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ABSTRACT PAGE 
 

Autism spectrum disorder is a pervasive developmental disorder characterized 
by heterogeneous deficits in social communication and interaction, as well as 
repetitive behaviors and restricted interests. Due to the dramatic increase in 
prevalence, a major theme in contemporary research has been the identification 
of biomarkers for ASD that can shed light on etiological factors, facilitate 
diagnosis and serve as markers for tracking the efficacy of behavioral and 
pharmacological treatments. Electroencephalography (EEG) metrics, such as 
event-related potentials (ERPs), resting state oscillatory activity (OA), and resting 
state complexity (multiscale entropy), are well-suited for the measurement of 
such biomarkers. Due to the complexity and heterogeneity of ASD symptoms, it 
is important that research aiming to use EEG to identify biomarkers of autism and 
other neurodevelopmental disorders focus on determining the relationships 
between electrophysiological neurometrics and clinical presentation. The 
objective of the present research was two-fold; 1) synthesize a profile of ERP 
and OA metrics, collected during a novel Brief Neurometric Battery, that 
differentiates between youth with ASD and controls, and 2) determine if a 
relatively novel analysis of resting state EEG complexity (MSE) can be used to 
differentiate between ASD and controls. Through a two study approach, this 
research was able to synthesize a multivariate profile that classified youth with 
and without ASD at an accuracy rate comparable to that of the gold standard 
methods (ADI-R/ADOS) and identify an additional neurometric, multiscale 
entropy, that can accurately differentiate between youth with ASD and controls.   
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Neurometric Profiling of Autism Spectrum Disorder   

Using a Brief Neurometric Battery  

Autism Spectrum Disorder (ASD) is a developmental disorder 

characterized by pervasive deficits in social communication and interaction, 

restricted interests, repetitive behaviors, and impaired sensory perception and 

integration (American Psychiatric Association, 2013; Baranek, David, Poe, Stone, 

& Watson, 2006). As the depth of research into etiological factors and neural 

correlates of ASD has increased in recent years, a complex, multifaceted picture 

of the disorder has begun to emerge. Likely contributing to this complexity is the 

wide range of both age and cognitive function in individuals considered to be on 

the autism spectrum (Fakhoury, 2015; Jeste, Frohlich, & Loo, 2015). The 

heterogeneity of ASD, highlighted in recent literature, has inspired a shift in the 

focus of research towards integrative methods reflected in the guidelines of the 

Research Domain Criteria (RDoc) Initiative recently issued by the National 

Institute of Mental Health (Insel et al., 2010; Jeste et al., 2015). The RDoC 

Initiative is designed to encourage the synthesis of basic and applied research in 

an effort to identify meaningful biomarkers to aid the diagnostic process, identify 

individuals at risk, and serve as markers of treatment efficacy (Insel et al., 2010; 

“Research Domain Criteria (RDoC),” 2008).  These markers are also intended to 

transect traditional diagnostic lines to detect meaningful subgroups of disorders 

based on their neurological underpinnings (Insel et al., 2010; Pearlson, 

Clementz, Sweeney, Keshavan, & Tamminga, 2016). 



 

	 2 

 Multiple methodologies can be used for biomarker identification, including 

electroencephalography (EEG). EEG is an advantageous modality to employ in 

pursuit of the RDoC Initiative, particularly in the context of ASD, due to its non-

invasive nature, cost-effectiveness, and unparalleled temporal resolution (Luck, 

2014). These qualities of EEG allow for the millisecond analysis of cognitive 

processes before, during and after a stimulus is presented or a response is made 

allowing for an investigation of the “action” involved in neural processes (Dickter 

& Kieffaber, 2014; Jeste et al., 2015; Luck, 2014; Webb et al., 2013). In addition, 

EEG metrics, such as the mismatch negativity, provide additional insight into 

underlying neurobiology as they have been linked to neurotransmitter activity, 

such as glutamate and GABA, that are thought to be involved in ASD (DiCicco-

Bloom et al., 2006; Luck, 2014). Another advantage of EEG as a research and 

clinical technique is that it can easily be used with participants who have limited 

communication or cognitive abilities (Webb et al., 2013), making it suitable for 

children and adults with ASD.  

 EEG generates several categories of metrics, such as event-related 

potentials (ERPs), resting-state oscillatory activity (OA), and measures of 

complexity, that offer unique yet complimentary information regarding the 

underlying brain function in disorders such as ASD (Jeste et al., 2015; Luck, 

2014; Wang et al., 2013). Analysis of these metrics can provide insight into if and 

how stimuli are attended to and processed and how the brain behaves at rest 

which may inform about the capacity to perceive and integrate new information 

when it is presented (Bosl, Tierney, Tager-Flusberg, & Nelson, 2011; Jeste et al., 
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2015; Luck, 2014; McLoughlin, Makeig, & Tsuang, 2014). Critical to the 

development of clinically relevant EEG-based biomarkers of ASD will be the 

establishment of an improved understanding of the relationships between the 

heterogeneous symptoms of ASD and the multivariate landscape of neurometrics 

that are possible with EEG in order to more accurately delineate clinically 

relevant subgroups (Jeste et al., 2015; Ventola et al., 2015).  

Previous electrophysiological research has been successful in identifying 

ASD-related deficits and abnormalities (Luckhardt, Jarczok, & Bender, 2014; 

Strzelecka, 2014; Webb et al., 2013); however, most of this research has been 

limited to recordings of just one or two neurometrics at a time. This may hinder 

the process of identifying relevant biomarkers in two ways; first, viewing a single 

metric likely does not provide a complete picture of the deficits associated with a 

disorder and second, the tasks designed to elicit one or even two metrics may 

have less ecological validity due to the relative simplicity of the experimental 

tasks by comparison with the kinds of stimuli encountered in a real-life 

environment. This may be important due to findings in the literature that suggest 

cognitive load has been shown to affect some electrophysiological components 

(Remington, Swettenham, Campbell, & Coleman, 2009; Zafar et al., 2014). 

