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ABSTRACT

We present an improved Quantum Lattice Gas (QLG) algorithm as a mesoscopic unitary

perturbative representation of the mean eld Gross Pitaevskii (GP) equation for

BoseEinstein Condensates (BECs). The method employs an interleaved sequence of

unitary collide and stream operators. QLG is applicable to many different scalar potentials

in the weak interaction regime and has been used to model the Kortewegde Vries (KdV),

Burgers and GP equations. It can be implemented on both quantum and classical

computers and is extremely scalable. We present results for 1D soliton solutions with

positive and negative internal interactions, as well as vector solitons with inelastic

scattering. In higher dimensions we look at the behavior of vortex ring reconnection. A

further improvement is considered with an improved operator splitting technique via a

Fourier transformation. This is great for quantum computers since the quantum FFT is

exponentially faster than its classical counterpart which involves non-local operations on

the entire lattice (Quantum FFT is the backbone of the Shor algorithm for quantum

factorization). We also present an imaginary time method in which we transform the

Schrdinger equation into a diffusion equation for recovering ground state initial conditions

of a quantum system suitable for the QLG algorithm.
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CHAPTER 1

Introduction

Many advances have been made recently that are paving the way forward to quantum

computing. Alongside these advancements algorithms have been developed to take advantage

of the future technology as quantum information systems hold a lot of promise for greater

understanding of the nano world. Unlike in classical computers where operations are often

represented by stochastic or permutation matrices, a quantum operator U must be a unitary

matrix, satisfying

U †U = I (1.1)

where U † is the Hermitian conjugate of U , and I is the identity. Due to the unitary nature

of quantum operators, which we call gates in line with their classical counterparts, quantum

gates are logically reversible. The significance of this can be easily seen if we consider an

irreversible classical AND gate. An AND gate implements the logical conjunction ’and’ in
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a digital circuit. It returns a positive output of 1, only when both inputs are also 1, it

’effectively finds the minimum between two binary digits’1. When an AND gate processes

bits of data, there is a loss of information involved that manifests in energy dissipated equal

to kT ln(2) for every bit that is erased (k being the Boltzman’s constant and T temperature

in Kelvin of the chip at which the computation was performed). Many advances in modern

computers came from the development of reversible gates allowing for a reduction in energy

dissipation, that often comes in the form of heat. This paved the way for greater miniatur-

ization of modern chips. Having such an advantage inherent in a quantum gate is one of the

many drivers for quantum computing. How quantum gates are currently manifested in the

lab varies depending on how the qubits that they act upon are encoded. For example when

dealing with spin qubits, the gate is applied through the manipulation of a magnetic field,

while for qubits encoded in an ion trap, the gate operations are performed by varying the

laser beam acting on the ions.

This dissertation will focus on a particular quantum algorithm, the Quantum Lattice

Gas method, QLG for short. The method employs a novel approach towards quantum dy-

namics via qubits, first introduced by Feynman2. These qubit representations permit close

to ideal parallelization on even classical supercomputers. The specific QLG considered was

originally developed by Yepez and Boghosian3, here we present the next iteration of this

method. QLG while a quantum algorithm can also be implemented on classical computers

allowing us to test its efficacy and scalability. There are many existing numerical approaches

to tackling physical problems, the advantages offered by QLG are its ability to be employed
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on large computer clusters and utilize many cores simultaneously, as well as future func-

tionality on quantum computers. This dissertation is organized in the following manner:

Chapter 2 will be an introduction to the Gross-Pitaevskii equation, the physical system we

set out to model; Chapter 3 will introduce the QLG algorithm with some background on

its previous iteration, as well as the currently implemented matrix operator; Chapter 4 will

present simulation results for various systems; Chapter 5 will look at an imaginary time

approach to determine initial conditions, along with some results; Chapter 6 will present

the road forward using a more robust operator splitting technique; and lastly Chapter 7 will

conclude this thesis.
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CHAPTER 2

The Gross-Pitaesvkii Equation

2.1 Bose-Einstein Condensates

Before we delve into the Gross-Pitaevskii equation, it is worthwhile to have a brief

discussion about the physical system it describes, the Bose-Einstein condensates (BEC). A

BEC is a state of matter that occurs at very low temperatures, in which the majority of the

particles condense into the ground quantum state, a condensate. Only bosons (integer spin

particles) can undergo this particular phase transition, since the Pauli exclusion principle

disallows fermions (half-integer spin particles) from occupying the same quantum state. That

has not stopped nature though, in that super-conductivity is believed to be a condensate of

electron pairs, dubbed Cooper pairs after Leon Cooper who described the phenomena in 1956.

Einstein originally predicted the existence of condensates sometime in 19254, but it was not

until much later that they would be realized in experiments. A detailed look at the derivation
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can be seen in Appendix A. The difficulty stemmed from just how cold the atoms had to be,

near absolute zero ( 100 nK). The first successful BEC was created in 19955, using a number

of clever techniques such as laser cooling atoms in a harmonic trap, magnetic trapping and

evaporative cooling. Laser cooling takes advantage of the Doppler effect of a thermal atom

moving away or toward a laser beam. If the beam’s energy is slightly less than the transition

energy of an atomic species, then an incoming atom, appearing blue-shifted, will absorb the

incoming photon. Later the excited atom will release a photon with a higher energy than

the one originally absorbed, losing momentum in the process. Conversely the atom moving

away from the beam will be slightly red-shifted and will ignore the beam entirely. While

this reduces the average temperature of the system, magnetic traps are used to keep the

neutral atoms confined. Typically done via devices called MOTs (magnetic-optical traps), a

spherical quadrupole magnetic configuration is used which applies a restoring force on the

trapped atoms towards the center. This is done through the interaction of the magnetic-

dipole moment with the external magnetic fields. Lastly evaporative cooling is employed

to further reduce the average temperature of the system to the appropriate BEC transition

temperature. Evaporative cooling is a process in which the trapping potential amplitude

is gradually lowered, allowing more energetic atoms to escape the trap, leaving behind the

atoms with an overall lower average kinetic energy. Conceptually this idea is no different from

cooling your hot cup of tea by leaving it idle while the hot particles escape via evaporation.

Interested readers can refer to the plethora of literature that covers all of these topics in

great detail, including the more modern techniques of optical cooling, for example6.
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2.2 Gross-Pitaevskii Equation

The next topic to consider, is how do we model a Bose-Einstein condensate? This is

effectively answered by the Gross-Pitaevskii equation (GPE)7.

i~∂tψ =
−~2

2m
∇2ψ + V (r)ψ +

(
g0N |ψ|2 − µ

)
ψ (2.1)

where ψ is the 1-particle wave function to which all the BEC particles collapse at T = 0, V (r)

is an external trapping potential, N is the number of particles, µ is the chemical potential

and the coupling constant g0 = 4π~2as
m

with as as the scattering length. Below we derive the

GPE since it is the main result we work with and attempt to model. For the derivation we

will ignore the chemical potential µ as it can be incorporated into V (r) from a mathematical

standpoint. We begin with the 2nd quantized Hamiltonian (Appendix B),

Ĥ =

∫
d3rψ̂†(r)H0ψ̂(r) +

1

2

∫
d3r

∫
d3r′ψ̂†(r)ψ̂†(r′)Vint(r, r

′)ψ̂(r′)ψ̂(r) (2.2)

H0 =
−~2

2m
∇2 + Vext

Vint = is the inter-particle interaction between the bosons

Vext =
1

2
m
(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)

(2.3)

ω’s are the trapping frequencies along the respective dimension and m is the mass of the

particles. We assume that the bosonic gas is dilute with hard-sphere elastic collisions between
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the atoms and their interaction is modeled by a Dirac δ function potential

Vint(r, r
′) = g0δ(r− r′) (2.4)

The s-wave scattering length is positive for repulsive interactions and negative for attractive

interactions. Inserting the eq. [2.4] potential into the second term of our Hamiltonian in eq.

[2.2] we easily integrate out the r′ dependence,

Ĥ =

∫
d3rψ̂†(r)H0ψ̂(r) +

g0

2

∫
d3rψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r) (2.5)

Using Heisenberg’s equation of motion we look at the time evolution of our wavefunction

with our Hamiltonian (eq. [2.5]).

i~∂tψ̂(r′) =
[
ψ̂(r′), Ĥ

]
= ψ̂(r′)Ĥ −

∫
d3rψ̂†(r)H0ψ̂(r)ψ̂(r′)− g0

2

∫
d3rψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r)ψ̂(r′)

(2.6)

Note that ψ̂ depends on both space and time. Using the bosonic commutation relations

(refer to Appendix B eq. [B.7]),

[
ψ̂†(r′), ψ̂(r)

]
= δ(r′ − r)[

ψ̂†(r′), ψ̂†(r)
]

=
[
ψ̂(r′), ψ̂(r)

]
= 0

(2.7)
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we can simplify eq. [2.5]. Going term by term we start with the first term on the right hand

side of eq. [2.6].

ψ̂(r′)Ĥ =

∫
d3rψ̂(r′)ψ̂†(r)H0ψ̂(r) +

g0

2

∫
d3rψ̂(r′)ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r)

=

∫
d3rψ̂(r′)ψ̂†(r)H0ψ̂(r) +

g0

2

∫
d3r
{[
ψ̂(r′), ψ̂†(r)

]
ψ̂†(r)ψ̂(r)ψ̂(r) + ψ̂†(r)ψ̂(r′)ψ̂†(r)ψ̂(r)ψ̂(r)

}
=

∫
d3rψ̂(r′)ψ̂†(r)H0ψ̂(r) +

g0

2

∫
d3r
{
δ(r′ − r)ψ̂†(r)ψ̂(r)ψ̂(r) + ψ̂†(r)ψ̂(r′)ψ̂†(r)ψ̂(r)ψ̂(r)

}
(2.8)

Next we look at the the second term on the right hand side of eq. [2.6]

∫
d3rψ̂†(r)H0ψ̂(r)ψ̂(r′) =

∫
d3r
{[
ψ̂†(r), ψ̂(r′)

]
H0ψ̂(r) + ψ̂(r′)ψ̂†(r)H0ψ̂(r)

}
=

∫
d3r
{
−
[
ψ̂(r′), ψ̂†(r)

]
H0ψ̂(r) + ψ̂(r′)ψ̂†(r)H0ψ̂(r)

}
=

∫
d3r
{
−δ(r′ − r)H0ψ̂(r) + ψ̂(r′)ψ̂†(r)H0ψ̂(r)

}
(2.9)

The second term of eq. [2.9] cancels the first term of eq. [2.8]! Looking at the third and

final term on the right hand side of eq. [2.6],

g0

2

∫
d3rψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r)ψ̂(r′) =

g0

2

∫
d3r
{[
ψ̂(r′), ψ̂†(r),

]
ψ̂†(r)ψ̂(r)ψ̂(r) + ψ̂†(r)ψ̂(r′)ψ̂†(r)ψ̂(r)ψ̂(r)

}
=
g0

2

∫
d3r
{
−
[
ψ̂†(r), ψ̂(r′)

]
ψ̂†(r)ψ̂(r)ψ̂(r) + ψ̂†(r)ψ̂(r′)ψ̂†(r)ψ̂(r)ψ̂(r)

}
=
g0

2

∫
d3r
{
−δ(r′ − r)ψ̂†(r)ψ̂(r)ψ̂(r) + ψ̂†(r)ψ̂(r′)ψ̂†(r)ψ̂(r)ψ̂(r)

}
(2.10)
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Again we have the second term of eq 2.10 cancel with the third term of eq. [2.8] and the

first term of eq. [2.10] adding to the 2nd term of eq. [2.8]! Putting everything together we

have,

i~∂tψ̂(r′) =

∫
d3rδ(r′ − r)H0ψ̂(r) + g

∫
d3rδ(r′ − r)ψ̂†(r)ψ̂(r)ψ̂(r)

i~∂tψ̂(r′) =
{
H0 + gψ̂†(r′)ψ̂(′)

}
ψ̂(r′)

i~∂tψ̂(r)i~∂tψ̂(r)i~∂tψ̂(r) = H0ψ̂(r) + g
∣∣∣ψ̂(r)

∣∣∣2 ψ̂(r)= H0ψ̂(r) + g
∣∣∣ψ̂(r)

∣∣∣2 ψ̂(r)= H0ψ̂(r) + g
∣∣∣ψ̂(r)

∣∣∣2 ψ̂(r)

(2.11)

The last line in eq. [2.11] looks like the Gross-Pitaevskii equation we’re after, but it contains

field operators which are sums of single particle wavefunctions. Typically a BEC will have

on the order of tens of thousands of atoms, and so such a problem is not tractable as is. To

simplify it we proceed by splitting the operator into two parts,

ψ̂ = ψ + φ

φ� ψ

(2.12)

Here ψ is the mean field value of the macroscopic wavefunction and φ is a small deviation

from this mean. Following the procedure in the paper, we substitute eq. [2.12] into eq.

[2.11],

i~∂t(ψ + φ) = H0(ψ + φ) + g |(ψ + φ)|2 (ψ + φ) (2.13)
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Going term by term we first look at the LHS of eq. [2.13].

i~∂t(ψ + φ) = i~∂tψ + i~∂tφ (2.14)

Because φ is very small we can assume that ∂tφ = 0. The first RHS term becomes

H0(ψ + φ) = H0ψ +H0φ (2.15)

Again we can assume that ∇2φ = 0 in the above term although the external potential term

remains. Lastly looking at the second RHS term we have,

g0 |(ψ + φ)|2 (ψ + φ) = g
{

(ψ + φ)(ψ† + φ†)
}

(ψ + φ)

= g0

{
(ψψ† + ψφ† + φψ† + φφ†)(ψ + φ)

}
= g0(ψψ†ψ + ψψ†φ+ ψφ†ψ + ψφ†φ+ φψ†ψ + φψ†φ+ φφ†ψ + φφ†φ)

(2.16)

Taking all of the 0th order terms (only dependence on ψ) from equations 2.14, 2.15 and 2.16,

we recover the GPE

i~∂tψ = H0ψ + g(ψψ†ψ)

i~∂tψi~∂tψi~∂tψ = (
−~2

2m
∇2 + Vext + g |ψ|2)ψ(

−~2

2m
∇2 + Vext + g |ψ|2)ψ(

−~2

2m
∇2 + Vext + g |ψ|2)ψ

(2.17)
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Of course one may consider higher order terms which is an active area of research, beyond

the mean-field theory. Higher order terms are required when dealing with very dense BECs,

and it has been shown that dynamic instabilities can cause, what are usually very small,

quantum fluctuations to be amplified such that higher order terms are required to model the

system properly8.

