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Abstract 

For data-limited fisheries, length-based mortality estimators are attractive as 
alternatives to age-structured models due to the simpler data requirements and ease of use 
of the former. This dissertation develops new extensions of mean length-based mortality 
estimators and applies them to federally-managed stocks in the southeastern U.S. and 
U.S. Caribbean.  

Chapter 1 presents a review of length-based methods from the literature. Common 
themes regarding the methodology, assumptions, and diagnostics in these length-based 
methods are discussed. In Chapter 2, a simulation study evaluates the performance of the 
length-converted catch curve (LCCC), Beverton-Holt equation (BHE), and Length 
Based-Spawner Potential Ratio (LB-SPR) over a range of scenarios. Although the LCCC 
and BHE are older methods than LB-SPR, the former outperformed LB-SPR in many 
scenarios in the simulation. Overall, it was found that the three length-based mortality 
estimators are less likely to perform well for low M/K stocks (M/K is the ratio of the 
natural mortality rate and the von Bertalanffy growth parameter; this ratio describes 
different life history strategies of exploited fish and invertebrate populations), while 
various decision rules for truncating the length data for the LCCC and BHE were less 
influential. 

In Chapter 3, a multi-stock model is developed for the non-equilibrium mean 
length-based mortality estimator and then applied to the deepwater snapper complex in 
Puerto Rico. The multispecies estimator evaluates synchrony in changes to the mean 
length of multiple species in a complex. Synchrony in mortality can reduce the number of 
estimated parameters and borrows information from more informative species to lesser 
sampled species in the model. In Chapter 4, a new method is developed to estimate 
mortality from both mean lengths and catch rates (MLCR), which is an extension of the 
mean length-only (ML) model. To do so, the corresponding behavior for the catch rate 
following step-wise changes in mortality is derived. Application of both models to Puerto 
Rico mutton snapper shows that the MLCR model can provide more information to 
support a more complex mortality history with the two data types compared to the ML 
model.  

In Chapter 5, a suite of mean length-based mortality estimators is applied to six 
stocks (four in the Gulf of Mexico and two in the U.S. Atlantic) recently assessed with 
age-structured models. There was general agreement in historical mortality trends 
between the age-structured models and the mean length-based methods, although there 
were some discrepancies which are discussed. All models also agreed on the overfishing 
status in the terminal year of the assessment of the six stocks considered here when the 
mortality rates were compared relative to reference points. 

This dissertation develops new length-based assessment methods which consider 
multiple sources of data. The review guides prospective users on potential choices for 
assessment with length-based methods. Issues and diagnostics associated with the 
methods are also discussed in the review and highlighted in the example applications.  
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Chapter 1: Sized-based mortality estimators and diagnostic 
procedures for assessment of data-limited fisheries  

1.1. Abstract 

We review the suite of methods which use size composition data for mortality estimation 

and stock status determination for data-limited fisheries. Methods that are currently 

available can be grouped into two categories: mean length-based methods, in which the 

mortality rate is estimated from the observed mean length of the catch, and composition-

based methods, in which the mortality rate is estimated based on the shape of the size 

distribution. The simplest methods assume equilibrium conditions. Advances in 

methodology provide the opportunity to assess goodness of fit and allow for mortality 

estimation in nonequilibrium situations from multiple years of data and additional data 

types such as fishing effort and indices of abundance. We discuss six issues that are often 

encountered with size-based mortality estimators, including assumptions regarding 

growth, selectivity, recruitment, and mortality (with respect to time and age). We 

describe the effects of violations of these assumptions, summarize simulation studies 

which have evaluated the performance of these methods, and propose diagnostic 

procedures for identifying violations. From this discussion, we provide general guidelines 

and solutions to address violations in model assumptions.  
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1.2. Introduction 

Since the mid-20th century, an array of size-based methods has been developed for 

the assessment of exploited marine resources. For most of the world’s fisheries, data-

limited is the norm rather than the exception (Newman, Berkson, & Suatoni, 2015). Such 

situations often arise when there are limitations in time or money for data collection or 

study (Bentley, 2015; Chrysafi & Kuparinen, 2016). With limited resources, priority is 

often given to assessments of higher-valued stocks. Data-limited, size-based methods are 

attractive in cases where other data types are not available for traditional stock 

assessment models, such as statistical catch-at-age models. These methods generally 

estimate mortality rates for a stock from size composition and life history parameters. 

Survival is informed by the relative abundance of small and large animals in the catch 

despite the diversity of modeling approaches. Thus, the depletion of large animals implies 

a population that experiences a high mortality rate because few animals survive to large 

sizes.  

There are two general families of size-based methods: mean-length based and 

composition-based methods. In the former, information from the length composition is 

summarized by calculating the mean length using lengths larger than a specified size of 

full vulnerability Lc (Beverton & Holt, 1956; Gedamke & Hoenig, 2006). From a single 

calculation of the mean length, the mortality rate is estimated from a moment estimator 

under equilibrium assumptions. To allow for the equilibrium assumption to be relaxed, a 

likelihood framework can be used to estimate a series of historical mortality rates from 

multiple years of mean lengths. Recent composition-based methods use the shape of the 

size composition to estimate the mortality rate and selectivity parameters which produce 
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the best fit to the data in a likelihood-based framework (Hordyk, Ono, Prince, & Walters, 

2016; Hordyk, Ono, Valencia, Loneragan, & Prince, 2015; Kokkalis, Thygesen, Nielsen, 

& Andersen, 2015; Rudd & Thorson, in press). An older composition-based method, the 

length-converted catch curve, estimates mortality from a linear regression fitted to a 

subset of the length composition (Pauly, 1983). Both equilibrium and nonequilibrium size 

composition methods have been developed. 

Historically, length-based methods, such as ELEFAN (Pauly, 1987; Taylor & 

Mildenberger, 2017) and MULTIFAN (Fournier, et al., 1990), were developed as 

estimators of growth parameters and empirical stock status indicators (Cope & Punt, 

2009; Geromont & Butterworth, 2015; Jardim, Azevedo, & Brites, 2015; Punt, Campbell, 

& Smith, 2001). In this paper, we only consider analytical methods that estimate 

mortality rates for data-limited applications where growth is known but the catch is not 

necessarily known. 

Data-limited, size-based methods require knowledge of life history parameters 

and may make simplifying assumptions regarding the population dynamics underlying 

the data. Selectivity may be estimated or fixed in the analysis (for example, only fully 

selected lengths are analyzed for some methods, which require the user to determine the 

length of full selectivity beforehand). Constant-rate assumptions are often made 

regarding recruitment and mortality and some methods assume deterministic growth. In 

situations when only a single sample of lengths is available, these assumptions may be 

needed for mortality estimation to remain tractable. However, when multiple years of 

data are used in a single analysis, some equilibrium assumptions can be relaxed in the 

model. Length-based methods are methodologically rich by allowing for the inclusion of 
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additional data types. For example, an index of recruitment, in conjunction with length 

data for several years, would allow for mortality estimation without assumptions of 

equilibrium recruitment or constant mortality (Gedamke, Hoenig, DuPaul, & Musick, 

2008).  

In this paper, we review the current methods available for data-limited, size-based 

assessments. We first describe various methods and their modeling approaches for 

estimating mortality rates. Next, we list the assumptions and discuss the effect of 

violations of assumptions on mortality estimation. We summarize the results of 

simulation studies which have evaluated the robustness of these methods to these 

simplifying assumptions and describe diagnostic procedures that can be used to evaluate 

the extent to which mortality estimation has been biased. Finally, we describe how some 

assumptions may be relaxed. 

 

1.3. Description of the size-based mortality estimators 

In this section, a brief description of the size-based methods, with their data 

requirements and assumptions, is provided (Table 1.1). The data requirements can be 

generally split into three categories in terms of availability: (1) a single length 

composition (from a single year or pooled from multiple years), (2) multiple years of 

length composition, and (3) multiple years of length composition as well as auxiliary 

data. In all three cases, some growth and life history parameters are assumed to be 

known. The required life history parameters and assumptions regarding growth 

(variability in size-at-age), recruitment, selectivity, and mortality (with respect to time 

and age) vary depending on the method. 
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1.3.1. Mean length-based mortality estimators 

The mean length-based mortality estimators include the Beverton-Holt equation 

(BHE; Beverton & Holt, 1956) and the Gedamke-Hoenig (GH) nonequilibrium Beverton-

Holt extension (Gedamke & Hoenig, 2006). Assuming constant recruitment and constant 

selectivity (knife-edge above length Lc) over time, the mean length is function of the 

mortality rate experienced in the population. The BHE is an equilibrium moment 

estimator in which the sample mean length is equated with its expected value as a 

function of Z. After solving for Z, the estimator is expressed as 

 
cLL
LLKZ




  )(
, (1.1) 

where L  and K are the asymptotic length and the growth coefficient, respectively, from 

the von Bertalanffy equation, Lc is the fully selected length, and L  is the mean length of 

animals larger than Lc. For the BHE, a single mean length is calculated from either a 

single year or from multiple years when constant Z with time and age is to be assumed. 

 The GH estimator is an expansion of the BHE for estimating total mortality rates 

in historical time stanzas from multiple years of mean length. When mortality changes, 

the equilibrium BHE will underestimate the magnitude of the change in mortality 

(Hilborn & Walters, 1992). To correct for this, the nonequilibrium estimator divides the 

time series of mean lengths into time stanzas where total mortality is constant within time 

stanzas. The transitory behavior of the mean length from one mortality rate to another is 

then modeled so that the predicted mean length is a function of prior mortality rates and 

the time elapsed since those mortality rates were experienced. The estimated parameters 



7 
 

are the mortality rates in each stanza and the change points between time stanzas (in 

calendar time) that maximize the log-likelihood (log L), which is proportional to the 

negative of the weighted sum of squares of the deviations between observed and 

predicted mean lengths, 

   
y

yyy LmL 2log  , (1.2) 

where y indexes year, yL  is the observed mean length, y  is the predicted mean length 

as a function of estimated parameters, and ym  is the sample size used to calculate yL . 

Typically, the model is fitted successively with differing numbers of change points and 

model selection procedures (e.g., Akaike Information Criterion, AIC) are used to select 

the model with the appropriate number of change points (Figure 1.1). 

 GH forms a general framework for mortality estimation using mean lengths with 

other data types, including indices of recruitment (Gedamke, et al., 2008) and indices of 

abundance (Huynh, Gedamke, Porch, et al., 2017). The method has also been extended to 

analyze stock complexes with synchronous changes in fishing mortality among several 

stocks (Huynh, Gedamke, Hoenig, & Porch, 2017). In all of these, the mortality rates are 

stanza-specific. Along with the BHE, fishing mortality F can be obtained by subtracting 

natural mortality M from the estimate of total mortality (F = Z – M), although this is not 

necessary to use the methods. 

Another extension of GH has been developed to estimate year-specific mortality 

(GH with effort; Then, Hoenig, & Huynh, in press). In this model, fishing effort is used 

as an index of mortality. Total mortality in year y is parameterized as 

 MqfMFZ yyy  , (1.3) 
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where the fishing mortality F in year y is the product of the fishing effort f and the 

catchability coefficient q, and total mortality is the sum of the natural mortality rate M 

and fishing mortality (the estimated parameters are q and M). Estimates of q and M are 

often highly negatively correlated, but M may be fixed to an assumed value. In an 

application to stocks of Norway lobster Nephrops norvegicus, the effective effort was 

calculated as the ratio of the commercial catch and catch per unit effort, and the estimated 

M was often close to the assumed value (Then, et al., in press). 

 All mean length-based methods assume no growth variability, constant 

recruitment, knife-edge selectivity above length Lc, and perfectly-known growth 

parameters.  

   

1.3.2. Composition-based mortality estimators 

Four composition-based methods are considered in this paper: the length-

converted catch curve (LCCC), a linear regression based method, and the LB-SPR, S6, 

and LIME models, which are likelihood-based. 

The LCCC is a length-based analogue of a cross-sectional, age-based catch curve 

(Pauly, 1983). With an age-based catch curve, the estimate of total mortality Z is the 

magnitude of the slope in a linear regression of the logarithm of catch-at-age versus age 

of fully selected animals (Ricker, 1975). With the length-converted catch curve, a length 

frequency distribution is instead used where the lengths are deterministically converted to 

relative ages. Assuming no growth variability, constant recruitment, and von Bertalanffy 

growth, an estimate of Z is obtained from a linear regression of the logarithm of catch-at-

relative-age (Ci) from fully selected length bins versus relative-age (ti), 
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   ii t
K
ZaC 





  1log , (1.4) 

where ti is the relative age and is defined as )/1log(  LLt ii  with Li as the length at the 

midpoint of the i-th length bin, a is the intercept of the linear regression, and KZ /1  is 

the slope of the regression line (Figure 1.2). 

Small size classes are removed from the analysis due to incomplete selection. 

Two additional considerations for the LCCC are also needed. First, length bins whose 

midpoints are larger than L  are removed because relative ages cannot be calculated for 

these length bins. Secondly, additional size classes can also be removed if there is 

perceived observation error or dome shaped selectivity, or if overlapping ages in the large 

size bins break down the linear relationship in Equation 1.4 (Sparre & Venema, 1998). 

There are several parameterizations of the LCCC, all of which are equivalent (Pauly, 

1983; Punt, Huang, and Maunder, 2013).  

The Length-Based Spawner Potential Ratio (LB-SPR) method is an equilibrium 

mortality estimator which uses the M/K ratio, L , the coefficient of variation (CV) in 

length-at-age (also referred to as the CV of L ), and a single length composition to 

estimate F/M. Assuming constant recruitment and logistic selectivity, the shape of the 

length composition for an unexploited population is determined from M/K (Hordyk, Ono, 

Sainsbury, Loneragan, & Prince, 2015), while the observed length composition is a 

function of Z/K (Pauly, 1984). Based on the extent of truncation in the observed length 

frequency relative to an unexploited length composition (Figure 1.3), the fishing 

mortality relative to natural mortality, F/M, is estimable because 
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K
M

K
M

K
Z

M
F 

 . (1.5) 

Estimates of selectivity (logistic function of length) and F/M are those which maximize 

the log-likelihood which assumes a multinomial distribution for the observed length 

composition, 

   
i

ii pNpL ~loglog , (1.6) 

where N is the sample size of the length composition and ip  and ip~  are the observed 

and predicted proportion, respectively, in length bin i. 

 Individual estimates of M and K are unnecessary because the ratio of mortality 

and growth determines the size structure of the virgin population. This is advantageous 

when the estimates of M and K are highly uncertain. By using the ratio, less information 

is needed to use LB-SPR. Meta-analysis has shown that there is invariance in M/K based 

on life history and reproductive strategies (Prince, Hordyk, Valencia, Loneragan, & 

Sainsbury, 2015), although this may not necessarily hold true in all taxa (Nadon & Ault, 

2016). From only M/K, the magnitude of F is not estimable, but F/M can also be used to 

obtain F/FMSY (section 1.5.1). The spawner potential ratio is used as the biological 

reference point. 

 There are two versions of LB-SPR, in which either an age-structured model or 

length-structured model is used. In the age-structured model, the predicted age 

composition is converted to a length composition via an age-length transition matrix to fit 

to the observed lengths (Hordyk, Ono, Valencia, et al., 2015). Selectivity is age-based 

and the variability in length-at-age in the model is always normally distributed. In the 
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length-structured version of LB-SPR, length-based selectivity is implemented, which 

more quickly fishes out faster-growing individuals in a cohort than slower-growing 

individuals (see Figure 1 of Punt, et al., 2013). The length-structured LB-SPR typically 

estimates a higher mortality rate from the same length composition than the age-

structured LB-SPR which ignores this phenomenon (Hordyk, et al., 2016). However, 

with length-based selectivity, growth in the underlying population is distorted based on 

the selectivity function and the magnitude of fishing mortality. The extent to which 

growth is distorted due to length-based selectivity, and guidance on whether to use age or 

length-based selectivity, has not been extensively studied (Sampson, 2014). 

 The Single Species, Size-Structured, Steady State (S6) model uses a weight-based 

theory of population dynamics for mortality estimation (Andersen & Beyer, 2015). In 

equilibrium, the energy budget available to an individual animal is a power function of 

weight. Energy is devoted to activity, growth, and reproduction. As animals grow 

towards the asymptotic weight ( W ), the growth rate decreases and investment in 

reproduction increases. The expected size distribution of a population is therefore a 

function of growth, natural mortality and fishing mortality. The functions describing the 

metabolic processes are typically power functions while maturity and fishing mortality 

are weight-based logistic functions. The weight at 50% maturity, used to model energy 

devoted to reproduction, is assumed to be 0.25 W . Most parameters for the power 

functions in the model are typically assumed to be invariant among fish stocks. The 

exception is the physiological constant of mortality, which describes mortality and 

growth in an unexploited population and is analogous and proportional to M/K. Based on 

simulation, S6 was most sensitive to the physiological constant. Thus, this parameter can 
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be specified in the model by the user by providing a value of M/K. Assuming constant 

mortality with time and constant recruitment, the S6 model estimates fishing mortality F, 

selectivity (as a weight-based logistic function), and W  from a single weight 

composition sample. Deterministic growth appears to be assumed in S6 because all 

individuals grow to W . The population dynamics model and likelihood are presented in 

Table 1 of Kokkalis et al. (2015). 

 The Length-based Integrated Mixed Effects (LIME) model is a general 

framework for estimating fishing mortality without assumptions of constant mortality 

with time and constant recruitment. It assumes that the data are informative that year-

specific recruitment can be estimated as a random effect variable and year-specific 

fishing mortality can be estimated as a random walk variable. To do so, multiple years of 

length composition data are needed. The estimation model is an age-structured model in 

which the predicted age compositions are converted to length compositions to fit to the 

observed lengths. The primary intent of the LIME model is to use length composition 

data for mortality estimation, but the model optionally allows for the use of an index of 

abundance to better estimate mortality. Using both data types together provides more 

information on estimating recruitment than using either alone (section 1.4.5). The 

equations for the population dynamics model are presented in Tables 2-4 of Rudd & 

Thorson (in press). The log-likelihood of the length composition, assuming a multinomial 

distribution, is 

   
y i

yiyiy ppNL ,,
~loglog , (1.7) 

where the variables are the same as Equation 1.6 with an additional subscript for year y. 

Alternatively, a Dirichlet-multinomial distribution can be used to account for 
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overdispersion in the composition data (Thorson, Johnson, Methot, & Taylor, 2017). The 

LIME model allows for multiple years of length and index data to be analyzed. Growth, 

natural mortality, and the CV in length at age are needed life history parameters for this 

model. 

 

1.4. Violations of model assumptions: implications, diagnostics, and solutions 

In any application, the appropriateness of a stock assessment model needs to be 

evaluated. In this section, we discuss how violations of assumptions regarding growth, 

selectivity, recruitment, and mortality may occur when using the size-based methods and 

their effects on mortality estimation (Table 1.2). We propose diagnostics to determine 

whether violations have occurred and develop solutions to address such violations. Six 

issues and questions relevant to application of size-based mortality estimators are 

discussed: 

 

1. Life history parameters are not known well, and the mortality estimators assume 

perfect knowledge. How sensitive are the models to misspecification of life 

history parameters?  

2. Deterministic growth is assumed in the mean length-based mortality estimators 

and LCCC, while other methods assume variability in size-at-age is known. How 

critical are these assumptions to estimating mortality? 

3. There is some fishing mortality at lengths below Lc, but the mean length-based 

methods and LCCC assume knife-edge selectivity (no fishing mortality below Lc 

and constant mortality above Lc). What is the best choice of Lc? 
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4. There may be dome-shaped selectivity, but size-based methods typically assume 

flat-top selectivity (full selection of large animals). How can dome-shaped 

selectivity be detected? What options are available when there is dome 

selectivity? 

5. There is a suspected large year class in the population, but all size-based methods 

assume constant recruitment. How can a pulse in recruitment be diagnosed? What 

can be done for mortality estimation? 

6. There is a trend in mortality over time. How does this affect models that assume 

constant mortality? 

 

Overall, size-based mortality estimators allow for modifications and extensions to 

models to relax assumptions. The ability to diagnose and address violations of 

assumptions is generally improved with the availability of a time series of auxiliary data. 

 

1.4.1. Uncertainty in life history parameters 

The requisite life history information for size-based mortality estimators includes 

growth parameters and, in some cases, natural mortality (Table 1.1). Size-based methods 

model growth with the von Bertalanffy function (with parameters L  and K) and 

typically use a single value of M over all ages. Although it is generally accepted that M 

varies with size, it may be reasonable to use a single value of M (constant with size) in 

the mean length methods and the LCCC since these methods only evaluate size classes 

that are fully selected by the gear. For the composition-based mortality estimators, size-
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specific M can be modeled as a monotonically decreasing power function (Hordyk et al., 

2016, Kokkalis et al., 2015).  

Based on simulation, mortality estimates from size-based methods are more 

sensitive to L  than K (Gedamke & Hoenig, 2006; Hordyk, Ono, Valencia, et al., 2015; 

Huynh et al., in review; Rudd & Thorson, in press). With an overestimate of L , there 

will be fewer animals near L  than when a correct estimate is used. Thus, mortality 

estimates will be positively biased with an overestimate of L  and negatively biased with 

an underestimate. The direction of the bias is the same with over/underestimates of K, but 

the magnitude of the bias appears to be smaller (Gedamke & Hoenig, 2006; Rudd & 

Thorson, in press). For the LB-SPR and LIME models, overestimates of M/K and M will 

result in a negative bias in F/M and F estimates, respectively (Hordyk, Ono, Valencia, et 

al., 2015; Rudd & Thorson, in press).  

Life history parameters may not be known well or may be unavailable for data-

limited stocks. In the case where estimates are unavailable for the stock of interest, 

information may be borrowed from other stocks of the same species or empirical 

estimates from meta-analytic relationships can be used. For example, Then, Hoenig, Hall, 

& Hewitt (2015) developed an empirical estimator for natural mortality based on 

maximum observed age and Nadon & Ault (2016) modeled empirical relationships 

among the maximum observed length (Lmax), growth parameters, length at maturity, and 

natural mortality for several tropical reef fish taxa. Meta-analyses of life history 

parameters are beyond the scope of this review but have been extensively covered in the 

literature (Hoenig et al., 2016).  
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Uncertainty in mortality estimation can be quantified in two ways in a given 

application. First, stochastic mortality estimates can be obtained via Monte Carlo 

sampling from probability distributions of life history parameters (Kokkalis et al., 2016; 

Nadon, 2017; Prince, Victor, et al., 2015). Second, a Bayesian implementation of the 

size-based estimators can be used to derive posterior distributions of mortality based on 

the priors for the life history parameters, although such models currently remain in 

preliminary development (Brodziak, et al., 2012; Harford, Bryan, & Babcock, 2015). 

High uncertainty is incorporated with a large variance in the priors, and the variance of 

the posterior distribution is subsequently evaluated. Secondly, sensitivity analyses can 

more simply determine the range in mortality estimates based on the plausible range of 

parameter values.  

Monte Carlo sampling and Bayesian modeling provide a distribution of mortality 

estimates from which confidence intervals and credibility intervals, respectively, can be 

obtained. These are useful if one is unsure of the direction of the bias in the life history 

parameter. On the other hand, sensitivity analysis is more useful when one suspects an 

overestimate or underestimate in the life history parameter.  

If a value of a life history parameter cannot be established with reasonable 

certainty, some information regarding mortality remains available. If the natural mortality 

rate cannot be established, then the mean length-based methods or the LCCC can be used 

to estimate total mortality, and approaches that use only the total mortality rate for 

management advice can be explored (Die & Caddy, 1997). On the other hand, if K is 

unknown or uncertain, then relative changes in mortality are estimable. For example, let 

Δ be the relative change in total mortality, defined as  
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where 1L  and 2L  are the mean lengths in the two different time periods. After 

substitution of Equations 1.9a and 1.9b into Equation 1.8, it is shown that Δ is 

independent of K.  

 

1.4.2. Deterministic versus stochastic size-at-age 

The mean length-based methods and the LCCC assume no variability in length-at-

age. The implications of the growth assumption have been tested by simulation. The BHE 

and LCCC performed better with higher growth variability, i.e., the methods are robust to 

the failure of the assumption of deterministic growth (Then, Hoenig, Gedamke, & Ault, 

2015; Huynh et al. in review). It would also be expected that Gedamke-Hoenig, as an 

extension of the BHE, would also be robust to violation of this assumption. 

Alternatively, the LB-SPR and LIME models parameterize some growth 

variability in the estimation model. The coefficient of variation (CV) in length at age is 

provided to the model by the user. An estimate could be obtained from an age-growth 
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study, but otherwise, a CV of 0.1 has been assumed in applications if the value is 

unknown (Prince, Victor, Kloulchad, & Hordyk, 2015). Both LIME and LB-SPR are 

relatively insensitive to misspecification of the CV in growth compared to other life 

history parameters (Hordyk, Ono, Valencia, et al., 2015; Rudd & Thorson, in press). 

In S6, no conversion between the age and size compositions is needed because the 

population is modeled natively in terms of weight units. For all other methods considered 

here, issues concerning variability in size-at-age appear to be minor compared to others. 

 

1.4.3. Knife-edge selectivity versus gradual selectivity 

The mean length-based methods and the LCCC assume knife-edge selectivity 

with size and age (this correspondence arises from the assumption of deterministic 

growth). To meet this assumption for the mean length-based methods, a value of Lc must 

be selected by the user and lengths smaller than Lc are removed from the analysis. For the 

LCCC, an analogous step is also needed where the length composition data is truncated 

to remove length classes that are believed to be incompletely selected by the fishing gear.  

Knife-edge selectivity is typically an approximation to logistic selectivity. Length 

classes smaller than the first fully selected length experience a reduced mortality rate, but 

the associated methods (BHE, Gedamke-Hoenig, and LCCC) only estimate the apical 

mortality rate. The choice for Lc for the mean length-based methods is usually be the first 

fully selected length. Another suggestion for Lc is to use the presumed the length of 50% 

selectivity. Under this interpretation, size classes smaller than the first fully selected 

length are also impacted by fishing mortality and are to be included in the mortality 

estimation procedure. However, this choice tends to underestimate mortality due to the 
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inclusion of incompletely selected size classes (Figure 1.4). Sparre & Venema (1998) 

suggested an additional variant of the BHE where the Lc is the length at 50% selectivity, 

but all size classes are used to calculate the mean length. This variant has not been 

evaluated for use. Although it is likely to be biased high, the variant may be useful if 

historical records indicate the mean length of the entire catch but the histogram is not 

available to determine Lc. 

Some caution is needed with the assumption of the mode as the fully selected 

length. In an unexploited stock with constant recruitment, the abundance at length is a 

balance of growth towards L  and natural mortality; this process can be summarized in 

the M/K life history trait (Beverton 1992; Prince, Hordyk, et al. 2015). A low M/K 

population is expected to have a mode near L  rather than the length of full selectivity 

due to the “pile-up” effect where many ages comprise a single length class as length 

increases (Figure 1.3). The mode does not correspond to the fully selected length unless 

exploitation is high. On the other extreme, a high M/K population features a 

monotonically decreasing abundance at length and the ascending limb in the observed 

catch frequency would reflect selectivity. The mode is also less sensitive to increases in 

fishing mortality in high M/K situations compared to low M/K situations. 

When exploitation is high, i.e., high Z/K scenario, the mode appears to be a viable 

choice for Lc regardless of M/K. The mode should remain near the length of full 

selectivity for high M/K stocks regardless of fishing mortality. However, the fully 

selected length can be smaller than the mode in low M/K stocks (Figure 1.3). Huynh et al. 

(in review) evaluated the performance of the BHE and LCCC with difference values of Lc 

and left truncation lengths, respectively. Candidate truncation lengths included the mode 
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and the half-modal abundance lengths (i.e., the first length at which the abundance is at 

least 50% of that at the mode). They considered two values of M/K = 0.5 and 2. There did 

not appear to be significant differences in performance with the different truncation 

lengths in the high M/K scenarios. While the half-modal abundance length was the 

preferred over the modal length as the truncation length in the low M/K scenarios, there 

still was high bias and low precision in mortality estimates. Presumably, the half-modal 

length was closer to the fully selected length than the modal length, but still did not 

precisely correspond to the fully selected length. A large value of Lc would be more 

likely to guarantee that partially recruited sizes are removed. However, this step also 

removes potentially useful data and thus increases the variance of mortality estimates. 

As alternatives to methods which use knife-edge selectivity, the composition-

based methods LB-SPR, S6, and LIME estimate logistic selectivity. However, 

simulations suggest that LB-SPR also performs poorly for low M/K stocks (Hordyk, Ono, 

Valencia, et al., 2015). Assuming equilibrium, it will generally be difficult to identify the 

fully selected length in low M/K stocks from the length frequency data alone, which 

results in potentially arbitrary choices for Lc and biased or imprecise mortality estimates.  

In nonequilibrium situations, selectivity in low M/K stocks may be estimable if 

data from years in which fishing mortality was high are available. The shape of the length 

composition in years with high F would be informative for selectivity. This situation 

would avoid the problem of selectivity estimation from the ascending limb of the length 

frequency distribution. The LIME model would be an appropriate model in this scenario.   

 

1.4.4. Flat-top versus dome-shaped selectivity 
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Dome-selectivity is conflated with high mortality and the two are not 

simultaneously estimable because both situations reduce the abundance of large animals. 

Thus, the length-based methods in general will overestimate mortality when there is 

dome-shaped selectivity, as demonstrated through simulation (Then, Hoenig, Gedamke, 

et al., 2015; Huynh et al., in review; Hordyk, Ono, Valencia, et al., 2015). However, the 

influence of dome selectivity is diminished when mortality is very high because large 

animals are fished out of the population regardless of the selectivity (Huynh et al., in 

review). 

A potential diagnostic for dome selectivity is to compute estimates of Z from the 

BHE for an increasing series of Lc values (Figure 1.4, Then et al., in press). Under 

logistic selectivity, mortality estimates should plateau with increasing values of Lc 

because the selectivity assumptions are being met. This plateau would not occur when 

there is dome selectivity because, with increasing Lc, the cryptic abundance of large 

animals comprises a larger proportion of the assumed catch. Thus, the estimates of Z 

continue to increase as Lc increases. This behavior is also consistent with an overestimate 

of L , but this diagnostic could be used to identify if either is (or both are) occurring in 

the analysis. 

Several strategies can combat this overestimation. First, one could incorporate 

external selectivity estimates in the mortality estimators. Experimental field studies can 

be used to obtain empirical selectivity estimates (Cadrin, DeCelles, & Reid, 2016). 

Second, the LCCC could be used where length bins over which dome selectivity is 

occurring are removed. This would allow for the estimation of the apical total mortality 

rate from the remaining length bins (Figure 1.2). 
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A variant of the BHE has been developed to allow for mortality estimation from 

mean length when there is dome selectivity (Ehrhardt & Ault, 1992). Similar to the 

simplification of logistic selectivity with knife-edge selection, dome selectivity is 

simplified assuming knife-edge truncation at length Lλ on the right (where Lc < Lλ < L ), 

which is fixed by the user. Simulations showed that the behavior of the Ehrhardt-Ault 

variant, in cases where there is length truncation, is unpredictable and complex (Then, 

Gedamke, Hoenig, et al., 2015). Owing to variability in size-at-age in the population, 

mortality estimates remained biased even if Lλ was correctly specified and were often less 

precise than those from the BHE. Overall, routine use of the Ehrhardt-Ault estimator is 

not recommended. 