This article describes two studies using two categories of EEG-based 

neurometrics in an attempt to predict the classification of individuals with ASD. 

This is accomplished by comprehensively evaluating electrophysiological 

responses to a complex set of stimuli as well as resting-state EEG. Study One is 

designed to synthesize a multivariate profile of ERPs and traditional resting-state 
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OA to classify individuals with/without ASD using a discriminant function analysis 

and Study Two aims to accomplish the same goal by the complexity of resting-

state EEG data calculated using a relatively novel method (multiscale entropy—

MSE) designed to increase the signal-to-noise ratio in order to isolate dynamic 

neural connectivity while factoring out random neural activity. While both studies 

yield novel information about individuals on the autism spectrum, taken together, 

they point to common areas of deficit in ASD.  

Study One: Towards a Multivariate Profile of ASD using the Brief 

Neurometric Battery 

 EEG metrics have been shown to be sensitive to differences in brain 

function in individuals with ASD (see Luckhardt et al., 2014, Strzelecka, 2014, 

and Wang et al., 2013 for some examples); however, two major weaknesses 

impede the capacity of this research to contribute to the goal of characterizing 

the collection of underlying neural mechanisms of psychopathology established 

by the RDoC initiative. The first weakness is the time traditionally necessary to 

reliably record ERPs using conventional procedures (Kappenman & Luck, 2012; 

Luck, 2014). This limitation affects the utility of ERP protocols in clinical contexts 

and likely contributes to the second weakness, which is the use of only one or 

two metrics in the study of ASD. Conventionally, the large number of trials 

required for ERP analysis has resulted in repetitive experiments that average 20-

30 minutes to elicit a single ERP component. This makes the recording and 

analysis of multiple ERP components cognitively taxing and prohibitively time 
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consuming; factors that are particularly salient when considering the cognitive 

and attentional resources of children and clinical populations.   

One potential solution to these limitations is the use of novel procedures 

like the “Brief Neurometric Battery” (BNB) (Kieffaber, Okhravi, Hershaw, & 

Cunningham, 2016) that is capable of recording a large number of ERP and 

EEG-based neurometrics concurrently. The BNB utilizes a nested array of 

auditory and compound visual stimuli to elicit at least thirteen neurometrics in 

less than thirty minutes, including eight different ERPs and five measures of OA 

(Table 1)(Kieffaber et al., 2016). This novel paradigm has been used in previous 

research to synthesize a rich, multivariate profile of normal aging (Kieffaber et al., 

2016). Additionally, in a study by Gayle, Osborne, & Kieffaber (under review) of 

the BNB in the context of autism spectrum personality traits, a model consisting 

of three BNB metrics: N2pc, P50 suppression, and gamma band asymmetry; was 

shown to be predictive of Adult Autism Spectrum Quotient (AQ) score in a 

subclinical sample of college aged adults. In the current research, through a 

collaboration with the Yale Child Study Center, electrophysiological data were 

collected from a sample of adolescents and young adults (ages 11-21) with the 

primary aim of determining whether the simultaneous measurement of multiple 

neurometrics confers significant advantages over traditional diagnostic 

procedures in classification of ASD.  
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Methods 

Participants.  

The initial sample for this study consisted of 43 adolescents/young adults 

(22 female) with a mean age in years of 15.00 (SD=3.01) recruited through the 

Yale Child Study Center. Twenty-two of the participants were diagnosed with 

Autism Spectrum Disorder (ASD).  All participants with ASD met DSM-IV-TR 

(American Psychological Association, 2000) diagnostic criteria for Asperger’s 

syndrome, pervasive developmental disorder—not otherwise specified, or autistic 

disorder as determined by expert clinical judgment. This diagnosis was 

supported by the results of the ADI-R (Lord, Rutter, & Couteur, 1994) and/or 

ADOS (Lord et al., 1989), administered by clinical psychologists. The remaining 

21 participants, assigned to the control group, had no previous or suspected 

diagnosis of an autism spectrum disorder, schizophrenia, or other 

developmental/psychiatric disorder. Although IQ was not assessed during the 

study, all participants included in the final analyses achieved at least 70% 

accuracy on the BNB task. Additionally, there was not a significant difference in 

accuracy rates between the ASD (M=.76, SD=.02) and Control (M=.76, SD=.03) 

groups. Eight participants were excluded from the final analyses (3 ASD, 5 

Control) due to excessive EEG artifact (N=5), poor adherence to directions 

(N=2), or technical difficulties during recording (N=1). Written informed consent 

was obtained from each participant’s parent(s), and written assent was obtained 

from each participant. If the participant was over the age of 18, they provided 

written informed consent. The Human Investigations Committee at Yale 
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University and the Protection of Human Subjects Committee (HIC#100406656).) 

at the College of William and Mary (PHSC-2015-09-23-10595-pdkieffaber) 

approved this study.  

Experimental Design.  

This experimental design is based on the Brief Neurometric Battery 

developed and validated by Kieffaber et al. (2016) in the context of healthy aging. 

Resting EEG data were recorded during two periods of 60 seconds with eyes 

open and 60 seconds with eyes closed. Following four minutes of resting state 

EEG recordings, the task consisted of a nested array of auditory and visual 

stimuli presented using MATLAB (Mathworks Inc., USA). There were a total of 

400 trials, with each trial consisting of (1) a standard or deviant (frequency or ISI) 

tone, (2) a compound visual stimulus set and (3) an auditory paired-click stimulus 

(on a subset of trials) (see Table 2 for a breakdown of trial counts and Figure 1 

for task schematic).  