2.3 Some GPE Results

2.3.1 Dimensionless GPE

Before proceeding further we’ll present the dimensionless GPE equation which we use

in our simulations.

i∂tψ = −∇2ψ + g|ψ|2ψ (2.18)

Here g = 4πa2
0Na, with a0 as the characteristic length of the system, a the scattering length

and N the number of particles in the BEC. To recover eq. [2.18] we rescale the dimensions

of our system (akin going to different unit basis). For the moment we’ll consider an external

harmonic trapping potential with equal frequencies, ω = ωx = ωy = ωz. Our rescaled units
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are,

xs =
x

L

ts =
t

τ
= ωt

Vext =
m

2
ω2(~x · ~x) =

mL2

2
ω2(~xs · ~xs)

Vint = g |ψ(xs, ts)|2

Ψ(x, t)→ ψ(xs, ts)

(2.19)

xs is the rescaled spatial unit, ts is the rescaled unit of time, L is length, and τ is time. To

quickly double check that all the units so far are fine recall that the coefficient of Vint is,

g0 =
4π~2Na

m

~2 = (Js)2 = (Jτ)2 = (Force L τ)2 = (m
L

τ 2
Lτ)2 =

m2L4

τ 2

a = L (unit wise)

N =
# of particles

Volume
=

1

L3

g =
m2L4

τ 2
(

1

L3
)
L

m
= m(

L

τ
)2 (units of energy)

(2.20)

The complete details of recovering eq. [2.18] are presented in Appendix C. As an example

of what some of these physical values actually are, for 87Rb the mass m = 1.44 × 10−25 kg

with a scattering length as ≈ 0.5 nm while the characteristic length a0 = 50 ∼ 100 microns.

Typical particle numbers of BECs are N = 102 ∼ 1015 and trapping frequencies used are

ω ≈ 20π(rad/sec).
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2.3.2 Madelung Transform and Quantization

We can gain some insight into the quantum fluid via the Madelung transformation,

transforming the complex-valued wave eq. [2.18] into two real-valued functions in polar co-

ordinates. Specifically we take ψ =
√
ρeiφ/2, with ρ as the mean density, and upon separating

the real and imaginary parts recover the hydrodynamic form of the GPE.

ρ(r, t) = |ψ(r, t)|2 (2.21)

∂tρ+∇ · (ρ∇φ) = 0 (2.22)

∂t (∇φ) +
1

2
(∇φ)2 + 2gρ− 2

∇2√ρ
√
ρ

= 0 (2.23)

Defining the velocity, v ≡ ∇φ, makes eq. [2.22] the fluid continuity equation and eq. [2.23]

the compressible, irrotational Euler equation. Irrotational because the circulation, Γ, must

vanish for a conservative vector field, which the velocity is.

Γ =

∮
C

vdl =

∫
A

∇×∇φ = 0 (2.24)

Thus the vorticity ω ≡ ∇× v = 0. We identify the pressure in eq. [2.23] as

p(ρ2) = 2gρ− 2
∇2√ρ
√
ρ

(2.25)
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This pressure, p(ρ2), depends only on density with 2gρ being the classical pressure, while

2
∇2√ρ
√
ρ

is a unique pressure term that appears in the quantum fluid. When a fluid’s state

depends on density only, it is called barotropic.

Some interesting results can be gleamed from the hydrodynamic GP equations. Despite

being an irrotational fluid, there is a condition under which the angular momentum is non-

zero! When there is a singularity in the phase φ. The wavefunction will still be single-valued,

but by allowing for a singularity in the phase, the change in ∆φ = φ2−φ1, when going around

the closed contour C in eq. [2.24] must be a multiple of 2π.

Γ =

∮
C

vdl = φ2 − φ1 = 2πn
~
m

(2.26)

n in eq. [2.26] is an integer describing the winding number of the singularity. The physical

manifestation of this singularity is a quantized vortex. We have to be careful here because

we just allowed a singularity into our system, and often these can be unphysical. Indeed the

kinetic energy of the system would diverge in the presence of a vortex at the core (r = 0).

This can be resolved if we require the density ρ to be 0 at the vortex core. Eq. [2.24] is only

valid for non-singular fields thus the vortex is a topological singularity.

2.3.3 Energy of a GPE System

Equations 2.22 and 2.23 are not well defined at the vortex core, because the phase φ at

these locations is not well defined (recall ρ = 0 at the core). This is not due to any physics,
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but rather is a mathematical artifact of the transformation we used. There is a more robust

way to perform this transformation and this has been done by C. Nore et al.9. The important

result for us are the energies of the condensate,

kinetic energy:Ekin =

∫
dxρ |v|2

internal energy:Eint = 2g

∫
dxρ2

quantum energy:Equa = 4

∫
dx |∇√ρ|2

(2.27)

with the density ρ = ψ†ψ and momentum ρv = i(ψ∇ψ† − ψ†∇ψ). The total energy of

the system is the sum of all three, Etot = Ekin + Eint + Equa. In an experimental settings

one can’t really distinguish the individual energies in this fashion, but this can be done in

simulations, where tracking the exchange of energy can provide additional insight into the

physics of the problem. The result in eq. [2.27] is derived from the GPE Lagrangian L,

L =
i

2
(ψ†∂tψ − ψ∂tψ†)− |∇ψ|2 −

g

2
|ψ|4 (2.28)

L in eq. [2.28] is invariant to a phase rotation, spatial translation, and a time translation

which lead to the conservation of mass, momentum and energy respectively.
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CHAPTER 3

Quantum Lattice Gas Algorithm

3.1 Quantum Bits

The Quantum Lattice Gas (QLG) algorithm was originally envisioned as a quantum

algorithm10. The unit of information in quantum computing is a quantum bit, or qubit for

short. Unlike a classical digital bit that only takes on a binary value of 0 or 1, a qubit

through superposition can additionally exist as any value in between11. Realizing a qubit is

a very active area of research, they can be encoded in the polarization of photons, or the spin

of a system, be it electron, nuclear or atomic spin. We can express a qubit as a superposition

of basis states,

|q〉 = α |0〉+ β |1〉

|α|2 + |β|2 = 1

(3.1)
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When measuring a qubit the result is either |0〉 or |1〉 with a probability of |α|2 or |β|2

respectively. As briefly mentioned in the introduction, one can operate on a qubit with a

quantum logic gate, a unitary transformation that will take a state |q〉 → |q′〉 = α′ |0〉+β′ |1〉.

An example quantum gate is the Hadamard operator,

H =
1√
2

 1 1

1 −1

 (3.2)

Using the matrix representation for the qubit states, |0〉 =

 1

0

 , |1〉 =

 0

1

 one

immediately sees that the action of the Hadamard gate is

H |0〉 =
1√
2

 1 1

1 −1


 1

0

 =
1√
2

 1

1

 =
|0〉+ |1〉√

2

H |1〉 =
1√
2

 1 1

1 −1


 0

1

 =
|0〉 − |1〉√

2

QLG utilizes two qubits per lattice cell, a 2-level system which can be expressed via the

Bloch sphere representation. We consider the state as a point on a unit sphere with polar

coordinates θ and φ as shown in Fig. [3.1].

In this representation a Bloch vector is simply a spherical unit vector,

~Bs = (cos(φ)sin(θ), sin(φ)sin(θ), cos(θ)) (3.3)
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FIG. 3.1: Bloch sphere representation

and a general rotation R~n of a Bloch vector ~Bs around a real unit vector ~n is

R~n = e
− iθ~n · ~σ/2 = cos

(
θ

2

)
I − i sin

(
θ

2

)
(nxσx + nyσy + nzσz) (3.4)

Here ~σ is the Pauli Matrix vector and I is the identify matrix.

σx =

 0 1

1 0

 , σy =

 0 −i

i 0

 , σz =

 1 0

0 −1

 (3.5)

Equation [3.4] will be the starting point of generating the new collision operator in the QLG

algorithm.

A second distinguishing feature of qubits is that they can exhibit quantum entanglement,

non-local correlations. Two qubits are considered entangled when a measurement on one

qubit affects the other, indicating that they are not entirely independent. A natural basis
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for a classical qubit pair in the 22 dimensional Hilbert space consists of tensor product states

|0〉 ⊗ |0〉 ≡ |00〉

|0〉 ⊗ |1〉 ≡ |01〉

|1〉 ⊗ |0〉 ≡ |10〉

|1〉 ⊗ |1〉 ≡ |11〉

where it is understood that in the simplifying notation |00〉 the 1st entry is the state of the

1st qubit, while the 2nd entry is the state of the 2nd qubit. Thus any state |Ω⊗〉 in this tensor

product Hilbert space can be represented by |Ω⊗〉 = (α0 |0〉 + α1 |1〉) ⊗ (β0 |0〉 + β1 |1〉) =

α0β0 |00〉+ α0β1 |01〉+ α1β0 |10〉+ α1β1 |11〉. But what if our state is |Φ+〉 = |00〉+|11〉√
2

? |Φ+〉

cannot be represented by a product of superpositions of the elements in the classical basis

set! For |01〉 to be 0 either α0 = 0 or β1 = 0. But if α0 = 0 then we cannot recover |00〉

and similarly for the |11〉 state if β1 = 0. What has happened is that the tensor product

Hilbert space is treating the 2 qubits independent of each other, this is how one manipulates

classical bits. But for pairs of entangled qubits one finds states have their qubits correlated

to each other. This correlation is what we mean by quantum entanglement. The state |Φ+〉

is, in fact, a maximally entangled 2-qubit state, and is called a Bell state. There are 3 other

maximally entangled Bell states for the 2 qubit system which form the basis that we will be
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using:

∣∣Φ+
〉

=
1√
2

(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉)

∣∣Φ−〉 =
1√
2

(|0〉 ⊗ |0〉 − |1〉 ⊗ |1〉)

∣∣Ψ+
〉

=
1√
2

(|0〉 ⊗ |1〉+ |1〉 ⊗ |0〉)

∣∣Ψ−〉 =
1√
2

(|0〉 ⊗ |1〉 − |1〉 ⊗ |0〉)

(3.6)

The qubits encode the quantum particle occupation probabilities and the algorithm applies

a series of local unitary operations on a lattice populated by the Bell states.

QLG is a three step algorithm:

1. Initialize the wavefunction |ψ(x, t)〉

2. collision step (entangling the qubits via a quantum-gate Ĉ)

3. streaming (interchanging amplitudes via Ŝ)

The initialization step is rather straightforward, we encode the wavefunction in the qubits

that span our lattice. The entangling step is performed via a collision operator Ĉ, in this

step the qubits are acted on by the potential of the system. Ĉ is the heart of the QLG

method and in section [3.4] we will present the main collision operator that will be utilized

throughout this dissertation. Lastly the streaming step moves the updated qubits to their

nearest neighbor. This is done to recover the ∇2 operator through finite difference.
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3.2 Square Root of Swap

We begin with a universal 2-qubit CNOT gate.

ĈCNOT =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 0 1



If the first qubit is in state |0〉, then ĈCNOT leaves the second qubit unchanged. But if the first

qubit is in state |1〉, then ĈCNOT will flip the second qubit (i.e. apply the Pauli spin operator

σx). Thus ĈCNOT has the following mapping, |00〉 → |00〉, |01〉 → |01〉, but |10〉 → |11〉,

|11〉 → |10〉. One can generate our entangled Bell state |Φ+〉 from an initial qubit state |00〉

by first applying the 1-qubit Hadamard gate to the 1st qubit and then the CNOT 2-qubit

gate using the 1st qubit as control. That is

H |00〉 = (H |0〉)⊗ |0〉 =

(
|0〉+ |1〉√

2

)
⊗ |0〉

ĈCNOT

(
|00〉+ |10〉√

2

)
=

(
|00〉+ |11〉√

2

)
=
∣∣Φ+

〉
The CNOT gate entangles the qubits and it can be shown from quantum information theory

that is a universal gate.

The first iteration of QLG employed the square-root of swap (
√

SWAP) collision oper-
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ator,

Ĉ√SWAP =

 1−i
2

1+i
2

1+i
2

1−i
2

 (3.7)

Equation [3.7] is actually a sub-block of the 2-qubit gate, its full matrix form is

Ĉ√SWAP =



1 0 0 0

0 1−i
2

1+i
2

0

0 1+i
2

1−i
2

0

0 0 0 1


This operator is called the Square-Root-of-Swap since upon squaring it,

(
Ĉ√SWAP

)2

=



1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


its action is to swap qubits, |01〉 → |10〉, |10〉 → |01〉, while |00〉 → |00〉, |11〉 → |11〉. Note

that
(
Ĉ√SWAP

)4

= I4. It is convenient from now on to just consider the relevant sub-block,

eq. [3.7], of the 4 x 4 unitary matrix. It can be shown that the square-root-of-swap is a

universal gate in quantum information.
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The accompanying streaming operator Ŝ for our QLG algorithm is

Ŝ±∆xi,q1 =
1

2
(1− σz) + e±∆xi·∂xi

1

2
(1 + σz) =

 e±∆xi·∂xi 0

0 1



Ŝ±∆xi,q2 =
1

2
(1 + σz) + e±∆xi·∂xi

1

2
(1− σz) =

 1 0

0 e±∆xi·∂xi


(3.8)

q1 and q2 in Ŝ correspond to the relevant 2-qubits states, |01〉 and |10〉 respectively. Each

qubit is streamed separately by a displacement of ±∆xi along the ith direction. Interleaving

the non-commuting Ĉ and Ŝ operators leads to the evolution operator Ûqi

Ûqi = Ŝ−∆x1,qi Ĉ√SWAPŜ∆x1,qi Ĉ√SWAP, i = 1, 2 (3.9)

Note that eq. [3.9] is in 1D, extension to higher dimensions is straightforward by applying

the evolution operator along the additional directions. Ĉ√SWAP does not contain the single-

particle potential directly in the operator itself, instead we introduce any external potential

into the required dynamics by invoking the unitary operator Ûv

Ûv[V (x, t)] = e−i∆tV (x,t) (3.10)

To recover Schrödinger’s equation with potential V (x, t) one moves from qubit space to
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standard wave functions by a simple zeroth order moment

ψ(x, t) = q1(x, t) + q2(x, t) (3.11)

To initiate the quantum lattice algorithm we first encode the given initial wave function

onto the qubit pairs, typically q1(x, 0) = q2(x, 0) = ψ(x, 0)/2. There seems to be no reason to

introduce unnecessary asymmetry into the problem. The qubit pairs at each lattice site are

then entangled by the unitary collision sqare-root-of-swap operator and that entanglement is

spread throughout the lattice by the unitary streaming operator. Thus the time advancement

from t→ t+ ∆t is accomplished by the following sequence of unitary operators

 q1(x, t+ ∆t)

q2(x, t+ ∆t)

 = Û2
q2
Ûv
[
V

(
x, t+

∆t

2

)
/2

]
Û2
q1
Ûv [V (x, t)/2]

 q1(x, t)

q2(x, t)

 (3.12)

To recover the Gross-Pitaevskii equation that describes the ground state wave function evo-

lution of a BEC state, we will define the potential V (x, t) = |ψ(x, t)|2. The V (x, t + ∆t/2)

indicates that we need to use the updated wave function at this step. It should also be noted

that if the unitary collision and unitary streaming operators commuted then Û2
qi

= I2. Thus

the evolution in eq.[3.12] is a perturbation expansion away from the unitary operator. Once

q1(x, t+∆t) and q2(x, t+∆t) are determined we perform a Chapman-Enskog approximation

on the time evolved qubits. That is we Taylor expand each qubit, and afterward Taylor

expand again the sum of the qubits q1(x, t + ∆t) + q2(x, t + ∆t). The resulting equation of
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motion is

q1(x, t+ ∆t) + q2(x, t+ ∆t) =
(
1− i∆x2V (x, t) + i∆x2∂xx

)
(q1(x, t) + q2(x, t)) +O[∆x4]

ψ(x, t+ ∆t) = ψ(x, t)− i∆x2V (x, t)ψ(x, t) + i∆x2∂xxψ(x, t) +O[∆x4]

(3.13)

In the second line of eq. [3.13] we simply replaced the qubit sums with the wavefunction

since that is how we set-up our problem. Subtracting ψ(x, t) from both sides and dividing

by ∆t gives us the first time derivative in the limit ∆t → 0 and sets the diffusion ordering

of the problem to

∆t = ∆x2 (3.14)

Multiplying both sides of eq. [3.13] by the complex i recovers Schrödinger’s equation with an

arbitrary scalar potential V (x, t). There is a 1/2 term missing in front of the ∇2 operator but

that is easily recoverable through either rescaling, or by setting ∆x2 = 1/2. Thus only if the

local entangling gate structure (i.e. quantum algorithmic protocol) is chosen appropriately,

then the flow of quantum information can emulate, in the long wavelength limit, a quantum

wave function governed by an equation of motion such as the Weyl, Dirac, or Schrödinger

wave equation12. The theory does not tell us the parameter regime in which we are modeling

a physical equation as opposed to simply multiplying matrices. These parameters depend

on the physics of a system, they can be an amplitude of some structure, the velocity of the

system, a diffusion gradient or simply the interaction strength of some internal potential.

