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ABSTRACT PAGE 

Significant links exist between cryptography and computational learning theory. Cryptographic 
functions are the usual method of demonstrating significant intractability results in 
computational learning theory as they can demonstrate that certain problems are hard in a 
representation independent sense. On the other hand, hard learning problems have been used 
to create efficient cryptographic protocols such as authentication schemes, pseudo-random 
permutations and functions, and even public key encryption schemes. 

Learning theory I coding theory also impacts cryptography in that it enables cryptographic 
primitives to deal with the issues of noise or bias in their inputs. Several different constructions 
of "fuzzy" primitives exist, a fuzzy primitive being a primitive which functions correctly even in 
the presence of "noisy", or non-uniform inputs. Some examples of these primitives include 
error-correcting blockciphers, fuzzy identity based cryptosystems, fuzzy extractors and fuzzy 
sketches. Error correcting blockciphers combine both encryption and error correction in a 
single function which results in increased efficiency. Fuzzy identity based encryption allows the 
decryption of any ciphertext that was encrypted under a "close enough" identity. Fuzzy 
extractors and sketches are methods of reliably (re)-producing a uniformly random secret key 
given an imperfectly reproducible string from a biased source, through a public string that is 
called the "sketch". 

While hard learning problems have many qualities which make them useful in constructing 
cryptographic protocols, such as their inherent error tolerance and simple algebraic structure, it 
is often difficult to utilize them to construct very secure protocols due to assumptions they 
make on the learning algorithm. Due to these assumptions, the resulting protocols often do not 
have security against various types of "adaptive" adversaries. To help deal with this issue, we 
further examine the inter-relationships between cryptography and learning theory by 
introducing the concept of "adaptive learning". Adaptive learning is a rather weak form of 
learning in which the learner is not expected to closely approximate the concept function in its 
entirety, rather it is only expected to answer a query of the learner's choice about the target. 
Adaptive learning allows for a much weaker learner than in the standard model, while 
maintaining the the positive properties of many learning problems in the standard model, a fact 
which we feel makes problems that are hard to adaptively learn more useful than standard 
model learning problems in the design of cryptographic protocols. We argue that learning 
parity with noise is hard to do adaptively and use that assumption to construct a related key 
secure, efficient MAC as well as an efficient authentication scheme. In addition we examine 
the security properties of fuzzy sketches and extractors and demonstrate how these properties 
can be combined by using our related key secure MAC. We go on to demonstrate that our 
extractor can allow a form of related-key "hardening" for protocols in that, by affecting how the 
key for a primitive is stored it renders that protocol immune to related key attacks. 
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ADAPTIVE LEARNING AND CRYPTOGRAPHY 



Chapter 1 

Introduction 

1.1 Introduction 

Cryptography and computational learning theory may seem to be opposite disciplines, but 

many linkages exist between them. Two of these links are the existence/ utility of hard 

problems, and the use of learning theoretic ideas to help cryptographic protocols tolerate 

noisy, biased data. 

Hard Cryptographic Problems The standard method of showing that a cryptographic 

protocol is secure in a computational sense is building a reduction between a poly-time ma­

chine that breaks the security properties of the protocol, to one that solves some mathemati­

cal problem. As long as the problem is thought to be hard (require exponential computation) 

to solve, the cryptographic protocol is then considered to be secure. Many mathematical 

problems such as DDH, CDH, factoring, discrete logs and others have had their hardness 

extensively analyzed and have also found large use in cryptographic protocols. 

Problems that have found use in cryptography have several properties in common. First, 

cryptographic problems are not known to be NP-Complete or even NP-Hard. The hardness 

of a given cryptographic problem is assumed due to various arguments, or simply because a 

polynomial time algorithm solving the problem has yet to be discovered after years of effort. 

As such, it is important to find multiple different hard problems for use in cryptography 
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as it may be the case that a problem that is thought to be hard now, will be shown 

to be solvable later on. As a practical example of this consider earlier constructions of 

cryptographic protocols based off of the hardness of various knapsack problems. In addition, 

most commonly used "cryptographic" problems such as discrete log, factoring and others 

will be rendered insecure given the existence of quantum computing. 

Second, cryptographic problems are assumed hard under average case assumptions, as 

opposed to being hard only in the worst case, and these problems are thought to be hard 

under strong adaptive adversaries as well. A hard problem that is useful in cryptographic 

protocols must be thought to be hard on average, otherwise protocols based off of the 

problem may be insecure most of the time even while being "secure" for special cases. With 

regards to the adaptivity of the algorithm solving the problem, the abilities of the adversary 

which attempts to solve these hard problems reflects the strength of a real life adversary 

which tries to break the resulting protocol. As cryptographic protocols attempt to be secure 

for all imaginable attacks, this usually requires that the underlying cryptographic problem 

be secure against the strongest possible adversaries. 

Hard Problems in Computational Learning Theory Now compare a hard "cryp­

tographic" problem to a hard problem in computational learning theory. A "standard" 

construction of a learning problem is as follows: Begin with a class of concept functions C 

and a set of hypothesis functions 7t where all functions in each class are polynomial time. 

Let an algorithm receive "samples" of a concept function x, c(x) +e where xis sampled from 

some input distribution on the domain of c and e is sampled from some noise distribution. 

Can the algorithm output a function h <--- 7t that is a "close enough" approximation to c? 

A learning problem is considered hard if no algorithm is likely to produce an approxi­

mation in 7t for a selected function in C. A hardness result is representation independent, 

or a concept class C is hard to learn in a representation independent sense if there is no 

algorithm which can output a hypothesis function h of a selected function c for any class 

of functions H. 
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Hard learning theory problems have found use in cryptographic protocols. A learning 

problem that is hard to solve, even in a representation independent sense is a problem that 

is hard for any polynomial time algorithm to solve. As such, if a reduction exists between an 

adversary breaking the security of a protocol and an algorithm solving the learning problem, 

this functions as a proof of the security of the protocol. Moreover, learning problems often 

involve sets of functions C that are computationally simple to sample from I store and are 

algebraically simple to evaluate. As we show in our thesis, these properties of a learning 

problem have resulted in very efficient protocols which have error correcting as well as 

related key security properties. In addition, representation independent learning I coding 

theory problems are often known to be NP-Hard or NP-Complete in the worst case, and 

possess strong evidence of being hard even given the existence of quantum computation. 

Also while significant strides have been made in solving many "traditional" cryptographic 

problems such as factoring or DDH, research has been less successful in improving our 

ability to solve most hard learning problems. 

Though learning theoretic problems often have many qualities which make them attrac­

tive in protocol design, the learning theory I coding theory model makes several assump­

tions about the nature of the learning algorithm which renders a hard learning problem 

difficult to use in the design of very secure cryptographic protocols. One such assumption 

is that, due to the fact that learning problems are often known to be NP-Hard or even 

NP-Complete they are not necessarily hard on average. A class of functions C is considered 

hard to learn even if the learning algorithm can closely approximate most of the functions 

in C as long as one function is hard to approximate. This differs from commonly used cryp­

tographic problems, as those problems are thought to be hard on average, not just hard 

in the worst case. A much greater issue is that a hard learning problem usually tasks a 

"weak" adversary to perform a "large" task especially when compared to a cryptographic 

problem. Consider the difference between a hard learning problem, and a standard type 

of hard "cryptographic" problem, namely that of distinguishing a certain distribution from 

random. The learning problem is hard if an algorithm cannot closely approximate the dis-
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tribution given only random samples from that distribution, while the adversary tasked to 

solve the cryptographic problem is asked only to distinguish a distribution from random. 

It is not necessarily the case that an algorithm which distinguishes a distribution from ran­

dom, can closely approximate that distribution. 1 Moreover, algorithms tasked to solve 

hard cryptographic problems are often given large amounts of adaptivity when compare to 

hard learning problems. Consider the difference between a hard learning problem that gives 

the algorithm samples c(x) + e where x is randomly selected, and an algorithm tasked to 

break the security of a MAC, which is given the ability to adaptively requests MAC's of 

selected messages m. 

As a practical example of all these issues, consider the problem of learning parity func­

tions under noise. This is a hard learning problem that has had some success being utilized 

in cryptographic protocols. The problem is computationally easy to compute, instances of 

the problem are easy to sample, and it is algebraically simple (the whole problem involves 

nothing but linear functions). In order to do utilize the learning parity with noise prob­

lem in building cryptographic protocols however, the problem is argued to be hard under 

average case assumptions (uniform selection of the parity function, inputs and correctly 

weighted error vector) as well as being hard even in a representation independent sense, 

that is it is hard to come up with any algorithm that can closely approximate the parity 

function. Another learning problem that has been used to develop cryptographic protocols, 

the polynomial reconstruction problem has been treated in a similar way. While these prob­

lems have been used in cryptographic protocols such as McEliece, HB#, HB++ and others, 

those protocols are not secure against most types of "adaptive" adversarial attack. 

Biased, Noisy Data and Cryptography Most cryptographic protocols assume the 

existence of uniform, perfectly reproducible randomness. Practically though uniform ran­

domness is often hard to produce and can be especially hard to reproduce accurately. Due 

to this issue a great deal of research has been done in allowing cryptographic protocols 

1 Consider the insecure pseudorandom permutation EK(m) = liiE'r<(m) where E'r< is a secure blockcipher. 
EK(m) is not pseudorandom, but because E'r< is secure, EK will be hard to predict. 
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to function correctly in the presence of quasi-random and/or noisy data. Many different 

cryptographic protocols exist which allow for error tolerance in the various inputs / out-

puts. Error Correcting Blockciphers combine decryption and error correction into a single 

function, rather than requiring two separate functions to fulfill these needs. Identity Based 

Cryptosystems are cryptosystems in which any string can be considered a valid public key 

thus allowing everyone's "identity" (where this identity can be considered some piece of 

publicly known information) to serve as a public key. A Fuzzy Identity Based Cryptosystem 
• 

is a cryptosystem where a message encrypted using public key w can be decrypted using 

the private key associated with w' as long as w and w' are "close enough" identities. 

While a fuzzy IBE scheme deals with errors in a public key, a fuzzy sketch / extractor 

deals with errors in the private key. A fuzzy sketch is a method of storing and reliably 

reproducing a sample from a noisy, imperfectly random distribution by publishing a public 

string known as a sketch. This sketch can be said to store the value by functioning as a way 

of correcting errors in future inputs. The stored value can be recovered given the sketch and 

any value considered "close" to the original. A fuzzy extractor is a similar protocol that 

produces a random string based off of a imperfectly random sample, and can reconstruct 

this string based off of a published sketch and any sample that is close to the original. After 

the original work of [13], additional security properties of fuzzy extractors and sketches have 

been proposed: 

Reusability: A sketch is considered reusable if seeing multiple different sketches of 

the same value reveals little additional information about that value. 

Robustness: A sketch is considered robust if an adversary cannot produce a differ­

ent valid sketch of a secret w after seeing one sketch of w. 

Insider Secure: A fuzzy extractor is considered insider secure if an adversary capable 

of viewing multiple sketches of an adaptively perturbed secret, manipulating sketches 

the challenger receives while observing the resulting extracted key, cannot learn any 

information about the key extracted from an unmodified sketch unknown sketch. 
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Our Work We propose the idea of adaptive learning and examine its impact on cryptog­

raphy. Adaptive learning is a weaker form of learning than the standard learning model 

in that it imposes a much smaller requirement on the adversary. The adversary which at­

tempts to solve an adaptive learning problem need not be able to closely approximate the 

target function, it need only answer an adaptively chosen query about the target function. 

Problems which are hard to adaptively learn are closer to the traditional idea of a hard 

cryptographic problem due to this increased adaptivity and weaker information require­

ment. We feel this makes hard adaptive learning problems well suited for use in the design 

of cryptographic protocols. Problems which are hard to learn adaptively give us all the 

efficiency and simple structure of a normal learning problem, yet eliminate many of the 

difficulties inherent in turning a traditional learning problem into a cryptographic protocol 

secure against adaptive adversaries. 

We examine the learning parity with noise problem (LPN) and from it develop the 

strong bit finding (SBF) and strong hidden codeword finding (SHCF) problems as the 

adaptive versions of LPN. The strong bit finding problem tasks an adversary to find (c, x) 

for an adaptively chosen vector c and a randomly selected vector x while the strong hidden 

codeword finding problem, the pseudo-repetition of SBF, tasks an adversary to find a vector 

that is "close" to Cb* for an adaptively chosen vector b* and a random matrix C. From 

these problems we construct a highly efficient fully secure authentication protocol as well 

as an efficient, error correcting related key secure MAC. Going on, we examine the security 

properties of fuzzy sketches and extractors and utilize our related key secure MAC to 

construct a strongly robust fuzzy extractor, a fuzzy extractor which is both reusable, and 

(computationally) robust given multiple queries. We also show that this strongly robust 

fuzzy extractor implies a related key secure MAC, as well as many other primitives through a 

phenomenon that we call "related-key hardening", a technique for creating protocols which 

are related key secure out of a great many protocols which are not originally related key 

secure by changing how the keys for the protocols are stored. 
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1.2 Prior Work 

Learning Theory and Cryptography Cryptography and computational learning the­

ory are two separate areas of computer science which have had significant interactions 

in the past. Various intractability results in computational learning theory utilize cryp­

tographic constructions in their proofs [47, 37, 3]. In addition, several learning prob­

lems which are thought to be hard have been used to create cryptographic construc­

tions [1, 37, 39, 30, 31, 33]. The two most prominent learning problems used to create 

cryptographic protocols are the "learning parity with noise" problem and the "polynomial 

reconstruction problem". These problems are quite similar in nature. Both concern them­

selves with learning some target function J, given many samples of the form f(xi), where 

each sample is perturbed with some probability. For the LPN problem, the target function 

is linear, while in the polynomial reconstruction problem the target function is a polynomial 

of fixed degree. The learning parity with noise problem has been the basis of several authen­

tication protocols, [31, 33, 30] as well as a public key cryptosystem [45]. Similarly, the poly­

nomial reconstruction problem (PR) has been the basis of a public key encryption scheme as 

well as a commitment scheme and a blockcipher [39, 4]. Attacks on the various constructions 

and the underlying learning problems have been proposed. [40, 25, 16, 28, 12, 42]. 

The HB family of protocols, HB, HB+, and HB#, all based off of the LPN problem, 

do not require the use of cryptographic primitives and as such are very efficient, however 

they have not been shown to be secure against the same class of adversaries (namely, fully 

adaptive man in the middle adversaries). The original protocol, HB [31], is easily seen to 

be insecure against an adversary who can act as a reader as well as passively observing 

instances of the authentication protocol. HB+ [33] deals with this difficulty, however HB+ 

has been shown to be insecure against an adversary who can modify messages sent by a 

valid reader during an instance of the protocol, and who can see if that instance is accepted 

by the reader. HB# is secure in that model however it has recently been shown insecure 

against a fully adaptive man in the middle adversary [30, 10]. 
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Fuzzy Sketches Many methods to deal with error tolerance in cryptography have been 

proposed. The most predominant amongst these are methods dealing with biased or noisy 

keys whether public [50, 5, 24, 23] or private [8, 7, 32, 26, 48, 21]. 

Predominantly, work in tolerating errors in public keys has concerned itself with fuzzy 

identity based encryption schemes. Identity based encryption is an asymmetric encryption 

scheme where the public key is allowed to be any arbitrary string and as such each individual 

using such a scheme can have his email address, phone number, license plate number of some 

other piece of personal public information represent his public key. Fuzzy Identity Based 

Encryption allows a person with identity w and corresponding private key K to decrypt 

a message encrypted under identity w' as long as w and w' are close enough. Various 

constructions of Fuzzy IBE schemes have been created. 

