3

% WILLIAM & MARY
CHARTERED 1693 W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2017

Extensions and Applications of Mean Length Mortality Estimators
for Assessment of Data-Limited Fisheries

Quang C. Huynh
College of William and Mary - Virginia Institute of Marine Science, ghuynh@vims.edu

Follow this and additional works at: https://scholarworks.wm.edu/etd

Cf Part of the Aquaculture and Fisheries Commons, and the Natural Resources Management and Policy

Commons

Recommended Citation

Huynh, Quang C., "Extensions and Applications of Mean Length Mortality Estimators for Assessment of
Data-Limited Fisheries" (2017). Dissertations, Theses, and Masters Projects. Paper 1516639583.
http://dx.doi.org/doi:10.21220/V5CM9D

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.


https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1516639583&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/78?utm_source=scholarworks.wm.edu%2Fetd%2F1516639583&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/170?utm_source=scholarworks.wm.edu%2Fetd%2F1516639583&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/170?utm_source=scholarworks.wm.edu%2Fetd%2F1516639583&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/doi:10.21220/V5CM9D
mailto:scholarworks@wm.edu

Extensions and applications of mean length mortality estimators for

assessment of data-limited fisheries

A Dissertation

Presented to

The Faculty of the School of Marine Science

The College of William and Mary in Virginia

In Partial Fulfillment
of the Requirements for the Degree of

Doctor of Philosophy

by
Quang C. Huynh

January 2018



APPROVAL PAGE

This dissertation is submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

Quang C. Huynh

Approved by the Committee, December, 2017

John M. Hoenig, Ph.D.
Committee Chair/Advisor

Mark J. Brush, Ph.D.

John E. Graves, Ph.D.

Ross J. Iaci, Ph.D.
Department of Mathematics

John F. Walter III, Ph.D.
Southeast Fisheries Science Center
Miami, Florida, USA



Table of Contents

ACKNOWICAZEIMENTS....c..iiieiiiieciiie et e e et e et eeeaaeeeaeeeennee s vii
LISt OF TADIES ....veieeiieeeiie ettt e e et e e s e e e e abaeesbaeeaseeenaeeas viii
LSt OF FIGUIES ...ttt ettt ettt e eabeeetbeesbeeesaessseesseesnseensnas X
F N 0] 1 v T SRS Xvi
AUTNOT S INOTC.....eiieeiieeeiiee ettt et e et e et e e e steeeebee e e baeesaseeeesseeessseesnsaeesasaeeennes xvii

Chapter 1: Sized-based mortality estimators and diagnostic procedures for assessment of

data-lmited fISRETIES......cccouiiiiii e e e e e 2
Lo L ADSITACT -ttt ettt ettt b ettt e b ettt e b et ettt b e e st et e be et et b e 2
L 6415 (o7 L1 o113 o ) o BRSPS 3
1.3. Description of the size-based mortality eStimatorS..........cccvveeviirerrreriieeeiieeciieerveeereeeiee s 5

1.3.1. Mean length-based mortality €StIMALOTS ........cceeveerieerieeieeiieriesteste e sere e eereeeee e 6
1.3.2. Composition-based mortality eStIMAtOrS ..........ccceeriirriirriiieieeriie e eee et eee e 8
1.4. Violations of model assumptions: implications, diagnostics, and solutions....................... 13
1.4.1. Uncertainty in life hiStory parameters............cceeeverreecriereerrenreneesreesneeneeveesneseneenns 14
1.4.2. Deterministic versus StOChAStiC SIZE€-at-aZC......c.ccverriereerierierieesieeseeseeseesresnesneens 17
1.4.3. Knife-edge selectivity versus gradual SelectiVity........cccevverierieriieriienienie e 18
1.4.4. Flat-top versus dome-shaped SEIeCtiVILY .........cceecuirerieciieriieieecre e 20
1.4.5. Large year class in TECTUILIMENT .......c.eecvieriierieiieeieesieeseesreseestesereeseeseessnesssesnseenseens 22
1.4.6. Trend in MOTTAIILY ....eevieeiiiieeieee ettt sttt ettt e bt e esaeeeeeens 24
1.5. Considerations for appliCatioNS.........ccueeciieecieeiiiieeiiieecieeereeereeesteeesreeereeeraeeeeeessseesaseens 25
1.5.1. Biological reference POINLS .......ccveevveerieeriieriieriie et et et et eieeseesteesrreeseesseesseesesessnenens 26
1.5.2. SOFtWAre PACKAZES ...eevveeveieeiiieiiiiieieeiie sttt ete ettt et ete e e s sbessseesaesaesseessaessneensaens 27
1.6, COMNCIUSIONS ...ttt ettt ettt ettt ettt e s bt e sh b e et e e bt e sbeesbeesbeesaeeemeeeaeeenbeesbeesaeesanesnneans 28
1.7 RELETEIICES ...ttt ettt sttt ettt et et e e st et e et e st eneesmte s e eseeneeseeseeneenes 30
L8 TABIES ...ttt ettt st b et b e ae et b e st et e b eaee s 36
1.9 FIGUIES ..ottt ettt ettt ettt ettt e st e e et e et e e bt e bt e saeasaee e bt enbeenseesbeesaeesanesnneens 39

Chapter 2: Comparative performance of three length-based mortality estimators........... 44
B BN o113 T SRR UURRPRRRO 44
2.2, TNEEOAUCTION ...ttt ettt e et et e e bt e s bt e s bt e s atesateeateesbeesbeeseeesaeeeaeeans 45
B TR\ (511 1 T e £ TSRS 50

2.3.1. SIMUIALION AESIZN...uvieiieiieriieiieiiieieerterteste st e sre e e ebeebeessbessseesseesseesseesseessaessseensanns 50
2.3.2. MoOrtality @StIMAtION......c.ueeivieeiieeiiiertieeeieeeieeerteeeteeeteeestaeeestreesbeeesseeessseessseesnseaans 54
2.3.3. Performance analySis .......ccccceecveierircrieiiieriieeieereeteesteesteesteeteesseesseesseeseesseessaessaessneens 57



2.3.4. SENSIVILY ANALYSES ...ccviiitierieiriiriireeteesteetesteereesseesseebeestreesseesseesseesseesseesssessseassenns 58

24 RESUIES ...ttt ettt ettt b ettt a bt et b e bt et nb e nt e tesaeeneens 59
2.4.1. Performance across factorial variables ...........ccoooeeiierieiieiiieiceeeeeeee e 60
2.4.2. SENSILIVILY ANALYSES ....uiiiiiiiiiiieiiiieiieeiieeeeieeerieeesiteeebeessbeeestseeestseessseessseeessseessseesnssenns 61

2.5, DISCUSSION ..eeteuietteitete ettt ettt ettt et e bt s bt e st e st et e eb e e st et e sbeemte bt sbeeneeententesbeeneeseseeeneens 62
2.5.1. Performance of mortality eStimators.........ccceevirrieeiiieriee ettt 62
2.5.2. SENSILIVILY ANALYSES ....uiiiiiiiiiiieitiieiieesieeeeieeeieeestteeebeeesbeeestseeesteeessseessseeessseessseeanssenns 65
2.5.3. Life hiStory CONSIACTALIONS........cccvierierieriieriiesireesieesteesteesteestresenesereesseesseessnesssessnessseans 67

2.6, CONCIUSION ...ttt ettt ettt et b et e b sb e et e bt e bt entesatentesbeemeentesbeeneans 68

B S =1 (S 1 Lo OSSP PUPRRPRRRRO 68

2.8, TABLES ...ttt ettt ettt ettt ettt bt en e et e e e e bt ene e teseeent e teeneenee s 73

2.9, FIGUIES ...eevieiieiiieiie et ete et te et e et e et e et enb e et e et e essseesseesseesseesseesseessaesssesnseessaesaensaesssesssenssenns 75

Chapter 3: Multispecies Extensions to a Nonequilibrium Length-Based Mortality
EStIMALOT ...ttt ettt ettt et st 83

I BN o1 7 - T OO OO OO OO O U PR RUSP 83

0 Y o1 10175 1o 4 DU SR 84

3.3  MELNOAS .t ettt ettt et et eae e 86
3.3.1. Model Development and Model Fitting............ccccoeevieiirieiiiiiniirieeeeie e 86
3.3.2. Modifications for Multispecies EStimation............cccueerveeiiiieeiieeeeiieenieecveeereeeevee e 88
3.3.3. Model Complexity and Model Selection ............ceecvieiieviierieeiiiiieereeie e 91
3.3.4. Application to Deepwater Snappers in the Puerto Rican Handline Fishery ................ 92

B RESULILS ...ttt et ettt et ettt ettt e b e be e b nne 95
3.4.1. Application to Snappers in the Puerto Rican Handline Fishery...........ccccocvevverrvennnnnn. 95
3.4.2. Sensitivity Analysis of Natural Mortality Specification ..........cccoccevevvreieevieerieesrennennn, 97

T T B 1o 0 0] 101 o F TSRS 97
3.5.1. Selection of the Minimum Length of Vulnerability to the Fishery..........c..ccceeunee.. 101
3.5.2. Other Assumptions and ConSidErations..........c.cccverveerierrerveeseesieseeseeseesnesnessseens 102

3.6, RETEICIICES ... ettt ettt e et e st e et e e e ateeabeenseenseeneeas 104

3.7 TADIES .t ettt st sttt h e e b ettt eneean 106

3.8 FIUIES .oeivieciieeiiecieeieet ettt et ettt ettt et e s bt esbe e st e ssaestbessbeesbeesteesssesssessseasseesseesses 109

Chapter 4: Estimating Total Mortality Rates from Mean Lengths and Catch Rates in
Nonequilibrium STEUALIONS .....cccviieiiiieeiie ettt e e e e e e e e eeaee e 115

O B o ] 3 ot USSR 115

A Xa (o1 L o1 o) o OSSPSR 116

T\ (51 4 o Yo USRS 117

v



4.3.1. Relationship between the Catch Rate and Mortality Rate .........ccccceeevvevieniieciercnnnn, 117

4.3.2. Integrating Mean Lengths and Catch Rates in a Model.........c.ccccovevveviveviececcneennnn, 120
4.3.3. Simulation Study of the Mortality EStIMators ..........ccceceerieereenienieeieeneeseeciee e 122
4.3.4. Application to the Mutton Snapper Pot Fishery in Puerto Rico........c..ccceeeevvrennnnnnen. 125
A RESUILS ...ttt h ettt s h e be st nee 126
4.4.1. Simulation Study of the Mortality EStIMators ..........ccceceeriiereenienieeieereeseeciee e 126
4.4.2. Application to the Mutton Snapper Pot Fishery in Puerto Rico...........cccceevevveennennnee. 128
4.5, DISCUSSION ....eutieuieeeeteeiiete et et et et et e e et e st e et e te s bt e beeaeeaeeteeseensesseeneensesseensesseeneenseeneeneenes 129
4.5.1. Simulation Study of the Mortality EStIMAtors ..........ccoecvveriiereeniieniierieeseeseesee e 129
4.5.2. Application to the Mutton Snapper Pot Fishery in Puerto Rico...........cccceevveruienennne. 131

O I 703 1 1od LD T3 10131 SRR 135
4.7 RETETEICES ...ttt e b ettt ettt et e st e st et ebe e nee 136
T I 1] [PPSR 138
4.9, FIGUIES ...eveieeiieeiiieette ettt ettt e et e sttt e et e e stbeeeavee e sbeeessbeesssaessseeassseesssaaessseessseeensseensseenssseanes 140

Chapter 5: How well do length-based mortality estimators and age-structured models

agree for stock status? A comparison with six southeastern United States stocks......... 149
S L ADSITACE 1. ettt ettt b et h ettt et eates 149
RN 5113 (016 10167 5101 DU ORI TRSR 150
5.3 IMELROAS ..ttt h e sttt et e e a e et e ettt e b eeean 153
5.3.1. StOCKS OF TNEETESE....c.veeueeieseieieie ettt ettt e et se et e e eeeees 153
5.3.2. MoOrtality @StIMAtION . ....ccueeitieiieiieriiestie ettt et et et et e ettesaeessee e be e beesseesseesaeesaeesnnesaneans 154
5.3.3. Comparison among MOAEIS..........ccueeruierciiiiiiieiiie et eeree et e iee e e s sereesereeebeeeseneenes 155
S RESUILS ...ttt ettt a ettt ettt n ettt ettt e et et ne et e aeeneeanas 157
5.4.1. Trends in fishing MOTtAlItY........ccceveviriiiriiiiiie ittt sreenre e 157
5.4.2. STOCK STATUS 1..veiiieeiieeieete ettt ettt ettt ettt et e st e eabeembeenteenbeense e seesbeeenseenseenseans 159
5.4.3. Residual analysiS.....c.ecccuiiieiiiiiieiiieeiie et eete et steeeteeeeteeesiaeesebeesbeeeaaeesasaeeenbeenns 161
5.5, DISCUSSION ...ttt ettt st ettt ettt et e e st at et e sb e bt e b e et e bt e st et e sbeestenbeeaeenbeeneentenaeeneenees 162
5.5.1. Life hiStOTy ParameLters .........ccceceerierierieeieeseesieesiteettesetesteeeeeeeseesseesstesseesaeesanesnseens 162
5.5.2. Selectivity and retention behavior...........cueeviiiiiiiiiiie et 163
5.5.3. Trends in recruitment to the recreational fisShery........c.ccccoevveeiiiiienieiciiiiicie e, 165
5.5.4. Uncertainty in catch and effort...........ccoecvriiiiiiiiiieie e 166
5.6 CONCIUSION ...ttt ettt ettt s e e sbte s bt e sateseteeatesabeeabeenbeesabeenbeenseenseeneeas 169
R G (<1 1S 161 SRR 170
58 TADIES ...ttt ettt et bt e at et bt et e st e neeates 174
5.9 FAGULES ..ottt ettt ettt ettt e b e bt e st e e s et e satesate e saeeeaeeeateenbeenteenseeneean 176



Chapter 6: CONCIUSIONS ......ccuviiiiiiiiieitieeieereerie et e eeeeteesteesaeesteesseessaeesseessneesseenssesseens 182

0. 1. IN XL ST uteeeeutrieeeeiiiee ettt e ettt e e ettt e e e ettt e e eeutteeeesstaeesensseeesansaeeesssaeesasssaeesansseeesansneessane 182

0.2, RETEIEIICES .. ..ottt ettt 185
Appendix A: Derivation of the length-converted catch curve (Chapter 2)..................... 187
Appendix B: Derivation of the Transitional Behavior of Weight per Unit Effort (Chapter
) et bbbt bt bt h ettt b e bbbt bt n et et e bbbt ene e 189
Appendix C: Technical description of the mean length mortality estimators (Chapter 5)
......................................................................................................................................... 192
Appendix D: Spawning potential ratio for the mean length estimators (Chapter 5) ...... 195
Appendix E: Residuals in the application of the mean length-based mortality estimators
(CRAPLET 5) ettt ettt et ettt e bt e et e s st e e b e e sabeeabeebeesnbeebaeenseans 197
Supplement t0 CRAPLET 2.......cociiiiieiiieiieeieeie ettt ettt e eeaeeteeebeebeeesseensaesnsaens 201
V8. ettt ettt h et b e bbbt et b 243

Vi



Acknowledgements

I would like to thank first and foremost my advisor, Dr. John Hoenig, for his guidance
and mentorship over the past five years. You taught me to be methodical and thorough in
my work, and you pushed me to expand my boundaries. I know this experience will be
invaluable down the line. Thanks to my committee, Drs. Mark Brush, John Graves, Ross
Iaci, and John Walter, for their support first as instructors, whether formal or informal, as
I was beginning my studies and subsequently as committee members for help and
feedback on my research and writing. A special thanks is also needed for Todd Gedamke,
whose dissertation helped me start mine and impromptu phone calls helped me see the
big picture and stay on track.

This dissertation would not be possible without the funding support from NOAA and
Virginia Sea Grant through Cooperative Agreements NA14OAR4170297 and
NA150AR4170184 (Population and Ecosystem Dynamics Fellowship), as well as the
VIMS Office of Academic Studies. I am particularly appreciative of Academics Studies
for the funding to attend training workshops and courses, which were invaluable for the
quantitative skills training and networking opportunities. Many thanks to Linda, Jen, and
Cathy at Academic Studies for helping me navigate through the administrative side of
things.

This dissertation would also not be possible without the work of the anglers, port
samplers, data managers who collect and maintain the data that were used in my analyses.

I would also like to acknowledge the many scientists and collaborators at the Southeast
Fisheries Science Center (SEFSC), Pacific Islands Fisheries Science Center (PIFSC), and
the International Council for the Exploration of the Sea (ICES) with whom I have had the
privilege to work.

Special thanks to the past and present members of the Hoenig lab for the adventures,
commiseration, support, and ideas: Matt Smith, Amy Then, Lisa Ailloud, Kristen Omori,
Liese Carleton, Lydia Goins, Dan Gonzales, and Phil Sadler.

Thanks to all involved in the VIMS community, especially fellow students and
colleagues, who made this journey a fun one. To my climbing partners who took me to
new heights. To the Sail and Paddle Club and the crew of Kingfisher for the sailing fun.
Finally, to my friends and family for their love and support from afar!

vii



List of Tables

Table 1.1. Summary of the data-limited, size-based mortality estimators. Descriptions of
the methods are provided in SEction 1.3.......ccooiiiiiiieieeeeeee e 36

Table 1.2. How assumptions of size-based mortality estimators are addressed. .............. 37

Table 1.3. Applications of and software packages for the size-based mortality estimators.
........................................................................................................................................... 38

Table 2.1. Parameter values used for data generation in the simulation study. Parameters
with multiple values were included in factorial design. Parameters Lso and Los are the
lengths of 50% and 95% selectivity, respectively, using a logistic function. Parameters
4, and o, are the mean and standard deviation of the normal probability density

function, respectively, with values standardized to 1 at length x, for dome-shaped
SCLECEIVILY. ..ttt ettt ettt ettt e et e b e et e et e e bt e bt e nb e e bt e sate e neeenne 73

Table 2.2. Truncation methods of the length data for estimating total mortality Z with the
length-converted catch curve (LCCC) and Beverton-Holt equation (BHE). No truncation
is associated with the LB method (LB-SPR). .........cooviiiiiiiiiieiceeeeeee e, 74

Table 3.1. Number of estimated parameters for the single-species model (SSM) and
multispecies models (MSM1, MSM?2, and MSM3), where N is the number of species, / is
the number of change points (years during which a change in total mortality occurred),
and 7/ + 1 is the number of estimated mortality rates. Values include the estimated residual
variance fOr €aCh SPECIES. .....uiiiiiiiiiiieiiie e 106

Table 3.2. Von Bertalanffy growth parameters (K = Brody growth coefficient; L« =
asymptotic length) for the three deepwater snapper Species. ........ccvevveevurerieenreenvenneans 106

Table 3.3. Estimates of the length at full fishery selectivity (Lc), which was used to
calculate mean lengths and natural mortality rates (M) for the three deepwater snapper
SPECICS. vveeurreeeurreeesreeeateeesteeesaseeesseeasseeasssaeanssaaassaeeansaeeasseeeanseeeanbaeeantaeensaeeensaeeensaeeesaeas 107

Table 3.4. Estimates (SE in parentheses) of the total instantaneous mortality rate (Z) and
change points (years during which a change in total mortality occurred; Z; = total
mortality before the change point; Z> = total mortality after the change point) from
application of the single-species model (SSM) and multispecies models 1 and 3 (MSM1
and MSM3) for the three deepwater snapper species. The proportional change in fishing
mortality (i.e., ) for MSM3 was estimated as 0.52 (SE = 0.08).......cccceevvervrrerveereennen. 107

Table 3.5. Difference in Akaike’s information criterion corrected for small sample sizes
(AAIC.) from application of the single-species model (SSM) and multispecies models 1
and 3 (MSM1 and MSM3) to the three deepwater snapper Species. .......ccceevveeervveernnnnn. 107

Table 3.6. Range of percent deviation (%6DEV; min = minimum; max = maximum) in
estimates of total mortality (Z; = total mortality before the change point; Z> = total
mortality after the change point) from the sensitivity analysis of natural mortality
specification in Multispecies model 3 as applied to the three deepwater snapper species.
......................................................................................................................................... 108

viii



Table 4.1. Factorial design and values of parameters used for the simulation study (Z =
total MOTTAIILY TALE). ..eevuiieiiiiiieie ettt st 138

Table 4.2. Estimates of total mortality (Z) and change points (D) for Mutton Snapper
from the mean length-only model (AAIC. = difference in Akaike’s information criterion
with correction for small sample sizes). Coefficients of variation (CVs) for the parameter
estimates are shown in parentheses; in CV calculations for the change points, the number
of years elapsed since the first year of the model (i.e., 1983) was used in the denominator.
......................................................................................................................................... 138

Table 4.3. Estimates of total mortality (Z) and change points (D) for Mutton Snapper
from the mean length—catch rate model (AAIC. = difference in Akaike’s information
criterion with correction for small sample sizes). Coefficients of variation (CVs) for the
parameter estimates are shown in parentheses; in CV calculations for the change points,
the number of years elapsed since the first year of the model (i.e., 1983) was used in the
AENOMINALOT. ....tiiiiiiietiee ettt ettt se e bt e e et e s bt et e st e bt easesaeesseenees 139

Table 5.1. Summary of size regulations from the recreational fishery (in terms of fork
length). Only years preceding the year of the assessment are considered. ..................... 174

Table 5.2. Summary of assessment models and the length composition and index of
abundance for the length-based mortality estimators. The Recreational fleet combines the

data from both the Charter/Private and the Headboat fleets. ...........ccceeveviviiiiiininennen. 174
Table 5.3. Life history parameters used in the analyses for the length-based mortality

estimators. Parameters are defined in Table D.1. .......ccccoooiieiiiiiieiiiiiicceeecece e 175
Table C.1. Definitions of variables for the ML and MLCR models............cceerureennneen. 194
Table D.1. Definition of variables for spawning potential ratio calculation. ................. 196

iX



List of Figures

Figure 1.1. Application of the mean length-based mortality estimators for the Northern
management (New England) stock of goosefish (Lophius americanus). Top figure:
estimates of instantaneous total mortality Z (year™') from successive fits of Gedamke-
Hoenig with differing number of change points (colored lines) and independent year-
specific estimates from the BHE (points with dotted loess regression line). Parentheses in
legend indicate AAIC values for different change points with the Gedamke-Hoenig
models. Compared to Gedamke-Hoenig, the BHE will underestimates the magnitude of
change in the mortality rate until a new equilibrium mean length is reached. Bottom
figure: observed mean lengths (points) and predicted mean lengths from the Gedamke-
Hoenig models (colored lines). Gedamke-Hoenig allows for evaluation of goodness of fit
to the mean length data. With the 1-change point model, the model the mean length is
underestimated during 1987-1993 and generally overestimated from 1994-2001. This
trend in residuals is removed with a 2-change point model, which is supported with AIC.
Data and life history parameters were obtained from Gedamke & Hoenig (2006). ......... 39

Figure 1.2. Application of the LCCC to yellow-striped goatfish (Upeneus vittatus) in
Manila Bay, Philippines. Top figure: the observed length composition (with 1-cm length
bins), the vertical dotted line marks L . Bottom figure: conversion of lengths to relative
ages and linear regression (red line) on relative ages to estimate total mortality Z
(Equation 1.4). Numbers above points index length bins; relative ages could not be
calculated because there was zero catch in length bin #16 and the length bin #18 was
larger than L . Solid points indicate the length bins used in the LCCC. Open points
indicate truncated length bins because they are assumed to be incompletely selected (bins
1-7). Length bins close to L, (bins 14-18) were also truncated because the log-linear

relationship between relative age and the catch breaks down at lengths near L, due to the

effect of (1) dome selectivity, (2) outlier observations relative to other length bins, or (3)
significant overlap of multiple ages. Data and life history parameters were obtained from
Sparre & Venema (1998) through the TropFishR software package (Mildenberger,
Taylor, & WOILE, 2017). .ottt et e b e eeaeeenaee e 40

Figure 1.3. Length distributions in different /M scenarios for two species which vary in
M/K. With increasing F/M, the shape of the length distribution changes and there is
truncation with reduced abundance in large size classes. In the low M/K species (Species
I), the modal length is much larger than the first fully selected length when F/M is low.
As F/M increases, the mode moves towards the left. In the high M/K species (Species I1I),
the mode of the distribution appears to be more stable and the ascending limb of the
length distribution reflects selectivity (regardless of F/M). In low M/K scenarios, more
caution is needed when using the mode as the L. for the mean length-based methods, a
length smaller than the mode will be more appropriate. In high M/K scenarios, the mode
can be used more reliably as the L.. The age-structured LB-SPR was the operating model,
with life history parameters for Species I and Species III obtained from Hordyk, Ono,
Valencia, €f @l. (2015) ...ttt ettt s 41

Figure 1.4. Diagnostic of dome selectivity from the BHE. Top figure: Estimates of total
mortality Z from the BHE based on increasing values of L.. Horizontal, dashed line

X



indicates the true Z = 0.79 (F/M = 0.25) and vertical, dashed line indicates the length of
95% selectivity. Three scenarios are evaluated: L is known perfectly with logistic

selectivity in the length composition (Logistic), a 20% overestimate of L_ is used in the
BHE with logistic selectivity (Logistic, High L_ ), and L_ is known perfectly with dome

selectivity (Dome). Bottom figure: Logistic (solid line) and dome (dashed line)
selectivity. In the Logistic scenario, Z estimates from the BHE plateau when lengths that
are near or above the length of full selectivity are chosen as the L.. The increasing trend

in estimates of Z in the High L, and Dome scenarios could be used to evaluate whether

there is either dome selectivity or an overestimate of L is occurring, although these two

causes may not be differentiable. Length compositions were generated from the age-
based LB-SPR model with the Species III life history with M/K = 1.54 (Hordyk, Ono,
Valencia, €f l., 2015). ...ooo ittt e aeerae s 42

Figure 1.5. Diagnostic of a recruitment trend over time based on the response in mean
length and index of abundance when there is a change in mortality (MortalityChange),
recruitment (RecruitChange), or both (BothChange). With a change in mortality, both the
mean length and index change in the same direction. With a change in recruitment, the
mean length and index change in different directions. The trend in the mean length and
index is suggested as a diagnostic for evaluating whether the changes in mortality versus
recruitment can be identified. LIME was the operating model for data generation, and life
history parameters from the Medium life history type from Rudd & Thorson (in press)
WETE USCA. 1.ttt ettt b e s ettt et sa e 43

Figure 2.1. Length-based selectivity functions used in the simulation...............cc..c........ 75

Figure 2.2. Histogram of a length frequency distribution with the left-handed decision
rules (Half-peak abundance, Peak, and Peak-plus) used to select the length bin of left
truncation for the LCCC and value of L. for the BHE in the simulation study. ............... 75

Figure 2.3. Expected length frequency distributions obtained from the sum of 1,000 data
sets from the simulation stratified by the factorial design for M/K, F/M, and selectivity.
Selectivity functions correspond to those in Figure 2.1. In all panels, medium growth
variability and low recruitment variability was assumed in the sample. Dashed vertical
lines indicate L, = 500 (Table 2.1).....cccoiiiiiiiiiiieieee e 76

Figure 2.4. %Bias (top grids) and %RMSE (bottom grids) from the simulation study when
the data set sample size is 2000 (A) and 200 (B). For each method, factorial combinations
are stratified by M/K and F/M. Numbers and horizontal lines in the violin plots indicate
median %Bias and Y%RMSE, with the numbers rounded to the nearest whole number for
clarity. The shape of the violin plots shows the distribution of values. Asterisks and
shaded violin plots indicate the method with the lowest median value in each grid cell
(not subject to rounding error). Rows in each grid have separate scales on the y-axis to
show the shape of the VIolin PIOtS. ........cciiiiiiciiiriieiieieee e 77

Figure 2.5. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and growth
variability. Only methods B1 and L5 are shown (corner text in the corners indicate the
method shown). Numbers and horizontal lines in the violin plot indicate median %Bias
and %RMSE and the shape of violin plot shows the distribution of values. Asterisks and

xi



shaded violin plots indicate the method with the lowest median value in each grid cell
(not subject to TOUNAING ITOT). ...evuuieiieiiieiiieeiieeite ettt ettt e st e st e e e seeesaeeenee 78

Figure 2.6. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and
recruitment variability. Only methods B1 and L5 are shown (corner text in the corners
indicate the method shown). Numbers and horizontal lines in the violin plot indicate
median %Bias and %RMSE and the shape of violin plot shows the distribution of values.
Asterisks and shaded violin plots indicate the method with the lowest median value in
each grid cell (not subject to roUNding €ITOT)......cc.eeeeiuieieiiieeiie et 79

Figure 2.7. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and
selectivity. Only methods B1 and L5 are shown (corner text in the corners indicate the
method shown). Numbers and horizontal lines in the violin plot indicate median %Bias
and %RMSE and the shape of violin plot shows the distribution of values. Asterisks and
shaded violin plots indicate the method with the lowest median value in each grid cell
(not subject to TOUNAING ITOT). ...ccvieuieeiieiiieeiieeie et eiee et eteeebe e reeereesseessbeesaesnseesseeenne 80

Figure 2.8. The effect of bin width on %Bias (left grid) and %RMSE (right grid) for the
length-based estimators. Only methods B1 and L5 are shown (corner text in the corners
indicate the method shown). Each line represents individual factorial combinations
stratified in separate cells by M/K and F/M. ..........cccvevvueeoieniiieiieiieeiieeeeeieesee e 81

Figure 2.9. Individual estimates of total mortality Z based on the assumed values of von

Bertalanffy parameters l& (left grid) and K (right grid) in the estimation model

(parameters are sampled from a bivariate normal distribution around the true values with
a correlation of -0.9). Only methods B1 and L5 are shown (corner text in the corners
indicate the method shown). Plotted estimates are from the simulations with medium
growth variability, low recruitment variability, and the gradual selectivity function
stratified in separate cells by M/K and F/M. Dotted lines indicate the true value of
mortality and growth parameter in the respective cell.........cooovieviiiiiniiiiniieceeeeee, 82

Figure 3.1. Length frequency histograms for the three deepwater snapper species
captured in the Puerto Rican handline fishery from 1983 to 2013. Dashed vertical lines
indicate the length of full selectivity (Lc), above which the annual mean lengths were
calculated for the multispecies MOdEIS. ........cccueevieiiiiiiiiiieiecie e 109

Figure 3.2. Observed (points and thin lines) and predicted mean lengths (bold lines) from
the Single Species Model (SSM), Multispecies Model 1 (MSM1), and Multispecies
Model 3 (MSM3) for Silk Snapper, Blackfin Snapper, and Vermilion Snapper. The grey
shaded region indicates the 95% confidence interval of the predicted mean length from
Multispecies Model 1 using the derived asymptotic SEs. Concentric circles indicate the
annual sample size of observed lengths (small circles = 100-249, medium circles = 250-
499, large circles = 500 or more). No circles were drawn for sample sizes less than 100.
The observed mean length in 1988 for Silk Snapper (514 mm from 29 samples) is not
shown but was used in the analysiS..........cceeeriieeiiiieeiiicce e e 110

Figure 3.3. Likelihood profile for the change point (year during which the change in
mortality occurred) from Multispecies Model 1 in the application to the Puerto Rican
deepwater SNAPPET COMPLEX. ...ccuiiruiieiieriieiieeie et eete et et e ete et e seeeebeenteeenbeensaeenseens 111

xii



Figure 3.4. Estimates of the total mortality rate (Z) for the three deepwater snapper
species based on the sensitivity analysis of Multispecies Model 3 to different specified
values of natural mortality (M). The x-axis is jittered to enhance visibility of the Z-values
obtained in each “Din™ Of M. ....c.oooiiiiiiiiiie e 112

Figure 3.5. Modal lengths from annual length frequency distributions for the three Puerto
Rican deepwater snapper species. The dashed horizontal line in each panel shows the
length of full fishery selectivity (Lc), which was used for mortality estimation............. 113

Figure 3.6. Sensitivity analysis of the estimated total mortality rates (Z, = total mortality
before the change point; Z, = total mortality after the change point) in Silk Snapper
when different lengths at full fishery selectivity (Lc) are used. ........ccoeeveecveenveecieennnnne. 114

Figure 4.1. Response of a number-per-unit-effort (NPUFE) index of abundance (lower
panel) to a 100% increase in total mortality (Z) from 0.5 year! to 1.0 year'! (upper panel).
The new asymptotic value of the catch rate will be half of the original equilibrium catch
rate. The values of the catch rate are scaled by ¢ which is the product of the catchability

coefficient ¢ and reCTUIMENT R.......cccuiiiiiiiiiiiiieiie ettt et eaeeens 140

Figure 4.2. Hypothetical time series of stochastic recruitment that is lognormally
distributed around a stationary mean (top panel) and the corresponding response of mean
length (middle panel) and catch rate (bottom panel). Mortality is held constant over time.
Solid horizontal lines indicate values predicted under constant recruitment. Life history
values from Table 4.1 Were USEd. ........coceeriiriiiriiiiiieeeee s 141

Figure 4.3. Percent Bias (%Bias) of estimated total mortality rates Z; and Z2, and the
change point based on mean lengths only (ML; open circles) or based on mean lengths
and catch rates (MLCR; filled circles) from the simulation. The four mortality scenarios
(A-D) and four values of recruitment variability (o, ) from the simulation are described
in Table 4.1. Dashed vertical lines indicate %Bias = 0. In some cases, open circles
directly overlap filled CITCIES. .....ooviiiiiiiiieiiecii e e 142

Figure 4.4. Percent root mean square error (%6RMSE) of estimated total mortality rates Z,
and Z,, and the change point based on mean lengths only (ML; open circles) or based on
mean lengths and catch rates (MLCR; filled circles) from the simulation. The four
mortality scenarios (A-D) and four values of recruitment variability (o, ) from the

simulation are described in Table 4.1. Dashed vertical lines indicate %RMSE = 0. In
some cases, open circles directly overlap filled circles. ........cccoeevvveviieinciiinieeeieee, 143

