o
WILLIAM & MARY
CHARTERED 1693 W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

1998

A probability programming language: Development and
applications

Andrew Gordon Glen
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

b Part of the Computer Sciences Commons, and the Statistics and Probability Commons

Recommended Citation

Glen, Andrew Gordon, "A probability programming language: Development and applications" (1998).
Dissertations, Theses, and Masters Projects. Paper 1539623920.
https://dx.doi.org/doi:10.21220/s2-1tqv-w897

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at
W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an
authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.


https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623920&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539623920&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=scholarworks.wm.edu%2Fetd%2F1539623920&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-1tqv-w897
mailto:scholarworks@wm.edu

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and
continuing from left té) right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A Probability Programming Language:

Development and Applications

A Dissertation
Presented to
The Faculty of the Department of Applied Science

The College of William & Mary in Virginia

In Partial Fulfillment
Of the Requirements for the Degree of

Doctor of Philosophy

by
Andrew G. Glen

1998

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



UMI Number: 9904264

Copyright 1999 by
Glen, Andrew Gordon

All rights reserved.

UMI Microform 9904264
Copyright 1998, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI

300 North Zeeb Road
Ann Arbor, MI 48103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPROVAL SHEET

This Dissertation is submitted in partial fulfillment of

the requirements for the Degree of

Doctor of Philosophy

¢ a;ﬁ/(//fj"’é/

Andrew G. Glen

APPROVED. January 1998

[awwuca Z 20y

Lawrence M. Leemis,
Dissertation Advisor

) / s é ,
Lf{/’/n / 5. ¢ //'L’,c»(.”
i ”

7 John H. Drew

S!"&th/ 47‘/.1'{‘4*1“"‘2/

D4
Stdney H. Lawrence

Ry Koo )

'Rex K. Kincaid N\

Ahovatd R Bam

Donald R. Barr,
Outside Examiner

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Contents

1 Introduction

1.1 General . . .. . . . . ...
1.2 Literature review . . . . . . . . . . .. ..o
1.3 Outline of the dissertation . . . . . ... ... .. ... ........
1.4 Notation and nomenclature . . . ... ... ... ... ... ...

2 Software Development

2.1 The common data structure . . . . .. . . . . ... .. ... ... ..
2.2 Common continuous. univariate distributions . . . . . . . . . . . . ..
2.3 The six representations of distributions . . . . . . . .. ... ... ..
24 VerifyPDF . . . . . . . e
2.5 MedianRV . . . . . . . . e
2.6 DisplayRV . . . . . . .. e
2.7 PlotDist . . . . . . . e e e e e e
2.8 ExpectationRV . . . . . .. ... ... ... oo
2.9 Transform. . . . . . . . . . i i e e e e e e e e e e e e
i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o

~1

on

10

13

16



210 OrderStat . . . . . . . . . e e e
2.11 ProductRV and ProductIID. . .. .. . ... ... .. ........
2.12 SumRV and SumIID . . .. . .. .. ... ... . ...
2,13 MinimumRV . . . . . .. e
214 MaximumBRV . . . . . . . . e e e e e

2.15 Maximum likelihood estimation . . . . . . . . . . . .. .. ... ...

3 Transformations of Univariate Random Variables

3.1 Introduction . . . . . . . .. Lo
3.2 Theorem . . . . . . . . . e
3.3 Implementation . . . . . . . . ... ...
34 Examples . . . ...
3.5 Conclusion . . . . . . ...

4 Products of Random Variables

4.1 Introduction . . . . . . .. ..
4.2 Theorem . . . . . . . ...
4.3 Implementation . . . . . . . . ... ...
44 Examples . . . . . ..
4.5 Conclusion . . . . . . . .. L

5 Computing the CDF of the Kolmogorov—-Smirnov Test Statistic
5.1 Introduction . . . . .. ... ... oo

5.2 Literaturereview . . . . . . . . ... . e

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

14

47



5.3 Computing the distributionof D, . . . . . .. ... ... ... .... 79
5.3.1 Phase 1: Partition the support of D — 2= . . . . ... . ... 382
5.3.2 Phase 2: Define the A matrices . . . . ... ... .. .. ... 33
5.3.3 Phase 3: Set limits on the appropriate integrals . . . . . . .. 39
5.3.4 Phase 4: Shift the distribution . . . . . .. ..o 96

5.4 Critical values and significance levels . . . . . . .. ... ... . ... 99

55 Conclusion . . . . . . . ... 100

6 Goodness of Fit using Order Statistics 102

6.1 Introduction . . . . . . . . . .. ... 102

6.2 The P-vector . . . . . . . . . . i i i 104

6.3 Improving computationof P . . . . . ... ..o 106

6.4 Goodness-of-fit testing . . . . . .. ... ... ... 109

6.5 Conclusion . . . . . . . . . . e 113

7 Other Applications and Examples 115

7.1 Introduction . . . . . . . ... 115

7.2 Exactness in lieu of CLT approximations . . . . . . ... .. ... .. 116

7.3 A mathematical resource generator . . . . .. .. ... ... ... 121

7.4 Probabilistic model design: reliability block diagrams . . . . . . . .. 125

7.5 Modeling with hazard functions . . . . . . .. ... ... ... .... 127

7.6 OQutlier detection . . . . . . .. .. ... ... 132

7.7 Maximum likelihood of order statistics distributions . . . . . . .. .. 136

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



8 Conclusion and Further Work

A The Arctangent Survival Distribution
A.l Introduction . . . . . . . . . .. L
A.2 Development . . . .. . . ... ...
A.3 Probabilistic properties . . . . . . . . ... ... ...
A4 Statistical inference . . . . . .. Lo oo oo Lo

A.5 Conclusion . . . . . . . . e

B Continuous Distributions

C Algorithm for 6 x 6 Conversions

D Algorithms for Various Procedures
D.1 Algorithm for VerifyPDF . . . . . . . . . . ... ... ... .. ...,
D.2 Algorithm for ExpectationRV . . . . . . . .. ... .. ... .....
D.3 Algorithm for OrderStat . . . . . . . . . . .. ... ... .. .....
D.4 Algorithm for ProdIID . . . . . . . . . . . .. ... ... ... ..
D.5 Algorithm for SumRV . . . . . . . . ... ... ..
D.6 Algorithm for SumIID. . . . . . . . .. .. .. ... ... ...,
D.7 Algorithm for MinimumRV . . . . . . . . .. ... ... ...
D.8 Algorithm for MaximumRV . . . . . . .. . . ... ... ... .. ...,

D.9 Algorithm for MLE . . . . . . . . . . . .. ...

E Algorithm for Transform

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

140

159

161

163

163

164



F Algorithm for ProductRV

G Algorithm for KSRV

H Simulation Code for MLEOS Approximations

Bibliography

Vita

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

174

180

184

187

191



Acknowledgement

[ must gratefully acknowledge the assistance of many people who have helped in
very many ways in the production of this dissertation and research. Professors Hank
Krieger. Marina Kondratovitch gave help in specific parts of this research. A special
note of personal thanks goes to Professors Donald Barr. John Drew, and especially
Larry Leemis. who were tremendously patient. insightful, and supportive of the re-
search. [ thank for their patience and support my wife. Lisa Glen. and my children
Andrea. Rebecca. and Mary. [ also thank and praise almighty God. for it is only
by His divine will that we are privileged to understand what we have learned in this

process.

viil

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List of Figures

3.1 The transformation ¥ = g(X) = X?for -1 <X <2 . ... ... .. 54
3.2 The transformation ¥ = g(X)=||[X =3[ -1ljfor 0 < X <7.. . . .. 35
3.3 The transformation ¥ = g¢(X) has a discontinuity and is variously
l-to-1 and 2-to-1 on different subsets of the support of X. . . . . . . 37
3.4 The transformation ¥ = ¢g(X) =sin®(X)for0< X' <27. ... .... 38
4.1 The support of X and ¥ whenad<bec. . . . . . .. .. ... ... .. 64
4.2 The mappingof Z= X and V"= XY whenad<bc.. . . . .. .. .. 65
4.3 The PDF of 1" = XY for X ~ N(0.1) and ¥ ~N(0O.1). . . .. .. .. 72
5.1 The CDF of the D¢ random variable. . . . .. .. . .. .. .. .. .. 98

5.2 The PDF of the Dg random variable. Note the discontinuity at y = 1/6. 99

6.1 Transformations from iid observations X,,X,,...,X, to the sorted
P-vector elements Py Pi2ys-- v Pmy- « v o o o oo oo o 107
6.2 Estimated power functions for testing Ho: X ~ N(0,1) versus H;:
X ~ N(0.0?) using K-S, A-D, and two statistics based on the P-

VECLOT. & v v e e e e e e e e e e e e e e e e e e e e e e e e e 111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7.1 Overlaid plots of fz.(zr) and the standard normal PDF. . . . . . . .. 120
7.2 Overlaid plots of the standard normal and standardized IG(0.8) distri-
butions. . . . ... 123
7.3 RBD of a computer system with two processors and three memory units.126
7.4 The SF of the hypothesized BT-shaped hazard function fit to the sam-
ple [1. I1. 14. 16. 17} overlaid on the empirical SF. . . . . . . ... .. 129
7.5 The PDF of the distribution having periodic hazard function hy with
parameters a = 1. b=05and ¢c=10. . ... ... ... ....... 131

7.6 The PDFs of the four order statistics from an exponential distribution. 138

A.l1 Examples of the arctangent probability density function. . . . . . .. 147
A.2 Empirical. fitted arctangent. and fitted Weibull survivor functions for
the ball bearing lifetimes. . . . . . . . .. ... ... 0000 153

A.3 The arctangent distribution fit to the rat cancer data. . . . . . . . .. 137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List of Tables

3.1 Computational requirements for computing the D, CDF for small n. 37
3.2 Computational efficiency associated with using the F and V" arrays. . 92
53 CDFsof Dn— g forn=1.2,....6. . ... ... .......... 101
6.1 Estimated critical values for P, at various sample sizes and levels of
significance. . . . . ... L L 112
7.1 Fractiles for exact and approximated distributions. . . . . . . .. .. 117
7.2 P(X() = 10) for n = 6 for several population distributions. . . . . . . 133
7.3 The MSEs of the MLE and MLEOS and adjusted-for-bias MLE tech-
niques of parameter estimation. . . . . .. . ... ... .. .. .... 139
A.l Kolmogorov-Smirnov Goodness-of-fit Statistics for the Ball Bearing
Data. . . . . . . 154
B.1 Continuous distributions of random variables available in APPL. . . . 160
C.1 The conversions of continuous random variable distribution forms. . 161

X1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Abstract

A probability programming language is developed and presented: applications illus-
trate its use. Algorithms and generalized theorems used in probability are encapsu-
lated into a programming environment with the computer algebra system Maple to
provide the applied community with automated probability capabilities. Algorithms
of procedures are presented and explained, including detailed presentations on three of
the most significant procedures. Applications that encompass a wide range of applied
topics including goodness-of-fit testing, probabilistic modeling. central limit theorem
augmentation. generation of mathematical resources, and estimation are presented.

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A Probability Programming Language:

Development and Applications

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 1

Introduction

1.1 General

Probability theory. as it exists today. is a vast collection of axioms and theorems that.

in essence. provides the scientific community many contributions. including:

e the naming and description of random variables that occur frequently in appli-

catlons.
e the theoretical results associated with these random variables. and,

o the applied results associated with these random variables for statistical appli-

cations.

No one volume categorizes its work in exactly these three ways, but the literature’s
comprehensive works accomplish these goals. Whether voluminous, such as the work

of Johnson, Kotz, and Balakrishnan (1995), or succinct, such as that of Evans, Hast-

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ings, and Peacock (1993). one finds all three of these areas presented in chapters that
are organized on the first contribution above, naming and describing the random vari-
ables. Works such as Hogg and Craig (1995), Port (1994). and David (1981) organize
their efforts according to the second contribution. covering theoretical results that
apply to random variables. Then there are the works such as Law and Kelton (1991).
Lehmann (1986). and D'Agostino and Stephens (1986) who concentrate on the sta-
tistical applications of random variables, and tailor their explanations of probability
theory to the portions of the field that have application in statictical analysis.

In all these works. as well as countless others. one stark omission is apparent.
There is no mention of an ability to automate the naming, processing. or application
of random variables. This omission is even more profound when one considers the
tedious nature of the mathematics involved in the execution of many of these results
for all but the simplest of examples. In practice. the level of tedium makes the
actual execution untenable for many random variables. Automation of certain types
of these procedures could eradicate this tedium. There is an abundance of statistical
software packages that give the scientific community powerful tools to apply statistical
procedures. But to date, there is no package that attempts to automate the more
theoretical side of the probabilist’'s work. Even the simplest of tasks, plotting a fully
specified probability density function. is not provided in many statistical packages.
In order to plot new. ad-hoc densities or CDF's. one is often required to write an

appropriate program.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A conceptual probability software package is now presented that begins to fill this
existirg gap. Before outlining this work’s approach. let us present some examples to
illustrate what should be included in such a probability software package.

Consider the following independent random variables: W ~ gamma(\.x). Z ~
N(u.o), ¥ ~ Weibull(A. ). X and R ~ arctan(e.a), and D.T.U. and V" as spec-
ified in the questions below. See Appendix A for more information on the arctan

distribution.

e What is the distribution of V=W + X + V77
e What is the distribution of T = X - In(W?) + e¥2?

e What is the distribution of a random distance D, which is the sum of the
product of random rates R,. R,.... . R, and random times 7,.75.... .T,. i.e.,

D=RI’T[+Rz'T2+"'+Rn‘Tn?

e What is the distribution of the system lifetime (" in a reliability block diagram
containing two parallel blocks of two subsystems that consist of two components

in series. i.e.. " = max{min{V. W}, min{}Y.Z}} ?

e What is the ezact upper tail probability for the statistic 6.124 associated with
the distribution of the 4! order statistic out of a sample of 12 iid observations

that have the same distribution as U?

e How might one use the previous result to improve goodness-of-fit testing?

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



e How could one employ the PDF's of order statistics of a population. instead of
the PDF of the population itself. to develop an alternate approach to maximum

likelihood estimation?

e What is the distribution of the maximum likelihood estimator of the inverse
Gaussian random variable’s first parameter 4 when a sample size of n is speci-

fied?

e Most importantly. if one could find these answers, what is their utility to the

statistical and applied science community?

There is no implication that the previously cited authors are remiss in neglect-
ing the automation of probability software. In fact it is only with the advent and
maturing of computer algebra systems. such as Maple and Mathematica, that there
now exists the ability to automate probabilistic modeling and research. This doc-
toral research and dissertation will take advantage of this relatively new technology
by developing and presenting a software “engine” that contributes to the fields of
probabilistic modeling and statistical applications. This research has concentrated
on procedures in the symbolic language Maple V.

The specific contributions to the applied probability and statistics community of

this research and dissertation include the following:

1. Detailed algorithms that comprise the conceptual software.

2. Generalized versions of theorems that comprise the software. [Note that while

the theorems themselves may exist in more general forms, their general forms

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



appear difficult to implement in an automated environment.]

3. An algorithm that produces the exact CDF of the Kolmogorov-Smirnov test

statistic.
4. Detailed explanations and examples of the software’s capabilities.

5. Application examples that contribute. on their own. to various areas within

probability and statistics.

6. Explorative examples of probabilistic quests that appear to be difficult to carry

out without automation.

. Extensions of testing statistical hypotheses, to include specific contributions in

the areas of outlier detection. goodness-of-fit. and parameter estimation.

Demonstrations in the general area of probabilistic model design. to include

(.4}

specific contributions in the areas of survival distributions. reliability block di-
agrams. exact solutions to central limit theorem (CLT) applications. and esti-

mation.

1.2 Literature review

While the current literature will be reviewed throughout the dissertation, there are
a number of works that should be mentioned for their general applicability to this
research. These include the works of Johnson, Kotz, and Balakrishnan (1995), Leemis

(1995), Port (1984). Rohatgi (1976). and others that provide the foundation for the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-1

theory behind the algorithms and implementation. The review of the literature has
discovered no publication on implementing probabilistic procedures in computer al-
gebra languages. nor on the benefits of such a paradigm. Databases searched inciude
FirstSearch, INNOPAC. INSPEC. DTIC, NTIC. Science Citation Index. Library of
Congress. Swem Library at The College of William & Mary. and the USMA library
at West Point. NY. Search strings included the following individual subject areas and
pairs of subject areas. where appropriate: distributions, goodness-of-fit. life testing,
Maple. modeling. order statistics, probability, reliability, and symbolic algebra. While
there are many listings under these terms and pairings of these terms, no work was
found about combining probabilistic results with computer algebra implementation.
The negative result of this search indicates that there is a lack of archival material

on the subject.

1.3 Outline of the dissertation

This dissertation is presented according to the following outline. In Chapter 2 the
development. abilities. and examples of use of the software language are presented.
Chapter 3 contains the development of the procedure that accommodates transforma-
tions of random variables to include a re-stated, general, implementable theorem for
such work. In Chapter 4 a procedure for finding the distribution of the product of two
independent continuous random variables is presented. In Chapter 5 a procedure that

returns the distribution of the Kolmogorov-Smirnov goodness of fit statistic, given a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



o

specified sample size. is presented. Chapter 6 contains an application in which a new
goodness-of-fit test procedure is presented and tested using the software. Chapter 7
is a collection of examples of explorations in the fields of probability and statistics
that are now possible due to the software. Finally. in Chapter 8. conclusions and
suggestions of further work are given. In the appendices are listed the algorithms for
the software. as well as documentation of the early work in creating new probabilistic

models.

1.4 Notation and nomenclature

This section reviews certain notation and nomenclature used here. Use is made of

the following acronyms and functional notation for density representations:
e probability density function (PDF) fy(z).
e cumulative distribution function (CDF) Fyx(z) = [Z_ fx(s)ds.
e survivor function (SF) Sx(z) = 1 — Fyx(z).
e hazard function (HF) Ay (z) = :{:ﬁ%,
e cumulative hazard function (CHF) Hx(z) = [Z_ hx(s)ds. and

e inverse distribution function (IDF) Fg'(z).

Throughout the dissertation, the proposed software is referred to as “a probability

programming language™ (APPL) for brevity. The terms “piecewise” and “segmented”

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



are used to refer to PDFs (and other functions) that can be constructed by piecing
together various standard functions. such as polynomials, logarithms. exponentials.
and trigonometric functions, e.g.. the triangular(1. 2. 3) distribution which has two
segments or two pieces, each of which are linear functions. The common abbrevi-
ation “N(u. o))" is used to refer to the normal distribution. Note that the second
parameter is the standard deviation. not the variance. Also. “U(a. b)” is used to rep-

resent the uniform distribution with parameters a and 4. Subscripts in parentheses

represent order statistics. e.g. the r*® order statistic associated with a random sample

pendent and identically distributed random variables. The terms “fully-specified.”
“semi-specified.” and “unspecified” are used to describe the degree to which param-
eters are specified as constants or fixed parameters in a distribution. For example,
the exponential(1) distribution is a fully specified distribution. The Weibull(1. »)
and the N(0. o) are both semi-specified distributions. The triangular(a. b. ¢) and
exponential(A) distributions are both unspecified. Typewriter font is used to rep-
resent Maple language statements. For example > X := UniformRV(0, 1);" is a
Maple assignment statement. Note that the symbol “>” represents the Maple input

prompt and is not typed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2

Software Development

The notion of probability software is different from the notion of applied statistical
software. Probability theory is rife with theorems and calculations that require sym-
bolic. algebraic manipulations. Applied statistical calculations are usually numeric
manipulations of data based on known formulas associated with distributions of com-
mon random variables. This section contains a discussion on several algorithms that
contribute to the development of APPL. Availability of computer algebra systems
such as Maple and Mathmatica facilitate the development of software that will derive
functions. as opposed to computing numbers.

Probability software must. at the most basic level, be a means of producing dis-
tributions of random variables. At the heart of the software must reside an “engine”
that can compute new. useful representations of distributions.

The derivation of exact distribution functions of complex random variables is often

untenable. In such cases. one had to be content with approximations and summary

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



11

statistics of the unknown distributions. regardless of whether those approximations
and summaries were adequate. For example. one often approximates distributions us-
ing Monte Carlo simulation or by invoking the central limit theorem. Statistics such
as the sample mean and variance of the approximated distribution are then reported.
If what was really needed was a certain percentile of the approximated distribution.
often times the entire simulation would need to be remodeled. re-validated. re-verified.
and re-run to obtain the needed information. A result such as a fully-specified PDF
would eradicate the need for such redundant efforts. One also would have analyt-
ical results to represent characteristics of certain complex random variables whose
fully-specified functions are untenable. For example, renewal theory and compound
Poisson process theory have results that derive the mean and variance of complex dis-
tributions. but fall short of actually determining the entire representation of complex
distributions via a PDF. CDF. or some other form of the distribution. The proposed
probabilistic software is designed to make a breakthrough into the area of completely
describing complex distributions with PDFs. CDFs. and the like. thereby providing
increased modeling capability to the analyst.

At the most general level. one could attempt to find distributions of intricate trans-
formations of multivariate. dependent random variables. The software described here
is limited to univariate. continuous. independent random variables. and the complex
transformations and combinations that can result between independent random vari-
ables. A set of algorithms that derives functional representations of distributions

and uses these functions in a manner that is typically needed in applications is pre-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



12
sented. Specifically. algorithms have been developed that will conduct the following
operations:

e supply a common data structure for the distributions of continuous. univari-
ate. random variables—including distribution functions that may be defined

piecewise, e.g. the triangular distribution.

e convert any functional representation of a random variable into another func-

tional representation using the common data structure. i.e. allowing conversion

amongst the PDF. CDF. SF. HF. CHF, and IDF,
e verifv that the area under a computed PDF is one.

e provide straightforward instantiation of well-known distributions. such as the
exponential. normal. uniform. and Weibull distributions. with either numeric or

symbolic parameters.

e determine the distribution of a simple transformation of a continuous random

variable. ¥ = ¢g(.X')—including piecewise. continuous transformations,

e determine common summary characteristics of random variables. such as the

mean. variance. other moments. and so forth,
e calculate the PDF of sums of independent random variables, t.e. ¥ = X + Z.
e calculate the PDF of products of independent random variables, i.e. ¥ = X Z,

e calculate the PDF of the minimum and maximum of independent random vari-

ables. i.e. Y = min {X,Z} and ¥ = max {X, Z}.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



13
o calculate the PDF of the rtb order statistic from a sample of n iid random

variables.
e calculate probabilities associated with a random variable.
e generate random variates associated with a random variable.
e plot any of the six functional forms of any distribution. e.g. the HF or CDF.

e provide basic statistical abilities. such as maximum likelihood estimation. for

distributions defined on a single segment of support,

e compliment the structured programming language that hosts the software (in
this case Maple) so that all of the above mentioned procedures may be used in

mathematical and computer programming in that language.

2.1 The common data structure

Implicit in a probability software language is a common. succinct. intuitive. and
manipulatable data structure for describing the distribution of a random variable.
This implies there should be one data structure that applies to the CDF., PDF, SF,
HF. CHF. and IDF. The common data structure used in this software is referred to as
the “list-of-lists.” Specifically. any functional representation of a random variable is
presented in a list that contains three sub-lists, each with a specific purpose. The first
sub-list contains the ordered functions that define the segments of the distribution.

The PDF representation of the triangular distribution, for example, would have the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



14
two linear functions that comprise the two segments of its PDF for its first sub-
list. Likewise, the CDF representation of the triangular distribution would have
the two quadratic functions that comprise the two segments of its CDF for its first
sub-list. The second sub-list is an ordered list of real numbers that delineate the
end points of the segments for the functions in the first sub-list. The end point of
each segment is automatically the start point of the succeeding segment. The third
sub-list indicates what distribution form the functions in the first sub-list represent.
The first element of the third sub-list is either the string Continuous for continuous
distributions or Discrete for discrete distributions. The second element of the third
sub-list shows which of the 6 functional forms is used in the first sub-list. The string
PDF. for example. indicates the list-of-lists is currently a PDF list-of-lists. Likewise,
CDF indicates that a CDF is being represented.

Examples:

o The following Maple statement assigns the variable X to a list-of-lists that rep-
resents the PDF of a U(0. 1) random variable:

> X := [[x -> 1], [0, 1], [‘Continuous‘, ‘PDF‘]];

e The triangular distribution has a PDF with two pieces to its distribution. The
following statement defines a triangular(0, 1. 2) random variable X as a list-of-
lists:

>X := [[x->x, x ->2-x], [0, 1, 2], [‘Continuous‘, ‘PDF‘]];

e An exponential random variable X with a mean of 2 can be defined in terms of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



its hazard function with the statement:

> X := [[x -> 1/ 2], [0, infinity], [‘Continuous‘, ‘HF‘]1];

e Unspecified parameters can be represented symbolically. A N(8. 1) random

variable X can be defined with the statement:

> X := [[x -> exp(-(x - theta) "~ 2) / sqrt(2 = Pi)],
[-infinity, infinity], [‘Continuous‘, ‘PDF‘]];

e The parameter space can be specified by using the Maple assume function.

Consider the random variable T with HF

A O0<tcl

for A > 0. The random variable T can be defined by the statements:

> assume(lambda > 0);
> T := [[t -> lambda, t -> lambda * t], [0, 1, infinity],
[‘Continuous‘, ‘HF‘]];
e The syntax allows for the endpoints of the segments associated with the support
of the random variable to be specified symbolically. A U(a. b) random variable

X is defined by:

>X :=[[x->1/ (b - a)], [a, b], [‘Continuous’, ‘PDF‘]];

e No error checking is performed when a distribution is defined. This means that

the statement shown below will create a list-of-three lists that is not a legitimate

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



16

PDF.
> X := [[x -> 6], [0, 5], [‘Continuocus‘, ‘PDF‘]];
Some error checking will be performed by the procedure VerifyPDF. which is

presented in a subsequent section.

2.2 Common continuous, univariate distributions

Syntax: The command
> X := RandomVariableNameRV(ParameterSequence) ;

assigns to the variable X a list-of-lists representation of the specified random variable.
The arguments in ParameterSequence may be real. integer. or string (for symbolic
parameters).

Purpose: Included in the prototype software is the ability to instantiate common
distributions. While the list-of-lists is a functional form that lends itself to the math-
ematics of the software. it is not an instantly recognizable form for representing a
distribution. Here is provided a number of simple procedures that take relatively
common definitions of distributions and convert them to a list-of-lists format. The
included distributions are well-know ones, such as the normal, Weibull, exponential,
and gamma. A complete list of the distributions provided in APPL, to include their
parameters, is presented in Appendix B.

