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A b stra c t

Periodontal disease is one of the two m ajor causes of tooth loss today, and 
has been associated with several systemic diseases, such as diabetes, 
cardiovascular disease, stroke, and adverse pregnancy outcomes. 
Unfortunately, the most widely used diagnostic tool for assessment of 
periodontal diseases, measurement of periodontal attachment loss with a 
manual probe, may overestimate attachm ent loss by as much as 2 mm in 
untreated sites, while underestimating attachm ent loss by an even greater 
margin following treatment. Manual probing is also invasive, which causes 
patient discomfort.

This work describes the development and testing of an 
ultrasonographic periodontal probe designed to replace manual probing. It 
uses a thin stream  of water to project an ultrasonic beam into the 
periodontal pocket and then measures echoes off the periodontal ligament. 
Development issues addressed in this work included the proper design of the 
probe tip, which is needed to narrow the ultrasonic beam from a transducer 
with a 2 mm diam eter active area to a 0.5 mm beam, which is the 
approximate width of the periodontal pocket at the gingival margin. The 
proper choice of transducer frequency, the proper method for controlling 
water flow from the probe, and the development of signal processing 
algorithms to aid in the interpretation of the echoes were also addressed.

To test the ultrasonographic probe, clinical trials were conducted on 
12 patients in conjunction with the Old Dominion University School of 
Dental Hygiene. These tests indicate th a t probing depth measurements 
obtained through the ultrasonographic probe do not correlate with manual 
probing depths, since ultrasonographic probing measures echoes off specific 
anatomical features, while manual probing measures resistance to probing 
force. However, ultrasonographic probing did show promise as a diagnostic 
tool, as ultrasonic probing depth measurements correlated to overall 
gingival health, as measured by the Gingival Index of Loe and Silness. In 
addition, ultrasonographic probing, when combined with an autom ated 
feature recognition algorithm, showed better repeatability than manual and 
controlled-force probing.
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C hapter 1

Introduction

1.1 Periodontal D isease

Periodontal disease is one of the two m ajor causes of tooth loss today, and 

is widely pervasive in older adults. Most adults have a mild form of 

periodontal disease, while over 20 percent of older Americans have severe 

periodontal disease [1, 2, 3]. A detailed analysis of the rate of periodontal 

disease infection for different age groups can be seen in figure 1.1, which is 

taken from Oral Health in America: A  Report to the Surgeon General.

In addition to being a major cause of tooth loss, periodontal disease 

has recently been associated with several systemic diseases. Animal and 

population-based studies have dem onstrated an association between 

periodontal disease and diabetes, cardiovascular disease, stroke, and adverse

1
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Thepropoftionofa4iteii^atleastonesitewithlossofperjo4ontalatladiiM atQf2m inorm Qrei 
4mm ormoct, a id  6 mm or more increases with age

22.1

Sources: Adaptedfrom NCHS 1996,8urtand E ttind 1999.

Figure 1.1: U.S. Periodontal Disease Infection Rate, as published in Oral 
Health in America: A Report to the Surgeon General [5].
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pregnancy outcomes [4, 5]. Although the mechanisms that cause these 

associations are still not completely understood, more reliable detection of 

early stage periodontal disease could have widespread health benefits 

beyond the prevention of tooth loss.

Periodontal disease is the result of infections caused by bacteria in 

the plaque tha t form on oral surfaces. Symptomatically it begins as an 

inflammation of the gums characterized by a change in color from normal 

pink to red, with swelling, bleeding, and often sensitivity and tenderness. 

This early-stage periodontal disease is called gingivits. More advanced 

periodontal disease (periodontitis) involves the loss of connective tissue 

attachm ent with subsequent destruction of aveolar (tooth-supporting) 

bone. If not treated, periodontitis can lead to the loss of teeth.

Destruction of connective tissue during periodontal disease results in 

the formation of periodontal pockets, which are defined anatomically as the 

region from gingival margin to the coronal (top) end of the junctional 

epithelium, as shown in figure 1.2 [6, 7]. In a healthy periodontium, this 

region is referred to as the sulcus, and is about 0.5 mm deep.

The region apical to (below) the sulcus is the junctional epithelium, 

a thin layer of skin-like tissue th a t is attached to the tooth surface. The 

junctional epithelium is about 0.15 mm wide subjacent to the sulcus 

bottom , and only a few cell layers thick at the bottom. In a healthy
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end of the 
junctional 
epithelium

Manual
probing
depth

Gingival Margin
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Figure 1.2: The periodontal pocket is defined anatomically as the region from 
the gingival margin to the coronal end of the junctional epithelium [8].
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patient, the junctional epithelium is about 2 mm deep. In early gingivitis, a 

deeper sulcus can result from a small loss of junctional epithelium or from 

tissue inflammation and swelling. For patients with mild gingivitis, the 

sulcus may be a few millimeters deep, while it can be over 4 mm deep for 

patients with periodontitis.

As disease progresses to later stage gingivitis and then to 

periodontitis, the connective tissue and even alveolar bone will be lost to 

disease. However, since epithelial layers are continually replaced every 4-6 

days, a small region of junctional epithelium will be present subjacent to 

the sulcus in all patients [8].

In a healthy patient, the junctional epithelium gives way to 

connective tissue at the cemento-enamel junction (CEJ). The first layer of 

connective tissue is the gingival fiber bundles, in which collagen fiber 

bundles are embedded in the gingiva and spread out in various directions to 

give the gingiva its stiffness. The gingival fiber bundles increase in density 

until they reach their highest density just above the alveolar bone. At the 

alveolar bone, the connective tissue is called the periodontal ligament, 

which attaches the root to the alveolar bone. Figure 1.3 shows the 

anatomic changes in the periodontium as periodontal disease progress from 

health to severe periodontitis.
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Healthy gingiva Initial/Early gingivitis

PeriodontitisEstablished gingivitis

Figure 1.3: The stages of periodontal disease. The top-left drawing shows 
a healthy periodontium; the top-right early gingivitis, with a small pocket 
formed as indicated by the arrows; the bottom -left established gingivitis, 
with a deeper pocket; and the bottom-right periodontitis [8].
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1.2 Current D iagnostic Techniques

Despite the widespread problem of periodontal disease today, currently 

available diagnostic tests are limited in their effectiveness. A summary of 

these tests is provided in figure 1.4. None of the tests are a completely 

reliable indicator of periodontal disease activity and the best available 

diagnostic aid, probing pocket depths, is only a retrospective analysis of 

attachm ent already lost [9, 10, 11, 12, 13, 14, 15]. In this technique, a probe 

such as the one shown in figure 1.5 is placed between the soft tissue of the 

gingival margin and the tooth. Using fixed markings on the probe, typically 

1 or 2 mm apart, the depth of probe penetration is measured relative to a 

fixed point on the tooth such as the cemento-enamel junction (called the 

clinical attachm ent level). Alternatively, the depth is measured relative to 

the gingival margin (called the probing depth).

The first test outlined in figure 1.4, periodontal screening and 

recording, is a simplified m ethod for probing pocket depths th a t allows 

quick diagnosis of patients. However, it does not provide a tooth-by-tooth 

assessment th a t allows for quantitative comparisons over time. Similarly, 

measures of ginigival inflammation (listed third in figure 1.4) only provide a 

general indication of gingival health through the observation of ginigival 

inflammation. The inability of both these diagnostic tools to  provide a 

tooth-by-tooth assessment for later comparison is a m ajor drawback, since
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Test Application Strengths Weaknesses
Periodontal 
screening and 
recording 
(PSR)

All patients in 
every practice

Cost-effective, quick, 
easy; detects patients with 
periodontal disease.

Does not provide a tooth-by-tooth 
assessment for later comparison 
during maintenance. A frill 
periodontal examination is needed 
for this purpose.

Probing 
pocket depths

All patients Shallow probing depths 
are associated with a lack 
o f  future disease 
progression.

Moderate to deep pockets in 
single probing depth examination 
will not distinguish with certainty 
which teeth will undergo 
progressive periodontal 
destruction

Gingival
inflammation

Assessed in all 
patients

Absence o f  inflammation 
is associated with a lack 
o f future progression. In 
treated patients, bleeding 
on probing is associated 
with an increased risk for 
progressive loss o f  
attachment.

Presence o f inflammation will not 
distinguish with certainty which 
teeth will undergo progressive 
periodontal destruction.

Radiographic 
evidence o f  
bone loss

At risk patients as 
determined by 
PSR or 
periodontal 
examination

Absence o f  bone loss is 
associated with a lower 
risk o f  future progression.

Presence o f bone loss on a single 
radiograph will not distinguish 
with certainty which teeth will 
undergo progressive periodontal 
destruction.

Microbial/pla 
que studies

High-risk or 
refractory studies

Absence o f  supragingival 
plaque is associated with 
lack o f  disease 
progression.

In compromised or 
refractory patients, may 
be useful in determining 
the presence o f pathogens.

At this time, routine testing offers 
limited benefit in adult 
periodontitis.

Biochemical 
profiles in 
gingival 
crevicular 
fluid

Not yet 
determined

A number o f biochemical 
markers may identify 
individuals at risk.

At present, there are no specific 
biochemical profiles that 
characterize specific periodontal 
diseases.

Figure 1.4: Diagnostic tests for periodontal disease used today [64].
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Figure 1.5: The standard tool used for manual probing of periodontal pocket 
depths [8].
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disease activity occurs in periods of exacerbation and remission at specific 

but unpredictable locations. Therefore a quantitative diagnostic technique 

is needed tha t will allow site-by-site comparisons over time.

The second test listed in figure 1.4, probing of periodontal pocket 

depths, is the best diagnostic tool available today. Even so, numerous 

studies have questioned the ability of the periodontal probe to accurately 

measure the anatomic pocket depth [16, 17, 18, 19]. Instead, the 

periodontal probe measures the probing attachm ent level, which is defined 

as the distance from the cemento-enamel junction to the apical depth  of 

periodontal probe tip penetration into the gingival crevice. The degree of 

probe tip penetration may be influenced by factors such as thickness of the 

probe, pressure applied, tooth contour, tooth  position, presence of calculus, 

degree of periodontal inflammation, and the actual level of connective tissue 

fibers [20, 21, 22, 23, 24, 25].

As a result, probing measurements may overestimate attachm ent 

loss by as much as 2 mm in untreated sites, while underestimating 

attachm ent loss by an even greater margin following treatm ent [26, 27],

The development of automated, controlled force probes has reduced some of 

the operator-related error and subjectivity inherent in manual probing 

techniques [28, 29, 30, 31]. However, standardized probing forces do not 

address anatomic and inflammatory factors [32, 33, 34].
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In addition, a computer-vision system th a t autom ates the reading of 

manual probe marking to the nearest 0.1 mm has been investigated to 

improve the accuracy of the depth readings [35, 36]. Once again, this 

technique only address one concern associated with manual probing-the 

inaccuracy in reading probing depths-while failing to address other sources 

of error.

Due to the inherent measurement error of routine manual probing, a 

2 to 3 mm loss of probing attachment is required before a statistically 

significant loss of actual connective tissue can be identified [37, 38]. A 

manual probe cannot accurately detect small changes in attachment level 

until the cumulative loss reaches this threshold. The accuracy of 

research-oriented, computerized controlled force probes reduces this critical 

attachm ent loss threshold to a potential minimum of ±1 mm [39].

Detection of bone loss through radiography, the fourth test outlined 

in figure 1.4, is another technique for the diagnosis of periodontal disease. 

However, to detect small changes in bone loss over time, subtraction 

radiography must be used. Even in this case, radiography cannot evaluate 

periodontal ligament attachment, and changes in bone have been shown to 

lag losses in connective tissue by several months [40, 41, 42, 43, 44]. This 

delay in diagnosis may reduce the effectiveness of interventional therapy. 

Finally, because serial radiography subjects patients to increasing amounts
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of ionizing radiation, its use is limited to patients who have already been 

identified as at risk for periodontal disease.

Tests for the presence of periodontal disease-causing microbes in the 

subgingival plaque, listed fifth in figure 1.4, have also been developed.

These tests are useful in formulating treatment programs for special patient 

populations and as a research tool. However, due to the limitations 

described below, routine testing is not usually necessary and indeed is not 

supported by the preponderance of the evidence [45, 46].

The traditional method for assessing the subgingival flora is by 

culturing samples extracted from the site of infection. Culturing allows the 

clinician to determine the antibiotic sensitivity of the organisms, but it is 

technique-sensitive: scrupulous care is required when sampling the 

periodontal pocket. This is especially true for microbes tha t are strict 

anaerobes, because they are killed by even brief exposure to air. The 

requirement tha t bacteria have time to grow also precludes chairside testing.

Bacterial species can also be identified by their DNA [47, 48, 49], or 

by unique antigenic components [50]. While the tests are quicker and more 

accurate than culturing, they do not indicate whether there is actual 

disease. Nor do the tests reveal anything about the antibiotic sensitivity of 

the detected bacteria.

Finally, biochemical profiles of the gingival crevical fluid (listed sixth
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in figure 1.4) are now being investigated as a diagnostic tool. Once a 

periodontal infection is established, telltale metabolic changes occur in the 

body as a result of inflammation, injury, or death of tissue. A sample of 

fluid exudate from the gingiva in an affected pocket can be analyzed for 

these changes. They include elevated levels of prostaglandin E2 [51], 

interleukin 1 and interleukin 6 [52, 53, 54, 55], tum or necrosis factor [56], 

/3-glucuronidase [57, 58], aspartate aminotransferase [59, 60], elastase 

[61, 62], and collagenase [63]. However, no scientific consensus has emerged 

to determine whether these metabolite measurements have the sensitivity 

and specificity to reliably detect disease [64].

1.3 N ew  Diagnostic Tests

In addition to the diagnostic tests described in figure 1.4, several research 

projects have attem pted to develop new diagnostic aids. Ultrasonographic 

and light-based imaging have both received some attention, although most 

of the research has been focused on the use of ultrasound because it has a 

greater penetration depth than light. One light-based technique called 

optical coherence tomography is under development th a t seeks to filter out 

backscattered light through the use of a Michelson interferometer, and thus 

allow imaging of internal structures 1-3 mm deep. While this technique has 

produced images of periodontal structure in in vitro porcine teeth, the

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



1 4

Ultruouad probe

Periodontal

A.veoiar bone

Figure 1.6: After earlier failures to image the periodontal pocket by aiming 
the ultrasonic probe through the gingival wall, recent research has been di­
rected toward aiming the ultrasonic transducer apically into the periodontal 
pocket [70].

penetration depth is not yet great enough to reliably image through the 

gingival width of all teeth [65].

The first tests of ultrasonographic imaging of the periodontal space 

were designed to image the crest of the aveolar bone by aiming the 

ultrasound transducer perpendicular to the long axis of the tooth 

[66, 67, 68]. While these efforts proved the feasibility of ultrasonographic 

imaging, the techniques could not detect periodontal attachm ent loss. 