If these values are too large we will find ourselves in a regime where our Chapman-Enskog
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approximation is no longer valid, and in turn neither is our simulation. One way to identify

that we are in the right parameter regime when modeling a system is to ensure that its

conserved quantities are indeed conserved.

A number of successes have been realized with the Ĉ√SWAP collision operator which were

mentioned in Chapter [1], but ultimately there is an upper limit to the potential interaction

strengths present in V (x, t) that it can be applied to. In the next section we present the

relativistic operator that will be the basis for the new collision operator that is more capable

than Ĉ√SWAP.

3.3 Relativistic Dirac collision operator

A new relativistic collision operator, Ĉrel, was derived by Yepez13 for Dirac particles in

1+1 dimensions (time and space).

Ĉrel =
1

γ


√
γ2 − Sin2(γml) −ie−iml

√
γ2−1Sin(γml)

−ieiml
√
γ2−1Sin(γml)

√
γ2 − Sin2(γml)

 (3.15)

γ is the Lorentz factor, γ = 1√
1−β2

with β = v2

c2
, m is the mass of the particle, and l is the

distance between lattice nodes. We are interested in the non-relativistic version of Ĉrel, but

before getting there we present the derivation of Ĉrel as it is the basis for the non-relativistic

collision operator which is the main topic of this thesis. At the same time the derivation will

give readers an idea of how these collision operators come about.
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Following the procedure in the paper13 we begin with two unitary operators, specifically

we take two arbitrary rotation operators (eq. [3.4]) that will act on our qubits.

U1 = e−i
β1
2
~n1·~σ

U2 = e−i
β2
2
~n2·~σ

(3.16)

β1,2 are small angles of rotations and ~n1,2 are unit vectors along the axis of rotation. Taylor

expanding U1,2 about the small angles and using the identities, σ2
i = I2 and (~n1 ·~σ)·(~n1 ·~σ) =

~n1 · ~n1 + i(~n1 × ~n1) · ~σ = 1 + i0 = 1, we rewrite our two rotation operators as

U1 = Cos(
β1

2
)I2 − i~n1 · ~σSin(

β1

2
)

U2 = Cos(
β2

2
)I2 − i~n2 · ~σSin(

β2

2
)

(3.17)

In essence we have been able to sum the Taylor series to all orders because of the idempotent

property of the Pauli spin operators. Taking the composition of U2U1,

U2U1 =

{
Cos(

β1

2
)− i~n1 · ~σSin(

β1

2
)

}{
Cos(

β2

2
)− i~n2 · ~σSin(

β2

2
)

}
= Cos(

β1

2
)Cos(

β2

2
)− i~n1 · ~σSin(

β1

2
)Cos(

β2

2
)− i~n2 · ~σCos(

β1

2
)Sin(

β2

2
)

− (~n2 · ~σ)(~n1 · ~σ)Sin(
β1

2
)Sin(

β2

2
)

(3.18)

Using the previous identity (~n2 · ~σ) · (~n1 · ~σ) = ~n2 · ~n1 + i(~n2 × ~n1) · ~σ we rewrite the above
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result as,

U2U1 = Cos(
β1

2
)Cos(

β2

2
)− i~n1 · ~σSin(

β1

2
)Cos(

β2

2
)− i~n2 · ~σCos(

β1

2
)Sin(

β2

2
)

− (~n2 · ~n1 + i(~n2 × ~n1) · ~σ)Sin(
β1

2
)Sin(

β2

2
)

(3.19)

At this point we will choose our streaming operator, U2, to be along the z-direction and the

collision operator, U1, to be along a general direction. We further simplify the problem by

taking ~n1 perpendicular to ~n2 thus ~n1 · ~n2 = 0.

~n1 = (α, β, γ)

~n2 = (0, 0, 1)

~σ = (σx, σy, σz)

(3.20)

There is a slight issue with our choice of the streaming and collision operator. If one has a

Hamiltonian H = K.E + V, the operators for K.E and V do not commute, thus e
it
~ (K.E+V) 6=

e
it
~ K.Ee

it
~ V. Our composition is an approximation and a more accurate operator splitting

approach using the Suzuki-Trotter decomposition will be presented in Chapter [6]. The

choice of vectors in eq. [3.20] leads eq. [3.19] to become

U2U1 = Cos(
β1

2
)Cos(

β2

2
)− i(ασx + βσy + γσz)Sin(

β1

2
)Cos(

β2

2
)− iσzCos(

β1

2
)Sin(

β2

2
)

− (i(−βσx + ασy))Sin(
β1

2
)Sin(

β2

2
)

(3.21)
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Using Lie-Algebra of the Pauli matrices [σi, σj] = εijkiσk we can rewrite eq. [3.21] as

U2U1 = U z
sUc = Cos(

β1

2
)Cos(

β2

2
)

− i
(
αSin(

β1

2
)Cos(

β2

2
)− βSin(

β1

2
)Sin(

β2

2
)

)
σx

− i
(
αSin(

β1

2
)Sin(

β2

2
) + βSin(

β1

2
)Cos(

β2

2
)

)
σy

− i
(
Cos(

β1

2
)Sin(

β2

2
) + γSin(

β1

2
)Cos(

β2

2
)

)
σz

(3.22)

We want the above result in eq. [3.22] to match

=⇒ 1 +
icpzτ

~
σz −

imc2τ

~
σx

pz = −i~∂z

(3.23)

The desire to match equations [3.22] and [3.23] is by construction. Similarly to the proce-

dure for recovering Schrödinger’s equation via the Ĉ√SWAP operator, we want in the long

wavelength limit to recover something of the form

ψ′(z) =

(
1 +

icpzτ

~
σz −

imc2τ

~
σx

)
ψ(z) (3.24)

In order for equations [3.22] and [3.23] to match we impose the following conditions,

αCos

(
β2

2

)
Sin

(
β1

2

)
− βSin

(
β1

2

)
Sin

(
β2

2

)
=
mc2τ

~
(3.25)
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αSin

(
β1

2

)
Sin

(
β2

2

)
+ βCos

(
β2

2

)
Sin

(
β1

2

)
= 0 (3.26)

Cos

(
β1

2

)
Sin

(
β2

2

)
+ γCos

(
β2

2

)
Sin

(
β1

2

)
= −cpzτ

~
(3.27)

α2 + β2 + γ2 = 1 (3.28)

Starting with equation [3.26] we solve by inspection for α, β and γ

αSin

(
β1

2

)
Sin

(
β2

2

)
+ βCos

(
β2

2

)
Sin

(
β1

2

)
= 0

α = Cos(
β2

2
)

β = −Sin(
β2

2
)

γ = 0

(3.29)

Substituting the results in eq. [3.29] into eq. [3.25] we get,

αCos

(
β2

2

)
Sin

(
β1

2

)
− βSin

(
β1

2

)
Sin

(
β2

2

)
=
mc2τ

~

Cos

(
β2

2

)
Cos

(
β2

2

)
Sin

(
β1

2

)
−
(
−Sin

(
β2

2

))
Sin

(
β1

2

)
Sin

(
β2

2

)
=
mc2τ

~

Cos

(
β2

2

)2

Sin

(
β1

2

)
+ Sin

(
β2

2

)2

Sin

(
β1

2

)
=
mc2τ

~(
Cos

(
β2

2

)2

+ Sin

(
β2

2

)2
)
Sin

(
β1

2

)
=
mc2τ

~

Sin

(
β1

2

)
=
mc2τ

~

(3.30)

Substituting the results of eq. [3.29] and the final result in eq. [3.30] we can simplify eq.
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[3.27].

Cos

(
β1

2

)
Sin

(
β2

2

)
+ γCos

(
β2

2

)
Sin

(
β1

2

)
= −cpzτ

~

Cos

(
β1

2

)
Sin

(
β2

2

)
= −cpzτ

~√
1− Sin

(
β1

2

)2

Sin

(
β2

2

)
= −cpzτ

~√
1−

(
mc2τ

~

)2

Sin

(
β2

2

)
= −cpzτ

~

Sin

(
β2

2

)
=

(
− cpzτ

~

)√
1−

(
mc2τ
~

)2

(3.31)

Equations [3.30] and [3.31] allow us to determine what the product Cos
(
β1

2

)
Cos

(
β2

2

)
is.

Cos

(
β1

2

)
=

√
1− Sin

(
β1

2

)2

=

√
1−

(
mc2τ

~

)2

(3.32)

Cos

(
β2

2

)
=

√
1− Sin

(
β2

2

)2

=

√√√√1−
(
− cpzτ

~

)2

1−
(
mc2τ
~

)2 (3.33)
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Cos

(
β1

2

)
Cos

(
β2

2

)
=

√
1−

(
mc2τ

~

)2

√√√√1−
(
− cpzτ

~

)2

1−
(
mc2τ
~

)2

=

√√√√{1−
(
mc2τ

~

)2
}{

1−
(
− cpzτ

~

)2

1−
(
mc2τ
~

)2

}

=

√√√√{1−
(
mc2τ

~

)2
}{

1−
(
mc2τ
~

)2

1−
(
mc2τ
~

)2 −
(
− cpzτ

~

)2

1−
(
mc2τ
~

)2

}

=

√√√√{1−
(
mc2τ

~

)2
}{

1−
(
mc2τ
~

)2 −
(
− cpzτ

~

)2

1−
(
mc2τ
~

)2

}

=

√
1−

(
mc2τ

~

)2

−
(
−cpzτ

~

)2

=

√
1− (m2c4 + c2p2

z)
τ 2

~2

Cos

(
β1

2

)
Cos

(
β2

2

)
=

√
1−

(
Eτ

~

)2

(3.34)

The last line in eq. [3.34] used the relation E2 = m2c4 + c2p2
z. Putting all of the results from

equations [3.29], [3.30], [3.31] and [3.34] into eq. [3.22] leads to the following QLG evolution

operator

U z
sUc =

√
1−

(
Eτ

~

)2

+
iEτ

~

(
cpz
E
σz −

mc2

E
σx

)
(3.35)

We want to now determine the individual operators Uc and U z
s . Given the result in eq. [3.35]

we can define the rotation vector from ~n1 to ~n2 to be,

n̂12 = −mc
2

E
x̂+

cpz
E
ẑ (3.36)

To help us deconstruct the composition of U z
sUc we will take advantage of two identities.
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First that (n̂12 · ~σ)2 = 1, an involution.

(n̂12 · ~σ)2 =

({
−mc

2

E
σx, 0,

cpz
E
σz

}
· {σx, σy, σz}

)2

=

(
−mc

2

E
σx +

cpz
E
σz

)2

=

(−mc2

E

)2

σ2
x︸︷︷︸

1

−
(
mc2

E

cpz
E

)2

σxσz −
(
cpz
E

mc2

E

)
σzσx︸ ︷︷ ︸

0

+
(cpz
E

)2

σ2
z︸︷︷︸

1


=
m2c4 + c2p2

z

E2
=
E2

E2

= 1

(3.37)

Second that Sin
[
ArcCos

(√
1− x2

)]
= x. This identity is easily seen if one considers a right

triangle with legs of length x,
√

1− x2 and a hypotenuse of length 1, draw it on paper to

convince yourself :). With these two identities we can rewrite eq. [3.35] as a single unitary

operator Ucomp = e−i
β12
2
n̂12·~σ, here β12

2
= Cos−1

(√
1−

(
Eτ
~

)2
)

. Below we demonstrate that
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Ucomp is equivalent to eq. [3.35], recall that eiθn̂·~σ = Cos(θ) + in̂ · ~σSin(θ).

Ucomp = e−i
β12
2
n̂12·~σ = e

−iCos−1

(√
1−(Eτ~ )

2
)
n̂12·~σ

= Cos

ArcCos
√1−

(
Eτ

~

)2
+ in̂12 · ~σSin

ArcCos
√1−

(
Eτ

~

)2


= Cos

ArcCos
√1−

(
Eτ

~

)2
+ i

(
−mc

2

E
σx +

cpz
E
σz

)
Sin

ArcCos
√1−

(
Eτ

~

)2


=

√
1−

(
Eτ

~

)2

+ i
Eτ

~

(
−mc

2

E
σx +

cpz
E
σz

)
(3.38)

Equation [3.38] is exactly the same as eq. [3.35]. Since the rotation angle n̂12 · ~σ is a scalar

we will replace it with a length quantity l. Doing so will make it easier for us to separate

U z
s from its composition with Uc.

U z
sUc = e

− ilhd/~c

hd = −cpzσz +mc2σx

Cos

(
El

~c

)
=

√
1−

(
Eτ

~

)2

(3.39)

The particular choice above for the argument of the Cosine term will later allow us to
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eliminate τ from our operator. From the last line in eq. [3.39] we solve for τ in terms of l.

Cos

(
El

~c

)
=

√
1−

(
Eτ

~

)2

√
1− Sin

(
El

~c

)2

=

√
1−

(
Eτ

~

)2

1− Sin
(
El

~c

)2

= 1−
(
Eτ

~

)2

Sin

(
El

~c

)
=
Eτ

~

(3.40)

Recall that U z
s is simply the streaming operator that shifts the qubits of the Dirac field ±l

units along the z-direction, that is

U z
s = eilkzσz = elσzpz

pz = i∂z

(3.41)

Thus for U z
s = U2 = e−i

β2
2
~n2·~σ we know that β2

2
= −lkz. With β2

2
known, we proceed to write

down Uc.