 

1.4.5. Large year class in recruitment 

Recruitment is estimable in the LIME model, while recruitment is constant in all 

other models. Large deviations in cohort strength relative to neighboring years could be 

identified through evaluation of length compositions and indices of abundances. In the 

length compositions, a large cohort would be represented by a mode in the size 

composition which progresses through the size structure over time while large cohorts 

would increase the index based on the increased abundance in the population (Figure 

1.5). If only a single length composition is available, a large cohort may be identified if 

the distribution is multimodal, although a time series provides more support.  

We propose that the mean length and index of abundance be used as a diagnostic 

for detecting mortality and recruitment changes (Figure 1.5). If there is a change in 

mortality, then the mean length and index are affected in the same direction, that is, the 
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increased mortality reduces both the mean length and index by decreasing the abundance 

of large animals. Likewise, decreased mortality increases both. On the other hand, a 

temporary increase in recruitment initially produces opposing changes where the mean 

length decreases while the index increases. Over time, the effect is dampened as the 

cohorts age. These patterns could help determine whether the observed lengths and 

indices are predominantly controlled by recruitment or mortality dynamics. 

While stochastic recruitment may be perceived as observation noise in a model, 

trends in recruitment due to autocorrelation from environmental conditions or the stock-

recruitment relationship over a considerable time period will bias mortality estimates 

from length data. For example, decreased recruitment would increase the mean length 

due to fewer or missing animals in small size classes. Mortality estimates would be 

biased high.  

For both mean length-based and composition-based methods, either an index of 

recruitment or an index of abundance can be utilized to account for variable recruitment. 

In the former, the index of recruitment is used in a model in lieu of the constant 

recruitment assumption. A variant of Gedamke-Hoenig with an index of recruitment was 

developed for the assessment of barndoor skate Dipturus laevis in Georges Bank and the 

Gulf of Maine (Gedamke, et al., 2008). In this model, it is presumed that the index of 

recruitment is known perfectly, but this approach can be taken if the estimation error is 

more adversely affected by assuming constant recruitment than an error-free index. The 

index can be used because only the relative strength among cohorts, not the absolute 

magnitude, is relevant in the model. Composition-based methods could also be modified 

to use an index of recruitment, but this has not been done. The availability of a 
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recruitment index is usually limited to a small subset of data-limited stocks, for example, 

if less valuable or bycatch species are caught in fishery-independent surveys. If survey 

catch is identified by length, then indices can be developed for length classes which 

correspond to recruits. 

With an index of abundance, mortality can be estimated in an integrated 

framework which uses both time series of length and index data in the likelihood (Huynh, 

Gedamke, Porch, et al., 2017; Rudd & Thorson, in press). The LIME model separates 

cohort strength from observation noise. Thus, recruitment is estimated as a random effect. 

A large cohort is identifiable from a mode in the length composition which progresses in 

size over multiple years. The Gedamke-Hoenig approach has been generalized to 

estimate mortality from both mean lengths and abundance indices in the likelihood 

function (Huynh, Gedamke, Porch, et al., 2017). Simulations suggest that the integrated 

model generally performs better than the mean length only model when recruitment is 

stochastic. Overfitting would be less likely to occur compared to when only mean lengths 

are used in the base Gedamke-Hoenig estimator because changes in mortality are 

estimated only if there are synchronous changes in both data types. Changes in mean 

length and index of abundance due to recruitment dynamics would result in negatively 

correlated residuals. The explanatory power of this extension of Gedamke-Hoenig could 

be more limited compared to LIME because the constant recruitment assumption remains 

in the former. 

  

1.4.6. Trend in mortality  
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Equilibrium methods assume constant mortality over time. When multiple years 

of data are available, all data may be collated into one length composition or independent 

analyses performed for each year of the data, but equilibrium methods will underestimate 

the true rate of change in mortality if mortality is not constant. On the other hand, models 

that incorporate multiple years of data (Gedamke-Hoenig and its various extensions and 

LIME) allow for time-varying mortality estimates within a single analysis.  

There are three approaches for time-varying mortality estimation. First, the time 

stanza approach of the Gedamke-Hoenig estimator because there is limited information 

for estimating mortality in a fixed effects-only approach without over-parameterizing the 

model (Figure 1.1). Second, year-specific mortality can be estimated as random effects 

through a random walk (Brodziak, et al., 2012; Rudd & Thorson, in press). The estimated 

mortality rate in a given year is allowed to vary but constrained to be close to the 

previous year’s estimate. This would allow for trend-based mortality estimates over time 

instead of stepwise changes at certain points in time. The LIME model estimates fishing 

mortality with the random walk approach. However, the variance of the random walk 

needs to be evaluated to avoid overfitting. Third, effort data could be used to provide 

year-specific mortality estimates, as is done in the Gedamke-Hoenig with effort model. 

Composition-based methods can also be modified accordingly. 

 

1.5. Considerations for applications  

Size-based mortality estimators have been popular analytical methods in sub-

tropical and tropical regions, including the U.S. Caribbean (Puerto Rico and U.S. Virgin 

Islands), Hawaii, Palau, and Florida (Table 1.3). The methods have also been evaluated 
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for European stocks (ICES, 2015; ICES, 2016). For management purposes, it is often 

practical to estimate fishing mortality relative to biological reference points and to 

provide some measure of uncertainty. Software packages allow for streamlining the 

workflow associated with using the analytical methods.  

 

1.5.1. Biological reference points 

Estimates of mortality can be used in the context of biological reference points for 

management advice. From the model, F or F/M is compared with Fproxy or Fproxy/M, 

respectively, the proxy fishing mortality rate for maximum sustainable yield, to 

determine stock status, i.e. overfishing occurs if F/Fproxy > 1. Possible reference point 

proxies include Fmax, the fishing mortality that maximizes yield-per-recruit (YPR; 

Beverton & Holt, 1957); F0.1, the fishing mortality where the slope of the YPR curve is 

10% of that at F = 0; FX%, the fishing mortality that reduces the spawning potential ratio 

(SPR; Goodyear, 1993) to X % of that at F=0, or FXM, the fishing mortality at X % of the 

assumed M (Zhou, Yin, Thorson, Smith, & Fuller, 2012). Maturity, natural mortality, and 

length-weight parameters are usually needed for reference point calculation in addition to 

the life history parameters for mortality estimation. If only F/M is estimated (e.g., in LB-

SPR), then F/Fproxy can be obtained without necessarily knowing the magnitude of F, 

since  
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The Fproxy/M ratio can be obtained from SPR, or it can be defined as a scalar proportion 

of M.  
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Applications of the length-based methods have used reference points from YPR 

and SPR for Fproxy. The mean length-based methods were developed without specific 

reference points, but M and SPR proxies have been used with the Ehrhardt-Ault variant 

of the BHE (Ault, Smith, & Bohnsack, 2005; Nadon, 2017; Nadon, Ault, Williams, 

Smith, & DiNardo, 2015). Proxies from both YPR and SPR have been used with 

Gedamke-Hoenig (ICES, 2015). The likelihood-based composition methods have been 

developed with particular reference points. LB-SPR reports the SPR associated with the 

estimated F/M, S6 uses Fmax as the proxy, while LIME reports both SPR and YPR-based 

reference points. 

 

1.5.2. Software packages 

An array of computer software is available for using length-based mortality 

estimators either in the form an R package or a stand-alone GUI program (Table 1.3). 

Typically, R packages provide supporting functions for standardizing the workflow 

associated with the methods. In addition to parameter estimation, functions are needed for 

data processing, plotting figures, and performing statistical diagnostics. The R packages 

are in active development with version control through Github. Most software packages 

also contain extensive supporting documentation for potential users.  

The packages implement the standard application of the described model. Stock-

specific applications can be accommodated by varying a numeric parameter. For 

example, fecundity is specified as a power function of length in the calculation of 

spawning potential ratio in the LB-SPR model. For species with determinate biological 

fecundity, such as elasmobranchs, the exponent of the power function can be set to zero 
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whereas larger exponents can be used for teleosts. Modifications that require a different 

functional form, e.g., the Gompertz or Richards growth functions in lieu of the von 

Bertalanffy function, would require a new model derivation (in the case of the mean 

length-based methods) or case-specific computer code that implement these 

modifications numerically. 

Routines for performing uncertainty evaluation in software packages are currently 

limited. Some software, such as the R packages for Gedamke-Hoenig and LB-SPR report 

the asymptotic standard error of model estimates. However, these intervals may not be 

appropriate because the intervals are conditional on correct model specification, i.e., 

these intervals do not consider whether the equilibrium assumptions are met as part of the 

uncertainty evaluation. The fishmethods R package bootstraps the length data to obtain 

confidence intervals in the estimated Z from the BHE. Generally, the R computing 

environment is flexible to allow for users to write supplemental code as necessary for 

Monte Carlo sampling of parameters and data bootstrapping. This can then be used with 

the core estimation functions in the R packages. 

 

1.6. Conclusions 

There is a spectrum of data requirements and flexibility in model structure among 

data-limited assessment methods. This is desirable because data-limited fisheries also 

vary in data quality and quantity (Bentley, 2015). Consider two fisheries that are 

classified as data-limited, but one only has opportunistic sampling while another has a 

long-standing, designed sampling program. Equilibrium methods could be options in the 

former scenario, but the assessment capabilities will be much greater in the latter scenario 
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due to presumed higher quality of data. With multiple years of data, diagnostics are 

available to determine whether certain assumptions are appropriate and methods which 

relax some assumptions are available for assessment. Methods that incorporate multiple 

years of data provide the most flexibility in mortality estimation, but simple, equilibrium 

methods remain valuable diagnostic tools to evaluate mismatch (if any) between 

assumptions, data, and life history parameters. 

We recommend the following practices associated with size-based mortality 

estimators: 

 

1. Use sensitivity analyses and Monte Carlo sampling to ascertain uncertainty in 

mortality estimates due to uncertainty in life history parameters. 

2. Length-based mortality estimators are generally least sensitive to assumptions 

regarding variability in length at age. 

3. For high M/K stocks, the mode of the length frequency distribution is generally 

the length of full selectivity for the LCCC and Lc for the mean length-based 

mortality estimators. For low M/K stocks, lengths smaller than the modal length 

may plausibly be the length of full selectivity. 

4. To address dome-shaped selectivity, external selectivity estimates can be used to 

parameterize selectivity in the mortality estimator. The LCCC can also be used to 

estimate mortality over a subset of fully selected lengths.  

5. Use multiple years of length data and auxiliary data where available. Potential 

pulses in recruitment can be evaluated and the constant mortality over time 

assumption can be relaxed. 



30 
 

  

1.7. References 

Andersen, K. H., & Beyer, J. E. (2015). Size structure, not metabolic scaling rules, 
determines fisheries reference points. Fish and Fisheries, 16, 1-22. 

Ault, J. S., Smith, S. G., & Bohnsack, J. A. (2005). Evaluation of average length as an 
estimator of exploitation status for the Florida coral-reef fish community. ICES 
Journal of Marine Science, 62, 417-423. 

Babcock, E. A., Coleman, R., Karnauskas, M., & Gibson, J. (2013). Length-based 
indicators of fishery and ecosystem status: Glover’s Reef Marine Reserve, Belize. 
Fisheries Research, 147, 434-445. 

Bentley, N. (2015). Data and time poverty in fisheries estimation: potential approaches 
and solutions. ICES Journal of Marine Science, 72, 186-193. 

Beverton, R. J. H. (1992). Patterns of reproductive strategy parameters in some marine 
teleost fishes. Journal of Fish Biology, 41 (Supplement B), 137-160. 

Beverton, R. J. H., & Holt, S. J. (1956). A review of methods for estimating mortality 
rates in fish populations, with special reference to sources of bias in catch sampling. 
Rapports et Procès-verbaux des Reunions, Conséil International Pour L'Exploration 
de la Mer, 140, 67-83. 

Beverton, R. J. H., & Holt, S. J. (1957). On the dynamics of exploited fish populations. 
U.K. Ministry of Agriculture, Fisheries, Food, and Fishery Investigations Series II, 
Vol. XIX. 

Brodziak, J., Gedamke, T., Porch, C., Walter, J., Courtney, D., O’Malley, J, & Richards, 
B. (2012). A Workshop on Methods to estimate Total and Natural Mortality Rates 
Using Mean Length Observations and Life History Parameters. U.S. Department of 
Commerce, NOAA Technical Memorandum, NOAA-TM-NMFS-PIFSC-32, 26 pp + 
Appendix. 

Cadrin, S. X., DeCelles, G. R, & Reid, D. (2016). Informing fishery assessment and 
management with field observations of selectivity and efficiency. Fisheries Research, 
184, 9-17. 

Chrysafi, A., & Kuparinen, A. (2016). Assessing abundance of populations with limited 
data: Lessons learned from data-poor fisheries stock assessment. Environmental 
Reviews, 24, 25-38. 

Cope, J. M., & Punt, A. E. (2009). Length-Based Reference Points for Data-Limited 
Situations: Applications and Restrictions. Marine and Coastal Fisheries, 1, 169-186. 



31 
 

Die, D. J., & Caddy, J. F. (1997). Sustainable yield indicators from biomass: are there 
appropriate reference points for use in tropical fisheries? Fisheries Research, 32, 69-
79. 

Ehrhardt, N. M., & Ault, J. S. (1992). Analysis of Two Length-Based Mortality Models 
Applied to Bounded Catch Length Frequencies. Transactions of the American 
Fisheries Society, 121, 115-122. 

Gedamke, T., & Hoenig, J. M. (2006). Estimating mortality from mean length data in 
nonequilibrium situations, with application to the assessment of Goosefish. 
Transactions of the American Fisheries Society, 135, 476–487. 

Gedamke, T., Hoenig, J. M., DuPaul, W. D., & Musick, J. A. (2008). Total mortality 
rates of the barndoor skate, Dipturus laevis, from the Gulf of Maine and Georges 
Bank, United States, 1963-2005. Fisheries Research, 89, 17-25. 

Geromont, H. F., & Butterworth, D. S. (2015). Generic management procedures for data-
poor fisheries: forecasting with few data. ICES Journal of Marine Science, 72, 251-
261. 

Goodyear, C. P. (1993). Spawning stock biomass per recruit in fisheries management: 
foundation and current use. In S.J. Smith, J.J. Hunt, & D. Rivard (Eds). Risk 
evaluation and biological reference points for fisheries management (pp. 67-81). 
Canadian Special Publication of Fisheries and Aquatic Science 120. 

Gayanilo, Jr., F. C., Sparre, P., & Pauly, D. (2005). FAO-ICLARM Stock Assessment 
Tools II (FiSAT II). Revised version. User's guide. FAO Computerized Information 
Series (Fisheries). No. 8, Revised version. FAO, Rome. 168 pages. 

Harford, W., Bryan, M, & Babcock, E. A. (2015). Probabilistic assessment of fishery 
status using data-limited methods. SEDAR46-DW-03. SEDAR, North Charleston, 
SC. 5 pp. 

Hilborn, R., & Walters, C. J. (1992). Quantitative fisheries stock assessment: Choice, 
dynamics and uncertainty. Chapman & Hall, New York. 570 pp. 

Hoenig, J. M., Then, A. Y.-H., Babcock, E. A., Hall, N. G., Hewitt, D. A., & Hesp, S. A. 
(2016). The logic of comparative life history studies for estimating key parameters, 
with a focus on natural mortality rate. ICES Journal of Marine Science, 73, 2453-
2467. 

Hordyk, A., Ono, K., Sainsbury, K., Loneragan, N., & Prince, J. (2015). Some 
explorations of the life history ratios to describe length composition, spawning-per-
recruit, and the spawning potential ratio. ICES Journal of Marine Science, 72, 204-
216. 

Hordyk, A., Ono, K., Valencia, S., Loneragan, N., & Prince, J. (2015). A novel length-
based empirical estimation method of spawning potential ratio (SPR), and tests of its 



32 
 

performance, for small-scale, data-poor fisheries. ICES Journal of Marine Science, 
72, 217-231. 

Hordyk, A. R., Ono, K., Prince, J. D., & Walters, C. J. (2016). A simple length-structured 
model based on life history ratios and incorporating size-dependent selectivity: 
application to spawning potential ratios for data-poor stocks. Canadian Journal of 
Fisheries and Aquatic Science, 73, 1787-1799. 

Huynh, Q. C. (2016). Estimating total mortality rates and calculating overfishing limits 
from length observations for six U.S. Caribbean stocks. SEDAR46-RW-01. SEDAR, 
North Charleston, SC. 19 pp. 

Huynh, Q. C., Beckensteiner, J., Carleton, L. M., Marcek, B. J., Nepal KC, V., Peterson, 
C. P., Wood, M. A., & Hoenig, J. M. In review. Comparative performance of three 
length-based mortality estimators. Marine and Coastal Fisheries. 

Huynh, Q. C., Gedamke, T., Hoenig, J. M., & Porch, C. (2017). Multispecies extension to 
a non-equilibrium length-based mortality estimator. Marine and Coastal Fisheries, 9, 
68-78. 

Huynh, Q. C., Gedamke, T., Porch, C. E., Hoenig, J. M., Walter, J. F., Bryan, M., & 
Brodziak, J. (2017). Estimating total mortality rates of mutton snapper from mean 
lengths and aggregate catch rates in a non-equilibrium situation. Transactions of the 
American Fisheries Society, 146, 803-815.  

ICES (2015). Report of the Fifth Workshop on the Development of Quantitative 
Assessment Methodologies based on Life-history Traits, Exploitation Characteristics 
and other Relevant Parameters for Data-limited Stocks (WKLIFE V), 5–9 October 
2015, Lisbon, Portugal. ICES CM 2015/ACOM:56. 157 pp. 

ICES (2016). Report of the Workshop to consider MSY proxies for stocks in ICES 
category 3 and 4 stocks in Western Waters (WKProxy), 3–6 November 2015, ICES 
Headquarters, Copenhagen. ICES CM 2015/ACOM:61. 183 pp. 

Jardim, E., Azevedo, M., & Brites, N. M. (2015). Harvest control rules for data limited 
stocks using length-based reference points and survey biomass indices. Fisheries 
Research, 171, 12-19. 

Kokkalis, A., Thygesen, U. H., Nielsen, A., & Andersen, K. H. (2015). Limits to the 
reliability of size-based fishing status estimation for data-poor stocks. Fisheries 
Research, 171, 4-11. 

Kokkalis, A., Eikeset, A. M., Thygesen, U. H., Steingrund, P., & Andersen, K. H. (2016). 
Estimating uncertainty of data limited stock assessments. ICES Journal of Marine 
Science, 74, 69-77. 



33 
 

Mildenberger, T. K., Taylor, M. H., & Wolff, M. (2017). TropFishR: an R package for 
fisheries analysis with length-frequency data. Methods in Ecology and Evolution. 
doi:10.1111/2041-210X.12791 

Nadon, M. O. (2017). Stock assessment of the coral reef fishes of Hawaii, 2016. U.S. 
Department of Commerce, NOAA Technical Memorandum, NOAA-TM-NMFS-
PIFSC-60, 212 p. 

Nadon, M. O., & Ault, J. S. (2016). A stepwise stochastic simulation approach to 
estimate life history parameters for data-poor fisheries. Canadian Journal of 
Fisheries and Aquatic Science, 73, 1874-1884. 

Nadon, M. O., Ault, J. S., Williams, I. D., Smith, S. G., & DiNardo, G. T. (2015). 
Length-Based Assessment of Coral Reef Fish Populations in the Main and 
Northwestern Hawaiian Islands. PLoS ONE, 10(8), e0133960. 
doi:10.1371/journal.pone.0133960 

Newman, D., Berkson, J., & Suatoni, L. (2015). Current methods for setting catch limits 
for data-limited fish stocks in the United States. Fisheries Research, 164, 86-93. 

Pauly, D. (1983). Length-converted catch curves: A powerful tool for fisheries research 
in the tropics (Part I). Fishbyte, 1(2), 9-13. 

Pauly, D. (1984). Fish population dynamics in tropical waters: a manual for use with 
programmable calculators.  International Center for Living Aquatic Resources 
Management, Manila. 

Pauly, D. (1987). A review of the ELEFAN system for analysis of length-frequency data 
in fish and aquatic invertebrates. In D. Pauly, & G. R. Morgan (Eds). Length-based 
methods in fisheries research. (pp. 7-34). International Center for Living Aquatic 
Resources Management, Manila, Philippines, and Kuwait Institute for Scientific 
Research, Safat, Kuwait. 

Prince, J., Hordyk, A., Valencia, S. R., Loneragn, N., & Sainsbury, K. (2015). Revisiting 
the concept of Beverton–Holt life-history invariants with the aim of informing data-
poor fisheries assessment. ICES Journal of Marine Science, 72, 194-203. 

Prince, J., Victor, S., Kloulchad, V., & Hordyk, A. (2015). Length based SPR assessment 
of eleven Indo-Pacific coral reef fish populations in Palau. Fisheries Research, 171, 
42-58. 

Punt, A. E., Campbell, R. A. & Smith, A. D. M. (2001). Evaluating empirical indicators 
and reference points for fisheries management: application to the broadbill swordfish 
fishery off eastern Australia. Marine and Freshwater Research, 52, 819-832. 

Punt, A. E., Huang, T., & Maunder, M. N. (2013). Review of integrated size-structured 
models for stock assessment of hard-to-age crustacean and mollusk species. ICES 
Journal of Marine Science, 70, 16-33. 



34 
 

Ricker, W. E. (1975). Computation and interpretation of biological statistics of fish 
populations. Fisheries Research Board of Canada Bulletin 191. 

Rudd, M., & Thorson, J. T. (In press). Accounting for variable recruitment and fishing 
mortality in length-based stock assessments for data-limited fisheries. Canadian 
Journal of Fisheries and Aquatic Science. 

Sampson, D. B. (2014). Fishery selection and its relevance to stock assessment and 
fishery management. Fisheries Research, 158, 5-14. 

SEDAR (2007). SEDAR 14: Caribbean Mutton Snapper stock assessment report. 
SEDAR, North Charleston, South Carolina. 

SEDAR (2011a). SEDAR 26: U.S. Caribbean Redtail Parrotfish stock assessment report. 
SEDAR, North Charleston, South Carolina. 

SEDAR (2011b). SEDAR 26: U.S. Caribbean Queen Snapper stock assessment report. 
SEDAR, North Charleston, South Carolina. 

SEDAR (2011c). SEDAR 26: U.S. Caribbean Silk Snapper stock assessment report. 
SEDAR, North Charleston, South Carolina. 

SEDAR (2013a). SEDAR 30: U.S. Caribbean Queen Triggerfish stock assessment report. 
SEDAR, North Charleston, South Carolina. 

SEDAR (2013b). SEDAR 30: U.S. Caribbean Blue Tang stock assessment report. 
SEDAR, North Charleston, South Carolina. 

SEDAR (2014). SEDAR 35: U.S. Caribbean Red Hind stock assessment report. SEDAR, 
North Charleston, South Carolina. 

Sparre, P., & Venema, S. C. (1998). Introduction to tropical fish stock assessment. Part 
1. Manual. FAO Fisheries Technical Paper 306.1 Rev. 2. Rome, FAO. 

Taylor, M. H., & Mildenberger, T. K. (2017). Extending electronic length frequency 
analysis in R. Fisheries Management and Ecology, 24, 330-338. 

Then, A. Y., Hoenig, J. M., Gedamke, T., & Ault, J. S. (2015). Comparison of Two 
Length-Based Estimators of Total Mortality: a Simulation Approach. Transactions of 
the American Fisheries Society, 144, 1206-1219. 

Then, A. Y., Hoenig, J. M., Hall, N. G., Hewitt, D. A. (2015). Evaluating the predictive 
performance of empirical estimators of natural mortality rate using information on 
over 200 fish species. ICES Journal of Marine Science, 72, 82-92. 

Then, A. Y., Hoenig, J. M., & Huynh, Q. C. (In press). Estimating fishing and natural 
mortality rates, and catchability coefficient, from a series of observations on mean 
length and fishing effort. ICES Journal of Marine Science. 



35 
 

Zhou, S., Yin, S., Thorson, J. T., Smith, A. D. M., & Fuller, M. (2012). Linking fishing 
mortality reference points to life history traits: an empirical study. Canadian Journal 
of Fisheries and Aquatic Science, 69, 1292-1301. 



 

 
 

36 

1.8. Tables 

Table 1.1. Summary of the data-limited, size-based mortality estimators. Descriptions of the methods are provided in Section 1.3.  
Method Data Required life history 

parameters 
Estimates Other Assumptions 

Mean length-based 
 
BHE 
 

Single mean length above Lc 
 

L∞, K Constant Z with time and age Constant recruitment; deterministic size-
at-age; knife-edge selectivity at Lc 

 
Gedamke-Hoenig 
(GH, including 
extensions with 
indices) 

Multiple years of mean length (above 
Lc); extensions require either index of 
recruitment1 or index of abundance2 

 

L∞, K, b3 Period-specific Z, constant with 
age; Time bounds of the periods 

Constant recruitment (without index of 
recruitment); deterministic size-at-age; 
knife-edge selectivity at Lc 

 
GH with effort 
 

Multiple years of mean length (above 
Lc) and fishing effort  
 

L∞, K, M 4 Year-specific estimates of F5, 
constant with age 

Constant recruitment; deterministic size-
at-age; knife-edge selectivity at Lc 

Composition-based 
 
LCCC Single, truncated length composition 

of fully selected animals 
 

L∞, K Constant Z with time and age Constant recruitment; deterministic size-
at-age; included lengths are fully selected 

LB-SPR Single length composition 
 

M/K, L∞, CV of length-at-
age 

Constant F/M with time, varies 
with length by estimated 
selectivity  

Constant recruitment; logistic selectivity 

S6 Single weight composition 
 

M/K  Constant F, varies with weight 
by estimated selectivity; W∞ 

Constant recruitment; logistic selectivity 

LIME Multiple years of length composition; 
index of abundance is optional6 

L∞, K, M, CV of length-at-
age 

Random effects estimation of 
year-specific recruitment and F; 
F varies with length by 
estimated selectivity 

Logistic selectivity 

Symbols: L∞ = von Bertalanffy asymptotic length, K = von Bertalanffy growth coefficient, b = length-weight allometric exponent, W∞ = asymptotic weight, Z = total mortality, M = 
natural mortality, F = fishing mortality 

1 Index of recruitment is numbers-based. 
2 Index of abundance can be either weight or numbers-based. 
3 b is only required when a weight-based index of abundance is used. 
4 M can be fixed or estimated in the model. 
5 Year-specific F is the product of the effort and the estimated catchability coefficient q. 
6 Index of abundance is weight-based.  
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Table 1.2. How assumptions of size-based mortality estimators are addressed.  
Assumptions (Models) Violation Diagnostic Impact of violation Options to address violation of 

assumption 
Life history parameters 
perfectly known (all) 
 

Parameters not 
known well 

For possible overestimate 
in L∞, trend in Z estimates 
with increasing Lc in BHE 

Potential bias of mortality 
estimates (e.g., overestimate 
mortality with L∞ overestimate) 

Estimate mortality trends rather 
than magnitude; sensitivity 
analysis of alternative values of 
parameters 
 

Deterministic size-at-
age (BHE, GH, LCCC) 

Variability in size-
at-age 

N/A Mean length methods and LCCC 
are robust to this assumption 

Proceed with mean length methods 
or LCCC; use LB-SPR or LIME 
which model variability in size-at-
age 

 
Length of knife-edge 
selectivity is known 
(BHE, GH, & LCCC) 

Logistic selection 
(fishing mortality at 
lengths < Lc is 
ignored) 

N/A Underestimate Z if incompletely 
selected lengths are not 
truncated 

Use modal length for Lc for high 
M/K stocks, smaller values for low 
M/K; use models (LB-SPR, S6, 
LIME) which estimate logistic 
selectivity  
 

Flat-top selectivity, 
either knife-edge or 
logistic (all) 

Dome-shaped 
selectivity 

Increasing trend in Z 
estimates from BHE with 
increasing Lc 

Overestimate mortality 
 

Use LCCC and omit length bins 
affected by dome selectivity; 
incorporate selectivity estimates 
into various methods 
 

Constant recruitment 
(all except LIME)  

Trend in 
recruitment, large 
year-class strength 

Opposite trends in mean 
length and index over time; 
strong cohorts in length 
compositions over time 
 

Increase in recruitment 
overestimates mortality, and vice 
versa 

Use GH with index of recruitment; 
use LIME to estimate recruitment 
deviations (needs informative data) 
 

Constant mortality (all 
except GH and LIME) 

Trend in mortality 
over time 

Mean length changes over 
time 

Lag, underestimate magnitude of 
change in mortality in 
equilibrium estimators 

Use models (GH, LIME) which 
incorporate multiple years of data 
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Table 1.3. Applications of and software packages for the size-based mortality estimators.  
Method Applications Software Packages 
Mean length-based 
 

  

Beverton-Holt (including 
variants) 
 

Ault, et al. (2005); Babcock, et al. 
(2013); Nadon, et al. (2015); 
more cited in Then, Hoenig, 
Gedamke, et al. (2015) 
 

fishmethods1, 
TropFishR1,2 

Gedamke-Hoenig (GH, 
including extensions with 
indices) 

SEDAR (2007); SEDAR (2011a); 
SEDAR (2011b); SEDAR 
(2011c); SEDAR (2013a); 
SEDAR (2013b); SEDAR (2014); 
ICES (2015); Huynh (2016)  
 

fishmethods, 
SEINE3, MLZ4 

GH with effort 
 

ICES (2015); Then, et al. (In 
press) 

MLZ 

Composition-based 
 

  

LCCC  Many, some cited in Huynh et al. 
(in review) 
 

FiSAT5, TropFishR 

LB-SPR Prince, Victor, et al. (2015); ICES 
(2015) 
 

LBSPR1 

S6 Kokkalis, et al. (2016); ICES 
(2015) 
 

s6model6 

LIME -- LIME7 
1 R package available on CRAN 
2 Mildenberger, Taylor, & Wolff (2017) 
3 Stand-alone program (without extensions for index of recruitment or abundance) 

available at: http://www.nft.nefsc.noaa.gov  
4 R package available on Github at: http://www.github.com/quang-huynh/MLZ 
5 Stand-alone program available at: http://www.fao.org/fishery/topic/16072/en 

(Gayanilo, Jr, et al., 2005) 
6 R package available on Github at: http://www.github.com/alko989/s6model 
7 R package available on Github at: http://www.github.com/merrillrudd/LIME 
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1.9. Figures 

 
Figure 1.1. Application of the mean length-based mortality estimators for the Northern 
management (New England) stock of goosefish (Lophius americanus). Top figure: 
estimates of instantaneous total mortality Z (year-1) from successive fits of Gedamke-
Hoenig with differing number of change points (colored lines) and independent year-
specific estimates from the BHE (points with dotted loess regression line). Parentheses in 
legend indicate ΔAIC values for different change points with the Gedamke-Hoenig 
models. Compared to Gedamke-Hoenig, the BHE will underestimates the magnitude of 
change in the mortality rate until a new equilibrium mean length is reached. Bottom 
figure: observed mean lengths (points) and predicted mean lengths from the Gedamke-
Hoenig models (colored lines). Gedamke-Hoenig allows for evaluation of goodness of fit 
to the mean length data. With the 1-change point model, the model the mean length is 
underestimated during 1987-1993 and generally overestimated from 1994-2001. This 
trend in residuals is removed with a 2-change point model, which is supported with AIC. 
Data and life history parameters were obtained from Gedamke & Hoenig (2006). 
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Figure 1.2. Application of the LCCC to yellow-striped goatfish (Upeneus vittatus) in 
Manila Bay, Philippines. Top figure: the observed length composition (with 1-cm length 
bins), the vertical dotted line marks L . Bottom figure: conversion of lengths to relative 
ages and linear regression (red line) on relative ages to estimate total mortality Z 
(Equation 1.4). Numbers above points index length bins; relative ages could not be 
calculated because there was zero catch in length bin #16 and the length bin #18 was 
larger than L . Solid points indicate the length bins used in the LCCC. Open points 
indicate truncated length bins because they are assumed to be incompletely selected (bins 
1-7). Length bins close to L  (bins 14-18) were also truncated because the log-linear 
relationship between relative age and the catch breaks down at lengths near L  due to the 
effect of (1) dome selectivity, (2) outlier observations relative to other length bins, or (3) 
significant overlap of multiple ages. Data and life history parameters were obtained from 
Sparre & Venema (1998) through the TropFishR software package (Mildenberger, 
Taylor, & Wolff, 2017). 
 



