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DISSERTATION ABSTRACT 

 

Taking an ecosystem approach to fisheries requires the consideration of relevant 

ecological processes within research and assessment frameworks. Processes affecting 

ecosystem productivity can be categorized as biophysical (climate variability, primary 

production), exploitative (fishing), or trophodynamic (food web interactions). This 

dissertation incorporates these three governing processes to characterize spatiotemporal 

diversity and population abundance trends for multiple demersal fish and invertebrate 

species that inhabit the nearshore zone (15-30 ft. depth) along portions of the U.S. 

Atlantic east coast. 

Two large marine ecosystems (LMEs) encompass the U.S. East coast – the 

Southeast and Northeast U.S. Continental Shelf LMEs. The level of connectivity within 

and between these two ecosystems is well understood for some individual species, but not 

generally for the nearshore assemblage. The first research chapter of this dissertation is a 

spatial diversity analysis of 141 fish and invertebrate species that inhabit nearshore 

waters from Florida to New York. Latitudinal diversity patterns revealed multiple biotic 

ecotones, or areas of high species turnover. An ecotone was evident in northern spring 

near the Cape Hatteras border of the two LMEs, but this barrier dissipated as water 

temperatures homogenized and assemblage connectivity between ecosystems increased 

throughout the year. Multiple other biotic ecotones were evident within the Southeast 

U.S. LME and were explained by seasonality and the proximity and area of adjacent 

estuarine habitat. 
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The second and third research chapters of this dissertation focus on explaining 

temporal abundance trends for multiple nearshore fish and invertebrate species within the 

Southeast U.S. LME. For the second research chapter, abundance trends for 71 species 

were analyzed during 1990-2013 within a univariate time series modeling framework 

with the goal of determining the relative importance of climate variability and fishing 

pressure as governing influences on abundance. A decrease in bycatch mortality 

explained changes for multiple species, while climate variability governed the dynamics 

for others. Multivariate ordination revealed similar trends for groups of taxonomically 

related species, indicating governing processes act on species with similar life histories. 

An extension of results from the second research chapter, research chapter three explores 

trophic interactions between the bonnethead shark (Sphyrna tiburo) and five of its prey 

species within Southeast U.S. LME nearshore waters. Multivariate time series modeling 

supports a negative effect of bycatch on bonnetheads, and population-level predation 

effects of larger sharks on multiple prey species. Abundance trends for most prey species 

were also explained by environmental variability associated with the Pacific Decadal 

Oscillation, although trophic effects were stronger. 

This body of work incorporates relevant ecological factors in characterizing 

diversity and abundance trends for fish and invertebrate species comprising the nearshore 

demersal assemblage within Southeast and Northeast U.S. LMEs. Results indicate 

seasonal connectivity between LMEs that require further exploration at multiple spatial 

scales. Abundance time series modeling for multiple species in the Southeast U.S. LME 

reveals that fishing and trophodynamics may be relatively more influential drivers than 

climate variability in this sub-tropical system.
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AUTHOR’S NOTE 

 

Chapters 2 through 4 of this dissertation were written as manuscripts for publication in 
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Dissertation Introduction 
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This work is an examination of ecological patterns for the demersal fish and 

invertebrate assemblage inhabiting shallow nearshore waters (15-30 ft.) within portions 

of the Southeast and Northeast U.S. Continental Shelf Large Marine Ecosystems (LMEs). 

Within the study area, which ranged latitudinally from Cape Canaveral FL to the 

northeastern tip of Long Island NY, the nearshore coastal ocean is a dynamic aquatic 

environment. Like all habitats in nature that scientists have categorized for necessary 

simplification, nearshore ocean habitats are physically and biologically connected to 

adjacent habitats such as estuaries, shelf and open-ocean habitats, and even landscapes. 

Land-based or upwelled nutrients fuel biological production in the nearshore zone, while 

physical mixing by winds and tides facilitate efficient recycling of these nutrients back 

into the food web by lower trophic level organisms (Nixon, 1988). In part because they 

contain or are in close proximity to diverse habitat types inshore and offshore, nearshore 

coastal waters can be hotspots for biological production and diversity. Estuaries are 

traditionally thought of as the most important nursery areas for many marine species, yet 

nearshore habitats within the study area are preferred rearing habitat for multiple species 

compared to estuaries (Woodland et al., 2012; Able et al., 2013). Many economically 

important species utilize nearshore habitats at various life stages, thus this area of the 

ocean has inherent economic value to fisheries even if fishing is not a primary activity 

occurring within the zone at certain locales. 

Link et al. (2010) describe three main processes that regulate the production 

dynamics of any marine ecosystem: biophysical (primary productivity, climate), 

exploitative (fishing), and trophodynamic (food web interactions). In each of the studies 

comprising this dissertation, the effects of one or more of these processes on nearshore 
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species were considered. For chapter two, multiple biophysical variables were 

hypothesized to explain spatial diversity patterns. For chapter three, climate variability 

and fishing pressure were investigated as governing factors for abundance dynamics of 

dozens of demersal species. For chapter four, fishing, climate variability, and trophic 

interactions were considered concurrently in a multispecies time series model. 

This body of work addresses multiple gaps in ecological knowledge within 

Southeast and Northeast U.S. LMEs pertinent to the field of fisheries ecology. First, 

comparative community-level studies between these two LMEs are lacking. Second, 

knowledge of multi-decadal effects of climate on fish and shellfish populations are 

limited within the Southeast U.S. LME. Third, multispecies modeling efforts within the 

Southeast U.S. LME are also limited. This dissertation begins to fill these knowledge 

gaps by leveraging data sets from two fishery-independent surveys that sample the 

nearshore demersal biological assemblage by bottom trawl along the U.S. East Coast. 

These surveys are the Southeast Area Monitoring and Assessment Program – South 

Atlantic (SEAMAP-SA), which operates from Cape Canaveral FL to Cape Hatteras NC, 

and the Northeast Area Monitoring and Assessment Program (NEAMAP), which 

operates from Cape Hatteras NC to southern New England. SEAMAP-SA sampling 

occurs within the Southeast U.S. LME (1989-present), while NEAMAP sampling occurs 

within the Northeast U.S. LME (2007-present). Data from both of these surveys have 

been utilized often by fishery researchers and managers for single species research and 

assessments, but these datasets have not yet been analyzed in-depth within a community 

or multispecies context. 
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Chapter two is a multispecies study comparing diversity patterns in the nearshore 

assemblage within the Southeast U.S. LME and the Mid-Atlantic portion of the Northeast 

U.S. LME. Species composition studies of estuarine and marine benthic invertebrates 

within and between these two ecosystems (Engle and Summers, 1999; Pappalardo et al., 

2015) have yielded greater understanding of the potential barriers to, and pathways of, 

biological connectivity in this area of the ocean. Chapter two adds to this body of 

biogeographic knowledge using the nearshore demersal assemblage as a model for 

characterizing and explaining spatiotemporal changes in diversity. Results from this 

study revealed seasonally dynamic patterns of biological connectivity between these two 

ecosystems that are defined within the LME framework as separate entities. 

Chapter three focuses on temporal abundance patterns of multiple species within 

the Southeast U.S. LME. Using SEAMAP-SA from 1990-2013, the relative importance 

of climate indices and fishing indicators were modeled for 71 fish and invertebrate 

species. Enabled by a high percentage of data-rich stocks (Newman et al., 2015), the 

effects of climate change and variability on fish stocks have been heavily researched in 

the adjacent Northeast U.S. LME (e.g., Araújo and Bundy, 2012; Collie et al., 2008; Nye 

et al., 2014). Within the Southeast U.S. LME, however, climate effects have been 

modeled for a more limited number of species (e.g., Colton et al., 2014; Garcia et al., 

2007; Hare and Able, 2007; Harford et al., 2014; Munch and Conover, 2000). Chapter 

three continues to fill the climate-related knowledge gap for Southeast U.S. LME species 

while also determining the relative importance of fishing versus climate within a 

modeling framework. 
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Similar to the extent of knowledge for climate-related effects on marine species, 

understanding of upper trophic level food web patterns is much more limited in the 

Southeast U.S. LME compared to other U.S. LMEs. Robust and long-standing fish food 

habits time series in the Northeast U.S. LME (e.g., Garrison and Link, 2000) and North 

Pacific (Livingston et al., 2017) have enabled researchers to investigate multispecies 

effects (e.g., Tsou and Collie, 2001; Tyrrell et al., 2008; Link et al., 2009). Such efforts 

have not been possible within the Southeast U.S. LME due to a lack of fish diet time 

series. There have been several fish diet studies conducted in the Southeast U.S. LME 

(reviewed by Marancik and Hare, 2005), however these studies were conducted at 

inconsistent locales and asynchronous points in time. A preliminary ecosystem model 

based on trophic guilds was constructed for the Southeast U.S. Atlantic (Okey and 

Pugliese, 2001), however this type of approach has limited applied use until the 

consistency and quantity of empirical food web data collection in the system increases. 

In regions such as the Southeast U.S. LME with spatial and temporal mismatch in 

empirical food web data, as well as uncertainty in or lack of consumption rates for most 

predators, the types of multispecies models that can be applied to provide tactical advice 

(i.e., quantitative on short time scales; Collie et al., 2016) to fishery managers are limited. 

In such cases, multispecies time series analysis using abundance data (Francis et al., 

2014) or other biological indicators (Torres et al., 2017) is a viable alternative approach 

to more data intensive multispecies trophic models (e.g., Garrison et al., 2010). In chapter 

four of this dissertation, a multispecies time series model was applied to a specialist shark 

predator and multiple of its known crustacean prey species. Results from this study 

highlight the importance characterizing marine food webs to improve abundance 
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predictions for lower trophic level species. Eventually this type of approach could be 

implemented in fishery assessment settings within the Southeast U.S. LME to inform 

management for commercially-targeted species. 

The three studies comprising this dissertation take an ecosystem approach in 

characterizing biological patterns for the nearshore community within the study range. As 

holistic fisheries management approaches continue to be refined, ecosystem-oriented 

research is a necessary precursor to assessment and management. This collection of 

studies bolsters the foundation for further ecosystem-oriented research in coastal U.S. 

Atlantic waters. 
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ABSTRACT 

Theoretical advances in the science of ecological boundaries have increased in 

recent years, promoting an upsurge of empirical studies in all system types including 

aquatic, marine, and land-water interfaces. In this empirical study of the fish and 

invertebrate assemblage inhabiting coastal marine waters of the U.S. Atlantic coast, a 

measure of β diversity and distance-based statistical techniques were used to identify 

biotic and environmental ecotones within Southeast and Northeast U.S. Large Marine 

Ecosystems (LMEs). We present evidence of multiple seasonally-modulated biotic 

ecotones. Of particular interest was an environmental and biotic transition zone 

associated with the Hatteras Front, an oceanographic feature near the border of these two 

LMEs. An ecological boundary near Cape Hatteras was evident during spring, but not 

during northern fall as a result of a diminished and spatially diverging temperature and 

salinity gradients. Seasonal modulation of this ecotone reflects inherent biological 

connectivity within the coastal ocean and across this purported biogeographic barrier. In 

addition to day length and temperature-induced seasonality, alongshore estuarine system 

heterogeneity (proximity, size) also explained notable variability in pairwise β diversity 

within biotic ecotones. While the LME framework provides a tenable platform for the 

study and management of some living marine resources at the ecosystem scale, our 

results indicate otherwise for the demersal coastal fish and invertebrate community 

within our area of study. We place our marine example in the context of the expanding 

theoretical literature of ecological boundaries. In particular, we echo the call for emphasis 

on characterizing temporal variability (not just spatial) of ecological boundaries, both on 

seasonal and interannual scales. 



12 
 

INTRODUCTION 

In marine environments, it is widely recognized that an ecosystem approach is 

necessary to successfully manage living resources, including fisheries. Ecosystem-based 

management and assessment were suggested in the 1992 United Nations Conference on 

Environment and Development (FAO, 1992), were already an integral part of the 2002 

World Summit on Sustainable Development (Sherman, 2006), and continue to be refined 

in a multidisciplinary light (e.g., McLeod and Leslie, 2009). In this context, the network 

of Large Marine Ecosystems (LMEs) distributed globally in coastal seas is a viable 

framework for multidisciplinary research and tractable management of marine living 

resources at the ecosystem scale (Sherman, 1986, 1991). The LME system provides a 

spatial platform for taking an ecosystem approach to fisheries (EAF), which builds on 

existing fisheries principles and practices to enable more holistic research and 

management (Link, 2010). Under the current paradigm, boundaries between LMEs are 

delineated based on bathymetry, hydrography, productivity, and trophic interactions 

(Sherman and Hempel, 2009). However, because the LME framework is categorical by 

nature, some LME boundaries may not realistically represent the inherent connectivity 

between LMEs evident by the flow of materials (water, nutrients, etc.) and organisms 

between them (Rosenberg and Sandifer, 2009; Friedland et al., 2012). Marine systems are 

intrinsically more dynamic than terrestrial ones (e.g., Kinlan and Gaines, 2003), thus a 

more flexible spatial framework may be needed for appropriate research and management 

of living marine resources in certain coastal systems. Since appropriate definitions of 

LME units will have consequences for marine resource management decisions, it 
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becomes increasingly important to evaluate such boundaries in light of relevant 

ecological information. 

 Large Marine Ecosystem borders should, in theory, be transition zones with 

rapidly changing ecological characteristics, such that each unit can be managed relatively 

independent from the others. Such an area of transition may be described as an “ecotone”, 

a term that arose in the early 20th century describing ecological boundaries and transition 

zones (Yarrow and Marín, 2007). While theorists have devised many definitions and 

variations of the ecotone concept (e.g., Hufkens et al., 2009; Erdôs et al., 2011), an 

especially intuitive framework described by Fortin et al. (2000) discriminates between 

“biotic” and “environmental” ecotones. Environmental ecotones refer to areas with sharp 

physical gradients for attributes such as elevation and soils in terrestrial systems, or depth 

and nutrients in aquatic systems. Similarly, biotic ecotones are described by sharp 

gradients in community composition (i.e., species turnover) as measured by appropriate 

metrics. Measures of beta (β) diversity, designed to quantify such changes in community 

composition between two or more sampling units along a specified gradient (Anderson et 

al., 2011; Legendre et al., 2012), are especially suitable for the identification of biotic 

ecotones. While the ecotone concept is most intuitive in a static spatial context such as a 

boundary zone on a map, ecological systems are inherently dynamic, especially marine 

systems. Thus, in addition to spatial characterizations, the potentially dynamic temporal 

nature of both biotic and environmental ecotones should be considered (Kolasa and 

Zalewski, 1995; Cadenasso et al., 2003a,b). 

 The U.S. Atlantic coast contains two Large Marine Ecosystems, the Northeast 

U.S. Continental Shelf LME (hereafter “Northeast U.S. LME”) and the Southeast U.S. 
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Continental Shelf LME (“Southeast U.S. LME”), with the line of latitude intersecting 

Cape Hatteras, NC as the delineation between them (Fig. 1). Cape Hatteras has 

traditionally been considered a biogeographic barrier primarily due to a sharp latitudinal 

temperature gradient (Hutchins, 1947; Fischer, 1960; Cerame-Vivas and Gray, 1966; 

Schopf, 1979) and limited water body mixing that imposes constraints on movement and 

dispersal for some species (Avise et al., 1987; Palumbi, 1994; Baker et al., 2008; 

McCartney et al., 2013). However, Cape Hatteras apparently does not limit movement or 

dispersal of many other invertebrate species (Saunders et al., 1986; Reeb and Avise, 

1990; Wise et al., 2004; Díaz-Ferguson et al., 2009) and fishes (Nicholson, 1978; Jones 

and Quattro, 1999; Lankford Jr. et al., 1999; McMillen-Jackson and Bert, 2004; 

Wuenschel et al., 2012). At the community level, multiple studies investigating 

latitudinal breakpoints do not support the traditional model of Cape Hatteras as a strong 

biogeographic barrier, but do reveal transition zones at other locations along the U.S. 

Atlantic coast (Schwartz, 1989; Engle and Summers, 1999; Pappalardo et al., 2015). 

The primary goal of this study is to determine the level of continuity in 

community composition between two adjacent Large Marine Ecosystems, the Southeast 

and Northeast U.S. LMEs. We used a measure of β diversity to quantify seasonal and 

spatial changes in community composition for the coastal demersal fish and invertebrate 

assemblage. While we were particularly interested in evidence of a biotic ecotone near 

the LME border at Cape Hatteras, we also characterized transition areas along other 

portions of the U.S. Atlantic coast. For areas that we identified as biotic ecotones, we 

addressed the following questions: 

1) How does spatial scale affect ecotone definition? 
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2) Are ecotones seasonally stable? 

3) Which environmental gradients explain biological patterns?  

We revealed biotic ecotones and pursued these questions using a flexible methodological 

approach considering multiple levels of spatial and temporal scale. We place our results 

in the context of system-specific considerations for study and management of living 

marine resources within coastal U.S. Atlantic waters, as well as contemplate the meaning 

and utility of the ecological boundary concept in the interconnected coastal ocean. 
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METHODS 

Sampling platforms 

We leveraged data from two fishery-independent bottom trawl surveys: the 

Northeast Area Monitoring and Assessment Program (NEAMAP; Bonzek et al., 2015), 

and the Southeast Area Monitoring and Assessment Program – U.S. South Atlantic 

(SEAMAP-SA; Richardson and Boylan, 2013; SEAMAP-SA Data Management Work 

Group, 2014). NEAMAP is conducted twice a year during spring and fall within the 

Northeast U.S. LME, from Martha’s Vineyard, MA to Cape Hatteras, NC. SEAMAP-SA 

is conducted three times a year (spring, summer, fall) within the Southeast U.S. LME 

from Cape Hatteras, NC to Cape Canaveral, FL. Specifications and deployment methods 

of trawl gear are similar between surveys (see Appendix I for additional details). For 

appropriate comparisons between surveys, we utilized six years of temporally 

overlapping data collected during daylight hours in spring (mid-April to mid-May) and 

fall (October to early November) from 2008-2013 and within a common depth range of 5 

to 12-m (Fig. 1). 

Biological data treatment 

For each species in each tow sample, we calculated the natural log-transformed 

biomass (wet weight in grams). We excluded species not captured every year during the 

study period based on the assumption that they were not sampled effectively by one or 

both survey gears (see Table S1 for a species list and total biomass by survey and 

season). We chose biomass rather than number of individuals for our abundance currency 

given the wide range of body sizes among species included in the analysis. Numerical 

abundance equates individuals and species with disparate body sizes, whereas biomass 
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more appropriately weights individuals according to their gravimetric and energetic 

contributions to and impacts on the food web (Certain et al., 2014). Log-transformed 

biomass data were converted to matrix form with individual tow samples as rows and 

species as columns. Each row containing log-transformed biomass values was 

standardized to sum to one in order to account for differences in seafloor area swept 

among tows (Shertzer et al., 2009), which ranged from 1.5 to 5.3 hectares (mean 3.3, SD 

0.6). 

β diversity 

We calculated pairwise beta diversity (i.e., between-samples) using Rao’s 

quadratic entropy index (1982) following the framework of de Bello et al. (2010), which 

reduces the biases associated with the raw Rao indices. In this context, beta diversity was 

defined as the difference between gamma (regional, or two or more samples pooled 

together) and alpha (local) diversity, which had previously been corrected to reflect 

equivalent numbers:  

 βEqvAdd = γEqv − αEqv (1) 

Rao α diversity (i.e., within-sample) was calculated as 

 α Rao = ∑ ∑ 𝑑𝑑𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖𝑝𝑝𝑗𝑗𝑗𝑗𝑠𝑠
𝑗𝑗=1

𝑠𝑠
𝑖𝑖=1  (2)  

where 𝑝𝑝𝑖𝑖𝑖𝑖 is the proportion of species 𝑖𝑖 in sample 𝑐𝑐 (i.e., the relative abundance of the 𝑖𝑖th 

species in the 𝑐𝑐th sampling unit or site), 𝑠𝑠 is the number of species (species richness) in 

the community, and 𝑑𝑑𝑖𝑖𝑖𝑖 is the dissimilarity (or “distance”) between each pair of species 𝑖𝑖 

and 𝑗𝑗. For taxonomic diversity, 𝑑𝑑𝑖𝑖𝑖𝑖 is an extraneous parameter and coded as a unity 

matrix with a null diagonal (0’s for the diagonal, 1’s for off-diagonals). As noted by 



18 
 

Pavoine et al. (2004), taxonomic α Rao is equivalent to the Simpson index: 𝐷𝐷 = ∑𝑝𝑝𝑖𝑖2 

(Maurer and McGill, 2011). Regional Rao γ diversity was calculated as 

 γ Rao = ∑ ∑ 𝑑𝑑𝑖𝑖𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑗𝑗𝑆𝑆
𝑗𝑗=1

𝑆𝑆
𝑖𝑖=1  (3)  

where 𝑆𝑆 is the total number of species in the region, and 𝑃𝑃𝑖𝑖 is the regional species relative 

abundance for species 𝑖𝑖 (same for 𝑃𝑃𝑗𝑗). 𝑃𝑃𝑖𝑖 is equal to the average of 𝑝𝑝𝑖𝑖𝑖𝑖 across all samples: 

 𝑃𝑃𝑖𝑖 = ∑ 𝑝𝑝𝑖𝑖𝑖𝑖𝑛𝑛
𝑐𝑐=1 /𝑛𝑛 (4) 

This is the unweighted formulation of 𝑃𝑃𝑖𝑖 recommended by de Bello et al. (2010) for 

studies like ours seeking primarily to characterize diversity among habitats. To obtain 

meaningful β results, we transformed α and γ to their “numbers equivalents” (Jost, 2007): 

 αEqv = 1
(1−𝛼𝛼)

; (5)  

 γEqv = 1
(1−γ)

 (6)  

Revealing ecotones 

Prior to applying statistical methods for identifying ecotones, we generated a one-

dimensional transect (1-km interval) along the coastline from Cape Canaveral, FL to 

Cape Cod, MA (Wessel and Smith, 1996; ESRI, 2014). Each coastal trawl sampling 

location was assigned a value corresponding to the closest coastline transect point (see 

Appendix I for additional details). This ‘coastline distance’ variable was used as a spatial 

indicator instead of latitude, the latter of which did not appropriately capture variability in 

certain landscape variables for east-west orientated sections of coastline. We conducted 

separate analyses for spring and fall to capture seasonal variability of biotic and 

environmental ecotones. 
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We implemented a moving window approach to evaluate changes in β diversity 

and reveal biotic ecotones along the coastal transect. At a given point along the transect, 

we fitted a regression model on distance matrices (Legendre et al., 1994) within a 

specified window size where pairwise β diversity was the response and pairwise coastline 

distance was the predictor. We repeated this ‘moving gradient window’ approach every 

5-km along the coastline transect, and at multiple levels of scale from 100 to 400-km 

window widths in 10-km increments (Erdős et al., 2013). Because simple linear 

regression is not appropriate for pairwise distance matrices (Anderson et al., 2011), 

regression coefficients and confidence intervals were estimated using regression on 

distance matrices using permutation tests with 1,000 iterations (Goslee and Urban, 2007; 

Lichstein, 2007) and bootstrapping (Efron, 1983) with a 90% sampling rate without 

replacement (n = 500). Our ‘moving gradient window’ method is based on the ‘moving 

split window’ approach (Whittaker, 1960; Ludwig and Cornelius, 1987). Our method is 

also akin to analysis ‘Turnover analysis 3’ (‘T3’) described by Anderson et al. (2011), 

but within a moving window. 

Explaining variation in 𝛃𝛃 diversity 

To determine which aspects of the environment explained biotic ecotones, we 

analyzed the variance in β diversity within biotic ecotones using distance-based 

redundancy analysis (db-RDA; Legendre and Anderson, 1999). This technique partitions 

the variation of a response matrix with respect to two, three, or four explanatory tables 

(variable ‘groups’) using adjusted R-squared. For this approach, collinear variables do 

not have to be removed prior to distance-based transformation (in our case Euclidean) 

and subsequent variance partitioning (Oksanen et al., 2016). 
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For db-RDA, we included four groups of explanatory variables (i.e., four tables) 

to explain variation in β diversity (Table 1):  1) temperature, 2) chlorophyll, 3) salinity, 

and 4) landscape variables. For some analyses, we replaced temperature with day length 

to test for seasonal differences. Temperature influences nearly all aspects of a 

poikilotherm’s life history, including growth, reproduction, geographic distribution, and 

migration (Wootton, 1998). In large ocean basins, current-driven and latitudinal 

temperature gradients are important determinants of species richness and composition of 

marine faunal assemblages (Hutchins, 1947; Fischer, 1960; Schopf, 1979). At the 

ecosystem scale, chlorophyll concentration is a good predictor of upper trophic level 

biomass and fishery yields (Nixon, 1982, 1988; Houde and Rutherford, 1993; Friedland 

et al., 2012). We included chlorophyll as an indicator of local changes in the diversity of 

fish and invertebrate predators due to shifts in overall food availability fueled by lower 

trophic level production (see Appendix I for additional details). We included salinity as a 

general indicator of differences between water masses not differentiable by temperature 

and chlorophyll, such as turbidity and sub-surface primary productivity, differences that 

may be reflected in β diversity. 

We included multiple landscape variables parameterized using spatial datasets 

(Table 1, Appendix 1). Finer methodological details regarding how data for these 

variables were obtained or generated are described in Appendix 1. For each trawl sample, 

we calculated the distance to the nearest land feature (Wessel and Smith, 1996). 

‘Distance to land’ is intended to capture changes in β diversity due to proximity to surf 

zone and nearshore habitats with faunal compositions potentially different than more 

offshore locations. Because many species captured by SEAMAP-SA and NEAMAP are 
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estuarine-dependent to some extent, we also included a variable that quantified the 

distance to the nearest estuarine inlet (Wessel and Smith, 1996). ‘Distance to an estuary’ 

is intended to capture changes in diversity due to estuarine habitat utilization for life 

history processes such as spawning, feeding, and seeking refuge. Because estuary size 

and function vary, we also generated a variable that quantified the area of deepwater 

estuarine habitat (i.e., non-intertidal brackish or marine) within a given distance of the 

sampling site (2, 4, 8, 16, 32, or 64-km). All sampling sites were within 60-km of an 

estuarine system. Distance and area variables, as well as chlorophyll, were transformed to 

reduce skewness (Table 1). 

To determine the relative importance of seasonal progression of β diversity within 

ecotones, we repeated variance partitioning for each biotic ecotone with data from both 

seasons included. We ran this analysis twice – once with temperature as an explanatory 

variable, and again with day length replacing temperature. Compared to date, day length 

is a more biologically-relevant proxy for time that captures seasonality (Horodysky et al., 

2015). As a final analysis, we conducted variance partitioning for all data points within 

each seasonal dataset. This analysis was the coarsest scale that considered which 

environmental variables were most important in structuring β diversity throughout the 

entire study range. 

Biomass and richness 

For comparison to pairwise β diversity patterns along the coastal transect, we 

computed tow-level cumulative biomass and species richness. Cumulative biomass 

values included only species encountered every year and were scaled (centered on zero 
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and divided by the standard deviation) separately for each survey to account for 

differences in catchability between gear types. 

Data and computing 

NEAMAP data are available by request from Robert J. Latour at the Virginia 

Institute of Marine Science; SEAMAP-SA data are available online (SEAMAP-SA Data 

Management Work Group, 2014). We conducted all statistical analyses in R (R Core 

Team, 2016) using the following packages: ecodist (Goslee and Urban, 2007) for 

regression on distance matrices; vegan (Oksanen et al., 2016) for variance partitioning; 

venneuler (Wilkinson, 2011), and scales (Wickham, 2016) for graphing; geosphere 

(Hijmans, 2015) for day length calculations; and ade4 (Dray and Dufour, 2007), 

doParallel (Revolution Analytics and Weston, 2015), plyr (Wickham, 2011), R.utils 

(Bengtsson, 2016), and reshape2 (Wickham, 2007) for data processing and computing. 

Code is available by request from the first author. 
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RESULTS 

The presence and location of biotic ecotones, as well as the strength of biotic and 

environmental gradients within these areas, were scale and season dependent. We chose 

to evaluate the presence of biotic and environmental ecotones at a moving window width 

of 190-km. At this window size, all slope values (i.e., estimated coefficients from 

regression on distance matrices) during both seasons were positive (Fig. 2). For our study 

system and dataset, this window size was at an intermediate scale that revealed a 

balanced contrast between areas of high versus low species turnover. At a finer scale 

(100-km), distinct areas of high turnover were difficult to discern, while broader scales 

(300 to 400-km) did not allow meaningful interpretation given the geography of the study 

system. For instance, the coastal bays of North Carolina are separated by capes less than 

200-km apart, thus interpreting diversity patterns at window widths wider than this 

distance would obscure potential differences in diversity between these features. 

Implementing a moving window approach in other systems will require a window width 

appropriate to the nature of the system and scientific questions being pursued. 

 Seven biotic ecotones were evident at a 190-km window width, six during spring 

and one during fall (Fig. 2). Boundaries for each seasonal ecotone were set at 50% of the 

maximum slope value of the most prominent ecotone during that season. Although 50% 

was an arbitrary cutoff, it allowed categorization of ecotones with the strongest diversity 

gradients. The most prominent ecotone with the greatest slope of species turnover 

occurred near Cape Hatteras in spring (Fig. 2A). Spatial gradients in temperature and 

salinity were dramatic near Hatteras during spring (Fig. 3), indicating convergence of 

water masses in this location. However, a spatial mismatch in turnover of these two 
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environmental variables compared to biological (i.e., β diversity) turnover resulted in low 

total variance explained by distance-based redundancy analysis (24%, Fig. 4). Biological 

turnover reached a peak approximately 20-km south of Cape Hatteras in spring, yet 

temperature and salinity turnover both peaked 15-km north of Cape Hatteras (Fig 5A). A 

peak in chlorophyll turnover overlapped spatially with the peak in β diversity turnover 

near Cape Hatteras, although its lower maximum slope value (Fig 5A) resulted in a 

proportion of variance explained comparable to temperature and salinity (Fig. 4). 

In fall, biological turnover patterns near Cape Hatteras differed markedly 

compared to spring. Peak slope of β diversity in fall occurred farther south compared to 

in spring (Fig. 5B). The peak slope value in β diversity was approximately 40% less in 

fall (slope = 0.015) compared to spring (slope = 0.025), indicating that spatial changes in 

β diversity near Cape Hatteras were less dramatic in fall. Environmental turnover patterns 

also differed between seasons. In fall, salinity turnover was similar to β diversity turnover 

immediately south of Cape Hatteras (Fig. 5B). Temperature turnover, however, peaked 

farther north of Cape Hatteras in fall, while chlorophyll turnover patterns near Cape 

Hatteras were spatially similar.  

Seasonal differences in biological and environmental turnover patterns were not 

limited to near Cape Hatteras. In spring, there were multiple distinct peaks in β diversity 

which we assigned as biological ecotones:  St. Augustine, St. Mary’s River, lower 

Onslow Bay, upper Onslow Bay, Cape Hatteras, and Virginia Beach (Fig. 2A, Fig. 6). 

Areas outside of these ecotone boundaries had low β diversity slope values, indicating 

that spatial gradients in species turnover were gradual rather than steep. In fall, the 

Winyah Bay ecotone was the only area along the coastline with β diversity slope values 
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of comparable magnitude to spring ecotones (Fig. 2, Fig. 6). However, in fall, there were 

multiple biological transition zones of intermediate magnitude with peak slope values of 

approximately 0.014. While we do not describe these areas further, overall increased 

spatial heterogeneity of species turnover in fall appears to be a general property of the 

study system. 

Within each of seven ecotones, the combination and relative importance of 

environmental variables explaining diversity patterns were idiosyncratic. Three different 

variance partitioning analyses were conducted for each ecotone. The first analysis 

included data only for the season during which the ecotone was evident (single-season 

analyses; Fig. 4, left column of Venn diagrams). The second analysis included both 

spring and fall data within the spatial boundaries delineated for the ecotone (Fig. 4, 

middle column). The third analysis differed from the second only in that temperature was 

replaced by day length as one of the explanatory variable tables (Fig. 4, right column). 

The second and third analyses (“dual-season” analyses) revealed the relative importance 

of temporal (i.e., seasonal) versus spatial shifts in community composition. 

For single-season analyses, species turnover within five of seven ecotones was 

best explained by landscape variables that quantified changes in proximity to land, 

proximity to an estuary, and amount of available estuarine habitat. St. Augustine and 

upper Onslow Bay were the two exceptions; temperature, salinity, or chlorophyll 

explained more variation than landscape variables for these ecotones. For dual-season 

analyses, temperature and day length were largely redundant, indicating that at this 

spatial scale (i.e., 190-km window width), temperature and day length were equivalent 

proxies for seasonality. For most ecotones, seasonality explained an equal amount or 
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more variation than landscape heterogeneity. For St. Augustine, upper Onslow Bay, and 

Cape Hatteras ecotones, seasonality explained notably more variation than any other 

variable. The total amount of variation explained within a given ecotone ranged from 

19% for St. Augustine in spring to 79% for upper Onslow Bay in spring (Fig. 4). The 

amount of variation explained in single-season analyses was typically greater than for 

dual-season analyses; exceptions were St. Augustine and Cape Hatteras ecotones, which 

had the lowest amounts of variation explained compared to other ecotones. 

 Cumulative scaled biomass was greatest in northeast Florida, the North Carolina 

outer banks, and in spring, New York’s Long Island (Fig. 3). Species richness was 

consistently higher south of Cape Hatteras, with hotspots in northeast Florida during 

spring and the southern outer banks of North Carolina. Richness gradually declined from 

a high in Onslow Bay to a low near the mouth of the Chesapeake Bay in spring. The 

location of biotic ecotones typically corresponded not with peaks and troughs in biomass 

and richness, but rather with areas where these two metrics were changing most rapidly 

(i.e., had the most turnover). 
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DISCUSSION 

Our main focus was to evaluate Cape Hatteras as the primary ecological boundary 

between the two Large Marine Ecosystems encompassing the U.S. Atlantic coast. This 

approach was in keeping with Kolasa's (2014) thesis emphasizing the importance of 

recognizing ecological entities (LMEs in this case) prior to evaluating the existence and 

properties of ecological boundaries between such entities. Biotic and environmental 

patterns near Cape Hatteras were highly seasonal. In spring the most apparent biotic and 

environmental ecotones occurred here, characterized by rapid turnover in β diversity, 

temperature, and salinity (Fig. 5). In fall, Cape Hatteras was not an obvious transition 

zone for the sampled biological community, nor was there a dramatic temperature or 

salinity gradient. The seasonally-dependent nature of these biological and environmental 

patterns are typical of temperate marine and terrestrial systems within which seasonal 

temperature fluctuations govern a multitude of biological and physical processes (Block 

et al., 2011). 