Work in tolerating errors in private keys has predominantly concerned itself with the 

construction of secure sketches and fuzzy extractors. These protocols were first proposed 

in 2004 [22] by Dodis, Reyzin and Smith as a methodology for allowing a secret key to be 

derived and transmitted over an insecure channel, given only imperfectly reconstructible, 

biased data. The secure sketch is used as a method for storing a biased value in such 

a way that it can be recovered by any value close to the original. A fuzzy extractor is 

built from a secure sketch and an extractor, by using the extractor on the stored value 

to produce a random, consistent key. Several different constructions of secure sketches 

and extractors have been given [22, 18, 17], for varying choices of the underlying distance 

metric. Boyen shows that prior definitions are not adequate to cases in which the fuzzy 

secret is used multiple times, and defines the notion of a reusable sketch which addresses 

this problem [13]. 

When a fuzzy extractor is used for the purposes of authentication, there remains the 

possibility of an adversary modifying the sketch as it is sent across the communications 

channel, which could lead to a form of man-in-the-middle attack. To avoid this, Boyen et 

al. defined the notion of a robust sketch: a sketch for which no adversary can produce a valid 
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sketch after seeing one single valid sketch [14]. Boyen et al. made a keyless2 , statistically 

robust sketch in the random oracle model. Several subsequent improvements have been 

described in the literature using the same basic "one-time robustness" definition. Dodis 

et al. constructed a keyless, statistically robust sketch in the plain model [20]. Cramer et 

al. [19] and Kanukruthi and Reyzin [35] give robust sketches that lead to fuzzy extractors 

that produce relatively longer outputs for similar parameters; the former in the common 

random string model, the latter in the plain model. 

In addition to tolerating errors in keys, public and private, work has been done on 

the construction of error correcting blockciphers. Normal blockciphers are very sensitive 

to errors during decryption. If a single bit is flipped this can often result in a complete 

decryption failure. Thus it is often necessary to encode encrypted data through some error 

correcting code before tranmission. While these two steps can be handled independently 

several constructions of primitives have been given that combine these two properties into 

one function [44, 43]. 

Related Key Security Related-key attacks are attacks against constructions using a 

secret key (such as a blockcipher) in which an attacker attempts to exploit known or chosen 

relationships among keys to circumvent security properties. Several related-key attacks on 

primitives have been developed [38, 49, 46], including attacks on AES [29, 9, 52, 10]. While 

the realism of an adversary's ability to directly influence a secret key is questionable, the 

issue of related-key security has implications beyond such a setting. For instance, weak­

ness in a blockcipher's key scheduling algorithm may result in known likely relationships 

amongst round keys, which could lead to an attack against the cipher [6]. As another exam­

ple, blockcipher based hash functions are only proven secure in the ideal cipher model [11]; 

in this strong model, related-key security is implied [6]. Thus, the use of a real blockcipher 

for hashing that is not related-key secure is theoretically questionable: in many such con­

structions, the adversary's ability to choose the message to be hashed implies an ability to 

2 Note that if the sender and recipient of a secure sketch share a key, this would imply an authenticated 
channel. So, only keyless constructions, or constructions with very short keys, are of any interest. 
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launch related-key attacks on the underlying cipher. Indeed, a recent paper by Biryukov et 

al has made substantial progress on attacking AES-256 in Davies-Meyer mode via a strong 

related-key attack on AES [10]. Finally, there are settings in which related-key security 

has been put to good use: several papers make use of schemes with one-time related-key 

security properties in order to make fuzzy extractors robust against adversarial modifica­

tion [20, 19, 35]. 

Positive results concerning related-key security are few. Bellare and Kohno [6] develop 

a theoretical framework for defining related-key security, show that some notions of related­

key security are inherently impossible, and prove that an ideal cipher is related-key secure 

for a general class of relations. Lucks [41] shows how to achieve "partial" related-key se­

curity (meaning, that only part of the key can be varied), and also gave two proposed 

constructions of related-key secure pseudorandomness from novel, very strong number the­

oretic assumptions. 



Chapter 2 

Preliminaries 

2.1 Notation 

In this section, we list some general notations/definitions that will be used throughout the 

rest of the thesis. 

Matrices And Vectors In general, we will denote a vector in boldface, (i.e. x), and we 

will denote then i'th element of the vector x as Xi· We denote the set of all binary k-column 

by n-row matrices as M~. We denote individual matrices using bold capital letters. For a 

matrix X, we denote the i'th row of X as [x]i, the j'th colum of X as [x]J, and the (i,j)'th 

entry of X as [x]i. We denote the all O's and all 1 's vectors as 0 and 1 respectively. The 

inner product of x and y is denoted as (x, y). We denote the set of all binary vectors of 

length n and Hamming weight t as Hf. 

Sets and Random Variables We denote the power set of a set X as P(X). If an element 

xis uniformly selected from a set X we denote this as x <-- X. We use a similar notation if 

x is sampled from a random variable X. If a family of random variables X is parameterized 

by parameters x 1, x2, X3 we denote the family of variables as Xx 1 ,x2 ,x3 and a member of that 

family as Xx 1 ,x2 ,x3· 

12 
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Metric Space A metric space M is a set along with a distance function llx- Yll which 

has the following properties: 

1. Symmetric: llx- Yll = IIY- xll· 
2. Non-Negative: llx - Yll ~ 0 with equality iff x = y. 

3. Triangle Inequality: 1::/z, llx- Yll :"::: llx- zll +liz- Yll 

Codes A code Cis a subset of metric space M along with a tuple of algorithms (C, c-1, D). 

The minimum distance of a code Cis d = minvx,yEcl!x- Yll· For an efficient (n, k, t) code, 

C is the encoding function which takes elements of a domain of size 2k to C, c-1 is the 

decoding function which reverses this process, and D has the property that for all m E C, 

m' EM, if lim- m'll :"::: t then D(m') = m. 
A [n, k, t]linear code is a code where C is a k dimensional linear subspace of M. As 

such, C(x) = Cx where Cis ann by k matrix, and xis a k-bit vector. In addition to C, c-1 

and D a linear code C has a parity check matrix H of rank n- k, where 1::/c E C, He= 0. 

For a vector mE M we refer to Hm as the syndrome of m, or syn(m). 

Algorithms, Adversaries and Oracles When referring to an algorithm Alg run on 

input x, we denote this as Alg(x). We denote F(w; r) as the algorithm F running on wand 

utilizing randomness r. When the randomness is not important or clear from context we 

simply write F(w). We will denote adversaries by A, and the family of adversaries that use 

q queries and t time as Aq,t· If an adversary A uses an oracle 0 which takes input x, we 

denote this as A0 (x). We denote AL for random variable L, as the adversary which can 

freely sample the random variable L. 

Experiments If p is a predicate, then the notation Pr[x <---- S; y <---- T; ... : p(x, y, .. . )] 

denotes the probability that the predicate p will be true after the ordered sampling of 

elements x, y, ... where S and T can be random variables, sets, or algorithms running on 

specific inputs. 
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Negligible Functions Iff : N ----> IR is a function, we say that f is negligible if for all c, 

there is an no such that for all n > no,f(n) <;c. 

Statistical Difference and Entropy 

Definition 2.1.1 (Statistical Difference) The statistical difference of two random vari­

ables W, W' over a common domain D is defined as SD(W, W') where 

SD(W, W') = ~ L IPr[W = d] - Pr[W' = d] I 
'VdEV 

Definition 2.1.2 (Entropy) The entropy of a random variable W with pdf p is defined 

as: 
n 

H(W) =- LP(Xi) log2 p(xi) 
i=l 

Definition 2.1.3 (Min-Entropy) The min-entropy of a random variable W is defined as: 

Definition 2.1.4 (Average Conditional Min-Entropy) The average conditional min­

entropy W given W' is 

where lE denotes expectation. 
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Definition 2.1.5 ((d, m)-pair) Two distributions W, W' over M are called a (d, m)-pair 

if they have the property that the distance between any two points w E W, w' E W' is :::; d 

and H00 (W) ~ m and H00 (W') ~ m. 



Chapter 3 

Hard Learning Problems and 

Cryptography 

3.1 Introduction 

Computational learning theory concerns itself with the ability to learn "concepts", where a 

concept is typically represented as a function from a specific domain to a specific range. A 

typical computational learning theory problem can be posed as follows: 

Typical Learning Theory Problem Given a set of concept functions C and a set of 

representation functions 1t and some information about a selected concept c E C, output a 

representation h E 1t such that h agrees with c on a large enough number of inputs. 

The most common source of information about a given c E C are samples, where each 

sample is a tuple x, c(x) + E where xis sampled from some distribution on the domain of c 

and E is some random variable representing noise. An algorithm which learns a concept from 

such information can be said to be learning in the probably approximately correct or PAC 

model. A learner which learns a function c in the PAC model will with high probability 

over the distribution of samples output a representation in h from a class of hypotheses 

1t that is a good approximation for the target c E C. How well h approximates c and the 

probability of success for the learner are both considered parameters of the specific learning 

16 
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problem in question. As for the representation class 'H, it is usually assumed that 1t =C. 

In many cases though, it is often beneficial to allow C c 1t as a class C may be hard to learn 

given only representations in C but may be easy to learn if we allow additional possible 

representations. If we allow 7t to be all possible poly-time algorithms, then the learner is 

said to be representation-independent. 

Some hard learning problems have found uses in cryptographic protocols. The two 

most prominent examples of this are the learning parity with noise (LPN) and polynomial 

reconstruction (PR) problem. These problems task an algorithm to learn a selected linear 

(fixed degree polynomial) function after receiving several noisy samples from the function. 

Both problems are thought to be hard to learn, even in a representation-independent sense. 

The LPN problem has been used in the HB series of lightweight authenticated protocols as 

well as a circular secure encryption system, and the PR problem has been used to implement 

a public key encryption system, as well as a commitment scheme and stateful encryption 

scheme. 

Several difficulties exist in utilizing these, and other learning problems in the creation of 

cryptographic protocols. One is that these learning problems are not necessarily hard under 

average case assumptions over the concept class. A learning problem is hard if there is no 

algorithm that can approximate every concept. Thus, a concept class may be considered 

hard to learn, even if an algorithm exists to approximate a great many concepts in that 

class. Another difficulty is that a hard learning problem tasks an algorithm to approximate 

the function on all points, not just one, and by using a specific representation of that 

function. Yet, a cryptographic protocol may be broken if a function is approximated on one 

point, or even if it is possible to distinguish one function from another, no matter how this 

approximation / distinguishing is done. 

As a practical example of these issues, consider a MAC family. A MAC using a secret 

key K can be considered as a family of functions MACK, one for each key. Learning the 

family of MAC functions in a learning theoretic sense would entail being able to output a 

representation of a function MACK, for a random K that approximates MACK well over 
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the entire domain, in a sense implicitly recovering the key K for the MAC. On the other 

hand, a MAC is broken in a cryptographic sense if one can learn the correct output on 

any one given input for a randomly selected MAC function, regardless of how one learns 

this output. The use of the PR and LPN problems in cryptographic protocols have had 

to overcome these problems, usually by simply assuming average case hardness, and giving 

a reduction from the ability to approximate the function on one point, to being able to 

approximate the entire function (in a representation independent sense). 

Our Results We extend the ideas previously used to utilize hard learning problems in 

cryptography by introducing the idea of adaptive learning. Adaptive learning extends pre­

vious work on utilizing learning theory problems in cryptography by tasking an adversary to 

approximate the correct output of an adaptively chosen new input, given random samples 

of the concept function. It is immediately clear that some sets of functions are hard to 

adaptively learn. Consider a secure blockcipher EK as a family of functions indexed by the 

key. It is clear that this is a family of functions that are hard to adaptively learn on the 

average by the definition of a secure blockcipher, as for a randomly selected function EKi, 

even given many adaptively chosen, noise free samples EKi(m), all other inputs EKi(m*) 

are pseudorandom. We seek to demonstrate that more natural families of functions are 

hard to adaptively learn on average. In that direction, we argue that the learning parity 

with noise problem is a hard adaptive learning problem. We extend that assumption to 

define the "strong hidden codeword finding problem". We use the SHCF problem as the 

basis for constructions of a highly efficient, fully secure authentication protocol, and an 

error-correcting, efficient, related key secure MAC. 

3.2 LPN, RLD and BF Problems 

In this section we introduce some hard learning / coding theory problems. 
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Learning parity with noise Given a random matrix M and a vector z : z = Mx, it is 

easy to recover x using standard linear algebra. However, if z = Mx EB e where each bit of 

e is either 0 or 1, recovering x from z and M may be much harder. 

Let p be a fixed probability such that 0 < p < 1/2. Let Bp be the Bernoulli distribution 

that outputs 1 with probability p and 0 with probability (1- p). Let Lx,p be the oracle that 

when queried returns (a;, x) EB ei where a; is randomly selected from {0, 1 }k and ei +-- Bp-

Definition 3.2.1 (Learning parity with noise problem) Define ADVLPN(A, k,p) to be 

Pr[x +-- {0, 1}k;x1 +-- ALx,p: x' = x] 

We say that the (probability p) learning parity with noise problem is hard if the maximum 

advantage ADVLPN(A, k,p) over all A is negligible ink. 

Viewed as a learning problem, the learning parity with noise problem is the problem of 

learning a parity function, where C is the set of linear parity functions, and 'H =C. This is 

because of the fact that if A outputs a vector x' -I x, for a random vector b, (x', b) -I (x, b) 

with probability ! . As such, there is only one vector that will be able to closely approximate 

x over random inputs, namely x itself. 

The LPN problem allows the adversary to adaptively ask for more samples of the form 

(a;, x) EB ei. If we only allow the adversary to non-adaptively specify the number of samples 

from Lx,p it receives, the LPN problem becomes the random linear decoding problem for a 

code whose size is adaptively selected by the adversary. Let Bp,n be the distribution that 

outputs a n-bit vector, each bit being sampled independently from Bp. Let Cx,p,n be the 

distribution which, when sampled, outputs (C, z) where C +-- M~ and z = Cx EB e, where 

e +-- Bp,n· One can consider the distribution Cx,p,n as the distribution which selects a 

random [n, k, t] linear error correcting code, and gives a perturbed codeword Cx EB e where 

the expected weight of e is pn. 
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Definition 3.2.2 (Random linear decoding problem) Define ADVRLo(A, k,p) to be 

Pr[x ~ {0, 1}k;q ~ A(1k); (C,z) ~ Cx,p,q;x' ~ A(C,z): x' = x] 

We say that the (probability p) random linear decoding problem is hard if the maximum 

advantage ADVRLo(A, k,p) over all probabilistic polynomial-time A is negligible ink where 

q ~ A(1 k) is polynomial in k. 

It is worth noting that this problem is easy to solve when C and z are from the real 

numbers [15]. We will always assume all vectors and matrices are binary in this thesis. 

Definition 3.2.3 (Instance of the RLD problem) We define an instance of the RLD 

problem as one sample from (C,z) from Cx,p,q· 

Note this is an extension of the traditional problem of decoding random linear codes, 

in which q is not adversarially chosen. Its is known that the LPN /RLD problems are 

NP-Complete. It is thought that the LPN/ RLD problems are hard on average for all p 

non-negligibly less than ~· For p negligibly close to ~ the problem is trivial, in that almost 

any vector x satisfies the given equations. 

