 

(104] D. KERBYSON, A. HOISIE, AND H. WASSERMAN. Modeling the performance oflarge
scale systems (keynote paper). In UK Performance Engineering Workshop, July 2003. 

[105) D. KERBYSON, A. HOISIE, AND H. WASSERMAN. Use of predictive performance 
modeling during large-scale system installation. Parallel Processing Letters, 2003. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

BIBLIOGRAPHY 351 

(106) D. KERBYSON, A. HOISIE, AND H. WASSERMAN. Verifying Large-Scale System 
Performance During Installation Using Modeling. Kulwer, September 2003. 

[107] G. KOHRING. Dynamic load balancing for parallelized particle simulations on mimd 
computers. Parallel Computing, 21:683-693, 1995. 

[108} V. KUMAR, A. GRAMA, AND N. VEMPATY. Scalable load balancing techniques for 
parallel computers. Journal of Parallel and Distributed Systems, 22:6D-79, 1994. 

[109) J. KUSKIN, D. 0FELT, M. HEINRICH, J. HEINLEIN, R. SIMONI, K. GHARACHOR
LOO, J. CHAPIN, D. NAKAHIRA, J. BAXTER, M. HOROWITZ, A. GUPTA, AND 
J. HENNESSY. The stanford flash multiprocessor. In Proceeings of the 21st Interna
tional Symposium on Computer Architecture, pages 302-313, April1994. 

[110) ARGONNE NATIONAL LABORATORY. Mpich - a portable implementation of mpi. 
http:/ /www-unix.mcs.anl.gov /mpifmpich/. 

[111) BLOOMINGTON LAM TEAM, INDIANA UNIVERSITY. Lamjmpi parallel computing. 
http:/ jwww.lam-mpi.orgj. Accessed Nov. 11, 2003, Last Modified Sept. 23, 2003. 

[112] J. LEA THRUM. Parallelization of the Fast Multipole Algorithm: Algorithm and Archi
tecture Design. PhD thesis, Duke University, 1992. 

[113) C. LIAO AND Y. CHUNG. Tree-based parallel load balancing methods for solution
adaptive finite element graphs on distributed memory multicomputers. IEEE Trans
actions on Parallel and Distributed Systems, 10(4), April1999. 

[114) R. LOHNER. Generation of three-dimensional unstructured grids by the advancing 
front method. In 26th AIAA Aerospace Sciences Meeting, Reno, Nevada, 1988. 

(115) R. LOHNER, J. CAMBEROS, AND M. MARSHAL. Parallel unstructured grid gener
ation. In Unstructured Scientific Computation on Scalable Multiprocessors, Piyush 
Mehrotra and Joel Saltz, editors, pages 31-64. MIT Press, 1990. 

[116) R. LOHNER, J. CAMBEROS, AND M. MARSHAL. Unstructured Scientific Computation 
on Scalable Multiprocessors, pages 31-64. MIT Press, 1990. 

(117) A. MAINWARING AND D. CULLER. Active Messages API and Communication Sub
system Organization. Technical report, University of California at Berkeley, 1999. 

[118) D. MAVRIPLIS. An advancing front delaunay triangulation algorithm designed for 
robustness. Technical Report 92-49, ICASE, October 1992. 

[119) 0. McBRYAN. An overview of message passing environments. Parallel Computing, 
20(4):417-443, 1994. 

[120) M. MITZENMACHER. On the analysis of randomized load balancing schemes. In A CM 
Symposium on Parallel Algorithms and Architectures, pages 292-301, 1997. 

[121) F. MUNIZ AND E. ZALUSKA. Parallel load balancing: An extension to the gradient 
model. Parallel Computing, 21:287-301, 1995. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

BIBLIOGRAPHY 352 

[122] K. NAM, J. SEo, S. LEE, AND J. KIM. Syncrhonous load balancing in hypercube 
multicomputers with faulty nodes. Journal of Parallel and Distributed Computing, 
58:26-43, 1999. 

[123) J. NETO, P. WAWRZYNEK, M. CARVALHO, L. MARTHA, AND A. INGRAFFEA. An 
algorithm for three-dimensional mesh generation for arbitrary regions with cracks. 
Engineering with Computers, 17:75-91, 2001. 

[124) H. NISHIKAWA AND P. STEENKISTE. Aroma: Language support for distributed ob
jects. In 6th International Parallel Processing Symposium, pages 686 - 690, March 
1992. 

[125) H. NISHIKAWA AND P. STEENKISTE. A general architecture for load balancing in a 
distributed-memory environment. In International Conference on Distributed Com
puting Systems, pages 47-54, 1993. 

[126) L. NYLAND, J. PRINS, R. H. YUN, J. HERMANS, H. KuM, AND L. WANG. Modeling 
dynamic load balancing in molecular dynamics to achieve scalable parallel execution. 
In Workshop on Parallel Algorithms for Irregularly Structured Problems, pages 356-
365, 1998. 