Instead, they could only detect echoes off the aveolar bone, and they never 

gained clinical acceptance.
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More recently, alternative research has been conducted on the use of 

ultrasound to image the periodontal pocket space by aiming the transducer 

apically into the pocket from the gingival margin [69, 70, 71]. The m ajor 

technical barrier to this approach is providing an efficient coupling medium 

for the ultrasonic wave into the thin (0.25-0.5mm) periodontal pocket. The 

method of Loker and Hagenbuch uses a metal delay line placed on the crest 

of the gingival tissue, so that the ultrasound wave travels through the 

gingiva. (Figure 1.6). As a result, this technique measures echoes off the 

aveolar bone rather than the periodontal ligament, since the bone is the 

only hard tissue coupled to the gingiva. Lassal and Payne investigated the 

use of a thin plate to serve as a Lamb-wave based waveguide. This research 

only reported on the laboratory testing such a waveguide, with no attem pt 

made to image periodontal structures. However, since they envision 

coupling with the soft gingival tissue, they are likely to produce results 

similar to tha t of Loker and Hagenbuch.

The probe described by Hinders and Companion uses a thin stream 

of water to couple the ultrasound wave into the pocket space. (Figure 1.7). 

A tip placed over the transducer narrows the ultrasonic beam, so th a t the 

beam is approximately the same width as the opening into the sulcus a t the 

gingival margin. Feasibility of the technique was demonstrated in the work 

of Hinders and Companion, but optimization of the probe design and
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Figure 1.7: Periodontal probe described by Hinders and Companion.
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clinical testing is required in order for this technique to  gain widespread 

acceptance as a diagnostic tool in the dental community.

The aim of this work is to begin the optimization of the probe 

described by Hinders and Companion, and to conduct a first round of 

clinical testing. This testing will allow a thorough evaluation of the probe’s 

performance, and the development of signal processing routines needed for 

simplified interpretation of the ultrasonic signal. These routines will be 

designed as a first step toward the development of artificial intelligence 

learning algorithms. It is anticipated th a t the complexity of the periodontal 

anatomy will require the use of autom ated feature recognition technology, 

so tha t the ultrasonic echoes can be translated into probing depth 

measurements in real-time. By doing so, dental examiners and patients will 

be able to easily interpret the results of the ultrasonic scan without needing 

a detailed understanding of how the ultrasonic technology works.

This dissertation is organized as follows. In chapter 2, a review of 

ultrasound technology, particularly as it relates to its use in medicine and 

dentistry is presented. Chapter 3 presents a computer simulation used to 

optimize the power transm itted through the tip of the ultrasonographic 

probe. Chapter 4 discusses engineering design issues related to the probe, 

while chapter 5 discusses the development of signal processing algorithms 

designed to aid data  interpretation. Chapter 6 discusses the results of
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clinical trials comparing the performance of the ultrasonographic probe 

with manual and controlled-force probing, while chapter 7 discusses a 

computer simulation designed to test a model proposed for interpreting the 

results of the clinical trials data. The dissertation concludes with a 

summary of the work completed and recommendations for future work.
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C hapter 2 

Introduction  to  
U ltrasonography

Ultrasonography is a non-invasive imaging technique th a t uses ultrasonic 

energy to produce an acoustic m ap of a body. It is widely used in medicine 

for diagnostic imaging of anatomical structures and blood flow 

measurements, and in industry to detect hidden flaws in mechanical 

structures. This introduction to ultrasonography provides a concise 

description of the physics of ultrasound, its use in imaging, and a brief 

history of the use of ultrasound in medicine and dentistry.

2.1 The Physics o f U ltrasound

Sound is mechanical energy tha t propagates through a continuous, elastic 

medium by the compression and rarefaction of the particles that comprise 

it. Compression occurs by a mechanical deformation induced by an external 

energy force tha t increases the pressure on the medium. Rarefaction occurs

19
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Plane-piston so u rce  Elastic "particles" in the  medium

Equilibrium , t=0

In creasin g  tim e

P re s s u re  o r 
am plitude  
variation

C o m p ress io n

Figure 2.1: The compressions and rarefactions of a sound wave, as illustrated 
by the compressions and rarefactions of a spring [74].

in tandem  with compression-as the force is removed, the compressed 

particles transfer their energy to adjacent particles with a subsequent 

reduction in pressure. (Figure 2.1). The series of compressions and 

rarefactions th a t propagates through the elastic medium is known as a 

sound wave.

The key parameters of the wave are its wavelength, frequency and 

velocity. The wavelength, A, which refers to the distance between 

compressions or rarefactions, and is usually expressed in units of mm or 

fj,m. The frequency, u, or number of times the sound wave repeats itself in 

one second, is usually expressed in units of Hertz (Hz), which equals one
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wave cycle per second. The human ear is generally capable of detecting 

sound waves in the frequency range of 15Hz to 20kHz, and ultrasound refers 

to sound waves above this frequency range. The velocity of the sound wave, 

c, is related to A and v  through the relationship c =  \ v  and is dependent on 

the material through which the sound wave propagates. Generally, the 

stiffer the material, the faster the speed of sound in th a t material.

Mathematically, this compression and rarefaction of particles within 

a medium is described through the theory of elastodymanics. A simplified 

introduction to elastodynamics can be provided through two equations.

The first equation is a derivation of Newton’s second law of motion,

F  =  ma  for the case of an elastic medium, which is expressed in the index 

notation for tensors as

where p is the mass density of the medium, Ui is the displacement vector of 

the particles within the medium, and <7ij is the second rank stress tensor. 

The second equation is the generalized Hooke’s law

which states that the normalized deformation e in a body is proportional to 

the stress placed on it. The proportionality constant Cijki in equation (2.2) 

is material dependent and, for the simple case of isotropic materials, is 

related to the Lame constant A* and the shear modulus mu. The Lame

p d ^ U i  — d j / J i j  =  0 , (2 .1)

(2 .2)
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constant A can be described as a measure of a m aterial’s stiffness, while the 

shear modulus /z is a measure of a m aterial’s ability to propagate shear 

waves.

By substituting the strain displacement relation + diUk)

into equation (2.2) the elastodynamic wave equation can be derived, which 

is:

pd\ui -  pd2Ui +  (A 4- p)di{djUj) =  0. (2.3)

In the case of a fluid, which has a shear modulus approaching zero, 

the elastodynamic wave equation simplifies to:

p d f u i  +  A  d j U j  =  0 .  ( 2 . 4 )

However, this simplification is usually expressed in terms of pressure, rather

than the displacement vector uz-, because pressure is a scalar quantity 

defined as the perpendicular fluid force per unit area. W ith some 

m athematical manipulation, this simplification is:

(V2 +  ^ ) p  =  0, (2.5)
cs

where oo is 2 i tv  and c is the speed of sound.

As a plane wave described by either equation (2.3) or (2.5) 

encounters an interface between two materials, it is divided into two 

components: some energy at the interface is reflected and some is 

transm itted. For the most simple case, in which the acoustic plane wave is
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R i 2  =  I r /  If  =  ( Z 1 - Z 2 ) / ( Z , + Z 2 )  

T [ 2 =  I j /  I l  =  2  Z 2/ (  Z [  - r  Z 2 )

Where Z = pc = acoustic impedence

Figure 2.2: Reflection and transmission of a sound wave incident normal to 
boundary between two materials [73].

incident normal to the material interface, the formula for computing the 

reflection and transmission factors is illustrated in figure 2.2.

In the more complicated case of a non-normal elastodynamic wave, 

the transm itted wave is refracted and divided into two components, a shear 

wave and a longitudinal wave, as shown in figure 2.3 [72, 73, 74].

In a typical set-up for ultrasonic imaging in medical applications, a 

transducer operates in pulse-echo mode (figure 2.4). T hat is, the 

piezoelectric transducer converts an electronic signal into an ultrasonic

2.2 Imaging w ith Ultrasound
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Figure 2.3: Transmission of an elastodynamic wave incident on a m aterial 
boundary layer [73].

pulse, which propagates to tissue boundaries. At these boundaries, some of 

the incident wave energy is reflected, producing an echo. When this echo 

returns to the transducer, the wave’s mechanical echo is converted to an 

electrical signal, which can be displayed as an A-mode image.

An A-mode image, or A-scan, displays the amplitude of the return 

echoes, as in figure 2.5. Each peak in the A-scan image represents a return 

echo, whose distance from the transducer can be determined by the 

equation

(2 .6)

where D  is distance, c is the speed of sound, t  is the time of return echo
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L _ j w _
Pulse Echo 1 Echo 2 

Display

Figure 2.4: A pulse-echo setup used in ultrasonic imaging.

and the factor of 2 accounts for the fact that the echo must travel to the 

tissue interface and back to be detected by the transducer.

If the transducer scans from position to position, the series of 

A-mode images produced from the scanning can be added sequentially to 

produce a B-mode image, or B-scan, which converts the peak heights in the 

A-scan trace into a brightness value and assembles a series A-scan traces 

together to form a two-dimensional image (figure 2.6).

Transducer

Material 1

Material 2

Echo 1

1
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Figure 2.5: A representative A-scan image, taken with the ultrasonographic 
probe aimed at a 5mm-deep hole drilled in plexiglas. The peak heights 
represent the strength of the return echo.
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Figure 2.6: A representative B-scan image, where the brightness values of 
each pixel represent the strength of the return echo. The image is of triplets 
scanned using fetal ultrasound [77].
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2.3 H istory of Ultrasound in M edicine and 
D entistry

The first recorded use of sound-based imaging occurred in 1822, when 

Daniel Colladen used an underwater bell to calculate the speed of sound in 

the waters of Lake Geneva. However, this echo-sounding technique did not 

find widespread use until Pierre and Jacques Curie’s 1880 discovery of the 

piezoelectric effect in certain crystals. This discovery made it possible to 

generate the ultrasonic waves needed to produce high-resolution images. A 

big push for the technology came during World War I, as underwater 

detection systems were needed for the navigation and remote detection of 

submarines.

Early use of ultrasonics in medicine, however, was largely confined 

to therapeutic applications, which utilized the heating effect from 

high-power, low-frequency ultrasound. It wasn’t until after World W ar II 

tha t ultrasound received much attention for medical imaging. At this time, 

equipment capable of high-frequency and shorter pulse operation, and the 

availability of very high input impedance amplifiers, helped improve the 

resolution and sensitivity of ultrasonic imaging devices to make them 

attractive for medical applications.

Soon, many systems were developed that were capable of producing 

2-D, accurate and reproducible images of the body organs. However, all of
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these systems required the patient to be totally or partially immersed in 

water and remain motionless for extended periods. The development of 

smaller and better transducers made from barium titanate  and lead 

zirconium -titanate ceramics improved the sensitivity and size of imaging 

equipment. These improvements allowed for the development of transducers 

placed in water bags, or those tha t only required a gel spread on the skin to 

couple the ultrasonic wave with the body.

The first commercial medical ultrasound system was the 

Diasonograph, which produced B-mode images by moving a probe across 

the abdomen using a motorized scanner. During the 1960’s similar 

machines proliferated, until the development of phased- and linear-array 

transducers and real-time imaging in the late 1960’s and early 1970’s.

These developments allowed B-scan images to be produced from a single 

probing position, thus eliminating the need for a motorized scanning arm. 

The result was the hand-held probe similar to what is used in the clinical 

ultrasound equipment today [75].

In dentistry, ultrasound is still primarily limited to therapeutic uses. 

The two main uses for ultrasonic instrumentation are the ultrasonic scaler 

and endodontic devices. The ultrasonic scaler operates at a frequency of 

16-20kHz, and uses these high-frequency vibrations to mechanically remove 

plaque and calculus from the surface of the tooth. In  endodontics, a
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specially designed file is added to an ultrasonic scaler, which is then used to 

shape and clean root canals during root canal therapy [76].

Due to the widespread use of ultrasonic scalers in dentistry, the 

probe described in this work has been called a ultrasonographic periodontal 

probe to emphasize its use in diagnostic imaging, ra ther than therapy. Such 

a distinction is necessary, since ultrasonic imaging has only found a few 

specialized research uses in dentistry, most of which were highlighted in 

chapter 1. As a result, most practicing dental clinicians associate the term 

ultrasound with the relatively high-power, low-frequency devices tha t they 

use every day.
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C hapter 3 

O ptim ization o f  P robe Tip  
G eom etry

3.1 The Cylindrical A coustic Finite 
Integration Technique

The end of the ultrasonic periodontal probe handpiece has a funnel-shaped 

tip that houses the ultrasound transducer. This tip narrows the beam path 

of the ultrasound wave, thereby allowing it to enter the periodontal pocket 

without scattering. Because the tip  alters the shape of the ultrasonic beam, 

the design of this tip has a large impact on the performance of the 

periodontal probe. The first task in optimizing the performance of the 

ultrasonographic probe was to determine the optimal shape of the  probe tip.

To do so, a computer simulation of an ultrasonic wave traveling 

through a tip was developed. This simulation was designed to determine 

what tip shape produces the strongest and least-distorted return signal. It 

employed the cylindrical acoustic finite integration technique (CAFIT)

31
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developed by Peiffer, et al [78], and a series of tests were run to narrow the 

range of shapes tha t needed to be produced for experimental testing.

The CAFIT algorithm is based on finite volume integration, a 

special formulation of the finite difference m ethod of computing the 

solution to differential equations. Typically, finite difference schemes 

replace the differential with one of several different difference 

equations, such as the forward difference equation The finite

volume method produces a similar difference equation, but by starting with 

an integral equation. The process for turning the integral equation into a 

discrete difference equation involves the following three steps [79]:

•  Dividing the space in which the governing equations operate into a 

lattice of finite control volumes and integrating the equations over 

these volumes.

• Substituting finite difference-type approximations into the integrated 

equations. This step converts the integral equations into a system of 

algebraic equations.

•  Using a set of initial and boundary conditions, solving the algebraic 

equations for each spatial coordinate on the volume lattice. After 

solving for each spatial coordinate, the equations step forward in time 

and use the previous time step solution to solve for each spatial 

coordinate a t the current time.
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The accuracy of the numerical solution increases as the lattice and the time 

steps get smaller, although the size of those steps are limited in practice by 

com putational speed and memory resources. Considerations of numerical 

accuracy (i.e., stability) also limit the size of the time steps compared to the 

spatial lattice divisions, or else the solution will diverge with time. For the 

finite volume m ethod studied here, this is known as the Courant condition:

In th is work, where A r — Az, the Courant condition is always m et by 

setting A i =  |  x  A r, and so this relationship was used.

The governing equations of the CAFIT algorithm  are the acoustic 

equivalents to  the elastodynamic equations (2.1) and (2.2):

where p0 is the density of the medium that the ultrasound wave travels 

through, v is the local velocity vector and p is the acoustic pressure.

Following the detailed derivation of Peiffer et al, these equations are 

converted into the following set of difference equations using the finite 

volume m ethod described above, where p  stands for pressure, u for the 

r-direction velocity vector component, and w the z-direction velocity vector

1
(3.1)

(3.2)

and

- £  +  PoW = 0 (3.3)
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Figure 3.1: The staggered grid of the CAFIT algorithm, with the pressure

The i, j  subscripts represent the position of the variable on the lattice in 

the r- and z- directions, respectively, and the t  superscript represents the 

number of time steps that the algorithm has gone through.