Figure 4.5. Pearson’s product-moment correlation coefficients between paired residuals
of mean length and catch rate (open squares = true residuals; filled triangles = fitted-
MLCR residuals [i.e., mean length-catch rate model]) from the simulation. The four
mortality scenarios (A-D) and four levels of recruitment variability (o, ) are described in
Table 4.1. The dashed vertical line indicates a correlation coefficient of zero. ............. 144
Figure 4.6. The mean (+/- SD; n = 10,000) of the largest run for sequences of positive
and negative residuals of mean lengths and catch rate (number-per-unit-effort [NPUE];

open squares = true residuals; asterisks = fitted-ML; filled triangles = fitted-MLCR
residuals [i.e., mean length-catch rate model]) in a 20-year time series. The four mortality

xiii



scenarios (A-D) and four levels of recruitment variability (o, ) are described in Table
L USSP 145

Figure 4.7. Observed (points) and predicted mean lengths assuming one change in
mortality (solid black line) or two changes in mortality (dashed red line) for Mutton
Snapper based on the mean length-only model. Dot-dashed vertical lines indicate the
estimated change points for the respective model (black = one change; red = two
changes). Concentric circles around mean lengths indicate the annual sample size of
observations used in the likelihood function (with legend provided); the area of the circle
is proportional to the SAMPIE SIZE.......c.ueeeiviiieiiieeiie e 146

Figure 4.8. Observed (points) and predicted mean lengths (upper panel) and weight per
unit effort (WPUE; bottom panel) assuming one change in mortality (solid black line) or
two changes in mortality (dashed red line) for Mutton Snapper based on the mean length-
catch rate model. Dot-dashed vertical lines indicate the estimated change points for the
respective model (black = one change; red = two changes). Concentric circles around
mean lengths indicate the annual sample size of observations used in the likelihood
function (with legend provided); the area of the circle is proportional to the sample size.
......................................................................................................................................... 147

Figure 4.9. Scatterplots (lower triangle), correlation coefficients (upper triangle), and
coefficients of variation (diagonal) of life history parameters sampled from a multivariate

normal distribution (L , K, and b; symbols defined in Table 4.1 and the mean values for
the sensitivity values are defined by Burton [2002]) and the resulting mortality estimate (
Z,) in the terminal year of the time series for Mutton Snapper based on the mean length-

catch rate model with two change POINtS. .........ccccuvieeiiieeiieeeee e 148

Figure 5.1. Summary length compositions summed across all available years of data for
the six stocks for the mean length mortality estimators. Solid vertical line indicates L. and
dashed vertical 1ine INAICAES Loo. ...eeevieruiieiieiiiieiieeieeie et e 176

Figure 5.2. Estimates of scaled F' from the four models (ASM = age-structured model,
ML = mean length, MLCR = mean length with catch rate, MLeffort = mean length with
effort). Annual estimates were converted to Z-scores and, for ASM and MLeffort,
smoothed over time with a loess regression line. The MLeffort model did not converge
for GOM Spanish Mackerel. ...........ccoiiiiiiiiiiiiiiiiee et 177

Figure 5.3. Observed (connected points) and predicted mean lengths (colored lines) from
the three length-based mortality estimators (ML = mean length, MLCR = mean length
with catch rate, MLeffort = mean length with effort) and observed and predicted index
for the MLCR MOdEL.........ooiiiiiiiieeee et e 178

Figure 5.4. Annual estimates of F/Fusy (relative F) from the four models (ASM = age-
structured model, ML = mean length, MLCR = mean length with catch rate, MLeffort =
mean length with effort). The ASM was the Beaufort Assessment Model for ATL Cobia
and Stock Synthesis for all other stocks. Fiusy was estimated in the ASM for ATL Cobia
while for all other methods, the Fasy ProXy 1S F30%. ..cveeeveereeecreerieeiienienieeneeesseenieeenns 179

Figure 5.5. The proportion of years with overfishing as estimated with the four models
within the respective time periods for the 6 stocks. The MLeffort model did not converge

X1V



for GOM Spanish mackerel. For Pre-1995 and Post-1995, numbers indicate the number
of years in the assessment for the respective time period............ccceeveeeiienieeneenieninnn, 180

Figure 5.6. Estimates of relative effort for GOM Spanish mackerel from the recreational
fleet, obtained as the ratio of the recreational catch and index of abundance, and the
shrimp bycatch fleet, estimated as described in Linton (2012). Estimates are scaled so
that the time SEeries MEAN IS ONE. ...c..cocviruieriiriiiriiiniteienttete ettt ettt ettt enees 181

Figure E.1. Standardized residuals of mean length from the ML model. Residuals were
calculated by subtracting the predicted value from the observed value and then dividing
the difference by the estimated standard deviation............c.cccceeveiieniieiieniencieerieeeenee. 198

Figure E.2. Standardized residuals of mean length and index from the MLCR model.
Residuals were calculated by subtracting the predicted value from the observed value and
then dividing the difference by the estimated standard deviation.............cccccceevuveenneennee. 199

Figure E.3. Standardized residuals of mean length from the MLeffort model. Residuals
were calculated by subtracting the predicted value from the observed value and then
dividing the difference by the estimated standard deviation. ............ccceevvvveiieeenieennnenn. 200

XV



Abstract

For data-limited fisheries, length-based mortality estimators are attractive as
alternatives to age-structured models due to the simpler data requirements and ease of use
of the former. This dissertation develops new extensions of mean length-based mortality
estimators and applies them to federally-managed stocks in the southeastern U.S. and
U.S. Caribbean.

Chapter 1 presents a review of length-based methods from the literature. Common
themes regarding the methodology, assumptions, and diagnostics in these length-based
methods are discussed. In Chapter 2, a simulation study evaluates the performance of the
length-converted catch curve (LCCC), Beverton-Holt equation (BHE), and Length
Based-Spawner Potential Ratio (LB-SPR) over a range of scenarios. Although the LCCC
and BHE are older methods than LB-SPR, the former outperformed LB-SPR in many
scenarios in the simulation. Overall, it was found that the three length-based mortality
estimators are less likely to perform well for low M/K stocks (M/K 1is the ratio of the
natural mortality rate and the von Bertalanffy growth parameter; this ratio describes
different life history strategies of exploited fish and invertebrate populations), while
various decision rules for truncating the length data for the LCCC and BHE were less
influential.

In Chapter 3, a multi-stock model is developed for the non-equilibrium mean
length-based mortality estimator and then applied to the deepwater snapper complex in
Puerto Rico. The multispecies estimator evaluates synchrony in changes to the mean
length of multiple species in a complex. Synchrony in mortality can reduce the number of
estimated parameters and borrows information from more informative species to lesser
sampled species in the model. In Chapter 4, a new method is developed to estimate
mortality from both mean lengths and catch rates (MLCR), which is an extension of the
mean length-only (ML) model. To do so, the corresponding behavior for the catch rate
following step-wise changes in mortality is derived. Application of both models to Puerto
Rico mutton snapper shows that the MLCR model can provide more information to
support a more complex mortality history with the two data types compared to the ML
model.

In Chapter 5, a suite of mean length-based mortality estimators is applied to six
stocks (four in the Gulf of Mexico and two in the U.S. Atlantic) recently assessed with
age-structured models. There was general agreement in historical mortality trends
between the age-structured models and the mean length-based methods, although there
were some discrepancies which are discussed. All models also agreed on the overfishing
status in the terminal year of the assessment of the six stocks considered here when the
mortality rates were compared relative to reference points.

This dissertation develops new length-based assessment methods which consider
multiple sources of data. The review guides prospective users on potential choices for
assessment with length-based methods. Issues and diagnostics associated with the
methods are also discussed in the review and highlighted in the example applications.
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Extensions and applications of mean length mortality estimators for
assessment of data-limited fisheries



Chapter 1: Sized-based mortality estimators and diagnostic
procedures for assessment of data-limited fisheries

1.1. Abstract

We review the suite of methods which use size composition data for mortality estimation
and stock status determination for data-limited fisheries. Methods that are currently
available can be grouped into two categories: mean length-based methods, in which the
mortality rate is estimated from the observed mean length of the catch, and composition-
based methods, in which the mortality rate is estimated based on the shape of the size
distribution. The simplest methods assume equilibrium conditions. Advances in
methodology provide the opportunity to assess goodness of fit and allow for mortality
estimation in nonequilibrium situations from multiple years of data and additional data
types such as fishing effort and indices of abundance. We discuss six issues that are often
encountered with size-based mortality estimators, including assumptions regarding
growth, selectivity, recruitment, and mortality (with respect to time and age). We
describe the effects of violations of these assumptions, summarize simulation studies
which have evaluated the performance of these methods, and propose diagnostic
procedures for identifying violations. From this discussion, we provide general guidelines

and solutions to address violations in model assumptions.



1.2. Introduction

Since the mid-20" century, an array of size-based methods has been developed for
the assessment of exploited marine resources. For most of the world’s fisheries, data-
limited is the norm rather than the exception (Newman, Berkson, & Suatoni, 2015). Such
situations often arise when there are limitations in time or money for data collection or
study (Bentley, 2015; Chrysafi & Kuparinen, 2016). With limited resources, priority is
often given to assessments of higher-valued stocks. Data-limited, size-based methods are
attractive in cases where other data types are not available for traditional stock
assessment models, such as statistical catch-at-age models. These methods generally
estimate mortality rates for a stock from size composition and life history parameters.
Survival is informed by the relative abundance of small and large animals in the catch
despite the diversity of modeling approaches. Thus, the depletion of large animals implies
a population that experiences a high mortality rate because few animals survive to large
sizes.

There are two general families of size-based methods: mean-length based and
composition-based methods. In the former, information from the length composition is
summarized by calculating the mean length using lengths larger than a specified size of
full vulnerability L. (Beverton & Holt, 1956; Gedamke & Hoenig, 2006). From a single
calculation of the mean length, the mortality rate is estimated from a moment estimator
under equilibrium assumptions. To allow for the equilibrium assumption to be relaxed, a
likelihood framework can be used to estimate a series of historical mortality rates from
multiple years of mean lengths. Recent composition-based methods use the shape of the

size composition to estimate the mortality rate and selectivity parameters which produce



the best fit to the data in a likelihood-based framework (Hordyk, Ono, Prince, & Walters,
2016; Hordyk, Ono, Valencia, Loneragan, & Prince, 2015; Kokkalis, Thygesen, Nielsen,
& Andersen, 2015; Rudd & Thorson, in press). An older composition-based method, the
length-converted catch curve, estimates mortality from a linear regression fitted to a
subset of the length composition (Pauly, 1983). Both equilibrium and nonequilibrium size
composition methods have been developed.

Historically, length-based methods, such as ELEFAN (Pauly, 1987; Taylor &
Mildenberger, 2017) and MULTIFAN (Fournier, et al., 1990), were developed as
estimators of growth parameters and empirical stock status indicators (Cope & Punt,
2009; Geromont & Butterworth, 2015; Jardim, Azevedo, & Brites, 2015; Punt, Campbell,
& Smith, 2001). In this paper, we only consider analytical methods that estimate
mortality rates for data-limited applications where growth is known but the catch is not
necessarily known.

Data-limited, size-based methods require knowledge of life history parameters
and may make simplifying assumptions regarding the population dynamics underlying
the data. Selectivity may be estimated or fixed in the analysis (for example, only fully
selected lengths are analyzed for some methods, which require the user to determine the
length of full selectivity beforehand). Constant-rate assumptions are often made
regarding recruitment and mortality and some methods assume deterministic growth. In
situations when only a single sample of lengths is available, these assumptions may be
needed for mortality estimation to remain tractable. However, when multiple years of
data are used in a single analysis, some equilibrium assumptions can be relaxed in the

model. Length-based methods are methodologically rich by allowing for the inclusion of



additional data types. For example, an index of recruitment, in conjunction with length
data for several years, would allow for mortality estimation without assumptions of
equilibrium recruitment or constant mortality (Gedamke, Hoenig, DuPaul, & Musick,
2008).

In this paper, we review the current methods available for data-limited, size-based
assessments. We first describe various methods and their modeling approaches for
estimating mortality rates. Next, we list the assumptions and discuss the effect of
violations of assumptions on mortality estimation. We summarize the results of
simulation studies which have evaluated the robustness of these methods to these
simplifying assumptions and describe diagnostic procedures that can be used to evaluate
the extent to which mortality estimation has been biased. Finally, we describe how some

assumptions may be relaxed.

1.3. Description of the size-based mortality estimators

In this section, a brief description of the size-based methods, with their data
requirements and assumptions, is provided (Table 1.1). The data requirements can be
generally split into three categories in terms of availability: (1) a single length
composition (from a single year or pooled from multiple years), (2) multiple years of
length composition, and (3) multiple years of length composition as well as auxiliary
data. In all three cases, some growth and life history parameters are assumed to be
known. The required life history parameters and assumptions regarding growth
(variability in size-at-age), recruitment, selectivity, and mortality (with respect to time

and age) vary depending on the method.



1.3.1. Mean length-based mortality estimators

The mean length-based mortality estimators include the Beverton-Holt equation
(BHE; Beverton & Holt, 1956) and the Gedamke-Hoenig (GH) nonequilibrium Beverton-
Holt extension (Gedamke & Hoenig, 2006). Assuming constant recruitment and constant
selectivity (knife-edge above length L) over time, the mean length is function of the
mortality rate experienced in the population. The BHE is an equilibrium moment
estimator in which the sample mean length is equated with its expected value as a

function of Z. After solving for Z, the estimator is expressed as

_K(L,-L)

Z7="
L-L

: (1.1)

where L and K are the asymptotic length and the growth coefficient, respectively, from

the von Bertalanffy equation, Lc is the fully selected length, and L is the mean length of
animals larger than L. For the BHE, a single mean length is calculated from either a
single year or from multiple years when constant Z with time and age is to be assumed.
The GH estimator is an expansion of the BHE for estimating total mortality rates
in historical time stanzas from multiple years of mean length. When mortality changes,
the equilibrium BHE will underestimate the magnitude of the change in mortality
(Hilborn & Walters, 1992). To correct for this, the nonequilibrium estimator divides the
time series of mean lengths into time stanzas where total mortality is constant within time
stanzas. The transitory behavior of the mean length from one mortality rate to another is
then modeled so that the predicted mean length is a function of prior mortality rates and

the time elapsed since those mortality rates were experienced. The estimated parameters



are the mortality rates in each stanza and the change points between time stanzas (in
calendar time) that maximize the log-likelihood (log L), which is proportional to the
negative of the weighted sum of squares of the deviations between observed and

predicted mean lengths,

logLoc=Sm, (L, -u,f, (1.2)
y

where y indexes year, fy is the observed mean length, u, is the predicted mean length
as a function of estimated parameters, and m,, is the sample size used to calculate fy .

Typically, the model is fitted successively with differing numbers of change points and
model selection procedures (e.g., Akaike Information Criterion, AIC) are used to select
the model with the appropriate number of change points (Figure 1.1).

GH forms a general framework for mortality estimation using mean lengths with
other data types, including indices of recruitment (Gedamke, et al., 2008) and indices of
abundance (Huynh, Gedamke, Porch, et al., 2017). The method has also been extended to
analyze stock complexes with synchronous changes in fishing mortality among several
stocks (Huynh, Gedamke, Hoenig, & Porch, 2017). In all of these, the mortality rates are
stanza-specific. Along with the BHE, fishing mortality ' can be obtained by subtracting
natural mortality M from the estimate of total mortality (F' = Z — M), although this is not
necessary to use the methods.

Another extension of GH has been developed to estimate year-specific mortality
(GH with effort; Then, Hoenig, & Huynh, in press). In this model, fishing effort is used
as an index of mortality. Total mortality in year y is parameterized as

Z},=F},+M=qu+M, (1.3)



where the fishing mortality /' in year y is the product of the fishing effort f'and the
catchability coefficient ¢, and total mortality is the sum of the natural mortality rate M
and fishing mortality (the estimated parameters are ¢ and M). Estimates of g and M are
often highly negatively correlated, but M may be fixed to an assumed value. In an
application to stocks of Norway lobster Nephrops norvegicus, the effective effort was
calculated as the ratio of the commercial catch and catch per unit effort, and the estimated
M was often close to the assumed value (Then, ef al., in press).

All mean length-based methods assume no growth variability, constant
recruitment, knife-edge selectivity above length L., and perfectly-known growth

parameters.

1.3.2. Composition-based mortality estimators

Four composition-based methods are considered in this paper: the length-
converted catch curve (LCCC), a linear regression based method, and the LB-SPR, S6,
and LIME models, which are likelihood-based.

The LCCC is a length-based analogue of a cross-sectional, age-based catch curve
(Pauly, 1983). With an age-based catch curve, the estimate of total mortality Z is the
magnitude of the slope in a linear regression of the logarithm of catch-at-age versus age
of fully selected animals (Ricker, 1975). With the length-converted catch curve, a length
frequency distribution is instead used where the lengths are deterministically converted to
relative ages. Assuming no growth variability, constant recruitment, and von Bertalanffy
growth, an estimate of Z is obtained from a linear regression of the logarithm of catch-at-

relative-age (Ci) from fully selected length bins versus relative-age (#),



log(C,)=a+ (1 - %)ti , (1.4)

where # is the relative age and is defined as ¢, =log(l—L,/L,) with L; as the length at the

midpoint of the i-th length bin, a is the intercept of the linear regression, and 1-Z/K is
the slope of the regression line (Figure 1.2).

Small size classes are removed from the analysis due to incomplete selection.
Two additional considerations for the LCCC are also needed. First, length bins whose

midpoints are larger than L are removed because relative ages cannot be calculated for

these length bins. Secondly, additional size classes can also be removed if there is
perceived observation error or dome shaped selectivity, or if overlapping ages in the large
size bins break down the linear relationship in Equation 1.4 (Sparre & Venema, 1998).
There are several parameterizations of the LCCC, all of which are equivalent (Pauly,
1983; Punt, Huang, and Maunder, 2013).

The Length-Based Spawner Potential Ratio (LB-SPR) method is an equilibrium

mortality estimator which uses the M/K ratio, L, , the coefficient of variation (CV) in

length-at-age (also referred to as the CV of L_ ), and a single length composition to

estimate F/M. Assuming constant recruitment and logistic selectivity, the shape of the
length composition for an unexploited population is determined from M/K (Hordyk, Ono,
Sainsbury, Loneragan, & Prince, 2015), while the observed length composition is a
function of Z/K (Pauly, 1984). Based on the extent of truncation in the observed length
frequency relative to an unexploited length composition (Figure 1.3), the fishing

mortality relative to natural mortality, F/M, is estimable because
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Estimates of selectivity (logistic function of length) and F/M are those which maximize
the log-likelihood which assumes a multinomial distribution for the observed length

composition,

log L o ZNpi log(ﬁi), (1.6)

where N is the sample size of the length composition and p, and p, are the observed

and predicted proportion, respectively, in length bin i.

Individual estimates of M and K are unnecessary because the ratio of mortality
and growth determines the size structure of the virgin population. This is advantageous
when the estimates of M and K are highly uncertain. By using the ratio, less information
is needed to use LB-SPR. Meta-analysis has shown that there is invariance in M/K based
on life history and reproductive strategies (Prince, Hordyk, Valencia, Loneragan, &
Sainsbury, 2015), although this may not necessarily hold true in all taxa (Nadon & Ault,
2016). From only M/K, the magnitude of F is not estimable, but F/M can also be used to
obtain F/Fusy (section 1.5.1). The spawner potential ratio is used as the biological
reference point.

There are two versions of LB-SPR, in which either an age-structured model or
length-structured model is used. In the age-structured model, the predicted age
composition is converted to a length composition via an age-length transition matrix to fit
to the observed lengths (Hordyk, Ono, Valencia, et al., 2015). Selectivity is age-based

and the variability in length-at-age in the model is always normally distributed. In the

10



length-structured version of LB-SPR, length-based selectivity is implemented, which
more quickly fishes out faster-growing individuals in a cohort than slower-growing
individuals (see Figure 1 of Punt, ef al., 2013). The length-structured LB-SPR typically
estimates a higher mortality rate from the same length composition than the age-
structured LB-SPR which ignores this phenomenon (Hordyk, et al., 2016). However,
with length-based selectivity, growth in the underlying population is distorted based on
the selectivity function and the magnitude of fishing mortality. The extent to which
growth is distorted due to length-based selectivity, and guidance on whether to use age or
length-based selectivity, has not been extensively studied (Sampson, 2014).

The Single Species, Size-Structured, Steady State (S6) model uses a weight-based
theory of population dynamics for mortality estimation (Andersen & Beyer, 2015). In
equilibrium, the energy budget available to an individual animal is a power function of
weight. Energy is devoted to activity, growth, and reproduction. As animals grow

towards the asymptotic weight (W), the growth rate decreases and investment in

reproduction increases. The expected size distribution of a population is therefore a
function of growth, natural mortality and fishing mortality. The functions describing the
metabolic processes are typically power functions while maturity and fishing mortality
are weight-based logistic functions. The weight at 50% maturity, used to model energy

devoted to reproduction, is assumed to be 0.25W_ . Most parameters for the power

functions in the model are typically assumed to be invariant among fish stocks. The
exception is the physiological constant of mortality, which describes mortality and
growth in an unexploited population and is analogous and proportional to M/K. Based on

simulation, S6 was most sensitive to the physiological constant. Thus, this parameter can
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be specified in the model by the user by providing a value of M/K. Assuming constant

mortality with time and constant recruitment, the S6 model estimates fishing mortality F,
selectivity (as a weight-based logistic function), and W_ from a single weight
composition sample. Deterministic growth appears to be assumed in S6 because all
individuals grow to W . The population dynamics model and likelihood are presented in

Table 1 of Kokkalis et al. (2015).

The Length-based Integrated Mixed Effects (LIME) model is a general
framework for estimating fishing mortality without assumptions of constant mortality
with time and constant recruitment. It assumes that the data are informative that year-
specific recruitment can be estimated as a random effect variable and year-specific
fishing mortality can be estimated as a random walk variable. To do so, multiple years of
length composition data are needed. The estimation model is an age-structured model in
which the predicted age compositions are converted to length compositions to fit to the
observed lengths. The primary intent of the LIME model is to use length composition
data for mortality estimation, but the model optionally allows for the use of an index of
abundance to better estimate mortality. Using both data types together provides more
information on estimating recruitment than using either alone (section 1.4.5). The
equations for the population dynamics model are presented in Tables 2-4 of Rudd &
Thorson (in press). The log-likelihood of the length composition, assuming a multinomial

distribution, is

logLocZZNypi’y log(ﬁ[,y), (1.7)
y i

where the variables are the same as Equation 1.6 with an additional subscript for year y.
Alternatively, a Dirichlet-multinomial distribution can be used to account for
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overdispersion in the composition data (Thorson, Johnson, Methot, & Taylor, 2017). The
LIME model allows for multiple years of length and index data to be analyzed. Growth,
natural mortality, and the CV in length at age are needed life history parameters for this

model.

1.4. Violations of model assumptions: implications, diagnostics, and solutions

In any application, the appropriateness of a stock assessment model needs to be
evaluated. In this section, we discuss how violations of assumptions regarding growth,
selectivity, recruitment, and mortality may occur when using the size-based methods and
their effects on mortality estimation (Table 1.2). We propose diagnostics to determine
whether violations have occurred and develop solutions to address such violations. Six
issues and questions relevant to application of size-based mortality estimators are

discussed:

1. Life history parameters are not known well, and the mortality estimators assume
perfect knowledge. How sensitive are the models to misspecification of life
history parameters?

2. Deterministic growth is assumed in the mean length-based mortality estimators
and LCCC, while other methods assume variability in size-at-age is known. How
critical are these assumptions to estimating mortality?

3. There is some fishing mortality at lengths below L., but the mean length-based
methods and LCCC assume knife-edge selectivity (no fishing mortality below L.

and constant mortality above Lc). What is the best choice of Lc?
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4. There may be dome-shaped selectivity, but size-based methods typically assume
flat-top selectivity (full selection of large animals). How can dome-shaped
selectivity be detected? What options are available when there is dome
selectivity?

5. There is a suspected large year class in the population, but all size-based methods
assume constant recruitment. How can a pulse in recruitment be diagnosed? What
can be done for mortality estimation?

6. There is a trend in mortality over time. How does this affect models that assume

constant mortality?

Overall, size-based mortality estimators allow for modifications and extensions to
models to relax assumptions. The ability to diagnose and address violations of

assumptions is generally improved with the availability of a time series of auxiliary data.

1.4.1. Uncertainty in life history parameters

The requisite life history information for size-based mortality estimators includes
growth parameters and, in some cases, natural mortality (Table 1.1). Size-based methods
model growth with the von Bertalanffy function (with parameters L and K) and
typically use a single value of M over all ages. Although it is generally accepted that M
varies with size, it may be reasonable to use a single value of M (constant with size) in
the mean length methods and the LCCC since these methods only evaluate size classes

that are fully selected by the gear. For the composition-based mortality estimators, size-
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specific M can be modeled as a monotonically decreasing power function (Hordyk et al.,
2016, Kokkalis et al., 2015).
Based on simulation, mortality estimates from size-based methods are more

sensitive to L, than K (Gedamke & Hoenig, 2006; Hordyk, Ono, Valencia, et al., 2015;
Huynh et al., in review; Rudd & Thorson, in press). With an overestimate of L_, there
will be fewer animals near L than when a correct estimate is used. Thus, mortality
estimates will be positively biased with an overestimate of L, and negatively biased with

an underestimate. The direction of the bias is the same with over/underestimates of K, but
the magnitude of the bias appears to be smaller (Gedamke & Hoenig, 2006; Rudd &
Thorson, in press). For the LB-SPR and LIME models, overestimates of M/K and M will
result in a negative bias in //M and F estimates, respectively (Hordyk, Ono, Valencia, et
al., 2015; Rudd & Thorson, in press).

Life history parameters may not be known well or may be unavailable for data-
limited stocks. In the case where estimates are unavailable for the stock of interest,
information may be borrowed from other stocks of the same species or empirical
estimates from meta-analytic relationships can be used. For example, Then, Hoenig, Hall,
& Hewitt (2015) developed an empirical estimator for natural mortality based on
maximum observed age and Nadon & Ault (2016) modeled empirical relationships
among the maximum observed length (Lmax), growth parameters, length at maturity, and
natural mortality for several tropical reef fish taxa. Meta-analyses of life history
parameters are beyond the scope of this review but have been extensively covered in the

literature (Hoenig ef al., 2016).
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Uncertainty in mortality estimation can be quantified in two ways in a given
application. First, stochastic mortality estimates can be obtained via Monte Carlo
sampling from probability distributions of life history parameters (Kokkalis et al., 2016;
Nadon, 2017; Prince, Victor, et al., 2015). Second, a Bayesian implementation of the
size-based estimators can be used to derive posterior distributions of mortality based on
the priors for the life history parameters, although such models currently remain in
preliminary development (Brodziak, et al., 2012; Harford, Bryan, & Babcock, 2015).
High uncertainty is incorporated with a large variance in the priors, and the variance of
the posterior distribution is subsequently evaluated. Secondly, sensitivity analyses can
more simply determine the range in mortality estimates based on the plausible range of
parameter values.

Monte Carlo sampling and Bayesian modeling provide a distribution of mortality
estimates from which confidence intervals and credibility intervals, respectively, can be
obtained. These are useful if one is unsure of the direction of the bias in the life history
parameter. On the other hand, sensitivity analysis is more useful when one suspects an
overestimate or underestimate in the life history parameter.

If a value of a life history parameter cannot be established with reasonable
certainty, some information regarding mortality remains available. If the natural mortality
rate cannot be established, then the mean length-based methods or the LCCC can be used
to estimate total mortality, and approaches that use only the total mortality rate for
management advice can be explored (Die & Caddy, 1997). On the other hand, if K is
unknown or uncertain, then relative changes in mortality are estimable. For example, let

A be the relative change in total mortality, defined as
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(1.8)

where Z, and Z, are total mortality rates from two different time periods (assuming
equilibrium in each time period). If the BHE is used to estimate mortality, then Z, and

Z, are defined as

K(L —1L,
Z, :(_w—l) (1.9a)
L-L,
and
K(L —L
Z, =(_°°—2), (1.9b)
LZ_LC

where L, and L, are the mean lengths in the two different time periods. After

substitution of Equations 1.9a and 1.9b into Equation 1.8, it is shown that A is

independent of K.

1.4.2. Deterministic versus stochastic size-at-age

The mean length-based methods and the LCCC assume no variability in length-at-
age. The implications of the growth assumption have been tested by simulation. The BHE
and LCCC performed better with higher growth variability, i.e., the methods are robust to
the failure of the assumption of deterministic growth (Then, Hoenig, Gedamke, & Ault,
2015; Huynh et al. in review). It would also be expected that Gedamke-Hoenig, as an
extension of the BHE, would also be robust to violation of this assumption.

Alternatively, the LB-SPR and LIME models parameterize some growth
variability in the estimation model. The coefficient of variation (CV) in length at age is

provided to the model by the user. An estimate could be obtained from an age-growth
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study, but otherwise, a CV of 0.1 has been assumed in applications if the value is
unknown (Prince, Victor, Kloulchad, & Hordyk, 2015). Both LIME and LB-SPR are
relatively insensitive to misspecification of the CV in growth compared to other life
history parameters (Hordyk, Ono, Valencia, et al., 2015; Rudd & Thorson, in press).

In S6, no conversion between the age and size compositions is needed because the
population is modeled natively in terms of weight units. For all other methods considered

here, issues concerning variability in size-at-age appear to be minor compared to others.

1.4.3. Knife-edge selectivity versus gradual selectivity

The mean length-based methods and the LCCC assume knife-edge selectivity
with size and age (this correspondence arises from the assumption of deterministic
growth). To meet this assumption for the mean length-based methods, a value of L. must
be selected by the user and lengths smaller than L. are removed from the analysis. For the
LCCC, an analogous step is also needed where the length composition data is truncated
to remove length classes that are believed to be incompletely selected by the fishing gear.

Knife-edge selectivity is typically an approximation to logistic selectivity. Length
classes smaller than the first fully selected length experience a reduced mortality rate, but
the associated methods (BHE, Gedamke-Hoenig, and LCCC) only estimate the apical
mortality rate. The choice for L. for the mean length-based methods is usually be the first
fully selected length. Another suggestion for L. is to use the presumed the length of 50%
selectivity. Under this interpretation, size classes smaller than the first fully selected
length are also impacted by fishing mortality and are to be included in the mortality

estimation procedure. However, this choice tends to underestimate mortality due to the
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inclusion of incompletely selected size classes (Figure 1.4). Sparre & Venema (1998)
suggested an additional variant of the BHE where the L. is the length at 50% selectivity,
but all size classes are used to calculate the mean length. This variant has not been
evaluated for use. Although it is likely to be biased high, the variant may be useful if
historical records indicate the mean length of the entire catch but the histogram is not
available to determine Le.

Some caution is needed with the assumption of the mode as the fully selected
length. In an unexploited stock with constant recruitment, the abundance at length is a

balance of growth towards L, and natural mortality; this process can be summarized in

the M/K life history trait (Beverton 1992; Prince, Hordyk, ef al. 2015). A low M/K

population is expected to have a mode near L rather than the length of full selectivity

due to the “pile-up” effect where many ages comprise a single length class as length
increases (Figure 1.3). The mode does not correspond to the fully selected length unless
exploitation is high. On the other extreme, a high M/K population features a
monotonically decreasing abundance at length and the ascending limb in the observed
catch frequency would reflect selectivity. The mode is also less sensitive to increases in
fishing mortality in high M/K situations compared to low M/K situations.

When exploitation is high, i.e., high Z/K scenario, the mode appears to be a viable
choice for L. regardless of M/K. The mode should remain near the length of full
selectivity for high M/K stocks regardless of fishing mortality. However, the fully
selected length can be smaller than the mode in low M/K stocks (Figure 1.3). Huynh et al.
(in review) evaluated the performance of the BHE and LCCC with difference values of L.

and left truncation lengths, respectively. Candidate truncation lengths included the mode
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and the half-modal abundance lengths (i.e., the first length at which the abundance is at
least 50% of that at the mode). They considered two values of M/K = 0.5 and 2. There did
not appear to be significant differences in performance with the different truncation
lengths in the high M/K scenarios. While the half-modal abundance length was the
preferred over the modal length as the truncation length in the low M/K scenarios, there
still was high bias and low precision in mortality estimates. Presumably, the half-modal
length was closer to the fully selected length than the modal length, but still did not
precisely correspond to the fully selected length. A large value of L. would be more
likely to guarantee that partially recruited sizes are removed. However, this step also
removes potentially useful data and thus increases the variance of mortality estimates.

As alternatives to methods which use knife-edge selectivity, the composition-
based methods LB-SPR, S6, and LIME estimate logistic selectivity. However,
simulations suggest that LB-SPR also performs poorly for low M/K stocks (Hordyk, Ono,
Valencia, et al., 2015). Assuming equilibrium, it will generally be difficult to identify the
fully selected length in low M/K stocks from the length frequency data alone, which
results in potentially arbitrary choices for L. and biased or imprecise mortality estimates.

In nonequilibrium situations, selectivity in low M/K stocks may be estimable if
data from years in which fishing mortality was high are available. The shape of the length
composition in years with high ¥ would be informative for selectivity. This situation
would avoid the problem of selectivity estimation from the ascending limb of the length

frequency distribution. The LIME model would be an appropriate model in this scenario.