[127] L. OLIKER AND R. BISWAS. Plum: Parallel load balancing for adaptive unstructured 
meshes. Journal of Parallel and Distribued Computing, 52(2):15Q-177, 1998. 

[128) B. 0VEREINDER, J. VESSEUR, F. VAN DER LINDEN, AND P. SLOOT. A commu
nication kernel for parallel programming support on a massively parallel processor 
system. In Proceedings of the Workshop on Parallel Programming and Computation 
(ZEUS 'g5) and the 4th Nordic Transputer Conference (NTUG '95), Peter Fritzon 
and Leif Finmo, editors, pages 259-266, Amsterdam, 1995. lOS Press. 

[129] S. PAKIN, M. LAURIA, AND A. CHEN. High performance messaging on workStations: 
Illinois fast messages (FM) for myrinet. In Supercomputing '95, San Diego, CA, 
December 1995. 

[130) UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN PARALLEL PROGRAMMING LAB
ORATORY. Response to paper by nikos chrisochoides and kevin barker at sc'03. 
http:/ jcharm.cs.uiuc.edu/research/ldbal/nikos/nikos.html, 2003. Accessed March 19, 
2004. 

[131] I. PARSONS. Evaluation of distributed communication systems. In GASCON '93, 
IBM Toronto, pages 956-970 vol. 2, 1993. 

[132) S. REINHARD, J. LARUS, AND D. WOOD. Tempest and typhoon: User-level shared 
memory. In Proceedings of the 12th Annual International Symposium on Computer 
Architecture (ISCA '94), pages 325 - 337, 1994. 

[133) R. VAN RENESSE, K. BIRMAN, R. COOPER, B. GLADE, AND P. STEPHENSON. The 
horus system, 1993. Reliable Distributed Computing with the ISIS toolkit, pages 
133-147. IEEE Computer Society Press, Los Alamitos, CA. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

BIBLIOGRAPHY 353 

(134] R. VAN RENESSE, K. BIRMAN, B. GLADE, K. Guo, M. HAYDEN, T. HICKEY, 
D. MALKI, A. VAYSBURD, AND W. VOGELS. Horus: A flexible group communications 
system. Communications of the ACM, 39(4):76-83, April1996. 

(135) INTERNATIONAL BUSINESS MACHINES RS6000 GROUP. IBM parallel environment 
for AIX- MPI. http:/ /qpsf.edu.aujsoftwarejppe.html. 

[136] Y. SAAD. Data structures and algorithms for domain decomposition and distributed 
sparse matrix computations. Technical Report umsi-95-014, Dept. of Computer Sci
ence, University of Minnesota, 1995. 

[137] R. SAID, N. WEATHERILL, K. MORGAN, AND N. VERHOEVEN. Distributed parallel 
delaunay mesh generation. Comp. Methods Appl. Mech. Engrg., 177:109-125, 1999. 

[138) K. SCHLOEGEL, G. KARYPIS, AND V. KUMAR. Parallel multilevel diffusion schemes 
for repartitioning of adaptive meshes. Technical Report 97-014, University of Min
nesota, 1997. 

[139) K. SCHLOEGEL, G. KARYPIS, AND V. KUMAR. Wavefront diffusion and lmsr: Algo
rithms for dynamic repartitioning of adaptive meshes. Technical Report 98-034, De
partment of Computer Science and Engineering, Unversity of Minnesota, http://www
users.cs. umn.edufkarypisjpublicationsfpartitioning.html, 1998. 

(140) K. SCHLOEGEL, G. KARYPIS, AND V. KUMAR. A unified algorithm for load
balancing adpative scientific simulations. Technical Report TR 00-033, Depart
ment of Computer Science and Engineering, University of Minnesota, http://www
users.cs. umn.ed ufkarypis /publications fpartitioning.html, 2000. 

(141) K. SCHLOEGEL, G. KARYPIS, V. KUMAR, R. BISWAS, AND L. 0LIKER. A per
formance study of diffusive vs. remapped load-balancing schemes. Technical Report 
98-018, Department of Computer Science and Engineering, Unversity of Minnesota, 
http:/ /www-users.cs.umn.edu/karypisjpublicationsfpartitioning.html, 1998. 

[142] K. SCHMIDT AND M. LEE. Implementing the fast multipole method in parallel. 
Journal of Statistical Physics, 63:1120, 1991. 

[143) G. SHAH, J. NIEPLOCHA, J. MIRZA, C. KIM, R. HARRISON, R .K. GOVINDARAJU, 
K. GILDEA, P. DINICOLA, AND C. BENDER. Performance and experience with 
lapi: A new high-performance communication library for the IBM rs/6000 sp. In 
Proceedings of the International Parallel Processing Symposium, IPPS '98, pages 260 
- 266, 1998. 

[144] J. SHEWCHUK. Delaunay Refinement Mesh Generation. PhD thesis, School of Com
puter Science, Carnegie Mellon University, Pittsburg, PA 15213, May 1997. 