The CAFIT algorithm is employed on a staggered grid, with the 

pressure elements a half unit apart from the r-direction velocity elements 

Uij and the z-direction velocity elements Wij,  as shown in figure 3.1. This

elements a half-unit apart from the r- and z-direction velocity elements.

component:

(3.4)

(3.6)

(3.5)
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staggered grid provides a better physical representation of the pressure 

field, since staggering gives a more accurate representation of non-uniform 

pressure gradients [79]. In addition, Peiffer, et al. claim th a t the staggered 

grid provides better accuracy with less calculation tim e than  second-order 

finite difference techniques. A qualitative explanation for this claim is that 

the staggered grid effectively divides the spatial lattice in half, without 

requiring a corresponding halving of time steps to satisfy the Courant 

condition for numeric stability.

One other advantage of the staggered grid is th a t it is well-suited for 

solving problems in cylindrical geometries. Notice th a t there is a singularity 

at the axis (r =  0) in the first difference equation of the CAFIT algorithm. 

Because this method employs a  staggered grid, the only elements that lie 

on the axis are the radial velocity elements u0j-  If these elements vanish, 

the singularity will also vanish. This requirement is easily satisfied by 

setting the first difference equation equal to:

Ai = vTA -  ^(2*47 + K'J1 -  (3-7)

at the points beside the axis.
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3.2 Param eter Testing

The CAFIT algorithm was first implemented for a cylindrical tip with walls 

sloping down to a narrow opening, 0.5 reduced units1 in diameter. The top 

of the tip was 4.0 r.u. in diameter with a 2.0 r.u. diameter transducer 

placed in the middle of this area. The walls of the tip were assumed to be 

completely rigid, so the boundary conditions uimaxj  =  0 and =  0

were used at the tip walls. Outside the tip, the vacuum boundary condition 

p =  0 was used at the air/w ater interface. Finally, the simulation was set 

up so th a t the probe wras aimed a t a m etal reflector 20 mm from the 

transducer face, and an input wave pulse of the form 

sin{2-Kft) * sm(0.27r/£) that lasted 0.5 r.u. was sent down the tip.

Before comparing the performance of different tip geometries, the 

accuracy of the simulation at various step sizes and ultrasonic frequencies 

was studied. First, the simulation was run for a step size of A r =  0.05 (and 

A t  = 0.025) at frequencies of 1, 10 and 15MHz. As can be see from 

figure 3.2, the numerical dispersion of the signal at 10 and 15MHz was too 

great to produce any kind of return signal. At 1MHz, numerical dispersion 

was not as much of a problem, but the wavelength of this signal was too

large to accurately resolve the return signal off the reflector from the

1 In this simulation, the reduced unit for distance is 1 r.u. =  1 mm and for 
time, 1 r.u is the time it takes to move 1 r.u. of distance at the speed of sound in 
water.
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Figure 3.2: Traces for A r =  0.05 reduced units with a  1MHz (top), 10MHz 
(middle), and 15MHz (bottom) signal.
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Figure 3.3: A snapshot of the wavefront a t t =  10 reduced units for a 1MHz 
(top), 10MHz (middle), and 15MHz (bottom) signal. The step size was 
A r =  0.05 reduced units.

multiple reflections off the nozzle. Another view of the simulation results 

can be seen in figure 3.3, which provides a snapshot of the wavefront a t 10 

reduced time units.

Similar simulations were carried out for A r =  0.01, 0.005, 0.003 and 

0.001, and the results of the first three sets of simulations are displayed in 

figures 3.4- 3.9. At A r =  0.001 the simulation was too computationally 

intensive for the workstation computer used here.2 However, the low

numerical dispersion at frequencies above 10MHz for A r =  0.003 and

2 The workstation had dual Pentium III, 1 GHz processors with 1 GByte of 
RAM, and the Fortran code was compiled using Absoft’s Pro FortranMP 7.0 com­
piler to take advantage of the dual processors.
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Figure 3.4: Traces for A r =  0.01 reduced units with a 10MHz (top) and 
15MHz (bottom) signal.
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Figure 3.5: A snapshot of the wavefront at t =  10 reduced units for a 10MHz 
(top) and 15MHz (bottom) signal. The step size was A r =  0.01 reduced 
units.

A r =  0.005 indicate that running the simulation a t smaller step sizes would 

not greatly increase the accuracy of the results.

As discussed by Peiffer et al, the CAFIT procedure produces 

accurate results only when A r <  jg. For a 10MHz ultrasound wave 

traveling in water, j -  = 0.01 and for a 15MHz wave, ^  =  0.0067. The 

results of these test simulations support Peiffer et a l’s conclusion, since 

adequate results were obtained a t A r =  0.01 and better results at 

A r <  0.005. A more thorough comparison of the relationship between 

frequency and dispersion can be seen in figure 3.10, which shows processed 

waveforms as the frequency increase from 2 to 20MHz (and A r =  0.005),
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Figure 3.6: Traces for A r =  0.005 reduced units with a 10MHz (top) and 
15MHz (bottom) signal.
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Figure 3.7: A snapshot of the wavefront a t t =  10 reduced units for a 10MHz 
(top) and 15MHz (bottom) signal. The step size was A r =  0.005 reduced 
units.

and in figure 3.11, which shows processed waveforms as the the step size 

increases from 0.005 to 0.05 r.u. (and the frequency is 15MHz).

After confirming the stability of this algorithm  for A r <  0.005, the 

simulation was run on a range of tip geometries to determine which would 

produce the strongest output signal for the periodontal probe. First, the 

angle 9 of the tip walls was varied from 0 to 90° in 5° increments, while the 

length of the nozzle was held constant at 12 r.u. and  the reflector was fixed 

a t 20 r.u. from the transducer (see figure 3.12). In this simulation, the 

strongest return peak occurred for the 80° angle, although the 85° was 

almost as good (figure 3.13). These angles correspond to  a  smooth slope
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Figure 3.8: Traces for A r =  0.003 reduced units with a 10MHz (top) and 
15MHz (bottom) signal.
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Figure 3.9: A snapshot of the wavefront at t  =  10 reduced units for a 10MHz 
(top) and 15MHz (bottom) signal. The step size was A?' =  0.003 reduced 
units.

from the outer diameter at the top of the nozzle to the tip outlet a t the 

bottom.

A similar variation of nozzle performance as the angle varies was 

tested, but with the position of the nozzle outlet varying with the angle, and 

the reflector position 5 r.u. from the outlet (see figure 3.14). Changing the 

nozzle length did not change the results much. Once again, the narrowest 

slope produced the best results (9 =  85°), as can be seen in figure 3.15.

Next, the diameter of the nozzle at the top was varied from 2 r.u. 

(the nozzle touching the edge of the transducer) to 6 r.u., with the length of 

the nozzle held constant at 12 r.u. and the walls always sloping evenly
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Figure 3.10: As the frequency increased from 2MHz (top right) to 20MHz 
(bottom  left), the reflection off the plate (40 r.u.) gets sharper, while the 
reflection off the tip end (about 27 r.u.) gets smaller.
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0° 45° 82° 90°

Figure 3.12: An illustration of how the tip shape changes as the wall angle 
varies from 5° to 90°.

down to the nozzle outlet (see figure 3.16). The strongest return peak 

occurred when the nozzle diameter was 2 r.u. and this peak decreased as 

the diameter increased (figure 3.17).

These three simulations indicate that to increase strength of the 

return signal, the tip ’s top diameter should conform as close as possible to 

the transducer diameter, while making it as long as possible so tha t the 

angle 0 is as close to 90° as possible. Such a design minimizes the area of 

the tip wall perpendicular to the wavefront. This result coincides with 

those predicted by long-standing analytical treatm ents of acoustic horns, as 

highlighted in this discussion from Morse:
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Figure 3.13: As the angle between the transducer face and the wall increases 
up to 85°, the signal reverberates less inside the tip. At 90° the flat walls at 
the outlet produce a large echo.
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0° 45° 82° 90°

Figure 3.14: Tip shape as the wall angle varies from 5° to 90°, and the 
distance from the tip end to the reflector is held constant at 5 r.u.

W hen the coordinates [of the horn] do not have this property 

[matching the surfaces of constant wave phase], the particle 

velocity will not be parallel to the /z coordinate lines, and the 

wave will tend to reflect from the horn surface as it travels 

along, rather than moving parallel to it ... any reflection of the 

wave during its progress along a tube tends to trap some of the 

energy inside, causing resonance for some frequencies and poor 

transmission for others [80].

While minimizing the top diam eter and maximizing the wall angle 

are useful guidelines for designing the tip, there are some practical
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2.0 r.u. 3.2 r.u. 4.8 r.u. 6.0 r.u.

Figure 3.16: Tip shape as the tip  diameter at the top varies from 2 reduced 
units to 6 reduced units.

limitations to these goals. First, the nozzle top needs to be a little wider 

than  the transducer face to accommodate transducer packaging, and to 

allow adequate room for coupling water to flow into the tip. Second, the tip 

length cannot be too long, because it must fit comfortably in the patien t’s 

mouth. Finally, this simulation does not take into account the effects of 

signal attenuation, which could be significant if the tip were too long.

A final general question to be considered was whether there would 

be any significant change in results if the nozzle was aimed into a large 

bath of water instead of air (where the wave is confined to a narrow stream  

of water). Thus, the nozzle (4 r.u. top diameter, 12 r.u. long, smoothly 

sloping walls) was aimed into water baths of varying widths, from a 0.5 r.u.
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Figure 3.17: As the tip diameter at the top increases, the strength of the 
return signal decreases.
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stream equal to the outlet width to a 4 r.u. bath. As can be seen from 

figure 3.18, the strength of the return signal decreases as the width of the 

water bath increases. The narrow stream  forces the wavefront to continue 

moving parallel to the stream boundaries, while a larger bath allows the 

wavefront to spread out perpendicular to the air/w ater interface and reflect 

off it.

3.3 Shape Comparisons

After examining these general relationships, a few more specific shapes were 

considered, including:

•  One where the radius of the tip walls varied linearly: r  =  m z.

•  One where the radius of the tip walls varied exponentially: r =  r t-e-m2.

•  One where the radius of the tip walls takes a parabolic shape:

z = (r — r,-)2 +  c2.

•  One where the radius of the tip walls takes an ellipsoid shape: 

z2 + (r — u )  2 =  c2.

Voltage traces for these simulations are shown in figures 3.19-3.22. 

These results show that the exponential walls produced the strongest return 

signal, although only slightly better than  the linear walls. The exponential
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Figure 3.19: Return signal for the linear tip. The ratio of peak return signal 
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walls performed slightly better because the top of the nozzle narrows more 

quickly to confine the waveform before it has time to spread out. However, 

once the walls match the width of the transducer, the exponential nozzle’s 

walls narrow much more slowly, so that they do not have a significant area 

perpendicular to the wavefront that would cause internal reflections.

Based on these results, a linear tip that has a slight “nook” at the 

top was fabricated that incorporates the best features of the exponential 

and the linear tips. For the purposes of complete experimental validation, 

an exponential tip, a spline-shaped tip, and a linear tip  w ithout the “nook” 

were also fabricated.
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Chapter 4

D evelopm ent o f  the P rob e

4.1 Probe System  Setup

Building on the work of Hinders and Companion [69], a new 

ultrasonographic periodontal probe prototype was built according the to 

CAD drawings shown in figure 4.1. This probe was designed to have a 

removable tip, room for a 2mm-active area transducer housed at the base of 

this tip, a water line input running through the probe handle and emptying 

into a small open area around the transducer, and an electronics 

input-output cable also running through the base and connected to the 

transducer.

The transducer was driven using the Matec SR-9000 pulser-receiver 

card, which is a 8-bit plug-in card designed to connect to a  16-bit expansion

58
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•* ULTRASOMC PERIOOONTAL PROBE

Figure 4.1: Design drawings for the prototype ultrasonographic periodontal 
probe.

slot in an IBM-compatible computer. The pulser produces a unipolar spike 

pulse with a voltage output of up to 300V and a rise time of less than  10ns 

into a 50ohm cable. The receiver offers 63.5dB of computer addressable 

gain in 0.5dB steps and has a bandwidth of 50MHz (with a low frequency 

end of 100kHz). In addition, the receiver has independently adjustable 

low-pass and high-pass filters. The low-pass filter settings ranged from 

10MHz down to 550kHz, while the high-pass filter settings ranged from 

800kHz to 10MHz. For this work, the low-pass filter was set to full band 

(since the transducers used in this work had a higher frequency range than 

the highest setting on the low-pass filter), while the high-pass filter was set
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at 7MHz to filter out low frequency noise.

The receiver output was connected to a CompuScope 2125 

analog-to-digital converter. The digitized signal was processed and saved 

using programs running LabView version 5.0. This system was run using a 

rackmount-type computer with a Pentium Pro processor contained in a 

ruggedized, portable case. (Figure 4.2).

Initial laboratory testing of the probe was designed to answer three 

questions:

•  W hat is the optimal flow rate of the water to produce high-quality 

signals?

•  Can the results of the computer simulations to determine the optimal 

tip shape be confirmed experimentally?

•  W hat transducer provides the best combination of good signal 

strength and high resolution?

4.2 Determ ination of Optim al Water Flow

The first tests to determine optimal water flow were done using a 

gravity-fed water input and a small electronic pump. However, neither 

provided fine enough control over water flow to quantitatively determine 

what flow rate  was required to obtain a high-quality return signal. 

Qualitatively, though, it was observed that a steady (laminar) flow
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Figure 4.2: Rackmount computer system used to run the ultrasonograph 
periodontal probe.
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produced the best returns. If the water pressure was too low, the water flow 

was interrupted and did not allow continuous transmission of the signal. 

However, if the pressure was too high, turbulent flow resulted, and once 

again transmission of the signal was broken up (Figure 4.3).

To develop a more quantitative understanding of this behavior, a 

low-pressure regulating valve equipped with a pressure gauge was inserted 

into the water line between the handpiece and the water source. This valve 

reduced the input water line pressure of up to 250 psi down to  an 

adjustable range of 2-30 psi. This control allowed a detailed exam ination of 

the relationship between water flow, water line pressure, and the  quality of 

the return  signal.

This relationship can be expressed theoretically using the Reynolds 

number, Re. Re  is a dimensionless param eter th a t quantifies the 

relationship between p, the density of a fluid flowing through a  pipe, D, the 

internal diam eter of the pipe that the fluid is flowing through, p, the 

dynamic viscosity of the fluid, and V , the average velocity of the fluid in 

the pipe. This relationship is expressed as:

Re =  (4.1)
ft

Fluid flow through a pipe is normally laminar for R e < 2000 [81]. 