Special Issues: The suffix RV is added to each name to make it readily identifiable

as a distribution assignment. as well as to deconflict Maple specific names such as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



17
normal and gamma. The first letter of each word is capitalized. which is the case
for all procedures in APPL. Also. there is no space between words in a procedure
call, e.g.. an inverse Gaussian random variable may be defined by the command
InverseGaussianRV(Parameter!. Parameter?). Usually the format is returned as a
PDF. but in the case of the IDB distribution. a CDF is returned. The CDF of the
IDB distribution. it turns out. is easier for Maple to manipulate (e.g.. integrate. differ-
entiate) than the PDF. Certain assumptions are made about unspecified parameters.
For example. an assignment of an unspecified exponential random variable (see the
second example below). will result in the assumption that A > 0. This assumption, as
with all other distributions” assumptions. are only applied to unspecified parameters.
The assumptions allow Maple to carry out certain types of symbolic integration. such
as verifving the area under the density is in fact one. for a PDF (see Section 2.4).

Examples:
e The exponential(1) distribution may be created with the following statement:

> X := ExponentialRV(1);

e The exponential(\) random variable X. where A > 0. distribution may be
created as follows:

> X := ExponentialRV(lambda);

o These procedure also allow a modeler to reparameterize a distribution. The

exponential (3) distribution where 6 > 0, for example, may be created as follows:

> assume(theta > 0);
> X := ExponentialRV(1 / theta);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



18
e The semi-specified Weibull(A. 1). where A > 0. distribution may be created as
follows:
> X := WeibullRV(lambda, 1);
Note that this is a special case where the Weibull distribution is equivalent to

an exponential distribution.

o The standard normal distribution may be created as follows:

> X := NormalRV(0, 1);

All distributions presently included in APPL and their parameterizations are listed

in Appendix B.

2.3 The six representations of distributions

Syntax: The command
DesiredForm(Random Variable [, Statisticl) ;

returns the list-of-lists format of the desired functional representation of the distribu-
tion. where DesiredForm is one of the following: PDF. CDF, SF. HF. CHF. or IDF. The
single argument Random Variable must be in the list-of-lists format. The optional
argument , Statistic may be a constant or a string.

Purpose: The 6 x 6 distribution conversion ability, a variation of the matrix outlined
by Leemis (1995, p. 35). is provided so that the functional form of a distribution can

be converted to and from its six well-known forms, the PDF, CDF, SF, IDF, HF, and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



19

CHF. This set of procedures will take one form of the distribution as an argument
and return the desired form of the distribution in the appropriate list-of-lists format.
For the one-parameter call. the functional representation will be returned. For the
two-parameter call. the actual value of the function at that point will be returned.
Special Issues: The procedures are fairly robust against non-specified parameters
for the distributions that will be converted (see the fourth example below).

Examples:

e To obtain the CDF form of a standard normal random variable:

NormalRV(0, 1);
CDF(X);

v Vv
> <
]

or. equivalently. in a single line.
> X := CDF(NormalRV(0, 1));
Since the CDF for a standard normal random variable is not closed form. APPL
returns the following:
. l 1 1 ,
Xi={r— jerf(5z V2) + 51, [=20. oc]. [Continuous. CDF]]
o [f X ~ N(0.1), then the following statements can be used to find P(X < 1.96) =
0.975.

> X := NormalRV(0, 1);
> prob := CDF(X, 1.96);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



20
e Should the hazard function of an exponential distribution be entered. its asso-

ciated PDF may be determined as follows:

[[x -> 1], [0, infinity], [‘Continuous‘, ‘HF‘]];
PDF (X) ;

v Vv
< 4

e For the case of unspecified parameters. the following statements convert an

unspecified Weibull PDF to an unspecified Weibull SF:

WeibullRV(lambda, kappa);
SF(X);

v Vv
Ea i

which returns:

X:=][z— el =" '\-"’], [0, ], [Continuous. SF]]

Note that the tildes after the parameters indicate that assumptions have been
made concerning the parameters (i.e.. A > 0 and « > 0) in the WeibullRV

procedure.

e Finding a quantile of a distribution requires the IDF procedure. If X ~
Weibull(1.2), then the 0.975 quantile of the distribution can be found with
the statement

> quant := IDF(WeibullRV(1, 2), 0.975);

e The procedures can be nested so that if the random variable X has been defined
in terms of its PDF, then the statement

> X := PDF(CDF(HF(SF(CHF (IDF(X))))));

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



21
does nothing to the list-of-lists representation for X, assuming that all transfor-

mations can be performed analyvtically.

Algorithm: The conversions are shown in a 6 x 6 matrix in Appendix C. Each
element of the matrix takes the ‘row’ and converts it to the type specified in the
‘column” heading. Thus the first row. second element of the matrix shows a call to
the CDF procedure using the PDF representation of a random variable as an argument

which returns the CDF representation of a random variable.

2.4 VerifyPDF

Syntax: The command
VerifyPDF (Random Variable) ;

returns true or false. depending on whether or not the PDF integrates to one. The sin-
gle argument Random | ariable must be in the list-of-lists format described previously.

In addition. the procedure prints
*The area under the PDF is ",

along with the area, and “true” if the area is 1.0 or “false” if the area is not 1.0.

Purpose: The purpose of this procedure is to help determine if a random variable in
the list-of-lists format is in fact a viable representation of a continuous distribution.
Specifically, the procedure converts the distribution to the PDF form and carries out
the definite integration of the PDF to see if the area under the PDF is 1. If so, it

displays

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1y
>

The area under the PDF is . 1

and returns “true”: otherwise it returns the computed area and the string “false” if
the area is more than 0.0000001 away from 1. This procedure is primarily an indicator
tool to check if the list-of-lists format of a random variable has been input correctly.
Special issues: The procedure only integrates the area under each segment of the
PDF of the argument Random Variable. It does not check for negative functional

values of f(z). The third example below shows the continuous function

flz) =3|z| -1 -l<zr<l

integrates to one, vet is not a PDF since f(0) = —1.

For many well-known distributions, the procedure will carry out the symbolic
integration and verify that the area under the PDF is one. as illustrated in the
second example below. Not all of the distributions described in Section 2.2 have this
svymbolic capability. but most do. For example. the unspecified log normal distribution
will integrate to one. but the unspecified inverse Gaussian distribution will not: see
the fourth example below.

Examples:

e The following Maple statements create an exponential random variable X with
a mean of 1. verify that the area under f(z) is one, and return true from

VerifyPDF:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



> X := ExponmentialRV(1);
> VerifyPDF(X);

e Since assumptions are made internally in ExponentialRV about the parameter

space. the following two statements will also return true:

X := ExponentialRV(lambda);
VerifyPDF(X);

>
>
e The following code defines a function f(z) such that [} flr)dr =1 and f(0) =

—1. so that VerifyPDF returns true even though this is not a legitimate PDF:

>X := [[x -> 3 = abs(x) - 1], [-1, 1], [‘Continuocus‘, ‘PDF‘]];
> VerifyPDF(X);

e Maple is not able to conduct the integration for more complex distributions. In
this example. X is assigned the unspecified inverse Gaussian distribution. and

an attempt to integrate the area under the density is unsuccessful.

> X := InverseGaussianRV(p1, p2);
> VerifyPDF(X);

These statements return an error message indicating that the function does not
evaluate to numeric. The assumption is made that future releases of Maple will

be able to correctly integrate this PDF.

Algorithm: The algorithm first checks to see whether the distribution of interest
is continuous. Next. it checks to see if the distribution of the random variable is
represented by a PDF. If not, it converts a local distribution to a PDF form using the

PDF procedure, which was introduced in Section 2.3. At this point, the area under

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



24
the PDF is calculated and printed. The returned value from the procedure is ~true”
if the area is within 0.0000001 of 1. and “false” otherwise. The algorithm is given in

Appendix D.

2.5 MedianRV

Syntax: The command
MedianRV(Random Variable) ;

returns the median of a specified distribution.

Purpose: This procedure returns the median of a random variable.

Special Issues: [t is fairly robust for use with distributions that have unspecified
parameters.

Examples:
e For the fully-specified Weibull distribution. the following statements will assign
the median of the distribution to the variable m.

> X
>m :

WeibullRV (1, 2);
MedianRV(X);

o The following statements determine the median of an exponential random vari-

able with unspecified parameters:

> X
>m

ExponentialRV(lambda) ;
MedianRV(X);

which results with the value -h‘(—21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(V]
[}

Algorithm: The algorithm is a special case of the two-parameter IDF procedure call.

12—

where the second parameter is

2.6 DisplayRV

Syntax: The command
DisplayRV(Random Variable) ;

displavs the list-of-lists format of the distribution in standard mathematical notation,
using the Maple piecewise procedure.

Purpose: The purpose of this procedure is to make the list-of-lists representation
of a distribution more readable. A long list-of-lists with several segments is not easy
to understand. This procedure converts a list-of-lists formatted distribution into
the Maple-syntaxed “piecewise” function. Such versions of segmented functions are
displayed in a more readable manner in Maple. It alsu states whether the current
representation is a PDF. CDF. etc. There is no computation in this procedure. The
procedure attempts to make the list-of-lists format more readable.

Special Issues: None.

Example:

e The piecewise triangular distribution could be displayed as follows:
> DisplayRV(TriangularRV(1, 2, 3));

which displays the following on a Maple worksheet:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



This random variable is currently represented as follows:

‘Continuous’. ‘PDF*

0 r<l
$ r—1 r<?
3—-1z r<3

Algorithm: This algorithm is a set of commands that creates a sequence of conditions

and functions in a manner that is usable by the piecewise command.

2.7 PlotDist

Syntax: The command

PlotDist(RandomVariable, LowerLimit, UpperLimit);

plots the current list-of-lists defined distribution between LowerLimit and UpperLimit
on a coordinate axis.

Purpose: To give a graphical representation of any list-of-lists represented distribu-
tion. The arguments LowerLimit and UpperLimit define the minimum and maximum
values desired on the horizontal axis.

Special Issues: A distribution function must be fully-specified for a plot to be
generated. The procedure is especially useful for plotting distributions that have

more than one segment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(8]
-1

Examples:

o The following statements will generate the plot of the PDF for the triangular(1.

o

. 3) distribution:

v

X := TriangularRV(1, 2, 3);
PlotDist(X, 1, 3);

v

e To plot the HF of the exponential(l) distribution for 0 < { < 10. enter the

statements:

> X := ExponentialRV(1);
> PlotDist(HF(X), 0, 10);

e To see a progression of the five PDFs of the order statistics (the procedure is
introduced in Section 2.10) for an exponential(1l) distribution. one could enter

the following statements:

> X ExponentialRV(1);
>n :=5;
> For 1 from 1 te n do
PlotDist(OrderStat(X, n, i), 0, 10);
od;
The result is five PDFs plotted sequentially. This sequence could be of use to

an instructor explaining the progressive nature of order statistics to first-year

probability students.

e Unspecified distributions produce “empty plot” warnings:

> X := ExponentialRV(lambda);
> PlotDist(X, 0, 10);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[
oL

Algorithm: The algorithm is a nested set of Plot commands that combine to form
a single plot. This is standard Maple programming for plotting multiple functions on
a single set of axes. Since —oc and oc are common endpoints of random variables. it

is necessary to specify the lower and upper endpoints of the horizontal axis.

2.8 ExpectationRV

Syntax: The command
ExpectationRV(Random Variable, Function);

returns the expected value of a function of a random variable.

Purpose: To find the expected value of a function of a random variable.

Special Issues: Procedures MeanRV and VarianceRV are the special cases of the
ExpectationRV procedure. evident by their names.

Examples:

e In order to find the expected value of a standard normal random variable. type:

> X := NormalRV(0, 1);
> meanX := ExpectationRV(X, x -> x);

e Unspecified distributions may also be used. Hereis the mean of the exponential()

random variable is calculated with the statements:

> X := ExponentialRV(lambda) ;
> meanX := ExpectationRV(X, x -> x);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



29

Algorithm: The algorithm is a straightforward implementation of the following
result. Let the continuous random variable X have PDF fx(r). Let g(X) be a
continuous function of the X. The expected value of g(.X). when it exists. is given
by

ElgxX)) = [ gla)- fx(z)dz.

The algorithm is in Appendix D.

2.9 Transform

Syntax: The command
Transform(Random\Variable, Transformation);

returns the PDF of the transformed random variable in the list-of-lists format.
Purpose: To determine the PDF of the transformation of a random variable of the
form Y = ¢(.X). As is the case for the random variable X', the transformation function
g(X) may be defined in a piecewise fashion (see chapter 3).

Special Issues: The transformation function must also be defined in an altered list-
of-lists format. For this function. the modeler must break the transformation into
piecewise monotone segments. Details on why this must be the case. in addition to
other implementation issues are given in Chapter 3.

Examples:

e Let X ~ U(0,1) and ¥ = g(X) = 4X. The following statements will generate

the PDF of Y :

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



30

>X := [[x -> 1], [0, 1], [‘Continuous‘, ‘PDF‘]];
= [[x -> 4 * x], [-infinity, infinity]l];
Transform(X, g);

A\
~< 0
|

The following statements determine the distribution of the square of an inverse
Gaussian random variable with A =1 and g = 2:
:= InverseGaussianRV(1, 2);

= [[x -> x =~ 2], [0, infinityl];
Transform(X, g);

v VvV v
<0 >
\

An example of finding the negative of a random variable is included in Section

2.12 on the command SumRV. used in finding differences of random variables.

An example of finding the reciprocal of a random variable is included in Section

2.11 on the command ProductRV, used in finding ratios of random variables.

An example of dividing a random variable by a constant is included in Section

2.15 on the command MLE. used to the find distributions of certain estimators.

A number of other illustrative examples are given in Chapter 3.

Algorithm: The theorem which provides the basis for the algorithm and the details

associated with the algorithm are found in Chapter 3. The algorithm is in Appendix

E.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



31

2.10 OrderStat

Syntax: The command
OrderStat (Random Variable, n, r);

returns the PDF of the r*® of n order statistics drawn from a population having the
same distribution as Random Variable.

Purpose: This procedure is designed to return the marginal distribution of specified
order statistics. The procedures arguments are defined as follows: the population
distribution is represented by the list-of-lists format. the integer sample size n, and
the integer r to denote the r'! order statistic. The procedure returns the marginal
PDF for the r*! order statistic in the list-of-lists format. The procedure is a direct
implementation of the widely-published theorem on the distribution of the order
statistics (e.g.. Larsen and Marx. 1986. p. 145).

Special Issues: This procedure is robust for unspecified parameters in the population
distribution. [t is also fairly robust at returning the appropriate PDF when either
n or r is unspecified. It is also robust when dealing with more than one segment in
a PDF. This procedure was a cornerstone procedure that allowed the goodness-of-fit
contributions discussed in Chapter 6 in this dissertation.

Examples:

e The PDF of the third order statistic from a sample of five items distributed

according to the standard normal distribution is found by the commands:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



NormalRV(0, 1);
OrderStat(X, 5, 3);

v Vv
<
W

¢ The minimum of 6 iid exponential(l) random variables. which in turn is expo-

nentially distributed with A = 6. is found by the commands:

ExponentialRV(1);

> X
>Y OrderStat(X, 6, 1);

o In this example. an unspecified exponential distribution is entered as an argu-

ment.

:= ExponentialRV(lambda) ;

>
> OrderStat(X, 3, 2);

X
Y

The result is the unspecified order statistic distribution of the sample median:

Yi={[z— —6(el™"F) —1)x el "2V )] [0,00].[ Continuous*. PDF"*]]

e [n this example. n. r. and the distribution are unspecified.

:= ExponentialRV(lambda) ;
OrderStat(X, n, r);

> X
>Y

The result is the general form of the r*® order statistic from an exponential(\)

population:

_al=A"2) (r—=1) y~ (A" z(n-r+1))
Y::[[I_’F(nﬂ)( e +1) Ae 10, 00].

[(r)l(n=r+1)
[‘Continvous',  PDF* ]]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



33

e As seen in the example in Section 2.7 for PlotDist, the OrderStat command
may be embedded in loops and other programming functions in Maple. This
ability is essential in the goodness-of-fit tests presented in Chapter 6 of this

dissertation.

Algorithm: The algorithm is a straightforward implementation of the following

result (found in Larsen and Marx. 1986, p. 143):

fro,(z) = Y Fe(zyl- (1= Fx(z))™" - fx(z).

T (r=1Din—r)

As seen in Appendix D. the algorithm computes the new distribution segment by

segment.

2.11 ProductRV and ProductIID

Syntax: The command

ProductRV(Random Variable!, Random Variable?) ,

returns the PDF of the product of the two random variables in the argument list.
Purpose: This procedure computes the PDF of products of random variables, i.e.,
Z = XY. The arguments can be any list-of-lists representation of a distribution. This

procedure is another cornerstone procedure for the software package and is more fully

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



34

explained in Chapter 4. The similar command ProductIID(RandomVariable, n) will
compute the PDF of the n-fold product of iid random variables.
Special Issues: The two random variables in the argument list are assumed to be
independent. but not necessarily identically distributed in ProductRV. Special care is
used to allow for the multiplication of segmented random variables. The distribution
of a product of random variables is frequently segmented. as in the case of a triangular
random variable multiplied by another triangular random variable. Distributions do
not have to fully-specified as seen in the fifth example. Also. the algorithm may
be used in conjunction with Transform to compute the PDF of ratios of random
variables. as seen in the fifth example.

Examples:

e The distribution of the product of a standard normal and a U(0. 1) random

variable is found with the following commands:

NormalRV(0, 1);
UniformRV(0, 1);
ProductRV(X, Y);

v V VvV
N o< <
i

e The PDF of the product of two independent exponential(l) random variables

is found with the following commands:

vV V

X := ExponentialRV(1);
VA ProductRV(X, X);

e The PDF of the product of six independent standard normal random variables

is found with:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



NormalRV(0, 1);
ProductIID(X, 6);

v Vv
N >4
n

e The PDF of the product of two unspecified exponential(\) distributions is a

PDF in terms of the ‘Besselk’ function:

:= ExponentialRV(lambda);
:= ProductRV(X, X);

vV Vv
< <

The procedure returns the following list-of-lists:

Y = [[v = 2A7? BesselK(0. 2™ \/v)]. [0. oc]. [ Continuous*. * PDF"|]

e For ratios of random variables. employ the transformation ability of the software
as in the following example. which could be used to calculate the distribution

of a random rate. given independent distributions for distance and time:

UniformRV(0, 10);
Exponenti1alRV(1);
ProductRV(D, Transform(T, [[x -> 1 / x], [0, infinity]]);

vV VvV Vv
o - o
n

Note. in this example. the call to Transform finds the distribution of 1/7. so the

PDF of the random ratio R = D/T is computed with the ProductRV command.

e Chapter 4 contains other illustrative examples of this procedure’s capabilities.

Algorithm: The algorithm is presented in Appendix F. and is explained in detail in

Chapter 4.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



36

2.12 SumRV and SumIID

Syntax: The command
SumRV(Random Variablel, Random Variable?) ;

returns the PDF of the sum of Random Variable! and RandomVariable?.

Purpose: This procedure returns the list-of-lists formatted PDF of the convolution
of two independent random variables. For example. it will produce the PDF of
Z = X +Y. where X and Y are independent random variables. The similar command
SumIID(Random Variable, n) will compute the PDF for the n-fold convolution of iid
random variables.

Special Issues: The random variables entered as arguments are assumed to be
independent. but not necessarily having the same distribution in SumRV. The ability
to compute differences of random variables is inherent in the software by employing
the transformation ability. as in the fourth example below.

Examples:

¢ The sum of a standard normal random variable and a U(0. 1) random variable

has a PDF found as follows:

NormalRV(0, 1);
= UniformRV(0, 1);
SumRV(X, Y);

v V VvV
N < ><
|

e The PDF of the sum of two independent unit exponential random variables,

which is an Erlang PDF, is found as follows:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



37

= ExponentialRV(1);
SumRV(X, X);

vV Vv
N <

A

e The PDF of the sum of six standard normal random variables. which is N(0. 6)

is found as follows:

= NormalRV(0, 1);
SumIID(X, 6);

vV Vv
NP
|

e In this example one finds the PDF for the difference between a uniform and

exponential random variable:

UniformRV(0, 10);
= ExponentialRV(1);
SumRV(X, Transform(Y, [[y -> -y], [-infinity, infinity]l);

v VvV Vv
O < <
i

Note. in this example. the call to Transform finds the negative distribution of
the ¥ random variable. so the PDF of the random difference D = X — Y is

computed.

Algorithm: The algorithm for this procedure relies heavily on the Transform and
ProductRV procedures. Specifically. to compute the convolution distribution of Z =
X + Y. it carries out the transformation Z = In(e¥e!) using the Transform and
ProductRV procedures. A separate algorithm for the convolution of two random
variables has been implemented by Berger (1995), but to date the author hasn’t
been able to get that procedure to be compatible in all cases of segmented random

variables. The algorithm for this procedure is listed in Appendix D.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.13 MinimumRV

Syntax: The command
MinimumRV(Random Variable!, Random Variable?);

returns the PDF of the minimum of the two random variables listed as arguments.
Purpose: MinimumRV is a procedure that produces the distribution of the random
variable Z = min{.X.Y}. where X and Y are independent. continuous random vari-
ables. The procedure takes the PDFs of X and Y as arguments and returns the PDF
of Z. all in the usual list-of-lists format.

Special Issues: The two random variables in the argument list are assumed to be
independent. but not necessarily identically distributed. The procedure is robust
on unspecified parameters for the distributions (see the third example below). The
procedure is able to handle segmented random variables. such as in the first example
below where two distributions with only one segment each in their PDFs have a
minimum with two segments.

Examples:

¢ The minimum of a standard normal random variable and a U(0, 1) random

variable is found as follows:

NormalRV(0, 1);
= UniformRV(0, 1);
MinimumRV(X, Y);

v V Vv
N o~ >4
|

e The PDF of the minimum of two independent unit exponential random vari-

ables. which is also an exponential distribution with A = 2, is determined as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



39

follows:
> X := ExponentialRV(1);
> Z := MinimumRV(X, X);

e The minimum of two unspecified iid Weibull random variables is found as fol-

lows:

WeibullRV(lambda, kappa);
MinimumRV (X, X);

> X
>Y

This call to MinimumRV returns Y as:

Y= H.r — AT o o (23T 1 oo ], [‘Continaous'.‘PDF‘]]

Algorithm: The procedure uses the CDF technique of finding the PDF of the min-
imum of two independent random variables. Careful consideration is given to seg-
mented random variables, as the CDF technique requires the segments to be aligned

properly. The algorithm is in Appendix D.

2.14 MaximumRV

Syntax: The command
MaximumRV(Random Variablel, RandomVariable?2) ;

returns the PDF of the maximum of the two random variables listed as arguments.
Purpose: MaximumRV is a procedure that produces the distribution of the random

variable Z = max{.X, Y} where X and Y are independent, continuous random vari-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



40

ables. The procedure takes as arguments the PDFs of X and Y and returns the PDF
of Z, all in the list-of-lists format.

Special Issues: The two random variables in the argument list are assumed to be
independent. but not necessarily identically distributed. Notice there are no proce-
dures for the maximum or minimum of n iid random variables. Such a determination
is already possible with the procedure OrderStat.

Examples:

e The maximum of a standard normal random variable and a U(0. 1) random

variable is found as follows:

NormalRV(0, 1);
UniformRV(0, 1);
MaximumRV(X, Y);

vV VvV Vv
N < <
"

e The maximum of two independent unit exponential random variables is found

as follows:
> X := ExponentialRV(1);
> Z := MaximumRV(X, X);

Note that this could represent the system lifetime of a parallel arrangement of

a two-component system.

Algorithm: This procedure relies on the MinimumRV and Transform procedures
to determine the distribution of the maximum. Specifically, it maximizes Z =
max {X, Y} by performing the transformation Z = — min {—-X. —Y"}. The algorithm

1s found in Appendix D.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



41

2.15 Maximum likelihood estimation

Syntax: The command
MLE(Random Variable, SempleList, ParameterList);

returns the MLE of the parameters listed in ParameterList as a result of the sample
observations listed in SampleList for sampling from a population with a distribution
represented by Random Variable.

Purpose: The purpose of this procedure is to find real. and symbolic. where possi-
ble. estimates of parameters for distributions. The argument SampieL:st can either
be a fully-specified list of real numbers or the unspecified list of strings. The argu-
ment ParameterList must be a list of the unknown parameters to be estimated. The
argument Random lariable must be a list-of-lists specified distribution of a random
variable.

Special Issues: One is not limited to performing ML estimates on known random
variables. In the explorations envisioned for this software. any list-of-lists represented
distribution may be used in the estimation procedure. Clearly one is limited by
Maple's solving capability. especially in the case of unspecified samples. An advan-
tage of this approach to ML estimation is that sometimes we can actually find the
distribution of the estimator. For instance, in the third example below, the procedure
MLE returns a function of independent, univariate random variables, in this case X
of the inverse Gaussian distribution. After the distribution of the estimator, called

XB in the example. is found. one can find its mean, variance, quantiles, and so forth,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



using APPL.

Examples:
e For the semi-specified inverse Gaussian distribution where o is known (or as-
sumed) but g is unknown. one finds the estimate of u as follows:

> X := InverseGaussianRV(1, mu);
> muhat := MLE(X, (1, 2, 3, 4, 5], [mul]);

The call returns the estimated value for g of 3.
e Should both parameters need to be estimated, then the parameter list would
include both of the unknown parameters as follows:

> X := InverseGaussianRV(lambda, mu);
> paramhat := MLE(X, [i, 2, 3, 4, 5], [lambda, mul);

The call returns the estimated values in the form of a list assigned to paramhat.

where paramhat is now the list [300/37, 3] corresponding to the MLEs A= X
and g = 3.
e For the case of a general random sample r;.z3.... .z,. i.e.. the sample is un-

specified, but n is fixed. one would type the following:

NormalRV(mu, 1);
= MLE(X, [x1, x2, x3, x4, x5], [mul);

v Vv
< <
!

This code returns the MLE X for n = 5. Should one want to find the distribu-
tion of this estimator. the following commands would be used:

> XB := Transform(SumIID(X, S), [[x -> x / 5], [-infinity, infinityl);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



43
Algorithm: The algorithm. found in Appendix D. is a straightforward implementa-

tion of maximum likelihood estimation using the log-likelihood function.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3

Transformations of Univariate

Random Variables

3.1 Introduction

As mentioned in Chapter 2. the procedure Transformis a key procedure in APPL. Its
uses are many. and Transformis often embedded in other procedures. as in MaximumRV
for example. A generalized version of the univariate change-of-variable technique for
transforming continuous random variables is presented here. Extending a theorem
from Casella and Berger (1990) for many-to-1 transformations, to include a more
general set of univariate transformations. Specifically, transformations can range
from 1-to-1 to many-to—1 on various subsets of the support of the random variable
of interest.