 

41 
 

 
Figure 1.3. Length distributions in different F/M scenarios for two species which vary in 
M/K. With increasing F/M, the shape of the length distribution changes and there is 
truncation with reduced abundance in large size classes. In the low M/K species (Species 
I), the modal length is much larger than the first fully selected length when F/M is low. 
As F/M increases, the mode moves towards the left. In the high M/K species (Species III), 
the mode of the distribution appears to be more stable and the ascending limb of the 
length distribution reflects selectivity (regardless of F/M). In low M/K scenarios, more 
caution is needed when using the mode as the Lc for the mean length-based methods, a 
length smaller than the mode will be more appropriate. In high M/K scenarios, the mode 
can be used more reliably as the Lc. The age-structured LB-SPR was the operating model, 
with life history parameters for Species I and Species III obtained from Hordyk, Ono, 
Valencia, et al. (2015). 
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Figure 1.4. Diagnostic of dome selectivity from the BHE. Top figure: Estimates of total 
mortality Z from the BHE based on increasing values of Lc. Horizontal, dashed line 
indicates the true Z = 0.79 (F/M = 0.25) and vertical, dashed line indicates the length of 
95% selectivity. Three scenarios are evaluated: L  is known perfectly with logistic 
selectivity in the length composition (Logistic), a 20% overestimate of L  is used in the 
BHE with logistic selectivity (Logistic, High L ), and L  is known perfectly with dome 
selectivity (Dome). Bottom figure: Logistic (solid line) and dome (dashed line) 
selectivity. In the Logistic scenario, Z estimates from the BHE plateau when lengths that 
are near or above the length of full selectivity are chosen as the Lc. The increasing trend 
in estimates of Z in the High L  and Dome scenarios could be used to evaluate whether 
there is either dome selectivity or an overestimate of L  is occurring, although these two 
causes may not be differentiable. Length compositions were generated from the age-
based LB-SPR model with the Species III life history with M/K = 1.54 (Hordyk, Ono, 
Valencia, et al., 2015).  
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Figure 1.5. Diagnostic of a recruitment trend over time based on the response in mean 
length and index of abundance when there is a change in mortality (MortalityChange), 
recruitment (RecruitChange), or both (BothChange). With a change in mortality, both the 
mean length and index change in the same direction. With a change in recruitment, the 
mean length and index change in different directions. The trend in the mean length and 
index is suggested as a diagnostic for evaluating whether the changes in mortality versus 
recruitment can be identified. LIME was the operating model for data generation, and life 
history parameters from the Medium life history type from Rudd & Thorson (in press) 
were used.
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Chapter 2: Comparative performance of three length-based 
mortality estimators  

2.1. Abstract 

Length-based methods provide alternatives for estimating the instantaneous total 

mortality rate (Z) in exploited marine populations when data are not available for age-

based methods. We compared the performance of three equilibrium length-based 

methods: the length-converted catch curve (LCCC), the Beverton-Holt equation (BHE), 

and Length-Based Spawning Potential Ratio (LB-SPR) method. The LCCC and BHE are 

two historically common procedures that use length as a proxy for age. From a truncated 

length-frequency distribution of fully selected animals, the LCCC estimates Z with a 

regression of the logarithm of catch-at-length by the midpoint of the length bins, while 

the BHE estimates Z as a function of the mean length. The LB-SPR method is a 

likelihood-based population dynamics model, which, unlike the LCCC and BHE, does 

not require data truncation. Using Monte Carlo simulations across a range of scenarios 

with varying mortality and life history characteristics, our study showed that neither the 

LCCC nor the BHE was uniformly superior in terms of bias or root mean square error 

across simulations, but these estimators performed better than LB-SPR which had the 

largest bias in most cases. Generally, if M/K (the ratio of natural mortality M to von 

Bertalanffy K) is low, then the BHE is most preferred, although there is likely to be high 

bias and low precision. If M/K is high, then the LCCC and BHE performed better and 

similarly to each other. Differences in performance among commonly-used truncation 
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methods for the LCCC and BHE were small. LB-SPR did not perform as well as the 

classical methods, but may still be of interest because it provides estimates of a logistic 

selectivity curve. The M/K ratio provided the most contrast in the performance of the 

three methods, suggesting that it be considered for predicting the likely performance of 

length-based mortality estimators. 

 

2.2. Introduction 

Length-based methods for assessing exploited marine populations are of 

significant interest largely because of their applicability to the study of data-limited 

stocks for which age-based methods may not be available or suitable (Punt et al. 2013). 

Hard tissues, such as scales and otoliths, may lack distinct growth marks, for example, in 

tropical fish species. Such species are often assessed using length-based methods (Pauly 

1984c), because length measurements are collected both easily and non-lethally.  

Historically, the most common methods used to estimate the total instantaneous 

mortality rate, Z (year-1), from length composition data are the length-converted catch 

curve (LCCC; Pauly 1983, 1984a, 1984b) and the Beverton-Holt equation (BHE; 

Beverton and Holt 1956, 1957). These methods are based on a linear regression and a 

moment estimator, respectively. Improvements in computational power over time have 

allowed for the development and use of nonlinear models that use derivative-based 

optimization methods. Recently, Hordyk et al. (2015b) developed the Length-Based 

Spawner Potential Ratio (LB-SPR) method to estimate mortality using a nonlinear model.  
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An analogue of the age-based catch curve (Ricker 1975), the LCCC uses the 

natural logarithm of catch ( jC ) in the j-th length interval of a length-frequency 

distribution (LFD) regressed on the relative age ( jt ) at the midpoint of the length bin  

( j ). Only fully-selected lengths are considered in the analysis. Under the assumption of 

deterministic growth following a von Bertalanffy function (with parameters constant 

across time and cohorts), the relative age at the j-th length bin is defined as: 

 









L
t j

j


1log , (2.1) 

where L  is the asymptotic maximum length from the von Bertalanffy growth function. 

The regression is of the form 

 jjj tbaC )log( , (2.2) 

where a and b are the intercept and slope, respectively, of the linear regression and j  is 

the normally-distributed residual error. Total mortality ( Ẑ ) is estimated using the 

estimated slope of the linear regression ( b̂ ) and the von Bertalanffy growth rate 

parameter (K):  

 )ˆ1(ˆ bKZ  , (2.3) 

where the circumflex (^) denotes an estimate. The slope is positive if Z/K < 1 and 

negative if Z/K > 1. The derivation for the LCCC is provided in Appendix A. 

Similar to the age-based catch curve, the LCCC assumes a steady state 

population, with constant total mortality (over age and time) and constant recruitment 

(Pauly 1984a). Additionally, all selected fish assumed to be equally vulnerable to the 

sampling gear, and the sample size is large enough to effectively represent the average 
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population structure over the time period considered (Pauly 1983, 1984a, 1984b). Length-

converted catch curves have been criticized for overestimating Z when individual growth 

varies seasonally (Isaac 1990; Sparre 1990). However, this bias has been overcome by 

modified LCCCs that accommodate seasonally varying growth (Pauly 1990). Simulations 

have also shown that individual growth variability creates a negative bias, while reduced 

size-selectivity for smaller sizes produces a positive bias for the LCCC (Isaac 1990). 

Analogous to the age-based catch curve, a bend in the regression line could be an 

indication of a change in mortality with time or with age (Pauly 1984c; Tuckey et al. 

2006). However, this method does not generalize easily to account for non-equilibrium 

conditions. 

Beverton and Holt (1956, 1957) derived the total mortality rate as a function of 

the observed mean length: 

 
cLL
LLKZ




  )(ˆ , (2.4) 

where Ẑ , K, and L  are as in Equations 2.1 and 2.3, cL  is the critical length above which 

all animals are fully selected by the fishery, and L  is the mean length of animals larger 

than cL . Gedamke and Hoenig (2006) provide a recent derivation of the BHE. Similar to 

the LCCC, the BHE also assumes steady-state conditions, deterministic von Bertalanffy-

type growth, constant mortality rate of all fully recruited fish, and continuous and 

constant recruitment to the fishery. 

A criticism of the BHE is that it tends to overestimate total mortality when the 

largest size classes in the population are truncated from the sample (Then et al. 2015). On 

the other hand, Laurec and Mesnil (1987) and Then et al. (2015) observed that the BHE is 
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generally robust to individual variability in growth. The BHE has also been criticized as 

overly simplistic because of its stringent equilibrium assumptions (Hilborn and Walters 

1992). Gedamke and Hoenig (2006) generalized the BHE to allow for the estimation of 

total mortality from a time series of mean lengths under non-equilibrium conditions in a 

maximum likelihood framework. Further extension of this non-equilibrium model has 

allowed for variable recruitment by incorporating a year-specific index of recruits into the 

model (Gedamke et al. 2008).  

The LB-SPR mortality estimator is an equilibrium age-structured model which 

converts the predicted age distribution of the catch to a length distribution. Unlike the 

LCCC and BHE, variability in growth is explicitly modeled with a coefficient of 

variation (CV) of length-at-age generally assumed to be 0.1 (Hordyk et al. 2015b). Ages 

are converted to lengths via an age-length transition matrix in which the probability of 

length-at-age sums to one for a given age. Logistic selectivity parameters are estimated 

concurrently with mortality, allowing for the use of the entire LFD in the likelihood 

function. The method also assumes constant recruitment. Unlike the LCCC and BHE, the 

LB-SPR method explicitly pairs the mortality estimator with the biological reference 

points obtained from spawner potential ratio analyses for management. The same can be 

done for the LCCC and BHE, although this was not the focus of the current study. 

The LCCC has been implemented in ELEFAN II (Pauly 1987; Isaac 1990). 

Currently, the LCCC can be applied using the FAO-ICLARM Stock Assessment Tools 

(FiSAT) software package (Gayanilo et al. 2005). Recently, it has been used to estimate 

mortality in reef fishes in North Carolina, United States (Rudershausen et al. 2008), 

albacore tuna in the Mediterranean (Anonymous 2012), Japanese threadfin bream in the 
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Indian Ocean (Kalhoro et al. 2014), red king crab in the Barents Sea (Windsland 2015), 

wahoo in the Southwest Pacific Ocean (Zischke and Griffiths 2015), blood cockle in 

Malaysia (Mirzaei et al. 2015), and red lionfish in the Gulf of Mexico (Rodriguez-Cortes 

et al. 2015). Recent applications of the BHE and LB-SPR are cited in Then et al. (2015) 

and presented in Prince et al. (2015b), respectively. The LB-SPR method can be 

implemented using the LBSPR R package available on CRAN (Hordyk 2017).  

The three length-based methods have been studied individually, but they have not 

been directly compared. Importantly, the methods differ in handling selectivity. While 

LB-SPR estimates selectivity as a logistic function, the LCCC and BHE assume knife-

edge selectivity (i.e., full selectivity of animals greater than a certain length) and thus, 

only animals larger than a certain size are included in the analysis. Previous simulations 

(e.g., Isaac 1990) have not examined the effect of different decision rules for truncating 

the data on the performance of the estimators. This study compares the performance of 

the length-based methods in estimating total mortality by applying these methods to 

populations with known parameters. First, we examined the performance of each of the 

estimators individually and relative to each other using a common simulation framework. 

Second, we examined the choice of decision rules in selecting the truncation points for 

the LCCC and choosing the Lc parameter for the BHE. Third, we examined the 

robustness of each method to violations in the assumptions of growth and recruitment 

variability across several life histories and exploitation scenarios. Finally, we conducted 

sensitivity analyses of the three mortality estimators to total sample size and length bin 

width.  
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2.3. Methods 

2.3.1. Simulation design 

Length samples were generated using a factorial design for von Bertalanffy K, 

fishing mortality F, growth variability, recruitment variability, and selectivity (Table 2.1), 

accumulating to a total of 108 combinations. In this study, the different values of K and F 

are presented as ratios with respect to natural mortality, M (i.e., M/K and F/M, 

respectively), with M = 0.2 year-1 for all scenarios. Ratios used because the relative 

values provide a better description of the life history and magnitude of exploitation, 

respectively, than the absolute values. On a per-recruit basis, the M/K ratio describes the 

balance between growth and mortality which affects the shape of the LFD of a population 

in an unexploited state (Hordyk et al. 2015a), while Z/K describes the shape of the LFD 

of an exploited population. The F/M ratio can provide an indication of the relative impact 

of fishing pressure because a scalar multiple of M is often used as a proxy for fishing at 

maximum sustainable yield (e.g., FMSY = 0.75M; Zhou et al. 2012). 

The simulation used an age-structured model for the population. The model was 

run for 25 years to burn in deviates in growth trajectories and recruitment strength among 

cohorts. Fishing was assumed to occur throughout the 25 years, but the length 

distribution of the catch was only obtained at the end of the 25 years. Growth was 

assumed to vary among cohorts (Whitten et al. 2013). The mean length ( ayL , ) in year y at 

age a was  
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where 0L  was the expected length at age-0, ayc   indexed the age-0 recruitment that 

gave rise to the cohort of age a in year y, and  22 ,5.0~ CCc N    was the cohort-specific 

deviation in growth increments. The von Bertalanffy asymptotic length L was set to 500 

(arbitrary) units, 0L  to 75 units, and C  to 0.15 across all factorials. Two values of K = 

0.4 and 0.1 year-1, corresponding to M/K ratios of 0.5 and 2.0, respectively, were used in 

the factorial design. 

Variability in length-at-age ( Lay ,, ) assumed a constant CV to the mean length-at-

age, 

 ayLay LCV ,,,  , (2.6) 

with three CVs of 0.03, 0.06, and 0.09 in the factorial design. These values were based on 

the evaluation of size-at-age data of several species by Then et al. (2015).  

Lognormally-distributed recruitment ( yR ) was simulated as a first-order 

autoregressive process with autocorrelation coefficient (  ) and residual deviations ( y ) 

(Thorson et al. 2014): 
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where 
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
  (Thorson et al. 2016) and Y was the terminal year 

of the age-structured model. Two levels of residual standard deviation for recruitment 

R = 0.6 and 1.0 were included in the factorial design, with   = 0.45. The values of 

these parameters were guided by the meta-analysis of Thorson et al. (2014). Mean 
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recruitment was set to 1.0 because the population was stationary over time and magnitude 

of recruitment was not relevant for estimating mortality.  

Three length-based selectivity patterns were used in the factorial design: a logistic 

function with either broad ascending limb (“Gradual”), a logistic function with a steep 

ascending limb (“Steep”), and a dome-shaped logistic-normal function (“Dome”) (Figure 

2.1). The logistic function, parameterized by the lengths of 50% ( 50L ) and 95% ( 95L ) 

selectivity, defines selectivity at length L as 
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The dome-shaped selectivity function was defined as a piecewise-defined function, 
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where selectivity at length L is a logistic function for the ascending limb and the right-

half of a normal probability density function )(Lg  with mean d  and standard deviation 

d  for the descending limb, with the latter standardized to a value of 1 at d . The Steep 

and Gradual selectivity functions evaluated the effect of logistic selectivity on data 

truncation with the LCCC and BHE while the Dome selectivity function tested the effect 

of violating the assumption of constant total mortality of fully selected lengths in all three 

mortality estimators. 

The population abundance ( ayN , ) was defined by 
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where ays ,  is the survival and A  is the maximum age in the model. A maximum age of 

23 years, the age when 1% of a cohort survives given the natural mortality rate, was used 

in the simulation for computational convenience.  

 To calculate survival due to length-based selectivity, a population length-age 

matrix ( ,,ayN ) was created for the beginning of each year y, where 

 ),(,,, ayPNN ayay   . (2.11) 

With a normal distribution for variability in length-at-age, the length-at-age probability 

vector ),( ayP   is  
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where   is the length at the lower boundary of the length bin with midpoint  , 

Jj ,...,2,1  indexes the length bins and )(  is the cumulative density function of a 

normal distribution with mean ayL ,  and standard deviation Lay ,, . The length bin width in 

the population model was 5 units (larger bins were subsequently used for mortality 

estimation). 

The abundance of survivors ( s
ayN ,, ) at the end of year y was calculated as 

  )(exp,,,, MFselNN ay
s

ay   . (2.13) 

This study used three values of apical fishing mortality F = 0.05, 0.2, and 1.0 year-1, 

corresponding F/M ratios of 0.25, 1.0, and 5.0, respectively, with mortality occurring 

after growth. Survival, which is dependent on age and year due to cohort-specific growth, 

was calculated as 
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To approximate continuous recruitment assumed in the mortality estimators, 

quarterly time steps were used in the simulation. Recruitment occurred quarterly with all 

cohorts within a year having the same growth trajectory and recruitment strength. All rate 

parameters were adjusted accordingly from year-1 to season-1 with growth updated after 

every season.  

In the terminal time step of the simulation, the length-age catch matrix ( ,aC ) was 

created using the Baranov catch equation, 

   )(exp1,,, MFselN
MFsel

FselC aya 


 




 , (2.15) 

and the catch-at-length vector ( C ) was obtained by summing over ages, 

 
a

aCC  , . (2.16) 

A data set was obtained by sampling 2,000 individuals from the terminal catch-at-

length vector using a multinomial distribution. The sample size of 2,000 was chosen to 

evaluate the robustness of the estimators to the variables in the factorial design when 

there is little observation error. For each data set, 2,000 length observations were 

obtained and a length frequency histogram was generated by dividing the data set into 

length bins with a bin width of 10 units (2% of L ). For each factorial combination, 1,000 

stochastic data sets were generated. 

 

2.3.2. Mortality estimation 
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To use the LCCC, a subset of length bins from the LFD corresponding to fully 

selected lengths must be chosen for the linear regression. The LFD typically features an 

ascending limb, representing some lengths that may not be fully selected to the fishing 

year, followed by a descending limb of numbers-at-length (Figure 2.2). The first usable 

length bin may be defined as the peak of the LFD (hereafter, “Peak”) (Wetherall et al. 

1987), although Pauly (1983) suggested that the first size class to be included in the 

LCCC be the size class immediately to the right of the most frequent size class (“Peak-

plus”). 

Because the LCCC assumes deterministic growth, length bins greater than L  

must be excluded from the analysis. Furthermore, length bins close to L  may be 

assigned unreasonably large relative ages. High observation error in length bins with few 

observations may affect the slope of the regression line (Isaac 1990; Punt et al. 2013). To 

combat this, Pauly (1983) recommended that animals within 5 - 30% of L  or length bins 

with fewer than five individuals be excluded from the analysis. Such approaches sacrifice 

data in an attempt to avoid bias due to decreased selectivity by the fishing gear and 

overestimation of relative age of large individuals. This approach can be problematic, 

however, when the sample size is low or when only few size classes are available.  

For the BHE, the length data are usually binned to examine the length frequency 

distribution and identify the critical length, cL . The mean length is then calculated from 

the subset of animals larger than cL . Wetherall et al. (1987) suggested that Lc be defined 

as the length corresponding to the peak of the LFD. Alternatively, Peak-plus truncation 

can be applied to select a value for Lc. Consequently, length observations from the 
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ascending limb of the LFD are removed from the mean length calculation for the BHE 

based on the choice of cL .  

To reduce bias associated with the BHE, Laurec and Mesnil (1987) recommended 

summarizing length data in fine detail and grouping length frequencies in narrow size 

bins. Animals within 30% of L were excluded from their analyses. However, simulation 

analysis demonstrated that the BHE performed well when all lengths greater than cL , 

including those larger than L , were retained (Then et al. 2015). 

In this study, three candidate length bins were selected for left truncation: the first 

length bin on the ascending limb of the LFD corresponding to at least half of the 

frequency of that at the peak (“Half-peak abundance”), the length bin of the peak 

(“Peak”), and the first length bin after the peak (“Peak-plus”) (Figure 2.2). If there are 

few length bins larger than the peak, then a portion of the ascending limb of the LFD may 

consist of fully selected animals (Figure 7 of Hordyk et al. 2015a). While arbitrary, the 

Half-peak abundance decision rule can be used to select a length on the ascending limb 

relative to the Peak across a variety of shapes in the length distribution (Figures 2.2, 2.3). 

This decision rule has also been used in several applications of methods evaluating length 

data (for example, ICES 2014).  

Similarly, there were three candidate length bins for right truncation: the largest 

length bin containing at least 5 individuals (5+), the length bin at 90% of L  (90% L ), 

and the length bin at L  (100% L ). The length bin at L  was chosen if the 5+ right 

truncation rule selected a length bin with a midpoint larger than L . For the 90% L  and 
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100% L  decision rules, if the bin contained no observations, then we selected the next 

smallest bin containing any observations as the truncation point. 

Nine methods, labeled L1-L9, were tested with the LCCC using the combinations 

of left and right truncation (Table 2.2). For the BHE, the lower boundary of the three 

candidate length bins for left truncation (Half-peak abundance, Peak, Peak-plus) was 

identified as the Lc, comprising methods B1-B3. No truncation was necessary to use the 

LB-SPR method.  

For each data set, total mortality was estimated with the data truncation methods 

described for LCCC, BHE, and LB-SPR. The values of von Bertalanffy parameters L  

and K used in the mortality estimators were sampled from a bivariate normal distribution 

around the true values with a CV of 0.1 and a correlation of -0.9. This step is designed to 

simulate the scenario in which only length data are available and growth information is 

obtained externally (e.g., via a literature search). 

 

2.3.3. Performance analysis 

To quantify the performance of the decision rules for the estimators in terms of 

bias and precision, the relative percent bias (%Bias) and relative percent root mean 

square error (%RMSE) for each decision rule in each factorial combination were 

calculated respectively as: 
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where Ẑ  is the mean of the estimated total mortality rates from n out of 1,000 data sets 

which produced a feasible estimate, Z = F + M is the true underlying mortality rate for 

the factorial combination in the simulation, and iẐ  is the estimated mortality rate from 

each data set i = 1, 2, …, n within each factorial combination. Unfeasible estimates 

occurred using the LCCC if only one length bin was selected using the respective 

decision rule, in which case the linear regression was not possible, or if the slope of the 

regression line in Equation 2.3 was greater than 1, which resulted in a negative estimate 

of Z. With the BHE, a negative total mortality rate was estimated if the mean length was 

larger than L .  

The %Bias and %RMSE were calculated for each method in all 108 factorials. 

From this set, the median %Bias and median %RMSE for each method were calculated 

among factorials with common M/K and F/M ratios. The median %Bias and median 

%RMSE were further stratified across levels of the other factorial variables (growth 

variability, recruitment variability, and selectivity) within each group of M/K and F/M. 

The best decision rules can be identified as those with the lowest absolute values of the 

median %Bias and the median %RMSE. 

 

2.3.4. Sensitivity analyses 

Sensitivity analyses were performed with respect to sample size, length bin, and 

assumed growth parameters. For the sample size analysis, 200 and 500 length 
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observations were selected without replacement as subsets of the original data sets, with 

bin size of 10 units in the LFD. This analysis allowed us to test the effect of observation 

(sampling) error on mortality estimation. For the bin width analysis, mortality was re-

estimated by re-binning the data with bin widths of 25 and 50 units (5% and 10% of L , 

respectively). Sample sizes of 2,000 were used to analyze the effect of bin width 

separately from observation error. For these two sensitivity analyses, mortality was 

estimated again using the same decision rules for data truncation and the %Bias and 

%RMSE were calculated for each decision rule in each factorial combination. Finally, the 

variability in individual estimates of mortality was also evaluated when assumed growth 

parameters were stochastically sampled. All simulations and analyses were performed in 

R version 3.3 (R Core Team 2017). 

 

2.4. Results 

Our factorial design generated several functionally distinct LFDs based on M/K 

and F/M (Figure 2.3). Compared to the Gradual and Dome selectivity functions, the Steep 

selectivity function produced a shorter ascending limb of the LFD, which truncated the 

length structure of the sample. In contrast, the Dome selectivity function only showed a 

discernable difference in the descending limb when F/M = 0.25 or 1.  

Based on a sample size of 2,000, performance of the methods varied the most by 

M/K and F/M scenarios, with best performance of the methods when M/K = 2 in 

conjunction with F/M = 0.25 or 1 (Figure 2.4A). The methods have the least bias in these 

scenarios, with the magnitude of the median %Bias generally less than 20% and the 

%RMSE less than 50%. The ranges of the %Bias and %RMSE among factorials were also 
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relatively small in these scenarios. Most methods performed similarly, although LB-SPR 

did not perform as well as the LCCC (L1-L9) and BHE methods (B1-B3).  

Performance was worst when M/K = 0.5 in conjunction with F/M = 0.25 or 1 

(Figure 2.4A). While there were some factorial combinations where the methods 

produced low %Bias and %RMSE, the range in %Bias and %RMSE of all methods was 

large (with the performance metrics as high as 300-400%) indicating high variability in 

performance. In all cases, the bias was positive. The median %Bias and median %RMSE 

were usually larger than 100%. The best performing methods were B1 (BHE with Half-

peak abundance as the Lc), closely followed by L1 and L3 (both L1 and L3 methods use 

the LCCC with Half-peak abundance for left truncation). 

When F/M = 5, all methods improved in terms of bias for M/K = 0.5 (the 

magnitude of %Bias generally less than 20%), but worsened for M/K = 2 (the magnitude 

of %Bias increasing up to 40%), relative to lower F/M (Figure 2.4A). Overall, the sign of 

the bias trends from positive to negative with increasing F/M, with the trend most 

noticeable for M/K = 0.5. No single method appeared to perform the best when F/M = 5. 

While LB-SPR had the lowest bias with M/K = 2, it also had the highest mean square 

error. In other M/K and F/M scenarios, LB-SPR did not appear to perform as well as the 

LCCC and BHE. 

  

2.4.1. Performance across factorial variables 

In this and the next section, we present the results for B1 when M/K = 0.5 and L5 

when M/K = 2 in the main text. Method B1 performed the best when M/K = 0.5 (and F/M 

= 0.25 or 1). Method L5 was chosen arbitrarily because there was no clear best method 
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when M/K = 2. The performance across factorial variables and sensitivity analyses for 

individual factorial combinations for all decision rules are described in the main text, 

with supporting figures and tables in the Supplementary Materials. 

Within M/K and F/M combinations, the performance metrics were further 

stratified by growth variability type, magnitude of growth variability, recruitment 

variability, and selectivity. Observed trends in performance remained similar to those 

described in the previous section (Tables S1-S6).  

Bias and precision generally improved with increasing growth variability when 

F/M = 0.25 or 1 (Figures 2.5, S1 –S13). When F/M = 5, the differences in bias and 

precision among different growth variabilities were small to negligible. Larger bias and 

mean square error was associated with high variability than with low variability in 

recruitment (Figures 2.6, S14-S26), although there were negligible differences when F/M 

= 5. All three methods were much more positively biased with Dome selectivity than 

with the logistic selectivities (Gradual and Steep) when F/M = 0.25 or 1 (Figures 2.7, 

S27-39). However, the effect of Dome selectivity is minimal at F/M = 5. There were no 

major differences in performance common to all methods between the Steep and Gradual 

selectivity functions. 

 

2.4.2. Sensitivity analyses 

At the sample size of 200, most methods had larger bias and less precision 

compared to when a sample size of 2,000 was used, but the magnitude of the difference 

between sample sizes was not particularly large (Figures 2.4B, S40-S52). Methods L4 

and L7 were notable in that their median %Bias was lower, but median %RMSE was 
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higher when the sample size was 200 instead of 2,000. However, the general trends 

remained unchanged.  

Length bin width generally did not affect the %Bias and %RMSE of the mortality 

estimators (Figures 2.8, S53-S65). Methods L7, L8, and L9 showed improvement in 

some scenarios when M/K = 0.5 in conjunction with F/M = 0.25 where larger length bins 

performed better, but these scenarios still appeared to be outliers. The magnitude of the 

performance metrics remained large (%Bias > 100 %) for these scenarios. 

We examined the correlation of total mortality estimates with the assumed values 

of L  and K (Figure 2.9). In general, higher estimates of mortality are obtained with a 

larger value of L . However, underestimates of Z did not often occur with low M/K 

scenario and F/M = 0.25 or 1. On the other hand, when F/M = 5 (for both M/K scenarios), 

overestimates of Z did not often occur. 

 

2.5. Discussion 

2.5.1. Performance of mortality estimators 

 Our simulations suggest that the M/K ratio strongly affects the performance of the 

three length-based methods, with poor performance at low M/K for all three methods. 

This finding is consistent with previous simulations on LB-SPR (Hordyk et al. 2015b). 

When M/K is low, the peak of the LFD may not correspond to the true length of full 

selectivity (Figure 2.3). The best decision rules for both the LCCC and BHE used half-

peak abundance length as the left truncation point (methods L1 and L3 for the LCCC and 

B1 for the BHE), although there was still a large bias associated with them. When M/K 

was high, there was no clearly superior method in both bias and precision.  
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 The performance of all three length-based methods worsened in situations with 

extreme shapes in the LFD (i.e., low M/K with low F/M or high M/K with high F/M; 

Figure 2.3). In spite of this, if a stock is exploited over a broad range of sizes, then a 

qualitative assessment of the mortality rate is still possible based on life history and the 

shape of the LFD. High mortality can be inferred with truncation of the size structure due 

to low survival of animals to large size classes. Populations with a low M/K ratio and low 

F/M will have a protracted ascending limb due to the ‘pile-up’ effect where there are 

many large animals in the LFD due to low mortality. The use of length as a proxy for age 

by assuming deterministic growth in the LCCC and BHE did not appear to work well in 

such scenarios, because a much more substantial portion of the length distribution 

consists of lengths larger than L  due to variability in growth (Figure 2.3). However, 

contrary to what might be expected, the LB-SPR method, which explicitly models 

variability in growth and selectivity (removing the need to truncate the data to meet 

model assumptions), did not perform more reliably than the LCCC and BHE in these 

situations. 