Thus, the critical velocity for determining lam inar flow is given by the
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Figure 4.3: Signal for interrupted (top), laminar (middle), and turbulent 
(bottom) flow.
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relationship

(4 ' 2)

For water a t room temperature, the kinematic viscosity i/ =  ^ i s l . l l x  

10-5zsi [81] and for this probe, the 0.5mm-diameter tip outlet is the most 

narrow point in the “pipe,” so D  is 5 x 10~4m. Based on these values,

Vc =  4.43—.*— c

Pressure (psi) F low  rate ( y ) V elocity  (™)

2.5 0.6 3.0

5.0 0.8 4.0

7.5 1.0 5.0

10.0 1.1 5.5

12.5 1.3 6.5

15.0 1.5 7.5

17.5 1.7 8.4

20.0 1.8 9.0

Table 4.1: Water flow and velocity versus pressure values.

To determine the relationship between water line pressure and 

velocity, the flow rate for the probe was measured for pressures ranging 

from 2.5 to 20 psi. This was done by running the water output from the 

probe into a graduated cylinder for 1 minute, and then calculating the flow 

rate  in ^  by dividing by 60^ . Once the flow rate  was obtained, the
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average velocity of the water exiting the probe can be calculated using the 

relationship

where Q is flow rate, V  is the average velocity of the water , and A  is the 

area of the outlet. Table 4.1 shows the flow rate and average velocity of the 

water exiting the tip outlet a t various pressure settings

Based on these results, the transition from lam inar to turbulent flow 

should occur between 5.0 and 7.5 psi. Figure 4.4 shows signal readings off a 

metal plate at each of the pressures listed on the table. Note th a t traces 

become increasingly noisy starting at the 10 psi reading, which is the result 

of turbulence in the water flow. This turbulence could be seen visually as a 

spray. Although some spray is visible more than 20 mm from the outlet at 

low pressures, in the turbulent regime the spray began only a few 

millimeters from the outlet.

Although according to the theoretical calculations, this turbulence 

should have been visible starting at 7.5 psi, this was not the case. It is 

likely that a more accurate measurement of water flow, and a more 

accurate pressure gauge (the gauge used only had m arking to the nearest 1 

psi), would help resolve this discrepancy. However, for the purposes of this 

work, it is safe to conclude tha t a pressure setting below 5 psi provides the 

laminar flow needed for accurate imaging with the periodontal probe.
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Figure 4.4: From this test of signal quality as the pressure is increased, noise 
from turbulent flow is not a problem below 7.5 psi. The values on the x-axis 
indicate distance from the transducer in mm.
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4.3 Experim ental Validation o f the Tip 
Shape Simulation

To test the validity of the CAFIT simulations of optimal tip shape 

described in chapter 2, four tips were machined (shown in figure 4.5) and 

their experimental performance was compared to a simulation.

After making these tips, the periodontal probe was aimed at a flat 

metal target 20 mm away from the transducer face, thus recreating the 

conditions of the simulations. In figures 4.6-4.9, the experimental voltage 

traces are provided in a side-by-side comparison with computer simulation 

traces for tips of the same geometry. In these experiments, a custom 

15MHz transducer manufactured by Valpey-Fisher was used in the 

periodontal probe.

From these comparisons, it is clear th a t the simulation only 

approximates the experimental results. In particular, the simulation does 

not take into account the effect of signal attenuation, the presence of noise 

or the fact tha t the return signal is electronically amplified in the real 

probe. As a result, backscatter appears much larger in the real signal than 

in the simulation. Also, because the real signal is amplified, direct 

comparisons of peak return sizes between the experimental results and the 

simulations are not meaningful.

However, relative comparisons between the experimental results and
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Figure 4.5: Shapes of the machined tips.
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Figure 4.7: Experimental results (top) vs. simulation (bottom ) for the ex­
ponential tip. In the experiment, the peak return occurred a t 26.6 fis with a 
peak value of 18.0 volts. In the simulation, the return peak occurred at 40.7 
r.u. (which equals 27.1 /is)with a peak value 1.16 times the output signal.
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Figure 4.8: Experimental results (top) vs. simulation (bottom ) for the  spline 
tip. In the experiment, the peak return occurred at 26.7 fis with a peak value 
of 16.4 volts. In the simulation, the return  peak occurred a t 40.7 r.u. (27.1 
fis) with a peak value 0.81 times the output signal.
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Figure 4.9: Experim ental results (top) vs. sim ulation (bottom) for the 
shorter linear tip  (made of brass). In the experiment, the largest return 
peak occurred a t 27.9 /zs with a peak value of 89 volts, while a  smaller peak 
(46 volts) proceeded this one a t 27.2 /zs. In the simulation, the a large return 
peak occurred a t 42.8 r.u. (28.5 /zs) with a peak value 0.45 times the output 
signal, while a  smaller peak (0.27 times the ou tpu t signal) proceeded tha t 
one a t 42.5 r.u. (28.3 /zs)
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the simulations are useful. In the simulation, the long, th in  linear tip (with 

the short nook at the top) produced the strongest return signal, followed by 

the exponential tip, the shorter linear tip, and then the spline-shaped tips 

walls. The experiment, however, showed that the two linear tips performed 

the best, while the exponential and spline-shaped tips hardly produced a 

return at all. A possible reason for the difference between the simulation 

predictions and the experiemental results is that the exponential and 

spline-shaped tips were designed to move the backscatter up within the tip, 

so that there is less scattering around the tip outlet. However, because real 

signals attenuate, earlier scattering has a disproportionate affect on the size 

of the return signal.

One other factor for the difference may lie in the technique used to 

fabricate the tips. The first three tips (thin linear, exponential, and 

spline-shaped) were made by step-drilling a rough outline of the shape, 

followed by a finer cut using electro-discharge machining (EDM). The 

process was completed by polishing the inside with a fine grit. While this 

process produced tips of acceptable quality, it was very difficult to 

reproduce, primarily because it was difficult to center the EDM electrode 

with the step-drilled holes. And since the exponential and spline-shaped 

tips are more complicated shapes, possibly leading to significant 

manufacturing irregularities th a t are hard to inspect.
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Due to these problems with EDM fabrication, a second 

manufacturing technique was also tested with the second, shorter linear tip. 

In this technique, a conical reamer was produced to drill out the hole of a 

linear sloping tip . The reamer can only produce very simple shapes, like the 

short, linear tip  (which, in contrast to the longer linear tip, does not have a 

small nook a t the top of the tip). This process produced perfectly aligned 

holes, but also left grooves along the walls as an artifact of the drilling. 

These grooves were too deep to remove through polishing, and they 

produced significant reflections that made these tips unuseable.

To remove these grooves, the same shape tips were made by this 

process out of brass rather than stainless steel, and the grooves were etched 

using a bath  of nitric acid. This etching removed the grooves, resulting in 

the tips used in the comparisons above. However, it should be noted tha t 

the acid etching resulted in a wider tip outlet than  in the other tips. To see 

how wider holes might affect tip performance, a  final simulation was 

performed with the outlet rounded slightly out, so that it was 0.54 r.u. 

wide instead of 0.50 r.u. Results of this simulation, along with a picture of 

the tip boundary, are shown in figure 4.10. Surprisingly, the wider outlet 

actually reduces the performance of the tip, since the curving tip  produces 

more perpendicular surface for the wave to reflect off of.

While comparison of returns off a flat m etal plate helped test the
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Figure 4.10: The effect of rounding the outlet. The top graph shows the 
voltage trace for a normal straight linear tip, while the middle graph shows 
the trace for the same tip, except th a t its outlet has been slightly rounded 
(the bottom  figure shows the difference in the tips, w ith the dotted  line 
representing the normal tip and the solid line representing the rounded tip). 
Notice th a t the normal tip has a more narrow reflection a t the tip outlet 
than  for the rounded tip. W hile it appears that this strong, narrow reflection 
would result in a weaker return signal, the opposite is true, as the return  peak 
is slightly taller for the normal tip (0.82 vs. 0.79).
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validity of the CAFIT simulation, a better test of the tip shapes comes from 

experiments conducted while imaging structures the size of a periodontal 

pocket. Therefore, further comparisons of tip  performance were conducted 

while trying to image small holes, about 0.5 mm in diameter, drilled in a 

piece of plexiglas. The holes ranged in depth from 2-10mm. When imaging 

these holes, it is im portant to evacuate them  of air, or else the ultrasonic 

wave will reflect off the air bubble and not the hole bottom, thus interfering 

with the depth measurement. To evacuate the hole, thin wire (close to 0.5

mm in diameter) was inserted in the hole to force out the air bubbles.

Hole M an. D ep th Linear T ip E xp. Tip Spline Tip B rass T ip
1 2 mm 2.2 mm none none 2.7 mm
2 5 mm 4 . 9  mm none none 4 . 9  mm
3 7 mm 7.3 mm none none 7.5 mm
4 1 0  mm 9 . 9  m m none none none
5 9 mm 8.6 mm none none 9 . 0  m m

6 6 mm 5.9 mm none none 5.9 mm
7 4 mm 3.4 mm none none 3.5 mm

Table 4.2: A comparison of hole depth measurements using the ultrasono­
graphic probe and a manual periodontal probe with 1 mm increments. The 
holes were drilled in a plexiglas phantom.)

Table 4.2 shows a comparison of the depth measurements recorded 

with a manual periodontal probe and the ultrasonic probe. The manual 

periodontal probe had markings every millimeter, and the standard dental 

practice of rounding up to the next visible marking was employed.

Figures 4.11- 4.14 show the ultrasound traces for each of the seven holes, 

plus one trace w ith the probe aimed at the top of the block. In each case,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7 7

13.4 mm Block Top100

> - 2 0  (

-100

D istance fmm'i

100 Hole 4

23.3 mm 24.8 mm50

0

■50

-100

Distance (mm)

100 Hole 115.6 mm

-100
Distance (mm)

100 Hole 5

60 22.0 mm

20

-60

-100

Distance (mm)

ar

D istance (mm)

100 Hole 6
19.3 mm

-100

Distance (mm)

Hole 3

20.7 mm

-100

D istance (mm)

100 Hole 7
16.8 mm

o

-100

Distance (mm)

Figure 4.11: Scan of holes drilled in plexiglas block using the linear tip.
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the 15MHz Valpey-Fisher transducer was used in the probe.

In figure 4.11, where the linear tip  was used, the returns off the 

bottom  of the hole were always visible. In figures 4.12 and 4.13, though, 

where the exponential and spline tips were used, there was too much signal 

clutter to distinguish reverberations from inside the tip from reflections off 

the hole. Figure 4.14 shows the results for the short linear tip, which was 

able to image all the holes except for the deepest middle hole.

Therefore, both the CAFIT simulation and the experimental 

evidence indicate th a t linear tip walls sloping down to a narrow outlet 

reduces the ultrasonic beam profile with the least scattering. In addition, a 

sharper slope early on (before the wave has spread out too much to reflect 

off these sharply sloping walls) can produce more narrow walls, resulting in 

some improvement in the signal output. While refinements to the CAFIT 

simulation tha t account for signal attenuation, transducer gain, and 

turbulence in the water flow may produce more accurate simulations, the 

technique still provides a useful figure of m erit to determine which tip 

geometries scatter ultrasound the least. Such a figure of merit allows for 

efficient testing of many tip geometries w ithout an expensive process of 

manufacturing and testing different shapes by trial and error.
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4.4 Transducer Testing

The final question addressed was the best choice of transducer for this 

probe. A range of custom transducers with a 2mm-diameter active area, a 

center frenquency ranging from 10-25MHz, and -6dB bandwidth of between 

5 and 8MHz, were produced by Valpey-Fisher, Inc.

Each of the transducers were first tested outside of the probe by 

imaging a flat m etal plate approximately 20 mm from the transducer. As 

can be seen from figure 4.15, one of the 20MHz transducers produced an 

extremely weak return signal, while the 25MHz transducer produced 

spurious return signals th a t were the result of using a very high internal 

gain to compensate for the weak return signal. As a general rule, the higher 

frequency transducers required more damping to eliminate ringing in the 

signal (see figure 4.16). So although higher frequency signals are 

theoretically capable of greater resolution, this ringing reduced the 

resolution. If the ringing was eliminated through greater damping, signal 

strength was sacrificed. This is what happened with the 20 and 25MHz 

transducers th a t performed poorly [82].

After the initial test, those transducers th a t produced acceptable 

returns off the m etal plate were tested by imaging the 0.5 mm diameter 

holes drilled in a plexiglas block.

Figures 4.17- 4.20 provide the results for each of the transducers
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Figure 4.15: Testing of the transducers in open air.
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Figure 4.17: Imaging holes in plexiglas with the 10MHz transducer.
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described above. The 20MHz transducer did not provide enough signal 

strength to image these holes, while both 10 and 15MHz transducers 

provided comparable resolution and signal strength. In addition, two other 

manufacturers provided custom transducers that did not perform well 

enough to use in this comparison study, much less in a clinical probe. 

Therefore, based on these results, 10MHz transducers were used in the tests 

tha t follow. Although the 15MHz transducers performed equally well in the 

study, the 10MHz transducers are easier to obtain, since 2mm-diameter 

transducers tha t operate above 10MHz are difficult to produce.

Thus, based on these results, all subsequent tests were performed 

with a pressure setting in the 5 psi range. In addition, the probe was 

equipped with the 10MHz Valpey-Fisher transducer, and the tip with long, 

thin linear walls and a slight “nook” at the top.
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C hapter 5

D evelopm ent o f Signal 
P rocessing A lgorithm s

5.1 Preliminary Tests

After the prototype ultrasonic periodontal probe was completed, a series of 

tests were conducted to determine how effective the probe was a t measuring 

the depth of periodontal pockets, and to begin developing methods for 

autom ating the analysis of the return signals.

The first test was conducted on a human subject, in which a single 

A-scan image of the periodontal pocket was saved. In this setup, a dental 

hygienist held the probe while an operator viewed the oscilloscope trace on 

the LabView data acquisition software’s graphical user interface. As the 

hygienist pivoted the probe through various angles, the operator viewed 

which trace provided the best return signals and told the hygienist to hold 

the probe in place when the return signal was strongest. At th a t point, the

90
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oscilloscope trace was saved.

This process was repeated on three different pockets chosen for their 

pocket depths as measured with a manual periodontal probe. One pocket 

was 3 mm, one 4 mm and one 5 mm. For each pocket, two sets of 

ultrasonic probing measurements were taken, once of a single trace and 

once of a trace averaged from 50 continuously acquired signals.

This process proved to be cumbersome, since the return signal would 

fade as the probe angle changed slightly due to hand jiggle, or as variations 

in water flow slightly changed the return  signal. When the operator told 

the hygienist to stop moving the probe, the time lag between making the 

instruction and saving the trace was often long enough for the signal to 

fade out. This time lag made it difficult to obtain good data, and to 

correlate the strength of the signal with the position of the probe.

Figures 5.1 and 5.2 show the single trace and the signal averaged 

trace for the 3 mm pocket. Both traces show a first large peak at about 13 

mm, which is approximately the distance from the transducer face to the 

end of the tip.

Both traces also show multiple return signals in the region from 13 

mm to 17 mm. At this point, it was not clear what was causing these early 

returns (features inside the periodontal pocket or artifacts from the tip). 

