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A bstract

A probability p rogram m ing language is developed and  presented: app lica tions  illus
tra te  its use. Algorithms an d  generalized theorem s used in p ro b ab il i ty  are  encapsu
lated into a program m ing env ironm en t with the  com puter  a lg e b ra  sy s tem  M aple to 
provide the applied com m unity  w ith  au to m ated  probability  capab ili t ies .  A lgorithms 
of procedures are presented and  explained , including detailed  p re sen ta t io n s  on th ree  of 
the  most significant procedures. A pplications th a t  encom pass a  w ide range  of applied 
topics including goodness-of-fit te st ing , probabilistic m odeling, c en tra l  l im it theorem  
augm entation , generation of m a th em a tica l  resources, and  e s t im a t io n  are  presented.

xii
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C hapter 1

Introduction

1.1 G eneral

Probability  theory, as it exists today, is a  vast collection of axioms and  theorem s tha t,  

in essence, provides the  scientific com m unity many con tribu tions, including:

•  the nam ing and descrip tion  of random  variables th a t  occur frequently  in appli

cations.

• the theoretical results associated with these random  variables, and,

•  the applied results associated w ith these random  variables for sta tis tica l appli

cations.

No one volume categorizes its work in exactly these th ree  ways, b u t  the  l i te ra tu re ’s

comprehensive works accom plish these goals. W hether  volum inous, such as the  work

of Johnson, Kotz. and B alakrishnan  (1995), or succinct, such as th a t  of Evans, Hast-

2
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3

ings, and Peacock (1993). one finds all th ree  of these areas presen ted  in chap ters  that 

are organized on th e  first contribution above, nam ing and  describing th e  random  vari

ables. Works such as Hogg and Craig (1995), P ort  (1994). and  David (19S1) organize 

their efforts according to  the  second con tribu tion , covering theo re tica l results  that 

apply to random  variables. Then there are the  works such as Law and  K elton (1991), 

Lehmann (19S6). and  D ’Agostino and S tephens (1986) who co n ce n tra te  on the  sta

tistical applications of random  variables, an d  ta ilor the ir  exp lanations  of probability 

theory to the  portions of the  field th a t  have application  in s ta t is t ic a l  analysis.

In all these works, as well as countless o thers , one s tark  omission is apparent. 

There is no m ention of an ability to  a u to m a te  th e  naming, processing, or application 

of random  variables. This omission is even more profound when one considers the 

tedious na tu re  of th e  m athem atics  involved in th e  execution of m any  of these results 

for all but the sim plest of examples. In practice, th e  level of te d iu m  makes the 

actual execution un tenab le  for many random  variables. A utom ation  of certa in  types 

of these procedures could eradicate  this ted ium . T here  is an a b u n d an c e  of s tatistical 

software packages th a t  give the  scientific com m unity  powerful tools to  app ly  s tatis tical 

procedures. B ut to date ,  there  is no package th a t  a t tem p ts  to  a u to m a te  the  more 

theoretical side of th e  probabilist 's  work. Even the  simplest of tasks, p lo tting  a  fully 

specified probability  density  function, is not provided in m any  s ta t is t ic a l  packages. 

In order to plot new. ad-hoc densities or C D Fs. one is often required  to  w rite  an 

appropria te  program.
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4

A conceptual p robab il i ty  software package is now presen ted  th a t  begins to fill this 

existii g gap. Before ou tl in ing  this work's approach, let us p resen t some examples to 

il lustrate  w hat should be included in such a  probability  software package.

Consider the  following independent ran d o m  variables: W  ~  gammafA. k), Z  ~  

N(/x,cr), Y  ~  Weibullf A. k). A’ and  R  ~  arctan(<z>. a ) ,  and D . T . U .  an d  V  as spec

ified in the  questions below. See A ppendix  A for more in form ation  on the  a rc tan

dis tr ibu tion .

•  W h a t is the  d is tr ibu tion  of V’ =  W  +  X  +  K?

•  W h a t is the  d is tr ibu tion  of T  =  X  • ln (W 2) +  eYZ?

• W h a t is the d is tr ib u tio n  of a random  distance D,  which is th e  sum of the 

p roduc t of random  rates  Ri.  R 2  R n and random  tim es  T 1 . T 2  Tn. i.e.,

D =  Ri • T\ +  /?2 • T2 +  • • • +  R n ■ TvZ-

• W hat is the  d is tr ibu tion  of the  system  lifetime U in a re liability  block d iagram

containing two parallel blocks of two subsystem s th a t  consist of two com ponents 

in series, i.e.. U =  m ax{m in{V ’. W }, min{V’. Z } }  ?

•  W h a t  is the  exact u pper  tail probability  for the  s ta t is t ic  6.124 associated with

th e  d is tr ibu tion  of th e  4th o rder s ta t is t ic  out of a  sam ple  of 12 iid observations

th a t  have the  sam e d is tr ibu tion  as U?

•  How m ight one use th e  previous result to  improve goodness-of-fit testing?
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•  How could one employ the  P D F s  of order s tatistics of a popula tion , instead of 

the  P D F  of the  popula tion  itself, to  develop an a l te rna te  approach  to m axim um  

likelihood es tim ation?

•  W h a t is the  d is tr ibu tion  of the m ax im um  likelihood es t im a to r  of the inverse 

Gaussian random  variable 's first p a ram ete r  /j. when a  sam ple size of n is speci

fied?

•  Most im portan tly ,  if one could find these answers, w hat is the ir  utility to the 

s ta tis tica l and  applied  science com m unity?

T here  is no im plication th a t  th e  previously cited au thors  are remiss in neglect

ing the  au tom ation  of probability  software. In fact it is only with the  advent and 

m aturing  of com puter  a lgebra  system s, such as Maple and M athem atica ,  tha t the re  

now exists the  ability  to a u to m a te  probabilistic modeling and research. This doc

toral research and d isserta tion  will take  advantage of this relatively new technology 

by developing and presenting  a  software "engine" th a t  con tribu tes  to the fields of 

probabilistic m odeling and  s ta tis tica l applications. This research has concentrated  

on procedures in the  symbolic language Maple V.

T he  specific con tribu tions  to  the  applied  probability and s ta t is t ics  com m unity  of 

this research and d isserta tion  include the  following:

1. D etailed  algorithm s th a t  com prise the  conceptual software.

2. Generalized versions of theorem s th a t  comprise the  software. [Note th a t  while 

the  theorem s them selves m ay exist in more general forms, the ir  general forms
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appear difficult to im plem ent in an au tom ated  environm ent.]

3. An a lgori thm  th a t  produces th e  exact C D F of th e  Kolmogorov-Smirnov test 

s ta tis tic .

4. Detailed explanations and exam ples of the  software's capabilities.

5. A pplication examples th a t  contribute , on the ir  own. to various areas within 

probability  and statistics.

6. Explorative examples of probabilistic quests th a t  appea r  to be difficult to carry

out w ithou t autom ation .

7. Extensions of testing s ta tis tica l hypotheses, to  include specific contributions in 

the areas of outlier detection , goodness-of-fit. and  pa ram ete r  estimation.

S. D em onstrations in the general area of probabilistic  model design, to include 

specific contributions in the  areas of survival d is tr ibu tions ,  reliability block di

agrams. exac t solutions to centra l limit theorem  (CLT) applications, and es ti

mation.

1.2 L iteratu re rev iew

While the cu rren t  l i tera tu re  will be reviewed th roughou t the  dissertation, there are 

a number of works tha t should be mentioned for th e ir  general applicability to this 

research. T hese  include the  works of Johnson, Kotz, an d  B alakrishnan  (1995), Leemis 

(1995), Port (19S4). Rohatgi (1976). and  others th a t  provide the  foundation for the
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theory  behind  the  algorithm s and im plem entation . T he  review of the  l i te ra tu re  has 

discovered no publication on im plem enting  probabilis tic  procedures in c o m p u te r  al

gebra  languages, nor on the  benefits of such a  paradigm . Databases searched include 

F irs tSearch , INNOPAC. IN SPEC . D TIC , N T IC . Science C ita tion  Index. L ibrary  of 

Congress. Swem Library at T he  College of W illiam  k  Mary, and the USM A library  

at West Point. NY. Search strings included th e  following individual sub jec t areas and  

pairs of sub jec t areas, where appropria te : d is tr ibu tions ,  goodness-of-fit. life testing , 

Maple, modeling, order s tatis tics, probability, reliability, and  symbolic algebra. W hile  

the re  are  m any listings under these term s and  pairings of these term s, no work was 

found ab o u t combining probabilistic  results w ith  com puter  a lgebra im plem en ta tion . 

T h e  negative result of this search indicates th a t  the re  is a  lack of archival m a te r ia l  

on the  sub jec t .

1.3 O u tlin e  o f  th e  d isser ta tio n

This d isserta tion  is presented according to  th e  following outline. In C h ap te r  2 the  

developm ent, abilities, and exam ples of use of the  software language are  presented. 

C h ap te r  3 contains the developm ent of the  procedure  th a t  accom m odates tran sfo rm a

tions of random  variables to  include a re-s ta ted , general, im plem entable  theo rem  for 

such work. In C hapter  4 a procedure  for finding th e  d is tr ibu tion  of the  p ro d u c t  of two 

independen t continuous random  variables is presented. In C h ap te r  5 a  p rocedure  th a t  

re tu rns  th e  d is tribution of th e  K olm ogorov-Sm irnov goodness of fit s ta t is t ic ,  given a
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specified sam ple size, is p resented . C hap te r  6 contains an application in w hich a  new 

goodness-of-fit test p rocedure  is presented and tested  using the  software. C h a p te r  7 

is a  collection of exam ples of explorations in the fields of probability  an d  s ta t is t ic s  

th a t  are  now possible due to the  softwaxe. Finally, in C h ap te r  S. conclusions and 

suggestions of fu rther  work are given. In the appendices are listed th e  a lgo ri thm s for 

th e  software, as well as docum en ta t ion  of the  early work in crea ting  new probab ilis tic  

models.

1.4 N o ta tio n  an d  n om en clatu re

This section reviews ce r ta in  no ta tion  and nom enclature used here. Use is m a d e  of 

th e  following acronyms and functional notation for density representations:

•  probability  density  function (P D F )  f x i* ) -

•  cum ulative  d is tr ibu tion  function (CD F) F.y(x) =  f x {*)  ds,

•  surv ivor function (SF) 5.\'(-r) =  I — F.v(x).

•  haza rd  function (H F) h. \{x)  =

•  cum ulative  hazard  function  (C H F) Hx[ x )  =  j l ^ h x i s )  ds, and

•  inverse d is tr ibu tion  function  (ID F) F ^ l (x).

T h ro u g h o u t  the d isserta tion , the  proposed software is referred to as “a  p robab il i ty  

p rog ram m ing  language" (A P P L )  for brevity. The term s “piecewise” and “seg m en ted ”
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are used to  refer to P D F s  (and o ther  functions) th a t  can be cons truc ted  by piecing 

together various s ta n d a rd  functions, such as polynomials, logarithm s, exponentials, 

and trigonom etric  functions, e.g., the  tr iangu la r( l ,  2. 3) d is tr ibu tion  which has two 

segments or two pieces, each of which are linear functions. T h e  com mon abbrev i

ation  “N {fj., <r)’’ is used to refer to  the normal d istribu tion . N ote th a t  the second 

param eter  is the  s ta n d a rd  deviation, not the variance. Also, “11(0. 6)” is used to rep

resent the uniform d is tr ibu tion  with paxameters a and  6. Subscrip ts  in parentheses 

represent o rder s ta t is t ic s ,  e.g. the  r th order s ta tis tic  associated w ith  a  random  sam ple 

A 'i,A '2 X n is d eno ted  by A"(r ). The abbreviation “iid” is used to  denote inde

penden t and  identically  d is tr ibu ted  random  variables. T he  te rm s  “fully-specified,” 

“semi-specified," and  “unspecified’’ are used to describe the  degree to  which p a ram 

eters are specified as constan ts  or fixed param eters  in a  d is tr ibu tion . For exam ple, 

the  exponential! 1) d is tr ibu tion  is a fully specified d is tr ibu tion . T h e  W eibull(l ,  k ) 

and the  N(0. a)  are  bo th  semi-specified distributions. T he  tr iangu la r(a .  b. c) and 

exponential!A) d is tr ibu tions  are both unspecified. T ypew rite r  font is used to rep

resent Maple language s ta tem en ts .  For example “> X := U niform RV (0, 1 ) ; "  is a 

M aple assignment s ta te m e n t .  Note th a t  the symbol “>” represents  the  Maple inpu t 

p rom pt and is not typed .
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C hapter 2

Software D evelopm ent

T he  notion of probability software is different from the  notion of app lied  s ta tis tica l 

software. Probability  theory is rife with theorems and calculations th a t  require sym 

bolic. algebraic m anipulations. Applied sta tis tica l calculations are  usually numeric 

m anipula tions  of d a ta  based on known formulas associated with d is tr ibu tions  of com 

mon random  variables. This section contains a  discussion on several a lgorithm s th a t  

con tribu te  to  the development of APPL. Availability of com pu te r  a lgebra  systems 

such as M aple and M athm atica  facilitate the  development of software th a t  will derive 

functions, as opposed to  com puting  numbers.

P robab ility  software m ust, a t the most basic level, be a means of producing dis

tr ibu tions  of random  variables. At the heart of the  software m ust reside an “engine” 

th a t  can com pute  new. useful representations of distributions.

T h e  derivation of exact d is tr ibu tion  functions of complex random  variables is often 

untenable. In such cases, one had  to be content w ith  approx im ations  and  sum m ary

10
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s ta t is t ic s  of the unknown d is tributions, regardless of w hether  those app rox im ations  

and  sum m aries were adequate . For exam ple, one often approxim ates d is tr ibu tions  us

ing M onte  Carlo simulation or by invoking th e  centra l l im it theorem. S ta t is tics  such 

as th e  sam ple mean and variance of the  ap p ro x im ated  d is tribu tion  are then  reported . 

If w ha t was really needed was a certain percen tile  of the  approxim ated  d is tr ibu tion ,  

often tim es the  entire sim ulation would need to  be remodeled, re-validated, re-verified, 

and  re-run to obta in  the  needed inform ation. A result such as a fully-specified P D F  

would erad icate  the  need for such redundan t efforts. O ne also would have a n a ly t 

ical results to represent characteristics of ce r ta in  com plex random  variables whose 

fully-specified functions are untenable. For exam ple, renewal theory and com pound  

Poisson process theory have results th a t  derive  the  m ean and  variance of com plex dis

tr ibu tions . but fall short of ac tually  determ in ing  the  en tire  representation of com plex 

d is tr ibu tions  via a  PD F. C D F. or some o th e r  form of the  distribution. T he  proposed 

probabilistic  software is designed to make a b reak th rough  into the area of com plete ly  

describing complex distribu tions with P D F s. C D Fs. and  the  like, thereby providing 

increased modeling capability  to the  analyst.

At the  most general level, one could a t te m p t  to  find d istributions of in tr ica te  t r a n s 

form ations of multivariate , dependent random  variables. T h e  software described here 

is lim ited  to univariate, continuous, independen t random  variables, and  th e  com plex  

transform ations  and com binations th a t  can resu lt  between independent random  vari

ables. A set of algorithm s th a t  derives functional representations of d is tr ib u tio n s  

and  uses these functions in a  m anner th a t  is typ ically  needed in applications is pre
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sented. Specifically, algorithm s have been developed th a t  will conduct th e  following 

operations:

•  supp ly  a  com mon d a ta  s tru c tu re  for the  d is tr ibu tions  of continuous, un ivari

ate . random  variables— including d is tr ibu tion  functions th a t  may be  defined 

piecewise, e.g. the  tr iangu la r  d is tribution.

•  convert any functional representation of a  ran d o m  variable into an o th e r  func

tional representa tion  using the  common d a ta  s tru c tu re ,  i.e. allowing conversion 

am ongst the P D F . C D F . SF. HF. CHF, and  ID F,

•  verify th a t  the  a rea  under a  com puted  P D F  is one,

•  provide s traightforw ard ins tan tia tion  of well-known distributions, such as the  

exponential,  norm al, uniform, and Weibull d is tr ibu tions , with e ither  num eric  or 

symbolic param eters .

• de te rm ine  the  d is tr ibu tion  of a simple transfo rm ation  of a continuous random  

variable. Y  =  g(A ')— including piecewise, continuous transform ations,

•  de te rm ine  com m on sum m ary  characteristics of random  variables, such as the  

mean, variance, o th e r  m om ents, and so forth,

•  ca lcu la te  the P D F  of sums of independent ran d o m  variables, i.e. Y  =  X  +  Z.

•  ca lcu la te  the P D F  of p roducts  of independent ran d o m  variables, i.e. Y  =  X Z ,

•  ca lcu la te  the  P D F  of the  m in im um  and m a x im u m  of independent ra n d o m  vari

ables, i.e. Y  =  min {.V, Z } and Y  = m ax {.Y, Z } .
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• calcu la te  the  PD F of the r th order statistic  from a  sam ple of n iid ran d o m  

variables.

•  calcula te  probabilities associated with a random  variable.

•  genera te  random  variates associated with a random  variable.

• plot any of the six functional forms of any d is tr ibu tion , e.g. the HF or C D F .

• provide basic statistical abilities, such as m ax im um  likelihood es tim ation , for 

d is tribu tions  defined on a single segment of support,

• com plim ent the s truc tu red  programm ing language th a t  hosts the  software (in 

this case Maple) so tha t all of the  above mentioned procedures may be used in 

m athem atica l and com puter  program m ing in th a t  language.

2.1 T h e  com m on d a ta  structu re

Implicit in a  probability software language is a com m on, succinct, in tu itive, and 

m an ipu la tab le  d a ta  s truc tu re  for describing the d is tr ibu tion  of a random  variable. 

This implies there  should be one d a ta  s truc tu re  th a t  applies to  the  C D F. P D F ,  SF, 

HF. CH F. and  IDF. The com mon d a ta  s truc tu re  used in th is  software is referred to  as 

the  “list-of-lists.”1 Specifically, any functional representa tion  of a  random  variable  is 

presented in a  list tha t contains th ree  sub-lists, each w ith a  specific purpose. T h e  first 

sub-list contains the ordered functions th a t  define the  segm ents  of the  d is tr ibu tion . 

T h e  P D F  representation of the  tr iangu lar  distribution, for exam ple, would have th e
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two linear functions th a t  comprise the  two segments of its P D F  for its first sub

list. Likewise, the  C D F representation of the  tr iangular d is tr ibu tion  would have 

the two quadra tic  functions tha t com prise the  two segments of its C D F  for its first 

sub-list. The second sub-list is an o rdered  list of real num bers th a t  delineate  the 

end points of th e  segments for the functions in the  first sub-list. T h e  end point of 

each segment is au tom atically  the s ta r t  po in t of the  succeeding segm ent. T h e  th ird  

sub-list indicates w hat d is tribution form th e  functions in the  first sub-list represent. 

T he  first element of the  th ird  sub-list is e i th e r  the  string C o n t in u o u s  for continuous 

distributions or D i s c r e t e  for discrete d is tr ibu tions . T he  second e lem en t of the  th ird  

sub-list shows which of the  6 functional forms is used in the first sub-list. T he  string 

PDF. for exam ple, indicates the list-of-lists is curren tly  a P D F  list-of-lists. Likewise, 

CDF indicates th a t  a  C D F  is being represented.

Exam ples:

•  The following Maple s ta tem ent assigns the  variable X to a list-of-lists th a t  rep

resents th e  P D F  of a  U(0. 1) random  variable:

> X := [ [ x  -> l ]  , [0 ,  l]  , [ 'C o n t i n u o u s ' ,  'P D F ' ] ] ;

•  The tr iangu la r  d is tribution has a  P D F  with two pieces to its d is tr ibu tion . T he  

following s ta tem en t  defines a triangularfO, 1. 2) random  variable X as a  list-of- 

lists:

> X := [ [ x  -> x, x -> 2 -  x] , [ 0 ,  1 , 2 ] ,  [ 'C o n t i n u o u s ' ,  'P D F ' ] ] ;

•  An exponential random  variable X w ith  a  m ean of 2 can be defined in te rm s of
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its hazard function with the  s ta tem en t:

> X := [ [x  -> 1 /  2 ] ,  [0 ,  i n f i n i t y ] ,  [ ' C o n t i n u o u s ' ,  ' H F ' ] ] ;

•  Unspecified param eters  can be represen ted  symbolically. A N(0. 1) ran d o m  

variable X can be defined with the  s ta tem en t:

> X := [ [x  -> e x p ( - ( x  -  t h e t a )  2) /  s q r t ( 2  * P i ) ] ,
[ - i n f i n i t y ,  i n f i n i t y ] ,  [ ' C o n t i n u o u s ' ,  'P D F ' ] ] ;

•  T h e  param eter  space can be specified by using the Maple assume function. 

Consider the random  variable T  with H F

for A >  0. The random  variable T can be defined by the s ta tem en ts :

> assume(lambda > 0 ) ;
> T := [ [ t  -> lambda, t  -> lambda * t ] , [0,  1, i n f i n i t y ] ,

[ ‘C o n t i n u o u s ' ,  ' H F ' ] ] ;

•  T h e  syntax allows for the  endpoints  of th e  segm ents associated w ith  th e  su p p o r t  

of the  random  variable to be specified symbolically. A U(a. b) ra n d o m  variable  

X is defined by:

> X := [ [ x  ->  1 /  (b -  a ) ] ,  [ a ,  b ] , [ 'C o n t i n u o u s ' ,  ' P D F ' ] ] ;

•  No error checking is performed when a  d is tr ib u tio n  is defined. T h is  m eans  th a t

0 <  t < 1

A t t > 1

th e  s ta tem en t shown below will crea te  a  list-of-three lists th a t  is n o t  a  le g itim ate
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PD F.

> X := [ [ x  -> 6 ] ,  [0 ,  5 ] ,  [ ' C o n t i n u o u s ' ,  ' P D F ' ] ] ;

Some erro r checking will be performed by th e  procedure VerifyPDF. which is 

presented in a subsequent section.

2.2 C om m on  con tin u ou s, un ivaria te  d istr ib u tion s

S y n t a x :  T he  com m and

> X := RandomVariableNameKVCParameterSequence) ;

assigns to the  variable X a list-of-lists representation  of th e  specified random  variable. 

T he  argum ents  in ParameterSequence may be real, integer, or string (for symbolic 

param eters).

P u r p o s e :  Included in the p ro to type  software is th e  ability  to in s tan tia te  com m on 

d is tribu tions. W hile the list-of-lists is a  functional form tha t lends itself to the  m a th 

em atics  of the  software, it is not an instantly  recognizable form for represen ting  a 

d is tr ibu tion . Here is provided a  num ber of simple procedures tha t take  relatively 

com m on definitions of d istribu tions and convert th e m  to a  list-of-lists form at. T he  

included d is tr ibu tions  are well-know ones, such as the  normal, Weibull, exponentia l ,  

and gam m a. A com plete list of the  d istr ibutions provided in A PPL, to inc lude the ir  

param eters ,  is presented in Appendix  B.

S p e c i a l  I s s u e s :  The suffix RV is added  to each nam e  to  m ake it readily identifiable 

as a d is tr ibu tion  assignment, as well as to  deconflict M aple specific nam es such as
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n o rm a l  and gamma. The first le tter of each word is capitalized, which is the  case 

for all procedures in A PPL . Also, there  is no space between words in a procedure 

call, e.g.. an inverse Gaussian random  variable m ay be defined by th e  com m and 

InverseG auss ianR V (P a ram efeW . Parameter^). Usually the  fo rm at is re tu rned  as a 

PD F. but in the  case of the  IDB distribu tion , a C D F  is re tu rned . T he  C D F of the 

IDB distribu tion , it turns out. is easier for M aple to  m anipu la te  (e.g.. in tegrate , differ

en tia te )  th an  the  PDF. C erta in  assumptions are  m ade abou t unspecified param eters. 

For example, an assignment of an unspecified exponentia l random  variable (see the 

second exam ple below), will result in the  assum ption  th a t  A >  0. This  assum ption, as 

with all o ther d istributions ' assumptions, are only applied to unspecified param eters. 

T he  assum ptions allow Maple to carry out certa in  types of symbolic in tegration , such 

as verifying the  area under the  density is in fact one. for a  PD F  (see Section 2.4). 

E x a m p le s :

• T he  exponential! I ) d is tribution may be crea ted  with the following s ta tem ent:

> X := Exponentia lRV(1);

•  T he  exponential(A) random  variable A', where A >  0. d is tr ibu tion  may be 

created as follows:

> X := Exponent ia lRV(lam bda) ;

• These procedure also allow a  modeler to  reparam eterize  a  d is tr ibu tion . The 

exponential ( | )  d is tribution where 8 >  0 , for exam ple, may be crea ted  as follows:

> a s s u m e ( th e ta  > 0 ) ;
> X := Exponentia lRV(1 /  t h e t a ) ;
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• T he  semi-specified Weibull(A. 1). where A >  0. distribution m ay be crea ted  as 

follows:

> X := Weib u l lR V ( la m b d a ,  1 ) ;

Note th a t  this is a special case where the  Weibull d is tr ibu tion  is equivalent to 

an exponential distribution.

• T he  s tan d a rd  normal d istribu tion  m ay  be created as follows:

> X := NormalRV(0, 1 );

All d is tribu tions  presently included in A P P L  and their param eteriza tions  are  listed 

in A ppendix B.

2.3 T h e s ix  rep resen ta tion s o f d istr ib u tion s

S y n ta x :  The com m and

DesiredFormiRandom Variable [ ,  Statistic]) ;

returns the  list-of-lists format of the desired functional representation of the  d is tr ibu 

tion. where DesiredForm is one of the  following: PDF. CDF, SF, HF. CHF. or IDF. The 

single a rgum ent RandomVariable m ust be in the list-of-lists form at. T h e  optional 

argum ent , Statistic  may be a cons tan t or a  string.

P u r p o s e :  T he  6 x 6  d is tr ibution conversion ability, a  variation of the  m a tr ix  outlined 

by Leemis (1995, p. 55). is provided so th a t  the  functional form of a  d is tr ibu tion  can 

be converted to  and from its six well-known forms, the  PD F, C D F, SF, ID F, H F, and
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CHF. This set of procedures will take  one form of the d is tr ibu tion  as an  a rg u m e n t  

and  re tu rn  th e  desired form of the  d is tr ibu tion  in the  app rop ria te  list-of-lists form at. 

For the o n e-param ete r  call, the functional representa tion  will be re tu rn e d .  For th e  

tw o-param eter call, the  actual value of th e  function at th a t  point will be  re tu rn ed .  

Special Issues: T he  procedures are fairly robust against non-specified p a ram e te rs  

for the d is tr ibu tions  th a t  will be converted  (see th e  fourth ex am ple  below). 

Exam ples:

•  To ob ta in  the  C D F  form of a s ta n d a rd  norm al random  variable:

> X := NormalRV(0, 1);
> X := CDF(X);

or. equivalently, in a single line.

> X := CDF(NormalRV(0, 1 ) ) ;

Since the  C D F  for a  s tandard  norm al random  variable is not closed form, A P P L  

returns th e  following:

X  :=  [[j- —► ^  e rf(^  x \ /2 )  +  -j], [—oc. oc], [Continuous . CDF]]

• If A' ~  N ( 0 . 1), then  the following s ta te m e n ts  can be used to find P ( X  <  1.96) =

0.975.

> X := NormalRV(0, 1);
> prob  := CDF(X, 1 .96 ) ;
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•  Should the hazard  function of an exponential d is tr ib u tio n  be en te red , its asso

cia ted  PD F may be determ ined as follows:

> X := [[x -> 1 ] ,  [0,  i n f i n i t y ] ,  [ ' C o n t i n u o u s ' ,  ' H F ' ] ] ;
> X := PDF(X) ;

•  For the  case of unspecified param eters , the following s ta tem en ts  convert an 

unspecified YVeibull P D F  to an unspecified W eibull SF:

> X := WeibullRV(lambda, kappa) ;
> X := SF(X);

which returns:

.V :=  [[x —► e '- r  A *], [0, oo], [Continuous . SF]]

Note th a t  the tildes after the  param eters  indicate  th a t  assum ptions  have been 

m ade concerning the  param eters (i.e.. A >  0 and  k >  0) in th e  W eibullRV 

procedure.

•  F inding a quantile  of a d is tribution requires th e  ID F  procedure. If X  ~  

Weibull( 1.2), then  the  0.975 quantile  of the  d is tr ib u tio n  can be found with 

the  s ta tem en t

> quan t  := IDF(WeibullRV(l,  2 ) ,  0 . 9 7 5 ) ;

•  T h e  procedures can be nested so th a t  if the  ran d o m  variable  X has been defined 

in te rm s of its P D F , then the  s ta tem ent

> X := PDF(CDF(HF(SF(CHF(IDF(X)) ) ) ) ) ;
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does nothing to the list-of-lists representation for X, assum ing th a t  all transfor

m ations can be performed analytically.

A l g o r i t h m :  T he  conversions are  shown in a  6  x  6  m a tr ix  in A ppendix  C. Each 

element of the  m atrix  takes the 'row ' and converts it to  th e  type specified in the  

"column" heading. Thus the  first row. second element of th e  m a tr ix  shows a  call to 

the  CDF procedure using the  P D F  representa tion  of a  random  variable as an argum ent 

which re tu rns  the  CDF representa tion  of a random  variable.

2.4 VerifyPDF

S y n ta x :  T he  com m and

V erifyP D F  ( Random Variable) ;

returns t ru e  or false, depending on w hether or not the  P D F  integrates to one. T he  sin

gle argum ent Random Variable m ust be in the list-of-lists form at described previously. 

In addition, the  procedure prints

‘The a rea  under the P D F  is '.

along with the  area, and “tru e ” if th e  a rea  is 1 . 0  or “false” if th e  a rea  is not 1 .0 . 

P u r p o s e :  T he  purpose of this procedure  is to help de te rm ine  if a  random  variable in 

the  list-of-lists format is in fact a  viable representation of a continuous d istribution. 

Specifically, the  procedure converts the  d is tribution to  the  P D F  form and  carries ou t 

the  definite integration of the  P D F  to see if the area  under th e  P D F  is 1 . If so, it 

displays
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T he  area  under the  P D F  is . 1

and re tu rns  "true": otherwise it re tu rns  the com pu ted  area  and the  s tr ing  "false" if 

the  a rea  is more than  0.0000001 away from 1 . This  procedure  is prim arily  an indicator 

tool to check if the list-of-lists form at of a random  variable has been inpu t correctly. 

S p e c i a l  is su es :  The procedure only integrates th e  a rea  under each segment of the  

P D F  of th e  argument Random Variable. It does not check for negative functional 

values of f ( x ) .  The th ird  exam ple  below shows th e  continuous function

f [ x)  =  3 |x | — 1 — 1 <  x  < 1

in tegrates  to one. yet is not a P D F  since / ( 0 )  =  —1.

For m any  well-known dis tr ibu tions , the procedure  will carry ou t  the  symbolic 

in tegration  and verify tha t the  area under the P D F  is one. as i l lus tra ted  in the  

second exam ple  below. Not all of the  d istribu tions described in Section 2.2 have this 

symbolic capability, but most do. For example, the  unspecified log norm al d is tr ibu tion  

will in teg ra te  to one. but the unspecified inverse G aussian  d is tr ibu tion  will not: see 

the fourth  exam ple below.

E x a m p le s :

•  T h e  following Maple s ta tem en ts  create an exponentia l random  variable X w ith

a m ean of 1 . verify th a t  the  area  under f ( x )  is one, and re tu rn  true from

V erifyPD F:
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> X := E x p o n e n t i a l R V ( l ) ;
> V er i fyP D F (X ) ;

•  Since assum ptions are  m ade in ternally  in Exponent ialRV a b o u t  the  param eter  

space, the  following two s ta tem en ts  will also re tu rn  true:

> X := E x p o n e n t ia lR V ( la m b d a ) ;
> Ver i fyPDF( X ) ;

•  T h e  following code defines a function f { x )  such th a t  f ( x ) d x  =  1  and / ( 0 )  =  

— 1. so th a t  V er ify P D F  re turns true even though this  is not a  leg itim ate  PDF:

> X := [ [x  -> 3 * a b s ( x )  -  1 ] ,  [ - 1 ,  1 ] ,  [ ' C o n t i n u o u s ' ,  ' P D F ' ] ] ;
> V eri fyPDF( X ) ;

•  M aple is not able to  conduct the  in tegration  for m ore com plex distribu tions. In 

this exam ple. X is assigned th e  unspecified inverse G aussian d is tr ibu tion , and 

an a t te m p t  to  in teg ra te  the  area  under the  density is unsuccessful.

> X := I n v e r s e G a u s s i a n R V ( p l , p2) ;
> Ver i fyPDF( X ) ;

These s ta tem en ts  re tu rn  an error message indicating th a t  th e  function does not 

evaluate  to  num eric . T he  assum ption  is m ade th a t  fu tu re  releases of Maple will 

be able to correctly  in teg ra te  this P D F .

A l g o r i t h m :  T he  a lg o ri th m  first checks to see w hether th e  d is tr ib u tio n  of interest 

is continuous. Next, it checks to see if th e  d is tr ibu tion  of th e  ran d o m  variable is 

represented  by a P D F . If not, it converts a  local d is tr ibu tion  to  a  P D F  form using the 

PDF procedure, which was in troduced  in Section 2.3. At th is  po in t,  th e  area under

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2 4

the  P D F  is calculated and  prin ted . T he  returned value from  the  procedure is “ irue" 

if the  area is w ithin 0.0000001 of 1. and “false" otherwise. T h e  algorithm  is given in 

Appendix  D.