Auditory stimuli were presented binaurally through pneumatic headphones 

(E-A-RTONETM 3a) adjusted to 80 dB. Auditory stimuli consisted of a series of 

“standard” tones (500 Hz sinusoidal tone, 100 ms in duration with a 5 ms rise and 

fall) presented with an ISI of 2600ms. In order to elicit the frequency-MMN 

(MMNFREQ) component, 14% of the standard tones were replaced by a, a 

“deviant” tone (1000 Hz sinusoidal tone, 100 ms in duration with a 5 ms rise and 

fall). In order to elicit the inter-stimulus interval-MMN (MMNISI), another 14% of 

the standard tones occurred after an abbreviated ISI of 1300ms.  To elicit the 
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P50 ERP component, click pairs consisting of two 1ms square-wave tones 

(250ms ISI) was presented on a subset of 135 trials, occurring during the interval 

between standard tones.  

Visual stimuli were interleaved between auditory stimuli and presented in 

white text against a black background. Visual stimuli were presented for 250 ms, 

with a variable onset in the interval 100-950 ms following the offset of a standard 

tone. See table 2 for a summary of the breakdown of trial types.   

The compound visual stimulus included two major components modeled 

after previous research (Kappenman & Luck, 2012). The first component was a 

figure pair made up of two of four possible shapes (circle, square, triangle, 

diamond) that were presented on either side of a fixation cross at the center of 

the screen subtending a visual angle of 9.5°. Participants were instructed to 

attend to the shape pair on each trial and to respond using two buttons on a 

response box (Cedrus Corporation). For each participant, two of the target 

shapes were randomly selected and designated as “targets”, while the remaining 

two were designated as distractors. The assignment of keys to targets was also 

randomized across participants. The frequencies of the two targets and two 

distractors were such that one of each of the two target and distractor stimuli 

occurred on 85% of trials and the other occurred on just 15% of the trials. This 

manipulation permitted elicitation of the P3a (oddball distractors) and the P3b 

(oddball targets).  Because each trial included one target and one distractor 

presented on either side of the centered fixation cross with equal probability, task 
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performance required lateral shifts of attention by the participant depending on 

the location of the target, eliciting an N2pc component.  

The second major component of the visual stimulus was a task-irrelevant 

rectangular sine grating with a spatial frequency of 0.0083 cycles per pixel (120 

pixels per cycle) that was presented at either the top or the bottom of the screen 

with equal probability on each trial permitting isolation of the C1 wave. The 

orientation of the grating was either vertical or horizontal. The orientation of the 

visual grating was counterbalanced such that one direction (vertical or horizontal) 

occurred at a relative frequency of 87% and the opposite direction 13% of trials 

allowing for the isolation of the visual MMN (MMNVIS) component.  A schematic 

illustrating this BNB procedure is presented in Figure 1.  

Procedure 

 All data was collected at the Yale Child Study Center (YCSC). When 

participants (and their parent/legal guardian if the participant was under 18) 

arrived at the YCSC, they completed the written informed consent/assent 

process as designated in the HIC#100406656 protocol. Participants, or their 

parent/legal guardian, then completed demographic information and the Social 

Responsiveness Scale 2 (SRS-2) (Constantino & Gruber, 2012).  The SRS-2 is a 

65 item parent/self-report questionnaire designed to evaluate the presence and 

severity of deficits in social function associated with ASD (Constantino & Gruber, 

2012). If the participant was over 19, they completed the self-report version. If the 

participant was 18 or younger, the parent/guardian completed the school-age 
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parent-report version. Following the completion of the behavioral questionnaires, 

participants completed the EEG-based BNB task while seated 24 inches in front 

of a 19-inch computer LCD monitor in a dimly lit, sound attenuated room. The 

total time required to complete the task was approximately 30 minutes per 

person.  

EEG Recording 

 EEG data was continuously recorded at 1000 samples per second using a 

Hydrocel high-density electroencephalogram net of 128 Ag/AgCl electrodes 

(Geodesic Sensor Net, EGI Inc.). Data was low pass filtered online at 100 Hz and 

was recorded through the Netstation v.4.4 software package (EGI, Inc.) and EGI 

high impedance amplifiers (EGI, Inc. Series 300 amplifier). All electrodes were 

referenced to Cz for recording and then re-referenced offline to an average 

reference for data analysis. The location of coordinate Cz was marked as the 

juncture of the halfway point between nasion to inion and left and right 

preauricular notches. All impedances were adjusted to within 40 kΩ prior to the 

start of the recording session. 

EEG Data Analysis 

 Recorded data were analyzed off-line using EEGlab and ERPlab (Delorme 

& Makeig, 2004; Lopez-Calderon & Luck, 2014). Raw data were visually 

inspected to identify bad data segments and channels containing extreme 

artifacts. Artifact-laden channels were interpolated using a spherical spline. A 

high-pass IIR Butterworth  filter of 0.5 Hz was applied prior to ocular artifact 
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identification, and horizontal and vertical (blink) eye movements were identified 

and removed using independent component analysis (Stone, 2002). The data 

was then segmented using a window of -200 to 1000 ms surrounding stimulus 

onset. For measurement of the P50 component, data were baseline corrected 

over a 100 ms pre-stimulus interval, an IIR Butterworth band-pass filter of 10-50 

Hz was applied (Dalecki, Croft, & Johnstone, 2011), and trials containing 

voltages in excess of ± 50 μV were rejected. For all other ERP components, data 

were baseline-corrected using a 200 ms pre-stimulus interval, filtered with an IIR 

Butterworth low-pass filter of 30 Hz for the ERP analyses. No further filters were 

applied to the data for the oscillatory analyses. 

Segmented data were then averaged over trials for each stimulus type 

and difference waveforms were created for the ERP components (described in 

detail below). Grand average difference waveforms and topographies were used 

to inform choice of location and latency intervals for mean amplitude 

measurements. Raw waves and difference waveforms for auditory and visual 

ERPs are presented in Figure 3.  

Auditory ERPs. MMNFREQ and MMNISI components were quantified using 

difference waves created by subtracting the responses to standard stimuli from 

responses to deviant stimuli. Mean amplitude measurements were taken at 

electrode Fz (E11) at the intervals of 100-150 (MMNFREQ) and 150-250 ms 

(MMNISI) (Näätänen, Paavilainen, Rinne, & Alho, 2007). P50 suppression was 

evaluated as the difference in amplitude between S1 and S2 at electrode Fz (Ell), 
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evaluated between 60-100 ms post-stimulus (Dalecki et al., 2011; Knott, Millar, & 

Fisher, 2009).  