Seasonally divergent β diversity patterns are not conflicting, but instead reveal 

environmentally-modulated (Kolasa, 2014) connectivity between the Northeast and 

Southeast U.S. LMEs as biota move through and among coastal marine habitats during 

certain seasons. When coastal waters warm as spring turns to summer, many species with 

southern ranges migrate or settle (if young-of-the-year) northward and farther inshore for 

foraging, reproduction, and refuge (Epifanio and Garvine, 2001; Murdy et al., 2013). As 

temperatures and day length decrease in late fall, these southern species reverse course, 

while some northern species may migrate southward and inshore in opposite fashion 

(e.g., Burr and Schwartz, 1986). While we did not analyze the seasonality of individual 
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species distributions, these general migration patterns can be seen in our results as the 

location and magnitude of biotic ecotones changed dramatically between two seasonal 

snapshots. In spring, temperature explained 42% of all variation in β diversity (all data 

points included); this percentage dropped to 20% in fall as the diminished Hatteras 

temperature gradient expanded the thermal niche of many southern species. Dual season 

variance partitioning results reinforce the importance of seasonality of spatial diversity 

patterns driven by life history processes of species that comprise the assemblage. The 

impact of predictable seasonal migrations on ecosystem function has been an 

underappreciated dimension of biodiversity (Bauer and Hoye, 2014); future studies could 

investigate latitudinal energy flow across Cape Hatteras with specific emphasis on 

influential migratory predators. 

Pappalardo et al. (2015) investigated species range boundaries for hundreds of 

benthic marine invertebrate species along the U.S. Atlantic coast. While they found some 

species ranges were restricted by current flow patterns near Cape Hatteras, this 

biogeographic boundary was highly permeable for most species. In other words, range 

boundaries typically did not occur there, except notably for deep-water species with long 

larval durations. For shallow-water invertebrates (< 20-m depth), reduced water transport 

near Cape Cod and the Bay of Fundy resulted in a higher percentage of species with 

range boundaries near these locations as compared to Cape Hatteras (Pappalardo et al., 

2015). Hale (2010) and Engle and Summers (1999) also report Cape Cod to be a clear 

faunal transition zone for estuarine and coastal benthic invertebrates. In their analysis of 

zoogeographic boundaries focusing on benthic estuarine invertebrates, Engle and 

Summers (1999) did not identify Cape Hatteras as a latitudinal breakpoint in community 
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composition. They did, however, identify breakpoints that closely correspond to the 

lower Onslow Bay, Winyah Bay, and St. Mary’s River biotic ecotones revealed in our 

study (compare our Fig. 6 to their Figure 3). Landscape heterogeneity, which considered 

the distance to and area of adjacent estuarine habitat, was important for explaining 

variance in beta diversity within each of these nearshore ecotones. Consistent results 

from these two studies support the notion that estuarine habitat acts to structure 

community composition similarly for a wide variety of taxa in this coastal ocean system. 

In our study of shallow-water fishes and invertebrates with high motility, Cape 

Hatteras appears to impose range restrictions on species only when a strong temperature 

gradient exists in colder months. Once this temperature gradient diminished during the 

warm season, magnitudes of β diversity slopes near Cape Hatteras were dampened and 

shifted, indicating increased permeability across this biogeographic landmark and LME 

border. Interestingly, our study and Pappalardo et al. (2015) observed similar mismatches 

between biological versus temperature patterns near Cape Hatteras; peaks in temperature 

turnover (our study) or temperature-predicted species boundaries (Pappalardo et al., 

2015) occurred north of Cape Hatteras, whereas observed biotic turnover or species 

boundaries occurred south of Cape of Hatteras. This asynchrony, which is likely due to 

the dynamic nature of current conditions associated with the ‘Hatteras Front’ (Churchill 

and Berger, 1998; Savidge, 2002), deserves further study and highlights the importance 

of distinguishing between biotic and environmental ecotone concepts. In summary, 

Pappalardo et al. (2015) used different methodologies and biological communities to 

yield our same overall result:  biological connectivity between the Southeast and 

Northeast U.S. LMEs is strong due to latitudinal permeability across Cape Hatteras 
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within the coastal ocean. Thus, the boundary between these LMEs acts as a seasonally-

modulated filter of the macrofaunal community shared by these two ecosystem entities 

(Kolasa and Zalewski, 1995; Fagan et al., 2003). 

Ferro and Morrone (2014) argue that biogeographic transition zones should be 

defined based on evidence from multiple taxonomic clades. Although latitudinal 

coverage was relatively broad, an analysis leveraging inshore, coastal, and offshore 

fisheries survey datasets would complement the existing evidence from benthic 

macrofaunal studies to allow a more thorough understanding of the relative importance 

and permeability of ecological boundaries associated with Capes Hatteras and Cod. There 

are multiple ways to compartmentalize large-scale coastal marine systems (Spalding et 

al., 2007); a given partition may be useful for the study and management of certain 

taxonomic groups, while irrelevant for another. For coastal marine fishes and 

invertebrates inhabiting the Southeast U.S. LME and southern portion of the Northeast 

U.S. LME, the Large Marine Ecosystem framework may not be a useful paradigm given 

the demonstrated biological connectivity northward across Cape Hatteras. As climate 

change continues to influence the structure of coastal marine biological communities (see 

“Temporal change” subsection below), the relevancy of the LME framework along the 

U.S. Atlantic coast may diminish. 

Across-shore dynamics 

Within six of seven biotic ecotones (St. Augustine excluded), spatial changes in 

landscape variables explained the majority or a notable fraction of variation in β 

diversity. This result is consistent with the utilization of both estuarine and coastal 

habitats by many species within the study area (Able, 2005; Woodland et al., 2012). 
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While we did not investigate estuary-ocean ecotones directly, the explanatory power of 

estuarine habitat variables indicates that the presence and amount of estuarine habitat is a 

primary determinant of coastal β diversity patterns at an intermediate geographic scale 

(~200-km). By quantifying the amount of adjacent estuarine habitat, we are incorporating 

2-dimensional aspects of the system into our 1-dimensional transect approach (see Figure 

1 in Kolasa, 2014). A true 2-dimensional approach leveraging existing estuarine, coastal, 

and offshore datasets could reveal both alongshore and across-shore ecotones within 

these two LMEs, but would require near-continuous spatial coverage and comparable 

temporal overlap between datasets. We would expect the magnitude and steepness of 

biological turnover for across-shore transects to be greater than that within the alongshore 

coastal ecotones revealed in this study. Examples of such across-shore zones could 

include salinity fronts (Lee et al., 1991), steep bathymetric features (Jamieson et al., 

2011), and abrupt habitat shifts resulting from geomorphology (e.g., hardbottom reefs) or 

ecosystem engineers (e.g., seagrasses, coral reefs, marshes; Barnes and Hamylton, 2013; 

Kolasa, 2014). Although typically at a smaller scale than was the focus of our study, even 

heterogeneity within soft-bottom habitats can yield sharp biological gradients (Weston, 

1988; Zajac et al., 2003). Large estuaries may fit better within the conceptual model of a 

salinity-driver ecocline rather than an ecotone (Attrill and Rundle, 2002), the former of 

which can be described as a more gradual gradient zone which is relatively 

heterogeneous but environmentally more stable (van der Maarel, 1990). Our alongshore 

study area considered as a whole (i.e., at the coarsest of scales) also fits the ecocline 

conceptual model, whereby diversity patterns emerge from the overarching influence of a 

latitudinal temperature gradient. Within portions of the transect (i.e., windows), 
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environmental effects were much more nuanced, reflecting the hierarchical nature of 

ecological boundaries and ecological systems in general (Yarrow and Salthe, 2008 and 

references therein).  

Temporal change 

In their general framework for studying ecological boundaries, Cadenasso et al. 

(2003a,b) urged spatiotemporal variability, not just spatial variability, to be incorporated 

into measures of boundary structure and function (also see Kolasa and Zalewski, 1995). 

In our empirical study of coastal marine transition zones, we illustrate that seasonal 

temporal variability is essential for proper characterization of these boundaries. However, 

data were not available to conduct a robust temporal study characterizing interannual 

variability within biotic ecotones. As atmospheric CO2 levels continue to rise, coastal and 

shelf water temperatures throughout the Southeast and Northeast U.S. LMEs are 

predicted to follow suite (Saba et al., 2016). Within the latitudinal and depth range of our 

study area, coastal waters along the North Carolina outer banks, especially near the 

Hatteras Front, are expected to warm the fastest (Figure 5a in Saba et al., 2016). While 

the effects of climate change on marine communities can be difficult to predict (Doney et 

al., 2012), single-species distribution expansions have already been documented and 

forecasted within the Northeast U.S. LME (Nye et al., 2009; Bell et al., 2015; Hare et al., 

2016). These studies suggest that the ecological boundary near Cape Hatteras will 

become more permeable to some species if temperatures homogenize between LMEs. 

However, if waters immediately south of the Hatteras Front warm quickly but coastal 

Mid-Atlantic waters do not, then the Cape Hatteras ecological boundary may actually 

become less permeable. Few studies have characterized macrofaunal communities in the 
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localized area influenced by the Hatteras Front (Magnuson et al., 1981; Atkinson and 

Targett, 1983; Govoni and Spach, 1999). To truly understand the spatiotemporal patterns 

of this seasonally-modulated boundary on populations and communities of interest, 

additional high-frequency empirical studies are needed.   

Increased permeability across the Cape Hatteras boundary may manifest as 

changes in migration phenology (e.g., Peer and Miller, 2014). For south-to-north 

migrating species, the seasonal window for utilizing Northeast U.S. LME habitats may 

widen, while the southern window for north-to-south migrating species may narrow. To 

complicate matters, many species have across-shelf migration patterns to overwintering 

grounds in deeper continental shelf waters (e.g., Kraus and Musick, 2000); throughout the 

Southeast and Northeast U.S. LMEs, shelf-edge bottom waters are expected to warm 

considerably faster than most adjacent shallow coastal habitat (Saba et al., 2016). Given 

the inherent complexities of multi-species modeling of any kind, climate-driven forecast 

models developed for individual species (e.g., Hare et al., 2010, 2012; Kohut et al., 2013) 

should be the immediate focus for understanding how changing climate will affect living 

marine resources. Basic community-level forecasts using simple metrics such as species 

richness or gamma diversity could be developed based on amalgamated single-species 

projections. 

Management implications 

For successful natural resources study and management, biological or ecological 

units must be defined at a scale appropriate for the process of interest (Post et al., 2007). 

In a single-species fishery assessment setting, the biological unit is the fishery stock. All 

life history processes are assumed to be occurring within this defined unit, the spatial 
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extent of which may cross various types of boundaries including ecosystem (e.g., LMEs 

delineations), sociopolitical (e.g., state/country borders), and management units (e.g., 

U.S. federal fishery management council regions). Single-species stock assessments in 

the United States should be and are typically flexible in the data and information that is 

included in an assessment proceeding, regardless of from which pre-defined management 

unit that information originated. However, investigations with more complexity such as 

those at the multispecies (Garrison et al., 2010), community (Link et al., 2011), or 

ecosystem (Link et al., 2010) level, the appropriate scale at which processes of interest 

are occurring is more nebulous due to the dynamic nature of ecological processes within 

the marine realm (Lourie and Vincent, 2004). The Large Marine Ecosystem framework 

has provided a workable approach to the study and conservation of marine living marine 

resources for multiple decades (Sherman, 2009). However, certain coastal ocean areas 

with demonstrated biological interconnectedness such as the U.S. Atlantic coast would 

benefit from scientific sampling platforms that reflect the scale of ecosystem processes 

rather than pre-determined spatial management constructs. As living marine resources 

management continues to expand from single-species analyses to include more holistic, 

ecosystem-based tenants, the importance of ensuring a spatiotemporal match between 

data collection and dynamic ecological processes will intensify. 
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TABLES 

Table 1. Tow-level explanatory variables included in variance partitioning of β diversity. 

 
Group Variable Transformation Data source Interpretation 
Temperature 
(‘Temp’) 

Observed bottom temperature 
(˚C) 

none NEAMAP, SEAMAP-
SA 

Physiological limit to 
distribution; migratory cue   

Chlorophyll 
(‘Chl’) 

Satellite-estimated surface 
chlorophyll a concentration 
(mg m-3) 

log Generated from 
Feldman and McClain 
(2014) 

Proxy for primary productivity; 
influences food availability via 
bottom-up control 

Salinity 
(‘Sal’) 

Observed bottom salinity 
(Practical Salinity Units) 

none NEAMAP, SEAMAP-
SA 

Freshwater outflow, local 
productivity 

Landscape 
(‘Land’) 

Distance to land (km) square-root Generated from Wessel 
and Smith (1996) 

Proximity to land 

Distance to an estuary (km) square-root Generated from 
USFWS (2014) 

Proximity to estuarine habitat  

Area (km2) of proximate 
deepwater estuarine habitat 
within 2, 4, 8, 16, 32, or 64-km 

square-root Generated from 
USFWS (2014) 

Measure of estuarine habitat 
availability 

Day length 
(‘DayLength’) 

Photoperiod for a given 
latitude and date (hours) 

none Forsythe et al. (1995); 
not included in season-
specific analyses 

Migratory cue 
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Table 2. Summary of environmental effects within biotic ecotones. Distance-based redundancy analysis was conducted once for each 
biotic ecotone at the window width and during the season in which the ecotone was most prominent (see Fig. 2). State abbreviations 
are Florida (FL), Georgia (GA), South Carolina (SC), North Carolina (NC), and Virginia (VA). Ecotones are displayed as blue 
polygons in Fig. 2 and mapped in Fig. 5. Predominant explanatory processes and strength of explanation are qualitative determinations 
based on variance partitioning results (Fig. 4), with consideration for the relative proportions of variance explained by variable groups 
and the total variance explained. 

LME State 
Biotic ecotone 
landmark # 

Season 
evident 

Predominant explanatory 
processes 

Strength of 
explanation 

 Southeast U.S. FL St. Augustine 1 Spring Seasonality, 
Productivity gradient 

Weak 

FL/GA St. Mary’s River 2 Spring Multiple Moderate 
SC Winyah Bay 3 Fall Landscape heterogeneity 

Seasonality 
Moderate 

NC Onslow Bay, 
lower 

4 Spring Landscape heterogeneity 
Seasonality 

Moderate 

NC Onslow Bay, 
upper 

5 Spring Seasonality 
Productivity gradient 

Strong 

Border NC Cape Hatteras 6 Spring Seasonality 
Productivity gradient 
Salinity gradient 

Weak 

Northeast U.S. NC/VA Virginia Beach 7 Spring Landscape heterogeneity 
Seasonality 

Moderate 
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FIGURES 

 
 

Figure 1. The study area included the nearshore coastal ocean within Southeast and 
Northeast U.S. LMEs from Cape Canaveral, Florida to Montauk, New York. Overlapping 
red and purple closed circles represent SEAMAP-SA and NEAMAP sampling sites, 
respectively; data are from spring and fall during 2008-2013 and within a 5 to 12-m depth 
range. Stippled areas are within LME boundaries (the Northeast U.S. LME extends 
farther north to the Bay of Fundy). The bold black line is the geographic boundary 
between LMEs located at the Cape Hatteras latitude line (35.4°N). 
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Figure 2. Slopes of β diversity (black lines) versus coastline transect distance at an 
intermediate and optimal moving window width size of 190-km. Spring (A, top) and fall 
(B, bottom) patterns were analyzed separately to depict seasonal differences. 
Bootstrapped 99% confidence intervals are shown as grey polygons encompassing slope 
estimates calculated at 5-km increments. Shaded blue polygons depict biotic ecotones 
that were further analyzed to determine which environmental variables explained biotic 
gradients. Ecotone boundaries were set at 50% of the maximum slope for that season 
(horizontal dotted red line). Number labels refer to ecotone names (Table 2): 1) St. 
Augustine, 2) St. Mary’s River, 3) Winyah Bay, 4) lower Onslow Bay, 5) upper Onslow 
Bay, 6) Cape Hatteras, and 7) Virginia Beach. 
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Figure 3 (figure on following page). Bottom temperature, bottom salinity, surface 
chlorophyll a, scaled log cumulative biomass, and species richness patterns along a 
coastline transect centered near Cape Hatteras, NC during 2008-2013 and within a 5 to 
12-m depth range. Values corresponding to SEAMAP-SA sampling sites (closed squares) 
are south of Cape Hatteras, whereas NEAMAP sites (closed circles) are north of this 
shared boundary between Southeast and Northeast U.S. LMEs. A loess smother with 
99% confidence intervals are overlaid for each environmental variable in spring (cyan) 
and fall (orange). For the top three panels, shaded blue polygons depict biotic ecotones 
within which an environmental predictor was a good explanatory variable (see Table 2). 
Number labels refer to ecotone names (Table 2): 1) St. Augustine, 2) St. Mary’s River, 3) 
Winyah Bay, 4) lower Onslow Bay, 5) upper Onslow Bay, 6) Cape Hatteras, and 7) 
Virginia Beach. 
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Figure 3 (caption on previous page) 

 



51 
 

Figure 4 (figure on following page). Venn diagrams depicting the relative proportions of 
variance explained in β diversity by groups of environmental variables for each biotic 
ecotone. The left column shows season-specific analyses during the season in which the 
ecotone was evident (see Fig. 2). The middle column depicts partitioning results for all 
data (both seasons) within each ecotone, while the right column differs from the middle 
column only in that temperature was replaced with day length. Circle sizes are 
normalized to the total variation explained (percentages in parentheses) for individual 
analyses in each ecotone. Overlapping areas represent the proportion of variation 
concomitantly explained by two or more variable groups. Variable group abbreviations 
also listed in Table 1 are temperature (‘Temp’), chlorophyll (‘Chl’), salinity (‘Sal’), 
landscape (‘Land’), and day length (‘DayLength’). 
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Figure 4 (caption on previous page). 
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Figure 5. Slopes of β diversity (black lines) and turnover of bottom temperature (red 
lines), bottom salinity (purple lines), and chlorophyll (green lines) along a coastline 
transect distance at an intermediate and optimal moving window width size of 190-km. 
Environmental slopes were scaled by centering on the mean and dividing by the standard 
deviation. Shaded blue polygons depict biotic ecotones that were further analyzed to 
determine which environmental variables explained biotic gradients. Number labels refer 
to ecotone names (see Table 2 and Fig. 4): 1) St. Augustine, 2) St. Mary’s River, 3) 
Winyah Bay, 4) lower Onslow Bay, 5) upper Onslow Bay, 6) Cape Hatteras, and 7) 
Virginia Beach.   
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Figure 6. Locations of biotic ecotones revealed by moving gradient window analysis and 
summarized in Table 2. Winyah Bay was the only prominent ecotone in fall. Ecotone 
boundaries parallel to the coastline were set as a 25-km buffer for visual purposes only. 
Black lines depict the approximate location of peak slopes within ecotones. 
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APPENDIX I 

Additional methodological details for Chapter 2. 

Sampling platforms 

The Northeast Area Monitoring and Assessment Program (NEAMAP) is 

conducted by Virginia Institute of Marine Science (Gloucester Point, VA) personnel 

twice annually (spring, fall) within the Northeast U.S. LME from Martha’s Vineyard, 

MA to Cape Hatteras, NC. The Southeast Area Monitoring and Assessment Program – 

U.S. South Atlantic (SEAMAP-SA) is conducted by South Carolina Department of 

Natural Resources (Charleston, SC) personnel thrice annually (spring, summer, fall) 

within the Southeast U.S. LME from Cape Hatteras, NC to Cape Canaveral, FL. 

NEAMAP began in fall 2007 and SEAMAP-SA in 1989. Specifications and deployment 

methods of trawl gear are similar between surveys. NEAMAP deploys a “box” trawl 

from a 27-m stern-dragger at a target speed of 3-kt (Bonzek et al., 2015), while 

SEAMAP-SA simultaneously deploys two “tongue” trawls from a 23-m St. Augustine 

shrimp trawler at a target speed of 2-kt (Stender and Barans, 1994). Tow time for both 

surveys is typically 20 min, after which the catch is brought onboard, sub-sampled (if 

necessary), all individuals identified to species and quantified, and additional information 

(allometrics, reproductive status/tissue, otoliths, and stomach contents) obtained from 

certain species and specimens. NEAMAP employs a stratified random design across 15 

strata in waters between 6.1-m and 36.6-m depth contours. SEAMAP-SA employs a 

stratified fixed station design, whereby a pre-determined number of fixed stations are 

chosen for seasonal sampling from a pool of all possible stations within each of 6 

subregions (Fig. 1). For appropriate comparisons between surveys, we utilized six years 
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of temporally overlapping data collected during daylight hours in spring (mid-April to 

mid-May) and fall (October to early November) from 2008-2013 and within a common 

depth range of 5 to 12-m. Bottom temperature and salinity data used in this analysis were 

collected at each sampling location by NEAMAP and SEAMAP-SA personnel using a 

hydrographic profiler. 

Coastline transect 

 For use in statistical analysis and generation of additional explanatory variables, a 

coastline transect was generated from the tip of Cape Canaveral, FL to the tip of Cape 

Cod, MA. At a resolution of 1:1,000,000, the transect was traced as a polyline in ArcGIS 

(ESRI, 2014) from a shoreline polygon shapefile (“GSHHS_f_L1.shp”) available from 

the Global Self-consistent Hierarchical, High-resolution Geography database (v. 2.3.2) 

provided by the National Geophysical Data Center (Wessel and Smith, 1996). The 

“Create Random Points” tool in ArcGIS was then used to generate shapefile containing 

points at 1-km intervals along the polyline. Using the transect points as near features, a 

“Near Table” was generated for all sampling points. The “Join Field” tool was then used 

to assign the closest transect point to the trawl points feature attribute table. 

Chlorophyll 

Satellite-estimated surface chlorophyll (chl) a data were obtained from the 

National Aeronautics and Space Administration (NASA) Goddard Space Flight Center 

(GSFC) OceanColor Group website (Feldman and McClain, 2014) using Marine 

Geospatial Ecology Tools (Roberts et al., 2010) within ArcGIS (ESRI, 2014). Raster 

images of chl a concentration (mg m-3) were collected by NASA’s Moderate Resolution 

Imaging Spectroradiometer (MODIS) instrument carried by the Aqua satellite. NASA 
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MODIS data were obtained using the “Create Rasters for NASA OceanColor L3 SMI 

Product” script available via Marine Geospatial Ecology Tools (Roberts et al., 2010). 

Downloaded images had an 8-day temporal resolution, a 4-km spatial resolution, were in 

the World Geodetic System 1984 coordinate system, and limited to between 82˚ and 

70˚W longitude and 28˚ and 42˚N latitude. This spatial extent encompassed all trawl 

survey sample locations included in the study. 

Each survey tow was assigned a chl a estimate with the best spatial and temporal 

alignment. Each 8-day raster dataset was masked to exclude raster cells that overlapped 

with inshore estuarine waters, which potentially have markedly different and 

unrepresentative chl a signatures compared to neighboring nearshore waters within which 

survey trawls were conducted. This was done by creating an equal area grid with the 

exact spatial extent and number of columns and rows as each downloaded raster file. All 

cells that overlapped any amount of inshore water were then selected and removed, and 

the remaining fishnet containing only nearshore and offshore waters was used as a 

template to mask chl a raster datafiles. The mask template consistently excluded certain 

4-km cells within which survey trawls were conducted, notably those cells close to land 

features that contained both nearshore and inshore waters separated by narrow barrier 

islands. To reduce the number of trawl survey tows without assigned chl a estimates, 

focal statistics (mean within a 3 by 3 rectangle) were calculated for each raster file so that 

values for these “no data” cells could be extrapolated based on values from immediately 

adjacent cells containing only nearshore waters. Focal statistics were saved as separate 

files. While extrapolating average values for “no data” cells from immediately adjacent 

cells using focal statistics likely introduced some bias, the amount of bias introduced is 



58 
 

likely less than if masked cells that were confounded by inshore readings were allowed to 

retain their original values. 

 ArcGIS ModelBuilder was used to automate the assignment of chl a estimates to 

trawl survey tow starting points. For points that spatiotemporally aligned with raster cells 

containing no chl a estimate, either due to incomplete satellite coverage or masking as 

described above, chl a values were assigned using the “Raster Calculator” tool with a 

conditional statement specifying a hierarchy of alternative datasets in the case of a null 

value. In order of preference, alternative datasets were: 

1) Aligned 8-day raster file with focal statistics calculated, 

2) Raster file from the previous or following 8-day period, whichever was nearer in 

time to the trawl survey sampling date, 

3) Alternative 2 with focal statistics calculated, 

4) Raster file from the previous or following 8-day period, whichever was farther in 

time to the trawl survey sampling date, 

5) Alternative 4 with focal statistics calculated, 

6) A seasonal raster file calculated as an average of all 8-day raster files that 

overlapped in time with sampling dates for either survey during the appropriate 

season, 

7) Alternative 6 with focal statistics calculated. 

Although the file that was used to assign a each point its chl a estimate was not recorded, 

rarely was there loss of satellite coverage for a given raster cell within the nearshore zone 

for three consecutive 8-day periods. Thus few trawl survey tows, if any, were assigned a 
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chl a value based on seasonal average datasets (alternatives 6 and 7) that had much 

coarser temporal resolution. 

Landscape variables 

Prior to making distance and area calculations, all point and polygon shapefiles 

were projected to North American Datum 1983 Albers. Using the “Near” tool in ArcGIS, 

‘distance to land’ was calculated as the geodesic distance from the starting coordinates of 

each trawl survey location to the nearest land feature. Land features were obtained from 

the same shoreline polygon shapefile (“GSHHS_f_L1.shp”) described above. 

Distance to an estuarine inlet or river mouth (hereafter “estuarine/marine 

interface”) was calculated as the geodesic distance from the start of each trawl survey tow 

to the nearest estuarine/marine interface, circumventing any hindering land features. 

Estuarine/marine interfaces were drawn according to the topology of features within the 

National Wetlands Inventory database (USFWS, 2014). Wetlands data for each coastal 

state from Florida north to Massachusetts were downloaded and merged into a single 

shapefile. Within the study area, an interface line was drawn for each instance where any 

deepwater polygon with “ATTRIBUTE =  'M%'” (“M” denotes marine) intersected a 

polygon with “ATTRIBUTE =  'E%'” (“E” denotes estuarine). The topology and 

attributes of some polygons were manually altered to correct obvious attribute 

misspecifications within the downloaded data or to simplify interface line construction. 

Ephemeral interfaces that open and closed due to sediment movement (manmade or 

natural) were identified using Google Earth (accessed 10 Dec 2014) and excluded from 

analysis. 1-km buffers were then created around interface lines, and the portions of the 

buffers that overlapped land or wetland polygons were erased. The purpose of creating 



60 
 

interface buffers was to reduce the number of intersections between land features and 

nearest distance path lines. The “Near” tool was then used to calculate the geodesic 

distance of each trawl survey location to the edge of the closest interface buffer. Using 

the original trawl coordinates and spatial coordinates of the closest interface feature 

location output from the “Near” analysis, the “Points to Line” script was used to generate 

path lines from each trawl location to the nearest interface feature. Path lines that 

intersected land features were manually altered to circumvent those features; line lengths 

(geodesic distances) were then automatically recalculated within the attribute table. 

Also using National Wetlands Inventory data, the amount of proximate estuarine 

area was calculated for each trawl survey point at radii of 2, 4, 8, 16, 32, and 64-km. 

These radii were chosen based on a frequency histogram of distances to an estuary (not 

shown), which indicated log-normally distributed data and a maximum distance of 60-

km. First, six subset shapefiles of survey points were generated, one for each radius, by 

selecting points with a distance to the nearest estuarine/marine interface equal to or less 

than the specified radius minus 1. One was subtracted from each distance to account for 

the 1-km buffer surrounding each interface used in distance calculations. ArcGIS 

ModelBuilder was then used to automate calculations of proximate estuarine area to each 

point. To speed processing, features within the shapefile containing wetlands data were 

split according to watershed using watershed designations from the National Wetlands 

Inventory database. Certain watersheds were combined or split according to natural 

connectivity among coastal deepwater areas. For features within a given watershed, 

features of a certain wetland type – subtidal estuarine deepwater or intertidal estuarine 

wetland – were merged into a single feature, resulting in two feature polygons for each 
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watershed. For a given point feature, the amount of proximate wetland area was 

calculated using the following workflow: 

 

This workflow was iterated for each point feature within each of the six subset point 

datafiles. Following the model run for given subset datafile, output shapefiles were 

merged. Deepwater estuarine features were then selected and saved as a separate table 

containing area calculations. Total estuarine area was calculated by merging features 

within the original merged file based on the unique identifiers of point features. 

Ultimately, only deepwater estuarine area calculations were used in statistical analyses. 
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APPENDIX I:  SUPPLEMENTARY TABLES 
 
 
 
Table S1. Total biomass (grams) captured (sum for 2008-2013) for species considered for 
inclusion in diversity analysis. A species was excluded from analysis if it was not 
captured during all six years of the study period by either NEAMAP or SEAMAP. 
 

 
NEAMAP SEAMAP Excluded? 

Scientific Name Spring Fall Spring Fall 
 

Acanthostracion quadricornis 0 0 3,208 4,329 Yes 
Achirus lineatus 0 0 212 0 Yes 
Acipenser oxyrinchus 539,214 497,150 101,810 24,680 No 
Aetobatus narinari 0 0 1,045,800 222,405 No 
Albunea paretii 0 0 3 81 Yes 
Alectis ciliaris 0 380 0 65 Yes 
Alopias vulpinus 295,100 537,700 236,410 0 No 
Alosa aestivalis 1,045,208 0 859 3 No 
Alosa mediocris 7,533 5,050 0 0 No 
Alosa pseudoharengus 250,107 45 0 0 No 
Alosa sapidissima 137,227 400 318 0 No 
Alpheus heterochaelis 0 0 0 2 Yes 
Aluterus monoceros 0 0 0 2,912 Yes 
Aluterus schoepfii 0 495 0 12 Yes 
Ammodytes americanus 4 15 0 0 Yes 
Anchoa sp. 561,896 2,939,614 756,265 1,243,815 No 
Ancylopsetta ommata 0 15 55,920 6,300 No 
Anisotremus virginicus 0 0 0 45 Yes 
Archosargus probatocephalus 24,356 398,526 457,544 127,072 No 
Arenaeus cribrarius 0 0 7,973 13,642 No 
Ariomma regulus 0 0 0 175 Yes 
Ariopsis felis 0 0 884 40,082 No 
Astroscopus guttatus 0 16,307 0 162 No 
Astroscopus y-graecum 0 0 671 713 Yes 
Bagre marinus 0 0 4,595 62,981 No 
Bairdiella chrysoura 129,971 1,300,138 380,329 807,810 No 
Balistes capriscus 854 5,547 1,958 550 No 
Bothus ocellatus 24 0 0 0 Yes 
Brevoortia smithi 0 0 3,684 25,919 No 
Brevoortia tyrannus 206,947 64,480 771,233 149,240 No 
Calappa flammea 0 0 1,414 965 No 
Callinectes ornatus 0 0 470 1,775 No 
Callinectes sapidus 3,099 5,593 22,654 26,979 No 
Cancer borealis 30 130 0 0 Yes 
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NEAMAP SEAMAP Excluded? 

Scientific Name Spring Fall Spring Fall 
 

Caranx bartholomaei 0 0 11 97 Yes 
Caranx crysos 0 18,101 20,771 139,346 No 
Caranx hippos 0 1,128 43,193 10,366 No 
Carcharhinus acronotus 0 0 586,400 814,272 No 
Carcharhinus brevipinna 0 2,990 55,800 192,957 Yes 
Carcharhinus isodon 0 0 7,420 6,375 Yes 
Carcharhinus leucas 0 0 0 137,600 Yes 
Carcharhinus limbatus 0 0 198,260 415,900 No 
Carcharhinus obscurus 5,500 0 4,280 0 Yes 
Carcharhinus plumbeus 22,720 168,463 20,090 164,028 No 
Carcharias taurus 113,660 588,570 1,223,150 337,530 No 
Centropristis philadelphica 0 0 1,998 33,644 No 
Centropristis striata 29,653 15,437 9,352 11,768 No 
Chaetodipterus faber 90 9,363 18,287 255,366 No 
Chaetodon ocellatus 0 7 0 37 Yes 
Chilomycterus schoepfii 11,575 33,533 469,837 97,912 No 
Chloroscombrus chrysurus 0 337 7,567,154 5,766,950 No 
Citharichthys arctifrons 120 35 0 0 Yes 
Citharichthys macrops 0 0 17,067 31,179 No 
Citharichthys spilopterus 0 0 135 8,604 No 
Clupea harengus 19,459 294 0 0 No 
Cryptodromiopsis antillensis 0 0 7 25 Yes 
Cynoscion nebulosus 458 4,257 1,869 10,632 No 
Cynoscion nothus 750 0 606,982 595,121 No 
Cynoscion regalis 2,833,860 14,248,284 987,558 1,719,882 No 
Dasyatis americana 2,480 22,105 1,291,699 1,223,708 No 
Dasyatis centroura 22,114 409,185 2,072,240 1,143,079 No 
Dasyatis sabina 4,575 26,647 17,980 465,412 No 
Dasyatis say 1,220,033 177,730 4,471,999 5,041,504 No 
Decapterus punctatus 0 1,845 9,992 38,091 No 
Diodon hystrix 0 0 1,481 0 Yes 
Diplectrum formosum 0 0 651 534 No 
Diplodus holbrookii 0 0 0 385 Yes 
Dorosoma petenense 0 0 36 0 Yes 
Dorosoma cepedianum 0 0 279 0 Yes 
Doryteuthis sp. 396,068 366,453 173,490 66,396 No 
Echeneis naucrates 0 50 5,171 8,402 No 
Elops saurus 0 0 0 6,618 Yes 
Enchelyopus cimbrius 0 503 0 0 Yes 
Engraulis eurystole 0 3,546 0 0 Yes 
Epinephelus itajara 0 0 43,000 0 Yes 
Epinephelus morio 0 0 0 118 Yes 
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NEAMAP SEAMAP Excluded? 

Scientific Name Spring Fall Spring Fall 
 

Etropus sp. 660 591 50,841 85,125 No 
Etrumeus teres 25 712 2,645 9 No 
Eucinostomus sp. 0 719 40 23,548 No 
Farfantepenaeus aztecus 205 25,201 5,516 276,663 No 
Farfantepenaeus duorarum 2 40 92,647 8,324 No 
Gibbesia neglecta 0 0 8,298 4,290 No 
Ginglymostoma cirratum 0 0 159,700 0 Yes 
Gobiesox strumosus 0 0 6 0 Yes 
Gobiosoma bosc 0 0 47 0 Yes 
Gymnachirus melas 0 0 0 354 Yes 
Gymnura altavela 0 1,702,812 1,543,773 4,874,277 No 
Gymnura micrura 19,852 355,146 1,280,113 1,855,084 No 
Haemulon aurolineatum 0 0 566 8 Yes 
Harengula jaguana 0 0 10,537 40,684 No 
Helicolenus dactylopterus 0 312 0 0 Yes 
Hemitripterus americanus 1,288 0 0 0 Yes 
Hepatus epheliticus 0 0 12,707 4,154 No 
Hippocampus erectus 15 0 23 57 No 
Hippoglossina oblonga 8,658 415 0 0 No 
Homarus americanus 8,276 5,403 0 0 No 
Hyperoglyphe perciformis 106 0 119 0 Yes 
Hypleurochilus geminatus 0 0 3 24 Yes 
Hypsoblennius hentz 0 0 141 0 Yes 
Labrisomus nuchipinnis 0 0 15 0 Yes 
Lagocephalus laevigatus 0 0 160 732 Yes 
Lagodon rhomboides 247 31,740 500,010 2,501,213 No 
Larimus fasciatus 3,880 27,984 2,741,161 1,614,255 No 
Leiostomus xanthurus 2,328,809 13,369,196 11,439,894 13,625,825 No 
Lepophidium profundorum 611 1,065 0 0 Yes 
Leucoraja sp. 28,072,852 5,196,521 2,930 0 No 
Limulus polyphemus 3,568,661 2,667,649 2,069,207 5,103,106 No 
Litopenaeus setiferus 3,031 83,632 848,414 3,125,323 No 
Lobotes surinamensis 0 0 3,276 10,650 Yes 
Lolliguncula brevis 170 79,813 178,052 311,995 No 
Lophius americanus 43,774 523 0 0 Yes 
Lutjanus campechanus 0 0 0 502 Yes 
Lutjanus griseus 0 0 0 1,399 Yes 
Lutjanus synagris 0 0 317 219 Yes 
Melanogrammus aeglefinus 0 100 0 0 Yes 
Menidia menidia 0 0 0 30 Yes 
Menippe mercenaria 0 0 8,902 4,808 No 
Menticirrhus sp. 662,746 4,300,925 4,074,883 3,831,779 No 
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NEAMAP SEAMAP Excluded? 