2.5 MedianRV

Syntax: T he  com m and

MedianRV (/tandom  Variable) ; 

re turns the  m edian  of a  specified distribution.

P urpose: This procedure re tu rns  the  median of a random  variable.

Special Issues: It is fairly robust for use with d is tr ibu tions  th a t  have unspecified 

param eters .

Exam ples:

•  For the  fully-specified Weibull distribution, the  following s ta tem en ts  will assign 

the m edian of the  d is tr ibu tion  to the variable m.

> X := W eibu l lRV ( l ,  2 ) ;
> m := MedianRV(X);

•  T he  following s ta tem en ts  de term ine  the m edian of an  exponential random  vari

able w ith unspecified param eters:

> X := Exponen t ia lR V ( lam b d a) ;
> m := MedianRV(X);

which results  w ith th e  value
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A l g o r i t h m :  The a lgorithm  is a  special case of the  tw o-param eter  IDF procedure call, 

where the  second pa ram ete r  is j .

2.6 DisplayRV

S y n t a x :  T he  com m and

DisplayRV (Random Variable) ;

displays the  list-of-lists form at of the d is tribu tion  in s tandard  m a them a tica l  nota tion, 

using the  Maple p i e c e w i s e  procedure.

P u r p o s e :  The purpose of this procedure is to m ake the  list-of-lists representation 

of a  d is tr ibu tion  m ore readable. A long list-of-lists with several segments is not easy 

to unders tand . This  procedure converts a  list-of-lists fo rm atted  d is tribu tion  into 

the  M aple-syntaxed "piecewise" function. Such versions of segm ented functions are 

displayed in a more readable  m anner in Maple. It also s ta tes  w hether the  curren t 

represen ta tion  is a P D F . C D F. etc. There is no com puta tion  in this procedure. The 

procedure  a t tem p ts  to m ake the  list-of-lists format more readable.

S p e c i a l  I s su e s :  None.

E x a m p l e :

•  T h e  piecewise tr iangu lar  d istribution could be  displayed as follows:

> D is p la y R V ( T r ia n g u la r R V ( l , 2 ,  3 ) ) ;  

which displays the  following on a  M aple worksheet:
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This random variable is currently represented as follows: 

'Continuous'. “PDF'

0 x < 1

< x  — 1  x <  2

3 — x x <  3

A l g o r i t h m :  This a lgori thm  is a set of com m ands th a t  creates a  sequence of conditions 

and functions in a  m anner  th a t  is usable by the  p i e c e w i s e  com m and.

2.7 P lo tD is t

S y n t a x :  T h e  com m and

P l o t D i s t  (Random Variable. LowerLimit, U pperLimit);

plots th e  curren t list-of-lists defined distr ibu tion  between LowerLimit and UpperLimit 

on a coord ina te  axis.

P u r p o s e :  To give a graphical representa tion  of any list-of-lists represented d is tr ib u 

tion. T h e  a rgum ents  LowerLimit and  UpperLimit define th e  m in im um  and m a x im u m  

values desired  on the  horizontal axis.

S p e c i a l  I s s u e s :  A d is tr ibu tion  function m ust be fully-specified for a  plot to  be 

genera ted . T h e  p rocedure  is especially useful for p lo tting  d istribu tions th a t  have 

more th a n  one segment.
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E x a m p l e s :

•  T h e  following s ta te m e n ts  will genera te  the plot of th e  P D F  for the tr iangu lar(  1 . 

2. 3) d is tribu tion:

> X := T r i a n g u l a r R V ( 1 , 2,  3 ) ;
> P l o t D i s t ( X ,  1, 3 ) ;

•  To plot the  HF of th e  e x p o n e n t ia l  1 ) d is tribu tion  for 0 <  t <  1 0 . en te r  th e  

s ta tem en ts :

> X := Exponent i  a lRV(1 ) ;
> P l o t D i s t ( H F ( X ) , 0 ,  10);

•  To see a progression of the  five PD F s of the order s ta t is t ic s  (the  p rocedure  is 

in troduced  in Section 2.10) for an ex p o n en t ia l  1) d is tr ibu tion ,  one could en te r  

th e  following s ta tem en ts :

> X := E x p o n e n t i a lR V (1) ;
> n : = 5 ;
> F o r  i  from 1 t o  n do

P l o t D i s t ( O r d e r S t a t ( X , n ,  i ) , 0, 10);  
od;

T h e  result is five P D F s  p lo tted  sequentially. This sequence could be of use to  

an in s tru c to r  exp la in ing  the  progressive na tu re  of o rder  s ta tis tics  to  first-year 

p robab il i ty  s tuden ts .

•  Unspecified d is tr ibu tions  produce “em pty plo t” warnings:

> X := E x p o n e n t ia lR V ( la m b d a ) ;
> P lo tD is tC X ,  0 ,  10 ) ;
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A lgorithm : T h e  algorithm  is a  nested set of P l o t  com m ands th a t  combine to  form 

a single plot. This  is s tandard  M aple p rogram m ing for p lo tting  m ultiple functions on 

a  single set of axes. Since — oc and  oo are com m on endpoints  of random  variables, it 

is necessary to  specify the lower and upper  endpoin ts  of the  horizontal axis.

2.8 ExpectationRV

Syntax: T he com m and

Expectat ionRV(/?andom Variable, Function) ;

re tu rns  the  expec ted  value of a function of a  random  variable.

P urpose: To find the  expected value of a  function of a  random  variable.

S p e c ia l  Is sues :  Procedures MeanRV and VarianceRV are the  special cases of the 

Expecta t ionRV procedure, evident by the ir  names.

Exam ples:

•  In order to  find the  expected value of a  s tandard  norm al random  variable, type:

> X := NormalRV(0, 1) ;
> meanX := Expectat ionRV(X, x -> x ) ;

•  Unspecified d istributions may also be used. Here is th e  m ean of the exponential(A) 

random  variable is calculated with the  s ta tem ents:

> X := Exponen t ia lR V ( lam bda) ;
> meanX := Expectat ionRV(X, x -> x ) ;
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A l g o r i t h m :  T h e  algorithm is a s traightforw ard im plem entation of the  following 

result. Let the  continuous random  variable X  have P D F  f x i *) -  Let g ( X )  be a 

continuous function of the X . The expec ted  value of <7 (A”), when it exists, is given 

by

E[g{X) \  =  [  9 { x ) - f x ( x ) d x .J—oc

T he  a lgo ri thm  is in Appendix D.

2.9 Transform

S y n t a x :  T h e  com m and

T ra n s fo rm (Random Variable, Transformation) ;

re tu rns  th e  P D F  of the transformed random  variable in the  list-of-lists form at. 

P u r p o s e :  To determ ine the P D F  of the  transformation of a random variable of the 

form Y' = g{X) .  As is the case for the  random  variable A \ the  transform ation function  

g( X)  m ay be defined in a piecewise fashion (see chapter 3).

S p e c i a l  I s s u e s :  T he  transform ation function must also be defined in an a l te red  list- 

of-lists fo rm at.  For this function, th e  modeler must break the  transform ation  into 

piecewise m onotone segments. Details on why this must be the  case, in ad d i t io n  to 

o ther  im plem en ta tion  issues are  given in C hap ter  3.

E x a m p l e s :

•  Let A' ~  U ( 0 ,1) and Y  = g ( X)  =  4A . The following s ta tem ents  will gen era te  

th e  P D F  of Y  :
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> X := [ [ x  -> l ] ,  [0,  1 ] ,  [ ' C o n t i n u o u s ' ,  'P D F ' ] ] ;
> g := [ [x  -> 4 * x ] ,  [ - i n f i n i t y ,  i n f i n i t y ] ] ;
> Y :=  T ra n s fo rm (X , g ) ;

•  T he  following s ta tem en ts  de te rm ine  the  d istribution of th e  square of an inverse 

G aussian  random  variable w ith  A =  1  and /z =  2:

> X := I n v e r s e G a u s s i a n R V ( l ,  2 ) ;
> g := [ [x  -> x “ 2 ] ,  [ 0 , i n f i n i t y ] ] ;
> Y := T ra n s fo rm (X , g ) ;

•  An ex am ple  of finding the negative  of a  random  variable is included in Section 

2.12 on th e  com m and SumRV. used in finding differences of random  variables.

•  An ex am p le  of finding the  reciprocal of a  random variable is included in Section 

2.11 on th e  com m and ProductRV , used in finding ratios of random  variables.

•  An ex am ple  of dividing a random  variable by a cons tan t is included in Section 

2.15 on th e  com m and MLE. used to  the  find d is tr ibu tions  of certain es tim ato rs .

•  A n u m b e r  of o ther illustrative exam ples are given in C h a p te r  3.

A l g o r i t h m :  T h e  theorem  which provides the  basis for the  a lgori thm  and  the  details  

associated w ith  th e  algorithm  are found in C hapter  3. T h e  a lgori thm  is in A ppend ix  

E.
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2.10 OrderStat

S y n t a x :  T he  com m and

O r d e r S t a t  (Random Variable, n, r) ;

re tu rns  the  PD F  of th e  r th of n o rder statistics draw n from a  popula tion  having the  

sam e distribu tion  as Random Variable.

P u r p o s e :  This p rocedure  is designed to return  the  m arginal d is tr ibu tion  of specified 

order s tatistics. T h e  procedures argum ents are defined as follows: the  population 

d is tr ibu tion  is represen ted  by th e  list-of-lists format, the  in teger sam ple size n, and 

the  integer r  to deno te  th e  r th order statistic . T he  p rocedure  re tu rns  the marginal 

P D F  for the  r th o rder  s ta t is t ic  in the  list-of-lists form at. T h e  procedure  is a  direct 

im plem entation  of th e  widely-published theorem on the  d is tr ibu tion  of the  order 

s ta tis tics  (e.g., Larsen and  M arx, 19S6. p. 145).

S p e c i a l  I s su e s :  This  p rocedure  is robust for unspecified p a ram e te rs  in the  population 

d is tr ibu tion . It is also fairly robust a t returning the  ap p ro p r ia te  P D F  when either 

n or r is unspecified. It is also robust when dealing w ith m ore  th a n  one segment in 

a  P D F . This  procedure  was a  cornerstone procedure th a t  allowed the  goodness-of-fit 

con tribu tions discussed in C h a p te r  6  in this dissertation.

E x a m p l e s :

•  T h e  P D F  of th e  th ird  o rder s tatis tic  from a sam ple  of five item s d is tr ibu ted  

according to  th e  s ta n d a rd  norm al d istribution is found by th e  commands:
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> X := NormalRV(0, 1 ) ;
> Y := O rde rS ta t (X ,  5,  3 ) ;

•  T h e  m inim um  of 6  iid e x p o n e n t ia l  1) random  variables, which in tu rn  is expo

nen tia lly  d istributed with A =  6 . is found by the  commands:

> X := E xponen t ia lR V (l ) ;
> Y := O rde rS ta t (X ,  6,  1);

•  In th is  example, an unspecified exponen tia l d is tr ibution  is entered as an  argu

m en t.

> X := Exponent ia lRV(lam bda) ;
> Y := O rde rS ta t (X ,  3,  2 ) ;

T h e  result is the unspecified order s ta t is t ic  d is tr ibu tion  of the sample median: 

Y' :=  [ [ r  —► — 6  ( e* -A x) — 1  ) A' e* ~2 A x * ], [ 0, oc ]. [" C o n tin u o u s 'P D F "  ] ]

•  In th is  example, n. r. and the  d is tr ibu tion  are unspecified.

> X := Exponent ia lRV(lambda ) ;
> Y : = O rde rS ta t (X ,  n ,  r ) ;

T h e  result is the general form of the  r th order sta tis tic  from an e x p o n e n t ia l  A) 

popula tion:

i [ 0 , oo ],

[ ‘ Continuous', ‘ PDF' ]

V :=
r( n +  1 ) ( - et-A~r > +  1 J^-1) A ' e < - A 

f (  r ) T( n -  r +  1 )
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•  As seen in the exam ple in Section 2.7 for P l o t D i s t ,  the  O rd e rS ta t  com m and 

m ay be em bedded in loops and  other program m ing  functions in Maple. This 

ability  is essential in the goodness-of-fit tests p resented  in C hap te r  6  of this 

d isserta tion .

A l g o r i t h m :  The algorithm  is a  straightforward im plem enta tion  of the  following 

result (found in Larsen and Marx. 1986. p. 145):

f x i rS*)  =  1-------7T7-------- r,Fx ( x y - 1 • (1 -  Fx (x) )n~r ■ f x (x).( r  — 1  )!(n — r)!

As seen in Appendix D. the algorithm  computes th e  new distribution segm ent by 

segment.

2.11 ProductRV and ProductllD

S y n t a x :  T h e  com mand

ProductRVCRandom Variable 1 , Random Variable2) ;

re tu rns  th e  P D F  of the  product of the  two random  variables in the a rgum ent list. 

P u r p o s e :  This  procedure com putes the PD F of p roduc ts  of random  variables, i.e., 

Z  =  .YV. T he  arguments can be any  list-of-lists represen ta tion  of a  d is tr ibu tion . This 

p rocedure  is another cornerstone procedure for the  softw are package and  is m ore  fully
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explained in C hap te r  4. T h e  similar com m and P r o d u c t  IID  (.Random Variable, n ) will 

com pute  the  P D F  of th e  n-fold product of iid random  variables.

Special Issues: T h e  two random  variables in the  a rg u m e n t list are assum ed to be 

independen t,  but not necessarily identically d is tr ibu ted  in ProductRV. Special care is 

used to  allow for the  m ultip l ica tion  of segmented random  variables. T he  d is tr ibu tion  

of a  p roduc t of ran d o m  variables is frequently segm ented, as in the  case of a tr iangu la r  

ran d o m  variable m ultip lied  by ano ther tr iangular  random  variable. D is tribu tions  do 

not have to  fully-specified as seen in the  fifth exam ple. Also, the a lgo ri thm  may 

be used in conjunction w ith Transform to com pute  th e  P D F  of ratios of random  

variables, as seen in th e  fifth example.

Exam ples:

• T he  d is tr ibu tion  of the  product of a s tandard  norm al and a U(0. 1) random  

variable is found with the  following commands:

> X := NonnalRVCO, 1) ;
> Y := UniformRV(0 ,  1 ) ;
> Z := ProductRV(X, Y ) ;

•  T he  PD F of th e  p roduct of two independent exponentia l!  1 ) random  variables

is found w ith th e  following commands:

> X := E x p o n e n t i a l R V ( l ) ;
> Z := ProductRV(X, X);

• T he  PD F of th e  p roduct of six independent s ta n d a rd  norm al random  variables 

is found with:
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> X := NormalRV(0 ,  1);
> Z := P ro d u c t I ID (X ,  6 ) ;

•  T he  PD F  of the  p roduct of two unspecified e x p o n e n t ia l  A) d is tr ibu tions  is a 

P D F  in te rm s of the  'BesselK ' function:

> X := E x p o nen t ia lR V ( lam bda) ;
> Y := ProductRV(X, X);

T he  procedure re tu rns  the  following list-of-lists:

:=  [[r —► 2 A ' 2  BesselK(0. 2 A' \/^)]r  [0, oc]. [‘'Continuous'. 'P D F ‘}\

•  For ratios of random  variables, employ the  transform ation  ability of th e  software 

as in the following exam ple, which could be used to  calculate th e  d is tr ibu tion  

of a random  ra te ,  given independent d is tribu tions for distance an d  time:

> D := UniformRVCO, 10);
> T := E x p o n en t ia lR V (1);
> R := ProductRV(D, Transform (T,  [ [ x  -> 1 /  x ] , [0,  i n f i n i t y ] ] ) ;

Note, in this exam ple, the  call to T ra n s fo rm  finds the  d is tribu tion  of l / T . so the 

P D F  of the random  ratio  R  =  D [T  is com puted  with the  P roductR V  com m and.

•  C h ap te r  4 contains o the r  illustrative exam ples of this procedure 's  capabilities.

A l g o r i t h m :  T he  a lgori thm  is presented in A ppendix  F. and  is explained  in detail in 

C h a p te r  4.
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2.12 SumRV and SumllD

Syntax: T he  com m and

SumRV (Random Variable 1 , Random Variables) ;

re turns  the  P D F  of th e  sum  of RandomVariablel and  Random Variables.

P u r p o s e :  This procedure returns the list-of-lists fo rm atted  PD F of the  convolution 

of two independent random  variables. For exam ple, it will produce the  P D F  of 

Z  = X  + V. where A* and  V' are independent random  variables. T he  s im ilar com m and  

SumllD ( Random Variable, n) will compute the  P D F  for the  n-fold convolution of iid 

random  variables.

Special Issues: T h e  random  variables entered as argum ents  are assum ed to  be 

independent, but not necessarily having the  sam e d is tr ibu tion  in SumRV. T he ability  

to com pute  differences of random  variables is inherent in the software by em ploying 

the transform ation  ability, as in the fourth exam ple below.

Exam ples:

•  T he  sum  of a s tan d a rd  normal random variable and a  U(0. I) random  variable 

has a  P D F  found as follows:

> X := NormalRV(0, 1);
> Y := UniformRV(0, 1);
> Z := SumRV(X, Y) ;

•  T he  P D F  of th e  sum  of two independent un it  exponential ran d o m  variables, 

which is an Erlang PD F, is found as follows:
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> X := Exponent ia lRV(1) ;
> Z := SumRV(X, X ) ;

•  The P D F  of the  sum of six s tandard  normal random  variables, which is N(0. 6 ) 

is found as follows:

> X := NormalRV(0,  1);
> Z := SumIID(X, 6 ) ;

•  In this exam ple  one finds the  P D F  for the  difference between a  uniform and 

exponential random  variable:

> X := UniformRV(0, 10);
> Y := E x p o n e n t i a lR V ( l ) ;
> D := SumRV(X, Transform(Y, [ [y -> - y ] , [ - i n f i n i t y ,  i n f i n i t y ] ] ) ;

Note, in this example, the call to Transform finds the negative d is tr ibu tion  of 

the V  random  variable, so the  P D F  of the  random  difference D — X  — V  is 

com puted.

A l g o r i t h m :  T he  algorithm  for this procedure relies heavily on the Trans fo rm  and 

ProductRV procedures. Specifically, to com pute  the  convolution d is tr ibu tion  of Z  = 

X  +  V. it carries out the transform ation Z  =  ln(eAe 1' )  using the  T rans fo rm  and

ProductRV procedures. A separate  algorithm  for the  convolution of two random

variables has been im plem ented by Berger (1995), bu t to da te  the  au th o r  hasn ’t 

been able to get th a t  procedure to  be com patib le  in all cases of segm ented  random  

variables. T he  a lgorithm  for this procedure is listed in Appendix D.
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2.13 MinimumRV

Syntax: T he com m and

MinimumRV {Random Variable 1,  Random Variabled) ;

re tu rns  the P D F  of the  m inim um  of th e  two random  variables listed as a rgum ents .  

Purpose: MinimumRV is a  procedure th a t  produces the  d is tr ibu tion  of th e  random  

variable Z  =  min{.Y. V }, where A" and  Y  a re  independent, continuous ran d o m  vari

ables. The procedure  takes the P D Fs of X  and  V as a rgum ents  and re tu rns  th e  PD F  

of Z. all in the  usual list-of-lists format.

Special Issues: T h e  two random  variables in the  a rgum ent list are assum ed  to  be 

independent, bu t not necessarily identically  d is tr ibu ted . T h e  procedure is robust 

on unspecified param ete rs  for the  d is tr ibu tions  (see the  th ird  exam ple below). T he  

procedure is able to  handle  segmented ran d o m  variables, such as in the first exam ple  

below where two dis tribu tions  with only one segment each in their P D F s  have a 

m inim um  with two segments.

Exam ples:

• The m in im um  of a s tandard  norm al random  variable and  a U(0, 1 ) random  

variable is found as follows:

> X := NormalRV(0, 1) ;
> Y := UniformRV(0, 1);
> Z := MinimumRVCX, Y) ;

•  The P D F  of th e  m inim um  of two independent un it exponential r an d o m  vari

ables. which is also an exponentia l d is tr ibu tion  w ith  A =  2, is d e te rm in e d  as
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follows:

> X := Exponen t ia lR V ( l )  ;
> Z := MinimumRV(X, X) ;

•  T h e  m in im u m  of two unspecified iid Weibuil random  variables is found as fol

lows:

> X := WeibullRV(lambda, k a p p a ) ;
> Y := MinimumRV(X, X);

T his  call to MinimumRV returns Y as:

, [0, oc ], [ ‘ Continuous' , 'PDF'' ]

A l g o r i t h m :  T h e  procedure uses the C D F  technique of finding th e  P D F  of the  m in

im um  of two independent random variables. Careful consideration is given to seg

m ented ran d o m  variables, as the  C D F  techn ique  requires the segm ents  to  be aligned 

properly. T he  algorithm  is in A ppendix  D.

2.14 MaximnmRV

S y n ta x :  T h e  com m and

MaximumRV(/tandom Variablel, RandomVariable2) ;

re tu rns  th e  P D F  of the m axim um  of th e  two random  variables lis ted  as argum ents. 

P u r p o s e :  MaximumRV is a  procedure th a t  produces th e  d is tr ibu tion  of th e  random  

variable Z  =  max{A", Y }  where X  and  Y  are  independent, continuous random  vari-

Y  : = 2 A' 2  A*
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ables. T he  p rocedure  takes as argum ents th e  P D F s  of A and V. and  re turns the  P D F  

of Z, all in the  list-of-lists format.

S p e c ia l  I s s u e s :  T h e  two random variables in the  a rgum ent list are  assumed to  be 

independent, bu t not necessarily identically d is tr ibu ted . Notice the re  are no proce

dures for the  m ax im u m  or minimum of n iid random  variables. Such a  determ ination 

is already possible w ith the procedure O r d e r S t a t .

E x a m p le s :

•  The m ax im um  of a  standard  norm al random  variable and  a U(0. 1) random  

variable is found as follows:

> X := NormalRV(0, 1);
> Y : = UniformRV(0, 1);
> Z := MaximumRV(X, Y) ;

• The m ax im um  of two independent un it  exponential random  variables is found 

as follows:

> X := E xponen t ia lR V (1);
> Z := MaximumRV(X, X);

Note th a t  th is  could represent the  system  lifetime of a parallel arrangem ent of 

a two-component system.

A lg o r i t h m :  T h is  procedure relies on the  MinimumRV and  Trans fo rm  procedures 

to determ ine th e  d is tribu tion  of the  m ax im um . Specifically, it maximizes Z  =  

m ax {A', V'} by perform ing the transform ation  Z  =  — min {—-V. —V'}. The a lgorithm  

is found in A ppend ix  D.
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2.15 M axim u m  likelihood  e stim a tio n

S y n ta x :  T h e  com m and

MLE(Random Variable, SampleList, ParameterList) ;

returns the  M LE of the param eters  listed in ParameterList as a result of the sam ple 

observations listed in SampleList for sampling from a popula tion  with a  d is tribu tion  

represented by Random Variable.

P u r p o s e :  T h e  purpose of this procedure is to  find real, and  symbolic, where possi

ble. estim ates  of param eters  for distributions. T he  argum en t SampleList can either 

be a fully-specified list of real num bers or the  unspecified list of strings. T he  a rgu

ment ParameterList must be a list of the unknown param eters  to be es tim ated . T he  

argum ent RandomVanable  must be a list-of-lists specified d is tr ibu tion  of a random  

variable.

S p e c ia l  I s s u e s :  One is not limited to performing ML estim ates on known random  

variables. In the  explorations envisioned for this software, any list-of-lists represented 

distribution m ay be used in the estim ation  procedure. Clearly one is limited by 

Maple's solving capability, especially in the case of unspecified samples. An advan

tage of this approach to ML estim ation  is th a t  sometimes we can actually  find the  

d is tribution of the  estim ator. For instance, in the  th ird  exam ple  below, the  procedure 

MLE returns a  function of independent, univariate random  variables, in this case X  

of the  inverse Gaussian d istribu tion . After the  d is tr ibu tion  of the  es tim ato r,  called 

XB in the  exam ple, is found, one can find its mean, variance, quantiles, and so forth,
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E x a m p le s :

•  For the  semi-specified inverse G aussian  d is tr ibu tion  where <r is known (or as

sum ed) but n is unknow n, one finds th e  e s t im a te  of n  as follows:

> X := I n v e r s e G a u s s ia n R V ( l , mu);
> muhat := MLE(X, [1 ,  2,  3 ,  4 ,  5 ] ,  [mu]);

T he  call returns the  es tim ated  value for // of 3.

•  Should both param eters  need to  be es t im a ted ,  then  th e  p aram ete r  list would 

include both of th e  unknow n pa ram ete rs  as follows:

> X := InverseGaussianRV(lambda, mu);
> paramhat := MLE(X, [1 ,  2 ,  3 ,  4 ,  5 ] ,  [ lambda,  mu]);

T he  call returns the  e s tim ated  values in th e  form of a list assigned to p a ra m h a t ,  

where p a r amha t  is now the  list [ 3 0 0 /3 7 ,  3] corresponding to the  M LEs A =  ^  

and =  3.

•  For the case of a general random  sam ple  J i . r 2  i „ .  i.e.. the sam ple  is un 

specified, but n is fixed, one would ty p e  the  following:

> X := NormalRV(mu, 1);
> Y := MLE(X, [ x l , x2 ,  x3,  x4,  x 5 ] , [mu]);

This code re turns th e  MLE X  for n =  5. Should one w ant to find the  d is tr ib u 

tion of this es tim ato r,  the  following com m ands  would be used:

> XB := Transform(SumIID(X, 5 ) ,  [ [ x  -> x /  5 ] ,  [ - i n f i n i t y ,  i n f i n i t y ] )
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A l g o r i t h m :  T he  algorithm, found in A ppendix  D. is a  s traightforward im p lem en ta 

tion of m ax im um  likelihood es t im a tion  using th e  log-likelihood function.
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C hapter 3 

Transform ations o f U nivariate  

R andom  Variables

3.1 In tro d u ctio n

As m en tioned  in C h ap te r  2. the  procedure Transform is a  key procedure in A P P L . Its 

uses are many, and T rans fo rm  is often em bedded in o the r  procedures, as in MaximumRV 

for exam ple . A generalized version of the  univariate change-of-variable technique for 

transform ing  continuous random  variables is presented here. Ex tend ing  a theorem  

from Casella and Berger (1990) for m a n y -to - 1  transform ations, to include a  more 

general set of univariate transform ations. Specifically, transform ations can range 

from 1 —to — 1  to m a n y - to - 1  on various subsets of the  support of the  random  variable 

of in terest.

In its simplest application, the  change-of-variable technique is used to  de term ine

44
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the  distribution of a  continuous random  variable Y  given the d is tr ibu tion  of a con

tinuous random  variable X  and a  1 - t o - l  t ransfo rm ation  from the  su p p o r t  of X  to 

the  support of Y  As the  conditions on the transfo rm ation  Y  = g ( X )  becom e more 

general, the technique requires more detail in its descrip tion and is less likely to ap

pear in in troductory  p robability  and  statistics tex ts .  Casella and Berger (1990. p. 51) 

discuss transforming random  variables using the  change-of-variable techn ique when 

the  entire transform ation  is m a n y - to - 1 . except for a  finite num ber of points, th a t  is, 

th e  cardinality of the  set g ~ l {y) is the  same for a lm ost all y in the  su p p o r t  of V . Hogg 

and  Craig (1995. p. 190) ex tend  this m a n v - to - l  techn ique  to n-d im ensional random 

variables. In this chap te r ,  a  more general un ivaria te  case is considered in which the 

transformations are "piecewise m a n y - to - 1 .” where "m any” may vary based on the 

subinterval of the  su p p o r t  of Y  under consideration. W ha t follows is a theorem  for 

this case and an a lgo ri thm  (in Appendix E) for a com puter  a lgebra system  imple

mentation of the  result. A lthough the theorem  is a s traightforw ard generalization of 

Casella and Berger's, the re  are a num ber of details  th a t  have to be addressed  in order 

to produce an a lgo ri thm  for finding the PD F  of Y.  T he  resulting c o m p u te r  algebra 

system im plem entation  of the  theorem  relieves analysts ,  researchers, and  students 

from arduous com puta tions .

Consider the  following exam ple. Let f x { x )  =  5  for —1 <  x <  2, be the  PD F 

for the random  variable .V. Consider the  transfo rm ation  Y  =  g ( X )  =  X 2. This 

transformation is a 2 - t o - l  transform ation on th e  interval X  6  ( — 1,1) (except at 

A' =  0) and it is 1—to —1 on the  interval X  €  [1,2); see Figure 3.1 on page 54. Some
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in t ro d u c to ry  probability  te x ts  use th is  as an  exam ple  (e.g., Larsen and  M arx . 19S6, 

p. 137), bu t  fail to s ta te  a  general th eo rem  th a t  trea ts  such piecewise m a n y - to -1  

transform ations .  T he  difficulty lies in identifying an appropria te  p ar ti t ion  of the  

s u p p o r t  of X  and a corresponding  p a r t i t io n  for the  support of Y  and  then  de term in ing  

w hich of these subsets of th e  suppo rt of X  correspond to each of the  subsets of the  

s u p p o r t  of Y.  A fu rther com plica tion  is encoun te red  when the  transfo rm ation  itself is 

e i th e r  discontinuous or non-differentiable a t  certa in  points. For exam ple, consider the  

ran d o m  variable X.  where f x ( x )  =  (x +  l ) / 1 8  for — 1  <  x  <  5, and  the  transfo rm ation  

(see F igure  3.3 on page 57):

Y  =  g ( X )  =
A' 2  - 1  <  X  <  |

A  § <  X  < 5

In th is exam ple, the tran sfo rm a tion  is discontinuous as well as "piecewise m a n v - to -

1 ." T h is  theorem  and resu lting  im p lem en ta t ion  in a  com puter a lgebra system  will 

d e te rm in e  the  P D F  of V for such transform ations.

In Section 3.2. the  theorem , m odeled afte r  Casella and Berger's, is presented. 

T h is  theorem  has been p resen ted  m ore generally  in earlier papers. Barr and  Zehna 

(1971. p. 225) consider m u lt iv a r ia te  m a n y - to -o n e  transform ations. Rohatgi (1976, 

pp. 73-74) and Port (1994, p. 462) consider th e  piecewise m a n y - to -o n e  case in the  

u n iva ria te  and m ultivaria te  se tt ings ,  respectively. This theorem  is s tr ic tly  univariate , 

b u t  p e rm its  im plem en ta tion  in a  co m p u te r  a lgebra  system. It de term ines  th e  d is tr i

b u tion  of V' =  g ( X)  for any  un iva ria te  ran d o m  variable X  of th e  continuous ty p e  w ith
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few restrictions on the transfo rm ation  g( X) .  Note th a t  this theorem will be s ta te d  in 

a somewhat e laborate  form for the  purpose of facilita ting  its im plem entation . Sec

tion 3.3 discusses an algorithm ic im plem entation  of th e  theorem  using the  com p u te r  

algebra system  capabilities of th e  M aple V software package. Section 3.4 il lustrates  

th e  usefulness of the algorithm .

3.2 T h eorem

Before the theorem  is presented, an overview of th e  ra tionale  for the  no ta tion  is in 

order. Assume th a t  the  support of .V, denoted by X , consists of a  finite union of 

open intervals. The points x x < x 2 < ■ ■ ■ < x n+\ genera te  n consecutive subintervals  

and  are determ ined  as follows. T he  first subinterval of X  begins with x t and th e  last 

subinterval of .V ends with x n+i- T he  remaining x , 's  correspond to o ther  endpo in ts  

of the intervals of A’ or to the locations in A’ where th e  function g is discontinuous or 

non-differentiable. or g' is zero. Let y ,(x) denote the  restriction of g(x)  to (x : .x ,+ i) ;

by design. y, is monotone and therefore invertible. Let A’'  =  {xi.x-^ x n+i}: no te

th a t  since X  is continuous. P ( X  €  A'*) =  0 .

Let K* be a  set of points on the  y-axis, to pa r t i t io n  the  support of Y  in to  su b in 

tervals. T h e  range of each y,, denoted by (m,, A/,), e i ther  contains or is disjoint 

from each V subinterval. T he  set Y '  is designed so th a t  the  final P D F  of Y  m ay  be 

specified by designating its value on each Y  subinterval. T h e  set Y '  is defined using 

one-sided limits because the  transform ations  g i ,g2, ■ ■ ■ ,gn are not necessarily defined
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a t  th e  points in ,Y*. T h e  set I} consists of integers i w ith the p rope rty  th a t  the range 

of <7 , is either equal to  or properly contains the jth. Y  subinterval. T h e  P D F  for each 

Y  subinterval depends on the  PD F  of X  and the  associated transform ations  <7 ,.

T h e o r e m .  Let A' be a  random  variable of the continuous type  with P D F  /a '(x )  and 

w ith  support A’, where X  consists of a finite union of open intervals. Let g{x)  be a real- 

valued function whose dom ain includes X . Let — 0 0  <  Xi < x 2  < • ■ ■ < x n < x n + 1  <  + 0 0  

be a  sequence of ex tended  real num bers which satisfy the  following conditions:

1. The sequence includes the  endpoints of the  intervals whose union is X .

2. f \ ( x )  is continuous on each open interval .4, =  (x t, x,+ i) for i =  1 , 2 , . . .  . n.

3. If /.v(x) is not identically zero on .4,. then the  function <7 , (x ) ,  which is the 

restriction of g(x)  to .4,. is monotone on .4, and  has a nonzero derivative at 

each point in .4,. for 1 =  1 .2  n.