Visual ERPs. The MMNVIS was evaluated at electrode Oz (E73), and 

mean amplitude was measured between 150-250 ms (Tales, Newton, 

Troscianko, & Butler, 1999). The P3a component was evaluated at electrode Cz 

and quantified using the mean amplitude between 300 and 420 ms for the 

difference wave created by subtracting responses to the frequent and rare 

distractor shapes (Polich, 2007). The P3b component was measured at electrode 

Pz (E62) and quantified as the mean amplitude between 250 and 650 ms for the 

difference wave created by subtracting responses to the frequent and rare target 

shapes (Polich, 2007). The C1 component was measured using the difference 

wave created by subtracting responses to stimuli located at the top of the screen 

from responses to stimuli located at the bottom of the screen. Mean amplitudes 

were then measured electrode Cz using a latency interval of 20-100 ms (Clark, 

Fan, & Hillyard, 1994). Finally, the N2pc component was measured by 

subtracting ERPs to ipsilateral from ERPs to contralateral targets at an averaged 

electrode made up of P7/P8 (E66/E85), T7T8 (E46/E109), P3/P4 (E53/E87), and 

P07/P08(E59/E92), and was quantified using the mean amplitude between 180 

and 300 ms (Dunn, Freeth, & Milne, 2016; Kappenman & Luck, 2012; Luck & 

Hillyard, 1994).  

Although the compound visual stimuli and nested auditory stimuli used in 

the present research are nearly identical to that used in prior research 

(Kappenman & Luck, 2012; Kieffaber et al., 2016), some trials were excluded 
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from the ERP analyses in an effort to assuage concerns about potential 

interactions between stimulus types.  The following adjustments were made to 

component measurements: (1) trials containing rare targets (e.g. P300a and 

P300b) were excluded from vMMN, C1, and N2pc analyses, and (2) trials 

containing vMMN deviants were excluded from P300a, P300b C1, and N2pc 

analyses (Kappenman & Luck, 2012). 

Oscillatory Analyses. Resting state EEG data recorded at the beginning 

of each session was analyzed offline using MATLAB. Data from the 120 seconds 

of eyes open resting state and the 120 seconds of eyes closed were combined.  

Power spectral density was estimated using Welch’s method. For hemispheric 

asymmetry measures, the natural log of the power for the right and left 

hemispheres was calculated. Spectral power was computed over five frequency 

ranges, including delta (1-3 Hz), theta (4-7 Hz), alpha (8-12 Hz), beta (13-25 Hz) 

and gamma (30-80 Hz) (Dickter & Kieffaber, 2014; Wang et al., 2013). 

Hemispheric asymmetries were calculated by taking the difference of the left 

from the right hemispheres (Clarke et al., 2015). Scalp topographies of the 

oscillatory analyses are presented in Figure 4. 

Statistical Analyses 

 All statistical analyses were performed using SPSS version 23.0 (SPSS 

Inc., Chicago, IL). Power analysis for a discriminant function analysis with two 

groups and three predictor variables was conducted in G*Power to determine a 

sufficient sample size using an alpha of 0.05, a power of 0.80, and a large effect 

size (f = 0.40) (Faul, Erdfelder, Lang, & Buchner, 2007). Based on the 
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aforementioned assumptions, the desired sample size is at least 20. Based on 

previous research, the current data, and the sample size, three of the BNB 

metrics were selected for further analysis. A discriminant function analysis was 

used to determine whether group membership (ASD or control) could be 

predicted by the mean amplitude measurements of MMNFREQ, N2pc, and anterior 

alpha asymmetry. 

Results 

 Means and standard deviations for all component measurements by 

participant group are provided in Table 3. Based on previous research and the 

data from the current study, MMNFREQ, N2pc, and alpha anterior asymmetry were 

selected to be used to predict group membership. When measurements were 

entered into a discriminant analysis, ERP profiles significantly predicted 

participant group (ASD or Control), Wilk’s λ = .65, χ2 (3)   = 14.72, p <.01, 

Canonical Correlation: .59. In the discriminant analysis, 82.9% of cases were 

correctly reclassified into original participant groups, including 93.8% of control 

participants and 73.7% of participants with ASD. The same percentage of 

participants were correctly classified using “leave one out” cross-validation. The 

neurometric profiles of the two groups can be more easily visualized by 

standardizing ERP amplitudes and organizing the group means in a radial plot 

(see Figure 4).  
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Discussion 

The primary aim of the present research was to determine whether the 

simultaneous measurement of multiple neurometrics, through the use of a brief, 

nested battery of stimuli, confers significant advantages in the synthesis of a 

profile designed to enhance the classification of ASD in adolescents and young 

adults with clinically diagnosed ASD and controls compared with more traditional, 

behavioral diagnostic mechanisms. ERPs including the MMNFREQ and the N2pc, 

and OA including alpha anterior asymmetry proved to be most strongly related to 

ASD. These results support prior research relating neurometrics to ASD, and 

show that the multivariate profile can achieve a cross-validated classification rate 

of 82.9%. This classification accuracy is comparable to that achieved by the 

current “gold standard” methods, including the Autism Diagnostic Interview-

Revised (ADI-R) and the Autism Diagnostic Observation Schedule (ADOS), 

which have been shown to have classification rates of approximately 75% 

(Tomanik, Pearson, Loveland, Lane, & Shaw, 2006). While the classification rate 

of the multivariate profile presented in this study is comparable to the gold 

standards, in terms of accuracy, the concise duration, in addition to the high 

classification rate, of the BNB supports the potential diagnostic utility of this 

paradigm.  