In its simplest application, the change-of-variable technique is used to determine

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



45
the distribution of a continuous random variable Y  given the distribution of a con-
tinuous random variable X and a l-to-1 transformation from the support of X to
the support of Y. As the conditions on the transformation ¥ = ¢g(.X') become more
general. the technique requires more detail in its description and is less likely to ap-
pear in introductory probability and statistics texts. Casella and Berger (1990. p. 51)
discuss transforming random variables using the change-of-variable technique when
the entire transformation is many-to-1. except for a finite number of points. that is,
the cardinality of the set g~!(y) is the same for almost all y in the support of }". Hogg
and Craig (1993. p. 190) extend this many-to-1 technique to n-dimensional random
variables. In this chapter. a more general univariate case is considered in which the
transformations are “piecewise many-to-1.” where “many” may vary based on the
subinterval of the support of Y under consideration. What follows is a theorem for
this case and an algorithm (in Appendix E) for a computer algebra system imple-
mentation of the result. Although the theorem is a straightforward generalization of
Casella and Berger's. there are a number of details that have to be addressed in order
to produce an algorithm for finding the PDF of Y. The resulting computer algebra
system implementation of the theorem relieves analysts, researchers. and students
from arduous computations.

Consider the following example. Let fx(z) = % for —1 < r < 2, be the PDF
for the random variable X. Consider the transformation ¥ = ¢(X) = X2. This
transformation is a 2-to-1 transformation on the interval X € (—1,1) (except at

X =0) and it is 1-to-1 on the interval X € [1,2); see Figure 3.1 on page 54. Some

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



16

introductory probability texts use this as an example (e.g.. Larsen and Marx. 1986,
p. 137), but fail to state a general theorem that treats such piecewise many-to-l
transformations. The difficultv lies in identifying an appropriate partition of the
support of X and a corresponding partition for the support of ¥" and then determining
which of these subsets of the support of X correspond to each of the subsets of the
support of Y. A further complication is encountered when the transformation itself is
either discontinuous or non-differentiable at certain points. For example. consider the
random variable .X'. where fy(z) = (z+1)/18 for —1 < r < 3, and the transformation

(see Figure 3.3 on page 37):

X? —l<X<3

X 1<X <5

In this example. the transformation is discontinuous as well as “piecewise many-to—
1. This theorem and resultirg implementation in a computer algebra system will
determine the PDF of Y for such transformations.

In Section 3.2, the theorem. modeled after Casella and Berger's. is presented.
This theorem has been presented more generally in earlier papers. Barr and Zehna
(1971, p. 225) consider multivariate many-to—one transformations. Rohatgi (1976,
pp. 73-74) and Port (1994, p. 462) consider the piecewise many-to—one case in the
univariate and multivariate settings. respectively. This theorem is strictly univariate,
but permits implementation in a computer algebra system. It determines the distri-

bution of ¥ = g(X) for any univariate random variable X of the continuous type with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



17
few restrictions on the transformation g(X). Note that this theorem will be stated in
a somewhat elaborate form for the purpose of facilitating its implementation. Sec-
tion 3.3 discusses an algorithmic implementation of the theorem using the computer
algebra svstem capabilities of the Maple V software package. Section 3.4 illustrates

the usefulness of the algorithm.

3.2 Theorem

Before the theorem is presented. an overview of the rationale for the notation is in
order. Assume that the support of X. denoted by X. consists of a finite union of
open intervals. The points r; < z, < --- < z,4; generate n consecutive subintervals
and are determined as follows. The first subinterval of A" begins with z, and the last
subinterval of .X" ends with z,,;. The remaining r;’s correspond to other endpoints
of the intervals of ." or to the locations in X" where the function ¢ is discontinuous or
non-differentiable. or ¢’ is zero. Let g;(z) denote the restriction of g(z) to (z;.zZi41);
by design. g; is monotone and therefore invertible. Let X~ = {z,.r,.... .Zp41}: note
that since X is continuous. P(X € X)) = 0.

Let ¥ be a set of points on the y-axis. to partition the support of }” into subin-
tervals. The range of each g,. denoted by (m,, M;). either contains or is disjoint
from each Y subinterval. The set Y~ is designed so that the final PDF of ¥ may be
specified by designating its value on each Y subinterval. The set Y~ is defined using

one-sided limits because the transformations ¢, gz, ... ,gn are not necessarily defined

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



48
at the points in X~. The set /; consists of integers ¢ with the property that the range

of g; is either equal to or properly contains the jth Y subinterval. The PDF for each

}" subinterval depends on the PDF of X and the associated transformations g;.

Theorem. Let X be a random variable of the continuous type with PDF fx(r) and
with support X', where .U’ consists of a finite union of open intervals. Let g(z) be a real-
valued function whose domain includes A'. Let —00 <1, <2< -+ < Ty <ZTp41 <+00

be a sequence of extended real numbers which satisfy the following conditions:

1. The sequence includes the endpoints of the intervals whose union is &'.

[

fx(z) is continuous on each open interval 4, = (z;,z;41) for: = 1.2,... .n.

3. If fx(z) is not identically zero on A,. then the function g¢;(z), which is the

restriction of g(r) to A,. is monotone on A; and has a nonzero derivative at

Let X" ={z,.12.... . Zns1}-

Let a = {{|fx(z) is not identically zero on A;}.

Let m; = min {iilx;}g(x).:%i:rﬂl g(z)} fori=1.2.... .n.
Let M; = max {.lrilx;}g(:z:).I*itr‘r:l g(r)} forz=1.2,... ,n.
Let Y™ = Uea {mi. M} .

Let m =||Y~|| — 1, where || -|| denotes cardinality.

Order the elements of y; of ¥~ so that y; < y2 < -+ < Yms1-

Let I; = {ilm; <y, and y;41» < M}, forj = 1, 2, ..., m.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



19

Then for yE (y)-y,+1).

~ _ dg'(y)
fry) =" fx (g,- l(y)) ! ™ |

€l

Proof. Without loss of generality. consider the jth Y subinterval (y,.y,+1). Also
suppose that a and b are any points that lie inside (y;,y;4+1) such that a < b. Fur-
thermore. let M; = max{g;'(a).g;7'(b)} and m; = min{g'(a).g7'(b)} for i € I;. As

Hogg and Craig (1995. p. 190) point out,

Pla<Y <b) = ZP(m; <X« 1\’[,-).

i€l

Since Y is a continuous random variable.

M,
Pla<Y <b) = Z/ fx(r)dz

t€l, My
b da™!
=3/ f.\-(g:‘(w) ’—-"dyi" dy

€1, "¢
b d:i
= /zgfx(gfl(y)) 2l gy

where one performs the change-of-variable y = gi(z). or equivalently ¢ = g7 '(y), and
has used the absolute value to treat both increasing and decreasing transformations

(see Freund 1992. p. 268). Referring to Theorem 7.1 in Freund (1992), one sees that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the integrand

dg7!
Y fx (yf‘(y)) 'i‘dy(—y)‘

€1,

is the PDF for ¥ on the subinterval (y,.y;+1)- a

3.3 Implementation

It could be quite tedious to implement this theorem by hand for large m and n. With
the onset of computer algebra systems such as Maple V, however. one may implement
algorithms that correspond to theorems such as this with relative ease. This algorith-
mic implementation is included in the Appendix E and parallels the theorem. Two
main implementation issues emerged. First. Maple may produce several candidates
for g7'. e.g.. when g:(r) = 2. Maple returns ¢;'(y) = —/y and 97 (y) = Vy- The
correct inverse is selected by requiring that ¢7'(gi(c;)) = c;. where ¢; is any point
in the :th .X subinterval. When the ith X subinterval has finite endpoints. ¢; can
be chosen to be the midpoint of the subinterval. In the cases where z; = —oc or
Tny1 = oc [e.g.. X ~ N(u.0?)]. c; must be selected more carefully. The algorithm for

determining c; is:

l. If z; = —o0 and r; = +o0. then ¢; = 0.

~

. Ifz; = —oc and r; # +00, then ¢y =z, — 1.

3. If z, # —o0 and z,4, = +o0, then ¢, =z, + 1.

T; + x;
4. For all other cases, ¢; = T‘“

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



51

The second implementation issue involves redundancies in lists. Maple doesn’t
recognize that the integer 3 and the floating-point value 3.0, for example. are redun-
dant in a list. The ReduceList procedure finds all adjacent points that differ by a
small prescribed é and discards redundant floating-point type elements.

The data structure for g is a “list of two lists” that is similar in nature to that
of f. Here one characterizes ¢g by listing its monotone components and the endpoints
of the corresponding domains. Example 3.4.1 gives a detailed illustration of the data
structures for f and g.

The following are some additional implementation issues that arose during the

coding of the algorithm:

e The user must supply z;.r.... .24 This ordered list consists of the endpoints
of the open intervals which constitute A" and all locations in X where g(z) is
discontinuous or non-differentiable. or ¢’(z) is zero. A preprocessor to determine
elements of X corresponding to ¢’(r) = 0 could be added to the algorithm
if desired. Thus if the support of X is (=1.2). and ¥ = g(.X) = X2, this

preprocessor would include r =0 in X'~ yvielding X~ = {—1.0.2}.

e The partition points z,.3,... .Zn4; must be chosen so that fx(z) is not defined
piecewiseon any X subinterval (e.g., if X has a triangular distribution, the mode

must be a partition point).

e Adding extra r-values in X to X~ that are not maxima, minima or saddle points

of g(z) or discontinuities of fy(z) or g(z) will not affect the correctness of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Ut
V)

algorithm’s implementation of the theorem. although the implementation will

be slower.

e Many transformations such as g(z) = r + €” do not have an inverse that can
be expressed in a closed-form. Numerical methods could be used in conjunc-
tion with the algorithm to find individual values of fy(y). This has not been

implemented in the algorithm. If g(z) = z + €*. for example. then

dg='(y)| _ _ 1
dy 1 4 e*

z=g~(y) .

e Periodic transformations can present a problem in the implementation of the
theorem. Maple uses the usual principal inverses for sin r. cos r. and tan r. but
the restricted ranges of these principal inverses are often inappropriate. When
the algorithm tries to identifv which inverse is appropriate. it is only given one
choice. the principal inverse. but the domain of .\’ might not coincide with the
range of the principal inverse. Example 3.4.4 illustrates the problem and a

circumvention.

e No error-trapping has been done to insure that fx(z) is a legitimate PDF. i.e.
[ fxtoydz =1, fx(z) 20V 2.

Also, there is limited error-trapping on g(z) in that the procedure gives an error

message when the inverse cannot be found.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



e Parameters are allowed in fx{z) but not in g(z).

3.4 Examples

This section contains some illustrative examples of using the algorithm described in
the previous section to determine the distribution of ¥ = ¢(.X'). Before using the
program. its performance on several common transformations was tested. Given
X ~ N(0.1) and ¥ = g(.X') = X?. the program returned the PDF for a \? random
variable. Given X' ~ N(u.0?) and ¥ = g(X') = (X — u)/o. the program returned the
PDF for a standard normal random variable. Now consider more complex examples

that illustrate the theorem’s implementation.

Example 3.4.1 Consider the first example from the introduction: given
the random variable X ~ U(—1.2), find the distribution of ¥ = ¢g(X) =
X?2. Given X~. the algorithm determines the relevant partitions of the
supports of X" and Y. Then it determines which X subintervals map onto
which Y subintervals. The subintervals are apparent in Figure 3.1. Note
the set X~ is displaved on the horizontal axis. Y™ on the vertical axis.
both marked with the x symbol. The transformation is partitioned into
monotone segments (with identical or disjoint ranges) delineated by the
+ syvmbol. The assignment of data structures for f and ¢ and the call to

Transform are as follows:

>X := [ [x->1/ 3], [-1, 2], [’'Continuous’,’PDF’] 1;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



8(Xj
4 X
3 —
‘_7 =
T 4
0 =X
¥ ¥ ¥ ¥— X

Figure 3.1: The transformation ¥ = g(X) = X2 for -1 < X < 2.

= [ [x->x "2, x->x " 2], [- infinity, O, infinity] 1;
Transform(X, g);

vV Vv
~< 01

The program determines that the transformation is 2-to-1 on —1 < r <
1 (excluding r = 0) and l-to-1 on 1 < r < 2. Since ¥} = X? has
two inverses. the program determines which inverse to apply to which

X subinterval. The resulting PDF for ¥ is

1
fr(y) = v Pyl
;&—g l<y<4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(1]
(Gl

The corresponding returned value of Y is a “list-of-lists™ represented dis-
tribution that specifies the PDF of ¥:
(ly => 1/ (3 * sqrt(y)), y -> 1/ (6 * sqrt(y))],

o, 1, 4], [’Continuocus’,’PDF’]]
\vspace*{-0.25in}

Example 3.4.2 Consider the random variable X ~ U(0.7). Find the

PDF of ¥ = ¢g(.X) = {|X — 3] — 1|. A graphical representation of this

g(X)
30X
2 X
I X
0 =X
X —X X X X X X — X
0 I 2 3 4 5 6 7

Figure 3.2: The transformation ¥ = ¢g(X) =||X =-3|=1|for0 < X < 7.

transformation is shown in Figure 3.2, with X*, Y*, and the monotone

segments of g marked as before. This transformation is more complex than

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Example 3.4.1 in that it is 4-to-1 for 0 < y < 1. 2-to-1 for | < y < 2.

and 1-to—1 for 2 < y < 3. The program vields the correct PDF for Y:

“1da

O<yx<l

fr(y)

N

l<y<?2

i ] Ll

2<y<3

Example 3.4.3 Consider the second example from the introduction: if
the random variable X has PDF fx(z)= (z+1)/18 for -1 < r < 3, find

the distribution of

X? -1l<X<?

X

[N fo)

<X <5

The appropriate partition for the transformation is depicted in Figure

3.3. The program determines the following PDF for }":

1_81ﬁ O<yx<l

e l<y<l3
frly) =

Ryihitt 15 <y <225

el 225<y<5

Example 3.4.4 As a final example, consider the problem that Casella

and Berger (1990) discussed, without providing fy(y), as a prelude to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



=1

(1}

&X)
5 X
4 ~
3 -
b
2 -
X
[ ¢
0 X
¥ ¥ HHe—x% T T ¥— X
1 0 | 2 3 4 5

Figure 3.3: The transformation }" = ¢(.X) has a discontinuity and is variously 1-to-1
and 2-to-1 on different subsets of the support of X.

their theorem. Letting .X' be a uniform random variable on (0.2%), find
the distribution of ¥ = g(.X) = sin?(X). As Figure 3.4 shows, this trans-
formation is 4-to—! for the single Y subinterval (0, 1). Furthermore, since

n=4. X" ={0.5.7,35.2r}. The PDF of Y is

Y) = ——— 0 1
f}(y) 7:_\/:‘/—_? <y<

which is commonly known as the arcsin distribution (see Johnson, Kotz,

and Balakrishnan (1995, p. 212). To overcome the principal inverse diffi-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



g(X)
1.0 X
0.5
00 =X
¥ ¥ T¥* —T ¥ —— X
0 | 2 3 4 5 6

Figure 3.4: The transformation ¥ = g(.\') = sin*(X) for 0 < X < 2x.

culty alluded to in the previous section. the following equivalent situation
has been devised: consider the random variable X' ~ U(—3.%) and let
Y = g(X) = sin®(X). In this case the domain of X will be the same as

the range of g~! which results from using the standard arcsin function.

This solution yielded a random variable with a notable feature. The dis-

tribution’s HF. Ay (y) = 1—%, might be of interest to a reliability
— Fy

engineer. For this distribution,

2
hy = - '
v(y) \/y—_yT[;r—‘Zarcsin(?y—l)] eyt

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(W]}

o



By plotting this HF. one sees it has the rare property of a closed-form.
“bathtub™-shaped HF. Furthermore. one can now apply the transforma-
tion W = ¢g(Y) = AY in order to derive a random variable I} that is a
one-parameter random variable with a closed-form. bathtub-shaped HF.
Although the arcsin distribution has been discussed in the literature, there
appears to be no mention of the fact that it has a bathtub-shaped HF.
Most distributions with bathtub-shaped hazard functions must be ana-
lvzed numerically because their hazard functions are not closed form. One
of the useful features of the Transform procedure is that it can help the
practitioner gain insight into what transformations could result in a use-
ful model. In this example. it becomes apparent that the transformation
“crowds™ the uniformly distributed X random variable into a distribu-
tion for ¥ that is *heavy” on either end of its support. The result is a
random variable with a bathtub-shaped hazard function. The program
enables the model designer to confirm. or gain insight into the univariate

transformations that could result in a useful model.

3.5 Conclusion

The tool provided by the Transform procedure will be useful to the practitioner as
well as the academic. The academic might use this tool to find new distributions.

Let X be a beta random variable with specified parameters, for example, and let

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



60

g(X) = X2 Applyving g several times in succession may yield a distribution that
is useful in modeling. Alternatively. students might be asked to combine a set of
ten transformations and ten distributions in order to create 100 new distributions.
picking out the interesting properties of the more notable ones.

The practitioner. on the other hand. may use the Transform procedure for the
specific purpose of iterative probabilistic model design. illustrated in Example 3.4.4.

Examples provided in Chapter 7 use Transform extensively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4

Products o- Random Variables

4.1 Introduction

Another keystone procedure is that of computing the probability density function of
the product of two independent random variables. The procedure ProductRV is very
useful for that purpose and is also embedded in the SumRV procedure. Rohatgi’s well-
known result (1976, p. 141) for determining the distribution of the product of two
random variables is straightforward to derive. but difficult to implement. Let X and
Y be continuous random variables with joint PDF fx y(z.y). The PDF of V" = XY
1s

feto) = [~ frxw (.2) Loz

||

The implementation of this result, however, is not straightforward for general X
and Y. Difficulties occur as a result of both the myriad variations to the limits of

integration and the propensity of the PDF of V' to be defined in a piece-wise manner.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



62
The cases when X and Y are independent and may have probability density functions

defined in a piece-wise fashion are considered in this chapter. Appendix F contains an

algorithm that handles these difficulties and is genesis for the procedure ProductRV.

4.2 Theorem

A simple theorem is presented in this section which illustrates some of the issues
associated with a general algorithm for determining the PDF of the product of two
independent random variables. For simplicity, assume that the random variable X
has support on the interval (a.b) and the random variable }" has support on the
interval (c.d). Also. the product space of the two random variables is assumed to fall

entirely in the first quadrant.

Theorem. Let .\’ be a random variable of the continuous type with PDF f(r) which
is defined and positive on the interval (a.b). where 0 < a < b < oo. Similarly. let
Y be a random variable of the continuous type with PDF ¢(y) which is defined and

positive on the interval (c.d). where 0 < ¢ < d < oc. The PDF of V" = XY is

(

[ g (%) fla)tdz ac <v < ad
h(v) = fuu//;g(f) flz)1dz ad < v < bc
:/49(5) f(z)idz be <v < bd

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



when ad < be,

[0 g () fla)tde

h(v) =

when ad = bc. and

when ad > be.

Proof. Only the case of ad < bc is considered. The other cases are proven analo-
gously. Using the transformation technique (Hogg and Craig. 1995. page 173). the
dummy transformation Z = X and the transformation 1" = X'} constitutea 1-1 map-
ping from A = {(r.y)le <z < bc<y<d}toB={(z.v)la< s < bec:<v<d:}.

Let u denote the transformation and w the inverse transformation. The transforma-

b
fu/dg

,

g (%)
La(¥)

| f:/dg (f

tion. inverse. and Jacobian are:

v =

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

u(z,y)=r

uz(z,y) =y

flz);
flz)idr
) f(z)L

(%) flz)zdz

dr

dr

ac<v<ad

ad < v < bd

ac< v < be
be < v < ad

ad < v < bd

1/=.



64

The joint PDF of Z and V' is
fzv(z.v) = flwi(z.v))g(wa(z.v)) |J] (z.v) € B,

or 1

fzy(z.v) = f(2)g(v/2) (z.v) € B.

Integrating with respect to = over the appropriate intervals and replacing = with r in

the final result yields

f:lcg(f) flz)tdz ac< v <ad
h(v) = § o< g (&) f(z)tdz ad < v < be
| f:/dg(f) flz)1dz be < v < bd
as desired. a

A3 X_V=bd
Az
A
c \xy:bc
xy=ad
Xy =ac
. x
a b

Figure 4.1: The support of X and Y when ad < bc.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



bd

ad 1

ac

(o]

Figure 4.2: The mapping of Z = X and V" = XY when ad < be.

The geometry associated with the transformation is shown in Figures 4.1 and
4.2. Note that the transformation maps A; onto B; for : = 1.2.3. Although the
transformation technique has been used to prove this theorem. the CDF technique

could also have been used.

4.3 Implementation

The theorem in the previous section illustrates the importance of considering the
magnitudes of the product of the coordinates of the southeast and northwest corners
of the product space (e.g.. (b.c) and (a,d)) when it lies entirely in the first quadrant.
In order to apply the theorem to any continuous random variables X and Y’, three

generalizations need to be addressed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



66

1. Analogous theorems must be written for the cases when the (a.b) by (c.d)

rectangle lies wholly in one of the other three quadrants.

[SV]
.

Instead of having probability density functions which are specified by a single
standard function over their entire support, the random variables X" and ¥ may
be defined in a piece-wise manner over several intervals, forming many segments

to the PDF (e.g. the triangular distribution).

3. The cases when 0 and +£oc belong to the endpoints of the intervals which con-

stitute the support of .X and } must be considered.

In fact, these generalizations result in 24 different cases that must be considered in
order to correctly compute the limits of integration of the theorem. The paragraphs
below address these cases. For quadrants II. [Il. and IV. the limits of integration
must be set appropriately based on the geometry of the transformation.

For random variables that are defined piece-wise over various intervals. let n be
the number of intervals for X' and let m be the number of intervals for Y. There
are mn rectangular “product spaces”™ and the contribution of each to the value of
the PDF of VV = XY must be computed. Furthermore. each “product space”™ can
contribute differently to the PDF of V" on up to three segments of the support of V.
As a result. the PDF of |7 tends to become complicated very quickly, with an upper
limit of 3mn segments to its PDF. For example, the product of two U(0, 1) random
variables yields a random variable V" with only one segment (see Example 4.4.1). But

with only a slight change, e.g.., X ~ U(1,2) and Y ~ U(3,4), yields a V = XY

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



67
defined differently on three segments (see Example 4.4.2).

The case where the support of a random variable contains 0 (e.g.. U(—1.2)) poses
special difficulty since some of the rectangular product spaces will not lie wholly in
any one quadrant and cannot be handled by the previously developed techniques.
One solution to this difficulty is to add 0 as one of the endpoints of the intervals for
X and Y whenever this case occurs. producing redundant segments. i.e.. two segments
on either side of zero with the same formula for the PDF.

The algorithm consists of a set-up portion. followed by nested loops that determine
the contribution to the PDF of V' = XY separately for each of the four quadrants.
Appendix F contains the set-up portion and the algorithm associated with the first
quadrant. The algorithm for the other quadrants is similar.

The set-up phase begins by setting n and m to the number of intervals that form
the support of X and Y. Next. 0 is added as an interval delimiter for X and/or Y
if the random variable can assume both positive and negative values. and 0 is not
already an interval delimiter. Finally. the endpoints of the intervals which form the
support of V" are determined by taking all products of the endpoints of the .X intervals
times the endpoints of the } intervals.

A nested set of loops follows that treats all pairings of X and Y intervals. As shown
in Figure 4.1, the coordinates (a. c) are assigned to the southwest corner of the current
rectangle of interest, and the coordinates (b.d) are assigned to the northeast corner
of the current rectangle of interest. A test to determine which quadrant contains the

current rectangle is made at this point. Adding 0 as an interval delimiter in the set-up

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



63
phase assures that the current rectangle will be completely contained in just one of
the quadrants. Once the quadrant is determined. tests on ¢ and d determine which
integrals should be computed and the appropriate limits of integration. Finally. the
insertion of 0 sometimes leads to a PDF for V" with the same formula on both sides
of 0. If this occurs. the program simplifies the PDF by removing 0 as an interval

endpoint if the function is defined at 0.

4.4 Examples

This section contains applications of using the Maple procedure ProductRV.

Example 4.4.1 Consider the random variable X ~ U(0.1) and the ran-

dom variable Y ~ U(0.1). Find the distribution of V" = XY".

This is a simple application of the algorithm. The following Maple code
defines the random variables X and Y and returns the PDF of their prod-
uct. Note. the procedure Uniform returns the PDF in a Maple list-of-lists

data structure outlined in Chapter 2.

X := UniformRV(0, 1);
Y := UniformRV(0, 1);
V := ProductRV(X, Y);
PDF(V);

The resulting PDF for VV = XY is

h(v)=—=Inv O<v<l,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



which is readily verified by hand.

Example 4.4.2 Consider the random variable X ~ U(1.2) and the ran-

dom variable ¥ ~ U(3.4). Find the distribution of V" = X'Y".

This is a straightforward application of the algorithm in that all segments
of X" and Y are in the first quadrant. In this example. the PDF is less

simple to calculate by hand. The program yields the following PDF for

"= XY '
Inv—-1In3 J<v<d
h(v) =< Ini—1In3 1<v<6
3In2-lnv 6<v<s8

Note that while the PDF of both X and Y are defined on single seg-
ments that have positive interval limits. the PDF of V" is defined on three

segments.

Example 4.4.3 Consider the random variable X ~ U(—1.2) and the
random variable }" ~ U(—3.4). Find the PDF of V' = X'}" This example
will test whether the algorithm handles the case of 0 in the support of X

and Y correctly. The program vields the correct PDF for V:

r;—lln(—%) —-6b<v< —4
h(o) = 30 In (3—“) —4<v<0
E%ln(%%) O<v<3
L1n (&) 3<v<38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69



Maple returns a mathematically equivalent PDF with a slightly different
functional form. Maple's calculation for the first segment of V" yields
7 1n(2) + £ In(3) — 3 In(r) + 5;/7. which reduces to the above first

segment. remembering that since v is negative in this segment In(v) =

In(—1) +In(—v) = I + In(—v). so the imaginary portion cancels.

Example 4.4.4 Consider the random variable X ~ triangular(l.2.3)
and the random variable ¥ ~ triangular(l.2.4). Find the PDF of V' =
XY. This non-uniform example illustrates the case of several rectangular

product spaces. The Maple code in this case is:

X := TriangularRV(1i, 2, 3);
Y := TriangularRV(1, 2, 4);
V := ProductRV(X, Y);

PDF (V) ;

The resulting PDF for " has six segments:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



—4v/3+2/3lnv +2v/3lnv +4/3 l<v<?2
-8+ 14/3In2+ 7v/3In2+ 10v/3 —4Inv

—5v/3lnv 2<v <3
-4+ 14/3In2+ 7¢/3In2 +2v —2lnv

—tlnv—-2In3 —2v/3In3 I<v<d
A(v) =1 44/3 — 14In2—-7v/3In2 - 8v/3 —2In3

+22/3Inv - 2v/3In3 + 4v/3Inv 1<vr<b
8/3-3ln2—4v/3In2—-2v/3 +4/3lnv

+v/3lnv+4In3 +v/3In3 6<v<38

—8+3In2+2v/3In2+2v/3+41n3

‘ —4lne+v/3In3 —v/3lnv S<r<12
Example 4.4.5 This example illustrates the fact that the product of
two lognormal random variables has the lognormal distribution. Con-
sider the random variable X' ~ LogN(u;.0?) and the random variable

Y ~ LogN(u;.03). Find the PDF of V" = X'} Here one sets y; = u; = 0.

o =1 and 03 = 1. The program yields the following PDF:

e—(lnu)2/10
h(v) = ———o O<rvr<oc.

vV 10w

This can be identified as a LogN(z = 0.0% = 5) random variable.