However, the final return was assumed to  be the bottom  of the periodontal
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Figure 5.2: The signal averaged trace for the 3 mm pocket.
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pocket, which occurs a t 17.1mm. Measured from the first peak, which is a 

reasonable marker for the top of the pocket (it is either the end of the tip 

or reflections off the tooth  surface), this results in a pocket depth of 4.0 mm 

for the single trace and 3.6 mm for the signal averaged trace. This value is 

within the 1 mm measurement error that is considered acceptable for a 

trained dental hygienist making pocket depth measurements with a manual 

periodontal probe. However, the difficulty in coordinating the acquisition of 

the signal with the positioning of the probe makes validity of these 

measurements somewhat questionable.

In comparing the traces in figure 5.1 and 5.2, the blurring of the 

return signal during averaging is the most noticeable feature. This blurring 

is evidence that the signal is not stationary but evolves over time, making 

the A-scan data  acquisition mode a poor method to obtain da ta  in the 

periodontal pocket. Assuming that the variations in signal strength and 

position are due to effects th a t can be considered random, such as 

variations in water flow, signal averaging may be a useful m ethod for 

eliminating these variations. However, the noise in these traces has a large 

component tha t is not random, but rather is due to signal inductance from 

the analog-to-digital converter or from the coaxial cable. As a result, signal 

averaging does not improve the signal-to-noise ratio, as one would expect.

Figures 5.3 and 5.4 show similar results for the 4 mm pocket as for
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the 3 mm pocket, with the ultrasonic pocket depths about 3.9 mm for both 

the single trace and the signal averaged trace (the blurring due to signal 

averaging makes it difficult to determine the exact position of the bottom  of 

the pocket in figure 5.4).

For the 5 mm pocket (figures 5.5 and 5.6), the results are also 

similar, although the bottom of the pocket as measured by the ultrasonic 

probe does appear to be a little deeper: 4.5 mm for the single trace and 

either 4.0 mm or 4.8 mm for the averaged trace (the peak at 4.8 mm is very 

small, and could be noise).

To eliminate the coordination problems between saving a trace and 

properly orienting the probe, the LabView d a ta  acquisition software was 

modified to continuously save a series of scans as the hygienist aimed the 

probe in the sulcus.

This new data  acquisition mode was first tested on cadaver jaw 

specimens obtained from the Periodontics Departm ent of the Naval 

Postgraduate Dental School in Bethesda, M aryland. Cadaver jaws provide 

a useful phantom  to test the probe because they accurately reproduce the 

geometry of the periodontal pocket, but are easier to  work with during the 

initial test since there are no concerns of patien t discomfort during 

extended examinations.

The jaw specimens were preserved in formalin, and unfortunately
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the periodontal tissue had hardened and tightened around the tooth, so 

th a t no periodontal pocket remained. To form a periodontal pocket that 

could be analyzed with the ultrasonic probe, surgical incisions (about 1 mm 

wide) were made along the gingival line, forming a series of pockets that 

ranged from 6 to 8 mm deep. While these incisions produced a pocket tha t 

could be probed, the ultrasonic properties of the tissue were still 

significantly different from those of living tissue. In addition, the pocket 

was larger than a pocket would be in a live patient (1 mm wide versus 

0.25-0.5 mm wide), which could affect the nature of the return  signal.

Of the three cadaver specimens, the first section had seven teeth on 

it. Two surgical incisions were made, one at the lingual mesial position of 

tooth 4 and one at the lingual position of tooth 7. The pocket depth on the 

tooth 4 incision, as manually measured using a probe w ith markings every 2 

mm, was 8mm. To determine the pocket depth from the ultrasonic 

periodontal probe, the A-scan ran while trying to orient the probe to get 

the strongest return signal. These A-scan traces were added up sequentially 

to form a two-dimensional B-mode image, as shown in figure 5.7. This 

figure has the points within each A-scan trace on the y-axis, with the 

voltage levels indicated by greyscale pixels, while each trace is added along 

the x-axis. From visual inspection of this image, the line a t point 1750
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Trace

Figure 5.7: The first scan of tooth  4 on the 7-tooth cadaver jaw  segment. 
The arrow points to the feature of interest at point 2450, which became 
visible after moving the probe orientation in the pocket until a strong return 
appeared. The white line in the middle of the scan occurred when the probe 
was moved away from the pocket for a moment.
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Figure 5.8: Scan taken while the probe was placed in a tub of water with no 
reflectors nearby. Note the three return lines at 1750, 1950 and 2150, which 
also appear in all the scans of the cadaver jaws.
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Jaw Tooth Manual 1st U ltrasound 2nd Ultrasound
1 lingual mesial 4 8 mm 5.3 mm 4.5 mm
1 lingual 7 6 mm 13.9 mm 13.9 mm
2 distal buccal 2 6 mm 4.5 mm 4.5 mm
3 distal 2 8 mm 3.8 mm 4.5 mm

Table 5.1: Pocket depths in cadaver jaw specimens.

corresponds to the end of the probe tip, which is 13.1 mm long.1 Two other 

prominent lines are a t 1950 and 2150, but these lines are considered 

artifacts of the tip, since they show up on every cadaver jaw scan, and on a 

scan taken while the probe was sitting in a ja r  of water with no reflectors 

nearby (figure 5.8). The fourth line, which only appears towards the end of 

the scan in figure 5.7, is the feature considered most likely to be the bottom 

of the periodontal pocket. Since it is at 2450, this translates to a pocket 

depth of 5.3 mm, assuming that this feature is truly a t the bottom  of the 

pocket so that the ultrasound wave travels at the speed of sound in water, 

1500y, for the whole trip.

The scan can also be analyzed by looking at any one of the traces in 

the 2-D image shown in figure 5.7. Figure 5.9 shows the 255th trace 

acquired from the image in figure 5.7, which shows more clearly the four 

feature lines described earlier.

The other pockets in the cadaver jaw specimens were measured in 

the same way, and the results of these measurements are shown in table 5.1.

1 D is  =  P01711 * velo<2lU In this case di* — 1750 * 1500 T- * innnmm _  i o iu i s .  — sam rate * 2 . m  m  c a a is. — 10QMHz * 2 * ruuu m —
mm, since the sample rate was 100MHz and the speed of sound in water is 1500 y .
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Figure 5.9: An A-scan like view of the 255th trace in figure 5.7. T he peaks 
at about 13 mm, just under 15 mm, and just above 15 m m  correspond to 
the feature lines at 1750, 1950 and 2150 in figure 5.7, while the smaller peak 
a t about 18 mm corresponds to the feature line at 2450.
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Because the return signals were so difficult to acquire during the first set of 

measurements, the measurements were repeated to see if the same pocket 

depth measurements would be acquired a second time. As can be seen from 

the table, there is almost no correlation between the manual probing depths 

and the ultrasonic probing depths, and the repeatability of the 

measurements was not very good either. However, it is not clear whether 

these poor results are due a problem with the ultrasonic probe, or to the 

poor quality of the cadaver specimens.

Rather than continue to investigate why the cadaver specimens did 

not produce good data , another test was conducted on a live patient. Such 

a test, using the new da ta  acquisition program that allows for better 

analysis of the data, could determine whether more cadaver studies were 

necessary, or if tests on live patients would be a better use of available 

resources.

For this test, a  patient with healthly teeth (pocket depths as 

measured with a manual probe ranged from 1 to 4 mm deep) volunteered to 

be examined with the ultrasonic probe. Manual and ultrasonic pocket 

depth measurements were taken on the first quadrant of teeth, plus a few 

extra teeth in the fourth quadrant that had 4mm-deep pockets.

During this test, the probe started out in a vertical position, nearly 

parallel to the tooth  face (figure 1.7). From this position, hygienist slightly
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moved the probe about its vertical axis to see if slight changes in probe 

position would provide a stronger return signal. However, after looking at a 

few teeth, the strongest signal always came from the starting position, and 

so the hygienist was instructed not to move the probe from th a t position.

5.2 Signal Processing

After obtaining this data, the scans were visually inspected to determine 

pockets depths and these measurements were compared to the pocket 

depths measured with the manual probe. Figure 5.10 summarizes the 

results of this visual inspection, by comparing the manual pocket depth 

measurements with the ultrasonic pocket depth measurements (as 

determined by visual inspection of the trace images).

Because the ultrasonic scans produce such a cluttered signal, a 

visual examination is a laborious and subjective measurement. The eye 

must pick out which peak among many is the feature of interest, and 

visually determine its position. Training a dental hygienist to make such a 

complicated interpretation of the data  in a clinical setting is highly 

unrealistic, so any practical tool for measuring periodontal pockets depths 

must be able to automatically determine pocket depths.

The first step in autom ating this data  analysis is to simplify the 

trace and extract only the features of interest. To this end, an autom ated
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Figure 5.10: A comparison of manual probing depths (dotted line with error 
bars) with pocket depth measurements obtained from the ultrasonic peri­
odontal probe. Of the 42 measurements obtained on this patient, 8 of the 
depth measurements were not within the ± 1  mm error considered accept­
able for a trained dental hygienist making pocket depth measurements with 
a manual probe. However, the ultrasonic return  signals were too difficult to 
accurately interpret a t two positions (2 mesial buccal and 4 distal buccal).
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pick peaking algorithm widely used in making spectrographic 

measurements was adapted for this analysis. Peak picking is most 

commonly accomplished through slope detection or polynomial curve fitting 

[83, 84, 85, 86, 87], although some work on the use of wavelet transforms 

has also been undertaken [88]. Slope detection, while providing better 

resolution than the other techniques, is more computationally costly. 

However, in this case, the com putational complexity of the problem is 

greatly reduced by the fact th a t only the peak position must be detected, 

and not the peak shape, as is required in spectrographic measurements to 

determine the concentration of a chemical element along with its identity. 

Thus, the conceptually simple slope detection was employed.

The slope detection algorithm used in this project was modified 

from a commercial routine freely available from Galactic Industries 

Corporation [89]. In this algorithm, the first derivative of the discrete 

waveform is taken using a central difference approximation, and the average 

value of the first derivative is computed. Next, the local maxima are found 

wherever the derivative changes sign from positive to negative. If the slope 

ju s t before this point is greater than  the average slope, the original value of 

th a t data  point is retained. All other points are set to  zero.

The next step is to  smooth the data  by taking the maximum value 

within each block of 10 da ta  points. D ata smoothing reduces resolution
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between scan points from 0.0075 mm to 0.075 mm, which is still smaller 

than the fundamental resolution limit for a 10MHz transducer.

At this point, the original waveform has been simplified greatly, as 

can be seen from the comparison of the original waveform obtained from a 

measurement of tooth 3 at the buccal position and the waveform after the 

peak picking algorithm has been applied (figure 5.11). However, as these 

A-scan waveforms are compiled into a 2-D B-mode image, certain features 

appear transient, while others remain fairly constant (they may fluctuate 

about some central value), as can be seen in figures 5.12 and 5.13. To 

eliminate the transient features and the fluctuations about a central value, 

signal averaging was applied after the peak picking algorithm.

Signal averaging is useful now, after the peak picking algorithm  has 

been employed, because peak picking eliminates small variations in the 

signal due to movement of the probe, changes in water flow, or other 

factors. In the original waveform, the signal is not constant, so averaging 

blurred the signals and failed to eliminate the noise. In addition, the noise 

was not completely random in the original waveform, but was induced from 

signals nearby the analog-to-digital converter or the coaxial cables.

However, while the frequency of the noise in the raw waveform was 

not random, the amplitude was. Only a small percentage of the noisy 

signals were strong enough to produce a local maximum whose peak is
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Figure 5.11: A comparison of the original waveform, and the waveform after 
the peak picking algorithm has been applied.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



t

1 0 8

1000 

1500 

2000
«

2500 

3000 

3500 

4000
20 40 60 80 100 120 140 160

Trace

Figure 5.12: The B-mode image of the original waveforms compiled while 
the probe examined too th  3 a t the buccal position of the first volunteer.
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Figure 5.13: The B-mode image of the same tooth as in figure 5.12, except 
th a t peak picking has been applied to  the image. Notice th a t while there is 
some variation in the signal from trace to trace, certain features stand out 
when looking at the image as a whole.
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Figure 5.14: The waveform that results when signal averaging is applied 
to the image in figure 5.13. The bottom  graph zooms in on the region of 
interest ju st after the tip. The first peak, a t 13.1 mm is either a reflection 
as the ultrasound wave leaves the tip or a feature on the tooth, such as the 
cemento-enamel junction. The last significant peak, a t 15.0 mm, is considered 
the bottom  of the periodontal pocket, leading to a pocket depth measurement 
of 1.9 mm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



I l l

higher than  the average peak, and the position of these peaks is essentially 

random. So, if signal averaging is applied after peak detection, the peaks 

from noise will be averaged out. The results of applying signal averaging 

after peak picking can be seen in figure 5.14.

W ith it the aid of the peak detection algorithm  and signal averaging, 

it is now easier to identify the weak signals th a t return  from the bottom  of 

the periodontal pocket. Therefore, the analysis of the d a ta  in figure 5.10 

was repeated. Figure 5.15 summarizes this analysis, comparing the pocket 

depth measurements as measured by the manual probe with the pocket 

depth measurements made from inspection of the ultrasonic signal after 

peak picking and signal averaging had been applied to the raw signal.

Because the waveform has been greatly simplified and peaks due to 

noise were eliminated, it is much easier to distinguish peaks in the 

processed data. As a result, this analysis gave more accurate results than 

the analysis of the raw data. (If accuracy is defined as correlation with the 

manual probing depths.)

While peak detection followed by signal averaging simplifies the 

waveform and improves pocket depth measurement accuracy, some human 

interpretation of the d a ta  is still required. However, with more clinical 

data, it is hoped tha t the peak picking algorithm can be combined with a 

fully autom ated signal interpretation algorithm.
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Figure 5.15: Comparison of the manual probing measurements with measure­
ments obtained from inspection of the processed ultrasonic return signals. 
The combination of peak detection and signal averaging produced a greatly 
simplified waveform for analysis, which resulted in more accurate depth mea­
surements than were made from inspecting the raw waveform (figure 5.10). 
In this plot, only 5 of the pocket depth measurements were not in the ±1 
mm error considered acceptable for a trained dental hygienist making pocket 
depth measurements with a manual periodontal probe. W h at’s more, the 
furthest any of these 5 data  points came from the error bar was 0.5 m m , 
while the furthest any of the 8 da ta  points in figure 11 tha t were outside the 
±1 mm error bar came was 4 mm.
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Chapter 6

Clinical Trials

6.1 The Study Protocol

From September to November 2000, a clinical study of the ultrasonographic 

periodontal probe was conducted a t the Old Dominion University dental 

hygiene clinic. The study protocol was approved by the Institutional 

Review Board of Old Dominion University. Twelve subjects enrolled into 

the study presented with at least 24 teeth and varying levels of periodontal 

disease. 162 teeth provided 972 independent measurements. Health 

histories were reviewed, and subjects enrolled did not require antibiotic 

premedication before dental treatm ent.