Scientific Name Spring Fall Spring Fall 
 

Merluccius bilinearis 104,791 5,984 0 0 No 
Metoporhaphis calcarata 0 0 2 0 Yes 
Micropogonias undulatus 1,668,427 17,227,948 16,876,441 11,743,668 No 
Mobula hypostoma 0 0 569,960 419,540 No 
Mola mola 0 0 100,000 0 Yes 
Morone americana 55 0 0 0 Yes 
Morone saxatilis 521,764 4,932,090 0 0 No 
Mugil cephalus 0 0 106 635 Yes 
Mugil curema 0 1,140 0 4,688 Yes 
Mullus auratus 0 15 0 0 Yes 
Mustelus canis 2,896,017 1,400,981 1,346,042 83,541 No 
Myliobatis freminvillei 187,416 751,086 18,413,498 1,570,508 No 
Narcine brasiliensis 0 0 8,020 5,110 Yes 
Octopus vulgaris 0 0 780 3,284 Yes 
Ogcocephalus parvus 0 0 0 24 Yes 
Ogcocephalus rostellum 0 0 4 263 No 
Oligoplites saurus 0 0 191 264 Yes 
Ophichthus gomesii 0 0 0 824 Yes 
Ophidion sp. 250 4,358 407 595 No 
Opisthonema oglinum 2,033 85,372 732,509 452,846 No 
Opsanus tau 0 0 587 801 Yes 
Orthopristis chrysoptera 5,793 40,947 432,366 775,402 No 
Paralichthys albigutta 0 0 7,073 24,426 No 
Paralichthys dentatus 876,335 434,554 82,133 229,356 No 
Paralichthys lethostigma 0 0 97,125 77,691 No 
Paralichthys squamilentus 0 0 17 169 Yes 
Pareques umbrosus 0 0 0 25 Yes 
Penaeus monodon 0 0 0 190 Yes 
Peprilus paru 9,052 208,793 1,087,859 1,405,855 No 
Peprilus triacanthus 1,936,253 5,527,240 767,129 1,001,585 No 
Persephona mediterranea 0 0 8,146 1,211 No 
Petrolisthes galathinus 0 0 1 21 Yes 
Pilumnus sayi 0 0 47 65 Yes 
Platylambrus granulata 0 0 5 0 Yes 
Podochela riisei 0 0 4 0 Yes 
Pogonias cromis 181,950 22,231 63,980 13,897 No 
Pollachius virens 47 0 0 0 Yes 
Polyonyx gibbesi 0 0 2 0 Yes 
Pomatomus saltatrix 79,395 1,612,382 528,149 1,128,806 No 
Porcellana sayana 0 0 2 5 Yes 
Porcellana sigsbeiana 0 0 41 0 Yes 
Porichthys plectrodon 0 0 135 0 Yes 
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NEAMAP SEAMAP Excluded? 

Scientific Name Spring Fall Spring Fall 
 

Portunus gibbesii 0 81 131,533 19,986 No 
Portunus sayi 0 0 25 127 Yes 
Portunus spinimanus 0 0 26,420 7,112 No 
Priacanthus arenatus 0 0 8 4 Yes 
Prionotus carolinus 31,336 23,245 707,449 28,948 No 
Prionotus evolans 566,376 328,959 7,827 104,268 No 
Prionotus ophryas 0 0 0 44 Yes 
Prionotus rubio 0 0 1,207 3,901 No 
Prionotus scitulus 0 0 9,645 47,589 No 
Prionotus tribulus 0 0 16,729 12,386 No 
Pseudopleuronectes americanus 280,881 10,922 0 0 No 
Rachycentron canadum 0 0 47,837 8,732 No 
Raja eglanteria 9,401,178 2,201,354 1,260,994 1,072,769 No 
Rhinobatos lentiginosus 0 0 15,909 4,042 No 
Rhinoptera bonasus 113,438 5,539,013 9,510,086 6,007,754 No 
Rhizoprionodon terraenovae 7,170 14,300 2,053,511 927,932 No 
Rimapenaeus constrictus 99 0 3,228 2,390 No 
Sardinella aurita 0 565 161,905 11,003 No 
Sciaenops ocellatus 0 78,212 14,800 27,170 No 
Scomber japonicus 0 64 0 0 Yes 
Scomber scombrus 1,668 0 0 0 Yes 
Scomberomorus cavalla 0 0 3,627 237,763 No 
Scomberomorus maculatus 0 7,794 273,589 289,540 No 
Scomberomorus regalis 0 1,160 0 0 Yes 
Scophthalmus aquosus 550,657 209,441 113,873 84,454 No 
Scorpaena brasiliensis 0 0 0 63 Yes 
Scorpaena calcarata 0 0 30 62 Yes 
Selar crumenophthalmus 0 3,047 74 124 Yes 
Selene setapinnis 236 164,295 730,363 900,108 No 
Selene vomer 0 667 171 161,555 No 
Seriola rivoliana 0 0 0 28 Yes 
Seriola zonata 0 0 50 0 Yes 
Sicyonia brevirostris 0 0 83 0 Yes 
Sicyonia laevigata 0 0 1 0 Yes 
Sphoeroides maculatus 54,572 36,732 43,974 142,823 No 
Sphoeroides nephelus 0 0 27 0 Yes 
Sphyraena barracuda 0 0 0 4,970 Yes 
Sphyraena borealis 0 29,679 0 0 No 
Sphyraena guachancho 0 0 17,435 25,534 No 
Sphyrna lewini 0 0 78,396 53,331 No 
Sphyrna tiburo 0 0 1,770,276 1,207,759 No 
Sphyrna zygaena 0 1,810 0 0 Yes 
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Scientific Name Spring Fall Spring Fall 
 

Squalus acanthias 3,584,700 108,187 133,614 0 No 
Squatina dumeril 8,554 284,690 144,000 11,890 No 
Squilla empusa 380 815 36,923 10,776 No 
Stellifer lanceolatus 0 65 831,690 1,204,467 No 
Stenotomus sp. 1,335,057 799,555 629,235 1,694,263 No 
Stephanolepis hispida 0 196 86 1,444 No 
Syacium papillosum 0 0 63 1,751 Yes 
Symphurus plagiusa 12,995 6,358 50,259 49,438 No 
Symphurus urospilus 0 0 0 28 Yes 
Syngnathus floridae 0 0 15 0 Yes 
Syngnathus fuscus 0 122 41 6 Yes 
Syngnathus louisianae 0 0 336 44 No 
Syngnathus springeri 0 0 750 0 Yes 
Synodus foetens 26 11,144 607,592 1,137,058 No 
Tautoga onitis 14,514 49,929 0 0 Yes 
Torpedo nobiliana 53,260 0 0 0 Yes 
Trachinotus carolinus 0 464 21,424 188,593 No 
Trachinotus falcatus 0 335 0 0 Yes 
Trachurus lathami 10 12,419 10,844 0 No 
Trichiurus lepturus 21,970 30,901 680,703 1,217,559 No 
Trinectes maculatus 17,054 52,018 151,179 86,068 No 
Umbrina coroides 0 0 1,697 564 Yes 
Upeneus parvus 0 0 237 310 No 
Urophycis chuss 41,819 790 0 0 No 
Urophycis earllii 0 0 1,145 289 Yes 
Urophycis floridana 0 0 5,074 2,744 No 
Urophycis regia 746,560 863,310 161,309 9,407 No 
Xiphopenaeus kroyeri 0 0 2,268 29,035 No 
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ABSTRACT 

Abundance of marine stocks fluctuate in response to both internal processes (e.g., 

density-dependence) and exogenous drivers, including the physical environment, fishing, 

and trophodynamic interactions. In the United States, research investigating ecosystem 

drivers has been focused in data-rich systems, primarily in the North Atlantic and North 

Pacific. To develop a more holistic understanding of important ecosystem drivers in the 

Southeast U.S. continental shelf Large Marine Ecosystem, we applied generalized linear 

and dynamic linear modelling to investigate the effects of climate and fishing covariates 

on the relative abundance trends of 71 demersal fish and invertebrate species sampled by 

a coastal trawl survey during 1990-2013. For the assemblage as a whole, fishing effects 

predominated over climate effects. In particular, changes in trawling effort within the 

penaeid shrimp fishery governed abundance trends of bony fishes, invertebrates, and 

elasmobranchs, a likely result of temporal changes in bycatch mortality. Changes in 

trawling intensity induced changes in overall community composition and appear to have 

altered trophic interactions among particular species. Among climate indices investigated, 

the Pacific Decadal Oscillation and the Western Bermuda High Index were most prevalent 

in well supported dynamic linear models. Observed annual abundance trends were 

synchronous among some taxonomically-related species, highlighting similar responses to 

exogenous influences based on life history. This study strengthens the foundation for 

generating hypotheses and advancing ecosystem-based fisheries research within the region. 
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INTRODUCTION 

Fisheries scientists have long recognized that ecological processes can cause 

fluctuations in population abundance (Baird, 1873; Helland-Hansen and Nansen, 1909), 

but only in recent decades have ecological considerations been widely investigated by 

fisheries researchers and broadly considered within fisheries management. This focal shift 

has been in large part due to the establishment and continued refinement of long-term 

surveys and an ecosystem-based fisheries management (EBFM) framework (Bianchi and 

Skjoldal, 2008; Link, 2010; Belgrano and Fowler, 2011; Christensen and Maclean, 2011). 

Although EBFM is being incorporated into  policy at the highest levels of United States 

(MSRA, 2007; Exec. Order No. 13547, 2010) and international governments (Day et al., 

2008; Jennings and Rice, 2011), lack of scientific support still hampers the integration of 

ecosystem processes in fisheries management of stocks worldwide (Skern-Mauritzen et al., 

2016). 

Taking an ecosystem approach to fisheries (EAF), the bottom-up analog to EBFM 

(Link, 2010), requires fundamental understanding of the exogenous factors that influence 

living marine resources. Link et al. (2010) describe a ‘triad’ of exogenous factors or 

processes that regulate population dynamics of marine biota at scales from species to 

ecosystems:  1) biophysical, 2) trophodynamic, and 3) exploitative. Biophysical factors 

include climate effects, as well as planktonic production, which are largely governed by 

environmental conditions (Miller, 2004). Trophodynamic processes affect population 

dynamics either through bottom-up or top-down forcing depending on a species’ role in 

the food web. Population impacts from exploitation are typically through direct harvests, 

but fishing activities can also alter stock productivity via habitat alteration (Jennings and 
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Kaiser, 1998), fishing-induced evolution (Enberg et al., 2012), or trophic re-organization 

(Pusceddu et al., 2014). For individual fish stocks, the amalgamated effects of the triad of 

processes determine abundance by influencing vital rates including growth, survival, 

recruitment, and reproductive output (Ottersen et al., 2004; Lehodey et al., 2006; Shelton 

and Mangel, 2011; Hollowed et al., 2013). 

The first exogenous factor in the triad includes biophysical factors such as primary 

and secondary planktonic production, which are relevant to early life stages of many 

marine fish and invertebrate populations. The match-mismatch hypothesis (Cushing, 1974, 

1975) is a well-known mechanism by which planktonic production affects early life stages 

of fish populations. If ocean environmental conditions are favorable such that planktonic 

food resources are abundantly available, high larval growth and survival should result in a 

strong year-class if density-dependence is negligible. To maximize this synchrony, many 

marine species have evolved to spawn during periods of high primary and secondary 

productivity (Turner et al., 1979; Sherman et al., 1984; Cushing, 1990). At the ecosystem 

scale, lower trophic level production correlates with fisheries yields, demonstrating 

consistent bottom-up effects at broad spatial scales (Friedland et al., 2012). 

Climate is a biophysical factor that not only influences lower trophic level 

interactions within populations, but may also directly impact growth and survival. For 

instance, the larvae of broadcast spawners are largely at the mercy of ocean currents, 

deviations in which could result in strong year-classes if larvae are advected to suitable 

habitat (or vice versa if not) (Houde, 1989). For species with limited larvae dispersal, 

deviations in local environmental conditions may directly influence growth rates and 

potentially survival if conditions are especially deleterious. Anomalous environmental 
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conditions can influence adult survival as well, for instance mortality events associated 

with severely cold conditions (Hurst, 2007). Such variability in local or regional ocean 

environmental conditions are often linked to atmospheric climate oscillations at much 

broader scales, perhaps even in a distant ocean or climate basin. The phenomenon of broad-

scale linkage in planetary circulation patterns is termed ‘teleconnection’ (Bridgman and 

Oliver, 2006). Climate indices amalgamate climate conditions at spatial and temporal 

scales appropriate for investigating the dynamics of marine populations at a regional scale 

(Stenseth et al., 2003).   

In addition to affecting population vital rates, dynamic ocean conditions also alter 

species ranges, as well as spawning and migration phenology as individuals seek habitat 

closer to physiological optima (Collie et al., 2008; Drinkwater et al., 2010; Peer and Miller, 

2014). Spatial distribution shifts in response to seasonal cycles, multi-decadal oscillations, 

or longer-term change in environmental conditions can influence availability of fish to 

fishers and surveys, possibly biasing abundance estimates (Ottersen et al., 2004; Blanchard 

et al., 2008; Nye et al., 2009). Understanding the mechanisms for how climate variability 

affects vital rates, abundance, and the distribution of fish and shellfish stocks remains a 

considerable challenge. 

The second exogenous factor in the triad is bottom-up or top-down trophodynamic 

interactions that may affect stock abundance. An outburst of available prey may allow a 

predator species to increase energy reserves, thus resulting in increased reproductive 

potential (bottom-up effect) (Buchheister et al., 2015; Mcbride et al., 2015). Alternatively, 

a species that experiences predation will undergo an overall population size reduction (top-

down effect). Accounting for predation mortality can be critical for setting appropriate 
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management reference points (Tyrrell et al., 2011), especially for forage fishes (Tyrrell et 

al., 2008). Compared to local scale studies, the effects of multi-trophic interactions are 

more difficult to quantify at larger spatial scales that encompass entire populations due to 

intensive data requirements. 

The third process in the Link et al. (2010) triad of exogenous population-regulating 

factors is exploitation, or fishing. Fisheries removals (harvest and discards) directly 

increase mortality and decrease stock abundance, and can influence certain vital rates such 

as reproductive output (Jennings et al., 2001). Although the most direct effects of fishing 

on stocks are typically top-down through direct removals, damage to essential habitat or 

reduction in prey resources caused by fishing or fishing gear can reduce the productivity 

of higher trophic level stocks (Auster and Langton, 1999; Smith et al., 2013). Of the triad 

of drivers, only the effects from fishing can be effectively managed; natural processes such 

as climate and trophodynamics are observable but not alterable at the spatial scale of a 

biological population.  

 Within the U.S. Southeast continental shelf Large Marine Ecosystem (hereafter 

“Southeast U.S. LME”), multiple studies have leveraged time series data for investigating 

exogenous impacts on fish and invertebrate populations, primarily focusing on climate 

effects and individual species (Lam et al., 1989; Parker Jr. and Dixon, 1998; Munch and 

Conover, 2000; Belcher and Jennings, 2004; Hare and Able, 2007; Garcia et al., 2007; 

Eggleston et al., 2010; Hare et al., 2010, 2012; Colton et al., 2014; Munyandorero, 2014; 

Harford et al., 2014). However, ecosystem-oriented research that considers multiple 

species and long-term driving factors is lacking within the Southeast U.S. LME relative to 

other ecosystems in the U.S. and globally (McFadden and Barnes, 2009; Hollowed et al., 
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2013), especially studies focused on multiple species and driving factors. The impetus for 

our study was to expand the body of knowledge regarding how the triad of exogenous 

population drivers impact biological populations within the Southeast U.S. LME. In 

particular, we sought to determine the utility of multiple climate indices and metrics of 

fishing mortality for predicting abundance dynamics of a large suite of coastal fish and 

invertebrate stocks as measured by a fishery-independent trawl survey. While we do 

postulate mechanistic underpinnings for the dynamics of certain species in response to 

exogenous factors, this work should be viewed as a springboard for future investigations 

at finer levels of scale. 
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METHODS 

Biological sampling 

An important data source for coastal stocks in the Southeast U.S. LME is the 

Southeast Area Monitoring and Assessment Program – U.S. South Atlantic (SEAMAP-

SA) (SEAMAP-SA Data Management Work Group, 2014). This fishery-independent 

bottom trawl survey has been conducted by South Carolina Department of Natural 

Resources (Charleston, SC) personnel thrice annually (spring, summer, and fall) since 1989 

within the Southeast U.S. LME from Cape Hatteras, NC to Cape Canaveral, FL. SEAMAP-

SA employs a stratified fixed station design, whereby a pre-determined number of fixed 

stations are chosen for seasonal sampling from a pool of all possible stations distributed 

across six sampling regions and within a depth range of 15-30 ft. (Fig. 7). At each sampling 

station, two tongue trawl nets (13.5-m wingspan) are towed on the bottom for 20 minutes 

from a 23-m St. Augustine shrimp trawler. For this study, catches in both nets were 

considered a single sample and pooled for analysis. The catch is brought on-board, sub-

sampled (if necessary) and sorted, all individuals identified to species and enumerated, and 

allometric data collected for certain priority species.

Statistical modeling 

We evaluated the influences of climate and fishing factors on Southeast U.S. LME 

coastal fish populations using generalized and dynamic linear models. We first generated 

standardized indices of relative abundance for each species using generalized linear models 

with technical tow-level covariates, followed by an investigation of drivers of abundance 

using dynamic linear models with climate and fishing covariates. All statistical analyses 

were conducted in R (R Core Team, 2015) (see Appendix II for specific packages used). 
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We focused on species that were captured by SEAMAP-SA in all 24 years of the 

study period from 1990–2013. Species not captured perennially could either have low 

abundance (true rarity) or low survey catchability; in either case, we did not estimate annual 

abundances for these rarely caught species. We examined availability and abundance 

information for each species during each sampling season (spring, Apr.-May; summer, Jul.-

Aug.; fall, Oct.-Nov.) and within each sampling region. If a species was largely absent 

from a sampling region or during a particular season (i.e., low or no availability), those 

trawl sets were eliminated to reduce the number of uninformative zeros that occurred due 

to sampling outside that species’ seasonal or spatial range (Austin and Meyers, 1996; 

Martin et al., 2005). 

Standardized abundance indices 

To generate standardized annual indices of relative abundance, we modeled 

numbers of individuals per tow with covariates using generalized linear models (GLMs) 

(Nelder and Wedderburn, 1972) and zero-inflated generalized linear models (ZIGLMs) 

(Lambert, 1992; Hall, 2000). Multispecies surveys that sample across long ecological 

gradients often incur design, survey, and observer errors for individual species, thus 

possibly resulting in zero-inflated data (Kuhnert et al., 2005). Zero-inflated models account 

for zeros unexpected in reference to the specified underlying probability distribution (false 

zeros). Within both GLM and ZIGLM frameworks, we considered Poisson and negative 

binomial probability distributions (Fig. S1, Table S2; see Appendix II for additional 

details). For most species, a zero-inflated negative binomial model was most appropriate; 

a negative binomial distribution was more appropriate than a Poisson for all species. At 

this stage of analysis, the following technical covariates were considered: year, season, 
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sampling region, depth, total biomass of other species in trawl, effort (as an offset), and if 

the catch was subsampled (Table S3). We fitted main effects models (i.e., no covariate 

interactions included) for all possible combinations of technical covariates and retained the 

model with the lowest AIC𝑐𝑐 value (Sugiura, 1978). 

For each species’ most supported GLM, we estimated annual relative abundances 

by averaging the marginal mean predictions for each year (Searle et al., 1980). Uncertainty 

for predictions were estimated via year-stratified bootstrapping (𝑛𝑛 = 15,000) (Efron, 

1983) as the percent coefficient of variation (CV) (Gotelli and Ellison, 2004). We also 

generated bias-corrected and accelerated (𝐵𝐵𝐵𝐵𝑎𝑎) 95% confidence intervals (CIs) for 

comparison to forecast uncertainty estimated from dynamic linear models (see below). If a 

species time series had 6 or more (≥ ¼ of the time series) predictions with CVs ≥ 100%, 

that species was eliminated from further analysis. We also removed individual annual 

predictions with CVs ≥ 200%. 

Climate and fishing covariates 

We hypothesized multiple climate and fishing factors to be potential drivers of 

abundance. The majority of climate covariates consisted of indices that describe climate 

anomalies or oscillations derived from spatial differences in atmospheric pressure or sea 

surface temperature (SST). Many of these indices are recognized teleconnections and all 

are known to confer variability to ocean conditions within the Southeast U.S. LME (Table 

3; Fig. S2, see Appendix II). Cold-season covariates included the North Atlantic Oscillation 

(NAO), the Pacific Decadal Oscillation (PDO), the Pacific North American Pattern in 

winter (PNAW), and the Southern Oscillation Index (SOI). We lagged cold-season 

covariates 0 and 1 years, where lag 0 included data for winter months (Dec.–Mar.) 
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immediately prior to SEAMAP-SA sampling. For example, the value for a lag 1 cold-

season covariate was an average of monthly values during December of 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑡𝑡 through 

March of 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑡𝑡+1, with corresponding observed biological effects during spring through 

fall 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑡𝑡+2. We hypothesized winter conditions associated with these climate oscillations 

impact larval or juvenile growth and survival (e.g., Hare and Able, 2007) at lags 0 or 1, 

and migration phenology at lag 0. 

Warm-season covariates included the Atlantic Multi-decadal Oscillation (AMO), 

the Pacific North American Pattern in summer (PNAS), the Western Bermuda High Index 

(WBHI; Diem, 2013), and average sea bottom temperature (SBT). We also considered the 

Atlantic Warm Pool (AWP), which is a measure of the area of SST warmer than 28.5˚C in 

the Western Central Atlantic Ocean (Wang et al., 2006), but ultimately excluded this metric 

based on its high correlation with the AMO (Wang et al., 2008) during the study period (𝑅𝑅 

= 0.9). We hypothesized summer conditions associated with these climate oscillations may 

impact growth and recruitment of early life stages at lags 0 or 1, and migration phenology 

at lag 0. Warm-season covariates were lagged differently based on seasonality of GLM 

predictions and the extent of knowledge regarding age composition in SEAMAP-SA 

catches. If a species’ standardized GLM index included only spring data, we lagged warm-

season covariates 1 and 2 years (no lag 0). If an index included summer or fall data, warm-

season covariates were lagged 0 and 1 years. If an index included summer but not fall data, 

warm-season lag 0 indices were recalculated as an average of monthly covariate values 

from May–July rather than May–September. Additionally, we included lag 2 warm-season 

covariates for species whose primary abundance signal are known or assumed to include 

age 2 animals (Table S4). We lagged SBT 0 years to account for temperature-driven 
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changes in availability resulting from interannual differences in migration phenology (see 

Appendix II, Fig. S3). 

Fishing covariates included annual shrimp fishery effort (relevant to all species), 

landings (data available for 35 of 71 species), and estimated instantaneous fishing mortality 

(estimates for 9 species) (see Appendix II, Figs. S4 and S5). We included shrimp fishery 

effort, input as log-transformed total annual commercial trips, as a proxy for relative 

changes in bycatch mortality within the penaeid shrimp fishery (Walter and Isley 2014). 

Empirical bycatch mortality estimates for all species were unavailable for the duration of 

the study period. Fishery effort quantified as total annual trips does not account for 

potential temporal changes in fleet characteristics (e.g., vessel size, hours fished per trip, 

number of nets) that could influence general bycatch rates for the fishery. However, total 

annual trips was the best available bycatch proxy given that fishery logbook data spanning 

the study period were not available. We obtained annual commercial and recreational 

fishery landings data (input as log-transformed total biomass) from the Atlantic Coastal 

Cooperative Statistics Program (ACCSP 2015). Fishing mortality estimates were gleaned 

from stock assessment reports for recently assessed species. We lagged all fishing 

covariates up to 3 years depending on known or assumed maximum age; most fishes had 

lags of 1–3 years and most invertebrates 1–2 years (see Table S4 for exceptions). For 

appropriate scale comparisons, all climate and fishing covariates were z-scored (subtracted 

the mean and divided by the standard deviation) prior to dynamic linear modeling. 
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Modeling climate and fishing effects 

We investigated climate and fishing drivers of abundance for each remaining 

species’ time series using univariate dynamic linear models (DLMs) (Pole et al., 1994; 

Lamon III et al., 1998; Scheuerell et al., 2002). Each log-transformed abundance 

observation 𝑦𝑦 in year 𝑡𝑡 was modeled as 

 𝑦𝑦𝑡𝑡 = 𝐅𝐅𝑡𝑡T𝛉𝛉𝑡𝑡 + 𝒗𝒗𝑡𝑡 (7)    

where 𝐅𝐅𝑡𝑡 and 𝛉𝛉𝑡𝑡 are vectors of regression variables and parameters, respectively, 𝒗𝒗𝑡𝑡 are 

observation errors with 𝒗𝒗𝑡𝑡 ∼ 𝑁𝑁(0, 𝑟𝑟), and 

 𝛉𝛉𝑡𝑡 = 𝛉𝛉𝑡𝑡−1 + 𝐰𝐰𝑡𝑡 (8) 

where 𝐰𝐰𝑡𝑡 are process errors with 𝐰𝐰𝑡𝑡 ~ MVN(𝟎𝟎,𝐐𝐐) (Holmes et al., 2014). 

For each species, we fitted DLMs for all possible combinations of climate and 

fishing covariates with a minimum of zero covariates (intercept-only model) up to one 

climate and one fishing covariate (maximum two covariates per model). To reduce multi-

collinearity, two-covariate models were not fitted if they contained combinations of 

covariates that were significantly correlated (Pearson’s product-moment correlation test, 

𝛼𝛼 = 0.1). For each unique combination of covariates, we considered multiple variance 

parameterizations for process and observation errors (Table 4). For models with covariates, 

process errors in 𝐰𝐰𝑡𝑡 were either 1) assumed independent and identically distributed or 2) 

assumed independent but potentially distributed differently. For all models, the 𝐐𝐐 diagonal 

element corresponding to intercept process error variance was fixed at zero. Observation 

error variance (𝑟𝑟) was either estimated within the DLM, or fixed at the average annual 

percent coefficient of variation estimated from GLM bootstrapping. For each species, we 

retained for further analysis all converged models (maximum 10,000 iterations, 
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convergence tolerance = 0.9) with ∆AIC𝑐𝑐 values ≤ 10, where ∆AIC𝑐𝑐 = AIC𝑐𝑐 − min (AIC𝑐𝑐). 

Among species, unique combinations of covariates ranged from 23 to 136 and the total 

model set size including error variance parameterization options ranged from 70 to 488 

(Table S4). 

For assessing performance of individual models, we obtained expected values of 

one-year forecasted abundances with corresponding variances (in log space) calculated 

using a Kalman filter algorithm. We checked forecast errors for egregious violations of 

normality and independence using Student’s t-Tests and autocorrelation function (𝛼𝛼 =

0.05), respectively. We assessed forecast bias by calculating the Root Mean Squared Error 

(RMSE) for each forecast series in log space (Hyndman and Koehler, 2006): 

 RMSE = �∑ (𝑌𝑌𝑡𝑡 − 𝑓𝑓𝑡𝑡)2/𝑛𝑛𝑛𝑛
𝑡𝑡=1  (9)  

where 𝑓𝑓 is the forecast for observation 𝑌𝑌 at time 𝑡𝑡. 

For each retained model, we determined the persistence of its combination of 

covariates by comparing time-truncated models to vet the staying power of a given 

parameter within models as years were ‘peeled’ off the time series (Mohn, 1999; Miller et 

al., 2016). This approach is analogous to examining retrospective patterns in a stock 

assessment model. We generated time-truncated datasets by removing one year of data 

either at the proximal or terminal end of the time series. We define ‘persistence’ of a given 

covariate as 

 φ𝑖𝑖 = ∑ �𝑐𝑐𝑖𝑖𝑖𝑖
𝑚𝑚
�𝑤𝑤𝑗𝑗

𝐽𝐽
𝑗𝑗=1  (10) 

where 𝑐𝑐𝑖𝑖𝑖𝑖 is the number of occurrences of covariate 𝑖𝑖 in 𝑚𝑚 truncated models based on full 

time series (non-truncated) model 𝑗𝑗, and 𝑤𝑤𝑗𝑗 is the Akaike weight (AICw; Burnham and 

Anderson 2002) for non-truncated model 𝑗𝑗. φ is a percentage bounded by 0 and 1. We fixed 
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𝑚𝑚 at 10; 5 proximal year peels and 5 terminal year peels. For the purposes of calculating 

φ, lag identities were removed from covariates. For instance, if model 1 contained ‘lag 0 

SOI’ and model 2 contained ‘lag 1 SOI’, 𝑐𝑐𝑖𝑖 would be ‘SOI’ for both. 

To quantify the overall importance of a covariate to all species or a group of species, 

we define ‘prevalence’ as 

 Φ𝑖𝑖 = ∑φ𝑖𝑖
∑φ

    (11) 

where ∑φ𝑖𝑖 is the sum of persistence (Eq. 10) values for covariate 𝑖𝑖 across species, and ∑φ 

is the grand sum of persistence values across species and all covariates. To identify 

covariates with consistently significant unidirectional effects, we quantified an Akaike-

weighted index describing the ‘frequency of significance’ for time-dynamic regression 

parameter estimates as 

 Γ𝑖𝑖,𝛼𝛼 = ∑ �(𝑝𝑝𝑝𝑝𝑝𝑝−𝑛𝑛𝑛𝑛𝑛𝑛)𝑖𝑖𝑖𝑖,𝛼𝛼

𝑇𝑇𝑗𝑗
�𝐽𝐽

𝑗𝑗=1 𝑤𝑤𝑗𝑗 (12) 

where 𝑝𝑝𝑝𝑝𝑝𝑝 and 𝑛𝑛𝑛𝑛𝑛𝑛 are the number of years in which potentially time-varying coefficient 

estimates for z-scored covariate 𝑖𝑖 in model 𝑗𝑗 were significantly different from zero at alpha 

level 𝛼𝛼, 𝑇𝑇 is the length of time series (always 24 years), and 𝑤𝑤𝑗𝑗 is defined as in Eq. 10. Lag 

identities were removed from covariates prior to calculating Γ, which is bounded by -1 and 

1. Frequency of significance also implicitly incorporates covariate persistence (Eq. 10); 

covariates not present in all non-truncated models for a given species are penalized 

proportional to the sum of the Akaike weights for models in which the covariate was absent. 

Species that had significant parameter estimates with different signs that counteract one 

another (i.e., sign-switching) will have reduced frequency of significance values. Time-

varying parameter estimates that switch signs may indicate a change in the mechanistic 
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relationship between the variate and covariate. However, given the exploratory nature of 

the study, we were only interested in characterizing covariate effects with consistent 

unidirectional effects through time. 

Multivariate analysis 

To compare temporal abundance patterns among species, we conducted 

multivariate ordination using z-scored marginal mean GLM predictions. To visualize 

community-level patterns in abundance changes, we conducted principal components 

analysis (PCA) with GLM-generated indices of relative abundance where each year was a 

separate descriptor. Sand perch (Diplectrum formosum) and dusky flounder (Syacium 

papillosum) were excluded from this analysis due to extremely low log-space predictions 

for certain years; these data points were also excluded in DLMs for these species. 
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RESULTS 

Linear modeling 

Of the 101 coastal fish and invertebrate species modeled using GLMs (Table S5), 

we investigated climate and fishing effects for 71 species that had acceptable CVs for ¾ of 

the 24 year time series (Table 5). Shrimp fishery effort was the most prevalent covariate in 

dynamic linear models for all broad taxonomic groups, indicating this was the most 

important covariate in weighted time series models (Table 6). This proxy for bycatch 

mortality was much more prevalent than any climate effect. Shrimp fishery effort 

prevalence (Φ; Eq. 11) was 26%, 35%, and 44% for bony fishes, invertebrates, and 

elasmobranchs, respectively. Shrimp fishery effort had moderate (75% < φ ≥ 50%) to 

high (φ ≥ 75%) persistence (Eq. 10) in time-truncated models for 12 and 15 species, 

respectively, indicating that this covariate was retained in the best model more than 50% 

of the time after removal of up to five years of data from the start or end of the 24 year time 

series. For comparison, all eight climate variables combined had just 9 species with 

moderate persistence. Furthermore, of the 27 species with moderate to high persistence for 

shrimp fishery effort, 20 had frequency of significance (Eq. 12) values greater than 60% 

(|Γ| ≥ 0.6), indicating that estimated regression coefficients for this covariate differed 

from zero during at least 60% of years in the time series (Fig. 8). For species with direct 

harvest data, a ‘landings’ covariate was also relatively prevalent (22%) in models among 

bony fishes (Table 6). For three species (Centropristis striata, Chaetodipterus faber, and 

Menticirrhus littoralis) landings had a frequency of significance of at least 70% (Fig. 8). 

However, the relationship between landings and C. striata and M. littoralis was positive, 

indicating possible spurious effects. Strong persistence or frequency of significance for a 
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covariate does not verify a mechanistic relationship, but does provide evidence of a 

possible linkage between the exogenous factor and relative abundance that should be vetted 

further through additional investigation. 

Compared to fishing covariates, climate covariates were much less predominant in 

species models despite the consideration of eight different climate indices versus three 

fishing covariates. Among warm-season climate covariates the Western Bermuda High 

Index (WBHI) was the most common in DLMs, with 10% overall prevalence (Table 6), 

persistence greater than 50% for three species, and moderate frequency of significance 

(|Γ| ≥ 0.5) for four species (Fig. 8). The Pacific North American Pattern in summer 

(PNAS) was second-most prevalent for warm-season climate covariates, while the Atlantic 

Multi-decadal Oscillation (AMO) and sea bottom temperature anomalies (SBT) were least 

prevalent. PNAS was persistent in more than 50% of weighted models for three species 

(Table 6). Prevalence values for cold-season climate covariates were also relatively low 

for most taxon groups, although the Pacific Decadal Oscillation (PDO) was more prevalent 

in invertebrate models (14%). Three species exhibited negative associations with and had 

moderate frequency of significance for the PDO: Callinectes similis, Portunus spinimanus, 

and Centropristis striata (Fig. 8). 

Five crustacean species had positive associations with shrimp fishery effort (Fig. 