Example 4.4.6 Consider the random variable X ~ N(0,1) and the ran-

dom variable ¥" ~ N(0,1). Find the PDF of VV = XY. This will test the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



=1
(8]

case where the support of .\ and Y include the endpoints +oc.

The program yields the following PDF for V':

Bessel k(0. v - signum(v)) <0
- < v
h(v) = T :
BesselIX(0. v - signum(v)) )<< o

i

which relies on Maple's BesselK and signum functions. The Maple output

of this function’s plot is given in Figure 4.3.

Figure 4.3: The PDF of V = XY for X ~ N(0.1) and ¥ ~ N(0.1).

Example 4.4.7 Consider the independent random variables U; ~ U(0, 1)

and U, ~ U(0.1). The Box-Muller algorithm for generating a single

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



standard normal deviate V" can be coded in one line (Devrove. 1996) as
—_—
V' — /=2In Ul cos(2xl).

where U’y and (; are independent random numbers. Using the Transform
and ProductRV procedures together. one can determine the PDF of 1 .
Due to the principle inverse difficulty with trigonometric functions. how-

ever. the transformation must be rewritten as

V' — /=2InU, cos(nl))

before using Transform.

The program vields the following PDF for 1:

22
v [0 e-vi/(227)

- —dr —xc<v<i
h(v) = TJa1yl — 1222
- A 1 6_"'2/(2:2)
0<ev <

- | ——=——dr
mJo V1 —1r2z12

While this form in not easily recognizable as the PDF for the normal

distribution, it is mathematically equivalent to the more standard

1
h(v) = — e v/? —00 < v < oc.

One anticipates that future generations of computer algebra systems will

be able to simplify these integrals.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Example 4.4.8 Devrove (1996) gives

Xe—m+ (a + (b — a)Ul - m)ma.x{Uz, ["3}

as a one-line algorithm for generating a triangular(a.m. b) variate. where

[';. U5, and [ are independent and identically distributed U(0. 1) random

variables and the triangular distribution has a minimum of a. a mode of

m. and a maximum of 6. One may now use this relationship to generate

the PDF of a random variable with the triangular distribution. Using the

Maple procedure MaximumRV. which returns the PDF of the maximum of

two independent random variables and Transform for the linear transfor-

mations. one can derive the PDF with the following Maple commands.

=

U1 :=
U2 :=
U3 :=
:= Transform(Ul, [[x -> a + (b - a) * x - m],

T1

T2

T3 :=

The

|
-

UniformRV(0, 1);
UniformRV(0Q, 1);
UniformRV(0, 1);

[- infinity, infinityll);

:= MaximumRV(U2, U3);

ProductRV(T1, T2);
Transform(T3, [[x -> m + x],[- infinity, infinity]]);

resulting PDF for X is:

r-—1 l<zr<?2

J—=zx 2<v<y

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-1

Qe

4.5 Conclusion

An algorithm for calculating the PDF of the product of two independent random
variables X' and Y (which may be defined in a piece-wise manner) has been devel-
oped and implemented. The APPL procedure ProductRV is one of many procedures
capable of automating complicated probability calculations associated with random
variables. Potential application areas for calculations of this type include applied
statistics. biostatistics. goodness-of-fit, probabilistic modeling. renewal theory, relia-

bility. simulation. and time series analysis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 5

Computing the CDF of the

Kolmogorov—Smirnov Test Statistic

5.1 Introduction

Another probabilistic problem that is well suited for computer algebra systems is
finding the distribution functions of the Kolmogorov-Smirnov test statistic D, in the
all-parameters-known case. Birnbaum (1952) gives an n-fold integral for the CDF
of the test statistic which vields a function defined in a piecewise fashion. where
each piece is a polynomial of degree n. Unfortunately, it is difficult to determine
the appropriate limits of integration for computing these polynomials. The algorithm
developed here (see Appendix G) performs the required integrations in a manner that
avoids calculating the same integrals repeatedly, resulting in shorter computation

time. It can be used to compute the entire CDF or just a portion of the CDF, which

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



is more efficient for finding a critical value or a p-value associated with a hypothesis
test. This approach yields exact critical values and significance levels.

The Kolmogorov-Smirnov (KS) test statistic D,. is defined by
Dn =sup|F(z) — Fu(z)|.

where n is the sample size, F'(r) is a hypothesized CDF with fixed parameters. and
F.(r). also called the empirical distribution function, is a step-function that increases
by 1/n at each data value. This statistic has been used for goodness-of-fit testing
for continuous populations for decades. The KS test’s appeal is its straightforward
computation of the test statistic and the distribution-free characteristic of D,. Its
drawback is that its cumulative distribution function under the null hypothesis is
difficult to determine. leaving one to calculate critical values with various approxi-
mation methods. Consider the distribution of the KS statistic in the case when all

parameters are known.

Birnbaum (1952) gives the CDF of D,, — 5'; as

2n-—1

1 Ty IRty e
P<Dn<9—+t')=n!/ / / g(up,ug, ... cup)du, ... dusdu;

1 , 3 2n—1
Zn It v v

2n

for0 <v < 2';—:1- where

gluy,ug, ..., u,) =1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



for 0 <u; Luz £--- < u, < 1. and is 0 otherwise. Equivalently.

2n~1

1 min(l.5x+v) rmin(l,s5+v) min(1. 2222 4v)
P(Dn<%+v)=n!/ / / l1du, ... duydu,.

1 3 . 2n—1
max(0, 5= —v) max(ul-g—v) max(un—1. ’;n -v)

Birnbaum's rather harmless-looking integral is tedious to compute by hand. even for
small values of n. due to the complexity of the region where g is nonzero. Evaluating
his expression requires calculating many n-fold integrals whose limits are determined
by considering a carefully chosen partition of the support of D,. The difficult part of
the process is to set the appropriate limits on these integrals. The final expression for

the KS CDF is a piecewise polynomial function in which each polynomial has degree

5.2 Literature review

The literature available on the KS statistic is extensive. Stephens’ article (Chapter
4 of D'Agostino and Stephens. 1986) contains comprehensive coverage on the use
of the KS statistic. as well as other statistics based on the empirical distribution
function. He calculates the power of these goodness-of-fit tests. Johnson, Kotz, and
Balakrishnan (1993, p. 640) consider this source (D’ Agostino, 1986) to be so complete
that they have deleted KS discussions in their second edition and refer the reader to
that compendium instead. For computing critical points of the KS distribution, one
finds five-digit accuracy as early as 1956 (Miller, 1956). Miller relies on asymptotic

results that converge fairly quickly to produce these estimates. Birnbaum'’s article

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



79
(1952) also explains how various sets of recursive formulas can be used to calculate
certain critical points to reasonable levels of accuracy. Law and Kelton (1991. p.
387) indicate that critical points require computer techniques. and are only easily
calculated for n < 50. In the literature there appears to be no source that produces
exact distribution functions for any distribution where n > 3. Birnbaum (1952, p. 441)
gives the CDF of D, — % for n = 2 and n = 3. Knuth (1981) provides a functional
form for the CDFs for the two statistics D} and D;. but does not provide the
CDF for D, = max{D}. Dy}, a harder problem given the dependence between the
two random variables. As a consequence of the apparent complexity of the required
integration and lack of literature on exact distributions. it was apparent early on that
a computational algebra system. such as Maple. would be necessary to compute the

polvnomials needed for the distribution of the KS test statistic.

5.3 Computing the distribution of D,

When O < v < ﬁ, Birnbaum's integral is easy to compute since none of the intervals
of integration overlap. Additionally. these intervals are all wholly contained within

the interval from 0 to 1. For example. u; varies over the interval from -2‘; —vto ZLn +uv,

3

sm—vto 53; +v. The interval for u, begins to the

and u, varies over the interval from
right of 0 and ends before the interval for u, begins. Thus when 0 < v < 5=, the limits
of integration of Birnbaum’s integral guarantee that 0 < u; S u; < --- <y, < 1.

Because the u,;’s are constrained in this way, one may replace Birnbaum'’s integrand

gluy.ug,. .. ,uy) with 1. and thus computation of the KS CDF requires only a single

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



n-fold integral:

2n—1

1 mFv frmtv ama
P(Dn<2—+v)=n!/ / /2 Ldu, ... dupduy = n!(20)"
n

Ly S 2n=1_

2n 2n

for 0 < v < 5.

When v has a fixed value greater than 5‘; it is also desirable to replace Birnbaum's
integrand by 1. In order to justify this replacement, one must only allow integration
over that region of n-dimensional space for which 0 < u; < upy < --- < u, < L.
Since the intervals of integration specified in Birnbaum's integral for different u;'s can
overlap. the smallest allowable value for any u; is influenced by all u,’s with subscripts
less than ¢ that can take on values in u;’s interval of integration. This overlapping
requires partitioning the interval from - — v to 2—’;;—1 + v into subintervals (which are
henceforth refered to as u-subintervals). with the first u-subinterval starting at ;- —v
and a new u-subinterval beginning whenever the left endpoint of one of Birnbaum'’s
intervals of integration is encountered. When any u; lies in a u-subinterval that
consists entirely of negative values. Birnbaum’s integrand is zero. For this reason,
only u-subintervals that have a positive right endpoint contribute to the KS CDF.

Of course, the number of u-subintervals that have a positive right endpoint de-
pends on the value of v. For small values of v (i.e.,0 < v < 5‘;), n + 1 u-subintervals
have a positive right endpoint since all n of Birnbaum’s lower limits of integration
are positive. For large values of v (i.e., :”‘T;?- <v < 2—’;;—1), only two u-subintervals

have a positive right endpoint since only u,’s lower limit of integration is positive.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Si

Intermediate values of ¢ produce all possibilities from 2 to n + 1 u-subintervals that
have a positive right endpoint.

Because different values of v can yield different numbers of u-subintervals that

have a positive right endpoint. the interval 0 < v < 2221 must be subdivided at the

following values of v: 3. % = % When the values of v remain within one
of the resulting subintervals for v. the number of u-subintervals that have a positive
right endpoint will remain fixed.

Another complication arises because it is necessary to know. for a fixed value of
¢ and for the u-subintervals produced by this value, which variables of integration u;,
can take on values in each of the u-subintervals of [0,1]. The previous subdivision
of the values of v is not fine enough to allow unambiguous specification of the range
for each u,. When { < j. u,. and u; have overlapping intervals of integration if
the upper integration limit for u; exceeds the lower integration limit for u;. i.e.,

2n-1

) FPo. V- .
2=l 4w > % — v. As a result. as v increases from 0 to =3=. new overlaps take

2n

place when v equals 2# 2. 2. ... .2l Theinterval 0 < v < =L must be divided
n" 2n 2n

2n *Tmn

into subintervals at these values of t as well as at the values of v listed previously.
Henceforth these are refered to as v-subintervals.

Indicator matrices will be used to summarize the interrelationships between the

possible values for the variables of integration u;,u,,... ,u,. For a fixed n and for

2n—-1
2n

values of v in the kth v-subinterval of (0, ), the indicator matrix A; will show,
by the presence of a | or a 0 in row : and cclumn j, whether or not u; can take

on values in the jth u-subinterval. Finally, by defining paths through these indicator

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(V9]
(RV]

matrices. one produces a complete set of n-fold integrals which satisfy the requirement
0<u; <uy;<---<u, <lIl.and which produce the KS CDF when summed.

The algorithm for computing the cumulative distribution function of D, is divided
into four phases. In Phase 1. an appropriate partition of the support of D, — 3- is
determined. In Phase 2. matrices A are defined that are instrumental in determining
the limits of integration in the n-fold integrals. In Phase 3. these integrals and their
associated limits are computed. To take advantage of the similarities in the limits of
integration of these n-fold integrals. they are grouped for efficiency and all evaluated
to the same level of integration before proceeding to the next level. Finally. Phase 4
consists of translating the support of Dn — 3= to the support of D,. Thus the input

to the algorithm is a positive integer n and the output is the piecewise CDF of D,.

5.3.1 Phase 1: Partition the support of D, — ;-

The endpoints of the segments that define the support of the KS test statistic can
be determined from the limits of integration given by Birnbaum. Using Birnbaum's

formula, the baseline lower and upper limits of integration associated with v =0 are

1 3 5 2n — 1
2n 2 20 2n
As v increases, the support of D, — ;- is broken into disjoint v-subintervals. The

endpoints of these support v-subintervals consist of v = 0 and the values of v for

which the endpoints of the n intervals of integration either:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



e equal Oor L. or

e coincide.

The 0 or | cases occur at v values in the set

1 3 35 n —1
M 2n 2n” 7 2n )

The set of values of v for which the endpoints of different intervals of integration

coincide are

1 2 3 n—1
M 2n 2n" " 2n 7

Thus the union of these two sets and 0 comprise the endpoints of the v-subintervals
of the support of D, — 5-.
The first phase of the algorithm given in Appendix G computes the above end-

points vg = 0.v;.U2.. .. .Um. where m is the number of v-subintervals on which the

CDF of D, — ;- is defined. For any n.
_[3n .
"= [7} -

5.3.2 Phase 2: Define the A matrices

At this point in the algorithm. v, vy.... ,v,, are the endpoints of the m v-subintervals
on which the CDF of D, — 3= is defined.

Two book-keeping steps are needed in this phase of the algorithm. They are:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



34

1. Define ¢y.cs.... .cn, as the midpoints of the v-subintervals of support for D, —
L
2n°

2. Define z,. r;.... .z, as midpoints of the intervals of integration for u;. u,.... . u,

in Birnbaum’s n-fold integral. Thus

2t -1
= ) = 2
I, o ) 1.2,... n
Part of the algorithm involves defining n x n indicator matrices A;. A,.... .. Am

corresponding to the v-subintervals which form the support of D, — 5-. The rows of
an A matrix refer to the variables of integration u;, us....,u,. The columns of an A
matrix refer to the u-subintervals. with the jth column corresponding to the interval
from r; — v to r,4; — v. except for the nth column. which corresponds to the interval
from z, — v to z, + v. If the (:.)) element of an A matrix equals 1. then the range
of u; includes at least part of the jth u-subinterval.

Since the (n.n) element of each 4 matrix is the only element in the nth row that
is 1. the integrals that need to be computed for each segment of support of D, — 5=
can be visualized as a path in A. consisting of a sequence of moves from the (n.n)
position of A to a nonzero element in the first row of A. All moves in the A matrix

from row ¢ torow : — 1 (for : =n.n —1,....2) require that the following conditions

are met:

1. The move must be from one of the 1's in row ¢ to one of the 1’s in row 7 — 1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



o
O

2. The move is either directly vertical or vertical and one or more spaces to the

left.

That is. if the move begins at a | element in column ; of row :. it must end at a |

element in column | through ; of row ¢ — 1.

Example 5.3.1 For n = 3 and £ = 3. the CDF is defined on the v-

subinterval 2 < v < 2 and has the following A3 matrix:

1 1 1
A=01 1
0 0 1

There are five different paths from the (3. 3) element to the top row of
the matrix. In the five matrices below. these five paths to the top row of
the A matrix are displayed by using boldface on the path. Next to each

matrix is the corresponding triple integral that the path represents.

1 11
2y 2y 1
01 1 / / / I dus duy du,
1] %—v %—u
LO 0 1]
r1 1 1
2y 2y 1
6 6
01 1 /3 / ﬂ 1 dug du; du,
-V Juy v
0 01

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1 11
g—-u %+v 1
01 1 / / [ tdus dua du,
o] %—u u2
0 01 J
I 1 1
%—u %+v 1
01 1 /; /5 / 1 dus dus du,
E—U g—'v u2
0 01
1 1 1
é-}-u %-,bu 1
01 1 ﬂ / / 1 dU3 dug dul
g—v Ju u2
0 01

When these five integrals are summed, Birnbaum’s expression reduces to

! , 1111 2
P(Dg<(—i+v>=—4v+?v—§7, 6

Note that the inside integral

1
/ l dU3
u2

on the third. fourth. and fifth triple integral is identical. The number of
identical integrals of this type grows rapidly as n increases. The algorithm
developed here avoids recalculation of duplicate integrals. Continuing in

this fashion for the other A matrices (i.e., A;, A;, and A,), yields the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(v 4]

CDF

(4&'3 0<v<é—

1 —12v3+8v2+v—$ é<v<§
P(Da<-+u)=4

3 i, 11 2 , 3

—d4t +3v— 3= s<v<zg

303 _ 5p2 4 25, _ 1T 38

‘...l. v +sv {08 g <uv<g-

Note that Birnbaum (1952) contains a sign error in the fourth v-subinterval

of support.

Table 3.1 shows how rapidly the number of n-fold integrations required to compute
the CDF of D, — ﬁ grows with n. Note that the five triple integrals in the previous
example corresponds to n = 3 and the third v-subinterval (£ = 3). shown in boldface
in the table. Note that the fifth column in Table 3.1 is the product of the first and
fourth columns. The fourth and fifth columns did not match any well-known integer
sequences in the literature (connect to

http://wuw.research.att.com/~njas/sequences/index.html).

Table 5.1: Computational requirements for computing the D, CDF for small n.

Number of n-fold Total number Total number

n | m | integrals required for of n-fold integrals | of single integrals
each v-subinterval required required

Ly 11 1 1

202 L2 3 6

314 1.4,5.3 1 39

415 [1.8.13.9.4 35 140

3| 7 [ 116,34, 27.28. 14, 5 125 625

6| 8 | 1.32, 89. 81. 89. 48, 20. 6 366 2196

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Example 5.3.2 The method for determining the integers in the third
column of the previous table is somewhat analogous to determining the
entries in a row of Pascal’s triangle by using the entries of the previous
row. Beginning at each nonzero A matrix element in rows 2 through
n. there are a certain number of paths whose moves to the top row of
the matrix satisfyv the two conditions stated previously. Assigned to such
elements is a number p (for paths) that denotes the number of paths from
that element to the top of the matrix. Thus if p,, = 2 (as is the case for
the (2. 2) element of the A3 matrix for n = 3 and £ = 3 in Example 3.1)
then no matter how one reached this element of the A matrix. there are
only two possible paths remaining to the top. The p;; values are assigned
as follows. Only 4 matrix elements with value | are assigned a p;, value.
If the jth entry in the first row of A is nonzero, assign p;, = 1. For the
second and subsequent rows (: = 2.3.....n). pi, = Y= Pi-14- Upon
completion. p,., represents the total number of paths from the lower right
corner of the matrix to the top row of the matrix. Consider. for example.

the case of n = 5 and & = 4. The A; matrix with superscripts denoting

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

oL

(v 4



the p;, values is )

o 1t 1t 1t 0W
0 1t 12 13 3
Ae=10 0 13 18 1°

0 0 0 1° 18

0000127J

Here one sees that pss = 27. meaning there are 27 possible paths to the
top row of Ay. consistent with the n = 5 and ¥ = 4 element in Table

5.1. The general algorithm for computing the number of paths for any

A-matrix (provided as input to the algorithm) is as follows:

TotSum — 0

p— A

For: —2ton
Forj—iton

fpi,-1=0
Pi, < Pi-1,-1 + Pi-1,;
else

Piy ~— Diy-1 t Di-1,
TotSum — TotSum + p,

5.3.3 Phase 3: Set limits on the appropriate integrals

The indicator matrix A shows. by the presence of a 1 in row ¢ and column j. for
J < n.that u; can assume values from the maximum of r; — v and 0 to the minimum
of r,41 — v and r, + v. The presence of a | in row ¢ and column n. means that u;
assumes values from r, — v to the minimum of z; + v and 1. Each path in A, as

described in Section 3.2. represents a set of allowable intervals of integration for the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



90

variables u; to u, in a particular n-fold integral. For a particular path. the limits
of integration for each u; are those given above that correspond to entry a;, of
in row ¢ that lies on the path. with one exception: if both a,, and a;_;, are on the
same path. the lower limit of integration for u, must be u,_;. This exception occurs
because the path allows u; and u,_; to assume values in the same u-subinterval. In
such a case. the lower limit of integration for u, must be u,_; in order to reflect the
requirement u;_; < u,.

For each path through the matrix A, and for each nonzero entry a; ; on that path.
a single integration with respect to u; must be performed. If a;,_;, is on the same
path as a, ;. then the lower limit of integration will be the variable u,_,. If a;_; ; is not
on the same path as a,,. then the lower limit of integration will be a fixed number:
the maximum of r, — v and 0. Thus for each path which passes through a;,. either

a variable or fixed lower limit of integration might be appropriate.

Example 5.3.3 Consider again the case of n = 5 and the fourth v-
subinterval (k = 4). The Ay matrix shown below has its l's replaced

with F. V. or B. indicating whether a fixed-limit integral. a variable-limit

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



91

integral. or both need to be computed for each entry.

—0]-'}']-'0-
0V F
Ai=10 0 B B B
00 0 B B
00 0 0 B

In general. when the A matrix contains a zero. neither the fixed nor variable lower
limits need to be computed. Now consider the elements of the 4 matrix that contain
a 1. The positions associated with the first | in each column of A require only a
fixed lower limit to be calculated. The positions below the first 1 in the first nonzero
column require only a variable lower limit to be calculated. All other positions in
the 4 matrix associated with | elements require both a fixed a variable lower limit
to be calculated. Table 5.2 shows the computational efficiency of performing the
integrations for various values of n by using the algorithm. The number of single

integrals (algorithm) for any n is bounded above by

where the first factor corresponds to the maximum number of 1’s in any A matrix, the
second factor accounts for computing both the fixed and variable matrices (described

subsequently), and the last factor is one less than m since no integration is required

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 5.2: Computational efficiency associated with using the F and V" arrays.

Total number Total number

n|{m of single integrals of single integrals
required (Table 5.1) | required (algorithm)

1|1 1 0
212 6 4
3] 4 39 23
115 140 48
517 625 108
6 | 8 2196 170
10| 14 442540 300
1522 318612735 2793
2029 232093052440 6400
30 | 44 136617382366486800 21550
50 | 74 | 61056379955994182386843138150 99500

for the first v-subinterval. Due to savings associated with 0 columns in the A matrix
and the fact that both fixed and variable matrix elements do not need to be calculated
in all cases. this order n® expression is closely approximated by 0.30n3 for n = 20, 30,
and 50.

Table 3.3 on page 101 lists the coefficients of the polvnomials that define the
CDF of D, — 5= as computed by the algorithm in the Appendix which has been
implemented in Maple for n = 1.2.... ,6. The ability to store fractions exactly is of
particular benefit for these calculations. Rather than detail every aspect of the logic
of Phase 3 of the algorithm, illustrated below is the evolution of the n x n matrices F’

(for fixed limits) and V" (for variable limits) in a row-by-row fashion for a particular

combination of n and k.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Example 5.3.4 Consider again the case of n = 3 and & = 3. which

corresponds to the v-subinterval % < v < g. The z; values associated

withn=3arezr, = 3, z, = g-. and z3 = 3. The v; values associated with

n=3arevg=0.v; =% vy =3 v3 =2 and vy, = 3. The centers of the

v-subintervals are ¢; = ﬁ c = %, c3 = % and ¢4 = %. The A; matrix
Is .
[
1 1 1
As=10 1 1
0 0 1

The F and V" matrices are computed simultaneously, row by row, starting
with the last row and ending with the first. Thus all of the elements of
the third row of F and of V" are computed before computing the elements
of the second row is begun. In general. integrals which are calculated
in a particular row become integrand candidates for the integration to
be carried out in the row immediately above. The F and \" matrices
are designed to store the intermediate results of integration of the n-fold
integrals so that the necessary inner integration operations are performed
only once. Entries in the ith rows of F and V" each result from n + 1 —:
single integrations. one integration corresponding to the ith row and one
integration for every lower row. The F matrix stores the results of all
integration in which the last integral had a fixed lower limit and the V

matrix stores the results of all integration in which the last integral had

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93



a variable lower limit. In this example. for the inner-most integration
variable uj. there is only one possible fixed integration to compute and one
possible variable integration to compute on the third u-subinterval. These

computations are seen in the (3. 3) element of the respective matrices:

Fl.l F1.2 F1.3 ’3.1 Vl.z Vl.:&
F= 0 Faa Fas . Vo= 0 Vi, Vaa
0 0 [i_, ldus 0 0 [ ldus

The second variable. uj. has four possible combinations of limits and inte-
grands. Thus there are four storage elements for u;, found in the second
rows of the F and 1" matrices. Elements (2. 2) and (2. 3) of the F
matrix store integration results that have all fixed lower-limits of integra-
tion. but the integrands are fixed and variable. respectively. Similarly.
elements (2. 2) and (2. 3) of the V" matrix are for the cases when the
lower-limit of integration contains the u; variable. while the integrands
are fixed and variable. respectively. F3. is computed to cover the case in
which u, varies over the second u-subinterval and uj varies over the third
u-subinterval. F} 3 covers the case in which both u; and uj; varyv over the
third u-subinterval. so us must have u, as its variable lower limit: hence
the integrand is V33, not F33. Similar cases are covered by V2, and Va3,
except that variable lower limits are used in anticipation of the fact that
u; and uy can both varyv over the same u-subinterval, making it necessary

to have u; as the (variable) lower limit for u;. The integrations in the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



second row of each matrix are shown below (note. the integration for the

(3. 3) element. previously discussed, has been carried out).

Fi, Fiz Fi3
s, Lyy
F=1| 0 [{Fadu [ Viadu
2 . 6
0 0 é+v ]
- " ’ W
Via Vi Via
- . .
V=0 [TV Faduy 2V Vazdu
0 0 l - 1'%

For the third and last variable. u;, only fixed-limit integration takes place
so only the F matrix gets updated. The (1. 1) element covers the case in
which u, varies over the first u-subinterval and u, varies over the second
and third u-subinterval. The (1. 2) element covers the case in which u,
varies over the second u-subinterval and u, varies over the second and
third u-subinterval. The (1. 3) element allows both u;, and u, to vary over
the third u-subinterval. The integrals in this first row are shown below
(note again, all previously discussed integration have been carried out in

the second and third rows of F" and V'):

1

Loy 5y Loy, |
I8 (Faz2+ Faa)du, f;_s_v(Vz,z + F23) du, f:_si Vaadu,

F = 1,1 12
0 3Vt s g T3V ?