1.4.4. Flat-top versus dome-shaped selectivity
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Dome-selectivity is conflated with high mortality and the two are not
simultaneously estimable because both situations reduce the abundance of large animals.
Thus, the length-based methods in general will overestimate mortality when there is
dome-shaped selectivity, as demonstrated through simulation (Then, Hoenig, Gedamke,
et al., 2015; Huynh et al., in review; Hordyk, Ono, Valencia, et al., 2015). However, the
influence of dome selectivity is diminished when mortality is very high because large
animals are fished out of the population regardless of the selectivity (Huynh ez al., in
review).

A potential diagnostic for dome selectivity is to compute estimates of Z from the
BHE for an increasing series of L. values (Figure 1.4, Then et al., in press). Under
logistic selectivity, mortality estimates should plateau with increasing values of L.
because the selectivity assumptions are being met. This plateau would not occur when
there is dome selectivity because, with increasing L, the cryptic abundance of large
animals comprises a larger proportion of the assumed catch. Thus, the estimates of Z
continue to increase as L. increases. This behavior is also consistent with an overestimate

of L_, but this diagnostic could be used to identify if either is (or both are) occurring in

the analysis.

Several strategies can combat this overestimation. First, one could incorporate
external selectivity estimates in the mortality estimators. Experimental field studies can
be used to obtain empirical selectivity estimates (Cadrin, DeCelles, & Reid, 2016).
Second, the LCCC could be used where length bins over which dome selectivity is
occurring are removed. This would allow for the estimation of the apical total mortality

rate from the remaining length bins (Figure 1.2).
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A variant of the BHE has been developed to allow for mortality estimation from
mean length when there is dome selectivity (Ehrhardt & Ault, 1992). Similar to the
simplification of logistic selectivity with knife-edge selection, dome selectivity is

simplified assuming knife-edge truncation at length L, on the right (where L. <L, < L),

which is fixed by the user. Simulations showed that the behavior of the Ehrhardt-Ault
variant, in cases where there is length truncation, is unpredictable and complex (Then,
Gedamke, Hoenig, et al., 2015). Owing to variability in size-at-age in the population,
mortality estimates remained biased even if L, was correctly specified and were often less
precise than those from the BHE. Overall, routine use of the Ehrhardt-Ault estimator is

not recommended.

1.4.5. Large year class in recruitment

Recruitment is estimable in the LIME model, while recruitment is constant in all
other models. Large deviations in cohort strength relative to neighboring years could be
identified through evaluation of length compositions and indices of abundances. In the
length compositions, a large cohort would be represented by a mode in the size
composition which progresses through the size structure over time while large cohorts
would increase the index based on the increased abundance in the population (Figure
1.5). If only a single length composition is available, a large cohort may be identified if
the distribution is multimodal, although a time series provides more support.

We propose that the mean length and index of abundance be used as a diagnostic
for detecting mortality and recruitment changes (Figure 1.5). If there is a change in

mortality, then the mean length and index are affected in the same direction, that is, the
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increased mortality reduces both the mean length and index by decreasing the abundance
of large animals. Likewise, decreased mortality increases both. On the other hand, a
temporary increase in recruitment initially produces opposing changes where the mean
length decreases while the index increases. Over time, the effect is dampened as the
cohorts age. These patterns could help determine whether the observed lengths and
indices are predominantly controlled by recruitment or mortality dynamics.

While stochastic recruitment may be perceived as observation noise in a model,
trends in recruitment due to autocorrelation from environmental conditions or the stock-
recruitment relationship over a considerable time period will bias mortality estimates
from length data. For example, decreased recruitment would increase the mean length
due to fewer or missing animals in small size classes. Mortality estimates would be
biased high.

For both mean length-based and composition-based methods, either an index of
recruitment or an index of abundance can be utilized to account for variable recruitment.
In the former, the index of recruitment is used in a model in lieu of the constant
recruitment assumption. A variant of Gedamke-Hoenig with an index of recruitment was
developed for the assessment of barndoor skate Dipturus laevis in Georges Bank and the
Gulf of Maine (Gedamke, ef al., 2008). In this model, it is presumed that the index of
recruitment is known perfectly, but this approach can be taken if the estimation error is
more adversely affected by assuming constant recruitment than an error-free index. The
index can be used because only the relative strength among cohorts, not the absolute
magnitude, is relevant in the model. Composition-based methods could also be modified

to use an index of recruitment, but this has not been done. The availability of a
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recruitment index is usually limited to a small subset of data-limited stocks, for example,
if less valuable or bycatch species are caught in fishery-independent surveys. If survey
catch is identified by length, then indices can be developed for length classes which
correspond to recruits.

With an index of abundance, mortality can be estimated in an integrated
framework which uses both time series of length and index data in the likelihood (Huynh,
Gedamke, Porch, et al., 2017; Rudd & Thorson, in press). The LIME model separates
cohort strength from observation noise. Thus, recruitment is estimated as a random effect.
A large cohort is identifiable from a mode in the length composition which progresses in
size over multiple years. The Gedamke-Hoenig approach has been generalized to
estimate mortality from both mean lengths and abundance indices in the likelihood
function (Huynh, Gedamke, Porch, ef al., 2017). Simulations suggest that the integrated
model generally performs better than the mean length only model when recruitment is
stochastic. Overfitting would be less likely to occur compared to when only mean lengths
are used in the base Gedamke-Hoenig estimator because changes in mortality are
estimated only if there are synchronous changes in both data types. Changes in mean
length and index of abundance due to recruitment dynamics would result in negatively
correlated residuals. The explanatory power of this extension of Gedamke-Hoenig could
be more limited compared to LIME because the constant recruitment assumption remains

in the former.

1.4.6. Trend in mortality
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Equilibrium methods assume constant mortality over time. When multiple years
of data are available, all data may be collated into one length composition or independent
analyses performed for each year of the data, but equilibrium methods will underestimate
the true rate of change in mortality if mortality is not constant. On the other hand, models
that incorporate multiple years of data (Gedamke-Hoenig and its various extensions and
LIME) allow for time-varying mortality estimates within a single analysis.

There are three approaches for time-varying mortality estimation. First, the time
stanza approach of the Gedamke-Hoenig estimator because there is limited information
for estimating mortality in a fixed effects-only approach without over-parameterizing the
model (Figure 1.1). Second, year-specific mortality can be estimated as random effects
through a random walk (Brodziak, et al., 2012; Rudd & Thorson, in press). The estimated
mortality rate in a given year is allowed to vary but constrained to be close to the
previous year’s estimate. This would allow for trend-based mortality estimates over time
instead of stepwise changes at certain points in time. The LIME model estimates fishing
mortality with the random walk approach. However, the variance of the random walk
needs to be evaluated to avoid overfitting. Third, effort data could be used to provide
year-specific mortality estimates, as is done in the Gedamke-Hoenig with effort model.

Composition-based methods can also be modified accordingly.

1.5. Considerations for applications
Size-based mortality estimators have been popular analytical methods in sub-
tropical and tropical regions, including the U.S. Caribbean (Puerto Rico and U.S. Virgin

Islands), Hawaii, Palau, and Florida (Table 1.3). The methods have also been evaluated
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for European stocks (ICES, 2015; ICES, 2016). For management purposes, it is often
practical to estimate fishing mortality relative to biological reference points and to
provide some measure of uncertainty. Software packages allow for streamlining the

workflow associated with using the analytical methods.

1.5.1. Biological reference points

Estimates of mortality can be used in the context of biological reference points for
management advice. From the model, F' or F/M is compared with Fproxy or Fproxy/M,
respectively, the proxy fishing mortality rate for maximum sustainable yield, to
determine stock status, i.e. overfishing occurs if F/Fproxy > 1. Possible reference point
proxies include Fmax, the fishing mortality that maximizes yield-per-recruit (YPR;
Beverton & Holt, 1957); Fo.1, the fishing mortality where the slope of the YPR curve is
10% of that at F' = 0; Fxv, the fishing mortality that reduces the spawning potential ratio
(SPR; Goodyear, 1993) to X % of that at F'=0, or Fxwm, the fishing mortality at X % of the
assumed M (Zhou, Yin, Thorson, Smith, & Fuller, 2012). Maturity, natural mortality, and
length-weight parameters are usually needed for reference point calculation in addition to
the life history parameters for mortality estimation. If only F/M is estimated (e.g., in LB-
SPR), then F/Fproxy can be obtained without necessarily knowing the magnitude of F,

since

F M\ M

proxy

-1
F
F :i[ PwJ , (1.10)

The Fproxy/M ratio can be obtained from SPR, or it can be defined as a scalar proportion

of M.
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Applications of the length-based methods have used reference points from YPR
and SPR for Fproxy. The mean length-based methods were developed without specific
reference points, but M and SPR proxies have been used with the Ehrhardt-Ault variant
of the BHE (Ault, Smith, & Bohnsack, 2005; Nadon, 2017; Nadon, Ault, Williams,
Smith, & DiNardo, 2015). Proxies from both YPR and SPR have been used with
Gedamke-Hoenig (ICES, 2015). The likelihood-based composition methods have been
developed with particular reference points. LB-SPR reports the SPR associated with the
estimated F/M, S6 uses Fmax as the proxy, while LIME reports both SPR and YPR-based

reference points.

1.5.2. Software packages

An array of computer software is available for using length-based mortality
estimators either in the form an R package or a stand-alone GUI program (Table 1.3).
Typically, R packages provide supporting functions for standardizing the workflow
associated with the methods. In addition to parameter estimation, functions are needed for
data processing, plotting figures, and performing statistical diagnostics. The R packages
are in active development with version control through Github. Most software packages
also contain extensive supporting documentation for potential users.

The packages implement the standard application of the described model. Stock-
specific applications can be accommodated by varying a numeric parameter. For
example, fecundity is specified as a power function of length in the calculation of
spawning potential ratio in the LB-SPR model. For species with determinate biological

fecundity, such as elasmobranchs, the exponent of the power function can be set to zero

27



whereas larger exponents can be used for teleosts. Modifications that require a different
functional form, e.g., the Gompertz or Richards growth functions in lieu of the von
Bertalanfty function, would require a new model derivation (in the case of the mean
length-based methods) or case-specific computer code that implement these
modifications numerically.

Routines for performing uncertainty evaluation in software packages are currently
limited. Some software, such as the R packages for Gedamke-Hoenig and LB-SPR report
the asymptotic standard error of model estimates. However, these intervals may not be
appropriate because the intervals are conditional on correct model specification, i.e.,
these intervals do not consider whether the equilibrium assumptions are met as part of the
uncertainty evaluation. The fishmethods R package bootstraps the length data to obtain
confidence intervals in the estimated Z from the BHE. Generally, the R computing
environment is flexible to allow for users to write supplemental code as necessary for
Monte Carlo sampling of parameters and data bootstrapping. This can then be used with

the core estimation functions in the R packages.

1.6. Conclusions

There is a spectrum of data requirements and flexibility in model structure among
data-limited assessment methods. This is desirable because data-limited fisheries also
vary in data quality and quantity (Bentley, 2015). Consider two fisheries that are
classified as data-limited, but one only has opportunistic sampling while another has a
long-standing, designed sampling program. Equilibrium methods could be options in the

former scenario, but the assessment capabilities will be much greater in the latter scenario
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due to presumed higher quality of data. With multiple years of data, diagnostics are
available to determine whether certain assumptions are appropriate and methods which
relax some assumptions are available for assessment. Methods that incorporate multiple
years of data provide the most flexibility in mortality estimation, but simple, equilibrium
methods remain valuable diagnostic tools to evaluate mismatch (if any) between
assumptions, data, and life history parameters.

We recommend the following practices associated with size-based mortality

estimators:

1. Use sensitivity analyses and Monte Carlo sampling to ascertain uncertainty in
mortality estimates due to uncertainty in life history parameters.

2. Length-based mortality estimators are generally least sensitive to assumptions
regarding variability in length at age.

3. For high M/K stocks, the mode of the length frequency distribution is generally
the length of full selectivity for the LCCC and L. for the mean length-based
mortality estimators. For low M/K stocks, lengths smaller than the modal length
may plausibly be the length of full selectivity.

4. To address dome-shaped selectivity, external selectivity estimates can be used to
parameterize selectivity in the mortality estimator. The LCCC can also be used to
estimate mortality over a subset of fully selected lengths.

5. Use multiple years of length data and auxiliary data where available. Potential
pulses in recruitment can be evaluated and the constant mortality over time

assumption can be relaxed.
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1.8. Tables

Table 1.1. Summary of the data-limited, size-based mortality estimators. Descriptions of the methods are provided in Section 1.3.

Method Data Required life history Estimates Other Assumptions
parameters

Mean length-based

BHE Single mean length above L. Lo, K Constant Z with time and age Constant recruitment; deterministic size-
at-age; knife-edge selectivity at L.

Gedamke-Hoenig Multiple years of mean length (above Lo, K, b? Period-specific Z, constant with ~ Constant recruitment (without index of

(GH, including L.); extensions require either index of age; Time bounds of the periods  recruitment); deterministic size-at-age;

extensions with recruitment' or index of abundance? knife-edge selectivity at L.

indices)

GH with effort Multiple years of mean length (above L, K, M * Year-specific estimates of F3, Constant recruitment; deterministic size-
L) and fishing effort constant with age at-age; knife-edge selectivity at L.

Composition-based

LCCC Single, truncated length composition Lo, K Constant Z with time and age Constant recruitment; deterministic size-
of fully selected animals at-age; included lengths are fully selected
LB-SPR Single length composition M/K, L», CV of length-at- Constant F/M with time, varies Constant recruitment; logistic selectivity
age with length by estimated
selectivity
S6 Single weight composition M/K Constant F, varies with weight Constant recruitment; logistic selectivity
by estimated selectivity; We
LIME Multiple years of length composition; L, K, M, CV of length-at- Random effects estimation of Logistic selectivity
index of abundance is optional® age year-specific recruitment and F;
F varies with length by

estimated selectivity

Symbols: L» = von Bertalanffy asymptotic length, K = von Bertalanffy growth coefficient, b = length-weight allometric exponent, W = asymptotic weight, Z = total mortality, M =
natural mortality, F* = fishing mortality

! Index of recruitment is numbers-based.

2 Index of abundance can be either weight or numbers-based.

3 b is only required when a weight-based index of abundance is used.

4 M can be fixed or estimated in the model.

3 Year-specific F is the product of the effort and the estimated catchability coefficient ¢.

¢ Index of abundance is weight-based.



LE

Table 1.2. How assumptions of size-based mortality estimators are addressed.

Assumptions (Models)

Violation

Diagnostic

Impact of violation

Options to address violation of
assumption

Life history parameters
perfectly known (all)

Deterministic size-at-
age (BHE, GH, LCCC)

Length of knife-edge
selectivity is known
(BHE, GH, & LCCC)

Flat-top selectivity,
either knife-edge or
logistic (all)

Constant recruitment
(all except LIME)

Constant mortality (all
except GH and LIME)

Parameters not
known well

Variability in size-
at-age

Logistic selection
(fishing mortality at
lengths < L. is
ignored)

Dome-shaped
selectivity

Trend in
recruitment, large
year-class strength

Trend in mortality
over time

For possible overestimate
in L., trend in Z estimates
with increasing L. in BHE

N/A

N/A

Increasing trend in Z
estimates from BHE with
increasing L.

Opposite trends in mean
length and index over time;
strong cohorts in length
compositions over time

Mean length changes over
time

Potential bias of mortality
estimates (e.g., overestimate
mortality with L., overestimate)

Mean length methods and LCCC
are robust to this assumption

Underestimate Z if incompletely
selected lengths are not
truncated

Overestimate mortality

Increase in recruitment
overestimates mortality, and vice
versa

Lag, underestimate magnitude of
change in mortality in
equilibrium estimators

Estimate mortality trends rather
than magnitude; sensitivity
analysis of alternative values of
parameters

Proceed with mean length methods
or LCCC; use LB-SPR or LIME
which model variability in size-at-
age

Use modal length for L. for high
M/K stocks, smaller values for low
M/K; use models (LB-SPR, S6,
LIME) which estimate logistic
selectivity

Use LCCC and omit length bins
affected by dome selectivity;
incorporate selectivity estimates
into various methods

Use GH with index of recruitment;
use LIME to estimate recruitment
deviations (needs informative data)

Use models (GH, LIME) which
incorporate multiple years of data




Table 1.3. Applications of and software packages for the size-based mortality estimators.

Method Applications Software Packages
Mean length-based

Beverton-Holt (including ~ Ault, et al. (2005); Babcock, et al.  fishmethods!,
variants) (2013); Nadon, et al. (2015); TropFishR!-?
more cited in Then, Hoenig,
Gedamke, ef al. (2015)

Gedamke-Hoenig (GH, SEDAR (2007); SEDAR (2011a); fishmethods,
including extensions with SEDAR (2011b); SEDAR SEINE®, MLZ*
(2011¢); SEDAR (2013a);

indices)
SEDAR (2013b); SEDAR (2014);
ICES (2015); Huynh (2016)

GH with effort ICES (2015); Then, et al. (In MLZ
press)

Composition-based

LCCC Many, some cited in Huynh et al.  FiSAT®, TropFishR
(in review)

LB-SPR Prince, Victor, et al. (2015); ICES LBSPR!
(2015)

S6 Kokkalis, et al. (2016); ICES s6model®
(2015)

LIME -- LIME’

! R package available on CRA

2 Mildenberger, Taylor, & Wolff (2017)

3 Stand-alone program (without extensions for index of recruitment or abundance)
available at: http://www.nft.nefsc.noaa.gov

4 R package available on Github at: http://www.github.com/quang-huynh/MLZ

> Stand-alone program available at: http://www.fao.org/fishery/topic/16072/en
(Gayanilo, Jr, et al., 2005)

® R package available on Github at: http://www.github.com/alko989/s6émodel

7 R package available on Github at: http://www.github.com/merrillrudd/LIME
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1.9. Figures
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Figure 1.1. Application of the mean length-based mortality estimators for the Northern
management (New England) stock of goosefish (Lophius americanus). Top figure:
estimates of instantaneous total mortality Z (year™") from successive fits of Gedamke-
Hoenig with differing number of change points (colored lines) and independent year-
specific estimates from the BHE (points with dotted loess regression line). Parentheses in
legend indicate AAIC values for different change points with the Gedamke-Hoenig
models. Compared to Gedamke-Hoenig, the BHE will underestimates the magnitude of
change in the mortality rate until a new equilibrium mean length is reached. Bottom
figure: observed mean lengths (points) and predicted mean lengths from the Gedamke-
Hoenig models (colored lines). Gedamke-Hoenig allows for evaluation of goodness of fit
to the mean length data. With the 1-change point model, the model the mean length is
underestimated during 1987-1993 and generally overestimated from 1994-2001. This
trend in residuals is removed with a 2-change point model, which is supported with AIC.
Data and life history parameters were obtained from Gedamke & Hoenig (2006).
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Figure 1.2. Application of the LCCC to yellow-striped goatfish (Upeneus vittatus) in
Manila Bay, Philippines. Top figure: the observed length composition (with 1-cm length
bins), the vertical dotted line marks L . Bottom figure: conversion of lengths to relative
ages and linear regression (red line) on relative ages to estimate total mortality Z
(Equation 1.4). Numbers above points index length bins; relative ages could not be
calculated because there was zero catch in length bin #16 and the length bin #18 was
larger than L . Solid points indicate the length bins used in the LCCC. Open points
indicate truncated length bins because they are assumed to be incompletely selected (bins
1-7). Length bins close to L, (bins 14-18) were also truncated because the log-linear

relationship between relative age and the catch breaks down at lengths near L, due to the

effect of (1) dome selectivity, (2) outlier observations relative to other length bins, or (3)
significant overlap of multiple ages. Data and life history parameters were obtained from
Sparre & Venema (1998) through the TropFishR software package (Mildenberger,
Taylor, & Wolft, 2017).
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Figure 1.3. Length distributions in different /M scenarios for two species which vary in
M/K. With increasing F/M, the shape of the length distribution changes and there is
truncation with reduced abundance in large size classes. In the low M/K species (Species
I), the modal length is much larger than the first fully selected length when F/M is low.
As F/M increases, the mode moves towards the left. In the high M/K species (Species III),
the mode of the distribution appears to be more stable and the ascending limb of the
length distribution reflects selectivity (regardless of F/M). In low M/K scenarios, more
caution is needed when using the mode as the L. for the mean length-based methods, a
length smaller than the mode will be more appropriate. In high M/K scenarios, the mode
can be used more reliably as the L.. The age-structured LB-SPR was the operating model,
with life history parameters for Species I and Species III obtained from Hordyk, Ono,
Valencia, et al. (2015).
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Figure 1.4. Diagnostic of dome selectivity from the BHE. Top figure: Estimates of total
mortality Z from the BHE based on increasing values of L.. Horizontal, dashed line
indicates the true Z = 0.79 (F/M = 0.25) and vertical, dashed line indicates the length of

95% selectivity. Three scenarios are evaluated: L is known perfectly with logistic
selectivity in the length composition (Logistic), a 20% overestimate of L is used in the
BHE with logistic selectivity (Logistic, High L, ), and L is known perfectly with dome

selectivity (Dome). Bottom figure: Logistic (solid line) and dome (dashed line)
selectivity. In the Logistic scenario, Z estimates from the BHE plateau when lengths that
are near or above the length of full selectivity are chosen as the L.. The increasing trend

in estimates of Z in the High L and Dome scenarios could be used to evaluate whether
there is either dome selectivity or an overestimate of L is occurring, although these two

causes may not be differentiable. Length compositions were generated from the age-
based LB-SPR model with the Species III life history with M/K = 1.54 (Hordyk, Ono,
Valencia, et al., 2015).
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Figure 1.5. Diagnostic of a recruitment trend over time based on the response in mean
length and index of abundance when there is a change in mortality (MortalityChange),
recruitment (RecruitChange), or both (BothChange). With a change in mortality, both the
mean length and index change in the same direction. With a change in recruitment, the
mean length and index change in different directions. The trend in the mean length and
index is suggested as a diagnostic for evaluating whether the changes in mortality versus
recruitment can be identified. LIME was the operating model for data generation, and life
history parameters from the Medium life history type from Rudd & Thorson (in press)
were used.
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Chapter 2: Comparative performance of three length-based
mortality estimators

2.1. Abstract

Length-based methods provide alternatives for estimating the instantaneous total
mortality rate (Z) in exploited marine populations when data are not available for age-
based methods. We compared the performance of three equilibrium length-based
methods: the length-converted catch curve (LCCC), the Beverton-Holt equation (BHE),
and Length-Based Spawning Potential Ratio (LB-SPR) method. The LCCC and BHE are
two historically common procedures that use length as a proxy for age. From a truncated
length-frequency distribution of fully selected animals, the LCCC estimates Z with a
regression of the logarithm of catch-at-length by the midpoint of the length bins, while
the BHE estimates Z as a function of the mean length. The LB-SPR method is a
likelihood-based population dynamics model, which, unlike the LCCC and BHE, does
not require data truncation. Using Monte Carlo simulations across a range of scenarios
with varying mortality and life history characteristics, our study showed that neither the
LCCC nor the BHE was uniformly superior in terms of bias or root mean square error
across simulations, but these estimators performed better than LB-SPR which had the
largest bias in most cases. Generally, if M/K (the ratio of natural mortality M to von
Bertalanffy K) is low, then the BHE is most preferred, although there is likely to be high
bias and low precision. If M/K is high, then the LCCC and BHE performed better and

similarly to each other. Differences in performance among commonly-used truncation
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methods for the LCCC and BHE were small. LB-SPR did not perform as well as the
classical methods, but may still be of interest because it provides estimates of a logistic
selectivity curve. The M/K ratio provided the most contrast in the performance of the
three methods, suggesting that it be considered for predicting the likely performance of

length-based mortality estimators.

2.2. Introduction

Length-based methods for assessing exploited marine populations are of
significant interest largely because of their applicability to the study of data-limited
stocks for which age-based methods may not be available or suitable (Punt et al. 2013).
Hard tissues, such as scales and otoliths, may lack distinct growth marks, for example, in
tropical fish species. Such species are often assessed using length-based methods (Pauly
1984c), because length measurements are collected both easily and non-lethally.

Historically, the most common methods used to estimate the total instantaneous
mortality rate, Z (year!), from length composition data are the length-converted catch
curve (LCCC; Pauly 1983, 1984a, 1984b) and the Beverton-Holt equation (BHE;
Beverton and Holt 1956, 1957). These methods are based on a linear regression and a
moment estimator, respectively. Improvements in computational power over time have
allowed for the development and use of nonlinear models that use derivative-based
optimization methods. Recently, Hordyk et al. (2015b) developed the Length-Based

Spawner Potential Ratio (LB-SPR) method to estimate mortality using a nonlinear model.
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An analogue of the age-based catch curve (Ricker 1975), the LCCC uses the
natural logarithm of catch ( Cj) in the j-th length interval of a length-frequency

distribution (LFD) regressed on the relative age (¢)) at the midpoint of the length bin

(¢ ;) Only fully-selected lengths are considered in the analysis. Under the assumption of

deterministic growth following a von Bertalanffy function (with parameters constant

across time and cohorts), the relative age at the j-th length bin is defined as:

' Ej
f=~log 1-—* 2.1)

where L_ is the asymptotic maximum length from the von Bertalanffy growth function.
The regression is of the form

log(C,)=a+bt; +¢;, (2.2)
where a and b are the intercept and slope, respectively, of the linear regression and &; is

the normally-distributed residual error. Total mortality (Z) is estimated using the

estimated slope of the linear regression (4 ) and the von Bertalanffy growth rate
parameter (K):
7Z=K(1-b), 2.3)

where the circumflex (") denotes an estimate. The slope is positive if Z/K < 1 and
negative if Z/K > 1. The derivation for the LCCC is provided in Appendix A.

Similar to the age-based catch curve, the LCCC assumes a steady state
population, with constant total mortality (over age and time) and constant recruitment
(Pauly 1984a). Additionally, all selected fish assumed to be equally vulnerable to the

sampling gear, and the sample size is large enough to effectively represent the average
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population structure over the time period considered (Pauly 1983, 1984a, 1984b). Length-
converted catch curves have been criticized for overestimating Z when individual growth
varies seasonally (Isaac 1990; Sparre 1990). However, this bias has been overcome by
modified LCCCs that accommodate seasonally varying growth (Pauly 1990). Simulations
have also shown that individual growth variability creates a negative bias, while reduced
size-selectivity for smaller sizes produces a positive bias for the LCCC (Isaac 1990).
Analogous to the age-based catch curve, a bend in the regression line could be an
indication of a change in mortality with time or with age (Pauly 1984c; Tuckey et al.
2006). However, this method does not generalize easily to account for non-equilibrium
conditions.

Beverton and Holt (1956, 1957) derived the total mortality rate as a function of

the observed mean length:

K(L, —-L)

7= ,
L-1I,

(2.4)

where 7, K, and L are as in Equations 2.1 and 2.3, L, is the critical length above which

all animals are fully selected by the fishery, and L is the mean length of animals larger

than L. Gedamke and Hoenig (2006) provide a recent derivation of the BHE. Similar to

the LCCC, the BHE also assumes steady-state conditions, deterministic von Bertalanffy-
type growth, constant mortality rate of all fully recruited fish, and continuous and
constant recruitment to the fishery.

A criticism of the BHE is that it tends to overestimate total mortality when the
largest size classes in the population are truncated from the sample (Then et al. 2015). On

the other hand, Laurec and Mesnil (1987) and Then et al. (2015) observed that the BHE is
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generally robust to individual variability in growth. The BHE has also been criticized as
overly simplistic because of its stringent equilibrium assumptions (Hilborn and Walters
1992). Gedamke and Hoenig (2006) generalized the BHE to allow for the estimation of
total mortality from a time series of mean lengths under non-equilibrium conditions in a
maximum likelihood framework. Further extension of this non-equilibrium model has
allowed for variable recruitment by incorporating a year-specific index of recruits into the
model (Gedamke et al. 2008).

The LB-SPR mortality estimator is an equilibrium age-structured model which
converts the predicted age distribution of the catch to a length distribution. Unlike the
LCCC and BHE, variability in growth is explicitly modeled with a coefficient of
variation (CV) of length-at-age generally assumed to be 0.1 (Hordyk et al. 2015b). Ages
are converted to lengths via an age-length transition matrix in which the probability of
length-at-age sums to one for a given age. Logistic selectivity parameters are estimated
concurrently with mortality, allowing for the use of the entire LFD in the likelihood
function. The method also assumes constant recruitment. Unlike the LCCC and BHE, the
LB-SPR method explicitly pairs the mortality estimator with the biological reference
points obtained from spawner potential ratio analyses for management. The same can be
done for the LCCC and BHE, although this was not the focus of the current study.

The LCCC has been implemented in ELEFAN II (Pauly 1987; Isaac 1990).
Currently, the LCCC can be applied using the FAO-ICLARM Stock Assessment Tools
(FiSAT) software package (Gayanilo et al. 2005). Recently, it has been used to estimate
mortality in reef fishes in North Carolina, United States (Rudershausen et al. 2008),

albacore tuna in the Mediterranean (Anonymous 2012), Japanese threadfin bream in the
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Indian Ocean (Kalhoro et al. 2014), red king crab in the Barents Sea (Windsland 2015),
wahoo in the Southwest Pacific Ocean (Zischke and Griffiths 2015), blood cockle in
Malaysia (Mirzaei et al. 2015), and red lionfish in the Gulf of Mexico (Rodriguez-Cortes
et al. 2015). Recent applications of the BHE and LB-SPR are cited in Then et al. (2015)
and presented in Prince et al. (2015b), respectively. The LB-SPR method can be
implemented using the LBSPR R package available on CRAN (Hordyk 2017).

The three length-based methods have been studied individually, but they have not
been directly compared. Importantly, the methods differ in handling selectivity. While
LB-SPR estimates selectivity as a logistic function, the LCCC and BHE assume knife-
edge selectivity (i.e., full selectivity of animals greater than a certain length) and thus,
only animals larger than a certain size are included in the analysis. Previous simulations
(e.g., Isaac 1990) have not examined the effect of different decision rules for truncating
the data on the performance of the estimators. This study compares the performance of
the length-based methods in estimating total mortality by applying these methods to
populations with known parameters. First, we examined the performance of each of the
estimators individually and relative to each other using a common simulation framework.
Second, we examined the choice of decision rules in selecting the truncation points for
the LCCC and choosing the L. parameter for the BHE. Third, we examined the
robustness of each method to violations in the assumptions of growth and recruitment
variability across several life histories and exploitation scenarios. Finally, we conducted

sensitivity analyses of the three mortality estimators to total sample size and length bin

width.
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2.3. Methods
2.3.1. Simulation design

Length samples were generated using a factorial design for von Bertalanffy K,
fishing mortality F, growth variability, recruitment variability, and selectivity (Table 2.1),
accumulating to a total of 108 combinations. In this study, the different values of K and F
are presented as ratios with respect to natural mortality, M (i.e., M/K and F/M,
respectively), with M = 0.2 year™! for all scenarios. Ratios used because the relative
values provide a better description of the life history and magnitude of exploitation,
respectively, than the absolute values. On a per-recruit basis, the M/K ratio describes the
balance between growth and mortality which affects the shape of the LFD of a population
in an unexploited state (Hordyk et al. 2015a), while Z/K describes the shape of the LFD
of an exploited population. The F/M ratio can provide an indication of the relative impact
of fishing pressure because a scalar multiple of M is often used as a proxy for fishing at
maximum sustainable yield (e.g., Fumsy = 0.75M; Zhou et al. 2012).

The simulation used an age-structured model for the population. The model was
run for 25 years to burn in deviates in growth trajectories and recruitment strength among
cohorts. Fishing was assumed to occur throughout the 25 years, but the length
distribution of the catch was only obtained at the end of the 25 years. Growth was

assumed to vary among cohorts (Whitten et al. 2013). The mean length (L, ,) in year y at

age a was

L,exp(v,) a=0
L, = { , (2.5)

Ly—l,a—l + (Ly—l,a—l - Loo ) {exp(_K) - 1} exp(vc) a= 1925"‘7 A
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where L, was the expected length at age-0, ¢ = y — a indexed the age-0 recruitment that

gave rise to the cohort of age @ in year y, and v, ~ N(— 0.502,0‘2) was the cohort-specific

deviation in growth increments. The von Bertalanffy asymptotic length ,_was set to 500
(arbitrary) units, L, to 75 units, and o to 0.15 across all factorials. Two values of K =

0.4 and 0.1 year™!, corresponding to M/K ratios of 0.5 and 2.0, respectively, were used in
the factorial design.
Variability in length-at-age (o, , , ) assumed a constant CV to the mean length-at-
age,
0,..=CVxL,,, (2.6)
with three CVs of 0.03, 0.06, and 0.09 in the factorial design. These values were based on

the evaluation of size-at-age data of several species by Then et al. (2015).

Lognormally-distributed recruitment (&) was simulated as a first-order

autoregressive process with autocorrelation coefficient ( p ) and residual deviations (5;)

(Thorson et al. 2014):

5 _
log(R,) = {y y=1 2.7)

plog(R, ) ++1- pzé'y y=2..,Y

where 6, ~ N [— 0.507; x 1=p - ,oﬁ} (Thorson et al. 2016) and Y was the terminal year
l-p

of the age-structured model. Two levels of residual standard deviation for recruitment
0 = 0.6 and 1.0 were included in the factorial design, with p = 0.45. The values of

these parameters were guided by the meta-analysis of Thorson et al. (2014). Mean
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recruitment was set to 1.0 because the population was stationary over time and magnitude
of recruitment was not relevant for estimating mortality.