The RLD and LPN problems ask the adversary to output the unknown concept vector 

x itself. The "bit-finding" problem allows the adversary attempting to learn the parity 

function to be representation independent. 

Bit-finding problem The bit-finding problem (or BF problem) is a variant of the prob-

lem of decoding random linear codes, in which the adversary is not asked to reconstruct x, 

but is rather asked to find (x, b) for a randomly chosen b. 

Definition 3.2.4 (BF problem) Define ADVsF(A, k, p) to be 

1 
Pr[x ~ {0, 1}k;q ~ A(1k); (C,z) ~ Cx,p,q;b ~ {0,1}k;z ~ A(C,z, b): z = (x, b)]- 2 
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We say that the (probability p) bit-finding problem is hard if the maximum advantage 

ADVsF(A, k,p) over all probabilistic polynomial-time (ink) adversaries A where q is poly­

nomial in k, is negligible in k. 

If there is an adversary A capable of solving the bit-finding problem, consider the learning 

algorithm which on input C,z outputs a circuit C such that C(b) = A(C,z, b;r) for some 

random coins r. This is an algorithm which solves the representation independent version 

of the learning parity with noise problem. 

The bit-finding, or HB problem is also known to be equivalent to the learning parity with 

noise problem. [31] It is important to note that the fact that the adversary specifies how 

many samples he wishes to see in a non-adaptive fashion is not a limiting factor. If there is 

a non-adaptive adversary A and an adaptive adversary A' who does not get a sample from 

Cx,p,q, but rather is allowed to query Lx,p' A on 1k can output q such that the maximum 

running time of A' on problems of size k is less than q. This ensures that A can simulate 

Lx,p to A' and as such the advantages are the same. 

3.3 SBF Problem 

For the bit finding problem an adversary A is tasked to find the output of a randomly 

selected target function on a randomly selected point, given some noisy information about 

the target function. We can consider adversaries asked to solve an easier problem, namely 

given some noisy information about a randomly selected target function find the output of 

a selected input. 

This idea leads us to describe the SBF problem as follows: 

Definition 3.3.1 (Strong BF problem) For an adversary A and non-negligible a define 

ADVssF(A, a, k,p) to be IPr[WINssF(A, k,p)]- (1- p- a(k))l, where WINssF(A, k,p) is 

defined to be 

Pr[x (---- {0, 1 }k; q (---- A(1 k); (C, z) (---- Cx,p,qi (b* i= 0, z*) (---- A(C, z) : z* = (x, b*)!\ Vi b* i= [c]i] 
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We say that the (probability p) strong bit-finding problem is hard if there exists a 

non-negligible a such that the maximum advantage ADVssF(A, a, k, p) over all probabilistic 

polynomial-time (in k) adversaries A is negligible in k. 

Such an adversary is not solving the underlying learning theory problem in a representation­

independent sense as there is no guarantee that A can compute (x, b) for random b. This 

definition is a little bit unusual as we would hope to bound the success probability of the 

adversary to be negligibly close to !· As we will see in Section 3.5 this is impossible, so we 

bound the success probability to be non-negligibly less than 1- p which is sufficient for our 

purposes. 

3.4 SHCF problem 

With regards to the SBF and BF problems, we bound the adversary's success probability 

to be around ! due to the fact that an adversary which picks a bit at random will solve 

both the SBF and BF problems with probability equal to ! . Since we require that the 

security properties of most cryptographic protocols hold with all but negligible probability, 

we now deal with the repetition of the BF and SBF protocols, problems where we bound 

the adversary's success probability to be negligible. 

Let Mc,p,q,n for an-row by k-column matrix C be the distribution where each sample 

is a random k-row by q-column matrix A as well as a matrix Z where Z = CA EB E and 

where each column of E is an independent sample from Bp,n· We now define the hidden 

codeword finding problem as the problem of finding a vector that is "close enough" to the 

codeword of a randomly selected word. 

Definition 3.4.1 (Hidden codeword finding problem) Define ADVHcF(A, k, n,p, u) to 

be 

Pr[C <- M~; q <- A(lk); (A, Z) <- Mc,p,q,n; b <- {0, l}k; z <- A(A, Z, b): IICb- zll :<:; u] 
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We say that the hidden codeword finding problem is hard, if the maximum advantage 

ADV HCF for all probabilistic polynomial time adversaries is negligible in k. 

This problem can be seen as solving the "pseudo-repetition" of the BF problem, it being 

the "pseudo" -repetition because of the fact that the vectors [a]i are repeated for each vector 

[c]1 This problem is known to be equivalent to the LPN problem [30]. In a similar fashion 

to the BF problem, we can consider the pseudo-repetition of the SBF problem which we 

call the strong hidden codeword finding problem. 

Definition 3.4.2 (Strong hidden codeword finding problem) For an adversary A set 

ADVsHcF(A, k, n,p, u) to be 

Pr[C +-- M~; q +-- A(l k); (A, Z) +-- Mc,p,q,n; (b*z*) +-- A(A, Z) :Vi b* i- [a]i and IICb* -z* II :S u] 

We say that the strong hidden codeword finding problem is hard, if the maximum advan­

tage for all probabilistic polynomial time adversaries is negligible in k. 

Variants of the error distribution A variant of these problems is when Mc,p,q,n pro­

duces E, where the columns of E do not come from from Bp,q but rather are randomly 

selected from Hf for some t. Due to the Chernoff bound on the binomial distribution and 

the fact that that these problems are considered hard for all 0 < p ::; ~, we may simply pick 

p to be small enough such that with overwhelming probability the resulting vector is in Hf, 

and equivalently we can consider any error pattern vector from Hf to be a sample from Bp,n 

for sufficiently small p. Denoting the advantage of an adversary solving the HCF and SHCF 

problems where the columns of E are selected randomly from Hf as ADVHcFH (A, k, n, t, u) 

and ADVsHCFH(A, k, n, t, u) respectively this allows us to show that ADVHcFH(A, k, n, t, u) :S 

ADVHcF(A,k,n,p,u) and ADVsHCFH(A,k,n,t,u) :S ADVsHCF(A,k,n,p,u) for some p. Due 

to this, in the protocols we construct we will usually draw our error vectors randomly from 

the set Hf and not from the distribution Bp,n· This will allow us to utilize error correcting 
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codes in our protocol constructions which will eliminate false negatives and positives. Note 

however that the generator matrix for an error correcting code is usually non-random, while 

the matrix Cis uniformly random in the SHCF and HCF problem description. This leads 

to the definition of a "randomized" linear code: 

Definition 3.4.3 A [n, k, t] randomized linear code is generated by a matrix G = PCX 

where P is a random monomial matrix, X is a random invertible matrix and C is a generator 

matrix for a [n, k, d] linear code that can efficiently correct t < ~ errors. 

We assume that the SHCF problem is hard, even when Cis not uniformly random, but is 

rather the generator matrix of a randomized linear code, for some good choice of a matrices 

P, C, X. We feel that this is a safe assumption as it is weaker than the assumption made 

by McEliece and most other cryptosystems based off of coding theory. They assume that 

PCX is random even when G is public, while we only assume that G is indistinguishable 

from random when the adversary is only given samples Gb Ef) e. 

3.5 Hardness of the SHCF Problem 

In this section we discuss the hardness of the SHCF problem. While the hardness of the 

HCF problem is known from [30], the assumption that the SHCF problem is hard is a novel 

assumption. 

On an informal level, the reduction proving the hardness of the HCF problem in [30] 

works for any vector b, not just a randomly selected one. Due to the fact that the adversary 

cannot select b however, we cannot say that this suffices to show the hardness of the SHCF 

problem. 

We begin by giving a reduction in one direction from the SHCF to the SBF problem; 

specifically we show that if SBF is hard to solve then so is SHCF. This does not result in a 

complete proof for the hardness of SHCF, as the hardness of SBF is also an open question. 

We spend the rest of the section arguing for the hardness of SBF. Specifically, we begin by 

showing that SBF is hard to solve extremely well (that is, with probability near 1) by giving 
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a reduction between a strong adversary solving SBF and the LPN problem. Furthermore, 

we examine known methodologies for solving the LPN, RLD and bit-finding problems and 

show that these cannot be leveraged to attack the strong bit finding problem. Finally, we 

show that if the strong bit finding problem is in fact hard, it is hard on average. 

We begin by proving a reduction between the SHCF and SBF problems. 

Theorem 3.5.1 Let A be an adversary such that ADVsHcF(A, k, n,pn) is non-negligible in 

k. Then there exists an adversary A' such that WIN SBF (A', k, p) 2:: 1 - 2p + 2p2 + E1 for some 

non-negligible E
1

• 

Proof. Let A be an adversary and let t:(k) = ADVsHcF(A,k,n,pn) Let A' be an adversary 

that behaves as follows: 

On input 1n: 

1. Run A(1n) to obtain q. Return q' = Nq. 

On input C', z': 

1. Let a= 1. 

2. Pick a random invertible matrix REM~, let C~ be rows (a- 1)q through aq- 1 of C' . 

Let C" = C~R- 1 . 

3. Pick a random j <---- {1, ... , n}. 

4. For each i E {1, ... , n}, i =/:. j, pick a random bi. 

5. Construct Z where [zH for i =/:. j is (bi, [c"]1) E8 e~ where e~ is 1 with probability p, and where 

[z]j = z~, where z~ is bits (a- 1)q through aq- 1 of z'. 

6. Compute (b*, z*) <---- A(Z). 

7. For l -/(n)J trials, pick a random i =/:. j and count how many times (RTb*, bi) =/:. zi. 
8. If the count is greater than or equal to ,jn(5p/4- p2 /2), increment a. 

If a= N, return _1_, otherwise, go back to step 2. 

9. If the count is less than fo(5p/4- p2 /2), return (b*, zj). 

Effectively, A' creates up to N samples from Mc",p,q,n, each time for a new random 

matrix C". In each of these samples is an "unknown row" j: for all other rows, A' can 
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check the answer A gives. We sample the other rows to determine whether the probability 

of a random row is roughly good or bad. If it is good, we use the answer of A in the unknown 

row as our answer, otherwise, we try again. 

In a given trial, the answer A gives will have some fixed number of errors, all of which 

except the one in row j can be checked by A'. With probability E (a non-negligible proba­

bility), this number of errors is at most pn. Note that the simulated Z has the exact same 

distribution as A expects. Thus, we can imagine that the row j is chosen only after the 

adversary gives its answer (b*, z*). 

Let E be the probability that A' gives a good answer (with at most pn errors) for a 

random C and random x. There are two subcases: say EaR is the event that there are at 

most pn errors and the jth row is correct, and Eaw is the event that there are at most pn 

errors and the jth row is incorrect. Pr[EaR] 2: (1- p)E and Pr[Eaw] ::; pE. 

In either case, the probability that the count will be greater than ,fii(5p/4- p2 /2) is 

negligible. We view this count as counting the number of correct rows; we are sampling 

J{n) times and looking to see if we get at most (1 - 5p/4 + p2 /2}fo good rows. The 

probability that each row we sample is correct is 1 - V:~11 in the case of Eaw and 1 - rt=T 
in the case of EaR· 

If X is a random variable determined by counting successes on N biased coins, each of 

with is a success with probability P, then 

N(P-P1
)
2 

Pr(X ::; P' N) ::; e 2P 

Using this bound, we see that the probability of having a passing count given Eaw is 

at least 

and the probability of having a passing count given EaR is at least 
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y'n(~-~-bJ 
1- e 2(1-p-iSJ 

In both cases, the probability of not passing the test is negligible (the exponent is 

0( yn) with a negative coefficient for sufficiently large n and all p < 1/2). Thus, with 

N = ~ attempts, our probability of aborting is negligible. 
f 

So, we can expect that in some trial, we pass the sampling test and output the jth 

bit as our answer. But passing the test does not guarantee that the number of errors is 

:S pn. We can prove, however, that the probability of the test passing when there are more 

than 3pn/2 - p2 errors is negligible. In such a case, we use our bound on the cumulative 

distribution function of the binomial distribution, with vn samples, probability 3p/2- p2 

of a counted failure, and looking for P' = ?f - If - )n 1, we get that the probability is 

Pr[Test passed! ~ 3pnj2 errors] < e 3p-2p2 

y'n(p/4-p2 /2-1/v'n)2 

e 3p-2p2 

This probability is negligible in n for all p < 1/2. This accounts for all cases where 

the probability of a row other than the unknown row being wrong is at least 3p/2. In 

particular, this includes all cases where there are more than 3pn/2 errors altogether. So, 

we have established: 

1. The probability of eventually passing the sampling test is near 1. 

2. The probability of passing the sampling test with more than n(3p/2 - p2 ) errors is 

negligible. 

Thus, with all but negligible probability, we will output the unknown row in a round 

in which (b*, z*) has at most n(3p/2 - p2 ) errors. So the probability that the output of A' 

1 Not P' = f!J' - ~, since having exactly fo(5p/4 - p2 /2) errors does not pass the test 
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is correct is (1 - 3p/2)(1 - v) = 1 - 3p/2 + p2 - v which is greater than 1 - 7p/4 + 3p2 /2 

for all p < 1/2 and sufficiently large n. Thus, A' has a non-negligible advantage, at least 

f.
1 = p/4- p2 /2, over 1- 2p + 2p2

. 

D 

Theorem 3.5.1 demonstrates that if the success probability of any adversary who tries 

to solve the SBF problem can be bounded non-negligibly above 1- 2p + p2 , then the SHCF 

problem should be considered hard. We now give some arguments towards demonstrating 

the correctness of that upper bound for the SBF problem. We begin by giving a reduction 

proving that the SBF problem cannot be extremely easy to solve. 

Theorem 3.5.2 Let A be a probabilistic polynomial-time adversary such that 

WINsBF(A,k,p) = 1-v(k) where vis negligible. Then there exists A' such that 

ADVRLD(A', k,p) is non-negligible. 

Proof. We define the operation of A'. A' begins by sending 1 k to A and receiving q. A then 

outputs 2kq. Upon receiving one sample from Cx,p,2kq, (Ctotal, Ztotal), A' takes a random q 

rows of Ctatal, denotes that as C and denotes the corresponding rows of Ztotal as z. A' then 

randomly selects a k x k matrix R, a matrix C' : C'R = C and returns C', z to A. This 

is a valid sample from CRx,p,q because Cx EB e = z = (C'R)x EB e = C'(Rx) EB e. A will 

then return a pair b*, z* such that (b*, Rx) = z* with all but negligible probability. Since 

(b*,Rx) = (Rxfb* = xTRTb* = (b*fRx = (x,RTb*) we now have the inner product 

of a randomly selected vector, (as R was randomly selected), and x. A' then repeats this 

procedure with a new set of rows from Ctotal and re-runs A a total of 2k times. Note that 

Note that the probability that A returns even one answer that is incorrect is at most 2kv(k), 

which is negligible. 