0 0 é+v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



96

Via 112 Vis
"= 22 5 1 1,,2 1 3 1.2
v 0 —vi+sv+g—vuyy—gzup - +v+35+s5u—u
0 0 1 - 73]

The completelyv evaluated F matrix is given by

28,1 _1 .5 2,3 2_ 2, _ 1
vttt 5t — 35 3 T 18? vt tv gl ~ 31
F = 1 1 1 2
0 T g T3V
0 0 1ivw
- 6 -

Finally. the CDF on the 3rd v-subinterval is the sum of the elements in

the first row of the F matrix, all multiplied by 3! = 6.

5.3.4 Phase 4: Shift the distribution

At this point. the CDF is computed in the form P(D, < v + ;-). Now one converts
the distribution into the more usable form P(D, < y) = Fp,(y) by making the
substitution y = v + 5= in both the polynomials and the v-subintervals of the CDF.
Specifically. one adds an to each endpoint of the v-subintervals and one substitutes
(y — #) for v in the CDF polynomials. One then takes these two lists of numbers
and polynomials respectively. simplifies them (using Maple's simplify() command),
and creates the CDF representation in the form of the “list-of-lists” representation

for distributions outlined in Chapter 2. This enables us to use the distribution in the

ways that all other distributions are used in APPL. Specifically, one can now verify

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



97
critical values for the distribution. but more importantly, one can calculate exact

significance levels of any given statistic. An example of the shifted distribution for

n=6Iis:
, 0 y <5
46080 y° — 23040 y° + 4800y* — 1803 4 100,219, 4 S <y
2880 y° — 4300y° + 2360y — ‘238" P+ 2y - L<y<
370y +3’0y 2600 4+42940y3 9 y +124‘5 _% i—y<
_)Soy +360y 1115 4+515y3+1525y 53615y+ & %Sy<
Fpe(y) =
104y° — 240y + 295y — 18 y° + 532 -5y 4 & L<y<
=20y +32y° By + B2yt + Ty~ 1 1Sy <
10y —33y° + 12y - 20y0 - eyt s ey <y <
=2y +12y° =30y +40y° —30y? + 12y — 1 I<y<
‘ 1 y>1

The Maple PlotDist output of the CDF and PDF of Dg are shown in Figure 5.1 and

Figure 5.2. The commands used in Maple to produce these plots are:

Y := KSRV(6);
PlotDist (CDF(Y), 0, 1);
PlotDist(PDF(Y), 0, 1);

Note that there is a discontinuity in the PDF at y = {, and more generally, at
y = +. This corresponds to the value v = # in Birnbaum’s original integral.

This is the smallest value of v for which the n-dimensional hypercube centered at

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

—_ Wi g
N""

(ST

wir

< en



Figure 5.1: The CDF of the D¢ random variable.

(1— = 2"—'1) makes contact with the boundary of the region in n-space that

2n' 2n 2n

satisfles 0 < uy S upy <--- <y, <1.
The software is designed so that it stores the computed CDF for a particular value
of n so that it does not need to be recomputed subsequently. This is of particular

importance since Maple is an interpreted language. resulting in slow execution times.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



99

/ |
POF “

Figure 5.2: The PDF of the D¢ random variable. Note the discontinuity at y = 1/6.

5.4 Critical values and significance levels

With these exact distributions, one now can find exact critical values and significance
levels. Critical values are determined with the IDF procedure. The program is able
to achieve arbitrary accuracy using the Maple command Digits to define the preci-
sion. These critical values have been verified with those printed in Owen (1962) for
a = 0.1. 0.05, and 0.0l and for n = 1,2,...,10 and those values match ours exactly,
except that ours are not limited to five decimal places. More importantly, though, is
the ability to produce exact attained significance levels given observed test statistics.

These attained significance levels, or p-values, give more information about the sta-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



100

tistical test of hypothesis than does the traditional “accept/reject™ regions associated
with critical values. Using the procedure CDF(). one can find these exact significance
levels. For example. let n = 6 and the observed test statistic Dg = 0.5543. Two crit-
ical values are. for example. 0.51963 for ¢ = 0.05 and 0.61661 for a = 0.01. One can
now determine the exact attained significance level of the test statistic with the com-
mand 1 - CDF(D6, 0.5543). which vields a p-value of 0.02928. a clearer indicator of
the level of evidence against Hy. Note that it is not necessary to compute the entire
D, distribution to obtain a particular significance level. One must only determine
which segment of support the statistic belongs to. then execute the algorithm for just
that piece of the CDF. This shortcut will reduce the integral computation time by
approximately "‘T" - 100%. where the exact savings depends on the v-subinterval that
is chosen. Table 5.1 indicates that the greatest time savings will probably be in the
tails of the distribution. This time savings is particularly important for larger values

of n.

5.5 Conclusion

An algorithm for computing the CDF of the KS test statistic in the all-parameters-
known case for a positive integer parameter n has been presented. Computing the
CDF provides a challenging calculus problem, even for small values of n. The CDF
can be constructed from a set of piecewise degree-n polynomials. The algorithm can

be used to plot the CDF or to just find particular fractiles or probabilities.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 5.3: CDFs of D, — 3= forn = 1,2.... .6.

ni{imik Coefficients of CDF polynomials Subinterval
1|1 2.0 O<v<i
2|21 8.0.0 O<rv<i
2 -2.3.-% levc?
3141 48.0.0,0 0<v<g
2 —1281—~9- t<v<?

3 4.0, %.-4 fcv<?

4 ‘2.-5,%— —% %<v<§
4151 3840000 O<v< g
2 —48.0,15, - 8,256 §<v<§

3 16.-40.21.-3, - & fcv<

4 6.-7.—3—;5,?;3. =3 2<v<d

5 —2,7. -4 33 _ 383 f<v< i
50711 3840.0,0.0.0.0 0<v< 5
2 0.-288.824, %8 35 .5 T15<”<‘%

3 160.—160. %, 818 332 8 Z<v< 3

4 -20.64. - %38 52 38 5% << g

5 12,0, -%2,§, 281 313 << &

: -8.18.-%.- 12 lis oo H<r<i

g 2.-9.9. - 8ol 0 H<U<
6|81 46080.0.0.0.0.0.0 O<v<
2 2880. —3360.660.60. - 2, 2. — 2 H<v<

3 320. 480. —"00.5‘;30. B s 2 Z<v<

4| -280.420, 38, g8 2505 _gizs _2oess | 3 <y < b
R e e LRSS

6| -20022.%, -2 s sl s | s cuc
JEERCY B4 DM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101



Chapter 6

Goodness of Fit using Order

Statistics

6.1 Introduction

Presented in this chapter is a detailed application of APPL in which a new goodness-
of-fit test statistic is devised. The inception and implementation of this test is possible
primarily due to the existence of APPL. This application highlights how the paradigm
of problem solving shifts with the advent of a probability language. Presented here
is a new method of using order statistics for judging the fit of data by a hypothesized
distribution. There is a variety of uses of order statistics in statistical inference
procedures. One reason is the potential for adapting such procedures for use with
censored samples (Cox and Qakes, 1984 and David, 1993). Other applications concern

behavior in the tails of a parent distribution (for example, outlier tests, Tietjen,

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



103

1986). situations in which the ordered data are collected over time (life testing, for
example, Barlow and Proschan. 1975). and estimation of parameters in terms of linear
combinations of order statistics (David. 1993). A large literature on the subject exists
(see. for example David. 1981 and references cited therein).

One important class of problems involving order statistics is goodness-of-fit test-
ing (D’Agostino and Stephens. 1986). The Shapiro-Wilks normality test (Johnson
and Wichern, 1992, p. 158) is based on a statistic that uses, in part, the expected
value of each order statistic. Since many of the tests commonly used are defined
through the sample distribution function, they may be considered to be functions of
the underlving order statistics. It is common practice to transform order statistics
from a parent population for the continuous random variable .X with cumulative dis-
tribution function F to corresponding U(0. 1) order statistics. through the probability
integral transformation. {’ = F(X). If the proposed test statistic is invariant under
this transformation, it follows that its distribution may be derived for the case of a
U(0. 1) parent distribution, and applied for any other continuous parent distribution.
That is. the procedure in this case is “distribution free.”

An example of the foregoing is the Kolmogorov-Smirnov (K-S) one-sample test,
based on the test statistic D,, = sup, |F(z) — Fa(z)|, where F, is the sample distribu-
tion function. Since the L, norm is invariant under transformations on z, it follows
that one may find critical values for D, using the distribution of max;{max{ju; —
=L, Ju; — £|}}, where u; = F(z(;)),i = 1,2,... ,n. Following the development of

the K-S test, many articles adapted the test to related order statistic-based tests:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



104

tests for data on a circle (Kuiper, 1960 and Stephens. 1965). tests with parameters
estimated from data (Lilliefors. 1967 and 1969), tests for censored samples (Barr and
Davidson. 1973). and others. In addition to its use in non-parametric goodness-of-fit
testing, the K-S procedure may be used in a general way to obtain confidence re-
gions for parameter vectors (Barr and Davidson, 1973); interestingly, the latter is a
parametric problem.

In Section 6.2 a vector of U(0. 1) statistics is defined by transforming the order
statistics through each of the n hypothesized CDF's. Also suggested are possible uses
of the vector in a variety of statistical problems, and it is shown how the marginal
distributions of its components can be computed with mathematical software such
as Maple. These ideas are applied to define a goodness-of-fit statistic and simulation
is used to show it is admissible relative to the K-S and Anderson-Darling tests in

Section 6.3. Possible extensions and conclusions are given in Section 6.4.

6.2 The P-vector

Proposed here is a measure of the goodness-of-fit of empirical data by a hypoth-
esized distribution based on the vector of real numbers called the P-vector. Let
X, X5,... . X, be a random sample from a population with continuous CDF F', and

let X(1), X(2),--. .- X(n) be the corresponding order statistics. Then the individual

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



order statistics have marginal densities fx,,(z). fx,,(Z).-- ., fx.,, () given by

n!
(t—1)(n-

fx.,(x)= i)![Fx(x)]'-l[l — Fx(z)]"™" fx(x).

where fx(r) = Fi(r) (see Larsen and Marx. 1986. for example). In principle. one
can use these distributions to determine the quantiles for each ordered observation in

its respective distribution. Define the P-vector to be the n-vector
P = [Fx,,(zq))- Fxg(x@).- - Fx o) (2m)]-

For simplicity in notation. let p; = Fx, (z()).7 = 1.2.... .n. Intuitively. poor fit is
indicated by “extreme” components in P. Thus. under the null hypothesis Hy: X has
CDF Fy(r) with n = 3 observations. for example. a P-vector of [0.453.0.267.0.623]
intuitively indicates a good fit more so than a P-vector of [0.001.0.005.0.997].

Since the individual elements p; are the result of the probability integral trans-
formation. it is clear that P. ~ [7(0.1).: = 1.2.... .n. for any continuous population
CDF F. While the P; are identically distributed. they are not stochastically indepen-
dent. There is positive autocorrelation amongst elements of the P-vector.

The P-vector has a number of potential uses as a basis for distribution-free statis-
tical procedures. It can provide a distribution-free tool to identify outliers. Tietjen
(1986. p. 497) mentions in his paper on outliers “We shall discuss here only the un-
derlying assumption of normality since there is very little theory for any other case™.

As is discuss below. it is possible and practical to calculate all p; for nearly any hy-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



106

pothesized continuous distribution. so one may use the P-vector as a basis to identify
outliers from any specified continuous distribution. As one approach. one could ex-
amine the first and last few elements of P (p; and p,, for example) to determine
whether they are statistically significant. Also envisioned are uses of the P-vector
for statistical inferences involving censored sampling and estimation based on “order
agreement.” The main application investigated here is goodness-of-fit testing using

test statistics based on the P-vector.

6.3 Improving computation of P

Computing the elements of the P-vector can be accomplished with APPL. The pro-
cedure OrderStat (X, n, r) for example. determines the distribution of the " out
of n order statistics. Combined with the procedure CDF(X, x). which returns Fy(r).
the elements p; are calculated.

[t is preferable to calculate the P-vector by first transforming to U(0, 1) order
statistics. and then determining the quantiles p; using corresponding beta(i.n —i+1)
CDFs. which are relatively simple polynomials as indicated in Figure 6.1. The calcu-
lation of p; = Fx,,(z;)) as first described is depicted by the path shown by a solid line
in Figure 6.1. This method of computation relies on the ability to calculate quantiles
in distributions of all of the order statistics X{;), although recurrence relations for
CDFs of order statistics might speed computation (David, 1993). The second ap-

proach. using beta CDFs, is depicted by the dashed line in Figure 6.1. [t requires the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



107

“Zi) = Fx(X4)) )

Z, = Fx(Xy) . ,
' ;' Po=Fz,,(Z0)
M ’
order
Z, ~U(0.1) Zi) ~ beta
Figure 6.1: Transformations from iid observations X;.X,.... .. X\, to the sorted P-

vector elements Pyyy. P2).... . Pn).

transformation of the z(;)’s into U(0. 1) random variables and then the determines
of the quantiles of the latter using appropriate beta CDFs. The theorem to follow
proves that both methods are equivalent.

[t is intuitively plausible that the quantiles computed following the two paths in
Figure 6.1 will be identical: however. it is useful to provide a careful demonstration of

this fact. Since the definition is p; = Fy , (). it will suffice to show that Fz, () =

te)

Fx, (z()). where Z = Fx(X).

Theorem. Let X;..X,.... .. X', be a random sample from a population with contin-
uous CDF Fy and probability density function fx. Suppose X(i). X(2),... .. X'(n) are

the corresponding order statistics. and let Z(;) = Fx(X(;). Then.

FZ(”(Z(,')) = F_\’(I)(.'L‘(,')); 1= 1,2,.. ., n. (1)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



108

Proof. Both sides of Equation (1) will be reduced to equivalent forms. For the left-
hand side of Equation (1). note that Z(;) ~ beta(i.n —i + 1) (Barr and Zehna. 1983)
and that

Fz,,(z0)) = Fz,,(Fx(z())) = Fz,, 0 Fx(z@).

The CDF of a beta(:.n —: + 1) random variable is defined by

Fz.,.,(r)= k/r 271 = )"z,
0

'
where & = = 1)r!z(.n —r Thus the composition above is given by

Fz,. o Fx(z() = k/OFX(I"” Sl — )i,
Now consider the right-hand side of Equation (1). The density of X|;) is given by
Sy (@) = K[Ex(2)] 7L = Fx(2)]"™ fx (x)
(Larsen and Marx. 1986). so the corresponding CDF is

Fx (zw) = k/_z’[F.\'(S)]'—l[(l — Fx ()" fx(s)ds.

Make the change of variable = = Fix(s) so that —co < s < z;) © 0 < = < Fx(z()

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



109

and dz = fx{(s)ds. The right-hand side of Equation (1) is therefore given by

FX(I(”) t—1 n—t
F.-\’(,,(-T(i)) = k/ T = 2)" e = FZ(-) o Fx(z())

0

a

One could also develop the quantile p; following the lower path in Figure 6.1. The
path indicated in Figure 6.1 by the dashed line is generally preferred. since the dis-
tributions leading to the p; elements are polynomials. The computations needed for
the solid path are calculable. however they typically take a significantly longer time

to calculate. Also. the CDF of X is typically more tractable than the CDFs of X;'s.

6.4 Goodness-of-fit testing

In general. goodness-of-fit testing involves stating a null hypothesis. Ho : fx(z;8) =
fo(z:6p) and then assessing whether there is sufficient evidence in a random sample
to reject Hg. Since the P-vector was derived under Hy, one sees that its elements
provide a direct judgment of fit. Any p; too low or too high may be an indication of
a poor fit. [t would be useful to form a single statistic based on the p;'s that indicate

n

good or bad fit. Some obvious candidate test statistics are Z |p: = 0.5], Z(p,- —-0.5)%

=1 =1
n .
4 .- .
and Z Py — -TI-I These test statistics, however, appear to suffer from low power,
n
1=1
based on a modest set of simulations that were conducted. Instead, a variation of

the reasoning that seems implicit in the development of Anderson-Darling (A-D) A?

statistic was considered. Calculations are done according to the probability integral

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



110

transformation presented in the second form in Stephens (1986, p. 101). Note that
the A-D A? statistic is developed with the Z(;) values which are depicted in the lower-
right state of Figure 6.1. Define a test statistic in terms of a linear combination of
the natural logarithms of p; and | — p;. This test statistic will be large whenever

one or more p;’s is too close to 1 or 0. Sort the elements of the P-vector, so p(1) is

statistic P, by

——
o
—

Ps = —n — %i[(h +1 —-22)ln(p(,)) + (21 - 1)11’1(1 - P(i))]~

i=1

The power of P, was examined in a series of simulations. The goodness-of-fit tests
based on P, have power about that of 42 in most cases. and both P, and A? generally
dominate the K-S test. as stated in D’Agostino (1986, p. 110). for the A-D test.
There is at least one case where P, dominates the A-D test: the case of guarding
against an improper variance parameter under the null and alternate hypotheses of
normality.

The test using Ps as a test statistic is significantly more powerful than both the
K-S and A-D tests in the following experiment. The power of the three tests was
approximated, and a fourth test P using p; in place of p;;) in Equation (2), under
the following conditions. Let Hp : X ~ N(0,1) and H, : X ~ N(0.0?). Random

samples were generated of size 10 from N(0,c?) where o varied from 0.1,0.2,... ,3.0.

A plot of each test’s estimated power at guarding against changes in o, based on 1000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



111

replications of the simulation. is shown in Figure 6.2.

08 -

[

04 =

00 A

00 05 10 15 20 25 30

Figure 6.2: Estimated power functions for testing Ho: X ~ N(0.1) versus H;: X ~
N(0.0?) using K-S, A-D. and two statistics based on the P-vector.

These power plots show that as o becomes greater than 1. both P, and P; have
significantly higher power than have A? and D,. Also. P; slightly outperforms P, for
o > 1. As o becomes less than 1., P, clearly outperforms A? and D,. but Pr has very
low power. The strong performance of P,, four times the power of A% at ¢ = 0.30.
for example, causes us to conjecture that this is a strong omnibus test statistic for

guarding against departures from hypothesized variance for N(0,0?) populations.

The standard error of estimate of a power value 1 — 3 is less than \/(0.001)(3)(1 - ﬂ),

or about 0.015 for individual values plotted in the mid-height range of Figure 6.2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



112
Thus the improvement in power of P, over A? is significant as evident in Figure 6.2.
Since P, seems to provide protection in both directions of departure of ¢ from 1. it
warrants one to investigate more fully its critical points. Due to the dependence of
the p; elements. finding an analytical expression for the distribution of these statistics
seems untenable: however, using simulation. approximated critical points for the P,
are shown in Table 6.1. Note that the critical points o
the fully specified null distribution. case zero in D’Agostino’s text. The simulation
for this table relied on 10.000 iterations of each sample size. so only two digits are
significant. Note that the distribution of P, seems to have a heavy right tail. and as

n increases. the tail becomes heavier. It is also interesting to note that for n < 25

the three critical values increase almost exactly linearly.

Table 6.1: Estimated critical values for P, at various sample sizes and levels of sig-

nificance.
[ n 0.90 0.95 0.99
2 1.9 6.1 8.9
3 7.6 9.1 13.4
4 10.1 12.1 17.0
b} 12.6 15.3 21.5
6 15.1 18.1 244
T 17.7 21.1 28.2
3 20.4 23.9 32.0
9 2.7 26.8 36.5

10 24.9 29.4 39.5
11 27.9 32.2 43.7
12 30.0 35.2 48.C
15 37.5 44.0 59.6
20 50.7 58.7 8L.1
25 63.2 76.2 | 116.5
30 80.0 | 107.1 | 218.4
40 | 445.0 [ 576.5 | 776.8
50 | 1025.4 | 1108.8 | 1231.6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



113

6.5 Conclusion

The purposes of this chapter are two-fold. First. the notion of using the information
contained in the fit of order statistics is presented. as represented in the P-vector. as
a vehicle to define a new goodness-of-fit test statistic P;. The performance of P, with
simulation experiments was examined. Figure 6.2 shows convincing evidence that P,
is a powerful goodness-of-fit test at least in some instances, so it is admissible relative
to D, and A2. A secondary purpose is to show that this procedure is practical
to carry out. now that computational languages such as Maple are becoming fully
developed. Indeed. the code in Maple used to compute the critical values in Table
6.1 consists of about one page. Embedded in that code is the ability to find the
n-fold vector of polynomials representing the F;, each of degree up to n. that
make up the beta distributed CDFs used to calculate the P-vector elements. The
leverage in the approach through the Z;) is that Maple creates and stores the CDF's.
not the programmer. The same simulation in FORTRAN or C would require the
programmer to hard-code the n polynomial CDFs for each value of sample size in
Table 6.1. and then call a separate subroutine to calculate the test statistics. This
could be a significant programming task. The Maple version requires none of this,
since the CDF's are in functional form and may be evaluated at specific points. Not
only that. but for large n. in the case of n = 50 for example, the 50 CDF's of the order
statistics may have extremely large integers for the coefficients of the terms, as well as

for their exponents. Mlaple is able to conduct the mathematical operations without

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



114

representing these constants as floating point approximations. Thus the precision
exceeds an implementation in a high-level algorithmic language. It is apparent that
the admissibility of P, suggests attractive procedures for outlier detection and that

inferences with censored samples may also be defined in terms of the P-vector.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 7

Other Applications and Examples

7.1 Introduction

A kev contribution of APPL is that it provides a new way of viewing existing prob-
lems and opens new avenues for their solution. This chapter provides examples where
the problem-solving paradigm can shift due to the ability to find exact distributions
of random variables. The six sections that follow highlight some diverse areas of ap-
plication that can be addressed with APPL. The chapter starts with relatively simple
examples involving the central limit theorem (CLT). In these examples one will be
able to determine the error of the CLT approximations to distributions involving
sums of independent random variables. The second section contains a demonstra-
tion of how to use APPL to generate mathematically intractable tables, graphs, and
charts. effectively reducing the need for the volumes containing these entities. The

third section contains a demonstration of how computation of exact distributions can

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



116

enhance probabilistic model design using reliability block diagrams. The fourth sec-
tion contains a demonstration of how the software allows for modeling systems using
hazard functions. The fifth section provides a discussion on a simple methodology
by which APPL furthers one’s ability to identify outliers in samples. Finally. in the
sixth section. a discussion of some explorations for creating estimation techniques us-
ing maximum likelihood with order statistic distributions is given. These six examples
serve only to suggest the nature of applications of APPL; many more applications

exist.

7.2 Exactness in lieu of CLT approximations

One use of the CLT with iid samples is to facilitate inference about the population
mean. The CLT implies that X = zn: X, is asymptotically normally distributed when
=1

the X;'s are iid with finite mean and variance. Application of the CLT becomes
restricted. however, with small sample sizes. with skewed data. or in the presence of
outliers (Moore and McCabe 1993. p. 510). In these cases, an alternative method
is to determine the exact distribution of X. Once the distribution X is found, one
can use it to make statistical inferences about the population mean. A few examples
follow.

Let X ~ exponential(1). By the CLT, the approximate distribution of ¥ = X is

approximately N(1, 71:). For the case n = 3, one can compute the exact distribution

of ¥ with the following commands:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



117

> X := ExpomentialRV(1);

>n := 3;

> Y := SumIID(X, n);

> Y := Transform(Y, [[x -> x / n], [0, infinity]l);

The resulting PDF is fy(y) = Zy%¢™% for y > 0 which is predictably non-normal
in shape, as n is too low for the normality of the CLT to apply to such a skewed
underlying distribution. One also notes that Y has the Erlang distribution. Now
consider the case n = 30, often considered a sufficiently large sample size for an
adequate CLT approximation. Here a computation of the error associated with the
approximation is provided. To obtain the PDF of X, one changes the second line of
code ton := 30; and re-executes the Maple worksheet. The result is the following

Erlang PDF:

246315313339233398437500000 59 0,

frly) = 1057773277609 y>0.

Listed below are selected fractiles for both the exact distribution of X and its CLT

approximation, the N(1. 713—0) distribution. For the selected fractiles. the approxima-

Table 7.1: Fractiles for exact and approximated distributions.

Fractile
Approach | Distribution | 0.9 | 0.95 | 0.975 [ 0.99
Exact X 1.240 | 1.318 | 1.388 | 1473
CLT N(1. 7155) 1.234 | 1.300 | 1.358 | 1.425

tion is only good to about one digit beyond the decimal point. It is useful to note
that the CLT approximation for critical values in confidence intervals for £(X) may

be in error; worse. they are not even on the conservative side. For example, a 97.5%

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



118

upper confidence bound using the CLT quantile 1.35784 actually provides only 96.6%
confidence [note P(X < 1.35784) = 0.965975 is found in the Maple worksheet with
the command CDF (Xbar, 1.357838829);]. Note, the additional APPL commands
to generate the values in Table 7.1 are the following:

> Z := NormalRV(1, 1 / sqrt(30));
alpha := [0.9, 0.95, 0.975, 0.99];
for i from 1 to 4 do

IDF(Y, alphalil);

IDF(Z, alpha(il);
od;

vV V V VvV V

For a related application. consider an old, approximate method of generating
random samples from the standard normal distribution. It is well documented (Park
and Leemis. 1997, for example) that the following approach can be used to generate

approximately standard normal samples. where the U;’s are iid U(0. 1):

Z- =("1 +L"’2+"'+[."12—6.