Three length-based selectivity patterns were used in the factorial design: a logistic
function with either broad ascending limb (“Gradual”), a logistic function with a steep

ascending limb (“Steep”), and a dome-shaped logistic-normal function (“Dome”) (Figure
2.1). The logistic function, parameterized by the lengths of 50% (Ls, ) and 95% ( Lys )

selectivity, defines selectivity at length L as

sel, = [1 + exp{— log, (19) LL_AD . (2.8)

95 — 150

The dome-shaped selectivity function was defined as a piecewise-defined function,

-1
L-L
1+exp —log, (19)——2 L<
Sele( eXP{ og.(19) - LSOD Ha | (2.9)

gLy 0,)/maxlg(Lipy o)) L2,
where selectivity at length L is a logistic function for the ascending limb and the right-

half of a normal probability density function g(L) with mean u, and standard deviation
o, for the descending limb, with the latter standardized to a value of 1 at u,. The Steep

and Gradual selectivity functions evaluated the effect of logistic selectivity on data
truncation with the LCCC and BHE while the Dome selectivity function tested the effect
of violating the assumption of constant total mortality of fully selected lengths in all three

mortality estimators.

The population abundance ( N y.a) Was defined by

Ry a=0
Nya= N a=12,,4° (2.10)

y-l,a-1" " y-l,a-1
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where 5, , is the survival and 4 is the maximum age in the model. A maximum age of

23 years, the age when 1% of a cohort survives given the natural mortality rate, was used
in the simulation for computational convenience.
To calculate survival due to length-based selectivity, a population length-age

matrix (N, , ,) was created for the beginning of each year y, where

N,..=N, P

y,a). (2.11)

With a normal distribution for variability in length-at-age, the length-at-age probability

vector P({|y,a) is
¢( fj+1) .] =1
Py, a)=1glt', )-ol¢) =20 -1, (2.12)
1-4(¢') j=J

where ¢’ is the length at the lower boundary of the length bin with midpoint ¢ ,

j=1,2,.., J indexes the length bins and ¢(-) is the cumulative density function of a
normal distribution with mean L, , and standard deviation o, . The length bin width in
the population model was 5 units (larger bins were subsequently used for mortality
estimation).

The abundance of survivors (N, , ,) at the end of year y was calculated as

N, =N, exp—(sel,F+M)]. (2.13)

val
This study used three values of apical fishing mortality 7 = 0.05, 0.2, and 1.0 year™,
corresponding F/M ratios of 0.25, 1.0, and 5.0, respectively, with mortality occurring
after growth. Survival, which is dependent on age and year due to cohort-specific growth,

was calculated as
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2N
DI A— 2.14
y.a N ( )

v.a

To approximate continuous recruitment assumed in the mortality estimators,
quarterly time steps were used in the simulation. Recruitment occurred quarterly with all
cohorts within a year having the same growth trajectory and recruitment strength. All rate
parameters were adjusted accordingly from year™! to season™ with growth updated after
every season.

In the terminal time step of the simulation, the length-age catch matrix (C, ,) was

created using the Baranov catch equation,

IF
C,, = %N},M {1 —exp[- (sel, F + M)}, (2.15)

and the catch-at-length vector (C,) was obtained by summing over ages,
C,=>.C,,. (2.16)

A data set was obtained by sampling 2,000 individuals from the terminal catch-at-
length vector using a multinomial distribution. The sample size of 2,000 was chosen to
evaluate the robustness of the estimators to the variables in the factorial design when
there is little observation error. For each data set, 2,000 length observations were
obtained and a length frequency histogram was generated by dividing the data set into

length bins with a bin width of 10 units (2% of L,). For each factorial combination, 1,000

stochastic data sets were generated.

2.3.2. Mortality estimation
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To use the LCCC, a subset of length bins from the LFD corresponding to fully
selected lengths must be chosen for the linear regression. The LFD typically features an
ascending limb, representing some lengths that may not be fully selected to the fishing
year, followed by a descending limb of numbers-at-length (Figure 2.2). The first usable
length bin may be defined as the peak of the LFD (hereafter, “Peak”) (Wetherall et al.
1987), although Pauly (1983) suggested that the first size class to be included in the
LCCC be the size class immediately to the right of the most frequent size class (“Peak-
plus™).

Because the LCCC assumes deterministic growth, length bins greater than L

must be excluded from the analysis. Furthermore, length bins close to L, may be

assigned unreasonably large relative ages. High observation error in length bins with few

observations may affect the slope of the regression line (Isaac 1990; Punt et al. 2013). To
combat this, Pauly (1983) recommended that animals within 5 - 30% of L_ or length bins

with fewer than five individuals be excluded from the analysis. Such approaches sacrifice
data in an attempt to avoid bias due to decreased selectivity by the fishing gear and
overestimation of relative age of large individuals. This approach can be problematic,
however, when the sample size is low or when only few size classes are available.

For the BHE, the length data are usually binned to examine the length frequency

distribution and identify the critical length, L.. The mean length is then calculated from

the subset of animals larger than L.. Wetherall et al. (1987) suggested that L. be defined

as the length corresponding to the peak of the LFD. Alternatively, Peak-plus truncation

can be applied to select a value for L.. Consequently, length observations from the
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ascending limb of the LFD are removed from the mean length calculation for the BHE
based on the choice of L.

To reduce bias associated with the BHE, Laurec and Mesnil (1987) recommended
summarizing length data in fine detail and grouping length frequencies in narrow size

bins. Animals within 30% of L_were excluded from their analyses. However, simulation
analysis demonstrated that the BHE performed well when all lengths greater than L,

including those larger than L, were retained (Then et al. 2015).

In this study, three candidate length bins were selected for left truncation: the first
length bin on the ascending limb of the LFD corresponding to at least half of the
frequency of that at the peak (“Half-peak abundance”), the length bin of the peak
(“Peak”™), and the first length bin after the peak (“Peak-plus”) (Figure 2.2). If there are
few length bins larger than the peak, then a portion of the ascending limb of the LFD may
consist of fully selected animals (Figure 7 of Hordyk et al. 2015a). While arbitrary, the
Half-peak abundance decision rule can be used to select a length on the ascending limb
relative to the Peak across a variety of shapes in the length distribution (Figures 2.2, 2.3).
This decision rule has also been used in several applications of methods evaluating length
data (for example, ICES 2014).

Similarly, there were three candidate length bins for right truncation: the largest

length bin containing at least 5 individuals (5+), the length bin at 90% of L (90%L,),
and the length bin at L, (100% L,). The length bin at L, was chosen if the 5+ right

truncation rule selected a length bin with a midpoint larger than L, . For the 90% L, and
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100% L, decision rules, if the bin contained no observations, then we selected the next

smallest bin containing any observations as the truncation point.

Nine methods, labeled L1-L9, were tested with the LCCC using the combinations
of left and right truncation (Table 2.2). For the BHE, the lower boundary of the three
candidate length bins for left truncation (Half-peak abundance, Peak, Peak-plus) was
identified as the L., comprising methods B1-B3. No truncation was necessary to use the
LB-SPR method.

For each data set, total mortality was estimated with the data truncation methods
described for LCCC, BHE, and LB-SPR. The values of von Bertalanffy parameters L,

and K used in the mortality estimators were sampled from a bivariate normal distribution
around the true values with a CV of 0.1 and a correlation of -0.9. This step is designed to
simulate the scenario in which only length data are available and growth information is

obtained externally (e.g., via a literature search).

2.3.3. Performance analysis

To quantify the performance of the decision rules for the estimators in terms of
bias and precision, the relative percent bias (%Bias) and relative percent root mean
square error (%RMSE) for each decision rule in each factorial combination were

calculated respectively as:

%Bias=

x100 (17)

and

57



(18)

where Z is the mean of the estimated total mortality rates from z out of 1,000 data sets

which produced a feasible estimate, Z = F + M is the true underlying mortality rate for

the factorial combination in the simulation, and Z; is the estimated mortality rate from

each data set i =1, 2, ..., n within each factorial combination. Unfeasible estimates
occurred using the LCCC if only one length bin was selected using the respective
decision rule, in which case the linear regression was not possible, or if the slope of the
regression line in Equation 2.3 was greater than 1, which resulted in a negative estimate

of Z. With the BHE, a negative total mortality rate was estimated if the mean length was
larger than L.

The %Bias and %RMSE were calculated for each method in all 108 factorials.
From this set, the median %Bias and median %RMSE for each method were calculated
among factorials with common M/K and F/M ratios. The median %Bias and median
%RMSE were further stratified across levels of the other factorial variables (growth
variability, recruitment variability, and selectivity) within each group of M/K and F/M.
The best decision rules can be identified as those with the lowest absolute values of the

median %Bias and the median %RMSE.

2.3.4. Sensitivity analyses
Sensitivity analyses were performed with respect to sample size, length bin, and

assumed growth parameters. For the sample size analysis, 200 and 500 length
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observations were selected without replacement as subsets of the original data sets, with
bin size of 10 units in the LFD. This analysis allowed us to test the effect of observation

(sampling) error on mortality estimation. For the bin width analysis, mortality was re-
estimated by re-binning the data with bin widths of 25 and 50 units (5% and 10% of L,

respectively). Sample sizes of 2,000 were used to analyze the effect of bin width
separately from observation error. For these two sensitivity analyses, mortality was
estimated again using the same decision rules for data truncation and the %Bias and
%RMSE were calculated for each decision rule in each factorial combination. Finally, the
variability in individual estimates of mortality was also evaluated when assumed growth
parameters were stochastically sampled. All simulations and analyses were performed in

R version 3.3 (R Core Team 2017).

2.4. Results

Our factorial design generated several functionally distinct LFDs based on M/K
and F/M (Figure 2.3). Compared to the Gradual and Dome selectivity functions, the Steep
selectivity function produced a shorter ascending limb of the LFD, which truncated the
length structure of the sample. In contrast, the Dome selectivity function only showed a
discernable difference in the descending limb when F/M = 0.25 or 1.

Based on a sample size of 2,000, performance of the methods varied the most by
M/K and F/M scenarios, with best performance of the methods when M/K =2 in
conjunction with #/M = 0.25 or 1 (Figure 2.4A). The methods have the least bias in these
scenarios, with the magnitude of the median %Bias generally less than 20% and the

%RMSE less than 50%. The ranges of the %Bias and %RMSE among factorials were also
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relatively small in these scenarios. Most methods performed similarly, although LB-SPR
did not perform as well as the LCCC (L1-L9) and BHE methods (B1-B3).

Performance was worst when M/K = 0.5 in conjunction with #/M = 0.25 or 1
(Figure 2.4A). While there were some factorial combinations where the methods
produced low %Bias and %RMSE, the range in %Bias and %RMSE of all methods was
large (with the performance metrics as high as 300-400%) indicating high variability in
performance. In all cases, the bias was positive. The median %Bias and median %RMSE
were usually larger than 100%. The best performing methods were B1 (BHE with Half-
peak abundance as the L.), closely followed by L1 and L3 (both L1 and L3 methods use
the LCCC with Half-peak abundance for left truncation).

When F/M =5, all methods improved in terms of bias for M/K = 0.5 (the
magnitude of %Bias generally less than 20%), but worsened for M/K = 2 (the magnitude
of %Bias increasing up to 40%), relative to lower F/M (Figure 2.4A). Overall, the sign of
the bias trends from positive to negative with increasing F/M, with the trend most
noticeable for M/K = 0.5. No single method appeared to perform the best when F/M = 5.
While LB-SPR had the lowest bias with M/K = 2, it also had the highest mean square
error. In other M/K and F/M scenarios, LB-SPR did not appear to perform as well as the

LCCC and BHE.

2.4.1. Performance across factorial variables
In this and the next section, we present the results for B1 when M/K = 0.5 and L5
when M/K = 2 in the main text. Method B1 performed the best when M/K = 0.5 (and F/M

=0.25 or 1). Method L5 was chosen arbitrarily because there was no clear best method
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when M/K = 2. The performance across factorial variables and sensitivity analyses for
individual factorial combinations for all decision rules are described in the main text,
with supporting figures and tables in the Supplementary Materials.

Within M/K and F/M combinations, the performance metrics were further
stratified by growth variability type, magnitude of growth variability, recruitment
variability, and selectivity. Observed trends in performance remained similar to those
described in the previous section (Tables S1-S6).

Bias and precision generally improved with increasing growth variability when
F/M =0.25 or 1 (Figures 2.5, S1 —S13). When F/M = 5, the differences in bias and
precision among different growth variabilities were small to negligible. Larger bias and
mean square error was associated with high variability than with low variability in
recruitment (Figures 2.6, S14-S26), although there were negligible differences when F/M
= 5. All three methods were much more positively biased with Dome selectivity than
with the logistic selectivities (Gradual and Steep) when /M = 0.25 or 1 (Figures 2.7,
S27-39). However, the effect of Dome selectivity is minimal at /M = 5. There were no
major differences in performance common to all methods between the Steep and Gradual

selectivity functions.

2.4.2. Sensitivity analyses

At the sample size of 200, most methods had larger bias and less precision
compared to when a sample size of 2,000 was used, but the magnitude of the difference
between sample sizes was not particularly large (Figures 2.4B, S40-S52). Methods L4

and L7 were notable in that their median %Bias was lower, but median %0RMSE was
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higher when the sample size was 200 instead of 2,000. However, the general trends
remained unchanged.

Length bin width generally did not affect the %Bias and %RMSE of the mortality
estimators (Figures 2.8, S53-S65). Methods L7, L8, and L9 showed improvement in
some scenarios when M/K = 0.5 in conjunction with /M = 0.25 where larger length bins
performed better, but these scenarios still appeared to be outliers. The magnitude of the
performance metrics remained large (%Bias > 100 %) for these scenarios.

We examined the correlation of total mortality estimates with the assumed values

of L, and K (Figure 2.9). In general, higher estimates of mortality are obtained with a

larger value of L, . However, underestimates of Z did not often occur with low M/K

scenario and F/M = 0.25 or 1. On the other hand, when F/M = 5 (for both M/K scenarios),

overestimates of Z did not often occur.

2.5. Discussion
2.5.1. Performance of mortality estimators

Our simulations suggest that the M/K ratio strongly affects the performance of the
three length-based methods, with poor performance at low M/K for all three methods.
This finding is consistent with previous simulations on LB-SPR (Hordyk et al. 2015b).
When M/K is low, the peak of the LFD may not correspond to the true length of full
selectivity (Figure 2.3). The best decision rules for both the LCCC and BHE used half-
peak abundance length as the left truncation point (methods L1 and L3 for the LCCC and
B1 for the BHE), although there was still a large bias associated with them. When M/K

was high, there was no clearly superior method in both bias and precision.
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The performance of all three length-based methods worsened in situations with
extreme shapes in the LFD (i.e., low M/K with low F/M or high M/K with high F/M,
Figure 2.3). In spite of this, if a stock is exploited over a broad range of sizes, then a
qualitative assessment of the mortality rate is still possible based on life history and the
shape of the LFD. High mortality can be inferred with truncation of the size structure due
to low survival of animals to large size classes. Populations with a low M/K ratio and low
F/M will have a protracted ascending limb due to the ‘pile-up’ effect where there are
many large animals in the LFD due to low mortality. The use of length as a proxy for age
by assuming deterministic growth in the LCCC and BHE did not appear to work well in

such scenarios, because a much more substantial portion of the length distribution
consists of lengths larger than L due to variability in growth (Figure 2.3). However,

contrary to what might be expected, the LB-SPR method, which explicitly models
variability in growth and selectivity (removing the need to truncate the data to meet
model assumptions), did not perform more reliably than the LCCC and BHE in these
situations.

In our study, all three length-based methods were robust to high growth
variability. This result is surprising for the LCCC and BHE because both methods assume
no variability in growth. Previous simulations with the LCCC showed that the estimator
performed better with less growth variability (Isaac 1990), although Then et al. (2015)
found that the BHE performed better with higher growth variability if the selectivity was
dome-shaped. On the other hand, it was not surprising that LB-SPR performed worse
when the CV of growth in the population was lower than that assumed in the estimation

model. However, this assumption is not as critical in LB-SPR compared to the other two
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methods because the CV of growth variability can be adjusted in the former when
external information from a growth study is available.

The estimators were robust to the magnitude of recruitment variability as long as
the recruitments were random. Trends in recruitment are more likely to be a problem
because they would be conflated with mortality.

Dome selectivity had a noticeable effect on the bias only when F/M = 0.25 or 1,
due to the high abundance of large individuals present in the population but missing in
the catch (Figure 2.3). The length-based methods all assume logistic selectivity because
dome selectivity is conflated with high mortality. To estimate a mortality rate, selectivity
external selectivity estimates would be needed. For example, Ehrhardt and Ault (1992)
developed a modified version of the BHE to estimate mortality when there is an upper
length truncation in the LFD of the catch (Ehrhardt and Ault 1992) with that length of
upper truncation estimated externally and then provided to the equation. Simulations have
found the behavior of the Ehrhardt-Ault estimator to be complex (Then et al. 2015).
Contrary to the methods tested in our study, the performance of their estimator often
worsened with higher growth variability. In some cases, lower bias but higher variance
was observed with using the Ehrhardt-Ault compared to the original equation, although
the best input length for upper truncation for minimum bias was often larger the true
length of upper truncation. Then et al. (2015) did not recommend the Ehrhardt-Ault
estimator for routine use.

At high F/M, low survival to large size classes minimizes the effect of dome
selectivity. Then et al. (2015) found a positive bias associated with the truncation of large

animals in the length distribution when using the BHE for all mortality scenarios, but
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they assumed knife-edge selection of small animals in their simulations. Our simulations
also examined the effect of left truncation for the LCCC and the BHE when selectivity
was not knife-edged. In theory, Steep selectivity more closely corresponds to the knife-
edge selectivity assumption, compared to Gradual selectivity. However, all three methods
(including LB-SPR) were robust to different logistic selectivity functions as indicated by

the small differences in performance among truncation methods.

2.5.2. Sensitivity analyses

We examined the estimators in the ideal situation with large sample sizes and
little observation error. The sensitivity analysis indicated that the estimators were
generally robust to smaller sample sizes. We assumed that the generated data set was a
random sample of animals from the vulnerable population. In reality, data are generally
collected in clusters from samples of fishing trips or from schools of animals, often with
similar lengths and ages within trips or schools. Cluster sampling reduces the effective
sample size of the observed LFD and increases the uncertainty surrounding estimates of
mortality (Chih 2011). With knowledge of the sampling program used to collect the data,
the effective sample size can be estimated via bootstrapping methods (Stewart and Hamel
2014) or design-based formulas (Thorson 2014). Stewart and Hamel (2014) suggested
that the number of sampled trips may be an appropriate proxy for the effective sample
size. This suggestion may be applicable in a data-limited context if the ratio of within- to
among-trip variance is low due to the cluster effect. The effective sample size would be

important to determine if an appropriate range of size classes have been sampled, because
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the sampling would affect the shape of the LFD used to apply the length truncation
methods for the LCCC and BHE and estimate selectivity in LB-SPR.

The performance of the LCCC and BHE did not appear to diminish with larger
length bins, and in some cases (with low F/M), performance was better. While sensitivity
of length bins can be examined in individual applications of the equilibrium mortality
estimators, low sample sizes may preclude the use of small length bins to describe the
length composition of the catch in data-limited situations.

Our study design assumed that information on growth was stochastic, arising from
a bivariate distribution with a highly negative correlation often associated with estimating
parameters of the von Bertalanffy growth equation (Gallucci and Quinn 1979).

Sensitivity analyses can be used to determine the influence of growth parameters on
mortality estimation. An overestimate of £, may create a positive bias for the estimate of
total mortality, because fewer large animals are observed than are expected. We
examined the correlation of total mortality estimates with the assumed values of L, and K

(Figure 2.9). In light of the systematic biases of the estimators among different M/K
scenarios, overestimates of mortality may be more likely and underestimates less likely
when M/K is low. Similarly, overestimates of mortality are unlikely when M/K and F/M
are high. Such information could be used to assess the direction and magnitude of
estimation error based on mis-specified growth in future applications of the mortality
estimators.

Mortality estimates with length-based methods are dependent on the values of
growth parameters. The quality of external growth estimates is affected by, among other

things, the choice of the growth model (Gwinn et al. 2010) and the representativeness of
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the size-at-age data to the population when sampling gears with different selectivity
patterns are used (Wilson et al. 2015), and should be assessed in future applications of
length-based methods. If size-at-age data are available, integrated modeling approaches
for estimating growth simultaneously with mortality and selectivity also exist (Taylor et

al. 2005).

2.5.3. Life history considerations

Overall, our study found that life history expressed in the M/K ratio was a good
predictor of the performance of length-based mortality estimators. Meta-analyses of life
history traits have shown a negative correlation between M/K and relative length of

maturity (the ratio of the length at maturity to L) in teleost families (Prince et al.

2015a). Better performance in high M/K scenarios was observed compared to low M/K.
This result supports those in previous studies of length-based methods (e.g., Hordyk et al.
2015b). Two features unique to low M/K populations may result in their poor
performance. First, the protracted ascending limb of the length composition in the
population conflates selectivity with abundance-at-length. It may be difficult to select
appropriate truncation lengths or estimate selectivity. Second, there is a high abundance
of large animals from the ‘pile-up’ effect. In a low M/K population, a large age range is
encompassed in a small spectrum of lengths and the length structure is a poor proxy for
the age structure of the population. We recommend caution when using length-based
methods in low M/K situations as the results are likely to be positively biased even in
equilibrium situations. From a management standpoint, this behavior can dictate data

collection priorities for alternative data types for assessment of low M/K stocks. In a data-
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limited context, meta-analyses can be used to identify taxa with low M/K ratios (Prince et
al. 2015a). Nevertheless, if length-based methods are to be used, our study suggests that

classical methods (LCCC and BHE) remain viable options for mortality estimation.

2.6. Conclusion

Our study examined the performance of three length-based mortality estimators.
When M/K is low (M/K = 0.5 in our simulation), we recommend using the BHE using
half-peak abundance as the L., although the method is still likely to be positively biased
and imprecise. When M/K is high (M/K = 2 in our simulation), both the LCCC and BHE
performed well and were robust to variation in commonly-used truncation rules. For
optimal performance, the length-based estimators require some a priori judgment of the
life history and expected fishing pressure on the stock of interest. We recommend caution
in using length-based methods for populations with low M/K. Overall, this study
demonstrated that relative to LB-SPR, both the LCCC and BHE produced less biased and
more precise estimates of total mortality. While LB-SPR did not perform as well
compared to the other two methods when estimating mortality, the method has an
advantage of providing estimates of selectivity, if desired. The LCCC and BHE methods
performed comparably and no firm recommendation is made for choosing between these

two methods.
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2.8. Tables

Table 2.1. Parameter values used for data generation in the simulation study. Parameters
with multiple values were included in factorial design. Parameters Lso and Los are the
lengths of 50% and 95% selectivity, respectively, using a logistic function. Parameters

u, and o, are the mean and standard deviation of the normal probability density

function, respectively, with values standardized to 1 at length x, for dome-shaped

selectivity.
Parameter Symbol Values
Ratio of natural mortality M/K Low: 0.5 (K=0.4)
rate M and von Bertalanffy High: 2.0 (K=0.1)
K
Ratio of fishing mortality ¥ F/M Low: 0.25 (£ =0.05)
and natural mortality rates Medium: 1.0 (F=0.2)
High: 5.0 (F=1.0)
Coefficient of variation of cv Low: 0.03
Medium: 0.06
length-at-age (Ly,a ) High: 0.09
Recruitment residual o Low: 0.6
standard deviation High: 1.0
Selectivity-at-length se lL Gradual: Lg, =175, Lys =200

Steep: L50 = 175, L95 =275
Dome: Ly, =175, Lys =275, 1, =325, 0, =

65
Recruitment P 0.45
autocorrelation
coefficient
von Bertalanffy asymptotic Loo 500
length
Expected length at age-0 L, 75
Cohort growth standard o, 0.15
deviation
Maximum age A 23
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Table 2.2. Truncation methods of the length data for estimating total mortality Z with the
length-converted catch curve (LCCC) and Beverton-Holt equation (BHE). No truncation
is associated with the LB method (LB-SPR).

Method  Estimator Left truncation Right truncation
L1 LCCC Half-peak abundance 5+

L2 LCCC Half-peak abundance 90% L,
L3 LCCC Half-peak abundance 100% L,
L4 LCCC Peak 5+

L5 LCCC Peak 90% L,
L6 LCCC Peak 100% L,
L7 LCCC Peak-plus 5+

L8 LCCC Peak-plus 90% L,
L9 LCCC Peak-plus 100% L,
B1 BHE Half-peak abundance N/A

B2 BHE Peak N/A

B3 BHE Peak-plus N/A

LB LB-SPR N/A N/A
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2.9. Figures

1.0 —
{ === Gradual
v = Steep
v= = Dome
£ .
© 0.5
S '
w )
)
Y
b -
00 — - - -«
I I I I I I I
0 100 300 500
Length

Figure 2.1. Length-based selectivity functions used in the simulation.
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Figure 2.2. Histogram of a length frequency distribution with the left-handed decision
rules (Half-peak abundance, Peak, and Peak-plus) used to select the length bin of left
truncation for the LCCC and value of L. for the BHE in the simulation study.
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Figure 2.3. Expected length frequency distributions obtained from the sum of 1,000 data
sets from the simulation stratified by the factorial design for M/K, F/M, and selectivity.
Selectivity functions correspond to those in Figure 2.1. In all panels, medium growth
variability and low recruitment variability was assumed in the sample. Dashed vertical
lines indicate L = 500 (Table 2.1).
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Figure 2.4. %Bias (top grids) and %RMSE (bottom grids) from the simulation study when the data set sample size is 2000 (A) and 200
(B). For each method, factorial combinations are stratified by M/K and F/M. Numbers and horizontal lines in the violin plots indicate
median %Bias and %RMSE, with the numbers rounded to the nearest whole number for clarity. The shape of the violin plots shows
the distribution of values. Asterisks and shaded violin plots indicate the method with the lowest median value in each grid cell (not
subject to rounding error). Rows in each grid have separate scales on the y-axis to show the shape of the violin plots.
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Figure 2.5. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and growth
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shaded violin plots indicate the method with the lowest median value in each grid cell
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Figure 2.6. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and
recruitment variability. Only methods B1 and LS5 are shown (corner text in the corners
indicate the method shown). Numbers and horizontal lines in the violin plot indicate
median %Bias and %RMSE and the shape of violin plot shows the distribution of values.
Asterisks and shaded violin plots indicate the method with the lowest median value in
each grid cell (not subject to rounding error).
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stratified in separate cells by M/K and F/M. Dotted lines indicate the true value of
mortality and growth parameter in the respective cell.
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Chapter 3: Multispecies Extensions to a Nonequilibrium
Length-Based Mortality Estimator

3.1. Abstract

Recent advances in methodology allow the history of the total mortality rate experienced
by a population to be estimated from periodic (e.g., annual) observations on the mean
length of the population. This approach is generalized to allow data on several species
that are caught together to be analyzed simultaneously based on the theory that changes
in fishing effort are likely to affect several species; thus, the estimation of times when the
mortality rate changes for one species borrows strength from data on other, concurrently
caught species. Information theory can be used to select among models describing the
degree of synchrony (if any) in mortality changes for a suite of species. This approach is
illustrated using data on Puerto Rican handline fishery catches of three snapper species:
Silk Snapper Lutjanus vivanus, Blackfin Snapper L. buccanella, and Vermilion Snapper
Rhomboplites aurorubens. We identified the best model as the one that provided for
simultaneous decreases in mortality rate around the year 1997 and for separate, species-
specific magnitudes of change in total mortality. The simultaneous estimation of
parameters for multiple species can provide for more credibility in the inferred mortality

trends than is possible with independent estimation for each species.
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3.2. Introduction

The mean length of animals in a population is a dynamic statistic that reflects the
recent and past mortality rates experienced by the population (Baranov 1918, cited by
Ricker 1975; Beverton and Holt 1956, 1957). Under stringent equilibrium conditions, the
total instantaneous mortality rate (Z; year ') can be estimated by the well-known

Beverton—Holt equation (Beverton and Holt 1956, 1957),

_K(L,-L)

Z T s
L-L,

3.1)

where K and L« are parameters of the von Bertalanffy growth curve (K = Brody growth

coefficient; L» = asymptotic length), L. is the smallest length of animals that are fully

vulnerable to the fishing gear, and L is the mean size of animals that are larger than Le.
Gedamke and Hoenig (2006) generalized this approach by analyzing an annual series of
mean length measurements to estimate (1) the years in which the mortality rate changed
and (2) the magnitudes of mortality in the separate time periods identified. To do this,
Gedamke and Hoenig (2006) derived the transitional behavior of the mean length
statistic as the population moved from one equilibrium state toward another equilibrium
state after a change in mortality.

The present work was motivated by the consideration that most types of fishing
gear catch a variety of fish species. Consequently, if fishing effort changes over time, one
might reasonably expect that an assemblage or “complex” of species that are caught
together would show synchronous changes in mortality rate. For example, if handline

fishing effort doubles from one year to the next, one might suspect that all fish species
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that are caught by the handline gear would experience an increase in mortality during the
same year. Data from all species in the complex could then be used to estimate the
common years of change, resulting in greater efficiency in estimation. Note that all
species in the complex do not necessarily experience the same time schedule of mortality
changes. For example, one species may have a restricted range centered on the main
fishing grounds where the increase in fishing occurred, and another species might have a
broader distribution occurring on both the main fishing ground and a secondary fishing
ground where effort has declined; those two species might not show synchronous changes
in mortality. In addition, the magnitude of changes in mortality will not necessarily be the
same for all species, as species with low catchability may exhibit a smaller change in
mortality than species with high catchability.

In the present work, we sought to model changes in the mean length of several
species simultaneously so as to estimate period-specific mortality rates and years of
change. We develop four progressively restrictive and nested models for the estimation
of mortality when multiple species are considered: (1) trends in total mortality (both the
timing and magnitude of the change in mortality) are independent for each species; (2)
the year in which the change in total mortality occurs (hereafter, “change point”) is
common to all species, but the magnitude of the change is independent; (3) the change
point is common to all species, and the magnitude of the change in fishing mortality is
the product of a time and species effect; and (4) both the change point and the magnitude
of the change in fishing mortality are common to all species. The latter three approaches
are attractive because they borrow strength from disparate data with common underlying

trends in mortality that otherwise might not be detected by analyzing each species
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separately. Additionally, these approaches allow us to distinguish the dynamics that are
common to all species (i.e., the change points) from those that are not (i.e., the magnitude
of the change in mortality). We describe our application of the models to three species
that occur together in Puerto Rican handline catches: Silk Snapper Lutjanus vivanus,

Blackfin Snapper L. buccanella, and Vermilion Snapper Rhomboplites aurorubens.

3.3. Methods
3.3.1. Model Development and Model Fitting
We consider a complex of N species that tend to be caught together and for which
we suspect the patterns of fishing effort are similar over time. We hold the following
assumptions for each species considered:
1. Individual growth follows the von Bertalanffy growth function, with the
parameters K and L« known and constant over time.
2. There is no individual variability in growth.
3. Recruitment is constant and continuous over time; or if recruitment fluctuates, it
does so randomly (i.e., with no time trend).
4. Total mortality rate Z is constant with age after the age of recruitment (#.) that
corresponds to Lec.
These assumptions are discussed by Gedamke and Hoenig (2006) and Then et al.
(2015a).
Consider first the simplest case in which a population starts at equilibrium with a

total instantaneous mortality rate of Z, , and then experiences a second mortality rate

Z, , , where the first subscript indexes the time period of the respective mortality rate
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and the second subscript indexes species n = 1, 2, ..., N. Generalizing the results of
Gedamke and Hoenig (2006) by adding a subscript for species, the mean length d years
after the change point is computed as

et Z,,Zy (L~ L Z,, + K, +(Z,, ~Z, ) exp[—(Z,, +K,)d]}
() () Z,, +K)NZ,,+K){Z,,+(Z,,~Z,,)exp(Z,,d)}

5

(3.2)
where u, (d) is the predicted mean length of animals of species n as a function of time
d years after the change point; the remaining symbols are as in equation (3.1), with
subscripts added for time period and species as needed.

Gedamke and Hoenig (2006) computed the mean length at any time when there
was an arbitrary number of change points over time. Cardinale et al. (2009) analyzed
length frequency data from an annual trawl survey conducted for over 100 years, and
they estimated nine separate total mortality rates (and eight change points). The general
equation for computing the predicted mean length in each year given a history of
mortality rates is provided by Gedamke and Hoenig (2006; their Appendix 2).

From a time series of mean length observations, the mortality rates and change

points can be estimated as described by Gedamke and Hoenig (2006). By virtue of the

central limit theorem, we model the observed mean length L, , of species n in year ¢ = 1,

t,n

2,...,T as a normally distributed random variable with mean ,,, and variance o /m

t,n 2

where m, , is the sample size of observed lengths above Lc in year ¢ for species n. A
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common variance ¢ over time is assumed so that the precision of the mean length in
year ¢t depends on the sample size m, , in that year for species n. Annual means are

modeled as in equation (3.2) by rewriting the equation in terms of calendar years instead
of the number of years since a change in mortality occurred or—more generally—as in
Gedamke and Hoenig (2006; their Appendix 2), assuming more than one change

point in the time series.

The log-likelihood (log 4, ) of observing mean length Zt,n for species n over T

years is proportional to

1
20!

T —_—
log/ln o _T lOg(Gn ) - th,n (Lt,n - Il’lt,n )2 . (33)
t=l1

Maximum likelihood estimates of the mortality rates and change points for species n are

found numerically by estimating the values of the parameters that maximize the log-

. . . . . . . . A2
likelihood. The maximum likelihood estimate for the residual variance O, 1is solved

analytically,
2 I« a2
Un :?zmt,n (Lt,n _Iut,n) > (34)
=1

where /1, , is the maximum likelihood estimate of the mean length.

3.3.2. Modifications for Multispecies Estimation
The total log-likelihood (log A) for all N species is simply the sum of the

individual species’ log-likelihoods,
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N
logA = logA, . (3.5)

n=l1
Assuming that there are / change points, let each species n =1, 2,..., N have its own

vector of parameters 6, = {Z D, }, where Z; , is the vector of period-specific total

in? i,n

mortality rates through time (with i =1, 2,..., I+ 1); and D, , is the vector of change
points in calendar years from mortality rate Z;, to Z,,,, (withi=1,2,..., ). We can

then envision a suite of progressively more restrictive models for the patterns of mortality
across species: a single-species model (SSM) and three multiple-species models (MSM1,
MSM2, and MSM3), as described below.