The 2k vectors returned by A, b~ = Rfbi are k distinct random vectors such that with 

overwhelming probability Bx = z where [b]i = b~, and where the i'th bit of z is Zi. With 

overwhelming probability, some k of the [b]i will be linearly independent and A' can solve 

for x using Gaussian elimination. 
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Thus, ADVRLo(A', k,p) is near 1. D 

The previous theorem allows us to conclude that for all A, WINssF(A, k, p) :::; 1 - E 

for some non-negligible E. We would like to conclude that WINssF(A,k,p) :::; ~ + v for a 

negligible v(k) however we run into a difficulty based on the follow theorem of Blum et al.: 

Theorem 3.5.3 Let (C, z) be a sample from Cx,p,q· For all sets of indices i1 through i 8 , 

([c]i1 EB ... EB [c]i,, x) = Zi 1 EB, ... , E11Zi 8 with probability ~ + ~ (1 - 2p) 8
• 

Proof. See [12]. D 

Consider an adversary which takes two samples [c]i, Zi, [c]j, Zj and computes [c]i EB 

[c]j, Zi EB Zj as its answer. Based on Theorem 3.5.3 this will be right with probability 

1 - 2p + 2p2 which is non-negligibly greater than 1/2. This attack however, does not mean 

that the SBF problem should be considered "easy" , and this bound is sufficient for the 

reduction in Theorem 3.5.1 and our later protocols. 

We continue by arguing that there is no attack on SBF that does better than the 

above attack by examining a large class of known attacks on the learning parity with noise, 

random linear decoding, or bit finding problems. We find that the techniques utilized in 

these attacks is also the technique utilized in the BKW algorithm of Blum, Kalai and 

Wasserman, as well as many other algorithms for solving the LPN problem or decoding 

random linear codes. [25, 16, 28, 12, 42, 27] 

These algorithms attempt to find a small number vectors from the sample vectors ci 

such that a linear equation c1 EB c2 EB ... EB C 8 = c* exists, where c* is equal to a vector 

specified by the algorithm. With many independent (or pairwise-independent) equations 

being equal to the same c*, this can give us the correct value of a single inner product 

with high probability. The algorithms then use these vectors ci in some way to find x. 

For instance, the attack of [12] on the LPN problem attempts to create the canonical basis 

vectors using this process. To solve the SBF problem, we do not need to find a set of specific 

solutions c;, (ci, x,) we merely require the label for any one vector c;:. We now show that 
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this methodology is incapable of providing a poly-time attack on the strong bit-finding 

problem. 

Theorem 3.5.4 Let A receive q samples of the form a;, Zi = (a;, x) EB ei. The probability 

that :3c* such that two linear equations in the a; vectors of size s = O(polylog(k)) exist 

where ai1 EB a;2 EB, ... ,a;, = c* and~' EB ... EB ~' = c* is negligible. 
1 s' 

Proof. There are ~f= 1 (i) different equations of size up to s given q samples. As an 

upper bound to the probability, we assume that each equation produces a different value 

Cj. From [51] we can conclude that: 

where l = O(polylog(k)) as if l is not poly-logarithmic then q is exponential in k which 

makes A exponential in the security parameter. We note that each value produced by the 

different equations are pair-wise independent from other values by the uniform selection of 

ai. The probability that a pair of equations output the same value c* is 2-k as the vectors 

ai are randomly selected and there are s2218 such equations. Thus the probability that two 

equations exist that both equal a vector c* is less 2-k+0(2polylog(k)s). If s is logarithmic in 

k then this probability is negligible and so we are done. D 

What this shows is that if the adversary's plan of attack against the bit-finding problem 

is to gather "votes" for the value of (x, c), by finding equations of values that xor to c, and if 

the adversary has only polynomially many samples, then either c will have a short equation 

but very likely only one, or c will be the result of multiple equations, but all such equations 

will have more than polylogarithmic bi values involved. In the former case, Theorem 3.5.3 

shows that the adversary, with a single equation, has probability ~ + ~(1 - 2p)8 :<:; 1 + 

1(1 - 2p)2 of success. In the latter, each equation gives a negligible advantage over ~' so 

the adversary would need to examine exponentially many such colliding equations, an act 
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which is impossible for a polynomial-time adversary. This demonstrates that the known 

methodologies of gaining information about the unknown parity function are not insufficient 

to solve the SBF problem. 

Attacking SHCF directly We can extend this idea of finding linear equations to the 

SHCF problem, however given two samples Cii,Zi and a1,z1 the probability that JJC(<ii EB 

aj)- (zi EB Zj)JJ ~ u, given that JJCai- zill ~ u and JJCai- Zill ~ u is negligible for large 

enough nand t. As such, with regards to the SHCF problem we cannot gain any advantage 

through this methodology at all, much less amplify the advantage through finding multiple 

equations. 

Random self-reducibility In order to support the claim that the SBF problem is useful 

for cryptography, we need to justify that it is hard on average. Our arguments so far do not 

establish this, but we now show that the SBF problem has some self-reducibility properties 

which lend credence to the idea that the SBF problem is hard on average. These arguments 

are similar to those in [31]. 

Lemma 3.5.5 (Random self-reducibility) An instance C, z of the SBF problem can 

be transformed into a different random instance of the SBF problem, such that a correct 

solution to the resulting problem can translated back to a correct solution of the original. 

Proof. Given an instance C, z of the SBF problem we select a random invertible k x k 

matrix Rand a matrix C' such that C'R =C. We then select a random vector x' and cast 

C', z EB C'x' as the new problem instance. It is clear that this is a sample from CRxE!lx',p,q 

as z EB C'x' = (C'R)x EB e EB C'x' = C'(Rx) EB C'x' EB e = C'(Rx EB x') EB e. Any adversary 

solving SBF will return a pair b*, z* such that (b*, Rx EB x') = (b*, Rx) EB (b*, x'). As 

we know x', and (b*,R) = (x,RTb*) we can compute a correct solution to the original 

problem instance as long as the solution given to us is correct. 

D 
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It should be noted that this is not a random self reduction. The matrix R is invertible, 

which means C' is not perfectly random given C. 

Theorem 3.5.6 (Uniform hardness) Suppose A is a probabilistic polynomial-time ad­

versary such that Pr[WINssF(A, k, p) IC, z] > Po for some Po and a non-negligible fraction 

of possible C, z tuples. Then there exists a A' such that for every valid C, z 

Pr[WINssF(A, k,p)IC, z] >Po· 

Proof. Let A' be an adversary which receives an instance of the SBF problem, C, z where 

z = Cx EB e for some x and e. A' takes n other rows at random and sums them together, 

producing a new row of the matrix C'. The corresponding entry z~ is computed by adding 

together the corresponding n bits of z together. The noise rate is now set to be p' = !- -
!-(1- 2p)n+l. With non-negligible probability, we can assume that Pr[WINssF(A)IC'z] >Po 

Since the "random" instance of the problem utilizes the same secret x vector as the "real" 

instance, the solution provided by A is a solution for the instance given to A'. 0 

This does not show that the problem is hard on average, just that if it is hard for 

some small (but still non-negligible) fraction, it should be hard for almost all instances, an 

important fact for the use of this problem in cryptographic protocols. If SBF was hard only 

for some non-negligible fraction of instances and not for almost all instances, it may also be 

easy for some non-negligible fraction of instances, which could have an impact on its utility 

in a cryptographic construction. 

An open question is whether or not the SBF problem can be reduced to another known 

problem, particularly, whether or not SBF is equivalent to BF or LPN. 

3.5.1 Explicit Parameter Selection 

We now give some possible bounds on the security gained from selection of the parameters 

k, n, u and p of the SHCF problem. By Theorem 3.5.1 we know that solving SHCF must 

at least as hard as solving SBF once for a similar parameter selection so we first give 

some possible security bounds on the SHCF problem by relating SHCF to solving the 
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SBF problem one or more times. Though this a strong assumption we feel it is not an 

unreasonable one as the only known methodology we know of to attack the SHCF problem 

is through solving SBF, SHCF can be seen as an almost independent repetition of n versions 

of the SBF problem, and finally as we've said previously, Theorem 3.5.1 does show that 

SHCF is at least as hard as SBF. 

We begin with a "worst case" scenario in which the space and time complexity necessary 

to solve SHCF is the same as the complexities necessary to solve SBF for similar parameter 

choices. In this case to bound the complexity necessary to solve the SHCF problem in the 

"worst" case we need to bound the query complexity necessary to solve the SBF problem. 

We only know one method of attacking the SBF problem, namely the methodology discussed 

in Theorem 3.5.4 which takes many equations of small size in the c vectors that xor to the 

same value then takes a majority vote amongst the corresponding bits zi. We can estimate 

the number of queries necessary to get enough of such equations in the sample vectors with 

high probability. 

We begin by noting that an adversary obtaining only 2 such "good" equations will 

cannot get a greater advantage than an adversary only finding one equation. Given only two 

equations that xor to a fixed vector b* and their corresponding bits b1 and b2, we maximize 

our success probability if we output b1 if b1 = b2, and output a random bit b otherwise. 

This algorithm's probability of success, when each bit b is correct with probability a, is 

2(a)(l- a)!+ a 2 =a which is the probability of success if we just output b1 and ignore b2 

entirely. As such we need to find at least 3 equations in the c vectors that xor to the same 

value if this methodology even has a chance to work in solving the SBF problem. Let q, 

the number of Ci vectors be a power of 2 so q = 21 for some l. For the i'th equation let Zi 

be the corresponding bit. 

In general, we can consider the algorithm which searches for a equations of size s or 

smaller that xor to the same value, then conducts a majority vote on the corresponding 

xor'ed bits. According to Theorem 3.5.4 there are approximately 218 equations of size s 

or less given 21 queries. For any given set of a equations where each equation contains at 



34 

least one sample not in any other equation, the probability that they all xor to the same 

value is 2-(a-l)k. The probability of finding a equations of size s or less that all xor to 

the same value is approximately 2lsa-(a-I)k. So for l approximately a;;} k we can expect to 

find the needed equations. Note that as a increase a~l grows closer to 1. Due to this fact 

we can consider an adversary who searches for equations of size O(log(k)) to only require 
k 

approximately 2 1og(k) equations. While such an adversary reduces the number of queries 

it needs, the adversary pays for it in in the increased computation time necessary to find 

all the equations of size log(k) or less given 21 queries. There are approximately 2llog(k) 

different equations of size log(k) or less given 21 queries, so while the space complexity of 

this algorithm is sub-exponential, the time complexity is rather large and in fact is larger 

than a brute force attack if llog(k) ::::: k. Note that there is no point in an adversary 

searching for equations of size polynomial in k as those equations are indistinguishable 

from random values in a statistical sense and thus cannot offer any additional information 

to the adversary and in addition the time complexity of such an algorithm would be greater 

than a brute force search over values x. 

Minimizing the time complexity at the expense of space we can consider the adversary 

that searches for equations of size 2 or less. For 21 samples there are 2 21 equations of size 

2 and approximately 2218 different sets of s equations. The probability that 3 equations of 

size 2 all xor to the same value is :«; 2-2k as 3 equations of size 2 can all xor to the same 

value only when they do not have any vectors in common and as such the probability each 

equation xors to a given value is independent from the others. As such, for l approximately 

kk we can expect a set of 3 equations of size 2 to exist where each equation xors to the 

same value. The adversary must perform around 221 computations to find these equations, 

far fewer than 2log(k). Note that more than 3 equations of size 2 will be needed to have the 

success probability of this adversary be close to 1 - p so this is only a lower bound on the 

space complexity of this algorithm. 

In our worst case scenario, n has no impact on the security of SHCF. A more reasonable 

assumption is that solving SHCF problem through solving SBF requires us to solve SBF 
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multiple times. While we have no algorithm that solves SHCF through solving SBF once 

and once only, we can give a hypothetical SBF solver that can be used n times to solve 

SHCF. Consider an adversary A that can solve SBF given q queries for some fixed vector 

b*. Such an adversary is much stronger than what is necessary to solve the SBF problem, 

but has not been completely ruled out by our proofs. One can then build an adversary A' 

to solve SHCF by splitting up the matrix A and the vectors [zJi into separate, independent 

instances of the SBF problem. By giving each instance to A A' receives n bits z; where 

each bit is the inner product (8.i, Cj) with probability close to (1- p). We can then expect 

(1- p)n bits to be "correct" and as such z* = (zi, z:2, · · · , z~) will be a valid answer for the 

SHCF problem for u ~ pn pn. This increases the time complexity of solving SHCF by a 

multiplicative factor of n. It may increase the space complexity by a multiplicative factor 

of n as well, depending on whether or not the SBF problem can reuse the same sample 

vectors 8.i for reach invocation of the SBF solver. 

We gain much larger improvements in our security guarantees if the adversary solving 

SBF returns different vectors b* over different problem instances C, z. If that is the case 

then we must solve SBF enough times to get solutions using the same vector b*. In an 

extreme case, A solves SBF and outputs a random vector b* over each separate problem 

instance. This adds a very large order of magnitude to the complexity of solving SHCF as 

compared to solving SBF. Overall, while our lower bound on query complexity is not that 

high there are good reasons to believe that the actual security given by practical attacks 

will be higher. 

While informal, this analysis demonstrates that solving SHCF is at least as hard as 

solving the LPN problem for similar parameters, and the possibility exists that it is much 

harder. 



Chapter 4 

Applications of the SHCF Problem 

In this section we demonstrate the utility of adaptive learning and of the SHCF problem by 

giving an efficient RFID authentication protocol as well as an efficient related key secure 

MAC. The security of both primitives is proven by reductions to the SHCF problem. 

4.1 hCAP protocol 

In this section we give a construction of an RFID authentication protocol which is fully 

man-in-the-middle secure based off of the SHCF and LPN problems, efficient, and which 

has no false acceptance rate. Our security model is very similar to [34] and is stronger than 

the security model of the HE# protocol[30]. 

We define an RFID authentication protocol is a triple of algorithms Tag, Reader, Output. 

A tag's private information consists of a key K from a keyspace K and a state S from a 

state space S; the reader maintains a list of triples of tag identifier, key and current state. 

An RFID authentication protocol runs as follows. We assume there is a fixed number of 

rounds n, and construct a transcript Ta = a1, b1, ... , an, bn, where a is a unique session ID, 

ai denotes the ith message from the reader and bi denotes the ith message from the tag. 

We insist that the reader's message is the first message since RFID chips do not typically 

contain their own power sources and thus cannot send a message without receiving one from 

the reader first. Tag on input ai outputs bi, and Reader initially outputs a1, and on input bi 

36 
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outputs ai+l· Output is run by the reader once the protocol is complete, and outputs either 

.l, indicating rejection, or a tag identifier from its list. Note that Reader, Tag and Output 

have access to the current partial transcript of ai, bi values at all times. 

Definition 4.1.1 (Accurate) We say an RFID protocol is accurate if when the reader 

interacts with a tag 7i with state S and key K and where the reader has (K, S, i) in its list, 

the probability that Output outputs i is 1. 

Definition 4.1.2 (Un-Forgeability) An adversary A is considered to have broken the 

unforgeability property of an RFID protocol P if ADVuNFORG(A, q, t) is non-negligible in 

q and where q is non-negligible in the key length, and where ADVuNFORG(A, q, t) is the 

probability that an adversary takes time t, interacts q times, and succeeds in the following 

game: 

1. A tag T is set up with a key K +-- K and state S +-- S, and the reader R is set up 

with a list of triples (K, S, 0). 

2. In the first phase, the tag and reader execute the authentication protocol q times, where 

A is allowed to change any message from the reader to the tag, and vice versa, as well 

as seeing if the resulting protocol transcript Ta is thought to be valid by the reader 

(Output(Ta) =j..L}. 

3. In the second phase, the reader begins a single new protocol session with the adversary. 

Let r; be the resulting transcript between the adversary and the reader. The adversary 

wins if Output(T;) :j.l and if r; involves at least one message change: that is, there 

exists some i for which the reader sends ai to the adversary but the adversary sends 

a;: =I ai to the tag, or the tag sends bi to the adversary but the adversary sends bi =I bi 

to the reader. 