8), relationships which are counterintuitive given that these species are also vulnerable to 

bycatch. These patterns suggest possible indirect effects potentially from increased 

predation by S. tiburo (Fig. 9). Assumptions of forecast error normality (t-tests, 𝛼𝛼 = 0.05) 

and independence (not strongly autocorrelated at lags 1-10) were met for each species’ 

most supported model (∆AIC𝑐𝑐 = 0), results from which are depicted in Fig. S6. Forecast 
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bias, measured as Root Mean Squared Error (RMSE), varied more so between species 

(range 0.23 to 1.81, where zero indicates no bias) than within models for a given species 

(Table S6). 

Species comparisons 

A biplot of the first two principal components explaining the most variation 

(cumulative 31%) in multispecies abundance predictions illustrates time series trend 

commonalities among species and taxon groups (Fig. 10). Notable groupings include five 

crustacean species (top; Arenaeus cribrarius, Callinectes sapidus, C. similis, Portunus 

spinimanus, and Squilla empusa), four skate and ray species (middle-left; Dasyatis sabina, 

D. say, Gymnura micrura, and R. eglanteria), and two common small coastal sharks 

(bottom; Rhizoprionodon terranovae, Sphyrna tiburo). Species in quadrant 1 (top right) 

were more abundant earlier in the time series, species in quadrant 2 (top left) were abundant 

during the middle 2000s, while species in quadrant 3 (bottom left) were more abundant 

later in the time series. Doryteuthis spp. exhibited an abundance trajectory different from 

most other species with peaks near 2000 and 2010 (quadrant 4, bottom right). A higher 

number of species with negative PC1 values is consistent with an overall increase in 

community abundance throughout the time series (Richardson and Boylan, 2014). A biplot 

of the descriptor axes (i.e., years) indicate a period of most rapid change in community 

abundances during the 2000s, especially during 2001 to 2004 (Fig. 11). Based on biplot 

species groupings, DLM forecasts and regression coefficient estimates for S. tiburo and the 

five aforementioned crustaceans are compared in Fig. 9 (see Discussion). 
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DISCUSSION 

The overall goal for this work was to expand general understanding of how 

exogenous factors influence abundance dynamics for coastal fishes and invertebrates 

within the Southeast U.S. LME. Results indicate that each of the factors described by Link 

et al. (2010) – trophodynamic, exploitative, and biophysical – exert influence on the 

abundance dynamics of several species we examined. In many cases taxonomically-related 

species exhibited synchronous abundance trends and associations with covariates, 

suggesting that working knowledge of life history characteristics provides guidance for 

explaining these connections. In all cases, our results and interpretations should be viewed 

as a foundation for future ecosystem-based research within the region at finer spatial and 

temporal scales for each species or taxonomic/trophic group. 

Indirect fishing effects on trophodynamics 

During the study period, shrimp fleet effort decreased due to an economic downturn 

in the fishery (SEDAR, 2014). Five crustaceans and one bony fish species exhibited a 

positive relationship with shrimp fishery effort that was persistent and significant (Fig. 8): 

Arenaeus cribrarius, Callinectes sapidus, C. similis, Portunus spinimanus, Squilla empusa, 

and Urophycis floridana. While there are no empirical shrimp bycatch time series available 

for the U.S. South Atlantic penaeid shrimp fishery, Scott-Denton et al. (2012) and Brown 

(2014) provide a snapshot summary of bycatch trends during the late 2000’s. In North 

Carolina, C. sapidus, S. empusa, U. floridana, and portunid crabs comprised a total of 9% 

of non-shrimp biomass caught in commercial shrimp trawl gear from July 2007 to June 

2008 (Brown, 2014). Throughout the U.S. South Atlantic region, C. sapidus and non-

identified ‘crustaceans’ comprised 19% of all non-shrimp biomass during July 2007 
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through December 2010 (Scott-Denton et al., 2012). Although bycatch reduction devices 

(BRDs), which include turtle excluder devices, have been used within this fishery within 

federal waters since 1997/8 (ASMFC, 2011), these species or groups remain frequently 

captured within the fishery. Due to the small maximum body size attained by these species 

and empirical evidence that they are in fact bycatch, the positive relationship between 

abundance and shrimp fishery effort that we found is counterintuitive. 

A possible explanation for the positive relationship between trawling effort and 

abundance of the five crustaceans is that the rebound of the bonnethead shark (Sphyrna 

tiburo) has resulted in increased top-down control on these species. The shrimp fleet effort 

time series may be acting as proxy for the abundance dynamics of this predator known to 

feed primarily on crustaceans, especially portunid crabs (Cortés et al. 1996; MAS, 

unpublished data). The most recent S. tiburo stock assessment attributes an overall 

population increase after 2000 in large part to bycatch reduction following BRD 

implementation (SEDAR, 2013b). Results from the current study support this conclusion; 

S. tiburo abundance was higher overall in the 2000’s compared to the 1990’s (Fig. 9A), 

and shrimp fishery effort was a moderately persistent (φ ≥ 50%) negative predictor with 

moderate frequency of significance (|Γ| = 0.7) in the well-fit (RMSE = 0.29) most 

supported model for this species. Based on opposing trends of S. tiburo and its prey species 

(Fig. 9), multi-species modeling is warranted for these trophically-related species. While 

the bonnethead is likely not the only predator for these species, it may be acting as a general 

proxy for increases in abundance of higher trophic level predators (e.g., Raja eglanteria, 

Gymnura micrura) following a reduction in shrimp fishery effort and overall bycatch risk 

for the assemblage. 
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One alternative hypothesis for the decline in crustacean abundance within the 

nearshore zone is that an overall decrease in bycatch discards by the shrimp fishery has 

reduced the amount of carrion available to portunid crabs whose diets include scavenged 

food. In theory, increased food availability and decreased energy expenditure on food 

handling would increase growth rates and potentially reproductive output. The carrion 

reduction hypothesis could be tested via manipulative experiments and inferences based 

on more robust bycatch data, especially prior to when BRDs were mandated. Johnson 

(2006) demonstrated that blue crabs strongly preferred bycatch carrion to natural prey, 

lending support for this hypothesis. Changes in bottom-up (carrion reduction) and top-

down (predation increase) trophodynamics could have synergistically led to an overall 

decline of one or more of these ecologically-important crustacean species. 

Direct fishing effects 

Biomass removals from fishing result in a direct decrease in population abundance, 

yet only one species out of 35, Atlantic spadefish (Chaetodipterus faber), had a moderate 

and negative frequency of significance for the covariate ‘Landings’ (Fig. 8). Stock status 

of C. faber has not been formally assessed, but results indicate that landings may be great 

enough to elicit a population-level change in abundance. The covariate fishing mortality 

(‘Total F’) (Fig. S5) was not persistent in models of any species for which estimated time 

series were available from stock assessments (Table 6). Overall null results for the fishing 

covariates ‘Landings’ and ‘Total F’ could be due to 1) bottom-up environmental conditions 

or top-down trophodynamics being overriding drivers of abundance dynamics, 2) the 

magnitude of landings not being high enough to elicit a detectable population response 

(i.e., low exploitation rate), or 3) SEAMAP-SA not being a representative index for the 
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stock. For species with landings but which are not actively managed, the first and second 

hypotheses are plausible; the third is not testable without additional data sources. Of the 

nine species for which estimated ‘Total F’ time series were available, weakfish (C. regalis), 

summer flounder (P. dentatus), butterfish (P. triacanthus), bluefish (P. saltatrix), and scup 

(Stenotomus) were based primarily on data from more northerly areas, thus hypothesis 

three is likely for these species. While Atlantic sharpnose (R. terranovae) and bonnethead 

(S. tiburo) are recognized to exhibit separate Gulf of Mexico and Atlantic stocks, the most 

recent update assessment for each of these species combined these two regions based on 

precedent from the previous benchmark assessment (SEDAR, 2013a,b). The spatial 

mismatch between SEAMAP-SA and assessments for these two coastal sharks may have 

resulted in null ‘Total F’ results. 

Shrimp fleet effort exhibited a persistent negative association with moderate to 

strong frequency of significance for fourteen species – nine bony fish, four elasmobranch, 

and one invertebrate species (Fig. 8). All of these species except two (Persephona 

mediterranea and Prionotus carolinus) are documented bycatch species in the region 

within the penaeid shrimp trawl fishery (Scott-Denton et al., 2012; Brown, 2014). In all 

cases, estimated abundances for these species were higher during the second half of the 

time series during which shrimp fleet effort and overall bycatch risk were lower than during 

the 1990’s. Although decreases in effort occurred concomitantly with BRD mandates 

intended to reduce bycatch mortality, decreased effort may be driving abundance increases 

for these species more so than BRDs given that they still remain vulnerable to bycatch in 

shrimp fishery gears despite BRD requirements. Elasmobranchs in particular have 
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benefited from this decrease in fishery activity, indicated by prevalence of 44% for shrimp 

fishery effort (Table 6) and overall negative associations with ‘Effort’ in all cases (Fig. 8). 

Biophysical effects 

Compared to fishing effects, many fewer species exhibited abundance changes in 

response to climate. Among warm-season climate variables, none had outstanding 

prevalence within species models. Among cold-season climate variables, the Pacific 

Decadal Oscillation (PDO) was most prevalent in invertebrate models, although 

moderately so, but this covariate had only moderate persistence in time-truncated models 

for just three species. The one climate variable that quantified local environmental 

conditions, sea bottom temperature (SBT), had particularly low prevalence values among 

all taxon groups. Taken together, these unremarkable climate results are in stark contrast 

to studies in temperate Northeast U.S. LME waters, where oscillatory climate patterns and 

directional ocean warming have been extensively documented to be causing dramatic 

ecological shifts in multiple populations that are major players in the food web (Collie et 

al., 2008; Araújo and Bundy, 2012; Nye et al., 2014). Climate forcing appears to be 

inherently less impactful to the assemblage within subtropical waters of the Southeast U.S. 

LME compared to temperate Atlantic waters to the north.  

 Although no species had a strong frequency of significance for the PDO, this 

teleconnection was moderately prevalent (14%) within invertebrate models. The PDO and 

SOI are related measures of the complex air-sea interactions characteristic of El Niño 

Southern Oscillation (ENSO) events in the tropical Pacific, which confer variability in 

atmospheric and ocean conditions across the globe including within the southeast U.S. 

Atlantic (Alexander et al., 2002). The influence of PDO on precipitation, river discharge, 
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and estuarine salinity regimes have been demonstrated for a coastal Georgia river (Sheldon 

and Burd, 2014) and the Chesapeake Bay (Xu et al., 2012), but we are not aware of any 

studies linking the PDO to dynamics of living marine resources in the southeast U.S. Our 

results indicate that, among cold-season climate indices, the PDO may be the best 

amalgamation of winter weather conditions impactful to several coastal invertebrates 

within the Southeast U.S. LME. The influence of this climate signal on demersal 

populations in the region deserves further investigation. 

 In the Northeast U.S. LME, taxonomic and abundance shifts in planktonic 

communities have been shown to respond to temperature-related changes induced by multi-

decadal climate oscillations and directional ocean warming (Pershing et al., 2005; Greene 

and Pershing, 2007; Morse et al., 2017). Shifts in abundance and composition in lower 

trophic levels can have cascading effects for higher trophic level organisms, both big 

(Wishner et al., 1995) and small (Beaugrand et al., 2003). Bottom-up trophodynamic 

effects on fish populations in the Southeast U.S. LME have been studied (Weinstein et al., 

1981; Yoder, 1983; Govoni et al., 2013), however evaluating hypotheses regarding lower 

trophic effects on long-term trends in Southeast U.S. LME fish and invertebrate 

populations requires more robust planktonic data sets with temporal sampling regularity. 

We are not aware of any local in situ or regional satellite-based studies examining long-

term changes in primary productivity, phytoplankton composition, or zooplankton within 

the ecosystem. In the future, as SEAMAP-SA and remote sensing time series extend and 

overlap over a longer time frame, this issue may be more thoroughly addressed. 
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Migration phenology 

Sampling effort for the SEAMAP-SA coastal trawl survey is focused on the most 

biodiverse and biomass-rich areas of soft-bottom habitat within the nearshore zone of the 

Southeast U.S. LME coastal ocean. The survey does not sample estuarine or offshore 

habitats that many nearshore species also utilize during certain seasons. To limit the 

potential bias in abundance estimates given this sampling limitation, we only investigated 

species with an acceptable level of uncertainty in annual abundance estimates and only in 

seasons where there were perennially consistent catches. Additionally, we recognize that 

only relative and not absolute indices of abundance can be derived from SEAMAP-SA and 

other similar datasets within specialized habitat zones. If our estimated relative abundance 

indices were generally biased, we would have expected higher prevalence of the local 

environmental covariate sea bottom temperature (SBT), which was included to detect any 

annual anomalies in migration phenology induced by seasonal temperature cues. Out of 71 

species, SBT did not have high prevalence for any species group, nor was it persistent or 

have strong frequency of significance for any species. This null result suggests that the 

SEAMAP-SA dataset may be largely robust to bias in relative abundance estimates 

stemming from timing differences in seasonal weather patterns. Nevertheless, we agree 

with Blanchard et al. (2008) that coordinating sampling methods, timing, and coverage of 

fisheries surveys that are spatial neighbors should be further emphasized. 
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Conclusions 

Our results suggest that changes in trawling intensity for the penaeid shrimp fishery 

have been the most influential determining factor for multi-species patterns of change 

within the nearshore Southeast U.S. LME since 1990. Trawling effort and assumed bycatch 

was high early in the time series, dropped precipitously from 1999 to 2005, and plateaued 

at a relatively low level thereafter (Fig. S2). The period of most rapid change in community 

composition occurred during the same time frame (Fig. 11), resulting in an overall increase 

in abundance for the majority of nearshore species. BRD implementation at the onset of 

this period of rapid change likely accelerated relative abundance rebounds for many of 

these species. Prevalence of trawling effort in species-specific DLM results lend support 

for fishing-induced shifts in overall community abundance and composition. Due to some 

level of fishing-induced restructuring apparent in the nearshore food web, we reiterate the 

call by Marancik and Hare (2007) for the establishment of long-term diet sampling 

programs in the Southeast U.S. LME; such programs have enabled informative multi-

species modeling efforts in the Northeast U.S. Shelf (Link et al., 2012) and North Pacific 

(Livingston et al., 2017). 

During the same time frame that shrimp trawling intensity was rapidly decreasing, 

the PDO and SOI underwent rapid but short-lived phase shifts (Mills and Walsh, 2013). 

The AMO also entered a positive phase around the year 2000 (Nye et al., 2014), thus 

further adding to possible confounded effects of fishing and climate. Longer biological 

time series are needed to clarify the impacts of these low-frequency climate signals on fish 

abundance. In the interim, the simplest explanation is that direct anthropogenic impacts 

from fishing have exerted the most influence on this system.
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Future directions 

Although we detected fishing, climate, and indirect trophodynamic effects, the 

majority of species exhibited inconsistent or undetectable responses to climate and fishing 

covariates. The overall lack of explanatory power for any given species is likely a product 

of simultaneous and complex forcing from fishing, the physical environment, biological 

interactions, and density-dependent effects, often making it difficult to establish 

unequivocal linkages between changes in the physical environment and stock abundance 

(Ottersen et al., 2004; Megrey et al., 2009; Rijnsdorp et al., 2009; Deyle et al., 2013). 

Investigating ecosystem linkages is made more challenging by incomplete life history and 

catch information. In the Southeast U.S. LME, future species-specific analyses 

investigating exogenous drivers would benefit from more complete age composition data, 

greater extent of diet characterization (especially for upper trophic level predators), and 

species-specific bycatch rates. 

Specific to climate impacts, a more refined understanding is needed of how 

teleconnections influence local-scale oceanographic conditions relevant to populations in 

coastal waters of the Southeast U.S. LME (e.g., temperature, salinity, wind, and planktonic 

productivity). Broad-scale climate indices amalgamate these local variables and thus have 

their advantages in ecological modeling (Stenseth et al., 2003). However, organisms 

respond to conditions in their proximate environment at much finer temporal and spatial 

scales than annual climate indices can capture. As such, future climate-fisheries studies 

within the region should not only investigate correlations between large-scale climate 

effects and populations, but the effects of large-scale climate forcing on specific 

oceanographic conditions that may in turn produce a detectable population-level effect. 
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TABLES 

Table 3. Descriptions of climate covariates included in dynamic linear models. 
Correlations values (𝑅𝑅, + or −) are for the period of 1988–2013. Time series for climate 
covariates are depicted in Figs. S2 and S3. 
 

Covariate Calculation 
Impacts to southeast U.S. Atlantic 
meteorological conditions 

Atlantic Multi-
decadal 
Oscillation 
(AMO) 

Area-weighted average of North 
Atlantic SST from 0–70˚N latitude, 
detrended and unsmoothed (NCAR, 
2013); average of monthly values 
during May–Sep  

+ (−) phase: ↑ (↓) SST, ↑ (↓) 
precipitation during Aug – Oct, ↑ (↓) 
tropical cyclone activity (Enfield et 
al., 2001; Wang et al., 2008). 
Correlated with NAO (0.44,−) and 
PNAW (0.43,+). 

North Atlantic 
Oscillation 
(NAO) 

Principal component (PC)-based sea 
level pressure anomalies over the 
Atlantic sector (20–80˚N, 90˚W–40˚E) 
(NCAR, 2015); average of monthly 
winter (Dec–Mar) values  

+ (−) phase: ↑ (↓) temperatures 
(Joyce, 2002; Bridgman and Oliver, 
2006); correlated with AMO (0.44,−) 

Pacific 
Decadal 
Oscillation 
(PDO) 

Statistical reconstruction of in situ 
SST in the North Pacific Ocean 
(NCDC, 2015); average of monthly 
winter (Dec–Mar) values  

+ (−) phase: ↓ (↑) temperatures and 
possibly ↑ (↓) precipitation in winter 
(Mantua and Hare, 2002; SCO, 2015); 
correlated with PNAW (0.50,+) and 
SOI (0.61,−) 

Pacific North-
American 
Pattern, 
summer 
(PNAS) and 
winter 
(PNAW) 

Anomalies in the 500mb geopotential 
height field observed over the western 
and eastern U.S. (CPC, 2015a); 
average of monthly summer (PNAS; 
May–Sep) and winter (PNAW; Dec–
Mar) values 

PNAS: ↑ (↓) warm-season 
precipitation (Henderson and Vega, 
1996); correlated with WBHI (0.34,−) 
PNAW: + (−) phase: ↓ (↑) winter 
temperatures (Leathers et al., 1991; 
SCO, 2015); correlated with AMO 
(0.43,+), PDO (0.50,+) and SOI 
(0.50,−) 

Southern 
Oscillation 
Index (SOI) 

Normalized sea level pressure 
differences between Tahiti and 
Darwin, Australia (CPC, 2015b); 
average of monthly winter (Dec–Mar) 
values 

+ (−) phase: La Niña (El Niño); ↑ (↓) 
temperatures and ↓ (↑) precipitation in 
winter (Joyce, 2002); correlated with 
PDO (0.57,−) and PNAW (0.50,−). 
Driven by sea surface temperature 
(Bridgman and Oliver, 2006). 

Western 
Bermuda High 
Index (WBHI) 

Pressure differences (850-hPa heights) 
between the Blake Plateau (30˚N, 
75˚W) and New Orleans (30˚N, 92˚W) 
(Kalnay et al., 1996); average of 
monthly values during May–Sep (see 
Appendix II) 

+ (−) phase: ↑ (↓) summer 
precipitation, similar to the better 
known Bermuda High Index (BHI) 
(Henderson and Vega, 1996; Diem, 
2013); correlated with PNAS (0.34,−) 

Sea Bottom 
Temperature 
(SBT) 
anomaly 

SEAMAP-SA tow-level data; annual 
average of z-scored anomalies for 
each combination of season and sub-
region combination (see Appendix II) 

Proxy for temporal changes in 
availability of species due to variation 
in temperature-induced seasonal or 
extreme event migration patterns 
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Table 4. Variance parameterizations for each unique combination of covariates. Process error variances for covariates were specified 
on the diagonal of the 𝐐𝐐 matrix (see Eq. 8). Observation error variance 𝑟𝑟 (see Eq. 7) was either estimated by dynamic linear modeling 
or fixed at the average annual coefficient of variation estimated from GLM bootstrapping. 

No. of covariates Q options 𝑟𝑟 options Model set size 
Zero (intercept-only model) 1) Intercept 𝐐𝐐 estimated 1) estimated, 2) fixed 2 
One (1 climate or 1 fishing) 1) Covariate 𝐐𝐐 estimated 1) estimated, 2) fixed 3 
Two (1 climate and 1 fishing) 1) Covariate 𝐐𝐐's estimated, assumed equal 

2) Covariate 𝐐𝐐's estimated, assumed unequal 
1) estimated, 2) fixed 4 
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Table 5. Species for which climate and fishing effects were investigated using dynamic 
linear models. Species for three genera (Eucinostomus, Stenotomus, Doryteuthis) were 
grouped for analysis due to difficulties of rapid on-board survey taxonomic identification. 
Species identification numbers are referenced in Table 6. 

  Latin name Common name   Latin name Common name 

Bony fishes  Bony fishes cont’d  
1 Ancylopsetta ommata Ocellated flounder 38 Sphyraena guachancho Guaguanche 

2 Bairdiella chrysoura Silver perch 39 Stellifer lanceolatus Star drum 

3 Centropristis philadelphica Rock sea bass 40 Stenotomus spp. Scup / Longspine porgy 

4 Centropristis striata Black sea bass 41 Stephanolepis hispida Planehead filefish 

5 Chaetodipterus faber Atlantic spadefish 42 Syacium papillosum Dusky flounder 

6 Chilomycterus schoepfii Striped burrfish 43 Symphurus plagiusa Blackcheek tonguefish 

7 Chloroscombrus chrysurus Atlantic bumper 44 Synodus foetens Inshore lizardfish 

8 Citharichthys macrops Spotted whiff 45 Trachinotus carolinus Florida pompano 

9 Citharichthys spilopterus Bay whiff 46 Trichiurus lepturus Atlantic cutlassfish 

10 Cynoscion nothus Silver seatrout 47 Trinectes maculatus Hogchoker 

11 Diplectrum formosum Sand perch 48 Urophycis floridana Southern hake 

12 Echeneis naucrates Sharksucker Elasmobranchs  
13 Etropus crossotus Fringed flounder 49 Dasyatis sabina Atlantic stingray 

14 Etropus cyclosquamus Shelf flounder 50 Dasyatis say Bluntnose stingray 

15 Eucinostomus spp. Mojarras 51 Gymnura micrura Smooth butterfly ray 

16 Lagodon rhomboides Pinfish 52 Mustelus canis Smooth dogfish 

17 Larimus fasciatus Banded drum 53 Raja eglanteria Clearnose skate 

18 Leiostomus xanthurus Spot 54 Rhinoptera bonasus Cownose ray 

19 Menticirrhus americanus Southern kingfish 55 Rhizoprionodon 
terraenovae 

Atlantic sharpnose shark 

20 Menticirrhus littoralis Gulf kingfish 

21 Micropogonias undulatus Atlantic croaker 56 Sphyrna tiburo Bonnethead shark 

22 Opisthonema oglinum Atlantic thread herring Invertebrates  

23 Orthopristis chrysoptera Pigfish 57 Arenaeus cribrarius Speckled swimming crab 

24 Paralichthys albigutta Gulf flounder 58 Callinectes ornatus Ornate blue crab 

25 Paralichthys dentatus Summer flounder 59 Callinectes sapidus Blue crab 

26 Paralichthys lethostigma Southern flounder 60 Callinectes similis Lesser blue crab 

27 Peprilus paru Harvestfish 61 Doryteuthis spp. Inshore squids 

28 Peprilus triacanthus Butterfish 62 Hepatus epheliticus Calico box crab 

29 Pomatomus saltatrix Bluefish 63 Litopenaeus setiferus Northern white shrimp 

30 Prionotus carolinus Northern searobin 64 Lolliguncula brevis Atlantic brief squid 

31 Prionotus evolans Striped searobin 65 Ovalipes ocellatus Lady crab 

32 Prionotus tribulus Bighead searobin 66 Ovalipes stephensoni Coarsehand lady crab 

33 Sardinella aurita Spanish sardine 67 Pagurus pollicaris Flatclaw hermit crab 

34 Scomberomorus cavalla King mackerel 68 Persephona mediterranea Mottled purse crab 

35 Scomberomorus maculatus Spanish mackerel 69 Portunus gibbesii Iridescent swimming crab 

36 Scophthalmus aquosus Windowpane 70 Portunus spinimanus Blotched swimming crab 

37 Selene setapinnis Atlantic moonfish 71 Squilla empusa Mantis shrimp 
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Table 6. Prevalence Φ (Eq. 11) of climate and fishing covariates in time-truncated dynamic linear models, and species with at least 
50% persistence φ (Eq. 10) for a given covariate. Species identification numbers referenced for persistence are specified in Table 5. 
Landings and total fishing mortality information were available for 35 and 9 species, respectively. Prevalence percentages are 
calculated separately for all species (‘All’), bony fishes (BF), elasmobranchs (E), and invertebrates (I). Species with persistence φ ≥
75% are bolded and those with φ = 100% are also asterisked.  

Type Covariate No. of 
species 

Prevalence 𝚽𝚽 Species with persistence 𝛗𝛗 ≥ 𝟎𝟎.𝟓𝟓 
(numbers refer to species in Table 5) All BF E I 

Warm WBHI 71 10% 11% 10% 8% 1, 29, 46 
PNAS 71 8% 8% 8% 9% 5, 6, 62 
AMO 71 5% 5% 5% 4% 

 

SBT 71 4% 5% 3% 4% 
 

Cold PDO 71 9% 8% 8% 14% 4 
SOI 71 7% 6% 5% 9% 30 
PNAW 71 7% 7% 6% 7% 28 
NAO 71 4% 5% 1% 3% 

 

Fishing Shrimp 
fishery 
effort 

71 30% 26% 44% 35% BF: 1, 6, 7, 12, 16, 17, 21, 28, 30, 31, 37, 43, 45, 46, 48   
E:    49, 50, 51, 52, 53, 56 
I:     57*, 59, 60*, 68, 70, 71 

Landings 35 19% 22% 5% 11% 4, 5, 20, 36  
Total F 9 10% 10% 12% 

  

Intercept None 71 4% 4% 3% 4% 
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FIGURES 

Figure 7. Six SEAMAP-SA stratified sampling regions (bounded by black bars) within 
the Southeast U.S. LME (stippled area). From south to north, region names are Florida 
(1), Georgia (2), South Carolina (3), Long Bay (4), Onslow Bay (5), and Raleigh Bay (6). 
Individual sampling sites are depicted as overlapping dark blue dots. 
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Figure 8. Heatmap of frequency of significance (Γ) for each species with persistence (φ; 
Eq. 10) values ≥ 0.5 and frequency of significance (Γ; Eq. 12) values ≥ 0.5 or ≤ −0.5 
for at least one covariate.  Red and black shaded blocks indicate an overall positive and 
negative explanatory effect on abundance, respectively. Intensity of shading and 
magnitude of values shown within blocks correspond to frequency of significance for 
each species-covariate relationship. Covariates on the x-axis are highlighted to indicate 
warm-season (orange), cold-season (purple), or fishing (black) effects. Species names 
colors indicate broad taxon type as bony fishes (black), elasmobranchs (green), or 
invertebrates (blue). 
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Figure 9 (figure on following page). Annual time series of logged relative abundance (left 
panels) and covariate parameter estimates (right panels) for the bonnethead shark (S. 
tiburo) and five crustacean prey species. Only DLMs with the highest AICw are 
illustrated. Left panels show GLM-standardized annual abundance observations (open or 
closed blue circles) that are bracketed by bootstrapped 95% CIs (vertical dotted lines); 
DLM forecasts (solid black line) are bracketed by approximate 95% prediction intervals 
(purple polygon). Model fits quantified as Root Mean Squared Error (RMSE) are 
reported following AICw values. Right panels show corresponding covariate parameter 
estimates that were significant at 𝛼𝛼 = 0.05 and 𝛼𝛼 = 0.01 if shown with open and closed 
circles, respectively. Shrimp fleet effort is abbreviated as ‘Effort’ and Pacific Decadal 
Oscillation as ‘PDO’. Integers in parentheses adjacent to covariate abbreviations indicate 
year lag. Colors of species names highlighted to indicate broad taxon type as 
elasmobranchs (green) or invertebrates (blue). 
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Figure 9 (caption on previous page). 
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Figure 10. PCA biplot of species abundance trends for 69 species. Species in right 
quadrants I and IV were more abundant earlier in the time series, while species in left 
quadrants II and III exhibit higher recent abundances. Species scores are comparable to 
year scores depicted in Fig. 11, although note scale differences between axes. 

 
  



116 
 

Figure 11. PCA biplot illustrating the evolution of community abundance trends through 
time. Year scores are comparable to species scores depicted in Fig. 10, although note 
scale differences between axes. 
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APPENDIX II 

Additional methods and results for Chapter 3. 

Generalized linear modeling 

To generate standardized annual indices of relative abundance, we modeled 

numbers of individuals per tow with covariates using generalized linear models (GLMs) 

(Nelder and Wedderburn, 1972) and zero-inflated generalized linear models (ZIGLMs) 

(Lambert, 1992; Hall, 2000). We tested four model frameworks:  negative binomial GLM 

(NBGLM), Poisson GLM (PGLM), zero-inflated negative binomial GLM (ZINB), and 

zero-inflated Poisson GLM (ZIP) (Table S2; McCullagh and Nelder 1989; Zuur et al. 

2009; Hilbe 2011). Multispecies surveys that sample across long ecological gradients 

often incur design, survey, and observer errors for individual species, thus possibly 

resulting in zero-inflated data (Kuhnert et al., 2005). Zero-inflated models handle these 

types of errors by accounting for excess zeros not expected in reference to the specified 

underlying probability distribution. Zero-inflated models are also called ‘mixture’ models 

because they incorporate zeros into both the binomial (‘true’ or ‘false’ zeros) and count 

processes (Zuur et al., 2009; Hilbe, 2011). 

We implemented a decision tree to identify the optimal model framework for each 

species (Fig. S1). We only considered technical covariates at this stage of analysis; we 

investigated climate and fishing covariates afterward using dynamic linear models. 

Technical covariates included year, season, sampling region, depth, total biomass of other 

species in trawl, effort, and if the catch was subsampled (Table S3). To determine if a 

species dataset was zero-inflated, we used Akaike’s Information Criterion (AIC) (Akaike, 

1973) to compare a fully saturated main effects ZINB (i.e., all appropriate technical 
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covariates included for count and binomial processes, no interactions) to a main effects 

ZINB with a saturated count process and an intercept (no covariates) binomial process. A 

difference in AIC between the models (AIC𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − AIC𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) ≥ 4 indicated 

limited support for a ZIGLM framework, thus a GLM framework was selected. For zero-

inflated datasets, we conducted a likelihood ratio test (𝛼𝛼 = 0.05) to determine if the 

saturated ZIP was overdispersed compared to the saturated ZINB (Zuur et al., 2012). This 

test requires nested models and is appropriate here because a ZIP is a special nested case 

of a ZINB (Hilbe, 2011). For non- zero-inflated datasets, we calculated dispersion for the 

PGLM as the ratio of squared and summed Pearson residuals to the residual degrees of 

freedom (McCullagh and Nelder, 1989); we considered a PGLM unacceptably 

overdispersed if dispersion > 2. Once we determined the optimal GLM framework for 

each species, we took an information-theoretic approach (Burnham and Anderson, 2002) 

to model selection with the goal of identifying the most parsimonious combination of 

technical covariates. We fitted main effects models for all possible combinations of 

technical covariates and retained the model with the lowest AIC𝑐𝑐 value (Sugiura, 1978). 

For each species’ best GLM, we estimated annual relative abundances by 

averaging the marginal mean predictions for each year (Searle et al., 1980). We estimated 

uncertainty for predictions via year-stratified bootstrapping (𝑛𝑛 = 15,000) (Efron, 1983) 

as the percent coefficient of variation (CV) (Gotelli and Ellison, 2004). We also 

generated bias-corrected and accelerated (𝐵𝐵𝐵𝐵𝑎𝑎) 95% confidence intervals (CIs) for 

comparison to forecast uncertainty estimated from dynamic linear models. If a species’ 

time series had 6 or more (≥ ¼ of the time series) predictions with CVs ≥ 100%, we 
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eliminated that species from further analysis. We also removed individual annual 

predictions with CVs ≥ 200%. 

Descriptions of dynamic linear model (DLM) covariates 

Western Bermuda High Index (WBHI). Diem (2013) describes the original method for 

calculating this index, which is similar to the more commonly known Bermuda High 

Index. We obtained 850-hPa geopotential-height data from the NCEP/NCAR Reanalysis 

dataset (Kalnay et al., 1996) of NOAA’s Earth System Research Laboratory. During the 

period of 1948–2014, we calculated the monthly pressure difference between a location 

over the Blake Plateau (30˚N, 75˚W) and New Orleans (30˚N, 92˚W). To remove 

seasonality, we normalized (i.e., z-scored) the time series month by month (Trenberth, 

1984; Sheldon and Burd, 2014). To remove any remaining residual autocorrelation, we fit 

an autoregressive integrated moving average (ARIMA) using the ‘auto.arima’ function 

with default specifications (Hyndman and Khandakar, 2008) in R (R Core Team, 2015). 

We used the residuals from this model as the final time series after conducting Durbin-

Watson and Breusch-Godfrey (Zeileis and Hothorn, 2002), portmanteau goodness-of-fit 

(Mahdi and McLeod, 2012), and runs (Wuertz, 2013) tests, none of which indicated non-

independence. Diem (2013) calculated annual WBHI values as an average of monthly 

values from Jun–Aug, whereas our average included monthly values from May–Sep. We 

expanded our annual average to include May and Sep to match more closely the warm-

season month range for other environmental covariates (Apr–Sep). 

Sea bottom temperature (SBT) anomaly. We calculated the normalized average annual 

bottom temperature for each of 18 season / sub-region combinations (Fig. S3) using the 

SEAMAP-SA survey dataset. We tailored this covariate based on the season(s) and 
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region(s) included in the best fit GLM for each species. For example, if a species’ best fit 

GLM included only summer and fall trawls occurring in the Florida region, then we 

calculated SBT as the average of the two annual anomaly time series that included the 

appropriate combination of levels (summer-FL, fall-FL). We normalized each subset time 

series again prior to DLM fitting. 

Shrimp fishery effort. We obtained commercial penaeid shrimp fishery effort 

(cumulative trips per calendar year) from the 2014 South Atlantic King Mackerel stock 

assessment (Walter and Isley, 2014). Moderate to strong correlations of shrimp fishery 

effort to bycatch discards for four recently assessed species support the hypothesis that 

shrimp fishery effort is an appropriate proxy for bycatch mortality (Fig. S4). These 

species are the Atlantic sharpnose shark (Rhizoprionodon terraenovae) (SEDAR, 2013a), 

bonnethead shark (Sphyrna tiburo) (SEDAR, 2013b), Atlantic croaker (M. undulatus) 

(ASMFC, 2010), and Spanish mackerel (Scomberomorus maculatus) (SEDAR, 2012). 