Let X '  =  { x i .x 2, • -. . x n+1}.

Let q =  { i |/ ;r (x )  is not identically zero on .4,}.

Let m, =  min \ lim <7 (x ). lim <7 (x) > for i =  1 ,2  n.
f r l x ,  x lx .+ j  J

Let Mi  =  max \ l im g{x).  lim g(x)  > for i = 1 , 2 , . . .  , n.
L x lx,  xTxl+ i J

Let Y '  =  Ui6q {mi. M i } .

Let m  = | |  V* || — 1 , where || • || denotes cardinality.

O rder  the elements of y3 of V ’ so th a t  y x < y2  <  • • • <  Vm+i- 

Let Ij =  {i|m, <  y3 and  y]+\ < Mi},  for j  =  1, 2, ..., m.
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T h en  for y € (y^yj+i ) .

f Y( y )  = T . f x \ 9 r 1(y)
>61}

d9r (y)
dy

m.for j  =  1 , 2 , .

P r o o f .  W ithout loss of generality, consider the  jth. Y  subin terval {y^yj+i ) .  Also 

suppose th a t  a and  b a re  any points th a t  lie inside (j/j, 2/j+i) such th a t  a < b. Fur

therm ore . let M,  =  max{<7 ,- l (a ) ,  <7 “ l ( 6 )} and  m , =  min{<7 ~ l (a). <7 ~ l ( 6 )} for i €  I r  As 

Hogg and Craig (1995. p. 190) point ou t,

P( a  <  V  <  6 ) =  5 3  P [ m ,  < X  < Mi  
i€lj V )

Since Y  is a continuous random  variable.

P(a < V  < b) =

d g r i y )

f .  % / * { * ' * ' )
dgt {y)

where one performs th e  change-of-variable y =  <7 ,(x). or equivalently  x  =  g~l {y),  and 

has used the  absolute value to  trea t  bo th  increasing and decreasing transform ations  

(see Freund 1992. p. 268). Referring to T heorem  7.1 in Freund (1992), one sees th a t
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th e  in tegrand

dg~l {y)
5 2 f x ( § i  l ( y )

I €/j v > dy

is the  P D F  for Y  on  the  subinterval [yj.yj+i)- n

3 .3  Im p lem en ta tio n

It could be qu ite  ted ious  to im plem ent this theorem  by hand for large m and  n . W ith  

th e  onset of co m p u te r  a lgebra system s such as M aple V, however, one may im p lem en t 

a lgorithm s th a t  correspond to  theorem s such as this w ith relative ease. This  a lgo ri th 

mic im p lem en ta tion  is included in the  Appendix E and  parallels the  theo rem . Two 

m ain  im plem en ta tion  issues em erged. First. Maple may produce several can d id a te s  

for £,- 1 . e.g.. when g ^ x )  = x 2. M aple returns g ~ \ y )  =  - y f y  and g~l {y) = yjy.  T he  

correct inverse is selected by requiring tha t <7 ,- I (<7 i(c,-)) =  c,. where c, is an y  point 

in th e  zth A’ subin terval.  W hen th e  ith  A' subin terval has finite endpo in ts ,  c, can 

be chosen to  be th e  m idpoin t of the  subinterval. In the  cases where Xi =  —oc or

x n+i =  cc [e.g.. A’ ~  S (y .c r 2 )J. c, m ust be selected m ore carefully. T h e  a lg o ri th m  for

de te rm in ing  c, is:

1. If Xi = — oc an d  x 2 =  +oo . then  =  0.

2. If Z! =  —oc an d  x 2 -boo, then  Ci =  x 2 — 1.

3. If x n 7^ —oo an d  x n+i =  + o o , then  Cn =  x n +  I.

X i
4. For all o the r  Ccises, c, =  -------------.
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T he  second im plem enta tion  issue involves redundancies in lists. Maple doesn 't  

recognize th a t  the  in teger 3 and the  floating-point value 3.0, for exam ple , are redun

dan t in a  list. T he  R ed u ceL is t  procedure finds all adjacent po ints  th a t  differ by a 

small prescribed 6 and  discards redundant floating-point type e lem ents.

T he  d a ta  s t ru c tu re  for g is a "list of two lists” th a t  is similar in na tu re  to th a t  

of / .  Here one characterizes g by listing its m onotone  com ponents an d  the  endpoints  

of the  corresponding domains. Example 3.4.1 gives a  detailed i l lus tra t ion  of the  d a ta  

s truc tu res  for /  and  g.

The following are  some additional im plem enta tion  issues th a t  arose during  the 

coding of the  algorithm :

•  T he  user m ust supp ly  x i . x 2 x n+1. T h is  ordered list consists of the  endpoints

of th e  open intervals which constitute A’ and  all locations in X  where g{x)  is 

discontinuous or non-differentiable. or g'{x)  is zero. A preprocessor to de term ine 

elements of A'* corresponding to g'{x)  =  0  could be added to  the algorithm  

if desired. T h u s  if the  support of A’ is ( — 1,2), and Y  =  g { X)  =  A'2, this 

preprocessor would include x  = 0 in X '  yielding X '  =  { — 1 . 0 , 2 }.

•  The par ti t ion  poin ts  x i . x 2, . . .  . x n + 1  m ust be chosen so th a t  / x ( x )  is not defined 

piecewise on any  A’ subinterval (e.g., if X  has a  triangular d is tr ibu tion , the  mode 

must be a p a r t i t io n  point).

•  Adding e x tra  x-values in X  to A* tha t are  no t m axim a, m in im a  o r  saddle points 

of g(x)  or d iscontinuities  of f x ( x )  or g(x)  will not affect the  correctness of the
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algorithm ’s im plem entation  of the theorem , although the  im plem enta tion  will 

be slower.

•  Many transform ations such as g(x)  =  x  +  ex do not have an inverse th a t  can 

be expressed in a closed-form. Numerical methods could be used in conjunc

tion with the  a lgorithm  to find individual values of f y{y) .  This has not been 

im plem ented in the  algorithm. If g(x)  =  x +  ex, for example, then

dg~l {y) 1

dy 1  +  ex

•  Periodic transform ations can present a problem in the im plem enta tion  of the

theorem. Maple uses the  usual principal inverses for s inx ,  cosx. an d  t a n x .  but

the restric ted ranges of these principal inverses are often inappropria te . When 

the algorithm  tries to  identify which inverse is appropria te, it is only given one 

choice, the principal inverse, but the  dom ain of .V might not coincide with the 

range of the principal inverse. Exam ple 3.4.4 illustrates the prob lem  and a 

circumvention.

•  No error-trapping  has been done to insure th a t  f x ( x ) is a  leg itim ate  P D F . i.e.

f  f x { z ) d x  =  l , / x ( x )  >  0 V x.
J —oc

Also, there is lim ited error-trapping on g(x)  in th a t  the procedure gives an error 

message when the  inverse cannot be found.
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•  P aram eters  are allowed in f x { x )  bu t not in g(x).

3.4 E xam p les

This section contains some il lustrative exam ples of using the algorithm  described in 

the  previous section to  de term ine  th e  d is tr ibu tion  of Y  = g{X) .  Before using the  

program , its performance on several com m on transform ations was tested . Given 

X  ~  N ( 0 .1) and Y  =  g { X)  =  A'2, th e  program  re tu rned  the P D F  for a \ 2  random  

variable. Given A* ~  N(/i.cr2) and Y  =  <7 (A') =  (A' — /z) / ex. the program  re tu rned  the  

P D F  for a s tan d ard  norm al random  variable. Now consider more complex exam ples 

th a t  i l lus tra te  the  theorem 's  im plem entation .

E xam ple  3.4.1 Consider the  first exam ple  from the  in troduction: given 

the  random  variable .A ~  U( —1.2). find the  d is tr ibu tion  of Y  =  g ( X )  =

.A2. Given A’*, th e  a lgorithm  determ ines  th e  relevant parti tions of the 

supports  of A’ and Y. Then it determ ines  which .A subintervals m ap onto 

which Y  subintervals. T he  subintervals are apparen t in Figure 3.1. Note 

th e  set A"’ is displayed on the  horizontal axis. Y '  on the  vertical axis, 

bo th  m arked with th e  x symbol. T he  transform ation  is parti tioned  into 

m onotone segments (w ith  identical or disjoint ranges) delineated by the  

+  symbol. T he  assignm ent of d a ta  s tru c tu re s  for /  and g and the  call to 

T ra n s fo rm  are as follows:

> X := [ [x -> 1 /  3 ] ,  [ - 1 ,  2 ] ,  [ ' C o n t i n u o u s ' , ’PDF'] ] ;
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g(X)

4

3

0

Figure 3.1: T he  transform ation  V  =  g ( X )  = X  for — 1 <  .V <  2.

> g := [ [x -> x “ 2,  x -> x “ 2 ] ,  [ -  i n f i n i t y ,  0 , i n f i n i t y ]  ] ;
> Y := T ra n s fo rm (X ,  g ) ;

T he  program  determ ines  th a t  the  transform ation is 2 - t o - l  on — 1  <  j  <

1 (excluding x  =  0) and 1 - t o - l  on 1  <  x  <  2. Since =  A’ 2  has 

two inverses, th e  program  determines which inverse to apply  to  which 

A" subinterval. T h e  resulting PD F  for Y  is

f v i y )  =
3 /̂y 0  <  y < 1

l < y < 4
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The corresponding re tu rned  value of Y is a “list-of-lists" represented  d is

tr ibution th a t  specifies the  PD F  of V :

[ [y  -> 1 /  (3 * s q r t ( y ) ) ,  y -> 1 /  (6 * s q r t ( y ) ) ] ,
[0 ,  1,  4 ] ,  [ ' C o n t i n u o u s ' , 'PDF'] ]

\ v s p a c e * { - 0 . 25in}

Exam ple 3.4.2 Consider the  random variable X  ~  U(0. 7). Find  the  

PD F of Y  =  g ( X )  = j|.Y — 3| — 1|. A graphical representa tion  of this

s(X)

3

0

0 1 2  3 4 5 6 7

Figure 3.2: T h e  transform ation  Y  =  g{X)  = | |X  — 3| — 1 1 for 0 <  X  <  7.

transform ation  is shown in Figure 3.2, w ith X *, Y*,  and  the  m onotone 

segments of g m arked  as before. This transform ation is more complex th a n
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Example 3.4.1 in th a t  it is 4 - to - l  for 0 <  y <  1. 2 - to - l  for 1 <  y < 2. 

and 1 - t o - l  for 2 < y < 3. T h e  program yields the  correct P D F  for V':

f y (y ) =

0  <  y < 1

1 <  y < 2

2 < y < 3

E x a m p l e  3 .4 .3  Consider the  second exam ple from the  in troduction: if 

the random  variable .V has P D F  / x ( x )  =  ( x +  1 ) / lS  for — 1 <  x  <  5, find 

the d is tribu tion  of

X-

X

- 1  < x < l

-y < X  < 0

The appropria te  parti t ion  for the  transform ation is depicted  in Figure 

3.3. The program  determ ines the  following P D F  for V’:

f r ( y )  =

18,/v

36̂ /y

( 2 y + 3 ) ^ / y + \
36̂ /y

U±i18

0  <  y < 1

1 <  y < 1.5 

1.5 < y < 2.25 

2.25 <  y < 5

E x a m p l e  3 .4 .4  As a final exam ple, consider the  problem  th a t  Casella 

and  Berger (1990) discussed, w ithout providing /y ( y ) ,  as a  pre lude to
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gfX)

5

4

3

0

- 1 0  I 2 3 4 5

Figure 3.3: T he  transfo rm a tion  V =  g ( X )  has a discontinuity  and is variously 1 - t o - l  
and 2 - to - l  on different subsets of th e  support of X .

their theorem . Letting .V be a uniform random variable on (0 ,2~ ) ,  find 

the  d is tr ibu tion  of Y  =  <7 (.V) =  sin 2 (.Y). As Figure 3.4 shows, this tran s 

formation is 4 - t o - l  for th e  single V subinterval ( 0 . 1 ). Furtherm ore , since 

n =  4. .Y ' =  {0. f . Y - - 7r}- T he  P D F  of F  is

M y )  = —7 = = t  0 < V < 1~Vy - r

which is com m only  known as th e  arcsin d is tribution (see Johnson, Kotz, 

and B alak rishnan  (1995. p. 212). To overcome the  principal inverse diffi-
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g(X)

i.o

0. 5

0.0

Figure 3.4: T h e  transform ation  V' =  g ( X)  =  s in 2 (A') for 0 <  A' <  2~.

culty  a lluded  to  in the  previous section, the following equivalent s itua tion  

has been devised: consider the random variable A’ ~  U( — f .  j )  and let 

Y' = g ( X )  = s in 2 (.Y). In this case the  domain of A' will be the  sam e as 

the  range of g ~ l which results from using the  s tan d a rd  arcsin function.

This so lu tion  yielded a  random  variable with a  notab le  feature. T he  dis-

f Y (y)
t r ib u t io n ’s H F. hy(y )  =  ----- — — , might be of interest to a  reliability

1  -  Fy{y)

engineer. For this d is tribu tion .

h Y {y) =
V y  -  y 2  [*■ -  2  arcsin( 2 y -  1 )]

0  <  y < 1 .
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By plo tting  this HF. one sees it has the  rare p roperty  of a  closed-form. 

“ba th tub~-shaped  HF. Furtherm ore , one can now app ly  the  transfo rm a

tion W  =  g ( Y)  = W  in order to  derive a random  variable W  th a t  is a 

one-param eter random  variable w ith a  closed-form. b a th tu b -sh a p e d  HF. 

Although th e  arcsin d istribution has been discussed in th e  li te ra tu re ,  there 

appears to  be no mention of the  fact th a t  it has a b a th tu b -sh ap ed  HF.

Most d istr ibu tions with ba th tub-shaped  hazard functions m ust be ana

lyzed numerically because their hazard  functions are no t closed form. One 

of the  useful features of the  T ra n s fo rm  procedure is th a t  it can help the  

practitioner gain insight into w hat transform ations could result in a  use

ful model. In this example, it becomes apparent th a t  th e  transform ation  

"crowds” th e  uniformly d is tr ibu ted  A' random  variable into a d is tr ibu 

tion for Y  th a t  is “heavy’’ on e ither  end of its suppo rt .  T he  result is a 

random variable with a ba th tub -shaped  hazard function. T he  program  

enables the  model designer to confirm, or gain insight into the  univariate 

transform ations th a t  could result in a useful model.

3.5 C onclusion

The tool provided by the T ra n s fo rm  procedure will be useful to the  p ractitioner as

well as the academic. T he  academic might use this tool to  find new distributions.

Let A' be a  b e ta  random  variable w ith specified param eters ,  for exam ple, and let
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g(A') =  A"2. A pplying g several times in succession m ay yield a d is tribu tion  th a t  

is useful in modeling. Alternatively, s tuden ts  might be asked to combine a set of 

ten transform ations and ten distributions in order to c rea te  1 0 0  new distribu tions, 

picking out the  in teresting properties of the  m ore no tab le  ones.

The practitioner, on the  other hand, m ay use the  T ra n s fo rm  procedure for the  

specific purpose of iterative probabilistic model design, i l lus tra ted  in Exam ple 3.4.4. 

Examples provided in C hapter 7 use T r a n s f  orm extensively.
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C hapter 4

P rodu cts or R andom  V ariables

4.1 In tro d u ctio n

Another keystone procedure is th a t  of com puting th e  p robab il i ty  density  function of 

the p roduct of two independent random  variables. T h e  procedure  P roductR V  is very 

useful for th a t  purpose  and is also em bedded  in the  SumRV procedure. R ohatg i 's  well- 

known result (1976. p. 141) for de term in ing  the d is tr ib u tio n  of the  product of two 

random  variables is straightforward to  derive, but difficult to  im plem ent. Let .V and  

Y  be continuous random  variables w ith  jo int P D F  f x y { x ~y)- T h e  PD F of V” =  X V  

is

The im p lem en ta t ion  of this result, however, is not s tra igh tfo rw ard  for general A'

and Y . Difficulties occur as a result of both the  m y riad  varia tions to th e  lim its  of

integration an d  th e  propensity of th e  P D F  of V  to  be  defined in a  piece-wise m anner .

61
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The cases when -V and V  are independent and  m ay have probability  dens ity  functions 

defined in a piece-wise fashion are considered in this chapter. A ppendix  F contains an 

algorithm  th a t  handles these difficulties and is genesis for the p rocedure  ProductRV.

4.2 T h eorem

A simple theo rem  is presented in this section which illustrates some of the  issues 

associated with a general algorithm  for determ in ing  th e  PD F of the  p ro d u c t  of two 

independent ran d o m  variables. For simplicity, assum e th a t  the  ran d o m  variable ,V 

has support on the  interval (a.b)  and the  random  variable has su p p o r t  on the 

interval (c . d ). Also, the  p roduct space of the  two random  variables is assum ed to fall 

entirely in the  first quadran t .

T h e o r e m .  Let X  be a  random  variable of the  continuous type with P D F  f ( x )  which 

is defined and positive on the  interval (a.b).  where 0 < a < b < oo. Similarly, let 

be a random  variable of the  continuous ty p e  with P D F  g(y)  which is defined and 

positive on the  interval (c, d). where 0 <  c <  d < oo. T h e  P D F  of V  =  X Y  is

h(v)  =

f a /e 9 ( ; )  f ( x ) ^ dx ac < v < ad

fv/d 9 ( j )  / ( * ) £  dx ad < v < be

. fv/d 9 ( r )  f ( x ) ^ d x  be < v < bd
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when ad  < be.

h(v)  =  <
fa /c 9 ( j )  / ( * ) £  dx  ac < v < ad

when ad  =  be. and

Fa/C9 ( ; )  / ( * ) J ac < v < be 

h[v)  = < / ( x )  j  dx be < v < ad

St/d 9 ( ]:) / ( * ) £ d x  arf <  y <  6d

when ad > be.

P r o o f .  O nly  the case of ad < be is considered. The o ther cases are  proven analo

gously. Using the  transform ation techn ique  (Hogg and Craig. 1995. page 173). the  

dum m y transfo rm ation  Z  =  A" and th e  transform ation  V =  .YV cons ti tu te  a 1 - 1  m ap 

ping from A  =  { (x .y ) |a  < x < b.c < y < d} to S  = {(x .c ) |a  < z < b.cz < v < d.r}.  

Let u d eno te  the  transform ation and w the  inverse transform ation. T he  transfo rm a

tion. inverse, and Jacobian  are:

x =  u i ( x , y )  =  x x  = wi ( z . v )  = z

v =  u2{x, y)  = xy y =  w2( z , v )  = v / z

1 0
J  =

- v / z 2 l / z
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T he  jo in t P D F  of Z  and V  is

f z . v (-* V) = f ( wi ( z ,  v) )g(w2(z . v) )  \J\ (=.v) e  B ,

or
/ z . r ( - . u )  =  f (  = ) g ( v / z ) - (c, v) e  B.

In tegra ting  with respect to z over th e  appropria te  intervals and  replacing c w ith  x  in 

the final result vields

as desired.

h{ v) =

ac < v < ad 

ad < v < be 

be < v < bd

d

c xy = be 
xy = ad 
xy = ac

ba

Figure 4.1: The support of X  and  Y  when ad < be.
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V

bd

ad

ac

ba

Figure 4.2: T he  m apping  of Z  =  A' and V  =  X Y '  when ad < be.

T he  geom etry  associated  with the transform ation  is shown in F igures 4.1 and 

4.2. Note th a t  the  transfo rm ation  maps .4, onto  for i =  1 .2 .3 .  A lthough  the 

transfo rm ation  techn ique  has been used to prove this theorem , th e  C D F  technique 

could also have been used.

4 .3  Im p lem en ta tio n

T h e  theo rem  in the  previous section illustrates the  im portance  of considering the  

m agn itudes  of the  p roduc t  of th e  coordinates of the  sou theas t and  no r th w es t  corners 

of th e  p roduct space (e.g.. ( 6 , c) and  (a .d ) )  when it lies en tirely  in th e  first q u ad ran t .  

In o rder  to  apply  the  theorem  to any continuous ran d o m  variables X  and  V, th ree  

generaliza tions need to  be addressed.
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1. Analogous theorem s m ust be w ritten  for th e  cases when th e  {a.b) by {c.d) 

rectangle lies wholly in one of the  o ther  th ree  quadrants.

2. Instead of having probability  density  functions which are specified by a  single 

s tandard  function over the ir  entire suppo rt ,  th e  random  variables A' and  Y  may 

be defined in a piece-wise m anner over several intervals, forming m any  segments 

to the PD F  (e.g. th e  tr iangular d is tr ibu tion).

3. T he  cases when 0 and  ± o c  belong to  the  endpoin ts  of the intervals which con

s t i tu te  the support of A' and Y  m ust be considered.

In fact, these generalizations result in 24 different cases th a t  m ust be considered in 

o rder to correctly com pu te  the  limits of in tegration  of th e  theorem. T he  paragraphs 

below address these cases. For quadran ts  II. III. and  IV. the limits of integration 

m ust be set appropria te ly  based on the  geom etry  of the transform ation .

For random variables th a t  are  defined piece-wise over various intervals, let n be 

th e  num ber of intervals for .A and let m  be th e  num ber of intervals for Y.  There 

are  mn  rectangular “p roduct spaces" and the  con tribu tion  of each to  th e  value of 

the  P D F  of V  =  X Y  m ust be com puted. Furtherm ore , each “p roduct space" can 

con tr ibu te  differently to th e  P D F  of V  on up to  th ree  segments of the  su p p o r t  of V'. 

As a  result, the P D F  of V  tends  to become com plica ted  very quickly, w ith  an upper 

limit of 3m n  segments to  its P D F . For exam ple, th e  p roduct of two U ( 0 ,1) random  

variables yields a random  variable V’ with only one segm ent (see E xam ple  4.4.1). But 

w ith  only a  slight change, e.g., X  ~  U( 1,2) an d  Y  ~  U (3 ,4), yields a  V  =  X Y
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defined differently on th ree  segments (see Example 4.4.2).

T h e  case where the support of a  random  variable contains 0 (e.g.. U( —1.2)) poses 

special difficulty since some of the rectangular p roduct spaces will not lie wholly in 

any one quadran t and cannot be handled by the  previously developed techniques. 

O ne solution to this difficulty is to add 0 as one of the  endpoin ts  of the  intervals for 

X  and  V' whenever this case occurs, producing redundan t segments, i.e.. two segm ents 

on e i the r  side of zero with the  same formula for the  P D F .

T h e  algorithm  consists of a set-up portion, followed by nested  loops th a t  de te rm ine  

the  con tribu tion  to the P D F  of V' =  X Y  separately  for each of the four q uad ran ts .  

A ppendix  F contains the  set-up portion and the  a lgori thm  associated with th e  first 

q u ad ran t .  T he  algorithm for the o the r  quadran ts  is similar.

T h e  set-up  phase begins by sett ing  n and m  to  the  num b er  of intervals th a t  form 

the  support of X  and V'. Next. 0 is added as an interval delim iter for .V a n d /o r  Y  

if th e  random  variable can assume both  positive and negative values, and 0  is not 

a lready  an interval delimiter. Finally, the  endpoints of th e  intervals which form the 

su p p o r t  of V  are determ ined  by taking all products of the  endpoints  of the A* intervals 

tim es the  endpoints of th e  Y  intervals.

A nested  set of loops follows th a t  trea ts  all pairings of X  and  Y  intervals. As shown 

in F igure 4.1, the  coordinates (a. c) are assigned to  the  southw est corner of the  cu rren t  

rectangle of interest, and the  coordinates ( 6 . d) are assigned to  the northeast corner 

of th e  curren t rectangle of interest. A tes t  to de te rm ine  which quadran t contains the  

cu rren t  rectangle is m ade a t  this point. Adding 0 as an  in terval delimiter in th e  set-up
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phase assures th a t  the  current rectang le  will be com pletely con ta ined  in ju s t  one of 

the  quadran ts .  O nce the  q uad ran t  is determ ined , tests on c and  d  determ ine which 

integrals should be com puted  and  the  appropria te  limits of in tegration . Finally, the 

insertion of 0 som etim es leads to  a  P D F  for V  w ith the  sam e form ula on both sides 

of 0 . If this occurs, the program  simplifies the  P D F  by rem oving  0 as an interval 

endpoin t if the  function is defined a t  0 .

4.4  E xam p les

This section contains applications of using the  Maple procedure  ProductRV.

E x a m p l e  4 .4 .1  Consider th e  random  variable .V ~  U ( 0 . 1) and  the ran

dom  variable Y  ~  U (0 .1). F ind  th e  d is tr ibu tion  of V  =  .YV’.

This is a simple application of the  algorithm . T he  following Maple code 

defines the  random  variables A’ and  Y  and returns the  P D F  of their p rod

uct. Note, the  procedure U n ifo rm  re tu rns  the P D F  in a M aple  list-of-lists 

d a ta  s tru c tu re  outlined in C h ap te r  2.

X := UniformRV(0, 1) ;
Y := UniformRV(0, 1);
V := ProductRV(X, Y) ;
PDF(V);

T he  resulting P D F  for V  = X Y  is

h(v) = — \ nv  0  <  v < 1 ,
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which is readily verified by hand.

E x a m p l e  4 .4 .2  C onsider  the random  variable X  ~  U (1 .2)  and  th e  ran

dom  variable Y  ~  U (3 .4 ) .  Find the  d is tr ibu tion  of V’ =  X Y .

This is a s tra igh tfo rw ard  application of th e  algorithm  in th a t  all segments 

of A' and ¥  are  in th e  first quadran t.  In this exam ple, the  P D F  is less 

sim ple to ca lcu la te  by hand. The program  yields the  following P D F  for

Note th a t  while th e  P D F  of both X  and  ¥  are defined on single seg

m ents  tha t have positive  interval limits, th e  P D F  of V’ is defined on three 

segments.

E x a m p l e  4 .4 .3  C onsider  the random  variable .V ~  U( —1 . 2 ) and  the 

random  variable ¥  ~  L*( — 3,4). Find the  P D F  of V = X Y .  T h is  exam ple  

will test w hether th e  algorithm  handles th e  case of 0  in the  su p p o r t  of A' 

and  ¥  correctly. T h e  program  yields the  correct P D F  for V':

V = X Y :

In v — In 3 3 <  v <  4

h ( L') — { In 4 — In 3 4 <  v < 6  •

3 In 2 — In v 6 < v < S

—6 < v < —4

h{ v) =  <
- 4  <  v < 0

0 <  v < 3

3 <  v < 8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7 0

M aple returns a m athem atically  equivalent P D F  with a slightly different 

functional form. M aple's calculation for th e  first segment of V  yields 

j j l n ( 2 )  +  j f ln (3 )  — jj-ln(c) +  which reduces to the  above first

segment, remembering th a t  since v is negative in this segment ln (i’) =  

ln( — 1 ) +  ln( — c) =  I t  +  ln( — v). so the  im aginary  portion cancels.

E x a m p l e  4 .4 .4  Consider the random  variable X  ~  tr iangu lar(  1. 2 .3) 

and the  random  variable Y  ~  t r i a n g u la r ( l ,2 .4 ) .  Find the P D F  of V =  

.YV’. This non-uniform exam ple illustrates the  case of several rec tangu la r  

p roduct spaces. The M aple code in this case is:

X := T r i a n g u l a r R V ( l , 2,  3 ) ;
Y := Tr iangularRVCl,  2,  4 ) ;
V := ProductRV(X, Y ) ;
PDF(V);

T he  resulting PD F for I" has six segments:
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—t f / 3  +  2 /3  In i' +  2 r /3  In v +  4 /3  I <  v <  2

—8 +  14/3 In 2 +  7i;/3 In 2 +  10v/3 — 4 In v 

—o r /3  In r  2 <  r  < 3

—4 +  14/3 In 2 +  7 r /3  In 2 +  2v — 2 In v 

— r In r  — 2 In 3 — 2 r /3  In 3 3 <  v <  4

h { v ) = {  4 4 / 3  — 14 In 2 — 7 r /3  In 2 — Su/3  — 2 In 3

+ 2 2 /3  In v — 2 r /3  In 3 +  4 u /3  In v 4 <  r  <  6

8 /3  — 8 In 2 — 4t>/3 In 2 — 2u /3  +  4 /3  In v

+  r / 3  In v +  4 In 3 +  v/ 3  In 3 6 <  r  < 8

—S +  8 In 2 +  2 r /3  In 2 +  2 r /3  +  4 In 3

—1 In v +  v/3  In 3 — r / 3  In v 8 <  r  <  12

E x a m p l e  4 .4 .5  This exam ple illustrates the fact th a t  the  product of 

two lognormal random variables has th e  lognormal distribution. C on

sider the  random variable A’ ~  L ogN (/ii . <rf) and the  random  variable 

V  ~  LogN(^ 2 - )• Find the PD F of V’ =  AT". Here one sets / j i =  =  0.

=  1  and <j \ — 4. The program yields the following PDF:

e -  ( l nu)2/10
h(v)  = -------   0 <  v < oo .

e y i o ^

This  can be identified as a LogN(/z =  O.cr2 =  5) random  variable.

E x a m p l e  4 .4 .6  Consider the  random  variable X  ~  N ( 0 ,1) and the  ran 

dom  variable V" ~  N (0 ,1). F ind the  P D F  of V  =  X Y .  This will test the
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case where the  support of .V and  V  include the  endpo in ts  ± o c .

T he  program  yields the following P D F  for V:

BesselK(0. v - signum(u))
--------------------------------------  —oo <  r <  0

h(v) = ,
BesselK(0. e • s ignum (r))
--------------------------------------  0 <  v <  oc

'  7T

which relies on Maple's B e sse lK  and  signum functions. T h e  M aple o u tp u t  

of this func tion ’s plot is given in Figure 4.3.

f(x )

Figure  4.3: The P D F  of V  =  X Y ’ for X  ~  N ( 0 .1) and  V  ~  N( 0 , 1 ).

E x a m p l e  4 .4 .7  Consider the  independent random  variables U\ ~  U ( 0 , 1 ) 

and Ui  ~  U(0. 1). T he  B ox-M ulle r  algorithm for gen era tin g  a  single
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s ta n d a rd  normal deviate  V  can  be coded in one line (Devrove. 1996) as

V  <— y j — 2 In U\ cos(27tU2),

where C\ and U2 are independen t random numbers. Using th e  T ra n s fo rm  

and P roductR V  procedures toge ther ,  one can d e te rm in e  th e  PD F  of W  

Due to  th e  principle inverse difficulty with tr igonom etric  functions, how 

ever. th e  transform ation  m ust be rewritten as

U <—  \ J  In U\ cos( irU2 )

before using T ransfo rm .

T he  p rogram  yields the following P D F  for V:

v r°

h(v)  =

/*U v /I-*-

~ J - 1 \ / l  - r

- /7T Jo

:2 x 2
1 e- f 2/(2*2)

dx —c» <  u <  0

\ / l  — X 2 X 2
dx 0  <  v < cc

W hile th is  form in not easily recognizable as th e  P D F  for the norm al 

d is tr ibu tion , it is m a them atica lly  equivalent to th e  m ore  s tan d ard

I 2
h(v)  =  —==.e~v ^  — oo < v < oc.

v 2tt

One an tic ipa tes  th a t  fu tu re  generations of com pu te r  a lgebra  systems will 

be ab le  to  simplify these integrals.
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E x a m p l e  4 .4 .8  Devrove (1996) gives

A' <— m  +  (a +  (b — a)U\ — m)  m a x {£'2 , £"3 }

as a one-line algorithm for genera ting  a  tr iangular(a . m . b) variate. where 

£'i. U2 . and  £ 3 are independent an d  identically d is tr ibu ted  U ( 0 ,1) random  

variables and  the  triangular d is tr ibu tion  has a  m in im um  of a. a  mode of 

m.  and a m axim um  of b. O ne m ay  now use this rela tionship  to generate 

the PD F  of a random  variable w ith  th e  triangular d is tr ibu tion . Using the  

Maple procedure MaximumRV. which re tu rns  the P D F  of the  m axim um  of 

two independent random variables and  T ra n s fo rm  for th e  linear transfor

mations. one can derive the  P D F  w ith  the  following M aple commands.

a : = 1;
m : = 2;
b : = 3;
U1 : = UniformRV(0, 1) ;
U2 : = UniformRV(0, 1) ;
U3 : = UniformRV(0, 1) ;
T1 : = T ra n s fo rm (U l , [ [x  -> a + (b

[ -  i n f i n i t y ,  i n f i n i t y ] ] ) ;
T2 : = MaximumRV(U2, U3) ;
T3 : = ProductRV(Tl, T2) ;
X : = Transform(T3, [[x  -> m + x] ,

The resulting  P D F  for .V is:

/(*) =
x — 1 1 <  x <  2

3 — x 2 <  u <  3
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4.5 C onclusion

An a lgori thm  for calculating the P D F  of the  p roduct of two independent random  

variables X  and  Y' (which may be defined in a piece-wise manner) has been devel

oped and  im plem ented. The A PPL procedure ProductRV is one of m any procedures 

capable  of au tom ating  complicated probability calculations associated w ith random  

variables. Potential application areas for calculations of this type include applied 

s ta tis tics , biostatistics, goodness-of-fit, probabilistic modeling, renewal theory, relia

bility. sim ulation , and time series analysis.
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C hapter 5 

C om puting th e C D F of th e  

K olm ogorov—Sm irnov Test S ta tistic

5.1 In trod u ction

A nother probabilistic  p rob lem  th a t is well su ited  for co m pu ter a lgebra system s is 

finding th e  d istribu tion  functions of th e  K olm ogorov-Sm irnov te st s ta tis tic  Dn in the  

all-param eters-know n case. B irnbaum  (1952) gives an n-fold in tegral for th e  C D F 

of th e  te st s ta tis tic  w hich yields a  function defined in a  piecew ise fashion, w here 

each piece is a polynom ial of degree n. U nfortunately, it is difficult to  d e te rm in e  

the  app rop ria te  lim its of in teg ra tio n  for com puting  these polynom ials. T h e  a lg o rith m  

developed here (see A ppend ix  G) perform s th e  required in teg ra tions in a  m an n er th a t 

avoids calcu lating  th e  sam e in tegrals repeated ly , resu lting  in sh o rte r co m p u ta tio n  

tim e. It can be used to  co m p u te  th e  en tire  C D F  or ju s t a  po rtion  of th e  C D F , w hich

76
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is m ore  efficient for finding a  critica l value or a p-value associated  with a  hypothesis 

te st. T his approach yields exac t critical values and  significance levels.