Definition 4.1.3 (Anonymity) An adversary A is considered to have broken the anonymity 

of an RFID protocol P if ADV ANON(A, q, t) is non-negligible in q and where q is non­

negligible in the key length and where ADVANON(A, q, t) is the probability that an adversary 

takes time t, interacts q times, and succeeds in the following game: 
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1. Two tags 7i, To are set up each with a key randomly selected from /( and a state 

randomly selected from S, and triples for each tag are given toR. 

2. A is allowed full man-in-the-middle access between the readers and the tags 

3. A random bit b is flipped. A can now interact with '4, the other tag Tr, and the reader 

q" additional times {where q = q' + q") . 

4. A outputs a bit b' and succeeds if b' = b. 

Definition 4.1.4 (Fully secure) An RFID protocol is fully secure if it is accurate, anony­

mous and unforgeable. 

4.2 hCAP construction 

We now give our construction of a fully secure RFID protocol. Our construction requires 

the use of a pairwise independent hash function family 7-l. These functions families are 

extremely efficient to implement and as such are suitable for RFID tags. 

Definition 4.2.1 A set of functions 7-l where each function hy E 7-l maps k bits to m(k) 

bits is considered a pairwise independent hash function family if Vm, m' E { 0, 1 }k, VT, T1 E 

{0, l}m(k), Pry[hy(m') = T
1 A hy(m) = T] = 22~(k) • 

For our protocols we do not actually require that the probability in the above experiment 

is exactly 22~(k), we merely require that it is negligible in k. 

We can now give our construction of a fully secure RFID protocol. Let 7-l be a pairwise 

independent hash function family that takes 2n + k bits as input and uses a k bit key. Each 

tag T receives as a key two matrices C, C' which are generator matrices for randomized 

[n, k, t]linear codes. 

• Initially, Reader sends a random k-bit message a to the tag. 

• Tag(a): Compute {3 = Cy EB e and {3' = C'y EB e' where y .._. {0, l}k and e,e' .._.Hr. 

Return T = hy({3,{3',a), {3, and {3'. 
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• Output( a, {3, {3', T): For each tag in its list, the reader knows D and D'. The reader 

attempts to decode {3 using D and {3' using D'. If y = D({J) = D'({J'), and if 

hy({J, {3', a) = T, output the id of this tag. If this does not succeed for any tag, 

output L 

Before proving the security of our construction, we state some necessary theorems. The 

first theorem is that for a random linear code, random biased codewords are indistinguish­

able from random vectors. 

Theorem 4.2.2 Let A' be a distinguisher such that: 

IPr[C f- M~; (A, Z) f- Mc,p,q,n: A'(A, Z) = 1]-Pr[A, f- MX,; Z f- Mit; A'(A, Z) = 1]1 2: E(k) 

for some non-negligible E and where p, q, n are all polynomial ink. Then there exists A such 

that A can solve the LPN problem. 

To do this, we need to use the following theorem from [36]: 

Theorem 4.2.3 Let A' be a distinguisher such that: 

Pr[x f- {0, 1}k; (C, z) f- Cx,p,q; A'(C, z) = 1]- Pr[C f- M~; z f- {0, 1 }q; A'(C, z) = 1] 2: E 

for non-negligible E. Then there exists an A such that A can solve the LPN problem. 

We now prove Theorem 4.2.2 

Proof. We first define the hybrid hi as the pair A, Z where for 1 ~ l ~ i, for 1 ~ j ~ n 

[z]~ = ([c]j, [ajl) EB e{ fore{ f- Bp and for alll such that i < l ~ q, [zl{ is random. By this 

definition hi is the hybrid where the first i-1 columns of Z are correctly produced according 

to the Mc,p,q,n distribution and the remaining columns are random bits. As such, we have 
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that ho is equivalent to the case where the matrix Z is random, while hn is equivalent to 

the case where Z is produced by Mc,p,q,n· By the hybrid lemma we must have that if A' 

can distinguish between the two experiments in Theorem 4.2.2 it can distinguish between 

hs and hs+l for some s. We can now construct AA' (C, z) to distinguish between the two 

experiments in Theorem 4.2.3. 

We construct A" =A A', a distinguisher to meet the conditions of Theorem 4.2.3. First, 

A" selects a random k by s - 1 bit matrix A. A" then constructs a matrix Z such that for 

1:::; j < n, 1:::; l < s, [z]~ = ([c]1, [ajl) EB e~ where e{ <-- Bp, for l = s, [z] 1 = z and for l > s, 

[zJ; is random. If z is a random vector, then A" has just created the hybrid h8 , otherwise 

it has just created hs+l· Give A, Z to A' and return its result. 

Since A' can distinguish between the two hybrids, A" is a distinguisher as required in 

Theorem 4.2.3. Thus, there is an A111 that can solve the LPN problem. D 

Theorem 4.2.2 allows us to prove the following theorem which shows that random words 

remain pseudorandom, even given their error prone encoding under a random linear code. 

Theorem 4.2.4 For all probabilistic polynomial time adversaries A we have that: 

IPr[A(A, Z) = 1]- Pr[A(R, Z) = 1]1 :::; v(k) 

for some negligible v where A, Z <-- Mc,p,q,n for random n by k bit matrix C and where 

R <-- M%. 

Proof. This proof comes from Theorem 4.2.2 as well as the following four hybrids: 

• Hybrid 1: A, Z where A, Z <-- Mc,p,q,n· 

• Hybrid 2: A, U where A, Z <-- Mc,p,q,n, U <-- M;;. 

• Hybrid 3: R, U where R <-- M%, U <-- M;;. 

• Hybrid 4: R, Z where A, Z <-- Mc,p,q,n, R <-- M%. 
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It is easy to see that Hybrids 2 and 3 are indistinguishable as U is independent of A and 

R. Hybrids 1 and 2 are indistinguishable by Theorem 4.2.2. Finally, if hybrids 3 and 4 are 

distinguishable, note that this gives us a distinguisher that can distinguish between "valid" 

codewords and random vectors, without having access to the associated words, (the matrix 

A). If this is possible, we can construct a distinguisher A' for Theorem 4.2.2 by ignoring A 

and replacing it with a random matrix R. D 

We can now prove the security of our RFID protocol. We begin with the unforgeability 

game. 

Theorem 4.2.5 The hCAP protocol is unforgeable. 

Proof. Let ai be the reader's message to the adversary in the ith execution of the protocol 

and let a; be the ith message from Ato the tag. Let (3i, f3I, Ti be the tag's response to a; 

and let f3i, f3I*, Tt be the ith message from A to the reader. We give a reduction taking 

any adversary A that during any round of the protocol can create a new f3i, f3;*, Tt such 

that Output(ai, f3i, f3I*, Tt) ~l.., even given f3i, f3I, Ti, to an adversary solving the SHCF 

problem. To begin, note that if Output(ai, f3i, f3:*, Tt) ~l.. then it must be the case that 

D((Ji) = D'(f3;*). 

A', given A, Z from Mc,p,q,n creates a generator matrix for another randomized linear 

code C'. To simulate the first message from the reader during the i'th execution of the 

protocol, A' returns a random string ai. To simulate the i'th message from the tag, on 

input a; A' selects a column [a]1 from A, sets f3i = [zjl, f3; = C'[ajl E9 e1 where e1 +--- 7-if 

and Ti = h[a]l ((3i, f3;, a;). To simulate the output of the reader on the ith execution of the 

protocol, A' outputs the tag id if ai = a;, f3i = f3i, f3I = f3;*, and Ti = Tt, otherwise A' 

outputs 1... 

A' picks a random index i in [1, q], simulates the unforgeability game for A, and waits 

for A to produce its answer f3i, f3;*, Tt in the ith execution of the protocol (whether in the 

first or second phase of the game). A' decodes to learn y; = D' ((3;*) and returns (y;, (3i). 



42 

Note that the simulation of the unforgeability game is perfect up until the point where 

the adversary first produces ({3*,{3'*,7*) which is different from ({3,{3',7) (or for a different 

a*), such that Output( a, {3*, {3'*, 7*) would be #_i. The idea is that we are randomly selecting 

i and hoping that the first time this occurs, it is in round i. Given that the adversary is 

successful, we are correct about i with probability ~. 

There are four cases: 

In the first case, (ai,f3i,f3~,7i) = (a'[,f3;,f3:*,7t). In this case, the answer A' gives is 

incorrect because Yi is not a new word. 

In the second case, a;, f3;, {3:* = ai, f3i, {3: but 7t i= 7i· In this case we know that 7t is not a 

valid tag for ai, f3i, {3:, (as the valid tag for ai, f3i, {3: is 7i) and as such Output(ai, f3;, {3:*, 7t) =_l_ 

with probability 1. 

In the third case (a;,f3;,f3:*) i= (ai,f3i,f3D, but Yi = Yj for some j ~ i. In this case, 

we know that A only has a negligible chance of selecting the "correct" 7t = hy'[ (f3;, {3:*, ai) 

due to the pairwise independence of the hash function family and the fact that, since ai is 

randomly selected by the reader, f3;, f3:*, ai must be a new input. 

Finally, if for all 1 ~ j ~ i we have that D (f3;) = D' ({3:*) i= D ({Jj) then Yi = D' (f3:*) is 

new. That is, A' has never seen a codeword for Yi under C. Thus, the output (Yi, f3n is a 

correct answer for A' whenever D({Jn = D'({J:*). 

Thus, if A is successful with non-negligible probability E then with probability E/q A 

makes its first correct and distinct response in round i. Until that point, A' perfectly 

simulates the unforgeability game. In this case, we have shown that with all but negligible 

probability, A' produces a correct output. Thus, A' is correct with non-negligible probability 

E/q, which contradicts the SHCF assumption. D 

Theorem 4.2.6 The hCAP protocol is anonymous. 

Proof sketch. By Theorem 4.2.2 we know that the f3i, {3: vectors produced by the tag are 

pseudorandom, even given 7i, a, and Yi· As such, each message consists of two pseudorandom 
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codewords /3, (3' and a correct T: an adversary distinguishing the tags in an anonymity attack 

would directly defeat this pseudorandomness. 0 

Theorem 4.2. 7 The hCAP protocol is accurate. 

Proof sketch. The accuracy of the hCAP protocol comes directly from its unforgeability. 

If the hCAP protocol is not accurate, then a reader interacting with a tag Ti will output 

something other than Ti. It will not output .l as Ti is a valid tag, so all steps of Output 

will pass when the reader tests tag Tj. If with non-negligible probability the reader outputs 

another tag identifier j -I i then with non-negligible probability the reader cannot tell the 

difference between two tags that have randomly generated keys. As such, to impersonate a 

tag Ti an adversary need only create its own tag with its own random key. 0 

4.3 hCAM Protocol and construction 

We now construct hCAM, a very efficient related-key secure MAC whose security is based 

off of the SHCF problem. 

The construction of hCAM is based off the hCAP protocol described earlier. The main 

observation is that in the earlier RFID protocol, the fact that the ai selected by the reader 

during the second phase of the unforgeability test was random is never utilized in the 

unforgeability proof. We only required that ai is different than all previous vectors selected 

by the reader. As such, we consider the notion of using ai as a the message, and the tag's 

response to the reader as the tag of ai in our MAC construction. 

Definition 4.3.1 (Related-key secure MAC) A MAC which is related-key secure un­

der~ is a trio of functions KeyGen, MAC, Verify that possess the following properties: 

KeyGen(l k) returns a key K. 

MAC(m, K) returns a tag T. 
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Verify( m, T, K) returns a bit, such that Verify( m, MAC( m, K), K) = 1. 

Related-key unforgeability: VA E PPT, 3v negligible: Pr[K +-- KeyGen(1k); m, T +­

AFMAC( ,KJ,K : Verify(m, r, K) = 1/\A never queried F on (m, <5) for any <5] :"::: v(k) where 

FMAC(·,K),K returns T = MAC(m, 8(K)) on input (m, <5) for a perturbation function 

8 E ~. 

We now restate our previous construction as a related-key strongly secure MAC. Let 1t 

be a pairwise independent hash function family which takes 2n + k bits as input and uses 

a key of length k. 

MAC Construction 

KeyGen(1 k) = C, C', where C, C' are generator matrices to randomized [n, k, t]linear 

codes. 

MAC(m, C, C') treats mas a vector m, selects a random y E {0, 1}k and computes 

f3 = Cy EB e, (3' = C'y EB e' where e, e' +-- Hf. Return (3, (3' and T = hy((J, (3', m). 

Verify(m, (3, (3', T, C, C') decodes f3 using D and (3' using D'. If either does not decode, 

or D((J) -1- D((J') reject otherwise take y = D((J) and see if hy((J, (3', m) = T. If it does 

accept, if it does not reject. 

Theorem 4.3.2 The above construction is a ~EEl related-key secure MAC where ~EEl= {bz: 

bz(x) = x EB z}. 

Proof. We give a reduction between any adversary A who can forge with success probability 

E given q' queries to MAC and q" queries to Verify, to an adversary A' that solves the SHCF 

problem. A' begins by selecting a random index l between 1 and q" + 1. 

We first show how A' can simulate the function MAC. Let A, Z be the matrices A' 

receives from Mc,p,q,n· Let C' be the matrix for another randomized linear code. When 

A makes a query to FMAC(·,K),K of the form mi, bi, <5: (where bi, <5: are n by k matrices), A' 

selects a column l of A and the corresponding column of Z. A' sets Yi = [ajl, fJ; = [z] 1 and 
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computes {3i = f3i E9 8iyi, {3~ = C'yi EB 8'yi EB e', Ti = hy({3, {3', m) and returns m, {3, {3', T to 

A. It is obvious that this is the correct MAC of m under the key C E9 8, C' E9 8'. 

To simulate Verify, A' when receiving a message tag pair m 1, ({31, f3j, Tj) from A checks 

to see ifthere was a MAC query j made by A such that (mj,{3j,{3j,Tj) = (mi,{3i,{3~,Ti)· If 

there was, A returns 1, if there is not, A' returns _l_. 

If l ::::; q" this process continues until the l'th verification query. Then A' decodes {3{ 

using D', obtaining Yl, and then checks to see if Yl -I Yj for all YJ generated by A'. If Yl is 

different, A' outputs Yl, f3t otherwise A fails. If l = q" + 1 then A' waits until A produces a 

forgery m*, {3*, {3~, T* and checks to see if D' ({3~) is a new key y * and outputs y *, {3* if so. 

The idea here is that A' is hoping to select the first message tag pair given by A that would 

successfully verify. At least one such pair must exist with probability at least f and A' will 

select that message/ tag pair with probability at least q"~l. 

We now show conditioned on A''s selection of the first message tag pair that would 

successfully verify, its answer is correct with overwhelming probability. Let m 1, ({31, {3{, Tt) 

be the pair selected by A'. If D(f3t) = D'(f3f) = Yl = Yj = D({3j) = D(f3j) for some 

previous {31,{3j then with overwhelming probability Tt -I hy1(f3t,f3{,mt) due to the pairwise 

independence of the hash function family. As such, we must have that D'(f3f) = Yl -I Yj for 

all previous Yj· Since this is a valid message tag pair, we must also have that Yl = D(f3t) 

and thus Yl, f3t is a valid answer to the SHCF problem. 