In our study, all three length-based methods were robust to high growth 

variability. This result is surprising for the LCCC and BHE because both methods assume 

no variability in growth. Previous simulations with the LCCC showed that the estimator 

performed better with less growth variability (Isaac 1990), although Then et al. (2015) 

found that the BHE performed better with higher growth variability if the selectivity was 

dome-shaped. On the other hand, it was not surprising that LB-SPR performed worse 

when the CV of growth in the population was lower than that assumed in the estimation 

model. However, this assumption is not as critical in LB-SPR compared to the other two 
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methods because the CV of growth variability can be adjusted in the former when 

external information from a growth study is available. 

The estimators were robust to the magnitude of recruitment variability as long as 

the recruitments were random. Trends in recruitment are more likely to be a problem 

because they would be conflated with mortality.  

Dome selectivity had a noticeable effect on the bias only when F/M = 0.25 or 1, 

due to the high abundance of large individuals present in the population but missing in 

the catch (Figure 2.3). The length-based methods all assume logistic selectivity because 

dome selectivity is conflated with high mortality. To estimate a mortality rate, selectivity 

external selectivity estimates would be needed. For example, Ehrhardt and Ault (1992) 

developed a modified version of the BHE to estimate mortality when there is an upper 

length truncation in the LFD of the catch (Ehrhardt and Ault 1992) with that length of 

upper truncation estimated externally and then provided to the equation. Simulations have 

found the behavior of the Ehrhardt-Ault estimator to be complex (Then et al. 2015). 

Contrary to the methods tested in our study, the performance of their estimator often 

worsened with higher growth variability. In some cases, lower bias but higher variance 

was observed with using the Ehrhardt-Ault compared to the original equation, although 

the best input length for upper truncation for minimum bias was often larger the true 

length of upper truncation. Then et al. (2015) did not recommend the Ehrhardt-Ault 

estimator for routine use. 

At high F/M, low survival to large size classes minimizes the effect of dome 

selectivity. Then et al. (2015) found a positive bias associated with the truncation of large 

animals in the length distribution when using the BHE for all mortality scenarios, but 
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they assumed knife-edge selection of small animals in their simulations. Our simulations 

also examined the effect of left truncation for the LCCC and the BHE when selectivity 

was not knife-edged. In theory, Steep selectivity more closely corresponds to the knife-

edge selectivity assumption, compared to Gradual selectivity. However, all three methods 

(including LB-SPR) were robust to different logistic selectivity functions as indicated by 

the small differences in performance among truncation methods.  

 

2.5.2. Sensitivity analyses 

We examined the estimators in the ideal situation with large sample sizes and 

little observation error. The sensitivity analysis indicated that the estimators were 

generally robust to smaller sample sizes. We assumed that the generated data set was a 

random sample of animals from the vulnerable population. In reality, data are generally 

collected in clusters from samples of fishing trips or from schools of animals, often with 

similar lengths and ages within trips or schools. Cluster sampling reduces the effective 

sample size of the observed LFD and increases the uncertainty surrounding estimates of 

mortality (Chih 2011). With knowledge of the sampling program used to collect the data, 

the effective sample size can be estimated via bootstrapping methods (Stewart and Hamel 

2014) or design-based formulas (Thorson 2014). Stewart and Hamel (2014) suggested 

that the number of sampled trips may be an appropriate proxy for the effective sample 

size. This suggestion may be applicable in a data-limited context if the ratio of within- to 

among-trip variance is low due to the cluster effect. The effective sample size would be 

important to determine if an appropriate range of size classes have been sampled, because 
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the sampling would affect the shape of the LFD used to apply the length truncation 

methods for the LCCC and BHE and estimate selectivity in LB-SPR. 

The performance of the LCCC and BHE did not appear to diminish with larger 

length bins, and in some cases (with low F/M), performance was better. While sensitivity 

of length bins can be examined in individual applications of the equilibrium mortality 

estimators, low sample sizes may preclude the use of small length bins to describe the 

length composition of the catch in data-limited situations.  

Our study design assumed that information on growth was stochastic, arising from 

a bivariate distribution with a highly negative correlation often associated with estimating 

parameters of the von Bertalanffy growth equation (Gallucci and Quinn 1979). 

Sensitivity analyses can be used to determine the influence of growth parameters on 

mortality estimation. An overestimate of L  may create a positive bias for the estimate of 

total mortality, because fewer large animals are observed than are expected. We 

examined the correlation of total mortality estimates with the assumed values of L  and K 

(Figure 2.9). In light of the systematic biases of the estimators among different M/K 

scenarios, overestimates of mortality may be more likely and underestimates less likely 

when M/K is low. Similarly, overestimates of mortality are unlikely when M/K and F/M 

are high. Such information could be used to assess the direction and magnitude of 

estimation error based on mis-specified growth in future applications of the mortality 

estimators.  

Mortality estimates with length-based methods are dependent on the values of 

growth parameters. The quality of external growth estimates is affected by, among other 

things, the choice of the growth model (Gwinn et al. 2010) and the representativeness of 
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the size-at-age data to the population when sampling gears with different selectivity 

patterns are used (Wilson et al. 2015), and should be assessed in future applications of 

length-based methods. If size-at-age data are available, integrated modeling approaches 

for estimating growth simultaneously with mortality and selectivity also exist (Taylor et 

al. 2005).  

 

2.5.3. Life history considerations 

Overall, our study found that life history expressed in the M/K ratio was a good 

predictor of the performance of length-based mortality estimators. Meta-analyses of life 

history traits have shown a negative correlation between M/K and relative length of 

maturity (the ratio of the length at maturity to L ) in teleost families (Prince et al. 

2015a). Better performance in high M/K scenarios was observed compared to low M/K. 

This result supports those in previous studies of length-based methods (e.g., Hordyk et al. 

2015b). Two features unique to low M/K populations may result in their poor 

performance. First, the protracted ascending limb of the length composition in the 

population conflates selectivity with abundance-at-length. It may be difficult to select 

appropriate truncation lengths or estimate selectivity. Second, there is a high abundance 

of large animals from the ‘pile-up’ effect. In a low M/K population, a large age range is 

encompassed in a small spectrum of lengths and the length structure is a poor proxy for 

the age structure of the population. We recommend caution when using length-based 

methods in low M/K situations as the results are likely to be positively biased even in 

equilibrium situations. From a management standpoint, this behavior can dictate data 

collection priorities for alternative data types for assessment of low M/K stocks. In a data-
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limited context, meta-analyses can be used to identify taxa with low M/K ratios (Prince et 

al. 2015a). Nevertheless, if length-based methods are to be used, our study suggests that 

classical methods (LCCC and BHE) remain viable options for mortality estimation. 

 

2.6. Conclusion  

Our study examined the performance of three length-based mortality estimators. 

When M/K is low (M/K = 0.5 in our simulation), we recommend using the BHE using 

half-peak abundance as the Lc, although the method is still likely to be positively biased 

and imprecise. When M/K is high (M/K = 2 in our simulation), both the LCCC and BHE 

performed well and were robust to variation in commonly-used truncation rules. For 

optimal performance, the length-based estimators require some a priori judgment of the 

life history and expected fishing pressure on the stock of interest. We recommend caution 

in using length-based methods for populations with low M/K. Overall, this study 

demonstrated that relative to LB-SPR, both the LCCC and BHE produced less biased and 

more precise estimates of total mortality. While LB-SPR did not perform as well 

compared to the other two methods when estimating mortality, the method has an 

advantage of providing estimates of selectivity, if desired. The LCCC and BHE methods 

performed comparably and no firm recommendation is made for choosing between these 

two methods. 
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2.8. Tables 

Table 2.1. Parameter values used for data generation in the simulation study. Parameters 
with multiple values were included in factorial design. Parameters L50 and L95 are the 
lengths of 50% and 95% selectivity, respectively, using a logistic function. Parameters 

d  and d  are the mean and standard deviation of the normal probability density 

function, respectively, with values standardized to 1 at length d  for dome-shaped 
selectivity. 
Parameter Symbol Values 
Ratio of natural mortality 
rate M and von Bertalanffy 
K 

M/K Low: 0.5 (K = 0.4) 
High: 2.0 (K = 0.1) 

Ratio of fishing mortality F 
and natural mortality rates 

F/M Low: 0.25 (F = 0.05) 
Medium: 1.0 (F = 0.2) 
High: 5.0 (F = 1.0) 

Coefficient of variation of 

length-at-age ( ayL , ) 

CV Low: 0.03  
Medium: 0.06 
High: 0.09 

Recruitment residual  
standard deviation R  Low: 0.6 

High: 1.0 
Selectivity-at-length 

Lsel  Gradual: 50L  = 175, 95L  = 200 

Steep: 50L  = 175, 95L  = 275 

Dome: 50L  = 175, 95L  = 275, d  = 325, d  = 
65 

Recruitment  
autocorrelation  
coefficient 

  0.45 

von Bertalanffy asymptotic 
length  L  500 

Expected length at age-0 
0L  75 

Cohort growth standard 
deviation 

C  0.15 

Maximum age A 23 
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Table 2.2. Truncation methods of the length data for estimating total mortality Z with the 
length-converted catch curve (LCCC) and Beverton-Holt equation (BHE). No truncation 
is associated with the LB method (LB-SPR). 
Method Estimator Left truncation Right truncation 
L1 LCCC Half-peak abundance 5+ 
L2 LCCC Half-peak abundance 90% L  
L3 LCCC Half-peak abundance 100% L  
L4 LCCC Peak 5+ 
L5 LCCC Peak 90% L  
L6 LCCC Peak 100% L  
L7 LCCC Peak-plus 5+ 
L8 LCCC Peak-plus 90% L  
L9 LCCC Peak-plus 100% L  
B1 BHE Half-peak abundance N/A 
B2 BHE Peak N/A 
B3 BHE Peak-plus N/A 
LB LB-SPR N/A N/A 
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2.9. Figures 

 

 

Figure 2.1. Length-based selectivity functions used in the simulation.  
 

 
Figure 2.2. Histogram of a length frequency distribution with the left-handed decision 
rules (Half-peak abundance, Peak, and Peak-plus) used to select the length bin of left 
truncation for the LCCC and value of Lc for the BHE in the simulation study. 
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Figure 2.3. Expected length frequency distributions obtained from the sum of 1,000 data 
sets from the simulation stratified by the factorial design for M/K, F/M, and selectivity. 
Selectivity functions correspond to those in Figure 2.1. In all panels, medium growth 
variability and low recruitment variability was assumed in the sample. Dashed vertical 
lines indicate L  = 500 (Table 2.1).
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Figure 2.4. %Bias (top grids) and %RMSE (bottom grids) from the simulation study when the data set sample size is 2000 (A) and 200 
(B). For each method, factorial combinations are stratified by M/K and F/M. Numbers and horizontal lines in the violin plots indicate 
median %Bias and %RMSE, with the numbers rounded to the nearest whole number for clarity. The shape of the violin plots shows 
the distribution of values. Asterisks and shaded violin plots indicate the method with the lowest median value in each grid cell (not 
subject to rounding error). Rows in each grid have separate scales on the y-axis to show the shape of the violin plots.
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Figure 2.5. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and growth 
variability. Only methods B1 and L5 are shown (corner text in the corners indicate the 
method shown). Numbers and horizontal lines in the violin plot indicate median %Bias 
and %RMSE and the shape of violin plot shows the distribution of values. Asterisks and 
shaded violin plots indicate the method with the lowest median value in each grid cell 
(not subject to rounding error). 
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Figure 2.6. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and 
recruitment variability. Only methods B1 and L5 are shown (corner text in the corners 
indicate the method shown). Numbers and horizontal lines in the violin plot indicate 
median %Bias and %RMSE and the shape of violin plot shows the distribution of values. 
Asterisks and shaded violin plots indicate the method with the lowest median value in 
each grid cell (not subject to rounding error). 
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Figure 2.7. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and 
selectivity. Only methods B1 and L5 are shown (corner text in the corners indicate the 
method shown). Numbers and horizontal lines in the violin plot indicate median %Bias 
and %RMSE and the shape of violin plot shows the distribution of values. Asterisks and 
shaded violin plots indicate the method with the lowest median value in each grid cell 
(not subject to rounding error). 
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Figure 2.8. The effect of bin width on %Bias (left grid) and %RMSE (right grid) for the 
length-based estimators. Only methods B1 and L5 are shown (corner text in the corners 
indicate the method shown). Each line represents individual factorial combinations 
stratified in separate cells by M/K and F/M. 
 



 

82 
 

 

Figure 2.9. Individual estimates of total mortality Z based on the assumed values of von 

Bertalanffy parameters L  (left grid) and K (right grid) in the estimation model 
(parameters are sampled from a bivariate normal distribution around the true values with 
a correlation of -0.9). Only methods B1 and L5 are shown (corner text in the corners 
indicate the method shown). Plotted estimates are from the simulations with medium 
growth variability, low recruitment variability, and the gradual selectivity function 
stratified in separate cells by M/K and F/M. Dotted lines indicate the true value of 
mortality and growth parameter in the respective cell. 
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Chapter 3: Multispecies Extensions to a Nonequilibrium 
Length-Based Mortality Estimator 

3.1. Abstract 

Recent advances in methodology allow the history of the total mortality rate experienced 

by a population to be estimated from periodic (e.g., annual) observations on the mean 

length of the population. This approach is generalized to allow data on several species 

that are caught together to be analyzed simultaneously based on the theory that changes 

in fishing effort are likely to affect several species; thus, the estimation of times when the 

mortality rate changes for one species borrows strength from data on other, concurrently 

caught species. Information theory can be used to select among models describing the 

degree of synchrony (if any) in mortality changes for a suite of species. This approach is 

illustrated using data on Puerto Rican handline fishery catches of three snapper species: 

Silk Snapper Lutjanus vivanus, Blackfin Snapper L. buccanella, and Vermilion Snapper 

Rhomboplites aurorubens. We identified the best model as the one that provided for 

simultaneous decreases in mortality rate around the year 1997 and for separate, species-

specific magnitudes of change in total mortality. The simultaneous estimation of 

parameters for multiple species can provide for more credibility in the inferred mortality 

trends than is possible with independent estimation for each species. 
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3.2. Introduction 

The mean length of animals in a population is a dynamic statistic that reflects the 

recent and past mortality rates experienced by the population (Baranov 1918, cited by 

Ricker 1975; Beverton and Holt 1956, 1957). Under stringent equilibrium conditions, the 

total instantaneous mortality rate (Z; year–1) can be estimated by the well-known 

Beverton–Holt equation (Beverton and Holt 1956, 1957),  

 
cLL
LLKZ




  )(
, (3.1) 

where K and L∞ are parameters of the von Bertalanffy growth curve (K = Brody growth 

coefficient; L∞ = asymptotic length), Lc is the smallest length of animals that are fully 

vulnerable to the fishing gear, and L  is the mean size of animals that are larger than Lc. 

Gedamke and Hoenig (2006) generalized this approach by analyzing an annual series of 

mean length measurements to estimate (1) the years in which the mortality rate changed 

and (2) the magnitudes of mortality in the separate time periods identified. To do this, 

Gedamke and Hoenig (2006) derived the transitional behavior of the mean length 

statistic as the population moved from one equilibrium state toward another equilibrium 

state after a change in mortality. 

The present work was motivated by the consideration that most types of fishing 

gear catch a variety of fish species. Consequently, if fishing effort changes over time, one 

might reasonably expect that an assemblage or “complex” of species that are caught 

together would show synchronous changes in mortality rate. For example, if handline 

fishing effort doubles from one year to the next, one might suspect that all fish species 
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that are caught by the handline gear would experience an increase in mortality during the 

same year. Data from all species in the complex could then be used to estimate the 

common years of change, resulting in greater efficiency in estimation. Note that all 

species in the complex do not necessarily experience the same time schedule of mortality 

changes. For example, one species may have a restricted range centered on the main 

fishing grounds where the increase in fishing occurred, and another species might have a 

broader distribution occurring on both the main fishing ground and a secondary fishing 

ground where effort has declined; those two species might not show synchronous changes 

in mortality. In addition, the magnitude of changes in mortality will not necessarily be the 

same for all species, as species with low catchability may exhibit a smaller change in 

mortality than species with high catchability. 

In the present work, we sought to model changes in the mean length of several 

species simultaneously so as to estimate period-specific mortality rates and years of 

change. We develop four progressively restrictive and nested models for the estimation 

of mortality when multiple species are considered: (1) trends in total mortality (both the 

timing and magnitude of the change in mortality) are independent for each species; (2) 

the year in which the change in total mortality occurs (hereafter, “change point”) is 

common to all species, but the magnitude of the change is independent; (3) the change 

point is common to all species, and the magnitude of the change in fishing mortality is 

the product of a time and species effect; and (4) both the change point and the magnitude 

of the change in fishing mortality are common to all species. The latter three approaches 

are attractive because they borrow strength from disparate data with common underlying 

trends in mortality that otherwise might not be detected by analyzing each species 
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separately. Additionally, these approaches allow us to distinguish the dynamics that are 

common to all species (i.e., the change points) from those that are not (i.e., the magnitude 

of the change in mortality). We describe our application of the models to three species 

that occur together in Puerto Rican handline catches: Silk Snapper Lutjanus vivanus, 

Blackfin Snapper L. buccanella, and Vermilion Snapper Rhomboplites aurorubens. 

 

3.3. Methods 

3.3.1. Model Development and Model Fitting 

We consider a complex of N species that tend to be caught together and for which 

we suspect the patterns of fishing effort are similar over time. We hold the following 

assumptions for each species considered: 

1. Individual growth follows the von Bertalanffy growth function, with the 

parameters K and L∞ known and constant over time. 

2. There is no individual variability in growth. 

3. Recruitment is constant and continuous over time; or if recruitment fluctuates, it 

does so randomly (i.e., with no time trend). 

4. Total mortality rate Z is constant with age after the age of recruitment (tc) that 

corresponds to Lc. 

These assumptions are discussed by Gedamke and Hoenig (2006) and Then et al. 

(2015a). 

Consider first the simplest case in which a population starts at equilibrium with a 

total instantaneous mortality rate of nZ ,1  and then experiences a second mortality rate 

nZ ,2 , where the first subscript indexes the time period of the respective mortality rate 
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and the second subscript indexes species n = 1, 2, …, N. Generalizing the results of 

Gedamke and Hoenig (2006) by adding a subscript for species, the mean length d years 

after the change point is computed as  
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where )()( dn  is the predicted mean length of animals of species n as a function of time 

d years after the change point; the remaining symbols are as in equation (3.1), with 

subscripts added for time period and species as needed. 

Gedamke and Hoenig (2006) computed the mean length at any time when there 

was an arbitrary number of change points over time. Cardinale et al. (2009) analyzed 

length frequency data from an annual trawl survey conducted for over 100 years, and 

they estimated nine separate total mortality rates (and eight change points). The general 

equation for computing the predicted mean length in each year given a history of 

mortality rates is provided by Gedamke and Hoenig (2006; their Appendix 2). 

 From a time series of mean length observations, the mortality rates and change 

points can be estimated as described by Gedamke and Hoenig (2006). By virtue of the 

central limit theorem, we model the observed mean length ntL ,  of species n in year t = 1, 

2,…,T as a normally distributed random variable with mean nt ,  and variance ntn m ,
2 , 

where ntm ,  is the sample size of observed lengths above Lc in year t for species n. A 
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common variance 2
n  over time is assumed so that the precision of the mean length in 

year t depends on the sample size ntm ,  in that year for species n. Annual means are 

modeled as in equation (3.2) by rewriting the equation in terms of calendar years instead 

of the number of years since a change in mortality occurred or—more generally—as in 

Gedamke and Hoenig (2006; their Appendix 2), assuming more than one change 

point in the time series. 

The log-likelihood ( nlog ) of observing mean length ntL ,  for species n over T 

years is proportional to 
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Maximum likelihood estimates of the mortality rates and change points for species n are 

found numerically by estimating the values of the parameters that maximize the log-

likelihood. The maximum likelihood estimate for the residual variance 
2ˆn  is solved 

analytically, 
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where nt ,̂  is the maximum likelihood estimate of the mean length. 

 

3.3.2. Modifications for Multispecies Estimation 

The total log-likelihood (log Λ) for all N species is simply the sum of the 

individual species’ log-likelihoods, 
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 



N

n
n

1
loglog  . (3.5) 

Assuming that there are I change points, let each species n = 1, 2,…, N have its own 

vector of parameters  ninin DZ ,, , , where niZ ,  is the vector of period-specific total 

mortality rates through time (with i = 1, 2,…, I + 1); and niD ,  is the vector of change 

points in calendar years from mortality rate niZ ,  to niZ ,1  (with i = 1, 2,…, I). We can 

then envision a suite of progressively more restrictive models for the patterns of mortality 

across species: a single-species model (SSM) and three multiple-species models (MSM1, 

MSM2, and MSM3), as described below. 

Single-species model.—In the single-species scenario, what happens to one 

species is not reflected in what happens to other species. For example, fishers may target 

certain species at certain times so that changes in total mortality for one species are 

independent of the changes experienced by another species. In this case, the mortality 

rates ( niZ , ) and change points ( niD , ) are all estimated parameters. Maximizing log Λ 

(equation 3.5) is equivalent to applying the mean length estimator to each species 

independently because there are no parameters in common among species. 

Multispecies model 1: common years of change.—In MSM1, changes in fishing 

effort simultaneously affect all species in the complex being considered; however, the 

magnitudes of the changes in Z are independent. Thus, all species have a common set of 

change points when the mortality rate changed (i.e., ',, nini DD   for all periods i and 

for all pairs of species n and n’). This feature is included in the following two models, 

and we drop the second subscript for the change points in the subsequent text. 
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Multispecies model 2: common years of change with species-specific proportional 

changes in fishing mortality.—In MSM2, all species experience synchronous changes in 

mortality (i.e., common change points as in MSM1), but in addition we employ 

separability to model changes in fishing mortality with temporal and species components. 

The total instantaneous mortality rate niZ ,  is broken down into its components, 

 nnini MFZ  ,, , (3.6) 

where niF ,  is the fishing mortality rate for species n during period i; and nM  is the time-

invariant and age-invariant natural mortality rate for species n. A change in fishing effort 

in the next time period would cause the fishing mortality for a reference species to 

change by a factor δ. Not all species can be expected to experience the same proportional 

change in fishing mortality (e.g., due to different catchability coefficients), so we 

incorporate species-specific effects ( n ). Subsequent mortality rates for species n are 
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
, (3.7) 

where 1,i  is the proportional change in fishing mortality for a reference species n = 1 at 

time iD ; and n  is the multiplicative species effect relative to the reference species for 

all other species n = 2,…, N. 

In MSM2, the following parameters are estimated: the first total mortality rate 

nZ ,1  for all N species; the residual variances 2
n  for each species; the common change 

points niD , ; the proportional changes 1,i  in fishing mortality for the reference species; 

and the species-specific effects n  for all other species in the complex. Successive total 

mortality rates niZ ,  (i > 1) are derived by propagating equation (3.7). The values of nM  
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are obtained externally to the analysis of the mean length data—for example, via the 

methods described by Then et al. (2015b) or Hamel (2015). If there is only one change 

point, MSM2 is equivalent to MSM1. 

Multispecies model 3: common years of change and common proportional 

changes in fishing mortality.—The MSM3 assumes that changes in mortality are 

concurrent among species in the complex, with the same proportional 

changes in fishing mortality for all species. For all species in the complex, we modify 

equation (3.7) such that 

 nniini MFZ  ,,1  , (3.8) 

where i  is the proportional change in fishing mortality at time iD . By dropping the 

species subscript, the proportional change i  is common to all species. 

In MSM3, estimated parameters include the first total mortality rate nZ ,1  for each 

species, the residual variances 2
n  for each species, the common change points iD , and 

the corresponding i ; the values of nM  are again obtained externally. Successive total 

mortality rates niZ ,  (i > 1) are derived by propagating equation (3.8). 

 

3.3.3. Model Complexity and Model Selection 

Knowledge of fishing practices for species in the complex (e.g., spatial extent; 

depth strata fished) can be used to guide the choice of model for estimating total 

mortality rates. If regulations on fishing effort are implemented in different years or if 

there are changes in species targeting, this information may be considered when selecting 
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the appropriate model. In the absence of such knowledge or if an empirical approach is 

desirable, information theory (Akaike’s information criterion corrected for small sample 

sizes [AICc]) can be used to select the best model (Burnham and Anderson 2002). 

Accounting for both parsimony and goodness of fit, the model with the lowest AICc value 

(AICc difference [ΔAICc] = 0) can be chosen as the most plausible model, whereas the 

support for other candidate models decreases with higher AICc values. Model selection 

is conditional on the values of natural mortality (M) that are specified in MSM2 and 

MSM3. Uncertainty in M may be addressed with a sensitivity analysis using alternative 

values. 

By expanding the mean length analysis to incorporate multiple species and 

common parameters between species, the number of estimated parameters is reduced. 

Table 3.1 presents the formulas for the number of estimated parameters given I 

changes in mortality and N species. For example, with three species and one change in 

mortality, a total of 12, 10, 10, and 8 parameters would be estimated by the SSM, MSM1, 

MSM2, and MSM3, respectively. Incorporating an additional change point would 

increase the number of estimated parameters by six in the SSM but only by four in 

MSM1. Adding another species in the analysis would increase the number of estimated 

parameters by four in the SSM but only by three in MSM1. 

 

3.3.4. Application to Deepwater Snappers in the Puerto Rican Handline Fishery 

We demonstrate the application of the multispecies mean length mortality 

estimators by using data for the Silk Snapper, Blackfin Snapper, and Vermilion Snapper 

in the Puerto Rican handline fishery. The distributions of these three species are 
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overlapping in terms of habitat and depth strata (Sylvester 1974; Boardman and Weiler 

1980; Claro et al. 2001). Catches in the deepwater snapper complex have historically 

been dominated by Silk Snapper, followed by Vermilion Snapper and then Blackfin 

Snapper (Claro et al. 2001; SEDAR 2011). Currently, the three species are managed 

together as species complex (Snapper Unit 1) by the Caribbean Fishery Management 

Council (USOFR 2005). The present analysis is intended to be a demonstration of our 

methods and not an assessment of the three stocks. 

 Length data for the three deepwater snapper species from 1983 to 2013 were 

obtained from the commercial handline fishery through the Trip Interview Program (TIP) 

of the National Marine Fisheries Service’s Southeast Fisheries Science Center. Fishing 

occurred at depths of up to 519 m (280 fathoms), with most animals caught above 370 m 

(200 fathoms). The K and L∞ parameters of the von Bertalanffy growth function for each 

species were obtained from the literature (Table 3.2). For Silk Snapper and Vermilion 

Snapper, there was considerable variability in the reported growth parameters. 

Ultimately, we used estimates from the 2011 assessment for Silk Snapper (SEDAR 2011) 

and estimates from Caribbean stocks for Blackfin Snapper and Vermilion Snapper (Table 

3.2). Analyses of sensitivity to the misspecification of von Bertalanffy parameters have 

shown that the mean length mortality estimator is most sensitive to the overestimation or 

underestimation of L∞ (Gedamke and Hoenig 2006). 

The Lc parameter was determined for each species by examining the respective 

length frequency data spanning the entire time period (Figure 3.1). In general, the length 

near the peak of the histogram was chosen. For Silk Snapper, the data showed an 
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increase in the peak over time from 260 mm to 310 mm; in this case, we selected the 

peak of the most recent time period (i.e., 310 mm) as the Lc (Table 3.3). 

The annual mean length of animals above Lc (i.e., L ) and the respective sample 

sizes were then calculated; 7,497 records for Silk Snapper, 1,902 records for Blackfin 

Snapper, and 3,836 records for Vermilion Snapper were available after we removed 

records of lengths smaller than Lc. Sample sizes generally increased through time, 

although there were several intermittent years without length data for a 

given species (Figure 3.2). 

Using the SSM, MSM1, and MSM3, mortality rates were estimated by assuming 

that there was one change point in the time series. For Blackfin Snapper, the total 

mortality rate in the SSM was also estimated by assuming zero change points 

(equilibrium conditions), as there was equal support for zero and one change point. 

Because the data only suggested one change in mortality over time (Figure 3.2), we did 

not implement MSM2 due to redundancy (see Section 3.3.2). For MSM3, estimates of M 

were obtained via the method of Then et al. (2015b) by using von Bertalanffy parameters 

rather than maximum ages because the latter were not available (Table 3.3). 

A sensitivity analysis of MSM3 to the prescribed M was performed. A factorial 

design was implemented to specify M for each of the three species at 60, 80, 100, 120, 

and 140% of the base values in Table 3.3, resulting in a total of 125 factorial 

combinations for all levels in all three species. The percent deviation (%DEV) in the 

estimated total mortality rate from each factorial combination was calculated as  
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Z
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where sensZ  is the estimated total mortality rate in the respective sensitivity run; and baseZ  

is the total mortality rate that was estimated by using the base values of M. 

 

3.4. Results 

3.4.1. Application to Snappers in the Puerto Rican Handline Fishery 

Model fits to the mean length data are shown in Figure 3.2. Total mortality rates 

were first estimated independently for each of the three snapper species under the 

assumption of one change in mortality (i.e., two mortality rates estimated per species) 

with the SSM. For all three species, the data suggested a decrease in total mortality 

during the observed time series (Table 3.4). However, the change points varied widely: 

the year 1996.8 for Silk Snapper, 1985.9 for Blackfin Snapper, and 1997.7 for Vermilion 

Snapper. Change points are estimated in continuous time with the decimal representing 

tenths of a year. 

For Blackfin Snapper, the equilibrium Z in the data was estimated as 0.46 when 

no change point was specified; this value was intermediate to the two mortality rates that 

were estimated with one change point. Using AICc, there was almost equal support for 

the equilibrium model and the one change-point model, but the former produced a slight 

trend in the residual fit. Thus, we proceeded with the analysis for Blackfin Snapper under 

an assumption of one change point.  

Next, total mortality rates were estimated by assuming a common change point 

using MSM1. The estimated mortality rates for Silk Snapper and Vermilion Snapper 

were virtually unchanged, and the estimated common change point in year 1997.5 did not 
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noticeably depart from the change points generated by the SSM for Silk Snapper and 

Vermilion Snapper. For Blackfin Snapper, the first mortality rate 1Z  was estimated 

to be lower and the change point occurred much later in MSM1 than in the SSM. The 

estimated second mortality rate 2Z  for Blackfin Snapper was unchanged between the two 

models. 

Multispecies model 3 estimated an earlier common change point (i.e., 1994.8) 

than was estimated by MSM1. The corresponding common value of   was estimated to 

be 0.52. A decrease in mortality over time was still inferred, but the fit to the data was 

distinctly different from that of the SSM and MSM1 (Figure 3.2). For Silk Snapper and 

Blackfin Snapper, values of 2Z  from MSM3 were virtually unchanged compared 

to those from the SSM and MSM1, whereas values of Z1 varied (Table 3.4). For 

Vermilion Snapper, 1Z  was lower, and a smaller reduction in mortality during 1994 was 

inferred. 