T h e  K olm ogorov-Sm irnov (I\S ) test s ta tis tic  D n, is defined by

D n =  sup |F (x )  -  Fn( x ) | .
£

w here n is the sam ple size, F (x )  is a hypothesized C D F  w ith  fixed param eters, and  

F n(x ). also called th e  em pirica l d is tribu tion  function, is a  step-function th a t  increases 

by 1 /n  a t each d a ta  value. T his s ta tis tic  has been used for goodness-of-fit te stin g  

for continuous popu la tions for decades. T he KS te s t ’s appeal is its s traigh tfo rw ard  

co m p u ta tio n  of th e  te s t s ta tis tic  and  the d istrib u tio n -free  characteristic  of D n. Its 

d raw back  is th a t its cu m u la tiv e  d istribu tion  function u nder the  null hypothesis is 

difficult to determ ine, leaving one to  calculate critica l values w ith various app ro x i

m a tio n  m ethods. C onsider th e  d is tribu tion  of the  KS s ta tis tic  in the case when all 

p a ram eters  are known.

B irnbaum  (1952) gives th e  C D F of D n — -C as

P  ( ^ n <  +  L)  =  n! I ' "  I * "  ■un)dun . . .  du2 dui
“  2 n  t  2 n  V 2 n  V

for 0 <  v < w here— in

g{u 1,«2.......... u„) =  1
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for 0 <  ui <  u2 < ■ ■ ■ < u„ <  1. and is 0 otherw ise. Equivalently.

/  1 \  r m i n d . ^ + v )  y m i n d . ^ + u )  y m i n d . ^ ^ i + i / )
P [ D n < —  +  v )  =  n! / / . . .  1 dun . . .  du2 d u x.

\  -H  /  J m a x ( 0 , j j—u) Jmax(ui u) J m A x ( u „ - i .  -u )

B irnbaum 's  ra th e r harm less-looking integral is ted ious to  com pute by hand , even for 

sm all values of n. due to  th e  com plexity of th e  region w here g is nonzero. E valuating  

his expression requires calcu la ting  many n-fold in teg ra ls  whose lim its are  de term ined  

by considering a carefully chosen partition  of th e  su p p o rt of D n. T he difficult p a r t of

th e  process is to set th e  app rop ria te  lim its on these  integrals. T he final expression for

th e  KS C D F is a piecewise polynom ial function in w hich each polynom ial has degree

5.2 L iterature review

T he lite ra tu re  available on the  KS s ta tis tic  is ex tensive. S tephens’ a rtic le  (C h ap te r  

4 of D ’A gostino and S tephens. 1986) contains com prehensive coverage on th e  use 

of th e  KS s ta tis tic , as well as o ther s ta tis tic s  based on th e  em pirical d is tr ib u tio n  

function . He calcu la tes th e  power of these goodness-of-fit tests. Johnson, K otz, and  

B alak rishnan  (1995, p. 640) consider this source (D ’A gostino, 1986) to  be so com plete  

th a t th ey  have deleted  I\S  discussions in the ir second ed ition  and refer th e  read e r to  

th a t com pendium  instead . For com puting c ritica l po in ts  of the  KS d is trib u tio n , one 

finds five-digit accuracy  as early  as 1956 (M iller, 1956). M iller relies on asy m p to tic  

resu lts  th a t  converge fairly quickly to produce th e se  estim ates. B irn b au m ’s a rtic le

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



79

(1952) also explains how various sets of recursive form ulas can be used to  ca lcu la te  

certa in  critical po in ts  to  reasonable levels of accuracy. Law and K elton (1991. p. 

3S7) ind icate th a t c ritica l points require com puter techniques, and are  only easily  

calcu la ted  for n <  50. In the  litera tu re  there appea rs  to  be no source th a t produces 

exact d is tribu tion  functions for any d istribu tion  w here n >  3. B irnbaum  (1952. p. 441) 

gives th e  CD F of D n — ^  for n =  2 and n =  3. K n u th  (1981) provides a functional 

form for the  C D Fs for th e  two sta tistics D*  and  D ~ , b u t does not provide th e  

CD F for Dn =  m ax { D ^ . D~}.  a harder problem  given th e  dependence betw een th e  

two random  variables. As a consequence of th e  ap p a re n t com plexity  of the  requ ired  

in tegration  and lack o f lite ra tu re  on exact d is trib u tio n s , it  was apparen t early  on th a t 

a com putational a lg eb ra  system , such as M aple, w ould be necessary to  com pute th e  

polynom ials needed for th e  d istribu tion  of the  KS te s t s ta tis tic .

5.3 C o m p u tin g  th e  d istr ib u tion  o f  D n

W hen 0 <  i’ <  2 ~. B irn b au m 's  integral is easy to  co m p u te  since none of the  intervals 

of in tegration  overlap. A dditionally , these intervals are all wholly contained w ith in  

the in terval from 0 to  1. For exam ple. ut varies over th e  in terval from ^  — v to ^ -4 - r .  

and u2 varies over th e  in terval from ^  — v to  ■— +  v. T h e  in terval for u i begins to  th e  

right of 0 and ends before th e  interval for u 2 begins. T h u s  when 0 <  v <  th e  lim its 

of in tegration  of B irn b a u m ’s integral guarantee th a t  0 <  u : <  u2 < ■ ■ • <  u n <  1. 

Because the  u,'s are constra ined  in this way, one m ay rep lace  B irnbaum ’s in tegrand  

g( u, \ , u2, . . .  ,u n ) w ith  1. and  thus com putation of th e  KS C D F requires only a  single
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n-fold integral:

P ( Dn < -7 -  +  r') = nl [  [ 2n . . .  f  2 1  dun . . .  du2 du\ = ra!(*2 u)n
V 2n )  J ± . .v J2Z=1-V

for 0 <  v < d-.

W hen v has a fixed value g rea te r  th an  -C, it is also d esirab le  to  replace B irn b a u m ’s 

in teg ran d  by 1 . In o rd e r to  ju s tify  th is  replacem ent, one m ust only allow in teg ra tion  

over th a t  region of n -d im ensional space for which 0 <  u x <  u2 5: ■ • • 5: un <  1- 

Since th e  intervals of in teg ra tio n  specified in B irnbaum 's  in teg ral for different u,'s can 

overlap , the sm allest allow able value for any u, is influenced by all u / s  w ith  subsc rip ts  

less th a n  i th a t can ta k e  on values in u ,’s interval of in teg ra tio n . This overlapp ing  

requ ires partition ing  th e  in terval from  ^  — v to  _|_ v  jn t 0 sub in tervals (w hich are 

henceforth  refered to  as u -sub in tervals). w ith th e  first u -su b in te rv a l s ta r tin g  a t ^  — v 

and  a  new u-subin terval beginning whenever the  left en d p o in t of one of B irn b a u m ’s 

in tervals of in teg ration  is encountered . W hen any u, lies in a u-subin terval th a t 

consists en tirely  of negative  values. B irnbaum 's in teg ran d  is zero. For th is  reason, 

only  u-subintervals th a t  have a positive right endpo in t c o n trib u te  to th e  KS C D F.

O f course, the  n u m b er of u-subin tervals th a t have a  positive  right en d p o in t de

pends on the  value of v. For sm all values of v (i.e., 0 <  v < ^ ) ,  n +  1 u -sub in terva ls  

have a positive right endpo in t since all n of B irn b au m ’s lower lim its of in teg ra tio n  

are  positive. For large values of v (i.e., < v < on ly  two u -sub in te rva ls

have a  positive right en d p o in t since only un’s lower lim it of in teg ra tion  is positive.
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In te rm ed ia te  values of u produce all possibilities from  2 to  n +  1 u-subintervals th a t  

have a positive right en d p o in t.

B ecause different values o f u can yield different num bers of u-subintervals th a t 

have a positive right en d p o in t, the  interval 0 <  v <  ^£=1 m ust be subdivided a t the

following values of c: ^ ........~2 n^- ^ ^ e n  th e  values of u rem ain w ithin one

of th e  resu lting  sub in tervals for u. the  num ber of u -sub in terva ls  th a t have a positive 

right en d p o in t will rem ain  fixed.

A no ther com plication arises because it is necessary to  know, for a fixed value of 

r and  for th e  u -subin tervals p roduced  by this value, w hich variables of in tegration  u, 

can take  on values in each of the u-subintervals of [0,1]. T h e  previous subdivision 

of th e  values of u is not fine enough to  allow unam biguous specification of the  range 

for each u,. W hen i < j .  u t, and  u2 have overlapping  in tervals of in tegration  if 

the u pper in teg ra tion  lim it for u, exceeds the  lower in teg ra tio n  lim it for u2, i.e., 

+  v >  - — t’- As a  resu lt, as u increases from  0 to  —. new overlaps takei n  — i n  2n *

place when u equals d_.  The interval 0 <  u <  m ust be d iv idedr  1 i n  i n  2n i n  i n

in to  sub in te rva ls  a t these values of v as well as a t th e  values of v listed previously. 

H enceforth  these  are refered to  as u-subintervals.

In d ica to r m atrices will be used to  sum m arize th e  in terre la tio n sh ip s  betw een th e  

possible values for th e  variables of in tegration  u i , u 2, . . .  , u n . For a  fixed n and  for 

values of v in the  Arth u-subinterval of th e  in d ica to r m a trix  Ak will show,

by th e  presence of a  1 or a  0 in row i and colum n j ,  w h e th e r or not u, can take  

on values in th e  j th  u-subin terval. F inally, by defining p a th s  th ro u g h  these ind ica to r
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m atrices, one produces a  com plete set of n-fold in tegrals which satisfy th e  requ irem en t 

0 <  u : < u2 <  • • • <  un <  1. and which p roduce th e  KS C D F when sum m ed.

T he algorithm  for com puting  th e  cum ulative  d is tr ib u tio n  function of D n is d iv ided  

into four phases. In Phase 1. an ap p ro p ria te  p a r ti tio n  of th e  support of D n — ^  is 

determ ined. In Phase 2. m atrices .4^ are defined th a t  a re  in s trum en ta l in d e term in ing  

the lim its of in teg ration  in th e  n-fold in tegrals. In P hase 3. these integrals and  th e ir 

associated lim its are com puted . To take  advan tage  of th e  sim ilarities in th e  lim its of 

in tegration of these rc-fold in tegrals, they  are g rouped  for efficiency and all evaluated  

to the  sam e level of in teg ration  before proceeding to  th e  nex t level. Finally. P hase  4 

consists of tran s la tin g  th e  support of Dn — ^  to  th e  su p p o rt of Dn. T hus th e  in p u t 

to the  algorithm  is a positive integer n and  th e  o u tp u t is the  piecewise C D F of Dn.

5 . 3 . 1  P h a s e  1: P a r t i t i o n  t h e  s u p p o r t  o f  D „  -  ^

The endpoin ts of the  segm ents th a t define th e  su p p o rt of the  KS test s ta tis tic  can 

be determ ined  from th e  lim its of in tegration  given by B irnbaum . I ’sing B irnbaum 's  

formula, the baseline lower and  upper lim its of in teg ra tion  associated w ith u = 0 are

1 3 5 2 n — 1
2 n 2 n 2 n ' 2 n

As u increases, th e  support of Dn — is broken in to  disjo int u-subintervals. T he 

endpoints of these support u-subintervals consist of v =  0 and the  values o f v  for 

which th e  endpoin ts of th e  n intervals of in teg ra tio n  e ither:
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•  equal 0 or 1. or

•  coincide.

T he 0 or 1 cases occur a t v values in the  set

1 3 5 2n — 1
2n 2n 2n 2n

T he se t of values of v for which the endpoin ts of different intervals of in teg ra tio n

coincide are

r j _  _2_ _3_ n — 1 |
12n  2n 'In'  ’ 2n )

T hus th e  union of th ese  two sets and 0 com prise th e  endpo in ts  of th e  u -sub in terva ls

of th e  support of Dn —

T h e  first phase of th e  a lgorithm  given in A ppendix  G com putes th e  above en d 

points r 0 =  0. t’i . t ’ 2  t-m, where m is the  num ber of u-subintervals on w hich the

C D F of Dn — is defined. For anv n.* 2n

'3 n l
m =  T  - i .

5 . 3 . 2  P h a s e  2 :  D e f i n e  t h e  A  m a t r i c e s

At th is point in the  a lgo rithm , uo, Ui___, um are th e  endpo in ts  of the m u-sub in terva ls

on w hich the CD F of D n — ̂  is defined.

Tw o book-keeping steps axe needed in this phase of th e  algorithm . T h ey  are:
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1. Define c t .c 2..........cm as th e  m idpoints of th e  r-su b in te rv a ls  of su p p o rt for D n —

i
2 n *

2. Define X[. x 2......... x n as m idpoints of th e  in tervals  o f in teg ra tion  for u t . u2.............un

in B irnbaum 's n-fold in tegral. Thus

2 i _ l  • , 9x, =  — ------------ i =  1 .2  n.
2 77

P a rt of the a lgo rithm  involves defining n x  n in d ica to r m atrices A i .A 2 4 m

corresponding  to  the  i’-subinter%rals which form  th e  su p p o rt of Dn — T h e  rows of

an A  m a trix  refer to  th e  variables of in teg ration  u i, u2   un . T he colum ns of an  A

m a trix  refer to  th e  u-subin tervals. w ith the  jth.  colum n corresponding  to  th e  in terval 

from  i j  — v to  xJ+i — c. except for th e  n th  co lum n, w hich corresponds to  th e  in terval 

from  x n — r  to  x n +  r. If th e  ( i . j )  elem ent of an A m a trix  equals 1. th en  th e  range 

of u, includes a t least p art of the  j t h  u -sub in terval.

Since the  ( n . n ) e lem ent of each A m atrix  is th e  only  elem ent in the  n th  row th a t 

is 1. th e  integrals th a t  need to  be com puted for each segm ent of supp o rt of D n — ^  

can  be visualized as a  p a th  in A. consisting of a  sequence of moves from  th e  ( n .n )  

position  of A to a nonzero elem ent in the  first row of A. All moves in th e  A m a trix  

from  row i to row i — 1 (for i =  n , n — 1, . . .  .2 )  requ ire  th a t  th e  following cond itions 

are m et:

1. T h e  move m ust be from one of the l ’s in row i to  one o f th e  l ’s in row i — 1.
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2. T he move is e ith e r  d irec tly  vertical o r ve rtica l and one or more spaces to  the  

left.

T h a t is, if th e  move begins a t a 1 elem ent in co lum n j  of row i. it m ust end a t a 1 

elem ent in colum n 1 th ro u g h  j  of row / — 1 .

E x a m p le  5 .3 .1  For n =  3 and k =  3. th e  C D F is defined on the  v- 

subin terval |  <  v < |  and  has th e  following ,43  m atrix :

A-i —

1 1 1 

0 1 1 

0 0 1

T here are five different paths from the  (3. 3) elem ent to the top row of 

the  m atrix . In th e  five m atrices below, th e se  five pa th s to the  top  row of 

the .4 m a trix  are  displayed by using boldface on th e  path . N ext to  each 

m a trix  is th e  corresponding  trip le  in tegral th a t  th e  pa th  represents.

1 L I 

0 1 1 

0 0 1

/  / /  \ d u z d u 2 d u 1
J 0  J l - v  J±-v

1 1 1 

0 1 1 

0 0 1

/* g —u r - - u  r l
/  /  1  du3 du2dux

J - z - v  J  U l  J ? - V
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W hen th ese  five integrals are sum m ed, B irnbaum 's expression reduces to

_ 1 \  , 11 11 2 3
£>3 C  -  +  1 - )  - - J r  + y " - 2 7 .  6  <  r  6

N ote th a t th e  inside integral

[  1 du3 
J  U2

on th e  th ird , fou rth , and fifth trip le  in tegral is identical. T he n u m b er of 

iden tical in teg ra ls  of th is type grows rap id ly  as n increases. T he a lg o rith m  

developed here avoids recalculation of dup lica te  integrals. C on tinu ing  in 

th is fashion for the  o ther .4 m atrices (i.e., A\ ,  A 2, and A j), y ie lds the
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N ote th a t B irnbaum  (1952) contains a  sign erro r in th e  fo u rth  r-su b in te rv a l 

of support.

Table 5.1 shows how rapidly th e  num ber of n-fold in teg ra tio n s  requ ired  to  com pute 

the C D F of Dn — ^  grows with n. N ote th a t  th e  five tr ip le  in tegrals in the  previous 

exam ple corresponds to  n =  3 and the  th ird  t>-subinterval (k  =  3). show n in boldface 

in the  tab le. N ote th a t  the fifth colum n in Table 5.1 is th e  p ro d u c t of th e  first and 

fourth colum ns. T he  fourth  and fifth colum ns d id  not m a tc h  any well-known integer 

sequences in the lite ra tu re  (connect to

h t t p  : //www. r e s e a r c h ,  a t t  . c o m / ~ n j a s / s e q u e n c e s / i n d e x  .h tml) .

Table 5.1: C om pu ta tional requirem ents for com puting  th e  D n C D F for sm all n.

n m
N um ber of n-fold 
in tegrals required for 
each u-subinterval

T otal num ber 
of n-fold in tegrals 

required

T o tal num ber 
of single integrals 

required
1 1 1 1 1

2 o 1 . 2 3 6

3 4 1. 4. 5. 3 13 39
4 5 1. S. 13. 9. 4 35 140
5 7 1. 16. 34. 27. 28. 14, 5 125 625
6 8 1. 32, 89. 81. 89. 48, 20. 6 366 2196
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E x a m p le  5 .3 .2  T he m ethod  for de term in ing  th e  in tegers in th e  th ird  

colum n of th e  previous tab le  is som ew hat analogous to  de te rm in in g  the 

entries in a row of P asca l’s tr ian g le  by using th e  en tries  of th e  previous 

row. B eginning a t each nonzero  A  m a trix  elem ent in rows 2 through 

n. th e re  are  a certa in  num ber of p a th s  whose m oves to  th e  top  row of 

the  m a tr ix  satisfy  the tw o cond itions s ta te d  previously. A ssigned to  such 

elem ents is a  num ber p (for p a th s)  th a t  denotes th e  n u m b er of p a th s  from 

th a t e lem ent to  the  top of th e  m a tr ix . T hus if p2 2  =  2  (as is th e  case for 

the  (2. 2) elem ent of the  .43  m a tr ix  for n =  3 and  k  =  3 in E xam ple 3.1) 

then  no m a tte r  how one reached  th is  elem ent of th e  A  m a trix , th e re  are 

only two possible paths rem ain ing  to  th e  top. T he  p,,j values are  assigned 

as follows. O nly .4 m a trix  e lem en ts  w ith  value 1  a re  assigned a  ptiJ value. 

If the  j th  e n try  in the first row of A  is nonzero, assign pi.j =  1. For the

second and  subsequent rows (i =  2 ,3 ...........n). pUJ =  '£.q=iPi-i.q- F'pon

com pletion . pn.„ represents th e  to ta l num ber of p a th s  from  th e  lower right 

corner of th e  m a trix  to th e  top  row of th e  m atrix . C onsider, for exam ple, 

the case of n =  5 and  k  =  4. T h e  A  m atrix  w ith  su p ersc rip ts  denoting
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the  p,,j values is

0 l 1 l 1 l 1 0

0 l 1 l 2 l 3 l 3

A-i =  0 0 l 3 l 6 l 9

0 0 0 l 9 l 18

0 0 0 0 l 2 7

Here one sees th a t  ps.s = 27. m eaning th e re  are 27 possible paths to  the  

top row of A4 . consis ten t w ith the n =  5 and  k  =  4 elem ent in Table 

o .l. T h e  general a lg o rith m  for com puting the  num ber of paths for any 

,4 -m atrix  (provided as inpu t to  the  algorithm ) is as follows:

T o t S u m  <— 0 
p  « - .4
For i <— 2 t o n  

For j  <— / to  n 
If =  0

Pi. j  P i - i . j - i  +  p , ~ i , j  
else

Pi. j  P i . j - i  +  P i - i . j  
Tot S u m  *— Tot S u m  +  pnn

5 . 3 . 3  P h a s e  3 :  S e t  l i m i t s  o n  t h e  a p p r o p r i a t e  i n t e g r a l s

T he in d ica to r m a trix  .4 shows, by the  presence of a 1 in row i and colum n j .  for 

j  < n . th a t  u, can  assum e values from  the m axim um  of Xj — t> and 0 to  th e  m in im um  

of x J + 1  — v and  x , +  c. T h e  presence of a 1 in row i and  colum n n. m eans th a t  u, 

assum es values from x n — v to  th e  m inim um  of x, +  v an d  1 . Each p a th  in A,  as 

described in Section 3.2. rep resen ts  a  set of allow able in tervals of in tegration  for th e
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variables U] to  un in a p a rticu la r n-fold integral. For a p a rtic u la r  path , the  lim its 

of in tegration  for each u, are  those given above th a t correspond to en try  at J of .4 

in row i th a t lies on th e  p a th , w ith one exception: if bo th  aUJ and  a .- i^  are on the  

sam e pa th , the lower lim it of in tegration  for u, m ust be u ,_ i. T h is exception occurs 

because the  pa th  allows u, and u,^i  to assum e values in th e  sam e u-subinterval. In 

such a  case, the  lower lim it of in tegration  for u, m ust be u ,_i in o rder to reflect the  

requirem ent u,-_i <  ut.

For each path  th ro u g h  th e  m atrix  A, and for each nonzero e n try  a t J on th a t pa th , 

a single in tegration  w ith  respect to  u; m ust be perform ed. If a ,_ ltJ is on the  sam e 

pa th  as a tiJ, then  th e  lower lim it of in tegration  will be the  variab le  u,-_i. If is not 

on th e  sam e pa th  as a tJ , th en  th e  lower lim it of in teg ration  will be a fixed num ber: 

the  m axim um  of x : — v and  0. T hus for each p a th  which passes through a;,j. e ither 

a variable or fixed lower lim it of in tegration  m ight be ap p ro p ria te .

E x a m p le  5 .3 .3  C onsider again the case of n =  5 and  the  fourth v- 

subin terval (k =  4). T he  A4 m atrix  shown below has its l 's  replaced 

w ith T \  V. or B.  ind icating  w hether a fixed-lim it in teg ra l, a variable-lim it
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in tegral, or both  need to  be com puted  for each entry .

A , =

0 T  T  7  0

0 V B B T

0 0 B B B

0 0 0 B B

0 0 0 0 B

In general, when the  .4 m a trix  con tains a  zero, n e ith er th e  fixed nor variab le  lower 

lim its need to  be com puted . Now consider th e  e lem ents of th e  .4 m a trix  th a t  contain  

a 1. T he positions associated  w ith  th e  first 1 in each co lum n of .4 requ ire  only  a 

fixed lower lim it to be calcu la ted . T he  positions below th e  first 1 in th e  first nonzero 

colum n require only a variable lower lim it to  be calcu la ted . All o th e r positions in 

th e  .4 m a trix  associated w ith 1 elem ents require b o th  a fixed a variable lower lim it 

to  be calcu la ted . Table 5.2 shows the  com p u ta tio n a l efficiency of perform ing  th e  

in teg rations for various values of n by using the  algo rithm . T he  num ber of single 

in tegrals (algorithm ) for any n is bounded above by

n(n  + 1)

w here th e  first factor corresponds to  th e  m axim um  num ber of l ’s in any  A  m a trix , th e  

second factor accounts for co m pu ting  bo th  th e  fixed and  variab le  m atrices (described  

subsequen tly ), and th e  last facto r is one less th a n  m  since no in teg ra tio n  is requ ired
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T able 5.2: C o m p u ta tio n a l efficiency associated  w ith  using the  F  and  V' arrays.

n m
Total n um ber 

of single in teg rals  
required  (T able 5.1)

Total num ber 
of single integrals 

required (algorithm )
1 1 1 0
2 2 6 4
3 4 39 23
4 5 140 48
5 7 625 108
6 S 2196 170
10 14 442540 800
15 22 318612735 2793
20 29 232093052440 6400
30 44 136617382366486800 21550
50 74 61056379955994182386843138150 99500

for th e  first r-su b in terva l. D ue to  savings associa ted  w ith  0 columns in the  A  m a trix  

and  th e  fact th a t bo th  fixed and  variable m a trix  elem ents do not need to  be ca lcu la ted  

in all cases, th is order n 3 expression is closely approx im ated  by O.SOn3 for n =  20, 30, 

and  50.

T ab le  5.3 on page 101 lists the coefficients of th e  polynom ials th a t define th e  

C D F  of D n — ^  as com puted  by the  a lg o rith m  in th e  A ppendix which has been 

im p lem en ted  in M aple for n =  1 .2 . . . .  ,6 . T h e  ab ility  to  store fractions ex ac tly  is of 

p a r tic u la r  benefit for these  calculations. R a th e r  th a n  deta il every aspect of th e  logic 

of P h ase  3 of th e  a lgo rithm , illu s tra ted  below is th e  evolution of th e  n x  n m a trices  F  

(for fixed lim its) and  V  (for variable lim its) in  a  row-by-row fashion for a  p a r tic u la r  

com b in atio n  of n and k.
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E xam ple 5 .3 .4  C onsider again th e  case of n =  3 and k  =  3. which 

corresponds to  th e  u-subinterval |  <  r  <  | .  T he x, values associated  

with n =  3 are  x j =  g, x 2  =  | .  and  x 3  =  | .  T he t \  values associa ted  w ith 

n = 3 are  vq = 0. Vi =  t>2  =  | .  v3  =  and  u4  =  | .  T he  cen ters of the

v-subintervals a re  cx =  c2  =  c3  =  and c4  =  5̂ . T h e  A 3  m atrix

is

<43 =

1 1 1 

0 1 1 

0 0 1

The F  and  I ’ m a trices are com puted sim ultaneously, row by row, s ta rtin g  

with th e  last row and  ending w ith th e  first. Thus all of th e  elem ents of 

the th ird  row of F  and  of I ’ are com puted  before com puting  th e  elem ents 

of the second row is begun. In general, integrals which are  calcu la ted  

in a p a rticu la r row becom e in tegrand  candidates for the  in teg ra tion  to 

be carried  ou t in th e  row im m ediately  above. T he F  and  V  m atrices 

are designed to  s to re  th e  in te rm ed ia te  resu lts of in tegration  of th e  n-fold 

integrals so th a t  th e  necessary inner in teg ra tion  operations a re  perform ed 

only once. E n tries  in th e  zth rows of F  and V  each resu lt from  n +  1 — i 

single in teg ra tio n s, one in tegration  corresponding  to th e  ith  row and one 

in tegration  for every  lower row. T h e  F  m a trix  stores the  resu lts  of all 

in tegration  in w hich th e  last in tegral had  a  fixed lower lim it and  th e  V  

m atrix  sto res th e  resu lts  of all in teg ra tion  in which th e  last in teg ra l had
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a variable lower lim it. In this exam ple, for th e  inner-m ost in teg ra tio n  

variable u3. th e re  is only one possible fixed in tegration  to com pute a n d  one 

possible variab le  in teg ra tion  to com pute on th e  th ird  u-subin terval. T hese  

com putations are  seen in th e  (3. 3) elem ent of th e  respective m atrices:

Fui F u2 Fl. 3 Vi.i  ̂1.2 I’ 1.3

F  = 0 F2.2 F2.3 V = 0 ^2,2 ^2,3

0 0 / L ,  Idu3 0 0 J i  ld u 3 _

T he second variab le . u2. has four possible com binations of lim its and  in te

grands. T hus th e re  are four storage elem ents for u 2, found in the  second 

rows of the F  and  \~ m atrices. E lem ents (2. 2) and  (2. 3) of th e  F  

m atrix  store in teg ra tio n  results th a t have all fixed lower-lim its of in teg ra 

tion. bu t th e  in teg rands are fixed and  variable, respectively. S im ilarly , 

elem ents (2. 2) and  (2. 3) of the I '  m a trix  are for th e  cases w hen the  

lower-limit of in teg ra tion  contains the  u t variable, while th e  in teg rands 

are fixed and variab le, respectively. F2-2 is com puted  to  cover th e  case in 

which uo varies over th e  second u-subinterval and  u3 varies over th e  th ird  

u-subinterval. F 2.3 covers th e  case in which both  u 2 and u3 vary over th e  

th ird  u -sub in terval. so u3 m ust have u 2 as its variable lower lim it: hence 

th e  in tegrand  is V3-3, not F3,3. Sim ilar cases are covered by V2<2 and  V2>3, 

except th a t variab le  lower lim its are used in an tic ipa tion  of th e  fact th a t 

u t and u 2 can b o th  vary over the sam e u-subin terval, m aking it necessary  

to  have Ui as th e  (variable) lower lim it for u 2. T he in tegrations in  th e
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second row of each m a trix  are shown below (no te, th e  in teg ra tio n  for the

(3, 3) e lem en t, previously discussed, has been carried  out}.

Fl .l  A . 2  -Fi.3

0 0

W .l  W ,2 W ,3

V’ = 0 f l ~ v F3'3 du2 f u\ +vV3'3du2

0 0 1 — u2

For the  th ird  and  last variable, u t , on ly  fixed-lim it in teg ration  takes place 

so only th e  F  m a trix  gets updated . T h e  (1 .1 )  elem ent covers th e  case in 

which U\ varies over th e  first u-subin terval and  u 2 varies over th e  second 

and th ird  u-subin terval. T he (1. 2) e lem en t covers th e  case in which U! 

varies over th e  second u-subinterval an d  u2 varies over the  second and 

th ird  u-sub in terval. T he (1. 3) elem ent allows bo th  ui and u2 to  vary over 

the  th ird  u -sub in terval. T he integrals in th is first row are  shown below 

(note again, all previously discussed in teg ra tio n  have been carried  out in 

the  second and  th ird  rows of F  and V'):

F  = 0

0 0
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V'i.i

0 0

T he com plete ly  evaluated F  m a tr ix  is given by

F  = 0 9 X  3^

0 0

Finally, th e  C D F on the 3rd e-sub in terval is th e  sum  of the  elem ents in 

the  first row of the  F  m atrix , all m ultip lied  by 3! =  6.

5 . 3 . 4  P h a s e  4 :  S h i f t  t h e  d i s t r i b u t i o n

At th is po in t, th e  C D F is com puted in th e  form  P {D n < v +  -A). Now one converts 

th e  d is tr ib u tio n  in to  th e  more usable form P { D n < y) =  F bn(y) by m aking  th e  

su b s titu tio n  y =  v +  A- jn both th e  polynom ials and  th e  u-subintervals of th e  C D F. 

Specifically, one adds — to each en d p o in t of th e  u-subintervals and one su b s titu te s  

{y — for d in th e  C D F polynom ials. O ne then  takes these two lists of num bers 

and  polynom ials respectively, sim plifies th em  (using M aple 's s i m p l i f y ( )  co m m and), 

and  creates th e  C D F  rep resen ta tion  in th e  form  of th e  “list-of-lists” rep resen ta tio n  

for d is tr ib u tio n s  ou tlined  in C h ap te r 2. T his enables us to  use th e  d is tr ib u tio n  in th e  

ways th a t all o th e r  d is tribu tions are  used in A P P L . Specifically, one can  now verify
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critical values for th e  d is tribu tion , bu t more im portantly , one can calcu la te  exact 

significance levels of any given s ta tis tic . An exam ple of th e  sh ifted  d istrib u tio n  for 

n =  6 is:

FDe(y) =

0

460S0 y6 -  23040 i/5 +  4800 +

2S80 y 6 -  4800 y 5 4- 2360 y4 -  y3 + 2§* y2 + g  y -  ±  

320 y6 +  320 y5 -  ^  y* -  ^  y -  ^ - 6

-2 S 0  y 6 +  560 y5 -  ^  y * +  y3 +  lf3S y * _  ^  y +  A  

104 y6 -  240 y -5 +  295 y4 -  y3 +  &  y2 -  ^  y +  £

- 2 0 y 6 +  3 2 y 5 - - f  y3 +  ^ y 2 +  ^ y - l  

10 y6 -  38 y5 +  I f V  -  -  {M y 2 +  y -  1

—2 y6 +  12 y5 -  30 y4 +  40 y3 -  30 y2 +  12 y -  1

1

U < n

h ^ y < \

£ <  y <  t

\ < y < h

\ < y < h

n < y < i

i < y < i

3 — y < 6  

l < y <  i 

y > i

The M aple P l o t D i s t  o u tp u t of the  C D F  and PD F of D& are show n in F igure 5.1 and 

Figure 5.2. T h e  com m ands used in M aple to produce these p lo ts are:

Y := KSRV(6);
P lo tD is t (C D F (Y ) , 0,  1);
P lo tD i s t ( P D F (Y ) , 0 ,  1);

Note th a t th e re  is a  d iscontinuity  in th e  PD F at y =  and  m ore generally, a t 

y =  K  T h is corresponds to th e  value v = ^  in B irn b au m ’s orig inal integral. 