0 

It is interesting to note how we gain related key security in our MAC construction. Our 

MAC is related key secure in that it has a certain type of related key insecurity. Namely, 

we find that for a given message, nonce and tag tuple under one key, it is easy to find valid 

tags for that message and nonce under any chosen offset of the key. 

Also note that this is a very Fiat-Shamir like methodology of taking an authentication 

protocol and turning it into a message authentication scheme. Note that the Fiat-Shamir 

heuristic requires a 3-round protocol where the second round message is random. Our 

protocol is two rounds, but note that the 2nd round of the protocol does require the prover 
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the ability to create some randomness y and use that randomness to respond to message a 

from the reader (verifier). 



Chapter 5 

Fuzzy Sketches and Fuzzy 

Extractors 

5.1 Introduction 

The practical utilization of cryptographic protocols often requires the distribution and 

storage of secret keys. Keys must contain a high level of entropy, yet must be easily 

and accurately reproducible. However, generating randomness is expensive and the stor­

age/reproduction of said randomness may be extremely difficult, especially when human 

beings are involved. High entropy keys are hard to remember, while low entropy keys 

may render a protocol insecure, regardless of any security guarantees that protocol possess. 

While the ability for humans to produce and remember high entropy strings may be small, 

there is a plethora of easily accessible information that while containing a some entropy 

is not uniformly random, or unreliably reproduceable, or both, a good example being bio­

metric information. Because of this, an important question is how to create cryptographic 

primitives and protocols that utilize biased or unreliable sources to create and store keys. 

A secure sketch provides a "sketch" of a secret value in such a way that the sketch reveals 

little information about the secret, yet allows for the secret to be recovered from any "close" 

secret. A fuzzy extractor allows two parties with noisy secrets to agree on a random value 
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even over an insecure error-prone channel. 

Building from the original ideas of Dodis, Reyzin and Smith, several new security prop­

erties of sketches have been introduced. A sketch is reusable if many sketches of the same 

secret do not reveal any additional information about that secret, and a sketch is robust if 

an adversary cannot create a new given valid sketch of a secret after seeing a single example. 

Our Work A question that is not answered by previous work is whether or not these 

properties can exist in the same sketch construction. To analyze this we propose the idea of 

a strongly robust sketch. We show that the ideal conception of a reusable robust sketch where 

all the security properties have statistically strong guarantees is impossible. A reuseable 

sketch will not be strongly robust against an unbounded adversary. We go on however, 

to leverage our results in the previous chapter in order to give constructions that allow a 

computational form of robustness under multiple queries, while preserving the statistical 

reusability property. In addition, we demonstrate the utility of strongly robust sketches by 

showing how these sketches can be used to add new security properties to cryptographic 

protocols by hardening them against related key attacks. This results in showing that not 

only does a related-key secure MAC imply a strongly-robust fuzzy extractor, but such a 

fuzzy extractor implies the existence of a related key secure MAC. 

5.2 Definitions 

In this section we give the various definitions of fuzzy sketches and fuzzy extractors found 

in previous literature. 

A sketch is a method of securely storing a value w such that it can be recovered by a 

user as long as the user knows w' which is "close" to w [22]. 

Definition 5.2.1 An (m, m', d) sketch is defined by two algorithms Gen and Rec which have 

the following properties: 

For all random variables W where H00 (W) 2: m we have H00 (WIGen(W)) 2: m'. 
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For all w, w' such that llw- w'll::::; d, Rec(w, Gen(w')) = w'. 

From the definition alone, a secure sketch may not be sufficient when the adversary 

knows many sketches Gen(w; r). However, a reusable sketch introduced by Boyen [13], hides 

the secret w even when given many sketches of w and when the adversary is allowed to 

choose adaptive perturbations of the input. 

Definition 5.2.2 A (m, m', d)-sketch is A-reusable if the probability of winning in the fol­

lowing game is ::::; 2-m' for all adversaries A. 

Preparation: The adversary sends to the challenger the specification of a random 

variable W. 

Randomization: The challenger samples w from W. 

Queries: The adversary may present to the challenger an arbitrary number of queries 

of the form Oi E A for a perturbation Oi. The challenger runs Gen(oi(w)) = Pi and 

returns Pi to the adversary. 

Test: The adversary selects a word w* and wins if w = w*. 

When A is clear from context or unimportant we will simply call a sketch reusable. 

Unless specifically stated, we will usually assume that A is the family of functions where 

Oi(x) = x EB i. 

We also note that, due to the fact that we allow A to be computationally unbounded, 

this definition implies that H00 (wi{Po, P1, · · · , Pq} ~ m', where {Po, P1, · · · , Pq}· is the set 

of all sketches given to A from the above game. 

We gain the following theorem from [13, 22]: 

Theorem 5.2.3 (Reuseable Sketch Construction) Let C be an [n, k, t]linear code. Let 

Gene(w;r) be defined by r <--- {0, 1}k,p =Gene= wEB C(r). Let Rece(w',P) be defined as 

P EB C(D(w' EB P)). Then Gene and Rece are a reusable fuzzy sketch. 
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We note that from [13] that this sketch reveals the same information about w as the 

deterministic linear sketch Hw, the syndrome sketch of Dodis et al. [21]. We note that 

in general, a deterministic linear sketch can be trivially shown to be reusable under vector 

addition as one cannot get multiple sketches of the same secret and all sketches of perturbed 

values are computable given a non-perturbed sketch due to linearity. 

Neither the definition of a sketch nor the definition of a reusable sketch preclude the 

adversary from modifying sketches. A sketch is said to be robust if no adversary can produce 

a (new) valid sketch after observing one valid one. 

Definition 5.2.4 An (m, m', d, v) robust sketch is an (m, m', d) sketch such that Rec(w, P) 

can output j_ and that the maximum advantage, ADV-ROBUST(A, Gen, Rec) over all ad­

versaries and ( d, m) -pairs is ::::; v, where the advantage is defined as the probability that A 

succeeds in the following game: 

Setup: w +-- W, w' +-- W' where W and W' is a ( d, m) -pair. 

Challenge: A receives P = Gen(w). 

Test: A(P) outputs P* "I- P and wins if Rec(w',P*) -=f-j_. 

We note that, similar to the definition of reusability, a robust sketch provides security 

assurances against unbounded adversaries. 

A strong extractor enables the "extraction" of randomness from an imperfectly random 

source. 

Definition 5.2.5 An (n, m', l, E)-strong randomness extractor is a polynomial time ran­

domized algorithm Ext : { 0, 1 }n x { 0, 1} ----> { 0, 1 }1 such that for any random variable W 

over {0, 1}n with min-entropy m' it holds that SD((Ext(W; Us), Us), (Ut, Us)) :'S: E where Us 

is the uniform distribution on s bits. 

Definition 5.2.6 An (n, m', l, E)-strong extractor is linear if Ext(w EB x; i) 

Ext(x; i) for all i. 

Ext(w; i) EB 
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A fuzzy extractor combines the ideas of a fuzzy sketch and a strong extractor. A fuzzy 

extractor allows for the reproduction of a random string R given a public sketch and an 

imperfectly random, imperfectly reproducible string w. The standard construction of fuzzy 

extractors utilizes fuzzy sketches [22]. 

Definition 5.2. 7 A (m, l, d, E) fuzzy extractor is given by two algorithms, Fsk and Rep with 

the following properties: 

1. Fsk is a probabilistic algorithm that on input w <---- W where H00 (W) 2": m produces 

(R,P) such that SD((R,P), (UL.P))::::; E. 

2. Rep( w', P) = R is the reproduction procedure with the property that, \fw, w' llw -

w'll::::; d and (R, P) <---- Fsk(w), we have Rep(w', P)----> R. 

We should note that the only "public" output of Fsk is the value P. We say that 

Fsk( w) = ( R, P) to denote the idea that R is associated with w. In the future we consider 

Fsk(w) to output the public value P only. 

The notion of a "reusable" fuzzy extractor follows directly from the idea of a reusable 

sketch: 

Definition 5.2.8 A (m, l, d, ~.E) reusable fuzzy extractor is a (m, l, d, E) fuzzy extractor 

such that for all state-preserving adversaries A and for all random variables W such that 

H00 (W) 2": m, for all i, 

SD( (~,Po, ... , Pq), (Ut, Po, ... , Pq)) ::::; E, 

where w <---- W, Po= Gen(w), and for each i, Pi= Gen(oi(w)) where Oi <---- A(P1, · · · , Pi_ I), 

and where q is the number of perturbations A chooses to specify before halting. 

We may similarly define the notion of a robust fuzzy extractor, however there are some 

additional considerations which need to be considered. Namely, does the adversary just 

receive a sketch P, or does an adversary receive a sketch P and the resulting key R? 
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The first notion is known as "pre-application" robustness, the second "post-application" 

robustness. 

Definition 5.2.9 (Pre-Application Robust Fuzzy Extractor) A (m, l, d, E)-fuzzy ex­

tractor is A-pre-application robust if the maximum advantage ADV -ROBUST( A) over all A 

is :::; A, where ADV -ROBUST(A) is defined as the probability that the adversary succeeds in 

the following game: 

Setup: The challenger samples w from W and w' from W' where W, W' are a 

(d, m)-pair, and produces (P, R) = Fsk(w). 

Test: A(P) outputs P* and wins if Rep(w', P*) ~..1. and P* ~ P. 

A fuzzy extractor is "post-application" robust if the adversary receives P and R in the 

Test phase of the above game. 

It should be noted that in all the definitions so far, reusability and robustness apply 

to all adversaries A, not just computationally bounded adversaries. One can consider the 

notions of computational reusability and robustness where these properties only hold against 

polynomial time adversaries as well. 

5.3 Combining Reusability And Robustness 

The previous literature on fuzzy sketches does not consider robustness under multiple 

queries, nor does it consider whether or not reusability and robustness can be combined in 

a meaningful sense. To investigate combining these two properties we define the notion of 

a strongly robust sketch and a strongly robust extractor. 

Definition 5.3.1 (Strong Robustness Advantage) Define A's success probability in the 

following game with a sketch (Gen, Rec) as ADV-ROBUST'(A, Gen, Rec, .6.). 

Setup: Two values are sampled from a (d, m) pair, w ,__ W, w' ,__ W'. 

Queries: Fori= l...q, A selects a bi E .6., and receives Gen(bi(w)) =Pi. 
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Test: A(P1, P2, ... , Pq) outputs P*, o* where Vi P* i- Pi and wins ifRec(o*(w'), P*) of-1_. 

With the previous definitions in mind, we formally define the notion of both a statistically 

strongly robust sketch as well as a strongly robust sketch. The difference is that the former 

is strongly robust against an unbounded adversary, while the latter is only computationally 

strongly robust. 

Definition 5.3.2 An (m, m', d, 6., v) statistically strongly robust sketch is an (m, m', d) 

sketch where for all A and all (d,m) pairs, ADV-ROBUST'(A, Gen, Rec,f::l.) is~ v. 

Definition 5.3.3 An (m, m', d, 6., v) strongly robust sketch is an (m, m', d) sketch where 

for all probabilistic, polynomial-time A and for all (d, m) pairs, ADV -ROBUST'(A, Gen, Rec, 6.) 

is ~ v. 

We can extend the notion of a strongly robust sketch to that of a strongly robust 'fuzzy 

extractor. 

Definition 5.3.4 An (m, l, d, 6., E, v) strongly pre-application robust fuzzy extractor is an 

(m, l, d, 6., E) reusable fuzzy extractor such that the maximum advantage ADV -ROBUST/e-pre 

(A, Fsk, Rep, 6.) ~ v. We define ADV-ROBUST/e-pre(A, Fsk, Rep, 6.) as the maximum prob­

ability over all (d, m)-pairs of A succeeding in the following game: 

Setup: w .._ W, and w' .._ W' for a (d,m) pair W, W'. 

Queries: For i = 1, ... , q, A(P1, · · · , Pi-d makes a query Oi E 6. and receives Pi 

where (Pi,~)= Fsk(oi(w)). 

Test: A outputs P* and succeeds if Rep(w', P*) of-1_ and P* i- Pi for any i. 

We would like to define a post-application robust fuzzy extractor to be an extractor such 

that for each query made by the adversary, he receives both the sketch Pi and the resulting 

key ~. We note however, that this security definition is impossible to meet. Namely, 

since each key ~ is an extraction on the secret w, it is easy to show that each such good 

extraction must reduce the min-entropy of w by at least one bit. As such, given enough 

keys the adversary can reproduce w and thus break robustness. 
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Definition 5.3.5 An (m, l, d, ~' E, v) strongly post-application robust fuzzy extractor is an 

(m, l, d, ~' ~:) reusable fuzzy extractor such that the maximum advantage ADV -ROBUST/e-post 

(A, Fsk, Rep,~) :::; v, where we define ADV-ROBUST/e-post(A, Fsk, Rep,~) as the maximum 

probability over all (d, m)-pairs of A succeeding in the following game: 

Setup and Test are as in Definition 5.3.4. 

Queries: Fori= 1, ... , q, A can make two types of queries, key queries and sketch 

queries. For a sketch query A specifies 8i and receives Pi where (Ri, Pi) <--- Fsk(8i(w)). 

When A makes a key query he can either give a 8i E ~ and receive (Pi, R;) where 

(Pi, R;) = Fsk(8i(w)) or specify an j and receive Rj where (Rj, Pj) <--- Gen(8j(w)) and 

where 8j is a previous sketch query made by A. A can make as many sketch queries 

as he wishes, but only one key query. 

5.4 General Impossibility Results 

In this section we prove several impossibility results. Specifically, we show that it is im­

possible to construct a keyless or logarithmic-key, statistically strongly robust sketch under 

"reasonable" ~. Our impossibility results easily extend to show that it is impossible to 

construct keyless or logarithmic-key strongly (pre-application) robust fuzzy extractors for 

such ~ that are strongly robust against unbounded adversaries. 

Specifically we consider a set of perturbations ~ to be reasonable if: (1) There is a 

A C ~ such that A is a group of isometric permutations, that is, permutations 8 such that 

llw- w'll = ll8(w)- 8(w')ll, and (2) there is a 81 E A such that for all x, llx- 81(x)ll = 1. 

We feel these assumptions represent any reasonable choice for ~. Boyen notes that if we 

allow general types of functions in ~ it may impossible to design reusable sketches. As 

an example, consider the family of functions 8i,x where for i = 1, · · · , n, 8i,x ( w) = x if the 

i'th bit of w is 0, a random value otherwise. The code offset sketch mentioned earlier in 

Theorem 5.2.3 can easily be shown not to be reusable against such a family of functions yet 

is known to be reusable against vector addition mod 2. Because of this limitation, Boyen 
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restricts his observations about reusable sketches to sets of perturbations D. that contain 

a group of isometric permutations. As for the existence of P, recall that the adversary's 

ability to specify o E D. to apply to w is meant to be a worst-case emulation of variance in 

w; as such, it would be unreasonable to expect that a low-difference perturbation such as 

o1 cannot be specified. 

We first give a review of results originally developed by Boyen [13]. Let Gen*(w) be the 

set {P: 3r: P = Gen(w; r)}. For any subset£ c W let Gen*(£) be the union Uwa Gen*(w). 

For a sketch P, let Gen- 1(P) = { w: 3r: Gen(w; r) = P}. Similarly, if Sis a set of sketches, 

let Gen-1(S) = {w: 3r Gen(w;r) E S}. 

Lemma 5.4.1 (Boyen [13]) Let Gen and Rec be an (m, m', d, D.) reusable sketch where 

A c D. is a group of isometric permutations. Then: 

1. The reusable sketch Gen and Rec divide M into at most 2m-m' equivalence classes, £i 

where w,w' E £i if!Gen*(w) = Gen*(w'). 