The study involved one patient visit in which two periodontal 

examinations were performed 1 hour apart. The appointment scheduling

113
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HuFriedy U N C -12 Manual 
Probe

Probe One Computerized  
Controlled Force Probe 
Handpiece

Ultrasonographic Probe

Figure 6.1: Manual and controlled force probes (top left), and the prototype 
ultrasonographic probe (bottom right), used in the clinical trials.

was long enough apart so that the operator could not recall probing 

measurements, bu t short enough to avoid tissue changes between visits.

To reduce intra-examiner variability, a single practicing dental 

hygienist with over 30 years of experience was used. To avoid examiner 

bias, the examiner was not perm itted to view pocket depth recordings on 

the computer screen for either mechanical probe. The examiner was 

previously trained and calibrated with the manual probe to  simulate 

pressure in the range of 20-30 grams.

Quadrants to be treated were randomly assigned. Three probing 

methods were evaluated: the ultrasonographic probe, computerized
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controlled-force probe, and manual probe. (See figure 6.1.) The order of the 

probing method and quadrant to be treated were randomly assigned using 

simple randomization. Periodontal measurements were performed at six 

sites per tooth: disto-buccal, mid-buccal, mesio-buccal, disto-lingual, 

mid-lingual and mesio-lingual.

The comparison probes used in this study were a computerized 

controlled-force probe and the UNC-12 manual probe. The computerized 

probe system (Probe One - American Dental Technologies, Inc., Corpus 

Christi, TX) is a constant force automated probing system. The system 

includes a control unit, 2 memory cards, handpiece, printer, footswitch, and 

disposable probe tips. The controlled-force probe uses a plastic filament, 

with a rounded tip diam eter of 0.54 mm, to probe the pocket. The probe 

measures depths from 0.0 mm to 10.0 mm in 0.5 mm increments, with 

approximately 30 grams of force. To operate the computerized probe, a 

flexible filament fiber was inserted between the gingiva and the tooth 

surface. The probe filament was gently depressed until the tip reached the 

base of the periodontal pocket. At the point of contact, the footpedal was 

depressed to capture the data.

Manual probing measurements were determined with new, same 

batch UNC-12 probes (HuFriedy, Chicago, IL) with a tip  diameter of 0.45 

mm and calibrated markings every millimeter for 12 mm with colored
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reference points at 5 and 10 mm.

The Gingival Index (GI) of Loe and Silness [90] was used at the 

beginning of the appointment to assess the severity of gingival tissues 

adjacent to selected teeth. A score from 0-3 was assigned using the 

following criteria:

0: Absence of inflammation

1: Presence of mild inflammation, slight color change, slight edema, and 

no bleeding on probing

2: Presence of moderate inflammation, moderate redness, and edema 

with bleeding on probing

3: Presence of severe inflammation, marked redness and edema, and 

tendency toward spontaneous bleeding

Bleeding indices were not captured since bleeding would not be a 

comparable indicator with the non-invasive ultrasonographic probe.

The ultrasonographic probe was equipped as described in chapter 3 

and the gain on the pulser/receiver was set very high (45 dB) in order to 

adequately amplify the small signals th a t return off the bottom  of the 

periodontal pocket. Finally, during the first 6 examinations, water flow in 

the ultrasonographic probe was controlled through a pressure gauge th a t 

was set just below 5 psi. For the last 6 examinations, a foot pedal was
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incorporated into the probing apparatus that allowed the hygienist to 

control the flow of water and the computer interface (which previously was 

controlled by an examination assistant) as she moved the probe from 

position to position. As a result, the foot pedal shortened examination time 

and improved patient comfort.

During the exam, the ultrasonographic probe was held in a vertical 

position, almost parallel to the tooth face. In addition, the hygienist looked 

for two visual clues to determine if the probe tip was in the right position: 

a slight blanching of the gum tissue and complete coupling of water into the 

periodontal pocket (no water squirted back out of the  pocket during 

probing). Under these conditions, a high-quality signal was almost always 

acquired. In the few cases where a poor-quality signal was obtained-usually 

due to poor water flow-the hygienist was instructed to repeat the 

measurement at that site.

Once the proper probing position was found, the ultrasonographic 

probe was held in place for a few seconds until a  series of A-scan traces 

could be acquired by the LabView data  acquisition software. For the first 

patient, the amount of tim e the probe was held in place was determined by 

trial and error. In most cases, a few seconds was enough to acquire 30-40 

A-scan traces. For the second patient, the LabView software was 

reprogrammed to acquire 100 traces. While this improved the quality of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1 1 8

o 2 4 6 8 10 12 161 4

Depth (mm)

Figure 6.2: An example of an A-mode trace obtained from scanning a  peri­
odontal pocket.

processed signal somewhat, the extra time needed to acquire the signal led 

to operator fatigue and patient discomfort. Thus, for all subsequent 

examinations, the LabView software was set to acquire 36 A-Scan traces. 

(For the sake of consistency, all the results described below are based on 

averaging only the first 36 traces, no m atter how many were acquired 

during the exam.) During the exam, the raw data  was saved on the 

computer hard drive so tha t it could processed later in the lab. An example 

trace is shown in figure 6.2.
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Figure 6.3: The same A-scan trace shown in figure 6.2, after signal processing 
has been applied.

6.2 D ata Processing Techniques

This raw data  was processed using the same techniques-peak picking 

followed by smoothing and averaging-that were described in chapter 4.

This processing resulted in signals like those shown in figure 6.3.

Based on two observations made during these examinations, the 

signals appeared to be the result of returns off the tooth surface. First of 

all, one of the patients (Patient 4) had very sm ooth teeth, due to a loss of 

enamel. As a result, the ultrasonographic return signals were very weak. 

Second, whenever a particularly strong signal was encountered, and the 

hygienist was asked why, she would say tha t the patient had “a lot of tooth
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Figure 6.4: Transitions in signal strength in an example trace. The larger 
peaks are likely due to echoes from exposed tooth surfaces, while the smaller 
peaks are the result of echoes from tooth surfaces covered w ith soft tissue.

anatomy,” which means tha t the tooth had a lot of surface irregularities 

tha t produced ultrasonic returns.

After all the raw da ta  was processed, it was examined to  find any 

trends in the returns. After a general examination, no a ttem pt was made to 

m atch individual peaks to  a particular pocket feature, since the  peaks were 

too numerous to make such a match. Instead, it appeared th a t the heights 

of the peaks often underwent two transitions in amplitude: first from very 

large to medium height, and then another transition from m edium  to very 

small. In many cases, these transitions are quite abrupt, while in others 

they are gradual, but in all cases the decrease in peak height was too great
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to be accounted for by attenuation alone. An example trace highlighting 

these transitions is shown in figure 6.4, while figure 6.5 compares a  signal 

with time gain amplification (to compensate for signal attenuation in 

water) with a raw signal. (The time gain was computed by comparing 

reflections off a metal plate a t 10 mm and 30 mm from the transducer, and 

multiplying data points by an exponential function designed to make the 

two reflections equal in size.)

One possible explanation for these transitions is based on the fact 

th a t the region of the periodontium immediately adjacent to  the tooth 

consists of three sections: the sulcus, the junctional epithelium, and the 

connective tissue, as shown in figure 6.6. In a healthy tooth, the sulcus is 

about 0.5 mm deep, but may be a few millimeters deep for patients with 

mild gingivitis, to over 4 mm deep for patients with periodontitis. In the 

sulcus, there is no tissue immediately adjacent to the tooth, so the return 

signals are not attenuated. Therefore, the first large peaks may correspond 

to this region of the periodontal pocket.

From the sulcus, the wave enters the junctional epithelium, a thin 

layer of skin-like tissue that is attached to the tooth surface. The junctional 

epithelium is about 0.15 mm wide subjacent to the sulcus bottom , and only 

a few cell layers thick at the bottom . In a healthy patient, the junctional 

epithelium is about 2 mm deep. In early gingivitis, some of the junctional
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Figure 6.6: Structure of the junctional epithelium. The area in pink is the 
junctional epithelium, while the arrows and cell-like structures a t the edges 
shows that the junctional epithelium continually replaces lost tissue [8].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1 2 4

epithelium is lost, leading to a deeper sulcus. As disease progresses to later 

stage gingivitis and then to periodontitis, the connective tissue and even 

alveolar bone will be lost to disease. However, since epithelial layers are 

continually replaced every 4-6 days, a small region of junctional epithelium 

will be present subjacent to the  sulcus in all patients. The medium-sized 

peaks may correspond to reflections in this region, because junctional 

epithelium attached to the too th  surface attenuates reflections off the tooth 

[8].

In a healthy patient, the junctional epithelium gives way to 

connective tissue at the cemento-enamel junction (CEJ). The first layer of 

connective tissue is the gingival fiber bundles, in which collagen fiber 

bundles are embedded in the gingiva and spread out in various directions to 

give the gingiva its stiffness. The gingival fiber bundles increase in density 

until they reach their highest density just above the alveolar bone. At the 

alveolar bone, the connective tissue is called the periodontal ligament, 

which attaches the root to the alveolar bone.

Connective tissue is attached to the tooth surface, which means it is 

unlikely that an ultrasound wave will reflect off the tooth surface in this 

region. Thus, the very weak signals toward the tail end of the signal-m ost 

of which are indistinguishable from noise-may correspond to the th ird  

region of connective tissue.
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Using this model as a guide, five people experienced in ultrasound 

signal analysis were asked to examine the processed data and identify the 

two transition points of the signal: the bottom  of the sulcus, which 

corresponds to the position of last large peak, and the bottom  of the 

junctional epithelium, which corresponds to the position of the last medium 

peak.

Several examiners were used to determine how consistently different 

people could identify features from these signals, and if experienced people 

would be more effective at picking out these features than an autom ated 

feature recognition algorithm. Before running this comparison, however, 

three different approaches to autom ated feature recognition were 

investigated. In each case, the algorithm was designed for the limited goal 

of identifying the second transition from medium-sized peaks to very small 

peaks, since this transition is more likely to correspond to a fixed 

anatomical point.

The first algorithm employed a simple thresholding test in which the 

very small peaks were considered noise. Thus, the threshold was set by the 

average noise value. Assuming th a t on average there are many more 

“noise” points than “signal” points in the trace, the noise value can be 

determined by taking the average value of the entire trace, and setting the 

threshold for the transition between periodontal pocket to connective tissue
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Figure 6.7: D ata smoothed by averaging the 10 neareast-neighbor points on 
the trace, for the purpose of autom atic interpretation.

at that level. Alternatively, since most of the signal in these traces is 

concentrated at the beginning of the trace, the threshold can be set by 

taking the average of the last 175 points of the trace (of 225 total), so that 

the threshold is a little lower.

However, this thresholding test must be accompanied by a 

smoothing algorithm tha t eliminates the severe peaks and valleys within 

the signal region, so tha t an early valley is not mistaken for a transition 

from signal to noise. Nearest neighbors averaging, in which each point was 

adjusted to equal the average of a specified number of its nearest neighbors, 

was used to smooth the the signal trace. Figure 6.7 illustrates a signal
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S m o o th in g  P a ram eter T h resh o ld 1st D er . 2n d  D er.

1 1.65 0 0.19

10 3.17 0 0.13

20 3.18 1.66 0.16

30 3.05 0 0.17

40 2.98 3.56 0.13

50 2.82 3.63 0.14

60 2.79 3.56 0.15

70 2.93 3.53 0.14

80 2.79 3.51 0.15

90 2.95 5.29 0.14

100 2.77 2.02 0.14

Table 6.1: Feature depths for three different algorithms.

processed using this combination of sm oothing and thresholding.

An alternative approach involves smoothing the signal and then 

taking the first derivative of the signal. Because the smoothed signal has a 

global minimum near the transition region, taking the first derivative may 

be used to find th a t minimum. Similarly, this transition could be found by 

taking the second derivative of the sm oothed signal and finding the point 

where the second derivative changes from negative to positive. Figure 6.8 

shows examples of traces processed using the first and second derivative.
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Figure 6.8: Transition detection using derivatives.
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Table 6.1 shows the feature depths obtained from applying these 

three algorithms at various smoothing parameters for patient 3’s 10th tooth 

at the mid-buccal position. (The most common depth obtained by visual 

inspection was 3.2mm)

From this test, it appears that the thresholding algorithm  is the 

most promising candidate for comparison to visual inspection. The 

derivatives did not work as well because they use difference equations that 

amplify small variations in the signal. This amplification negates the effect 

of the smoothing algorithm, so that valleys within the signal region can be 

mistaken for the transition from signal to noise.

As a result, the thresholding test was applied to all the clinical trials 

data  using three different smoothing parameters (averaging the 10, 30 and 

50 nearest neighbors) and two different thresholds (finding the noise value 

from the average of the all the points, and finding the noise value by 

averaging the last 175 of the 225 points in the trace.

6.3 Statistical Analysis of the Probing  
D epth M easurements

Signal analysis of the ultrasonographic data yielded 16 values for each 

probing site: two features (the bottom  of the sulcus and the bottom  of the 

junctional epithelium) as identified by 5 examiners (for a to tal of 10 values), 

plus six values for the bottom  of the junctional epithelium as identified by
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the autom ated feature recognition algorithm  set at different parameters.

These da ta  were statistically compared to the manual probing 

depths, the controlled force probing depths, and the gingival index ratings 

to answer two questions:

1. How well did the ultrasonographic da ta  correspond to the other 

probing techniques, or to other measures of ginigival health?

2. Which type of probing measurement was the most repeatable?

To compare the ultrasonographic d a ta  to the manual probing data, 

the measurements were first presented in the graphical form proposed by 

Altman and Bland [91], which was developed in response to criticisms of 

the most common practices used in comparison studies (correlation, paired 

t, and regression). In this graphical form, the difference between two 

corresponding measurements is plotted against their mean value. This 

plotting scheme amplifies small differences in the measurements, and allows 

one to see trends in how the differences change as the size of the 

measurements increase.

Four plots using Altman and B land’s scheme are shown in figure 6.9, 

in which the manual probing data is plotted against one observer’s values 

for two transition regions (the bottom  of the sulcus and the bottom  

junctional epithelium), one automated determ ination of the second 

transition region (set with a smoothing param eter of 10 nearest neighbor
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Figure 6.9: Comparison of probing measurements using a difference plot.
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x  fit

Figure 6.10: In orthogonal regression, a line of best fit is found by minimizing 
the distance perpendicular to each point, rather than  the x- or y-direction 
distance.

averaging and the higher threshold value), and the controlled-force probe 

measurements. In these plots, two measurement methods with 1:1 

correspondence would have a cluster of points close to the line y=0. Of the 

plots shown, the controlled force probe and the autom ated algorithm come 

the closest to fulfilling this goal, although in both cases there many points 

with significant differences (greater than 3mm). T he two plots that use 

data  from the observer do not match up nearly as well.