Because these four species represent diverse morphologies and water column habitat 

preferences (2 demersal sharks, 1 demersal finfish, and 1 pelagic finfish), we reasoned 

that this correlative pattern should hold for other species in our analysis. It should be 

noted that the U.S. South Atlantic and Gulf of Mexico stocks of R. terraenovae and S. 

tiburo are separate, yet were assessed using a combined stock approach for expediency 

(SEDAR, 2013a,b). Bycatch discard trends for these two species include Gulf of Mexico 

data, which likely skews effort/discard correlations for these two species. Shrimp fishery 

effort only includes U.S. South Atlantic data. 

Fishery landings. We obtained non-confidential recreational and commercial landings 

data (biomass harvested per calendar year) from the Atlantic Coastal Cooperative 
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Statistics Program (ACCSP, 2015) (Fig. S5). For the majority of species we included 

landings data within both the U.S. South Atlantic and Mid-Atlantic regions under the 

assumption that population connectivity exists between the two regions until 

demonstrated otherwise. We excluded MA data for black seabass (Centropristis striata) 

and summer flounder (Paralichthys dentatus), which are considered separate SA and MA 

stocks (Wilk et al., 1980; Roy et al., 2012) and managed accordingly (SEFSC, 2013; 

Terceiro, 2015). We also limited blue crab (Callinectes sapidus) landings to U.S. South 

Atlantic states because this species exhibits low regional connectivity between major 

estuaries along the U.S East Coast (Miller et al., 2010). 

Fishing mortality. As an alternative to fishery landings time series, we obtained 

estimates of instantaneous annual fishing mortality (𝐹𝐹) for a subset of species that were 

recently assessed (Fig. S5): Centropristis striata (SEFSC, 2013), Paralichthys dentatus 

(Terceiro, 2015), Peprilus triacanthus (NEFSC, 2013), Pomatomus saltatrix (NEFSC, 

2015a), Rhizoprionodon terranovae (SEDAR, 2013a), Scomberomorus cavalla (SEDAR, 

2014), Scomberomorus maculatus (SEDAR, 2012), Sphyrna tiburo (SEDAR, 2013b), 

and Stenotomus chrysops (NEFSC, 2015b). Because fishing mortality is derived in part 

from landings data, no model was fit that contained both of these counfounded variables. 

Although Stenotomus analyses were conducted at the genus level, S. chrysops was 

assumed to constitute the majority of Stenotomus SEAMAP-SA catches. For P. dentatus, 

P. triacanthus, and S. chrysops age-structured assessment models, 𝐹𝐹 was calculated as 

the maximum 𝐹𝐹 value across ages. 
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Computing 

We conducted all statistical analyses in R (R Core Team, 2015) using the following 

packages: MASS and pscl (Jackman, 2015) for generalized linear modeling; MARSS 

(Holmes et al., 2012) for dynamic linear modeling; forecast (Hyndman and Khandakar, 

2008) for forecast accuracy; AICcmodavg (Mazerolle, 2015), lmtest (Zeileis and Hothorn, 

2002), and qpcR (Spiess, 2014) for model selection; boot (Canty and Ripley, 2015) for 

bootstrapping; vegan (Oksanen et al., 2015) for ordination; gplots (Warnes et al., 2015), 

gstat (Pebesma, 2004), lattice (Sarkar, 2008), RColorBrewer (Neuwirth, 2014), and sp 

(Pebesma and Bivand, 2005) for plotting; doBy (Højsgaard and Halekoh, 2014), 

formula.tools (Brown, 2015), plyr (Wickham, 2011), reshape2 (Wickham, 2007), and 

timeSeries (Wuertz et al., 2015) for data manipulation and programming. 
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APPENDIX II:  SUPPLEMENTARY FIGURES 

 

 

 

Figure S1. Decision-tree for selecting the optimal generalized linear model framework. 
Four model framework outcomes were possible:  negative binomial GLM (NBGLM), 
Poisson GLM (PGLM), zero-inflated negative binomial GLM (ZINB), or zero-inflated 
Poisson GLM (ZIP). 
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Figure S2. Time series for shrimp fishery effort (log-transformed cumulative fishing 
trips) and climate indices (non-normalized) during the study period. Abbreviations are as 
in Table 3. 
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Fig. S3. Normalized annual sea bottom temperature across region and season SEAMAP 
survey stratifications. Region abbreviations match those in Fig. 1 (FL = Florida, GA = 
Georgia, SC = South Carolina, LB = Long Bay, OB = Onslow Bay, RB = Raleigh Bay). 
Cold temperatures during summer 2003 have been attributed to anomalous stratification 
and upwelling (Aretxabaleta et al., 2006). 
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Figure S4. Normalized annual shrimp fishery discards and shrimp fishery effort for four 
recently assessed species. “R” values indicate the Pearson correlations between the two 
time series for each species. 
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Figure S5. (page 1 of 3). Normalized landings and fishing mortality time series. 
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Figure S5 (page 2 of 3). Normalized landings and fishing mortality time series. 
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Figure S5 (page 3 of 3). Normalized landings and fishing mortality time series. 
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Figure S6. (9 pages of panels to follow) Annual time series of logged relative abundance 
(left panels) and covariate parameter estimates (right panels). The final six panels on the 
final page depict species whose best model contained no covariates. Only DLMs with the 
highest AICw are illustrated. Left panels show GLM-standardized annual abundance 
observations (open or closed blue circles) that are bracketed by bootstrapped 95% CIs 
(vertical dotted lines); DLM forecasts (solid black line) are bracketed by approximate 
95% prediction intervals (purple polygon). For visual purposes, abundance observations 
with anomalously low lower CI bounds are shown as closed blue circles without CIs 
depicted. Prediction bias quantified as Root Mean Squared Error (RMSE) is reported 
following AICw values. Right panels (except for intercept models) show corresponding 
covariate parameter estimates, some of which were time-dynamic; values are significant 
at 𝛼𝛼 = 0.05 and 𝛼𝛼 = 0.01 if shown with open and closed circles, respectively. Covariate 
abbreviations are as in Table 3; shrimp fleet effort is denoted as “Effort”. Integers in 
parentheses adjacent to covariate abbreviations indicate lag (0, 1, 2, or 3). Colors of 
species names highlighted to indicate broad taxon type as bony fishes (black), 
elasmobranchs (green), or invertebrates (blue). 
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Figure S6 (page 1 of 9). 
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Figure S6 (page 2 of 9). 
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Figure S6 (page 3 of 9). 
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Figure S6 (page 4 of 9). 
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Figure S6 (page 5 of 9). 
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Figure S6 (page 6 of 9). 
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Figure S6 (page 7 of 9). 
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Figure S6 (page 8 of 9). 
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Figure S6 (page 9 of 9). 
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APPENDIX II:  SUPPLEMENTARY TABLES 

 

Table S2. Supporting mathematics for GLM frameworks. Assumed known values include the number of fish 𝑦𝑦 in trawl set 𝑖𝑖, and 
covariates 𝑋𝑋 and 𝑍𝑍. Estimated parameters include the mean 𝜇𝜇, a dispersion parameter 𝑘𝑘, the probability 𝜋𝜋 of a false zero, intercepts 𝛼𝛼 
and 𝜈𝜈, and regression parameters 𝛽𝛽 and 𝛾𝛾. 

 

GLM framework Probability mass function(s) Link function(s) 
Expected 
mean, 𝐸𝐸(𝑌𝑌𝑖𝑖) Variance, var(𝑌𝑌𝑖𝑖) 

Poisson (PGLM) 𝑓𝑓𝑃𝑃(𝑦𝑦𝑖𝑖;  𝜇𝜇𝑖𝑖) = 𝜇𝜇𝑦𝑦𝑖𝑖𝑒𝑒−𝜇𝜇𝑖𝑖
𝑦𝑦𝑖𝑖!

  𝜇𝜇𝑖𝑖 = 𝑒𝑒𝛼𝛼+𝛽𝛽1𝑋𝑋𝑖𝑖1+⋯+𝛽𝛽𝑞𝑞𝑋𝑋𝑖𝑖𝑖𝑖  𝜇𝜇𝑖𝑖  𝜇𝜇𝑖𝑖  

Negative binomial 
(NBGLM) 𝑓𝑓𝑁𝑁𝑁𝑁(𝑦𝑦𝑖𝑖; 𝑘𝑘, 𝜇𝜇𝑖𝑖) = Γ(𝑦𝑦𝑖𝑖+𝑘𝑘)

Γ(𝑘𝑘)Γ(𝑦𝑦𝑖𝑖+1) �
𝑘𝑘

𝜇𝜇𝑖𝑖+𝑘𝑘
�
𝑘𝑘
�1 − 𝑘𝑘

𝜇𝜇𝑖𝑖+𝑘𝑘
�
𝑘𝑘
 , 

where Γ(𝑦𝑦𝑖𝑖 + 1) = (𝑦𝑦𝑖𝑖 + 1)!  
𝜇𝜇𝑖𝑖 = [as above]  𝜇𝜇𝑖𝑖  𝜇𝜇𝑖𝑖 + 𝜇𝜇𝑖𝑖

2

𝑘𝑘
  

Zero-inflated 
Poisson (ZIP) 𝑓𝑓(𝑦𝑦𝑖𝑖 = 0) = 𝜋𝜋𝑖𝑖 + (1 − 𝜋𝜋𝑖𝑖)𝑒𝑒−𝜇𝜇𝑖𝑖 , 

𝑓𝑓(𝑦𝑦𝑖𝑖|𝑦𝑦𝑖𝑖 > 0) = (1 − 𝜋𝜋𝑖𝑖)𝑓𝑓𝑃𝑃(𝑦𝑦)  

𝜇𝜇𝑖𝑖 = [as above]  

𝜋𝜋𝑖𝑖 =
𝑒𝑒𝜈𝜈+𝛾𝛾1𝑍𝑍𝑖𝑖1+⋯+𝛾𝛾𝑞𝑞𝑍𝑍𝑖𝑖𝑖𝑖

1 + 𝑒𝑒𝜈𝜈+𝛾𝛾1𝑍𝑍𝑖𝑖1+⋯+𝛾𝛾𝑞𝑞𝑍𝑍𝑖𝑖𝑖𝑖
 
𝜇𝜇𝑖𝑖(1 − 𝜋𝜋𝑖𝑖)  (1 − 𝜋𝜋𝑖𝑖)(𝜇𝜇𝑖𝑖 + 𝜋𝜋𝑖𝑖𝜇𝜇𝑖𝑖2)  

Zero-inflated 
negative binomial 
(ZINB) 

𝑓𝑓(𝑦𝑦𝑖𝑖 = 0) = 𝜋𝜋𝑖𝑖 + (1 − 𝜋𝜋𝑖𝑖) �
𝑘𝑘

𝜇𝜇𝑖𝑖+𝑘𝑘
�
𝑘𝑘
 , 

𝑓𝑓(𝑦𝑦𝑖𝑖|𝑦𝑦𝑖𝑖 > 0) = (1 − 𝜋𝜋𝑖𝑖)𝑓𝑓𝑁𝑁𝑁𝑁(𝑦𝑦)  

𝜇𝜇𝑖𝑖 = [as above]  
𝜋𝜋𝑖𝑖 = [as above]  

𝜇𝜇𝑖𝑖(1 − 𝜋𝜋𝑖𝑖)  (1 − 𝜇𝜇𝑖𝑖) �𝜇𝜇𝑖𝑖 + 𝜇𝜇𝑖𝑖
2

𝑘𝑘
� +

𝜇𝜇𝑖𝑖2(𝜋𝜋𝑖𝑖2 + 𝜋𝜋𝑖𝑖)  
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Table S3. Tow-level technical covariates included in generalized linear models. ‘Count’ and ‘binomial’ columns describe within 
which zero-inflated GLM process a covariate was considered. Only ‘count’ covariates were included in non- zero-inflated GLMs. 

 
Covariate Count Binomial Description Rationale 
Year X X Categorical; 24 years Reference effect 
Season X X Categorical; spring, summer, fall Captures intra-annual variation 
Region X X Categorical; see Fig. 7 Captures latitudinal and sub-regional habitat 

variation 
Depth X X Water column depth (m) at tow start 

(range: 2 – 20) 
Captures variation in vertical habitat; important 
for species that are more pelagic in nature 

Other 
biomass 

X X Log-transformed total catch biomass 
minus biomass of modeled species 
(range varies by species) 

Accounts for potential changes in species-
specific catchability as a function of 
multispecies biomass and composition 

Effort X 
 

Log-transformed area (m2) of seafloor 
swept, calculated as net wingspan (13.5 
m) × 2 nets × distance towed (m) 
determined from coordinate-based great 
circle distances (Nychka et al., 2015) 
(range: 9.76 – 10.95) 

Accounts for variation in effort; implemented 
as an offset scaling variable; not included in 
binomial process because the range of values is 
small 

Subsample 
 

X Categorical; Was the total catch 
subsampled? (T / F) 

Accounts for false zeros in zero-inflated 
models due to subsampling 
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Table S4 (on following two pages). DLM covariate lag specifications for each species 
based on known or assumed longevity or age-selectivity of the SEAMAP-SA trawl 
survey. The number of covariate and model combinations differed between species due to 
differing number of lags included as well as availability of landings and fishing mortality 
time series. The final model set size was larger than the number of covariate 
combinations because multiple parameterizations of process (𝐐𝐐 diagonals) and 
observation (𝑟𝑟) error variances were hypothesized. 
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Species 
Climate lags Fishing 

lags 
No. of covariate 
combinations 

Final model 
set size Warm Cold 

Ancylopsetta ommata 0 1 0 1 1 2 3 47 150 
Arenaeus cribrarius 0 1 0 1 1 2 36 108 
Bairdiella chrysoura 0 1 2 0 1 1 2 3 97 338 
Callinectes ornatus 0 1 0 1 1 2 36 108 
Callinectes sapidus 0 1 2 0 1 1 2 72 242 
Callinectes similis 0 1 0 1 1 2 36 108 
Centropristis philadelphica 0 1 0 1 1 2 3 82 284 
Centropristis striata 0 1 0 1 1 2 3 126 454 
Chaetodipterus faber 0 1 2 0 1 1 2 3 106 374 
Chilomycterus schoepfii 0 1 2 0 1 1 2 3 55 176 
Chloroscombrus chrysurus 0 1 0 1 1 2 36 108 
Citharichthys macrops 0 1 0 1 1 26 70 
Citharichthys spilopterus 0 1 0 1 1 26 70 
Cynoscion nothus 0 1 0 1 1 2 3 86 300 
Dasyatis sabina 0 1 2 0 1 1 2 3 55 176 
Dasyatis say 0 1 2 0 1 1 2 3 55 176 
Diplectrum formosum 0 1 0 1 1 2 3 86 300 
Doryteuthis spp. 0 1 0 1 1 2 62 208 
Echeneis naucrates 0 1 0 1 1 2 3 47 150 
Etropus crossotus 0 1 0 1 1 26 70 
Etropus cyclosquamus 0 1 0 1 1 26 70 
Eucinostomus spp. 0 1 0 1 1 2 36 108 
Gymnura micrura 0 1 2 0 1 1 2 3 55 176 
Hepatus epheliticus 0 1 0 1 1 2 36 108 
Lagodon rhomboides 0 1 0 1 1 2 3 85 296 
Larimus fasciatus 0 1 0 1 1 2 3 47 150 
Leiostomus xanthurus 0 1 0 1 1 2 3 83 288 
Litopenaeus setiferus 0 0 1 23 70 
Lolliguncula brevis 0 1 0 1 1 26 70 
Menticirrhus americanus 0 1 0 1 1 2 3 92 324 
Menticirrhus littoralis 0 1 0 1 1 2 3 79 272 
Micropogonias undulatus 0 1 0 1 1 2 3 84 292 
Mustelus canis 0 1 2 0 1 1 2 3 100 350 
Opisthonema oglinum 0 1 0 1 1 2 3 81 280 
Orthopristis chrysoptera 0 1 0 1 1 2 3 83 288 
Ovalipes ocellatus 0 1 0 1 1 2 36 108 
Ovalipes stephensoni 0 1 0 1 1 2 36 108 
Pagurus pollicaris 0 1 0 1 1 2 36 108 
Paralichthys albigutta 0 1 0 1 1 2 3 78 268 
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Species 
Climate lags Fishing 

lags 
No. of covariate 
combinations 

Final model 
set size Warm Cold 

Paralichthys dentatus 0 1 0 1 1 2 3 109 386 
Paralichthys lethostigma 0 1 0 1 1 2 3 87 304 
Peprilus paru 0 1 0 1 1 2 62 208 
Peprilus triacanthus 0 1 2 0 1 1 2 3 69 230 
Persephona mediterranea 0 1 0 1 1 2 36 108 
Pomatomus saltatrix 0 1 2 0 1 1 2 3 127 452 
Portunus gibbesii 0 1 2 0 1 1 2 42 126 
Portunus spinimanus 0 1 0 1 1 2 36 108 
Prionotus carolinus 0 1 0 1 1 2 3 86 300 
Prionotus evolans 0 1 0 1 1 2 3 82 284 
Prionotus tribulus 0 1 0 1 1 2 3 47 150 
Raja eglanteria 0 1 2 0 1 1 2 3 104 366 
Rhinoptera bonasus 0 1 2 0 1 1 2 3 55 176 
Rhizoprionodon terraenovae 0 1 2 0 1 1 2 3 131 468 
Sardinella aurita 0 1 0 1 1 2 3 83 288 
Scomberomorus cavalla 0 0 1 2 3 70 244 
Scomberomorus maculatus 0 1 0 1 1 2 3 124 446 
Scophthalmus aquosus 0 1 0 1 1 2 3 92 324 
Selene setapinnis 0 1 0 1 1 2 36 108 
Sphyraena guachancho 0 1 0 1 1 2 3 47 150 
Sphyrna tiburo 0 1 2 0 1 1 2 3 132 472 
Squilla empusa 0 1 0 1 1 2 36 108 
Stellifer lanceolatus 0 1 0 1 1 2 3 47 150 
Stenotomus spp. 0 1 0 1 1 2 3 123 442 
Stephanolepis hispida 0 1 0 1 1 2 3 47 150 
Syacium papillosum 0 1 0 1 1 2 3 47 150 
Symphurus plagiusa 0 1 0 1 1 2 3 47 150 
Synodus foetens 0 1 0 1 1 2 3 87 304 
Trachinotus carolinus 0 1 0 1 1 2 3 94 332 
Trichiurus lepturus 0 1 0 1 1 2 3 89 312 
Trinectes maculatus 0 1 0 1 1 2 3 47 150 
Urophycis floridana 0 1 2 0 1 1 2 3 55 176 



145 
 

Table S5 (continues for four pages). Results of generalized linear model fitting. Model types are negative binomial generalized linear models 
(NBGLM) and zero-inflated negative binomial GLMs (ZINB). Variable abbreviations within model formulas correspond to technical covariates 
described in Table S3:  number of fish (N), year (Y), season (S), region (R) depth (D), other biomass (B), effort (E), and subsample (sub). 
Variables to the right of the vertical bar character for ZINBs were those included in the binomial process for these models. Seasons are spring 
(Sp), summer (Su), and fall (Fa). Regions (shown in Fig. 7) are Florida (FL), Georgia (GA), South Carolina (SC), Long Bay (LB), Onslow Bay 
(OB), and Raleigh Bay (RB). Column ‘N’ contains sample sizes (number of tows). Dispersion values further from 1 indicate increasing 
overdispersion. Column ‘DLM’ indicates if a species was considered for further analysis via dynamic linear modeling based on annual coefficients 
of variation. Species for three genera (Eucinostomus, Stenotomus, Doryteuthis) were grouped for analysis due to difficulties of rapid on-board 
survey taxonomic identification. 
 
Species Model type Formula for most-supported model Seasons Regions N Dispersion DLM 

Bony fishes        
 Acanthostracion quadricornis ZINB N ~ Y + S + D + B + offset(E) | S + D + B + sub Sp Su Fa LB 1023 0.92 N 

 Ancylopsetta ommata ZINB N ~ Y + D + offset(E) | Y + R + D + B + sub Su GA SC LB OB 1700 1.25 Y 

 Archosargus probatocephalus ZINB N ~ Y + R + D + offset(E) | R + D + sub Sp FL OB RB 847 1.16 N 

 Ariopsis felis ZINB N ~ Y + S + R + offset(E) | S + R Su Fa FL GA SC LB 3454 1.13 N 

 Bagre marinus ZINB N ~ Y + S + R + B + offset(E) | Y + S + R + D Sp Su Fa FL GA SC 4159 0.79 N 

 Bairdiella chrysoura ZINB N ~ Y + R + B + offset(E) | Y + R + sub Sp FL GA SC LB OB RB 2213 1.09 Y 

 Brevoortia tyrannus ZINB N ~ Y + R + B + offset(E) | Y + R + D + B Sp FL GA SC LB OB RB 2213 1.15 N 

 Caranx crysos ZINB N ~ Y + R + D + B + offset(E) | Y + R + B + sub Su FL GA SC LB OB RB 2224 1.21 N 

 Caranx hippos ZINB N ~ Y + S + D + B + offset(E) | S + sub Sp Su Fa FL 1084 0.89 N 

 Centropristis philadelphica ZINB N ~ Y + R + D + B | Y + R + B + sub Fa FL GA SC LB OB RB 2220 1.41 Y 

 Centropristis striata ZINB N ~ Y + D + B | Y + S + B Sp Su Fa LB OB 2021 0.96 Y 

 Chaetodipterus faber ZINB N ~ Y + D + B + offset(E) | R + B + sub Sp FL GA 896 0.98 Y 

 Chilomycterus schoepfii ZINB N ~ Y + R + B | Y + sub Sp GA SC LB OB RB 1851 1.01 Y 

 Chloroscombrus chrysurus ZINB N ~ Y + S + R + B | Y + S + R + D + B Sp Su Fa FL GA 2686 1.57 Y 

 Citharichthys macrops ZINB N ~ Y + S + R + B | Y + R + B + sub Sp Su Fa FL GA SC LB OB RB 6657 1.37 Y 

 Citharichthys spilopterus ZINB N ~ Y + S + R + D + B | Y + D + B + sub Su Fa GA SC 2050 1.03 Y 

 Cynoscion nothus ZINB N ~ Y + R + D + B + offset(E) | Y + R + D + B + sub Su FL GA SC LB OB 2062 1.15 Y 

 Cynoscion regalis ZINB N ~ Y + R + B | Y + R + B + sub Fa FL GA SC LB OB RB 2220 1.27 N 

 Decapterus punctatus ZINB N ~ Y + offset(E) | R Su FL GA SC LB OB RB 2224 1.31 N 
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Species Model type Formula for most-supported model Seasons Regions N Dispersion DLM 

 Diplectrum formosum ZINB N ~ Y + D + offset(E) | S + R + D + B + sub Su Fa GA SC LB 2732 1.32 Y 

 Echeneis naucrates ZINB N ~ Y + S + R + D + B + offset(E) | Y + S + R + sub Sp Su Fa FL GA SC LB OB RB 6657 1.01 Y 

 Etropus crossotus ZINB N ~ Y + R + B | Y + R + B + sub Fa FL GA SC LB OB RB 2220 1.4 Y 

 Etropus cyclosquamus ZINB N ~ Y + R + D + B | R + B + sub Su FL GA SC LB OB RB 2224 1.4 Y 

 Eucinostomus spp. ZINB N ~ Y + D + B + offset(E) | Y + R + B + sub Fa FL GA SC LB OB RB 2220 1.24 Y 

 Lagodon rhomboides ZINB N ~ Y + S + R + D + B + offset(E) | S + R + B + sub Sp Su Fa LB OB RB 2498 1.06 Y 

 Larimus fasciatus ZINB N ~ Y + R + B | Y + R + D + B + sub Su FL GA SC LB OB RB 2224 2.11 Y 

 Leiostomus xanthurus ZINB N ~ Y + S + R + B + offset(E) | Y + S + R + B + sub Sp Su Fa FL GA SC LB OB RB 6657 2.84 Y 

 Menticirrhus americanus ZINB N ~ Y + S + R + B + offset(E) | R + D + B Sp Su Fa FL GA SC LB OB RB 6657 1.43 Y 

 Menticirrhus littoralis NBGLM N ~ Y + S + B + offset(E) Sp Su Fa FL 1084 0.94 Y 

 Menticirrhus saxatilis ZINB N ~ Y + S + R + B + offset(E) | Y + S + R + B + sub Sp Su Fa LB OB RB 2498 1.2 N 

 Micropogonias undulatus ZINB N ~ Y + S + R + B + offset(E) | Y + S + R + B + sub Sp Su Fa FL GA SC LB OB RB 6657 1.08 Y 

 Opisthonema oglinum ZINB N ~ Y + S + R + D + B + offset(E) | Y + S + R + D Su Fa FL GA SC LB OB RB 4444 2.23 Y 

 Orthopristis chrysoptera ZINB N ~ Y + S + R + D + B | Y + S + R + D Sp Su Fa LB OB RB 2498 1.07 Y 

 Paralichthys albigutta NBGLM N ~ Y + S + R + B + offset(E) Sp Su Fa FL OB 2082 1.26 Y 

 Paralichthys dentatus ZINB N ~ Y + S + R + D + B | Y + S + R + B + sub Sp Su Fa FL GA SC LB OB RB 6657 1.22 Y 

 Paralichthys lethostigma ZINB N ~ Y + S + R + B | Y + S + B Sp Su Fa FL GA SC LB OB RB 6657 1.08 Y 

 Peprilus paru ZINB N ~ Y + R + D + B + offset(E) | Y + R + D + B Fa FL GA SC LB OB RB 2220 1.53 Y 

 Peprilus triacanthus ZINB N ~ Y + R + B | Y + R + D + B + sub Sp FL GA SC LB OB RB 2213 1.62 Y 

 Pomatomus saltatrix ZINB N ~ Y + R + B + offset(E) | Y + R + B + sub Sp FL GA SC LB OB RB 2213 1.47 Y 

 Prionotus carolinus ZINB N ~ Y + S + D + offset(E) | Y + S + R + B + sub Sp Su GA SC LB OB RB 3713 1.48 Y 

 Prionotus evolans ZINB N ~ Y + R + D + B | Y + S + R + sub Su Fa FL GA SC LB OB RB 4444 1.28 Y 

 Prionotus rubio ZINB N ~ Y + R + D + B | D + B + sub Su FL GA SC LB OB RB 2224 1.26 N 

 Prionotus scitulus ZINB N ~ Y + S + R + B | S + R + B + sub Su Fa FL GA SC LB OB RB 4444 1.38 N 

 Prionotus tribulus ZINB N ~ Y + S + R + B + offset(E) | Y + S + R + B + sub Sp Su Fa FL GA SC LB OB RB 6657 1.43 Y 

 Rachycentron canadum ZINB N ~ Y + S + R + D + B | Y + S + R + sub Sp Su Fa FL GA SC LB OB RB 6657 1.09 N 

 Sardinella aurita NBGLM N ~ Y + S + D + B + offset(E) Sp Fa FL GA SC LB OB RB 4433 1.17 Y 

 Scomberomorus cavalla ZINB N ~ Y + B + offset(E) | Y + R Fa FL GA SC LB OB 2058 1.29 Y 
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Species Model type Formula for most-supported model Seasons Regions N Dispersion DLM 

 Scomberomorus maculatus ZINB N ~ Y + S + R + D + B + offset(E) | Y + S + R Sp Su Fa FL GA SC LB OB RB 6657 1.56 Y 

 Scophthalmus aquosus ZINB N ~ Y + S + R + B | Y + S + R + sub Sp Su Fa SC LB OB RB 3971 1.31 Y 

 Selene setapinnis ZINB N ~ Y + S + D + B | D + B + sub Sp Su Fa FL 1084 1.42 Y 

 Selene vomer ZINB N ~ Y + S + R + D + B | Y + S + R + D + B Su Fa FL GA SC LB OB RB 4444 1.74 N 

 Sphoeroides maculatus ZINB N ~ Y + S + R | Y + S + R + D + B + sub Sp Su Fa GA SC LB OB RB 5573 1.05 N 

 Sphyraena guachancho ZINB N ~ Y + R + D + offset(E) | Y + R + sub Fa FL GA SC LB OB 2058 0.92 Y 

 Stellifer lanceolatus ZINB N ~ Y + S + R + B + offset(E) | Y + S + R + D + B + sub Sp Su Fa FL GA SC LB OB 6180 1.03 Y 

 Stenotomus spp. NBGLM N ~ Y + S + R + B Su Fa LB OB RB 1672 1.16 Y 

 Stephanolepis hispida ZINB N ~ Y + S + R + D + B | Y + S + R + B + sub Su Fa FL GA SC LB OB RB 4444 1.2 Y 

 Syacium papillosum ZINB N ~ Y + D + B + offset(E) | R + D + B + sub Su FL GA SC LB OB RB 2224 1.71 Y 

 Symphurus plagiusa ZINB N ~ Y + R + D + B | Y + S + R + B + sub Sp Fa GA SC LB OB RB 3711 1.21 Y 

 Synodus foetens ZINB N ~ Y + R + D + offset(E) | Y + S + R + B + sub Su Fa FL GA SC LB OB RB 4444 1.08 Y 

 Trachinotus carolinus ZINB N ~ Y + R + D + B + offset(E) | Y + R + D + sub Fa FL GA SC LB OB RB 2220 0.86 Y 

 Trichiurus lepturus ZINB N ~ Y + S + B | Y + S + D + B Su Fa FL GA SC LB OB 4120 2.06 Y 

 Trinectes maculatus NBGLM N ~ Y + S + R + D + B Sp Su Fa FL GA SC LB OB 6180 1.6 Y 

 Urophycis floridana NBGLM N ~ Y + R + D + B + offset(E) Sp GA SC LB OB 1698 1.33 Y 

 Urophycis regia ZINB N ~ Y + R + offset(E) | Y + B Sp SC LB OB RB 1317 1 N 

Elasmobranchs        
 Aetobatus narinari ZINB N ~ Y + S + offset(E) | S + R Sp Su Fa FL GA SC LB 5182 1.02 N 

 Carcharhinus acronotus ZINB N ~ Y + S | R Su Fa FL GA SC LB OB 4120 1.09 N 

 Dasyatis americana ZINB N ~ Y + S + R + D + B | Y + S + B + sub Sp Su Fa GA SC LB OB RB 5573 1.11 N 

 Dasyatis centroura ZINB N ~ Y + S + R + D + B | Y + S + R + D Sp Su Fa FL GA SC LB OB RB 6657 1.11 N 

 Dasyatis sabina ZINB N ~ Y + R + B | Y + R + D Fa GA SC LB OB RB 1860 0.97 Y 

 Dasyatis say ZINB N ~ Y + S + R + B + offset(E) | Y + S + B Sp Fa LB OB RB 1661 1.35 Y 

 Gymnura altavela ZINB N ~ Y + S + D + offset(E) | Y + S + D + sub Sp Su Fa RB 477 0.86 N 

 Gymnura micrura ZINB N ~ Y + S + R + D + B | Y + S + R + D + sub Sp Su Fa FL GA SC LB OB RB 6657 1.09 Y 

 Mustelus canis ZINB N ~ Y + R + D + offset(E) | Y + R Sp LB OB RB 826 1.32 Y 

 Myliobatis freminvillei ZINB N ~ Y + S + R + B | Y + S + R + B Sp Su Fa FL GA SC LB OB RB 6657 1.3 N 
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Species Model type Formula for most-supported model Seasons Regions N Dispersion DLM 

 Raja eglanteria ZINB N ~ Y + R + D + B + offset(E) | Y + R + D Sp Fa FL GA SC LB OB RB 4433 1.01 Y 

 Rhinoptera bonasus ZINB N ~ Y + S + R + D + B | Y + S + D + sub Sp Fa FL GA SC LB OB RB 4433 1.07 Y 

 Rhizoprionodon terraenovae ZINB N ~ Y + S + R + D + offset(E) | Y + S + R + D + sub Su Fa FL GA SC LB OB RB 4444 1.13 Y 

 Sphyrna lewini ZINB N ~ Y + D + B | S + R + B Su Fa FL GA SC 2772 0.86 N 

 Sphyrna tiburo ZINB N ~ Y + S + R + D + B + offset(E) | Y + S + R + D + sub Sp Su Fa FL GA SC LB 5182 1.2 Y 

Invertebrates        
 Arenaeus cribrarius ZINB N ~ Y + S + R + B + offset(E) | Y + R + D + B Su Fa FL OB RB 1712 1.13 Y 

 Calappa flammea ZINB N ~ Y + R + D | R + D + B + sub Su FL GA SC LB OB 2062 0.92 N 

 Callinectes ornatus ZINB N ~ Y + S + B | Y + S + R + D + B Su Fa FL GA SC LB OB 4120 1.23 Y 

 Callinectes sapidus ZINB N ~ Y + R + D + B | Y + R + D + B + sub Su FL GA SC LB OB RB 2224 1.02 Y 

 Callinectes similis NBGLM N ~ Y + S + R + D + B Su Fa GA SC LB OB 3398 1.66 Y 

 Doryteuthis spp. ZINB N ~ Y + S + R + D + B | Y + S + R + D + B + sub Sp Fa GA SC LB OB RB 3711 1.24 Y 

 Farfantepenaeus aztecus ZINB N ~ Y + R + B | Y + R + B + sub Su FL GA SC LB OB RB 2224 1.06 N 

 Farfantepenaeus duorarum ZINB N ~ Y + R + D + B + offset(E) | Y + R + B Sp FL GA SC LB OB RB 2213 1.13 N 

 Gibbesia neglecta ZINB N ~ Y + S + R + B | Y + R + B + sub Sp Su Fa FL GA SC 4159 1.46 N 

 Hepatus epheliticus ZINB N ~ Y + R + B | Y + S + D + B Sp Su FL GA SC 2774 1.07 Y 

 Litopenaeus setiferus NBGLM N ~ Y + R + D + B Fa FL GA SC LB OB 2058 1.04 Y 

 Lolliguncula brevis ZINB N ~ Y + S + R + B + offset(E) | Y + R + sub Sp Su Fa FL GA SC LB OB RB 6657 1.21 Y 

 Menippe mercenaria ZINB N ~ Y + S + D + B | Y + S + R + D + B + sub Sp Su Fa GA SC LB OB 5096 1.05 N 

 Ovalipes ocellatus ZINB N ~ Y + S + R + B | Y + S + R + B + sub Su Fa GA SC LB OB RB 3722 1.38 Y 

 Ovalipes stephensoni ZINB N ~ Y + S + R | Y + S + R + B + sub Sp Su Fa GA SC LB OB RB 5573 1.23 Y 

 Pagurus pollicaris ZINB N ~ Y + R + D + B + offset(E) | Y + R + B + sub Fa FL GA SC LB OB RB 2220 1.58 Y 

 Persephona mediterranea ZINB N ~ Y + S + R + D + B + offset(E) | Y + S + R + D + B + sub Sp Su FL GA SC LB OB RB 4437 1.13 Y 

 Portunus gibbesii NBGLM N ~ Y + R + B + offset(E) Sp FL GA SC LB OB RB 2213 1.5 Y 

 Portunus spinimanus ZINB N ~ Y + S + R + D + B | Y + R + D + B + sub Sp Su Fa GA SC LB OB 5096 1.32 Y 

 Rimapenaeus constrictus ZINB N ~ Y + S + R + B + offset(E) | Y + S + R + sub Sp Fa GA SC LB 2732 0.96 N 

 Squilla empusa ZINB N ~ Y + S + R + B | Y + S + B + sub Sp Su Fa GA SC 3075 0.87 Y 

 Xiphopenaeus kroyeri ZINB N ~ Y + R + D + B + offset(E) | Y + R + D + B + sub Fa FL GA SC 1385 0.92 N 
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Table S6 (continues for nine pages). Results of dynamic linear model (DLM) fitting. Covariate lag values 
are in parenthesis following covariate abbreviations (see Table 3). AIC weights (AICw) were calculated 
from retained models with ΔAICc, ≤ 10 although only models with ΔAICc values < 2 are tabulated. 
Models with AICw cells highlighted darker shades of green have more support (i.e., closer to 1) relative to 
other models for the same species. Models with Root Mean Squared Error (RMSE) cells highlighted darker 
shades of red have more forecast bias (higher RMSE). 𝐐𝐐𝒆𝒆𝒆𝒆𝒆𝒆 and 𝒓𝒓𝒆𝒆𝒆𝒆𝒆𝒆 columns contain estimates of process 
error variance(s) and observation error variance, respectively. Reference the main text and Table 4 for 
details regarding how process and observation error variances were parameterized. 
 