2. Vo E A, Vi, o(£i) = Ej for some j. 

3. These classes £i are determined by the sketch protocol alone. 

4. Each class £i can be considered an error correcting code with minimum distance d. 

5. For all i,j, l£il = IEJI· (As such, let 1£1 be the size of any class£). 

To prove that it is impossible to construct a strongly robust sketch secure against com­

putationally unbounded adversaries, we show that any reusable sketch is not statistically 

strongly robust. The conclusion follows as a statistically strongly robust sketches must be 

reusable, else an adversary can view multiple sketches, recover w and make a valid sketch. 

As a high level idea of our approach, we first give the following inefficient attack, which 

suffices to prove our main impossibility result in the keyless case: 

Theorem 5.4.2 Let Gen, Rec be a reusable sketch for reasonable D.. Then Gen, Rec is not 

statistically strongly robust for d > 1. 1 

1 Jf d = 0, our proof may not apply; the construction may be "robust" simply because there exists no 
different P* that could be output. Such a sketch can no longer be legitimately called "fuzzy" however. 
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Proof. Let W, W' be a (d- 1, m)-pair, which is always a (d, m)-pair. 

The attack is relatively simple. We simply obtain, through queries, the entire class 

Gen*(w). (We make queries until, with high probability, every random tape for Gen will have 

been used at least once.) Gen*(w) uniquely determines £i, the equivalence class containing 

w. Find J 1(£i)· By Lemma 5.4.1, there is some £1 = J 1(£i)· Select w" E £1 and find a 

P* E Gen*(w") such that P* tj_ Gen*(£i), and let J* be the identity. Output J*, P* as the 

forged sketch. 

We know we can find such a P* because llw- t5 1 (w)ll = 1 < d, and the minimum 

distance between values in £i is ~ d (this follows from the fact that £i can be thought of 

as a code, by Lemma 5.4.1). As such t51(w) E £1 and J 1(w) tj_ [i There must be one sketch 

P* E Gen*(£1) that is not in Gen*(£i), else £i = £1 which would be a contradiction. 

Due to the error correcting properties of Rec, Rec(w', P*) will output w 111 E £1. This is 

due to the fact that P* = Gen(J1 (w); r) for some valuer and llw', J 1(w)ll:::; (d -1) + 1 =d. 

D 

There are three things the adversary in the above attack is required to do. 

1. The adversary must successfully determine the "correct" equivalence class £i of a 

secret w given enough sketches of w. 

2. The adversary must successfully sample the equivalence class 151 (£i) knowing only £i. 

3. The adversary must be able to find a sketch P* such that P* E Gen*(t51(£i)) yet 

P* tj_ Gen*(£i)· 

For an unbounded adversary, these three tasks are easy to accomplish, though they do 

require exponential memory / computation time. We give a more efficient attack in the 

Section 5.5 that allows us to determine the correct equivalence class £i much quicker for 

generic sketch protocols. 

We also note that for most known sketch constructions it is relatively easy to learn £i, 

(in fact for the code offset sketch £i is determined by only one sketch), and also that for all 

i,j, Gen*(£i) n Gen*(£1) = 0. So while this attack as written is not very efficient, for most 
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known sketch constructions it can be used to develop a polynomial time attack against the 

robustness the strong robustness of the construction. 

The above attack pertains to sketches that do not use a secret key. If a sketch protocol 

uses a secret key f.L then Gen may take that key as input and the above attack may not work 

anymore. An extension of the attack to small length f.L is relatively easy however. 

Theorem 5.4.3 Let Gen and Rec be a sketch which utilizes a secret key f.L, where IILI = 

O(loglwl). Then if (Gen, Rec) is reusable for~ that contains a group of isometric permu­

tations including a 81, it is not robust. 

Proof. The attack proceeds similarly to the attack in the previous theorem, with the addition 

that the adversary guesses at the secret key f.L at the very beginning. If A successfully 

guesses the key, then A can run the previous attack and thus breaks strong robustness. The 

probability of A selecting the correct key is non-negligible in lwl because of the size of 1-l· D 

We do not give any results concerning a statistically strongly robust sketch which utilizes 

a secret key larger than logarithmic in size of the secret. Such a key can be expanded using a 

pseudorandom generator to any size needed to provide an authenticated channel and many 

techniques for key agreement over such channels are known. 2 

5.4.1 Impossibility Results on Fuzzy Extractors 

Our results also extend to the ideas of strongly robust fuzzy extractors. It is easy to see 

how this is the case for all "standard" fuzzy extractor constructions, constructions where 

Fsk outputs a sketch Gen(w) for some sketch that is later used to recover w by Rep. As 

the validity of Fsk is based on the validity of the sketch Gen, we can utilize all the results 

of Lemma 5.4.1 and Theorem 5.4.2. However, for general constructions of fuzzy extractors 

it may not be the case that we can use the results of Boyen. Most notably, we do not 

immediately know if 8 E A maps pre-image sets to pre-image sets, and we do not know if 

the preimages induced by Fsk form a code. 

2 Assuming the existence of exponentially hard cryptography, a polylogarithmic key suffices against any 
polynomial adversary. · 
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We can utilize Claims 11.1, 11.2, 11.3, and 11.4 from Boyen to demonstrate that Fsk 

must split up M into equivalence classes, and that 6 E A must map classes to classes as 

the proofs of these claims generalize to reusable fuzzy extractors, since the claims only 

rely on the fact that there must be some min-entropy remaining in w, even after seeing all 

conceivable sketches of w a fact which must be true for a strongly robust fuzzy extractor 

as well, else an unbounded adversary could easily break the strong robustness of the fuzzy 

extractor. 

However, if Rep(w, Fsk(w)) = Rep(w', Fsk(w')) for w, w': llw- w'll :::::: d, then it may be 

the case that the equivalence classes induced by Fsk do not form an error correcting code. 

As long as we allow that there is a 6k, k < n such that 6k maps one class to a different 

class then we can maintain both of the assumptions necessary for Theorem 5.4.2 and as 

such break strong robustness of that extractor. 

We also note that as long as the fuzzy extractor has the property that we need not see 

every sketch of a secret w before we can find the equivalence class Fsk-1(Fsk(w)), then we 

need make no assumptions about 6 at all as our more efficient attack in Section 5.5 will be 

able to find a valid new sketch of w as it will not need to see all valid sketches of the w to 

determine the correct equivalence class. 

5.5 Specific Impossibility Results 

Our impossibility results in Section 5.4 demonstrate that previous constructions cannot be 

statistically strongly robust. In this section, we extend these results and show that some 

previous constructions are not strongly robust even in a computational sense. We give an 

attack that works on the constructions of [35, 20]. We then go on to enhance our previous 

attack against generic fuzzy extractors to greatly increase its efficiency. 

We first give the construction of a robust fuzzy extractor that is found in [35, 20]. Let 

SS(w) be a deterministic, linear sketch. As such, there is a matrix S such that SS(w) = Sw. 

Let S' be a matrix such that g, has full rank. Let SS' ( w) = S' w. For c = SS' ( w), let a be 
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the first half of c, b the second half, where both a and b are viewed as elements of lF 2n' /2. 

Set L = 2t,. Lets= 55(w). Pads such that lsi = Ln' /2 and then splits into L bit strings 

of size n'/2. Define fs,i(x) = xL+3 + x 2(sL-1XL-l + S£-2XL-2 + ... +so)+ ix. Fsk is now 

defined as Fsk(w) = (s,i,u) where i is randomly selected, O" is the last v bits of !s,i(a) + b 

and where R is the remaining bits of !s,i(a) +b. 

We give two attacks. The first attacks the post-application robustness of this scheme, 

the second attacks the pre-application robustness. 

• A makes two public queries where J = 0, receiving s, i,u, Rands', i', u', R' (A receives 

R and R' due to the fact that it is a post-robustness attack). 

• A denotes X= Rllu and X'= R'llu'. 

• A computes X- X' = (i- i')a due to the fact that 55(w) is deterministic and for 

both queries J = 0. 

• A finds a= (X- X')(i- i')-1 = (i- i')-1(i- i')a =a. 

• A finds b =X- !s,i(a). 

Once A finds both a and b and given that 55' is linear and 55 is linear, A can easily 

compute a new sketch for any J =1- 0 and any i. 

This next attack demonstrates that this protocol is not pre-application robust, so as 

such the adversary does not receive the extracted key R. 

• A makes two public queries where J = 0, receiving s,i,u and s',i',u'. 

• A computes O"- u' = !s,i(a) + b]Y- Us',i'(a) + b)]Y = (i- i')a]y. 

• A makes a new public query where J = 0, and receives s",i",u". 

• A creates a new sketch where s* = s", i* = (i- i') + i" and u* = u" + O"- u'. 

Due to the fact that for all these public queries, J = 0 we have that s = s' = s" = s*. 

We have fs,i•(a) = fs,i"(a) + (i- i')a = fs,i"(a) + 0"- 0"
1 as such u* = u" + O"- u' and so 

the s*, i*, u* is a valid sketch. 
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More efficient generic attack Next, we describe a general attack that should be more 

efficient than the one given in our general impossibility result. Let w* be the secret value. 

Attack. We note that we can break all sketches into two cases: 1) Gen-1(P) = £* where 

£* is a single class and 2) Gen-1(P) = £i1 U · · · U £ik for some k equivalence classes where 

k 2:: 2. In case 1, we know the correct equivalence class after only one sketch. As such 

we need only output another sketch from P*, set 8* to the identity and we are done. This 

attack will work due to the fact that all sketches in £* are capable of being produced by 

the secret w*. 

If we are in case 2 however, we have two options. If IGen*(£i1 ) n · · · n Gen*(£ik)l 2:: 2 

then there exists another sketch P* such that P* E Gen* ( £i1 ) n · · · n Gen* ( £ik), P* f:. P, 

P* E Gen*(£*) and as such P* is a valid sketch of w, and we are done. 

Therefore, we assume that this is not the case and 1Gen*(£i1 ) n · · · n Gen*(£ik)\PI = 0. 

A then requests another sketch of w, receiving a new P not equal to any prior P. By 

Lemma 5.4.1, if it is true that Gen- 1(P2) n Gen-1 (P) = £i, U · · · £i' where k' < k, and £i' c 
I k 1 J 

Gen-1(P) for all j otherwise we contradict our assumption that Gen*(£i1 ) n · · · n Gen*(£ik) 

contains only P. 

Thus, for every sketch that we see, we are able to eliminate at least one equivalence 

class from the set of possible classes. Denote the current set of q sketches seen by A as Pq. 

A continues by examining the current intersection of the images of the possible equivalence 

classes, excluding all sketches in Pq· If this set is non-empty, then a new valid sketch of w 

was found, and we are finished. Otherwise, A requests another sketch, removing at least 

one equivalence class from consideration. This process continues until we have found either 

a valid sketch of w, or have determined the correct equivalence class£* and as such we can 

run the attack from Theorem 5.4.2. 

For most sketches j fuzzy extractors this should result in a polynomial time attack 

against the strong robustness of the sketch. This is due to the fact that the classes £i are 

often efficiently samplable, and the fact that for most known protocols Gen- 1(P) equals one 

and only one equivalence class £i. 
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5.6 Strongly Robust Fuzzy Extractor Constructions 

In this section we give a construction of a strongly post-application robust fuzzy extractor. 

We modify the construction in [19] to obtain both resuability and strong-robustness. 

We construct our fuzzy extractor in the common random string (CRS) model. While it 

would be preferable to construct a fuzzy extractor without resorting to a common string, 

we note that the only properties we require out of our string is that it is common to all 

parties involved, that it is random, and that it is resistant to modification by the adversary. 

Similarly to [19] our common string need only be chosen once when the system is designed, 

can be hard coded into all software implementing the system or can be chosen by the parties 

involved in using the sketch, and can be observed (though not modified) by the adversary. 

We do not believe that this significantly increases the amount of trust required, a view 

shared by Cramer et al. 

Our construction will rely on a linear strong extractor, as well as an xor related-key 

secure MAC. While there has been little successful work on constructing provably related­

key secure primitives, we do note that some papers (including Cramer et al. [19]) make 

use of MACs that are one-time related-key secure. In addition we note that a practical 

construction of a xor related key secure MAC exists under the SHCF problem, which was 

discussed earlier. 

Definition 5.6.1 A family of functions MAC'kel : {0, 1}*---> {0, l}n is an xor-related key 

secure MAC if the maximum advantage ADV-MACRK(A, MACel, n) is negligible inn, where 

ADV-MACRK(A, MACe1,n) is defined to be 

ADV-MACRK(A, MAcrel, n) = Pr[k <- {0, l}n; (x, a, o) <- Ao;;et : MAq~8 (x) =a] 

Where x was not a query made to O'j(1 and where o;:.el returns MAq~8 (x) on input (x, 8). 

We now give our construction. Let M = {0, 1}n under the Hamming metric. Let Gen be 
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a (m, m', d) deterministic linear sketch. As such, Gen(w) = Hw for some n- k x n matrix 

H. Note, the syndrome sketch described earlier is such a sketch. Let l be a parameter such 

that l :::; I m' - 2log ~ l· Parse our CRS as a matrix S such that -i is an n x n matrix. Let 

SM be the first lMAC rows of Sand let Sx be the remaining lxeY rows, so lMAc+lxeY = l. 

Let MACJl be an xor-related key secure MAC using key fL· We now construct our strongly 

robust fuzzy extractor. 

Definition 5.6.2 (Fsk(w)) 

1. Let fJ = SMw. 

2. Let Q = Gen(w) = Hw. 

3. Let R = Sxw. 

4. LetT= MACJl(Q) 

5. Output P = (Q, T), R 

Definition 5.6.3 (Rep(w',P)) 

1. Run w" = Rec(w', P). 

2. Set {1,
1 = SMw" and R = Sxw". 

3. Set T1 = MACil'(Q). 

4. If T = T1 output R else output l_. 

We now prove some theorems bounding the entropy loss on w due to an unbounded 

adversary seeing multiple sketches. We note that although H and S are chosen randomly, 

-i is of full rank with overwhelming probability. In what follows, we assume that -i is of 

full rank. 

Lemma 5.6.4 Let Ci be an equivalence class of the sketch Gen. Then if -i is of full rank, 

S is a bijection from Ci to {0, 1 }1. 

Proof. We first show that S is injective. If it is not, then for some X, X' E Ci such that 

SX = SX', we know that -iX = -iX' because of the fact that HX = HX' by the definition 
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of Ci· Thus ~ is not full rank as it is not injective. Surjectivity comes from the fact that S 

is injective and that ~ is n by n. D 

Immediately from this we get the following corollary: 

Corollary 5.6.5 SM can be thought to partition each class Ci into a partition of "sub­

classes" ~z where X E ~z if X E Ci and SMX = z. 

Note that this is not necessarily true of a generic linear extractor. 

This allows us to prove the following Theorem. Let Fsk*(w) = {8, Fsk(8(w))l8 E ~}. 

Theorem 5.6.6 Hoo(W!Fsk*(W), S~w) 2:: m' -lMAC· 

Proof. We prove this theorem by bounding the min-entropy for 8 = 8o, then showing that 

by the linearity of this construction no further min-entropy is lost for 8 E ~Ell i- 8o. With 

overwhelming probapility we may assume ~ is of full rank. 