[145] H. SIMON. Partitioning of unstructured problems for parallel processing. In Proceed
ings of the Conference on Parallel Methods on Large Scale Structural Analysis and 
Physics Applications, 1991. Pergamon, New York. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

BIBLIOGRAPHY 354 

[146] J. SINGH. Parallel Hierarchical N-body Methods and their Implementations for Mul
tiprocessors. PhD thesis, Stanford University, 1993. 

(147) J. SINGH, C. HOLT, T. TOTSUKA, A. GUPTA, AND J. HENNESSY. Load balancing 
and data locality in adaptive hierarchical n-body methods: Barnes-hut, fast·multipole 
and radiosity. Journal of Parallel and Distributed Computing, 27:118-141, 1995. 

[148] A. SKJELLUM, S. SMITH, N. Doss, A. LEUNG, AND M. MORARI. The design and 
evolution of zipcode. Parallel Computing, 20(4):565-596, 1994. 

[149) SUN MICROSYSTEMS SUN MPI GROUP. 
http:/ jwww.sun.comjsoftwarejhpcjoverview.html. 

Sun hpc clustertools 3.1. 

[150] V. SUNDERAM. PVM: A framework for parallel distributed computing. Concurrency: 
Practice and Experience, 2(4):315-340, 1990. 

[151] VIA. The virtual interface architecture specification, version 1.0. 
http:/ fwww.viarch.org. Accessed December, 1997. 

(152] T. VON EICKEN, D. CULLER, S. GOLDSTEIN, AND K. SCHAUSER. Active messages: 
A mechanism for integrated communication and computation. In Proceedings of the 
19th International Symposium on Computer Architecture, pages 256-266. ACM Press, 
May 1992. 

(153) C. WALSHAW, M. CROSS, AND M. EVERETT. Parallel dynamic graph partitioning 
for adaptive unstructured meshes. Journal of Parallel and Distributed Computing, 
47:102-108, 1997. 

[154] D. WATSON. Computing the n-dimensional delaunay tessellation with applications 
to voronoi polytopes. The Computer Journal, 24(2):167-172, 1981. 

[155] J. WATTS AND S. TAYLOR. A practical approach to dynamic load balancing.· IEEE 
Transactions on Parallel and Distributed Systems, 9(3):235-267, March 1998. 

(156) M. WILLEBEEK-LEMAIR AND A. REEVES. Strategies for dynamic load balancing on 
highly parallel computers. IEEE Transactions on Parallel and Distributed Systems, 
4(9):979-993, September 1993. 

[157] A. Wouk, editor. New Computing Environments: Microcomputers in Large-Scale 
Scientific Computing, chapter Using Supercomputers as Attached Procesors. SIAM, 
Philadelphia, 1987. 

[158] I. Wu. Multilist Scheduling: A New Parallel Programming Model. PhD thesis, School 
of Computer Science, Carnegie Mellon University, Pittsburg, PA 15213, July 1993. 

[159] M. Wu AND W. SHU. Dde: A modified dimension exchange method for load balanc
ing k-ary n-cubes. Journal of Parallel and Distributed Computing, 44:88-96, 1997. 

[160) C. Xu AND F. LAU. The generalized dimension exchange method for load balancing in 
k-ary n-cubes and variants. Journal of Parallel and Distributed Computing, 24:72-85, 
1995. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

BIBLIOGRAPHY 355 

[161) C. Xu, B. MoNIEN, R. LU'LING, AND F. LAu. An analytical comparison of near
est neighbor algorithms for load balancing in parallel computers. In Proc. of 9th 
International Parallel Processing Symposium, pages 472-479, 1995. 

[162] J. Xu AND K. HWANG. Heuristic methods for dynamic load balancing in a message
passing multicomputer. Journal of Parallel and Distributed Computing, 18:1-13, 1993. 

[163] F. ZAMBONELLI. Exploiting biased load information in direct-neighbour load balanc
ing policies. Parallel Computing, 25:745-766, 1999. 

[164] T. ZNATI AND R. MELHEM. A uniform framework for dynamic load balancing strate
gies in distributed processing systems. Journal of Parallel and Distributed Computing, 
23{2):246-255, 1994. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

356 

VITA 

Kevin James Barker 

Kevin Barker received his B.S. degree in Computer Science from North Carolina State 

University in May, 1997. He received his M.S. degree in Computer Science from the Uni

versity of Notre Dame in January, 2001. His Master's thesis described the development 

of a prototype runtime system for the support of adaptive and asynchronous applications 

on non-traditional, multi-layer parallel architectures. His current research interests include 

runtime load balancing support and modeling techniques for adaptive and irregular parallel 

applications, and real-time application steering using embedded feedback. 


	Runtime support for load balancing of parallel adaptive and irregular applications
	Recommended Citation

	tmp.1539734415.pdf.8avcT