The following commands determine the exact distribution of this 12-fold convolution

and the third and fourth moments of Z* and Z:

U := UniformRV(0, 1);

U12 := SumIID(U, 12);

Zstar := Transform(U12, [[x -> x - 6], [-infinity, infinity]l]l);
Z := NormalRV(0, 1);

skew (= x -> x ~ 3;

kurt = x -> x " 4;

evalf (ExpectationRV(Zstar, skew));
evalf (ExpectationRV(Z, skew));
evalf(ExpectationRV(Zstar, kurt));
evalf (ExpectationRV(Z, kurt));

VvV VV V V V V V VYV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



119

The distribution of Z~ is useful because, like the standard normal distribution. its
3
is zero. its variance is one. and its sk third t.E[(Zﬁ@)
mean is zero. its variance is one. and its skewness (third momen |\ "z
E [(Z')a]) is also zero. The first difference is in the fourth moment £ [(Z')*] which
equals 2.9 for Z* and 3.0 for a standard normal random variable Z. Another more ob-
vious difference between the distributions of Z and Z* is that Z has support (—oc. o)

while Z* has support (—6.6). The distribution of Z* is the following:

( 35575s0s (6 + 2)*! —-6<r< -5
_ 107§ _ 18595037 _ SIT T _ 2477 .6 _ L1737 .5 _ 250657 .3 _ 1113317
30160 3326400 10030 7200 "oo 20160 50480
- #7300 'tm - 36";8001"“ - 30"&0-‘:)7 - 5036 % — ?;636 4, -5<zr< -4
Sgg;éé +3E 1100 T+ 1?410’" + 300 “99 °+ l';,"14909 3
‘*'??3:3"*'1‘??305 +-.,5-6oz“+‘;’f§,ggz+moo 4 1209 4, —-4<r<-3
Cisns — TS L0 — see I — B It - et - Mg I - p L
- soez '’ - ‘rﬁﬁr“ 5206 £ — sf;o z° - ;33 4, —3<r< -2
Toeamo T 33 T+t s T t 3o it o Tt Weo T — 004 Lt wm L
+ 30555 £ + 50406 £ + Toom0 £ + gzt -2<r< -1
%*‘m” 333016‘%"2_m’10 mioo £+ g o -1<z<0
Jz-(z) = %4-@:5—%;5 4!530"%""" 3406 £ m'*'ao«mo"'“'*”'3"10’:4 0<z<l1
% + 35 0 — Teso &+ 35 £° = 1}'(1)0 g Lk 3506'.?4 2+ g '
~ 1ooss6 £’ — 50406 £ — Tooss £ f s0g L I<zr<2
Toeses — Tors Lot es L — o S+ @5+ AN - gL
—50164t10+ﬁ119_°6: '*'5‘;010"-""6"0":9 533"’4 2<r<3
222—"'50*’5 ® - ?30" +1')4%1l0 6_%25_% 3+ 380 + s 0
— et 33, _Lge ) 1009 44 lcr<d
— 50155 £° — Sasea00 + 13550 - B+ LR 2t + B 2 -
~ a5 20+ semmme £+ Yomne £+ 3095 & — Touss ”4v 1<zr<5
g 3 pT o 8g6_ 11,5 23,3 4852, g0
| — moorss00 %~ T8~ mrea £ "'11'—94"95‘6'*':55'7"4 5<z<6

In the overlaid Maple plots of the standard normal PDF and fz.(z) shown in
Figure 7.1. it is apparent that this approximate distribution fits the standard normal

distribution in the PDF very nicely except around = = 0 [where fz(0) = 715; = (0.399

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



120

and fz.(0) = f:g;;o = 0.394] and. of course. in the tails, since the approximate

distribution only has support on (—6. 6). To obtain overlaid plots of these two
distributions. one invokes the PlotDist command. First one creates a plot of Z*= and
stores it as Plotl. Next. one creates a plot of the standard normal distribution and
stores it as Plot2. Finally. used the plots[display] command to combine the two

plots. This is summarized in the commands:

> Plotil PlotDist(Zstar, -6, 6);
> Plot2 := PlotDist(NormalRV(0, 1), -6, 6);
> plots[display] (Plotl, Plot2, scaling = unconstrained);

x1

Figure 7.1: Overlaid plots of fz.(z) and the standard normal PDF.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7.3 A mathematical resource generator

APPL is also able to generate tables. graphs, and charts. The term resource refers to
tables, graphs. and charts. to include such items as means. critical points. variances,
and so on. APPL can be invoked to reduce the need for such tables. Additionally.
since these computations can be produced automatically, programs can be designed
to produce needed values in real time. as opposed to being restricted to knowing in
advance which element of which table will be needed for program execution. There
are many references for critical tables for common distributions that software such as
this (and others) effectively replace. Highlighted, however, will be two recent books.
CRC Handbook of Tables for Order Statistics from I[nverse Gaussian Distributions
with Applications (Balakrishnan and Chen, 1997) and CRC Handbook of Tables for
the Use of Order Statistics in Estimation (Harter and Balakrishnan, 1996). These
books were selected because of the relatively complex nature of the information they
present. Also. they were chosen to highlight that even as late as 1997, the scientific
community had to rely on tables and charts for a significant amount of probabilistic
information.

First is a2 comparison of Balakrishnan and Chen's CRC Handbook of Tables for
Order Statistics from Inverse Gaussian Distributions with Applications with APPL’s
capabilities. This book begins with 39 pages of theory and references to the inverse
Gaussian (IG) distribution and its order statistics. Then the book has 645 pages of

PDF plots, expected value tables. covariance tables, estimation tables, and so forth.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



122

-

APPL is able to create a number of these figures and tables. and in some cases goes
bevond those presented in the text. Page 30. for example, shows the N(0.1) and the
standardized [G(0.8) PDF's overlaid in a single plot. The standardized IG distribution
is defined as follows. Let ¥ ~ IG(\.§). Let o = \/:53/—A (the standard deviation of
Y’). Define Z = (Y — é)/o as the standard IG distribution, and let & = 3\/6/—/\. Then

the PDF of Z (which is listed as equation (2.14) on page 7 of the text) is as follows:

. 3/2
1 ( 3 )/6_3:2/(6-{-21::) _%<:<oo.

fz(z) = 72 37

Then the two plots may be overlaid as follows:

> X := NormalRV(0, 1);
>k :=0.8;
>Z :=[[z->1/sqrt(2 * Pi) * (3/ (3 +k *z)) ~ (3/ 2) *

exp(-3 *z ~ 2/ (2 % (3 +k=*2)))], [-3/ k, infinity],
[‘Continuous‘, ‘PDF‘]];

Plot1i := PlotDist(X, -4, 4);

Plot2 := PlotDist(Z, -4, 4);

plots(display]l ({Plot1, Plot2}, scaling = unconstrained);

vV V V

The Maple-produced plot is found in Figure 7.2. Balakrishnan and Chen use such
plots to show how the two distribution separate as k increases from zero. For plotting
the IG PDF, one is not limited to the standardized version of the distribution. One
could plot any IG PDF. CDF. HF. and so on. For example, the command

> PlotDist (HF(InverseGaussianRV(1, 0.5)), 0, 3);

will generate a plot of the IG(1. 0.5) hazard function. Clearly, one is not limited
to just PDF plots in APPL, nor is one limited to plots of only standardized IG

distributions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 7.2: Overlaid plots of the standard normal and standardized [G(0.8) distribu-
tions.

Another recent resource. CRC Handbook of Tables for the Use of Order Statistics
in Estimation (Harter and Balakrishnan, 1996), also gives extensive charts for various
applications of order statistics. Appendix C of this book. covering pages 326-530.
lists tables of various means, variances, and covariances of order statistics from many
common distributions. For example. Table Cl.1 gives means of order statistics for
the N(0, 1) distribution, Table C2.1 for the exponential(1) order statistics, and so on.
APPL can replicate such tables. For instance, to produce the mean of then =8,r = 6
order statistic from the Weibull(1, 0.5) distribution, use the commands:

> X := WeibullRV(1, 0.5);
> X86 := OrderStat(X, 8, 6);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



124
> MeanRV(X86);
which returned the value 1.760598073. compared to 1.76060 on page 392 of Harter
and Balakrishnan (1996).

Unlike Harter's text. the software can go bevond computing means of order statis-
tics. In the following example (continuing the code from the three lines of code above).
one can, for example. compute the 98th percentile of the same Weibull distribution
and give the probability of exceeding 1.92:
> IDF(X86, 0.98);
> SF(X86, 1.92);

The values returned are 6.480288415 and 0.0473928543. respectively. Furthermore, we
are not limited to the relatively few base distributions that Harter and Balakrishnan
present in Appendix (. but can enter any Weibull parameter values.

There is no implication that these. or any of the vast resource collections. are
archaic. Actually. what is envisioned is the need of this software to augment the
information presented in texts such as these. Foreseen is a shifting away from looking
up values in table: instead. one will encode the creation of necessary values directly
into programs. The first 208 pages of Harter's text, for example. still review theory
behind the creation and use of order statistics. APPL adds to the resource base that

books such as these provide.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



123

7.4 Probabilistic model design: reliability block

diagrams

The analysis of reliability block diagrams (RBD) in reliability engineering can be
facilitated by use of APPL. A program called SHARPE (Symbolic Hierarchical Au-
tomated Reliability/Performance Evaluator, presented in Sahner and Trivedi. 1993)
uses Mathematica to model reliability block diagrams and other types of systems. In
their article. Sahner and Trivedi show how SHARPE is capable of providing system
reliabilities. However. according to Trivedi (1997), input distributions are limited to
exponential distributions and “exponential polynomials which are equivalent to Cox
distributions.” APPL can conduct similar computations and is not limited to such
distributions. A demonstration is provided by duplicating Trivedi's example. and
then showing possible extensions. This is not meant to be a direct comparison of
SHARPE and APPL. as the two software packages have completely different goals.
The two softwares merely intersect to some degree. as this RBD example shows.

In Sahner and Trivedi (1993). a computer system consists of two processors and
three memory units. The computer is designed to operate with as few as one processor
and one memory unit. Thus a RBD to represent the system would be as shown in
Figure 7.3. in which two parallel processors are in series with three parallel memory
units. All components are independent and have exponentially distributed times to
failure.

The CDF of of Xsys. the time to failure of the system, can be determined with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



126

MEMORY —
— PROC
— MEMORY A
I
PROC
MEMORY |__

Figure 7.3: RBD of a computer system with two processors and three memory units.

the following commands in APPL:

> Xp := ExponentialRV(0.00139);

> Xm := ExponentialRV(0.00764);

> Xsys := MinimumRV(MaximumRV(Xp, Xp), MaximumRV(MaximumRV(Xm, Xm), Xm));
> Xsys := CDF(Xsys);

The result is the following CDF

- - 7 - - 2 - —0.0257
F(I) =1 —6e 0.00903r +6€ 0.01667r __ Qe 0.0243lr+3e 0.01042r _ 3e 0.01806x +e€ 0.025%r

where r > 0. While this CDF is different from that in Trivedi’s article. in a subsequent
personal communication (Trivedi 1997), Trivedi agrees this expression is the correct
CDF: the one in the article being in error.

The areas for improvement of problem solving by APPL are many. First, with

APPL one can model the time to failure of the individual components with distribu-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



127

-

tions other than the exponential. Second, one can analyze the system by looking at
the functional form of the CDF (as in SHARPE). but also graphically, by plotting
the distribution. Trivedi mentions that a plotting function is currently in beta testing
for SHARPE (Trivedi. 1997). One can also determine and plot the SF. HF. CHF.
and PDF of the system. One can sum Xsys and Xsys to find the distribution of the
lifetime of two such systems in a passive standby configuration using SumRV. Fractiles
of the distributions can be produced. One can conduct “what-if” analysis by varving
the number of processors and memory units in the system to see the overall effect on
the mean system lifetime. One can run a reliability life test to see if observed failure
times are adequately fit by this model, using the goodness-of-fit techniques outlined

in Chapter 6.

7.5 Modeling with hazard functions

The capabilities of APPL allow a shift in the paradigm of parameterized model design
in new ways. In some situations. it may be easy to imagine the reliability of a system
in terms of instantaneous rate of failure, i.e.. the hazard function. Reliability texts
often classify lifetime distributions into distribution classes that are named after the
shape of the hazard function. Leemis (1995, Chapter 3), among others, defines many
of these classes. to include the increasing failure rate (IFR), the decreasing failure
rate (DFR), and the bathtub (BT) shaped hazard function.

One possible use for APPL is to model systems using a hypothesized shape of a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



128
hazard function. For example. should a system be hypothesized to have a bathtub-
shaped HF. there are only a few common distributions with HFs with such a shape.
Leemis (1995, p. 100) lists only two of 16 common reliability distributions as having a
BT-shaped HF'. Instead of being limited to these distributions. one may hypothesize a
family of distributions with BT-shaped HFs. For example. a second-order polynomial
HF of the form a(z — 6)? will have the BT shape as long as @ > 0 and b > 0. It is
easy to verify these polynomials satisfv the requirements for a HF. as listed in Leemis
(1995. p. 50):

/%h(t)dtzoo and h(¢)>0 forall t>0.
0

Here is an example of using APPL to model with hypothesized HFs. Let a sample
of failure times be [1. 11. 14. 16. 17]. Assuming it is hypothesized that the system
should be fit by the quadratic BT-shaped HF distribution. one should fit these data

to the unspecified distribution as follows.

> assume(a > 0);

> assume(b > 0);

>T := [[t ->a=* (t-0b) " 2], [0, infinity], [‘Continuous‘, ‘HF‘]];
> PDF(T);

The last command returns the general form of the PDF having the assumed HF:

fr(t) = a(t? — 2tb 4 b?) ¢7te (P -3tb+3H/3 t > 0.

One can find the values of @ and b that maximize likelihood as follows:

> sample := [1, 11, 14, 16, 17];

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



129

> hat := MLE(T, sample, [a, b]);
> evalf(hat);

The results are: @ = 0.0037937. b = 5.93512. The plot of the SF for T overlaid on the

empirical SF is shown in Figure 7.4.

1.0 4
AN
0.6 -

N\

0.0 -~

Figure 7.4: The SF of the hypothesized BT-shaped hazard function fit to the sample
[1. 11. 14. 16. 17] overlaid on the empirical SF.

For another example of modeling in terms of hazard functions. let us hypothesize
that risk to a system is seasonal. Such is the case in many applications such as struc-
tures at risk to occurrences of category five hurricanes. A periodic hazard function

might be modeled in such a case. Suppose one hypothesizes a family of periodic HF

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



130

distributions having HF's of the form

ht(t) = a + b sin(ct). t>0:a>1b, and a.b.ce R.

Once again, these functions satisfy the requirements of HF's. The parameter a rep-
resents a measure of the long-term constant risk associated with 7. In other words.
increased values of a correnspond to a higher likelihood of chance failures. The pa-
rameters b and c¢ control the amplitude and period of the HF. modeling the severity
and length of the cyclic stresses.

In their article. Lee. Wilson. and Crawford (1991) modeled seasonal ocean storm
data in terms of a nonhomogeneous Poisson process with intensity function of the

form

A(t) = et sin(wt+o) t>0av.woeR

where the exponentiation is used to assure that A(f) > 0 for all {. There are two
differences between the NHPP model of Lee. Wilson. and Crawford (1991) and mod-
eling with a seasonal hazard function. First, the intensity function method models
multiple occurrences of seasonal events while the hazard function method models a
single occurrence. Second, the intensity function method assumes that the process
has independent increments. among other assumptions (see Ross, 1993, p. 236, for
all assumptions). Such assumptions are not necessary with hazard function models.
One can instantiate the unspecified distribution with the following command

>T := [[t -> a+b*sin(c * t)], [0, infinity], [‘Continuous‘, ‘HF‘]1];

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



131
and the PDF may be found with the command PDF(X) ;. The unspecified PDF of

this family of distributions with a periodic hazard function is
fr(t) = (a + bsin(ct))e(atccoslct)b+b)/e t>0.

Letting the parameters take on values of a = 1, b = 0.5 and ¢ = 10. One gets the

PDF (using the PlotDist command) plotted in Figure 7.5. a peculiarly multi-modal

distribution that decreases exponentially over time.

Figure 7.5: The PDF of the distribution having periodic hazard function hy with
parameters a = 1. b = 0.5 and ¢ = 10.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



132

7.6 Outlier detection

The theory and practice of identifying outliers in a data set is another contribution
provided by APPL. The literature contains ample methods for identifying outliers in
samples related to a normal distribution. Regarding detection of outliers. D’Agostino
(1986. p. 497) writes “We shall discuss here only the underlying assumption of normal-
ity since there is very little theory for any other case.” Sarhan and Greenberg (1962.
p.- 302) and David (1981) propose a number of test statistics based on standardized
order statistics of normally distributed data. They provide charts of acceptance and
rejection regions in lieu of p-values. For instance. in the fully specified case where p
and o are known. Sarhan and Greenberg propose the test statistic (X(,) — p)/o for
testing for extreme observations in normal samples. As has been discussed in Chapter
6. the distributions of order statistics can be used to identify outliers in data sets.

APPL may contribute to the outlier detection problem in at least three ways:

1. There is no need to standardize the test statistic. since the distribution of the

r*h order statistic may be found with the procedure OrderStat.

8V
.

One need no longer rely on charts of rejection regions, since once the distribution

of the r*® order statistic is known. one can calculate p-values.

3. Most importantly. one is not limited to the assumption of normality. APPL
facilitates finding the distribution of the r*! order statistic of a wide range of

distributions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



133

-

Here are a few examples. In the sample 1. 2, 3. 4. 5, 10. it is possible that
the last element in the sample is an outlier. Assuming that the population has a
mean of 3. one could find the order statistic probability P(.X() > 10) for samples of
size 6 from various underlying distributions. Let us consider the following possible
population distributions. each with mean of 3 (approximately 3 for the Weibull case):
Weibull(0.295. 2). exponential(1/3). N(3. 2). and N(3. 4). The upper tail probability
P(X) = 10) gives us the significance level against the null hypothesis that X
came from this underlying distribution. The four probabilities can be found with the

following commands:

X1 := WeibullRV(0.295, 2.0);
X2 := ExponentialRV(1 / 3);
X3 := NormalRV(3, 2);
X4 := NormalRV(3, 4);

OrderStat (X1, 6, 6);

SF(", 10);

evalf (SF(OrderStat(X2, 6, 6), 10));
evalf (SF(OrderStat (X3, 6, 6), 10));
evalf (SF(OrderStat (X4, 6, 6), 10));

VvV V V V V V V VvV VvV

The results are shown in Table 7.2. An interpretation is that for n = 6 the value 10

Table 7.2: P(X ) = 10) for n = 6 for several population distributions.

[ Distribution P(Xny > IO)J
Weibull(0.295, 2) 0.0009966
exponential(1/3) 0.1958385
N(3.2) 0.0013950
N(3.4) 0.2175316

is an outlier with respect to the N(3, 2) distribution at the 0.0014 level of significance

and to the Weibull(0.295, 2) population distribution at the 0.001 level of significance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



134
It is not a significant outlier to the other two population distributions. Clearly one is
not limited to maximum values of a sample. one could also consider any of the order
statistics (as outlined in the Chapter 6. using the P-vector). Note. these four upper
tail probabilities are the 6th element of the four P-vectors. Also note the lack of paral-
lelism in the commands. One would expect the command evalf (SF(OrderStat (X1,
6, 6), 10)) would have produced the appropriate probability for the Weibull distri-
bution. However. Maple locked up with this embedding. By separating the command
into two parts. Maple computed the probability correctly and quickly.

An extension to this detection example is found in the last two population distri-
butions, the normal distributions with o equal to 2 and 4. One sets a specified level
of significance, say @ = 0.03. and solves for the value of o that will show a maximum
value of 10 to be an outlier for the normal family of distributions. There are two
directions to this solution. First one might be tempted to conduct a binary search
on the interval 2 < ¢ < 4 to approximate s to a certain degree of accuracy. The

following code will accomplish that approximation and will derive & = % 2.9297.

1R

alpha := 0.05; sigold := 4; signew := 2; found := false;
while(found = false) do
X := NormalRV(3, signew);
significance := evalf(SF(OrderStat(X, 6, 6), 10));
delta := abs(significance - alpha);
if(delta < 0.00001) then
found = true;
print(sigmaisnow, sigold); break;
else
if(significance < alpha) then
temp := signew;
signew := signew + abs(signew - sigold) / 2;
sigold := temp;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



print(nevwsigma, signew);

else
temp := signew;
signew := signew - abs(signew - sigold) / 2;
sigold := temp;
print(newsigma, signew);

fi;

fi;
od;

A second approach is to rely on the exactness of distributions that APPL provides.
In effect what is desired is a solution to the following. Letting .X ~ N(3. o). find o
such that

P(.\,(s) < 10) =0.95.

One can find that exactly by manipulating the CDF list-of-lists representation of
X6 In the following way. The first element of the first list will contain the CDF,

so it is set equal to 0.95 and solved for o. The following code produces the solution

e

o = 2.933571640.

> X := NormalRV(3, s);

> X6 := OrderStat(X, 6, 6);

> X6 := CDF(X6);

> fsolve(X6[1][1]J(10) = 0.95, s =2 .. 4);

The first line of code sets the semi-specified normal distribution as the population
distribution for X. The second line determines the PDF of X). The third line
converts the PDF of X, to a CDF. The last line isolates the first element of the first
list of X6 which is the CDF function of the independent variable z and the unknown

parameter 0. The entry (10) provides the independent variable a value of 10. Then

the fsolve command solves for the unknown parameter s which represents o.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



136

The same type of determination could be made for any of the distribution families.
One can likewise. for example. determine the value of p that rejects 10 as an outlier.
In effect. one is able to establish a distribution’s tolerance interval for a parameter.
given a specific minimum or maximum data value. Thus the detection of outliers is
relative to an assumed underlying distribution. and one can partition the parameter

space of underlving distributions in terms of outlier consistency.

7.7 Maximum likelihood of order statistics distri-

butions

An idea is presented in this section that has some intuitive appeal towards improving
estimation of parameters. Borrowing from the idea of estimating parameters via
maximum likelihood, and also suggesting that order statistics might be helpful in

estimating parameters. the usual form of the likelihood function.

(where x = (x,.Z2,... .Zn)), Is replaced with a form involving the PDF's of the order

statistics:

Ly(x.0) = ] fx. (). 0)-
=1

The second method is referred to as maximum likelihood estimation with order statis-

tics (MLEQOS). Note that L; is the joint distribution of iid random variables. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



137
function L, does not lend itself to such a direct representation. as order statistics are
not independent.

This approach to estimation borrows from the intuition associated with traditional
maximum likelihood estimation. In his Figure 7.7, Leemis (1995. p. 172-173) gives
a graphical interpretation of the MLE method. Leemis suggests the goal of MLE is
to find the parameter § that "maximizes the product of the density values at the
data points.” Since in MLE one seeks a value of § that maximizes the product of the
density values from the PDF. it was wondered what would happen if the product of
the density values of the n order statistics was maximized. Maximizing the product
of the “hump-shaped” order statistic PDF's evaluated at their respective ordered data
values is graphically depicted as finding a § value that maximizes the product of the
lengths of the vertical lines in Figure 7.6 (the lines from the ordered data points to
their ordered density values). A good fit places each of the data values near the
center of the n humps of the n PDFs. MLEOS will find a A value that maximizes the
products of the respective density values. Note the x marks on the horizontal axis
correspond to the sample [0.2. 0.4, 0.9. 1.3].

Parameter estimates were computed from various population distributions from
simulation using both MLE and MLEOS. The empirical mean square errors (MSE)
of the two estimation techniques were compared. Also compared were estimates for
A from the exponential distribution. g and o from the normal distribution, and 6
from the (7(0,6) distribution. Of all these population distributions, only the last

case. estimating 6 from the uniform distribution, resulted in a decrease in MSE of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Siy(xay
25
20
1.5
1.0
0.5
0.0 A -
"'LH o ™X1)
0 | 2 3 4
S lxay)
25 A
20
1.5
1.0
0.5 A
0.0 A "
W*Lin A R T X3)
0 I 2 3 4

Sax2)

25

20

S(xay

25

2.0

1.5

1.0

0.5

=

[ 8]

0

™KK Xr

I

(18]

138

@

Figure 7.6: The PDF's of the four order statistics from an exponential distribution.

estimator. Since some ML estimators are also minimum variance unbiased estimators

(MVUE). it not feasible for MLEOS to dominate MLE with respect to MSE. This

is the case for estimating A for the exponential distribution and g for the normal

distribution (Kendall and Stuart, 1963). However, the parameter ¢ from the normal

distribution is not a MVUE (Kkendall and Stuart, 1963, p. 10) and the MLE for

6 in the uniform distribution is biased (Larsen and Marx, 1986, p. 244). For the

uniform distribution, the reason that the MLEOS estimator dominated the MLE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



139

estimator is easy to see. Each MLE estimate of 6 is the maximum of the sample.
The MLEOS estimator for @ is either the maximum data value. or the solution to
3—[‘23—‘;‘—’01 = 0. In about 32% of the samples, the solution to this equation was greater
than the maximum of the sample. The simulation comparisons of the MLE and
MLEOS estimators were designed as follows: set the sample size to 23. and the
number of replications to 1000. For the simulation it was assumed that § = 1. and
population variates from the U(0. 1) distribution were generated. The Maple code
for this simulation is included in Appendix H. Also included is the performance of

the unbiased estimator for 6. which is 2 max{X;, X,.... .. ‘n»}. The results are
n

given in Table 7.3. The MLEOS estimator had less bias and a lower MSE than the

Table 7.3: The MSEs of the MLE and MLEOS and adjusted-for-bias MLE techniques
of parameter estimation.

[ Technique ﬂ Average Estimate | MSE of Estimates |
MLE 0.9615 0.002768
MLEOS 0.9720 0.002020
MLE with unbiased factor 0.9999 0.001388

MLE estimator. As could be expected. however. the ML estimator with the unbiasing

factor. % max{X;..X,.... .. X, }. dominates on both measures.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 8

Conclusion and Further Work

This dissertation presents work on a proposed probability software language. We have
demonstrated some areas of applicability and contributions to the applied community
provided by this software. As it exists. APPL is a viable language that demonstrably
contributes to the applied community. At its core. it is a tool to produce the distri-
bution functions of random variables. Once these distribution functions are known,
then all the typical probability work that is done with distributions is possible. i.e..
significance levels. critical points. expectations. plots, and so on. There is a veritable
lifetime’s amount of research that remains with APPL. The areas for further work fall
into two categories. improvements to APPL itself, and further areas of application.
The language itself has potential for further improvement. So far it is restricted to
univariate, continuous distributions. Multivariate considerations could follow. Also,
more procedures could be devised to include areas of probability such as conditioning,

Bayesian analysis. time series analysis, point processes, and others. Additionally,

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



141

the software could encompass discrete distributions. as well as mixed discrete and
continuous distributions.

Application areas are endless for APPL. A number were presented here. but there
are many more areas that could benefit from such software. These areas include
parameter estimation and goodness-of-fit testing in censored samples. finding the dis-
tribution of the total-time-on-test in a life-testing environment (surprising similarities
exist here with the difficult integration of the K-S CDF), and renewal theory, to name
a few. As APPL becomes more exposed. countless other areas will emerge.

Finally. there 1s another inherent contribution in that the software has been kept
extremely general on purpose. Consider the creators of the spreadsheet. They had the
insight to make the application general enough that it solved their current problem
vet could be applied to many larger problems. Decades later no researcher. business
office, or student’s room is complete without a state-of-the-art spreadsheet at their
disposal. This software research has maintained this same spirit of generality for
similar reasons. For example. by allowing for parameterized. piecewise distribution
in the “list-of-lists™ format. nearly everv continuous. univariate distribution can be
represented by APPL. Thus the software can be of use to the reliability engineer
concerned with a random variable having support (0.00), as well as the theorist who
1s interested in the order statistics from populations having segmented distributions
with support in the negative range. While probably not as common or widely needed
as the spreadsheet, the author foresees the possibility that eventually no probabilist’s

resources will be complete without a symbolic probability package with procedures

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



142
such as these. Thus. the generality of APPL is yet another contribution because it
allows for vet unseen contributions by those interested in expanding the probabilistic

world via an automated. programming environment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix A

The Arctangent Survival

Distribution

A.1 Introduction

This appendix contains some early work on creating new distributions of random
variables based on the SF-like qualities of the arctangent function. The work intro-
duced the author to the need for software that could assist in probability calculations.
plots. and other functions. Presented here is the development of a two-parameter
survival distribution that has an upside-down bathtub (UBT. or humped-shaped)
hazard function. This distribution provides biostatisticians, reliability engineers, and
other statisticians with a second two-parameter UBT model whose closed-form sur-
vivor function simplifies the analysis of right-censored data sets. Maximum likelihood

estimators of the parameters are found using numerical methods. Approximate con-

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



144

fidence intervals can be determined by using the observed information matrix or the
likelihood ratio statistic. Examples are given in which the arctangent distribution is
a reasonable alternative to other common lifetime distributions.