~n1 = (α, β, γ) =

(
Cos

(
β2

2

)
,−Sin

(
β2

2

)
, 0

)
(3.42)

Uc = U1 = e−i
β1
2
~n1·~σ

= Cos

(
β1

2

)
I2 − i~n1 · ~σSin

(
β1

2

)
= Cos

(
β1

2

)
I2 − i

(
Cos

(
β2

2

)
σx − Sin

(
β2

2

)
σy

)
Sin

(
β1

2

) (3.43)
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We can factor out σx from the last line in eq. [3.43] using the relation σ−1
x = σx

Uc = Cos(
β1

2
)I2 − iσx

(
Cos

(
β2

2

)
− Sin

(
β2

2

)
σ−1
x σy

)
Sin

(
β1

2

)
= Cos(

β1

2
)I2 − iσx

(
Cos

(
β2

2

)
− Sin

(
β2

2

)
σxσy

)
Sin

(
β1

2

)
= Cos(

β1

2
)I2 − iσx

(
Cos

(
β2

2

)
− iSin

(
β2

2

)
σz

)
Sin

(
β1

2

) (3.44)

By now Cos
(
β2

2

)
− iSin

(
β2

2

)
σz = e−iσz

β2
2 should be a familiar relation to us. Replacing the

last line in eq. [3.44] with its operator form

Uc = Cos(
β1

2
)I2 − iσx

(
e−iσz

β2
2

)
Sin

(
β1

2

)
=

√
1−

(
mc2τ

~

)2

I2 − i
mc2τ

~
σxe

−iσz β2
2

=

√
1−

(
mc2τ

~

)2

I2 − i
mc2τ

~
σxe

−iσzlpz

(3.45)

Writing out
(
imc

2τ
~ σxe

−iσzlpz
)

in eq. [3.45] explicitly,

i
mc2τ

~
σxe

−iσzlpz = i
mc2τ

~

 0 1

1 0

 e−iσzlpz = i
mc2τ

~

 0 1

1 0

 e−iσzlkz

= i
mc2τ

~

 0 1

1 0


 eilkz 0

0 e−ilkz



= i
mc2τ

~

 0 e−ilkz

eilkz 0



(3.46)
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Substituting the last line in eq. [3.46] into eq. [3.45], Uc becomes

Uc =

√
1−

(
mc2τ

~

)2

I2 − i
mc2τ

~

 0 e−ilkz

eilkz 0



=


√

1−
(
mc2τ
~

)2 −ie−ilkz mc2τ~

−ieilkz mc2τ~

√
1−

(
mc2τ
~

)2


(3.47)

We want to get rid of the τ dependence in the collision operator. We have the usual energy,

mass, momentum relation and begin with the Lorentz factor,

γ ≡ E

mc2
(3.48)

Note that the Lorentz factor γ in eq. [3.48] has nothing to do with the one used in the ~n1

vector.

E =
√

(pzc)2 + (mc2)2 ⇒ pzc =
√
E2 − (mc2)2 (3.49)

Using equations [3.48] and [3.49] we can rewrite the momentum pz in terms of the Lorentz
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factor γ.

pzc =
√
E2 − (mc2)2

pzc = mc2

√
E2

(mc2)2
− 1

pz = mc

√
E2

(mc2)2
− 1

pz = mc
√
γ2 − 1 = ~kz

(3.50)

Recall that in eq. [3.40] we chose a particular form for the argument of the Cosine function.

This is going to finally come into play here, we will rewrite the energy, mass and momentum

relation with pz replaced by its form in eq. [3.50].

E =

√(
mc
√
γ2 − 1

)2

c2 + (mc2)2

=
√

(mc)2 (γ2 − 1) c2 + (mc2)2

=
√

(mc2)2 [(γ2 − 1) + 1]

= mc2
√
γ2 − 1 + 1

= mc2γ

(3.51)
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Substituting the expression for energy from eq. [3.51] into eq. [3.40]

Eτ

~
= Sin

(
El

~c

)
mc2γτ

~
= Sin

(
mcγl

~

)
mc2τ

~
=

1

γ
Sin

(
mcγl

~

) (3.52)

The final line in eq. [3.52] allows us to eliminate τ from the collision operator in eq. [3.47].

Uc =


√

1−
(
mc2τ
~

)2 −ie−ilkz mc2τ~

−ieilkz mc2τ~

√
1−

(
mc2τ
~

)2



=


√

1−
(

1
γ
Sin

(
mcγl
~

))2

−ie−ilkz 1
γ
Sin

(
mcγl
~

)
−ieilkz 1

γ
Sin

(
mcγl
~

) √
1−

(
1
γ
Sin

(
mcγl
~

))2



=


√

γ2

γ2 − 1
γ2

(
Sin

(
mcγl
~

))2 −ie−ilkz 1
γ
Sin

(
mcγl
~

)
−ieilkz 1

γ
Sin
[
mcγl
~

] √
γ2

γ2 − 1
γ2

(
Sin
[
mcγl
~

])2



=
1

γ


√
γ2 −

(
Sin

(
mcγl
~

))2 −ie−ilkzSin
(
mcγl
~

)
−ieilkzSin

(
mcγl
~

) √
γ2 −

(
Sin

(
mcγl
~

))2



Uc =
1

γ


√
γ2 − Sin

(
mcγl
~

)2 −ie−ilmc
√
γ2−1Sin

(
mcγl
~

)
−ieilmc

√
γ2−1Sin

(
mcγl
~

) √
γ2 − Sin

(
mcγl
~

)2



(3.53)

Taking natural units with ~ = c = 1 finally recovers Ĉrel in eq. [3.15]. Unlike for the

Ĉ√SWAP operator, Ĉrel has the potential term introduced via the relativistic mass, that is
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m = mparticle + V (x, t).

3.4 Non-Relativistic Operator with Phase

We want the non-relativistic version of Ĉrel since we intend to work with Schrödinger’s

equation and not Dirac’s. Simply setting the Lorentz factor γ = 1 is insufficient, but we find

that in addition introducing a phase angle θ to the arguments of Sine and Cosine functions

allows us to recover the desired equation of motion.

(
Ĉrel
)
lim γ→1

→ Ĉ =


√

1− Sin2(θ +ml) −iSin(θ +ml)

−iSin(θ +ml)
√

1− Sin2(θ +ml)



=

 Cos(θ +ml) −iSin(θ +ml)

−iSin(θ +ml) Cos(θ +ml)


(3.54)

As mentioned previously the relativistic mass term served as a means to introduce the

potential into the system, so we replace it with the potential involved in the problem. Also

we set l = 1 lattice nodes. With these changes Ĉ takes the form,

Ĉ =

 Cos[θ + V (x, t)] −iSin[θ + V (x, t)]

−iSin[θ + V (x, t)] Cos[θ + V (x, t)]

 (3.55)

With this collision operator Ĉ in eq. [3.55], and the streaming operator in eq. [3.8], we

now wish to construct an interleaved collide-stream sequence that when applied to a pair
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of qubits will recover the desired equation of motion in the long wavelength limit given an

appropriate θ. Taking θ = π
4
, we present the following collide-stream sequence

 q1(x, t+ ∆t)

q2(x, t+ ∆t)

 = Ŝ∆x2 ĈŜ−∆x1 ĈŜ∆x2 ĈŜ−∆x1 ĈŜ−∆x2 ĈŜ∆x1 ĈŜ−∆x2 ĈŜ∆x1 Ĉ

 q1(x, t)

q2(x, t)


(3.56)

Equation [3.56] recovers a similar result as in eq. [3.13] (in 1D)

ψ(x, t+ ∆t) = ψ(x, t)− 8iε2V (x, t)ψ(x, t) + iε2∂xxψ(x, t) +O[ε4] (3.57)

with the same diffusion ordering as eq. [3.14], and ε = ∆x2

∆t
. Note that to recover eq. [3.57]

we went through the same Chapman-Enskog procedure as the one presented in Section [3.2]

for the Ĉ√SWAP operator. Taking the first term on the right-hand side of eq. [3.57] and

moving it to the left, dividing by ∆t and multiplying by i gives us the desired form of our

equation.

i

(
ψ(x, t+ ∆t)− ψ(x, t)

∆t

)
lim ∆t→0

→ i∂tψ(x, t) = −ε2∇2ψ(x, t) + 8ε2V (x, t)ψ(x, t) +O[ε4]

(3.58)

The glaring difference between equations [3.13] and [3.58] is the factor of 8 that appears next

to the potential term. This 8 corresponds to the number of times the collision is applied,

and can easily be resolved by dividing the potential term in Ĉ by c = 8. Thus our final form
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for the non-relativistic collision operator Ĉ is

Ĉ =

 Cos[π
4

+ 1
c
V (x, t)] −iSin[π

4
+ 1

c
V (x, t)]

−iSin[π
4

+ 1
c
V (x, t)] Cos[π

4
+ 1

c
V (x, t)]


c1D = 8, c2D = 16, c3D = 24

(3.59)

All results presented in this dissertation will have come from the use of the collision operator

Ĉ in eq. [3.59]. Ĉ is an upgraded version of the Ĉ√SWAP operator and is able to handle

problems with stronger potential interactions. Still it has the same requirements in that the

ε in eq. [3.57] must still be small enough in order for us to be in a parameter regime in which

we are modeling a desired system. In the next chapter we present QLG simulation results

using Ĉ for various potentials.
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CHAPTER 4

QLG Simulation Results

4.1 1D Quantum Harmonic Oscillator

The first system we consider is the simple quantum harmonic oscillator (SHO). It is a

simple well known problem with analytic stationary solutions. Our goal is to demonstrate

that the QLG algorithm can preserve the stationary state of the system (thus the density

and energy is conserved as well). The Hamiltonian for a quantum SHO15 is,

Ĥ =
p̂2

2m
+

1

2
mω2x̂2 (4.1)
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where ω is the frequency of oscillation, and m is the mass of the system. Ĥ has well known

Hermit polynomial solutions

Ψn(x) =
1√
2nn!

(mω
π~

)1/4

e−mωx
2/2~Hn

(√
mω

~
x

)
, n = 0, 1, 2...

Hn(x) = (−1)nex
2 dn

dxn
(e−x

2

)

(4.2)

Above n is an integer corresponding to the number of nodes in the system. In our simulations

we set ~ = 1 for computational simplicity. The important parameters here are the mass and

the frequency ω, as they determine the amplitude of the system. The quantized energy levels

are given by,

En = ~ω
(
n+

1

2

)
, n = 0, 1, 2... (4.3)

Because the only potential present in this problem, is the external harmonic potential, the

collision operator

Ĉ =

 Cos[π
4

+ 1
8

(
1
2
mω2x2

)
] −iSin[π

4
+ 1

8

(
1
2
mω2x2

)
]

−iSin[π
4

+ 1
8

(
1
2
mω2x2

)
] Cos[π

4
+ 1

8

(
1
2
mω2x2

)
]


for this example is constant in time. As was explained in Chapter [3] we encode the initial

condition in two qubits q1(x, t) and q2(x, t). How this encoding is achieved on a classical

computer is somewhat arbitrary. One can choose for example to set the initial qubits at

t = 0 as q1(x, 0) = ψ(x, 0), q2(x, 0) = 0. The collision operator will populate q2 during

the collision step and the system would evolve without complications. We always choose
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to split the wavefunction among the two qubits evenly, that is q1(x, 0) = 1
2
ψ(x, 0) and

q2(x, 0) = 1
2
ψ(x, 0), this will be the assumed encoding scheme throughout the dissertation.

Once the qubits are encoded, we act on them by the collide-stream sequence presented in eq.

[3.56], which after completing constitutes one iteration. Below figures [4.1a], [4.1b] and [4.1c]

illustrate excellent agreement between the analytic and QLG results for various n values,

over 106 iterations. The choice of ω is simply taken to be such that the wavefunction spans

(a) n = 0, m = 1/2,
ω = 1.414× 10−4

(b) n = 1, m = 1/2,
ω = 1.414× 10−4

(c) n = 2, m = 1/2,
ω = 1.414× 10−4

FIG: 4.1 Simulation results for SHO ground state and first two excited states.

a significant portion of the grid L = 1000. Figure [4.2] shows the deviation of the QLG

solution from the analytic solution after t = 106 iterations, averaged over the grid L.

4.2 Bright Solitons

The one dimensional GP equation (eq. [2.18]) is also known as the Non-Linear Schrödinger

(NLS) equation that describes propagation of light in a nonlinear optical fiber.

i∂tψ = −∂2
xψ + βg|ψ|2ψ (4.4)
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FIG. 4.2: The deviation of the QLG solution after t = 106 iterations from its analytic counterpart
for the case n = 0 shown in Fig. [4.1a].

β = ±1 depending on whether as is positive or negative. The scattering length, as, can be

tuned by the magnetic field and the harmonic trap applied on the BEC16. NLS captures

the interplay between the dispersive properties of a medium and the non-linear interaction

which results in localized wavepackets that propagate without distortion. When the non-

linear interaction is negative (β = −1) the interaction is attractive and the wavepackets are

called bright-solitons. Eq. [4.4] has an infinite number of conserved moments, for us the

relevant ones are the normalization of the system,

N(t) :=

∫
R
|ψ(x, t)|2dx, t ≥ 0 (4.5)

energy,

E(t) :=
1

2

∫
R

[
|∂xψ(x, t)|2 + βg|ψ(x, t)|4

]
dx, t ≥ 0 (4.6)
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and momentum

P (t) :=
i

2

∫
R

[
ψ(x, t)∂xψ

†(x, t)− ψ†(x, t)∂xψ(x, t)
]
dx, t ≥ 0 (4.7)

Eq. [4.4] admits the well-known bright-soliton solution17,18,

ψ(x, t) =
√

2αSech [α(x− βt)] ei(β/2)x−(β2/4−α2)t (4.8)

In eq. [4.8], α is the amplitude of the soliton, and β is its velocity. This analytic solution

makes the NLS a good test bed for the QLG algorithm. While the presence of solitons in

optical fibers has been observed for some time, bright solitons were first created in the BEC

in 2002 by K. E. Strecker et. al.19 using 7Li. Their BEC had N ∼ 6× 103. As noted earlier,

the solitons propagate without distortion, this means their amplitudes and velocities will

remain unchanged. However an interesting feature is that when two solitons pass through

each other they undergo a phase shift20. We shall demonstrate that QLG is able to capture

all of these features of the NLS problem. The form of the collision operator for the NLS

problem and our choice of β is

Ĉ =

 Cos[π
4
− 1

8
(g |ψ|2)] −iSin[π

4
− 1

8
(g |ψ|2)]

−iSin[π
4
− 1

8
(g |ψ|2)] Cos[π

4
− 1

8
(g |ψ|2)]


Our potential term is no longer constant unlike for the SHO problem. An important factor is

keeping the potential current, that is after every streaming step, before applying the collision
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on the qubits we update the potential term in the collision operator with its latest streamed

value. Taking a domain L = 6, 000 grid points with periodic boundary conditions, α1 = 0.31,

α2 = 0.17 and velocities β1 = 0.5, β2 = −0.5 (lattice units)/(time step). The two soliton

system is described by the initial condition

ψ(x, t = 0) = 0.44Sech [0.31(x− L/6)] ei(
0.5/2)(x−L/6) + 0.25Sech [0.17(x− 5L/6)] ei(

− 0.5/2)(x−5L/6)

(4.9)

The spatial resolution is ∆x = 1 lattice points, and thus ∆t = 1 as well (due to the diffusion

ordering in eq. [3.14]). The solitons are well separated by about 4000 lattice points with

the larger amplitude soliton moving to the right, while the lower amplitude soliton to the

left. The first collision occurs at around t = 40k, Figure [4.3] displays the results over

8 × 105 iterations in a 106 iteration run. With periodic boundary conditions the solitons

travel in a closed loop, upon reaching the boundary from either direction, they translate to

the boundary on the other and continue their motion.



49

FIG. 4.3: Snapshot of |ψ(x, ti)| at 8000 time intervals (∆t = 8k) for (top) pre-collision and
(bottom) post-collision soliton motion. Initially, the larger soliton has its peak around x ∼ −2000
while the smaller soliton has its peak around x ∼ +2000. Color scheme for (top): blue (t = 0) →
red (t = 8k) → brown (t = 16k) → green (t = 24k) → blue (t = 32k) → red-overlap (t = 40k).
Color scheme for (bottom): blue-overlap (t = 40k) → red (t = 48k) → brown (t = 56k) → green
(t = 64k)→ blue (t = 72k)→ red (t = 80k). The large amplitude soliton always moves to the right
while the lower amplitude soliton always moves to the left under periodic boundary conditions.
Soliton overlap/collision occurs at t = 40k. Note that the solitons move with the same amplitude
and speed pre- and post-collision.
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After the 15th soliton-soliton collision, we see a spatial shift in the location of the soliton

due to a collision-induced phase shift, but the solitons retain their exact shape and speed,

Figure [4.4].