A more rigorous comparison technique, described by Tan and 

Iglewicz [92], is provided by orthogonal regression. Orthogonal regression 

finds the line of best fit through an x-y scatterplot of the comparison data.
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However, unlike traditional linear regression, the y-variable is not treated as 

a dependent variable, with the line of best fit drawn to minimize the error 

in the y-direction. Instead, orthogonal regression assumes th a t there is 

error in both variables, and finds the line of best fit by minimizing the error 

in a direction orthogonal to the points in the scatterplot, as shown in 

figure 6.10. (Note, however, th a t the scaling of the perpendicular is 

reserved as a statistical issue, which depends on the ratio of variance 

between the two data sets, rather than a purely geometric issue.) [93]

Figures 6.11 to 6.13 show the results of the orthogonal fit to the 

scatterplot da ta  for each measurement technique. The plots show three lines 

of fit: first, a standard linear fit; second, an orthogonal fit th a t is based on 

a ratio of the total variance in each data  set (variance due to random  error, 

plus subject-to-subject variance); and third, a fit assuming equal variances.

In these plots, the controlled force probe measurements, plus some 

of techniques used to find the second transition region, produced orthogonal 

fits that were close to one. The measurements of the first transition region 

(the bottom  of the sulcus), however, did not correspond well to the manual 

probing depths, and tended to have a negative relationship (the sulcus 

depth got more shallow as the manual probing depths increased).

Of the measurements tha t produced an orthogonal fit line with a 

slope close to one, only the controlled-force probe’s line had a y-intercept
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less than 1 mm. The techniques used to estimate the depth  of the 

junctional epithelium produced y-intercepts ranging from -1 to -3, which 

means that the manual probing data  tended to be a few millimeters lower 

than these estimates.

From this analysis, it appears that the measures of the second 

transition region offer some promise as a clinical marker of pocket depths. 

However, because the hum an examiners could not consistently identify this 

transition region (some of the orthogonal fits came close to a slope of 1, but 

others did not), an autom ated feature recognition algorithm appears better 

suited for extracting this data.

However, this orthogonal fit was not conclusive, so a second analysis 

was attem pted in which the manual probing data were treated  as an ordinal 

variable rather than a continuous variable. This treatm ent is possible 

because the manual probing d a ta  is obtained on a gross scale (1 mm 

increments from over a range from 1 to 7mm) as compared to  the 

ultrasonographic data (0.1 mm increments over the same range).

By treating the m anual probing data as an ordinal variable, 

comparisons across a group-all ultrasonographic measurements taken at 

sites with a particular manual probing values [l,2,3,etc.]-are possible. Using 

this technique, a one-way analysis of variance was performed th a t grouped 

the manual probing values w ith the 16 ultrasonographic measurements and
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the Probe One measurements. The results of this analysis are shown in 

figures 6.14-6.16. As can be seen from these results, the Probe One data  

showed some increase in the group means as the manual probing data  

values increased. For the 16 sets of ultrasonographic data, however, the 

group means showed no significant variation from the grand mean.

Due to the significant difference between the probing depth  and the 

true pocket depth, manual and controlled force probing measurements are 

not likely to correspond to anatomical features, as the ultrasonographic 

probe should do. As can be seen in figure 1.2, manual probing 

measurements will usually fall somewhere between the bottom  of the sulcus 

and the bottom of the junctional epithelium. For more severe cases of 

periodontitis, the anatomy becomes more complicated and m anual probing 

is even less likely to match a specific anatomical feature.

Even though the ultrasonographic data  cannot be directly compared 

to manual probing measurements, ultrasonographic probe should 

correspond to some measure of gingival health. The only such measure 

obtained during these clinical trials came from the gingival index (G I). As a 

result, a one-way analysis of variance was performed on the gingival index 

d a ta  against the manual probing data, the controlled-force data, and  the 16 

different ultrasonic data  values. The results of this analysis are shown in 

figures 6.17-6.19.
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Because the patients examined during this trial generally exhibited 

good gingival health, few of the sites had GI rankings of 2, and none had GI 

rankings of 3. Despite this limited sample range, there is some indication 

tha t the second transition region (the bottom of the junctional epithelium) 

gets deeper as the GI scale gets higher, and that it does so ju st as well as 

the manual probing data  (and much better than the controlled-force 

probing data) . However, this trend was only true for 3 of the 5 observers, 

plus for the autom ated feature algoritms at 3 of the 6 param eter settings. 

Also, there was no indication tha t the first transition region, as identified 

by all 5 observers, got deeper as the GI ranking got higher.

In addition to the comparison of the measurement techniques, the 

clinical trials data  were analyzed to assess the repeatability of the 

measurement techniques. To do so, each of the data sets were modeled to 

separate out variation due to  error (the variation that would occur if the 

same measurement were repeated again under the exact same conditions) 

from variation due to other factors. These factors included variation across 

patients, tooth numbers, probing locations and observers (for the 

ultrasonographic data  only). However, for the purposes of simplicity, only 

some of the ultrasonographic data  was analyzed with this model. Since the 

earlier results indicated th a t the first transition region did not correspond 

to any measure of gingival health, those points were not considered in this
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model. In addition, the autom ated feature recognition corresponded best to 

GI rankings and manual probing depths when the sm oothing param eter 

was set for 10 nearest neighbor averaging and the lower threshold setting, 

so only results using those param eter settings were used for this analysis.

As can be seen from figure 6.20, the repeatability of manual probing 

and ultrasonographic probing with automated feature recognition is 

comparable (as indicated by their similar values for variance due to error). 

However, manual probing has a much larger to tal variance, because manual 

probing has much larger site-to-site and tooth-to-tooth variance 

components. This either indicates a bias in manual probing (perhaps due to 

a site- or tooth-specific change in angulation or probing pressure) or a 

failure to detect im portant variations in probing depth on the part of 

ultrasonographic probing. Two observations, however, point to a bias in 

manual probing. First, ultrasonographic probing has a  larger 

patient-to-patient variance, where one would expect variance due to 

differences in overall gingival health. Second, controlled-force probing, 

which is designed to eliminate variations in probing force, also has lower 

site-to-site and tooth-to-tooth variance than manual probing.
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E lastodynam ic Sim ulation o f  
th e P eriodontium

7.1 Sim ulation Developm ent

In Chapter 5, a model of the behavior of the ultrasonic signal within the 

periodontium was proposed to help interpret the data obtained during the 

clinical trials. Two key observations made while conducting the clinical 

trials were used to help formulate this model. First, one patient had very 

smooth teeth due to a loss of enamel, which led to weak ultrasonographic 

return signals. Second, probing sites with unusually strong signals had 

teeth with “a lot of anatomy,” or surface irregularities that produced 

ultrasonic returns. Thus, the first assumption of the model is the signals 

analyzed using the probe are composed entirely of echoes off of hard tissue 

within the periodontium.

Although the signal is composed from echoes off of hard tissues, this

148
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data  can be used to infer the depth of the periodontal pocket. W ithin the 

pocket, the surface of the tooth  is exposed, and ultrasonic signals can echo 

directly off the tooth surface. However, if the tooth surface is covered with 

tissue, the echo will be attenuated. Because the junctional epithelium is 

softer than the connective tissue, it is reasonable to assume th a t it will 

attenuate the signal less than  the connective tissue. This leads to the three 

regions of the signal discussed in Chapter 5: First there is the region of very 

strong returns, in which the ultrasonic wave passes through water (from the 

probe) to echo off the too th  surface. Second, there is the region of slightly 

attenuated returns, in which the ultrasonic wave must pass through 

junctional epithelium layers before echoing off the tooth  surface. Finally, 

there is the region with no detectable returns, in which connective tissue 

completely scatters the ultrasonic wave and no echoes from the tooth can 

be detected.

Using this model as guide, an idealized periodontium was developed 

for use in a computer simulation designed to test this model. This idealized 

periodontium, shown in figure 7.1, consists of three regions. The first region 

is the periodontal pocket, which is filled with water from the 

ultrasonographic probe. The second region is junctional epithelium, and 

the rest of the periodontium is gingiva. The inner surface is an interface 

with the tooth, and so for this boundary the rigid body boundary condition
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T In te rface  
w ith oral 
cav ity

In terface 
with too th

Figure 7.1: Idealized perioduntum. The pink region represents the protion 
of the pocket filled with water from the probe, the blue region represents 
junctional epithelium, and the red region represents gingiva. The left border 
is tooth, and is assumed to be a completely rigid structure, while the left 
border is air and is assumed to be a vacuum interface.
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Vij =  0 was used. The outer surface is an interface between gingiva and the 

oral cavity (air), and so for this boundary the vacuum boundary condition 

<Jij =  0 was used.

In addition, the ultrasonic parameters of the gingiva and the 

junctional epithelium needed to be defined. Values for the Lame parameters 

A and p  were not available in the literature, nor were they for the density p. 

However, because the gingiva contains fiber bundles that give it some 

stiffness (like muscle), while the junctional epithelium is softer and more 

skin-like, the ultrasonic properities of muscle and skin, respectively, were 

used for this simulation. For muscle, the values A =  2.46 x 109 Pa, p  =

0.25 x 106 Pa, and p =  1.08 x lO3^  were used, and for skin, A =

2.30 x 109 Pa, p  =  0.19 xlO6 Pa, and p =  1.02 x 103^ -  were used [95, 96]. In 

the simulations th a t follow, it should be kept in mind that muscle and skin 

are probably more dense than gingiva and the junctional epithelium, 

respectively, since gingiva is softer than muscle and junctional epithelium 

mixes with crevicular fluid to make it more liquid-like than skin.

The simulation was designed using the elastodynamic variation of 

the CAFIT algorithm discussed in Chapter 3, called the elastodynamic 

finite integration technique (EFIT) of Fellinger, et al [94]. This algorithm is 

derived the elastodynamic equations (2.1) and (2.2) using the same finite 

volume discretization technique outline in Chapter 3.
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Following the detailed derivation of Fellinger et al, results in in the 

following discrete equations:

vV=v?  1)+ u f  ^At, (7.1)

and

4 +i> =  4 <7-2)

In equation (7.1),

rfn) -  1 x
1 “  A l4 n)+ ^ +Mi)

r (n+ A fi) _  (n ) (n ) _  (n + W ,-+ l)  (n ) _  ( n - A f j ) ,  / -

where the n superscript denotes a node position on the grid and the Mi

superscript denotes the number of nodes away from n in the i direction. In

equation 7.2

4 °  =  s { ( A*w  +  -  4 _M,)]

+ a -w N ; ’i -  i f i t " * 1’ + <4?2 -  (7 .4 )

and

A n ) _ _1__________ 4_________
u i j  A l ^ f n )  +fl(.n+Mi ) +flLn+Mj ) +^n+ M i+Mj )

x [vi+Mj -  vjn) + v f +Mi) -  (7.5)

where A* and \i are the two independent Lame constants given by the 

relationship

c(n) =  A(n) +  2 ^ n\  (7.6)
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where is the speed of sound at node n.

7.2 Simulation Testing

In setting up these equations to simulate ultrasonic wave behavior in the 

periodontium, one complication comes from the fact that the probe tip  has 

cylindrical symmetry but the periodontium does not. If it were 

computationally possible to run the simulation for a full three-dimensional 

space on a workstation, this problem could easily be overcome by 

converting cylindrical coordinates to Cartesian coordinates. The lim iting 

factor in performing a full 3-D simulation is RAM storage space, since all 

the data  within the spatial grid must be saved after each time step to 

compute the values at the next time step. For this simulation, 3-D grid has 

on the order of 108 points (for a 1x1x20 r.u. simulation space and steps 

sizes of 0.005 r.u.). Each point has 8 values associated with it (three for 

stress, two for velocity, and three for the ultrasonic material param eters).

At double precision storage (16 bits per value), this adds up to 13GBytes of 

memory th a t must be stored from one time step to the next. The high-end 

workstation used for this simulation had 1GByte of RAM, so a 3-D 

simulation is not possible on this workstation. However, reducing the grid 

to two dimensions reduces the num ber of grid point to about 105 points, 

leading to a memory requirement of 13MBytes, well within the capabilities
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of the workstation.

In simplifying to two dimensions, the conversion from cylindrical to 

Cartesion coordinates is not as easy, since the cylindrical system assumes 

symmetry about the r-axis, while the Cartesian system does not. In the 

first a ttem pt at simplifying to two dimensions, wave propagation was 

simulated within the tip  in cylindrical coordinates, and the wavefront 

values were saved as the wave left the tip. These values were then 

converted to 2-D Cartesian grid, and a simulation was run with the 

wavefront propagating through the periodontium. Finally, as the wavefront 

echoes reached the periodontal pocket opening, these values were saved.

However, it was not possible to convert the wavefront in Cartesian 

coordinates back to cylindrical coordinates without losing some information 

about the wave, since the 2-D axisymmetric grid has fewer points than the 

Cartesian grid. (Figure 7.2). This loss of information led to a weak return 

signal th a t was difficult to interpret. (Figure 7.3).

Because converting from a axi-symmetric space to a Cartesian space 

did not produce satisfactory results, another approach was attem pted. In 

this approach, two simple simulations of the probe aimed a t a flat metal 

plate 17 mm from the transducer were performed. F irst the probe was 

assumed to be cylindrical (using the CAFIT algorithm  described in 

Chapter 2) and then it was assumed to be rectangular with sloping walls
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2-D  axisym m etric 2-D C arte s ian

Figure 7.2: The assumption of symmetry about the r-axis cuts the number 
of grid-points in half for the simulation in the cylindrical coordinate system.

(using a 2-D version of the EFIT algorithm). The results of this comparison 

are shown in figures 7.4 and 7.5. In both cases, A x  was 0.005 reduced 

units (1 r.u. =  1mm) and At was 0.0025 r.u.

The results of this comparison indicate that the 2-D Cartesian 

simulation exaggerates scattering within the tip. Echoes originating outside 

the tip were much smaller than corresponding echoes from the simulation 

using cylindrical coordinates, while echoes originating within the tip were 

larger. The cylindrical geometry produces less scattering in the tip because 

the geometry tends to concentrate wave energy toward the center of the  tip 

space (due to the term in equation (3.4) ), while in the Cartesian
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Figure 7.3: The cluttered return signal shown above occurred as a result of 
converting the wavefront in a Cartesian grid to a 2-D axi-symmetric cylindri­
cal grid. The conversion overemphasized scattering a t the tip, to the point 
the echoes outside the tip  are impossible to identify. The top return was for a 
simulation with a smooth tooth, while the bottom  was for a simulation with 
a large surface irregularity placed on the tooth 1 r.u. from the tip outlet.
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geometry the wavefront is evenly distributed along the y-coordinate plane.

Despite the differences in signal strength between the simulations 

run in a 2-D Cartesian space and a 2-D axisymmetric cylindrical space, the 

phase of the returning echoes is the same for both geometries. Thus, 

information about the tim e delay of the return signal can still be used in 

simulations performed in a  Cartesian space even though the actual probe 

tip has a cylindrical geometry.