Previous literature with respect to ASD supports the inclusion of MMNFREQ, 

N2pc and alpha anterior asymmetry into a classifying profile of ASD and 

strengthens the ecological validity of the present findings. For example, the 

MMNFREQ difference wave was attenuated in the ASD group, suggesting 
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impairments in sensory memory. This MMNFREQ attenuation is linked with deficits 

in low-level auditory processing and has been consistently seen in individuals on 

the autism spectrum (Dunn, Gomes, & Gravel, 2007; Kujala et al., 2007). Of 

particular interest to the study of ASD, the mismatch negativity response, is 

thought to be caused by the post-synaptic potentials resulting from the binding of 

glutamate to NMDA receptors (Javitt, Steinschneider, Schroeder, & Arezzo, 

1996). Imbalances in the excitatory/inhibitory (E/I) neurotransmitter system, 

including glutamate and GABA, are one of the posited etiologies of autism 

(Purcell, Jeon, Zimmerman, Blue, & Pevsner, 2001).  

Amplitude of the N2pc component was also attenuated in the ASD group. 

This trend can be interpreted as a decreased capacity for selective attention in 

individuals with ASD compared to controls, a conclusion that is consistent with 

previous literature (Galfano, 2010; Luck & Kappenman, 2012; Remington et al., 

2009; Richard & Lajiness-O’Neill, 2015; Rinehart, Bradshaw, Moss, Brereton, & 

Tonge, 2001). It is noteworthy, however, that some conflicting findings regarding 

the relationship between N2pc and autism have been reported (Dunn et al., 

2016; Remington et al., 2009; Richard & Lajiness-O’Neill, 2015), with some 

suggesting that the heterogeneity of findings may be attributed to variability in 

“perceptual load” across selective attention tasks (Remington, Swettenham, & 

Lavie, 2012). Due to the complex presentation of auditory and compound visual 

stimuli in this task, it is reasonable to assume that perceptual/cognitive load may 

be higher in the BNB by comparison with conventional tasks designed to elicit 

only the N2pc.  Importantly, however, it is also likely that the increased 
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complexity of the present task offers increased ecological validity as it more 

closely approximates real world perceptual stimuli. Of note, the attenuation in 

N2pc amplitude did not correspond to any differences in accuracy between 

groups (t(33)=.81, p >.05) meaning that they performed comparably on the task. 

The final component included in the profile of ASD in this study was 

anterior alpha asymmetry with individuals with ASD showing decreased alpha 

power in the left compared to right hemisphere when compared to controls. This 

reduced power in the left hemisphere in resting-state EEG recordings is 

consistent with previous research in individuals with ASD, particularly in the 

frontal to mid-frontal region (Burnette et al., 2011; Sutton et al., 2005; Wang, 

2010). Decreased Alpha-band activity is sometimes interpreted as 

“desynchronization” or “asynchrony” and, when observed in the right hemisphere, 

has been interpreted to reflect an increase in approach compared with avoidance 

behaviors (Burnette et al., 2011; Sutton et al., 2005). This may be a contributing 

factor to the heterogeneity of ASD symptoms. More generally, resting state 

asynchrony has been related to decreased signal-to-noise ratios (Wang et al., 

2013), potentially contributing to the difficulties in integrating new sensory 

information observed in individuals on the autism spectrum (American Psychiatric 

Association, 2013; Baranek et al., 2006). Importantly for the evaluation of resting-

state EEG biomarkers, previous research has shown these metrics to remain 

stable in a trait-like capacity (Gold, Fachner, & Erkkilä, 2013; Hagemann, 

Naumann, Thayer, & Bartussek, 2002).   
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There are a few obvious caveats to these findings. First, due to the novel, 

complex nature of the BNB paradigm, there were not any specific a priori 

hypotheses for selecting components for the multivariate profile apart from that 

the components that emerged in the profile would have been shown to be related 

to ASD in the previous literature. It will be important for future research to confirm 

the reliability of this profile in a new, larger sample. A second limitation was the 

number of the components in the profile. The BNB collects data on eight ERPs 

as well as resting-state metrics resulting in many more neurometrics than could 

be validly included in this profile without inflating the Type-I error rate considering 

our final sample size (N=35). Future research could explore the potential utility of 

additional BNB metrics by collecting a larger sample of adolescents/young adults 

with ASD and controls. Finally, the age range (11-21), covers a large 

developmental span. While this may not decrease the utility of the profile, many 

electrophysiological measures evidence maturational variation and so future 

research should consider evaluating these neurometrics in a developmental 

context.  

In sum, the Study One goal of synthesizing a multivariate profile derived 

from the BNB neurometrics that classified ASD with an accuracy that was better 

than the gold standard methods was achieved. The metrics used in the model 

help to provide a more complete picture of the constellation of neurometric 

abnormalities that may be associated with ASD including impaired low-level 

auditory processing, selective attention, and sensory integration.  
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Study Two: An Analysis of Complexity in ASD 

 Apart from ERP and oscillatory analyses, evaluation of resting-state 

complexity is another method of analyses for EEG data. Complexity is a unique 

quality that emerges from nonlinear, dynamic neural interaction (Buzsáki, 2006). 

Previous literature has shown that complexity of EEG data is driven by the 

balance of excitatory and inhibitory neurotransmitters (Jeste et al., 2015). This 

relationship between the E/I balance and complexity makes it an advantageous 

metric for the study of ASD due to the research suggesting that E/I imbalance is 

one of the etiological factors of ASD (Javitt et al., 1996; Purcell et al., 2001). The 

mismatch negativity, one of the ERPs discussed in Study One, is also thought to 

be influenced by the E/I neurotransmitter balance (Luck, 2014). The relationship 

seen in Study One with the MMNFREQ and ASD provides support for the presence 

of modulated complexity in individuals with ASD compared to controls.  