FIG. 4.4: Snapshot of |ψ(x, ti)| at time intervals of (∆t = 8k) for the post-15th collision. Initial
time instant for these six snap-shots is t = 832k with the larger soliton peak at around x ∼ −2200,
and the smaller peak at x ∼ +1950: (top) pre-15th collision and (bottom) post-15th collision soliton
motion. The color scheme is the same as in Figure [4.2].

In Figure [4.5], we plot the time development of the collision-induced spatial shift in the

larger soliton. After every soliton-soliton collision, this spatial shift is +18 lattice units. Since

the soliton retains its exact form and speed post-collision there is no spatial shift in-between
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collisions. Hence, the staircase structure in Figure [4.5]. The Gibbs-like jaggedness during

the soliton-soliton collision time is a numerical artifact of the algorithm that simply spits out

the location of the maximum in |ψ|. During the solition-soliton collision, this peak location

is not necessarily the location of the individual soliton that one has been following before

the collision.

FIG. 4.5: The time evolution of the collision-induced spatial phase shifts in the larger soliton with
speed β = 0.5 lattice units/time step. The spatial shift in-between solition-soliton collisions is
basically a constant, as expected theoretically for soliton-soliton collisions of 1D NLS. The Gibbs-
like spikes that appear during the soliton-soliton overlap collision is a numerical artifact on the use
of the peak in |ψ| during the collision.

Lastly we look at the energy of the system, presented in Figure [4.6] There are two things

to note about the energy in Figure [4.6]. First, the energy is negative due to the rescaling

applied on the system. A soliton’s width is determined by its amplitude and when the

amplitude is relatively high it becomes quite narrow. One can increase the spatial resolution

in order to resolve the soliton in enough detail, or rescale the system. Increasing spatial

resolution, by setting ∆x < 1 requires an increased number of data points, and due to the

diffusion ordering, has an additional requirement in that a greater amount of iterations are
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FIG. 4.6: The time evolution of the energy integral, a constant of the motion of the 1D NLS
Hamiltonian system. For the chosen parameters, Econst. = −0.889. The Gibbs-like spikes that
appear during the soliton-soliton overlap collision are numerical artifacts related to the stencil used
to calculate Equation [4.6]

needed to reach the same point in time. While in 1D more iterations is not a significant factor,

in higher dimensions (especially 3D) it can be more significant. Rescaling on the other hand

does not add additional computation time, but does increase the second term in eq. [4.6],

resulting in a negative energy. The second thing to note in Figure [4.6] are the oscillations

that occur during collisions. These oscillations are a numerical artifact due to the simple

finite difference method used to calculate the first derivative in eq. [4.6]. During the collision

the wavefunction has some large gradients which can be smoothed out with a higher spatial

resolution, but as mentioned previously this adds considerable computation time. Another

way to manage the oscillations is presented by Dellar21, where one can estimate the energy

integral as the expectation value of the Hamiltonian.

It must be stressed that in the QLG mesoscopic algorithm there is no knowledge of

the existence of the constant energy integral of 1D NLS. It is only if we have chosen the

simulation QLG parameters such that the subsequent moment equations (in this case the
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1D NLS equation) arise from diffusion ordering with the existence of the needed theoretical

perturbation parameter ε. If one sets the amplitude of the soliton too high, or the velocity

too fast, a breakdown occurs that is readily apparent in the loss of energy and density

conservation within the simulation.

4.3 Vector Solitons

We next consider a slightly more complicated scenario of an optical fiber that is birefrin-

gent, with a single-mode fiber permitting two orthogonal polarizations: the so-called O-mode

which has a constant refractive index along its ray path, while the X-mode has a refractive

index that varies along its ray path. It has been shown22 that the slowly varying amplitudes

of these modes can be determined from the 1D coupled-NLS equations,

i∂tQ1 = −∂xxQ1 − 2µ
{
|Q1|2 +B|Q2|2

}
Q1

i∂tQ2 = −∂xxQ2 − 2µ
{
|Q2|2 +B|Q1|2

}
Q2

(4.10)

with µ > 0, and B is the cross-phase birefringence modulation coefficient, 2 ≤ 3B ≤ 6. We

will be looking at the specific case of B = 1 for which it has been shown that the coupled NLS

equations [4.10] are completely integrable22,23,24 and are known as the Manakov equations.
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Exact 2-vector soliton solutions for the Manakov system in eqs. [4.10] are

Q1(x, t) =
2∑

n=1

1

2
αnsech

[
Re(ηn) +

1

2
Rn

]
e−

1/2+iIm(ηn)

Q2(x, t) =
2∑

n=1

1

2
βnsech

[
Re(ηn) +

1

2
Rn

]
e−

1/2+iIm(ηn)

(4.11)

αn, βn and kn are arbitrary complex parameters with (n = 1, 2)

ηn = kn(x− x0n + iknt)

Rn = Ln

[
µ(|αn|2 + |βn|2

4Re(kn)2

] (4.12)

For each propagating mode, the (real) parameters x0n predominantly determine the location

of the soliton peaks if the two solitons are non-overlapping, while Re(kn) predominantly

dictate the individual soliton amplitudes and Im(kn) the soliton speeds. The asymptotic

post-collision vector soliton solutions have been evaluated22,23,24 for when the solitons are

non-overlapping. In particular for Re(kn) > 0, the post-collision non-overlapping two-soliton

amplitudes are given by (where ’′’ denotes post-collision state properties)

α′1
β′1

=

([
1− g +

∣∣∣∣α1

β1

∣∣∣∣2
]
α2

β2

)(
g
α∗1
β∗1

α2

β2

+ (1− g)

∣∣∣∣α1

β1

∣∣∣∣2 + 1

)−1

α′2
β′2

=

([
1− h+

∣∣∣∣α2

β2

∣∣∣∣2
]
α1

β1

)(
h∗
α∗2
β∗2

α1

β1

+ (1− h∗)
∣∣∣∣α2

β2

∣∣∣∣2 + 1

)−1
(4.13)
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with

g(k1, k2) =
2Re(k1)

k2 + k∗1

h(k1, k2) =
2Re(k2)

k∗2 + k1

(4.14)

Radhakrishnan et. al.22 showed analytically that for certain values of parameters there exist

inelastic vector soliton solutions, that is in a vector soliton collision, one of the soliton pairs

in a particular polarization is annihilated. This type of inelastic collision is impossible in

scalar NLS theory because of the normalization constraint

∫
dx|Qi(x, t)|2 = const, i = 1, 2 (4.15)

Unlike previous systems we’ve looked at, the vector soliton solutions are comprised of two

coupled wave-functions. Thus far we have only worked with one, and the change we make

to accommodate both is simply using two qubit pairs, alongside two collision operators.

That is we will encode Qi(x, t) in qubit pairs (q1i , q2i), i = 1, 2 respectively. The systems

are coupled by their interaction which appear directly in the collision operators, thus they

maintain constant knowledge of how the system evolves. Each step of the collide-stream

sequence is applied simultaneously to each wavefunction, while keeping the potential values
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current after every streaming operation.

Q1(q11 , q21) =

 q11(x, t)

q21(x, t)



Q2(q12 , q22) =

 q12(x, t)

q22(x, t)



ĈQ1 =

 Cos[π
4

+ 1
8

(2µ|Q1|2 +B|Q2|2)] −iSin[π
4

+ 1
8

(2µ|Q1|2 +B|Q2|2)]

−iSin[π
4

+ 1
8

(2µ|Q1|2 +B|Q2|2)] Cos[π
4

+ 1
8

(2µ|Q1|2 +B|Q2|2)]



ĈQ2 =

 Cos[π
4

+ 1
8

(2µ|Q2|2 +B|Q1|2)] −iSin[π
4

+ 1
8

(2µ|Q1|2 +B|Q2|2)]

−iSin[π
4

+ 1
8

(2µ|Q2|2 +B|Q1|2)] Cos[π
4

+ 1
8

(2µ|Q2|2 +B|Q1|2)]


Figure [4.7] shows a simulation of an inelastic vector-soliton collision for 2-soliton pairs

(|Q1(x, t)| in blue, and |Q2(x, t)| in red), at pre-collision and post-collision time. At t = 0,

the vector 2-soliton pairs are centered around x = 900 and x = 5000. For specially chosen

initial parameters, there is an inelastic collision as is seen in the disappearance of the soliton

in the post-collision state of |Q1(x, t)| that is propagating to the left (see the left plot of

Fig. [4.7]). However, in the subsequent soliton collisions the amplitudes will no longer

satisfy the criterion (α′1 = 0, α′2 6= 0) for an inelastic collision, and the |Q1(x, t)| 2-solitons

will reappear. In Fig. [4.8] we plot the time evolution of the 2-soliton maxima (i.e. the

max1≤x≤L|Qn(x, t)|, n = 1, 2) throughout the run (here tmax = 400K). The higher amplitude

soliton is shown dashed, to distinguish it from the lower amplitude soliton. The spikes in the
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FIG. 4.7: The collisional evolution of Manakov solitons left figure. The pre-collision states at
t = 0, t = 10K, t = 20K while the post-collision states right figure are at times t = 25K, t = 35K,
t = 45K. The first polarization amplitude 2-soliton |Q1(x, t)| is in blue, while the orthogonal
polarization 2-soliton |Q2(x, t)| is in red. The inelastic soliton collision occurs for specially chosen
soliton amplitudes and speeds, and in this case the post-collision soliton for |Q1(x, t)| = 0 for
x < 3000 is totally absent. Simulations performed on a grid L = 6000, under periodic boundary
conditions.

peaks occur during soliton-soliton overlap. The inelastic collision, resulting in the loss of the

lower amplitude soliton in |Q1| is clearly seen after the 1st soliton-soliton collision around

t = 25K, see also Fig. [4.7], but it reappears after the 2nd soliton-soliton collision. In the

time intervals between soliton-soliton collisions the four soliton shape, amplitude and speed

remains invariant as can be seen in Fig. [4.7] and Fig. [4.8]. There is no second inelastic

vector soliton-soliton collision in |Q1|, although around t = 330K the secondary soliton peak

is quite low, |Q1| ∼ 2× 10−4.

4.4 Dark Solitons

The last 1D system we’re going to look at are dark solitons, the case where β = +1 in

eq. [4.4]. Unlike the bright soliton, dark soliton interaction is repulsive, our goal is to set
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FIG. 4.8: A plot of the time evolution of the vector 2-soliton peaks, max1≤x≤L|Qn(x, t)|, n = 1, 2,
in each mode. Vector soliton-soliton collisions occur whenever the peaks spike. For the parameters
chosen, an inelastic Manakov soliton collision occurs only for t = 24K, with the subsequent loss of
one of the solitons. This soliton reappears following the next vector soliton-soliton overlap collision.
The dashed curves are for the higher amplitude soliton within that particular mode, while the solid
curve is for the lower soliton amplitude. For the integrable Manakov system the vector 2-soliton
solution exhibits invariant soliton properties away from the collisional overlap regions: i.e., the
constant horizontal sections indicate the non-overlapping soliton spatial regions.

the velocity of the solitons low enough so as to observe this behavior. If the velocity is too

high, the solitons will overcome the repulsion and pass through each other. There is a subtle

difference in this case that makes it a slightly more challenging problem than bright solitons.

The solution to eq. [4.4] in the case of β = +1 is

ψ(x, t) =
1√
2

(2αTanh [α(x+ βt)] e
− i/2(β2+4α2)t (4.16)

β is the velocity of the soliton, while α is its depth. For dark solitons the asymptote of

the wavefunction at the boundary is non-zero and thus periodic boundary-conditions can

no longer be employed as that would result in a phase discontinuity across the boundary25.
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Instead we employ Neumann boundary conditions, on an interval [−L,L]

ψ′(−L, t) = 0

ψ′(L, t) = 0

(4.17)

With ψ′ denoting the first spatial derivative of the wavefunctions. This means that our

simulation is limited to the domain spanned by our grid, and whenever a soliton reaches

the boundary, the simulation become unphysical and effectively ends. Additionally multiple

solitons must have the same speed and depth (in contrast to the bright-soliton case) in

order to ensure continuity of ψ(x, t). It is somewhat difficult to convey soliton pass-through

versus bouncing-off each other using still images. The main distinguishing feature of the two

processes is the soliton overlap, during pass-through the solitons will undergo a complete

overlap while during a bounce they will only experience a partial overlap before changing

direction. Figure [4.9] displays a simulation of two dark solitons as they approach and pass

through each other on a grid of length L = 3000. An almost complete overlap is seen at

time t = 3.94× 104 and sometime later at t = 6× 104 the solitons have passed through each

other and maintain their original shapes. In figure [4.10] we present a simulation in which

the soliton speeds are slow enough that their kinetic energy cannot overcome the repulsive

interaction. Upon collision the solitons reverse direction and bounce off each other. Because

of the slower speeds we consider a smaller grid of length L = 800 to reduce the amount of

time it takes for a collision to occur.

Figure [4.11a] demonstrates the effects of a soliton-boundary collision with three snap-
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FIG. 4.9: Two dark solitons with an equal depth of α = 0.025 and velocities β =
±0.025lattice units/time step. At t = 0 the left soliton is moving to the right and the right soliton
is moving to the left. At t = 3.94× 104 we observe an almost complete overlap of the two solitons,
and at t = 6× 104 they have passed through each other. The grid length L = 3000 with ∆x = 1.



61

FIG. 4.10: Two dark solitons with an equal depth of α = 0.0375 and velocities β =
±0.00625lattice units/time step. At t = 0 the left soliton is moving to the right and the right soli-
ton is moving to the left. At t = 3.7 × 104 we observe the maximum partial overlap of the two
solitons before their velocities change sign, and at t = 5×104 the initial left (right) soliton is moving
left (right). The grid length L = 800 with ∆x = 1.
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shots showcasing the solitons before, during and after the collision. During the soliton-

boundary collision one sees the destortion of the wavefunction from its expected behavior

and post collision at t = 1.2 × 105 the wavefunction is completely distorted. Conservation

of energy in the simulation can be seen in fig. [4.11b]. We show the energy before and

after the solitons make contact with the boundary. Note that the energy is appropriately

positive as no rescaling was applied to the system. Prior to the collision the energy curve

is a horizontal line with a distortion during the collision at t = 3.7 × 104, indicating good

energy conservation. At t = 8 × 104 the solitons make contact with the boundary of the

grid rendering the simulation unphysical from that point forward. This is readily apparent

in the almost immediate loss of energy conservation of the system. QLG only simulates eq.

(a) Three snapshots of the wavefunction at
t = 8× 104 before a boundary collision,
t = 9.14× 104 during the collision, and

t = 1.2× 105 after a collision.

(b) The energy of the system shown in Fig.
[4.9]. The bump seen at t = 3.7× 104 is
when the soliton collision occurs, and at
t = 8× 104 is when the solitons reach the

boundary.

FIG: 4.11

[3.57] if we are within the bounds of the small parameters assumed for the Chapman-Enskog

approximation, in this case that small parameter being velocity of the dark soliton. In fig.