Multispecies model 1 was the best-fitting model among the three, closely 

followed by the SSM (Table 3.5). There was little support for estimating common 

changes in fishing mortality, as the ΔAICc value for MSM3 was more than 10 units. 

Between MSM1 and SSM, there was not much support for estimating additional 

parameters (i.e., species-specific change points).  

As an indicator of model certainty and the benefit of using multiple species to 

infer trends in mortality, we examined the asymptotic SE of the change point in the 

models (Table 3.4). For MSM1, the asymptotic SE of the change point was 0.84, 

compared to 2.26 for MSM3 and a mean SE of 1.77 from the three species-specific 
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change points in the SSM. The likelihood profile for the change point was also used to 

examine the contribution of the data from each species to the goodness of fit in MSM1 

(Figure 3.3). The likelihood profile indicated that the data for Vermilion Snapper 

contributed the most information for estimating the change point. Together, these 

diagnostics suggested that the mean length data for the three species were best modeled 

by a common change point and independent trends in mortality. 

 

3.4.2. Sensitivity Analysis of Natural Mortality Specification 

The %DEV values of the estimated total mortality rates for the three snapper 

species were all less than 15%, indicating that the estimates in MSM3 were not 

considerably affected by the specification of M (Table 3.6). There was no consistent trend 

in the estimated Z across the range of M values (Figure 3.4). For Silk Snapper and 

Blackfin Snapper, there was little to no trend in the estimation of Z2 in the sensitivity 

analysis, whereas more variability and a slight trend were observed in 1Z . For Vermilion 

Snapper, both 1Z  and 2Z  were generally more variable with some trend given M, 

although the trends were in opposite directions for the two total mortality rates (Figure 

3.4). In comparison with the SSM and MSM1, the ΔAICc values obtained from the 

sensitivity analysis for MSM3 were all greater than 6.2 and therefore did not affect model 

selection. 

 

3.5. Discussion 

There is interest in developing methods for multispecies assessments, especially 

for ensembles of data-rich and data-poor stocks or species (Punt et al. 2011). Here, we 
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have demonstrated the application of the mean length mortality estimator in a 

multispecies context. 

Mean length models that incorporate common trends in mortality can use data for 

well-sampled species to inform trends in species with fewer observations. This can be 

accomplished because sample sizes are incorporated into the likelihood function to give 

more weight to the trends in species with more observations. In our example, the length 

data for Vermilion Snapper were valuable for estimating the change point. The sample 

sizes for Vermilion Snapper were relatively large and consistent for the duration of the 

time series, whereas the observations of Blackfin Snapper were historically sparser and 

the sample sizes for Silk Snapper were low before the year 2000. 

When a common change point was estimated for all three snapper species, the 

trends in mortality for Blackfin Snapper and, to a lesser extent for Silk Snapper, seem to 

have “borrowed strength” (Punt et al. 2011) from those for Vermilion Snapper. This 

behavior can be diagnosed with the likelihood profile for the change point in MSM1. As 

a result, there was higher confidence in the timing of the common change point than in 

the timing of the individual change points estimated by the SSM. More credibility can be 

given for the change point in Blackfin Snapper to occur synchronously with those of the 

other two species in MSM1. The SSM did not considerably improve the goodness of fit 

relative to MSM1 because the estimated mortality rates for Silk Snapper and Vermilion 

Snapper and the most recent mortality rate for Blackfin Snapper were very similar 

between the two models. This was reflected in the ΔAICc, which did not indicate more 

support for the estimation of separate change points. 
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The data did not provide support for modeling synchronous changes in fishing 

mortality with MSM3, and the most noticeable change in model fit was observed with the 

Vermilion Snapper data. From the SSM and MSM1, total mortality was inferred to be 

much higher in Vermilion Snapper than in Silk Snapper and Blackfin Snapper, which 

implies that the changes in total mortality occurred with different proportional changes 

in fishing mortality in Vermilion Snapper relative to the other two species since the M 

values for all three species were assumed to be very similar. Estimating a common 

proportional change in fishing mortality altered the goodness of fit to the data. There was 

not enough information (i.e., more than one change point) in the data to explicitly model 

species-specific effects with MSM2. Thus, MSM1 provided the empirically best fit to the 

data in our application. 

The sensitivity analysis of MSM3 in our snapper example showed that the range 

in Z-estimates was smaller than that specified for M. This behavior occurs because the 

model fit is determined by Z, and any overestimation of M is expected to be compensated 

for by an underestimation of fishing mortality and vice versa. Since values of M are 

obtained externally to the models and can vary widely depending on the empirical 

method used to derive those values (Hamel 2015), we recommend sensitivity analyses for 

applications of MSM2 or MSM3 and any possible effects on model selection. 

For Vermilion Snapper, there was some uncertainty in the rather large magnitude 

of the estimated mortality rates. Examination of the length frequency histogram showed a 

truncated length structure, which could also arise from the overestimation of L∞ specified 

in the model or from size-selective fishing that did not catch large animals. Identifying 
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the cause of the truncation will require more information on the life history of the stock. 

As long as they are time invariant, these factors should not affect the fact that the 

mortality rate decreased (Gedamke and Hoenig 2006). However, knowledge of the 

absolute magnitude of mortality is still desirable for management purposes. This case 

study highlights the importance of choosing the appropriate life history parameters for 

mean length mortality estimators and for data-limited assessment methods in general. In 

our study, the growth function for Vermilion Snapper was obtained from a different 

stock. A high-quality growth study of the Vermilion Snapper stock in Puerto Rican 

waters would have conferred greater certainty of the causes underlying the large total 

mortality estimates in our analysis. 

The advantage of using the mean length mortality estimator on a multispecies 

basis is to identify concomitant trends in mortality. The work we have presented can be 

further modified to account for particular exploitation patterns. For example, for a given 

species complex, certain change points can be synchronous while others can remain 

independent if there is information available to guide that model specification. A switch 

in the fishery’s target species or a regulation to reduce total effort in the fishery may 

produce a synchronous change in mortality, whereas the opening of a new fishery may 

elicit an independent change in mortality. The general framework presented here for 

expanding the mean length mortality estimator to multiple species by using models of 

varying complexity and synchrony in mortality trends allows for improved inference for 

one species within the context of companion species in a complex, especially if the 

companion species are better sampled and studied. 
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3.5.1. Selection of the Minimum Length of Vulnerability to the Fishery 

The Beverton–Holt nonequilibrium method presented here assume time-invariant, 

knife-edge selection in the observed length data. However, selectivity is more likely to be 

logistic, with partially selected small animals in the length frequency 

distribution. To conform to the assumption of knife-edge selection in the model, a value 

of Lc is chosen for use in calculating the L  of the truncated distribution. In a stock that 

is fully exploited or that has a high M/K ratio, the length distribution above Lc is 

monotonically descending (Figure 5.13 of Pauly 1984; Figure 7 of Hordyk et al. 2015). 

Thus, the choice of modal length for Lc would be appropriate, with lengths smaller than 

the modal length assumed to be incompletely selected. However, a stock that is lightly 

exploited and that has a low M/K ratio will have a modal length near L∞, with fully 

selected animals comprising a significant portion of the ascending limb to the left of the 

mode. In this scenario, the modal length would not be suitable if the stock is exploited 

over a large size range; an Lc value smaller than the modal length would be more 

appropriate. Based on the modal length relative to L∞ over the time series, the modal 

length was used as the Lc, assuming that the length distributions for all three deepwater 

snapper species reflected fully exploited stocks (Figure 3.1). 

For Silk Snapper, an increase in the modal length was detected from the annual 

length frequency distributions in the mid-2000s, whereas the modal lengths for Blackfin 

Snapper and Vermilion Snapper were more stable over time (Figure 3.5). This shift in 

selectivity may have resulted from the temporary 16-in (406.4 mm) minimum size limit 

implemented in 2004–2006 (SEDAR 2011). The large modal lengths for Silk Snapper in 

2005 and 2006 reflect this management regulation. A smaller shift in selectivity appeared 
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to have persisted after the regulation was repealed. The mortality analysis presented here 

parameterized Lc to reflect the most recent selectivity pattern for Silk Snapper. The size 

limit regulation did not appear to affect the mortality estimation procedure, as 

no change in mortality was inferred to have occurred when the regulation was in effect. 

Nonetheless, to examine the implications of a change in modal length for Silk 

Snapper, we analyzed the sensitivity of the mortality estimates to the chosen value of Lc 

by using the SSM under the assumption of one change point (Figure 3.6). The early 

mortality rate Z1 fluctuated widely because the high values of Lc compared to the modal 

lengths early in the time series led to the truncation of large proportions of the length 

data. On the other hand, the recent mortality rate Z2 was relatively stable when values 

near the recent modal length were used for Lc. For a situation in which selectivity has 

changed for a stock, it may be preferable to configure the mean length mortality estimator 

to reflect the most recent conditions so as to estimate current exploitation while allowing 

for greater uncertainty when inferring past trends in mortality. 

 

3.5.2. Other Assumptions and Considerations 

Improvements in fishing technology may also increase the spatial extent of 

exploitation of fish stocks. With serial depletion of coastal stocks, fishing effort generally 

moves further offshore over time as inshore areas become depleted. Changes in mean 

length could be a result of changes in targeting rather than changes in mortality. The 

ability to detect serial depletion requires high-resolution spatiotemporal data (Walters 

2003; Cardinale et al. 2011). However, data on the location of catch were generally 
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unavailable in the TIP database (SEDAR 2009). If a fishery has expanded spatially over 

time, one could restrict the mean length analysis to areas fished within certain depth 

strata or spatial strata if such data are available. If the stock actually consists of several 

distinct units with little interchange, then separate analyses would allow for estimation of 

the mortality experienced within each stratum. However, if individual fish inhabit 

different depths as they grow, then the observed size range in the strata would also reflect 

movement with age in addition to mortality. In such a scenario, effective management 

of the entire resource would have to rely on expert judgment to determine the extent of 

the spatial expansion and appropriate management measures. Analyses of additional data 

types, such as CPUE, can provide further insight on serial depletion (Cardinale et al. 

2011). 

 Since the models we have examined assume that recruitment is constant, large 

pulses of recruitment can confound estimates of mortality. Although changes in mean 

length alone cannot differentiate between a recruitment pulse and a change in mortality, 

the length frequency distribution may provide more information. A large recruitment 

cohort will progress through the length structure of the catch over time; this cohort would 

cause the mean length to temporarily decrease. On the other hand, if there is a poor 

recruitment year-class, a gap in the size distribution may be observed and will also 

progress over time. It is important to ensure that changes in mortality are not inferred 

from the model when large or small year-classes are concurrently observed. Variability in 

recruitment may elicit small trends in mean length (Gedamke and Hoenig 2006), but 

model selection using AICc provides the balance between detection of long-term changes 
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in mortality and spurious changes in mortality due to overfitting; the latter may be 

confounded with recruitment. 
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3.7. Tables 

Table 3.1. Number of estimated parameters for the single-species model (SSM) and 
multispecies models (MSM1, MSM2, and MSM3), where N is the number of species, I is 
the number of change points (years during which a change in total mortality occurred), 
and I + 1 is the number of estimated mortality rates. Values include the estimated residual 
variance for each species. 
 SSM MSM1 MSM2 MSM3 
General formula 2N(I+1) N+I+N(I+1) 3N+2I-1 2(N+I) 
One change point 4N 3N+1 3N+1 2N+2 
Additional parameters with:     
Additional species 4 3 3 2 
Additional change point 2N N+1 2 2 

 

Table 3.2. Von Bertalanffy growth parameters (K = Brody growth coefficient; L∞ = 
asymptotic length) for the three deepwater snapper species. 
Species K L∞ (mm) Source 
Silk Snapper 0.10 794 SEDAR (2011) 
Blackfin Snapper 0.10 635 Espinosa and Pozo (1982) 
Vermilion Snapper 0.13 532 Manickchand-Heileman and 

Phillip (1999) 
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Table 3.3. Estimates of the length at full fishery selectivity (Lc), which was used to 
calculate mean lengths and natural mortality rates (M) for the three deepwater snapper 
species. 
Species Lc (mm) M 
Silk Snapper 310 0.18 
Blackfin Snapper 250 0.19 
Vermilion Snapper 220 0.25 

 

Table 3.4. Estimates (SE in parentheses) of the total instantaneous mortality rate (Z) and 
change points (years during which a change in total mortality occurred; Z1 = total 
mortality before the change point; Z2 = total mortality after the change point) from 
application of the single-species model (SSM) and multispecies models 1 and 3 (MSM1 
and MSM3) for the three deepwater snapper species. The proportional change in fishing 
mortality (i.e., δ) for MSM3 was estimated as 0.52 (SE = 0.08). 
Parameter SSM MSM1 MSM3 
Silk Snapper    
Z1 0.63 (0.08) 0.62 (0.07) 0.76 (0.09) 
Z2 0.49 (0.02) 0.49 (0.02) 0.49 (0.02) 
Change point 1996.8 (2.93) 1997.5 (0.81) 1994.8 (2.26) 

 
Blackfin Snapper    
Z1 0.77 (0.28) 0.50 (0.05) 0.60 (0.06) 
Z2 0.43 (0.03) 0.43 (0.03) 0.41 (0.03) 
Change point 1985.9 (1.66) 1997.5 (0.81) 1994.8 (2.26) 

 
Vermilion Snapper    
Z1 1.89 (0.27) 1.90 (0.27) 1.39 (0.16) 
Z2 0.60 (0.06) 0.61 (0.06) 0.85 (0.09) 
Change point 1997.7 (0.74) 1997.5 (0.81) 1994.8 (2.26) 

 

Table 3.5. Difference in Akaike’s information criterion corrected for small sample sizes 
(ΔAICc) from application of the single-species model (SSM) and multispecies models 1 
and 3 (MSM1 and MSM3) to the three deepwater snapper species. 
Model AICc Parameters 
Multispecies Model 1 0.0 10 
Single Species Model 2.2 12 
Multispecies Model 3 11.9 8 
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Table 3.6. Range of percent deviation (%DEV; min = minimum; max = maximum) in 
estimates of total mortality (Z1 = total mortality before the change point; Z2 = total 
mortality after the change point) from the sensitivity analysis of natural mortality 
specification in Multispecies model 3 as applied to the three deepwater snapper species. 
 Silk Snapper  

%DEV 
Blackfin Snapper 

%DEV 
Vermilion Snapper 

%DEV 
Parameter Min. Max. Min. Max. Min. Max. 
Z1 -10.9 13.8 -6.9 7.3 -6.3 10.7 
Z2 -1.9 1.6 -2.2 2.7 -13.3 10.9 
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3.8. Figures 

 

 

Figure 3.1. Length frequency histograms for the three deepwater snapper species 
captured in the Puerto Rican handline fishery from 1983 to 2013. Dashed vertical lines 
indicate the length of full selectivity (Lc), above which the annual mean lengths were 
calculated for the multispecies models. 
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Figure 3.2. Observed (points and thin lines) and predicted mean lengths (bold lines) from 
the Single Species Model (SSM), Multispecies Model 1 (MSM1), and Multispecies 
Model 3 (MSM3) for Silk Snapper, Blackfin Snapper, and Vermilion Snapper. The grey 
shaded region indicates the 95% confidence interval of the predicted mean length from 
Multispecies Model 1 using the derived asymptotic SEs. Concentric circles indicate the 
annual sample size of observed lengths (small circles = 100-249, medium circles = 250-
499, large circles = 500 or more). No circles were drawn for sample sizes less than 100. 
The observed mean length in 1988 for Silk Snapper (514 mm from 29 samples) is not 
shown but was used in the analysis. 
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Figure 3.3. Likelihood profile for the change point (year during which the change in 
mortality occurred) from Multispecies Model 1 in the application to the Puerto Rican 
deepwater snapper complex. 
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Figure 3.4. Estimates of the total mortality rate (Z) for the three deepwater snapper 
species based on the sensitivity analysis of Multispecies Model 3 to different specified 
values of natural mortality (M). The x-axis is jittered to enhance visibility of the Z-values 
obtained in each “bin” of M. 
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Figure 3.5. Modal lengths from annual length frequency distributions for the three Puerto 
Rican deepwater snapper species. The dashed horizontal line in each panel shows the 
length of full fishery selectivity (Lc), which was used for mortality estimation. 
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Figure 3.6. Sensitivity analysis of the estimated total mortality rates ( 1Z  = total mortality 
before the change point; 2Z  = total mortality after the change point) in Silk Snapper 
when different lengths at full fishery selectivity (Lc) are used.
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Chapter 4: Estimating Total Mortality Rates from Mean 
Lengths and Catch Rates in Nonequilibrium Situations 

4.1. Abstract 

A series of estimates of the total mortality rate (Z) can be obtained by using the 

Beverton–Holt nonequilibrium-based approach of Gedamke and Hoenig (2006) on 

observations of population mean length over time (ML model). In contrast, only relative 

mortality rates (not absolute values) can be obtained from a time series of catch rates. We 

derived the transitional behavior of the catch rate following a change in total mortality in 

the population. From this derivation, we developed a new method to estimate Z that 

utilizes both mean lengths and catch rates (MLCR model). Both the ML model and the 

MLCR model assume constant recruitment in the population. We used a simulation study 

to test performance when recruitment is variable. Simulations over various scenarios of Z 

and recruitment variability showed that there may be correlated residuals in the mean 

lengths and catch rates arising from fluctuations in recruitment. However, the root mean 

square errors of the Z estimates and the change point (i.e., the year when mortality 

changed) were smaller in the MLCR model than in the ML model, indicating that the 

MLCR model can better account for variable recruitment. Both methods were then 

applied to Mutton Snapper Lutjanus analis in Puerto Rico to illustrate their potential 

application to assess data-limited stocks. The ML model estimated an increase in Z, but 

the MLCR model also estimated a subsequent reduction in Z when the catch rate data 

were considered.  
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4.2. Introduction 

Beverton and Holt (1956, 1957) developed an approach to estimating the 

instantaneous total mortality rate (Z; year–1) from the mean length in the population and 

information on growth rates and selectivity. The estimator is based on the assumptions 

that the population is in equilibrium and that recruitment is constant. Despite these 

stringent assumptions, the estimator has found widespread usage because of its minimal 

data requirements. Gedamke and Hoenig (2006) derived the transitional behavior of the 

mean length statistic following stepwise changes in mortality rate over time and 

developed an estimator for period-specific mortality rates. The required information for 

applying this extension of the Beverton and Holt equation to nonequilibrium situations 

includes the von Bertalanffy growth parameters (L∞ and K), the length of first capture (Lc; 

the smallest size at which animals are fully vulnerable to the fishery and sampling gear), 

and a time series of mean length ( L ) of animals above the Lc. The methodology 

and applications to Goosefish Lophius americanus and to Barndoor Skate Dipturus laevis 

were described by Gedamke and Hoenig (2006) and Gedamke et al. (2008), respectively. 

This approach can be generalized to integrate additional data types when they are 

available. For example, Gedamke et al. (2008) relaxed the assumption of constant 

recruitment by incorporating an index of recruitment in the model, and Then et al. (in 

press) incorporated information on fishing effort. Here, we develop a model to 

incorporate a time series of catch rates (indices of abundance) into the mean length 

estimator to better detect changes in mortality and to better estimate Z compared to using 

the mean length-only estimator. 
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In the absence of information on recruitment, the mortality estimators using only 

mean lengths (ML model) and mean lengths plus catch rates (MLCR model) assume 

constant recruitment over time. Exploited fish populations can exhibit high interannual 

variability in recruitment, and while Gedamke and Hoenig (2006) demonstrated the effect 

of a weak or failed year-class on the mean length statistic over time, the effects of 

variable recruitment on estimating mortality have not been examined. Here, we evaluate 

via simulation the effect of variable recruitment on mortality estimation in the two 

models, which assume constant recruitment. We focus on recruitment because it is often 

identified as the largest source of variability in fish populations (Thorson et al. 2014). 

In this study, we derive the transitional behavior of catch rates expressed in terms 

of either abundance (number per unit effort [NPUE]) or biomass (weight per unit effort 

[WPUE]) to develop the MLCR model. Next, we evaluate the effect of variable 

recruitment on the performance of the ML model and the MLCR model in estimating the 

parameters of interest: Z and the years when Z changed. In addition to standard 

performance metrics of bias and root mean square error, we examine correlations in 

paired residuals of mean length and catch rate and runs in the sign (positive or negative) 

of residuals. Finally, we apply both the ML model and the MLCR model to estimate 

historical values of Z for Mutton Snapper Lutjanus analis in Puerto Rico. 

 

4.3. Methods 

4.3.1. Relationship between the Catch Rate and Mortality Rate 

Consider what information about Z can be obtained from catch rates in the 

simplest scenario when we assume equilibrium conditions, including constant recruitment 
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(R) and a constant catchability coefficient (q). We assume that the abundance-based catch 

rate, NPUE, is a function of the probability of an individual being captured by 1 unit of 

effort (q) and the abundance N: 

 qNNPUE  . (4.1) 

Under equilibrium, abundance will be related to total mortality as follows (Ricker 1975): 

 
Z
RdtttZRN ctc

 


)](exp[ , (4.2) 

where )](exp[ cttZR   is the abundance at age t; and tc is the age at which animals are 

fully selected by the fishing gear, corresponding to length Lc via the von Bertalanffy 

growth equation. With integration, parameter tc drops out of the equation and is not used 

here. We substitute equation (4.2) into equation (4.1), 

 
Z
q

Z
qRNPUE

~
 , (4.3) 

where q~  is a scaling parameter that is the product of q and R. Two equilibrium catch 

rates, NPUE1 and NPUE2, corresponding to time periods with mortality rates 1Z  and 2Z , 

can provide estimates of the relative change in Z if q~  is assumed to be constant. Thus, 
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imply that the ratio of NPUE is an estimate of the ratio of mortality rates, 
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In real-world situations, obtaining reliable estimates of both q and R is extremely rare; 

therefore, it is unlikely that absolute values of Z can be estimated from catch rates alone. 

However, there is information on relative mortality rates, and we can incorporate this 

information into the length-based nonequilibrium mortality estimator of Gedamke and 

Hoenig (2006). 

 In a nonequilibrium framework, overall abundance and the corresponding NPUE 

will not respond instantaneously to changes in Z. Equation (4.3) will only reflect the new 

mortality rate when enough time has passed for the new equilibrium age structure to be 

established. Assume that d years have elapsed since a change in mortality from 1Z  to 2Z . 

The nonequilibrium NPUE will be equal to 

 ),,(~~),,( 2121 dZZNqdZZNPUE  , (4.6) 

where the NPUE and N~  are now functions of the mortality rates and the time elapsed 

since the change in mortality. Using the derivations from Gedamke and Hoenig (2006), 

the relative abundance ),,(~
21 dZZN , after dividing out recruitment R, has two 

components and can be expressed as 

         







dt

c

dt

t
c

c

c

c

dtdttZdZdtttZdZZN 12221 expexpexp),,(~ . (4.7) 

In equation (4.7), the first integral represents fish recruited after the change in mortality; 

these animals have only experienced mortality rate 2Z  and are of ages tc to tc + d. The 

second integral represents fish that were recruited before the change in mortality; these 

fish have experienced both the old ( 1Z ) and the new ( 2Z ) mortality rates and are of ages 

tc + d and older. The implications of equation (4.7) can be envisioned by considering 
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the response of NPUE when Z hypothetically doubles (Figure 4.1). The NPUE drops 

rapidly after the change in mortality rate and then approaches the new asymptotic value, 

which is half of the starting value. 

As shown by Gedamke and Hoenig (2006, their Appendix 1), after integration and 

simplification, equation (4.7) becomes 

    
1

2

2

2
21

expexp1),,(~
Z

dZ
Z

dZdZZN 



 . (4.8) 

Equations (4.7) and (4.8) can then be modified to incorporate any number of changes in 

mortality (see Gedamke and Hoenig 2006: their equation A.2.2). The corresponding 

derivation for the behavior of WPUE is provided in Appendix B. 

 

4.3.2. Integrating Mean Lengths and Catch Rates in a Model 

Using the transitional behavior of the mean length and catch rate, we construct a 

likelihood-based model to estimate Z and change points (the calendar years when the 

mortality rate changed) from a time series of mean lengths and catch rates. The 

assumptions of the MLCR model include those in the ML estimator as described by 

Gedamke and Hoenig (2006), but additionally it is assumed that the NPUE and WPUE 

are proportional to population abundance and biomass, respectively, by a scaling 

coefficient q~ . Given k changes in mortality, maximum likelihood estimation is used to 

estimate the vector of k + 1 total mortality rates (denoted by  121 ,...,,  kZZZZ ) and the 

vector of k change points (denoted by  kDDDD ,...,, 21 ) that best predict the observed 

data. We construct the joint log-likelihood function, ),(ln DZ , of the MLCR model to 

be proportional to 
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 ),(ln),(ln),(ln DZDZDZ IL   , (4.9) 

where ),(ln DZL  and ),(ln DZI  are the log-likelihoods of the mean lengths and catch 

rates (either in NPUE or WPUE), respectively. Assuming a normal distribution for the 

annual observed mean lengths (Gedamke and Hoenig 2006), the log-likelihood 

of the mean lengths is proportional to 

 
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where y indexes year; Ln  is the number of years with mean length observations; yL  and 

yL̂  are the observed and predicted mean lengths, respectively, of animals larger than Lc 

in year y; ym  is the sample size of observed lengths above Lc in year y; and 2
L  is the 

variance of lengths. The log-likelihood of the catch rates, assuming either a normal or 

lognormal distribution, is proportional to 
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or 
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respectively, where In  is the number of years with catch rate observations; yI  and yÎ  are 

the observed and predicted catch rates, respectively, in year y; and 2
I  is the catch rate 

variance in either normal (equation 4.11a) or log-transformed (equation 4.11b) space. 
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Equation (4.9) can be maximized to produce the asymptotically most efficient 

(maximum likelihood) estimates with SEs and confidence intervals generated for the 

estimated mortality rates ( Ẑ ) and change points ( D̂ ), where the circumflex (^) 

denotes an estimate. A grid search over change points is recommended to identify and 

avoid local extrema in the log-likelihood function. The required life history information 

for the MLCR model includes the von Bertalanffy parameters L∞ and K when NPUE is 

modeled, whereas the allometric exponent b from the length–weight relationship is also 

required when WPUE is modeled (Appendix B). Compared to the ML model with the 

same number of change points, two additional parameters are estimated for the MLCR 

model: the catch rate scaling coefficient ( q~ ) and the catch rate SD ( I ). Different 

numbers of change points can be specified, with model selection procedures used to 

identify the best-fitting model (Burnham and Anderson 2002). In this study, we use 

values of Akaike’s information criterion with correction for small sample sizes (AICc) 

and identify the best-fitting model as the one having the smallest value (i.e., Akaike 

difference [ΔAICc] = 0), with less support for models with larger AICc values. 

 

4.3.3. Simulation Study of the Mortality Estimators 

Effect of variable recruitment on the mean length and catch rate.—To illustrate 

the dynamics of the mean length and catch rate relative to changes in recruitment, 

consider an age-structured population in which recruitment varies stochastically 

with a constant mean and variance, while Z is constant (Figure 4.2). During periods of 

poor recruitment relative to the mean, the mean length increases and the catch rate 

decreases as fewer small animals recruit to the fishery. This pattern produces positive and 
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negative residuals in the mean lengths and catch indices, respectively, from values 

predicted under constant recruitment. Similarly, the patterns reverse in periods of 

relatively good recruitment. We observe two general patterns in the residuals of mean 

lengths and catch rates. First, variable recruitment produces opposing effects in the 

residuals of the two data types, creating a negative correlation between the paired 

residuals. Second, the trends in the residuals can persist as the relative strength of a 

cohort progresses through the age structure of the population over time. 

Simulation design.—To examine the implications of using models that assume 

constant recruitment, we implemented a simulation study with variable recruitment in the 

population while meeting the other assumptions. The goals of the simulation were to (1) 

compare the performance of the MLCR mortality estimator relative to that of the ML 

estimator, (2) compare the performance of both models with variable recruitment in the 

population, and (3) provide guidance on interpreting the behavior of both models under 

variable recruitment.  

In the simulation model, an age-structured population was constructed, 
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where ytN ,  is the abundance at age t in year y; yR  is the recruitment of animals of age tc 

in year y; 1yZ  is the instantaneous total mortality rate in year y – 1; and tmax is the 

maximum age. Recruitment followed a lognormal distribution, 

 )5.0exp( 2
RRyR   , (4.13) 

where ),0(~ 2
RR N   are normally distributed deviations in log space. The expected 

median recruitment was equal to 1.0 since the magnitude was not relevant in the 
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simulation. To simulate the continuous recruitment assumed in the models, monthly 

cohorts were created with monthly time steps. Recruitment within each calendar year was 

held constant. 

The population was projected for 20 years. A factorial design for the simulation 

was created across four values of interannual recruitment variability (σR) and four 

mortality scenarios (A–D), with a stepwise change in mortality at the beginning of year 

11 (Table 4.1). The mean length ( yL ) and abundance-based catch rate (NPUEy) in year y 

were calculated as 

 Lt
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where ),0(~ 2
LL N   and ),0(~ 2

II N   are normally distributed deviations in mean 

length and NPUE, respectively; and Lt is the length of an animal at age t following a von 

Bertalanffy growth function and is calculated as  )](exp[1 0ttKLLt   . The mean 

length and catch rate were observed at the beginning of each year. For each factorial 

combination, 10,000 stochastic time series of mean lengths and catch rates were 

generated. The values of the life history parameters, scaling coefficient, and SD 

parameters for the simulation are defined in Table 4.1, with growth parameters partly 

based on a Mutton Snapper stock. 

The two mortality rates and single change point were then estimated by using 

only mean lengths (ML model) or by using both mean lengths and catch rates (MLCR 
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model). In each factorial combination, the percent bias (%Bias) and percent root mean 

square error (%RMSE) for these parameters were calculated for both models as 

 100
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XXBias , (4.16) 
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where X is the true value of the parameter of interest, iX̂  is the estimate in the i-th 

simulation, and X̂  is the mean of the estimates from simulations i = 1, 2,…, 10,000. 

Pearson’s product-moment correlation of paired mean length and NPUE residuals 

in the MLCR model was calculated in each factorial combination. Two sets of residuals 

were examined: (1) the difference between the simulated value and the value expected 

under constant recruitment with the true mortality rate (true residual); and (2) the 

difference between the simulated value and the value predicted in the application of the 

MLCR model (fitted-MLCR residual). 

To analyze the trends in residuals, we calculated the mean of the longest run of 

positive and negative residuals of the mean lengths and catch rates from the 10,000 time 

series in each factorial combination. For both data types, we calculated the true residual 

and the fitted-MLCR residual. For the mean lengths, we also calculated a third type of 

residual from the difference between observed values and the values predicted 

by the ML model (fitted-ML residual). 

 

4.3.4. Application to the Mutton Snapper Pot Fishery in Puerto Rico 
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The Mutton Snapper is one of the more important commercially caught fishes in 

Puerto Rico, yet it is a data-limited stock with unknown stock status (SEDAR 2007). 