During this comparison, the EFIT-based simulation took several 

days to run, while the CAFIT-based simulation took less than  a day. The 

EFIT  simulation took much longer due to the added complexity of storing 

and recalling the m aterial properties A, p, and p a t each step of the 

simulation. As a result, another simplification to the simulation was 

considered, in which the  probe tip  was eliminated by placing an idealized 

transducer at the opening to the periodontal pocket. This simplification 

would make testing a wide range of model parameters more practical.

Before making this simplification, though, another test was run to 

see how well the results from this simulation compared to the results from 

the simulation with the probe tip  placed at the opening to the periodontal 

pocket. Figure 7.6 shows a comparison of the results for the shortened 

simulation using the idealized transducer, and for the longer simulation 

th a t included the probe. Like the earlier comparison of the cylindrical
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Figure 7.4: Comparison of traces from the CAFIT and E FIT  algorithms
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CAFIT simulation at 10 r.u.

EFIT simulation a t 10 r.u.

CAFIT simulation a t 20 r.u.

EFIT simulation a t 20 r.u.

Figure 7.5: Comparison of wavefronts at t  =  10 r.u. and 20 r.u. for the 
CAFIT and EFIT algorithms
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versus the rectangular tip, this simplification preserves phase in fo rm a tio n  

but destroys information about the am plitude of the return signal.

7.3 Sim ulation Results

Once it was determined that a shorter simulation using the idealized 

transducer would still provide useful information on the phase of the return 

signal, this simulation was run for the periodontium  model shown in 

figure 7.1. For this simulation, the only return  is from the bottom  of the 

simulation space at 8 reduced time units, which corresponds to a  feature a t 

4 reduced distance units. (Figure 7.7.)

Next, a surface irregularity 0.15 r.u. wide was added to the too th  1 

r.u. down from the top of the periodontium. (Figure 7.8.) In this case, a 

strong primary echo occurs at 2 r.u. (time), with weaker secondary echoes 

a t 4 and 6 r.u. The large echo at 8 r.u. is from the bottom  of the 

simulation space.

After completing these initial simulations, another level of 

complexity was added by accounting for attenuation within the different 

materials. For the purposes of this simulation, it is assumed water does not 

attenuate the signal a t all, while the junctional epithelium has a small 

attenuation factor of 0.999 per simulation step, and gingiva attenuates 

signals more strongly (due to the presence of collagen fibers) at 0.98 per
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Figure 7.6: Comparison of traces for the simulation for the probe plus peri­
odontium, and for the periodontium only.
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Figure 7.7: Trace for simulation of the idealized periodontium of figure 7.1.

Time (reduced units)

Figure 7.8: Trace for simulation with a surface irregularity at 1 r.u. (dis­
tance) .
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Time (reduced units)

Figure 7.9: As a result of attenuation in the junctional epithelium and the 
gingiva, there are no echoes evident in this simulation for a smooth tooth 
surface.

simulation step.

The trace in figure 7.9 shows the results for a simulation of the same 

space as if figure 7.7, except tha t the attenuation factors have been added 

in. As a result, the wavefront does not reach the end of the simulation 

space, and no echoes are recorded.

When the 0.15 r.u. wide surface irregularity is added to the tooth 

surface a t 1 r.u. (before the wave enters the junctional epithelium), the 

prim ary and secondary echoes from this irregularity are evident once again 

(figure 7.10). In addition, if the surface feature is moved beneath the 

junctional epithelium to 1.7 r.u., the echoes are still evident (figure 7.11).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



I  |̂||]Ww'—

Time (reduced units)

Figure 7.10: Echoes off a surface feature on the tooth 1 r.u. (distance) from 
the gingival margin.

However, if the surface feature is moved into the connective tissue of the 

gingiva, attenuation of the signal is too great for an echo to return to  the 

transducer (figure 7.12).

To compare the effect on signal amplitude when an echo originates 

in the junctional epithelium versus the periodontal pocket, a simulation was 

run where the surface feature was at 1.7 r.u., but the junctional epithelium 

was moved from 1.5 r.u. to 2.0 r.u. Thus, the irregularity is at the same 

depth as in figure 7.11, but no longer covered by tissue. As a result, the 

signal amplitude is higher, as can be seen in figure 7.13.

Finally, because the surface irregularity was nearly as wide as the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1 6 5
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Figure 7.11: Echoes off a surface feature on the too th  1.7 r.u. (distance) 
from the gingival margin.

1 2  3 4 5 6 7 8 9  10

Time (reduced units)

Figure 7.12: Return signal when a surface feature is on the tooth 3.1 r.u. 
(distance) from the gingival margin.
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Feature at 2.0 mm in water

Time (reduced units)

1 2 3

Feature at 2.0 mm covered in 
junctional epithelium tissue.

5 6 8 9 10

Time (reduced units)

Figure 7.13: W hen the a surface feature is no longer covered by epithelial 
tissue, the return signal is stronger.
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periodontal pocket (at least toward the middle of the pocket), another 

series of simulations was conducted to see how th in  an irregularity must be 

before echoes are detectable on the signal trace. As can be seen in 

figure 7.14, a 0.05 r.u. irregularity produces an echo, although it is much 

smaller than that from a 0.15 r.u. irregularity. If the irregularity is further 

reduced to 0.03 r.u. wide, no echoes are evident (figure 7.15.)

From this series of simulations, it appears plausible that return 

signals in the clinical d a ta  are solely the result of echoes from the tooth 

surface. Since the m aterial properties of the junctional epithelium and the 

gingiva are not known, it is still possible tha t ultrasonic echoes could result 

from interactions with these structures, even though the simulation did not 

produce such echoes. However, since muscle and skin are most likely more 

dense than gingiva and junctional epithelium, and therefore more likely to 

produce echoes, this possibility does not seem likely.

In addition, from this simulation it appears th a t the transitions in 

return signal strength observed in the clinical trials da ta  could result from 

attenuation of the signal. In the simulations, echoes from the tooth surface 

were stronger if they originated in the open pocket versus the junctional 

epithelium, and undetectable if they originated from the connective tissue 

region of the gingiva. Therefore, this simulation supports the two 

hypotheses of the model used to interpret the clinical trials data.
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Figure 7.14: Irregularities 0.05 r.u. wide produce smaller returns than 0.15 
r.u. irregularities.
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Figure 7.15: Irregularities 0.03 r.u. wide do not produce echoes at all.
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C hapter 8

C onclusion  and  
R ecom m endations for Future 
W ork

The work performed in this dissertation can be divided into three 

categories: engineering of the ultrasonographic probe, development of signal 

processing algorithms needed to help interpret the d a ta  obtained with this 

probe, and testing of the probe in a clinical setting. This chapter highlights 

the achievements within each category and outlines future work needed for 

successful development of the ultrasonographic probe.

8.1 Engineering of the Probe

During this work, an ultrasonographic probe prototype was demonstrated 

th a t provides a strong signal when used to acquire d a ta  within the 

periodontal pocket. The biggest challenge in the development of this 

prototype was producing a tip/transducer combination th a t maximized the
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1 7 1

return signal while minimizing clutter caused by echoes off the tip walls. 

The computer simulation and subsequent experimental testing determined 

tha t a conical tip with straight walls minimizes echoes from the tip walls, 

while a small nook around the transducer provides enough space for water 

to enter the tip but quickly narrows the space in which the wavefront can 

spread out laterally. By minimizing lateral spreading, the wavefront energy 

is directed out of the tip nozzle, rather than toward the tip walls, which 

produces echoes that distort the signal.

In addition, a pressure regulator was integrated into the probe to 

provide fine control of the water flow, and it was determined th a t a pressure 

setting below 5 psi provided the non-turbulent flow needed to acquire useful 

data. Finally, during the clinical trials, the hygienists using the probe 

provided some useful feedback on how a next-generation handpiece should 

be constructed. In particular, they wanted a contra-angled barrel to make 

it easier to position the probe within the mouth, and a shorter, lighter 

handpiece that would make the probe easier to handle over a long time. As 

a result of this work, a next-generation probe was recently completed, and 

will be used in future tests of the device. This prototype is shown in 

figure 8.1.

The major engineering task still pending is to add the ability to scan 

the probe along the gingival margin. Right now, the probe can only acquire
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Figure 8.1: The next-generation ultrasonographic probe arising from this 
work.

data  point-by-point, because an operator must manually record the position 

of the probe prior to taking data. The use of a foot pedal and an improved 

software interface has made the process of manually recording the position 

information as fast as possible, but it still limits the clinician to acquiring 6 

to 12 d a ta  points per tooth, which makes it possible to miss small pockets 

of disease activity between d a ta  points. A full scanning capability, in 

contrast, would allow the clinician to quickly acquire a full-mouth view of 

the periodontal anatomy, thus providing a more accurate diagnosis.

To develop full scanning capability, however, the probe must acquire 

da ta  th a t provides information about the position of probe within the 

mouth. Although it is hoped th a t some anatomical marker could be found
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within the ultrasonic A-scan traces tha t would provide th is information, the 

clinical trials performed in this work did not provide any such marker.

Although future trials may provide new insight into the probing 

data, and allow for the identification of such an anatom ical marker, future 

work should also concentrate on integrating a second sensor into the probe 

tha t provides position d a ta  during scanning. Toward th a t end, a miniBird 

magnetic tracking sensor was acquired from Ascension Technology 

Corporation. This sensor uses pulsed DC magentic field to detect the 

position and orientation of a magnet housed within the probe w ith six 

degrees of freedom. (By using a pulsed DC magnetic field, rather than an 

AC magnetic field, the sensor eliminates interference from m etal objects 

caused by the formation of eddy currents.) This sensor will enable future 

research to be conducted on producing a probe with full scanning capability.

8.2 Signal Processing

The signal processing algorithms described in this work were designed to 

measure periodontal attachm ent levels for comparison to m anual probing 

depth measurements. As a result, the peak picking and sm oothing 

algorithms described here sacrificed resolution for ease of interpretation. If 

this pocket depth measurement is all the ultrasonographic probe needs to 

provide, than the algorithms described here may be sufficient.
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However, after more clinical trials are conducted, it may be possible 

to begin more sophisticated interpretation of the signals to detect the 

presence of calculus or plaque, or to find the position of the 

cemento-enamel junction. If so, new algorithms would have to be developed 

preserve the  frequency content of the signal, so th a t more sophisticated 

waveform analysis can be conducted.

8.3 Clinical Trials

The methodology of the clinical trials described in this work were designed 

to provide comparison to manual and controlled-force probing depth 

measurements. However, it is clear from this work th a t such a comparison 

will not provide the information needed to make the ultrasonographic probe 

a clinically accepted method for monitoring the progression of periodontal 

disease.

In future work, clinical trials are needed to cover patients exhibiting 

a wider range of disease activity. In addition, further clinical trials are 

needed th a t will provide better understanding of which anatomical features 

produce ultrasonic echoes from the probe. This da ta  could be used to help 

develop more sophisticated signal processing routines for identifying more 

features than  is now possible.

In addition, this understanding may help develop automated
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routines for interpretation ultrasonic return signals. While the automated 

feature recognition algorithm  discussed in this work appears promising for 

identifying pocket depths, an adaptive thresholding algorithm in which 

artificial intelligence techniques are used to determine the optimal 

smoothing and thresholding parameters for each trace may significantly 

improve the accuracy of the algorithm. Alternatively, completely new 

routines could be developed th a t complement new signal processing 

routines developed to identify additional features in the periodontal pocket.

As a result, the following types of studies have been proposed in 

future work: flap surgery, en bloc, extracted teeth, fresh cadaver, and 

comparison to mechanical probing.

8.3.1 Flap Surgery

A study that seems quite promising is to ultrasonically scan human patient 

volunteers immediately prior to gum flap surgery. After scanning a site, the 

gum line on the tooth is marked and the pocket is stained prior to surgery, 

and then a digital photograph is taken after the tissues are exposed. This 

will allow mapping of the gingival margin, the cemento-enamel junction 

(CEJ), and the bottom  of the pocket, which can be compared to  echoes 

from the ultrasonic scan. These tri-contour data sets will be especially 

valuable in identifying the CEJ echoes in the ultrasonic data, so that
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attachm ent level can be determined, rather than just pocket depth.

Because flap surgery is performed on patients with periodontal 

disease, the d a ta  obtained from these studies is likely to have a high 

proportion of diseased sites. Because periodontal disease is site-specific, the 

flap surgery will also provide some scans of healthy sites. However, these 

studies will need to be coordinated with others performed on patients with 

a higher proportion of healthy sites, particularly if the d a ta  obtained from 

these studies will be used to develop automated feature recognition 

algorithms.

8.3.2 En Bloc Studies

A nother quite promising type of study is to scan patients ju s t prior to en 

bloc procedures where a “block” of teeth, bone and soft tissues is excised 

due to  cancer in the jaw (or for other reasons). Although the  number of 

these procedures is fairly small, they can each be expected to be quite rich 

in data . This is because the periodontal tissues will be relatively 

undisturbed, and histology can be subsequently performed on the block. If 

the block is finely sectioned and the histological slides are digitally 

photographed with the resulting images segmented, then the  3-D anatomy 

of interest can be reconstructed in the computer. Although flap surgery will 

allow m apping of three contours (gum line, CEJ, pocket) it can’t give the
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3D mapping that this study can. Since ultrasound is sensitive to  the 3D 

anatomy, this “visible hum an” type of representation would be very 

valuable.

Since the cancer is likely uncorrelated to periodontal disease, en bloc 

studies should provide more variety in periodontal disease sta tus than  for 

the flap surgery studies.

8.3.3 Extracted Teeth Studies

In teeth due to be extracted, the gum line can be marked on the teeth prior 

to extraction, and afterwards it may be possible to measure the ligament 

attachm ent level relative to gum line and the CEJ. I t’s not clear how visible 

these remnants of attachm ent will be, but it may be tha t suitable staining 

can be found to enable it. The tooth  could be histologically sectioned as in 

the en bloc studies or photographed as in the flap surgery studies. If the 

study include teeth extracted for orthodontic reasons, the full range of 

periodontal disease activity should be present in these teeth.

8.3.4 Fresh Cadaver Studies

As discussed in Chapter 5, fixed cadaver studies aren’t especially useful 

because the ultrasonic properties of the fixed soft tissues are changed rather 

dramatically, and the anatomy is badly distorted when the soft tissue

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



shrinks during fixation.

Fresh cadavers would minimize these problems, and if histology is 

subsequently done fresh cadaver studies could provide the type of 3-D data  

expected from the en bloc studies. Indeed, if en bloc samples are scanned 

before and after surgery, it may be possible to use this data to help adjust 

for varying cadaver responses as tissue sta tus changes.

8.3.5 Comparison Studies

Finally, because the current “gold standard” in the diagnosis of periodontal 

disease is mechanical probing, further comparison studies will need to be 

conducted between ultrasound, manual and controlled-force probing. 

Because the first set of clinical trials were conducted on generally healthy 

patients, it did not represent a thorough comparison needed to allow 

ultrasonic probing to replace manual probing as a new gold standard. In 

addition, a comparison study may be a useful complement to the slower 

procedures described above, since extremely large data sets will be needed 

to accurately train  an automated feature recognition algorithm.
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