 Multiscale entropy (MSE) is a relatively novel method for the analysis of 

complexity in physiological data (Costa, Goldberger, & Peng, 2002). MSE is 

designed to quantify the dynamic, non-random fluctuations, or entropy, of neural 

interactions over multiple time scales (Buzsáki, 2006; Catarino, Churches, Baron-

Cohen, Andrade, & Ring, 2011; Costa et al., 2002). The significant contribution of 

MSE compared to other entropy or complexity measures is that, due to the 

coarse-graining of the data into multiple time scales, the completely random, 

non-predictable data is effectively factored out, leaving behind a more accurate 

measure of dynamic complexity (Catarino et al., 2011; Costa et al., 2002; 

Eldridge, Lane, Belkin, & Dennis, 2014). Additionally, this coarse-graining makes 
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MSE more effective than other traditional entropy measures in noisy 

experimental data which makes MSE an attractive method for use in children and 

clinical populations (Catarino et al., 2011; Ueno et al., 2015). MSE analysis can 

be performed in event-related or resting state data (Costa et al., 2002); however, 

MSE analysis in resting-state data can inform about the adaptability of the brain 

at rest, a feature that makes this method attractive for use in individuals with ASD 

due to the aforementioned sensory integration deficits (Bosl et al., 2011; Catarino 

et al., 2011). 

The objective of the present research was to utilize resting-state MSE 

analysis in a sample of 35 young adults (11-21) with clinically diagnosed ASD 

(N=19) and controls (N=16) to determine if resting state complexity differed 

between groups. Based on previous research regarding complexity in individuals 

with ASD (Bosl et al., 2011; Catarino et al., 2011; Eldridge et al., 2014), this 

research hypothesized that individuals with ASD would show attenuated and 

atypical resting-state complexity compared to controls when using MSE analysis. 

Methods 

Participants 

 Participants in this study were collected as part of the same protocol as 

Study One. As such, the participant characteristics are identical.  

Procedure 

 The procedure for Study Two was identical to that of Study One as it was 

collected as part of the same protocol. The data of interest in this study was 
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collected during the 240 seconds of resting state data (two blocks of 60 seconds 

eyes open and 60 seconds eyes closed) collected prior to the BNB task.  

EEG Recording 

 EEG data was continuously recorded at 1000 samples per second using a 

Hydrocel high-density electroencephalogram net of 128 Ag/AgCl electrodes 

(Geodesic Sensor Net, EGI Inc.). Data was low pass filtered online at 100 Hz and 

was recorded through the Netstation v.4.4 software package (EGI, Inc.) and EGI 

high impedance amplifiers (EGI, Inc. Series 300 amplifier). All electrodes were 

referenced to Cz for recording and then re-referenced offline to an average 

reference for data analysis. The location of coordinate Cz was marked as the 

juncture of the halfway point between nasion to inion and left and right 

preauricular notches. All impedances were adjusted to within 40 kΩ prior to the 

start of the recording session. 

EEG Data Analysis 

 Recorded data were analyzed off-line using EEGlab. Raw data were 

visually inspected to identify bad data segments and channels containing 

extreme artifacts. Artifact-laden channels were interpolated using a spherical 

spline. A high-pass IIR Butterworth  filter of 0.5 Hz was applied prior to ocular 

artifact identification, and horizontal and vertical (blink) eye movements were 

identified and removed using independent component analysis (Stone, 2002). No 

further filters were applied to the data.  

 Multiscale entropy (MSE) analysis quantifies the quality and richness of 

resting state neural interactions by evaluating its dynamic complexity (Costa et 
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al., 2002). This is accomplished through the calculation of sample entropy at 

several time scale factors established through a coarse-graining procedure 

(Catarino et al., 2011; Costa et al., 2002). Through this method of complexity 

analysis, the non-predictable, or random, activity is effectively factored out 

leaving only the predicable, dynamic data (Costa et al., 2002). The formulas for 

the MSE calculations can be seen in Figure 5 and were adapted from the 

MATLAB script based on Costa et al., (Costa et al., 2002) accessed through 

PhysioNet (Goldberger et al., 2000). The parameters required for this MSE 

analysis (Costa et al., 2002; Goldberger et al., 2000) are r (the matching 

tolerance), m (match points), and ! (number of scale factors). The parameters 

used in this analysis were r = .15, m = 2, and ! = 20. These parameters are 

consistent with previous MSE analysis with resting state EEG data (Catarino et 

al., 2011; Cheng, Tsai, Hong, & Yang, 2009; Ueno et al., 2015; Yang et al., 2013, 

2015).  

The maximum number of data points that can be processed using this 

method of MSE analysis is 40,000 (Costa et al., 2002), although multiple data 

segments that have undergone MSE analysis can be averaged together 

assuming that the segment length and number of channels are identical (Ueno et 

al., 2015). Because the sampling rate of the data in this study was 1000 Hz, 40 

second segments of data were analyzed. Due to the use of MSE analysis for the 

evaluation of resting state complexity, this study segmented the 120 segments of 

resting state data into four, 40-second segments, two eyes open and two eyes 

closed. The MSE analysis was performed on all 128 channels. These four 
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segments, for all channels, underwent MSE analysis and then were averaged 

together for further analysis.  

Statistical Analysis 

 To evaluate the MSE for this study, a two-way repeated measure analysis 

of variance (ANOVA) was performed, with group (ASD and control) as a between 

subject factor and SF (!=20) as a within subject factor. The Greenhouse-Geisser 

correction for violations of sphericity was used where appropriate. 

Results 

 The results of the MSE analysis showed a main effect of scale factor (see 

Table 4 for means and standard deviations) with increased sample entropy as 

the scale factor increased, and a main effect of group (see Table 4 for means 

and standard deviations) with sample entropy being higher in the control group 

compared to the ASD group. Both of these main effects were qualified by a 

significant scale factor by group interaction (F(19, 4495) = 52.57, p < .000, partial 

η2 = .18) (see Figure 6 and Table 5 for means and standard deviations), meaning 

that collapsing across all electrodes, the slope of the sample entropy curves 

differed as the scale factor increased for each group.  