This is th e  sm allest value of v for which the  n-dim ensional h y p ercu b e  centered a t
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Figure 5.1: T h e  C D F  of the D6 random  variable.

( ^ .  ^ ......... ^ 2 n^) m a^es con tac t w ith  th e  boundary of th e  region in n-space th a t

satisfies 0 <  <  u2 < • • • <  un <  1.

T he softw are is designed so th a t it stores the com puted C D F for a p a rticu la r value 

of n so th a t it does not need to  be recom puted subsequently . This is of p a rticu la r 

im portance since M aple is an in te rp re te d  language, resu lting  in slow execution tim es.

The C D F has be stored for n =  1 .2 ..........10.
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Figure 5.2: T h e  P D F  of the Z)6 ran d o m  variable. N ote th e  d iscontinuity  a t y  =  1/6.

5.4 C ritica l values an d  sign ifican ce levels

W ith  th ese  exac t d is tribu tions, one now can find exact critica l values and significance 

levels. C ritica l values are determ ined  w ith  th e  IDF procedure. The program  is ab le 

to achieve a rb itra ry  accuracy using th e  M aple com m and D i g i t s  to define th e  preci

sion. T hese  critica l values have been verified w ith  those p rin ted  in Owen (1962) for 

or =  0.1. 0.05, and  0.01 and for n =  1 , 2 , . . .  ,10  and  those values m atch ours exac tly , 

except th a t  ours are  not lim ited to  five decim al places. M ore im portan tly , th o u g h , is 

th e  ab ility  to  p roduce exact a tta in e d  significance levels given observed te st s ta tis tic s . 

T hese a t ta in e d  significance levels, o r p-values, give m ore inform ation ab o u t th e  s ta 
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tistica l te s t of hypothesis th a n  does th e  trad itio n a l “accep t/re jec t"  regions associated  

w ith critica l values. Using the  p rocedu re  CDF(). one can find these  exac t significance 

levels. For exam ple, let n =  6 an d  th e  observed te st s ta tis tic  D& =  0.5543. Tw o c r it

ical values are, for exam ple. 0.51963 for a  =  0.05 and  0.61661 for a  =  0.01. O ne can 

now d e te rm in e  th e  exact a t ta in e d  significance level of the  te s t s ta tis tic  w ith  the  com 

m and 1 -  CDF(D6, 0 .5 5 4 3 ). which yields a  p-value of 0.02928, a c learer ind ica to r of 

the  level of evidence against Ho. N ote th a t  it is not necessary to  co m p u te  th e  en tire  

Dn d is tr ib u tio n  to ob ta in  a p a rtic u la r  significance level. O ne m ust only determ ine 

which segm ent of support the  s ta t is tic  belongs to . then  execute th e  a lgo rithm  for ju s t 

th a t piece of th e  C D F. T h is  sh o rtc u t will reduce th e  integral co m p u ta tio n  tim e by 

approx im ate ly  -100%. w here th e  exac t savings depends on th e  e-sub in terval th a t 

is chosen. T able 5.1 indicates th a t  th e  g rea tes t tim e savings will p robab ly  be in the 

tails of th e  d is trib u tio n . T his tim e  savings is particu la rly  im p o rtan t for larger values 

of n.

5.5 C on clu sion

An a lg o rith m  for com puting  th e  C D F of th e  KS te st s ta tis tic  in th e  a ll-param eters- 

known case for a  positive in teger p a ram ete r n has been p resen ted . C om puting  the 

CD F provides a  challenging calcu lus problem , even for sm all values of n. T h e  C D F 

can be co n stru c ted  from a set of piecewise degree-n polynom ials. T h e  a lg o rith m  can 

be used to  plot the  CD F or to  ju s t  find p a rticu la r fractiles or p robab ilities.
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Table 5.3: C D Fs of D n — for n  =  1 ,2 ...........6.

n m k Coefficients of C D F  polynomials Subinterval

1 1 1 2.0 0 <  v  < In
2 2 1 8 , 0 .0 0 < V < 1

4

2 - 2 . 3 . i
4 < V < 3

4

3 4 1 4 8 . 0 ,0 , 0 0 <  V < 1
6

2 - 1 2 . 8 , 1 . - ! I
6 < V < 2

6
3 - 4 . 0 - U 2

6 < V < 3
6

4 2 - 5  -  -  —  *■' J’ 6 ’ 108
3
6 < V  < 5

6

4 5 1 3 8 4 . 0 . 0 , 0 , 0 0 <  V < 1
8

2 18. 0, 15, - | i  256
i
8 < V < 2

8

3 1 6 . - 4 0 , 2 1 . - 1 , - ^ 2
8 < V < 3

8
4 -  27  293 853  

' •  1 6 ’ 64 • 2048
3
8 < V < 5

8
- ^ -  147 343 353 5

< V <
7

‘ ■ 16 ’ 64 ’ 2048 8 8

5 i 1 3 8 4 0 . 0 , 0 . 0 , 0 . 0 0 < V < 1
10

2 n Ofifi 96 36  6 U , 2 0 8 , - . 2 5 . 1 2 5 '6 2 5
1
10 < V <

2
To

3 160 - 1 6 0  —  —  - —  —  i u u .  i u u .  5 , 2 5 ' 1 2 5 ’ 125
2

To < V  < 3
10

4 9 f l  6 4  318  542 343  273 ^ u .  u -t . - , 25 , 500, 1250 3
10 < V < 4

10
5 , 9  n  62 6 2391 3413  

L- '  u ’ 5 ’ 5 ’ 500 ’ 6250
4 < V < 5
10 10

6 o  i o  52 19 1838 10527  
° *  i 0 ’ 5 ’ 5 ’ 250  ’ 25000

5
10 < V < To

- o  n  81 729 6561 9 049  
“ • 5 ’ 50 ’ 1 0 0 0 ’ 50000

7
< V <

9
1 0 10

6 8 1 4 6 0 8 0 . 0 . 0 . 0 . 0 . 0 . 0 0 < V < 1
12

2 2880. - 3 3 6 0 . 6 6 0 .6 0 .  - f § ,  & .  -  5 ^ 4
1

12 < V < 2
12

3 3 2 0 . 4 8 0 . - 7 0 0 . - ^ . - 2 2 , ^ 2
IT? < V < 3

12
4 ■ io n  t o n  335 1675 26005 3125  20645  

2 , 54 • 864 ’ 1 7 2 8 ’ 3 7 3 2 4 8
3
12 < V  < 4

12
5 i n  i t o o  1235 7435 36245 7 327  6 9 7 9 7  

lO O . 6  , 54 i 864 ’ 5 1 8 4 ’ 3 7 3 2 4 8
4
12 < V < 5

12
6 o n  o n  45 2005 185 57971 4 0 6 4 6 9  

^U, 4 , 1Q8 , 1 7 2 8 ’ 10368 ’ 7 4 6 4 9 6
5
12 < V  < TI

- If!  925  3065 22175 134 807  6 3 2 8 6 3  1U. OO, 24 , 216 , MS6 , 20-36 , j4 9 2 9 9 2
7

V < 9
12 12

8 o  i i 605  6655  73205 161051 2 7 8 5 6 9  
i i ,  24 ’ 216 ’ 3456 ’ 20736  ’ 1 4 9 2992

9 V < 11
12 12
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C hapter 6

G oodness o f  F it using Order 

Statistics

6.1 In trod u ction

P resen ted  in this chap ter is a detailed  application  of A PP L  in which a  new goodness- 

of-fit te st s ta tis tic  is devised. T he  inception and  im plem entation  of th is  te s t is possible 

p rim arily  due to th e  ex istence of A PPL. This app lication  highlights how th e  parad igm  

of p rob lem  solving shifts w ith  th e  advent of a  p robab ility  language. P resen ted  here 

is a  new m ethod of using o rder s ta tis tics  for judg ing  th e  fit of d a ta  by a  hypo thesized  

d is trib u tio n . T here is a  variety  of uses of o rd er s ta tis tic s  in s ta tis tic a l inference 

procedures. One reason is th e  po ten tial for ad ap tin g  such procedures for use w ith  

censored sam ples (Cox and  O akes, 19S4 and D avid, 1993). O ther app lica tions concern 

behav ior in the tails of a  paren t d istribu tion  (for exam ple, o u tlie r te s ts , T ie tjen ,
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1986). s itua tions in w hich the  ordered d a ta  are  collected over tim e (life te stin g , for 

exam ple, Barlow  and  P roschan . 1975). and estim ation  of p aram eters  in te rm s  o f linear 

com binations of o rder s ta tis tic s  (D avid. 1993). A laxge lite ra tu re  on th e  su b je c t ex ists  

(see, for exam ple D avid. 1981 and references cited  there in ).

O ne im p o rtan t class of problem s involving o rder s ta tis tic s  is goodness-of-fit te s t 

ing (D ’A gostino and  S tephens, 1986). T he S hap iro -W ilks no rm ality  te s t (Johnson  

and  W ichern. 1992. p. 158) is based on a s ta tis tic  th a t uses, in p a rt, th e  ex p ec ted  

value of each o rder s ta tis tic . Since many of th e  te sts  com m only used are  defined 

th rough the  sam ple d is tr ib u tio n  function, they  m ay be considered to  b e  functions of 

th e  underlying o rder s ta tis tic s . It is com m on practice  to  transfo rm  o rd e r s ta tis tic s  

from a parent p opu la tion  for the  continuous random  variable X  w ith  cu m u la tiv e  d is

trib u tio n  function F  to  corresponding U(0, 1) o rder s ta tis tic s , th rough  th e  p ro b ab ility  

integral tran sfo rm a tio n , V  =  F [X ) .  If the proposed te st s ta tis tic  is in v a rian t u nder 

th is transfo rm ation , it follows th a t its d is tribu tion  m ay be derived for th e  case of a 

U(0. 1) paren t d is tr ib u tio n , and applied for any o th e r continuous p a ren t d is tr ib u tio n . 

T h a t is. the  p rocedure  in this case is ‘‘'d istribu tion  free.”

An exam ple of th e  foregoing is th e  K olm ogorov-Sm irnov ( I \-S )  one-sam ple  te s t , 

based on the  te s t s ta t is tic  Dn =  supx |F (x )  — F „ (x ) |, w here Fn is th e  sam p le  d is tr ib u 

tion function. Since th e  norm  is invariant under transfo rm ations on  x , it follows 

th a t one m ay find c ritica l values for D n using th e  d is trib u tio n  of m a x ,{ m a x { |u t — 

|t£, — ^ |}} , w here u, =  F (x ( ,) ) ,i  =  1 ,2 , . . .  ,n .  Following th e  d evelopm en t of 

th e  K -S te st, m any a rtic les  adap ted  the  te st to  re la ted  o rder s ta tis tic -b a se d  te sts :
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te sts  for d a ta  on a  circle (K u iper, 1960 and  S tephens, 1965). te sts  w ith  p aram eters  

es tim ated  from d a ta  (L illiefors. 1967 and 1969), te s ts  for censored sam ples (B arr and 

D avidson. 1973). and  o the rs . In addition to  its use in non-param etric  goodness-of-fit 

te sting , th e  K -S  p rocedu re  m ay be used in a general way to  ob ta in  confidence re

gions for p a ram ete r vectors (B a rr and  D avidson, 1973); in terestingly , th e  la tte r  is a 

p aram etric  problem .

In Section 6.2 a  vector of U(0. 1) s ta tis tics  is defined by transform ing  th e  o rder 

s ta tis tic s  th rough  each of th e  n hypothesized C D Fs. Also suggested are possible uses 

of th e  vector in a  varie ty  of s ta tis tic a l problem s, an d  it is shown how' th e  m arginal 

d is trib u tio n s  of its com ponen ts can be com puted  w ith  m a th em atica l softw are such 

as M aple. These ideas a re  applied  to  define a goodness-of-fit s ta tis tic  and  sim ulation  

is used to  show it is adm issib le  relative to  th e  K -S  and  A nderson-D arling  tests  in 

Section 6.3. Possible ex tensions and  conclusions a re  given in Section 6.4.

6.2 T h e P -v e c to r

Proposed here is a  m easure  of th e  goodness-of-fit of em pirica l d a ta  by a  hy p o th 

esized d is trib u tio n  based on th e  vector of real num bers called th e  "P-vector. Let 

A 'i, A*2 , . . .  . An be a  ran d o m  sam ple from a popu la tion  w ith  continuous C D F F ,  and  

let A (1),A '(2 ) , . . .  .A'(„) be  th e  corresponding o rd er s ta tis tic s . T hen  th e  ind iv idual
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order statistics have marginal densities / x (l,(^). /a'(2)(x )’ • • • ' fx{n)ix ) given by 

fx- ' [z) =  ( , _

w here / a'(x ) =  P\-(x ) (see Larsen and  M arx. 1986, for exam ple). In princip le , one 

can use these d is trib u tio n s  to  determ ine th e  quan tiles for each ordered observation  in 

its respective d is trib u tio n . Define the  P -v e c to r  to  be the n-vector

V  =  [F Y(n(-r(l)).^A'(2)(^(2))...........^ , B)(X(n))]-

For sim plicity  in n o ta tio n , let p, =  Fxit)(x(i) ) J  =  1 .2  n. In tuitively , poor fit is

ind icated  by "extrem e" com ponents in P .  T hus, under the null hypothesis Hq: A has 

C D F Fx{x)  w ith n =  3 observations, for exam ple, a P -v ec to r of [0.453.0.267.0.623] 

in tu itively  indicates a good fit more so th an  a P -v ec to r of [0.001.0.005.0.997].

Since th e  individual e lem ents p, are th e  resu lt of the probability  in tegral tra n s 

form ation. it is clear th a t P, ~  f/(0 . l ) . i  =  1 .2  n. for any continuous popu la tion

C D F F.  W hile th e  P, a re  identically  d is trib u ted , they are not stochastically  indepen 

dent. T here  is positive au tocorre la tion  am ongst elem ents of the P -v ecto r.

T he  P -v ec to r has a  num ber of po ten tia l uses as a basis for d is tribu tion -free  s ta t is 

tical procedures. It can provide a d is tribu tion -free  tool to  identify ou tliers. T ie tjen  

(1986. p. 497) m entions in his paper on outliers “We shall discuss here only th e  un

derlying assum ption  of no rm ality  since the re  is very little  theory  for any  o th e r case". 

As is discuss below, it is possible and p ractical to  calcu la te  all pi for nearly  any  hy
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pothesized continuous d istribu tion , so one m ay  use th e  "P-vector as a  basis to  identify  

outliers from any specified continuous d is tr ib u tio n . As one approach , one could ex

am ine th e  first and  last few elem ents of P  (p\ and  p„, for exam ple) to  de te rm in e  

w hether they  are s ta tis tic a lly  significant. Also envisioned are uses of th e  P -v e c to r  

for s ta tis tic a l inferences involving censored sam pling  and  estim ation  based on "order 

agreem ent." T he m ain application investigated  here is goodness-of-fit te s tin g  using 

te st s ta tis tic s  based on th e  P -vector.

6.3 Im proving com p u ta tion  o f  V

C om puting  the elem ents of th e  P -v ec to r can  be accom plished w ith  A PPL . T h e  pro

cedure OrderSta tCX, n ,  r )  for exam ple, determ ines the  d istribu tion  of th e  r Lh out 

of n o rder sta tis tics. Com bined with th e  p rocedu re  CDF(X, x).  w hich re tu rn s  Fx{x)-  

the  elem ents p, are calcu lated .

It is preferable to  calcu la te  the P -v e c to r  by first transform ing to  U(0, 1) o rder 

s ta tis tic s , and then  determ in ing  the quan tiles p, using corresponding b e ta (i. n — / +  1) 

C’D Fs. which are rela tively  sim ple polynom ials as ind icated  in F igure 6.1. T h e  calcu

lation of pi =  F y(i) (£(,)) as first described is dep ic ted  by th e  path  shown by a  solid line 

in F igure 6.1. This m ethod  of com putation  relies on th e  ability  to  ca lcu la te  quan tiles 

in d is tribu tions of all of the  order s ta tis tic s  X ^) ,  a lthough  recurrence re la tions for 

C D Fs of order s ta tis tic s  m ight speed co m p u ta tio n  (D avid, 1993). T h e  second ap 

proach. using b e ta  C D Fs, is depicted by th e  dashed  line in F igure 6.1. It requires the
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order

order

Figure 6.1: T ransfo rm ations from iid observations A 1 ..A 2 .......... A'„ to  th e  so rted  V-
vector elem ents P^). P^2)...........P{n)-

transform ation  of th e  X(,)'s in to  U(0. 1) ran d o m  variables and th en  th e  de te rm in es  

of th e  quantiles of th e  la tte r  using ap p ro p ria te  b e ta  C D Fs. T he  theo rem  to  follow 

proves th a t bo th  m ethods are equivalent.

It is in tu itively  p lausib le  th a t the  quan tiles  com p u ted  following th e  tw o p a th s  in 

F igure 6.1 will be iden tical: however, it is useful to  provide a careful d em o n stra tio n  of 

th is fact. Since th e  defin ition  is p, =  F v Ml(x(,)). it will suffice to  show th a t Fzu){~(i)) = 

F.\U)(x {l)). w here Z  =  Fx (X ) .

T h e o r e m .  Let A"i. X 2 V„ be a random  sam ple  from  a popula tion  w ith  co n tin 

uous CD F Fx  and  p ro b ab ility  density  function  f x -  Suppose A’(i).A '(2) , ..........\ ( n) are

th e  corresponding o rder s ta tis tic s , and  let Z(;j =  F x (X ^ ) ) .  T hen .

FZ{, ,(-(£)) =  Fjr(l)( x (i)); i  =  1 , 2 , . . .  , n.  (1)
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P ro o f .  B oth  sides of E quation  (1) will be reduced to  equivalen t forms. For th e  left-

hand side of E quation  (1). no te  th a t Z(,-) ~  beta(i.rc  — i +  1) (B arr and  Zehna, 19S3)

and th a t

,,(-(«■)) =  FZ{j F x (x{t])) = FZ{t) o F x (x (i)).

T he C D F of a  b e ta ( i .n  — i +  1) random  variable is defined by

Fz,jx) = k f : z - ' u  -  : r -d z .

nl
where h =  —-----—  ----------— T hus th e  com position above is given bv

(i — l)!(n  — 0 ! 5

(*(.’)) = k  r - l ( l  -  : ) n~'dz.Jo

.  r F x ( i ( l ) )

°  Fx

Now consider th e  rig h t-h an d  side of Equation (1). T he  density  of .V(l) is given by

/.v ,„ (x ) =  k[Fx (x)]'~l [l -  Fx (x)]n- ' f x (x)

(Larsen and  M arx. 1986). so th e  corresponding C D F is

FXit)( x (t]) =  k r " [ F x { s ) ] - l [(l -  Fx (s))]n~ ' f x (s)ds.
J  — o c

Make th e  change o f variab le r  =  Fx {s) so th a t —oo < s < X(,j «=> 0 <  c <  Fx (x^))
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and dz  =  f x ( s ) d s .  T he  right-hand side of E quation  (1) is therefore given by

F.v,„ ( * < , ) )  =  1 -  =  -f*,.,  0 ^ < * < 0 )

□

O ne could also develop the  quantile  p, following the  lower path  in F igure 6.1. T he 

p a th  ind icated  in F igure 6.1 by the  dashed line is generally preferred, since th e  dis

trib u tio n s  leading to  th e  p, elem ents are polynom ials. T he  com putations needed  for 

the  solid p a th  are calculable, however they  typ ically  tak e  a  significantly longer tim e 

to  calcu la te . Also, th e  C D F of X  is typ ically  m ore trac tab le  than  th e  C D Fs of A'(,)'s.

6.4 G ood n ess-o f-fit te s t in g

In general, goodness-of-fit testing involves s ta tin g  a null hypothesis. Ho : f x { x \ d )  =  

/o (x :$o) a nd then  assessing w hether there  is sufficient evidence in a random  sam ple 

to  reject Hq. Since th e  'P-vector was derived  under Ho, one sees th a t its elem ents 

provide a d irec t judgm en t of fit. Any p, too  low or too high may be an  ind ica tion  of 

a poor fit. It would be useful to form a single s ta tis tic  based on th e  p ,’s th a t  ind ica te
n n

good or bad fit. Som e obvious cand idate  te s t s ta tis tic s  are ^  |p, — 0.5 |. D p . -  o -s)2
t= l i= i

n i
and 5 2  |p ( i) ------------ 1. These test sta tis tics, however, ap p ea r to suffer from  low pow er,

.= i  n  +  1

based on a  m odest set of sim ulations th a t were conducted . Instead , a  varia tion  of 

th e  reasoning th a t seem s im plicit in the  developm ent of A nderson-D arling  (A -D ) A 2 

s ta tis tic  was considered. C alculations are done  according to  the  p robab ility  in tegral
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transform ation  p resen ted  in th e  second form  in S tephens (1986, p. 101). N ote th a t  

the  A -D  .4 2 s ta tis tic  is developed w ith  th e  Z(t) values which are  dep ic ted  in the  lower- 

right s ta te  of F igure 6.1. Define a  te st s ta tis tic  in te rm s of a  linear com bination  of 

the  n a tu ra l logarithm s of p, and  1 — pt . This te s t s ta tis tic  will be large w henever 

one or m ore p ,'s  is too  close to  1 o r 0. Sort the  elem ents of the  "P-vector, so p(i) is

t U/t n rv» 1 1 nr t /-k f  a1 *"V rvk n t o f  f Un ' f l  t /% »• f l> a  1 axvnn f F\ »* 4 U a »
k llV  J l i l U l l C J b  WL b llW  V .lC iU V .U b O  O l  b U C  / '  W V .b V i  ( U t U  / ' ( n )  i 0  i a i g v . o b .  1 ^ / d l l l C  L l iC  I C 3 1

sta tis tic  P3 by

Ps =  - n  -  ~ X ][(2 n  +  1 -  2i) ln(p(t)) +  (2* -  1) ln( 1 -  p(l,)]. (2)
n

T he power of Ps was exam ined in a  series of sim ulations. T he  goodness-of-fit te s ts  

based on P3 have pow er about th a t  of A 2 in m ost cases, and  b o th  P3 and  A 2 generally  

dom inate  th e  K -S te s t, as s ta ted  in D ’A gostino (1986, p. 110). for th e  A -D  te s t. 

T here is a t least one case where P3 dom inates th e  A -D  test: the  case of g uard ing  

against an im proper variance p a ra m e te r  under th e  null and a lte rn a te  hypotheses of 

norm ality.

The test using P3 as a test s ta t is tic  is significantly m ore powerful th a n  bo th  th e  

K -S and A -D  tests  in th e  following experim ent. T he  power of th e  th ree  tests  was 

approx im ated , and a  fourth  test P* using p, in place o f p(,j in E quation  (2), un d er 

the  following conditions. Let Ho '■ -V ~  N (0 ,1) and  H a : X  ~  iV(0,<72). R andom  

sam ples were gen era ted  of size 10 from  N ( 0 , a 2) w here a  vaxied from  0 . 1 ,0 . 2 , . . . .  3.0. 

A plot of each te s t’s es tim ated  pow er a t guard ing  against changes in <r, based on 1000
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replications of th e  sim u la tion , is shown in Figure 6.2.

1-5
1 0

0.8

04

K-S

02

0.0

00 0.5 1.0 l i  10 15 30

Figure 6.2: E stim a ted  pow er functions for testing  H 0: X  ~  N ( 0 .1) versus H .V ~  
N(0.<r2) using K -S , A -D . and  two s ta tis tic s  based on th e  P -v ec to r .

T hese power p lo ts show th a t as a  becom es g rea te r th a n  1. b o th  P, and P /  have 

significantly higher pow er th a n  have A 2 and  Dn. Also. P* sligh tly  outperform s Ps for 

a  >  1. As a  becom es less th a n  1, Ps clearly  outperform s A 2 and  D n . bu t P j  has very 

low power. T he  s tro n g  perform ance of Ps, four tim es th e  pow er of A 2 a t a  =  0.30, 

for exam ple, causes us to  con jectu re th a t  th is  is a  s trong  om nibus te st s ta tis tic  for 

guard ing  against d e p a rtu re s  from hypothesized variance for N(Q,cr2) populations. 

T h e  s tan d ard  erro r of e s tim a te  of a  power value 1 — /? is less th a n  \J (0.001)(/?)(1 — 4 ), 

o r abou t 0.015 for ind iv id u a l values p lo tted  in th e  m id -heigh t range of F igure 6.2.
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T hus th e  im provem ent in power of Ps over A 2 is significant as ev iden t in F igure 6.2. 

Since Ps seem s to  provide protection in b o th  directions of d e p a rtu re  of a  from  1. it 

w arran ts one to  investigate  m ore fully its critica l poin ts. D ue to  th e  dependence of 

the  pi e lem ents, finding an analy tical expression for the  d is tr ib u tio n  of these s ta tis tic s  

seems un tenab le: however, using sim ulation , approx im ated  c ritica l points for the  Ps 

are shown in T ab le  G.l. Note th a t th e  critica l points of all s ta tis tic s  are those of 

th e  fully specified null d istribu tion , case zero in D’A gostino 's te x t. T he sim ulation  

for th is tab le  relied on 10.000 itera tions of each sam ple size, so only  two dig its are 

significant. N ote th a t  the  d istribu tion  of Ps seems to have a heavy right ta il, and  as 

n increases, the  ta il becomes heavier. It is also in teresting  to  no te  th a t for n < 25 

the  th ree  critica l values increase alm ost exac tly  linearly.

Table 6.1: E s tim a ted  critical values for P3 a t various sam ple sizes and levels of sig
nificance.

n 0.90 0.95 0.99
2 4.9 6.1 8.9
3 7.6 9.1 13.4
4 10.1 12.1 17.0
5 12.6 15.3 21.5
6 15.1 1S.1 24.4
7 17.7 21.1 2S.2
8 20.4 23.9 32.0
9 22.7 26.8 36.5
10 24.9 29.4 39.5
11 27.9 32.2 43.7
12 30.0 35.2 48.0
15 37.5 44.0 59.6
20 50.7 58.7 81.1
25 63.2 76.2 116.5
30 80.0 107.1 218.4
40 445.0 576.5 776.8
50 1025.4 1108.8 1231.6
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6.5 C on clusion

The purposes of th is chapter are two-fold. F irst, th e  no tion  of using the inform ation 

contained in th e  fit of order s ta tis tic s  is presented, as represen ted  in the  P -v ecto r. as 

a  vehicle to  define a new goodness-of-fit te st s ta tis tic  Ps. T he  perform ance of Ps w ith 

sim ulation experim en ts  was exam ined. F igure 6.2 shows convincing evidence th a t P, 

is a powerful goodness-of-fit test a t least in some instances, so it is adm issible relative 

to Dn and A 2. A secondary purpose is to  show th a t  th is  procedure is p ractical 

to  carry o u t. now th a t com putational languages such as M aple are becom ing fully 

developed. Indeed , th e  code in M aple used to com pute th e  critical values in Table 

6.1 consists of abo u t one page. E m bedded in th a t code is th e  ability  to  find the  

n-fold vector of polynom ials represen ting  the each  of degree up to n . th a t

make up th e  b e ta  d is tribu ted  CD Fs used to calculate th e  P -v ec to r elem ents. T he 

leverage in th e  approach  through th e  Z(,-j is th a t M aple crea tes  and  stores the C D Fs. 

not the p rogram m er. The sam e sim ulation  in FO R T R A N  or C' would require the  

program m er to  hard-code the  n polynom ial CDFs for each value of sam ple size in 

Table 6.1. and  th en  call a separate  subrou tine  to ca lcu la te  th e  test sta tistics. This 

could be a significant program m ing task . T he M aple version requires none of th is, 

since the C D Fs are  in functional form  and  may be eva lua ted  a t specific points. Not 

only th a t, b u t for large n. in the  case of n — 50 for exam ple, th e  50 CD Fs of the  o rder 

sta tistics m ay have extrem ely large in tegers for the  coefficients of the  term s, as well as 

for their exponen ts. M aple is able to  conduct the  m a th em a tica l operations w ithou t
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rep resen ting  these constan ts as floating point approx im ations. T hus the precision 

exceeds an  im plem en tation  in a  high-level algorithm ic language. It is apparen t th a t  

the  adm issib ility  of Ps suggests a ttra c tiv e  procedures for o u tlie r  detection  and  th a t  

inferences w ith  censored sam ples m ay also be defined in te rm s o f th e  P -vecto r.
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C hapter 7

O ther A pplications and E xam ples

7.1 In trod u ction

A key con trib u tio n  of A PP L  is th a t  it provides a  new way of viewing ex is tin g  p ro b 

lems and  opens new avenues for th e ir  solution. This chap te r provides exam ples w here 

the  problem -solving parad igm  can  sh ift due to the ab ility  to  find exact d is tr ib u tio n s  

of random  variables. T he six sections th a t follow highlight som e diverse a rea s  of ap 

p lication th a t  can be addressed  w ith  A P P L . The chap ter s ta r ts  w ith  re la tiv e ly  sim ple 

exam ples involving the cen tra l lim it theorem  (CLT). In these  exam ples o n e  will be 

able to  d e te rm in e  th e  erro r o f th e  CLT approxim ations to  d is trib u tio n s  invo lv ing  

sum s of independen t random  variab les. T he second section con tains a  d e m o n s tra 

tion of how to  use A PP L  to g en era te  m athem atically  in tra c ta b le  tab les, g ra p h s , and  

charts , effectively reducing th e  need for th e  volumes con tain ing  these e n titie s . T h e  

th ird  section  contains a d em o n stra tio n  of how com putation  of exac t d is tr ib u tio n s  can
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enhance probab ilistic  model design using re liab ility  block diagram s. T he  fourth  sec

tion con ta in s  a  dem onstration  of how the softw are allows for m odeling system s using 

hazard  functions. The fifth section provides a  discussion on a sim ple m ethodology 

by w hich A P P L  furthers one's ab ility  to  identify  ou tliers in sam ples. Finally, in th e  

s ix th  section , a  discussion of some explorations for crea ting  estim ation  techn iques us

ing m ax im u m  likelihood w ith o rder s ta tis tic  d is tr ib u tio n s  is given. T hese six exam ples 

serve on ly  to  suggest the  n a tu re  of app lications of A PPL ; m any m ore app lica tions 

exist.

7.2 E x a ctn ess  in lieu  o f  CLT approxim ations

O ne use of th e  CLT with iid sam ples is to fac ilita te  inference about th e  popu la tion
n

m ean. T h e  CLT implies th a t X  =  ^  A', is asym p to tica lly  norm ally d is tr ib u ted  w hen
1 = 1

the  A '.'s a re  iid with finite mean and  variance. A pplication of th e  CLT becom es 

res tric ted , however, w ith sm all sam ple sizes, w ith  skewed da ta , or in th e  presence of 

ou tliers (M oore and M cCabe 1993. p. 510). In these cases, an a lte rn a tiv e  m e th o d  

is to d e te rm in e  the exact d is tribu tion  of X .  O nce the  d istribu tion  X  is found, one 

can use it to  m ake s ta tis tica l inferences about th e  popula tion  mean. A few exam ples 

follow.

Let A" ~  e x p o n e n tia l 1). By th e  CLT, the  ap p ro x im ate  d istribu tion  of Y  = X  is 

ap p ro x im ate ly  N (l,  ^ ) .  For the case n  =  3, one can com pute the  exact d is tr ib u tio n  

of Y  w ith  th e  following com m ands:
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> X
> n
> Y
> Y

= E x p o n e n t i a lR V ( l ) ;
= 3;
= SumIID(X, n ) ;
= Transforra(Y, [ [x  -> x /  n ] ,  [0,  i n f i n i t y ] ] ) ;

T he resulting  PD F  is f y { y )  = y y 2e-3y for y  >  0 w hich is p redic tab ly  non-norm al 

in shape, as n is too low for the  norm ality  o f th e  CLT to apply to  such a  skewed 

underly ing d is tribu tion . O ne also notes th a t  V  has th e  Erlang d is tribu tion . Now 

consider the case n =  30, often considered a  sufficiently large sam ple size for an 

adequa te  CLT approx im ation . Here a co m p u ta tio n  of th e  error associated w ith  th e  

approxim ation  is provided. To obtain  the P D F  of X , one changes th e  second line of 

code to  n := 30 ; and re-executes the M aple w orksheet. T he result is the  following 

Erlang PD F:

. , . 24631531333923339S437500000 29 _30uf v  (u ) =  -----------------------------------------------v e
J 10577732774609 y y >  0

Listed below are selected fractiles for bo th  th e  exact d is tribu tion  of X  and its  CLT 

approx im ation , the  N (l.  d istribu tion . For th e  selected fractiles. the  approxim a-

Table 7.1: F ractiles for exact and  app ro x im ated  distribu tions.