[4.12] we demonstrate what happens to the energy of a dark soliton system in which the



63

velocity is set too high. When we are not in the correct parameter regime to model the GP

system there is a complete lack of energy conservation.

FIG. 4.12: Modeling dark solitons with velocity β = 0.06875 (lattice units)/(time step). This
velocity is too high which is reflected in the lack of energy conservation throughout the simulation.

4.5 Vortex Rings

In this section we will consider the full scalar 3D GPE which unlike its 1D counterpart

has no analytic solution.

2i∂tψ = −∇2ψ + (g|ψ|2 − µ)ψ (4.18)

µ is the chemical potential of the system. Specifically we will look at vortex rings in a BEC

gas along with vortex ring reconnection. Reconnection is a term used to describe topological

changes in a system. It is a long standing problem in the study of fluids, notably present
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in plasmas (solar flares, Earth’s magnetosphere, tokomaks). Despite the physical differences

between a BEC and a classical thermal fluid, they exhibit many similar phenomena. Unlike

in classical fluids vortex reconnection in the GP system is driven by the quantum pressure

term (eq. [2.25]) that appears when we look at the hydrodynamic form of the GPE. For the

scalar BEC, describable by a single GP eq. [4.18], the quantum vortex core is a topological

line of zero density. The structure of a quantum vortex itself is typically quite local, away

from which the wavefunction asymptotes, ψ → |ψ∞| = const. a small distance from the core,

called the healing length ξ. For example, a typical quantum vortex in 87Rb has a healing

length ξ ≈ 4µm. The vortex reconnection of line vortices has been considered in considerable

detail by many authors26. Here, following Baggaley27, we shall consider the reconnection and

topological changes of vortex rings.

The first step in the QLG algorithm is to encode a wavefunction into the qubit pair, thus

our first task is to determine a suitable initial condition. We will work in polar coordinates

because it simplifies the problem, and assume the system is symmetric about the z-axis.

Considering a time-independent vortex-line solution of the form

ψ = R(r)einθ

n = 1, winding number

(4.19)

we substitute our solution in eq. [4.19] into eq. [4.18] which gives us an ODE in terms of

R(r).

1

2

(
R′′(r) +

R′(r)

r
− R(r)

r2

)
+
(
µ− gR(r)2

)
R(r) = 0 (4.20)
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We then consider a Páde approximation of the radial function R(r). A Páde approximation

employs the use of a rational polynomial to represent R(r),

R(r)NM =

√ ∑N
n=0 anr

n

1 +
∑M

m=0 bnr
m

M = N

(4.21)

The coefficients for an and bm are determined through Berloff asymptotics at the boundaries.

ψ →
√
µ

g
as r→∞ (4.22)

We can approximate R(r) with a finite set of am and bn. The above procedure would

provide us with vortex-line solutions, but we are interested in vortex-rings. Such an initial

condition is presented by Baggaley27, based on the straight line vortex determined by a Páde

approximation. Starting with our Páde polynomial

R(r) =

√
a1r2 + a2r4

1 + b1r2 + b2r4

a1 =
11µ2

32g

b1 =
µ

3

a2 = b2 =
11µ2

384g

(4.23)
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Our initial wavefunction at t = 0 is

ψ(x, t = 0) = Ψ(z, s+R0)Ψ∗(z, s−R0) (4.24)

Ψ(z, s) = R
(√

z2 + s2
)
eiθ (4.25)

In essence we are taking a line vortex and twisting it about an axis into a loop (s2 = x2 +y2)

of radius R0.

With an initial condition we are in a position to perform our simulation. In the non-

relativistic collision operator, V (x, t) = g|ψ|2 − µ, and in 3D, c = 1
24

. The governing pa-

rameters for our system are µ and the parameter g which arises from the s-wave Bose-Bose

interactions. Computationally it controls the BEC density, as for an isolated quantum vor-

tex, ψ →
√

µ
g
, can be readily seen from a Thomas-Fermi approximation of the scalar GPE in

the limit of negligible kinetic energy (i.e., in the asymptotic region where the wavefunction

has negligible spatial variations and we take ∇2ψ → 0).

We first consider a choice of µ = 0.002 and g = 106 on a 7203 grid with an initial vortex

ring radius R0 = 75 (in our lattice units ∆x = ∆t = 1). An important detail is that we

are using periodic boundary conditions in our simulation. The choice of these parameters

was driven by the desire to perform a single fairly long run (tmax = 92000). Nearly all

the reported simulations on vortex rings apply simple non-reflecting boundary conditions so

that their simulations end when the vortex ring approaches the boundaries (as in our earlier

discussion on the simulation of dark solitons). Here we wish to perform long time integration



67

and vortex ring dynamics and so consider periodic boundary conditions. This will require

us to set up an appropriate set of 8-ring vortices in 3D and adjust their phases so that we

have periodicity on all boundary faces. Moreover we will be interested in the vortex Hopf

link topology and how it evolves in time. Thus we will be concerned with interlocked vortex

rings. In particular, we consider vortex rings that lie in the x-y plane which above z = 0

have a positive phase, and those below (z < 0) negative. In addition we have another set of

8 perpendicular vortex-rings in the y-z plane, for which the phase is positive for those above

x = 0, and negative below (x < 0). Each vortex ring is its own wavefunction φi(~x) defined

in eq. [4.25], and our initial condition is the product of all vortex-rings, ψ(~x, 0) =
∏
φi(~x).

Our sympletic integration scheme preserves the Hamiltonian structure of the GPE which

is seen quite clearly in vortex-ring simulations with very high g-factors. All Hamiltonians

exhibit a Poincaré recurrence time, t = TPoincaré, in which the system comes arbitrary close

to its initial condition. However for continuous Hamiltonians this Poincaré recurrence is

typically so long that it is rarely, if ever, observable. For the 3D GPE system, with initial

straight line quantum vortices, it has been shown28 that a system with very weak s-wave

interactions exhibits a remarkably short Poincare recurrence time which has a dependence

on the grid size,

TPoincaré = 0.159L2
grid (4.26)

In our vortex ring simulations on a 7203 grid this would result in TPoincaré = 82, 612 iterations,

our simulation yields TPoincaré = 82, 500 (outputs step ∆t = 100). As in the straight line

quantum vortex case we also see the mirror inversion of the initial vortex-ring state at
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t = 0.5TPoincaré. Figures [4.13a] shows an isosurface of the initial wavefunction at low density

and [4.13b] demonstrate the rapid onset of vortex-ring reconnection after just 500 time steps.

(a) An isosurface at low densities of the
initial (t = 0) vortex-ring profile on a 7203

grid. µ = 0.002, g = 106 and R0 = 75

(b) An isosurface with the same parameters
as in fig. [4.13a] but at a later time.

Vortex-ring reconnection is visible after just
500 time steps.

FIG: 4.13 Isosufraces of vortex-rings

As expected in figures [4.14a] and [4.14b] we observe Poincaré recurrence at t ≈ 41, 000

and t ≈ 81, 000 respectively. Figure [4.14a] corresponds to t = 0.5TPoincaré during which the

wavefunction is mirrored and in fig. [4.14b] we reach t = TPoincaré. The entire simulation was

ran for 90k iterations with an initial total energy of E0 = 8.717 × 10−10 and a deviation of

0.007% from E0 at the end of the run.

These results should be contrasted with those for strong s-wave interactions between



69

(a) An isosurface at low densities of the
vortex-ring profile at t = 41200 on a 7203

grid, displaying Poincaré recurrence.
µ = 0.002, g = 106 and R0 = 75. Note how
the profile is inverted relative to the initial

profile in fig. [4.13a].

(b) An isosurface with the same parameters
as in fig. [4.14a] but at a later time,
t = 81300. During the second Poincaré

recurrence our profile is reoriented to match
the initial one in fig. [4.13a].

FIG: 4.14 Poincaré recurrence in vortex-ring simulations.
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the bosons (i.e., for lower values of g). In these simulations the chemical potential µ = 0.004,

and g = 3 × 103, our parameter is about 3 orders of magnitude greater. In this parameter

regime we no longer observe Poincaré recurrence, that is TPoincaré → ∞. Figures [4.15a -

4.15f] demonstrate the results of the simulation with a total energy E0 = 6.257× 10−7 and a

deviation of 0.013% in E0 after 90k iterations, with the mean density conserved to 0.03%. As

expected at t = 400 time-steps the vortex rings have reconnected, and subsequent iterations

are followed by a destruction in that topology as seen in the vortex core isosurface plots.

Furthermore the system does not exhibit Poincaré recurrence, at 0.5TPoincaré, comparing Fig.

[4.15e] to Fig. [4.13a]. Similarly comparing Fig. [4.15f] to Fig. [4.13b] one sees a clear lack

of Poincaré recurrence.
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(a) Isosurfaces at low densities
of the initial (t = 0)

vortex-ring profile on a 7203

grid. µ = 0.004, g = 3× 103

and R0 = 75

(b) t = 400 (c) t = 11, 100

(d) t = 13, 000 (e) t = 41, 000 (f) t = 81, 500

FIG: 4.15 Simulation of vortex-ring reconnection in a stronger interaction regime.
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CHAPTER 5

Imaginary Time

5.1 Imaginary-Time Collision Operator

In Chapter [4] we saw that QLG requires a good initial condition in order to properly

model a physical system. There are many techniques one can employ to find ground state

solutions for quantum systems, one specifically being the Imaginary Time (IT) method. In

IT the Schrödinger equation, and its non-linear generalization, is transformed into a diffusion

equation using a Wicks rotation of time by π/2 in the complex plane: t→ −it.

~∂tψ(x, t) =

(
~2

2m
∇2 − Vext(x, t)

)
ψ(x, t) (5.1)

For convenience we will take ~→ 1 and the mass m→ 1. Among the plethora of IT meth-

ods, the simplest use Backwards-Euler (BEFD) or Crank-Nicholson (CNFD) finite difference
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schemes to recover the diffusion equation. For example the BEFD scheme is shown below.

φni = φ (xi, tn)

φn+1
i − φni

∆t
=

1

2m∆x

2 (
φn+1
i+1 − 2φn+1

i + φn+1
i−1

)
− VVV n

(ext),iφ
n+1
i − VVV n

(int),iφ
n+1
i

φn+1
i − φni =

∆t

2m∆x2

(
φn+1
i+1 − 2φn+1

i + φn+1
i−1

)
−∆t

(
VVV n

(ext),i + VVV n
(int),i

)
φn+1
i

φni = φn+1
i − ∆t

2m∆x2

(
φn+1
i+1 − 2φn+1

i + φn+1
i−1

)
+ ∆t

(
VVV n

(ext),i + VVV n
(int),i

)
φn+1
i

φni =

{
1 +

∆t

m∆x2
+ ∆t

(
VVV n

(ext),i + VVV n
(int),i

)}
φn+1
i − ∆t

2m∆x2

(
φn+1
i+1 + φn+1

i−1

)
Due to the nature of the diffusion equation, one has to normalize the wavefunction after

every iteration to prevent the system from simply diffusing out. BEFD and CNFD involve

inverting a matrix that is determined by the size of the simulation grid. Alternatively we

can utilize the QLG scheme presented in Section [3.4] with a modified collision operator, ĈIT,

to perform IT integration.

ĈIT = Û =
Cos(π

4
+ 1

c
V (x, t)

√
2

 1 1

1 1


c1D = 8, c2D = 16, c3D = 24

(5.2)

Not surprisingly ĈIT is no longer unitary, this has been noted by Succi and his collaborators29,

after all we are trying to model the diffusion equation which does not preserve the norm of a

system. As such this particular IT scheme would not be applicable on a quantum computer,

but the initial condition it generates can still serve its purpose on any system (classical or
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quantum). As mentioned previously, we resolve the non-unitary aspect by normalizing the

wavefunction after every collision step with the normalized density N on a domain Ω defined

as

N(ψ) =

∫
Ω

|ψ|2d~x (5.3)

ĈIT when used in the the collide-stream sequence of eq. [3.56 recovers our dimensionless form

of the diffusion equation

ψ(x, t+ ∆t) =
{

1− 8ε2V (x, t) + ε2∇2 +O(ε4)
}
ψ(x, t) (5.4)

The IT algorithm consists of 5 steps:

1. initialize the wavefunction, ψ(x, t)

2. encode the wavefunction into a qubit pair, (q1, q2)

3. apply the collide-stream sequence in eq. [3.56] using Ĉ = ĈIT

4. normalize the qubits after every collision

5. update the wavefunction, ψ(x, t) = q1 + q2

5.2 1D SHO

We first consider the IT integration of the 1D simple quantum harmonic oscillator

(SHO) to ensure that the algorithm can correctly recover the analytically known ground
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state solutions presented in Section [4.1]. For the initial wave function we consider two

cases: first the analytic solution itself (to verify that the IT algorithm does not introduce

spurious deviations), and a second case where the wavefunction is a constant horizontal line.

We consider a domain Ω = [−500, 500] with ∆x = 1√
2
. This choice of ∆x is so that we may

recover the 1/2 term in front of the ∇2 operator. We take the usual harmonic potential,

Vext =
1

2
m(ωx)2 =

1

2
kx2

k = 1/Ω

(5.5)

In Fig. [5.1a] we plot the results from our IT-QLG algorithm for the analytic initial initial

condition. The profiles overlap rather well, with the respective error shown in [5.1b]. IT

methods are rather robust in the sense that one can choose arbitrary initial conditions and

often end up with the same ground state solution. In particular, for our second case we chose

ψ = constant as our initial condition. The imaginary QLG algorithm recovers the analytic

solution with a similar error range, Fig. [5.1c - d]. Interestingly, it is possible to recover the

first excited state of the SHO when taking an initial condition with two peaks of the same

amplitude.

5.3 1D NLS

We next consider the 1D NLS problem presented in Chapter [3]. We intend to compare

our result with that of Succi29 as well as with the results from the backward-Euler finite-
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FIG. 5.1: (a) IT-QLG testing stability over 4× 105 iterations. Ω = [−500, 500], ∆x = 1√
2
, k = 1

Ω2 .

(b) Error = |ψanalytic − ψIT |. Comparing the analytic ground state for the SHO and the IT-QLG
algorithm result. (c) IT-QLG ground state solution after 3.5× 103 iterations, same parameters as
in Fig.[5.1a]. (d) Error = |ψanalytic − ψIT |.
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difference (BEFD) method. In order to model the same system we use the following potential

in our collision operator

V (x, t) = Vext(x) + Vint(x, t) =
1

2
m(ωx)2 + β|ψ(x, t)|2 (5.6)

Where β once again is ±1 depending on whether we are working with bright or dark solitons.

For our initial condition we take a Gaussian profile

ψ(x, 0) =
(
2π∆2

0

)1/4
e
− (x−x0)2

4∆2
0 (5.7)

Using the same parameters as in Succi et al.29, ∆0 = 16, ω = 1
128

, and m = 1/8 we recover

their results for the case β = 1 which are illustrated in fig. [5.2]. The BEFD method requires

one to perform matrix inversion whereas QLG is only comprised of matrix multiplication.