Annual mean lengths (1983–2006) of Mutton Snapper larger than 30 cm (i.e., the 

assumed length of full vulnerability, Lc) were calculated. Standardized WPUEs (1990–

2006) were obtained from Cummings (2007) and were used to index biomass trends 

(SEDAR 2007). Mortality rates were estimated using the ML and MLCR models 

implemented in AD Model Builder (Fournier et al. 2012). Life history values for the 

analyses were obtained from Burton (2002): L∞ was 86.9 cm, K was 0.16 year–1, and b 

was 3.05. 

Sensitivity of the MLCR model to growth parameters was evaluated by refitting 

the model with alternative values of L∞, K, and b. The parameters were sampled 100 

times from a multivariate normal distribution with the means from the base analysis. The 

covariance matrix was created, assuming coefficients of variation (CVs) of 0.15, 0.04, 

and 0.0098, respectively, based on the estimated SEs reported by Burton (2002). The von 

Bertalanffy parameters L∞  and K were sampled assuming a correlation of –0.90, while 

both were independent of b. 

 

4.4. Results 

4.4.1. Simulation Study of the Mortality Estimators 

The bias in estimates of Z and the change point was generally small for both the 

ML model and the MLCR model in all factorial combinations. The %Bias metric was 

less than 10% in almost all cases, although it increased with increasing recruitment 
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variability (Figure 4.3). For most factorial combinations in the simulation, both the ML 

model and the MLCR model produced a positive bias in the mortality estimates. This 

result was consistent with the findings in previous simulation studies of the Beverton–

Holt equation (Then et al. 2015), although the positive bias was less likely to occur when 

recruitment variability was highest ( R  = 1.0). 

Compared to the ML model, the MLCR model generally produced less-biased 

estimates of the higher mortality rate (i.e., 1Z  when mortality decreased or 2Z  when 

mortality increased). The %Bias in the estimate of the change point and the difference in 

bias between the ML model and MLCR model were small (all < 2.0%). The estimates 

from the MLCR model also had a %RMSE that was equal to or lower than those from the 

ML model for all parameters in all factorial combinations, indicating higher precision 

when using the MLCR model (Figure 4.4). 

When the MLCR model was used to estimate Z, the correlation between paired 

residuals of mean length and NPUE was negative (Figure 4.5). The true residuals were 

uncorrelated when there was no recruitment variability ( R  = 0.0). However, the 

fitted-MLCR residuals showed a slight negative correlation coefficient of approximately 

–0.05 even when there was no recruitment variability. With increasing recruitment 

variability, the correlation coefficient of fitted-MLCR residuals ranged from –0.2 to –0.6, 

with the most extreme correlation value observed when recruitment variability was 

highest. In all cases, the fitted-MLCR residuals had stronger correlations than the true 

residuals. 

The magnitude of the largest run of positive or negative residuals in the mean 

lengths and catch rates increased as recruitment variability increased (Figure 4.6). When 
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there was no recruitment variability ( R  = 0.0), the mean largest run in the true residual 

for mean lengths and NPUE was approximately 4.6. The mean largest run in the true 

residual increased to as much as 6.0 for mean length and as high as 8.9 for NPUE with 

high recruitment variability. In all recruitment and mortality scenarios, residuals from the 

both the ML model and the MLCR model showed shorter runs than the true residuals. For 

the fitted-MLCR residuals, the mean largest run was as high as 5.2 in mean length and 

6.2 in NPUE with high recruitment variability. For the mean length, the fitted-ML 

residual had shorter runs than the fitted-MLCR residual of the corresponding scenarios. 

 

4.4.2. Application to the Mutton Snapper Pot Fishery in Puerto Rico 

Time-specific Z was estimated from mean lengths by using the ML model (Figure 

4.7). With one change point in the mortality rate over time, mortality was estimated to 

have increased from 1Ẑ  = 0.51 year–1 to 2Ẑ  = 1.00 year–1, with the change point 1D̂  at 

1992.7 (change points are estimated in continuous time, with the decimal representing 

tenths of a year). With two change points, mortality increased from 1Ẑ  = 0.51 year–1 to 

2Ẑ  = 1.25 year–1 and subsequently decreased to 3Ẑ  = 0.79 year–1, with change points of 

1D̂  = 1993.3 and 2D̂  = 1998.9, respectively. There was strong support for the one-change 

model over the two-change model, as the AICc value increased by 2.3 units for the latter 

model with the additional change point (Table 4.2). 

Next, the MLCR model was used to estimate Z from mean lengths and WPUEs 

(Figure 4.8). Assuming one change in mortality, Z was estimated to have increased from 

1Ẑ = 0.51 year–1 to 2Ẑ  = 0.81 year–1 in 1987 (Table 4.3). An examination of the predicted 
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and observed WPUE values showed a clear pattern to the residuals, suggesting that the 

one-change model did not fit the data well (Figure 4.8). The model was reformulated to 

include a second change in mortality. In the two-change model, mortality was estimated 

to have increased from 1Ẑ  = 0.51 year–1 to 2Ẑ  = 1.19 year–1 with 1D̂  = 1987.3, followed 

by a reduction to 3Ẑ  = 0.61 year–1 with 2D̂  = 1997. The two-change model was the better 

fit to the mean lengths and catch rates, with the AICc value reduced by 22.8 units despite 

the need to estimate an additional mortality rate and change point. 

The sensitivity analysis of growth parameters was performed for the MLCR 

model with two change points. Model estimates were all highly correlated with L∞ 

(positively) and K (negatively). The magnitude of the correlation between L∞ and model 

estimates was greater than 0.85 in all cases, whereas there was little correlation 

(magnitude all less than 0.05) between b and the model estimates. The CV of the estimate 

of the most recent mortality rate ( 3Z ) was 0.27 (Figure 4.9). 

 

4.5. Discussion 

4.5.1. Simulation Study of the Mortality Estimators 

In the simulation, the %RMSE for 1Z  was similar between the ML model and the 

MLCR model. The data (mean lengths and catch rates) available to estimate 1Z  were in 

equilibrium in our simulation, and the model did not need to account for the transitory 

behavior of the data that would occur after a change in mortality. This is apparent 

because the %RMSE was larger for estimating the mortality rate that followed the change 

point (i.e., 2Z ). For the change point, the %RMSE was larger when the magnitude of the 

change in mortality was small (mortality scenarios B and C). In such situations, the 
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changes in mean lengths and catch rates were relatively small and more difficult to 

detect. As a result, having two data types in the MLCR model noticeably reduced the 

%RMSE in estimating 2Z  and the change point. 

Generally, when using either mean length or catch rate alone, there is no ability to 

distinguish between a change in mortality and a change or variability in recruitment. 

However, the two data types together can be used to estimate stepwise changes in 

mortality when recruitment is variable. The MLCR model essentially splits the difference 

in the information between the two data types. Both ML and MLCR fit the model to 

produce shorter-than-expected residual runs, but in doing so the MLCR model produced 

correlations that were more negative than expected in paired residuals (Figures 4.5, 4.6). 

The runs of mean length in the ML model were shorter than those in the MLCR model, 

but this resulted in less precision in mortality estimation for the former model. From our 

simulations, the estimates of mortality and inference on the mortality history using both 

data types were better (by reducing the %RMSE) despite correlations in residuals and 

residual patterns, both of which should be expected given the variability of recruitment in 

fish populations. 

The values of R  used in the simulation encompassed the range of recruitment 

variability likely to be encountered in marine fish stocks (Thorson et al. 2014). Our 

simulation generated data by only including two sources of error: recruitment variability 

and observation error. Increased or decreased random observation error in the data will 

decrease or increase, respectively, correlations and runs in residuals. Other nonrandom 

sources of error, such as the extent to which the catch rate is representative of stock 

abundance and the length composition data of the population size structure, also need to 
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be evaluated for each application of the MLCR model. These factors make it unlikely to 

be able to estimate recruitment variability based on residual behavior in the data-limited 

model. 

The behavior of residuals arises from the constant recruitment assumption in the 

model. Recruitment could be explicitly modeled in a mortality estimation procedure, but 

this would require a different derivation of the mean length and catch rate than the one 

presented in the current study. 

The log-likelihood function (equation 4.9) assumes that observation errors for 

length and catch rate are uncorrelated because the length and catch rate data are sampled 

independently from each other. If a stock exhibits characteristics that would cause 

correlated observation errors—for example, if schooling behavior occurs in certain size-

classes, resulting in concurrent high catch rates, and the data are sampled as paired 

observations (e.g., within individual fishing trips or gear hauls)—then correlations in 

observation error can occur. The log-likelihood can be modified on a case-by-case basis 

to account for such situations. 

 

4.5.2. Application to the Mutton Snapper Pot Fishery in Puerto Rico 

In application of the MLCR model to the Mutton Snapper data specifying two 

change points, there was some disagreement in the signals from the mean length and 

WPUE data, as was apparent from examination of the residuals (Figure 4.8). For the 

mean lengths, there was a run of five positive residuals in 1992–1996 and four negative 

residuals in 2002–2006, which were within the range of the mean largest runs observed in 

the simulation. On the other hand, there did not appear to be a pattern in the residuals of 
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the catch rates. The correlation of the 17 paired residuals was –0.07 but was not 

statistically significant (t = –0.27, df = 15, P = 0.79). These diagnostics could suggest 

relatively low recruitment variability in Mutton Snapper. Low sample sizes of lengths 

during some years may also contribute to large residuals, but this aspect was not 

evaluated in the simulation. 

Recruitment variability has been found to be higher when oceanographic 

conditions are less stable (Myers and Pepin 1994; Myers 2001). Thus, the tropical 

distribution of Mutton Snapper suggests that recruitment variability of the stock is likely 

to be lower than those of higher-latitude species. Stock assessments of several lutjanid 

species based on age-structured models have also suggested low values of recruitment 

variability, with R  no greater than 0.3 (SEDAR 2003, 2015, 2016), although a formal 

meta-analysis has not been performed for lutjanids. In the context of the ML and MLCR 

models and the simulation study, recruitment refers to the cohort entering the fishery at 

age tc, at which time cohort strength can be dampened by density-dependent processes. In 

contrast, recruits can also be defined at age 0 when individuals reach the settlement phase 

immediately after the larval stage of the life cycle. High interannual variability in these 

post-settlement recruits of tropical coral reef fish species has been observed (Shulman 

1985; Rankin and Sponaugle 2014). 

According to the transitional behavior of the mean length and catch rate presented 

by Gedamke and Hoenig (2006) and in the present study, respectively, the mean length 

data suggested an initial change in mortality during 1992–1993 (Figure 4.7; Table 4.3), 

whereas the stability of WPUE during 1990–1997 suggested that a mortality change 
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occurred prior to 1990 (Figure 4.8). When both types of data were used in the MLCR 

model, the WPUE data apparently received more weight given the current log-likelihood 

equation, resulting in the early estimates of the first change point in the two-change-point 

model.  

Additional modifications are also possible to balance the contribution of the 

length and catch rate log-likelihoods in the MLCR model. Weight coefficients can be 

assigned to each log-likelihood component in equation (4.9); as more weight is given to 

the length data, the results will approach those in the ML model at the expense of model 

fit to the catch rates. When there is high interannual variability in the precision of the 

catch rate, annual estimates of the catch rate SD (often obtained via standardization 

techniques; Maunder and Punt 2004) can serve as input into the log-likelihood to weight 

each annual value accordingly. 

Results from the ML model and MLCR model illustrate that different models can 

produce different interpretations about the pattern of mortality experienced by the Mutton 

Snapper stock. All four models presented here (ML and MLCR models, each with one or 

two change points) predicted the same initial increase in Z around 1989–1993 because 

only length data were available prior to 1990. There appeared to be an increase in the 

mean length data in the early 2000s, which would suggest a second change in Z (Figures 

4.7, 4.8). However, this trend alone did not provide sufficiently strong evidence of a 

reduction in mortality using the ML model until the concurrent increase in the catch rate 

was also considered in the MLCR model. 

The predicted catch rates in the MLCR model specifying two changes in mortality 

tracked the observed values very well, but the high variability of the mean length data 
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still resulted in some uncertainty surrounding the estimates of Z since 1990 (i.e., 2Ẑ  and 

3Ẑ ; Table 4.3). This is expected when we consider that the clear trend in the catch rates 

will only provide information on the relative change in mortality; information from the 

mean lengths is still required to estimate the absolute mortality rates. 

The four models agreed on the initial Z before 1988, but the mortality rates 

estimated after that year were extremely variable. Variability of the mean length data in 

this time period was partly attributable to low sample sizes in some years. Since the 

likelihood function for the mean lengths weights the time series by annual sample size, 

years with few length observations may produce large outliers and large residuals, as was 

seen in this application. Additionally, the WPUE time series does not provide information 

for estimating the ratio of the first change in mortality since data prior to 1990 were not 

available. 

All four models indicated that since 1998, mortality has either (1) decreased if 

mortality had been very high (ML and MLCR models with two change points) or (2) held 

constant at a more moderate value (ML and MLCR models with one change point). 

Reliable estimates of Z over time will require a more intensive, standardized fishery 

sampling program or alternatively a standardized survey index of Mutton Snapper 

relative abundance through time. Utilizing the best-fit model that considers all available 

data (i.e., MLCR with two changes in mortality) implies that the Z in the terminal year of 

the time series was markedly smaller than values from the other models (Tables 4.2, 4.3). 

Estimates of mortality are also conditional on the values of life history parameters 

used in the model. In the MLCR model, mortality estimation is partly based on the 

magnitude of mean lengths relative to L∞. Larger values of L∞ imply a larger mortality 
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rate, which is why we observed a strong correlation between the two in the sensitivity 

analysis. Larger uncertainty in L∞ would result in a proportionate increase in the 

uncertainty of mortality estimates. This behavior is consistent with what has been 

observed in the ML model (Gedamke and Hoenig 2006). In contrast, there is generally 

less uncertainty in the allometric exponent b relative to von Bertalanffy parameters. 

The estimates of Z from these models could be used to obtain fishing mortality if 

an external estimate of natural mortality is available. Biological reference points from 

spawning potential ratio or yield-per-recruit analyses can then be used to evaluate stock 

status. We did not do so here because the Mutton Snapper application was an illustration 

of the methods and not intended to be an assessment of the stock. 

 

4.6. Conclusions 

In this study, we derived the transitional behavior of the catch rate following a 

change in Z. Since catch rates can provide additional information on mortality trends over 

time, we developed a mortality estimator that uses both mean length and catch rate data. 

Simulations showed that when the assumption of constant recruitment was violated, 

patterns in the residuals were generated. Despite this, the %Bias values for the Z-

estimates and change point were relatively low when R  was less than 1.0, and the 

%RMSE was reduced in all situations with the inclusion of catch rates compared to when 

mean lengths were used alone. Thus, residual patterns arising from non-constant 

recruitment are unlikely to substantially bias the estimates of Z. The application to 

Mutton Snapper highlights the value of considering the catch rates together with the 
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mean lengths; an additional change in mortality was estimated when both mean length 

and catch rate data were used in one model. 
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4.8. Tables 

Table 4.1. Factorial design and values of parameters used for the simulation study (Z = 
total mortality rate). 
Variable Symbol Values 
SD of recruitment R  

 
0.0, 0.25, 0.50, 1.0 

Mortality scenario A 
B 
C 
D 
 

Z1 = 0.4, Z2 = 0.8 
Z1 = 0.4, Z2 = 0.6 
Z1 = 0.8, Z2 = 0.6 
Z1 = 0.8, Z2 = 0.4 

Change point D Year 11 
Age of full recruitment tc 3 
Maximum age tmax 18 
Catch rate scaling coefficient q~ 1 
von Bertalanffy asymptotic length 

L  80 

von Bertalanffy growth parameter K 0.15 
von Bertalanffy location parameter t0 -1 
Observation error SD of mean lengths L  1 
Observation error SD of NPUE I  0.25q~ 

 
 

Table 4.2. Estimates of total mortality (Z) and change points (D) for Mutton Snapper 
from the mean length-only model (ΔAICc = difference in Akaike’s information criterion 
with correction for small sample sizes). Coefficients of variation (CVs) for the parameter 
estimates are shown in parentheses; in CV calculations for the change points, the number 
of years elapsed since the first year of the model (i.e., 1983) was used in the denominator. 
Parameter One change point 

AICc = 0.0) 
Two change points 

AICc = 2.3) 
Z1 0.51 (0.06) 0.51 (0.06) 
D1 1992.70 (0.14) 1993.30 (0.23) 
Z2 1.00 (0.14) 1.25 (0.02) 
D2 - 1998.90 (0.06) 
Z3 - 0.79 (0.03) 
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Table 4.3. Estimates of total mortality (Z) and change points (D) for Mutton Snapper 
from the mean length–catch rate model (ΔAICc = difference in Akaike’s information 
criterion with correction for small sample sizes). Coefficients of variation (CVs) for the 
parameter estimates are shown in parentheses; in CV calculations for the change points, 
the number of years elapsed since the first year of the model (i.e., 1983) was used in the 
denominator. 
Parameter One change point 

(AICc = 22.8) 
Two change point 

(AICc = 0.0) 
Z1 0.51 (0.08) 0.51 (0.08) 
D1 1987.00 (0.24) 1987.30 (0.20) 
Z2 0.81 (0.12) 1.19 (0.27) 
D2 - 1997.20 (0.04) 
Z3 - 0.61 (0.16) 
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4.9. Figures 

 

 

Figure 4.1.  Response of a number-per-unit-effort (NPUE) index of abundance (lower 
panel) to a 100% increase in total mortality (Z) from 0.5 year-1 to 1.0 year-1 (upper panel). 
The new asymptotic value of the catch rate will be half of the original equilibrium catch 
rate. The values of the catch rate are scaled by q~  which is the product of the catchability 
coefficient q and recruitment R. 
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Figure 4.2.  Hypothetical time series of stochastic recruitment that is lognormally 
distributed around a stationary mean (top panel) and the corresponding response of mean 
length (middle panel) and catch rate (bottom panel). Mortality is held constant over time. 
Solid horizontal lines indicate values predicted under constant recruitment. Life history 
values from Table 4.1 were used. 
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Figure 4.3. Percent Bias (%Bias) of estimated total mortality rates Z1 and Z2, and the 
change point based on mean lengths only (ML; open circles) or based on mean lengths 
and catch rates (MLCR; filled circles) from the simulation. The four mortality scenarios 
(A-D) and four values of recruitment variability ( R ) from the simulation are described 
in Table 4.1. Dashed vertical lines indicate %Bias = 0. In some cases, open circles 
directly overlap filled circles. 
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Figure 4.4. Percent root mean square error (%RMSE) of estimated total mortality rates 1Z  
and 2Z , and the change point based on mean lengths only (ML; open circles) or based on 
mean lengths and catch rates (MLCR; filled circles) from the simulation. The four 
mortality scenarios (A-D) and four values of recruitment variability ( R ) from the 
simulation are described in Table 4.1. Dashed vertical lines indicate %RMSE = 0. In 
some cases, open circles directly overlap filled circles. 
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Figure 4.5.  Pearson’s product-moment correlation coefficients between paired residuals 
of mean length and catch rate (open squares = true residuals; filled triangles = fitted-
MLCR residuals [i.e., mean length-catch rate model]) from the simulation. The four 
mortality scenarios (A-D) and four levels of recruitment variability ( R ) are described in 
Table 4.1. The dashed vertical line indicates a correlation coefficient of zero. 
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Figure 4.6. The mean (+/- SD; n = 10,000) of the largest run for sequences of positive 
and negative residuals of mean lengths and catch rate (number-per-unit-effort [NPUE]; 
open squares = true residuals; asterisks = fitted-ML; filled triangles = fitted-MLCR 
residuals [i.e., mean length-catch rate model]) in a 20-year time series. The four mortality 
scenarios (A-D) and four levels of recruitment variability ( R ) are described in Table 
4.1.  
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Figure 4.7. Observed (points) and predicted mean lengths assuming one change in 
mortality (solid black line) or two changes in mortality (dashed red line) for Mutton 
Snapper based on the mean length-only model. Dot-dashed vertical lines indicate the 
estimated change points for the respective model (black = one change; red = two 
changes). Concentric circles around mean lengths indicate the annual sample size of 
observations used in the likelihood function (with legend provided); the area of the circle 
is proportional to the sample size. 
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Figure 4.8. Observed (points) and predicted mean lengths (upper panel) and weight per 
unit effort (WPUE; bottom panel) assuming one change in mortality (solid black line) or 
two changes in mortality (dashed red line) for Mutton Snapper based on the mean length-
catch rate model. Dot-dashed vertical lines indicate the estimated change points for the 
respective model (black = one change; red = two changes). Concentric circles around 
mean lengths indicate the annual sample size of observations used in the likelihood 
function (with legend provided); the area of the circle is proportional to the sample size.  
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Figure 4.9. Scatterplots (lower triangle), correlation coefficients (upper triangle), and 
coefficients of variation (diagonal) of life history parameters sampled from a multivariate 
normal distribution ( L , K, and b; symbols defined in Table 4.1 and the mean values for 
the sensitivity values are defined by Burton [2002]) and the resulting mortality estimate (

3Z ) in the terminal year of the time series for Mutton Snapper based on the mean length-
catch rate model with two change points.  
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Chapter 5: How well do length-based mortality estimators and 
age-structured models agree for stock status? A comparison 
with six southeastern United States stocks 

5.1. Abstract 

Several methods have recently been developed to estimate historical mortality rates for 

data-limited stocks from a time series of mean lengths, with extensions for auxiliary data, 

including indices of abundance and fishing effort. In this study, we used three 

methodologically-related mean length-based methods to estimate mortality for six stocks 

in the southeastern United States, four in the Gulf of Mexico (greater amberjack, Spanish 

mackerel, cobia, and king mackerel) and two in the Atlantic (cobia and king mackerel). 

The analysis with the mean length-based methods used the same length compositions 

from the recreational fleet as those in the most recent benchmark age-structured 

assessments of these stocks, which allowed for comparisons using the same subset of 

data. Generally, there was agreement in the historical trends in mortality among the three 

mean length-based models and the age-structured assessments. The Gulf of Mexico 

Spanish mackerel stock produced the most divergent results among the models, but 

diagnostic steps were taken to evaluate goodness of fit of the mean length-based models. 

Reduction in shrimp bycatch mortality, corroborated by the results of the age-structured 

assessment, is hypothesized to have increased recruitment to the recreational gear, which 

affected the observed trends in the mean length and index. For the six stocks, all models 

agreed on the overfishing status in the terminal year of the assessment, and there was 
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high agreement in the number of years with overfishing within different historical 

periods. The stock status in the terminal year did not differ based upon the choice of 

models considered in this study. Based on our case study, applications of length-based 

methods in data-limited situations are likely to be consistent with what might be obtained 

from an age-structured model.  

 

5.2. Introduction 

Simpler, alternative stock assessment methods for the assessment of exploited 

stocks are generally desirable when a more comprehensive stock assessment model may 

not be viable (Chrysafi and Kuparinen, 2016). Simple methods are generally used in 

“data-limited” situations, where the data available for an assessment may be restricting, 

for example, due to lack of availability or a short time series (Bentley, 2015). Tractable 

assessment methods typically make simplifying assumptions regarding the population. 

On the other hand, a more comprehensive stock assessment model, such as an age-

structured model (ASM), is typically used in “data-rich” scenarios where multiple 

sources of data are available (Dichmont et al., 2016). In both data-limited and data-rich 

scenarios, analytical methods are used to estimate historical trends in fishing mortality 

and/or biomass. The most current estimates of these two quantities relative to reference 

points can then be used to provide short-term management advice. 

In data-limited situations, length-based methods are attractive due to their ease of 

use and the general availability of length information. In conjunction with growth 

parameters, simple methods typically estimate mortality from a single size composition 

or mean length (Hordyk et al., 2015; Hordyk et al., 2016; Kokkalis et al., 2015; Beverton 
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and Holt, 1956; Ehrhardt and Ault, 1992). Recently, three related mean length-based 

methods have been developed to analyze time series of length data, with extensions that 

include indices of abundance or fishing effort (Gedamke and Hoenig, 2006; Huynh et al., 

2017; Then et al., in press).  

The mean length (ML) mortality estimator of Gedamke and Hoenig (2006) was 

developed to estimate a series of historical total mortality rates (Z) based on a 

nonequilibrium formulation of the Beverton and Holt (1956) mean length mortality 

estimator. From annual observations of mean length of animals larger than Lc, the first 

fully selected length, the time series is partitioned into stanzas of constant mortality. The 

mortality rate and the duration of each stanza is then estimated. Mortality is modeled as a 

step-wise change from one stanza to another, and the mean length is modeled as a 

continuous feature of time to reflect how mean length changes gradually in response. The 

model is systematically fitted by varying the number of stanzas and a model selection 

procedure (e.g., AIC; Akaike Information Criterion) is used to select the best model.  

A second approach uses a formulation of an index of abundance which was 

combined with the mean length model, termed the mean length-catch rate model (MLCR; 

Huynh et al., 2017). In this model, both the mean length and the index are predicted to 

decrease gradually after a step-wise increase in mortality and, similarly, to increase after 

a decrease in mortality. This allows for an evaluation of the consistency between the 

length and index data for mortality estimation using this framework. The systematic 

fitting procedure used in the ML model is also used here to select the best model. 

A third approach estimates year-specific mortality rates from mean lengths by 

using estimates of effort as an index of mortality (MLeffort; Then et al., in press). In this 
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model, fishing mortality F is proportional to fishing effort via the estimated catchability 

coefficient q. Total mortality Z in year y of the model is 

 MqfZ yy  , (5.1) 

where f is the effort, and natural mortality M can be estimated or fixed in the model. This 

formulation precludes the need to estimate mortality in time stanzas. A technical 

description of these methods is provided in Appendix C.  

To evaluate how simpler, data-limited methods may perform relative to age-

structured models, the former can be applied to data sets from stocks for which there are 

age-structured assessments (Dick and MacCall, 2011; Kokkalis et al., 2016). Synchrony 

in the results among models, i.e. whether or not the historical stock trends are in 

agreement, can be a form of endorsement for the data-limited methods. While there is no 

guarantee that the age-structured model is correct nor that it produces precise and 

accurate estimates, benchmark assessments often undergo a peer-review process 

(Dichmont et al., 2016) and the results of the age-structured models usually represent our 

best knowledge of the system. If similar results are obtained among models, then the use 

of simpler models is inconsequential. The comparison of stock status and whether it 

would differ based on the choice of model can be accomplished by examining fishing 

mortality and biomass estimates relative to reference points (F/FMSY and B/BMSY, 

respectively; Kokkalis et al., 2016). 

In this study, we use the three multi-year, mean length-based methods to estimate 

historical mortality trends in six stocks in the southeastern United States that are of 

interest because they have been assessed using age-structured models. The stocks are 

Gulf of Mexico (GOM) greater amberjack Seriola dumerili, GOM Spanish mackerel 
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Scomberomorus maculatus, GOM cobia Rachycentron canadum, Atlantic (ATL) cobia, 

GOM king mackerel S. cavalla, and ATL king mackerel. The Beaufort Assessment 

Model (BAM; Williams and Shertzer, 2015) was used for ATL cobia, while Stock 

Synthesis (SS; Methot and Wetzel, 2013) was used for all others. For these stocks, length 

composition data were used in the age-structured assessments which were accepted as the 

basis for management advice. The length data from these assessments were obtained for 

the mean length-based methods, which allowed for comparison of historical mortality 

rates among models which had a common subset of data.  

  

5.3. Methods 

5.3.1. Stocks of interest 

Greater amberjack is managed under the Reef Fish Fishery Management Plan, and 

Spanish mackerel, cobia, and king mackerel are managed under the Coastal Migratory 

Pelagic Fishery Management Plan of the Gulf of Mexico Fishery Management Council 

and South Atlantic Fishery Management Council. Each of the four species are divided 

into separate Gulf of Mexico (GOM) and Atlantic (ATL) stocks. Over time, these stocks 

have been managed with seasonal closures, bag limits, minimum size limits, and catch 

limits. Size limits, i.e. minimum retention sizes, have generally increased over time for 

the recreational fleet (Table 5.1).  

Benchmark assessments for these stocks occurred in 2013 - 2014 (SEDAR, 

2013a, 2013b, 2013c, 2014a, 2014b, 2014c). Data inputs for the age-structured models 

have typically included landings, discards, indices of abundance, length composition, and 

length-at-age observations from commercial and recreational sectors. Fishery-
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independent indices and length compositions from surveys were also included in the 

assessment, although the time series is shorter than for fishery-dependent data. 

 

5.3.2. Mortality estimation 

For the mean length-based estimators, length compositions, catch, and indices and 

abundance were obtained directly from the assessments (Table 5.2). Only the length 

compositions of retained catch were used. In the southeastern U.S., the largest targeted 

fishing effort has historically come from the recreational fleet (Siegfried et al., 2016). 

The indices from the recreational fleet have generally had the lowest root mean square 

error (RMSE) in the age-structured assessments, indicating that the fleet were most 

informative for inference on stock trends (Sagarese et al., 2016). Thus, for the length-

based methods, the analyses based on the data from the recreational fleets are presented 

here. Data from fishery-independent sources were not used due to the shorter length of 

the time series. 

To use the ML, MLCR, and MLeffort models, an estimate of Lc is needed and is 

determined based on the data. It is assumed that all animals larger than length Lc are fully 

selected. Here, the mode of the length composition compiled for all years was chosen to 

be the Lc (Figure 5.1). There was generally no trend in the modal length for most years 

for the 6 stocks. Von Bertalanffy growth parameters L  and K were then obtained from 

the assessments (Table 5.3). With this information, the ML model could be used to 

estimate total mortality rates. Models were fitted assuming zero, one, or two change 

points in mortality. 
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With the index of abundance, the MLCR model was then fitted using the same 

successive strategy as for the ML model. For both models, AIC was used to select the 

best fitting model (i.e., the model with the lowest AIC score). To avoid overfitting, 

models with more parameters were accepted only if the reduction in AIC was greater than 

2 units. From total mortality estimates, fishing mortality F was obtained by subtracting 

the value of natural mortality assumed in the assessments (Table 5.3).  

For the MLeffort model, the effort time series was obtained by taking the ratio of 

the landings (thousands of fish) and index of abundance (catch-per-unit-effort, number of 

fish per angler hour). Values of M were fixed in the model to estimate q, which was then 

used to obtain F. The equilibrium effort prior to the first year of the model was assumed 

to equal to the effort in the first year. Since the model requires a full time series of effort, 

the initial year of the model was set to the first year with available indices of abundance. 

Landings estimates prior to the year when composition and index data were based on 

historical reconstruction (Siegfried et al., 2016). 

Model performance was evaluated by analysis of residuals of the observed and 

predicted values of both mean lengths and indices. 

 

5.3.3. Comparison among models 

For comparison with the mean length-based models, annual estimates of the 

summary F from the age-structured assessments were obtained from assessment reports 

(SEDAR, 2013a, 2013b, 2013c, 2014a, 2014b, 2014c). Only estimates since the first year 

of length composition data are considered here (Table 5.2).  
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Two sets of relative mortality rates were calculated to facilitate comparison 

among the different models. First, the absolute magnitude of the estimates was scaled 

through transformation to Z-scores by subtracting the mean and dividing by the standard 

deviation of the respective time series (scaled F). For the ASM and MLeffort time series, 

an additional step was taken with the scaled F to smoothen the estimates with a loess 

regression line. The scaled F allowed for better comparisons of the trends over time 

among models.  