By the reusability of Gen we know that Gen divides M into equivalence classes Ci such 

that Gen(wi) = Qi for all Wi E Ci· By the previous lemma we can say that S divides each 

class Ci into subclasses ~1-' where Vw, w' E ~~-', Gen(w) = Gen(w'), SMw = SMw'. Since SM 

is a permutation on each class, for each class Ci, there are 21
MAC classes~~-'. As such, by 

Lemma 5.4.1 and the previous sentence there are at most 2m-m'+lMAc equivalence classes 

and by setting m = n, the maximum entropy, each class is of size 2m'-LM Ac. 

We now consider an adversary who makes queries to Fsk(8(w)) where 8 i- 8o. Since the 

sketch is deterministic and linear we know that Gen(8(w)) can be calculated directly from 

Gen(w) and 8. We also know that if J-l = SMw, then J-l6x = SM8x(w) = SMw EB SMX· As 

such, the adversary can pre-calculate the values of Q and T before making the query to Fsk 

and as such the query adds no additional information. D 

We now prove that (Fsk, Rep) is an (m, lKEY, d, ~Ell' E) reusable fuzzy extractor. 

Theorem 5.6.7 (Fsk, Rep) is an (m, lKEY, d, ~Ell' E) reusable fuzzy extractor. 

Proof. This comes from the fact that Sw is a linear extractor for ~Ell by the fact that it is 

xor-universal and the leftover hash lemma. As such SKw is statistically close to random, 
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even given T and SMw. We maintain the advantage for SKbx(w) as D-EB is a group and as 

such any adversary capable of calculating SKbx(w) can calculate SKw. D 

We now show our construction is strongly post-application robust. 

Theorem 5.6.8 (Fsk, Rep) is a strongly post-application robust fuzzy extractor for D. = D-EB. 

Specifically, for all polynomial time adversaries A, ADV-ROBUST!e-post(A, Gen, Rec, D.EB) ~ 

ADV-MACRK(A, MAC, lMAC) +2-m'+lMAC 

Proof. Before giving the reduction, we remind ourselves that since we are selecting S 

randomly Sw is an xor-universal hash function. Thus, by the leftover hash lemma we can 

consider J-L to be random, even given S. Moreover, we can consider R to be statistically 

indistinguishable from random even given S and J-L. 

We now transform an adversary A who violates post-application robustness to an A' 

which defeats the related-key security of the MAC. A' plays the part of the challenger, 

using his oracle to help him create sketches. A' first selects a (d, m)-pair W, W' and samples 

them to obtain w, w'. When A requests a sketch Fsk(Ji(w)), A' computes Qi = Gen(Mw)), 

J~ = SMJi, and asks forTi= orel(Qi, JD. A' then returns Pi= (Qi, Ti) to A. When A makes 

a key query for query j, A' returns a random value Rj. Eventually A returns a sketch 

(Q*,T*),J* and A' outputs Q*,T* as its forgery under the key offset SMJ*. 

The main difficulty in the proof is that when A' makes a sketch Q of a query w, and 

asks for a MAC of Q, the MAC oracle orel will with high probability not be using the key 

S MW and will rather be using a different random key K. 

To overcome this difficulty we note that for the sketch Q there is a secret w' such 

that SMw' = K and that Q = Gen(w'). This comes from the fact that SM divides each 

equivalence class Ci into subclasses, and there is one subclass for each value K, (because SM 

is surjective). Moreover, the subclass of the secret w is information theoretically hidden just 

given the sketches. Thus the sketches produced by A' can be considered valid sketches of an 

appropriately chosen secret w', and as such A receives a consistent transcript of sketches. As 

for the one key query, due to Theorem 5.6. 7 we know that each~ individually is statistically 



65 

indistinguishable from random even given J-l and all Qi 's. As such, the adversary A cannot 

tell the difference between receiving a random ~ and the correct one. Therefore, A' forges 

with the same probability as the chance that A breaks strong robustness, unless A happens 

to guess the correct value w a probability which is bounded by 2-m'+lMAC. 

By this bound on ADV-ROBUST/e-post and Theorem 5.6.6, we have that (Fsk, Rep) is 

strongly post-application robust. 0 

We note that if we are in the random oracle model we can create a strongly post 

application robust extractor from more general components. Our construction is again 

similar to [19], and is also similar to the insider-secure construction of Boyen [13]. As Boyen 

does, we prove our construction in a "limited-query" random oracle model; we assume 0 

is a random oracle giving l-bit outputs, and let lrAG + lKEY = l. Let (Gen, Rec) be any 

( m, m', d, b.) reusable sketch. 

Definition 5.6.9 (Fsk(w)) 

1. Compute Q = Gen(w). 

2. Select a random value r. 

3. Compute X= O(w, Q,r). Denote the first lrAG bits as T, the last lKEY bits as R. 

4. Output P = ((Q,r),T),R. 

Definition 5.6.10 (Rep(w', P)) 

1. Compute w" = Rec(w', Q). 

2. Compute T'IIR' = O(w", Q, r), where IT' I= lrAG· 

3. If T = T
1
, output R', else output .L 

Theorem 5.6.11 (Fsk,Rep) is a (m,lKEv,d,b.,E) strongly robust fuzzy extractor in the 

limited random oracle model. 

Proof. Since Gen and Rec are a reusable fuzzy sketch, the min-entropy of w given all Qi 

values received by the adversary ism'. Consider each tuple (Qi, Ti, ri, ~). We claim that 

the additional values Ti, ~ do not substantially reduce the min-entropy of w. 
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Let S be the set of values w such that there is a Q and an r such that the adversary 

queries O(w, Q, r). Note that in the limited random oracle model, we may assume that lSI 

is polynomial in 1m. Unless the real w is inS, all that is learned from these random oracle 

queries is that w ~ S. This information eliminates at most lSI values, each with probability 

at most 2-m' given the known Q. Thus, H=(WI(Qi, Ti, ri), O(S)) ~ m' -log(1 -ISI2-m'). 

We denote m' -log(1- ISITm') as a. 

By Boyen and [2] we know that a random oracle represents an optimal randomness 

extractor, and thus for each i, and r, SD((O(w,Q,r),r,Q),(Ul,r,Q)) :'S E where E 

D 

Corollary 5.6.12 The min-entropy of w, given Fsk(w) = Qi, Ti, ri, ~ is ~ a with over­

whelming probability, given only a polynomial number of sketches. 

Theorem 5.6.13 Fsk and Rep constitute a strongly post-application robust extractor. 

Proof. The probability that the adversary makes a successful forgery is the probability 

that the adversary can either guess the correct w, or that the sketch Q', r', T
1 is such 

O(w,Q',r') = T1
• By Corollary 5.6.12 the min-entropy of w given the tuples Qi,Ti,ri,~ 

is a. For any tuple Q', T 1
, r' the probability that for a given w, 0( w, Q', r') = T

1 is 21 T
1
AG. 

Thus, the forgery probability of the adversary is 2-a + 21/Aa . D 

5. 7 Insider Security 

Boyen [13] introduced the notion of an "insider secure" fuzzy extractor- a fuzzy extractor 

which is secure even when the adversary is allowed to see the extracted values for adversarily 

generated sketches and permutations. We prove that our strongly robust fuzzy extractor is 

insider secure. 

Definition 5. 7.1 (Insider Security) A fuzzy extractor Fsk and Rep is considered to be in­

sider secure for an adversary A if ADV -INSIDE( A, Fsk, Rep, D.) is negligible, where ADV -INSIDE 

(A, Fsk, Rep, D.) is the probability of A winning in the following game: 
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Setup: The challenger samples W to obtain w. 

Pre-challenge Queries: The adversary A presents up to q queries to the challenger 

where each query is either a public or private query. 

Public Queries: A selects Oi E ~ and receives Pi where Fsk(oi(w)) =Pi, R;. 

Private Queries: The adversary selects Oi E ~ and a public sketch P[ and receives 

Rep(oi(w), P[) = Ri. 

Challenge: The adversary selects any public sketch P* that was returned via a public 

query, under the constraint that for all private queries c5i, P[ such that P[ = P*, Oi 

must have the property that for all wE M, ll6i(w)- wll >d. 

Post-challenge Queries: The adversary may make further private and public queries, 

with the stipulation that no private query Oi,P* can be made unless ll6i(w)- wll > d 

for all w. 

Test: The adversary succeeds if he outputs R* such that Rep( w, P*) = R*. 

We now give a construction of a insider secure fuzzy extractor. Our construction is 

similar to the construction in Section 5.6 with the exception that instead of a deterministic 

linear sketch, we use the code offset sketch of Theorem 5.2.3. Let Gen and Rec be the 

codeoffset sketch using a code with parity check matrix H. Let SM and SK be defined as 

in Section 5.6 with respect to this H. 

Definition 5.7.2 (Fsk) 

Q = Gen(w). 

J-L=SMW· 

T = MAC!l(Q). 

R= SKW. 

Output P = (Q, T) and R. 

Definition 5.7.3 (Rep(w',P')) 

Let w" = Rec(w', Q'). 
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T
1 = MACJL' ( Q') 

If T 1 = T output SKw" else output ..l. 

Theorem 5. 7.4 Our construction in Section 5. 6, replacing Gen and Rec by the code offset 

sketch is an insider secure fuzzy extractor. 

Proof. This extractor can be shown to be reusable via the same techniques in Theorem 5.6.5, 

Theorem 5.6.4 and Theorem 5.6.6. We demonstrate how any adversary playing the game 

defined for the advantage ADV-INSIDE can simulate its private queries. Once we do that, 

we can limit ourselves to adversaries which make only public queries. The rest of the proof 

follows from the idea that if an adversary makes only public queries, the game defined for 

advantage ADV-INSIDE is the same as the reusability of the fuzzy extractor. 

There are two cases. If A makes a private query with a Q never returned from a public 

query he can simulate the result by outputting ..l. This is because if A can create a new 

Q, T pair that will not return ..l, then ADV-ROBUST'(A, Fsk, Rep,~) is non-negligible. 

We now deal with the case where A makes a private query using a Q, T, Oy tuple returned 

in a public query. The first time this occurs, A can simulate the output by selecting a random 

lKEY sized bit string R. For all subsequent private queries of this type, if the associated 

public query was made with Ox, then A knows the output of Rep will be REElS K ( x EEl y) due 

to the linearity of the extractor. 

We next deal with the case where A makes a private query using a Q, T, pair that 

was returned in a public query, while specifying a different Ox' -1- Ox. In this case, then 

Rec(w EEl x', w EEl x EEl C(r)) = w EEl x EEl C(r) EEl C(D(x' EEl x EEl C(r))). If x EEl x' has weight less 

than d, then C( D ( x EEl x' EEl C( r))) = C( r) and as such Rec recovers w EEl x and as such we are 

in the previous case. If x EEl x' has weight greater than d, then C(D(x' EEl x EEl C(r))) = C(r'), 

a different codeword, if the error correcting program D can run at all. As such Rec either 

outputs ..l or w EEl x EEl C(r EEl r'). Since SMw EEl x EEl C(r EEl r') = SMC(r EEl r') EEl J.l, where J.l is 

the key used in the previous invocation of the sketch protocol, any adversary making this 
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type of query can be said to know the offset between the previous key J.l and the new key 

J.L1
• As such, the adversary can simulate all queries in this case by outputting ..l. 

As this covers all the possible private queries, our proof is complete. 0 

We note that the main reason why we needed to use the code offset sketch in our insider 

secure fuzzy extractor, as opposed to a generic reuseable sketch, was that we required that 

Rec(w EB x', Gen(w EB x)) produce a known offset of wEB x, based only on x and x'. This 

"linearity" property is not just found in the code-offset sketch, it is common to all known 

reusable sketches, including the code offset sketch, its equivalent sketch the "syndrome" 

sketch, and the generic reusable sketch made by Boyen [13]. 

5.8 Related Key Attacks and Authentication 

The related key security of various cryptographic protocols is a relatively recent issue. On 

one side, it has been found that many widely used constructions (such as DES and AES) are 

insecure when subject to related key attacks and that it is difficult to construct new protocols 

that are secure against related key attacks. On the other hand, it is somewhat difficult to 

see how a related key attack could be practically applied to many different cryptographic 

protocols, especially when those protocols are used in isolation as one usually assumes that 

the key is stored in as secure a location as possible. 

Consider a strongly post-application robust fuzzy extractor with the additional property 

that for any sketch P <-- Fsk(w) and for any isometric permutation 8 : ll8(w)- wll > d 

where d is the error correcting distance of Rep we have that Rep(8(w), P) =..l. We note 

that our previous construction in the standard model satisfies this property as long as with 

overwhelming probability MACp(Q) -=1- MACpE!lx(Q) for adversarially chosen x and random J.l 

and that our construction in the random oracle model also satisfies this property. If a fuzzy 

extractor possesses this property we consider it to be "well-formed". We can show that 

such a well-formed strongly post-application robust fuzzy extractor enables us to construct 

a related-key secure MAC. 
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Let MAC~,~ where P .____ Fsk(w) be the construction that on input m, first computes 

~ .____ Rep(w, P). If~ =..l, MACel outputs ..l, else MAC~e,~(m) outputs MACRi (m) where 

MAC is a normal, not necessarily related key secure MAC. 

Theorem 5.8.1 If Fsk and Rep are a well-formed strongly post-application robust fuzzy 

extractor and MACx is a secure MAC, then MACel is a related key secure MAC. 

Proof. Let A be the adversary which can successfully break the related key security of 

MACe1. We will show that A must either break the security of MACx or the strong­

robustness of Fsk and Rep. 

We construct A'0 MAC to break the security of MACx as follow. Denote the queries made 

by A as ( ( JW, JP), m) where JP represents the change to the sketch and Jw represents the 

change tow. When A makes a query ((J'!f,J{),m), A' examines J'!/j,J;_ If J: is not the 

identity or if J'% is such that IIJ':(w)- wll > d for all w, A' returns ..l. Otherwise A' returns 

oMAC(m). When A returns its forgery (J':,J{),m*,T*, A checks the delta values again. If 

J: is the identity and J'% is such that IIJ'% ( w)- wll :S d then A' outputs m*, T* as its forgery 

on MACx. 

We show that A' provides a correct simulation of orel. We note that if for any query 

made by A if J: is not the identity then with overwhelming probability Rep(w, J:(P)) =..l, 

due to the strong-robustness of the fuzzy extractor. Due to the well formed property of 

our extractor we know that if J: is the identity and J'!/j is such that IIJ':(w)- wll :S d 

then Rep(J':(w),P) = Rep(w,P), otherwise Rep(J':(w),P) =..l. As such we can say that 

A' provides an accurate simulation of orel for all queries made by A. When a query made 

by A will return a result besides perp, it will return MACx(m) for the same random key 

K. Moreover, since A successfully forges on MACel with non-negligible probability, with 

non-negligible probability we can say that m*,T* is such that T* = MACx(m*), and also 

that m*, T* is not a valid message tag pair for a different key K'. D 

This allows us to construct related-key secure MAC's from any already existing MAC 

primitive in the limited CRS model of our first construction, or in the random oracle model 
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used in the second construction. If a well-formed, strongly robust fuzzy extractor exists in 

the standard model, we then gain the ability to construct related-key secure MAC's from 

any MAC primitive in the standard model. Note that this does not give us the ability to 

construct related-key secure PRP's due to the fact that the sketch is not pseudorandom and 

the fact that related-key secure PRP's are not allowed to return ..L on a related key query 

made by the adversary, as that allows an efficient distinguishing attack. 
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