This different is very significant when it comes to computation time, especially in higher

dimensions. An important note is that m 6= 1 in this case, we accommodate this by simply

rescaling the system. That is we simply change c in eq. [5.2], c→ c
m

Next we consider the 1D NLS with no external potential and a β < 0 to recover a

bright-soliton stationary state. For an initial real wave function, we readily obtain a steady-

state soliton from the IT QLG shown in Fig. [5.3a]. If the initial wave function has a

small complex phase then invariably our IT-QLG algorithm will converge to a purely real

wavefunction (soliton) solution. However, if the complex phase is sufficiently large one can

recover an additional soliton, akin to the first excited state. It is interesting to note that
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FIG. 5.2: (a) Matching Succi’s result for the 1D NLS equation. Ω = [−150, 150], ∆x = 1
2 , ∆0 = 16,

ω = 1
128 , m = 1/8 and β = +1. (b) Difference between the BEFD (∆x = 0.1) converged value versus

the QLG-IT algorithm, Error = |ψBEFD − ψIT |.

since we do not perform any matrix inversions, like many IT algorithms have to do, we have

no difficulty with complex wavefunctions as our initial condition.

To test the accuracy of our IT-QLG non-unitary algorithm, we have used the resulting

initial condition solution in the unitary time-evolving QLG that solves the 1D NLS. We

indeed have verified that the IT initial solution is invariant under the unitary time-evolving

QLG, and in Fig. [5.3b], we plot the energy integral and find that it is indeed constant to

good accuracy.

FIG. 5.3: (a) Stationary bright-soliton solutions for the 1D NLS. Ω = [−500, 500], β = −1,
∆x = 1. Here, ψ0 is purely real producing a single soliton and ψ10 has a complex phase producing
two solitons. (b) Energy of the stationary solutions when substituted into the time-evolving unitary
QLG algorithm.

For the case of β = +1, it is difficult to get an initial steady-state that is not simply the



79

asymptote of the BEC itself. Thus we introduce a very small external potential of the form

Vext(x) =
α

Cosh(x− x0)
(5.8)

in order to generate the dark-soliton solutions. α is just an amplitude parameter for the

potential and is what influences the depth of the dark-soliton. A dark-soliton solution is

shown in Fig. [5.4a]. As with the bright soliton we have substituted the IT result into

our time-evolving unitary QLG algorithm and have verified that the solution is indeed a

steady state. It should be noted that in the unitary time-evolving QLG algorithm one must

include the external potential that was used in the IT method. The dark soliton is indeed a

steady-state solution and the energy integral, plotted in [5.4b], is shown to be a constant.

FIG. 5.4: (a) Stationary dark-soliton solution for the 1D NLS. Ω = [−500, 500], β = +1, ∆x = 1,
α = 0.1. (b) Energy stability of the stationary solution when substituted into the time-evolving
QLG algorithm for 5× 104 time steps.



80

CHAPTER 6

Road Forward

6.1 Fourier Operator Splitting

Recall in section [3.3] when deriving Ĉrel we took the composition of two unitary opera-

tors, which approximated the kinetic, ∇2, and potential, V (x, t), operators of the Hamilto-

nian as commuting when they actually are not.

H = T + V

ψ(x, t+ ∆t) = e−i∆tHψ(x, t)

e−i∆tH 6= e−i∆tT e−i∆tV

(6.1)
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There is indeed a better way to approach this dilemma via the Suzuki-Trotter decomposition,

an operator splitting technique presented by Barenghi in a review30.

e−i∆tH ≈ e−i∆t
V
2 e−i∆tT e−i∆t

V
2

ψ(x, t+ ∆t) = e−
i∆tV

2 F−1
{
e−i∆tk

2 · F
[
e−

i∆tV
2 ψ(x, t)

]} (6.2)

In eq. [6.2] F and F−1 are the Fourier and the inverse Fourier transform respectively.

Thus, no longer are we using streaming operator Ŝ to recover the kinetic term through finite

difference, but instead we perform a Fourier transform and then its inverse. Furthermore

our potential is applied via the collision operator Ĉ rather than the exponential e−i∆tV . The

complete sequence of events in QLG for one time step becomes

 q1(x, t+ ∆t)

q2(x, t+ ∆t)

 = ĈF−1

e−i∆tk
2 · F

Ĉ
 q1(x, t)

q2(x, t)





c = 2

(6.3)

In eq. [6.3] c = 2 because we apply the collision operator twice. Furthermore unlike pre-

viously where we only specified ∆x and the diffusion ordering was automatically respected

assuming we were in the correct parameter regime, in this scheme we must specify both ∆x

and ∆t and ensure the our choice preserves the diffusion ordering. An important remark is

that using Fourier transforms limits us to periodic boundary conditions due to the nature

of FFT algorithms. While there are methods to use non-periodic boundary conditions with

Fourier transforms, they involve a lot of hoops to jump through that become impractical
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when dealing with very large grids in 3D. We will spare the reader the successful Simple

Harmonic Oscillator results and instead in fig. [6.1] present a successful simulation of bright

soliton-soliton collision using the method in eq. [6.2]. While the Fourier transform can

FIG. 6.1: Bright-soliton collision using the QLG sequence presented in eq. [6.2]. Simulation
performed on a grid of length L = 4096 with ∆x = ∆t = 1, and velocity β = 0.06875 with the left
most soliton moving to the right and right soliton to the left.

be a very non-local step in classical physics, in quantum computing the quantum Fourier

transform scales beautifully with increasing lattice size and is an ideal unitary operator to

introduce. Indeed, it is known that factoring a large number into its 2 (also large) prime

number constituents is an exponentially hard problem in classical algorithms but it has been

shown by Shor that the factorization scales only algebraically with the use of quantum en-

tanglement. Moreover, behind this exponential speed was Shor’s use of the quantum Fourier

transform. This also leads to the subject of quantum cryptography. Naturally a future goal

that is underway is extending the approach in eq. [6.3] to 3D and using higher order operator

decompositions so as to model more complex systems.
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6.2 Spin-1 Interaction

A future goal is to model the spin-1 interaction in the GPE that is expressed in the

following set of coupled equations

i∂tψ(m=1) = (−∇2 + Vext)ψ1 + (c0N − µ+ c1Fz)ψ1 +
c1√

2
F+ψ0

i∂tψ(m=0) = (−∇2 + Vext)ψ0 + (c0N − µ)ψ0 +
c1√

2
F+ψ1 +

c1√
2
F−ψ−1

i∂tψ(m=−1) = (−∇2 + Vext)ψ−1 + (c0N − µ− c1Fz)ψ−1 +
c1√

2
F−ψ0

(6.4)

N =
1∑

m=−1

|ψm|2

Fz = |ψ1|2 − |ψ−1|2

F+ = (ψ∗1ψ0 + ψ∗0ψ−1)

F− = F ∗+

(6.5)

F is the spin density vector, ~F (r) = ψ† ~fψ and ~f is the spin-1 matrix vector. N is the

total density of the system and c0 is our standard g parameter presented in Appendix [C],

while c1 is the spin interaction strength. The spin-1 Zeeman manifold is a vector system

similar to that of the vector solitons presented in section [4.3] but there are some important

differences. For our vector soliton system with two coupled equations, we can effectively
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write our collision operator as a 4× 4 matrix acting on two qubit pairs



ĈQ1

11 ĈQ1

12 0 0

ĈQ1

21 ĈQ1

22 0 0

0 0 ĈQ2

11 ĈQ2

12

0 0 ĈQ2

21 ĈQ2

22





q11

q21

q12

q22


(6.6)

Unlike in eq. [6.6] where the system is diagonal, the spin-1 system is not due to the presence

of mixed terms. Our first attempt at a collision operator was an approximation that was

unitary only to O(ε2), similar to that of our algorithm. Because we have 3 equations, we

require 3 qubit pairs and a 6× 6 operator for the system

Ĉspin-1 =
1
√

2



1− ε(G0 + c1Fz) −i(1 + ε(G0 + c1Fz)) −εc2F− −iεc2F− 0 0

−i(1 + ε(G0 + c1Fz)) 1− ε(G0 + c1Fz) −iεc2F− −εc2F− 0 0

−εc2F+ −iεc2F+ 1− εG0 −i(1− εG0) −εc2F− −iεc2F−

−iεc2F+ −εc2F+ −i(1− εG0) 1− εG0 −iεc2F− −εc2F−

0 0 −εc2F+ −iεc2F+ 1− ε(G0 − c1Fz) −i(1 + ε(G0 − c1Fz))

0 0 −iεc2F+ −εc2F+ −i(1 + ε(G0 − c1Fz)) 1− ε(G0 − c1Fz)


(6.7)

G0 = c0N − µ

c2 = c1/
√

2

CC† = I6, 2nd order in ε

(6.8)

Recently Yepez31 has determined the collision operator accurate to all orders for a spin-1

GP system, so future simulations are in order.
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CHAPTER 7

Conclusion

In this dissertation we have presented the most recent QLG algorithm that is a direct

upgrade to its predecessor, which is capable of modeling various systems in the weak in-

teraction regime. Specifically we presented results for the GP system, modeling a neutral

Bose-Gas where only nearest-neighbor interactions play a role. We have successfully modeled

the GPE in 1D and 3D, in each case capturing the expected physical behavior. The unitary

nature of QLG leads to the unconditional conservation of density and energy of a quantum

system and allows its implementation on both quantum and classical computers. Further-

more the algorithm is extremely scalable as shown in figures [7.1] and [7.2], able to take

full advantage of super-computers. QLG is further compatible with the latest implementa-

tions both in hardware and software. The code can use MPI, OpenMP thread technology

and graphic accelerators (Cuda, OpenCL), all simultaneously or any combination of that

delivers the best performance.
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FIG. 7.1: Testing strong scalability of a prototype spin-1 QLG algorithm on the Argonne’s super-
computer Mira.

FIG. 7.2: Testing weak scalability of a prototype spin-1 QLG algorithm on the Argonne’s super-
computer Mira.
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We have also presented a map forward for future work with some preliminary results

for the Fourier operator splitting method. While this places restrictions on the boundary

conditions, there are other more sophisticated streaming algorithms that can also be em-

ployed which would allow us to use non-periodic boundary conditions. Due to the diffusion

ordering present in the QLG algorithm one of the biggest challenges is extending the method

to incorporate strong interactions such as a coulomb interaction present in a plasma for ex-

ample. We have been able to broaden the parameter range of QLG with the non-relativistic

collision operator and future works will focus on taking this even further.
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APPENDIX A

BEC Phase State Derivation

Below is a derivation of the BEC phase state. We begin with the Bose-Einstein distri-

bution function for bosonic matter,

f(E) =
1

e(E − µ)/kBT − 1
(A.1)

where E is the energy, kB is the Boltzman’s constant (1.38 × 1023 joule/K), and µ is the

chemical potential, or energy required to add/remove a particle into/from the ensemble.

The distribution function is so called because it tells us the distribution of particles across

possible states as a function of energy. We consider an ideal, neutral gas of bosons confined

in some volume V that obeys the above distribution function. For simplicity we also assume

a continuous energy spectrum, thus a large number of available energy levels for particles to

occupy. We will later see that this simplification doesn not properly account for particles in

the ground state but is sufficient for our sought after result. The number of particles with

energy E can be described by

N(E) = g(E)f(E) (A.2)
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where g(E) is the density of states, a measure of degeneracy corresponding to a particular

energy, that is the number of states between energies E and E + dE. It is expressed as

g(E) =
2π(2m)3/2V

h3
E

1/2 (A.3)

V is the physical volume of our gas, m is the mass and h is Planck’s constant (6.626×1034 Js).

Substituting equations (A.1 and A.3) into A.2 we can express the total number of particles

as

N =
2π(2m)3/2V

h3

∫ ∞
0

E1/2

e(E − µ)/kBT − 1
dE (A.4)

The above integral is challenging but fortunately falls into a known class of integrals with a

solution. It can be expressed in a more general form as a product of the Gamma32 function,

Γ(α), and the polylogarithm33 function, Lin(z) (which coincides with the Riemann-zeta

function when z = 1). ∫ ∞
0

xα

ex/z − 1
dx = Γ(α + 1)Liα+1(z) (A.5)

Γ(x) =

∫ ∞
0

tx−1etdt (A.6)

Lin(z) =
∞∑
p=1

zp

(p+ c)n
(A.7)

Matching the coefficients of eq. [A.5] with A.4 we have α = 1/2, x = E/kBT , z = eµ/kBT , c = 0,

and Γ(3/2) =
√
π/2. Upon evaluation our expression for the number of particles N reduces to

N =
(2πmkBT )3/2V

h3
Li3/2(z) (A.8)

Before we proceed, there are some important physical observations that we need to consider

that will allow us to place limits on z = eµ/kBT . In order for our distribution function A.1 to
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represent reality f(E) ≥ 0, otherwise we would have a negative number of particles. This

requirement places a restriction that µ ≤ 0. This in turn places an easy to see limit on z,

0 < z ≤ 1. Below we plot the polylogarithm function with our set of parameters in FIG.

[A.1]. Of note is the maximum value of Li3/2(1) = 2.6123. Our main result is obtained

FIG. A.1: The polylogarithm function Lin(z) =
∞∑
p=1

zp

(p+c)n plotted for n = 3/2, c = 0 and 0 < z ≤ 1.

from eq. [A.8], because it seemingly places an upper bound on the number of particles the

distribution may contain. If we wish to add particles, we need to increase the density of

states, but this values has an upper bound.

Nc =
(2πmkBT )3/2V

h3
ζ3/2 = 2.6123

(2πmkBT )3/2V

h3
(A.9)

Where we’ve expressed the polylogarithmic function with its Zeta (ζ) function counterpart

for z = 1. We know that for bosons we can always add more particles, so what is this upper

bound then? It stems from the simplification we made in the beginning of using a continuous

energy spectra, our density of state g(E) ∝ E1/2, would imply that for the ground state of

E = 0, the density is also 0, which of course is not true. Thus our simplified approach did

not account for particles in the ground state, but what it has shown, is that there is an

upper limit of particles that can occupy the excited states. Additional particles added after

the critical number density is reached, as predicted by Einstein, will be added to the ground
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state of the system. Of note is that we may also lower the temperature of the system, which

would decrease Nc, and any particles occupying excited states would then be moved to the

ground state, this is the underlying principle used to create the BEC phase via cooling.
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APPENDIX B

Brief Derivation of Second

Quantization

Normally we deal with single-particle quantum mechanics, but if we want to treat more

than one particle we have to expand our Hilbert space H. Just like going from 1 to 2

dimensions we take R→ R⊗R, we similarly expand our Hilbert space by having H → H⊗H,

and Hn = H⊗ ...⊗H for n particles. We can right away write a two particle state as |1〉⊗|2〉

in H ⊗H.

〈r1, r2|(|1〉 ⊗ |2〉) = 〈r1|1〉〈r2|2〉 = φ(r2)φ(r1) (B.1)

A general 2-particle state in H2 can be written as

|ψ〉2 = α(|1〉 ⊗ |2〉) + (−1)pβ(|2〉 ⊗ |1〉) (B.2)
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where p = 0 for bosons and p = 1 for fermions. From this general expression we can write

down the Slater determinant to represent an anti-symmetric wavefunction.

〈r1, r2|ψ〉f2 =
1√
2

(φ1(r1)φ2(r2)− φ2(r1)φ1(r2)) =
1√
2

 φ1(r1) φ1(r2)

φ2(r1) φ2(r2)

 (B.3)

Generalization to N particles is trivial and the subspace spanned by the anti-symmetric states

is called Fock’s space for fermions. The state indeces increase with the rows by convention

for writing the Slater determinant. For bosons, instead of taking the determinant, we take

the permanent which only has pluses and no minuses. For N particles the normalization

becomes ( 1√
N !