Species Model Covariates (lags) ΔAICc AICw RMSE Q𝑒𝑒𝑒𝑒𝑒𝑒  𝑟𝑟 𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒 

Bony fishes 

 Ancylopsetta ommata 
      

 
 

1 WBHI (1), Effort (1) 0 0.164 0.45 0 fixed 0.214 

 

 
2 WBHI (1) 0.74 0.114 0.49 0 fixed 0.214 

 

 
3 WBHI (1), Effort (3) 0.93 0.103 0.46 0 fixed 0.214 

 

 
4 WBHI (1), Effort (2) 0.96 0.102 0.46 0 fixed 0.214 

 
Bairdiella chrysoura 

      
 

 
1  0 0.062 0.46 0 est. 0.208 

 

 
2 AMO (0) 0.97 0.038 0.44 0 est. 0.19 

 

 
3 Landings (3) 1.41 0.031 0.44 0 est. 0.194 

 

 
4 NAO (1) 1.64 0.027 0.44 0 est. 0.196 

 

 
5 PNAs (2) 1.74 0.026 0.44 0 est. 0.197 

 

 
6 PNAs (1) 1.76 0.026 0.44 0 est. 0.197 

 
Centropristis philadelphica 

      
 

 
1 Landings (3) 0 0.088 0.68 0 fixed 0.387 

 

 
2 PNAs (1), Landings (3) 0.87 0.058 0.66 0 fixed 0.387 

 

 
3 WBHI (1), Landings (3) 1.52 0.042 0.67 0 fixed 0.387 

 

 
4 SOI (1), Landings (3) 1.83 0.036 0.67 0 fixed 0.387 

 

 
5 PNAs (0), Landings (3) 1.91 0.034 0.67 0 fixed 0.387 

 
Centropristis striata 

      
 

 
1 NAO (1), Landings (1) 0 0.348 0.48 0.101 est. 0.0659 

 

 
2 PDO (0), Landings (1) 1 0.211 0.46 0 est. 0.21 

 

 
3 PDO (0), Landings (1) 1.76 0.144 0.46 0 fixed 0.398 

 
Chaetodipterus faber 

      
 

 
1 PNAs (1), Landings (3) 0 0.389 1.06 0.046 fixed 0.477 

 
Chilomycterus schoepfii 

      
 

 
1 PNAs (0), Effort (2) 0 0.260 0.54 0.073 est. 0.0627 

 

 
2 PNAs (0) 0.95 0.162 0.64 0.0547 fixed 0.312 

 

 
3 WBHI (1) 1.71 0.111 0.67 0.0905 fixed 0.312 

 
Chloroscombrus chrysurus 

      
 

 
1 Effort (1) 0 0.095 0.95 0.32 fixed 0.312 

 

 
2 Effort (2) 0.67 0.068 1.02 0.39 fixed 0.312 

 

 
3 PDO (0), Effort (1) 0.85 0.062 0.79 0 est. 0.621 

 

 
4 WBHI (1), Effort (2) 1.18 0.053 0.89 0.0535 fixed 0.312 

 

 
5 WBHI (0), Effort (1) 1.22 0.052 0.79 0 est. 0.631 

 

 
6  1.47 0.045 0.96 0.369 fixed 0.312 
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7 WBHI (0), Effort (2) 1.49 0.045 0.8 0 est. 0.638 

 

 
8 Effort (2), SBT (0) 1.7 0.041 0.93 0.0766 fixed 0.312 

 

 
9 PNAw (0), Effort (2) 1.71 0.040 0.8 0 est. 0.644 

 

 
10 WBHI (1), Effort (2) 1.73 0.040 0.8 0 est. 0.645 

 
Citharichthys macrops 

      
 

 
1 NAO (1) 0 0.092 0.28 0.00445 est. 0.0664 

 

 
2 SBT (0) 0.34 0.077 0.25 0 fixed 0.14 

 

 
3  0.39 0.075 0.32 0 fixed 0.14 

 

 
4 SBT (0) 0.61 0.067 0.25 0 est. 0.0843 

 

 
5 NAO (1) 1.7 0.039 0.29 0.00335 fixed 0.14 

 

 
6  1.79 0.037 0.32 0 est. 0.0999 

 

 
7 PDO (0) 1.88 0.036 0.31 0 fixed 0.14 

 

 
8 NAO (0) 1.96 0.034 0.31 0 fixed 0.14 

 
Citharichthys spilopterus 

      
 

 
1 SBT (0) 0 0.135 0.84 0.0257 fixed 0.577 

 

 
2  0.89 0.087 0.83 0 fixed 0.577 

 

 
3 PDO (0) 1.5 0.064 0.79 0 fixed 0.577 

 

 
4 WBHI (1) 1.74 0.057 0.8 0 fixed 0.577 

 

 
5 SOI (1) 1.95 0.051 0.83 0.0182 fixed 0.577 

 
Cynoscion nothus 

      
 

 
1 PDO (0) 0 0.044 0.69 0 fixed 0.451 

 

 
2  0.4 0.036 0.74 0 fixed 0.451 

 

 
3 Effort (1) 0.59 0.033 0.7 0 fixed 0.451 

 

 
4 SOI (0) 0.65 0.032 0.7 0 fixed 0.451 

 

 
5 AMO (1) 0.76 0.030 0.7 0 fixed 0.451 

 

 
6 Effort (3) 0.85 0.029 0.7 0 fixed 0.451 

 

 
7 Effort (2) 1.24 0.024 0.71 0 fixed 0.451 

 

 
8 PDO (1) 1.34 0.023 0.71 0 fixed 0.451 

 

 
9 PNAw (0) 1.63 0.020 0.72 0 fixed 0.451 

 

 
10 SOI (1) 1.68 0.019 0.72 0 fixed 0.451 

 

 
11 Landings (2) 1.74 0.018 0.72 0 fixed 0.451 

 
Diplectrum formosum 

      
 

 
1  0 0.051 1.11 0 est. 1.24 

 

 
2 SBT (0) 0.44 0.041 1.09 0 est. 1.11 

 

 
3 NAO (0) 0.85 0.033 1.06 0 est. 1.13 

 

 
4 NAO (1) 1.43 0.025 1.08 0 est. 1.16 

 

 
5 PDO (1), Landings (2) 1.57 0.023 1.02 0.0529 fixed 0.639 

 

 
6 PDO (1) 1.71 0.022 1.08 0 est. 1.18 

 

 
7 WBHI (1) 1.75 0.021 1.09 0 est. 1.18 

 

 
8 SBT (0) 1.78 0.021 1.09 0 fixed 0.639 

 
Echeneis naucrates 

      
 

 
1 Effort (1) 0 0.318 0.59 0.172 est. 0.0876 

 

 
2 Effort (2) 1.01 0.192 0.64 0.171 est. 0.0966 
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3  1.06 0.187 0.57 0.279 est. 0.0246 

 
Etropus crossotus 

      
 

 
1 PDO (1) 0 0.097 0.45 0 fixed 0.214 

 

 
2  0.33 0.082 0.48 0 fixed 0.214 

 

 
3 NAO (1) 1.01 0.058 0.46 0.00441 fixed 0.214 

 

 
4 SBT (0) 1.66 0.042 0.48 0 fixed 0.214 

 
Etropus cyclosquamus 

      
 

 
1 WBHI (1), Effort (1) 0 0.150 0.76 0 fixed 0.557 

 

 
2 PDO (1), Effort (1) 0.3 0.129 0.76 0 fixed 0.557 

 

 
3 PDO (1) 0.96 0.093 0.83 0.017 fixed 0.557 

 

 
4 Effort (1) 1.35 0.077 0.82 0 fixed 0.557 

 
Eucinostomus spp. 

      
 

 
1 NAO (0) 0 0.101 0.61 0.0115 fixed 0.31 

 

 
2  0.64 0.073 0.63 0 fixed 0.31 

 

 
3 WBHI (1) 1.34 0.052 0.61 0 fixed 0.31 

 

 
4 PNAw (0) 1.74 0.042 0.62 0 fixed 0.31 

 

 
5 WBHI (0) 1.78 0.042 0.62 0 fixed 0.31 

 

 
6 PDO (0) 1.89 0.039 0.63 0.00621 fixed 0.31 

 
Lagodon rhomboides 

      
 

 
1 Effort (2) 0 0.083 0.32 0 est. 0.103 

 

 
2 Effort (3) 0.97 0.051 0.33 0 est. 0.108 

 

 
3 WBHI (0), Effort (2) 1.37 0.042 0.31 0 est. 0.0935 

 

 
4 Effort (1) 1.67 0.036 0.33 0 est. 0.112 

 

 
5  1.7 0.035 0.36 0 est. 0.13 

 

 
6 WBHI (0), Effort (3) 1.97 0.031 0.31 0 est. 0.0962 

 

 
7 Effort (2), SBT (0) 1.99 0.031 0.32 0 est. 0.0963 

 
Larimus fasciatus 

      
 

 
1 PDO (0), Effort (1) 0 0.145 0.36 0 est. 0.127 

 

 
2 PDO (0) 0.61 0.107 0.39 0 est. 0.15 

 

 
3 Effort (2) 1.76 0.060 0.4 0 est. 0.158 

 

 
4 WBHI (0), Effort (2) 1.88 0.057 0.37 0 est. 0.138 

 
Leiostomus xanthurus 

      
 

 
1 SBT (0) 0 0.218 0.48 0.0193 est. 0.11 

 

 
2 SBT (0) 1.7 0.094 0.47 0.017 fixed 0.238 

 
Menticirrhus americanus 

      
 

 
1 AMO (1) 0 0.039 0.3 0 fixed 0.128 

 

 
2 AMO (0), Landings (3) 0.3 0.033 0.28 0 fixed 0.128 

 

 
3 AMO (1), Landings (3) 0.69 0.027 0.28 0 fixed 0.128 

 

 
4 AMO (0), Landings (3) 0.73 0.027 0.28 0 est. 0.0757 

 

 
5 AMO (1), Landings (2) 0.96 0.024 0.28 0 fixed 0.128 

 

 
6 AMO (0) 1.03 0.023 0.31 0 fixed 0.128 

 

 
7 Effort (3) 1.09 0.022 0.31 0 fixed 0.128 

 

 
8 Effort (2) 1.31 0.020 0.31 0 fixed 0.128 
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9 AMO (1), Landings (3) 1.39 0.019 0.28 0 est. 0.0778 

 

 
10 AMO (1), Landings (1) 1.46 0.019 0.29 0 fixed 0.128 

 

 
11 Effort (1) 1.5 0.018 0.31 0 fixed 0.128 

 

 
12 AMO (1) 1.55 0.018 0.3 0 est. 0.0896 

 

 
13 Landings (3) 1.57 0.018 0.31 0 fixed 0.128 

 

 
14 NAO (1), Landings (3) 1.58 0.018 0.29 0 fixed 0.128 

 

 
15  1.68 0.017 0.33 0.00268 fixed 0.128 

 

 
16 PDO (0) 1.7 0.016 0.3 0.0165 est. 0.055 

 

 
17 PDO (0) 1.82 0.016 0.32 0 fixed 0.128 

 

 
18 AMO (1), Landings (2) 1.83 0.016 0.28 0 est. 0.0793 

 
Menticirrhus littoralis 

      
 

 
1 SBT (0), Landings (2) 0 0.087 0.62 0 fixed 0.289 

 

 
2 SBT (0), Landings (1) 0.25 0.077 0.63 0 fixed 0.289 

 

 
3 SBT (0), Landings (3) 0.74 0.060 0.61 0 fixed 0.289 

 

 
4 WBHI (1) 1.75 0.036 0.65 0.0775 fixed 0.289 

 

 
5 PNAs (0), Landings (3) 1.84 0.035 0.58 0 fixed 0.289 

 
Micropogonias undulatus 

      
 

 
1  0 0.125 0.32 0.0251 est. 0.0502 

 

 
2 Effort (2) 0.59 0.094 0.31 0.0101 est. 0.0634 

 

 
3 Effort (3) 0.8 0.085 0.3 0.00833 est. 0.0666 

 

 
4 Effort (1) 1.28 0.067 0.33 0.0167 est. 0.0578 

 
Opisthonema oglinum 

      
 

 
1 AMO (1) 0 0.451 0.53 0 fixed 0.299 

 
Orthopristis chrysoptera 

      
 

 
1 AMO (0) 0 0.209 0.39 0 est. 0.152 

 

 
2 AMO (0), Landings (3) 1.71 0.088 0.38 0 est. 0.143 

 
Paralichthys albigutta 

      
 

 
1 PDO (0) 0 0.114 0.7 0 fixed 0.434 

 

 
2 PDO (0), Landings (2) 0.27 0.099 0.67 0 fixed 0.434 

 
Paralichthys dentatus 

      
 

 
1 Effort (1) 0 0.112 0.33 0.0461 est. 0.0332 

 

 
2 AMO (0) 0.39 0.091 0.33 0.0259 est. 0.05 

 

 
3  0.58 0.083 0.32 0.0519 est. 0.0306 

 
Paralichthys lethostigma 

      
 

 
1 Effort (1) 0 0.071 0.52 0.115 est. 0.0974 

 

 
2 PDO (1), Landings (2) 0.57 0.054 0.47 0 est. 0.219 

 

 
3 SOI (1), Landings (2) 1.23 0.039 0.47 0 est. 0.225 

 

 
4 Landings (2) 1.92 0.028 0.51 0 est. 0.264 

 

 
5 PDO (0), Landings (2) 1.97 0.027 0.48 0 est. 0.232 

 
Peprilus paru 

       
 

 
1 PDO (0) 0 0.134 0.38 0 est. 0.147 

 

 
2 PDO (0) 1.87 0.053 0.38 0 fixed 0.297 

 
Peprilus triacanthus 
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1 PNAw (0), Effort (3) 0 0.211 0.78 0.0413 fixed 0.309 

 

 
2 PNAw (0), Effort (3) 0.77 0.144 0.8 0.112 fixed 0.309 

 
Pomatomus saltatrix 

      
 

 
1 WBHI (1) 0 0.133 0.66 0 fixed 0.413 

 

 
2 WBHI (1), Landings (1) 1.92 0.051 0.65 0 fixed 0.413 

 
Prionotus carolinus 

      
 

 
1 SOI (1), Effort (2) 0 0.290 0.72 0.114 est. 0.0241 

 
Prionotus evolans 

      
 

 
1 Effort (3), SBT (0) 0 0.263 0.58 0 fixed 0.254 

 

 
2 WBHI (1), Effort (3) 0.23 0.233 0.49 0 fixed 0.254 

 
Prionotus tribulus 

      
 

 
1 PNAs (1) 0 0.087 0.51 0 fixed 0.336 

 

 
2  0.62 0.064 0.56 0 fixed 0.336 

 

 
3 AMO (1) 0.73 0.060 0.52 0 fixed 0.336 

 

 
4 Effort (3) 1.91 0.034 0.54 0 fixed 0.336 

 
Sardinella aurita 

      
 

 
1 PNAs (0) 0 0.086 1.81 1.08 fixed 0.59 

 

 
2 SOI (1) 0.01 0.086 1.24 0.0784 est. 1.14 

 

 
3 SOI (1) 1.52 0.040 1.23 0.159 fixed 0.59 

 

 
4  1.7 0.037 1.31 0 est. 1.73 

 
Scomberomorus cavalla 

      
 

 
1 SOI (0), Landings (3) 0 0.144 0.89 0.0606 fixed 0.351 

 
Scomberomorus maculatus 

      
 

 
1 Effort (3) 0 0.215 0.38 0.0544 est. 0.0563 

 
Scophthalmus aquosus 

      
 

 
1 WBHI (1), Landings (1) 0 0.085 0.46 0 fixed 0.17 

 

 
2 SOI (0), Landings (1) 0.18 0.078 0.48 0.00505 fixed 0.17 

 

 
3 Landings (1) 1.37 0.043 0.5 0.00521 fixed 0.17 

 

 
4 PDO (0), Landings (1) 1.6 0.039 0.48 0.00602 fixed 0.17 

 
Selene setapinnis 

      
 

 
1 WBHI (1), Effort (2) 0 0.132 0.69 0.0341 fixed 0.261 

 

 
2 PNAs (1), Effort (2) 0.59 0.098 0.79 0.0387 fixed 0.261 

 

 
3 PNAs (1), Effort (2) 0.61 0.097 0.69 0.0747 fixed 0.261 

 

 
4 Effort (2) 0.91 0.084 0.73 0.101 fixed 0.261 

 

 
5 WBHI (1), Effort (2) 1.15 0.074 0.66 0.0642 fixed 0.261 

 
Sphyraena guachancho 

      
 

 
1 SOI (1) 0 0.327 0.86 0.0517 fixed 0.419 

 
Stellifer lanceolatus 

      
 

 
1 AMO (1) 0 0.260 0.38 0 est. 0.144 

 

 
2 AMO (1) 1.42 0.128 0.38 0 fixed 0.28 

 
Stenotomus spp. 

      
 

 
1  0 0.049 0.89 0 est. 0.796 

 

 
2 PNAw (0) 0.54 0.037 0.85 0 est. 0.721 
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3 PDO (0) 1.04 0.029 0.86 0 est. 0.736 

 

 
4 NAO (1) 1.26 0.026 0.86 0 est. 0.743 

 

 
5 NAO (0) 1.27 0.026 0.86 0 est. 0.744 

 

 
6 PNAw (1) 1.77 0.020 0.87 0 est. 0.759 

 

 
7 PNAs (1) 1.84 0.019 0.91 0.378 fixed 0.259 

 

 
8 WBHI (0) 1.98 0.018 0.87 0.0241 est. 0.655 

 

 
9 SOI (0) 1.98 0.018 0.88 0 est. 0.766 

 
Stephanolepis hispida 

      
 

 
1 SOI (1) 0 0.065 0.61 0.0332 est. 0.204 

 

 
2 AMO (0) 0.21 0.059 0.64 0.109 est. 0.145 

 

 
3 PNAs (1), Effort (3) 0.41 0.053 0.51 0 est. 0.258 

 

 
4 SOI (1), Effort (3) 1.08 0.038 0.52 0 est. 0.266 

 

 
5 Effort (3) 1.2 0.036 0.55 0 est. 0.305 

 

 
6 SOI (1), Effort (2) 1.58 0.030 0.52 0 est. 0.271 

 

 
7 PNAs (1), Effort (2) 1.66 0.028 0.52 0 est. 0.272 

 

 
8 Effort (2) 1.82 0.026 0.56 0 est. 0.313 

 

 
9 SOI (1) 1.83 0.026 0.54 0 fixed 0.585 

 

 
10 AMO (1) 1.93 0.025 0.57 0.0688 est. 0.187 

 
Syacium papillosum 

      
 

 
1 NAO (1) 0 0.248 1.29 0.102 fixed 0.659 

 

 
2 WBHI (0) 0.39 0.204 1.16 0.16 fixed 0.659 

 

 
3 AMO (1) 1.23 0.135 1.08 0.131 fixed 0.659 

 
Symphurus plagiusa 

      
 

 
1 NAO (1) 0 0.077 1.03 0.202 fixed 0.444 

 

 
2  0.17 0.071 0.9 0.0862 fixed 0.444 

 

 
3 PNAw (0), Effort (1) 0.78 0.053 0.78 0 fixed 0.444 

 

 
4 PNAw (1), Effort (2) 1.03 0.046 0.84 0.023 fixed 0.444 

 

 
5 Effort (2) 1.52 0.036 0.85 0.0421 fixed 0.444 

 

 
6 Effort (3) 1.72 0.033 0.84 0.0645 fixed 0.444 

 
Synodus foetens 

      
 

 
1  0 0.049 0.41 0 fixed 0.204 

 

 
2 AMO (1) 0.26 0.043 0.38 0 fixed 0.204 

 

 
3 AMO (1), Landings (2) 1.54 0.023 0.36 0 fixed 0.204 

 

 
4 Landings (3) 1.75 0.020 0.4 0 fixed 0.204 

 

 
5 PNAs (0) 1.81 0.020 0.4 0 fixed 0.204 

 

 
6 NAO (1) 1.86 0.019 0.4 0 fixed 0.204 

 

 
7 AMO (1) 1.95 0.018 0.38 0 est. 0.146 

 

 
8 Landings (1) 1.96 0.018 0.4 0 fixed 0.204 

 

 
9 SBT (0) 1.98 0.018 0.41 0 fixed 0.204 

 
Trachinotus carolinus 

      
 

 
1 Effort (1) 0 0.046 0.5 0 fixed 0.417 

 

 
2 Effort (3) 0.11 0.043 0.51 0 fixed 0.417 

 

 
3 Effort (1) 0.57 0.035 0.5 0 est. 0.255 
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4  1.14 0.026 0.55 0.0642 est. 0.161 

 

 
5 Effort (2) 1.29 0.025 0.53 0 fixed 0.417 

 

 
6 PNAs (0), Effort (1) 1.52 0.022 0.48 0 est. 0.23 

 

 
7 PNAs (0), Effort (1) 1.59 0.021 0.48 0 fixed 0.417 

 

 
8 Effort (3) 1.67 0.020 0.52 0.0247 est. 0.194 

 

 
9 PNAs (0), Effort (3) 1.68 0.020 0.48 0 fixed 0.417 

 

 
10 PNAs (0), Effort (3) 1.68 0.020 0.48 0 est. 0.231 

 
Trichiurus lepturus 

      
 

 
1 WBHI (0), Effort (3) 0 0.271 0.58 0 fixed 0.394 

 

 
2 WBHI (0), Landings (2) 1.81 0.110 0.61 0 fixed 0.394 

 
Trinectes maculatus 

      
 

 
1 AMO (1) 0 0.439 0.56 0 fixed 0.246 

 
Urophycis floridana 

      
 

 
1 WBHI (2), Effort (3) 0 0.070 0.87 0 fixed 0.651 

 

 
2 PNAs (0), Effort (3) 0.36 0.059 1.1 0.0804 fixed 0.651 

 

 
3 WBHI (2), Effort (1) 0.81 0.048 0.88 0 fixed 0.651 

 

 
4 Effort (3) 0.85 0.047 0.93 0 fixed 0.651 

 

 
5 PNAs (0), Effort (3) 1.03 0.043 0.87 0.0345 fixed 0.651 

 

 
6 PNAs (0), Effort (1) 1.37 0.036 0.88 0.0327 fixed 0.651 

 

 
7 PNAs (0), Effort (1) 1.46 0.034 1.24 0.0785 fixed 0.651 

 

 
8 NAO (1), Effort (3) 1.5 0.034 0.89 0 fixed 0.651 

 

 
9 Effort (1) 1.57 0.033 0.94 0 fixed 0.651 

 

 
10 WBHI (2), Effort (2) 1.94 0.027 0.9 0 fixed 0.651 

Elasmobranchs        
 Dasyatis sabina 

      
 

 
1 WBHI (2), Effort (1) 0 0.140 0.55 0 fixed 0.449 

 

 
2 WBHI (2), Effort (3) 1.4 0.070 0.57 0 fixed 0.449 

 

 
3 WBHI (2), Effort (1) 1.49 0.067 0.55 0 est. 0.299 

 

 
4 WBHI (2), Effort (2) 1.63 0.062 0.57 0 fixed 0.449 

 
Dasyatis say 

       
 

 
1 AMO (2) 0 0.118 0.53 0 fixed 0.285 

 

 
2  0.96 0.073 0.57 0.0523 fixed 0.285 

 

 
3  1.09 0.069 0.55 0.1 est. 0.128 

 
Gymnura micrura 

      
 

 
1 Effort (1) 0 0.121 0.44 0 est. 0.191 

 

 
2 PDO (1), Effort (1) 0.13 0.114 0.41 0 est. 0.166 

 

 
3 Effort (1), SBT (0) 0.88 0.078 0.44 0 est. 0.172 

 

 
4 PDO (0), Effort (1) 1.17 0.067 0.42 0 est. 0.174 

 

 
5 WBHI (2), Effort (1) 1.43 0.059 0.42 0 est. 0.176 

 

 
6 Effort (2) 1.76 0.050 0.45 0 est. 0.206 

 
Mustelus canis 

       
 

 
1 Effort (3) 0 0.431 1.11 0.577 fixed 0.536 

 
Raja eglanteria 
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1 PNAs (0), Effort (1) 0 0.106 0.68 0.0585 est. 0.0469 

 

 
2 PDO (1), Effort (1) 0.81 0.071 0.52 0 fixed 0.264 

 

 
3 AMO (1) 1.5 0.050 0.56 0 fixed 0.264 

 

 
4 Effort (1) 1.53 0.049 0.56 0 fixed 0.264 

 
Rhinoptera bonasus 

      
 

 
1 AMO (0) 0 0.294 0.95 0 fixed 0.705 

 
Rhizoprionodon terraenovae 

      
 

 
1 Effort (1) 0 0.093 0.31 0 est. 0.0935 

 

 
2  0.24 0.083 0.33 0.0234 est. 0.0582 

 

 
3 AMO (2) 0.77 0.064 0.31 0 est. 0.0965 

 

 
4 PNAs (2), Effort (1) 1.31 0.049 0.29 0 est. 0.0863 

 

 
5 Total F (1) 1.64 0.041 0.32 0 est. 0.1 

 
Sphyrna tiburo 

       
 

 
1 Effort (1) 0 0.126 0.29 0.0111 est. 0.0599 

 

 
2 WBHI (0), Effort (1) 1.16 0.071 0.28 0 est. 0.0799 

 

 
3 Effort (2) 1.85 0.050 0.32 0.013 est. 0.0634 

 

 
4 PNAw (1), Effort (1) 1.9 0.049 0.32 0.0247 est. 0.00871 

Invertebrates        
 Arenaeus cribrarius 

      
 

 
1 PDO (1), Effort (1) 0 0.211 0.7 0 fixed 0.421 

 

 
2 PNAw (0), Effort (1) 1.12 0.121 0.71 0 fixed 0.421 

 

 
3 PDO (0), Effort (1) 1.53 0.099 0.72 0 fixed 0.421 

 
Callinectes ornatus 

      
 

 
1 PDO (1) 0 0.287 0.61 0.0777 est. 0.147 

 
Callinectes sapidus 

      
 

 
1 Effort (2) 0 0.128 0.71 0 fixed 0.427 

 

 
2 WBHI (1), Effort (2) 0.15 0.119 0.67 0 fixed 0.427 

 

 
3 PDO (1), Effort (2) 0.54 0.098 0.7 0.0167 fixed 0.427 

 

 
4 PDO (1), Effort (2) 0.92 0.081 0.62 0.0345 fixed 0.427 

 

 
5 PNAs (1), Effort (2) 1.33 0.066 0.69 0 fixed 0.427 

 

 
6 WBHI (2), Effort (2) 1.84 0.051 0.7 0 fixed 0.427 

 
Callinectes similis 

      
 

 
1 PDO (1), Effort (2) 0 0.296 0.57 0 fixed 0.239 

 

 
2 PDO (1), Effort (2) 1.95 0.112 0.57 0 est. 0.326 

 
Doryteuthis spp. 

      
 

 
1 SOI (0) 0 0.058 0.47 0 fixed 0.259 

 

 
2  0.38 0.048 0.51 0 fixed 0.259 

 

 
3 PNAs (0) 0.4 0.048 0.48 0 fixed 0.259 

 

 
4 SOI (0), Landings (2) 0.75 0.040 0.45 0 fixed 0.259 

 

 
5 Landings (2) 0.89 0.037 0.48 0 fixed 0.259 

 

 
6 WBHI (1) 1.6 0.026 0.49 0 fixed 0.259 

 

 
7 Landings (1) 1.98 0.022 0.49 0 fixed 0.259 

 
Hepatus epheliticus 
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Species Model Covariates (lags) ΔAICc AICw RMSE Q𝑒𝑒𝑒𝑒𝑒𝑒  𝑟𝑟 𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒 

 
 

1 PNAs (1) 0 0.210 0.59 0.0719 est. 0.227 

 

 
2 PNAs (1) 0.43 0.170 0.64 0.0476 fixed 0.454 

 
Litopenaeus setiferus 

      
 

 
1 AMO (0) 0 0.218 0.56 0 fixed 0.248 

 

 
2 SOI (0) 1.25 0.117 0.57 0 fixed 0.248 

 
Lolliguncula brevis 

      
 

 
1 SOI (1) 0 0.144 0.24 0.00307 est. 0.0396 

 

 
2 PDO (1) 0.96 0.089 0.23 0 fixed 0.089 

 

 
3 PNAw (1) 1.09 0.083 0.24 0.0032 est. 0.0419 

 

 
4 PDO (1) 1.11 0.082 0.23 0 est. 0.0529 

 

 
5 SOI (1) 1.99 0.053 0.24 0.00118 fixed 0.089 

 
Ovalipes ocellatus 

      
 

 
1 SOI (1) 0 0.139 0.68 0 fixed 0.316 

 

 
2 SOI (1) 1.08 0.080 0.68 0 est. 0.456 

 
Ovalipes stephensoni 

      
 

 
1  0 0.092 0.68 0 fixed 0.447 

 

 
2 PDO (0) 0.63 0.067 0.64 0.0133 fixed 0.447 

 

 
3 WBHI (1) 0.81 0.061 0.65 0 fixed 0.447 

 

 
4 PNAs (0) 0.92 0.058 0.65 0 fixed 0.447 

 

 
5 PNAw (1) 1.4 0.045 0.66 0 fixed 0.447 

 

 
6 WBHI (0) 1.51 0.043 0.66 0 fixed 0.447 

 

 
7 SOI (0) 1.88 0.036 0.67 0.012 fixed 0.447 

 
Pagurus pollicaris 

      
 

 
1 SBT (0) 0 0.233 1.22 0 est. 1.24 

 

 
2  0.81 0.156 1.29 0.528 fixed 0.447 

 

 
3  1.08 0.136 1.24 0.249 est. 0.89 

 
Persephona mediterranea 

      
 

 
1 PNAs (0), Effort (1) 0 0.148 0.49 0 fixed 0.328 

 

 
2 Effort (1) 0.24 0.132 0.54 0 fixed 0.328 

 

 
3 PNAw (0), Effort (1) 1.06 0.087 0.51 0 fixed 0.328 

 

 
4 PDO (0), Effort (1) 1.3 0.077 0.51 0 fixed 0.328 

 
Portunus gibbesii 

      
 

 
1 NAO (0) 0 0.205 0.73 0.159 fixed 0.257 

 

 
2 WBHI (2) 1.48 0.098 0.73 0.0942 fixed 0.257 

 

 
3 AMO (1) 1.98 0.076 0.74 0.0851 fixed 0.257 

 
Portunus spinimanus 

      
 

 
1 PDO (1), Effort (2) 0 0.242 0.45 0 est. 0.199 

 

 
2 PDO (1), Effort (2) 0.79 0.163 0.45 0 fixed 0.396 

 
Squilla empusa 

       
 

 
1 Effort (2) 0 0.095 0.56 0 fixed 0.483 

 

 
2 Effort (1) 0.83 0.063 0.58 0 fixed 0.483 

 

 
3 PNAs (1), Effort (2) 1.75 0.040 0.59 0.0525 est. 0.151 
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ABSTRACT 

Multiple processes influence the abundance dynamics of marine fish and shellfish 

populations, including density-dependence, environmental variability, trophodynamic 

interactions, and fishing. Because marine food webs are complex and difficult to 

characterize, determining the relative importance of trophodynamics to a species’ 

population dynamics is challenging. For species that occupy lower trophic positions, 

accurately explaining and predicting abundance dynamics can be enhanced by accounting 

for top-down predation pressure. In this study we present food habits of the bonnethead 

shark (Sphyrna tiburo) and results from a multispecies time-series model quantifying the 

impacts of this predator on population growth rates of five prey species within nearshore 

coastal Southeast U.S. Atlantic waters:  lesser blue crab (Callinectes similis), two lady 

crabs (Ovalipes ocellatus and O. stephensoni), blotched swimming crab (Portunus 

spinimanus), and a mantis shrimp (Squilla empusa). Density-dependence and changes in 

bycatch mortality were important for explaining S. tiburo temporal trends. Population 

growth rates of multiple prey species were negatively impacted by S. tiburo abundance, 

indicating that predation pressure has a measurable population effect on these prey. 

Additionally, environmental conditions associated with the Pacific Decadal Oscillation 

were correlated with the abundance dynamics of multiple prey species. This study 

highlights advantages of simultaneously accounting for multiple exogenous factors, 

namely trophodynamic interactions, when modeling abundance trends of lower trophic 

level fish and shellfish species. 



 164   
 

INTRODUCTION 

Food web interactions influence the abundance dynamics of species. During the 

20th century this fundamental idea gained prominence in ecology through the seminal 

works of Elton (1927) and Lindeman (1942), which in turn prompted an acceleration of 

trophic ecology research beginning in the 1960’s (e.g., Connell, 1961; Paine, 1966) that 

continues presently (Libralato et al., 2014). The importance of food web dynamics has 

long been recognized within the marine fisheries scientific community (e.g., Baird, 

1873), yet the leading paradigm of fisheries science is inherently single-species with a 

stock or population emphasis (Angelini and Moloney, 2007; Link, 2010). Although 

single-species methods that do not consider exogenous variables still dominate fisheries 

assessments globally (Skern-Mauritzen et al., 2016), more holistic approaches that 

include multispecies considerations have gained importance through the development and 

implementation of novel and practical analytical methods (Plagányi et al., 2014; Collie et 

al., 2016). 

Quantitative multispecies assessment models in fisheries science take many forms 

ranging from relatively simple multispecies production models (Collie and Gislason, 

2001) to those that model trophic webs of entire ecosystems complete with 

socioeconomic considerations (Pauly et al., 2000; Fulton et al., 2005). There is utility for 

every model framework no matter its level of complexity, although there have been 

recent calls for contextually appropriate models with intermediate levels of complexity 

that minimize uncertainty (Plagányi et al., 2014; Collie et al., 2016). Within the relatively 

data-rich Northeast U.S. Atlantic region, multiple forms of multispecies age-structured 

assessment models with predation components have provided tactical management 

advice (i.e., quantitative, short-term; Link, 2010) (Plagányi et al., 2014). Mohn and 
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Bowen (1996) implemented a Leslie matrix approach to model the effects of grey seal 

(Halichoerus grypus) predation on Atlantic cod (Gadus morhua), concluding that grey 

seal predation mortality was not a major contributor to the collapse of this iconic stock. 