Single-species model.—In the single-species scenario, what happens to one
species is not reflected in what happens to other species. For example, fishers may target
certain species at certain times so that changes in total mortality for one species are
independent of the changes experienced by another species. In this case, the mortality

rates (Z, ) and change points (D, ) are all estimated parameters. Maximizing log A

(equation 3.5) is equivalent to applying the mean length estimator to each species
independently because there are no parameters in common among species.

Multispecies model 1: common years of change.—In MSM1, changes in fishing
effort simultaneously affect all species in the complex being considered; however, the
magnitudes of the changes in Z are independent. Thus, all species have a common set of

change points when the mortality rate changed (i.e., D,, = D, . for all periods i and

for all pairs of species n and ). This feature is included in the following two models,

and we drop the second subscript for the change points in the subsequent text.
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Multispecies model 2: common years of change with species-specific proportional
changes in fishing mortality.—In MSM2, all species experience synchronous changes in
mortality (i.e., common change points as in MSM1), but in addition we employ
separability to model changes in fishing mortality with temporal and species components.

The total instantaneous mortality rate Z, , is broken down into its components,

VA F

in

+M,, (3.6)

in

where F.

..» 18 the fishing mortality rate for species n during period 7; and M, is the time-
invariant and age-invariant natural mortality rate for species n. A change in fishing effort
in the next time period would cause the fishing mortality for a reference species to

change by a factor J. Not all species can be expected to experience the same proportional

change in fishing mortality (e.g., due to different catchability coefficients), so we

incorporate species-specific effects (&, ). Subsequent mortality rates for species n are

5i1F:'n+Mn n:1
i+l,n = i ‘ (37)

S5,.6,F,+M, n=2,...,N’

where &, is the proportional change in fishing mortality for a reference species n =1 at
time D,; and ¢, is the multiplicative species effect relative to the reference species for

all other species n =2,..., N.
In MSM2, the following parameters are estimated: the first total mortality rate

Z,, for all N species; the residual variances o for each species; the common change

1,n
points D, ; the proportional changes ¢, ; in fishing mortality for the reference species;

and the species-specific effects &, for all other species in the complex. Successive total

mortality rates Z,, (i > 1) are derived by propagating equation (3.7). The values of M,
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are obtained externally to the analysis of the mean length data—for example, via the
methods described by Then et al. (2015b) or Hamel (2015). If there is only one change
point, MSM2 is equivalent to MSM1.

Multispecies model 3: common years of change and common proportional
changes in fishing mortality.—The MSM3 assumes that changes in mortality are
concurrent among species in the complex, with the same proportional
changes in fishing mortality for all species. For all species in the complex, we modify
equation (3.7) such that

Ziw,=0F, , +M,, (3.8)
where 0, is the proportional change in fishing mortality at time D,. By dropping the
species subscript, the proportional change 6, is common to all species.

In MSM3, estimated parameters include the first total mortality rate Z, , for each
species, the residual variances o for each species, the common change points D,, and

the corresponding &, ; the values of M, are again obtained externally. Successive total

mortality rates Z,, (i > 1) are derived by propagating equation (3.8).

3.3.3. Model Complexity and Model Selection

Knowledge of fishing practices for species in the complex (e.g., spatial extent;
depth strata fished) can be used to guide the choice of model for estimating total
mortality rates. If regulations on fishing effort are implemented in different years or if

there are changes in species targeting, this information may be considered when selecting
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the appropriate model. In the absence of such knowledge or if an empirical approach is
desirable, information theory (Akaike’s information criterion corrected for small sample
sizes [AIC.]) can be used to select the best model (Burnham and Anderson 2002).
Accounting for both parsimony and goodness of fit, the model with the lowest AIC. value
(AIC. difference [AAICc] = 0) can be chosen as the most plausible model, whereas the
support for other candidate models decreases with higher AIC. values. Model selection

is conditional on the values of natural mortality (M) that are specified in MSM2 and
MSM3. Uncertainty in M may be addressed with a sensitivity analysis using alternative
values.

By expanding the mean length analysis to incorporate multiple species and
common parameters between species, the number of estimated parameters is reduced.
Table 3.1 presents the formulas for the number of estimated parameters given /
changes in mortality and N species. For example, with three species and one change in
mortality, a total of 12, 10, 10, and 8 parameters would be estimated by the SSM, MSM1,
MSM2, and MSM3, respectively. Incorporating an additional change point would
increase the number of estimated parameters by six in the SSM but only by four in
MSMI1. Adding another species in the analysis would increase the number of estimated

parameters by four in the SSM but only by three in MSM1.

3.3.4. Application to Deepwater Snappers in the Puerto Rican Handline Fishery
We demonstrate the application of the multispecies mean length mortality
estimators by using data for the Silk Snapper, Blackfin Snapper, and Vermilion Snapper

in the Puerto Rican handline fishery. The distributions of these three species are

92



overlapping in terms of habitat and depth strata (Sylvester 1974; Boardman and Weiler
1980; Claro et al. 2001). Catches in the deepwater snapper complex have historically
been dominated by Silk Snapper, followed by Vermilion Snapper and then Blackfin
Snapper (Claro et al. 2001; SEDAR 2011). Currently, the three species are managed
together as species complex (Snapper Unit 1) by the Caribbean Fishery Management
Council (USOFR 2005). The present analysis is intended to be a demonstration of our
methods and not an assessment of the three stocks.

Length data for the three deepwater snapper species from 1983 to 2013 were
obtained from the commercial handline fishery through the Trip Interview Program (TIP)
of the National Marine Fisheries Service’s Southeast Fisheries Science Center. Fishing
occurred at depths of up to 519 m (280 fathoms), with most animals caught above 370 m
(200 fathoms). The K and L~ parameters of the von Bertalanffy growth function for each
species were obtained from the literature (Table 3.2). For Silk Snapper and Vermilion
Snapper, there was considerable variability in the reported growth parameters.
Ultimately, we used estimates from the 2011 assessment for Silk Snapper (SEDAR 2011)
and estimates from Caribbean stocks for Blackfin Snapper and Vermilion Snapper (Table
3.2). Analyses of sensitivity to the misspecification of von Bertalanffy parameters have
shown that the mean length mortality estimator is most sensitive to the overestimation or
underestimation of Lo (Gedamke and Hoenig 2006).

The L. parameter was determined for each species by examining the respective
length frequency data spanning the entire time period (Figure 3.1). In general, the length

near the peak of the histogram was chosen. For Silk Snapper, the data showed an
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increase in the peak over time from 260 mm to 310 mm; in this case, we selected the
peak of the most recent time period (i.e., 310 mm) as the L. (Table 3.3).

The annual mean length of animals above L (i.e., L ) and the respective sample
sizes were then calculated; 7,497 records for Silk Snapper, 1,902 records for Blackfin
Snapper, and 3,836 records for Vermilion Snapper were available after we removed
records of lengths smaller than L.. Sample sizes generally increased through time,
although there were several intermittent years without length data for a
given species (Figure 3.2).

Using the SSM, MSM1, and MSM3, mortality rates were estimated by assuming
that there was one change point in the time series. For Blackfin Snapper, the total
mortality rate in the SSM was also estimated by assuming zero change points
(equilibrium conditions), as there was equal support for zero and one change point.
Because the data only suggested one change in mortality over time (Figure 3.2), we did
not implement MSM2 due to redundancy (see Section 3.3.2). For MSM3, estimates of M
were obtained via the method of Then et al. (2015b) by using von Bertalanffy parameters
rather than maximum ages because the latter were not available (Table 3.3).

A sensitivity analysis of MSM3 to the prescribed M was performed. A factorial
design was implemented to specify M for each of the three species at 60, 80, 100, 120,
and 140% of the base values in Table 3.3, resulting in a total of 125 factorial
combinations for all levels in all three species. The percent deviation (%DEV) in the

estimated total mortality rate from each factorial combination was calculated as

zZ -7
%DEV =100x Zens — Zhase (3.9)

b

base
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where Z , is the estimated total mortality rate in the respective sensitivity run; and Z

sens base

is the total mortality rate that was estimated by using the base values of M.

3.4. Results
3.4.1. Application to Snappers in the Puerto Rican Handline Fishery

Model fits to the mean length data are shown in Figure 3.2. Total mortality rates
were first estimated independently for each of the three snapper species under the
assumption of one change in mortality (i.e., two mortality rates estimated per species)
with the SSM. For all three species, the data suggested a decrease in total mortality
during the observed time series (Table 3.4). However, the change points varied widely:
the year 1996.8 for Silk Snapper, 1985.9 for Blackfin Snapper, and 1997.7 for Vermilion
Snapper. Change points are estimated in continuous time with the decimal representing
tenths of a year.

For Blackfin Snapper, the equilibrium Z in the data was estimated as 0.46 when
no change point was specified; this value was intermediate to the two mortality rates that
were estimated with one change point. Using AIC., there was almost equal support for
the equilibrium model and the one change-point model, but the former produced a slight
trend in the residual fit. Thus, we proceeded with the analysis for Blackfin Snapper under
an assumption of one change point.

Next, total mortality rates were estimated by assuming a common change point
using MSM1. The estimated mortality rates for Silk Snapper and Vermilion Snapper

were virtually unchanged, and the estimated common change point in year 1997.5 did not
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noticeably depart from the change points generated by the SSM for Silk Snapper and

Vermilion Snapper. For Blackfin Snapper, the first mortality rate Z, was estimated

to be lower and the change point occurred much later in MSM1 than in the SSM. The

estimated second mortality rate Z, for Blackfin Snapper was unchanged between the two

models.

Multispecies model 3 estimated an earlier common change point (i.e., 1994.8)
than was estimated by MSM 1. The corresponding common value of § was estimated to
be 0.52. A decrease in mortality over time was still inferred, but the fit to the data was
distinctly different from that of the SSM and MSM1 (Figure 3.2). For Silk Snapper and

Blackfin Snapper, values of Z, from MSM3 were virtually unchanged compared

to those from the SSM and MSM 1, whereas values of Z; varied (Table 3.4). For

Vermilion Snapper, Z, was lower, and a smaller reduction in mortality during 1994 was

inferred.

Multispecies model 1 was the best-fitting model among the three, closely
followed by the SSM (Table 3.5). There was little support for estimating common
changes in fishing mortality, as the AAIC. value for MSM3 was more than 10 units.
Between MSM1 and SSM, there was not much support for estimating additional
parameters (i.e., species-specific change points).

As an indicator of model certainty and the benefit of using multiple species to
infer trends in mortality, we examined the asymptotic SE of the change point in the
models (Table 3.4). For MSM1, the asymptotic SE of the change point was 0.84,

compared to 2.26 for MSM3 and a mean SE of 1.77 from the three species-specific
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change points in the SSM. The likelihood profile for the change point was also used to
examine the contribution of the data from each species to the goodness of fit in MSM1
(Figure 3.3). The likelihood profile indicated that the data for Vermilion Snapper
contributed the most information for estimating the change point. Together, these
diagnostics suggested that the mean length data for the three species were best modeled

by a common change point and independent trends in mortality.

3.4.2. Sensitivity Analysis of Natural Mortality Specification

The %DEV values of the estimated total mortality rates for the three snapper
species were all less than 15%, indicating that the estimates in MSM3 were not
considerably affected by the specification of M (Table 3.6). There was no consistent trend
in the estimated Z across the range of M values (Figure 3.4). For Silk Snapper and
Blackfin Snapper, there was little to no trend in the estimation of Z: in the sensitivity

analysis, whereas more variability and a slight trend were observed in Z,. For Vermilion
Snapper, both Z, and Z, were generally more variable with some trend given M,

although the trends were in opposite directions for the two total mortality rates (Figure
3.4). In comparison with the SSM and MSM1, the AAIC:. values obtained from the
sensitivity analysis for MSM3 were all greater than 6.2 and therefore did not affect model

selection.

3.5. Discussion
There is interest in developing methods for multispecies assessments, especially

for ensembles of data-rich and data-poor stocks or species (Punt et al. 2011). Here, we
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have demonstrated the application of the mean length mortality estimator in a
multispecies context.

Mean length models that incorporate common trends in mortality can use data for
well-sampled species to inform trends in species with fewer observations. This can be
accomplished because sample sizes are incorporated into the likelihood function to give
more weight to the trends in species with more observations. In our example, the length
data for Vermilion Snapper were valuable for estimating the change point. The sample
sizes for Vermilion Snapper were relatively large and consistent for the duration of the
time series, whereas the observations of Blackfin Snapper were historically sparser and
the sample sizes for Silk Snapper were low before the year 2000.

When a common change point was estimated for all three snapper species, the
trends in mortality for Blackfin Snapper and, to a lesser extent for Silk Snapper, seem to
have “borrowed strength” (Punt et al. 2011) from those for Vermilion Snapper. This
behavior can be diagnosed with the likelihood profile for the change point in MSM1. As
a result, there was higher confidence in the timing of the common change point than in
the timing of the individual change points estimated by the SSM. More credibility can be
given for the change point in Blackfin Snapper to occur synchronously with those of the
other two species in MSM1. The SSM did not considerably improve the goodness of fit
relative to MSM1 because the estimated mortality rates for Silk Snapper and Vermilion
Snapper and the most recent mortality rate for Blackfin Snapper were very similar
between the two models. This was reflected in the AAIC., which did not indicate more

support for the estimation of separate change points.
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The data did not provide support for modeling synchronous changes in fishing
mortality with MSM3, and the most noticeable change in model fit was observed with the
Vermilion Snapper data. From the SSM and MSM 1, total mortality was inferred to be
much higher in Vermilion Snapper than in Silk Snapper and Blackfin Snapper, which
implies that the changes in total mortality occurred with different proportional changes
in fishing mortality in Vermilion Snapper relative to the other two species since the M
values for all three species were assumed to be very similar. Estimating a common
proportional change in fishing mortality altered the goodness of fit to the data. There was
not enough information (i.e., more than one change point) in the data to explicitly model
species-specific effects with MSM2. Thus, MSM1 provided the empirically best fit to the
data in our application.

The sensitivity analysis of MSM3 in our snapper example showed that the range
in Z-estimates was smaller than that specified for M. This behavior occurs because the
model fit is determined by Z, and any overestimation of M is expected to be compensated
for by an underestimation of fishing mortality and vice versa. Since values of M are
obtained externally to the models and can vary widely depending on the empirical
method used to derive those values (Hamel 2015), we recommend sensitivity analyses for
applications of MSM2 or MSM3 and any possible effects on model selection.

For Vermilion Snapper, there was some uncertainty in the rather large magnitude
of the estimated mortality rates. Examination of the length frequency histogram showed a
truncated length structure, which could also arise from the overestimation of L« specified

in the model or from size-selective fishing that did not catch large animals. Identifying
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the cause of the truncation will require more information on the life history of the stock.
As long as they are time invariant, these factors should not affect the fact that the
mortality rate decreased (Gedamke and Hoenig 2006). However, knowledge of the
absolute magnitude of mortality is still desirable for management purposes. This case
study highlights the importance of choosing the appropriate life history parameters for
mean length mortality estimators and for data-limited assessment methods in general. In
our study, the growth function for Vermilion Snapper was obtained from a different
stock. A high-quality growth study of the Vermilion Snapper stock in Puerto Rican
waters would have conferred greater certainty of the causes underlying the large total
mortality estimates in our analysis.

The advantage of using the mean length mortality estimator on a multispecies
basis is to identify concomitant trends in mortality. The work we have presented can be
further modified to account for particular exploitation patterns. For example, for a given
species complex, certain change points can be synchronous while others can remain
independent if there is information available to guide that model specification. A switch
in the fishery’s target species or a regulation to reduce total effort in the fishery may
produce a synchronous change in mortality, whereas the opening of a new fishery may
elicit an independent change in mortality. The general framework presented here for
expanding the mean length mortality estimator to multiple species by using models of
varying complexity and synchrony in mortality trends allows for improved inference for
one species within the context of companion species in a complex, especially if the

companion species are better sampled and studied.
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3.5.1. Selection of the Minimum Length of Vulnerability to the Fishery

The Beverton—Holt nonequilibrium method presented here assume time-invariant,
knife-edge selection in the observed length data. However, selectivity is more likely to be
logistic, with partially selected small animals in the length frequency
distribution. To conform to the assumption of knife-edge selection in the model, a value
of L is chosen for use in calculating the L of the truncated distribution. In a stock that
is fully exploited or that has a high M/K ratio, the length distribution above L. is
monotonically descending (Figure 5.13 of Pauly 1984; Figure 7 of Hordyk et al. 2015).
Thus, the choice of modal length for L. would be appropriate, with lengths smaller than
the modal length assumed to be incompletely selected. However, a stock that is lightly
exploited and that has a low M/K ratio will have a modal length near L, with fully
selected animals comprising a significant portion of the ascending limb to the left of the
mode. In this scenario, the modal length would not be suitable if the stock is exploited
over a large size range; an L. value smaller than the modal length would be more
appropriate. Based on the modal length relative to Loo over the time series, the modal
length was used as the L, assuming that the length distributions for all three deepwater
snapper species reflected fully exploited stocks (Figure 3.1).

For Silk Snapper, an increase in the modal length was detected from the annual
length frequency distributions in the mid-2000s, whereas the modal lengths for Blackfin
Snapper and Vermilion Snapper were more stable over time (Figure 3.5). This shift in
selectivity may have resulted from the temporary 16-in (406.4 mm) minimum size limit
implemented in 20042006 (SEDAR 2011). The large modal lengths for Silk Snapper in

2005 and 2006 reflect this management regulation. A smaller shift in selectivity appeared
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to have persisted after the regulation was repealed. The mortality analysis presented here
parameterized L. to reflect the most recent selectivity pattern for Silk Snapper. The size
limit regulation did not appear to affect the mortality estimation procedure, as
no change in mortality was inferred to have occurred when the regulation was in effect.
Nonetheless, to examine the implications of a change in modal length for Silk
Snapper, we analyzed the sensitivity of the mortality estimates to the chosen value of L.
by using the SSM under the assumption of one change point (Figure 3.6). The early
mortality rate Z; fluctuated widely because the high values of L. compared to the modal
lengths early in the time series led to the truncation of large proportions of the length
data. On the other hand, the recent mortality rate Z> was relatively stable when values
near the recent modal length were used for Lc. For a situation in which selectivity has
changed for a stock, it may be preferable to configure the mean length mortality estimator
to reflect the most recent conditions so as to estimate current exploitation while allowing

for greater uncertainty when inferring past trends in mortality.

3.5.2. Other Assumptions and Considerations

Improvements in fishing technology may also increase the spatial extent of
exploitation of fish stocks. With serial depletion of coastal stocks, fishing effort generally
moves further offshore over time as inshore areas become depleted. Changes in mean
length could be a result of changes in targeting rather than changes in mortality. The
ability to detect serial depletion requires high-resolution spatiotemporal data (Walters

2003; Cardinale et al. 2011). However, data on the location of catch were generally
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unavailable in the TIP database (SEDAR 2009). If a fishery has expanded spatially over
time, one could restrict the mean length analysis to areas fished within certain depth
strata or spatial strata if such data are available. If the stock actually consists of several
distinct units with little interchange, then separate analyses would allow for estimation of
the mortality experienced within each stratum. However, if individual fish inhabit
different depths as they grow, then the observed size range in the strata would also reflect
movement with age in addition to mortality. In such a scenario, effective management

of the entire resource would have to rely on expert judgment to determine the extent of
the spatial expansion and appropriate management measures. Analyses of additional data
types, such as CPUE, can provide further insight on serial depletion (Cardinale et al.
2011).

Since the models we have examined assume that recruitment is constant, large
pulses of recruitment can confound estimates of mortality. Although changes in mean
length alone cannot differentiate between a recruitment pulse and a change in mortality,
the length frequency distribution may provide more information. A large recruitment
cohort will progress through the length structure of the catch over time; this cohort would
cause the mean length to temporarily decrease. On the other hand, if there is a poor
recruitment year-class, a gap in the size distribution may be observed and will also
progress over time. It is important to ensure that changes in mortality are not inferred
from the model when large or small year-classes are concurrently observed. Variability in
recruitment may elicit small trends in mean length (Gedamke and Hoenig 2006), but

model selection using AIC. provides the balance between detection of long-term changes

103



in mortality and spurious changes in mortality due to overfitting; the latter may be

confounded with recruitment.
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3.7. Tables

Table 3.1. Number of estimated parameters for the single-species model (SSM) and
multispecies models (MSM1, MSM2, and MSM3), where N is the number of species, / is
the number of change points (years during which a change in total mortality occurred),
and / + 1 is the number of estimated mortality rates. Values include the estimated residual
variance for each species.

SSM MSM1 MSM2 MSM3
General formula 2N(I+1)  N+HN(I+1)  3N+21-1 2(N+)D)
One change point 4N 3N+1 3N+1 2N+2
Additional parameters with:
Additional species 4 3 3 2
Additional change point 2N N+1 2 2

Table 3.2. Von Bertalanfty growth parameters (K = Brody growth coefficient; L« =
asymptotic length) for the three deepwater snapper species.

Species K L, (mm) Source

Silk Snapper 0.10 794 SEDAR (2011)

Blackfin Snapper 0.10 635 Espinosa and Pozo (1982)

Vermilion Snapper  0.13 532 Manickchand-Heileman and
Phillip (1999)
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Table 3.3. Estimates of the length at full fishery selectivity (Lc), which was used to
calculate mean lengths and natural mortality rates (M) for the three deepwater snapper
species.

Species L.(mm) M

Silk Snapper 310 0.18
Blackfin Snapper 250 0.19
Vermilion Snapper 220 0.25

Table 3.4. Estimates (SE in parentheses) of the total instantaneous mortality rate (Z) and
change points (years during which a change in total mortality occurred; Z; = total
mortality before the change point; Z> = total mortality after the change point) from
application of the single-species model (SSM) and multispecies models 1 and 3 (MSM1
and MSM3) for the three deepwater snapper species. The proportional change in fishing
mortality (i.e., ) for MSM3 was estimated as 0.52 (SE = 0.08).

Parameter SSM MSM1 MSM3

Silk Snapper

Zi 0.63 (0.08) 0.62 (0.07) 0.76 (0.09)
V) 0.49 (0.02) 0.49 (0.02) 0.49 (0.02)
Change point 1996.8 (2.93) 1997.5 (0.81) 1994.8 (2.26)
Blackfin Snapper

Zi 0.77 (0.28) 0.50 (0.05) 0.60 (0.06)
V) 0.43 (0.03) 0.43 (0.03) 0.41 (0.03)
Change point 1985.9 (1.66) 1997.5 (0.81) 1994.8 (2.26)

Vermilion Snapper

Zi 1.89 (0.27) 1.90 (0.27)  1.39(0.16)
7> 0.60 (0.06) 0.61 (0.06)  0.85(0.09)
Change point 1997.7 (0.74)  1997.5(0.81)  1994.8 (2.26)

Table 3.5. Difference in Akaike’s information criterion corrected for small sample sizes
(AAIC.) from application of the single-species model (SSM) and multispecies models 1
and 3 (MSM1 and MSM3) to the three deepwater snapper species.

Model AAIC, Parameters
Multispecies Model I 0.0 10

Single Species Model 2.2 12
Multispecies Model 3 11.9 8
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Table 3.6. Range of percent deviation (2%6DEV; min = minimum; max = maximum) in
estimates of total mortality (Z; = total mortality before the change point; Z> = total
mortality after the change point) from the sensitivity analysis of natural mortality
specification in Multispecies model 3 as applied to the three deepwater snapper species.

Silk Snapper Blackfin Snapper Vermilion Snapper
%DEV %DEV %DEV
Parameter Min. Max. Min. Max. Min. Max.
Zi -10.9 13.8 -6.9 7.3 -6.3 10.7
2> -1.9 1.6 -2.2 2.7 -13.3 10.9
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3.8. Figures
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Figure 3.1. Length frequency histograms for the three deepwater snapper species
captured in the Puerto Rican handline fishery from 1983 to 2013. Dashed vertical lines
indicate the length of full selectivity (Lc), above which the annual mean lengths were
calculated for the multispecies models.
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Figure 3.2. Observed (points and thin lines) and predicted mean lengths (bold lines) from
the Single Species Model (SSM), Multispecies Model 1 (MSM1), and Multispecies
Model 3 (MSM3) for Silk Snapper, Blackfin Snapper, and Vermilion Snapper. The grey
shaded region indicates the 95% confidence interval of the predicted mean length from
Multispecies Model 1 using the derived asymptotic SEs. Concentric circles indicate the
annual sample size of observed lengths (small circles = 100-249, medium circles = 250-
499, large circles = 500 or more). No circles were drawn for sample sizes less than 100.
The observed mean length in 1988 for Silk Snapper (514 mm from 29 samples) is not
shown but was used in the analysis.
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Figure 3.3. Likelihood profile for the change point (year during which the change in
mortality occurred) from Multispecies Model 1 in the application to the Puerto Rican
deepwater snapper complex.
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Figure 3.4. Estimates of the total mortality rate (Z) for the three deepwater snapper
species based on the sensitivity analysis of Multispecies Model 3 to different specified
values of natural mortality (M). The x-axis is jittered to enhance visibility of the Z-values
obtained in each “bin” of M.
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Figure 3.5. Modal lengths from annual length frequency distributions for the three Puerto
Rican deepwater snapper species. The dashed horizontal line in each panel shows the
length of full fishery selectivity (L), which was used for mortality estimation.
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Figure 3.6. Sensitivity analysis of the estimated total mortality rates (Z, = total mortality
before the change point; Z, = total mortality after the change point) in Silk Snapper
when different lengths at full fishery selectivity (Lc) are used.
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Chapter 4: Estimating Total Mortality Rates from Mean
Lengths and Catch Rates in Nonequilibrium Situations

4.1. Abstract

A series of estimates of the total mortality rate (Z) can be obtained by using the
Beverton—Holt nonequilibrium-based approach of Gedamke and Hoenig (2006) on
observations of population mean length over time (ML model). In contrast, only relative
mortality rates (not absolute values) can be obtained from a time series of catch rates. We
derived the transitional behavior of the catch rate following a change in total mortality in
the population. From this derivation, we developed a new method to estimate Z that
utilizes both mean lengths and catch rates (MLCR model). Both the ML model and the
MLCR model assume constant recruitment in the population. We used a simulation study
to test performance when recruitment is variable. Simulations over various scenarios of Z
and recruitment variability showed that there may be correlated residuals in the mean
lengths and catch rates arising from fluctuations in recruitment. However, the root mean
square errors of the Z estimates and the change point (i.e., the year when mortality
changed) were smaller in the MLCR model than in the ML model, indicating that the
MLCR model can better account for variable recruitment. Both methods were then
applied to Mutton Snapper Lutjanus analis in Puerto Rico to illustrate their potential
application to assess data-limited stocks. The ML model estimated an increase in Z, but
the MLCR model also estimated a subsequent reduction in Z when the catch rate data

were considered.
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4.2. Introduction

Beverton and Holt (1956, 1957) developed an approach to estimating the
instantaneous total mortality rate (Z; year ') from the mean length in the population and
information on growth rates and selectivity. The estimator is based on the assumptions
that the population is in equilibrium and that recruitment is constant. Despite these
stringent assumptions, the estimator has found widespread usage because of its minimal
data requirements. Gedamke and Hoenig (2006) derived the transitional behavior of the
mean length statistic following stepwise changes in mortality rate over time and
developed an estimator for period-specific mortality rates. The required information for
applying this extension of the Beverton and Holt equation to nonequilibrium situations
includes the von Bertalanfty growth parameters (L« and K), the length of first capture (Lc;
the smallest size at which animals are fully vulnerable to the fishery and sampling gear),
and a time series of mean length ( L ) of animals above the Lc. The methodology
and applications to Goosefish Lophius americanus and to Barndoor Skate Dipturus laevis
were described by Gedamke and Hoenig (2006) and Gedamke et al. (2008), respectively.

This approach can be generalized to integrate additional data types when they are
available. For example, Gedamke et al. (2008) relaxed the assumption of constant
recruitment by incorporating an index of recruitment in the model, and Then et al. (in
press) incorporated information on fishing effort. Here, we develop a model to
incorporate a time series of catch rates (indices of abundance) into the mean length
estimator to better detect changes in mortality and to better estimate Z compared to using

the mean length-only estimator.
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In the absence of information on recruitment, the mortality estimators using only
mean lengths (ML model) and mean lengths plus catch rates (MLCR model) assume
constant recruitment over time. Exploited fish populations can exhibit high interannual
variability in recruitment, and while Gedamke and Hoenig (2006) demonstrated the effect
of a weak or failed year-class on the mean length statistic over time, the effects of
variable recruitment on estimating mortality have not been examined. Here, we evaluate
via simulation the effect of variable recruitment on mortality estimation in the two
models, which assume constant recruitment. We focus on recruitment because it is often
identified as the largest source of variability in fish populations (Thorson et al. 2014).

In this study, we derive the transitional behavior of catch rates expressed in terms
of either abundance (number per unit effort [NPUE]) or biomass (weight per unit effort
[WPUE]) to develop the MLCR model. Next, we evaluate the effect of variable
recruitment on the performance of the ML model and the MLCR model in estimating the
parameters of interest: Z and the years when Z changed. In addition to standard
performance metrics of bias and root mean square error, we examine correlations in
paired residuals of mean length and catch rate and runs in the sign (positive or negative)
of residuals. Finally, we apply both the ML model and the MLCR model to estimate

historical values of Z for Mutton Snapper Lutjanus analis in Puerto Rico.

4.3. Methods
4.3.1. Relationship between the Catch Rate and Mortality Rate
Consider what information about Z can be obtained from catch rates in the

simplest scenario when we assume equilibrium conditions, including constant recruitment
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(R) and a constant catchability coefficient (¢). We assume that the abundance-based catch
rate, NPUE, is a function of the probability of an individual being captured by 1 unit of
effort (¢) and the abundance N:

NPUE = gN . 4.1)

Under equilibrium, abundance will be related to total mortality as follows (Ricker 1975):
- R
N = j Reexpl=Z(t=t))dr =, (4.2)

where R -exp[-Z(t—t¢,)] 1s the abundance at age ¢; and t. is the age at which animals are

fully selected by the fishing gear, corresponding to length L. via the von Bertalanffy
growth equation. With integration, parameter 7 drops out of the equation and is not used
here. We substitute equation (4.2) into equation (4.1),

qR

NPUE =—
Z

, (4.3)

N =2

where ¢ is a scaling parameter that is the product of ¢ and R. Two equilibrium catch
rates, NPUE: and NPUE., corresponding to time periods with mortality rates Z, and Z,,

can provide estimates of the relative change in Z if ¢ is assumed to be constant. Thus,

NPUE =L (4.42)
Zl
and
_q
NPUE, =— (4.4b)
ZZ
imply that the ratio of NPUE is an estimate of the ratio of mortality rates,
NPUE, _ é (4.5)
NPUE, Z,
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In real-world situations, obtaining reliable estimates of both ¢ and R is extremely rare;
therefore, it is unlikely that absolute values of Z can be estimated from catch rates alone.
However, there is information on relative mortality rates, and we can incorporate this
information into the length-based nonequilibrium mortality estimator of Gedamke and
Hoenig (2006).

In a nonequilibrium framework, overall abundance and the corresponding NPUE
will not respond instantaneously to changes in Z. Equation (4.3) will only reflect the new
mortality rate when enough time has passed for the new equilibrium age structure to be

established. Assume that d years have elapsed since a change in mortality from Z, to Z, .
The nonequilibrium NPUE will be equal to

NPUE(Z,,Z,,d)=§ -N(Z,,Z,,d), (4.6)
where the NPUE and N are now functions of the mortality rates and the time elapsed
since the change in mortality. Using the derivations from Gedamke and Hoenig (2006),
the relative abundance N (Z,,7Z,,d), after dividing out recruitment R, has two

components and can be expressed as
- t.+d ©
N(Z,,2,,d)= [expl-Z,(t =1, )t + [expl-Z,dlexpl-2Z[t—(, +a)llde.  (4.7)
t, t.+d
In equation (4.7), the first integral represents fish recruited after the change in mortality;
these animals have only experienced mortality rate Z, and are of ages fc to tc + d. The
second integral represents fish that were recruited before the change in mortality; these

fish have experienced both the old ( Z,) and the new ( Z, ) mortality rates and are of ages

tc + d and older. The implications of equation (4.7) can be envisioned by considering
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the response of NPUE when Z hypothetically doubles (Figure 4.1). The NPUE drops
rapidly after the change in mortality rate and then approaches the new asymptotic value,
which is half of the starting value.

As shown by Gedamke and Hoenig (2006, their Appendix 1), after integration and

simplification, equation (4.7) becomes

1-exp(-Z,d) N exp(—Z,d)

N(Z,,Z,,d)=
(l ’ ) ZZ Zl

(4.8)

Equations (4.7) and (4.8) can then be modified to incorporate any number of changes in
mortality (see Gedamke and Hoenig 2006: their equation A.2.2). The corresponding

derivation for the behavior of WPUE is provided in Appendix B.