Second, the estimates were divided by biological reference points (F/FMSY, 

relative F) calculated from their respective time series. The ratio of F/FMSY is relevant to 

management for classification of overfishing status. Here, F30%, the fishing mortality rate 

that reduces the spawning potential ratio to 0.3, was generally used as the proxy for FMSY 

(Restrepo and Powers, 1999). The exception was in the case of ATL Cobia for which the 

Beaufort Assessment Model was used as the ASM. Instead of using a proxy, FMSY (the 

fishing mortality that maximized equilibrium yield) was directly estimated (SEDAR, 

2013c).  

Estimates of FMSY or their proxies from the age-structured assessments were 

obtained from the assessment reports. For the mean length-based mortality estimators, 

F30% was calculated separately with the life history information in Table 5.3 (Appendix 

D). Spawning potential ratio calculations differ between the age-structured models and 

the mean length-based models based on different assumptions regarding selectivity and 

maturity.  

To evaluate the synchrony of relative F, the proportion of years in which 

overfishing is estimated to occur was calculated for 4 time periods: (1) pre-1995 
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(approximately the first half of the time series for all 6 stocks), (2) post-1995 

(approximately the second half of the time series), (3) the most recent 5 years, and (4) the 

terminal year of the time series.  

All analyses were performed in R using the MLZ package, which is publicly 

available on Github (http://ww.github.com/quang-huynh/MLZ). 

 

5.4. Results 

5.4.1. Trends in fishing mortality 

While the mean length-based methods estimate Z, we assume, as many age-

structured models do, that M is constant over time. Thus, the trends that we examine are 

due to changes in F. For most stocks analyzed here, both the age-structured assessment 

models and the mean length mortality estimators indicated high mortality in the 1980-

1990s followed by a reduction in mortality since then (Figure 5.2). This pattern is 

common to many southeastern U.S. stocks (Siegfried et al., 2016). 

For GOM greater amberjack, there was high synchrony in the mortality estimates 

over time. Both the ASM and MLeffort models showed an increase in F from 1981 – 

1993 followed by a gradual decrease from 1993 – 2012. Both models exhibited very 

similar descents in mortality. The ML and MLCR models showed two changes in 

mortality, an initial increase to an extended plateau in mortality during the 1990s 

corresponding to the time period surrounding the peak in the ASM and MLeffort models, 

followed by a reduction in the 2000s.  

For GOM Spanish mackerel, the ASM, ML, and MLCR models all showed a 

general reduction in mortality over time, although the trends and timing differ (the 
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MLeffort model did not converge). Compared to the ML and MLCR models, the ASM 

showed a much larger reduction in F from the beginning of the time series to 2011 (the 

terminal year of the data). The ML model indicated two changes in mortality, with a 

decrease in mortality during the early 1990s from the initial mortality rate. This was 

caused by the large increase in mean length from 1990-1995 (Figure 5.3). Afterwards, a 

modest increase to an intermediate mortality rate until the present time was estimated. 

The trends in the index, however, did not support two changes in mortality. Thus, only 

one change in mortality, a modest decrease, was inferred in the MLCR model.  

For GOM cobia, all four models indicated a reduction in mortality since the 

1990s. The ASM showed an initial ramp in mortality followed by a gradual decrease after 

1990. The MLeffort model showed a large decrease prior to 1986-1990 (effort data was 

not available prior to 1986). After 1990, the gradual decrease in mortality mimicked that 

in the ASM. The ML and MLCR models both estimated two changes in mortality, with a 

temporary decrease in mortality in the late-1990s followed by a modest increase to a 

mortality rate that is less than the initial estimated mortality rate. This pattern was 

inferred based on the synchronous increase and decrease in the mean length and index in 

the late-1990s. 

For ATL cobia, differing trends in mortality were inferred among the four models. 

The loess smoother indicated a recent increase in mortality in the ASM, although there 

was high variability in annual estimates (Figure 5.4). While there were trends in the mean 

length over time, the ML model indicated zero changes in mortality based on AIC. On 

the other hand, the MLCR model indicated a decrease in mortality, largely based on the 
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increase in the index after 1995. The MLeffort model showed a gradual decrease in 

mortality over time. 

For GOM king mackerel, different models produced differing trends in mortality. 

According to the ASM and MLeffort models, mortality had generally decreased, with a 

pronounced drop in the late 2000s, although the fit to the mean length data in the 

MLeffort model was generally poor (Figure 5.4). With the ML and MLCR models, three 

mortality time stanzas were estimated, with a temporary increase in mortality in the early 

2000s followed by a decrease to a mortality rate that is slightly larger than the initial 

mortality rate.  

For ATL king mackerel, all models showed an increase followed by a decrease in 

mortality over the examined time period 1979-2012. In the ASM, the maximum F 

occurred around 1995 and fishing mortality continued to decrease in the most recent 

years. The MLeffort model showed an earlier peak in mortality around 1985, followed by 

a decrease in mortality until 2005. The mortality rate has been steady since then. The ML 

and MLCR captured the general trend in mortality estimated in the other two models with 

two stepwise changes in mortality, with an increase around 1985. In the late 1990s, 

another mortality rate was estimated which was lower than the initial mortality rate. 

 

5.4.2. Stock status 

To compare the models with respect to stock status, mortality trends were 

compared relative to the FMSY proxies (relative F). For all six stocks, the four models 

agreed in the overfishing status in the terminal year of the time series, i.e., overfishing is 
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occurring (F/FMSY > 1) for GOM greater amberjack and not for the other five stocks 

(Figures 5.4, 5.5). 

For GOM greater amberjack, all models showed that overfishing was occurring in 

2012, the terminal year of the time series. The magnitude of F/FMSY over time were very 

similar among the four models, with a very large relative F in the late 1980s and 1990s. 

A reduction in relative F followed, but overfishing was still occurring in 2012. The four 

models generally agreed on the extent of overfishing within the four time periods. A 

lower proportion of years with overfishing was inferred in the most recent 5 years for the 

MLeffort model compared to the other three models, but this appeared to be a result of 

the high inter-annual variability in relative F. 

For GOM Spanish mackerel, the ASM showed more contrast in fishing history, 

with overfishing occurring in eight out of 14 years (57%) in the pre-1995 period. The ML 

and MLCR models showed that overfishing had not occurred in the stock history. All 

three models agreed that overfishing had not occurred post-1995. 

For GOM cobia, the relative F in the MLeffort model was lower over time than in 

the other three models. Pre-1995, an increase and decrease in relative F corresponded to 

overfishing in one out of nine years (11%) in the MLeffort model, but seven out of 16 

years (44%) in the ASM. During the same time period, the ML and MLCR estimated a 

plateau mortality rate which indicated overfishing in all included years. Post-1995, 

overfishing has generally not occurred in all four models (the ML and MLCR models 

estimated a mortality reduction shortly after 1995).  

For ATL cobia, overfishing has not occurred based on the relative F of all four 

models.  
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For GOM king mackerel, the ASM showed that overfishing was occurring over 

much of the pre-1995 period, contrary to the other three models which showed no 

overfishing in the same time period. In the early part of the post-1995 period, the ASM, 

ML, and MLCR showed that overfishing was occurring (20-40% of years post-1995) 

until mortality was reduced by 2000.  The relative F in the MLeffort model was lower 

than those in the other three models over time and did not indicate overfishing in the 

stock history. 

For ATL king mackerel, the ASM and MLeffort models indicated that overfishing 

occurred in 29% (five out of 17 years) and 27% (four out of 15 years), respectively, of 

pre-1995 years. Those years generally did not overlap (Figure 5.4), with overfishing 

estimated pre-1990 with MLeffort and post-1990 with the ASM. Post-1995, there were 

fewer years with overfishing in the MLeffort model than in the ASM. While the trends in 

mortality with ML and MLCR followed those with the ASM and MLeffort, the former 

set of models did not indicate overfishing in the stock history.  

 

5.4.3. Residual analysis 

 For the mean length-based models, residuals can be analyzed to determine 

goodness of fit (Appendix E). The model selection procedure with the ML model 

generally selected the model which minimized any residual trends except in the case of 

ATL cobia (Figure E.1). In the MLCR model, an extensive trend of positive and negative 

residuals of the mean lengths and index, respectively, was observed over time for GOM 

Spanish mackerel (Figure E.2). Similarly, negatively correlated residuals were also 

present for ATL king mackerel in the most recent years of the analysis. In the MLeffort, 
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there were trends in residuals over the course of the entire time series for both GOM and 

ATL king mackerel (Figure E.3). 

 

5.5. Discussion 

Based on the estimated trends in mortality over time and stock status for the 

terminal year of the analyses, there was strong agreement in the stock perception among 

the mean length-based models and the age-structured models for the six case studies 

presented here. Similar inferences could be obtained from the mean length-based models 

despite using only a subset of the data that were included in the ASM.  

 

5.5.1. Life history parameters 

The mean length-based models and their corresponding proxies require simpler 

life history assumptions than the ASM. In the former, growth is assumed to be 

deterministic and parameters need to be provided prior to the analysis, though 

simulations have suggested robustness of the mean length-based models to this 

assumption (Then et al., 2015; Huynh et al., in review). With age-structured models, 

growth incorporates variability in size at age and parameters may be estimable within the 

model (Francis, 2016).  

The life history parameters for the mean length-based models were extensively 

evaluated for the assessments. Growth and maturity were typically estimated from large 

historical datasets of otoliths and gonad samples, respectively. The observed maximum 

age was used to estimate natural mortality (Hoenig, 1983). During the assessments, the 

observed maximum age was evaluated to ascertain whether it was an appropriate 



 

163 
 

indicator of longevity, especially when there were among-stock differences for the same 

species. In data-limited situations, uncertainty in mortality estimates can be evaluated 

with Monte Carlo sampling of life history parameters from parametric distributions (e.g., 

Huynh et al., 2017) or a sensitivity analysis (Gedamke and Hoenig, 2006). 

In many ASM, including the six presented here, natural mortality was 

parameterized to decline with age with a Lorenzen function rather than be constant with 

age. While age-varying natural mortality would violate the assumption that Z is constant 

with age, the extent of the violation would be minimal in a Lorenzen-type 

parameterization of M because older animals experience similar natural mortality rates. 

Differences in natural mortality are assumed to be largest among youngest ages but 

length bins corresponding to these ages are typically not considered in the mean length-

based methods if those lengths are not fully selected.  

 

5.5.2. Selectivity and retention behavior 

In terms of selectivity, age-structured models allow for modeling of complex 

fishing behavior, albeit at the cost of estimating many, often confounding, parameters. 

Multiple fishing fleets with disparate selectivity patterns and fishing behaviors are 

typically modeled separately and there may be enough information to model logistic and 

dome-shaped selectivity functions. Discard and retention length composition allow for 

estimation of the vulnerability and retention functions, the product of which would be the 

effective selectivity of the gear for retained catch. Finally, changes in size regulations can 

be modeled with time-varying features of the ASM (Methot and Wetzel, 2013). For the 

mean length models, knife-edge selectivity is assumed at length Lc. Thus, the analysis 



 

164 
 

uses a subset of the length composition data so that only animals assumed to be fully 

selected are included in the calculation of the mean length.  

Application of the data-limited models should consider if changes in mean length 

occurred due a change in retention behavior as opposed to a change in mortality. We 

chose values of Lc that were larger than any implemented minimum retention size for the 

stocks in this study. In this way, all lengths larger than Lc would have the same presumed 

selectivity to minimize the effect of the management regulations. On the other hand, to 

the extent that there has been variable fishing over time on fish smaller than Lc, the 

assumption of constant recruitment is violated by confounded fishing mortality. Changes 

in bag limits could alter discard and retention behavior; for example, the implementation 

of a bag limit may increase discarding of smaller animals in favor of larger ones. To 

account for this, one would need to evaluate whether there were significant changes in 

the length distribution of retained catch once those regulations were implemented. 

The age-structured assessments estimated dome-shaped selectivity for the 

recreational fleet for three of the six stocks, these being GOM greater amberjack and both 

GOM and ATL stocks of king mackerel. This contrasts with the knife-edge selectivity 

assumption made with the mean length-based models. If the selectivity of the fleets were 

dome-shaped, then it is presumed that mortality would be overestimated by the length-

based models. For determination of stock status with the mean length-based models, the 

FMSY proxies were also calculated assuming logistic selectivity for these three stocks. The 

estimated stock status relative to overfishing in the terminal year among the four methods 

did not change based on presumed selectivity estimated by the ASM. The time series of 
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F/FMSY from the mean length models were either similar in magnitude or more optimistic 

than those from the age-structured assessments (Figure 5.4).  

 

5.5.3. Trends in recruitment to the recreational fishery  

The assumption of constant recruitment to length Lc was likely violated for GOM 

Spanish mackerel due to the dynamics of the shrimp fleet which had bycatch of smaller 

animals. In the age-structured assessment, the shrimp fleet was the highest source of 

fishing mortality historically (with 100% discard mortality assumed) until the late-1990s, 

when fishing effort subsequently decreased (SEDAR 2014b; Figure 5.6). This reduction 

would increase survival and recruitment to size Lc (39 cm in this study). Such an effect 

could have caused the decrease in the observed mean length from the recreational fleet 

(Figure 5.5).  

For the MLeffort model, non-convergence for GOM Spanish mackerel was 

caused by the data conflict where the recreational effort was estimated to have decreased 

(Figure 5.6), yet the mean length also decreased (an increase would have been expected 

based on the trend in effort). Concurrently, the gradual increase in the index of abundance 

with the decrease in mean length since mid-1990s would support the hypothesis of 

increased recruitment to the recreational fishery (Huynh et al., 2017). A simpler mortality 

history, i.e., with fewer change points, was inferred with the MLCR model compared to 

the ML model to avoid overfitting spurious trends in the mean length due to hypothesized 

changes in recruitment. The observed trends in the paired residuals of mean length and 

the index in the MLCR model were also consistent with hypothesized increased 

recruitment.  
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While trends in mortality are affected by factors external to the recreational fleet, 

the analysis of residuals in the MLCR model and non-convergence of the MLeffort 

model allowed us to diagnose issues in the application of the mean length-based models 

for GOM Spanish mackerel without external information. With the ASM, we can 

corroborate that bycatch mortality may have been the primary driver of the historical 

stock dynamics. In isolation, the length composition from the recreational fleet may not 

provide sufficient information on the stock history. This is evident in the contrasting 

trends in mortality in the ML model and ASM since the mid-1990s (Figure 5.2). Overall, 

the general presence of large animals in the length composition relative to L  would 

indicate that the GOM Spanish mackerel stock is in generally good shape (Figure 5.1). 

For GOM and ATL king mackerel, bycatch from the shrimp fleet was a smaller source of 

mortality relative to the recreational fleet. The impact of bycatch mortality would not be 

as noticeable for these stocks. 

For ATL king mackerel, large residuals in the mean lengths and index were 

observed in the most recent years of the MLCR model. The increasing mean length 

increasing and decreasing index since 2007 would be consistent with decreasing 

recruitment (of animals of length Lc). The ASM for ATL king mackerel estimated a 

decreasing trend in recruitment of age-0 animals since 2003. Here, the qualitative 

information about recruitment trends from the MLCR model are also supported by the 

recruitment estimates from the ASM after accounting for the time lag from age 0 to the 

age of full selection to the recreational fishery. 

 

5.5.4. Uncertainty in catch and effort 
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In data-limited situations, as well as in any assessment, the quality of the data and 

their representativeness to the underlying population dynamics should be evaluated. For 

example, there were generally large coefficients of variation associated with discard 

estimates (Siegfried et al., 2016) and consequently, discard data were not used with the 

mean length-based methods. In data-limited situations, discard data may not be available, 

but it would also be important to consider the magnitude of discard mortality in a 

management context. As another example, expert judgment is needed to decide if the 

catch per unit effort (CPUE) can serve as index of abundance. Spanish mackerel and 

cobia are reported to be opportunistically caught by the recreational fleet, resulting in 

high percentages of zero catch (Bryan and Saul, 2012). This may degrade the quality of 

the CPUE as an index of abundance.  

One must obtain length compositions from multiple years for the mean length 

models used in this study. Data from several fleets could be combined if the fleets are 

believed to behave similarly. Otherwise, mortality estimates can be confounded by the 

contrasting fishing effort and selectivity of the different fleets. In this study, the 

recreational data were obtained from MRFSS (Marine Recreational Fisheries Statistics 

Survey) and MRIP (Marine Recreational Information Program), which is a designed-

based sampling program for the charter and private boat fleet, or SRHS (Southeast 

Region Headboat Survey), which strives to be a census of all headboats in the region 

(Table 5.4). We followed the decision of the assessment team in regards to combining or 

separating the data from these two programs. Uncertainty in the composition data could 

be evaluated by comparing annual lengths from the different gear sectors.  
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The MLeffort model provides year-specific mortality rates, but the fit to the mean 

lengths varies from good in the case of GOM greater amberjack to poor, as in the case of 

GOM king mackerel (Figure 5.3). For mixed fisheries, nominal effort such as days fished 

may not be an indicator of targeted effort due to switches in targeting. As effort in the 

recreational fisheries examined here are not allocated on a species-specific basis, indices 

from these fleets should be obtained from a subset of fishing trips that are believed to 

have targeted the stock of interest based on catch of associated species (Stephens and 

MacCall, 2004). Unfortunately, this was often not sati employed for the six stocks 

analyzed here due to poor model performance during and often was not used to 

standardize the indices of abundance. Coupled with relatively high uncertainty in 

recreational effort, these factors likely contributed to poor performance of the MLeffort 

model for GOM and ATL king mackerel. Methodological advancements of the MLeffort 

model can smoothen the estimates of effort prior to using the model or treat effort as a 

state-space variable, although the latter may result in overfitting.  

On the other hand, the ML and MLCR models produced similar fishing mortality 

estimates except in the case of GOM Spanish mackerel and ATL cobia (Figures 5.2, 5.4). 

For the other four stocks, the index supports the mortality estimates based on mean 

lengths, which indicates that the length and index data are in agreement. For GOM 

Spanish mackerel, bycatch mortality may be affecting the stock dynamics as discussed 

earlier. For ATL cobia, there appears to be little contrast in the fishing mortality in the 

stock history because overfishing has not occurred in the history of the stock based on the 

four models. The lack of contrast in mortality may result in more variability in the 

estimates among models. 
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5.6. Conclusion 

The results from this study show that the mean length-based methods can provide 

very similar results, i.e., mortality trends and stock status over the course of the entire 

time series and time periods within, to those from the age-structured assessments. Life 

history parameters evaluated for the benchmark assessments were used in the analyses 

with the length-based methods, and a subset of the data from the fleet believed to drive 

stock dynamics most strongly was used with these methods. Simple models can still be 

applied to nonequilibrium situations, and the historical increase and decrease in mortality 

during the 1980s to the 2010s common to many southeastern U.S. stocks was captured in 

the analyses. All methods were in agreement with regards to classifying current status 

relative to overfishing. 

In data-limited situations, the mean length-based methods can be used to explore 

historical changes in mortality over time, with results likely to be consistent with what 

might be obtained from an age-structured model. The ML and MLCR models provide a 

series of historical mortality rates, although the changes in mortality over time will be 

coarser than in models with year-specific mortality rates. This is due to the stepwise, time 

stanza structure of the ML and MLCR models. The MLeffort model can provide year-

specific mortality rates, and inter-annual variability can be smoothed to describe the trend 

over time. 

As a rule, age-structured models should generally not be replaced by simpler 

methods. Age-structured models provide more modeling options to accommodate 

multiple drivers of fishing mortality and productivity, as well as more diagnostic tools to 
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evaluate the quality of the assessment. Nevertheless, in data-rich scenarios, the mean 

length-based methods can be used as a diagnostic to evaluate and explain how the mean 

length has changed over time (through fishing mortality or other causes). When there are 

conflicting results, diagnostic procedures can provide additional insight on the causes of 

model or data conflict. Models which incorporate multiple data types are advantageous, 

because the agreement (or lack of) between data types can be evaluated to determine 

whether the chosen model is appropriate for the stock of interest. As a large majority of 

stocks worldwide do not and will not likely have fully age-structured assessments in the 

future, studies such as this are useful in to results of applying mean length-based 

mortality estimators. 
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5.8. Tables 

Table 5.1. Summary of size regulations from the recreational fishery (in terms of fork 
length). Only years preceding the year of the assessment are considered. 
Stock Minimum Legal 

Size Limit 
Years 

GOM greater amberjack 
 
 

28-in (71.1 cm) 
30-in (76.2 cm) 

1990-2007 
2008-2012 

GOM Spanish mackerel 
 

12-in (30.5 cm) 1993-2011 

GOM & ATL cobia 
 

33-in (83.8 cm) 1985-2011 

GOM & ATL king mackerel 12-in (30.5 cm) 
20-in (50.8 cm) 
24-in (61.0 cm) 

1990-1991 
1992-1999 
2000-2012 

 

Table 5.2. Summary of assessment models and the length composition and index of 
abundance for the length-based mortality estimators. The Recreational fleet combines the 
data from both the Charter/Private and the Headboat fleets. 
Stock Assessment 

Model 
Fleet for length 
analyses 

Length 
time series 

Index time 
series 

GOM greater amberjack SS Charter/Private 1981-2012 1986-2012 
GOM Spanish mackerel SS Recreational 1981-2011 1981-2011 
GOM cobia SS Recreational 1979-2011 1986-2011 
ATL cobia BAM Recreational 1982-2011 1985-2011 
GOM king mackerel SS Headboat 1985-2012 1986-2012 
ATL king mackerel SS Headboat 1978-2012 1980-2012 
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Table 5.3. Life history parameters used in the analyses for the length-based mortality estimators. Parameters are defined in Table D.1. 
Stock L∞ 

(cm) 
K 
(yr-1) 

a0 

(yr) 
Lc 
(cm) 

Lmat 
(cm) 

α β amax 
(yr) 

M 
(yr-1) 

Source 

GOM greater amberjack 143.6 0.18 -0.95 77.5 90 7.0e-5 2.63 15 0.28 SEDAR, 2014a;  
Murie and Parkyn, 2008 

GOM Spanish mackerel 56.0 0.61 -0.50 39 31 1.5e-5 2.86 11 0.38 SEDAR, 2013b 
GOM cobia 128.1 0.42 -0.53 88 70 9.6e-6 3.03 11 0.38 SEDAR, 2013a 
ATL cobia 132.4 0.27 -0.47 95 70 2.0e-9 3.28 16 0.26 SEDAR, 2013b 
GOM king mackerel 128.9 0.12 -4.08 80 58 7.3e-6 3.01 24 0.17 SEDAR, 2014b;  

Lombardi, 2014 
ATL king mackerel 121.1 0.15 -3.73 80 58 7.3e-6 3.01 26 0.16 SEDAR, 2014c;  

Lombardi, 2014 
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5.9. Figures 

 

Figure 5.1. Summary length compositions summed across all available years of data for 
the six stocks for the mean length mortality estimators. Solid vertical line indicates Lc and 
dashed vertical line indicates L∞. 
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Figure 5.2. Estimates of scaled F from the four models (ASM = age-structured model, 
ML = mean length, MLCR = mean length with catch rate, MLeffort = mean length with 
effort). Annual estimates were converted to Z-scores and, for ASM and MLeffort, 
smoothed over time with a loess regression line. The MLeffort model did not converge 
for GOM Spanish mackerel. 
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Figure 5.3. Observed (connected points) and predicted mean lengths (colored lines) from the three length-based mortality estimators 
(ML = mean length, MLCR = mean length with catch rate, MLeffort = mean length with effort) and observed and predicted index for 
the MLCR model.
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Figure 5.4. Annual estimates of F/FMSY (relative F) from the four models (ASM = age-
structured model, ML = mean length, MLCR = mean length with catch rate, MLeffort = 
mean length with effort). The ASM was the Beaufort Assessment Model for ATL Cobia 
and Stock Synthesis for all other stocks. FMSY was estimated in the ASM for ATL Cobia 
while for all other methods, the FMSY proxy is F30%.  
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Figure 5.5. The proportion of years with overfishing as estimated with the four models 
within the respective time periods for the 6 stocks. The MLeffort model did not converge 
for GOM Spanish mackerel. For Pre-1995 and Post-1995, numbers indicate the number 
of years in the assessment for the respective time period. 
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Figure 5.6.  Estimates of relative effort for GOM Spanish mackerel from the recreational 
fleet, obtained as the ratio of the recreational catch and index of abundance, and the 
shrimp bycatch fleet, estimated as described in Linton (2012). Estimates are scaled so 
that the time series mean is one. 
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Chapter 6: Conclusions 

6.1. Next steps 

The central challenge of any stock assessment is the ability to determine whether 

the applied methods are appropriate for providing management advice. This dissertation 

provides insight for stock assessors on the challenges and opportunities with using mean 

length-based mortality estimators for stock assessment. Data-limited stocks are not 

limited by geography or management system. Developing countries may lack capacity for 

formal stock assessments. In developed regions, such as the United States and Europe, 

the desire to provide scientific advice results in a demand for assessments of all managed 

stocks (Berkson and Thorson 2015). Limitations in time and expertise create challenging 

conditions for the assessment and management of marine resources. The best scientific 

advice for management is traditionally thought to be that obtained from assessments with 

age-structured models. However, those assessments should be considered as exceptions 

to the norm. In U.S. federally managed waters, 70% (354 out of 504) of stocks do not 

have age-structured assessments (Newman et al. 2015). The International Council for the 

Exploration of the Sea (ICES) manages over 200 stocks in the Northeast Atlantic, and 

more than half of those stocks do not have assessment advice. (Jardim et al. 2015).  

Alternative methods, such as those presented in this dissertation, will be important 

tools for addressing these limitations. The features and challenges of the mean length-

based mortality estimators were addressed through discussion, simulation, and case 
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studies. A brief description of the many size-based mortality estimators and the available 

computer software used to implement them was provided in the review chapter (Chapter 

1). Case studies throughout this dissertation provided examples of how data are processed 

and analyzed with mean length mortality estimators (Chapters 3-5). This dissertation will 

serve as an introduction and guide to prospective users of these methods.  

For stock assessment, the mean length-based methods can be used in three ways. 

First, they can be used to infer historical trends in mortality, as shown in Chapters 3 and 

4. The mean length-based mortality estimators are methodologically rich and can 

accommodate multiple sources of data when available. In a single-species context, a 

model was developed to estimate mortality from both mean length and catch rate data 

(Chapter 4). The analysis for Puerto Rico mutton snapper in illustrated a common 

situation where assessments produce conflicting results. From the mean length data 

alone, the mortality rate was estimated to be relatively high in the year 2002, the terminal 

year of the data. When the catch rates were considered with the mean length data, a 

smaller mortality rate is estimated because a reduction in mortality occurred just prior to 

2002. Although the model results were conflicting, the trend in the mean length did not 

necessarily contradict that in the catch rate. High variability in the mean lengths 

precluded acceptance of a more complex model with the recent reduction in mortality. 

The reduction in mortality was more evident in the catch rates which were less noisy. 

Thus, the trends length and catch rate data are consistent with each other when 

considered together.  

In a multispecies context, multiple stocks that are caught together by the same 

fishing gear may show synchrony in changes in fishing mortality over time. In a multiple 
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likelihood framework, it is possible to perform multispecies analyses by specifying 

parameters in the model that are common to all species (Chapter 4). The benefit of these 

two extensions is to allow for corroboration of estimated mortality trends among different 

time series of data. 

Second, the mean length-based methods can be used to ascertain stock status. 

After estimating total mortality, fishing mortality can be derived with an estimate of 

natural mortality. With a proxy for fishing mortality at maximum sustainable yield, one 

can make a determination of whether overfishing is occurring (Chapter 5). Statistical 

diagnostics provide a mechanism for determining whether the method is internally 

consistent (without external validation from other data) and deciding whether to accept or 

reject an analysis. For stocks such as Gulf of Mexico greater amberjack and U.S. Atlantic 

king mackerel, the three length-based models agree with each other in estimated 

mortality trends and there are good diagnostics in terms of residuals. The trends agree 

with those from the accepted assessment model. For Gulf of Mexico Spanish mackerel, 

model diagnostics are poorer, with non-convergence and trends in residuals among the 

different mean length-based models.  

 Finally, the output from these methods, and size-based methods in general, can be 

used to provide advice for the management of these stocks (Hordyk et al. 2015). Advice 

in the form of a harvest control rule can be tested via management strategy evaluation 

(MSE), a closed-loop simulation in which a population model is projected into the future 

based on successive implementations of the control rule from generated data and 

assessments (Walters and Martell 2004; Punt et al. 2016). Here, potential control rules 

could be based on the ratio of mortality estimates relative to reference points (ICES 
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2017), as demonstrated in Chapter 5. In the MSE, management goals, e.g., reducing 

fishing mortality to be sufficiently precautionary and rebuilding the stock biomass to be 

in good condition, are defined and operationalized. These simulations can evaluate 

whether the management goals are met with candidate harvest control rules that use mean 

length mortality estimators.  

 Overall, mean length-based methods are attractive options as alternative 

assessment methods for providing estimates of historical mortality estimates and current 

status for the many unassessed stocks (ICES 2015; ICES 2016), and work is underway to 

develop them as tools for providing management advice (ICES 2017). 
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Appendix A: Derivation of the length-converted catch curve 
(Chapter 2) 

The age-based catch curve is of the form: 

   ZtaCt log , (A.1) 

where Ct is the catch at age t, Z is total mortality, and a is a constant.  

In a length frequency distribution, length bins of larger animals contain more age 

groups than bins with smaller ones due to the decreasing growth rate of older individuals. 

Thus, abundance at size in an equilibrium population is a function of individual growth 

rate and mortality over time (Ricker 1975; van Sickle 1977; Pauly 1983). Assuming the 

length bins are narrow, the length-based catch curve is of the form: 

 i
t

i Zta
dt

dL
C i 








log , (A.2) 

where Ci is the catch in the i-th length bin, ti is the ages at the midpoint of the i-th length 

bin in the length frequency distribution (assuming deterministic growth), 

   0exp1 ttKLL iti
   is the von Bertalanffy growth equation for length at age ti, 

and 
dt

dL
it  is the instantaneous growth rate evaluated at the corresponding midpoint of the 

i-th length bin. The following substitutions are made: 

    0loglog ttKKL
dt

dL
i

ti 







  (A.3) 

  0ttKt i  , (A.4) 

where t  is the relative age defined as a variable transformation. After substitution and 

simplification, Equation A.2 reduces to: 
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   t
K
ZaCt 





  1~log , (A.5) 

where a~  is a nuisance parameter of all constant terms. Equation A.5 is a linear equation 

of the form: 

   tbaCt 
~log , (A.6) 

where a~  and b are the intercept and slope, respectively. Using Equations A.5 and A.6, 

total mortality Z is solved: 

 )1( bKZ  . (A.7) 

From a length frequency distribution, the midpoint of the length bins can be converted to 

relative ages talso defined by the von Bertalanffy growth equation: 

 









L
L

t it1log , (A.8) 

with the logarithm of the catch in that length bin used in a linear regression to estimate 

the slope of Equation A.6 and thus total mortality in Equation A.7. 
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Appendix B: Derivation of the Transitional Behavior of 
Weight per Unit Effort (Chapter 4) 

The catch rate in weight per unit effort (WPUE) is: 

 qBWPUE  , (B.1) 

where q is the catchability coefficient and B is the biomass. In equilibrium, the biomass is 

modeled as  

 



ct

tt dtWNB , (B.2) 

where tN  is the abundance at age t and is calculated as   ct ttZRN  exp ; tc is the 

age of full selectivity; and tW  is the abundance at age t and is calculated as 

   b
t ttKWW 0exp1   . The weight at age is a composite of the allometric weight-

length equation, b
tt aLW  , with the von Bertalanffy equation for length at age, 

   0exp1 ttKLLt   , where b
t aLW  . After substitution, equation (B.2) becomes 

 dtttKttZRWB b

t
c

c

)]}(exp[1{)](exp[ 0 



, (B.3) 

where R is the recruitment at age tc; Z is the instantaneous total mortality rate; and W , 

K, and 0t  are growth parameters. To evaluate equation B.3, the substitution 

)](exp[1 0ttKu   is made, which implies 

 )1ln(1
0 u

K
tt   (B.4) 

and 

 du
uK

dt
)1(

1


 . (B.5) 
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After substitution, Equation B.3 simplifies to 
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where Lc is the length at age tc; and   
x

duuuxBeta
0

11 )1(),;(   is the incomplete 

beta function to be evaluated numerically. 