Garrison et al. (2010) applied a refined version of multispecies virtual population analysis 

(MSVPA) to Atlantic menhaden (Brevoortia tyrannus) and several of its primary 

predators, emphasizing the importance of time-varying predator diet information for 

effective assessment of menhaden and forage fish generally. Curti et al. (2013) applied a 

multispecies catch-at-age model functionally related to MSVPA (Jurado-Molina et al., 

2005); predicted abundance patterns for three demersal groundfish species differed 

between single-species and multispecies model formulations due to interplay between 

natural and fishing mortality. Only with robust predator diet data were these frameworks 

able to be implemented. 

For many marine and aquatic species, an assessment model framework may not 

be appropriate or necessary because the species is not an actively managed resource. For 

some managed species, insufficient catch, life history, or trophic data may not permit the 

use of an assessment model framework that may require many mechanistic assumptions 

(Hampton et al., 2013). In such cases, hypotheses regarding trophic interactions can be 

tested via multivariate autoregressive (MAR) models, a class of statistical time series 

models rooted in the Gompertz equation describing population growth with density-

dependence (Ives et al., 2003). MAR state-space (MARSS) models extend the MAR 

framework by allowing specification of observation error in addition to process error 

(Hampton et al., 2013). MAR modeling has been implemented within planktonic 

freshwater systems (Ives et al., 1999; Francis et al., 2014), marine fish communities 
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(MacNally et al., 2010; Torres et al., 2017), and within terrestrial systems to a lesser 

extent (Vik et al., 2008; Ruhí et al., 2015) (see Hampton et al., 2013 for a review of 

applications across system types). 

In the Southeast U.S. Atlantic, the marine system in which this study takes place, 

multispecies trophic modeling has been very limited. Okey and Pugliese (2001) 

constructed a preliminary Ecopath model (Polovina, 1984) for the region, but inputs were 

mostly based on expert knowledge and diet characterizations from outside of the 

ecosystem. Although there are numerous diet studies for Southeast U.S. Atlantic fish 

predators (reviewed by Marancik and Hare, 2005), the lack of trophic modeling efforts in 

the region can in part be attributed to a lack of robust food studies programs with 

spatiotemporal sampling consistency such as those conducted in the Northeast U.S. 

Atlantic (Garrison and Link, 2000) and North Pacific (Livingston et al., 2017) . To 

advance the use of multispecies models in Southeast U.S. Atlantic region, we utilized the 

MARSS modeling framework to quantify predation effects of a specialist marine 

predator, the bonnethead shark (Sphyrna tiburo), on the abundance dynamics of five 

crustacean prey species:  lesser blue crab (Callinectes similis), ocellate lady crab 

(Ovalipes ocellatus), coarsehand lady crab (Ovalipes stephensoni), blotched swimming 

crab (Portunus spinimanus), and a mantis shrimp (Squilla empusa). Within Southeast 

U.S. Atlantic waters, Stratton et al. (2017) reported a population decline of these prey 

species concomitant with a population rebound of the bonnethead following a decline in 

bycatch mortality (SEDAR, 2013b). Each of these five crustacean species are either 

documented or likely diet components of S. tiburo (Bethea et al., 2007; Cortés et al., 

1996; Kroetz et al., 2017; Lessa and Almeida, 1998; this study). Although our focus was 
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on top-down predation effects, the MARSS framework enabled us to concurrently 

evaluate the effects of fishing, density-dependence, and relevant environmental drivers on 

population growth rates of these six species. Based on results for this predator-prey 

system, implications for modeling commercially-important crustacean populations in a 

multispecies context within the region are discussed. 
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METHODS 

Survey description 

Bonnethead and crustacean relative abundance data were obtained from the 

Southeast Area Monitoring and Assessment Program – U.S. South Atlantic (SEAMAP-

SA), a fishery-independent bottom trawl survey operated by the South Carolina 

Department of Natural Resources (SCDNR; Charleston, SC). SEAMAP-SA samples the 

demersal biological assemblage from Cape Canaveral, FL to Cape Hatteras, NC thrice 

annually during northern spring, summer, and fall. The survey employs a stratified fixed 

station design, whereby a pre-determined subsample of fixed stations are chosen for 

seasonal sampling from a pool of all possible fixed stations distributed across multiple 

sampling regions. At each sampling station, two tongue trawl nets (13.5-m wingspan) are 

towed on the bottom for 20 minutes from a double-rigged 23-m St. Augustine shrimp 

trawler. The catch is brought on-board, sub-sampled (if necessary) and sorted, all 

individuals are identified to the lowest possible taxon and enumerated, and allometric data 

are collected for certain priority species. SEAMAP-SA data are publicly available at 

seamap.org (SEAMAP-SA Data Management Work Group, 2014). 

Shark diet characterization 

To characterize bonnethead diet composition within the study area, stomach 

samples were collected during three sampling seasons:  Fall 2012, Spring 2013, and Fall 

2013. Diet samples were not collected in summer for logistical reasons because diet 

sampling efforts were part of a larger multispecies diet collection effort. At each sampling 

station, length and weight were measured for all S. tiburo individuals captured. Specimens 

were euthanized and their stomach and contents excised and preserved in a Normalin 
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fixative for later laboratory diet characterization. Euthanization procedures were approved 

by the College of William & Mary’s Institutional Animal Care and Use Committee. In the 

laboratory, wet stomach contents were sorted and identified to the lowest possible taxon, 

then weighed to the nearest thousandth of a gram. Percent diet composition of prey groups 

were calculated gravimetrically using a cluster sampling estimator: 

 %𝐷𝐷𝑗𝑗𝑗𝑗 = ∑ 𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖

𝑚𝑚𝑖𝑖𝑖𝑖
× 100𝑁𝑁

𝑖𝑖=1  (13)  

where 𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖 is the total weight prey group k in the stomachs of all predators in size group 𝑗𝑗 

captured at sampling site 𝑖𝑖. Predators were separated into small and large size groups (see 

next subsection). By pooling all predators from the same size group captured at a given site 

into one “group stomach”, intra-sample correlation in diet is reduced (Bogstad et al., 1995). 

Other applications of the cluster sampling estimator to diet data have included a 

proportional sample size weighting coefficient representative of the fraction of individuals 

subsampled at each location (Buckel et al., 1999; Latour et al., 2008; Buchheister and 

Latour, 2015). However, inclusion of this term was not necessary here since all S. tiburo 

specimens captured during the three specified seasons were processed for diet 

characterization. 

Data specification 

For input into MARSS models, we generated standardized annual indices of 

relative abundance using 21 years of SEAMAP-SA relative abundance data from 1994 to 

2014 collected within the four southernmost SEAMAP-SA sampling regions from Cape 

Canaveral, FL to Cape Fear, NC (Fig. 12). SEAMAP-SA also samples within Onslow and 

Raleigh Bays of North Carolina, but S. tiburo is uncommon in those areas during northern 

summer and largely absent during spring and fall (MAS, unpublished SEAMAP-SA data). 
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All trawl sampling stations were within the nearshore zone, defined here as coastal ocean 

waters between 15 and 30-ft water column depth. 

For S. tiburo, we generated separate indices for small and large animals based on 

length frequency data. Small animals were separated from large animals by total length 

cutoffs of 61 and 69-cm for spring and summer data, respectively (Fig. 13); fall data were 

not used for generating shark relative abundance indices. An abundance of young, small 

animals appear in SEAMAP-SA catches during fall sampling (October-November), many 

of which are neonates pupped during late summer parturition (Manire et al., 1995). Based 

on age-specific length ranges from Frazier et al. (2014), sharks in the small size category 

correspond to ages 0-3, while those in the large size category are 3+ years old. The bimodal 

pattern in S. tiburo SEAMAP-SA length-frequency data may be due to habitat partitioning 

of age 2-3 sharks (~60-70 cm total length) outside of the survey range, a faster growth rate 

for this age range (Frazier et al., 2014) resulting in fewer of those animals being sampled, 

or a combination of both. 

To allow S. tiburo predation impacts to be reflected in prey population abundance 

indices, the year was redefined as between October through September. Bonnethead 

indices were generated with spring (April-May) and summer (July-August) data during 

year 𝑡𝑡, while prey indices were generated using fall data from the same calendar year 

(October-November) but specified in the model as year 𝑡𝑡 + 1. 

Abundance indices 

Standardized annual indices of relative abundance were generated by modeling 

numbers of individuals per tow with covariates using generalized linear models (GLMs) 

(Nelder and Wedderburn, 1972) and zero-inflated generalized linear models (ZIGLMs) 
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(Lambert, 1992; Hall, 2000). We tested four GLM frameworks:  negative binomial GLM 

(NBGLM), Poisson GLM (PGLM), zero-inflated negative binomial GLM (ZINB), and 

zero-inflated Poisson GLM (ZIP) (Table S2; McCullagh and Nelder 1989; Zuur et al. 

2009; Hilbe 2011). A decision tree was implemented to identify the optimal model 

framework for each species (Fig. 14). Tow-level covariates included at this stage of 

analysis were year (categorical), season (categorical, two levels for predator models), 

region (categorical, four levels), and effort (log-transformed m2 area of seafloor swept, 

input as an offset variable). 

To determine if a species dataset was zero-inflated, Akaike’s Information 

Criterion (AIC) (Akaike, 1973) was used to compare a main effects ZINB model with all 

covariates in the count process and region in the binomial process (‘binomial_Y’ model) 

to the same model with no covariates in the binomial process (‘binomial_N’ model). A 

season covariate was not included in prey species models given that only fall data were 

utilized. If AIC𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑌𝑌 − AIC𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑁𝑁 ≤ 2, strong support was evident for a ZIGLM 

framework. For zero-inflated datasets, a likelihood ratio test (𝛼𝛼 = 0.05) was conducted to 

determine if the saturated ZIP was overdispersed compared to the saturated ZINB (Zuur 

et al., 2012). This test requires nested models and is appropriate here because a ZIP is a 

special nested case of a ZINB (Hilbe, 2011). For instances where AIC𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑌𝑌 −

AIC𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑁𝑁 > 2, a regular GLM framework (i.e., non- zero-inflated) was selected. 

Dispersion was calculated for the PGLM as the ratio of squared and summed Pearson 

residuals to the residual degrees of freedom (McCullagh and Nelder, 1989); we 

considered a PGLM unacceptably overdispersed if dispersion > 2. 
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Once an optimal GLM framework was selected for each species, an information-

theoretic approach (Burnham and Anderson, 2002) to model selection was adopted with 

the goal of identifying the most parsimonious combination of tow-level covariates. We 

fitted main effects models for all combinations of tow-level covariates and retained the 

model with the lowest AIC𝑐𝑐 value (Sugiura, 1978). The index variable “Year” and the 

scaler “Effort” were included in every model considered for selection. For each species’ 

most supported GLM, we estimated annual relative abundances by averaging the 

marginal mean predictions for each year (Searle et al., 1980). Final annual index 

estimates and variances were estimated via year-stratified bootstrapping (n = 5,000) 

(Efron, 1983). 

Multispecies modeling 

A multivariate autoregressive state-space (MARSS) modeling framework was 

utilized to quantify the relative effects of density-dependence, trophic interactions, and 

exogenous factors on population growth rates for our species of interest. The MARSS 

model we implemented is represented in matrix notation as follows (Holmes et al., 2014): 

 𝐱𝐱𝑡𝑡 = 𝐁𝐁𝐱𝐱𝑡𝑡−1 + 𝐮𝐮 + 𝐂𝐂𝐜𝐜𝑡𝑡 + 𝐰𝐰, where 𝐰𝐰~MVN(0,𝐐𝐐) (14a) 

 𝐲𝐲𝑡𝑡 = 𝐙𝐙𝐱𝐱𝑡𝑡 + 𝐚𝐚 + 𝐃𝐃𝐝𝐝𝑡𝑡 + 𝐯𝐯𝑡𝑡, where 𝐯𝐯𝑡𝑡~MVN(0,𝐑𝐑𝑡𝑡) (14b) 

where the 𝐱𝐱𝑡𝑡 equation is the state process and the 𝐲𝐲𝑡𝑡 equation is the observation process. 

Multivariate response time series data are represented as 𝐲𝐲𝑡𝑡 and covariate data as 𝐜𝐜𝑡𝑡 and 

𝐝𝐝𝑡𝑡. The elements of 𝐂𝐂 are estimated (time-invariant and linear) effects of 𝐜𝐜𝑡𝑡 on states 𝐱𝐱𝑡𝑡, 

and the elements of 𝐃𝐃 are estimated effects of 𝐝𝐝𝑡𝑡 on observations 𝐲𝐲𝑡𝑡. The matrix 𝐁𝐁 holds 

estimated time-invariant community interactions, which were of primary interest for this 

study. Vectors 𝐮𝐮 and 𝐚𝐚 are scaling terms, with 𝐮𝐮 fixed at zero. Both predator and prey 
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population time series resembled random walks, thus we assumed all populations were at 

equilibrium and demeaned the input (observed) time series data. Vectors 𝐰𝐰 and 𝐯𝐯𝑡𝑡 are 

process and measurement errors, respectively, with associated variance-covariance 

matrices 𝐐𝐐 and 𝐑𝐑𝑡𝑡. 

The effects of multiple covariates on population trends were considered (Table 7). 

Two covariates were considered within the state process (Eq. 14a), one fishing-related 

and the other environmental. Covariate coefficients were estimated separately for each 

prey species and shark size group. A recent stock assessment for S. tiburo indicated 

bycatch within commercial penaeid shrimp trawl nets was the largest source of mortality 

for the stock (SEDAR, 2013b), thus we considered a measure of shrimp fleet trawling 

effort as a proxy for bycatch mortality derived from Walter and Isley (2014) (see 

Appendix II). Crustacean species are also common bycatch in this fishery (Scott-Denton 

et al., 2012), so the effect of this covariate on prey species was also examined. Previous 

research indicated that the Pacific Decadal Oscillation (PDO) was correlated with 

abundance patterns for multiple crustacean species (Stratton et al., 2017), thus we 

considered the effect of the PDO on each of the five prey species. In addition to state 

process covariates, an average annual temperature anomaly for the study region was 

considered as a covariate within the observation process (Eq. 14b). This covariate was 

intended to capture potential changes in availability of species sampled by the survey due 

to interannual differences in temperatures that in part act to govern migration phenology. 

Annual temperature anomalies were calculated as the normalized average of mean 

bottom temperature at sample locations within each SEAMAP-SA sampling region and 

season (spring/summer for predator indices, fall for prey indices). 
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Several assumptions were made prior to model selection using AIC. We were 

primarily interested in the effects of predation on crustacean prey species abundances, 

thus for simplification we did not estimate the effects of prey species abundances on 

predator species abundance within the 𝐁𝐁 matrix. All time series were assumed 

independent of one another, thus covariances (𝐑𝐑𝑡𝑡 and 𝐐𝐐 off-diagonals) were fixed at zero. 

Time-specific measurement error variances were fixed as those variances estimated from 

GLM bootstrapping in log space. We assumed all indices shared a process error variance 

𝑞𝑞 because estimating more than one process error variance parameter resulted in either 

model non-convergence or the inability to estimate uncertainty due to confounded 

parameters. Unbiased parameter coefficients and associated uncertainties were estimated 

from parametric bootstrapping appropriate for state-space models (n = 500) (Stoffer and 

Wall, 1991; Cavanaugh and Shumway, 1997) and Akaike weighted: 

 𝑤𝑤𝑖𝑖 =
exp(−12∆𝑖𝑖)

∑ exp(−12∆𝑟𝑟)𝑅𝑅
𝑟𝑟=1

 (15)  

where 𝑤𝑤𝑖𝑖 is the Akaike weight of model 𝑖𝑖 in model set 𝑟𝑟, and exp(−1
2∆𝑖𝑖) is proportional 

to the relative log-likelihood of model 𝑖𝑖 (Burnham and Anderson, 2002). Final weighted 

parameter estimates were calculated as: 

 𝛽̂̅𝛽 = ∑ 𝑤𝑤𝑖𝑖𝛽𝛽�𝑖𝑖𝑅𝑅
𝑖𝑖=1
∑ 𝑤𝑤𝑖𝑖
𝑅𝑅
𝑖𝑖=1

 (16)  

where 𝛽̂𝛽 is the parameter estimate in model 𝑖𝑖, and 𝛽̂̅𝛽 is the weighted parameter estimate 

(Symonds and Moussalli, 2011). Because our model set did not contain a single model 

with an Akaike weight greater than 0.9, we used “full-model” averaging as opposed to 

“natural” averaging (see Symonds and Moussalli, 2011). Bootstrapped CIs and model 

predicted abundances (‘states’) were also weighted using this method. A shrinkage 
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estimator can be applied for estimating the variance of 𝛽̂̅𝛽 and symmetric CIs based on 𝛽̂̅𝛽 

(Lukacs et al., 2010), however this formulation was inappropriate for our application 

because bootstrapped CIs were asymmetric for many community interaction coefficients. 

Bias of model-predicted abundances were assessed by Root Mean Squared Error (RMSE) 

(Hyndman and Koehler, 2006): 

 RMSE = �∑ (𝑌𝑌𝑡𝑡 − 𝑆𝑆𝑡𝑡)2/𝑛𝑛𝑛𝑛
𝑡𝑡=1  (17)  

where 𝑆𝑆𝑡𝑡 is the time-specific predicted state value for observation 𝑌𝑌𝑡𝑡 for a time series of 

length 𝑛𝑛.  

Co-occurrence analysis 

 As a complement to diet data and multispecies model results, we estimated 

probabilities of co-occurrence (Veech, 2013) for S. tiburo size groups and modeled prey 

species based on tow-level data from 1994-2014. We also estimated co-occurrence 

probabilities for commercially-important crustacean prey species that we were unable to 

include in multispecies modeling due to high uncertainty in their GLM indices. Co-

occurrence probabilities were estimated using only tows in which the relevant shark size 

group was captured. Co-occurrence analysis allowed us to gain a cursory understanding of 

preferential prey species selection for each shark size group. 

Computing 

We conducted all statistical analyses in R (R Core Team, 2016) using the 

following packages: MASS and pscl (Jackman, 2015) for generalized linear modeling; 

MARSS (Holmes et al., 2012) for multispecies modeling; AICcmodavg (Mazerolle, 2015) 

and lmtest (Zeileis and Hothorn, 2002) for model selection; boot (Canty and Ripley, 

2015) and MARSS for bootstrapping; cooccur for co-occurrence analysis (Griffith et al., 
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2016); ggplot2 (Wickham, 2009) and gridExtra (Auguie, 2016) for plotting; doBy 

(Højsgaard and Halekoh, 2014), dplyr (Wickham and Francois, 2016), foreach and 

doParallel (Revolution Analytics and Weston, 2015), formula.tools (Brown, 2015), plyr 

(Wickham, 2011), and reshape2 (Wickham, 2007) for data manipulation and 

programming. 
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RESULTS 

Shark diet characterization 

During three seasons of diet sampling (Fall 2012, Spring 2013, and Fall 2013), a 

total of 89 small and 207 large S. tiburo specimens were collected from 29 and 44 

sampling stations, respectively.  The diet composition by weight of both small and large 

bonnethead sharks was predominated by crustaceans, followed distantly by teleost fishes 

and other taxa (Table 8). The number of identified prey types within stomachs of large 

sharks was greater than that in small sharks, indicating a broader potential prey field and 

dietary breadth for larger animals. Compared to small sharks, large sharks consumed 

more portunid crabs, mantis shrimps (Stomatopoda), and horseshoe crabs (Limulidae), 

both in terms of number of species and percent diet by weight. Compared to large sharks, 

small sharks selected crustacean taxa such as crabs, shrimps and copepods with smaller 

maximum body sizes (e.g., Rimapenaeus constrictus, Gilvossius setimanus). A greater 

number of teleost fish species were identified in the stomachs of large sharks, although 

the percent weight of fish was similar among size groups. 

Abundance indices 

The optimal framework for species indices was either a zero-inflated negative 

binomial GLM or a negative binomial GLM (Table 9). For all indices where a NBGLM 

was optimal, the model with the lowest AIC values contained the covariate “Region” 

along with required covariate “Year” and the scaler log-transformed “Effort” offset. For 

species indices estimated within a ZINB framework the covariate “Region” was always 

contained in the model with the lowest AIC value, in both the count and binomial 

processes. The covariate “Season” was not contained in the lowest AIC model for either 



 178   
 

predator index. Median annual observation variance, a summary statistic useful for 

comparing how precisely a species or size group was sampled, was lowest for the large 

bonnethead index (0.10) and highest for O. stephensoni (0.51); most species had median 

values on the low end of this range (Table 9). GLM-estimated index time series trends for 

both shark size groups exhibited positive directional change through time (Fig. 15A) 

concomitant with a decrease in shrimp trawling effort. All prey species exhibited an 

overall decreasing linear trend in abundance during the study period (Table 9), as well as 

displayed some level of synchronicity for interannual fluctuations in abundance (Fig. 

15B). 

Multispecies modeling 

MARSS models with various combinations of covariates were fitted and ranked 

with AIC. Twenty models for which community interactions (𝐁𝐁 matrix off-diagonals) 

were estimated (Table 10) had AIC values at least 43 points less than twenty comparable 

models with only density-dependence estimated (not tabulated). This comparison of 

model sets indicates that including community interactions improved fits for all models 

regardless of covariate parameterizations. Community interaction models with the most 

support always contained parameters estimating the effect of fishing on predator size 

groups and the effect of the PDO on prey species (Table 10). The effects of fishing on 

prey species and of temperature anomalies on predator or prey species were not always 

contained in the highest ranked models, indicating their lesser importance to explaining 

abundance dynamics. Eleven models with strong to moderate support (ΔAIC < 7) had 

non-zero AIC weights and were used to obtain final weighted parameter coefficient 

estimates and confidence intervals (CIs).  



 179   
 

 Estimated predator-on-prey effects were negative and significant at 𝛼𝛼 = 0.01 for 

large sharks on three of the five prey species – C. similis, O. stephensoni, and S. empusa. 

A predation effect was not seen for small sharks on any prey species (Table 11, Fig. 16). 

Density-dependence was indicated for large sharks and all prey species, but not for small 

sharks. A negative effect of large on small sharks was detected, but not vice versa. 

Trophic effects of small and large sharks on prey species had consistent positive and 

negative biases, respectively (Table 11). The level of bias for these parameters was 

related to the magnitude of time-varying observation errors fixed for each species based 

on realistic GLM-estimated variances; the magnitude and bias of community interaction 

estimates, as well as CI asymmetry, all decreased as fixed observation errors were 

artificially reduced by 50% and 90% (results not shown). Fishing negatively impacted 

abundances of both shark size groups (Fig. 16), as well as some prey species at 𝛼𝛼 = 0.05 

(Table 12). Abundances for all prey species except O. stephensoni were positively 

associated with the PDO. O. ocellatus was negatively associated with temperature 

anomalies, likely indicating increased availability to the survey gear when fall water 

temperatures were below average. 

Akaike-weighted process error variance (𝑞𝑞) shared among all time series was 

estimated at 0.017 (99% CI: 0.001, 0.028), which was an order of magnitude less than 

then lowest median annual observation variance (Table 9). The unbiased bootstrap 

estimate for 𝑞𝑞 was 0.027. For most species and size groups, MARSS model predictions 

generally tracked observed (i.e., GLM-estimated) abundance estimates (Fig. 17). Model 

predicted abundances were least biased for large sharks and C. similis (RMSE = 0.07) 

and most biased for O. stephensoni (RMSE = 0.54). A comparison of model 7 (see Table 



 180   
 

10) fitted with community interactions versus the same model fitted with only density-

dependence revealed informative differences in model prediction bias and uncertainty 

(Table 13). For prey species C. similis, P. spinimanus, and S. empusa, prediction bias was 

improved (i.e., lower RMSE) by including community interactions. For Ovalipes spp. 

prediction bias worsened when community interactions were included. For O. 

stephensoni, this result conflicts with the strong negative predation effect on this species 

estimated for large sharks. Prediction bias for large sharks increased substantially when 

an interaction with small sharks was included, while bias for small sharks was nearly 

unchanged when a competitive effect of large sharks was included. Although changes in 

prediction bias between model types varied among species, prediction uncertainty (i.e., 

median SE across years) was improved for all species when community interactions were 

included (Table 13). 

Co-occurrence probabilities 

Of the five prey species included in multispecies modeling, C. similis and O. 

stephensoni had the highest median probability of nearshore co-occurrence in either 

spring or summer (> 40%) with large bonnetheads (Table 14). These two prey species 

also had the highest model-estimated predation effects from large sharks (Table 11). O. 

ocellatus, P. spinimanus and S. empusa were less likely to co-occur with large sharks in 

spring and summer (12-28% range in median probability). The commercially-important 

Callinectes sapidus (blue crab) had low co-occurrence probabilities for both shark size 

groups (Table 14) despite its importance in the diets of both (Table 8). Two 

commercially-important penaeid shrimps had high probabilities of co-occurrence with 

both shark size groups: Farfantepenaeus aztecus (brown shrimp) in summer and 
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Litopenaeus setiferus (white shrimp) in spring and summer. Both shrimp species were 

found in shark stomachs (Table 8). 
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DISCUSSION 

In this study, we present evidence that multiple processes govern the abundance 

dynamics of a coastal marine predator and five of its prey species. Multispecies model 

results informed by empirical diet data revealed that the inclusion of trophic interactions 

was important for explaining the abundance dynamics for multiple crustacean species we 

examined. Model-estimated predation effects were greater in magnitude than endogenous 

(density-dependence) and other exogenous (fishing, environmental) effects, although 

each type of factor was informative in explaining population growth patterns for S. tiburo 

and some prey species. Considering all of these processes simultaneously – density-

dependence, fishing, trophodynamics, and environmental variability – provided a more 

complete understanding of population regulating factors and their relative importance. 

 Our primary focus was to test the hypothesis that S. tiburo had measurable 

population impacts on crustacean species of interest. This ensemble of species was 

chosen for modeling based on two lines of evidence. First, there is indirect but 

convincing time series evidence that a population rebound of S. tiburo, which followed a 

reduction in bycatch mortality for this predator species (SEDAR, 2013b), had indirect 

trophic effects on multiple demersal crustacean populations (Stratton et al., 2017). 

Second, our diet results are in agreement with studies from other regions characterizing 

the bonnethead as a specialist predator that feeds primarily on crustaceans, especially 

crabs (Cortés et al., 1996; Lessa and Almeida, 1998; Bethea et al., 2007; Kroetz et al., 

2017). Thus, the five S. tiburo prey species that were reliably sampled by SEAMAP-SA 

were included in multispecies models. P. spinimanus was the only prey species we 

modeled that has not been identified to species in any S. tiburo diet study to date. In our 
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study, unidentified Portunus sp. comprised 4.2% of S. tiburo diet by weight, thus P. 

spinimanus may have been present but not positively identified. 

Trophodynamics 

Our work demonstrates the particular utility of investigating trophic interactions 

for explaining time series trends for marine species potentially subject to high predation 

rates. In nearly all modern day fishery stock assessments, predation is encapsulated 

within a natural mortality parameter, which is difficult to estimate and thus typically 

assumed based on life history characteristics (Vetter, 1988). Natural mortality is 

commonly fixed at too low a value in single species stock assessments because predation 

is not explicitly accounted for, potentially resulting in less conservative biological 

reference points (Tyrrell et al., 2011). For marine species that occupy lower trophic levels 

such as forage fishes, accounting for predation can be critical for proper management 

(Tyrrell et al., 2008). Although the currency used in the MARSS model framework is 

population growth rate (Ives et al., 2003) and not mortality rate, the former directly 

reflects the combination of mortalities and births within the population. In our case the 

prey species of interest are not of commercial interest, thus implementing a multispecies 

time series model was more suitable than an assessment framework. 

 The MARSS framework has most often been implemented for species or species 

groups that are of ecological and conservation interest (Francis et al., 2014; Paleczny et 

al., 2015; Ruhí et al., 2015; Greenville et al., 2016), though some recent efforts have 

utilized this modeling tool to assess the status of populations that have direct economic 

value in marine systems (Tolimieri et al., 2017; Torres et al., 2017). Although the prey 

species we modeled are not commercially-important, this framework could be extended 
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to actively-managed crustacean species in the Southeast U.S. Atlantic region. Diet data 

from this study and others document the blue crab (C. sapidus) as an important prey 

resource for the bonnethead, especially large females that frequent estuaries where blue 

crabs are in higher densities (Ulrich et al. 2007, Castro 2011, this study). Although 

SEAMAP-SA is not a suitable survey for generating a C. sapidus index abundance within 

our study range, Colton et al. (2014) reviewed C. sapidus time series trends derived from 

stock assessments and revealed an overall decline from 1990-2008 in Florida, Georgia, 

and South Carolina. Assessment-derived C. sapidus interannual trends also appear 

synchronous with trends for the five prey species we modeled, suggesting that these six 

species are responding to similar exogenous factors despite the estuarine habitat 

preference of C. sapidus. This apparent synchrony indicates that increased predation 

pressure is likely in part responsible for the overall recent decline of C. sapidus, a species 

that accounted for 25% of all fishery landings revenue (> $46 million) in the U.S. South 

Atlantic region during 2014 (NMFS, 2016). 

We made the simplifying assumption that S. tiburo was the only predator 

affecting prey species population growth trends. Although this assumption is unrealistic, 

existing diet data does not suggest other predators that would evoke the decreasing prey 

population growth trends we observed. Cobia (Rachycentron canadum) is another well-

documented specialist crustaceavore in the region with high prey type overlap to S. tiburo 

(Smith, 1995; Arendt et al., 2001). Red drum (Sciaenops ocellatus) is also known to feed 

on blue crabs and other crustaceans (Scharf et al., 2000), although red drum are more 

generalist feeders (Peacock, 2014; Kroetz et al., 2017). Comparable abundance trends 

within the region for cobia and red drum during our study period have been decreasing 
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and unchanged, respectively (SEDAR, 2013a; ASMFC, 2017), thus changes in the 

abundances of these two predators are unlikely to have contributed to overall decreasing 

trends in crustacean abundances. An alternative hypothesis is that a recent increase in 

overall fish community biomass due to reduced bycatch mortality (Stratton et al., 2017) 

has resulted in higher cumulative predation rates from other yet unidentified predator 

species in addition to S. tiburo. The hypothesis is untestable without additional 

community trophic information.  

Although this predator is fully capable of predating upon other available prey 

such as fishes, the bonnethead shark has mechanical, sensory and behavioral adaptations 

especially evolved for detection, capture and processing of hard-shelled crustaceans, 

especially crabs (Wilga and Motta, 2000). The overall decrease in the bonnethead’s 

preferred prey base in recent decades raises questions about the potential impact of 

reduced prey availability on individual growth, survival, and reproductive success of this 

predator, given its specialist feeding tendencies. The slight decreasing trend for both size 

groups during the latter half of the time series (Fig. 15) may signal that this species has 

reached a new carrying capacity despite steadily decreasing total fishing mortality. This 

study was focused on predator-on-prey effects, although prey-on-predator effects could 

be tested within the MARSS framework at the population level. Doing so would require 

additional model complexity by distinguishing input indices between males and females 

as well as mature versus immature individuals. 

Environmental effects 

Results from this study revealed dual effects from predation and environmental 

variability on multiple prey species. Although predation effects were stronger than 
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environmental effects in our case, considering both concurrently is critical for properly 

characterizing the effects of either on population stochasticity (Kilpatrick and Ives, 2003) 

and estimating unbiased community interaction terms within the MARSS framework 

(Holmes et al., 2012). At the population level, the mechanism for predator-on-prey 

effects is intuitive (mortality) unless there are demonstrated prey behavioral 

modifications that affect individual vital rates other than survival (e.g., growth; Halpin 

2000). In marine species that are broadcast spawners, environmental stochasticity 

commonly confers variability to recruitment success (e.g., Eggleston et al. 2010, Miller et 

al. 2016, Wang et al. 2017) and thus the rate of population growth. Extreme 

meteorological conditions (e.g., extreme winter cold events) may impact adult survival, 

but young animals are often more susceptible (Hurst, 2007). 

We assume that the positive effect of the PDO on prey species is also related to 

young-of-the-year survival, although a mechanism has not been identified. Fall 

abundances for all modeled prey species peaked consistently following a winter in which 

the PDO index spiked upward (Fig. 15; model years 2000, 2005, and 2012). Southeast 

U.S. winter weather conditions are on average colder and wetter during a positive PDO 

phase (Mantua and Hare, 2002; SCO, 2015), suggesting that these conditions positively 

affect vital rates and population growth rates for the five species we modeled. Although 

all prey species exhibited consistent positive abundance responses during years in which 

the PDO spiked upward, reproductive timing and strategy varies among them; Ovalipes 

spp. broadcast spawn in cold months while C. similis and P. spinimanus do so in warm 

months (Williams, 1984), and S. empusa females guard their eggs in burrows during 

warm months (Wortham, 2009). These reproductive differences yet similar abundance 
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trends suggest that conditions associated with the PDO are affecting winter survival of 

juveniles and adults perhaps more so than larval recruitment success. Given the greater 

life history knowledge and economic importance of C. sapidus compared to the 

crustacean species we modeled, we suggest a detailed investigation into PDO conditions 

and the response of blue crab stocks within our study region. 

Future directions 

Multispecies trophic models presume understanding of food web relationships 

based on empirical data (Collie et al., 2016). Only with increased investment in scientific 

data-collecting platforms with spatiotemporal sampling consistency (e.g., Garrison and 

Link 2000, Buchheister and Latour 2015) will multispecies modeling become a truly 

viable tool for researchers and managers in the Southeast U.S. Atlantic region. 

Implementing a multispecies diet data collection program is costly and time-intensive, 

thus we recommend first establishing on-going sampling of common mid- to upper 

trophic level predators (e.g., S. tiburo, S. ocellatus, R. canadum, Rhizoprionodon 

terraenovae). These predators feed on or have high co-occurrence probabilities with blue 

crab and penaeid shrimps, crustacean species that currently support 50% of all fisheries 

revenue in the region (NMFS, 2016). Despite our focus on discussion of multispecies 

food web interactions, environmental effects cannot be ignored when attempting to 

explain population abundance trends and stochasticity of lower trophic level fish and 

shellfish species. We suggest building upon the work of existing environmental studies of 

Southeast U.S. Atlantic demersal species (e.g., Hare and Able 2007, Eggleston et al. 

2010, Stratton et al. 2017) toward further identification and characterization of how 

meteorological phenomena affect vital rates of living marine resources in the region. 
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A key benefit of the state-space approach is the ability to partition variation in the 

observations from true process variation in the population(s) being modeled. In this 

study, GLM-estimated observation error variances were a level of magnitude higher 

(0.10-0.51 range among species) than process error variance (0.017) estimated from 

multispecies models. A sensitivity analysis with artificially reduced observation error 

variance (results not reported) revealed in higher process error variance but overall less 

uncertainty in parameter estimates and abundance predictions. This result demonstrates 

the utility of the state-space approach to improve practical reality of the modeled system 

(Fleischman et al., 2013). One feature the MARSS framework would benefit from is the 

ability to specify uncertainty in covariates. This capability has been demonstrated in other 

state-space model frameworks (e.g., Miller et al. 2016) and would further improve the 

flexibility of the MARSS approach. 

 In conclusion, this application of a multivariate state-space time series approach 

revealed important ecological interactions for demersal species in the Southeast U.S. 