4.3.2. Integrating Mean Lengths and Catch Rates in a Model

Using the transitional behavior of the mean length and catch rate, we construct a
likelihood-based model to estimate Z and change points (the calendar years when the
mortality rate changed) from a time series of mean lengths and catch rates. The
assumptions of the MLCR model include those in the ML estimator as described by
Gedamke and Hoenig (2006), but additionally it is assumed that the NPUE and WPUE
are proportional to population abundance and biomass, respectively, by a scaling

coefficient g . Given k changes in mortality, maximum likelihood estimation is used to
estimate the vector of k£ + 1 total mortality rates (denoted by Z = {Z AN A }) and the
vector of k change points (denoted by D = {D1 ,D,,....D, }) that best predict the observed

data. We construct the joint log-likelihood function, In A(Z, D), of the MLCR model to

be proportional to
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InA(Z,D) < InA;(Z,D)+In4,(Z,D), (4.9)
where InA-(Z,D) and In4,(Z,D) are the log-likelihoods of the mean lengths and catch

rates (either in NPUE or WPUE), respectively. Assuming a normal distribution for the
annual observed mean lengths (Gedamke and Hoenig 2006), the log-likelihood

of the mean lengths is proportional to

1 & - =
lnﬂZ(Z,Q)oc—nLlnaL—z > m,(L, L), (4.10)

O y=1

where y indexes year; 7, is the number of years with mean length observations; L, and

f . are the observed and predicted mean lengths, respectively, of animals larger than L.

in year y; m, is the sample size of observed lengths above Lc in year y; and o, is the

variance of lengths. The log-likelihood of the catch rates, assuming either a normal or

lognormal distribution, is proportional to

1 & A
In2,(Z,D)c—n, Ino, ——5> (I, -1,) (4.11a)
20; 4

or

(In7, -Ini ), (4.11b)

=1

InA,(Z,D)oc-n,Ino, -——

2
1
respectively, where n, is the number of years with catch rate observations; 7, and I , are

the observed and predicted catch rates, respectively, in year y; and o, is the catch rate

variance in either normal (equation 4.11a) or log-transformed (equation 4.11b) space.

121



Equation (4.9) can be maximized to produce the asymptotically most efficient

(maximum likelihood) estimates with SEs and confidence intervals generated for the
estimated mortality rates ( VA ) and change points (Q ), where the circumflex (")

denotes an estimate. A grid search over change points is recommended to identify and
avoid local extrema in the log-likelihood function. The required life history information
for the MLCR model includes the von Bertalanffy parameters L» and K when NPUE is
modeled, whereas the allometric exponent b from the length—weight relationship is also
required when WPUE is modeled (Appendix B). Compared to the ML model with the

same number of change points, two additional parameters are estimated for the MLCR
model: the catch rate scaling coefficient (g ) and the catch rate SD (o, ). Different

numbers of change points can be specified, with model selection procedures used to
identify the best-fitting model (Burnham and Anderson 2002). In this study, we use
values of Akaike’s information criterion with correction for small sample sizes (AICc)
and identify the best-fitting model as the one having the smallest value (i.e., Akaike

difference [AAIC.] = 0), with less support for models with larger AIC. values.

4.3.3. Simulation Study of the Mortality Estimators

Effect of variable recruitment on the mean length and catch rate.—To illustrate
the dynamics of the mean length and catch rate relative to changes in recruitment,
consider an age-structured population in which recruitment varies stochastically
with a constant mean and variance, while Z is constant (Figure 4.2). During periods of
poor recruitment relative to the mean, the mean length increases and the catch rate

decreases as fewer small animals recruit to the fishery. This pattern produces positive and
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negative residuals in the mean lengths and catch indices, respectively, from values
predicted under constant recruitment. Similarly, the patterns reverse in periods of
relatively good recruitment. We observe two general patterns in the residuals of mean
lengths and catch rates. First, variable recruitment produces opposing effects in the
residuals of the two data types, creating a negative correlation between the paired
residuals. Second, the trends in the residuals can persist as the relative strength of a
cohort progresses through the age structure of the population over time.

Simulation design.—To examine the implications of using models that assume
constant recruitment, we implemented a simulation study with variable recruitment in the
population while meeting the other assumptions. The goals of the simulation were to (1)
compare the performance of the MLCR mortality estimator relative to that of the ML
estimator, (2) compare the performance of both models with variable recruitment in the
population, and (3) provide guidance on interpreting the behavior of both models under
variable recruitment.

In the simulation model, an age-structured population was constructed,

N exp(—Z,)  t=t +1,.

N :{R}f =t o (4.12)
where N,  is the abundance at age 7 in year y; R is the recruitment of animals of age 7.
inyeary; Z , is the instantaneous total mortality rate in year y — 1; and fmax is the
maximum age. Recruitment followed a lognormal distribution,

R, =exple, - 0.507;), (4.13)
where £, ~ N(0,5;) are normally distributed deviations in log space. The expected

median recruitment was equal to 1.0 since the magnitude was not relevant in the
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simulation. To simulate the continuous recruitment assumed in the models, monthly
cohorts were created with monthly time steps. Recruitment within each calendar year was
held constant.

The population was projected for 20 years. A factorial design for the simulation
was created across four values of interannual recruitment variability (oz) and four

mortality scenarios (A—D), with a stepwise change in mortality at the beginning of year
11 (Table 4.1). The mean length (Zy) and abundance-based catch rate (NPUE,) in year y

were calculated as

L =" g, (4.14)

tmax
NPUE,=GY N, +¢,, (4.15)

t=t,
where £, ~ N(0,0;) and ¢, ~ N(0,5;) are normally distributed deviations in mean

length and NPUE, respectively; and L: is the length of an animal at age ¢ following a von

Bertalanfty growth function and is calculated as L, =L {1 —exp[-K(t—¢, )]} . The mean

length and catch rate were observed at the beginning of each year. For each factorial
combination, 10,000 stochastic time series of mean lengths and catch rates were
generated. The values of the life history parameters, scaling coefficient, and SD
parameters for the simulation are defined in Table 4.1, with growth parameters partly
based on a Mutton Snapper stock.

The two mortality rates and single change point were then estimated by using

only mean lengths (ML model) or by using both mean lengths and catch rates (MLCR

124



model). In each factorial combination, the percent bias (%Bias) and percent root mean

square error (Y%RMSE) for these parameters were calculated for both models as

%Bias = X-X

%100, (4.16)

REDNCEP ok
%RMSE = —1|—+————x100, (4.17)
X n

where X is the true value of the parameter of interest, X is the estimate in the i-th

simulation, and X is the mean of the estimates from simulations i = 1,2,...,10,000.

Pearson’s product-moment correlation of paired mean length and NPUE residuals
in the MLCR model was calculated in each factorial combination. Two sets of residuals
were examined: (1) the difference between the simulated value and the value expected
under constant recruitment with the true mortality rate (true residual); and (2) the
difference between the simulated value and the value predicted in the application of the
MLCR model (fitted-MLCR residual).

To analyze the trends in residuals, we calculated the mean of the longest run of
positive and negative residuals of the mean lengths and catch rates from the 10,000 time
series in each factorial combination. For both data types, we calculated the true residual
and the fitted-MLCR residual. For the mean lengths, we also calculated a third type of
residual from the difference between observed values and the values predicted

by the ML model (fitted-ML residual).

4.3.4. Application to the Mutton Snapper Pot Fishery in Puerto Rico
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The Mutton Snapper is one of the more important commercially caught fishes in
Puerto Rico, yet it is a data-limited stock with unknown stock status (SEDAR 2007).
Annual mean lengths (1983-2006) of Mutton Snapper larger than 30 cm (i.e., the
assumed length of full vulnerability, Lc) were calculated. Standardized WPUESs (1990—
2006) were obtained from Cummings (2007) and were used to index biomass trends
(SEDAR 2007). Mortality rates were estimated using the ML and MLCR models
implemented in AD Model Builder (Fournier et al. 2012). Life history values for the
analyses were obtained from Burton (2002): L. was 86.9 cm, K was 0.16 year !, and b
was 3.05.

Sensitivity of the MLCR model to growth parameters was evaluated by refitting
the model with alternative values of L, K, and b. The parameters were sampled 100
times from a multivariate normal distribution with the means from the base analysis. The
covariance matrix was created, assuming coefficients of variation (CVs) of 0.15, 0.04,
and 0.0098, respectively, based on the estimated SEs reported by Burton (2002). The von
Bertalanffy parameters L» and K were sampled assuming a correlation of —0.90, while

both were independent of b.

4.4. Results
4.4.1. Simulation Study of the Mortality Estimators

The bias in estimates of Z and the change point was generally small for both the
ML model and the MLCR model in all factorial combinations. The %Bias metric was

less than 10% in almost all cases, although it increased with increasing recruitment
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variability (Figure 4.3). For most factorial combinations in the simulation, both the ML
model and the MLCR model produced a positive bias in the mortality estimates. This
result was consistent with the findings in previous simulation studies of the Beverton—
Holt equation (Then et al. 2015), although the positive bias was less likely to occur when
recruitment variability was highest (o, = 1.0).

Compared to the ML model, the MLCR model generally produced less-biased

estimates of the higher mortality rate (i.e., Z, when mortality decreased or Z, when

mortality increased). The %Bias in the estimate of the change point and the difference in
bias between the ML model and MLCR model were small (all <2.0%). The estimates
from the MLCR model also had a %RMSE that was equal to or lower than those from the
ML model for all parameters in all factorial combinations, indicating higher precision
when using the MLCR model (Figure 4.4).

When the MLCR model was used to estimate Z, the correlation between paired
residuals of mean length and NPUE was negative (Figure 4.5). The true residuals were

uncorrelated when there was no recruitment variability (o, = 0.0). However, the

fitted-MLCR residuals showed a slight negative correlation coefficient of approximately
—0.05 even when there was no recruitment variability. With increasing recruitment
variability, the correlation coefficient of fitted-MLCR residuals ranged from —0.2 to —0.6,
with the most extreme correlation value observed when recruitment variability was
highest. In all cases, the fitted-MLCR residuals had stronger correlations than the true
residuals.

The magnitude of the largest run of positive or negative residuals in the mean

lengths and catch rates increased as recruitment variability increased (Figure 4.6). When
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there was no recruitment variability (o, = 0.0), the mean largest run in the true residual

for mean lengths and NPUE was approximately 4.6. The mean largest run in the true
residual increased to as much as 6.0 for mean length and as high as 8.9 for NPUE with
high recruitment variability. In all recruitment and mortality scenarios, residuals from the
both the ML model and the MLCR model showed shorter runs than the true residuals. For
the fitted-MLCR residuals, the mean largest run was as high as 5.2 in mean length and
6.2 in NPUE with high recruitment variability. For the mean length, the fitted-ML

residual had shorter runs than the fitted-MLCR residual of the corresponding scenarios.

4.4.2. Application to the Mutton Snapper Pot Fishery in Puerto Rico
Time-specific Z was estimated from mean lengths by using the ML model (Figure

4.7). With one change point in the mortality rate over time, mortality was estimated to
have increased from Z , =051 year ! to 22 = 1.00 year™!, with the change point 151 at
1992.7 (change points are estimated in continuous time, with the decimal representing

tenths of a year). With two change points, mortality increased from Z , =0.51 year ! to
Z , = 1.25 year ! and subsequently decreased to Z , =0.79 year !, with change points of

151 =1993.3 and 152 =1998.9, respectively. There was strong support for the one-change

model over the two-change model, as the AIC. value increased by 2.3 units for the latter
model with the additional change point (Table 4.2).
Next, the MLCR model was used to estimate Z from mean lengths and WPUEs

(Figure 4.8). Assuming one change in mortality, Z was estimated to have increased from

212 0.51 year ! to 22 = (.81 year ! in 1987 (Table 4.3). An examination of the predicted
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and observed WPUE values showed a clear pattern to the residuals, suggesting that the
one-change model did not fit the data well (Figure 4.8). The model was reformulated to

include a second change in mortality. In the two-change model, mortality was estimated

to have increased from Z, = 0.51 year' to Z, = 1.19 year with D, = 1987.3, followed

by a reduction to 23 =0.61 year! with ﬁz =1997. The two-change model was the better

fit to the mean lengths and catch rates, with the AICc value reduced by 22.8 units despite
the need to estimate an additional mortality rate and change point.

The sensitivity analysis of growth parameters was performed for the MLCR
model with two change points. Model estimates were all highly correlated with L
(positively) and K (negatively). The magnitude of the correlation between L» and model
estimates was greater than 0.85 in all cases, whereas there was little correlation

(magnitude all less than 0.05) between b and the model estimates. The CV of the estimate

of the most recent mortality rate (Z;) was 0.27 (Figure 4.9).

4.5. Discussion
4.5.1. Simulation Study of the Mortality Estimators

In the simulation, the %RMSE for Z, was similar between the ML model and the
MLCR model. The data (mean lengths and catch rates) available to estimate Z, were in

equilibrium in our simulation, and the model did not need to account for the transitory
behavior of the data that would occur after a change in mortality. This is apparent
because the %RMSE was larger for estimating the mortality rate that followed the change

point (i.e., Z,). For the change point, the %RMSE was larger when the magnitude of the

change in mortality was small (mortality scenarios B and C). In such situations, the
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changes in mean lengths and catch rates were relatively small and more difficult to
detect. As a result, having two data types in the MLCR model noticeably reduced the

%RMSE in estimating Z, and the change point.

Generally, when using either mean length or catch rate alone, there is no ability to
distinguish between a change in mortality and a change or variability in recruitment.
However, the two data types together can be used to estimate stepwise changes in
mortality when recruitment is variable. The MLCR model essentially splits the difference
in the information between the two data types. Both ML and MLCR fit the model to
produce shorter-than-expected residual runs, but in doing so the MLCR model produced
correlations that were more negative than expected in paired residuals (Figures 4.5, 4.6).
The runs of mean length in the ML model were shorter than those in the MLCR model,
but this resulted in less precision in mortality estimation for the former model. From our
simulations, the estimates of mortality and inference on the mortality history using both
data types were better (by reducing the %RMSE) despite correlations in residuals and
residual patterns, both of which should be expected given the variability of recruitment in
fish populations.

The values of o, used in the simulation encompassed the range of recruitment

variability likely to be encountered in marine fish stocks (Thorson et al. 2014). Our
simulation generated data by only including two sources of error: recruitment variability
and observation error. Increased or decreased random observation error in the data will
decrease or increase, respectively, correlations and runs in residuals. Other nonrandom
sources of error, such as the extent to which the catch rate is representative of stock

abundance and the length composition data of the population size structure, also need to
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be evaluated for each application of the MLCR model. These factors make it unlikely to
be able to estimate recruitment variability based on residual behavior in the data-limited
model.

The behavior of residuals arises from the constant recruitment assumption in the
model. Recruitment could be explicitly modeled in a mortality estimation procedure, but
this would require a different derivation of the mean length and catch rate than the one
presented in the current study.

The log-likelihood function (equation 4.9) assumes that observation errors for
length and catch rate are uncorrelated because the length and catch rate data are sampled
independently from each other. If a stock exhibits characteristics that would cause
correlated observation errors—for example, if schooling behavior occurs in certain size-
classes, resulting in concurrent high catch rates, and the data are sampled as paired
observations (e.g., within individual fishing trips or gear hauls)—then correlations in
observation error can occur. The log-likelihood can be modified on a case-by-case basis

to account for such situations.

4.5.2. Application to the Mutton Snapper Pot Fishery in Puerto Rico

In application of the MLCR model to the Mutton Snapper data specifying two
change points, there was some disagreement in the signals from the mean length and
WPUE data, as was apparent from examination of the residuals (Figure 4.8). For the
mean lengths, there was a run of five positive residuals in 1992—-1996 and four negative
residuals in 2002-2006, which were within the range of the mean largest runs observed in

the simulation. On the other hand, there did not appear to be a pattern in the residuals of
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the catch rates. The correlation of the 17 paired residuals was —0.07 but was not
statistically significant ( =—-0.27, df = 15, P = 0.79). These diagnostics could suggest
relatively low recruitment variability in Mutton Snapper. Low sample sizes of lengths
during some years may also contribute to large residuals, but this aspect was not
evaluated in the simulation.

Recruitment variability has been found to be higher when oceanographic
conditions are less stable (Myers and Pepin 1994; Myers 2001). Thus, the tropical
distribution of Mutton Snapper suggests that recruitment variability of the stock is likely
to be lower than those of higher-latitude species. Stock assessments of several lutjanid
species based on age-structured models have also suggested low values of recruitment

variability, with o, no greater than 0.3 (SEDAR 2003, 2015, 2016), although a formal

meta-analysis has not been performed for lutjanids. In the context of the ML and MLCR
models and the simulation study, recruitment refers to the cohort entering the fishery at
age fc, at which time cohort strength can be dampened by density-dependent processes. In
contrast, recruits can also be defined at age 0 when individuals reach the settlement phase
immediately after the larval stage of the life cycle. High interannual variability in these
post-settlement recruits of tropical coral reef fish species has been observed (Shulman
1985; Rankin and Sponaugle 2014).

According to the transitional behavior of the mean length and catch rate presented
by Gedamke and Hoenig (2006) and in the present study, respectively, the mean length
data suggested an initial change in mortality during 1992—-1993 (Figure 4.7; Table 4.3),

whereas the stability of WPUE during 1990-1997 suggested that a mortality change
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occurred prior to 1990 (Figure 4.8). When both types of data were used in the MLCR
model, the WPUE data apparently received more weight given the current log-likelihood
equation, resulting in the early estimates of the first change point in the two-change-point
model.

Additional modifications are also possible to balance the contribution of the
length and catch rate log-likelihoods in the MLCR model. Weight coefficients can be
assigned to each log-likelihood component in equation (4.9); as more weight is given to
the length data, the results will approach those in the ML model at the expense of model
fit to the catch rates. When there is high interannual variability in the precision of the
catch rate, annual estimates of the catch rate SD (often obtained via standardization
techniques; Maunder and Punt 2004) can serve as input into the log-likelihood to weight
each annual value accordingly.

Results from the ML model and MLCR model illustrate that different models can
produce different interpretations about the pattern of mortality experienced by the Mutton
Snapper stock. All four models presented here (ML and MLCR models, each with one or
two change points) predicted the same initial increase in Z around 1989-1993 because
only length data were available prior to 1990. There appeared to be an increase in the
mean length data in the early 2000s, which would suggest a second change in Z (Figures
4.7, 4.8). However, this trend alone did not provide sufficiently strong evidence of a
reduction in mortality using the ML model until the concurrent increase in the catch rate
was also considered in the MLCR model.

The predicted catch rates in the MLCR model specifying two changes in mortality

tracked the observed values very well, but the high variability of the mean length data
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A

still resulted in some uncertainty surrounding the estimates of Z since 1990 (i.e., Z, and

A

Z,; Table 4.3). This is expected when we consider that the clear trend in the catch rates

will only provide information on the relative change in mortality; information from the
mean lengths is still required to estimate the absolute mortality rates.

The four models agreed on the initial Z before 1988, but the mortality rates
estimated after that year were extremely variable. Variability of the mean length data in
this time period was partly attributable to low sample sizes in some years. Since the
likelihood function for the mean lengths weights the time series by annual sample size,
years with few length observations may produce large outliers and large residuals, as was
seen in this application. Additionally, the WPUE time series does not provide information
for estimating the ratio of the first change in mortality since data prior to 1990 were not
available.

All four models indicated that since 1998, mortality has either (1) decreased if
mortality had been very high (ML and MLCR models with two change points) or (2) held
constant at a more moderate value (ML and MLCR models with one change point).
Reliable estimates of Z over time will require a more intensive, standardized fishery
sampling program or alternatively a standardized survey index of Mutton Snapper
relative abundance through time. Utilizing the best-fit model that considers all available
data (i.e., MLCR with two changes in mortality) implies that the Z in the terminal year of
the time series was markedly smaller than values from the other models (Tables 4.2, 4.3).

Estimates of mortality are also conditional on the values of life history parameters
used in the model. In the MLCR model, mortality estimation is partly based on the

magnitude of mean lengths relative to L«. Larger values of Lo imply a larger mortality
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rate, which is why we observed a strong correlation between the two in the sensitivity
analysis. Larger uncertainty in L« would result in a proportionate increase in the
uncertainty of mortality estimates. This behavior is consistent with what has been
observed in the ML model (Gedamke and Hoenig 2006). In contrast, there is generally
less uncertainty in the allometric exponent b relative to von Bertalanffy parameters.

The estimates of Z from these models could be used to obtain fishing mortality if
an external estimate of natural mortality is available. Biological reference points from
spawning potential ratio or yield-per-recruit analyses can then be used to evaluate stock
status. We did not do so here because the Mutton Snapper application was an illustration

of the methods and not intended to be an assessment of the stock.

4.6. Conclusions

In this study, we derived the transitional behavior of the catch rate following a
change in Z. Since catch rates can provide additional information on mortality trends over
time, we developed a mortality estimator that uses both mean length and catch rate data.
Simulations showed that when the assumption of constant recruitment was violated,
patterns in the residuals were generated. Despite this, the %Bias values for the Z-
estimates and change point were relatively low when o, was less than 1.0, and the
%RMSE was reduced in all situations with the inclusion of catch rates compared to when
mean lengths were used alone. Thus, residual patterns arising from non-constant
recruitment are unlikely to substantially bias the estimates of Z. The application to

Mutton Snapper highlights the value of considering the catch rates together with the
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mean lengths; an additional change in mortality was estimated when both mean length

and catch rate data were used in one model.
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4.8. Tables

Table 4.1. Factorial design and values of parameters used for the simulation study (Z =
total mortality rate).

Variable Symbol  Values
SD of recruitment lo g 0.0, 0.25,0.50, 1.0

Mortality scenario A Z1=04,2:=0.8
B Z1=04,72>=0.6
C Z1=0.8,22=0.6
D

Z1=038,2:=04

Change point D Year 11
Age of full recruitment te 3
Maximum age Imax 18
Catch rate scaling coefficient q 1

von Bertalanffy asymptotic length L, 80

von Bertalanffy growth parameter K 0.15
von Bertalanffy location parameter to -1
Observation error SD of mean lengths o, 1
Observation error SD of NPUE o, 0.25g

Table 4.2. Estimates of total mortality (Z) and change points (D) for Mutton Snapper
from the mean length-only model (AAIC. = difference in Akaike’s information criterion
with correction for small sample sizes). Coefficients of variation (CVs) for the parameter
estimates are shown in parentheses; in CV calculations for the change points, the number
of years elapsed since the first year of the model (i.e., 1983) was used in the denominator.

Parameter One change point Two change points
(AAIC. = 0.0) (AAIC.=2.3)

Zi 0.51 (0.06) 0.51 (0.06)

D 1992.70 (0.14) 1993.30 (0.23)

2> 1.00 (0.14) 1.25 (0.02)

D; - 1998.90 (0.06)

Z3 - 0.79 (0.03)
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Table 4.3. Estimates of total mortality (Z) and change points (D) for Mutton Snapper
from the mean length—catch rate model (AAIC. = difference in Akaike’s information
criterion with correction for small sample sizes). Coefficients of variation (CVs) for the
parameter estimates are shown in parentheses; in CV calculations for the change points,
the number of years elapsed since the first year of the model (i.e., 1983) was used in the
denominator.

Parameter One change point Two change point
(AAIC. =22.8) (AAIC: = 0.0)
Zi 0.51 (0.08) 0.51 (0.08)
D 1987.00 (0.24) 1987.30 (0.20)
22 0.81(0.12) 1.19 (0.27)
D; - 1997.20 (0.04)
Z3 - 0.61 (0.16)
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4.9. Figures
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Figure 4.1. Response of a number-per-unit-effort (VPUE) index of abundance (lower
panel) to a 100% increase in total mortality (Z) from 0.5 year to 1.0 year! (upper panel).
The new asymptotic value of the catch rate will be half of the original equilibrium catch
rate. The values of the catch rate are scaled by ¢ which is the product of the catchability

coefficient ¢ and recruitment R.
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Figure 4.2. Hypothetical time series of stochastic recruitment that is lognormally
distributed around a stationary mean (top panel) and the corresponding response of mean
length (middle panel) and catch rate (bottom panel). Mortality is held constant over time.
Solid horizontal lines indicate values predicted under constant recruitment. Life history
values from Table 4.1 were used.
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Figure 4.3. Percent Bias (%Bias) of estimated total mortality rates Z; and Z2, and the
change point based on mean lengths only (ML; open circles) or based on mean lengths
and catch rates (MLCR; filled circles) from the simulation. The four mortality scenarios
(A-D) and four values of recruitment variability (o, ) from the simulation are described
in Table 4.1. Dashed vertical lines indicate %Bias = 0. In some cases, open circles
directly overlap filled circles.
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Figure 4.4. Percent root mean square error (%RMSE) of estimated total mortality rates Z,
and Z,, and the change point based on mean lengths only (ML; open circles) or based on

mean lengths and catch rates (MLCR; filled circles) from the simulation. The four
mortality scenarios (A-D) and four values of recruitment variability (o, ) from the

simulation are described in Table 4.1. Dashed vertical lines indicate %RMSE = 0. In
some cases, open circles directly overlap filled circles.
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Figure 4.5. Pearson’s product-moment correlation coefficients between paired residuals
of mean length and catch rate (open squares = true residuals; filled triangles = fitted-
MLCR residuals [i.e., mean length-catch rate model]) from the simulation. The four
mortality scenarios (A-D) and four levels of recruitment variability (o, ) are described in

Table 4.1. The dashed vertical line indicates a correlation coefficient of zero.
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Figure 4.6. The mean (+/- SD; n = 10,000) of the largest run for sequences of positive
and negative residuals of mean lengths and catch rate (number-per-unit-effort [NPUE];
open squares = true residuals; asterisks = fitted-ML; filled triangles = fitted-MLCR
residuals [i.e., mean length-catch rate model]) in a 20-year time series. The four mortality
scenarios (A-D) and four levels of recruitment variability (o, ) are described in Table

4.1.
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Figure 4.7. Observed (points) and predicted mean lengths assuming one change in
mortality (solid black line) or two changes in mortality (dashed red line) for Mutton
Snapper based on the mean length-only model. Dot-dashed vertical lines indicate the
estimated change points for the respective model (black = one change; red = two
changes). Concentric circles around mean lengths indicate the annual sample size of
observations used in the likelihood function (with legend provided); the area of the circle
is proportional to the sample size.
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Figure 4.8. Observed (points) and predicted mean lengths (upper panel) and weight per
unit effort (WPUE; bottom panel) assuming one change in mortality (solid black line) or
two changes in mortality (dashed red line) for Mutton Snapper based on the mean length-
catch rate model. Dot-dashed vertical lines indicate the estimated change points for the
respective model (black = one change; red = two changes). Concentric circles around
mean lengths indicate the annual sample size of observations used in the likelihood
function (with legend provided); the area of the circle is proportional to the sample size.

147



0.145 0.160 0.175 0.2 06
I Y Y L 1 1 |

L., - £
-0.86 | 0029 | 099 .
0.15 L3
S | K
2 < 0.042 -0.80
o~ . 0.04
Lo b Kk
B n ek it -0.017 |
A Y f'-.. :.??fv_\; °
| 8 o * {.
© / T e Y Z3
=7 -t,,-__-!-.-.‘-‘. . Ty LR
o] R e - b 027
Y T
60 80 100 3.00 3.10

Figure 4.9. Scatterplots (lower triangle), correlation coefficients (upper triangle), and
coefficients of variation (diagonal) of life history parameters sampled from a multivariate

normal distribution (L, , K, and b; symbols defined in Table 4.1 and the mean values for
the sensitivity values are defined by Burton [2002]) and the resulting mortality estimate (

Z,) in the terminal year of the time series for Mutton Snapper based on the mean length-

catch rate model with two change points.
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Chapter 5: How well do length-based mortality estimators and
age-structured models agree for stock status? A comparison
with six southeastern United States stocks

5.1. Abstract

Several methods have recently been developed to estimate historical mortality rates for
data-limited stocks from a time series of mean lengths, with extensions for auxiliary data,
including indices of abundance and fishing effort. In this study, we used three
methodologically-related mean length-based methods to estimate mortality for six stocks
in the southeastern United States, four in the Gulf of Mexico (greater amberjack, Spanish
mackerel, cobia, and king mackerel) and two in the Atlantic (cobia and king mackerel).
The analysis with the mean length-based methods used the same length compositions
from the recreational fleet as those in the most recent benchmark age-structured
assessments of these stocks, which allowed for comparisons using the same subset of
data. Generally, there was agreement in the historical trends in mortality among the three
mean length-based models and the age-structured assessments. The Gulf of Mexico
Spanish mackerel stock produced the most divergent results among the models, but
diagnostic steps were taken to evaluate goodness of fit of the mean length-based models.
Reduction in shrimp bycatch mortality, corroborated by the results of the age-structured
assessment, is hypothesized to have increased recruitment to the recreational gear, which
affected the observed trends in the mean length and index. For the six stocks, all models

agreed on the overfishing status in the terminal year of the assessment, and there was
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high agreement in the number of years with overfishing within different historical
periods. The stock status in the terminal year did not differ based upon the choice of
models considered in this study. Based on our case study, applications of length-based
methods in data-limited situations are likely to be consistent with what might be obtained

from an age-structured model.

5.2. Introduction

Simpler, alternative stock assessment methods for the assessment of exploited
stocks are generally desirable when a more comprehensive stock assessment model may
not be viable (Chrysafi and Kuparinen, 2016). Simple methods are generally used in
“data-limited” situations, where the data available for an assessment may be restricting,
for example, due to lack of availability or a short time series (Bentley, 2015). Tractable
assessment methods typically make simplifying assumptions regarding the population.
On the other hand, a more comprehensive stock assessment model, such as an age-
structured model (ASM), is typically used in “data-rich” scenarios where multiple
sources of data are available (Dichmont et al., 2016). In both data-limited and data-rich
scenarios, analytical methods are used to estimate historical trends in fishing mortality
and/or biomass. The most current estimates of these two quantities relative to reference
points can then be used to provide short-term management advice.

In data-limited situations, length-based methods are attractive due to their ease of
use and the general availability of length information. In conjunction with growth
parameters, simple methods typically estimate mortality from a single size composition

or mean length (Hordyk et al., 2015; Hordyk et al., 2016; Kokkalis et al., 2015; Beverton
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and Holt, 1956; Ehrhardt and Ault, 1992). Recently, three related mean length-based
methods have been developed to analyze time series of length data, with extensions that
include indices of abundance or fishing effort (Gedamke and Hoenig, 2006; Huynh et al.,
2017; Then et al., in press).

The mean length (ML) mortality estimator of Gedamke and Hoenig (2006) was
developed to estimate a series of historical total mortality rates (Z) based on a
nonequilibrium formulation of the Beverton and Holt (1956) mean length mortality
estimator. From annual observations of mean length of animals larger than L, the first
fully selected length, the time series is partitioned into stanzas of constant mortality. The
mortality rate and the duration of each stanza is then estimated. Mortality is modeled as a
step-wise change from one stanza to another, and the mean length is modeled as a
continuous feature of time to reflect how mean length changes gradually in response. The
model is systematically fitted by varying the number of stanzas and a model selection
procedure (e.g., AIC; Akaike Information Criterion) is used to select the best model.

A second approach uses a formulation of an index of abundance which was
combined with the mean length model, termed the mean length-catch rate model (MLCR;
Huynh et al., 2017). In this model, both the mean length and the index are predicted to
decrease gradually after a step-wise increase in mortality and, similarly, to increase after
a decrease in mortality. This allows for an evaluation of the consistency between the
length and index data for mortality estimation using this framework. The systematic
fitting procedure used in the ML model is also used here to select the best model.

A third approach estimates year-specific mortality rates from mean lengths by

using estimates of effort as an index of mortality (MLeffort; Then et al., in press). In this
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model, fishing mortality ' is proportional to fishing effort via the estimated catchability
coefficient g. Total mortality Z in year y of the model is

Z,=qf,+M, (.1

where f'is the effort, and natural mortality M can be estimated or fixed in the model. This
formulation precludes the need to estimate mortality in time stanzas. A technical
description of these methods is provided in Appendix C.

To evaluate how simpler, data-limited methods may perform relative to age-
structured models, the former can be applied to data sets from stocks for which there are
age-structured assessments (Dick and MacCall, 2011; Kokkalis et al., 2016). Synchrony
in the results among models, i.e. whether or not the historical stock trends are in
agreement, can be a form of endorsement for the data-limited methods. While there is no
guarantee that the age-structured model is correct nor that it produces precise and
accurate estimates, benchmark assessments often undergo a peer-review process
(Dichmont ef al., 2016) and the results of the age-structured models usually represent our
best knowledge of the system. If similar results are obtained among models, then the use
of simpler models is inconsequential. The comparison of stock status and whether it
would differ based on the choice of model can be accomplished by examining fishing
mortality and biomass estimates relative to reference points (F/Fusy and B/Busy,
respectively; Kokkalis et al., 2016).

In this study, we use the three multi-year, mean length-based methods to estimate
historical mortality trends in six stocks in the southeastern United States that are of
interest because they have been assessed using age-structured models. The stocks are

Gulf of Mexico (GOM) greater amberjack Seriola dumerili, GOM Spanish mackerel
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Scomberomorus maculatus, GOM cobia Rachycentron canadum, Atlantic (ATL) cobia,
GOM king mackerel S. cavalla, and ATL king mackerel. The Beaufort Assessment
Model (BAM; Williams and Shertzer, 2015) was used for ATL cobia, while Stock
Synthesis (SS; Methot and Wetzel, 2013) was used for all others. For these stocks, length
composition data were used in the age-structured assessments which were accepted as the
basis for management advice. The length data from these assessments were obtained for
the mean length-based methods, which allowed for comparison of historical mortality

rates among models which had a common subset of data.

5.3. Methods
5.3.1. Stocks of interest

Greater amberjack is managed under the Reef Fish Fishery Management Plan, and
Spanish mackerel, cobia, and king mackerel are managed under the Coastal Migratory
Pelagic Fishery Management Plan of the Gulf of Mexico Fishery Management Council
and South Atlantic Fishery Management Council. Each of the four species are divided
into separate Gulf of Mexico (GOM) and Atlantic (ATL) stocks. Over time, these stocks
have been managed with seasonal closures, bag limits, minimum size limits, and catch
limits. Size limits, i.e. minimum retention sizes, have generally increased over time for
the recreational fleet (Table 5.1).