A pproach D istribu tion
Fractile

0.9 0.95 0.975 0.99
Exact
CLT

X 1.240
1.234

1.318
1.300

1.388
1.358

1.473
1.425

tion is only good to  abou t one digit beyond th e  decim al point. It is useful to  no te  

th a t the  CLT approx im ation  for critical values in confidence intervals for E ( X )  m ay 

be in error; worse, they  are not even on the  conservative side. For exam ple, a  97.5%
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u p p er confidence bound using th e  CLT quan tile  1.357S4 actually  provides only  96.6% 

confidence [note P ( X  <  1.35784) =  0.965975 is found in th e  M aple w orksheet w ith 

th e  com m and CDF(Xbar, 1 .3 5 7 8 3 8 8 2 9 );] . N ote, th e  add itional A P P L  com m ands 

to  genera te  the values in T ab le 7.1 are th e  following:

> Z := N orm alR V (l, 1 /  s q r t ( 3 0 ) ) ;
> a lp h a  := [ 0 .9 ,  0 .9 5 ,  0 .9 7 5 ,  0 .9 9 ] ;
> f o r  i  from  1 t o  4 do
> IDF(Y, a l p h a [ i ] ) ;
> IDFCZ, a l p h a [ i ] ) ;
> od;

For a related ap p lica tio n , consider an old, app ro x im ate  m eth o d  of genera ting

random  samples from th e  s ta n d a rd  norm al d is trib u tio n . It is well d o cu m en ted  (P ark

and  Leemis, 1997. for exam ple) th a t the  following approach  can be used to  genera te  

approx im ate ly  s tan d ard  norm al sam ples, w here th e  U\'s are iid U(0. 1):

T he  following com m ands d e te rm in e  the exact d is trib u tio n  of th is 12-fold convolution 

and  th e  th ird  and fourth  m om ents of Z ’ and Z:

> U := UniformRV(0, 1 ) ;
> U12 := SumIID(U, 12) ;
> Z s t a r  := Transform (U12, [ [ x  -> x -  6 ] ,  [ - i n f i n i t y ,  i n f i n i t y ] ] ) ;
> Z := NormalRV(0, 1 ) ;
> skew := x -> x “ 3;
> k u r t  := x -> x “ 4;
> e v a l f ( E x p e c t a t i o n R V ( Z s t a r , skew)) ;
> e v a l f (E x p e c ta t io n R V ( Z ,  sk ew )) ;
> e v a l f ( E x p e c t a t i o n R V ( Z s t a r ,  k u r t ) ) ;
> e v a l f (E x p e c ta t io n R V ( Z ,  k u r t ) ) ;
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T he d istribu tion  of Z* is useful because, like th e  s tan d ard  norm al d is tr ib u tio n , its
3

/  Z ' - E \ Z ' \ \
\  )

m ean is zero, its variance is one, and its skew ness ( th ird  m om ent. E  

E  [(Z*)3 ) is also zero. T he  first difference is in th e  fourth  m om ent E  [(Z *)4j which 

equals 2.9 for Z ’ and  3.0 for a  standard  norm al random  variable Z.  A n o th e r m ore ob

vious difference betw een th e  d istribu tions of Z  and  Z"  is th a t Z  has su p p o rt (—oc. oo) 

w hile Z ’ has supp o rt ( —6 .6 ). T he d is tr ib u tio n  of Z “ is th e  following:

f z ' ( x )  =  <
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—5 <  x  <  —4
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- 2  <  x <  - 1  

- 1  <  x <  0

0 <  x <  1

1 <  x <  2

2 <  x <  3

3 <  x <  4

4 <  x <  5

5 <  x  <  6

In the  overlaid M aple plots of th e  s ta n d a rd  norm al PD F  and  f z - { x )  show n in 

F igure 7.1, it is ap p aren t th a t this ap p ro x im ate  d is trib u tio n  fits th e  s ta n d a rd  norm al 

d is tr ib u tio n  in the  PD F  very nicely except a ro u n d  x  =  0 [where f z { 0) =  =  0.399
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and  f z - { 0) =  fgfoVod — 0-394] and. of course, in th e  tails, since th e  app ro x im ate  

d is trib u tio n  only has support on (—6. 6). To o b ta in  overlaid p lo ts of th ese  two 

d is trib u tio n s , one invokes the P l o t D i s t  com m and. F irs t one creates a  p lo t of Z~ and  

stores it as P l o t l .  Next, one creates a  plot of th e  s tan d ard  norm al d is tr ib u tio n  and  

stores it as P lo t2 .  Finally, used the p l o t s  [ d i s p l a y ]  com m and to  com bine th e  two 

plots. T his is sum m arized in the com m ands:

> P l o t l  := P l o t D i s t ( Z s t a r ,  - 6 ,  6 ) ;
> P l o t 2  := Plo tDis t(NormalRV(0, 1 ) ,  - 6 ,  6 ) ;
> p l o t s [ d i s p l a y ] ( P l o t l , P l o t 2 ,  s c a l i n g  = u n c o n s t r a i n e d ) ;

xl

F igure 7.1: Overlaid plots of f z - ( x )  an d  th e  s tan d ard  norm al P D F .
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7.3 A  m a th em atica l resource gen erator

A PP L  is also able to  g en era te  tab les, graphs, and charts. T h e  te rm  resource refers to  

tab les, graphs, and charts, to  include such item s as m eans, critica l points, variances, 

and  so on. A PPL  can be invoked to  reduce the need for such tables. A dditionally , 

since these com putations can  be produced au tom atically , program s can be designed 

to produce needed values in real tim e, as opposed to  being restric ted  to  know ing in 

advance which elem ent of w hich tab le  will be needed for p rogram  execution. T h ere  

are many references for c ritica l tab les for com mon d is trib u tio n s  th a t softw are such  as 

th is (and o thers) effectively replace. H ighlighted, however, will be two recent books. 

CRC  Handbook of Tables f o r  Order Statistics from Inverse Gaussian Distributions 

with Applications (B alak rishnan  and  C hen, 1997) and C R C  Handbook of  Tables for  

the Use o f  Order Statistics in Estimation  (H arter and B alakrishnan , 1996). T hese  

books were selected because o f th e  relatively  com plex n a tu re  of the  inform ation they  

present. Also, they were chosen to  highlight th a t even as la te  as 1997, the  scientific 

com m unity had to rely on tab les  and  charts for a significant am ount of p robab ilis tic  

inform ation.

F irst is a  com parison of B alak rishnan  and C hen 's C R C  Handbook of  Tables for  

Order Statistics from Inverse Gaussian Distributions with Applications w ith A P P L ’s 

capabilities. This book begins w ith 39 pages of theory  and  references to  the  inverse 

G aussian (IG ) d istribu tion  a n d  its o rder s tatistics. T hen  th e  book has 645 pages of 

P D F  plots, expected value tab les , covariance tables, es tim a tio n  tables, and  so fo rth .
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A P P L  is able to c rea te  a  n u m b er of these figures and tab les , and in som e cases goes 

beyond those presented in th e  te x t. Page 50. for exam ple, shows th e  N ( 0 ,1) a n d  th e  

s tan d ard ized  IG(O.S) P D F s overlaid  in a single plot. T h e  s tandard ized  IG d is tr ib u tio n

the  P D F  of Z  (which is listed  as equation  (2.14) on page 7 of the  te x t)  is as follows:

Then the two plots may be overlaid as follows:

> X := NormalRV(0, 1) ;
> k := 0 . 8 ;
> Z := [ [ z  -> 1 /  s q r t ( 2  * P i )  * (3 /  (3 + k * z ) )  (3 /  2) *

e x p ( - 3  * z “ 2 /  ( 2 *  ( 3 + k *  z ) ) ) ] ,  [-3 /  k ,  i n f i n i t y ] ,
[ ‘Cont i n u o u s ' ,  ' PDFf ] ] ;

> P l o t l  := P l o t D i s t ( X ,  - 4 ,  4 ) ;
> P l o t 2  := P l o t D i s t ( Z ,  - 4 ,  4 ) ;
> p l o t s [ d i s p l a y ] ( { P l o t 1,  P l o t 2 > ,  s c a l i n g  = u n c o n s t r a i n e d ) ;

T he M aple-produced plot is found in Figure 7.2. B alak rishnan  and C hen use such 

plots to  show how the  two d is tr ib u tio n  separate  as k increases from zero. For p lo ttin g  

th e  IG P D F , one is not lim ited  to  th e  s tandard ized  version of the  d is tr ib u tio n . O ne 

could plot any IG P D F . C D F , H F. and  so on. For exam ple , th e  com m and 

> P lo t D i s t ( H F ( I n v e r s e G a u s s i a n R V ( l , 0 . 5 ) ) ,  0,  3 ) ;

will genera te  a plot of th e  IG (1. 0.5) hazard function. C learly, one is n o t lim ited  

to  ju s t P D F  plots in A P P L , nor is one lim ited to p lo ts  of only s ta n d a rd iz e d  IG 

d is trib u tio n s .

is defined as follows. Let Y  ~  IG(A.<5). Let a  =  \J8ZI A (th e  s tan d a rd  d ev ia tio n  of

Y) .  Define Z  =  (V  — 8 ) /a  as th e  s tan d ard  IG d is trib u tio n , and  let k  =  8 / A. T hen

3=2 /(6-f-2Jt=) 3
— -  < : < o c .

AT
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Figure 7.2: O verla id  plots of the s tan d a rd  norm al and s tan d ard ized  IG(O.S) d is tr ib u 
tions.

A nother recen t resource. CRC Handbook of  Tables for  the L'se o f  Order Statistics 

in Estimation  (H a rte r  and B alakrishnan, 1996), also gives ex tensive  ch a rts  for various 

app lications of o rder sta tistics. A ppendix  C of this book, covering pages 326-530. 

lists tab les of various m eans, variances, and  covariances of o rd e r s ta tis tic s  from  m any 

com m on d is trib u tio n s . For exam ple. T able C l . l  gives m eans of o rd e r s ta tis tic s  for 

the  N (0 ,1) d is tr ib u tio n . Table C2.1 for th e  e x p o n e n tia l 1) o rd e r s ta tis tic s , and  so on. 

A PP L  can rep lica te  such tables. For in stance , to  produce the  m ean  of th e  n  =  8, r  =  6 

order s ta tis tic  from  the  W eibull(l, 0.5) d is trib u tio n , use th e  com m ands:

> X := WeibullRVCl,  0 . 5 ) ;
> X86 := O r d e r S t a t ( X ,  8,  6 ) ;
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> MeanRV(X86);

which re tu rn e d  the  value 1.760598073. com pared to  1.76060 on page 392 of H arte r 

and  B alakrishnan  (1996).

U nlike H arte r 's  te x t, th e  softw are can go beyond co m p u tin g  m eans of o rder s ta tis 

tics. In th e  following exam ple (con tinu ing  the code from  th e  th ree  lines of code above), 

one can, for exam ple, com pute th e  98th  percentile  o f th e  sam e W eibull d is trib u tio n  

and  give th e  probab ility  of exceeding 1.92:

> IDF(X86, 0 . 9 8 ) ;
> SF(X86 , 1 .9 2 ) ;

T he values re tu rned  are  6.480288415 and  0.0473928543. respectively. F urtherm ore , we 

are not lim ited  to  the  relatively  few base d istrib u tio n s  th a t  H arte r and  B alak rishnan  

present in A ppendix C. bu t can en te r any W eibull p a ra m e te r  values.

T here is no im plication th a t these, or any of th e  vast resource collections, are 

archaic. A ctually, w hat is envisioned is the need of th is  softw are to augm ent the  

inform ation  presented in te x ts  such as these. Foreseen is a  sh ifting  away from looking 

up values in table: instead, one will encode th e  c rea tion  of necessary values d irec tly  

into program s. The first 208 pages of H arter's  te x t, for exam ple , still review theory  

behind th e  creation and  use of o rder s ta tis tics. A P P L  adds to  th e  resource base th a t 

books such as these provide.
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7.4  P rob ab ilistic  m od el design: re liab ility  b lock  

diagram s

T h e  analysis of reliability  block diagram s (R B D ) in reliab ility  engineering can be 

fac ilita ted  by use of A PP L . A program  called S H A R P E  (Sym bolic H ierarchical A u

to m ated  R eliab ility /P erfo rm ance  Evaluator, p resen ted  in S ahner and  Trivedi. 1993) 

uses M athem atica  to  m odel reliab ility  block d iagram s and  o th e r types of system s. In 

th e ir artic le . Sahner and  Trivedi show how S H A R P E  is capab le  of providing system  

reliab ilities. However, according to Trivedi (1997), inp u t d is tr ib u tio n s  are lim ited  to  

exponen tia l d istribu tions and  “exponential polynom ials w hich are  equivalen t to Cox 

d is tribu tions."  A PPL  can conduct sim ilar com puta tions and  is not lim ited to such 

d is tribu tions. A d em onstra tion  is provided by dup lica ting  T rived i's  exam ple, and  

then  showing possible extensions. This is not m eant to  be a d irec t com parison of 

S H A R P E  and A PPL . as th e  two software packages have com plete ly  different goals. 

T h e  tw o softwares m erely in tersect to some degree, as th is RBD  exam ple shows.

In Sahner and Trivedi (1993). a  com puter system  consists of two processors and  

th ree  m em ory units. T he com p u ter is designed to  o p era te  w ith  as few as one processor 

and  one m em ory unit. T hus a  RBD to represent the  system  would be as shown in 

F igure 7.3. in which two paralle l processors are in series w ith  th ree  parallel m em ory 

un its. All com ponents are independent and have exponen tia lly  d is tr ib u ted  tim es to  

failure.

T h e  C D F of of X sys. th e  tim e to  failure of th e  system , can be determ ined  w ith
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MEMORY

MEMORY

MEMORY

F igure  7.3: RBD of a  co m p u ter system  w ith  tw o processors and  th ree  m em ory  un its.

th e  following com m ands in A PPL :

> Xp := E xponen t ia lR V (0 .00139);
> Xm := E xponen t ia lR V (0 .00764);
> Xsys := MinimumRV(MaximumRV(Xp, Xp) , MajcimumRV(MaximumRV(Xm, Xm) , Xm));
> Xsys := CDF(Xsys) ;

T h e  result is th e  following C D F

f ( x ' )  =  [  _  g e ~ 0 .0 0 9 0 3 r  _j_ g e ~ 0 .0 1 6 6 7 x  _  .}g - 0 .0 2 4 3 1 x  2 g - 0 - 0 1 0 4 2 x  _  g £ - 0 .0 1 8 0 6 x  e ~ 0 .0 2 5 7 x

w here x > 0. W hile th is  C D F is different from  th a t  in T rived i’s a rtic le , in  a  subsequen t 

personal com m unication  (Trivedi 1997), T rivedi agrees th is  expression  is th e  correct 

C D F ; th e  one in the  a r tic le  being in error.

T h e  areas for im provem ent of problem  solving by A P P L  are m any. F irs t, w ith  

A P P L  one can m odel th e  tim e  to  failure of th e  ind iv idual com ponents w ith  d is trib u -
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tions o ther th an  th e  exponential. Second, one can  ana lyze  the  system  by looking a t 

th e  functioned form  of th e  C D F (as in S H A R P E ), b u t also graphically, by p lo ttin g  

th e  d is tribu tion . T rivedi m entions th a t a p lo ttin g  function  is curren tly  in b e ta  te stin g  

for SH A R PE  (T rivedi. 1997). One can also d e te rm in e  and  plot the SF. H F. C H F . 

and  PD F  of th e  system . O ne can sum  Xsys an d  Xsys to  find th e  d istribu tion  of the  

life tim e of two such system s in a passive s tan d b y  configuration  using SumRV. Fractiles 

of th e  d is tribu tions can be produced. O ne can cond u c t “w hat-if" analysis by varying 

th e  num ber of processors and  m em ory un its  in th e  sy stem  to  see th e  overall effect on 

th e  m ean system  lifetim e. O ne can run a  re liab ility  life te st to  see if observed failure 

tim es are adequa te ly  fit by th is model, using th e  goodness-of-fit techniques ou tlin ed  

in C h ap te r 6.

7.5 M o d elin g  w ith  hazard fu n ctio n s

T h e  capab ilities of A P P L  allow a shift in th e  p a rad ig m  of param eterized  m odel design 

in new ways. In som e situ a tio n s , it m ay be easy to  im agine th e  reliability  of a  sy stem  

in te rm s of in s tan tan eo u s ra te  of failure, i.e.. th e  haza rd  function . R eliability  tex ts  

o ften  classify lifetim e d is tribu tions into distribution classes th a t  are  nam ed a fte r  th e  

sh ap e  of the hazard  function. Leemis (1995, C h a p te r  3), am ong others, defines m any 

of th ese  classes, to  include the  increasing failure  ra te  (IF R ), th e  decreasing fa ilu re  

ra te  (D FR ), and th e  b a th tu b  (B T) shaped  haza rd  function .

O ne possible use for A P P L  is to  m odel system s using a  hypothesized shape of a
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h azard  function. For exam ple, should a system  be hypothesized  to  have a  b a th tu b 

shaped  HF. th e re  a re  only  a  few common d is trib u tio n s  w ith  H Fs w ith  such a shape. 

Leemis (1995, p. 100) lists only two of 16 com m on re liab ility  d is trib u tio n s  as having a 

B T -shaped HF. In stead  of being lim ited to  these  d is tr ib u tio n s , one m ay hypothesize a 

fam ily of d is tribu tions w ith  B T-shaped HFs. For exam ple, a second-order polynom ial 

H F of the form a(x  — b)2 will have th e  B T shape  as long as a > 0 and  6 >  0. It is 

easy  to  verify these polynom ials satisfy th e  requ irem en ts  for a  H F. as listed  in Leemis 

(1995. p. 50):

f  h(i)dt = oc and  h(t)  > 0  for all t > 0 .
Jo

H ere is an exam ple  of using A PPL to m odel w ith  hypothesized  H Fs. Let a sam ple 

of failure tim es be [1. 11. 14. 16. 17]. A ssum ing it is hypothesized  th a t th e  system  

should  be fit by the  q u ad ra tic  BT-shaped H F d is trib u tio n , one should  fit these d a ta  

to th e  unspecified d is tr ib u tio n  as follows.

> a ssu m e (a  > 0 ) ;
> assu m e(b  > 0 ) ;
> T := [ [ t  ->  a  * ( t  -  b) " 2 ] ,  [0 , i n f i n i t y ] ,  [ 'C o n t i n u o u s ' ,  'H F '] ] ;
> P D F (T );

T h e  last com m and re tu rn s  th e  general form of th e  P D F  having th e  assum ed HF: 

f T(t) = a( t2 -  2tb + b2) e~ta{t2- 3tb+3b2)/3 t > 0 .

O ne can find th e  values of a and b th a t m axim ize likelihood as follows:

> sam p le  := [ l ,  11 , 14 , 16, 1 7 ];
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> h a t  := MLE(T, sample ,  [a ,  b ] ) ;
> e v a l f ( h a t ) ;

T he results are: a =  0.0037937. 6 =  5.93512. T he  plot of the  SF for T  overla id  on the 

em pirical SF is shown in Figure 7.4.

Sir)
1.0

0.6

0. 4

0.2

o.o

5 150 10

Figure 7.4: The SF of th e  hypothesized B T -shaped  hazard  function fit to  th e  sam ple 
[1. 11. 14. 16. 17] overlaid on the  em pirica l SF.

For another exam ple of m odeling in te rm s of hazard  functions, let us hypo thesize  

th a t  risk to a system  is seasonal. Such is th e  case in m any applications such  as s tru c 

tu res a t risk to occurrences of category five hurricanes. A periodic haza rd  function  

m ight be modeled in such a  case. Suppose one hypothesizes a  family of period ic  HF
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d is trib u tio n s  having HFs of the  form

hj ( t )  =  a +  b s in (c f) . t > 0; a > |6|, and  a . i . c G  3?.

O nce again, these  functions satisfy th e  req u irem en ts  of HFs. T h e  p a ra m e te r  a rep

resen ts a m easure of th e  long-term  co n stan t risk associated  w ith  T.  In o th e r  words, 

increased values of a correnspond to  a  h igher likelihood of chance failures. T he  pa

ram eters  b and c con tro l th e  am p litu d e  an d  period  of the  H F. m odeling  th e  severity 

and  length  of th e  cyclic stresses.

In the ir artic le . Lee. W ilson, and  C raw ford (1991) m odeled seasonal ocean storm  

d a ta  in term s of a  nonhom ogeneous Poisson process w ith in ten s ity  function  of the 

form

A( < )  =  e » + - t  >  0 : a . 7 . u / , o  G 3?

w here th e  exponen tia tion  is used to  assu re  th a t A(t) > 0 for all t. T h ere  are two 

differences betw een the  N H P P  m odel o f Lee, W ilson, and C raw ford (1991) and  m od

eling w ith a seasonal hazard  function. F irs t, th e  in tensity  function  m e th o d  models 

m u ltip le  occurrences of seasonal events w hile th e  hazard  function  m e th o d  m odels a 

single occurrence. Second, th e  in ten sity  function  m ethod  assum es th a t  th e  process 

has independent increm ents, am ong o th e r assum ptions (see Ross, 1993, p. 236, for 

all assum ptions). Such assum ptions a re  not necessary  w ith h aza rd  function  models. 

O ne can in s ta n tia te  the  unspecified d is tr ib u tio n  w ith  the  following com m and  

> T := [ [ t  ->  a  + b * s i n ( c  * t ) ]  , [ 0 ,  i n f i n i t y ] ,  [ 'C o n t i n u o u s ' ,  'H F ' ] ] ;
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and th e  PD F  m ay be found with the  com m and PDF(X) T he unspecified P D F  of 

th is fam ily of d is tr ib u tio n s  w ith a periodic hazard  function  is

f T (t) = (a + b s in ( c t ) ) e - {atc- cosict)b+b}/c t > 0 .

L etting  the p a ram eters  take on values of a =  1, b =  0.5 and  c =  10. O ne gets the  

P D F  (using th e  P l o t D i s t  com m and) p lo tted  in F igure 7.5. a peculiarly  m ulti-m odal 

d is tribu tion  th a t decreases exponentially  over tim e.

| l\! 11
i i i

■i ■ n 
' 'I '

F igure 7.5: T he  P D F  of th e  d is trib u tio n  having periodic hazard  function h x  w ith  
param eters  a =  1. b =  0.5 and c =  10.
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7.6 O utlier  d etectio n

T h e  theory  and  p rac tice  of identifying ou tliers in a  d a ta  set is ano ther con tribu tion  

provided by A P P L . T he lite ra tu re  contains am ple m ethods for identifying outliers in 

sam ples re la ted  to  a  norm al d is tribu tion . R egarding detection  of outliers. D 'A gostino 

(1986. p. 497) w rites “We shall discuss here only th e  underly ing  assum ption  of norm al

ity  since th e re  is very little  theory  for any o th e r case.” S arhan  and  G reenberg  (1962. 

p. 302) and  D avid (19S1) propose a num ber of te st s ta tis tic s  based on s tandard ized  

o rder s ta tis tic s  of norm ally  d is tribu ted  d a ta . T hey  provide charts  of accep tance and 

rejection regions in lieu of p-values. For instance, in th e  fully specified case w here p 

and  a are knowm, S arhan  and G reenberg propose th e  te s t s ta tis tic  (A jn) — p)/cr for 

testing  for ex trem e observations in norm al sam ples. As has been discussed in C hap ter 

6. the  d is trib u tio n s  of o rder sta tistics can be used to  identify  outliers in d a ta  sets.

A PPL  m ay co n trib u te  to the ou tlier de tection  problem  in a t least th ree  ways:

1. T here  is no need to  standard ize  th e  te s t s ta tis tic , since th e  d is trib u tio n  of the 

r th o rder s ta tis tic  m ay be found w ith th e  procedure O r d e rS ta t .

2. O ne need no longer rely on charts  of rejection regions, since once th e  d istribu tion  

of th e  r th o rder s ta tis tic  is known, one can  calcu la te  p-values.

3. M ost im portan tly , one is not lim ited  to  th e  assum ption  of norm ality . A PPL  

fac ilita tes  finding th e  d istribu tion  of th e  r th o rder s ta tis tic  of a  w ide range of 

d istrib u tio n s .
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Here are a few exam ples. In th e  sam ple 1. 2. 3. 4. 5. 10. it is possib le  th a t 

the  last elem ent in  th e  sam ple is an  o u tlie r. Assum ing th a t  th e  popu la tio n  has a 

m ean of 3. one could  find the  o rder s ta t is tic  probability  P { X ^ )  > 10) for sam ples of 

size 6 from various underly ing  d is trib u tio n s . Let us consider th e  following possib le 

population  d is tr ib u tio n s , each w ith m ean  of 3 (approxim ately  3 for th e  W eibull case): 

W eibull(0.295. 2). e x p o n e n tia l  1 /3). N (3. 2). and N(3, 4). T h e  upper ta il p ro b ab ility  

P{X(6) >  10) gives us the  significance level against th e  null hypothesis th a t  A’(6) 

cam e from  this underly ing  d is tribu tion . T h e  four p robab ilities can be found w ith  th e  

following com m ands:

> XI := WeibullRV( 0 .2 9 5 ,  2 . 0 ) ;
> X2 := E xpo n en t ia lR V ( l  /  3 ) ;
> X3 := NormalRV(3 ,  2 ) ;
> X4 := NormalRV(3 ,  4 ) ;
> O r d e r S t a t ( X I , 6 ,  6 ) ;
> SF (" ,  10);
> e v a l f ( S F ( O r d e r S t a t ( X 2 , 6,  6 ) ,  1 0 ) ) ;
> e v a l f ( S F ( O r d e r S t a t ( X 3 ,  6,  6 ) ,  1 0 ) ) ;
> e v a l f ( S F ( 0 r d e r S t a t ( X 4 ,  6,  6 ) ,  1 0 ) ) ;

The resu lts are show n in Table 7.2. An in te rp re ta tio n  is th a t for n =  6 th e  value 10 

T able 7.2: P { A'(6) >  10) for n =  6 for several popu la tion  d istrib u tio n s .

D istribu tion

oA
l7?

aT

W eibull(0 .295,2) 
e x p o n e n tia l( l/3 )  

N (3 ,2) 
N (3 .4 )

0.0009966
0.1958385
0.0013950
0.2175316

is an o u tlie r w ith resp ec t to  th e  N(3, 2) d is trib u tio n  a t th e  0.0014 level of significance 

and to  th e  W eibull(0.295, 2) popula tion  d is trib u tio n  a t th e  0.001 level of significance.
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It is no t a  sign ificant o u tlie r  to the o the r two p o p u la tio n  d istribu tions. C learly  one is 

not lim ited  to  m ax im u m  values of a sam ple, one could  also consider any of th e  o rder 

s ta tis tic s  (as o u tlin ed  in th e  C hapter 6. using the  ’P -v ec to r) . N ote, these four u p p er 

ta il p robab ilities a re  th e  6 th  elem ent of the  four V - vecto rs. Also note th e  lack of p a ra l

lelism in th e  com m ands. O ne would expect th e  com m and  e v a l f  (SF ( O r d e r S ta t  (XI ,  

6 ,  6 ) ,  10) ) w ould have  produced th e  ap p ro p ria te  p ro b ab ility  for th e  W eibull d is tr i

bution. However. M ap le  locked up w ith this em bedding . By separa ting  th e  com m and 

into two p a rts . M aple com puted  th e  p robab ility  co rrec tly  and  quickly.

An ex tension  to  th is  detection  exam ple is found in  th e  last two popu la tion  d is tr i

butions, th e  norm al d is trib u tio n s  w ith cr equal to 2 an d  4. O ne sets a  specified level 

of significance, say a  =  0.05, and solves for th e  value o f a  th a t  will show a  m axim um  

value of 10 to  be an  o u tlie r  for th e  norm al family o f d is trib u tio n s . T here  a re  two 

d irections to  th is so lu tion . F irst one m ight be te m p te d  to  conduct a b inary  search  

on the  in terval 2 <  o  <  4 to  approxim ate s to  a  ce rta in  degree of accuracy. T he 

following code will accom plish  th a t approx im ation  a n d  will derive a — =  2.9297.

a lp h a  := 0 .0 5 ;  s i g o l d  := 4; signew := 2; fo u n d  := f a l s e ;  
w h i l e ( f o u n d  = f a l s e )  do 

X := NormalRV(3, s ignew ) ;
s i g n i f i c a n c e  := e v a l f ( S F ( 0 r d e r S t a t ( X ,  6,  6 ) ,  1 0 ) ) ;  
d e l t a  := a b s ( s i g n i f i c a n c e  -  a l p h a ) ;  
i f ( d e l t a  < 0 .0 0 0 0 1 )  th e n  

found  = t r u e ;
p r i n t ( s i g m a i s n o w ,  s i g o l d ) ;  b re a k ;  

e l s e
i f  ( s i g n i f i c a n c e  < a lp h a )  t h e n  

temp := s ig n ew ;
s ignew := s ignew  + abs (s ignew -  s i g o l d )  /  2; 
s i g o l d  := temp;
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p r in t (n e w s ig m a ,  s ignew ) ;  
e l s e

temp := signew;
signew := signew -  a b s ( s ig n e w  -  s i g o l d )  /  2;
s i g o l d  := temp;
p r in t ( n e w s ig m a ,  s i g n e w ) ;

f i ;
f i ;

od;

A second approach  is to rely on th e  exactness of d is tribu tions th a t A PPL  provides. 

In effect w hat is desired is a so lu tion  to  the  following. L etting  X  ~  N(3. a),  find a  

such th a t

P ( X (6) <  10) =  0.95.

One can find th a t  exactly  by m a n ip u la tin g  th e  CD F list-of-lists rep resen ta tion  of 

A(6) in the  following way. T he first elem ent of the  first list will contain  the  C D F , 

so it is set equal to  0.95 and solved for c.  T he following code produces the solu tion  

a  S  2.933571640.

> X := NormalRV(3, s ) ;
> X6 := O r d e r S t a t ( X ,  6,  6 ) ;
> X6 := CDF(X6);
> f s o l v e ( X 6 [ l ]  [1 ] (1 0 )  = 0 . 9 5 ,  s  = 2 . .  4 ) ;

T he first line of code sets the  sem i-specified norm al d is trib u tio n  as the  popu la tion  

d is trib u tio n  for A’. T he second line determ ines th e  P D F  of A(6). T he th ird  line 

converts th e  P D F  of A'(6) to  a  C D F. T h e  last line isolates th e  first elem ent of the first 

list of X6 w hich is th e  CD F function  of th e  independent variable x  and  th e  unknow n 

p aram eter a.  T h e  en try  (10) provides th e  independent variable a  value of 10. T h en  

the f  s o lv e  com m and solves for th e  unknow n p aram eter s  which represents a.
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T he sam e ty p e  of de term ina tion  could be m ade for any of th e  d is trib u tio n  fam ilies. 

O ne can likewise, for exam ple, d e te rm in e  th e  value of fi th a t re jects 10 as an ou tlier. 

In effect, one is ab le  to  establish a  d is tr ib u tio n 's  to lerance in terval for a p a ram eter, 

given a  specific m in im um  or m axim um  d a ta  value. T hus th e  detec tion  of ou tliers  is 

relative to  an  assum ed underlying d is trib u tio n , and one can p a rtitio n  the p aram ete r 

space of underly ing  d istribu tions in te rm s of ou tlier consistency.

7.7 M axim u m  lik elih ood  o f  order sta tistic s  d istr i

b u tion s

An idea is presen ted  in this section th a t  has some in tu itive appeal towards im proving 

estim ation  of param eters . Borrow ing from  the idea of es tim atin g  param eters via 

m axim um  likelihood, and also suggesting  th a t order s ta tis tic s  m ight be helpful in 

es tim ating  p aram eters , the usual form  of the  likelihood function.

L i ( x .d )  =
i=i

(where x  =  (x t . x 2l • • • . J n )). is rep laced  w ith a  form involving th e  PD Fs of the  o rder 

sta tistics:

£ a( x .0 )  =  f [ / j r ,
:= 1

T he second m ethod  is referred to  as m ax im um  likelihood estim ation  w ith o rder s ta t is 

tics (M LEO S). N ote th a t L\ is th e  jo in t d is tribu tion  of iid random  variables. T h e
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function Lo does not lend itself to  such a  d irect rep resen ta tio n , as o rder s ta tis tic s  a re  

not indep en d en t.

T h is approach  to  estim ation  borrow s from  the in tu itio n  associa ted  w ith trad itio n a l 

m axim um  likelihood estim ation . In his Figure 7.7. Leem is (1995. p. 172-173) gives 

a graph ical in te rp re ta tio n  of th e  M LE m ethod. Leemis suggests th e  goal of M LE is 

to  find th e  p a ram e te r 9 th a t "m axim izes the  p roduct of th e  density  values a t th e  

d a ta  p o in ts .” S ince in MLE one seeks a value of 6 th a t m axim izes th e  p roduct of th e  

density  values from  the  PD F. it was wondered w hat w ould happen  if the p ro d u c t of 

the density  values of the n order s ta tis tic s  was m axim ized . M axim izing the p ro d u c t 

of th e  "hum p -sh ap ed ” order s ta tis tic  P D F s evaluated a t th e ir  respective ordered d a ta  

values is g raph ically  depicted as finding a 9 value th a t m axim izes th e  product of th e  

lengths of th e  vertical lines in F igure 7.6 (th e  lines from th e  o rdered  d a ta  poin ts to  

the ir o rdered  density  values). A good fit places each of th e  d a ta  values near th e  

center of th e  n hum ps of the n P D F s. M LEOS will find a  A value th a t m axim izes th e  

p roducts  of th e  respective density  values. Note the  x m arks on th e  horizontal axis 

correspond to  th e  sam ple [0.2. 0.4. 0.9. 1.5].