Discussion 

 The objective of this study was to utilize resting-state MSE analysis in a to 

determine if dynamic resting state complexity differed between young adults with 

ASD and controls. It was hypothesized that individuals with ASD would show 

attenuated and atypical resting-state complexity compared to controls when 

using MSE analysis. Consistent with previous literature, this research found that, 
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in both groups, there was a change in sample entropy from the first time scale 

(!=1) to the last time scale (!=20) as evidenced by the main effect of scale factor. 

This is likely due to the factoring out of “random,” non-predictable resting state as 

a result of the averaging of data points together during the coarse-graining 

involved in data preparation for MSE analysis (Costa et al., 2002). Coarse-

graining works by averaging together non-overlapping windows of data points 

(Catarino et al., 2011; Costa et al., 2002). The number of points to be averaged 

together is set by the scale factor (!). Based on the premise of multiscale entropy 

analysis, it is not surprising that the sample entropy for both groups would 

change over time.  

 This research also found that that collapsing across all time scales (scale 

factors), entropy would be attenuated in the participants in the ASD group. 

Decreased complexity, as measured by entropy, is posited to reflect a decrease 

in adaptability of the resting state neural interactions, which may contribute to the 

sensory integration deficits seen in individuals on the autism spectrum (Baranek 

et al., 2006; Buzsáki, 2006). As evidenced by the main effect of group, discussed 

in the results, individuals on the autism spectrum displayed, on average, lower 

levels of complexity than controls implying lower neural adaptability in the ASD 

group.  

 Perhaps the most interesting finding is the interaction between scale factor 

and group. It showed that the slope of the curve mapping the sample entropy 

scores over the course of the MSE analysis was less steep in the ASD group. 

This decrease in change over scale factor shows that, while entropy was lower in 
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ASD groups to begin with, it did not increase at the same rate as the control 

group when the random “noise” in the data was factored out. This finding 

highlights the utility of MSE over other forms of complexity analysis that have not 

yielded findings that support the relationship between increased complexity and 

increased adaptability of function, but rather attempt to explain a more complex 

relationship (Ghanbari et al., 2015; Zarafshan, Khaleghi, Mohammadi, Moeini, & 

Malmir, 2016).  

 As with Study One, there are a few limitations that can inspire future 

research. For example, this study examined the average MSE for all electrodes 

recorded while the participant was sitting with their eyes open and their eyes 

closed. When viewed regionally (e.g. anterior, central, and posterior), the findings 

remained highly significant reflecting no regional differences. What this study did 

not examine was hemisphere-specific or electrode-specific differences in MSE. 

Future research could examine this to determine what, if any, specific region(s) 

are driving the differences in resting-state complexity. Additionally, future 

research could examine task-related MSE and determine if there are larger 

changes in MSE between resting-state and task-related calculations. If found, 

this would imply a decrease in neural adaptability and function as a result of 

cognitive or perceptual load, which has proved to cause differences in other 

electrophysiological measures such as the N2pc (Remington et al., 2009). 

Finally, as this method of analysis is relatively novel, the main objective of 

identifying group differences in MSE was relatively conservative. Future research 



 

	 26 

could work to incorporate these complexity differences into a predictive 

multivariate profile and could determine its clinical utility. 

Conclusions 

 Taken together, the studies described in this research were able to 

synthesize a multivariate profile that classified youth with and without ASD at an 

accuracy rate comparable to that of the gold standard methods (ADI-R/ADOS) 

and identify an additional neurometric, multiscale entropy, that can accurately 

differentiate between youth with ASD and controls as well.  Both studies 

employed relatively novel methodologies, and because of that, additional 

research confirming and expanding on their findings is necessary. While 

additional research is required, the information gleaned from these studies 

regarding ASD-related deficits in low-level auditory processing, selective 

attention, and sensory integration/adaptive function inform the current literature 

on ASD and have the potential to inspire the creation of new clinical diagnostic 

methods and measures of treatment efficacy. This research, in line with the 

NIMH RDoC initiative, identifies basic biological and behavioral characteristics 

that have the potential to be translated to an applied setting with the goal of 

explaining the spectrum of human behavior from normal to abnormal.      
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Table 1: 
Description of components collected during BNB. Significant components are * 

Metric What does it measure? How is it measured? 

MMNFREQ* 

Reflects auditory sensory memory through an automatic 
response to an unexpected change in frequency of the 
repeated tone (Pakarinen, Takegata, Rinne, Huotilainen, & 
Näätänen, 2007). 

Measured in response to tones 
that deviate in frequency from the 
standard tone.  

MMNISI 

Reflects auditory sensory memory through an automatic 
response to an unexpected change in the interval between 
tones (Näätänen, Paavilainen, & Reinikainen, 1989). 

Measured in response to 
shortening of the ISI duration 
compared to the standard ISI 
duration.  

P50  
Reflects sensory gating, or the ability to filter irrelevant 
information (Fruhstorfer, Soveri, & Järvilehto, 1970). 

Measured in response to the 
paired clicks.  

P300a 
Reflects a shift of attention and stimulus classification to 
distractor stimuli (Polich, 1988). 

Measured in response to the 
presence of rare, distractor 
stimuli.  

P300b 
Reflects a shift of attention and stimulus classification to 
target stimuli (Sutton, Braren, Zubin, & John, 1965)5). 

Measured in response to the 
presence of rare, target stimuli. 

MMNVIS 

Reflects an automatic response to an unexpected change of 
the repeated visual stimuli (e.g. motion, direction) (Pazo-
Alvarez, Cadaveira, & Amenedo, 2003). 

Measured in response to shift in 
the grating direction between 
vertical and horizontal.  

C1 
Reflects integrity of early visual processing, detection of a 
stimulus (Jeffreys & Axford, 1972). 

Measured in response to sine 
grating switching between the top 
and bottom of the screen.  

N2pc* 
Reflects ability to selectively focus visual attention (Luck & 
Hillyard, 1994). 

Measured in response to shift in 
visual target location.  

Delta: 
 

Thought to underlie the event-related slow waves seen in 
tasks for detection of attention and salience (Wang, 2010).  