Benchmark assessments for these stocks occurred in 2013 - 2014 (SEDAR,
2013a, 2013b, 2013c, 2014a, 2014b, 2014c¢). Data inputs for the age-structured models
have typically included landings, discards, indices of abundance, length composition, and

length-at-age observations from commercial and recreational sectors. Fishery-
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independent indices and length compositions from surveys were also included in the

assessment, although the time series is shorter than for fishery-dependent data.

5.3.2. Mortality estimation

For the mean length-based estimators, length compositions, catch, and indices and
abundance were obtained directly from the assessments (Table 5.2). Only the length
compositions of retained catch were used. In the southeastern U.S., the largest targeted
fishing effort has historically come from the recreational fleet (Siegftried ef al., 2016).
The indices from the recreational fleet have generally had the lowest root mean square
error (RMSE) in the age-structured assessments, indicating that the fleet were most
informative for inference on stock trends (Sagarese et al., 2016). Thus, for the length-
based methods, the analyses based on the data from the recreational fleets are presented
here. Data from fishery-independent sources were not used due to the shorter length of
the time series.

To use the ML, MLCR, and MLeffort models, an estimate of L. is needed and is
determined based on the data. It is assumed that all animals larger than length L. are fully
selected. Here, the mode of the length composition compiled for all years was chosen to
be the L. (Figure 5.1). There was generally no trend in the modal length for most years

for the 6 stocks. Von Bertalanffy growth parameters L, and K were then obtained from

the assessments (Table 5.3). With this information, the ML model could be used to
estimate total mortality rates. Models were fitted assuming zero, one, or two change

points in mortality.
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With the index of abundance, the MLCR model was then fitted using the same
successive strategy as for the ML model. For both models, AIC was used to select the
best fitting model (i.e., the model with the lowest AIC score). To avoid overfitting,
models with more parameters were accepted only if the reduction in AIC was greater than
2 units. From total mortality estimates, fishing mortality /' was obtained by subtracting
the value of natural mortality assumed in the assessments (Table 5.3).

For the MLeffort model, the effort time series was obtained by taking the ratio of
the landings (thousands of fish) and index of abundance (catch-per-unit-effort, number of
fish per angler hour). Values of M were fixed in the model to estimate ¢, which was then
used to obtain F. The equilibrium effort prior to the first year of the model was assumed
to equal to the effort in the first year. Since the model requires a full time series of effort,
the initial year of the model was set to the first year with available indices of abundance.
Landings estimates prior to the year when composition and index data were based on
historical reconstruction (Siegfried et al., 2016).

Model performance was evaluated by analysis of residuals of the observed and

predicted values of both mean lengths and indices.

5.3.3. Comparison among models

For comparison with the mean length-based models, annual estimates of the
summary F from the age-structured assessments were obtained from assessment reports
(SEDAR, 2013a, 2013b, 2013c, 2014a, 2014b, 2014c). Only estimates since the first year

of length composition data are considered here (Table 5.2).
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Two sets of relative mortality rates were calculated to facilitate comparison
among the different models. First, the absolute magnitude of the estimates was scaled
through transformation to Z-scores by subtracting the mean and dividing by the standard
deviation of the respective time series (scaled F). For the ASM and MLeffort time series,
an additional step was taken with the scaled F'to smoothen the estimates with a loess
regression line. The scaled F allowed for better comparisons of the trends over time
among models.

Second, the estimates were divided by biological reference points (F/Fusy,
relative F) calculated from their respective time series. The ratio of F/Fusy is relevant to
management for classification of overfishing status. Here, F30%, the fishing mortality rate
that reduces the spawning potential ratio to 0.3, was generally used as the proxy for Fausy
(Restrepo and Powers, 1999). The exception was in the case of ATL Cobia for which the
Beaufort Assessment Model was used as the ASM. Instead of using a proxy, Fusy (the
fishing mortality that maximized equilibrium yield) was directly estimated (SEDAR,
2013c).

Estimates of Fusy or their proxies from the age-structured assessments were
obtained from the assessment reports. For the mean length-based mortality estimators,
F302 was calculated separately with the life history information in Table 5.3 (Appendix
D). Spawning potential ratio calculations differ between the age-structured models and
the mean length-based models based on different assumptions regarding selectivity and
maturity.

To evaluate the synchrony of relative F, the proportion of years in which

overfishing is estimated to occur was calculated for 4 time periods: (1) pre-1995
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(approximately the first half of the time series for all 6 stocks), (2) post-1995
(approximately the second half of the time series), (3) the most recent 5 years, and (4) the
terminal year of the time series.

All analyses were performed in R using the MLZ package, which is publicly

available on Github (http://ww.github.com/quang-huynh/MLZ).

5.4. Results
5.4.1. Trends in fishing mortality

While the mean length-based methods estimate Z, we assume, as many age-
structured models do, that M is constant over time. Thus, the trends that we examine are
due to changes in F. For most stocks analyzed here, both the age-structured assessment
models and the mean length mortality estimators indicated high mortality in the 1980-
1990s followed by a reduction in mortality since then (Figure 5.2). This pattern is
common to many southeastern U.S. stocks (Siegftried et al., 2016).

For GOM greater amberjack, there was high synchrony in the mortality estimates
over time. Both the ASM and MLeffort models showed an increase in F from 1981 —
1993 followed by a gradual decrease from 1993 — 2012. Both models exhibited very
similar descents in mortality. The ML and MLCR models showed two changes in
mortality, an initial increase to an extended plateau in mortality during the 1990s
corresponding to the time period surrounding the peak in the ASM and MLeffort models,
followed by a reduction in the 2000s.

For GOM Spanish mackerel, the ASM, ML, and MLCR models all showed a

general reduction in mortality over time, although the trends and timing differ (the
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MLeffort model did not converge). Compared to the ML and MLCR models, the ASM
showed a much larger reduction in F from the beginning of the time series to 2011 (the
terminal year of the data). The ML model indicated two changes in mortality, with a
decrease in mortality during the early 1990s from the initial mortality rate. This was
caused by the large increase in mean length from 1990-1995 (Figure 5.3). Afterwards, a
modest increase to an intermediate mortality rate until the present time was estimated.
The trends in the index, however, did not support two changes in mortality. Thus, only
one change in mortality, a modest decrease, was inferred in the MLCR model.

For GOM cobia, all four models indicated a reduction in mortality since the
1990s. The ASM showed an initial ramp in mortality followed by a gradual decrease after
1990. The MLeffort model showed a large decrease prior to 1986-1990 (effort data was
not available prior to 1986). After 1990, the gradual decrease in mortality mimicked that
in the ASM. The ML and MLCR models both estimated two changes in mortality, with a
temporary decrease in mortality in the late-1990s followed by a modest increase to a
mortality rate that is less than the initial estimated mortality rate. This pattern was
inferred based on the synchronous increase and decrease in the mean length and index in
the late-1990s.

For ATL cobia, differing trends in mortality were inferred among the four models.
The loess smoother indicated a recent increase in mortality in the ASM, although there
was high variability in annual estimates (Figure 5.4). While there were trends in the mean
length over time, the ML model indicated zero changes in mortality based on AIC. On

the other hand, the MLCR model indicated a decrease in mortality, largely based on the
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increase in the index after 1995. The MLeffort model showed a gradual decrease in
mortality over time.

For GOM king mackerel, different models produced differing trends in mortality.
According to the ASM and MLeffort models, mortality had generally decreased, with a
pronounced drop in the late 2000s, although the fit to the mean length data in the
MLeffort model was generally poor (Figure 5.4). With the ML and MLCR models, three
mortality time stanzas were estimated, with a temporary increase in mortality in the early
2000s followed by a decrease to a mortality rate that is slightly larger than the initial
mortality rate.

For ATL king mackerel, all models showed an increase followed by a decrease in
mortality over the examined time period 1979-2012. In the ASM, the maximum F
occurred around 1995 and fishing mortality continued to decrease in the most recent
years. The MLeffort model showed an earlier peak in mortality around 1985, followed by
a decrease in mortality until 2005. The mortality rate has been steady since then. The ML
and MLCR captured the general trend in mortality estimated in the other two models with
two stepwise changes in mortality, with an increase around 1985. In the late 1990s,

another mortality rate was estimated which was lower than the initial mortality rate.

5.4.2. Stock status
To compare the models with respect to stock status, mortality trends were
compared relative to the Fusy proxies (relative F). For all six stocks, the four models

agreed in the overfishing status in the terminal year of the time series, i.e., overfishing is
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occurring (F/Fusy > 1) for GOM greater amberjack and not for the other five stocks
(Figures 5.4, 5.5).

For GOM greater amberjack, all models showed that overfishing was occurring in
2012, the terminal year of the time series. The magnitude of F/Fusy over time were very
similar among the four models, with a very large relative F in the late 1980s and 1990s.
A reduction in relative F followed, but overfishing was still occurring in 2012. The four
models generally agreed on the extent of overfishing within the four time periods. A
lower proportion of years with overfishing was inferred in the most recent 5 years for the
MLeffort model compared to the other three models, but this appeared to be a result of
the high inter-annual variability in relative F.

For GOM Spanish mackerel, the ASM showed more contrast in fishing history,
with overfishing occurring in eight out of 14 years (57%) in the pre-1995 period. The ML
and MLCR models showed that overfishing had not occurred in the stock history. All
three models agreed that overfishing had not occurred post-1995.

For GOM cobia, the relative F in the MLeffort model was lower over time than in
the other three models. Pre-1995, an increase and decrease in relative F' corresponded to
overfishing in one out of nine years (11%) in the MLeffort model, but seven out of 16
years (44%) in the ASM. During the same time period, the ML and MLCR estimated a
plateau mortality rate which indicated overfishing in all included years. Post-1995,
overfishing has generally not occurred in all four models (the ML and MLCR models
estimated a mortality reduction shortly after 1995).

For ATL cobia, overfishing has not occurred based on the relative F of all four

models.
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For GOM king mackerel, the ASM showed that overfishing was occurring over
much of the pre-1995 period, contrary to the other three models which showed no
overfishing in the same time period. In the early part of the post-1995 period, the ASM,
ML, and MLCR showed that overfishing was occurring (20-40% of years post-1995)
until mortality was reduced by 2000. The relative F' in the MLeffort model was lower
than those in the other three models over time and did not indicate overfishing in the
stock history.

For ATL king mackerel, the ASM and MLeffort models indicated that overfishing
occurred in 29% (five out of 17 years) and 27% (four out of 15 years), respectively, of
pre-1995 years. Those years generally did not overlap (Figure 5.4), with overfishing
estimated pre-1990 with MLeffort and post-1990 with the ASM. Post-1995, there were
fewer years with overfishing in the MLeffort model than in the ASM. While the trends in
mortality with ML and MLCR followed those with the ASM and MLeffort, the former

set of models did not indicate overfishing in the stock history.

5.4.3. Residual analysis

For the mean length-based models, residuals can be analyzed to determine
goodness of fit (Appendix E). The model selection procedure with the ML model
generally selected the model which minimized any residual trends except in the case of
ATL cobia (Figure E.1). In the MLCR model, an extensive trend of positive and negative
residuals of the mean lengths and index, respectively, was observed over time for GOM
Spanish mackerel (Figure E.2). Similarly, negatively correlated residuals were also

present for ATL king mackerel in the most recent years of the analysis. In the MLeffort,
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there were trends in residuals over the course of the entire time series for both GOM and

ATL king mackerel (Figure E.3).

5.5. Discussion

Based on the estimated trends in mortality over time and stock status for the
terminal year of the analyses, there was strong agreement in the stock perception among
the mean length-based models and the age-structured models for the six case studies
presented here. Similar inferences could be obtained from the mean length-based models

despite using only a subset of the data that were included in the ASM.

5.5.1. Life history parameters

The mean length-based models and their corresponding proxies require simpler
life history assumptions than the ASM. In the former, growth is assumed to be
deterministic and parameters need to be provided prior to the analysis, though
simulations have suggested robustness of the mean length-based models to this
assumption (Then et al., 2015; Huynh et al., in review). With age-structured models,
growth incorporates variability in size at age and parameters may be estimable within the
model (Francis, 2016).

The life history parameters for the mean length-based models were extensively
evaluated for the assessments. Growth and maturity were typically estimated from large
historical datasets of otoliths and gonad samples, respectively. The observed maximum
age was used to estimate natural mortality (Hoenig, 1983). During the assessments, the

observed maximum age was evaluated to ascertain whether it was an appropriate
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indicator of longevity, especially when there were among-stock differences for the same
species. In data-limited situations, uncertainty in mortality estimates can be evaluated
with Monte Carlo sampling of life history parameters from parametric distributions (e.g.,
Huynh et al., 2017) or a sensitivity analysis (Gedamke and Hoenig, 2006).

In many ASM, including the six presented here, natural mortality was
parameterized to decline with age with a Lorenzen function rather than be constant with
age. While age-varying natural mortality would violate the assumption that Z is constant
with age, the extent of the violation would be minimal in a Lorenzen-type
parameterization of M because older animals experience similar natural mortality rates.
Differences in natural mortality are assumed to be largest among youngest ages but
length bins corresponding to these ages are typically not considered in the mean length-

based methods if those lengths are not fully selected.

5.5.2. Selectivity and retention behavior

In terms of selectivity, age-structured models allow for modeling of complex
fishing behavior, albeit at the cost of estimating many, often confounding, parameters.
Multiple fishing fleets with disparate selectivity patterns and fishing behaviors are
typically modeled separately and there may be enough information to model logistic and
dome-shaped selectivity functions. Discard and retention length composition allow for
estimation of the vulnerability and retention functions, the product of which would be the
effective selectivity of the gear for retained catch. Finally, changes in size regulations can
be modeled with time-varying features of the ASM (Methot and Wetzel, 2013). For the

mean length models, knife-edge selectivity is assumed at length L.. Thus, the analysis
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uses a subset of the length composition data so that only animals assumed to be fully
selected are included in the calculation of the mean length.

Application of the data-limited models should consider if changes in mean length
occurred due a change in retention behavior as opposed to a change in mortality. We
chose values of L. that were larger than any implemented minimum retention size for the
stocks in this study. In this way, all lengths larger than L. would have the same presumed
selectivity to minimize the effect of the management regulations. On the other hand, to
the extent that there has been variable fishing over time on fish smaller than L, the
assumption of constant recruitment is violated by confounded fishing mortality. Changes
in bag limits could alter discard and retention behavior; for example, the implementation
of a bag limit may increase discarding of smaller animals in favor of larger ones. To
account for this, one would need to evaluate whether there were significant changes in
the length distribution of retained catch once those regulations were implemented.

The age-structured assessments estimated dome-shaped selectivity for the
recreational fleet for three of the six stocks, these being GOM greater amberjack and both
GOM and ATL stocks of king mackerel. This contrasts with the knife-edge selectivity
assumption made with the mean length-based models. If the selectivity of the fleets were
dome-shaped, then it is presumed that mortality would be overestimated by the length-
based models. For determination of stock status with the mean length-based models, the
Fusyproxies were also calculated assuming logistic selectivity for these three stocks. The
estimated stock status relative to overfishing in the terminal year among the four methods

did not change based on presumed selectivity estimated by the ASM. The time series of
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F/Fusy from the mean length models were either similar in magnitude or more optimistic

than those from the age-structured assessments (Figure 5.4).

5.5.3. Trends in recruitment to the recreational fishery

The assumption of constant recruitment to length L. was likely violated for GOM
Spanish mackerel due to the dynamics of the shrimp fleet which had bycatch of smaller
animals. In the age-structured assessment, the shrimp fleet was the highest source of
fishing mortality historically (with 100% discard mortality assumed) until the late-1990s,
when fishing effort subsequently decreased (SEDAR 2014b; Figure 5.6). This reduction
would increase survival and recruitment to size Lc (39 cm in this study). Such an effect
could have caused the decrease in the observed mean length from the recreational fleet
(Figure 5.5).

For the MLeffort model, non-convergence for GOM Spanish mackerel was
caused by the data conflict where the recreational effort was estimated to have decreased
(Figure 5.6), yet the mean length also decreased (an increase would have been expected
based on the trend in effort). Concurrently, the gradual increase in the index of abundance
with the decrease in mean length since mid-1990s would support the hypothesis of
increased recruitment to the recreational fishery (Huynh ef al., 2017). A simpler mortality
history, i.e., with fewer change points, was inferred with the MLCR model compared to
the ML model to avoid overfitting spurious trends in the mean length due to hypothesized
changes in recruitment. The observed trends in the paired residuals of mean length and
the index in the MLCR model were also consistent with hypothesized increased

recruitment.

165



While trends in mortality are affected by factors external to the recreational fleet,
the analysis of residuals in the MLCR model and non-convergence of the MLeffort
model allowed us to diagnose issues in the application of the mean length-based models
for GOM Spanish mackerel without external information. With the ASM, we can
corroborate that bycatch mortality may have been the primary driver of the historical
stock dynamics. In isolation, the length composition from the recreational fleet may not
provide sufficient information on the stock history. This is evident in the contrasting
trends in mortality in the ML model and ASM since the mid-1990s (Figure 5.2). Overall,

the general presence of large animals in the length composition relative to L, would

indicate that the GOM Spanish mackerel stock is in generally good shape (Figure 5.1).
For GOM and ATL king mackerel, bycatch from the shrimp fleet was a smaller source of
mortality relative to the recreational fleet. The impact of bycatch mortality would not be
as noticeable for these stocks.

For ATL king mackerel, large residuals in the mean lengths and index were
observed in the most recent years of the MLCR model. The increasing mean length
increasing and decreasing index since 2007 would be consistent with decreasing
recruitment (of animals of length Lc). The ASM for ATL king mackerel estimated a
decreasing trend in recruitment of age-0 animals since 2003. Here, the qualitative
information about recruitment trends from the MLCR model are also supported by the
recruitment estimates from the ASM after accounting for the time lag from age 0 to the

age of full selection to the recreational fishery.

5.5.4. Uncertainty in catch and effort
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In data-limited situations, as well as in any assessment, the quality of the data and
their representativeness to the underlying population dynamics should be evaluated. For
example, there were generally large coefficients of variation associated with discard
estimates (Siegfried et al., 2016) and consequently, discard data were not used with the
mean length-based methods. In data-limited situations, discard data may not be available,
but it would also be important to consider the magnitude of discard mortality in a
management context. As another example, expert judgment is needed to decide if the
catch per unit effort (CPUE) can serve as index of abundance. Spanish mackerel and
cobia are reported to be opportunistically caught by the recreational fleet, resulting in
high percentages of zero catch (Bryan and Saul, 2012). This may degrade the quality of
the CPUE as an index of abundance.

One must obtain length compositions from multiple years for the mean length
models used in this study. Data from several fleets could be combined if the fleets are
believed to behave similarly. Otherwise, mortality estimates can be confounded by the
contrasting fishing effort and selectivity of the different fleets. In this study, the
recreational data were obtained from MRFSS (Marine Recreational Fisheries Statistics
Survey) and MRIP (Marine Recreational Information Program), which is a designed-
based sampling program for the charter and private boat fleet, or SRHS (Southeast
Region Headboat Survey), which strives to be a census of all headboats in the region
(Table 5.4). We followed the decision of the assessment team in regards to combining or
separating the data from these two programs. Uncertainty in the composition data could

be evaluated by comparing annual lengths from the different gear sectors.
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The MLeffort model provides year-specific mortality rates, but the fit to the mean
lengths varies from good in the case of GOM greater amberjack to poor, as in the case of
GOM king mackerel (Figure 5.3). For mixed fisheries, nominal effort such as days fished
may not be an indicator of targeted effort due to switches in targeting. As effort in the
recreational fisheries examined here are not allocated on a species-specific basis, indices
from these fleets should be obtained from a subset of fishing trips that are believed to
have targeted the stock of interest based on catch of associated species (Stephens and
MacCall, 2004). Unfortunately, this was often not sati employed for the six stocks
analyzed here due to poor model performance during and often was not used to
standardize the indices of abundance. Coupled with relatively high uncertainty in
recreational effort, these factors likely contributed to poor performance of the MLeffort
model for GOM and ATL king mackerel. Methodological advancements of the MLeffort
model can smoothen the estimates of effort prior to using the model or treat effort as a
state-space variable, although the latter may result in overfitting.

On the other hand, the ML and MLCR models produced similar fishing mortality
estimates except in the case of GOM Spanish mackerel and ATL cobia (Figures 5.2, 5.4).
For the other four stocks, the index supports the mortality estimates based on mean
lengths, which indicates that the length and index data are in agreement. For GOM
Spanish mackerel, bycatch mortality may be affecting the stock dynamics as discussed
earlier. For ATL cobia, there appears to be little contrast in the fishing mortality in the
stock history because overfishing has not occurred in the history of the stock based on the
four models. The lack of contrast in mortality may result in more variability in the

estimates among models.
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5.6. Conclusion

The results from this study show that the mean length-based methods can provide
very similar results, i.e., mortality trends and stock status over the course of the entire
time series and time periods within, to those from the age-structured assessments. Life
history parameters evaluated for the benchmark assessments were used in the analyses
with the length-based methods, and a subset of the data from the fleet believed to drive
stock dynamics most strongly was used with these methods. Simple models can still be
applied to nonequilibrium situations, and the historical increase and decrease in mortality
during the 1980s to the 2010s common to many southeastern U.S. stocks was captured in
the analyses. All methods were in agreement with regards to classifying current status
relative to overfishing.

In data-limited situations, the mean length-based methods can be used to explore
historical changes in mortality over time, with results likely to be consistent with what
might be obtained from an age-structured model. The ML and MLCR models provide a
series of historical mortality rates, although the changes in mortality over time will be
coarser than in models with year-specific mortality rates. This is due to the stepwise, time
stanza structure of the ML and MLCR models. The MLeffort model can provide year-
specific mortality rates, and inter-annual variability can be smoothed to describe the trend
over time.

As a rule, age-structured models should generally not be replaced by simpler
methods. Age-structured models provide more modeling options to accommodate

multiple drivers of fishing mortality and productivity, as well as more diagnostic tools to
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evaluate the quality of the assessment. Nevertheless, in data-rich scenarios, the mean
length-based methods can be used as a diagnostic to evaluate and explain how the mean
length has changed over time (through fishing mortality or other causes). When there are
conflicting results, diagnostic procedures can provide additional insight on the causes of
model or data conflict. Models which incorporate multiple data types are advantageous,
because the agreement (or lack of) between data types can be evaluated to determine
whether the chosen model is appropriate for the stock of interest. As a large majority of
stocks worldwide do not and will not likely have fully age-structured assessments in the
future, studies such as this are useful in to results of applying mean length-based

mortality estimators.
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5.8. Tables

Table 5.1. Summary of size regulations from the recreational fishery (in terms of fork

length). Only years preceding the year of the assessment are considered.

Stock Minimum Legal Years
Size Limit

GOM greater amberjack 28-in (71.1 cm) 1990-2007
30-in (76.2 cm) 2008-2012

GOM Spanish mackerel 12-in (30.5 cm) 1993-2011

GOM & ATL cobia 33-in (83.8 cm) 1985-2011

GOM & ATL king mackerel  12-in (30.5 cm) 1990-1991
20-in (50.8 cm) 1992-1999
24-in (61.0 cm) 2000-2012

Table 5.2. Summary of assessment models and the length composition and index of
abundance for the length-based mortality estimators. The Recreational fleet combines the
data from both the Charter/Private and the Headboat fleets.

Stock Assessment Fleet for length Length Index time
Model analyses time series series
GOM greater amberjack SS Charter/Private ~ 1981-2012  1986-2012
GOM Spanish mackerel SS Recreational 1981-2011  1981-2011
GOM cobia SS Recreational 1979-2011  1986-2011
ATL cobia BAM Recreational 1982-2011 1985-2011
GOM king mackerel SS Headboat 1985-2012  1986-2012
ATL king mackerel SS Headboat 1978-2012  1980-2012
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Table 5.3. Life history parameters used in the analyses for the length-based mortality estimators. Parameters are defined in Table D.1.

Stock Lo K ag L. Lmat @ B amax M Source
(em) (yr') () (cm) (cm) o) GrY)

GOM greater amberjack 143.6 0.18 -095 77.5 90 7.0e-5 2.63 15 0.28 SEDAR, 2014a;
Murie and Parkyn, 2008

GOM Spanish mackerel 56.0 0.61  -0.50 39 31 1.5e-5 2.86 11 038 SEDAR,2013b

GOM cobia 128.1 042 -0.53 88 70 9.6e-6 3.03 11 038 SEDAR,2013a

ATL cobia 1324 0.27 -047 95 70 2.0e-9 328 16 026 SEDAR,2013b

GOM king mackerel 1289 0.12 -4.08 80 58 73e-6 3.01 24 0.17 SEDAR, 2014b;
Lombardi, 2014

ATL king mackerel 121.1 0.15 -3.73 80 58 73e-6 3.01 26 0.16 SEDAR, 2014c;

Lombardi, 2014




5.9. Figures
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Figure 5.1. Summary length compositions summed across all available years of data for
the six stocks for the mean length mortality estimators. Solid vertical line indicates L. and

dashed vertical line indicates L.
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(a) GOM greater amberjack (b) GOM Spanish mackerel
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Figure 5.2. Estimates of scaled F' from the four models (ASM = age-structured model,
ML = mean length, MLCR = mean length with catch rate, MLeffort = mean length with
effort). Annual estimates were converted to Z-scores and, for ASM and MLeffort,
smoothed over time with a loess regression line. The MLeffort model did not converge
for GOM Spanish mackerel.
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Figure 5.3. Observed (connected points) and predicted mean lengths (colored lines) from the three length-based mortality estimators
(ML = mean length, MLCR = mean length with catch rate, MLeffort = mean length with effort) and observed and predicted index for
the MLCR model.
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Figure 5.4. Annual estimates of F/Fusy (relative F) from the four models (ASM = age-
structured model, ML = mean length, MLCR = mean length with catch rate, MLeffort =
mean length with effort). The ASM was the Beaufort Assessment Model for ATL Cobia
and Stock Synthesis for all other stocks. Fusy was estimated in the ASM for ATL Cobia
while for all other methods, the Fusyproxy is F30%.
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Figure 5.5. The proportion of years with overfishing as estimated with the four models
within the respective time periods for the 6 stocks. The MLeffort model did not converge
for GOM Spanish mackerel. For Pre-1995 and Post-1995, numbers indicate the number
of years in the assessment for the respective time period.
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Figure 5.6. Estimates of relative effort for GOM Spanish mackerel from the recreational
fleet, obtained as the ratio of the recreational catch and index of abundance, and the
shrimp bycatch fleet, estimated as described in Linton (2012). Estimates are scaled so
that the time series mean is one.
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Chapter 6: Conclusions

6.1. Next steps

The central challenge of any stock assessment is the ability to determine whether
the applied methods are appropriate for providing management advice. This dissertation
provides insight for stock assessors on the challenges and opportunities with using mean
length-based mortality estimators for stock assessment. Data-limited stocks are not
limited by geography or management system. Developing countries may lack capacity for
formal stock assessments. In developed regions, such as the United States and Europe,
the desire to provide scientific advice results in a demand for assessments of all managed
stocks (Berkson and Thorson 2015). Limitations in time and expertise create challenging
conditions for the assessment and management of marine resources. The best scientific
advice for management is traditionally thought to be that obtained from assessments with
age-structured models. However, those assessments should be considered as exceptions
to the norm. In U.S. federally managed waters, 70% (354 out of 504) of stocks do not
have age-structured assessments (Newman et al. 2015). The International Council for the
Exploration of the Sea (ICES) manages over 200 stocks in the Northeast Atlantic, and
more than half of those stocks do not have assessment advice. (Jardim et al. 2015).

Alternative methods, such as those presented in this dissertation, will be important
tools for addressing these limitations. The features and challenges of the mean length-

based mortality estimators were addressed through discussion, simulation, and case
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studies. A brief description of the many size-based mortality estimators and the available
computer software used to implement them was provided in the review chapter (Chapter
1). Case studies throughout this dissertation provided examples of how data are processed
and analyzed with mean length mortality estimators (Chapters 3-5). This dissertation will
serve as an introduction and guide to prospective users of these methods.

For stock assessment, the mean length-based methods can be used in three ways.
First, they can be used to infer historical trends in mortality, as shown in Chapters 3 and
4. The mean length-based mortality estimators are methodologically rich and can
accommodate multiple sources of data when available. In a single-species context, a
model was developed to estimate mortality from both mean length and catch rate data
(Chapter 4). The analysis for Puerto Rico mutton snapper in illustrated a common
situation where assessments produce conflicting results. From the mean length data
alone, the mortality rate was estimated to be relatively high in the year 2002, the terminal
year of the data. When the catch rates were considered with the mean length data, a
smaller mortality rate is estimated because a reduction in mortality occurred just prior to
2002. Although the model results were conflicting, the trend in the mean length did not
necessarily contradict that in the catch rate. High variability in the mean lengths
precluded acceptance of a more complex model with the recent reduction in mortality.
The reduction in mortality was more evident in the catch rates which were less noisy.
Thus, the trends length and catch rate data are consistent with each other when
considered together.

In a multispecies context, multiple stocks that are caught together by the same

fishing gear may show synchrony in changes in fishing mortality over time. In a multiple
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likelihood framework, it is possible to perform multispecies analyses by specifying
parameters in the model that are common to all species (Chapter 4). The benefit of these
two extensions is to allow for corroboration of estimated mortality trends among different
time series of data.

Second, the mean length-based methods can be used to ascertain stock status.
After estimating total mortality, fishing mortality can be derived with an estimate of
natural mortality. With a proxy for fishing mortality at maximum sustainable yield, one
can make a determination of whether overfishing is occurring (Chapter 5). Statistical
diagnostics provide a mechanism for determining whether the method is internally
consistent (without external validation from other data) and deciding whether to accept or
reject an analysis. For stocks such as Gulf of Mexico greater amberjack and U.S. Atlantic
king mackerel, the three length-based models agree with each other in estimated
mortality trends and there are good diagnostics in terms of residuals. The trends agree
with those from the accepted assessment model. For Gulf of Mexico Spanish mackerel,
model diagnostics are poorer, with non-convergence and trends in residuals among the
different mean length-based models.

Finally, the output from these methods, and size-based methods in general, can be
used to provide advice for the management of these stocks (Hordyk et al. 2015). Advice
in the form of a harvest control rule can be tested via management strategy evaluation
(MSE), a closed-loop simulation in which a population model is projected into the future
based on successive implementations of the control rule from generated data and
assessments (Walters and Martell 2004; Punt et al. 2016). Here, potential control rules

could be based on the ratio of mortality estimates relative to reference points (ICES
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2017), as demonstrated in Chapter 5. In the MSE, management goals, e.g., reducing
fishing mortality to be sufficiently precautionary and rebuilding the stock biomass to be
in good condition, are defined and operationalized. These simulations can evaluate
whether the management goals are met with candidate harvest control rules that use mean
length mortality estimators.

Overall, mean length-based methods are attractive options as alternative
assessment methods for providing estimates of historical mortality estimates and current
status for the many unassessed stocks (ICES 2015; ICES 2016), and work is underway to

develop them as tools for providing management advice (ICES 2017).
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Appendix A: Derivation of the length-converted catch curve
(Chapter 2)

The age-based catch curve is of the form:
log(C,)=a~-2t, (A.1)
where C: is the catch at age ¢, Z is total mortality, and a is a constant.

In a length frequency distribution, length bins of larger animals contain more age
groups than bins with smaller ones due to the decreasing growth rate of older individuals.
Thus, abundance at size in an equilibrium population is a function of individual growth
rate and mortality over time (Ricker 1975; van Sickle 1977; Pauly 1983). Assuming the

length bins are narrow, the length-based catch curve is of the form:
log| C i, Z (A.2)
og| C,—— |=a—-27t,, .
g ¢ it i

where C; is the catch in the i-th length bin, # is the ages at the midpoint of the i-th length
bin in the length frequency distribution (assuming deterministic growth),

L =L, {l —exp[- K (t, —1,)]} is the von Bertalanffy growth equation for length at age ¢,

dL
and 7’ is the instantaneous growth rate evaluated at the corresponding midpoint of the
t

i-th length bin. The following substitutions are made:
dL,
log — 1= log(KL,)-K(t,—t,) (A.3)

=Kt —t,), (A.4)
where ¢’ is the relative age defined as a variable transformation. After substitution and

simplification, Equation A.2 reduces to:
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log(C,)=a +(1 —%jﬂ : (A.5)

where a is a nuisance parameter of all constant terms. Equation A.5 is a linear equation
of the form:
log(C,)=a+bt', (A.6)
where @ and b are the intercept and slope, respectively. Using Equations A.5 and A.6,
total mortality Z is solved:
Z=K(-b). (A.7)
From a length frequency distribution, the midpoint of the length bins can be converted to

relative ages #'also defined by the von Bertalanffy growth equation:

L
t':_l 1_4 P} A~8
og( 7 J (A.8)

with the logarithm of the catch in that length bin used in a linear regression to estimate

the slope of Equation A.6 and thus total mortality in Equation A.7.
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Appendix B: Derivation of the Transitional Behavior of
Weight per Unit Effort (Chapter 4)

The catch rate in weight per unit effort (WPUE) is:

WPUE = ¢B, (B.1)
where ¢ is the catchability coefficient and B is the biomass. In equilibrium, the biomass is

modeled as

B=[Nwdt, (B.2)
where N, is the abundance at age ¢ and is calculated as N, = R- exp[— Z (t —t, )], tc 1s the
age of full selectivity; and W, is the abundance at age ¢ and is calculated as
W =W, {1 - exp[— K (t —t, )]}b . The weight at age is a composite of the allometric weight-

length equation, W, = aL,h , with the von Bertalanffy equation for length at age,

L=L{- exp[- K (1 -1, )]}, where W, = aL,” . After substitution, equation (B.2) becomes
B= RWwIexp[—Z(t — i) {1 —exp[—K (t—t,)]}"dt » (B.3)

where R is the recruitment at age #; Z is the instantaneous total mortality rate; and W,
K, and ¢, are growth parameters. To evaluate equation B.3, the substitution
u=1-exp[-K(t—t,)] is made, which implies
t=t,— Lln(l —u) (B.4)
K

and

dt= du. (B.5)

K(1—-u)
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After substitution, Equation B.3 simplifies to

-ZJK
B= RW, 1- L, Beta[l;b+1,£j—Beta L, ;b+l,£ , (B.6)
K L K L K

o0 0

where L. is the length at age #.; and Beta(x;c, f) = Iu“" (1-u)”"du is the incomplete
0

beta function to be evaluated numerically.
Assuming one change in mortality, the biomass is a function of the time elapsed,
d years, since the change in mortality from Z, to Z,,

[t.+d

[expl=2, (¢t — 1)1 - exp[-K (t —,)]}" dt +

B(Z,,Z,,d)=RW,

o0

IGXP(—sz) exp{-Z,[t — (¢, +d)]} {l —exp[-K(t —1,)]}" dt

| t.+d

~Z,
L & Z L Z

- Beta| A;b+1,=% |- Beta| —~;b+1,—= | |+
RW L, K L, K

K 2

L\« 7 7
exp[—(Z, - Z, )d][l _ LC ] [Beta(l;b + l,?] — Beta(i;b + LEIH

: (B.7)

where L =1—-(1-L_/L,)exp(—Kd) . The first term represents the biomass of animals

recruited after the change in mortality, and the second term represents the biomass of
those recruited before the change.