). An alternative representation for the Slater determinant is to write a state

with 1’s in positions where particles are present and 0’s where they are not.

|ψ〉fl,m = |0, ..., 0, 1︸︷︷︸
l

, 0, ..., 0, 1︸︷︷︸
m

, 0...〉 (B.4)

This is the occupation number representation for fermionic states. In expanding our Hilbert

space our goal is to be able to add as many particles as we want to our system. We can do

this using creation and annihilation operators acting on the vacuum state.

|0〉l,m = |0, ..., 0, 0︸︷︷︸
l

, 0, ..., 0, 0︸︷︷︸
m

, 0...〉

c†m|0〉 = |0, ..., 0, 1︸︷︷︸
m

, 0...〉

c†l c
†
m|0〉 = |0, ..., 0, 1︸︷︷︸

l

, 0, ..., 0, 1︸︷︷︸
m

, 0...〉 ≡ |ψ〉fl,m

c†mc
†
l |0〉 = −|0, ..., 0, 1︸︷︷︸

l

, 0, ..., 0, 1︸︷︷︸
m

, 0...〉 ≡ |ψ〉fm,l

(B.5)
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Here we have taken c†n to be the creation operator and conversely its conjugate cn is the

annihilation operator. From the last two equations above we get the anti-commutation

relations for fermions due to their anti-symmetry.

(c†mc
†
l + c†l c

†
m)|0〉 = 0

(c†mc
†
l + c†l c

†
m) = 0

{cl, cm} = 0

{c†l , c
†
m} = 0

{cl, c†m} = δlm

(B.6)

Similarly for bosons we have commutation relations since they are symmetric,

[cl, cm] = 0[
c†l , c

†
m

]
= 0[

cl, c
†
m

]
= δlm

(B.7)

We convert our one particle state from |α〉 to |α′〉 by the usual unitary transformation,

|α′〉 =
∑
α

|α〉〈α|α′〉

∑
α

|α〉〈α| = 1 (completness)

(B.8)
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The indices α correspond to quantum numbers that describe a particular state (ie. spin).

Our creation operator transforms similarly,

c†a′N+1
|a′1, a′2, ..., a′N〉 = |a′1, a′2, ..., a′N , a′N+1〉

=
∑
a

〈aN+1|a′N+1〉|a′1, a′2, ..., a′N , aN+1︸ ︷︷ ︸
not primed

〉

=
∑
a

〈aN+1|a′N+1〉c†aN+1
|a′1, a′2, ..., a′N〉

c†a′ =
∑
a

〈a|a′〉c†a

(B.9)

Knowing how our creation and annihilation operators transform allows us to represent our

state in the position or momentum basis. For example changing to the position basis,

φa(r) = 〈r|a〉

ψ†(r) =
∑
a

〈a|r〉c†a =
∑
a

φ∗a(r)c
†
a

(B.10)

ψ†(r) is a creation (or annihilation) field operator that creates (destroys) a particle at a point

r in space. Inversely this transformation is

c†a =

∫
d3r〈r|a〉ψ†(r) =

∫
d3rφa(r)ψ

†(r) (B.11)

As an example let’s consider the simple particle-number operator N .

N =
∑
a

c†aca

=

∫
d3rd3r′〈r|a〉〈a|r′〉ψ†(r)ψ(r′)

=

∫
d3rψ†(r)ψ(r) = ρ(r)

(B.12)
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Above we have used the completeness relation and the orthogonality of the position basis

〈r|r′〉 = δ(r − r′) to recover the last line with ρ as the particle-density operator. Consider a

single-particle position operator A′i that we’ll expand in terms of two bases α and β.

A′i =
∑
αβ

A′(ri)|α〉〈α||β〉〈β|

=
∑
αβ

A′αβ|α〉〈β|

A′αβ ≡ A′(ri)〈α|β〉

(B.13)

We want to extend this operation to N -particles, so we consider an N -body operator A

which is the sum of the single-particle operators A′i.

A =
N∑
i=1

A′i (B.14)

How does A affect a many-particle state?

A|α1, α2, ..., αN〉 = (|A′1α1, α2, ..., αN〉+ |α1, A
′
2α2, ..., αN〉+ ... + |α1, α2, ..., A

′
NαN〉) (B.15)
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Knowing that A′i =
∑

αβ A
′
αβ|α〉〈β| let’s guess that A = |α〉〈β| and substitute it in eq.

[B.15].

A|α1, α2, ..., αN〉 = (|α1〉〈β1|α1, α2, ..., αN〉+ |α1, |α2〉〈β2|α2, ..., αN〉+ ... + |α1, α2, ..., |αN〉〈βN |αN〉)

=
N∑
i=1

〈βi|αi〉|α1, α2, ..., αN〉

=
N∑
i=1

δβiαi |α1, α2, ..., αN〉

= c†aj

N∑
i=1

δβiαi(±1)i−1|α1, α2, ...(no αj)..., αN〉

A|α1, α2, ..., αN〉 = c†acβ|α1, α2, ..., αN〉

(B.16)

We get at the above final result given that

cβj |α1, α2, ..., αN〉 =
N∑
i=1

δβiαi |α1, α2, ...(no αj)..., αN〉 (B.17)

The appearance of (±1)i−1 in eq. [B.16] when extracting the creation operator is dependent

on whether we’re dealing with bosons or fermions. With our guess we find that A can be

written simply in terms of our creation and annihilation operators.

A =
∑
αβ

A′αβc
†
αcβ (B.18)

Our single-particle non-interacting Hamiltonian H ′ with an external potential V ′ is

H ′ =
p2

2m
+ V ′(r) (B.19)
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Written in the position basis H ′ is

〈r|H ′|r′〉 = − ~2

2m
∇2δ(r − r′) + V ′(r)δ(r − r′) (B.20)

Applying our second-quantization result in eq. [B.18] directly to the single-particle non-

interacting Hamiltonian H ′ we have,

H =

∫
d3rd3r′〈r|H ′|r′〉ψ†(r)ψ(r′)

H0 =

∫
d3rψ†(r)(− ~2

2m
∇2 + V ′(r))ψ(r)H0 =

∫
d3rψ†(r)(− ~2

2m
∇2 + V ′(r))ψ(r)H0 =

∫
d3rψ†(r)(− ~2

2m
∇2 + V ′(r))ψ(r)

(B.21)

The above result recovers the first term on the right hand side of eq. [2.2]. We next consider

second quantization of the inter-particle interaction term. For this we need an operator that

acts on two particles at the same time. First let’s consider a general two-body operator.

A
(2)
ij =

∑
α,α′,β,β′

|α〉|α′〉〈α|〈α′|A(2)
ij |β〉|β′〉〈β|〈β′|

A
(2)
ij =

∑
α,α′,β,β′

|α〉|α′〉A(2)
α′,β,α,β′〈β|〈β′|

A
(2)
ij =

∑
α,α′,β,β′

A
(2)
α′,β,α,β′|α〉|α′〉〈β|〈β′|

(B.22)

α and β act on particle i while α′ and β′ act on particle j. The operator for the whole system

is then

A =
1

2

∑
i 6=j

A
(2)
ij (B.23)
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We now make the same guess as before, that A
(2)
ij = |α〉|α′〉〈β|〈β′|. Acting with A on a state

and substituting this assumption we have,

A|α1α
′
1, α2α

′
2, ..., αNα

′
N〉 = (||α1〉|α′1〉〈β1|〈β′1|α1α

′
1, α2α

′
2, ..., αNα

′
N〉

+|α1α
′
1, |α2〉|α′2〉〈β2|〈β′2|α2α

′
2, ..., αNα

′
N〉

+... + |α1α
′
1, α2α

′
2, ..., |αN〉|α′N〉〈βN |〈β′N |αNα′N〉)

=
N∑
i 6=j

〈β′j|αi〉〈βi|α′j〉|α1α
′
1, α2α

′
2, ..., αNα

′
N〉

= c†αkc
†
α′k

N∑
i 6=j

δβ′jαkδβiα′k(±1)i−1(±1j−2)|α1α
′
1, α2α

′
2, ...(no αkα

′
k)..., αNα

′
N〉

A|α1α
′
1, α2α

′
2, ..., αNα

′
N〉 = c†αc

†
α′cβcβ′|α1α

′
1, α2α

′
2, ..., αNα

′
N〉

(B.24)

The above result holds for when i < j and i > j, and in general (putting back the coefficient

we omitted in our assumption)

A =
1

2

∑
α,α′,β,β′

A
(2)
α′,β,α,β′c

†
αc
†
α′cβcβ′ (B.25)

We are now in a position to derive the second inter-particle interaction term of the second-

quantization Hamiltonian. The matrix elements of the interaction term in position space

are

V (2)(ri, rj) = V
(2)
r,r′,r′′,r′′′ = 〈r|〈r′|V (2)(ri, rj)|r′′〉|r′′′〉

= V (2)(r, r′)δ(r′ − r′′)δ(r − r′′′)
(B.26)
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Substituting the result in eq. [B.26] into eq. [B.25] we get

V =
1

2

∫
dv dv′ dv′′ dv′′′〈r|〈r′|V (2)(ri, rj)|r′′〉|r′′′〉ψ†(r)ψ†(r′)ψ(r′′)ψ(r′′′)

Vint =
1

2

∫
dv dv′ψ†(r)ψ†(r′)V (2)(r, r′)ψ(r′)ψ(r)Vint =

1

2

∫
dv dv′ψ†(r)ψ†(r′)V (2)(r, r′)ψ(r′)ψ(r)Vint =

1

2

∫
dv dv′ψ†(r)ψ†(r′)V (2)(r, r′)ψ(r′)ψ(r)

(B.27)

The above recovers the second portion of the right hand side of eq. [2.2]. This fully recovers

the second quantization Hamiltonian. Those interested in a more thorough look at this topic

can refer to most graduate quantum texts, for example34.
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APPENDIX C

Dimensionless GPE

We need to substitute the rescaled units in eq. [2.19] into eq. [2.1]. First looking at

how the time derivative changes,

∂tsψ(xs, ts) =
∂ψ

∂ts

∂ts
∂t

=
∂ψ

∂ts
∂t(

t

τ
) =

1

τ

∂ψ

∂ts
(C.1)

Next we consider the spatial derivative,

∂xsψ(xs, ts) =
∂ψ

∂xs

∂xs
∂x

=
∂ψ

∂xs
∂x(

x

L
) =

1

L

∂ψ

∂xs
∂2ψ(xs, ts)

∂x2
s

=
∂

∂xs

(
∂ψ(xs, ts)

∂xs

)
=

∂

∂xs

(
∂ψ

∂xs

∂xs
∂x

)
=

(
∂

∂xs

∂ψ

∂xs

)
∂xs
∂x

+

(
∂

∂xs

∂xs
∂x

)
∂ψ

∂xs

=

(
1

L

∂

∂xs

∂ψ

∂xs

)
∂x

(x
L

)
+

(
∂

∂xs

1

L

)
∂ψ

∂xs

=

(
1

L

∂

∂xs

∂ψ

∂xs

)(
1

L

)
+ 0

=
1

L2

∂2ψ

∂x2
s

(C.2)
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Substituting the results of eq. [C.1] and eq. [C.2] into eq. [2.1] we get,

i
~
τ
∂tsψ(xs, ts) =

(
− ~2

2m

1

L2
∇2
s +

mL2

2
ω2(~xs · ~xs) + g |ψ(xs, ts)|2

)
ψ(xs, ts) (C.3)

Multiplying eq. [C.3] by 1
mω2xs

and looking at the resulting units,

(
1

mω2xs

)
i
~
τ
∂tsψ =

1

mω2xs

{
− ~2

2m

1

L2
∇2
s +

mL2

2
ω2(~xs · ~xs) +

4π~2Na

m
|ψ|2

}
ψ

i

(
1

mω2xs

)
mL2

τ 2
∂tsψ =

1

mω2xs

{
− 1

2m

m2L4

τ 2

1

L2
∇2
s +

mL2

2
ω2(~xs · ~xs) +

m2L4

τ 2

L

mL3
|ψ|2

}
ψ

i

(
1

ω2xs

)
L2

τ 2
∂tsψ =

1

ω2xs

{
− L2

2τ 2
∇2
s +

L2

2
ω2(~xs · ~xs) +

(
L

τ

)2

|ψ|2
}
ψ

(C.4)

Taking ω = 1/τ as our characteristic time and xs = L2 as our characteristic length eq. [C.4]

reduces to,

i∂tsψ =

{
−1

2
∇2
s +

1

2
(~xs · ~xs) + |ψ|2

}
ψ (C.5)

In eq. [C.5] the coefficients are not shown, but rather the units of coefficients are shown to

be gone. Thus we have made a dimensionless problem that is easy to work with numerically.

Writing out eq. [C.5] with the coefficients in place, starting with the first equation in eq.

[C.4] and keeping τ = 1
ω

, xs = L2,

(
1

mω2xs

)
i
~
τ
∂tsψ =

1

mω2xs

{
− ~2

2m

1

L2
∇2
s +

mL2

2
ω2(~xs · ~xs) +

4π~2Na

m
|ψ|2

}
ψ

i

(
~

mωxs

)
∂tsψ =

{
− ~2

2m2ω2x2
s

∇2
s +

1

2
(~xs · ~xs) +

~
mω

4π~Na
mω

|ψ|2
}
ψ

(C.6)
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From eq. [C.6] we can recognize some terms,

ε =

(
~

mωxs

)
a0 =

√
~
mω

(C.7)

ε is a dimensionless constant and a0 is the characteristic length of the system, set by the

harmonic potential. With the definitions in eq. [C.7] we can rewrite eq. [C.6],

iε∂tsψ =

(
−ε

2

2
∇2
s +

1

2
(~xs · ~xs) +

(
4πa2

0Na
)
ε |ψ|2

)
ψ (C.8)

Choosing xs = ~
mω

results in ε = 1, and recovers our dimensionless GP equation with the

dimensionless factor g = (4πa2
0Na). Recall that N = # of partilces

volume
= N ′

L3 , with N ′ as just a

scalar number and now L = a0, is the characteristic length. Substituting this into eq. [C.8]

we recover

i∂tsψ =

(
−1

2
∇2
s +

1

2
(~xs · ~xs) +

(
4πa2

0N
′a

a3
0

)
|ψ|2

)
ψ

i∂tsψ =

(
−1

2
∇2
s +

1

2
(~xs · ~xs) +

(
4πN ′a

a0

)
|ψ|2

)
ψ

(C.9)

We will drop the prime in N ′ from this point forward and our final expression for g =
(

4πNa
a0

)
.

Our choice for ε is appropriate for a weak interaction regime where the scattering length is

much smaller than the characteristic length of the system (a� a0). If we did not choose all

trap frequencies to be equal then our external potential term simply would have been

Vext =
1

2
(x2 + (

ωy
ωx

)2y2 + (
ωz
ωx

)2z2) (C.10)

Typically in such a system the trapping frequency is strong along one direction (in this
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case the x-direction), and this frequency sets the characteristic length of the system. In

the absence of an external potential, the characteristic frequency is just the stationary state

frequency, ω = µ/~, where µ is the chemical potential of the system. The chemical potential

µ is the amount of energy required to add or remove a particle from the system and has

been omitted thus far for simplicity. It will be incorporated into the system in the form of

an additional potential as we shall later see.
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