Assuming one change in mortality, the biomass is a function of the time elapsed, 

d years, since the change in mortality from 1Z  to 2Z , 
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where )exp()1(1 KdLLc   . The first term represents the biomass of animals 

recruited after the change in mortality, and the second term represents the biomass of 

those recruited before the change.  

 Assume there have been k changes in mortality. Let 

},...,,,,...,,{ 21121 kk dddZZZ  , where 121 ,...,, kZZZ  is the vector of total mortality rates 

that the population that has sequentially experienced over time and id  is the elapsed 

duration of mortality rate 1iZ . The general solution for the biomass is: 
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The corresponding WPUE after k changes in mortality is 

 )(~~)()(  BqBqWPUE  , (B.9) 

where 
K

qRWq ~  is a scaling parameter for the WPUE and )()(~  B
RW

KB


  is the 

biomass excluding K, R, and W . In this way, trends in biomass can be modeled without

W . Compared to the model of NPUE, the only additional information required to model 

WPUE is the allometric growth exponent b. 
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Appendix C: Technical description of the mean length 
mortality estimators (Chapter 5) 

The ML and MLCR models estimate mortality rates and change points in 

mortality based on the transitional behavior of the mean length and index following a 

change in mortality (Gedamke and Hoenig, 2006; Huynh et al., 2017). Assume there are 

k+1 time stanzas (k changes in mortality in the time series). The predicted mean length  

( yL ), abundance-based index ( yNPUE ) and weight-based index ( yWPUE ) in year y are 

calculated as 
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All additional variables are defined in Table C.1.  
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Table C.1. Definitions of variables for the ML and MLCR models. 
Variable Definition 
i Index for time stanza (i = 1, …, k + 1) 
j Index for time stanzas experienced prior to time stanza i 

(j = 1, …, i - 1) 
y Calendar year 
Z Instantaneous total mortality rate (year-1) 
D Change point for mortality (calendar year) 

L  Von Bertalanffy asymptotic length 
K Von Bertalanffy growth parameter 
q~  Scaling parameter for index 
b Length-weight exponent 
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Appendix D: Spawning potential ratio for the mean length 
estimators (Chapter 5) 

The spawning potential ratio (SPR) is calculated as, 

 
)0(

)( %





FSSBPR

FFSSBPRSPR SPR , (D.1) 

which is the ratio of the spawning stock biomass per recruit (SSBPR) at F = FSPR% 

compared to that at F = 0. The spawning stock biomass per recruit is 
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where the abundance at age a ( aN ) is 
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the weight at age ( aw ) is 

    )](exp[1 0aaKLwa   , (D.4) 

the maturity at age ( am ) is 
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and total mortality at age ( aZ ) is 
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From Lc, the fully selected length, the corresponding age ac is obtained from the 

inverse of the von Bertalanffy function, 
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From Lmat, the length of knife-edge maturity, the corresponding age amat is also obtained 

from the inverse of the von Bertalanffy function, 
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To obtain the F30% reference point, Equation D.1 is solved for FSPR% such that 

SPR = 0.3. All variables are defined in Table D.1. 

 

 

Table D.1. Definition of variables for spawning potential ratio calculation. 
Variable Definition 
F Instantaneous fishing mortality rate (year-1) 
M Instantaneous natural mortality rate (year-1) 
Z Instantaneous total mortality rate (year-1) 
α Length-weight allometric constant 
β Length-weight allometric exponent 

L  Von Bertalanffy asymptotic length 
K Von Bertalanffy growth parameter 

0a  Von Bertalanffy theoretical age at length zero 

maxa  Maximum age (plus-group) 

matL  Length at maturity 

mata  Age at maturity 

cL  Fully selected length (knife-edge selectivity) 

ca  Fully selected age 
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Appendix E: Residuals in the application of the mean length-
based mortality estimators (Chapter 5) 
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Figure E.1. Standardized residuals of mean length from the ML model. Residuals were calculated by subtracting the predicted value 
from the observed value and then dividing the difference by the estimated standard deviation. 
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Figure E.2. Standardized residuals of mean length and index from the MLCR model. Residuals were calculated by subtracting the  
predicted value from the observed value and then dividing the difference by the estimated standard deviation. 



 

 
 

200 

 

Figure E.3. Standardized residuals of mean length from the MLeffort model. Residuals were calculated by subtracting the predicted 
value from the observed value and then dividing the difference by the estimated standard deviation. 
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Supplement to Chapter 2 

Additional figures and tables from the simulation study are presented. The results from 

all methods used in the simulation are reported. All results are reported by stratifying the 

simulation scenarios by factorial combinations of M/K and F/M. First, the median %Bias 

and median %RMSE are reported across factorial combinations for growth variability, 

recruitment variability, and selectivity function (Tables S1-S6; Figures S1-S39). Then, 

the results of sensitivity analyses of sample size (Figures S40-S52) and bin width 

(Figures S53-S65) are presented. 
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Table S1. Median %Bias of the different methods from factorial combinations stratified 
by M/K, F/M, and growth variability. Bold-with-asterisk values indicate the method with 
the lowest median %Bias within each stratum. 

F/M 
Growth 
Variability  L1 L2 L3 L4 L5 L6 L7 L8 L9 B1 B2 B3 LB 

  M/K = 0.5 

0.25               

 Low 104.1 136.5 115.8 168.9 177 178.5 170.2 162 177.3 71.2* 141.9 140.9 146.3 

 Medium 82.2 84.8 83.2 117.6 119.7 115.9 114 118.2 112.2 42* 70.8 66.5 139.2 

 High 72.8 63.4 72.8 98.2 113.6 97.8 93.7 110.2 93.3 19.3* 31.6 26.2 73 

1               

 Low 37.7 67.3 44.3 65.3 109.7 70.5 60.5 102.6 66.3 32.2* 61.4 51.2 83.9 

 Medium 33.2 45.6 33.5 49.7 79 47.9 46.7 74.5 44.9 22.6* 37.2 30.3 76 

 High 28.1 28.8 27.2 39.6 64.3 37.7 37 58.5 35.1 13.1* 21.7 16.3 55 

5               

 Low -18.2 -8.9 -20 -9.2 2.6* -15.1 -12.7 -0.8 -17.3 -9.8 4.4 -4 31.4 

 Medium -15.1 -8 -20.2 -7.3 1.1 -18 -9.1 -0.9 -19.5 -11.4 4.9 0.3* 30.8 

 High -15.2 -11 -21.4 -8.2 -1.1 -20.3 -9.2 -2.4 -21.5 -15.3 0.8* -1.1 26.6 

   

  M/K = 2 

0.25               

 Low -6.2 4 -3.4 -4.7 10.9 -2* -10.4 3.6 -5.8 11.5 24.8 4.3 59.2 

 Medium -6.6 1.7 -7.9 -2.9 7.1 -6.5 -5.9 3.2 -8.4 0.7* 13.8 4.3 47 

 High -8.2 -1.2* -14 -3.9 5.7 -12.9 -5.7 3.2 -14.3 -3.2 8.4 2.5 31.6 

1               

 Low -16.6 -12.2 -18.4 -12.5 -8.5 -17.8 -17.9 -12.6 -20.8 1.4* 10.6 -6.5 34.7 

 Medium -16.1 -12.2 -21 -9.9 -8.4 -21 -12.5 -11 -22.8 -7.8 3.2* -4.7 30.2 

 High -15.9 -13.5 -27.2 -11.4 -11.2 -27.5 -13 -12.8 -28.7 -15.5 -1.7* -5.4 19.2 

5               

 Low -38.1 -37.1 -37.2 -25.7 -31.5 -31.6 -28.7 -34.5 -34.6 -32 -10.3* -16.5 11.5 

 Medium -40.8 -39.5 -39.8 -28.2 -34.1 -34.5 -29 -35.6 -35.9 -39 -19.9 -21.7 7.5* 

 High -45.8 -44 -44.4 -33.7 -38.8 -39.4 -33.4 -39.5 -40 -47.3 -30.2 -30.1 1.1* 
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Table S2. Median %RMSE of the different methods from factorial combinations stratified 
by M/K, F/M, and growth variability. Bold-with-asterisk values indicate the method with 
the lowest median %RMSE within each stratum. 

F/M 
Growth 
Variability  L1 L2 L3 

 
L4 L5 L6 L7 L8 L9 B1 B2 B3 LB 

   M/K = 0.5 

0.25                

 Low 141.1 211.5 157.9  220.8 275.2 232.1 233.4 272 247.2 127.8* 223 244.8 319.8 

 Medium 100.5 146.9 101  133.8 178.6 130 132.2 171.2 127.9 90.4* 124.9 123 309.4 

 High 84.3 118.3 84.1  105 152.2 104.3 101.4 145 100.6 70.6* 85.8 82.9 177.7 

1                

 Low 68.6 115 74*  95.6 165.6 101.3 98.2 165.3 102.7 80.8 117 109.8 198.4 

 Medium 57.1 94.3 54.7*  70.5 118.9 64.4 69.5 116 63 69.6 86.6 83.9 184.6 

 High 46 73.4 43.5*  53.1 94.4 48.6 51.7 90.4 47 57.1 68.1 66 142.5 

5                

 Low 35.5 32.6 29.6  36.9 34.2 29.3* 38.5 36 30.7 38 42.1 41.7 74.6 

 Medium 33.9 30.9 29.7*  38.6 32.1 29.8 39.9 33.5 30.7 35.4 42 41.7 71.8 

 High 32.2 30.1 30.5  34.7 27.9* 30.2 35.7 28.9 31 33.2 36.9 37.7 65.5 

    

   M/K = 2 

0.25                

 Low 31.5 36 29.8*  40.3 45.9 35.2 40.3 46.2 35 49.1 60.6 49.3 144.1 

 Medium 29.9 33.2 27.1*  37.2 38.8 30.6 37.2 39.8 31.2 39.7 48.9 46 126.6 

 High 28.5 31.2 25.6*  34 32.3 26.3 34.2 32.8 27 34.2 41.9 40.9 81.9 

1                

 Low 35.1 25.2* 28.6  38.3 26.1 29.5 40.3 28.3 31.2 41.6 46.3 40.6 95.7 

 Medium 34 26.1 31  34.3 25.1* 31.5 35.7 26.7 32.5 37.3 39.5 38.2 90.8 

 High 32.1 25.8 32.5  32 23.8* 32.9 32.9 24.8 33.8 34.2 32.7 33.6 66.5 

5                

 Low 49.1 42.3 42.4  47.1 39.4 39.7* 55.2 41.8 42.1 45.5 43 48.3 79.3 

 Medium 48 43.3 43.6  42.5 40 40.3 45.2 41.3 41.7 46 38.4* 41.4 73.4 

 High 50.3 46.4 46.9  42.4 42.3 43 43.4 42.9 43.7 51.1 39.9* 41.1 59 
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Table S3. Median %Bias of the different methods from factorial combinations stratified 
by M/K, F/M, and recruitment variability. Bold-with-asterisk values indicate the method 
with the lowest median %Bias within each stratum. 

F/M 
Recruitment 
Variability  L1 L2 L3 L4 L5 L6 L7 L8 L9 B1 B2 B3 LB 

  M/K = 0.5 

0.25               

 Low 75.1 105.6 85.5 152.4 135 162.1 144.7 124.6 158.5 30.2* 108 110.3 111.1 

 High 103.7 132.1 114.7 169.3 175 169.1 168 158.5 163.6 67.1* 136.8 141.8 145.3 

1               

 Low 25.8 36.3 29.4 52 85.4 57.2 47.1 75.5 53.3 11.4* 36.3 28.9 64 

 High 36.6 67 43 63.4 103.4 68 59.2 95.6 64.2 29.2* 59 50.2 81.6 

5               

 Low -18.4 -11.5 -21.8 -11.1 -0.6 -19.2 -12.8 -2.1 -20.4 -17.3 -0.5* -4.2 25.8 

 High -15.6 -8.8 -20.7 -7.2 2.6 -18.3 -9.7 -0.9* -19.8 -9.4 5.6 -1.4 31.7 

   

  M/K = 2 

0.25               

 Low -8.4 0.1* -9.7 -6.8 4.7 -5.7 -9.2 0.1* -9 -1.7 8.2 -2.3 30.2 

 High -4.8 3.4 -6.2 -2.6* 9.8 -4.3 -5.6 4.6 -6.4 11.2 20.1 8.1 56.6 

1               

 Low -17.6 -13.1 -20.1 -12.4 -8.9 -18.2 -17.7 -12.8 -21.1 -10.6 0.9* -6 22.2 

 High -14.3 -11.6 -22 -8.5 -7.9 -22 -13.7 -11.2 -24.2 -5.6 10.6 0.3* 40.5 

5               

 Low -43.8 -40.2 -40.4 -32.8 -35.4 -35.7 -35.1 -37.4 -37.6 -40.1 -22.9 -28.5 4.8* 

 High -39 -37.4 -37.5 -26.6 -31.9 -32 -27.7 -34.8 -35 -32.8 -13.9 -17.6 9.6* 

 

 

  



 

205 
 

Table S4. Median %RMSE of the different methods from factorial combinations stratified 
by M/K, F/M, and recruitment variability. Bold-with-asterisk values indicate the method 
with the lowest median %RMSE within each stratum. 

F/M 
Recruitment 
Variability  L1 L2 L3 L4 L5 L6 L7 L8 L9 B1 B2 B3 LB 

  M/K = 0.5 

0.25               

 Low 108.6 156.2 125.8 177 228.2 184.8 168.1 225.2 182.4 87* 186.8 182.8 257.8 

 High 140.7 181.7 157.1 199.7 254.8 188.8 195.4 251.1 184.8 125.4* 222 217 322 

1               

 Low 45.7 83.6 53.3* 84.9 122.1 85.2 79.1 119.3 83.7 53.4 90.2 92.2 158.1 

 High 67.5* 105.3 73.3 101.7 142.9 93.8 103.7 140.6 91.4 80 116.7 115.6 190.8 

5               

 Low 30.5 28.7 29.1 31.5 29.4 28.1 33.4 30.6 29* 32.9 34.3 35.2 65.7 

 High 37.7 34 30.9* 41.6 36.6 31.3 43.3 38 32.5 38.3 44.8 45.4 78.6 

   

  M/K = 2 

0.25               

 Low 26.3 28.4 25.1 29 34 27.5 30.3 34.8 28* 31.8 39.3 34.7 85.4 

 High 34.5 38.3 30.4 39.8 47 34.6 40.2 47 34.4* 51.2 56.8 52.1 139 

1               

 Low 28.7 22.9* 27.6 30 22.9* 28.5 31.1 24.6 30.1 33 34 33.1 60.6 

 High 36.1 27.5* 31.6 40.7 27.7 32.5 42.4 29.2 33.6 41.8 50 44.7 105.6 

5               

 Low 49 42.7 43 42.3 39.5* 39.9 45 41.4 41.7 47 39.5* 41.6 68.9 

 High 49.1 42.4 42.5 44.5 40.4 40.8 48.5 42.7 43.2 45.3 40.3* 44.1 76.3 
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Table S5. Median %Bias of the different methods from factorial combinations stratified 
by M/K, F/M, and selectivity. Bold-with-asterisk values indicate the method with the 
lowest median %Bias within each stratum. 

F/M Selectivity  L1 L2 L3 L4 L5 L6 L7 L8 L9 B1 B2 B3 LB 

  M/K = 0.5 

0.25               

 Gradual 76.3 70.8 78 114.6 113.1 113.5 111.6 110.3 110.3 31* 61.6 57.9 112.9 

 Steep 74.7 80.4 79.2 113.4 120.8 112 109.5 118.2 107.9 26.7* 60.2 57.6 82.2 

 Dome 146.2 149.3 148.6 175 227.8 170.9 168.1 221.7 167.2 128.8* 165.3 151.1 278.5 

1               

 Gradual 26.6 31.6 29.2 46.4 73.5 45.8 43.4 68.7 42.9 10.7* 29.4 23.4 64.1 

 Steep 27.7 35.5 30.7 45.8 72.1 44.5 43.1 66.7 41.6 14.9* 30.4 24 48.7 

 Dome 60.5 69.3 64.9 77.7 119.3 75.7 74.7 113.9 72.5 58.3* 83.5 73.4 153.9 

5               

 Gradual -18.4 -12.2 -21.9 -10.3 -1.9 -18.7 -12.2 -3.8 -20.1 -16.6 -1.2* -4.3 27.6 

 Steep -10.4 -1.6 -14.9 -5.9 3 -13.9 -8.9 0.1* -15.4 1.8 8 2.4 31.2 

 Dome -17 -11 -22.1 -9.2 -0.4* -19.7 -10.7 -1.9 -21.2 -15.4 0.8 -2.8 27.9 

   

  M/K = 2 

0.25               

 Gradual -12.1 -6 -12.6 -7 3.8 -9.5 -11 -0.5* -11.3 -2.8 7.7 -2.1 34 

 Steep -7.3 1.2 -7.9 -5.1 6.1 -6.5 -8.8 2.6 -8.4 6.8 11.5 0.7* 28.1 

 Dome 3.3* 11.1 6.6 15 22.9 12.8 11 19.9 9.9 9.4 29.5 18.3 79.6 

1               

 Gradual -21 -18.5 -26 -15.1 -13.6 -24.4 -19.4 -16.2 -26.3 -14.2 -1.5* -9.3 23 

 Steep -13.4 -10.6 -21 -10.3 -8.9 -21 -13.2 -12 -22.8 0.1* 7.5 -2.9 21.5 

 Dome -16.3 -12.3 -18.6 -8.2 -6.3 -15.9 -10.6 -8.2 -17.1 -10.4 5.4* -2.8 38.2 

5               

 Gradual -44.1 -40.8 -41 -32.8 -35.5 -35.8 -33.7 -37.4 -37.6 -41.9 -23.6 -27.6 5.4* 

 Steep -20.1 -25.8 -26.2 -11.2 -23.3 -23.7 -12.9 -25.4 -25.6 -18.7 -2.6* -3.6 39.8 

 Dome -44.3 -41.1 -41.4 -33.6 -36.1 -36.3 -34.1 -37.9 -38.1 -42.3 -24.8 -28.9 3.5* 
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Table S6. Median %RMSE of the different methods from factorial combinations stratified 
by M/K, F/M, and selectivity. Bold-with-asterisk values indicate the method rule with the 
lowest median %RMSE within each stratum. 

F/M Selectivity  L1 L2 L3 L4 L5 L6 L7 L8 L9 B1 B2 B3 LB 

  M/K = 0.5 

0.25               

 Gradual 92.7 128.6 94.5 130 166.5 126.8 129.1 156.8 125.3 77.4* 117.4 117.2 262.5 

 Steep 94.5 136.5 94.5 129.1 170.6 125.8 127.5 163.1 123.5 82* 115.8 115.4 223.2 

 Dome 165.6 197.5 165.9 195.9 266.6 190.5 192.7 263.2 185.8 161.3* 213.8 201.9 420.3 

1               

 Gradual 44.5 80.6 49.2 64.5 110.1 61.4 63.5 107.2 60.1 52.9* 76.4 74.9 160.5 

 Steep 49.5 83.3 50.5 63.3 108.5 59.7 62.2 104.5 58.5 58.2* 80.1 77.1 135.8 

 Dome 80 106.4 80.9 99.1 148.9 92.6 97.5 146.7 90.5 87.9* 121.9 112.6 248 

5               

 Gradual 34 31.7 30.4 35.9 30.8 30.2* 36.9 32.5 31.4 34.6 37.7 38.9 73.1 

 Steep 34.5 31 28.8* 38 31.5 29.3 39.1 32.7 30.2 38.6 42.4 42 66.8 

 Dome 33.1 31 29.7* 35.4 30.1 29.6 36.6 31.6 30.6 34.5 37.4 38.5 72.3 

   

  M/K = 2 

0.25               

 Gradual 29.4 30.2 25.8* 31.6 33.4 27.2 32.4 34.7 27.8 36.6 41.9 38.9 95.5 

 Steep 28.6 29.8 25.6* 32 33.1 27.4 32.8 33.7 27.9 40.2 44.7 40.1 75.4 

 Dome 32.3 35.8 29.9* 45.2 45.7 37 44.7 45.1 36.1 40.7 57.2 50.9 162.8 

1               

 Gradual 33.1 27.9 33.1 33.8 25* 33.3 35.5 26.7 34.5 35.3 38.2 36.5 82.9 

 Steep 32 23.7 30.1 35.2 23.6* 31.1 37.3 25.4 32.5 36.5 40.6 37.4 62 

 Dome 31.9 25.1 28.3 34.8 24.3* 28.4 36.6 25.5 29.3 36.1 41.3 39.1 105 

5               

 Gradual 49.5 43.4 43.7 43.9 40.7 41 47 42.7 43.3 47.9 40.4* 43.4 73.1 

 Steep 34.7 32.7 33.3 35.3 33.1* 33.7 40.7 34.9 36 33.8 32.8 37.4 79.1 

 Dome 49.1 44 44.3 44.6 40.6 41 47.6 42.7 43.2 47.7 40.2* 43.4 72.3 
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Figure S1. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and growth variability for 
method L1. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and shape 
of violin plot show distribution of values. 

Figure S2. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and growth variability for 
method L2. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and shape 
of violin plot show distribution of values. 
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Figure S3. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and growth variability for 
method L3. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and shape 
of violin plot show distribution of values. 

 
Figure S4. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and growth variability for 
method L4. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and shape 
of violin plot show distribution of values. 
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Figure S5. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and growth variability for 
method L5. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and shape 
of violin plot show distribution of values. 

 
Figure S6. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and growth variability for 
method L6. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and shape 
of violin plot show distribution of values. 
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Figure S7. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and growth variability for 
method L7. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and shape 
of violin plot show distribution of values. 

 
Figure S8. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and growth variability for 
method L8. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and shape 
of violin plot show distribution of values. 



 

212 
 

 
Figure S9. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and growth variability for 
method L9. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and shape 
of violin plot show distribution of values. 

 
Figure S10. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and growth variability for 
method B1. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and shape 
of violin plot show distribution of values. 
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Figure S11. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and growth variability for 
method B2. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and shape 
of violin plot show distribution of values.  

 
Figure S12. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and growth variability for 
method B3. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and shape 
of violin plot show distribution of values. 
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Figure S13. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and growth variability for 
method LB. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and shape 
of violin plot show distribution of values. 
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Figure S14. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and recruitment variability 
for method L1. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and 
shape of violin plot show distribution of values. 

 
Figure S15. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and recruitment variability 
for method L2. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and 
shape of violin plot show distribution of values. 
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Figure S16. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and recruitment variability 
for method L3. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and 
shape of violin plot show distribution of values. 

 
Figure S17. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and recruitment variability 
for method L4. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and 
shape of violin plot show distribution of values. 
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Figure S18. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and recruitment variability 
for method L5. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and 
shape of violin plot show distribution of values. 

 
Figure S19. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and recruitment variability 
for method L6. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and 
shape of violin plot show distribution of values. 
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Figure S20. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and recruitment variability 
for method L7. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and 
shape of violin plot show distribution of values. 

 
Figure S21. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and recruitment variability 
for method L8. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and 
shape of violin plot show distribution of values. 
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Figure S22. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and recruitment variability 
for method L9. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and 
shape of violin plot show distribution of values. 

 
Figure S23. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and recruitment variability 
for method B1. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and 
shape of violin plot show distribution of values. 
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Figure S24. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and recruitment variability 
for method B2. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and 
shape of violin plot show distribution of values. 

 
Figure S25. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and recruitment variability 
for method B3. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and 
shape of violin plot show distribution of values. 
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Figure S26. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and recruitment variability 
for method LB. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and 
shape of violin plot show distribution of values. 
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Figure S27. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and selectivity for method 
L1. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and shape of violin 
plot show distribution of values. 

 
Figure S28. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and selectivity for method 
L2. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and shape of violin 
plot show distribution of values. 
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Figure S29. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and selectivity for method 
L3. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and shape of violin 
plot show distribution of values. 

 
Figure S30. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and selectivity for method 
L4. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and shape of violin 
plot show distribution of values. 



 

224 
 

 
Figure S31. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and selectivity for method 
L5. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and shape of violin 
plot show distribution of values. 

 
Figure S32. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and selectivity for method 
L6. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and shape of violin 
plot show distribution of values. 



 

225 
 

 
Figure S33. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and selectivity for method 
L7. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and shape of violin 
plot show distribution of values. 

 
Figure S34. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and selectivity for method 
L8. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and shape of violin 
plot show distribution of values. 
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Figure S35. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and selectivity for method 
L9. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and shape of violin 
plot show distribution of values. 

 
Figure S36. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and selectivity for method 
B1. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and shape of violin 
plot show distribution of values. 
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Figure S37. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and selectivity for method 
B2. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and shape of violin 
plot show distribution of values. 

 
Figure S38. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and selectivity for method 
B3. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and shape of violin 
plot show distribution of values. 
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Figure S39. %Bias (left grid) and %RMSE (right grid) stratified by M/K, F/M, and selectivity for method 
LB. Numbers and horizontal lines in the violin plot indicate median %Bias and %RMSE and shape of violin 
plot show distribution of values. 
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Figure S40. The effect of sample size on %Bias (left grid) and %RMSE (right grid) for method L1. Each 
line represents individual factorial combinations stratified in separate cells by M/K and F/M.  

 
Figure S41. The effect of sample size on %Bias (left grid) and %RMSE (right grid) for method L2. Each 
line represents individual factorial combinations stratified in separate cells by M/K and F/M.  
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Figure S42. The effect of sample size on %Bias (left grid) and %RMSE (right grid) for method L3. Each 
line represents individual factorial combinations stratified in separate cells by M/K and F/M.  

 
Figure S43. The effect of sample size on %Bias (left grid) and %RMSE (right grid) for method L4. Each 
line represents individual factorial combinations stratified in separate cells by M/K and F/M.  
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Figure S44. The effect of sample size on %Bias (left grid) and %RMSE (right grid) for method L5. Each 
line represents individual factorial combinations stratified in separate cells by M/K and F/M.  

 
Figure S45. The effect of sample size on %Bias (left grid) and %RMSE (right grid) for method L6. Each 
line represents individual factorial combinations stratified in separate cells by M/K and F/M.  
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Figure S46. The effect of sample size on %Bias (left grid) and %RMSE (right grid) for method L7. Each 
line represents individual factorial combinations stratified in separate cells by M/K and F/M.  

 
Figure S47. The effect of sample size on %Bias (left grid) and %RMSE (right grid) for method L8. Each 
line represents individual factorial combinations stratified in separate cells by M/K and F/M.  
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Figure S48. The effect of sample size on %Bias (left grid) and %RMSE (right grid) for method L9. Each 
line represents individual factorial combinations stratified in separate cells by M/K and F/M.  

 
Figure S49. The effect of sample size on %Bias (left grid) and %RMSE (right grid) for method B1. Each 
line represents individual factorial combinations stratified in separate cells by M/K and F/M.  
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Figure S50. The effect of sample size on %Bias (left grid) and %RMSE (right grid) for method B2. Each 
line represents individual factorial combinations stratified in separate cells by M/K and F/M.  

 
Figure S51. The effect of sample size on %Bias (left grid) and %RMSE (right grid) for method B3. Each 
line represents individual factorial combinations stratified in separate cells by M/K and F/M.  



 

235 
 

 
Figure S52. The effect of sample size on %Bias (left grid) and %RMSE (right grid) for method LB. Each 
line represents individual factorial combinations stratified in separate cells by M/K and F/M.  
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Figure S53. The effect of bin width on %Bias (left grid) and %RMSE (right grid) for method L1. Each line 
represents individual factorial combinations stratified in separate cells by M/K and F/M. 

 
Figure S54. The effect of bin width on %Bias (left grid) and %RMSE (right grid) for method L2. Each line 
represents individual factorial combinations stratified in separate cells by M/K and F/M. 
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Figure S55. The effect of bin width on %Bias (left grid) and %RMSE (right grid) for method L3. Each line 
represents individual factorial combinations stratified in separate cells by M/K and F/M. 

 
Figure S56. The effect of bin width on %Bias (left grid) and %RMSE (right grid) for method L4. Each line 
represents individual factorial combinations stratified in separate cells by M/K and F/M. 
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Figure S57. The effect of bin width on %Bias (left grid) and %RMSE (right grid) for method L5. Each line 
represents individual factorial combinations stratified in separate cells by M/K and F/M. 

 
Figure S58. The effect of bin width on %Bias (left grid) and %RMSE (right grid) for method L6. Each line 
represents individual factorial combinations stratified in separate cells by M/K and F/M. 
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Figure S59. The effect of bin width on %Bias (left grid) and %RMSE (right grid) for method L7. Each line 
represents individual factorial combinations stratified in separate cells by M/K and F/M. 

 
Figure S60. The effect of bin width on %Bias (left grid) and %RMSE (right grid) for method L8. Each line 
represents individual factorial combinations stratified in separate cells by M/K and F/M. 
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Figure S61. The effect of bin width on %Bias (left grid) and %RMSE (right grid) for method L9. Each line 
represents individual factorial combinations stratified in separate cells by M/K and F/M.  

 
Figure S62. The effect of bin width on %Bias (left grid) and %RMSE (right grid) for method B1. Each line 
represents individual factorial combinations stratified in separate cells by M/K and F/M.  
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Figure S63. The effect of bin width on %Bias (left grid) and %RMSE (right grid) for method B2. Each line 
represents individual factorial combinations stratified in separate cells by M/K and F/M.  

  
Figure S64. The effect of bin width on %Bias (left grid) and %RMSE (right grid) for method B3. Each line 
represents individual factorial combinations stratified in separate cells by M/K and F/M.  
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Figure S65. The effect of bin width on %Bias (left grid) and %RMSE (right grid) for method LB. Each line 
represents individual factorial combinations stratified in separate cells by M/K and F/M. 
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