Assume there have been k changes in mortality. Let

0=4{2.,72,,..,72,,.d,,d,,...d,},where Z,,Z,,....Z,,, is the vector of total mortality rates
that the population that has sequentially experienced over time and d, is the elapsed

duration of mortality rate Z,,. The general solution for the biomass is:
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_lezfi

R k+1 K
B(O)= RY, Z aw,)|1- L, Beta(yi;b+1,£ — Beta ii;b+1,£
K L K K

i=1 %0

) (B.8)
where

1 i=1
a. = i—1

bolexpl =D Zin 4 i=2,..,k+1
=
1 i=1
_ i1
W= exp(Zm_i dkﬂ_j} i=2,..k+1
J=

1- l—L" ex —Kzi:d i=1...,k
Vi= L, P =] o T

1 i=k+1

L i=1

L,
A = L i

1—(1— c Jexp(—KZdM_jj i=2,..,k+1

Loo Jj=l
The corresponding WPUE after k changes in mortality is
WPUBO)=q-B©)=7B(@), (B.9)

where ¢ = qRKW‘” is a scaling parameter for the WPUE and B(6) = %B(Q) is the

0

biomass excluding K, R, and W_ . In this way, trends in biomass can be modeled without
W, . Compared to the model of NPUE, the only additional information required to model

WPUE is the allometric growth exponent b.
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Appendix C: Technical description of the mean length

mortality estimators (Chapter 5)

The ML and MLCR models estimate mortality rates and change points in

mortality based on the transitional behavior of the mean length and index following a

change in mortality (Gedamke and Hoenig, 2006; Huynh et al., 2017). Assume there are

k+1 time stanzas (k changes in mortality in the time series). The predicted mean length

(L, ), abundance-based index ( NPUE, ) and weight-based index (WPUE),) in year y are

calculated as

k+1 k+1
3 Gt —(1_ L jz
Z =L i=1 Zk+2—i Loo i=1 Zk+2—i+K
y - o k+1 a. v.

Z iy iy
Z

i=1 k+2—i

b

~k+1 ai’ vi’
NPUE, =4y —=,

i=1 k+2—i

and

Z +2—i
7Zk+27%< Beta[yk+2_i,y ; b + l) %J

b + 1’ Zk+2—i j
K

~k+1 L
WPUE, =§ ) al.,ywi,y(l - ]
i=1 0

- Beta(/”tk

+2—i,y?

where

1 i=1

i—

a",y - exp(_zzk+2—jdk+1—j,yj = 2,...,k+1

J=1

1—exp(Z s idins,)  i=lenk
v, = ’
SO i=k+1
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1 i=1

iy = exp(—i[ZMj + K]dkﬂj,y] i=2,.,k+1

J=1

iy

{l—exp([Zk+2_,. +K]a’k+,_i,y) i=1...k

1 i=k+1
1 i=1
w — i—1
Ly exp Zk+2—izdk+1—j,y i= 2,...,k +1
=

X

Beta(x;a, p) = J.u‘H (1-u)" " du

(=}

0 i=L..k&y<D,,,
L " .
Yisoiy = 1—(1— 3 Jexr{_Kzldkﬂj’yJ i=l..,k&y>D,,,
0 J=
1 i=k+1
0 izl&ySDkH—i
L /L, i=1&y>D,,
0 l<i<k&y<D,,,
LC/LOO 1<i£k&Dk+17i<ySDk+2—i
ﬂ‘k+2—i,y = L, - ]
l_ ]._L eXp _szkJr],j’y 1<lSk&y>Dk+2*i
0 Jj=1
L /L, i=k+l&y<D,,,
L i—1
1- 1_LC exp —KdeHi/’y i=k+1&y>D,,
0 J=1
and
0 y<D,
di,y: y—Dl Di<y£Di+l'
Di+1 _Di y>Di+l

All additional variables are defined in Table C.1.
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Table C.1. Definitions of variables for the ML and MLCR models.
Variable Definition
i Index for time stanza (i=1, ..., k+ 1)
Index for time stanzas experienced prior to time stanza i
G=1,...,i-1)

Calendar year

~.

Instantaneous total mortality rate (year™)
Change point for mortality (calendar year)
Von Bertalanffy asymptotic length

8

Von Bertalanffy growth parameter
Scaling parameter for index

SR~ ONE

Length-weight exponent
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Appendix D: Spawning potential ratio for the mean length
estimators (Chapter 5)

The spawning potential ratio (SPR) is calculated as,

o _ SSBPR(F = Fyyy,,)
SSBPR(F = 0)

which is the ratio of the spawning stock biomass per recruit (SSBPR) at F' = Fspro
compared to that at = 0. The spawning stock biomass per recruit is

a,

max

SSBPR(F) =Y N,w,m,
a=0
where the abundance at age a (N, ) is
1 a=0
N,=4N, exp(-Z, ) a=1,..,a, -1,
Na—l exp(_Za—]) —
1—exp(-Z,) e

the weight at age (w,) is

w, =(a,” J1 - exp[-K (a—a,)1)’,

the maturity at age (m,) is

9

1 a=a a

mat?*°* “"max

{O a=0,..,a,, —1
m =

and total mortality at age (Z,) is

7 - M a=0,.,a -1
“\F+M a=a,..,a,.

max

(D.1)

(D.2)

(D.3)

(D.4)

(D.5)

(D.6)

From L., the fully selected length, the corresponding age ac is obtained from the

inverse of the von Bertalanffy function,
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L

a, =a, —%log(l— L ] . (D.7)

From Lmas, the length of knife-edge maturity, the corresponding age ama: is also obtained

from the inverse of the von Bertalanffy function,

Ay = Ay —%log[l —%) . (D.8)

o0

To obtain the F302 reference point, Equation D.1 is solved for Fspre such that

SPR = 0.3. All variables are defined in Table D.1.

Table D.1. Definition of variables for spawning potential ratio calculation.

Variable Definition
F Instantaneous fishing mortality rate (year™)
M Instantaneous natural mortality rate (year™)
Z Instantaneous total mortality rate (year™)
o Length-weight allometric constant
S Length-weight allometric exponent
L, Von Bertalanffy asymptotic length
K Von Bertalanffy growth parameter
a, Von Bertalanffy theoretical age at length zero
a,.. Maximum age (plus-group)
L,. Length at maturity

at Age at maturity
L Fully selected length (knife-edge selectivity)
a Fully selected age
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Appendix E: Residuals in the application of the mean length-
based mortality estimators (Chapter 5)
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(a) GOM greater amberjack (b) GOM Spanish mackerel (c) GOM cobia

1980 1990 2000 2010 1980 1990 2000 2010 1980 1990 2000 2010

(d) ATL cobia (e) GOM king mackerel (f) ATL king mackerel

Mean Length Standardized Residual

1980 1990 2000 2010 1980 1990 2000 2010 1980 1990 2000 2010

Year

Figure E.1. Standardized residuals of mean length from the ML model. Residuals were calculated by subtracting the predicted value
from the observed value and then dividing the difference by the estimated standard deviation.
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(a) GOM greater amberjack

Mean Length
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Index Std. Residual
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Mean Length
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Index Std. Residual
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Figure E.2. Standardized residuals of mean length and index from the MLCR model. Residuals were calculated by subtracting the
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(c) GOM cobia
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(f) ATL king mackerel
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predicted value from the observed value and then dividing the difference by the estimated standard deviation.
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(a) GOM greater amberjack

1980 1990 2000 2010

(d) ATL cobia

Mean Length Standardized Residual

1980 1990 2000 2010

(b) GOM Spanish mackerel (c) GOM cobia

Model did not converge.

I
1980

I I I I I I
1990 2000 2010 1980 1990 2000 2010

(e) GOM king mackerel (f) ATL king mackerel

1980

1990 2000 2010 1980 1990 2000 2010

Year

Figure E.3. Standardized residuals of mean length from the MLeffort model. Residuals were calculated by subtracting the predicted
value from the observed value and then dividing the difference by the estimated standard deviation.



Supplement to Chapter 2

Additional figures and tables from the simulation study are presented. The results from
all methods used in the simulation are reported. All results are reported by stratifying the
simulation scenarios by factorial combinations of M/K and F/M. First, the median %Bias
and median %RMSE are reported across factorial combinations for growth variability,
recruitment variability, and selectivity function (Tables S1-S6; Figures S1-S39). Then,
the results of sensitivity analyses of sample size (Figures S40-S52) and bin width

(Figures S53-S65) are presented.
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Table S1. Median %Bias of the different methods from factorial combinations stratified
by M/K, F/M, and growth variability. Bold-with-asterisk values indicate the method with
the lowest median %Bias within each stratum.

Growth
F/M  Variability L1 L2 L3 L4 L5 L6 L7 L8 L9 B1 B2 B3 LB
M/K=0.5
0.25
Low 104.1 1365 1158 1689 177 1785 170.2 162 1773  71.2* 1419 1409 1463
Medium 82.2 84.8 832 117.6 1197 1159 114 1182 1122 42* 70.8 66.5 1392
High 72.8 63.4 72.8 98.2 113.6 97.8 93.7 110.2 933 19.3* 31.6 26.2 73
1
Low 37.7 67.3 443 653 109.7 70.5 60.5 102.6 663 32.2% 61.4 51.2 83.9
Medium 332 45.6 335 49.7 79 47.9 46.7 74.5 449  22.6* 372 30.3 76
High 28.1 28.8 27.2 39.6 64.3 37.7 37 58.5 351  13.1* 21.7 16.3 55
5
Low -18.2 -8.9 -20 -9.2 2.6*  -15.1 -12.7 -0.8  -17.3 -9.8 44 -4 31.4
Medium -15.1 -8 202 -7.3 1.1 -18 -9.1 -0.9  -195 -114 4.9 0.3 30.8
High -15.2 -11 214 -8.2 -1.1 =203 -9.2 24 215 -153 0.8* -1.1 26.6
M/K=2
0.25
Low -6.2 4 -3.4 -4.7 10.9 2% -10.4 3.6 -5.8 11.5 24.8 43 59.2
Medium -6.6 1.7 -7.9 -2.9 7.1 -6.5 -5.9 32 -8.4 0.7* 13.8 43 47
High -8.2  -1.2% -14 -3.9 5.7  -129 -5.7 32 -143 -3.2 8.4 2.5 31.6
1
Low -16.6  -122  -184 -125 -85 -17.8  -179 -12.6 -208 1.4* 10.6 -6.5 34.7
Medium -16.1  -12.2 221 -9.9 -8.4 -21 -125 -11 228 -7.8 3.2% -4.7 30.2
High -159  -135 272 -114  -112 275 -13 -12.8 -287  -155 -1.7* -5.4 19.2
5
Low -381  -37.1 -372 257 -315  -316  -28.7  -345  -34.6 -32 -10.3*  -16.5 11.5
Medium -40.8  -39.5  -39.8  -282  -34.1  -345 29 356 -359 -39 -199 217 7.5%
High -45.8 -44 444 337 -388 -394 -334 -395 -40  -47.3 -30.2 -30.1 1.1*
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Table S2. Median %RMSE of the different methods from factorial combinations stratified

by M/K, F/M, and growth variability. Bold-with-asterisk values indicate the method with

the lowest median %RMSE within each stratum.

Growth
F/M  Variability L1 L2 L3 L4 L5 L6 L7 L8 L9 B1 B2 B3 LB
M/K=0.5
0.25
Low 141.1 2115 1579 220.8 2752 2321 2334 272 2472  127.8* 223 2448 3198
Medium 100.5 146.9 101 133.8 178.6 130 1322 1712 1279 90.4* 1249 123 309.4
High 843 1183 84.1 105 1522 1043 1014 145 100.6 70.6* 85.8 829 177.7
1
Low 68.6 115 74* 95.6 1656 101.3 98.2 1653 102.7 80.8 117 109.8 198.4
Medium 57.1 943  54.7* 70.5 1189 64.4 69.5 116 63 69.6 86.6 839 184.6
High 46 734  43.5% 53.1 944 486 51.7 90.4 47 57.1 68.1 66 1425
5
Low 355 32.6 29.6 36.9 342  29.3* 385 36 30.7 38 42.1 41.7 74.6
Medium 339 309  29.7* 38.6 32.1 29.8 39.9 335 30.7 354 42 417 71.8
High 322 30.1 30.5 347  27.9* 30.2 35.7 28.9 31 332 36.9 37.7 65.5
M/K=2
0.25
Low 315 36 29.8* 403 45.9 352 403 46.2 35 49.1 60.6 493 144.1
Medium 29.9 332 27.a% 372 38.8 30.6 372 39.8 31.2 39.7 489 46 126.6
High 28.5 312 25.6* 34 323 26.3 342 32.8 27 342 419 409 81.9
1
Low 35.1  25.2% 28.6 383 26.1 29.5 40.3 28.3 31.2 416 463 40.6 95.7
Medium 34 26.1 31 343  25.1* 315 35.7 26.7 325 37.3 39.5 382 90.8
High 32.1 25.8 325 32 23.8% 329 329 24.8 33.8 342 32.7 33.6 66.5
5
Low 49.1 423 42.4 47.1 394 39.7*% 552 418 42.1 45.5 43 48.3 79.3
Medium 48 433 43.6 42.5 40 403 452 413 41.7 46  38.4* 41.4 73.4
High 50.3 464  46.9 424 423 43 434 429 43.7 51.1  39.9* 41.1 59
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Table S3. Median %Bias of the different methods from factorial combinations stratified
by M/K, F/M, and recruitment variability. Bold-with-asterisk values indicate the method
with the lowest median %Bias within each stratum.

Recruitment
F/M  Variability L1 L2 L3 L4 L5 L6 L7 L8 L9 B1 B2 B3 LB
M/K=0.5
0.25
Low 75.1 105.6 855 1524 135 162.1 1447 1246 1585 30.2* 108 1103  111.1
High 103.7 132.1 1147 1693 175  169.1 168 1585 163.6 67.1% 136.8 141.8 1453
1
Low 25.8 36.3 29.4 52 85.4 572 471 75.5 53.3 11.4* 36.3 28.9 64
High 36.6 67 43 634 1034 68 59.2 95.6 64.2 29.2% 59 50.2 81.6
5
Low -184  -115  -21.8 -11.1 -0.6  -192 -12.8 -2.1 204 -17.3  -0.5*% -4.2 25.8
High -15.6 -8.8  -20.7 -7.2 26 -183 9.7  -09* -19.8 -9.4 5.6 -1.4 31.7
M/K=2
0.25
Low -8.4 0.1* -9.7 -6.8 4.7 -5.7 -9.2 0.1% -9 -1.7 8.2 =23 30.2
High -4.8 3.4 -6.2  -2.6* 9.8 -4.3 -5.6 4.6 -6.4 11.2 20.1 8.1 56.6
1
Low -17.6  -13.1  -20.1  -124 -89 -182 -17.7 -12.8 -21.1 -10.6 0.9* -6 222
High -143  -11.6 =22 -8.5 -7.9 -22 -137  -112 242 -5.6 10.6 0.3 40.5
5
Low -43.8  -40.2 -404 -328 -354 357 351 -374 -376 -40.1  -229 -285 4.8*
High -39 374 375 266 -31.9 -32 277 -34.8 -35 -32.8  -139 -17.6 9.6
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Table S4. Median %RMSE of the different methods from factorial combinations stratified
by M/K, F/M, and recruitment variability. Bold-with-asterisk values indicate the method
with the lowest median %RMSE within each stratum.

Recruitment
F/M  Variability L1 L2 L3 L4 L5 L6 L7 L8 L9 B1 B2 B3 LB
M/K=0.5
0.25
Low 108.6 156.2 125.8 177 2282 184.8 168.1 2252 1824 87* 186.8 182.8 257.8
High 140.7 181.7 157.1 199.7 2548 1888 1954 251.1 1848 125.4* 222 217 322
1
Low 45.7 83.6 53.3* 849 1221 85.2 79.1 1193 83.7 534 90.2 922 158.1
High 67.5% 1053 73.3  101.7 1429 93.8 103.7 140.6 91.4 80 116.7 1156 190.8
5
Low 30.5 28.7 29.1 31.5 29.4 28.1 334 30.6 29* 329 343 352 65.7
High 37.7 34 309 41.6 36.6 313 433 38 325 383 44.8 454 78.6
M/K=2
0.25
Low 26.3 28.4 25.1 29 34 27.5 303 34.8 28* 31.8 39.3 34.7 85.4
High 345 383 304 39.8 47 346 402 47  34.4* 51.2 56.8 52.1 139
1
Low 28.7  22.9% 27.6 30 22.9* 28.5 31.1 24.6 30.1 33 34 33.1 60.6
High 36.1  27.5% 31.6 407 27.7 325 42.4 29.2 33.6 41.8 50 447 105.6
5
Low 49 427 43 423 39.5% 39.9 45 414 417 47  39.5* 41.6 68.9
High 49.1 424 425 44.5 404  40.8 485 4277 432 453 40.3* 44.1 76.3
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Table S5. Median %Bias of the different methods from factorial combinations stratified
by M/K, F/M, and selectivity. Bold-with-asterisk values indicate the method with the
lowest median %Bias within each stratum.

F/M  Selectivity L1 L2 L3 L4 L5 L6 L7 L8 L9 B1 B2 B3 LB
M/K =0.5
0.25
Gradual 76.3 70.8 78 1146 113.1 1135 111.6 1103 1103 31* 61.6 579 1129
Steep 74.7 80.4 792 1134 1208 112 1095 1182 1079 26.7* 60.2 57.6 82.2
Dome 146.2 1493 148.6 175 227.8 1709 168.1 221.7 167.2 128.8%* 1653 151.1 2785
1
Gradual 26.6 31.6 29.2 46.4 73.5 45.8 43.4 68.7 42.9 10.7* 29.4 234 64.1
Steep 27.7 355 30.7 45.8 72.1 44.5 43.1 66.7 41.6 14.9* 304 24 48.7
Dome 60.5 69.3 64.9 71.7 1193 75.7 74.7 1139 72.5 58.3* 83.5 734 1539
5
Gradual -184  -122  -219 -103 -1.9  -18.7  -122 -3.8  -20.1 -16.6  -1.2% -4.3 27.6
Steep -10.4 -1.6  -149 -5.9 3 -139 -8.9 0.1* -154 1.8 8 2.4 31.2
Dome -17 -1 =221 9.2 -04% -19.7 -10.7 -1.9 212 -15.4 0.8 -2.8 279
M/K=2
0.25
Gradual -12.1 -6 -12.6 -7 3.8 -9.5 -11 -0.5*  -11.3 -2.8 7.7 -2.1 34
Steep <13 1.2 -7.9 -5.1 6.1 -6.5 -8.8 2.6 -8.4 6.8 11.5 0.7* 28.1
Dome 3.3* 11.1 6.6 15 22.9 12.8 11 19.9 9.9 9.4 29.5 18.3 79.6
1
Gradual -21 -185 26 -151  -13.6  -244 -194 -162 -263 -142  -1.5% -9.3 23
Steep -134  -10.6 -21 -10.3 -8.9 21 -132 -12 228 0.1* 7.5 -2.9 21.5
Dome -163  -123  -18.6 -8.2 -6.3 -159 -10.6 82 -17.1 -10.4 5.4% -2.8 382
5
Gradual -44.1  -40.8 -41  -328 -355 -358 -33.7 -374 -37.6 -419  -23.6 -27.6 5.4%
Steep -20.1 -258  -262 -11.2  -233 -237 -129 -254 -256 -187  -2.6* -3.6 39.8
Dome -443  -41.1 -414 -33.6 -36.1 -363 -341 -379 -38.1 -423 248 -289 3.5%
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Table S6. Median %RMSE of the different methods from factorial combinations stratified
by M/K, F/M, and selectivity. Bold-with-asterisk values indicate the method rule with the
lowest median %RMSE within each stratum.

F/M  Selectivity L1 L2 L3 L4 L5 L6 L7 L8 L9 B1 B2 B3 LB
M/K =0.5
0.25
Gradual 92.7 128.6 94.5 130 166.5 126.8 129.1 156.8 1253 774% 1174 1172 2625
Steep 94.5 1365 945 129.1 170.6 1258 127.5 163.1 123.5 82* 1158 1154 2232
Dome 165.6 1975 1659 1959 266.6 1905 192.7 2632 1858 161.3* 213.8 201.9 4203
1
Gradual 44.5 80.6 49.2 64.5 110.1 61.4 63.5 107.2 60.1 52.9% 76.4 749 1605
Steep 49.5 83.3 50.5 63.3  108.5 59.7 62.2 1045 58.5 58.2* 80.1 77.1 1358
Dome 80 1064 80.9 99.1 1489 92.6 97.5 146.7 90.5 87.9% 1219 1126 248
5
Gradual 34 31.7 30.4 359 30.8  30.2* 36.9 325 314 34.6 37.7 389 73.1
Steep 345 31 28.8* 38 31.5 29.3 39.1 32.7 30.2 38.6 42.4 42 66.8
Dome 33.1 31 29.7* 354 30.1 29.6 36.6 31.6 30.6 345 374 385 723
M/K=2
0.25
Gradual 29.4 302 25.8* 31.6 33.4 272 324 34.7 27.8 36.6 41.9 389 95.5
Steep 28.6 29.8  25.6* 32 33.1 27.4 32.8 33.7 27.9 40.2 44.7 40.1 75.4
Dome 323 358 29.9* 452 45.7 37 44.7 45.1 36.1 40.7 572 509 162.8
1
Gradual 33.1 27.9 33.1 33.8 25% 333 355 26.7 345 353 382 36.5 82.9
Steep 32 23.7 30.1 352 23.6* 31.1 373 254 325 36.5 40.6 374 62
Dome 31.9 25.1 28.3 348  24.3% 28.4 36.6 255 29.3 36.1 413 39.1 105
5
Gradual 49.5 434 43.7 43.9 40.7 41 47 42.7 433 479  40.4* 43.4 73.1
Steep 34.7 32.7 333 353 33.a* 33.7 40.7 349 36 33.8 32.8 374 79.1
Dome 49.1 44 443 44.6 40.6 41 47.6 42.7 43.2 47.7  40.2% 43.4 72.3
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Figure S1. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and growth variability for
method L1. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and shape
of violin plot show distribution of values.
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Figure S2. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and growth variability for
method L2. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and shape
of violin plot show distribution of values.
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Figure S3. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and growth variability for
method L3. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and shape
of violin plot show distribution of values.
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Figure S4. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and growth variability for
method L4. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and shape
of violin plot show distribution of values.
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Figure S5. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and growth variability for
method L5. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and shape
of violin plot show distribution of values.
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Figure S6. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and growth variability for
method L6. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and shape
of violin plot show distribution of values.
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Figure S7. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and growth variability for
method L7. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and shape
of violin plot show distribution of values.
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Figure S8. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and growth variability for
method L8. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and shape
of violin plot show distribution of values.
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Figure S9. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and growth variability for
method L9. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and shape
of violin plot show distribution of values.
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Figure S10. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and growth variability for
method B1. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and shape
of violin plot show distribution of values.
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Figure S11. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and growth variability for
method B2. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and shape
of violin plot show distribution of values.
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Figure S12. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and growth variability for
method B3. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and shape
of violin plot show distribution of values.
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Figure S13. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and growth variability for
method LB. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and shape
of violin plot show distribution of values.
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Figure S14. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and recruitment variability
for method L1. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and
shape of violin plot show distribution of values.
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Figure S15. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and recruitment variability
for method L2. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and
shape of violin plot show distribution of values.
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Figure S16. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and recruitment variability
for method L3. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and
shape of violin plot show distribution of values.
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Figure S17. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and recruitment variability
for method L4. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and
shape of violin plot show distribution of values.
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Figure S18. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and recruitment variability
for method L5. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and
shape of violin plot show distribution of values.
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Figure S19. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and recruitment variability
for method L6. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and
shape of violin plot show distribution of values.
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Figure S20. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and recruitment variability
for method L7. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and
shape of violin plot show distribution of values.
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Figure S21. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and recruitment variability
for method L8. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and
shape of violin plot show distribution of values.
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Figure S22. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and recruitment variability
for method L9. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and
shape of violin plot show distribution of values.
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Figure S23. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and recruitment variability
for method B1. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and
shape of violin plot show distribution of values.
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Figure S24. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and recruitment variability
for method B2. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and
shape of violin plot show distribution of values.
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Figure S25. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and recruitment variability
for method B3. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and
shape of violin plot show distribution of values.

220



Method: LB

M/K=0.5 M/K=2 M/K=0.5 M/K =2
400 A 5004
3001 o 400 - o
100 - = 4 o
e =8 ™ a3
1931 111 145 302 56.6 04...258..... 322... .@...139...
500 o
s ] 2|y .
o = | S 3007 3
2o SL LD L 2= V&S i
04 _— = S 100- <
1931 64 81.6 222 405 04...158..... 191... .ﬁ...me...
500 -
300 - . 400 1 -
2007 = 300 =
100 o 200 - o
o | S = 100 - - -
004258 317 48 9.6 04::68.7. .. 78.6...}..68.9.....76.3...
Low High Low High Low High Low High
Recruitment Variability Recruitment Variability

Figure S26. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and recruitment variability
for method LB. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and
shape of violin plot show distribution of values.
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Figure S27. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and selectivity for method
L1. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and shape of violin
plot show distribution of values.
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Figure S28. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and selectivity for method
L2. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and shape of violin
plot show distribution of values.
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Figure S29. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and selectivity for method
L3. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and shape of violin
plot show distribution of values.
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Figure S30. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and selectivity for method
L4. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and shape of violin
plot show distribution of values.
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Figure S31. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and selectivity for method
L5. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and shape of violin
plot show distribution of values.
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Figure S32. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and selectivity for method
L6. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and shape of violin
plot show distribution of values.
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Figure S33. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and selectivity for method
L7. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and shape of violin
plot show distribution of values.
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Figure S34. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and selectivity for method
L8&. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and shape of violin
plot show distribution of values.

225



Method: L9

M/K=0.5 M/K=2 M/K=0.5 M/K=2
200 A B g . .
— 200 - A -
100 A = =
Il Il
O rerrmrrmmrmnenenneabiieeon. N § 100 §
1004 110 108 167 [-11.3 -84 9.9 04.125...124...186.| 7708.. 77D . 36.1.
200 -
L -
& 100 J— | @ <
e} 8 & = =2 =
R g [STCRTRITPPpIITeS I S\g 100 A B = N
1004 429 416 725 |-26.3 -22.8 -17.1 0-.60.1..58.5.90.5.| .345.. 325 . 703.
200 A
100 - & 2007 )
< <
Il i Il
R ES Syt PO P PTPRT o 100 v
1004.20.1 -15.4 -21.2 | -37.6 -25.6 -38.1 01 3T 3072505, .43.3.. 36.. 432.
N N N N
R R &Qz RS R &Qz R X 6\‘2’ R X @Q’
0@6 <@ ~ 0@6 ‘5@1 ~ 0@6 6@’ ~ 0@6 6@’ ~
Selectivity Selectivity

Figure S35. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and selectivity for method
L9. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and shape of violin
plot show distribution of values.
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Figure S36. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and selectivity for method
B1. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and shape of violin
plot show distribution of values.
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Figure S37. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and selectivity for method
B2. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and shape of violin
plot show distribution of values.
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Figure S38. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and selectivity for method
B3. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and shape of violin
plot show distribution of values.
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Figure S39. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and selectivity for method
LB. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and shape of violin
plot show distribution of values.
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Figure S40. The effect of sample size on %Bias (left grid) and %RMSE (right grid) for method L1. Each
line represents individual factorial combinations stratified in separate cells by M/K and F/M.
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Figure S41. The effect of sample size on %Bias (left grid) and %RMSE (right grid) for method L2. Each
line represents individual factorial combinations stratified in separate cells by M/K and F/M.
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Figure S42. The effect of sample size on %Bias (left grid) and %RMSE (right grid) for method L3. Each
line represents individual factorial combinations stratified in separate cells by M/K and F/M.
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Figure S43. The effect of sample size on %Bias (left grid) and %RMSE (right grid) for method L4. Each
line represents individual factorial combinations stratified in separate cells by M/K and F/M.
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Method: L5
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Figure S44. The effect of sample size on %Bias (left grid) and %RMSE (right grid) for method LS. Each
line represents individual factorial combinations stratified in separate cells by M/K and F/M.
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Figure S45. The effect of sample size on %Bias (left grid) and %RMSE (right grid) for method L6. Each
line represents individual factorial combinations stratified in separate cells by M/K and F/M.
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Figure S46. The effect of sample size on %Bias (left grid) and %RMSE (right grid) for method L7. Each
line represents individual factorial combinations stratified in separate cells by M/K and F/M.
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Figure S47. The effect of sample size on %Bias (left grid) and %RMSE (right grid) for method L8. Each
line represents individual factorial combinations stratified in separate cells by M/K and F/M.
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Figure S48. The effect of sample size on %Bias (left grid) and %RMSE (right grid) for method L9. Each
line represents individual factorial combinations stratified in separate cells by M/K and F/M.
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Figure S49. The effect of sample size on %Bias (left grid) and %RMSE (right grid) for method B1. Each
line represents individual factorial combinations stratified in separate cells by M/K and F/M.
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Figure S50. The effect of sample size on %Bias (left grid) and %RMSE (right grid) for method B2. Each
line represents individual factorial combinations stratified in separate cells by M/K and F/M.

%RMSE

Method: B3
M/K=2

-
—
=
_‘C‘>
N
a
M
S
=
Il
-
S
=
Il
a

200 500 2000 200 500 2000

Sample Size

Figure S51. The effect of sample size on %Bias (left grid) and %RMSE (right grid) for method B3. Each
line represents individual factorial combinations stratified in separate cells by M/K and F/M.
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Figure S52. The effect of sample size on %Bias (left grid) and %RMSE (right grid) for method LB. Each
line represents individual factorial combinations stratified in separate cells by M/K and F/M.

235




%Bias

%Bias

-50 1
150 1

100 4
50

]

0
-50

Method: L1

M/K=2

=I/4

7]

L=IN/4

S=W/4

10 25

50 10

Bin Width

Figure S53. The effect of bin width on %Bias (left grid) and %RMSE (right grid) for method L1. Each line
represents individual factorial combinations stratified in separate cells by M/K and F/M.
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Figure S54. The effect of bin width on %Bias (left grid) and %RMSE (right grid) for method L2. Each line
represents individual factorial combinations stratified in separate cells by M/K and F/M.
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Figure S55. The effect of bin width on %Bias (left grid) and %RMSE (right grid) for method L3. Each line
represents individual factorial combinations stratified in separate cells by M/K and F/M.
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Figure S56. The effect of bin width on %Bias (left grid) and %RMSE (right grid) for method L4. Each line
represents individual factorial combinations stratified in separate cells by M/K and F/M.
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Figure S57. The effect of bin width on %Bias (left grid) and %RMSE (right grid) for method L5. Each line
represents individual factorial combinations stratified in separate cells by M/K and F/M.
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Figure S58. The effect of bin width on %Bias (left grid) and %RMSE (right grid) for method L6. Each line
represents individual factorial combinations stratified in separate cells by M/K and F/M.
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Figure S59. The effect of bin width on %Bias (left grid) and %RMSE (right grid) for method L7. Each line
represents individual factorial combinations stratified in separate cells by M/K and F/M.
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Figure S60. The effect of bin width on %Bias (left grid) and %RMSE (right grid) for method L8. Each line
represents individual factorial combinations stratified in separate cells by M/K and F/M.
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Figure S61. The effect of bin width on %Bias (left grid) and %RMSE (right grid) for method L9. Each line
represents individual factorial combinations stratified in separate cells by M/K and F/M.
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Figure S62. The effect of bin width on %Bias (left grid) and %RMSE (right grid) for method B1. Each line
represents individual factorial combinations stratified in separate cells by M/K and F/M.
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Figure S63. The effect of bin width on %Bias (left grid) and %RMSE (right grid) for method B2. Each line
represents individual factorial combinations stratified in separate cells by M/K and F/M.
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Figure S64. The effect of bin width on %Bias (left grid) and %RMSE (right grid) for method B3. Each line
represents individual factorial combinations stratified in separate cells by M/K and F/M.
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Figure S65. The effect of bin width on %Bias (left grid) and %RMSE (right grid) for method LB. Each line
represents individual factorial combinations stratified in separate cells by M/K and F/M.
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