P a ra m e te r  es tim ates  were com puted  from various popu la tio n  d istrib u tio n s  from  

sim ulation  using bo th  MLE and M LEO S. T he em pirica l m ean  square  errors (M SE) 

of th e  two es tim a tio n  techniques w ere com pared. Also com pared  were estim ates for 

A from  th e  exponen tia l d is trib u tio n , fi and  a  from th e  norm al d is tr ib u tio n , and  9 

from th e  (* (0 ,0 ) d istribu tion . O f all these population  d is tr ib u tio n s , only th e  la st 

case, e s tim a tin g  9 from the uniform  d is tribu tion , resu lted  in  a  decrease in M SE of th e
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F igure 7.6: T he  P D F s of the  four o rder s ta tis tic s  from  an  exponential d is tr ib u tio n .

es tim ato r. S ince som e ML estim ato rs  are also m in im um  variance unbiased e s tim a to rs  

(M V U E ). it not feasible for M LEOS to  dom inate  M LE w ith  respect to  M SE. T his 

is th e  case for e s tim a tin g  A for th e  exponential d is tr ib u tio n  and fj for th e  norm al 

d is tr ib u tio n  (K endall and  S tu a rt, 1963). However, th e  p a ram e te r <r from  th e  norm al 

d is tr ib u tio n  is not a  M V U E (K endall and S tu a r t, 1963, p. 10) and  th e  M L E  for 

0 in th e  uniform  d is tr ib u tio n  is biased (Larsen and  M arx , 1986, p. 244). For th e  

uniform  d is trib u tio n , th e  reason th a t  th e  M LEOS e s tim a to r  dom inated  th e  M LE
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estim ato r is easy to see. Each MLE estim ate  of 6 is th e  m axim um  of th e  sam ple. 

The M LEOS estim ato r for 6 is e ither the m axim um  d a ta  value, or th e  solution to 

aL*d6 ^  = O' abou t 32% of th e  samples, th e  solution to  this equation  was greater 

than  th e  m axim um  of th e  sam ple. The sim ulation  com parisons of th e  MLE and 

MLEOS estim ators were designed as follows: set the  sam ple size to  25. and  the  

num ber of replications to 1000. For the sim ulation  it was assum ed th a t 0 = 1 .  and 

population variates from th e  U(0. 1) d is trib u tio n  were generated . T he M aple code 

for this sim ulation is included in A ppendix H. Also included is th e  perform ance of 

the unbiased estim ato r for 0. which is m ax{A ’i, A V . . .  . A^}. T he results are 

given in Table 7.3. T he M LEO S estim ato r had  less bias and  a  lower M SE than  th e

Table 7.3: The MSEs of th e  M LE and MLEOS and  adjusted-for-bias M LE techniques 
of param eter estim ation .

Technique Average E stim ate MSE of E stim ates

MLE 0.9615 0.002768
MLEOS 0.9720 0.002020

MLE w ith unbiased factor 0.9999 0.0013SS

MLE estim ato r. As could be expected , however, th e  ML estim ato r w ith th e  unbiasing 

factor. !î d. m ax{A 'i . A t An }, dom inates on bo th  m easures.
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Chapter 8

C onclusion and Further Work

This d issertation  presen ts work on a proposed probability softw are language. We have 

dem onstrated  some areas of app licab ility  and  contributions to the  applied  com m unity  

provided by this softw are. As it exists. A P P L  is a viable language th a t dem onstrab ly  

con tribu tes to the app lied  com m unity. A t its core, it is a tool to  produce th e  d is tri

bution functions of random  variables. O nce these d istribu tion  functions are known, 

then  all the  typical p robab ility  work th a t is done with d is trib u tio n s  is possible, i.e.. 

significance levels, c ritica l poin ts, expec ta tions, plots, and  so on. T here  is a veritab le  

lifetim e's am ount of research th a t  rem ains w ith  APPL. T he areas for fu rth er work fall 

into two categories, im provem ents to  A P P L  itself, and fu rth er areas of app lica tion .

The language itse lf has po ten tia l for fu rth e r im provem ent. So far it is re s tric ted  to 

univariate , continuous d is tribu tions. M ultivariate  considerations could follow. Also, 

m ore procedures could be devised to  include areas of probability  such as condition ing , 

Bayesian analysis, tim e  series analysis, po in t processes, and  o thers . A dditionally ,
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the softw are could  encom pass d iscrete  d istribu tions, as well as m ixed d isc re te  and  

continuous d is trib u tio n s .

A pplication  a rea s  are  endless for A PPL . A num ber were presented here, b u t th e re  

are m any m ore areas  th a t could benefit from such softw are. These areas inc lude 

p aram eter e s tim a tio n  and  goodness-of-fit testing  in censored sam ples, finding th e  d is

trib u tio n  of th e  to ta l-tim e-o n -te s t in a life-testing env ironm ent (surprising  sim ila rities  

exist here w ith  th e  difficult in tegration  of th e  K -S C D F ), and  renewal theory, to  nam e 

a few. As A P P L  becom es m ore exposed, countless o th e r  areas will em erge.

Finally, th e re  is an o th e r inherent con tribu tion  in th a t  th e  softw are has been  kep t 

ex trem ely  general on purpose. Consider the  crea to rs of th e  spreadsheet. T hey  had  th e  

insight to  m ake th e  app lica tion  general enough th a t  it solved the ir cu rren t p ro b lem  

yet could be app lied  to  m any larger problem s. Decades la te r  no researcher, business 

office, or s tu d e n t 's  room  is com plete w ithout a  s ta te -o f-th e-a rt spreadsheet a t  th e ir  

disposal. T his so ftw are research has m ain tained  th is sam e sp irit of g enera lity  for 

sim ilar reasons. For exam ple, by allowing for param eterized , piecewise d is tr ib u tio n  

in the  "list-of-lists” fo rm at, nearly every continuous, un ivaria te  d is tr ib u tio n  can  be 

represented by A P P L . T hus the  software can be of use to  the  reliab ility  eng ineer 

concerned w ith  a ran d o m  variable having suppo rt (O .oo), as well as th e  th e o ris t who 

is in terested  in th e  o rd er s ta tis tic s  from  populations having segm ented d is tr ib u tio n s  

with supp o rt in th e  negative  range. W hile probably  no t as com m on or w idely needed  

as th e  sp read sh ee t, th e  au th o r foresees the  possib ility  th a t  eventually  no p ro b a b il is ts  

resources will be co m ple te  w ithout a  sym bolic p robab ility  package w ith  p rocedu res
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such as these. T h u s, th e  generality  of A P P L  is yet ano ther co n trib u tio n  because it 

allows for yet unseen  con tribu tions by those in te res ted  in expanding  the  probabilistic  

world via an  a u to m a te d , program m ing env ironm en t.
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A ppendix  A  

The A rctangent Survival 

D istribution

A .l  In trod u ction

This appendix con tains som e early  work on crea ting  new d is trib u tio n s  of random  

variables based on th e  SF-like qualities of th e  a rc tangen t function. T h e  work in tro 

duced the au thor to  th e  need for software th a t could assist in p robab ility  calculations, 

p lots, and o ther functions. P resented here is th e  developm ent of a tw o-param eter 

survival d istribu tion  th a t has an upside-down b a th tu b  (U B T . or hum ped-shaped) 

hazard  function. T h is  d is trib u tio n  provides b iosta tis tic ians, re liab ility  engineers, and 

o th e r s ta tistic ians w ith  a  second tw o-param eter U B T model whose closed-form  su r

vivor function sim plifies th e  analysis of right-censored d a ta  sets. M axim um  likelihood 

estim ators of the  p a ram eters  a re  found using num erical m ethods. A pprox im ate  con-
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fidence in tervals can be determ ined  by using th e  observed inform ation  m atrix  or th e  

likelihood ra tio  s ta tis tic . Exam ples are given in which the  a rc tan g en t d is trib u tio n  is 

a reasonable a lte rn a tiv e  to  o ther com mon lifetim e distributions.

P a ram e tric  lifetim e d istribu tions have been used in reliability  for m odeling the  

tim e to  failure of com ponents and system s. A lthough em phasis has trad itio n a lly  been 

placed on m odels w here th e  hazard function has a  ba th tu b  shape, app lications have 

been found w here an upside-dow n b a th tu b  (U B T ). or hum p-shaped hazard  function  

is the ap p ro p ria te  m odel. Kececioglu (1991, p. 425) lists transisto rs, m etals su b jec ted  

to  a lte rn a tin g  stress  levels, insulation deg rada tion , m echanical devices sub jected  to 

wear, and  bearings as po ten tia l UBT applications. Chhikara and Folks (1989, p. 156) 

s ta te  th a t "W hen early  occurrences such as p roduct failures or repairs are dom inan t 

in a lifetim e d is trib u tio n , its failure ra te  is expected  to be non-m onotonic, first in

creasing and  la te r  decreasing" and cite a irbo rne  com m unication transceivers (p. 5. 

139-140) as an  app lica tion . Lee (1992. p. 12) fu rther supports the valid ity  of a U BT 

risk m odel in describ ing pa tien ts  w ith tubercu losis who have risks th a t  ''increase in i

tially. th en  decrease afte r trea tm en t."  To fu rth e r  sub stan tia te  th e  usefulness of th e  

UBT m odel. B arr (1994) opines th a t the  U B T  risk function would ap p ly  in m odeling 

the  p robab ility  of a soldier becom ing a  casualty  as a result of a rtille ry  fire. In th is 

exam ple, casu a lty  risk s ta r ts  ou t low as the  fire is initially  inaccurate , increases as th e  

shooter hones in on th e  ta rg e t, and  then  decreases as the  rem aining soldiers are able to 

"dig in” for p ro tec tion . A lthough reliability  engineers generally have an abundance 

of tw o-param eter survival d is tribu tions to  choose from, relatively  few have a  U B T
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hazard function . T h e  com m oniy-used UBT d is trib u tio n s  are  th e  inverse G aussian , 

log norm al, an d  log logistic d is tribu tions. Of these, only th e  log logistic d is trib u tio n  

has a closed-form  surv ival function. This d is tribu tion  is m ost o ften  used in b iosta tis- 

tical app lica tions, w hereas the  inverse Gaussian and log norm al are  typ ica lly  used in 

reliability.

T he a rc tan g en t d is tr ib u tio n  developed here gives a survival d is tr ib u tio n  w ith a 

UBT hazard  function  and  closed-form  survivor function, a  useful fea tu re  in th e  anal

ysis of a righ t-censored  d a ta  set. A dditionally, the  surv ivor function  can  be inverted  

in closed-form . w hich enables synchronization and  m ono ton ic ity  in v a ria te  genera

tion. U nlike m ost surv ival d is trib u tio n s , the a rc tan g en t d is tr ib u tio n ’s developm ent 

uses trigonom etric  functions. We present the a rc tan g en t d is tr ib u tio n 's  developm ent, 

probabilistic p ro p ertie s , and  s ta tis tic a l inference. P a ram e te r e s tim a tio n  for com plete 

and right-censored  d a ta  sets is found by m axim um  likelihood. F inally , th ree  exam ples 

illu stra te  s itu a tio n s  w hen the  d is trib u tio n  is a dem onstrab ly  reasonab le a lte rn a tiv e  

to o ther surv ival d is tr ib u tio n s .

A. 2 D ev e lo p m en t

T he a rc tan g en t function , when negated  and shifted vertically , resem bles a  surv ivor 

function. F u rth e r, by sh ifting  th e  function so th a t it crosses th e  v ertica l axis a t  1 and  

then asy m p to tica lly  decreases to  0, one obtains a flexible su rv ivor function . A dding
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a phase shift param eter 0  and a positive scaling param eter a  yields the  function

r 1
g ( t )  =  — a rc tan [a(f — o)j +  — — 00 < t <  00.

which is a  decreasing  function  w ith  a  range of (0. tt). Finally, since ^ (0 ) =  a rc ta n (a o )+  

the ap p ro p ria te  way to  ad ju st th is  function so th a t it assum es th e  value 1 when 

t =  0 is to  d iv ide g(t)  by ^ (0 ), y ield ing  the survivor function for th e  ran d o m  lifetim e 

T

— a rc ta n [a (f  — 0)1 +  £

* ( < | -  a r c t a l ( U  +  f  ' ~  °'

Since th e  a rc tan g en t is an odd  function, the form of th e  surv ivor function  th a t will 

be used here  is

a rc ta n [a (o  — <)] +  ? 
arctan(a<z>) +  j

where q  >  0 and  —oc <  0  < cc. T h is survivor function satisfies th e  th ree  existence 

conditions: 5 (0 ) =  1. lim  5 (f )  =  0. and S( t )  is nonincreasing. F u rtherm ore , the
t  — OC

d is tr ib u tio n 's  p robab ility  density  function and hazard  function  are

f T { t )  =  — S T ( t )  =
a

a rc ta n (a 5 ) +  f 1 +  oc2 { t  — <Z>)2
t >  0. ( 2 )

h T { t )
frit)
Sr{ t )

a

arctan[a(<z> — t ) }  +  | 1 +  a 2(t — <f>)2
t > 0. (3)

This arctangen t d istribution is equivalent to a Cauchy d istribu tion  truncated  on
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th e  left a t t =  0. Thus th e  param eter a  is sim ilar to a scale p a ram e te r and  the  

p a ra m e te r  0  is sim ilar to a  phase shift or location param eter. F igu re  A .l shows three 

d ifferent P D F s of the  a rc tan g en t d is tribu tion . N otice th a t as 0  becom es negative, the

tin
0 .08

a  =  0 .1 5  
0  =  - 10.0

0 .0 6

a  =  0 .1 5  
<(> =  20.0

0 .04

0.02

a  =  0 .0 4  
0  =  5 0 .0

0.0
I

200 40 60 80 100

F igure  A .l: Exam ples of the  arc tan g en t probab ility  density  function.

d is tr ib u tio n  changes from a bell-shaped d is trib u tio n  to  a d is trib u tio n  w ith  a  m ode of 

0. Also no tice  th a t th e  p aram ete r a  controls the  “peakedness” of th e  d is tribu tion : 

th e  d ispersion  of the d is tr ib u tio n  is a decreasing function  of a.

In itia lly  the  nam e “A rctangen t D is trib u tio n ,” was chosen because  of th e  sim i

la rities  th a t  the arc tangen t function has w ith  a generic survivor function. T h e  re

la tionsh ip  to  the Cauchy d is trib u tio n  was noticed  la ter. T he C D F  of th e  C auchy 

d is tr ib u tio n  is also a sh ifted  and  scaled a rc tan g en t function.
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A .3 P rob ab ilistic  properties

T h e  arc tan g en t d is trib u tio n  has several useful p robab ilistic  p roperties  th a t m ake it 

a v iable d is tribu tion  for lifetim e d a ta  analysis. Specifically, it enjoys closed-form  

su rv ivo r and  hazard functions, unlike m ost d is tr ib u tio n s  in the  U B T  class. T he 

closed-form  survivor function  simplifies p aram ete r es tim ation  for censored  d a ta  sets 

and  allows for variate genera tion  via inversion. T h e  probabilistic  p ro p erties  include:

•  T he  d is tribu tion  is in th e  UBT class w hen a d  > c and  is in th e  decreasing  

failure ra te  (D FR ) class when ad  < c w here

1 -f 2 carc tan (c ) +  cir =  0.

found by sim plifying h'T(0) =  0. Using num erical m ethods, c ss —0.42S9S.

•  T he  m ode of th e  d is trib u tio n  is £mode = o. V d > 0. For th e  case w here th e  

probab ility  density  function is m onotonically  decreasing, £mode =  0< V o  <  0.

•  T he pth fractile of th e  d is tribu tion  is

1
tp = o -1—  tan

Q

which yields a m edian  of

1
0̂.5 — <P 4—  tan a

— — — arctan(a<£) .

i l  /  A

— — (1 — p) ( a rc tan (ac)) 4- — (4)
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T his closed-form  expression for the  fractiles will be useful in determ in ing  in i

tia l e s tim ates  for th e  num erical m ethods required  to  d e te rm in e  th e  m axim um  

likelihood es tim ates.

•  V ariates can be genera ted  via inversion by

1T  *— 0  -1—  tan  
a

-j- — (1 — i')(^ arctan(a<z>) +  — ̂

w here U is un iform ly  d is trib u ted  betw een 0  and  1 . 

•  T he  cond itional surv ivor function is given by

ST(t)
^T]T>a(l) =

5 r ( a )
arctan[a(<z> — <)] +  t  
arctan[a(<z> — a)] +  -| 

arctan[a(c> — a) — (f — a )] +  t  
arctan[a(c> — a)] +  f  

a rc ta n [a ( 7  -  y)] +  f  
a rc ta n fa '/j  +  |

for y > 0 . w hich is again an a rc tan g en t d is tr ib u tio n  w ith  th e  sam e a  as the 

u ncond itional d is trib u tio n  and w here 7  — 0  — a and  y  =  t — a.

•  T he  lim iting  d is tr ib u tio n  as a  —+ 0 0  is a  degenerate  d is tr ib u tio n  a t  <t>.

•  T h e  a rc tan g en t d is trib u tio n  is re la ted  to  th e  C auchy d is tr ib u tio n . Specifically, 

a C auchy d is trib u tio n  tru n ca ted  on th e  left a t zero  will y ie ld  th e  a rc tangen t 

d is tr ib u tio n . N ot surprisingly, th e  m ean and  h ig her-o rder m om ents of the  dis-
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tr ib u tio n  are undefined. T h is  poses a  challenge when discussing m ean tim e  to  

failure (M T T F ) of com ponents. Since th e  mean is undefined, cen tra l tendencies 

of th e  d is trib u tio n  could be d iscussed  in term s of its m ode and  m edian. T h e  dis

advan tage of th is lim itation  is th a t  p ractitioners  are generally  m ore com fortab le  

w ith  the  m ean as the  p rim ary  m easure of central tendency.

•  T he  a rc tan g en t d is trib u tio n  has a  heavy right ta il which makes it useful for 

evaluating  an item  th a t fails w ith  less risk once it has survived to  a ce rta in  

tim e threshold . C ertain  b io s ta tis tic a l d a ta  sets ind icate  such heavy righ t ta ils  

in cancer d a ta . T he a rc ta n g e n t d is trib u tio n  is capable of m odeling lifetim e 

d is trib u tio n s  w ith  a  heavier ta il  th a n  th e  log norm al or log logistic. An exam ple 

is provided w here th e  d is tr ib u tio n  m odels the  survival tim e of ra ts  given a  cancer 

accelera ting  drug, where th e re  is a  heavy right tail. C om peting  risks m odels are 

also useful in m odeling heavy right ta ils.

A .4 S ta tis tica l in feren ce

S ta tis tic a l inference of the a rc tan g en t d is trib u tio n  for com plete and  right-censored  

d a ta  sets is straightforw ard . A com parison  w ith  o ther d is trib u tio n s , including  o th e r 

com m only used U BT d is tribu tions is p resen ted  in this section. T he  a rc tan g en t d is tr i

b u tio n  requires num erical m ethods to  d e te rm in e  the m axim um  likelihood es tim a to rs  

of its  param eters , which is typ ical of m ost tw o-param eter lifetim e m odels. F irs t, 

s ta tis tic a l inference procedures for uncensored  d a ta  are p resen ted  using a  re liab ility
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exam ple. Second, inferences are illu s tra ted  w ith  censored d a ta  using a b iosta tistica l 

d a ta  set. F inally , a  b iosta tistical exam ple th a t  illustrates th e  heavy righ t-hand  tail 

of th e  d is tr ib u tio n  is presented.

For the uncensored  case, let t \ . t 2  tn be th e  failure tim es. T he  likelihood

function is

L(a.  0) =  I I  = 1 1
Q

i=l i=l arctan(a<£) +  | 1 -I- a 2(t l -  o)2

T he first p a rtia l derivatives of log L ( a , d) w ith  respect to the  two p a ram ete rs  yield

d  log L ( a .d )  
da

—no

1 -(- (ad )2 § +  arctan(a<p) i=i 1 +  a 2(ti — o)2

and

d log L(a .  o) 
do

— na

1 -I- (ao)2 f  -f a r c ta n (a o )
+  E

t=i

2 a 2(t t - o )

1 +  a 2(t{ — d )2
( 6 )

E quating  (5) and  (6) to zero does not yield closed-form  solutions for th e  m axim um  

likelihood es tim a to rs  q  and  ©. For th e  num erical m ethods to  be effective in finding 

a  and  o  it is necessary  to  have app rop ria te  in itia l estim ates of the p aram eters . Since 

th e  m ean and  h igher o rder m om ents are undefined, one m ust rely on a  “m ethod  of 

fractiles” . as opposed  to th e  m ethod of m om ents, to  find in itia l e s tim ates  d 0 and do- 

T his entails an  in itia l system  of two equations based on th e  pth frac tile  of th e  the
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d is trib u tio n , where the  fractiles are chosen based on th e  observed lifetim e data .

To illu s tra te  the app licab ility  of th e  a rc tan g en t d is tr ib u tio n , consider Lieblein and 

Zelen’s (1956) d a ta  set of n =  23 ball bearing  failure tim es (each  m easurem ent in 106 

revolutions):

17.88 28.92 33.00 41.52 42.12 45.60 48.48

51.84 51.96 54.12 55.56 67.80 68.64 68.64

6S.8S 84.12 93.12 9S.64 105.12 105.84 127.92

128.04 173.40

A lthough it 's  an  old d a ta  set, this is th e  first exam ple because C row der e t al. (1991, 

p. 63) con jectu red  th a t th e  U BT shaped  d is trib u tio n s  m ay fit th e  ball bearing d a ta  

b e tte r  th a n  th e  IFR  d istribu tions, based on th e  values of th e  log likelihood function 

at the  m axim um  likelihood estim ators.

Using the "m ethod of fractiles'1 to  find in itia l p a ram ete r e s tim a te s  for the  p aram 

eters. no te from the em pirical survivor function for th e  d a ta  (F ig u re  A .2) th a t tim e

42.12 corresponds to the  4L • 100 =  22.7th percen tile  of th e  d is tr ib u tio n  and  th a t tim e

105.12 corresponds to  the  • 100 =  82.6th percen tile  of th e  d is tr ib u tio n . Thus using 

(4), in itia l estim ates for th e  MLEs are found by solving

42.12 =  © +  — tan
Q

105.12 =  <p +  — tan
Q

f  -  ( i  -  ( a r c ta n ( a 0 )  +  

^  “  ( i  “  ^ | )  ( a r c t a n ( a 0 )  +
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S(t)

n s

Weibull0.6

0.4

Arctangent
0.2

0.0

100 150500

F igure  A .2: E m pirical, fitted  a rc tan g en t, a n d  fitted  W eibull su rv ivor functions for the  
ball bearing  lifetim es.

for q  and  o. This system  yields our in itia l estim ates of th e  p a ram ete rs  as follows: 

q 0 =  0.04102 and Oq =  57.96. Using these values as in itia l e s tim a tes , one m ay now 

solve equations (5) and  (6) num erically  y ield ing  d  =  0.04238 and  © =  58.OS. Taking 

second p a rtia l derivatives of th e  log likelihood function and  ev a lua ting  a t the  MLEs 

yields th e  2 x 2  observed in fo rm ation  m a trix  (see Cox and  O akes, 1984)

/  =

/  \ 
5989 1.305

1.305 0.021

In v ertin g  th e  m a trix  and  tak ing  th e  square  roo ts  of the d iagonal e lem en ts  gives asym p
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to tically  valid 95% approx im ate  confidence intervals for a  and  o:

0.01727 <  a  <  0.06753 

44.46 <  d> < 71.70.

Figure A .2 gives a graphical com parison of the  arctangen t fit versus the  W eibull fit 

of the  em pirica l d a ta . O ne can see th e  fits are virtually  iden tica l in the  early  stages, 

then  th e  a rc tan g en t fits m ore cioselv th a n  does the  W eibull in th e  center. In th e  

right ta il, th e  W eibull fits closer, due to  th e  arctangent d is tr ib u tio n 's  p ropensity  for 

a heavy ta il. F inally , one can com pare th e  arctangen t d is tr ib u tio n 's  m odel adequacy  

w ith th a t of o th e r  popular tw o-param eter lifetim e d istribu tions. T he  K olm ogorov- 

Sm irnov (K -S ) goodness-of-fit s ta tis tic  for th e  arctangent d is tr ib u tio n  is Dn = 0.093. 

Table A .l gives D n values for som e p opu la r d istribu tions fitted  to  the  ball bearing  

d a ta  evaluated  a t th e  m axim um  likelihood estim ators of th e ir param eters . [C hhikara 

and  Folks (19S9. p. 74) fit the inverse G aussian  d istribu tion  to  th is  d a ta  set.] T h e  K-S 

s ta tis tic  is one m easure to  gauge quality  o f fit. Table A .l ind icates th a t the  lower K -S

Table A .l: K olm ogorov-Sm irnov G oodness-of-fit S tatistics for th e  Ball B earing D ata .

D istribu tion D 2 3

E xponential
W eibull
G am m a
Inverse G aussian  
A rctangen t 
Log norm al

0.301
0.152
0.123
0.099
0.093
0.090

sta tis tic  values are  associated w ith  th e  th ree  U BT d istribu tions, th e  inverse G aussian .
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a rc tan g en t, and  log norm al, add ing  fu rther credibility  to  C row der’s con jectu re th a t 

U B T m odels seem  to fit th is d a ta  set b e tte r  than  those w ith  increasing failure ra te s  

(i.e., th e  W eibull and gam m a d is tribu tions). Using a  K -S  s ta tis tic  w ith e s tim a te d  

p a ram eters  is problem atic. T herefore , one uses this s ta tis tic  not for a form al te s t, 

bu t to  fu rth e r  th e  conjecture th a t U B T  d istribu tions fit th is  d a ta  set be tte r.

Now consider s ta tis tica l inference for a censored d a ta . T he  arc tangen t d is tr i

bu tio n 's  closed-form  survivor function  yields a  closed-form  likelihood function, thus 

sim plifying th e  analysis of right-censored  data . T he only o th e r U B T d is trib u tio n  w ith  

this p ro p e rty  is the  log logistic d is trib u tio n . T he s ta tis tic a l m ethods are s im ila r to  

those of th e  uncensored case; however, th e  num erical m ethods are a  bit m ore ted ious. 

An analysis follows for G ehan’s (1965) test d a ta  of rem ission tim es from th e  d ru g  

6-.VIP w hen used on n =  21 leukem ia patien ts of which th e re  were r  =  9 observed  

rem issions and  12 individuals who w ere random ly right censored. L etting  an a s te risk  

deno te  a  right-censored observation, th e  remission tim es in weeks are:

6 6 6 6* 7 9* 10

10* 11* 13 16 17* 19* 20*

22 23 25* 32* 32* 34* 35*

To fit th is  d a ta  to th e  a rc tan g en t d istribu tion , let £1? £2 , • • • • tn be th e  rem ission  

tim es and  c i, c2, . . .  . cn be the  associated  censoring tim es. O ur m axim um  likelihood
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es tim a tio n  is now based on th e  likelihood function

L(a,<f>) =  S{ci,a,<f>)
te c  >ec

=  11
rt

«€£.' a r c ta n (a o )  -f | 1 +  a 2[t{ — d>)2
n
«ec

arctan(a(fi> — c,-)) 4- f  
arctan(a<!>) +  %

w here U and  C  are th e  sets of indices of uncensored  and  censored observations, 

respectively . T he  log likelihood function is

log Z ,(a .d ) =  r l o g a  — r  log
7T

arctan(a<p) +  — -  Y .  +  q2 (^  -  ‘p)2]
ieu

+ Y  lo g [2 a rc tan [a (^  — c,)] +  t ]  — (n — r)  log[2 arctan(ad>) +  7r]. 
■ ec

A "m ethod  of fractiles" in itia l estim ate for th e  p a ram ete rs  yields do =  0.0562 and 

0O = 9.5S. Now one takes th e  two partia l derivatives of log L w ith respec t to  a  and 

o. se ts  them  equal to zero, and  com putes d  =  0.0455 and  o — 11.2. T h is  exam ple 

illu s tra te s  th e  m ethodology used to fit th e  a rc tan g en t d is trib u tio n  to  censored d a ta  

sets.

A th ird  exam ple illu s tra te s  the usefulness of th e  d is tr ib u tio n 's  heavy righ t tail. 

Cox and  Snell (1981. p. 169) present d a ta  on th e  life span  of ra ts  who have been 

given a  cancer accelera to r. T he  following com plete  d a ta  se t gives th e  n u m b er of days 

th e  ra ts  survived:

37 38 42 43 43 43 43 43 48 49 51 51 55 57 59 62 66 69 86 177
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T h e  arc tangen t M LE estim ates for th is  d a ta  set are a  =  0.127 and  <p =  48.0: the 

resu lting  arc tangen t d is trib u tio n  is p lo tte d  against th e  em pirical su rv ivor function  in 

F igure  A .3. Note how th e  heavy rig h t ta il of the  a rc tangen t d is tr ib u tio n  m odels the

S(t)

0.6

0.4

0.2

0.0

50 100 1500

Figure A .3: T he a rc tan g en t d is tr ib u tio n  fit to  the  ra t cancer d a ta .

heavy  right tail of the  ra t lifetim es. T h e  ra t w ith survival tim e 177 is d riv in g  th e  fit. 

T h u s , for d a ta  sets w ith  heavy ta ils  such  as this one, th e  p rac titio n e r m ay  m ake use 

of th e  arc tangen t d is trib u tio n 's  p ro p en sity  for a heavy righ t ta il.
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A . 5 C onclusion

T h e  arc tangen t d is tr ib u tio n  is a  tw o-param eter lifetim e d istribu tion  in th e  U B T  class 

w ith  closed-form surv ivor function. It gives re liab ility  engineers, b iosta tis tic ians , and 

o th e rs  ano ther tool in th e  com plex task  of s ta tis tic a l modeling. A lthough a  UBT 

m odel has a sm aller num ber of applications th a n  does the  IFR  or b a th tu b -sh ap ed  

m odels, there  are enough references in th e  lite ra tu re  to  indicate a  need for more 

d istrib u tio n s  in th is class. T his appendix  gives th e  U B T model a second d is trib u tio n  

th a t  enjoys a  closed-form  surv ivor function and  has been dem onstra ted  to adequa te ly  

describe  well-known d a ta  sets.
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A p pend ix  B

C ontinuous D istributions

T h e  continuous d is tr ib u tio n s  given in Table B .l are availab le  when loading the  file 

c o n t d i s t  .map. T he  ta b le  contains the function nam e used to  define a random  vari

able, th e  P D F  or C D F . th e  support, and the p a ram eter nam es, and param ete r re

stric tions. O riginal references to the more obscure d is tr ib u tio n s  are given in Leemis 

(1995). Note th a t  th e  IDBRV is entered as a C D F in stead  of a PD F in Table B .l. 

M aple is able to  d ifferen tia te  the CD F into a PD F . but no t ab le  to  reverse th is opera

tion. C onverting  from  a P D F  to a CD F for this d is tr ib u tio n  resu lts  in an unevaluated  

in teg ral, which considerably  slows com putations. R andom  variables in A PP L  defined 

in th is fashion are  in th e  usual list-of-lists d a ta  s tru c tu re , and  the M aple assum e 

function  is used to  re s tr ic t th e  values of unspecified p a ram ete rs .

159
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Table B .l: C ontinuous d is tribu tions of ran d o m  variab les available in A PPL .

D istr ib u t io n  n a m e P D F  or C D F  j S u p p o r t P a ra m ete r  S p ace

E r la n g R V ( ) / A- ( x )  =  X( Xx) n~ l e ' ^ / ( n -  1)! x >  0 0 < A < oo, integer n
E x p o n e n t i a l R V ( ) f x ( x )  = x  >  0 A >  0

Exponent ialPoserRV ( ) / A- ( x )  =  e 1 _ ' ix eXz‘ Xk x k~ 1 r  >  0 A >  0 : k >  0
GammaRV( ) f x (x)  =  A ( A x ) * - 1e - A r/ r ( K ) x  >  0 A >  0; k >  0

GeneralizedParetoRV() f x ( x )  =  ( 7 +  j £ y ) ( i  +  x / « x  >  0
6 >  0 .
7  >  0 . k >  —67

G o m p e r tz R V ( ) f x (x)  =  6Kt e - ttK*~l ) / 'a* K x  >  0 6 >  0 : k >  1

ID B R V ( ) Fx (x)  =  l - d + K x r i ^ e - * * 3' 2 x  >  0 7 ,  6, k all >  0
InTerseGauss ianRV() f x i x )  =  \ / A / ( 2 Tx3 )e _A<r-,i)3 |̂2 ''3rl x  >  0 A >  0. n  >  0

L o g H o rm a lR V ( ) f . . ( r \  — _ l _ e - i lo g r -# i )J/ ( 2o J )
JA V ' V2rxa x  >  0 —00 <  /i <  oc, a  > 0

M ak eh am R V Q f x ( x )  =  (7  + 6 K r ) e - ’ r - 4('cX- I » /lo« 'c x  >  0 7 ,  6 >  0. «: >  1
M u th R V O f x ( x )  =  (e*x -  l K+KX+ l l K x  >  0 0 <  K <  1

N o rm a lR V Q f x ( x )  = e - , z - » f l ° 3/ j 2 z < r 2 —oo < r  < oc — OO < (1 < OO. O’ > 0
P a r e to R V C ) f X ( x ) =  k \ k / x k+1

(  2(r —a l

f x ( x )  =  \  {b- j L mr; a)

x  >  A A >  0

T r i a n g u l a r R V ( )
a <  x <  m  
m  <  x  <  6

-0 0  < u < m < 6 < x >
f  (6 —a )( b—m )

U n i lo r m R V O f x ( x )  =  1 / ( 6  -  a ) a <  x  <  b —00 < a < 6 < oc
W e i b u l lR V O f X  (x)  =  k \ k x K~ l e~iXz)' x  >  0 A >  0. K >  0
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A ppendix  C

A lgorithm  for 6 x 6  C onversions

T able C .l shows th e  m a them atica l conversions of th e  functional form s of random  

variable d is tribu tions. T he tab le  can be viewed as a  from -to m a trix  in th a t  the 

colum ns represent th e  procedure nam e an d  th e  rows represent th e  prior form  of the 

d is trib u tio n . Thus, if X is cu rren tly  in C D F form , th e  call to  X := PDF(X) will convert 

to  th e  C D F form v ia  th e  conversion listed in th e  PDF colum n on th e  CDF row.