Measured during resting state 
EEG. 1-3 Hz 

Theta: 
 

Studied in relation to memory processes (Wang, 2010). Measured during resting state 
EEG.4-7 Hz 

Alpha:* 
 

Associated with precise timing of sensory and cognitive 
inhibition (Wang, 2010). 

Measured during resting state 
EEG. 8-12 Hz 

Beta: 
 

Associated with alertness, active task engagement and 
cognitive inhibition (Wang, 2010). 

Measured during resting state 
EEG.13-25 Hz 

Gamma: 
 

Thought to facilitate feature binding in sensory processing 
(Buzsáki & Wang, 2012). 

Measured during resting state 
EEG. 30-80 Hz 
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Table 2 
Trial counts for stimulus presentation.  

Trial Type Frequency 

Visual Stimuli 

High Probability Targets 350 

Low Probability Targets 50 

High Probability Distractors 350 

Low Probability Distractors 50 

Target Left 200 

Target Right 200 

Rectangular Sine Grating-Top 200 

Rectangular Sine Grating-Bottom 200 

Rectangular Sine Grating-Standard Direction 350 

Rectangular Sine Grating-Deviant Direction 50 

Auditory Stimuli 

Standard Tone 310 

Deviant Tone 60 

Deviant ISI Duration 60 

Paired Clicks 90 
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Table 3 
Means and standard deviations for BNB Metrics. All OA metrics refer to the LOG  
asymmetry. 

BNB Metric Control 
(M | SD) 

ASD 
(M | D) 

MMNFREQ* -.26 | .81 1.21 | 1.45 

MMNISI -.42 | 1.09 -.03 | 1.85 

P50 suppression .16 | .24 .05 | .20 

P300a .37 | 3.13 .12 | .87 

P300b .91 | 1.50 1.38 | 2.69 

MMNVIS -.69 | 2.58 .04 | 3.75 

C1 .34 | 1.26 .24 | .95 

N2pc* -.08 | .43 -.01 | .58 

Delta Anterior:1-3 Hz -.09 | 1.03 -.07 | 1.46 

Delta Cental:1-3 Hz .01 | .59 -.00 | 1.41 

Delta Posterior:1-3 Hz .29 | 1.53 -.05 | 2.10 

Theta Anterior: 4-7 Hz -.11 | .73 -.12 | 1.13 

Theta Central: 4-7 Hz -.02 | .68 -.06 | 1.48 

Theta Posterior: 4-7 Hz .20 | 1.37 .09 | 1.91 

Alpha Anterior*: 8-12 Hz -.24 | .49 .02 | .93 

Alpha Central: 8-12 Hz .01 | .74 .03 | 1.30 

Alpha Posterior: 8-12 Hz .24 | 1.31 .34 | 1.59 

Beta Anterior: 13-25 Hz -.15 | .51 .10 | 1.12 

Beta Central: 13-25 Hz -.03 | .53 -.09 | 1.36 

Beta Posterior: 13-25 Hz .30 | 1.34 .26 | 1.64 

Gamma Anterior: 30-80 Hz -.22 | .67 -.12 | 1.13 

Gamma Central: 30-80 Hz -.02 | .50 -.12 | 1.30 

Gamma Posterior: 30-80 Hz .31 | 1.49 .22 | 1.71 
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Table 4:  
Means and standard deviations for the main effects of scale factor and participant group. 

Main Effect of Scale Factor 

Scale Factor Mean Standard Deviation 

1 1.02 .34 
2 1.35 .37 
3 1.47 .35 
4 1.54 .35 
5 1.60 .34 
6 1.62 .31 
7 1.59 .29 
8 1.55 .30 
9 1.57 .29 

10 1.60 .28 
11 1.60 .26 
12 1.57 .26 
13 1.54 .28 
14 1.54 .30 
15 1.55 .33 
16 1.56 .35 
17 1.58 .36 
18 1.60 .36 
19 1.63 .35 
20 1.65 .34 

Main Effect of Participant Group 

Participant Group Mean Standard Deviation 
Control 1.62 .01 

ASD 1.47 .01 



 

	 43 

 

  

Table 5:  
Means and Standard Deviations for the scale factor by group interaction. 

Scale Factor Control 
(M | SD) 

ASD 
(M | SD) 

1 1.05 | .33 .97 | .33 

2 1.39 | .36 1.30 | .38 

3 1.51 | .32 1.42 | .37 

4 1.59 | .30 1.50 | .38 

5 1.66 | .29 1.55 | .38 

6 1.68 | .29 1.57 | .36 

7 1.66 | .23 1.54 | .32 

8 1.64 | .24 1.47 | .33 

9 1.65 | .23 1.51 | .31 

10 1.67 | .21 1.54 | .31 

11 1.66 | .19 1.54 | .30 

12 1.64 | .19 1.50 | .29 

13 1.63 | .20 1.47 | .31 

14 1.63 | .23 1.46 | .33 

15 1.65 | .26 1.46 | .36 

16 1.67 | .27 1.47 | .39 

17 1.69 | .27 1.48 | .40 

18 1.71 | .27 1.51 | .39 

19 1.74 | .27 1.54 | .38 

20 1.76 | .26 1.56 | .37 
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A. 

B. 

Figure 1. (a) Task version one sample schematic of 4 trials in which the target stimuli 
are the triangle and the square and the distractor stimuli are the diamond and the 
circle. Each trial consisted of one visual presentation and up to two auditory 
presentations. (b) Timing of a single trial. The duration of each trial was 2600 ms, 
and both type and presence/absence of auditory stimuli varied between trials.  
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Figure 2. Raw and difference waveforms for BNB ERPs 
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  Control ASD 

Figure 3. Spectral topographies for oscillatory analyses. 
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Figure 4: Radial plot of BNB metric multivariate profile.
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Coarse-Graining Procedure Equation: 
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Figure 5. Equations for the calculation of multiscale entropy. 
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Figure 6. Group differences in multiscale entropy. 
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