Atlantic region. The potential to implement ecosystem-based modeling approaches within 

the region would increase with the expansion of existing state and federal fisheries data 

collection programs. In the absence of additional investments in these programs, 

multispecies models with the appropriate level of complexity should be prioritized above 

ecosystem modeling approaches not able to be supported by sufficient empirical data 

(e.g., Okey and Pugliese 2001). Only with a fundamental, data-driven understanding of 

the environmental, trophodynamic, and anthropogenic characteristics of this marine 

system can ecosystem-based approaches to fisheries management be successfully 

implemented on a broad scale.
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TABLES 

Table 7. Covariates considered within MARSS models. 

 

Covariate Relevant species Process Calculation Reasoning 
Penaeid shrimp 
trawl fishery 
effort 

Predator and prey State (Eq. 
14a) 

Total annual commercial trips (log-
transformed) 

Proxy for bycatch mortality 
(Scott-Denton et al., 2012; 
SEDAR, 2013b) 

Pacific Decadal 
Oscillation 
(PDO) 

Prey State Statistical reconstruction of in situ SST in 
the North Pacific Ocean (NCDC, 2015); 
average of monthly winter (Dec–Mar) values 

Correlation demonstrated in 
previous research (Stratton et 
al., 2017) 

Temperature 
anomaly 

Predator and prey Observation 
(Eq. 14b) 

Annual average of mean temperature 
anomalies within four sampling regions; 
calculated from spring/summer data for S. 
tiburo and fall data for prey species 

Potential changes in 
availability to survey gear due 
to interannual differences in 
migration phenology 

 



 198   
 

Table 8 (table on following two pages). Sphyrna tiburo diet characterization in nearshore 
coastal habitats from Cape Canaveral, FL to Cape Fear, NC during Fall 2012, Spring 
2013, and Fall 2013. Diet percentages by weight (Eq. 13) are based on 89 and 207 
individual small and large shark specimens, respectively, collected from 29 and 44 
sampling stations. 
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Hierarchical prey taxonomic categories 
Bonnethead % 
diet by weight 

General group Family level or higher Genus species Small Large 
Crustacea TOTAL   87.9 76.8 

 Crustacea unid.  17.9 2.0 

 Decapoda unid.  28.3 25.8 

 Portunidae TOTAL  14.3 28.8 

 Portunidae  6.2 3.4 

  Arenaeus cribrarius - 1.5 

  Callinectes sp. - 3.6 

  Callinectes sapidus 1.7 7.9 

  Callinectes similis 6.3 2.0 

  Ovalipes sp. - 1.3 

  Ovalipes ocellatus - 2.4 

  Ovalipes stephensoni - 1.9 

  Portunus sp. - 4.2 

  Portunus gibbesii - 0.3 

  Portunus sayi - 0.2 

 Pisidae TOTAL  - 2.9 

  Libinia sp. - 0.3 

  Libinia dubia - 1.7 

  Libinia emarginata - 0.9 

 Anomura TOTAL  1.3 0.3 

 Anomura unid.  1.0 0.2 

 Albuneidae unid.  0.2 - 

  Albunea catherinae - <0.1 

  Albunea paretii - <0.1 

  Pagurus pollicaris <0.1 <0.1 

 Cancridae Cancer sp. - 1.8 

 Cancridae Cancer irroratus 0.2 - 

 Panopeidae Panopeus herbstii 0.4 - 

 Pinnotheridae  1.6 - 

 Stomatopoda TOTAL  5.1 11.7 

 Nannosquillidae Platysquilloides enodis - 1.3 

 Squillidae unid.  1.9 0.9 

  Squilla empusa 3.1 9.5 

 Penaeidae TOTAL  12.9 3.6 

 Penaeidae unid.  4.2 - 

  Farfantepenaeus aztecus - 1.0 

  Litopenaeus setiferus 1.1 2.3 

  Rimapenaeus constrictus 7.2 0.2 

  Xiphopenaeus kroyeri 0.4 - 

 Sergestidae Acetes sp. <0.1 - 

 Callianassidae Gilvossius setimanus 3.6 - 

 Upogebiidae Upogebiidae <0.1 - 
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Hierarchical prey taxonomic categories 
Bonnethead % 
diet by weight 

General group Family level or higher Genus species Small Large 

 Mysidae Neomysis americana 0.1 - 

 Pennellidae Lernaeenicus sp. 2.1 - 
Teleostei TOTAL   5.5 6.2 
 Teleostei unid.  5.1 3.1 
 Clupeiformes unid.  - 1.5 
  Anchoa mitchilli 0.4 - 
 Ephippidae Chaetodipterus faber - 0.4 
 Sciaenidae TOTAL  - 0.6 
  Menticirrhus sp. - 0.2 
  Micropogonias undulatus - 0.4 
 Stromateidae Peprilus triacanthus - 0.6 
Chelicerata Limulidae Limulus polyphemus - 3.4 
Polychaeta TOTAL   - 0.7 
 Polychaeta unid.  - 0.5 
 Nereididae Nereis sp. - <0.1 
 Opheliidae Ophelia denticulata - 0.1 
Mollusca TOTAL   1.2 0.4 
 Mollusca unid.  1.1 0.1 
 Gastropoda unid.  0.1 <0.1 
 Loliginidae Loligo pealeii - 0.2 
Other TOTAL   5.4 12.6 
 Unidentified  5.3 10.6 
 Abiotic  <0.1 1.7 
 Plantae  <0.1 0.1 
 Cnidaria  - 0.2 
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Table 9. Generalized linear modeling results. The optimal GLM framework was either a negative binomial GLM or zero-inflated 
negative binomial GLM. Variate and covariate letter abbreviations in model formulae are N (“Number”), Y (“Year”), R (“Region”), 
and E (“Effort”). For indices where a ZINB was optimal, the lowest AIC model always contained the covariate “Region” in the 
binomial process. Dispersion was calculated at the ratio of squared and summed Pearson residuals to the residual degrees of freedom. 
Annual observations variances were estimated from bootstrapping in log space. 

 

Species 
type 

Species GLM 
framework 

Formula for model 
with lowest AIC 

GLM 
dispersion 

Median annual 
observation variance 

Linear time 
series trend 

Predator Sphyrna tiburo, Sm. ZINB N ~ Y + R + E | R 1.23 0.16 +0.03 
Sphyrna tiburo, Lg. NBGLM N ~ Y + R + E 1.14 0.10 +0.05 

Prey Callinectes similis ZINB N ~ Y + R + E | R 1.35 0.12 -0.09 
Ovalipes ocellatus NBGLM N ~ Y + R + E 1.37 0.15 -0.08 
Ovalipes stephensoni ZINB N ~ Y + R + E | R 0.89 0.51 -0.06 
Portunus spinimanus NBGLM N ~ Y + R + E 1.63 0.27 -0.11 
Squilla empusa NBGLM N ~ Y + R + E 1.27 0.18 -0.13 
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Table 10. Multispecies model selection results for the twenty covariate combinations. An 
“X” indicates that a covariate effect was estimated; effects were estimated separately for 
each species or size group. ‘K’ is the total number of parameters estimated, ‘logLik’ is 
the log-likelihood, ΔAIC is the difference in AIC for a given model and the AIC for the 
most-supported, and 𝑤𝑤𝑖𝑖 is the Akaike model weight (Eq. 15). 

 

Model 
rank 

Covariate effect included? Model weighting 
Fishing PDO Temperature 

anomaly 
K logLik ΔAIC 𝑤𝑤𝑖𝑖 

Predator Prey Prey Predator Prey 
1 X X X   39 -114.5 0 0.217 
2 X X X  X 44 -109.7 0.3 0.183 
3 X  X   34 -119.7 0.4 0.178 
4 X X X X  41 -112.7 0.5 0.17 
5 X  X  X 39 -115.5 2.0 0.079 
6 X  X X X 41 -113.9 2.8 0.052 
7 X X X X X 46 -109.0 3.0 0.049 
8 X  X X  36 -119.5 4.1 0.028 
9 X   X  31 -124.9 4.8 0.02 
10 X X  X  36 -120.0 5.1 0.017 
11 X X    34 -122.9 6.8 0.007 
12 X     29 -128.2 7.5 0 
13    X  29 -129.3 9.6 0 
14 X   X X 36 -123.1 11.3 0 
15 X X  X X 41 -118.4 11.7 0 
16 X    X 34 -125.4 11.8 0 
17 X X   X 39 -120.7 12.5 0 
18    X X 34 -127.1 15.3 0 
19      27 -134.6 16.2 0 
20     X 32 -131.9 20.8 0 
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Table 11. Community interaction (𝐁𝐁) matrix of Akaike-weighted estimates (Eq. 16), bias-corrected estimates [in square brackets], 
weighted 99% confidence intervals (in parentheses), and the number of models with non-zero weights (see Table 10) in which the 
parameter estimate was significant at 𝛼𝛼 = 0.01 {in curly brackets}. With columns and rows denoted as 𝑗𝑗 and 𝑖𝑖, respectively, 
coefficient 𝐁𝐁𝑖𝑖,𝑗𝑗 should be interpreted as the trophic effect of species 𝑗𝑗 on species 𝑖𝑖. Asterisked and bolded estimates are significant 𝛼𝛼 =
0.05 and 𝛼𝛼 = 0.01, respectively. Density-dependence (diagonals) and community interaction (off-diagonals) estimates are significant 
if different from 1 and 0, respectively. 

 

Species S. tiburo, Sm. S. tiburo, Lg. C. similis O. ocellatus O. stephensoni P. spinimanus S. empusa 
S. tiburo, Sm. 1.03 [0.71] 

(-0.24, 4.44) 
{0 of 11} 

-4.22 [-2.63] 
(-14.66, -1.86) 
{11 of 11} 

- - - - - 

S. tiburo, Lg. 0.18 [0.02] 
(-0.09, 1.86) 
{0 of 11} 

-0.75 [-0.38] 
(-4.4, 0.47) 
{11 of 11} 

- - - - - 

C. similis -0.17 [-0.43] 
(-1.6, 2.73) 
{0 of 11} 

-3.67 [-2.48] 
(-12.17, -1) 
{10 of 11} 

-0.29 [-0.28] 
(-0.65, 0.13) 
{11 of 11} 

- - - - 

O. ocellatus -0.39 [-0.5] 
(-1.42, 1.38) 
{1 of 11} 

-1.78* [-1.26] 
(-7.02, 0.44) 
{6 of 11} 

- -0.03 [-0.02] 
(-0.53, 0.41) 
{11 of 11} 

- - - 

O. stephensoni 0.72 [0.48] 
(-0.88, 4.32) 
{0 of 11} 

-4.06 [-2.82] 
(-15.08, -0.52) 
{9 of 11} 

- - -0.4 [-0.42] 
(-0.9, 0.47) 
{11 of 11} 

- - 

P. spinimanus -0.79 [-0.96] 
(-2.22, 1.55) 
{1 of 11} 

-2.51* [-1.76] 
(-9.81, 0.85) 
{5 of 11} 

- - - 0.1 [0.12] 
(-0.42, 0.53) 
{11 of 11} 

- 

S. empusa -0.11 [-0.28] 
(-1.17, 2.17) 
{0 of 11} 

-2.49 [-1.72] 
(-8.62, -0.16) 
{9 of 11} 

- - - - -0.24 [-0.23] 
(-0.77, 0.4) 
{11 of 11} 
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Table 12. Akaike-weighted covariate coefficient estimates, weighted 99% confidence 
intervals (in parentheses), and the number of models with non-zero weights (see Table 
10) in which the parameter estimate was significant at 𝛼𝛼 = 0.01 (in curly brackets). 
Asterisked and bolded estimates have weighted confidence bounds that do not contain 
zero and are significant at 𝛼𝛼 = 0.05 and 𝛼𝛼 = 0.01, respectively. In contrast to 
community interactions (Table 11), bootstrapping revealed minimal bias in covariate 
estimates, thus bias-corrected estimates are not reported. 

 

 Species Covariate 
Fishing PDO Temperature 

S. tiburo, Sm. -0.86 
(-1.89, -0.25) 
{8 of 11} 

- 0.07 
(-0.04, 0.15) 
{0 of 6} 

S. tiburo, Lg. -0.44 
(-0.81, -0.08) 
{10 of 11} 

- -0.03 
(-0.09, 0.05) 
{0 of 6} 

C. similis -0.45* 
(-1.19, 0.08) 
{0 of 6} 

0.7 
(0.31, 1.08) 
{8 of 8} 

-0.08* 
(-0.2, 0.03) 
{1 of 4} 

O. ocellatus -0.33* 
(-0.82, 0.09) 
{0 of 6} 

0.39 
(0.09, 0.69) 
{7 of 8} 

-0.12 
(-0.21, -0.01) 
{3 of 4} 

O. stephensoni -0.45 
(-1.36, 0.41) 
{0 of 6} 

0.14 
(-0.41, 0.65) 
{0 of 8} 

0.01 
(-0.18, 0.2) 
{0 of 4} 

P. spinimanus -0.44* 
(-1.18, 0.15) 
{0 of 6} 

0.52 
(0.09, 1) 
{7 of 8} 

-0.12* 
(-0.28, 0.02) 
{1 of 4} 

S. empusa 0.13 
(-0.5, 0.63) 
{0 of 6} 

0.38 
(0.05, 0.7) 
{6 of 8} 

-0.08 
(-0.2, 0.03) 
{0 of 4} 
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Table 13. Comparison of bias and uncertainty of model predictions for a model (model 7 in Table 10, all covariates included) with 
density-dependence (DD) estimated versus the same model with both DD and community interactions estimated. RMSE is Root Mean 
Square Error (Eq. 17). “Improvement” is the difference between the model with community interactions and the model with DD only. 

 

Species 

Prediction bias (RMSE) 
Prediction uncertainty 
(median SE across years) 

DD only 
DD + 
Interactions  Improvement DD only 

DD + 
Interactions  Improvement 

Sphyrna tiburo, Sm. 0.27 0.265 +0.005 0.324 0.189 +0.135 
Sphyrna tiburo, Lg. 0.004 0.064 -0.059 0.279 0.05 +0.229 
Callinectes similis 0.277 0.105 +0.172 0.306 0.203 +0.102 
Ovalipes ocellatus 0.185 0.281 -0.096 0.303 0.153 +0.15 
Ovalipes stephensoni 0.336 0.546 -0.21 0.444 0.214 +0.23 
Portunus spinimanus 0.372 0.236 +0.135 0.389 0.23 +0.159 
Squilla empusa 0.208 0.166 +0.042 0.345 0.16 +0.185 
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Table 14. Percent probabilities of co-occurrence for shark size groups and prey species in nearshore waters during 1994-2014. 
Probabilities were calculated using only tows (n = sample size) in which the relevant shark size group was captured (n = the number of 
tows with S. tiburo). Numbered regions correspond to those shown in Fig. 12: 1) Florida (FL), 2) Georgia (GA), 3) South Carolina 
(SC), and 4) Long Bay (SC). 
 

Season Spring 
 

Summer 
 

 
Region 1 (FL) 2 (GA) 3 (SC) 4 (LB) Median 1 (FL) 2 (GA) 3 (SC) 4 (LB) Median 

Sphyrna tiburo, Small n = 201 n = 32 n = 4 n = 3 
 

n = 160 n = 95 n = 35 n = 7 
 

 
Callinectes similis 41 31 25 33 32% 13 42 60 43 43%  
Ovalipes ocellatus 10 34  67 34 3 22 20  20  
Ovalipes stephensoni 21 44 75 67 55 3 21 26 43 23  
Portunus spinimanus 10 16  67 16 9 15 23 71 19  
Squilla empusa 5 38 50  38 11 27 29 29 28 

Non-modeled commercially-important species  
Callinectes sapidus 4 3   3 3 8 3 14 6  
Farfantepenaeus aztecus 38 9   24 57 75 74 29 66  
Litopenaeus setiferus 55 66 50 33 52 84 46 43 14 45 

Sphyrna tiburo, Large n = 150 n = 205 n = 129 n = 66 
 

n = 151 n = 191 n = 191 n = 139 
 

 
Callinectes similis 35 32 21 2 27% 12 43 61 37 40%  
Ovalipes ocellatus 16 39 36 20 28 5 24 20 29 22  
Ovalipes stephensoni 19 63 61 50 56 4 15 27 42 21  
Portunus spinimanus 8 23 19 33 21 5 6 17 44 12  
Squilla empusa 5 31 30 3 18 7 25 25 17 21 

Non-modeled commercially-important species  
Callinectes sapidus 2 2 8 3 3 4 6 9 9 7  
Farfantepenaeus aztecus 39 9 9  9 52 73 82 48 63  
Litopenaeus setiferus 49 63 62 18 56 76 44 52 21 48 
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FIGURES 

 

 
 

Figure 12. The study area within coastal Southeast U.S. Atlantic waters. Overlapping 
purple points indicate SEAMAP-SA fixed stations sampled during 1994-2014. Numbered 
regions are 1) Florida, 2) Georgia, 3) South Carolina, and 4) Long Bay. 
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Figure 13. Length frequencies for the bonnethead shark (Sphyrna tiburo). Vertical black 
lines indicate the season-specific division imposed for assigning individuals to size 
groups (Small or Large). Note different y-axis scales among panels. Regions correspond 
to those shown in Fig. 12: 1) Florida, 2) Georgia, 3) South Carolina, and 4) Long Bay. 
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Figure 14. Decision tree for identifying the optimal generalized linear framework for 
each species and index. Four GLM frameworks were considered: Poisson (PGLM), 
negative binomial (NBGLM), zero-inflated Poisson (ZIP), and zero-inflated negative 
binomial (ZINB). Mathematics for these frameworks are reported in Table 7. 
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Figure 15. Observed index trends for predator size groups (A), prey species (B), and covariates (see Table 7 for descriptions) included 
in multispecies modeling. z-scored time series are depicted for proper scale visualization, although predator and prey time series were 
demeaned and not z-scored for multispecies modeling. “Model year” indicates how the time series were specified in MARSS models, 
not the calendar year in which the data were collected or calculated (see Methods subsection “Data specification”). 
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Figure 16. Significant (𝛼𝛼 = 0.01) community interactions and covariate effects from 
MARSS model outputs. Covariates included bycatch from fishing, annual temperature 
anomalies, and the Pacific Decadal Oscillation (PDO) index. Black and red lines indicate 
positive and negative interactions, respectively. Gray brackets indicate groups of species 
or shark size groups with the same sign for an interaction or effect. Large sharks and all 
prey species exhibited some level of density-dependence (red half-circle arrows). 
Community interaction and covariate coefficients are reported in Tables 11 and 12, 
respectively. 
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Figure 17 (figure on following page). Multispecies model abundance inputs and weighted 
predictions. GLM-estimated index values (black circles) are depicted with bootstrapped 
95% confidence intervals (vertical lines). AIC-weighted MARSS predictions (color-
coded lines consistent with Figure 15) are depicted with bootstrapped 95% CIs (gray 
polygons). Root mean squared error (RMSE, Eq. 17) is a measure of prediction bias 
(RMSE = 0 is no bias). “Model year” indicates how time series were specified in 
MARSS models, not the calendar year in which the data were collected (see Methods 
subsection “Data specification”). For clarity, two P. spinimanus values with anomalously 
low lower CI bounds are depicted as open black circles without error bars. 
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Figure 17 (caption on previous page). 
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	108
	36
	1 2
	0 1
	0 1
	Persephona mediterranea
	452
	127
	1 2 3
	0 1
	0 1 2
	Pomatomus saltatrix
	126
	42
	1 2
	0 1
	0 1 2
	Portunus gibbesii
	108
	36
	1 2
	0 1
	0 1
	Portunus spinimanus
	300
	86
	1 2 3
	0 1
	0 1
	Prionotus carolinus
	284
	82
	1 2 3
	0 1
	0 1
	Prionotus evolans
	150
	47
	1 2 3
	0 1
	0 1
	Prionotus tribulus
	366
	104
	1 2 3
	0 1
	0 1 2
	Raja eglanteria
	176
	55
	1 2 3
	0 1
	0 1 2
	Rhinoptera bonasus
	468
	131
	1 2 3
	0 1
	0 1 2
	Rhizoprionodon terraenovae
	288
	83
	1 2 3
	0 1
	0 1
	Sardinella aurita
	244
	70
	1 2 3
	0
	0
	Scomberomorus cavalla
	446
	124
	1 2 3
	0 1
	0 1
	Scomberomorus maculatus
	324
	92
	1 2 3
	0 1
	0 1
	Scophthalmus aquosus
	108
	36
	1 2
	0 1
	0 1
	Selene setapinnis
	150
	47
	1 2 3
	0 1
	0 1
	Sphyraena guachancho
	472
	132
	1 2 3
	0 1
	0 1 2
	Sphyrna tiburo
	108
	36
	1 2
	0 1
	0 1
	Squilla empusa
	150
	47
	1 2 3
	0 1
	0 1
	Stellifer lanceolatus
	442
	123
	1 2 3
	0 1
	0 1
	Stenotomus spp.
	150
	47
	1 2 3
	0 1
	0 1
	Stephanolepis hispida
	150
	47
	1 2 3
	0 1
	0 1
	Syacium papillosum
	150
	47
	1 2 3
	0 1
	0 1
	Symphurus plagiusa
	304
	87
	1 2 3
	0 1
	0 1
	Synodus foetens
	332
	94
	1 2 3
	0 1
	0 1
	Trachinotus carolinus
	312
	89
	1 2 3
	0 1
	0 1
	Trichiurus lepturus
	150
	47
	1 2 3
	0 1
	0 1
	Trinectes maculatus
	176
	55
	1 2 3
	0 1
	0 1 2
	Urophycis floridana

	E Chapter 4 shark model (final)
	N ~ Y+R+E
	N ~ Y+R+E
	N ~ Y+R+E | R
	N ~ Y+R+E
	N ~ Y+R+E | R
	N ~ Y+R+E
	N ~ Y+R+E | R
	Reasoning
	Calculation
	Process
	Relevant species
	Covariate
	Proxy for bycatch mortality (Scott-Denton et al., 2012; SEDAR, 2013b)
	Total annual commercial trips (log-transformed)
	State (Eq. 14a)
	Predator and prey
	Penaeid shrimp trawl fishery effort
	Correlation demonstrated in previous research (Stratton et al., 2017)
	Statistical reconstruction of in situ SST in the North Pacific Ocean (NCDC, 2015); average of monthly winter (Dec–Mar) values
	State
	Prey
	Pacific Decadal Oscillation (PDO)
	Potential changes in availability to survey gear due to interannual differences in migration phenology
	Annual average of mean temperature anomalies within four sampling regions; calculated from spring/summer data for S. tiburo and fall data for prey species
	Observation (Eq. 14b)
	Predator and prey
	Temperature anomaly
	Bonnethead % diet by weight
	Hierarchical prey taxonomic categories
	Large
	Small
	Genus species
	Family level or higher
	General group
	76.8
	87.9
	Crustacea TOTAL
	2.0
	17.9
	Crustacea unid.
	25.8
	28.3
	Decapoda unid.
	28.8
	14.3
	Portunidae TOTAL
	3.4
	6.2
	Portunidae
	1.5
	-
	Arenaeus cribrarius
	3.6
	-
	Callinectes sp.
	7.9
	1.7
	Callinectes sapidus
	2.0
	6.3
	Callinectes similis
	1.3
	-
	Ovalipes sp.
	2.4
	-
	Ovalipes ocellatus
	1.9
	-
	Ovalipes stephensoni
	4.2
	-
	Portunus sp.
	0.3
	-
	Portunus gibbesii
	0.2
	-
	Portunus sayi
	2.9
	-
	Pisidae TOTAL
	0.3
	-
	Libinia sp.
	1.7
	-
	Libinia dubia
	0.9
	-
	Libinia emarginata
	0.3
	1.3
	Anomura TOTAL
	0.2
	1.0
	Anomura unid.
	-
	0.2
	Albuneidae unid.
	<0.1
	-
	Albunea catherinae
	<0.1
	-
	Albunea paretii
	<0.1
	<0.1
	Pagurus pollicaris
	1.8
	-
	Cancer sp.
	Cancridae
	-
	0.2
	Cancer irroratus
	Cancridae
	-
	0.4
	Panopeus herbstii
	Panopeidae
	-
	1.6
	Pinnotheridae
	11.7
	5.1
	Stomatopoda TOTAL
	1.3
	-
	Platysquilloides enodis
	Nannosquillidae
	0.9
	1.9
	Squillidae unid.
	9.5
	3.1
	Squilla empusa
	3.6
	12.9
	Penaeidae TOTAL
	-
	4.2
	Penaeidae unid.
	1.0
	-
	Farfantepenaeus aztecus
	2.3
	1.1
	Litopenaeus setiferus
	0.2
	7.2
	Rimapenaeus constrictus
	-
	0.4
	Xiphopenaeus kroyeri
	-
	<0.1
	Acetes sp.
	Sergestidae
	-
	3.6
	Gilvossius setimanus
	Callianassidae
	-
	<0.1
	Upogebiidae
	Upogebiidae
	-
	0.1
	Neomysis americana
	Mysidae
	-
	2.1
	Lernaeenicus sp.
	Pennellidae
	6.2
	5.5
	Teleostei TOTAL
	3.1
	5.1
	Teleostei unid.
	1.5
	-
	Clupeiformes unid.
	-
	0.4
	Anchoa mitchilli
	0.4
	-
	Chaetodipterus faber
	Ephippidae
	0.6
	-
	Sciaenidae TOTAL
	0.2
	-
	Menticirrhus sp.
	0.4
	-
	Micropogonias undulatus
	0.6
	-
	Peprilus triacanthus
	Stromateidae
	3.4
	-
	Limulus polyphemus
	Limulidae
	Chelicerata
	0.7
	-
	Polychaeta TOTAL
	0.5
	-
	Polychaeta unid.
	<0.1
	-
	Nereis sp.
	Nereididae
	0.1
	-
	Ophelia denticulata
	Opheliidae
	0.4
	1.2
	Mollusca TOTAL
	0.1
	1.1
	Mollusca unid.
	<0.1
	0.1
	Gastropoda unid.
	0.2
	-
	Loligo pealeii
	Loliginidae
	12.6
	5.4
	Other TOTAL
	10.6
	5.3
	Unidentified
	1.7
	<0.1
	Abiotic
	0.1
	<0.1
	Plantae
	0.2
	-
	Cnidaria
	Linear time series trend
	Median annual observation variance
	GLM dispersion
	Formula for model with lowest AIC
	GLM framework
	Species
	Species type
	+0.03
	0.16
	1.23
	ZINB
	Sphyrna tiburo, Sm.
	Predator
	+0.05
	0.10
	1.14
	NBGLM
	Sphyrna tiburo, Lg.
	-0.09
	0.12
	1.35
	ZINB
	Callinectes similis
	Prey
	-0.08
	0.15
	1.37
	NBGLM
	Ovalipes ocellatus
	-0.06
	0.51
	0.89
	ZINB
	Ovalipes stephensoni
	-0.11
	0.27
	1.63
	NBGLM
	Portunus spinimanus
	-0.13
	0.18
	1.27
	NBGLM
	Squilla empusa
	Model weighting
	Covariate effect included?
	Model rank
	ΔAIC
	logLik
	K
	Temperature anomaly
	PDO
	Fishing
	𝑤𝑖
	Prey
	Predator
	Prey
	Prey
	Predator
	0.217
	0
	-114.5
	39
	X
	X
	X
	1
	0.183
	0.3
	-109.7
	44
	X
	X
	X
	X
	2
	0.178
	0.4
	-119.7
	34
	X
	X
	3
	0.17
	0.5
	-112.7
	41
	X
	X
	X
	X
	4
	0.079
	2.0
	-115.5
	39
	X
	X
	X
	5
	0.052
	2.8
	-113.9
	41
	X
	X
	X
	X
	6
	0.049
	3.0
	-109.0
	46
	X
	X
	X
	X
	X
	7
	0.028
	4.1
	-119.5
	36
	X
	X
	X
	8
	0.02
	4.8
	-124.9
	31
	X
	X
	9
	0.017
	5.1
	-120.0
	36
	X
	X
	X
	10
	0.007
	6.8
	-122.9
	34
	X
	X
	11
	0
	7.5
	-128.2
	29
	X
	12
	0
	9.6
	-129.3
	29
	X
	13
	0
	11.3
	-123.1
	36
	X
	X
	X
	14
	0
	11.7
	-118.4
	41
	X
	X
	X
	X
	15
	0
	11.8
	-125.4
	34
	X
	X
	16
	0
	12.5
	-120.7
	39
	X
	X
	X
	17
	0
	15.3
	-127.1
	34
	X
	X
	18
	0
	16.2
	-134.6
	27
	19
	0
	20.8
	-131.9
	32
	X
	20
	S. empusa
	P. spinimanus
	O. stephensoni
	O. ocellatus
	C. similis
	S. tiburo, Lg.
	S. tiburo, Sm.
	Species
	-
	-
	-
	-
	-
	-4.22 [-2.63]
	1.03 [0.71]
	S. tiburo, Sm.
	(-14.66, -1.86)
	(-0.24, 4.44)
	{11 of 11}
	{0 of 11}
	-
	-
	-
	-
	-
	-0.75 [-0.38]
	0.18 [0.02]
	S. tiburo, Lg.
	(-4.4, 0.47)
	(-0.09, 1.86)
	{11 of 11}
	{0 of 11}
	-
	-
	-
	-
	-0.29 [-0.28]
	-3.67 [-2.48]
	-0.17 [-0.43]
	C. similis
	(-0.65, 0.13)
	(-12.17, -1)
	(-1.6, 2.73)
	{11 of 11}
	{10 of 11}
	{0 of 11}
	-
	-
	-
	-0.03 [-0.02]
	-
	-1.78* [-1.26]
	-0.39 [-0.5]
	O. ocellatus
	(-0.53, 0.41)
	(-7.02, 0.44)
	(-1.42, 1.38)
	{11 of 11}
	{6 of 11}
	{1 of 11}
	-
	-
	-0.4 [-0.42]
	-
	-
	-4.06 [-2.82]
	0.72 [0.48]
	O. stephensoni
	(-0.9, 0.47)
	(-15.08, -0.52)
	(-0.88, 4.32)
	{11 of 11}
	{9 of 11}
	{0 of 11}
	-
	0.1 [0.12]
	-
	-
	-
	-2.51* [-1.76]
	-0.79 [-0.96]
	P. spinimanus
	(-0.42, 0.53)
	(-9.81, 0.85)
	(-2.22, 1.55)
	{11 of 11}
	{5 of 11}
	{1 of 11}
	-0.24 [-0.23]
	-
	-
	-
	-
	-2.49 [-1.72]
	-0.11 [-0.28]
	S. empusa
	(-0.77, 0.4)
	(-8.62, -0.16)
	(-1.17, 2.17)
	{11 of 11}
	{9 of 11}
	{0 of 11}
	Covariate
	Species
	Temperature
	PDO
	Fishing
	0.07
	-
	-0.86
	S. tiburo, Sm.
	(-0.04, 0.15)
	(-1.89, -0.25)
	{0 of 6}
	{8 of 11}
	-0.03
	-
	-0.44
	S. tiburo, Lg.
	(-0.09, 0.05)
	(-0.81, -0.08)
	{0 of 6}
	{10 of 11}
	-0.08*
	0.7
	-0.45*
	C. similis
	(-0.2, 0.03)
	(0.31, 1.08)
	(-1.19, 0.08)
	{1 of 4}
	{8 of 8}
	{0 of 6}
	-0.12
	0.39
	-0.33*
	O. ocellatus
	(-0.21, -0.01)
	(0.09, 0.69)
	(-0.82, 0.09)
	{3 of 4}
	{7 of 8}
	{0 of 6}
	0.01
	0.14
	-0.45
	O. stephensoni
	(-0.18, 0.2)
	(-0.41, 0.65)
	(-1.36, 0.41)
	{0 of 4}
	{0 of 8}
	{0 of 6}
	-0.12*
	0.52
	-0.44*
	P. spinimanus
	(-0.28, 0.02)
	(0.09, 1)
	(-1.18, 0.15)
	{1 of 4}
	{7 of 8}
	{0 of 6}
	-0.08
	0.38
	0.13
	S. empusa
	(-0.2, 0.03)
	(0.05, 0.7)
	(-0.5, 0.63)
	{0 of 4}
	{6 of 8}
	{0 of 6}
	Prediction uncertainty
	(median SE across years)
	Prediction bias (RMSE)
	DD + Interactions 
	DD + Interactions 
	Improvement
	DD only
	Improvement
	DD only
	Species
	+0.135
	0.189
	0.324
	+0.005
	0.265
	0.27
	Sphyrna tiburo, Sm.
	+0.229
	0.05
	0.279
	-0.059
	0.064
	0.004
	Sphyrna tiburo, Lg.
	+0.102
	0.203
	0.306
	+0.172
	0.105
	0.277
	Callinectes similis
	+0.15
	0.153
	0.303
	-0.096
	0.281
	0.185
	Ovalipes ocellatus
	+0.23
	0.214
	0.444
	-0.21
	0.546
	0.336
	Ovalipes stephensoni
	+0.159
	0.23
	0.389
	+0.135
	0.236
	0.372
	Portunus spinimanus
	+0.185
	0.16
	0.345
	+0.042
	0.166
	0.208
	Squilla empusa
	Summer
	Spring
	Season
	Median
	4 (LB)
	3 (SC)
	2 (GA)
	1 (FL)
	Median
	4 (LB)
	3 (SC)
	2 (GA)
	1 (FL)
	Region
	n = 7
	n = 35
	n = 95
	n = 160
	n = 3
	n = 4
	n = 32
	n = 201
	Sphyrna tiburo, Small
	43%
	43
	60
	42
	13
	32%
	33
	25
	31
	41
	Callinectes similis
	20
	20
	22
	3
	34
	67
	34
	10
	Ovalipes ocellatus
	43
	26
	21
	3
	67
	75
	44
	21
	Ovalipes stephensoni
	23
	55
	19
	71
	23
	15
	9
	16
	67
	16
	10
	Portunus spinimanus
	28
	29
	29
	27
	11
	38
	50
	38
	5
	Squilla empusa
	Non-modeled commercially-important species
	6
	14
	3
	8
	3
	3
	3
	4
	Callinectes sapidus
	66
	29
	74
	75
	57
	24
	9
	38
	Farfantepenaeus aztecus
	45
	14
	43
	46
	84
	52
	33
	50
	66
	55
	Litopenaeus setiferus
	n = 139
	n = 191
	n = 191
	n = 151
	n = 66
	n = 129
	n = 205
	n = 150
	Sphyrna tiburo, Large
	40%
	37
	61
	43
	12
	27%
	2
	21
	32
	35
	Callinectes similis
	22
	29
	20
	24
	5
	28
	20
	36
	39
	16
	Ovalipes ocellatus
	42
	27
	15
	4
	50
	61
	63
	19
	Ovalipes stephensoni
	21
	56
	12
	44
	17
	6
	5
	21
	33
	19
	23
	8
	Portunus spinimanus
	21
	17
	25
	25
	7
	18
	3
	30
	31
	5
	Squilla empusa
	Non-modeled commercially-important species
	7
	9
	9
	6
	4
	3
	3
	8
	2
	2
	Callinectes sapidus
	63
	48
	82
	73
	52
	9
	9
	9
	39
	Farfantepenaeus aztecus
	48
	21
	52
	44
	76
	56
	18
	62
	63
	49
	Litopenaeus setiferus
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