Table C .l: T he conversions of continuous ran d o m  variable d is tr ib u tio n  forms.
Procedure call w ith argument X

Prior
Form PDFCI) CDFCX) SF(X) HFCI) CHF(X) IDF(X)

PD F Retum (X) f
J  — OC

J  n t ) d t

/ ( * >

J  f i t ) d t - I n  J  f ( t ) d t F - ‘ (x)

CDF F '(x ) Retum(X) 1 -  F (x ) F ' ( x )
1 - F i x ) — In [l — F(x)] F - « ( x )

SF - S ' ( r ) 1 -  S (x ) R e tu m (I) - S ' d )
i ' l r l

— In [S(x)] F ~ H x )

HF -  f  h( t ) d t
h( x ) e

-  f  h( t ) d t
1 -  e

-  f  k ( t ) d t
e  J  — o o

R etu m (I) f
J  —  OO

F - ‘(x)

CHF / / ' ( x ) e - H (x» 1 - e - « > x > e - « ( x ) H ' ( x ) R etum (I) F ~ ‘ (x)

IDF F '(x ) F (x ) 1 -  F ( x )
1 — r  < x )

— In [1 — F(r)] Retum (X )
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Note th a t th e  conversions to and from th e  ID F require each functional form to be 

converted to  a  C D F first, as tha t form is the  necessary form for inversion. T hus F ~ l{x) 

appreas in th e  PDF, IDF(X) entry  of T able C .l ra th e r  than  the  m ore com plicated

f  f ( t ) dt
J —OO
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A ppendix D

A lgorithm s for Various Procedures

D .l  A lg o r ith m  for VerifyPDF

Procedure VerifyPDF verifies th e  area under a P D F  is one.

In p u t: A list-of-Iists rep resen ted  random  variable X  w ith n segm ents.

Output: "True" or "F alse” depending if the  area  is equal to one.

.V «- PDF(X) 
area <— 0 
for i 1 to  n

area <— area + fx? '+l Xi , i ( x)dx  
if (area > 0.9999999 an d  area < 1.0000001)

RETU RN  (True) 
else

RETU R N  (False)
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D .2  A lgorith m  for Expect a t ionRV

P rocedure E x p ec t a t  ionRV (X, g ) finds the expected  value of a function  of a  random  

variable, i.e.. £[<7 (x)].

In p u t:  A list-of-lists rep resen ted  random  variable X  w ith n segm ents and a function  

g(x).

O u tp u t: T he expected  value of th e  function.

.V «- PDF(X) 
expval  <— 0 
for i <— 1 to n

expval expval  +  /{■ .Yi,,(x) ■ g( x ) dx
R E T U R N  (expval)
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D .3  A lgorith m  for OrderStat

P rocedure  O r d e r S ta t  (X, n ,  r )  de term ines the  PD F for the  r th o rd e r s ta tis tic  from 

a  sam ple size n sam pled random ly  from  a  population w ith th e  sam e d is trib u tio n  as 

the  random  variable A*.

In p u t:  A list-of-lists rep resen ted  random  variable X  w ith m  segm ents and  the integers 

n and  r .

O u tp u t: T he  P D F  of the o rder s ta t is tic  A'(r ) in the  list-of-lists fo rm at.

f X  « - PDF(X)
F A  « - CDF(X) 
for i «— 1 to  m

A-(r,,.,(</) -  f iz if tn -* ' F X u ( y ) r~l • (1 -  F X i , (y) )n- r • f * i A y )
R E T U R N (A (r»)
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D .4  A lgorith m  for ProdllD

Procedure P ro d IID (X , n) determ ines the  P D F  for th e  p roduct of n iid random  vari

ables A".

In p u t: A list-of-lists represented random  variab le X  and  the  in teger n > I.

O u tpu t: T he P D F  of Y  = X n in the list-of-lists fo rm at.

A' «- PDF(X)
Y  «- ProductRV(X.X) 
for i <— 3 to  n

Y  <— ProductR V (A \ Y)
RETU RN  (V)
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D .5  A lgorith m  for SumRV

P rocedure  SumRV(X, Y) determ ines th e  PD F for th e  sum  of the  independen t random  

variables X  and  Y .

In p u t:  Independen t random  variables X  and Y  in th e  list-of-lists form at.

O u tp u t: T h e  PD F  of V =  A' -I- Y  in the  list-of-lists fo rm at.

IF  <— ex  [using Transform]
Z  <— eY [using Transform]
V  <— ln(VF • V)  [using ProductRV and Transform]
R E T U R N (F )
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D .6  A lgorith m  for SumllD

P roced u re  SumllD determ ines th e  P D F  for th e  sum  of n iid random  variables ATi. X 2 A"„.

each having the  sam e d is trib u tio n  as X .

I n p u t :  A list-of-lists rep resen ted  random  variable X  w ith  and  th e  in teger n > 1.

O u tp u t: T he P D F  of }* =  A’, in the  list-of-lists fo rm at.

A  — PDF(A)
V  <- SumRV(A. A ) 
for i <— 3 to n

Y  <- SumRV(A, Y )
R E T U R N  (V)
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D .7  A lgorith m  for MininnimRV

P ro ced u re  MinimumRV determ ines the P D F  for th e  m in im um  of two independen t ra n 

dom  variables.

I n p u t :  Two list-of-lists represented  random  variab les X  and  Y .

O utpu t:  The P D F  of V  =  m in{A '. V’} in th e  list-of-lists form at.

f X  — PDF(A) 
f Y  « - PDF( Y)  
f V 2 -  f X 2 U /V 2
highest  <— m in {m ax { /A '2} . m ax {/V 2}} [D elete elem ents above lower su p p o rt max] 
stoppoint  <— ||/V 2|| [where || • || denotes card inality ]
for i <— 1 to stoppoint  [Identify  th e  m ax support of th e  new RV]

if / ^ 2 . 1 =  highest  
highesti  <— i 
break

if highest i  ^  /V 2,stoppoint [Remove all values too  high from su p p o rt list]
for j  <— (highesti  +  1) to  stoppoint

f V 2 j ^  NULL 
F X  « -  CDF(/A)
F Y  — CDF ( fY )
n seg m e n ts  <— ||/V 2|| — 1
X  index  *— 1
Y i n d e x  <— 1
for i <— 1 to nsegments

if /V 2,  < f X 2A
c u r r F X ( x )  <— 0 

else if /V 2i, =  f X 2tX index 
c u r r F X ( x )  <— F X uxind'x 
X i n d e x  <— X i n d e x  -I- 1 

if 2,i < / F 2.i 
c u r r F Y ( x )  <— 0 

else if f V 2j  =  f Y 2y , ndex 
CUrrFY  <— FY\yindex 
Y in d e x  «— Y in d e x  +  1 

/V i., <— 1 — (1 — c u r r F X ( x ) )  • (1 — c u r r F Y ( x ) )
f t /  df\  \.,(x)

J Vl-> 4------£ —
R E T U R N (/U )
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D .8  A lgorith m  for MaximumRV

P rocedure MaximumRV determ ines the P D F  for th e  m axim um  of two independent 

random  variables.

I n p u t:  Two list-of-lists represented  random  variables X  and  V\

O u tp u t: The P D F  of V  =  m ax {.V. V’}.

f X  « - PDF(A) 
f Y  -  PDF( Y)
f n e g X  < X  [using T ransform ]
f n e g Y  < Y [using T ransform ]
f V  «— MinimumRV(/ne^A*. fnegY')
f V  < f V  [using T ransform ]
R E T U R N (/F )
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D .9  A lgorith m  for MLE

Procedure MLE determ ines the m axim um  likelihood p aram eter es tim a tes  associated 

with a  random  sam ple drawn from  a  p opu la tion  w ith  presum ed underly ing  d is tribu 

tion A\

In p u t:  T h e  list-of-lists represented ran d o m  variable X ,  th e  list of d a ta  values s. and 

the list of unknow n param eters p.

O utpu t: T h e  m axim um  likelihood es tim ates  of each elem ent in p. 

f X  — PDF(A')
L «— 0 [initialize the  log-likelihood function]

" - I M I
for i *— 1 to  n

L *— L + ln ( fX i ' i ( s i ) )  
npars  « - ||p || 
for j  <— 1 to  npars

L'j *— [set up th e  derivatives]
[Using M aple’s s o lv e  com m and, solve th e  system  of equations below]

e q n s e t  := -Cseq(L' [ i ]  = 0 , i  = 1 . .  n p a r s ) } ;  
p a ra m se t := { s e q ( p [ i ] ,  i  = 1 . .  n p a r s ) } ;  
s o ln s  := s o l v e ( e q n s e t , p a r a m s e t ) ;

R E T U R N ( s o ln s )
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A lgorithm  for Transform

Introduced in C hapter 3. the following is the algorithm for the T r a n s f  orm procedure.

In p u t:  The pdf of A'. / ( x )  =  f p(x)  for zp < x  < :p+t, p =  1.2 q.
T he tran sfo rm atio n  <7 (x) =  gt{x)  for x, <  x <  x ,+ i. w here gt{x) is

monotone and not defined piecewise on i ,  < r  <  x t+i. and for some p.
[Xj.Xt+i] ^  I — 1 .2 ...........71.

Output: The pdf of W  h(y) = hj(y)  for y: < y < yJ+i, j  =  1.2 m.

A “ { x i, X2  -rn+i} [by defin ition . A'* is a sorted list]
For i *— 1 to  n

FF [i )  «- k [where / ( x )  =  f k(x)  on (x ,. x 1+1)]
If Xi =  — cc and  x 2 =  oc then

ci ^  0
else

B E G I N  +- 1 
E N D  « - n 
If x x =  —oo then

Cj <— Xo — 1
B E G I N  — 2 

If xn+1 =  oo then
Cn 4 Xn “f- 1
E N D  <— n — 1 

For i <- B E G I N  to  E N D  
Ci <— (x, +  x ,+ i) /2

172
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For i *— 1 to n
a *-  limr l r , gdx)  
b «- limr |Xi+1 g,{x) 
m t <— m in{a. 6}
Mi <— m a x {a . 6}

} ‘ U”=l {m t. .\/,} [V* is a sorted  list]
m — |V* | -  1

For j  <— 1 to  m  
A(y) <- 0 
For i <— 1 to  n

If m, <  i/j and  yJ+l <  M,
Find g~x such th a t  g,~l (gi(ci)) =  c,
h { y )  * -  h ( y )  + f F F U ) i g r l ( y ) )  • !^rl(y)l

bj {y)  «- h{y)
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A ppendix  F

A lgorithm  for ProductRV

As in troduced  in C hap ter 4, th e  following is the  algo rithm  for th e  P roductR V  proce

dure.

In p u t:  T he P D F  of AC / ( x ) .  and  the  pdf of V’. g(y),  where A and  Y  are inde
penden t. continuous random  variables. PD Fs are in the list-of-lists form at: e.g.. 
[/A ’i, /A C , [ 'C o n tin u o u s ', ' PDF']].

O u tp u t: T he P D F  of V  =  A’ • V. h(v).  in the  list-of-lists form at. T he PD F is 
determ ined  by th e  general resu lt

m = F j w  ■ i  ( I )  £ ]d i -

X '  <— / AC (from  the  list-of-lists fo rm at), n <— ||A ''||

Y '  •*— /V 2, m *-  ||V '||
/  -  /AC
9 -  f Y i
V w <— []. ( th e  em ptv  list)

A- [ ]
If (A / <  0 and .V’ >  0 and 0 ^  X *) th en  [Insert 0 in to  X*  if necessary]

For i <— 1 to  n
If (X* <  0 and  A /+ i >  0) th en

Insert 0 between positions X '  and  X*+l 
Insert / ,  a t position / , + 1

174
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n *— n +  1  

break
If {Y{  < 0 and > 0 and  0 £  V ’ ) then  [Insert 0 in to  Y '  if necessary]

For i <— I to  m
If (>']* <  0 and  >  0) th en

Insert 0 betw een positions V]* and  ? '+ i 
Insert <7 , a t position  g,+\ 
m  <— m  +  1  

break
For i <— I to n [Set up th e  suppo rt list I•'’*]

For j  *— 1 to  m
V* «- V" u  (X;  • V;)

For i *— 1 to / — I 
h, « - 0

For i «— I to n — I [In teg ra te  each segm ent of X  tim es each segm ent of >*]
For j  <— I to  m  — 1 

a <- x ;
b -  X?+l
c -  Y ;
<1 <- >r+i
xy  « - A7 • V ;
If (-A’ >  0  and  x y  >  0 ) th en

/ 1 «- f a f i i * )  ■ 9 j i ^ )  ■ [1 st Q uad ran t]
If (d <  oo) th en  f 2  «- J*/d f , ( x )  ■ g ^ )  • \ d x
If (c >  0) th en  / 3  -  f av/c / , ( x )  • g ^ - )  • ±dx
If (c >  0 and d <  oc and  ad < be) th en  / 4  <— f*jd f ,{x) ■ gj (^ )  • ^dx
If (c =  0 and d =  oo) th en  [1 st q u ad ran t. Scenario A]

For ii <— 1  to  / — 1

If (K* — 0 and  Vt'+l <  oo) then  
hu < ha f  1

If (c =  0 and  d < oo) th en  [1 st q u ad ran t. Scenario B]
For ii *— 1 to  / — 1

If (KT — 0 ancI KT+i ^  a£f) th en  
ha < ha -F f  1  

If (KT — a£f ancI Ki+i ^  bd) then  
ha *— ha +  / 2

If (c >  0 and  d  =  oo) th e n  [1 st q u ad ran t. Scenario C]
For ii «— 1  to  / — 1

If (KT ^  be and  Vj-*+1 <  oo) then  
ha <— ha +  / I  

If (K ’ — ac an<I K*+i — be) th en  
ha <— ha + / 3
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If (c >  0 and  d <  oo) th en  [1 st quad ran t. Scenario D]
If (ad <  be) th en

For ii <— 1  to  / — 1 [1 st Case]
If (V' 7  >  ac and V£ + 1  <  ad) then 

h,, <— hi, +  / 3  
If (V',7 — ad ancI I'u+ 1  — ^c ) then  

h,i <— ha +  /4  
If (V'7 — be an£I liT+i — then

6 ,t «— 6 tI +  / 2

If (ad  =  6 c) then
For u  <— 1  to  / — 1  [2nd Case]

If (V'7 ^  ac ancI Ki+i — Qd) then  
hi, <— hi, +  / 3  

If (V'7 — an£I K'7+i — then
6 tt <— ha +  / 2  

If (ad > be) then
For ii <— I to  / — 1  [3rd Case]

If (V] 7  — ac ancI ^ 7 + 1  — ^c ) then 
h,i *— hi, + / 3  

If ( V;; >  be and  V'*+l <  ad) then  
hi, *- h,i +  f  1

If (K7 ^  ancI I77+i — then
6 , 1  <— h,, + f'2 

If (A7 <  0 and  x y  > 0) then
/ I  < fa f.(-r) ■ £ , ( 7 ) • j dx  [2nd Q uad ran t]
If (d <  0) th en  f ’2 *- - t f , d M x )  - ) • I  dx
If (c > - 0 0 ) th en  / 3  « / al'/c f , ( x )  ■ g}(^) ■ Vdx
If (c > —oc and  d <  0  and ad > be) then  /4  < f f j j  f ,{x) ■ gj(^ ) ■ j dx
If (c =  —oc and  d =  0 ) then  [2 nd q u ad ran t. Scenario  A]

For ii <— 1  to  / — 1

If (V' 7  >  0  and  V' * + 1  <  0 0 ) then  
h„ <— h„ +  / I

If (c =  —oc and  d < 0) then  [2nd q u ad ran t, Scenario  B]
For ii <— 1  to  / — 1

If (V' 7  >  ad  and  V'7 + 1  <  0 0 ) then  
ha <— ha 4- / I

If (K7 ^  ^  ancI Kl+i ^  ac0  then
h,i «— ha + / 2

If (c >  — oc an d  d =  0 ) th en  [2 nd  qu ad ran t, Scenario  C]
For ii *— 1  to / — 1

If (V' 7  >  0  and  V£+l < be) th en  
hi, * ha -f- / I  

If (V' 7  >  be and  Vt'+l < ac) th en
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hu * /it'i -F / 3
If (c >  —oo and d < 0) then  [2nd q u ad ran t. Scenario D]

If (ad > be) th en
For ii «— 1 to  / — 1 [1st Case]

If (Ii* — a</ an d Kr+t — ac) then 
hu *- hti +  / 3  

if (K r — f>c anci Kr+i ^ a£/) then
h-ii *— h-ii +  / 4  

If (V'7 >  bd and  V]’+I <  be) then 
flu *— fin +  f  ~

If (ad =  be) th en
For ii «— 1 to  / — I [2nd Case]

If >  ad  and  V'*+1 <  ac) then 
fin i— fin +  / 3  

If (KT ^  bd and  V[*+i <  6c) then 
ha *— fiu +  / 2  

If {ad < be) th en
For ii <— 1 to  / — I [3rd Case]

If 077 >  be ancI K7+i ^  ac) then
hu *— hu +  / 3  

If 077 ^  Qd an<f Kr+i ^  be) then 
fiu *— ha + / I  

If 077 >  bd and  V'*+1 <  ad) then 
flu *— flit +  f ~

If (.V,’ <  0 and xy  < 0) then
/ 1 < la f ‘(T ) ■ 9 j{^)  ■ j dx  [3rd Q uadran t]
If (d < oc) then  / 2  < f ”/d f t{x) ■ £ ,(;) • jd x
If (c >  0) then / 3  «------/„6/c / , ( x )  ■ &■(£) • ^dx

If (c >  0 and d <  oo and  6d >  cc) then  /4 -<------ / , ( x )  • g}{ j )  • jd x
If (c =  0 and d =  oo) th en  [3rd q uad ran t. Scenario A]

For ii «— I to  / — 1
If 077 -  ancI I’u+i — 0) then

fiu *— hu  +  / I
If (c =  0 and d <  oo) th en  [3rd q uad ran t. Scenario B]

For ii <— I to  / — 1
If (K7 ^  bd and  V̂ ’+i <  0) then  

fiu +— hi i +  / 1 
If (K7 — °-d and  V'’+1 <  bd) then  

hu +— hu +  f ~
If (c >  0 and d =  oo) th en  [3rd q u ad ran t. Scenario C]

For ii -*— 1 to  / — 1
If 077 — ~ ° °  ancI K7+ 1  ^  ac) then

hu <— hu +  / I
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If ( I i!  >  ac and V'7 + 1  <  be) then  
hu < /ijt 4* f 3

If (c >  0 and  d < oo) then  [3rd q u ad ran t. Scenario D]
If (bd > ac) then

For ii «— 1 to / — 1 [1 st Case]
If ( V' 7  >  bd and  V' * + 1  <  be) then 

hu *— h„ +  / 3  
if ( f i r  ^ ac an<i Kr+i — hd) then 

hii <— hti +  / 4  
if ( i  jr — aRci k t+ i — a c ) then

h,t <—  ha +  / 2  
If (ac — bd) then

For ii <— 1 to / — 1  [2nd Case]

If (KT — ad an(I Ki+i — a c ) then 
htt <— h,, + f'2 

If (I-]' > bd and  V[ * + 1  <  be) then 
hu hu + / 3  

If (ac > bd) then
For H i— 1 to / — I [3rd Case]

If (Ct’ > ac and  V'*+l <  be) then 
h„ <— hu +  / 3  

If ( V >  bd and  V' * + 1  <  ac) then
hu <— hti +  / I  

If (Vi; >  nd and  Vt'+l < bd) then 
h„ i— hi, +  f'2 

If (-V' >  0  and xy  <  0 ) then
/ 1 fa M x ) • 9 j i ^ ) • jd x  [4th Q u ad ran t]
If (d <  0) th en  f'2 4-  f* /d f , ( x )  ■ g: (^)  • x-dx  
If (c > - o c )  th en  / 3  f*f e f t(x) • g}(^) ■ ^dx
If (c >  —oc and  d <  0 and  ac > bd) then / 4  <— f ”j d / , ( x) ■ g}( • ^dx
If (c =  —OC' and  d =  0) then  [4th q u ad ran t. Scenario A]

For ii 4— 1 to  / — 1
If (KT ^  — 0 0  ancI K’+i ^  0 ) then  

h,t 4— h„ + f  I
If (c =  —oc and  d  <  0) th en  [4th q u ad ran t, Scenario B]

For ii <— 1 to / — 1
If (K* ^  ~ 0 0  ancI I w ,  5: hd) then 

hn 4— h„ +  / I  
If (KT — hd and V'[’+ i — fld) then  

h„ 4— h„ +  f ’2
If (c >  — 0 0  and  d — 0) th en  [4th q u ad ran t, Scenario C]

For ii 4— 1 to  / — 1

If (KT — ac an£I KT+i — 0) then
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h„ <— ha 4 - /1  
If (V'J >  be and V'*+l <  ac) then  

ha «— ht{ 4- / 3  
If (c >  —oc and  d <  0) then 

If (ac  >  bd) then  
For ii <— 1 to  / — 1

If (K r — he and  V''+1 <  bd) th en  
hu <— h^ 4- /3  

If (Ii,' >  bd and  V’Tn <  ac) th en  
h„ «— ha ■+- /4  

if ( i , r  ^ ac anci Kr+i ^  ac0 th en  
hi, *— hu 4- f'2 

If (ad =  be) then  
For ii *— 1 to  / — 1

If (I[7 >  be and  1 7 7 + 1 5: ac) th e n  
h„ <— hu 4- / 3  

If ( I i ’ ^  ac ancI I|7+i <  ad) th en  
h„ <— hu 4- f'2 

If (ac < bd) then  
For ii «— 1 to  / — 1

If (V'; >  be and V-’+1 <  ac) then  
h„ '— h,t 4- / 3  

If ( I ,r  ^  ac ancI Kr+i ^  hd) th en  
h„ <— h,, +  / I  

If (I'w — hd and  V''+1 <  ad) th en  
h t, <— hu 4- f ’2

f \  i -  h 
f \ ’i -  I "
f \ 3 «- [ 'Continuous'. ' PDF']
R etu rn  ( /V )

[4th quad ran t. Scenario  D] 

[1st Case]

[2nd Case] 

[3rd Case]

[M ake a new list-of-lists for V']
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A ppendix  G

A lgorithm  for KSRV

Procedure KSRV: C om puting  the  C D F of the  K olm ogorov-Sm irnov te st s ta tis tic .

when all p a ram eters  are known.

O u tp u t: T h e  C D F of the KS test s ta tis tic  when all param eters a re  known is re tu rn ed . 
T he random  variable will be in the  usual list-of-lists form at.

[P h a s e  1: D eterm ine the  endpoin ts of th e  segm ents th a t define the  support of th e  
KS test s ta tis tic .]

In p u t:  A positive integer n. the  sam ple size associated w ith  the  KS test s ta tis tic

D im ension v 0 [r holds th e  partition  values for the support of D n]

9z  2 n  I
For i *— I to  n — 1 by 1

m  «— 777 +  1

[g is th e  gap betw een adjacent in teg ra tion  lim its when v = 0]

I’m <— I - g
For j  <— 2 • LfJ +  1 to  2n — 1 by 2 [Lower lim it is n o r n +  1, whichever is odd]

777 +  1

[P h a s e  2: T h e  next phase of the  a lg o rith m  has th ree  parts  to  it.

1. Define c i ,c 2 cm as the m idpo in ts  of the  support in tervals

ISO
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2. Define x i , x 2 x„ as the  lim its of in tegration  when v =  0

3. Define th e  n x  n ind icato r m atrices A i, A2, • • • . Am.]

Dimension c[m]
For k 1 to  m

cfc ♦- + v k)/2

Dimension x[n]
For i *— 1 to  n

x, <- (2 i -  1) • g

Dimension A[n, n]

For i <— 2 to  n
For j  «— 1 to  i — 1 

A0 « - 0

For k *— I to  m 
For i <— 1 to  n 

For j  <— i to  n
A.J -  0

[Define vector c of m idpoints of the  su p p o rt subintervals]

[Define vector x of centers of in teg ra tion  limits]

[Zero ou t lower triang le  of .4] 

[Loop through all su b in te rva ls  of support]

x <- m a x ][n e t -  5 J.O}
I <— min { [2 ncfc"|. n}

f e  ”  V' 2^ +  u)]
For 1 *— 1 to n

For j  <— m ax{i. z + 1} to m in{n. i +  / — 1}

[Zero ou t u p p er triang le  of .4] 
[z is th e  num ber of leading zero  colum ns in .4] 

[/ is the  num ber of u -sub in terva ls th a t in tersect

4 , [Place l 's  in 4]

[P h a s e  3: C om pute  th e  fixed and variable lim it m atrices F  and  V and  com bine to 
give the piecewise polynom ial CDF]

Dimension P[m\  [nth order polynom ials for CD F segm ents, p a ram eterized  by u] 
Dimension P fn , n] [A rray of Fixed integrals, p a ram eterized  by u]
Dimension V'[n, n] [A rray of Variable integrals, p a ram eterized  by u]
Real S[v)  [A function of v, used as a  runn ing  sum]

[S(t>) is th e  sum  of all F  elem ents one row down, s ta rtin g  one e lem en t to  th e  right]

Pi(v)  *— n!(2u)n 
For k *— 2 to  m

z <- m a x ][n e t -  ±J.O} 
/ ♦— min { f2 n c^ ], n} 
Fn,n(v) *- 1 dun
Vn.n{v) *-  t . ,  1 dun

[/>,<») - » !  • ■ ■ c r  1  i U;
[Loop through ail su b in te rva ls  of support
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For i <— n — 1 to 2 by — 1 
If i +  / >  n then 

5 ( f )  «— 0
else

5 ( f )  «- Fi+u+i(v)
If i +  / >  n +  1 then

K M  -  J+(X|+u,( 1 “Lx'+CfcJ) Vi+Uv)dui
Vi.n(v) -  f £ ? C k V;+I  n(ll) dUi 

If i -I- / =  n +  1 then
F U v )  ^  ri 'tX l V ^ . n { v ) d u x 

If f +  / <  n +  I then
F i M - t i v )  -  {K +lii+,_,(*,) +  5 ( f ) }  dm

5 ( f )  — 5 ( f )  +  5 t+1,min{i+/_ 1,n}( f )
For j  <— m in{n — I , i  + [ — 2} to  m ax{i +  1 .c +  2} by —1 [Interior of .4 m atrix] 

Fi.Av) I x ’- 1v~V {V i+ i.j(f) +  5 ( f )}  dm
K j i v )  ^  i z : r v W + i d W  + S (v)}
5 ( f )  «- 5 ( f )  +  Ft+Uj{v)

If r  +  I <  i then
K i ( v ) * - s ; : : r v s ( v ) d m  

If r  +  1 >  i then
V,.z+i{v) «- ! ^ z*l2~v {V;+1,-+1(f)  +  5 ( f )}  du,

If r  4- I <  i then
F , . , ( v )< - f rT: : r s ( v ) d u t

If l = n then  [Rows 2 .3  n of A  m a trix  com pleted a t th is  point]
5 ( f ) - 0
F i M ' )  ^  £'nl : . V 2 A v ) d u x

else
5 ( f )  —  F 2,/+i( f )

If / <  n then
F \,i( f ) « -  Ixt'-J { V-u( f ) +  5 (  f )} dui 

5 ( f )  < -  5 ( f )  +  F 2 j ( v )

For j  <— m in{n — 1. / — 1} to m ax{2. - +  1} bv — 1
FuAv)  -  m . ^ )  +  5 (f )}  dm
5 ( f )  <- 5 ( f )  +  F2,j {v )

If r  =  0 then
Fi.i{v) *- / 0X5_l’ 5 ( f )  dui 

Pk( v ) * - 0  
For j  *— z + L to /

Pk(v) <- Pk(v) + F i j (v )
Pk(v) *- n\Pk{ f )
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[ P h a s e  4: Shift the  d is tr ib u tio n  to  th e  form of P {D n < y)  by su b s titu tin g  y = +

2/o <— v0 + 2k
For k  <— 1 to  m  [Loop th ro u g h  all sub in tervals of support]

y . -  Vk +  £
Fk{y) *- Pk{y -  £ )

R e tu r n :  y0, y u . . .  , y m and F x(y), F2(y), ■.. , F m(y).
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A ppendix  H

Sim ulation C ode for MLEOS 

A pproxim ations

As ou tlined  in C h ap te r 7. th e  following M aple code was used to generate the  M LEO S 

versus MLE estim ations for 6 from the U niform (0. 9) d is tribu tion . T he p rocedu re  

S e c S o lv e  is a generic secan t-m ethod  for finding num erical solutions to  an  eq u a

tion. This procedure is faster in finding solu tions to  th e  MLEOS equation  th a n  

M aple 's f s o lv e  com m and. T he  procedure M a x In itV a ls  is a p reparato ry  p rocedu re  

for S ec S o lv e  th a t re tu rn s  an interval w here a  local m axim um  can be found. It is 

m erely a grid-search of an  in terval to find tw o poin ts x t <  x-i such th a t f ' ( x i) >  0 >  

f ’( x 2 ). which is a  cond ition  for a  local m ax im um  on / ( x )  on [X1 .X 2 ].

r e s t a r t ;
r e a d ( ' d : / r e s e a r c h /p r o b m a p /p r o b p r o c .m a p ' ) ;  
r e a d C fd : / r e s e a r c h / s e c a n t . m a p ') ; 
r e a d ( 'd : / r e s e a r c h / m a x i n i . m a p ') ;

1S4
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n t e s t  := 1000; nsample  := 25; D i g i t s  := 10;
Seed := r e a d l i b ( r a n d o m i z e ) 0 ;  
random ize (8218);  
o u t p t  := a r r a y ( l  . .  n t e s t ) ;  
t h i s d i s t  := UniformRV(0, b ) ; 
bsample := 1;
f o r  i  from 1 t o  nsample  do

fnow [ i ]  := O r d e r S t a t ( t h i s d i s t , nsample,  i ) : 
od:
varsam ple  := a r r a y (1 . .  n sam ple) ;  
w incn t  := 0;
f o r  k from 1 t o  n t e s t  do 

p r i n t ( k i s n o w ,  k ) ; 
f o r  i  from 1 t o  nsample  do

v a r s a m p le [ i ]  := e v a l f ( V a r U n i ( 0 .0 ,  b s a m p l e ) ) ;  
od;
v a r l i s t  := s o r t ( [ s e q ( v a r s a m p l e [ i ] , i  = 1 . .  n s a m p l e ) ] ) ;  
b o ld  := v a r l i s t [ n s a m p l e ] ;
11s := 0;
f o r  i  from 1 t o  nsample  do

11s := 11s + l n ( f n o w [ i ]  [ l ]  [ l ]  ( v a r l i s t  [ i ]  ) )  : 
o d :
l i s p  := u n a p p l y ( ( d i f f ( 1 1 s , b ) ) ,  b ) : 
bnew := S e c S o l v e ( l l s p , 0 .9 9 8 ,  0 .9 9 6 ) :  
i f  (bnew = bad) t h e n

i n i  := M a x I n i t V a l s ( l i s p , 0 .0 2 ,  2 . 2 ,  5 ) ;  
p r i n t ( ‘ i n i t i a l  g u e s s e s  a r e  i n i [ l ] , i n i [2 ] )  ; 
bnew := S e c S o l v e ( l l s p , i n i [ l ] ,  i n i [ 2 ] ) ;

f i ;
i f  (bnew = bad) th e n  
bnew := v a r l i s t [ n s a m p l e ] ;
e l i f  (abs(bnew - 1) > a b s ( l  -  v a r l i s t [ n s a m p l e ] ) )  t h e n  

bnew := v a r l i s t [ n s a m p l e ] ; 
e l s e

wincn t  := w incn t  + 1; p r i n t ( w i n c n t ) ;
f i ;
o u t p t  [k] := [bnew, b o l d ,  b o ld  * (nsample  + 1) /  nsample] 

o d :
suml := 0; sum2 := 0; sum3 := 0; 
v a r l  := 0; var2  := 0; v a r3  := 0; 
sk ip p ed  := 0; 
f o r  i  from 1 t o  n t e s t  do

i f ( n o p s ( o u t p t [ i ] ) = 3) t h e n
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o u t p t [ i ]  [1 ] ;  
( o u t p t [ i ]  [ l ]  
o u t p t  [ i ]  [2 ] ;  
( o u t p t [ i ]  [2] 
o u t p t [ i ] [3 ] ;  
( o u t p t [ i ] [3]

bsample ) 

bsample ) 

bsample )

1;

suml := suml + 
v a r l  := v a r l  + 
sum2 := sum2 + 
v a r2  := var2  + 
sum3 := sum3 + 
v a r3  := var3  + 

e l s e
s k ip p e d  := s k ip p ed  +

f i ;
o d :
p r i n t ( ' s i z e  of each sample  =

'number of samples  = 
avenew := suml /  ( n t e s t  -
av e o ld  := sum2 /  ( n t e s t  -
avgadj := sum3 /  ( n t e s t  -
varnew := v a r l  /  ( n t e s t  -
v a r o l d  := var2  /  ( n t e s t  -
v a r a d j  := var3  /  ( n t e s t  -
p r i n t ( ' h a d  to  s k i p ' ,  s k ip p e d ,  'win p e r c e n t a g e  = ‘ 

e v a l f ( w i n c n t  /  ( n t e s t  -  s k i p p e d ) ) ) ;

n sam ple ,
' ,  n t e s t )  
sk ipped)  
sk ipped )  
sk ipped )  
sk ipped )  
sk ipped )  
sk ipped )
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