Parametric lifetime distributions have been used in reliability for modeling the
time to failure of components and systems. Although emphasis has traditionally been
placed on models where the hazard function has a bathtub shape. applications have
been found where an upside-down bathtub (UBT). or hump-shaped hazard function
is the appropriate model. Kececioglu (1991, p. 425) lists transistors. metals subjected
to alternating stress levels. insulation degradation, mechanical devices subjected to
wear, and bearings as potential UBT applications. Chhikara and Folks (1989, p. 156)
state that "When early occurrences such as product failures or repairs are dominant
in a lifetime distribution. its failure rate is expected to be non-monotonic. first in-
creasing and later decreasing” and cite airborne communication transceivers (p. 3.
139-140) as an application. Lee (1992, p. 12) further supports the validity of a UBT
risk model in describing patients with tuberculosis who have risks that “increase ini-
tially, then decrease after treatment.” To further substantiate the usefulness of the
UBT model. Barr (1994) opines that the UBT risk function would apply in modeling
the probability of a soldier becoming a casualty as a result of artillery fire. In this
example, casualty risk starts out low as the fire is initially inaccurate, increases as the
shooter hones in on the target, and then decreases as the remaining soldiers are able to
“dig in” for protection. Although reliability engineers generally have an abundance

of two-parameter survival distributions to choose from, relatively few have a UBT

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



145
hazard function. The commonly-used UBT distributions are the inverse Gaussian.
log normal. and log logistic distributions. Of these. only the log logistic distribution
has a closed-form survival function. This distribution is most often used in biostatis-
tical applications. whereas the inverse Gaussian and log normal are typically used in
reliability.

The arctangent distribution developed here gives a survival distribution with a
UBT hazard function and closed-form survivor function, a useful feature in the anal-
vsis of a right-censored data set. Additionally, the surviver function can be inverted
in closed-form. which enables synchronization and monotonicity in variate genera-
tion. Unlike most survival distributions, the arctangent distribution’s development
uses trigonometric functions. We present the arctangent distribution’s development,
probabilistic properties. and statistical inference. Parameter estimation for complete
and right-censored data sets is found by maximum likelihood. Finally. three examples
illustrate situations when the distribution is a demonstrably reasonable alternative

to other survival distributions.

A.2 Development

The arctangent function. when negated and shifted vertically, resembles a survivor
function. Further. by shifting the function so that it crosses the vertical axis at 1 and

then asymptotically decreases to 0, one obtains a flexible survivor function. Adding

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



146

a phase shift parameter o and a positive scaling parameter a yields the function

g(t) = —arctan[a(t — 0)] + —o0 <t < .

o]

which is a decreasing function with a range of (0. r). Finally. since ¢(0) = arctan(ao)+
Z. the appropriate way to adjust this function so that it assumes the value | when
t =0 is to divide g(t) by ¢g(0). vielding the survivor function for the random lifetime

T
—arctan(a(t - @)] + &

, T t > 0.
arctan(ag) + 3

St(t) =

Since the arctangent is an odd function. the form of the survivor function that will

be used here is

. arctan[a(o —t)] +
St(t) = > 0.
r(t) arctan(ao) + t20 (1)

where a > 0 and —oc < ¢ < <. This survivor function satisfies the three existence

conditions: S(0) = 1. lim S(¢t) = 0. and S(¢) is nonincreasing. Furthermore. the

[Snde <1

distribution’s probability density function and hazard function are

fr(t) = =Sp(t) = a {>0. @)
[arctan(aé) + .}] [1 + a?(t — d))z]
hr(t) = g‘(i’ - a >0 ()

[arctan[a(q’; — )+ %l [1 + a?(t — ¢)2]

This arctangent distribution is equivalent to a Cauchy distribution truncated on

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



147
the left at ¢ = 0. Thus the parameter « is similar to a scale parameter and the

parameter o is similar to a phase shift or location parameter. Figure A.l shows three

different PDF's of the arctangent distribution. Notice that as ¢ becomes negative. the

0.04 -

0.02 +

0.0 A

Figure A.l: Examples of the arctangent probability density function.

distribution changes from a bell-shaped distribution to a distribution with a mode of
0. Also notice that the parameter o controls the “peakedness™ of the distribution:
the dispersion of the distribution is a decreasing function of a.

[nitially the name “Arctangent Distribution,” was chosen because of the simi-
larities that the arctangent function has with a generic survivor function. The re-
lationship to the Cauchy distribution was noticed later. The CDF of the Cauchy

distribution is also a shifted and scaled arctangent function.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A.3 Probabilistic properties

The arctangent distribution has several useful probabilistic properties that make it
a viable distribution for lifetime data analysis. Specifically. it enjovs closed-form
survivor and hazard functions. unlike most distributions in the UBT class. The
closed-form survivor function simplifies parameter estimation for censored data sets

and allows for variate generation via inversion. The probabilistic properties include:

e The distribution is in the UBT class when aé > ¢ and is in the decreasing

failure rate (DFR) class when a¢ < ¢ where

| + 2carctan(c) + cm = 0.

found by simplifving A7(0) = 0. Using numerical methods. ¢ = —0.42898.

e The mode of the distribution is tmede = @. V @ > 0. For the case where the

probability density function is monotonically decreasing, tnode = 0. ¥V 0 < 0.

e The p*P fractile of the distribution is

[V ]

a R ‘

-

1 T T
t,,:o-{-—ta.n[ —(1—p)(arctan(aq’))+—)]. (4)
which yields a median of

1 1
tos = ¢ + = tan {% -5 a.rcta.n(ad;)} .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



149

This closed-form expression for the fractiles will be useful in determining ini-
tial estimates for the numerical methods required to determine the maximum

likelihood estimates.

e Variates can be generated via inversion by

(VR I

N’

—
B

—(1=-U )(arctan(ao) + -

(v|‘1

1
I — o+ —tan [

where (" is uniformly distributed between 0 and 1.

e The conditional survivor function is given by

St(t)
St(a)
arctan{a(o — t)] + :

STIT>al(t)

TR SIE]

arctanfa(o — a)] +

arctanfa(o —a) — (t — a)] +

(TR

a)
arctanfa(o —a)] + 5

arctanfa(y — y) ] + 3

arctan(ay] + 3

for y > 0. which is again an arctangent distribution with the same o as the

unconditional distribution and where y = ¢ —aand y =t —a.
o The limiting distribution as & — oo is a degenerate distribution at ¢.

e The arctangent distribution is related to the Cauchy distribution. Specifically,
a Cauchy distribution truncated on the left at zero will yield the arctangent

distribution. Not surprisingly, the mean and higher-order moments of the dis-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



150
tribution are undefined. This poses a challenge when discussing mean time to
failure (MTTF) of components. Since the mean is undefined. central tendencies
of the distribution could be discussed in terms of its mode and median. The dis-
advantage of this limitation is that practitioners are generally more comfortable

with the mean as the primary measure of central tendency.

e The arctangent distribution has a heavy right tail which makes it useful for
evaluating an item that fails with less risk once it has survived to a certain
time threshold. Certain biostatistical data sets indicate such heavy right tails
in cancer data. The arctangent distribution is capable of modeling lifetime
distributions with a heavier tail than the log normal or log logistic. An example
is provided where the distribution models the survival time of rats given a cancer
accelerating drug. where there is a heavy right tail. Competing risks models are

also useful in modeling heavy right tails.

A.4 Statistical inference

Statistical inference of the arctangent distribution for complete and right-censored
data sets is straightforward. A comparison with other distributions, including other
commonly used UBT distributions is presented in this section. The arctangent distri-
bution requires numerical methods to determine the maximum likelihood estimators
of its parameters. which is typical of most two-parameter lifetime models. First,

statistical inference procedures for uncensored data are presented using a reliability

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



151
example. Second. inferences are illustrated with censored data using a biostatistical
data set. Finally. a biostatistical example that illustrates the heavy right-hand tail
of the distribution is presented.

For the uncensored case. let ¢;.t,.... .t, be the failure times. The likelihood

function is

n

L(a.@)=fI fltia.0) =T] r '
=1 i=1 [a.rcta.n(aé) + ';‘} [1 + a?(t; — 0)2]

The first partial derivatives of log L(a, @) with respect to the two parameters yield

. ! n -9 L 2

3log;ﬁa.ep) _ no 7 +g+z 2a(t; — @) (5)

[1 + (@d)?| |5 + arctan(acp’)] =1 [1 + a?(t; — @)21

Jd

and
dlog L(a.o - o 2a? t,—o )
ogam ) _ —na N a*(t, — o) )
Q

[1 + (ao)z} [% + arctan(ao)

Equating (5) and (6) to zero does not yield closed-form solutions for the maximum
likelihood estimators & and o. For the numerical methods to be effective in finding
& and ¢ it is necessary to have appropriate initial estimates of the parameters. Since
the mean and higher order moments are undefined, one must rely on a “method of
fractiles”, as opposed to the method of moments, to find initial estimates &g and do.

This entails an initial system of two equations based on the p'" fractile of the the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



distribution, where the fractiles are chosen based on the observed lifetime data.
To illustrate the applicability of the arctangent distribution. consider Lieblein and
Zelen’s (1956) data set of n = 23 ball bearing failure times (each measurement in 10°

revolutions):

17.38 28.92 33.00 41.52 42.12 45.60 48.48
51.84 5196 54.12 55.56 67.80 68.64 63.64
68.88 84.12 93.12 98.64 105.12 105.84 127.92

128.04 173.40

Although it’s an old data set. this is the first example because Crowder et al. (1991,
p. 63) conjectured that the UBT shaped distributions may fit the ball bearing data
better than the IFR distributions. based on the values of the log likelihood function
at the maximum likelihood estimators.

Using the “method of fractiles” to find initial parameter estimates for the param-
eters. note from the empirical survivor function for the data (Figure A.2) that time

th percentile of the distribution and that time

42.12 corresponds to the 2—53- -100 = 22.7
105.12 corresponds to the ;—3 - 100 = 82.6*" percentile of the distribution. Thus using
(4), initial estimates for the MLEs are found by solving

212=0+ L tan [g - (1 - %) (arctan(a¢) + g)],

105.12 = ¢ + étan [g— - (1 - %) (arctan(aqf)) + %)]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Ste)

1.0
ng =
0.6
0.4 -
Arctangent
02 4+
\

0.0 H l

T T T T 4

0 50 100 150

Figure A.2: Empirical. fitted arctangent. and fitted Weibull survivor functions for the
ball bearing lifetimes.

for a and o. This svstem yields our initial estimates of the parameters as follows:
Go = 0.04102 and é)o = 57.96. Using these values as initial estimates, one may now
solve equations (5) and (6) numerically yielding & = 0.04233 and o = 58.08. Taking
second partial derivatives of the log likelihood function and evaluating at the MLEs
vields the 2 x 2 observed information matrix (see Cox and Oakes, 1984)

5989 1.305
I =

1.305 0.021

Inverting the matrix and taking the square roots of the diagonal elements gives asymp-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



154

totically valid 95% approximate confidence intervals for a and o:

0.01727 < a < 0.06733

41446 < 0 < 71.70.

Figure A.2 gives a graphical comparison of the arctangent fit versus the Weibull fit
of the empirical data. One can see the fits are virtually identical in the early stages.
then the arctangent fits more closely than does the Weibull in the center. In the
right tail. the Weibull fits closer. due to the arctangent distribution’s propensity for
a heavy tail. Finally. one can compare the arctangent distribution’s model adequacy
with that of other popular two-parameter lifetime distributions. The Kolmogorov-
Smirnov (K-S) goodness-of-fit statistic for the arctangent distribution is D, = 0.093.
Table A.l gives D, values for some popular distributions fitted to the ball bearing
data evaluated at the maximum likelihood estimators of their parameters. [Chhikara
and Folks (1989. p. 74) fit the inverse Gaussian distribution to this data set.] The K-S

statistic is one measure to gauge quality of fit. Table A.l indicates that the lower K-S

Table A.l: Kolmogorov-Smirnov Goodness-of-fit Statistics for the Ball Bearing Data.

Distribution D3

Exponential 0.301
Weibull 0.152
Gamma 0.123
Inverse Gaussian | 0.099
Arctangent 0.093
Log normal 0.090

statistic values are associated with the three UBT distributions, the inverse Gaussian.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



155
arctangent. and log normal. adding further credibility to Crowder’s conjecture that
UBT models seem to fit this data set better than those with increasing failure rates
(i.e., the Weibull and gamma distributions). Using a K-S statistic with estimated
parameters is problematic. Therefore, one uses this statistic not for a formal test.

but to further the conjecture that UBT distributions fit this data set better.

Now consider statistical inference for a censored data. The arctangent distri-
bution’s closed-form survivor function yields a closed-form likelihood function. thus
simplifying the analysis of right-censored data. The only other UBT distribution with
this property is the log logistic distribution. The statistical methods are similar to
those of the uncensored case: however. the numerical methods are a bit more tedious.
An analysis follows for Gehan'’s (1965) test data of remission times from the drug
6-MP when used on n = 21 leukemia patients of which there were r = 9 observed
remissions and {2 individuals who were randomly right censored. Letting an asterisk

denote a right-censored observation. the remission times in weeks are:

6 6 6 6« 7 9« 10

10« 1l= 13 16 17 19 20=

22 23 25% 32x 3I2x 34*x 35%
To fit this data to the arctangent distribution, let ¢;, t,, ... . t, be the remission
times and c;, ¢, ... . ¢, be the associated censoring times. OQur maximum likelihood

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



estimation is now based on the likelihood function

L(Q\O) - H f(tivow¢) H 5(6,-,(!,45)
el 1€C
= 11

€l [a.rctan(ao) + -}] [1 + a?(t; — 0)?

(STE]

I_ arctan(afo — ¢;)) +
¢ arctan(ao) + 3

where {7 and C are the sets of indices of uncensored and censored observations.

respectively. The log likelihood function is

log L(a.d) = rloga —rlog [arctan(aq'J) + g] = log[l + &*(t: — 0)?]
€U

-

+ Y log[2arctan(a(o — ¢;)] + 7] — (n — r)log[2 arctan(ag) + =]
1eC

A “method of fractiles™ initial estimate for the parameters vields &o = 0.0562 and
o0 = 9.58. Now one takes the two partial derivatives of log L with respect to a and
o. sets them equal to zero. and computes & = 0.0435 and o = 11.2. This example
illustrates the methodology used to fit the arctangent distribution to censored data
sets.

A third example illustrates the usefulness of the distribution’s heavy right tail.
Cox and Snell (1981. p. 169) present data on the life span of rats who have been
given a cancer accelerator. The following complete data set gives the number of days

the rats survived:

37 38 42 43 43 43 43 43 48 49 51 51 35 37 59 62 66 69 86 177

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The arctangent MLE estimates for this data set are & = 0.127 and @ = 48.0: the
resulting arctangent distribution is plotted against the empirical survivor function in

Figure A.3. Note how the heavy right tail of the arctangent distribution models the

Sty

08 -
06 -

04 4

il

00

0 50 100 150

Figure A.3: The arctangent distribution fit to the rat cancer data.

heavy right tail of the rat lifetimes. The rat with survival time 177 is driving the fit.
Thus. for data sets with heavy tails such as this one, the practitioner may make use

of the arctangent distribution’s propensity for a heavy right tail.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A.5 Conclusion

The arctangent distribution is a two-parameter lifetime distribution in the UBT class
with closed-form survivor function. [t gives reliability engineers. biostatisticians. and
others another tool in the complex task of statistical modeling. Although a UBT
model has a smaller number of applications than does the [FR or bathtub-shaped
models, there are enough references in the literature to indicate a need for more
distributions in this class. This appendix gives the UBT model! a second distribution
that enjoys a closed-form survivor function and has been demonstrated to adequately

describe well-known data sets.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix B

Continuous Distributions

The continuous distributions given in Table B.1 are available when loading the file
contdist.map. The table contains the function name used to define a random vari-
able, the PDF or CDF. the support. and the parameter names. and parameter re-
strictions. Original references to the more obscure distributions are given in Leemis
(1995). Note that the IDBRV is entered as a CDF instead of a PDF in Table B.1.
Maple is able to differentiate the CDF into a PDF. but not able to reverse this opera-
tion. Converting from a PDF to a CDF for this distribution results in an unevaluated
integral, which considerably slows computations. Random variables in APPL defined
in this fashion are in the usual list-of-lists data structure, and the Maple assume

function is used to restrict the values of unspecified parameters.

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



160

Table B.1: Continuous distributions of random variables available in APPL.

[ Distribution name | PDF or CDF | Support | Parameter Space |
ErlangRV() fx(z) = AMAz)* e 2 /(n— 1)} >0 0 < A < oo, integer n
ExponentialRV() fx(z) = de™?* z>0 A>0
ExponentialPowerRV() fx(z)= el"ehl e*" Agzr-! z>0 A>0: x>0
GammaRV () fx(z) = MAz)*~te=*7[T(k) r>0 A>0; x>0
GeneralizedParetoRV() | fx(z) = (7 + ::-:5) (14+z/6)"% 7" | £>0 i;%x > —6y
GompertzRV() fx(z) = 6xTe=80x""" ) logx r>0 E>0:k>1
IDBRV() Fx(z) = l—(1+rcz)'71‘e""'2/2 x>0 7,8, xall >0
InverseGaussianRV() fxiz) = \//\/(2723)8-'\(2—“)’/(2“,:’ >0 A>0, u>0
LogNormalRV() fx(z) = Qime"'bg"“)’/‘z"” r>0 —~o < pu<ac, a>0
MakehamRV() fx(z) = (7 + 6nF)e-"E-8s" =1/ logx | £ 5 ¢ ¥, 6>0, x> 1
MuthRV() fx(z) = (€55 — k)e~e" [n+rtl/s r>0 0<k<1
NormalRV() fx(z) =e“-"“’2/"z/\/27r0'2 —0 << x —0<pu<oc. a>0
ParetoRV() fx(z) = kA /oot r>A A>0

2{r—a)
TriangularRV() friz) = { ::_:'fb::_:}?“: :n<<rr<<rz —o<a<m<bg o
-a -1
Uni%ormRV() fx(z)=1/(b—-a) a<r<b —o<a<b< s
WeibullRV() fx(r) = KARpr—le=iAz)" r>0 A>0, x>0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix C

Algorithm for 6 x 6 Conversions

Table C.1 shows the mathematical conversions of the functional forms of random

variable distributions.

The table can be viewed as a from-to matrix in that the

columns represent the procedure name and the rows represent the prior form of the

distribution. Thus. if X is currently in CDF form. the call to X

:= PDF(X) will convert

to the CDF form via the conversion listed in the PDF column on the CDF row.

Table C.1: The conversions of continuous random variable distribution forms.

Procedure call with argument X
g"“ PDF(X) CDF(X) SF(X) 2F (X) CHF(X) IDF(X)
orm
T =) fix) -
PDF Return(X) / f(t)de / f(t)dt f(t)dt -—In [/ j{t)dz] F=i(z)
-0 P 4 x
CDF F'(z) Return(X) 1 - F(z) L. -In[1 - F(z)] F-(z)
SF -§'(z) 1-5(z) Return(X) o - In{S(z)] F(z)
z T F 4 z
HF - / h(t)dt - / h(t)dt - / h(t)dt Return(X) / A(t)dt F=1(z)
h(z)e Y- l—e Y= e Y—® )
CHF H'(z)e—H(z) 1 - e~ H(T) e—H(z) H'(z) Return(I) F=l(z
IDF F'(z) F(z) 1 - F(z) ik —In[1 - F(z)] | Return(X)

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




162
Note that the conversions to and from the IDF require each functional form to be

converted to a CDF first. as that form is the necessary form for inversion. Thus F~!(r)

appreas in the PDF, IDF(X) entry of Table C.1 rather than the more complicated

[ o]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix D

Algorithms for Various Procedures

D.1 Algorithm for VerifyPDF

Procedure VerifyPDF verifies the area under a PDF is one.
Input: A list-of-lists represented random variable X with n segments.
Output: “True” or “False™ depending if the area is equal to one.

X — PDF(X)

area — (

for:—1ton )
area «— area + f,{};;’“ Xi.(z)dz

if (area > 0.9999999 and area < 1.0000001)
RETURN(True)

else

RETURN(False)

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



164

D.2 Algorithm for ExpectationRV

Procedure ExpectationRV(X, g) finds the expected value of a function of a random
variable, i.e.. E[g(z)].

Input: A list-of-lists represented random variable X with n segments and a function
glz).

Output: The expected value of the function.

X «— PDF(X)
erpval — 0
fori—1ton )
expval — expval + f_if:';'“ Xii(z) - g(z)dz
RETURN(ezxpval)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



D.3 Algorithm for OrderStat

Procedure OrderStat(X, n, r) determines the PDF for the rt® order statistic from
a sample size n sampled randomly from a population with the same distribution as
the random variable X.

Input: A list-of-lists represented random variable X with m segments and the integers
n and r.

Output: The PDF of the order statistic X,) in the list-of-lists format.

fX « PDF(X)
FX — CDF(X)
fort—1tom
Xpealy) = e FXpa(9) ™" - (1= FXpa)™ - fX1a(y)
RETURN(X())

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



166

D.4 Algorithm for ProdIID

Procedure ProdIID(X, n) determines the PDF for the product of n iid random vari-
ables X.

Input: A list-of-lists represented random variable X and the integer n > 1.

Output: The PDF of }' = X™ in the list-of-lists format.

X ~ PDF(X)

Y — ProductRV(X.X)

fori—3ton

Y « ProductRV(X. })
RETURN(Y)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



167

D.5 Algorithm for SumRV

Procedure SumRV (X, Y) determines the PDF for the sum of the independent random
variables X and Y.
Input: Independent random variables X and Y in the list-of-lists format.

Output: The PDF of V" = X + Y in the list-of-lists format.

Wo—e¥ [using Transform|
Z —¢e¥ [using Transform|
Voe—In(W -V) [using ProductRV and Transform|
RETURN(V)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



168

D.6 Algorithm for SumIID

Procedure SumIID determines the PDF for the sum of n iid random variables X;. X,.... .. X,.
each having the same distribution as X.
Input: A list-of-lists represented random variable X with and the integer n > 1.

Output: The PDF of Y = 37, X, in the list-of-lists format.
X «— PDF(X)
}" — SumRV(X.X)
fori —3ton
¥« SumRV(X. Y')
RETURN(Y)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



169

D.7 Algorithm for MinimumRV

Procedure MinimumRV determines the PDF for the minimum of two independent ran-

dom variables.
Input: Two list-of-lists represented random variables X and Y.
Output: The PDF of V" = min {X.Y} in the list-of-lists format.

fX — PDF(X)
fY «— PDF(Y)
fV2 = fXoU f¥,
highest — min {max { fX,}.max {fY>}} [Delete elements above lower support max]
stoppoint — || fV3]| [where || - || denotes cardinality]
for ¢ «— 1 to stoppoint [Identify the max support of the new RV]
if fVa, = highest
highesti —
break
if highesti # fV3 stoppornt [Remove all values too high from support list]
for j «— (highest: + 1) to stoppoint
fVa, — NULL
FX — CDF(fX)
FY « CDF(fY)
nsegments — || fi5]] = 1
Xinder —~ 1
Yinder — 1
for 1 «— 1 to nsegments
if fV2. < fXo,
currFX(zr) <0
else if f"'a.i = f-¥2..'\’mdcr
currFX(z) — FX\| Xinder
Xinder — Xindexr + 1
if fV2, < fYa,
currFY(z) — 0
else if f"Zx = fY'Z.Yinde:r
currFY « FYl,Ymder
Yinder « Yindexr + 1
fYii—=1—=(1—currFX(z)) (1 —currFY(z))
¥, o Lt
RETURN(fV)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



170

D.8 Algorithm for MaximumRV

Procedure MaximumRV determines the PDF for the maximum of two independent
random variables.

Input: Two list-of-lists represented random variables X and Y.

Output: The PDF of V" = max {X.}'}.

fX — PDF(X)

FY — PDF(Y)

fnegX — =X [using Transform|
fnegY «— =Y [using Transform]
fV — MinimumRV( frnegX. fneg}’)

fV — <fV’ [using Transform|
RETURN(fV)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



171

D.9 Algorithm for MLE

Procedure MLE determines the maxirr;um likelihood parameter estimates associated
with a random sample drawn from a population with presumed underlying distribu-
tion X.

Input: The list-of-lists represented random variable X. the list of data values s. and
the list of unknown parameters p.

Output: The maximum likelihood estimates of each element in p.

fX «~ PDF(X)
L~20 [initialize the log-likelihood function]
n — ||s||
fori—1lton
L — L+In(fX1.1(s:))
npars — [|pl|
for j «— 1 to npars

I L . .
L) T [set up the derivatives]

[Using Maple's solve command. solve the system of equations below]

eqnset := {seq(L’[i] = 0, i = 1 .. npars)};
paramset := {seq(p[i]l, i = 1 .. npars)};
solns := solve(eqnset, paramset);

RETURN(solns)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix E

Algorithm for Transform

Introduced in Chapter 3. the following is the algorithm for the Transform procedure.

Input: The pdfof X. f(z) = fo(z)for sz < r <y, p=1.2.... .q.
The transformation g(r) = g;(z) for r;, < r < r,4;. where g;(z) is
monotone and not defined piecewise on r; < r < r,4;. and for some p.

[ZieZie1]) C [pezprr]- 1= 120000 in.
Output: The pdf of Y. h(y) = h,(y) fory; < y < y,41.7=1.2.....m.

X —{z1.22.... .Tns1} [by definition. X" is a sorted list]
Fori~—1lton
FF()—k [where f(z) = fi(r) on (z;. £i41)]
If ry = —>c and 5 = > then
¢ —0
else
BEGIN 1
END —n
If z; = —oc then
cp — T2—1
BEGIN « 2
If 2,41 = oo then
Chn—ZTn+1
END —n-1
For i — BEGIN to END
¢ — (zi+zi41)/2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



173

Fori~—1lton
a « limzi;, gi(T)
b — limrf.r..,_x gi(r)
m; «— min{a. b}
M, — max{a.b}

Y* — UL {m. M)} (Y= is a sorted list]
me—|¥"| -1

Forj—1ltom
h(y) — 0
Fori—1lton
If m; <y; and y,41 < M;
Find ¢! such that ¢ (gi(¢;)) = ¢
h(y) — hiy) + frew(e7 () - 1597 (y)]
hj(y) — h(y)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix F

Algorithm for ProductRV

As introduced in Chapter 4. the following is the algorithm for the ProductRV proce-

dure.

Input: The PDF of X. f(z). and the pdf of Y. g(y), where X and Y} are inde-
pendent. continuous random variables. PDFs are in the list-of-lists format: e.g..
[fX1, fX2,[Continuous’’PDF']|.

Output: The PDF of V' = X - Y. A(v). in the list-of-lists format. The PDF is
determined by the general result

roy= [* f()-g (3) e

||
X~ — fX; (from the list-of-lists format), n — ||.X"||

Y7 fYe,m e~ ||Y7
f—fXi
9+—fh
V= —[], (the empty list)
h ]
If (X <0and X;>0and 0 ¢ X*) then [Insert 0 into X™* if necessary|
Fori—1lton
If (X <0and X7, >0) then
Insert 0 between positions X7 and X7,
Insert f; at position f;4i

174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



nen+1
break
[f (Y7 <0and Y >0and 0 ¢ ¥Y~) then [Insert 0 into Y™™ if necessary]
Fori —1ltom
If (Y, <0 and Y3, >0) then
Insert 0 between positions }Y;" and Y3,
Insert g; at position g¢,4,
me—m+1
break
Fori—1lton [Set up the support list 177]
Forj—1ltom

Ve vy (X7 Yy

L— v
For:—1tol—-1
h; — 0
Fori: —lton-—1 [Integrate each segment of X times each segment of Y]
Forj—ltom-—1
a— X7
b= X7,
c— Y
d — }J:l'l
Ty — X7 - Y
If (X7 >0and J,‘J >O) then
fl — [? fuz £). idr [Ist Quadrant]

(d<oc)thenf)«—f/df,(x g;(%) - tdzr
f(c>0)then f3 «—f"/c filz)-g;(%)- fdr
If (¢>0and d < oc and ad < bc) then f4 — :/;f,-(.r) - g;(%) - Lda
f(c=0and d = o) then [lst quadrant. Scenario A]
Forii—1tol—1
If (V;>0and V], <oc)then
hy — hi; + f].
If (¢=0and d < ) then (1st quadrant, Scenario B]
Forite—1tol—1
If (V7 >0and V., < ad) then
hi — hy + f1
If (V7 > ad and V], < bd) then
hi; «— hi + f2
If (¢ >0 and d = o0) then [1st quadrant. Scenario C]
Foriz—1tol—1
If (Vi>bcand Vi, < oo)then

hu — h'u + f]-
If (Vi > acand Vi, < bc) then
hii — hii + f3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



If (¢ >0 and d < oc) then
If (ad < bc) then
Forii —1tol—1
If (V] 2 acand V], < ad) then
hii — hi + f3
If (Vi > ad and V| < b¢c) then
hii — hi + f4
If (V;; > bc and V7, < bd) then
hii — hiy + f2
If (ad = bc) then
Fori «—1tol—-1
If (Vi > acand V], < ad) then
hii — hii + f3
If (Vi > bcand V7, ; < bd) then
hii — hii + f2
If (ad > bc) then
Foriz—1ltol—-1
I[f (Vii > acand V] | < bc) then
hii — hiyi + f3
If (Vi; > bcand V], <ad) then
hi, — hy + f1
If (V;; 2 ad and V],
hii — hy + 2
If (X7 <0and zy > 0) then
Lo =2 fi(c) - g,(2) - Ldr
If (d < 0) then f2 — — [, fi(z) - g,(%)- Ldz
If (c > —oc) then f3 — — [¥/° fi(z) - g,(¥) - Ldz
If (¢ > —oc and d < 0 and ad > bc) then f4 — —

< bd) then

176
[Lst quadrant. Scenario D]

[1st Case]

[2nd Case]

[3rd Case]

[2nd Quadrant]

o fx) - gy(%) - Ldz

If (¢ = —oc and d = 0) then [2nd quadrant. Scenario A]

Forii—1ltol—-1
If (Vi >0and V], <) then
hii — hyi + f1

If (¢ = —oc and d < 0) then [2nd quadrant, Scenario B]

Forit—1ltol—1
If (Vi 2 ad and V], < oo) then
hii «— hi + f1
If (V; 2 b6d and V7, < ad) then
hii — hi + f2

If (¢ > —oc and d = 0) then [2nd quadrant, Scenario C]

Forzze—1ltol—-1
If (Vi 20and V7., < bc) then
hii — hii + f1
If (Vi 2 bc and V7, < ac) then

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



hii — hi + f3
If (¢ > —o0 and d < 0) then
If (ad > bc) then
Foritze—1tol—-1
If (Vi >adand V| <ac) then
hii — hii + f3
[f (Vi > bc and V], < ad) then
hii — hyi + f4
If (Vi > bd and V], < bc) then
hii — hi+ f2
If (ad = bc) then
Foriu—1tol—-1
If (Vir > adand VI, , <ac) then
t 141
hii — hii + f3
If (Vi > bd and V7, < bc) then
hii «— hi + f2
If (ad < bc) then
Forit —1ltol—1
If (V] > bcand V], < ac) then
hii — hi + f3
I[f (Vi > ad and V], < bc) then
hy — hi + f1
If (V; > bd and V7| < ad) then
hi — hi + f2
If (X7 <0 and ry < 0) then
fle =2 filx)-g,() - Ldx
If (d < oc) then f2 — — [/¢ fi(z) - g,(¥) - Ldr
If (c > 0) then f3 — — [0/ fi(z)-g;(%)- Ldr
If (¢ >0and d < oc and bd > ec) then f4 — —
[f (¢=0and d = oc) then
Foriz—1tol—1
[f(V; > —oo0and V7, <0) then
hi — hi + f1
If (¢c=0and d < o0) then
Forit—ltol—1
If (Vi > bd and V7, <0) then
hii — hi; + f1
If (Vi > adand Vjj, < bd) then
hii — hi + f2
If (¢ >0 and d = o0) then
Forii—1tol—1
If (Vi > —oo and Vi, < ac) then
hii — hi; + f1

[2nd quadrant. Scenario D]

[1st Case]

[2nd Case|

[3rd Case]

[3rd Quadrant]

o f(x) - gi(2) - tdr

[3rd quadrant. Scenario A

[3rd quadrant. Scenario B]

[3rd quadrant, Scenario C]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



If (Vj 2 acand V], < bc) then
hii — hii + f3
If (¢ >0 and d < o) then
If (bd > ac) then
Foriz—1ltol—1
If (Vi > bd and V7, < bc) then
hii — hi + f3
If (V7 > acand V], < bd) then
hii — hii+ f4
If (V.7 > ad and V], < ac) then
hy — hii + f2
If (ac = bd) then
Forit—1ltol—1
If (V] > ad and V};,; < ac) then
hy — hy + f2
If (V7 > bd and V[, < bc) then
hij — hii + f3
If (ac > bd) then
Forit—=1ltol—1
If (Vi > acand V|, < bc) then
h,, — hii + f3
[f(V;; 2 bd and V], < ac) then
hiy — hi+ f1
If (Vi) > ad and V], < bd) then
hy — hi+ f2
If (X; >0 and ry < 0) then

U= f2fiz) g, (%) - Ldz

d < 0) then f2 — [/ f(z)-g,(%) Ldr

I

If (

If (c >—oc) then 3 — ff,’/c filz)-g,(%)- fdr

If (¢>~> and d < 0 and ac > bd) then f4 « [
If (

¢ = —oc and d = 0) then
Forit~—1tol—-1
If (Vi > —oc and Vjj,; <0) then
hii — hiyi+ f1
[f (c = —oc and d < 0) then
Foriz—1tol—-1
If (V; > —ooand V], < bd) then
hi; — hy+ f1
If (Vi > bd and V7, < ad) then
/lg,' — h,, + f2
If (¢c>—o0 and d = 0) then
Forii—1tol—1
If (Vi > acand V;j,, <0) then

[3rd quadrant. Scenario D]

[1st Case]

[2nd Case]

[3rd Case]

[4th Quadrant]

"(’j filr)-g;(%)- Ldr

4th quadrant. Scenario A]

[4th quadrant, Scenario B

[4th quadrant, Scenario C|

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



hii — hi + f1
If (V7 2 bcand V], < ac) then
hii — hii + f3
If (¢ >—oc and d < 0) then
If (ac > bd) then
Forit —1ltol—1
If (V; > bcand V], , < bd) then

HES!
hix -— hix + f3
If (Vi) > bd and V], < ac) then

hy — hi + f4
[f (V;; > acand V] | < ad) then
hi, — hi + f2
If (ad = bc) then
Foriz—1tol-1
If (V)7 > bcand V7, < ac) then
hy — hyi + f3
If (V; > acand V., < ad) then
hii — hii + f2
If (ac < bd) then
Foriz—1ltol—1
If (Vi > bcand V], < ac)then
hy — hy + f3
If (Vi 2 acand V[ , < bd) then

u+l —
he ey fl
If (V7 > bd and V3, < ad) then
hii — hi+ f2
vy —h
[l =V

fi3 — [Continuous’.! PDF']
Return( f1')

179

[4th quadrant. Scenario D]

[Lst Case]

[2nd Case]

[3rd Case]

[Make a new list-of-lists for V|

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix G

Algorithm for KSRV

Procedure KSRV: Computing the CDF of the Kolmogorov-Smirnov test statistic.

Input: A positive integer n. the sample size associated with the KS test statistic
when all parameters are known.

Output: The CDF of the KS test statistic when all parameters are known is returned.
The random variable will be in the usual list-of-lists format.

[Phase 1: Determine the endpoints of the segments that define the support of the
KS test statistic.]

Dimension v [O[%ﬂ] - 1] [ holds the partition values for the support of D,]
m «—0
ty — 0
g — 5= [g is the gap between adjacent integration limits when v = 0]

Forte—1lton—1byvl
me—m+1
U — 1- @
Forje—2-[2]+1to2n—1by2 [Lower limit is n or n + 1. whichever is odd]
me—m+1
Um — ) g

[Phase 2: The next phase of the algorithm has three parts to it.

1. Define ¢;,c;.... .cm as the midpoints of the support intervals

180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2. Define z,,z,.... .z, as the limits of integration when v = 0
3. Define the n x n indicator matrices A, As.... .An.]
Dimension c[m] [Define vector c of midpoints of the support subintervals]

Fork+—1tom
ck — (vhoy + vr)/2

Dimension z[n] [Define vector r of centers of integration limits]
Fori—1ton
T (2i=1) g

Dimension A[n. n]

For:—2ton
Forj—1ltoz—1
Ay, <0 [Zero out lower triangle of A]

Fork — 1 tom [Loop through all subintervals of support|
Fori—1ton
For j—iton

A,; <0 [Zero out upper triangle of A|
: — max{|nc. — 1].0} [z is the number of leading zero columns in A}
[ — min {[2nc].n} [l is the number of u-subintervals that intersect

(ﬁ—v.#-{-v)]
Fori—1ton
For j « max{i.z+ 1} to min{n.i +{ -1}
A, — 1 [Place 1's in A]

[Phase 3: Compute the fixed and variable limit matrices F and V" and combine to
give the piecewise polynomial CDF]

Dimension P[m] [nth order polynomials for CDF segments. parameterized by v]
Dimension F[n,n] [Array of Fixed integrals. parameterized by v]
Dimension V[n, n] [Array of Variable integrals. parameterized by v]
Real S(v) [A function of v, used as a running sum]

[S(v) is the sum of all F elements one row down, starting one element to the right]

Pi(v) — n!(2v)" [Pulv) — nl 230 [220 L [230 Ldu, ... dupduy
Fork—2tom [Loop through all subintervals of support|

z « max{|ncx — 1.0}
[ — min {[2nc].n}
Fon(v) — fxl"__u 1 du,
Van(v) ful,._l ldu,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Fort e~ n—1to2 by -1
Ifi:+{>n then
S(v) — 0
else
S(v) « Fiprisi(v)
Ifi+1{>n+1 then
Fin(v) f[z.+CkJ+(r.+v)(l [ze+ex)) Viern(v) dus
‘,i n(v f[z.+ck_]+(.r.+u)(l [ze ek ]) v " (‘L’) du:
. Ueai t 13 t

I[f:+!{=n+1 then
Fi.n(v) — ;'tt "l+l n(v)dui

I[f:+l<n+1 then
Fiivici(v) = [273° _ {Vierisi-1(v) + S(v)} du;

S(v) «— S(v) + Fisr.min{i+i-1.2} (V)

For j « min{n — 1.7 +[—2} to max{i + 1.z + 2} by —1 [Interior of A matrix]
F.,(v) « :I]:zl;_v {Vitr,(v) +S )} du;

Ga(v) = [oRm {Vij(v) + S(v)} du;

(v) « S(v )+Fx+11( v)

1 < i then

wi(t) =[O S(v) du;

1 > i then

Gerr(v) = [0 Vi (v) + S(v) ) du;
If =+ 1< :then

Fii(v) « [7207° S(v) du,

If ] =n then [Rows 2.3.... .n of A matrix completed at this point]
S(v) —0
Fia(v) — [J120Van(v) duy

else
S(v) — Fauq(v)

If l < n then
Fii(v) « ;{'t"{‘/},(v)+5(v)} du,

S(v) — S(v) + Fa(v)

For j «— min{n — 1.l — 1} to max{2.z + 1} by —1
Fij(v) — e —en {V2u(0) + S(v)} duy
S(v) « S(v) + F»,(v)

If - =0 then
Fia(v) « f(f?—v S(v) du,

Pi(v) « 0

For j—~z+1tol
Pe(v) « Pi(v) + Fy(v)

P (v) « n!P(v)

FJ)“

If =

=

If =

<5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



183
[Phase 4: Shift the distribution to the form of P(D, < y) by substituting y = v+5-.]
Yo — Vo + 3=

Fork—1ltom [Loop through all subintervals of support]

1
Yi — Uk + 5~

Fely) — Pely — 52)

Return: yo,¥i.... .ym and Fi(y). Fa(y),..., Fm(y).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix H

Simulation Code for MLEOS

Approximations

As outlined in Chapter 7. the following Maple code was used to generate the MLEQOS
versus MLE estimations for 8 from the Uniform(0. ) distribution. The procedure
SecSolve is a generic secant-method for finding numerical solutions to an equa-
tion. This procedure is faster in finding solutions to the MLEOS equation than
Maple's fsolve command. The procedure MaxInitVals is a preparatory procedure
for SecSolve that returns an interval where a local maximum can be found. It is
merely a grid-search of an interval to find two points z; < z, such that f'(z,) > 0>

f'(z2). which is a condition for a local maximum on f(z) on [z,.z].

restart;
read(‘d:/research/probmap/probproc.map‘);
read(‘d:/research/secant.map‘);
read(‘d:/research/maxini.map‘);

184

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ntest := 1000; nsample := 25; Digits := 10;
Seed := readlib(randomize)();
randomize(8218);
outpt := array(l .. ntest);
thisdist := UniformRV(0, b);
bsample := 1;
for 1 from 1 to nsample do

fnow([i] OrderStat(thisdist, nsample, i):
od:
varsample :
wincnt := 0;
for k from 1 tc ntest do

print (kisnow, k);

for i from 1 to nsample do

varsample[i] := evalf(VarUni(0.0, bsample));

array(l .. nsample);

od;

varlist := sort((seg(varsample(i], i = 1 .. nsample)]);
bold := varlist[nsample];

lls := 0;

for 1 from 1 to nsample do
1lls := 11s + ln(fnow(1][1][1)(varlist(il)):

od:
1lsp := unapply((diff(lls, b)), b):
bnew := SecSolve(llsp, 0.998, 0.996):

if (bnew = bad) then
ini := MaxInitVals(llsp, 0.02, 2.2, 5);
print(‘initial guesses are ¢, ini[1], ini[2]);
bnew := SecSolve(llsp, ini[1], ini[2]);

fi;
if (bnew = bad) then
bnew := varlist([nsample];
elif (abs(bnew - 1) > abs(1l - varlist[nsample])) then
bnew := varlist[nsample];
else
winent := wincnt + 1; print(wincnt);
fi;
outpt[k] := [bnew, bold, bold * (nsample + 1) / nsample];
od:
suml := 0; sum2 := 0; sum3 := 0;
varl := 0; var2 := 0; var3 := 0;
skipped := 0;

for 1 from 1 to ntest do
if(nops(outpt[i]) = 3) then

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



suml := suml + outpt[i][1];
varl := varl + (outpt[i][1] - bsample ) ~ 2;
sum2 := sum2 + outpt[i][2];
var2 := var2 + (outpt(i] (2] - bsample ) - 2;
sum3 := sum3 + outpt([i][3];
var3 := var3 + (outpt[i][3] - bsample ) ~ 2;
else
skipped := skipped + 1;
fi;
od:
print(‘size of each sample = ‘, nsample,
‘number of samples = ‘, ntest);
avenew := suml / (ntest - skipped);
aveold := sum2 / (ntest - skipped);
avgadj := sum3 / (ntest - skipped);
varnew := varl / (ntest - skipped);
varold := var2 / (ntest - skipped);
varadj := var3 / (ntest - sklpped)

print (¢ had to skip‘, skipped, ‘win percentage =°,

4

evalf(wincnt / (ntest - skipped)));

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6



Bibliography

(1] Balakrishnan, N. and W. W. S. Chen, 1997. CRC Handbook of Tables for Or-
der Statistics from Inverse Gaussian Distributions with Applications. New York:

CRC.

[2] Barlow. R. E. and F. Proschan. 1981. Statistical Theory of Reliability and Life
Testing. Silver Spring. Md.: To Begin With.

(3] Barr. D. R.. 1994. Personal communication.

(4] Barr. D. R. and T. Davidson. 1973. “A Kolmogorov-Smirnov Test for Censored
Samples.” Technometrics. Volume 15. pp. 739-757.

[5] Barr. D. R. and P. W. Zehna. 1983. Probability: Modeling Uncertainty. Reading.
Mass.: Addison-Wesley.

[6] Barr. D. R. and P. W. Zehna. 1971. Probability. Belmont. California: Brooks-
Cole.

[7] Berger. R.. 1995. Personal communication.

[3] Birnbaum. Z. W.. 1952. “Numerical Tabulation of the Distribution of Kolo-
mogorov's Statistic for Finite Sample Size.” Journal of the American Statistical
Association. Volume 47. pp. 425-441.

[9] Casella. G. and R. Berger. 1990. Statistical Inference. Pacific Grove, California:
Wadsworth and Brooks/Cole. Inc.

[10] Chhikara. R. S. and Folks. L. S.. 1989. The Inverse Gaussian Distribution: The-
ory, Methodology and Applications. New York: Marcel Dekker.

[11] Cox, D. R. and D. Oakes, 1984. Analysis of Survival Data. New York: Chapman
and Hall.

187

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



183

[12] Cox. D. R. and E. J. Snell. 1981. Applied Statistics. New York: Chapman and
Hall.

[13] Crowder. M. J.. A. C. Kimber. R. L. Smith and T. J. Sweeting. 1991. Statistical
Analysis of Reliability Data. New York: Chapman and Hall.

[Ll4] D’Agostino. R. B. and M. A. Stephens. 1986. Goodness-of-Fit Techniques. New
York: Marcel Dekker.

[15] David. H. A.. 1981. Order Statistics. Second edition. New York: John Wiley and
Sons.

[16] David. H. A.. 1993. “A Note on Order Statistics for Dependent Variables.” Jour-
nal of the American Statistical Association. Volume 47. pp. 198-199.

[17] Devrove. L.. 1996. “Random Variate Generation in One Line of Code.” from
Proceedings of the 1996 Winter Simulation Conference. J. Charnes. D. Morrice,
D. Brunner. and J. Swain. eds. Coronado, California: Institute of Electrical and
Electronics Engineers. pp. 265-272.

[13] Evans. M.. N. Hastings and B. Peacock. 1993. Statistical Distributions. Second
edition. New York: John Wiley and Sons.

(19] Freund. J.. 1992. Mathematical Statistics. Fifth edition. Englewood Cliffs. New
Jersev: Prentice-Hall.

[20] Gehan. E. A.. 1965. A Generalized Wilcoxon Test for Comparing Arbitrarily
Singly-Censored Samples.” Biometrika. Volume 32. Parts | and 2. pp. 203-223.

21] Harter. H. L. and N. Balakrishnan. 1996. CRC Handbook of Tables for the ['se
of Order Statistics in Estimation. New York: CRC.

(22] Hogg. R. V. and A. T. Craig. 1995. Mathematical Statistics. Fifth edition. En-
glewood Cliffs. New Jerseyv: Prentice-Hall.

[23] Johnson. N. L., S. Kotz, and N. Balakrishnan, 1995. Continuous ['nivariate
Distributions. Volume 2, Second edition. New York: John Wiley and Sons.

[24] Johnson, R. A. and D. W. Wichern, 1992. Applied Multivariate Statistical Anal-
ysis. Third edition. Englewood Cliffs, New Jersey: Prentice—Hall.

[25] Kececioglu. D.. 1991. Reliability Engineering Handbook, Volume I. Englewood
Cliffs. New Jersey: Prentice-Hall.

[26] Kendall, M. G.. and A. Stuart, 1963. The Advanced Theory of Statistics: Volume
II Inference and Relationship. New York: Hafner Publishing.

[27] Knuth, D. E.. 1981. The Art of Computer Programming, Second edition. Read-
ing, Mass.: Addison-Wesley.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



189

[28] Kuiper. N. H.. 1960. “Tests Concerning Random Points on a Circle.” Proc.
Koninkljke Nederlandse Akadamie van Wetenschappen, Series A. Volume 63.
pp. 38—7.

[29] Larsen. R. J. and M. L. Marx. 1986. An Introduction to Mathematical Statistics
and Its Applications. Second edition. Englewood Cliffs. New Jersey: Prentice-
Hall.

[30] Law. A. M. and W. D. Kelton. 1991. Simulation Modeling and Analysis. Second
edition. New York: McGraw-Hill.

[31] Lee, E. T.. 1992. Statistical Methods for Survival Data Analysis. Second edition.
New York: John Wiley and Sons.

(32] Lee. S.. J. R. Wilson. and M. M. Crawford, 1991. “Modeling and Simulation of
a Nonhomogeneous Poisson Process with Cyclic Features.” Communications in
Statistics - Simulation and Computation. Volume 20, pp. 777-809.

(33] Leemis. L.. 1995. Probabilistic Models and Statistical Methods in Reliability. En-
glewood Cliffs. New Jersey: Prentice-Hall.

[34] Lehmann, E. L.. 1986. Testing Statistical Hypothesis, Second edition. New York:
John Wiley and Sons.

[35] Lieblein. J. and M. Zelen, 1956. “Statistical Investigation of the Fatigue Life
of Deep-Groove Ball Bearings.” Journal of Research of the National Bureau of
Standards. Volume 57, pp. 273-316.

[36] Lilliefors. H. W.. 1967. “On the Kolmogorov-Smirnov Test for Normality with
Mean and Variance Unknown.”™ Journal of the American Statistical Association.
Volume 62. pp. 399-402.

[37] Lilliefors, H. W.. 1969. “On the Kolmogorov-Smirnov Test for the Exponential
Distribution with Mean Unknown.” Journal of the American Statistical Associ-
ation. Volume 64. pp. 387-389.

[38] Miller. L. H.. 1956. “Table of Percentage Points of Kolmogorov Statistics.” Jour-
nal of the American Statistical Association. Volume 51. pp. 111-121.

[39] Moore. D. S. and G. P. McCabe, 1993. Introduction to the Practice of Statistics,
Second edition. New York: W. H. Freeman and Company.

[40] Owen. D. B.. 1962. Handbook of Statistical Tables. Reading, Mass.: Addison-
Wesley.

[41] Park. S. and L. M. Leemis, 1997. Discrete-event Simulation: A First Course.
The College of William & Mary.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



190

[42] Port. S. C.. 1994. Theoretical Probability for Applications. New York: John Wiley
and Sons.

[43] Rohatgi. V. K.. 1976. An Introduction to Probability Theory and Mathematical
Statistics. New York: John Wiley and Sons.

[44] Ross. S. M.. 1993. [ntroduction to Probability Models. Fifth edition. Boston:
Academy Press.

[45] Sahner. R. A. and K. S. Trivedi. 1993. “A Software Tool for Learning About
Stochastic Models.” [EEE Transactions on Education. Volume 36. pp. 56-61.

[16] Sarhan A. E. and B. G. Greenberg, 1962. Contributions to Order Statistics. New
York: John Wiley and Sons.

[47] Stephens. M. A.. 1965. “The Goodness-of-fit Statistics: Distributions and Sig-
nificance Points.” Biometrika. Volume 52. pp. 309-322.

[438] Stephens. M. A.. 1986. “Tests Based on EDF Statistics.” from Goodness-of-fit
Test Techniques. R. B. D'Agostino and M. A. Stephens. eds. New York: Marcel
Dekker. pp. 97-193.

[49] Tietjen, G. L.. 1936. “The Analysis and Detection of Outliers.” from Goodness-
of-fit Techniques. R. B. D’Agostino and M. A. Stephens. eds. New York: Marcel
Dekker. pp. 497-522.

[50] Trivedi. K. S.. 1997. Personal communication.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Vita

Andrew Gordon Glen is a Major in the United States Army, currently assigned as an
assistant professor in the Department of Systems Engineering at the United States
Military Academy in West Point, New York. He was born on February 22, 1962
in Denville, New Jersey. He holds a Bachelors of Science degree. graduated and
commissioned in the Field Artillery by the United States Military Academy in 1984.
He also holds a Masters of Science degree from the College of William & Mary.
graduated in 1995. He is a career Army officer of 14 vears who has served numerous
overseas tours. to include combat duty in the Persian Guif. His military awards
include the Bronze Star and the Meritorious Service Medal with Oak Leaf Cluster.
He is married to the former Lisa Mary Stewart. now also a Major in the Army. The

Glens have three daughters. Andrea. Rebecca. and Mary.

191

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



IMAGE EVALUATION
TEST TARGET (QA-3)

7
& \°
\ /4 /\ R Ma
—5 {5 \A%w,// R A

A
///.\q
&
053¢
EEEE 18ty
= = THE
N EEE g
i B Saik;
= 3 i
- oW
ofl = sy A
_— = = w
A

Reserved

© 1993, Applied Image, inc., All Rights

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



	A probability programming language: Development and applications
	Recommended Citation

	tmp.1539750766.pdf.ntyyv

